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Abstract  

 

 

Water delivery systems usually work in continuous way based on some prescribed flow conditions 

and user’s needs.  However there are situations in which abrupt changes in the operating conditions 

must be carried on. Typical examples are the alternative closing of a canal system during the non-

demand periods to save water for other purposes as energy production, and the closure of a canal 

due the danger of water pollution in the supplier river.  Closure of a canal means setting zero flow 

conditions by closing the gates along the canal, while maintaining specific water levels under the 

maximum allowed value.  The closure operation requires a progressive and well planned set of 

actions to avoid overtopping and cracking in the canal lining, which can involve both economic 

and environmental issues.  The opening operation involves restarting the canal to its normal 

operating condition from zero flow condition. 

This thesis is devoted to develop a supervised decentralized predictive control strategy for solving 

the problems related to the closure and opening operations of canal systems. The evaluation is 

fulfilled by means of numerical simulation on two cases of study in a variety of operating 

scenarios. The strategy is also experimentally validated through real-time implementation in a 

laboratory canal available in the Technical University of Catalonia (canal PAC-UPC). 

The control strategy has been developed in a two-level architecture: (i) a set of individual 

decentralized downstream water level predictive controllers, which are formulated via an optimal 

control problem under dynamic constraints and implemented by upstream local gates; and (ii) a 

supervising level to achieve the compromise of fast execution with smooth gate trajectories and 

water level regulation, even in the presence of disturbances. 

The simulation and real-time implementation scenarios have demonstrated that the proposed 

strategy is convenient for closure and opening of irrigation canals.  Problems presented when the 

canal closure operations are not managed properly, such as overtopping, have been avoided in all 

the scenarios. 
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Resumen  

 

 

Los canales de riego usualmente trabajan en forma continua bajo unas condiciones de flujo 

prescritas y acorde a las necesidades de agua de los usuarios.  Sin embargo hay situaciones en las 

cuales se presentan cambios abruptos en las condiciones de operación.  Un típico ejemplo es la 

alternativa de cierre durante los periodos de inactividad de los regantes.  Dicho cierre tiene por 

objeto el ahorro de agua para otros propósitos, como puede ser la produccion de energía. Otro 

ejemplo es la necesidad de cierre de un canal ante la presencia de un vertido de contaminantes 

aguas arriba en la fuente abastecedora de agua.  El cierre de un canal requiere cerrar de forma 

progresiva y suave las compuertas de todo el canal, evitando desbordamientos y manteniendo unos 

calados de seguridad en los diferentes tramos del canal hasta llegar a una condición de caudal cero.  

La violación de los calados máximos puede producir inundaciones y pérdidas de agua innecesarias.  

La reducción de los niveles de agua por debajo de los calados mínimos permitidos puede causar 

daños en la estructura física del canal.  

Esta tesis se centra en el desarrollo de una estrategia de control predictivo descentralizado 

supervisado para gestionar de forma automática las operaciones de cierre y apertura de canales de 

riego.  La evaluación de la estrategia se lleva a cabo mediante la simulación numérica en dos casos 

de estudio.  Dicha evaluación se completa mediante experimentos en tiempo real realizados en un 

canal de laboratorio existente en la Universitat Politècnica de Catalunya (canal PAC-UPC). 

La estrategia de control se ha desarrollado con una arquitectura de dos niveles: (i) un conjunto de 

controladores individuales descentralizados para el control de niveles de aguas abajo, cuya 

formulación se plantea como un problema de control óptimo con restricciones dinámicas; y (ii) un 

nivel de supervisión encargado de alcanzar el compromiso de una ejecución rápida del proceso de 

cierre (o apertura) con movimientos suaves de compuerta y de una regulación de los niveles de 

agua dentro de los márgenes de consigna, incluso en presencia de perturbaciones. 

Tanto los escenarios de simulación como los de implementación en tiempo real, han demostrado 

que la estrategia propuesta en esta tesis es satisfactoria para operaciones de cierre y apertura de 

canales de riego. En efecto, la estrategia de control ha sido capaz de evitar problemas, como por 

ejemplo el desbordamiento, que se presentan cuando la operación de cierre de un canal no se 

realiza adecuadamente.  
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1 Introduction 
 

Chapter 1 

 

Introduction 
 

 

1.1  Motivation 

 

Current environmental and economic challenges require real commitment with the modernization 

of the irrigation canals facilities. Crop irrigation demands 70% of all freshwater worldwide and if 

current trends continue it is estimated that two out of three people will be affected by the lack of 

freshwater sources by 2025 (UN, 2006). Many irrigation projects throughout the world built 

decades ago are inefficient in terms of water and energy use and they are in urgent need of 

modernization (Hervé, 2002). 

A need exists for improving the operational efficiency and flexibility in the water supply. 

Efficiency means increasing the volume ratio of water used on crops with respect to the volume 

of water removed from fresh water sources (e.g. rivers, streams, lakes, reservoirs).  Flexibility is 

related to deliver water to users in time, frequency and duration as required.  There are three main 

delivery concepts in water conveyance systems (Buyalski et al., 1991): 

 Rotation: users share a constant water supply, while cooperating with other water users to 

establish the time and quantity of delivery. 

 Scheduled: a notification of delivery time and quantity is required in advance, whereby 

water users are limited to contractual water allotment on a daily, monthly and yearly basis.  

 Demand: unrestricted use of the available water supply with limitations only on maximum 

flow rate and total allotment.  
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Water conveyance system is constructed to convey water from one place to another to accomplish 

functions such as irrigate agricultural land, municipal/industrial expansion or for energy 

production  (Buyalski et al., 1991). Water conveyance systems are mainly composed by a main 

canal, secondary canals, reservoirs, check structures, canal pumping plants, weirs and turnouts, 

among others. A single canal is usually divided into pools, whose boundaries are defined by the 

presence of gates. 

Traditionally, check structures used on irrigation canals are operated manually based on the canal 

staff skills and experience. This type of canal management has several drawbacks: 

  Low efficiency in terms of delivered water versus water taken from the source (Litrico, 

1999). 

 No operator is able to manage the interaction between all the parameters of a complex 

system such as a canal divided into several pools. Measurements and readings may be 

imprecise or even falsified by operators (Goussard, 1993). 

 Large waters losses  (Rivas et al., 2007). 

 Manual operation cannot react against unforeseen changes, for instance, when farmers start 

to take water or a rain event (Horváth, 2013). 

 

On the other hand, apart from irrigation, there are other important and necessary operations in 

canal management such as the closure and the opening of a canal facility.  These are challenging 

management tasks because they can cause problems such as overtopping and cracking in canal 

lining.  Overtopping is produced when the water level exceeds the top of canal bank, caused by 

the transient waves that bounce back iteratively when gates are closed.  Cracking or structural 

damage sometimes occurs by reason of the pressure that the concrete canal lining is subject due to 

the sub-pressure effect of outside water when either the canal is emptied or the water level 

decreases considerably.   

In general, the following elements are required to design and implement a canal control system in 

the field: 

 A control strategy that can cope with irrigation canal management problems and fulfill 

water level regulation requirements (Sepúlveda, 2008). 

 A good dynamical model of the canal to design, analyze and simulate control strategies. 

 A controller (e.g. Programmable Logic Controllers (PLC), embedded systems or even 

general-purpose computer systems). 

 Instrumentation / data acquisition system to measure relevant variables and to operate 

gates. The instrumentation elements include sensors (water levels gauges and flow meters) 

and actuators (valves, servomotors, etc.), among others. 

 

The design of a control system for canal regulation is a complex task with challenging problems. 

Canals are distributed over long distances with significant time delays. However, despite the 

complexity in the design and implementation of control algorithms, automation offers a solution 

to improve the water delivery service and get a better water conveyance efficiency (an estimated 
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30% to 60%) in the global management of irrigation canals. Some advantages of automatic canal 

compared to conventional method are  (Buyalski et al., 1991): 

 Achieve operational flexibility when simultaneous information on the entire system is 

known.  

 Immediate response to sudden and unforeseen variances in canal side diversion or to storm 

runoff flooding into the canal. 

 Flexibility to adjust discharges through the system on a daily or an hourly basis. 

 Problems like overtopping can also be avoided.   

From the automatic control point of view, controlled variables are usually water levels, discharges 

or water volumes. Control action variables are gate opening or discharges under gates (another 

algorithm transforms discharge into gate position).  In order to achieve quality of service, water 

levels should be maintained at reference setpoints, calculated on the basis of demand. It is also 

important to avoid fluctuations from setpoints, which translate into flow fluctuations at turnout 

checkpoints (Cantoni et al., 2007). The disturbances in the system are mainly as a result of turnouts 

variations, which are located typically at downstream part of each pool.  

During the last 30 years, the research community has focused on control methods to improve the 

operational management of water conveyance systems, ranging from early classical feedback and 

feedforward control structures (Burt, 1999), (Burt and Piao, 2002) and (Clemmens et al., 2005), to 

more recent implementations of advanced control methods like predictive control (van Overloop 

et al., 2010) and (Aguilar et al., 2012).  While there is an extensive literature on automatic control 

of canals in standard operation scenarios (see Chapter 2 for a literature review), the problems of 

canal closure and opening, which imply abrupt changes between different operation regimes, have 

received much less attention. Some references on the subject are (De Bievre et al., 2003),  

(Ghumman et al., 2009) and (Soler et al., 2010), including the recent work of an optimal  predictive 

open-loop control of a 15 km length-canal for an emergency closure operation in (Soler et al., 

2014).   

Irrigation systems usually work in a continuous way around some prescribed flow operating 

conditions and users needs. An operating regime is determined mainly by the discharge along the 

canal. Gate movements affect both upstream and downstream water levels (𝑦1 and 𝑦2), as 

illustrated in Figure 1.1 for a heading gate in a canal section. The discharge under the gate (Q) 

affects the levels as follows: 

𝑄 = 𝐶𝑑𝑓𝐵𝐿√2𝑔(𝑦1 − 𝑦2) 
(1.1) 

 

where 𝐶𝑑𝑓 is the gate coefficient, B is the width of the gate, L is the gate opening and 𝑔 is the 

acceleration of gravity. In a multireach canal, gate movements induce couplings among the reaches 

and therefore changes in operating conditions require efficient control strategies. This requirement 

is particularly stringent in scenarios where abrupt changes in the operating conditions must be 

carried out.  
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Figure 1.1 Sluice gate 

  

Canal closure is a main example of such scenario, in which the operation must drive the canal from 

a baseline regime to setting zero discharge conditions by closing all the gates along the canal. 

Conversely, the opening operation means restarting the operating discharge from zero. Typical 

closures (and the corresponding reverse opening operations) may be required in circumstances 

such as: non-demand water periods; emergency situations in primary or secondary canals due to 

pollutants flowing along the supplier river; corrective or preventive maintenance of check 

structures or canal lining; and others. 

Due to the couplings among canal pools, decreasing the discharge by means of closing the gates 

affects directly the controlled water levels in adjacent pools. Meanwhile, during the closure 

operation, water levels must keep within specified maximum and minimum values.  Indeed, it is 

recommended to leave enough water level safeguards to avoid problems such as overtopping and 

cracking in canal lining by cause of subpressure effects. Consequently, a specific goal is to move 

the gates as smooth as possible. However, this goal is conflicting with the fact that feasibility of 

closure operation depends on the closing velocity. For instance, night closure must be as faster as 

possible to make it feasible and, clearly, emergency situations are particularly demanding.  

 

In summary, these operational requirements are very challenging and almost impossible to achieve 

using local manual control methods for canal systems management. The literature on this topic is 

scarce and, to the best of our knowledge, there is no practical implementation of automatic 

controllers for closure operation to date. 

The aim of this thesis is to contribute with new developments in canal automation to satisfy the 

requirements of the problem of closure and opening. Based on the strengths of predictive control 

and previous experiences of the research group, this methodology is adopted as the theoretical 

control background. 
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1.2 Thesis objectives  

 

The overall objective is to develop a predictive control strategy with dynamic constraints for 

closure and opening operation of irrigation canals, which will be efficient in terms of designing 

feasible gate trajectories (compromise between smoothness of gate excursions and overall time for 

operation completion), while keeping water levels within prescribed bounds. 

The following specific objectives are proposed to reach the overall goal and serve as roadmap in 

the developments: 

 To define two case studies as benchmarks for numerical and experimental testing. One is 

an experimental facility, the laboratory canal PAC-UPC. New instrumentation and 

acquisition and control tools are designed in this work to facilitate closing and opening 

automatic operations. The other one is a main canal of the left bank of the river Ebro, which 

is numerically simulated via a state of art computational code. 

 

 To perform a study about the problem of closing and opening the benchmark canals, 

considering different manual operations. The interest is twofold: (1) learning significant 

issues and difficulties that arise when check structures are required to get completely 

closed; and (2) getting practical inputs for the automatic control design.  

 

 To develop a predictive control strategy for closure and opening of irrigation canals. The 

strategy includes optimization under dynamic constraints, a decentralized control 

architecture and a supervising scheme to achieve the compromise of fast execution with 

smooth gate trajectories and water level regulation even in the presence of disturbances.  

 

 To validate the control methodology by means of numerical simulation on the two cases 

of study in a variety of operating scenarios. This includes comparisons of the performance 

with respect to the use of open-loop control of gate trajectories. 

 

 To experimentally validate the methodology in the laboratory canal PAC-UPC. 
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1.3 Outline of the dissertation 

 

The dissertation is organized in seven chapters, this Introduction being the first one, where 

motivation and objectives have been stated. 

Chapter 2 reviews concepts related to irrigation canal management and control and presents a 

review on relevant literature.  

Chapter 3 introduces the two case studies used to test the control strategy proposed in this 

dissertation, the experimental platform canal PAC-UPC and the main canal of the Ebro river left 

bank canal. Numerical simulation schemes are presented based on solving the Saint Venant 

equations and linear models are derived to serve as background in the formulation of the control 

strategy.  

Chapter 4 discusses relevant hydraulic issues encountered in water conveyance canals under 

closure needs and presents the results of manual closures of the benchmark canals, which serve as 

motivation and learning prior to the automatic control design and implementation. 

Chapter 5 develops the methodology to design a predictive control with dynamic constraints for 

irrigation canal automation, which is the core of this thesis.  

Chapter 6 describes the assessment of the control methodology on both cases of study, first using 

the numerical simulation schemes. In a second step, experimental results are presented for the 

laboratory canal available in UPC.  

Finally, Chapter 7 presents the conclusions, summarizes the main contributions and gives some 

suggestions for future research. 
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2 Control of irrigation canals 
 

 Chapter 2 

 

Control of irrigation canals 

 

 

2.1 Irrigation systems 

 

A system of irrigation canals transports water from its source to the farmer fields. Irrigation is 

mainly used to assist the growing of agricultural crops during periods of inadequate rainfall.  

Typically, the system is a tree-shaped net of open canals and water flows downhill through the 

canals and enters the fields by gravity most of times.  The main (or primary) canal taps water from 

the water source, which may be a river, a lake, a reservoir or groundwater.  Water is then distributed 

by the smaller secondary canals to the tertiary canals which are even smaller.  From these tertiary 

canals the water finally enters the fields where it will be used to irrigate a crop (Van den Bosch et 

al., 1992).  Figure 2.1 shows a small dam on a river from which water is tapped and passes into 

the main canal.  The water then passes into two smaller canals, and finally the fields are irrigated 

by siphons. 

 

Figure 2.1 Part of a small irrigation system (taken from (Van den Bosch et al., 1992)) 
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Canal system operation depends on check structures for depth and discharge management.  An 

irrigation canal system is divided into pools and gates are usually the boundaries between canal 

pools, in this way the pools are located in a series configuration. From the hydraulics point of view, 

each pool has a unique response when the discharge through structures is changed. Physical 

parameters that influence the canal pool behavior are longitudinal bed slope, cross section size and 

shape, wall materials (surface roughness) and length (Clemmens, 2014).  The check gates are the 

main control structure on an irrigation canal.  Gates are mainly used to regulate water levels, to 

measure and control discharge, and to increase and regulate in-channel storage volumes  (Buyalski 

et al., 1991).   

There are several types of gates, such as undershot and overshot gates.  The undershoot gates are 

movable gates allowing water to flow under the gates, meanwhile, the overshot gates are movable 

gates allowing water to flow over them. Sluice gates can be divided into two main different types, 

vertical rising and wall-mounted.  Examples of undershot gates are radial, vertically hinged and 

sluice gates. A line weir is a typical example of overshot gates.  Hydraulically, the overshot gate 

is a moveable weir. Meanwhile, the sluice gates are made of either wooden or metal plate, these 

gates may be vertical or curve. The sluice gates slide in grooves in the sides of the canal.  In this 

dissertation only sluice gates are considered in the proposed case studies. 

In the management of irrigation systems, one of the main goals is to guarantee the user’s required 

discharge.  Additionally, it is necessary to keep the water depths constant in checkpoints along the 

canal in order to avoid problems such as cracking in the canal lining.  In order to describe the 

hydraulics in the canal, a set of variables can be used such as water depth (downstream or 

upstream), volume of water in a pool or discharge through a structure.  The water depth (or water 

level) is the vertical distance from the lower point of the canal section to the free surface.  The 

manipulated variables may be either discharge or gate openings.  The disturbances in the system 

are mainly caused by turnout variations (offtakes), infiltration from the canal or rainfall (intakes).  

The turnouts are located typically at downstream part of canal pools.  Meanwhile, a strong rainfall 

into the canal can result in higher rates of water level changes. The system operational constraints 

are mainly related either to maximum/minimum available discharges or related to check gate 

limits.  

 

2.2 Concepts related to the automation of irrigation systems 

 

Automatic control can improve the performance of the irrigation water delivery systems. The 

improvements are mainly related to the efficiency and the operational flexibility in the canal 

operation.  The efficiency is the ratio of water volumes used in the irrigated fields to volume of 

water extracted from the available source.  The flexibility is related to the capacity to give to the 

user the required discharge in time and quantity, with flexibility rather than restrictions over the 

time of water intake.  Automation incorporates to the irrigation system, a control system that 

upgrades the conventional method of canal system operation. The control system is able to 

automatically operate check structures based on feedback information from the current state of the 
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hydraulics variables in the canal. The next subsections are devoted to describe some concepts 

related to automation of irrigation systems. 

 

2.2.1 Control system architecture 

 

In order to control water levels in a canal, the control system may be composed by several control 

loops and the system architecture is shaped as a cascade topology.  For a model-based control, 

there are two global approaches that may be used (Sepúlveda, 2008):  

a) To state a model where water levels depend on gate openings, a system architecture in this 

way is depicted in Figure 2.2 (left). 

 

b) To state a model where water levels depend on gate discharges. With this approach, the 

gate discharge controller is an operating block that converts the desired discharge into gate 

openings by inverting the gate discharge equation proposed in (Chow, 1988). A system 

architecture related to this approach is depicted in Figure 2.2 (right).  The control problem 

with this strategy is easier to solve than the approach stated in subparagraph a, it is due to 

the actuator nonlinearities are not considered in the design process when the model output 

(water level) depend on gate discharge. 

 

Figure 2.2 Control system architectures 

The dynamics of the control loops are different in the control system architecture.  Whatever the 

strategy, the dynamics of the outer loop (process control in Figure 2.2) changes slower than the 
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dynamics of the inner loops (gate position control and discharge control).  The gate position 

controller is a feedback control that converts the desired gate openings into actuator movements 

(see Figure 2.3).  The water level control reads and processes the feedback signals from water level 

sensors and updates the control variable every sampling time according to the control algorithm.  

 

Figure 2.3 Gate Position Control (taken from (Sepúlveda, 2008)) 

Control system components may be grouped in two categories mainly: control center devices and 

remote site devices. The control center devices in the supervisory level are located in the system 

control center called headquarter or master station (Buyalski et al., 1991).  Control center devices 

include human-machine interface (HMI), DAQ cards, computers, and so on.  At supervisory level, 

the watermaster may fix the setpoints, and monitors/controls the irrigation canal using the HMI.  

The remote site devices are located in the field and they interact directly with the dynamics of the 

canal.  Remote site devices include water level sensors, flowmeters, remote terminal units (RTUs), 

programmable logic controllers (PLC), check gates, servomotors, electrical relays and motor 

drivers.  

2.2.2 Open-loop and closed-loop control 

 

There are two common types of canal control system, open-loop system and closed-loop control 

systems.  

- In the open-loop control, (or feedforward control) the output (control variable) is generated 

based only on inputs, such as, the dynamics of the system, the setpoint and the estimation of 

disturbances. The open-loop control can compensate the inherent system delay by anticipating 

user’s needs but the system needs information that has to be approximated from climatic, 

agronomic, sociological data and records of the water consumption (Malaterre et al., 1998).  

The open-loop control performance is deteriorated by the presence of model errors and more 

especially by the presence of unknown disturbances. 

 

- In the closed-loop control (or feedback control), the output is generated considering the 

measured error between the actual controlled variable and the setpoint.  Disturbances are 

considered indirectly, since they affect the system output. Closed-loop can be applied to all 

controlled variables. As an example, Figure 2.4 depicts a water level feedback control for a 

single pool configuration canal. 
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The control strategy proposed in this dissertation only focuses on closed-loop control.  There are 

two types of closed-loops in water level control: upstream control and downstream control.  The 

following subsection presents the two main types of closed-loop control.  

 

Figure 2.4 Closed-loop control 

2.2.3 Canal control concepts: Upstream control vs. Downstream control 

 

Depending on where the controlled variable is located in the control system, canal control 

concepts may generally be categorized into upstream and downstream: 

- Upstream control:  The adjustment of the check structures is based on the feedback 

information measured by sensors located upstream (Buyalski et al., 1991).  The 

disadvantage is that only levels or volumes can be controlled with this approach when flow 

condition is subcritical although most canals operate in subcritical flow conditions.  In this 

way the upstream water supply is transferred downstream to the points of diversion, and it 

allows a supply-oriented delivery in the water conveyance system  (Horváth, 2013). 

 

- Downstream control: The adjustment of the structures is based on the feedback 

information from measured by sensors located downstream.  The controlled variables are 

located downstream of the control variables, for instance, the downstream water level in a 

canal pool is controlled by a sluice gate located at the upstream part of the pool (Horváth, 

2013).  All variables can be controlled by the downstream control.  The canal operation 

with downstream control turns the downstream demands to the upstream source and hence 

it is compatible with the demand-oriented delivery concepts in the water conveyance 

system.  

2.2.4 Centralized and decentralized control 

 

Depending on where the control decision is made in the canal pool, control strategies can be 

categorized into centralized and decentralized. 

- The centralized control strategy considers globally all the objectives that have to be 

fulfilled for all pools in the irrigation system.  The control law is obtained for the whole 

system.  The controller is designed using global information of canal state.  The most 

effective control performance may be obtained with this strategy, however, it is 
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computationally burden and the infrastructure investment is high to implement in actual 

canals. The implementation cost increases due to the strategy needs a relatively complex 

communication system between control structures and a central control unit (van Overloop 

et al., 2010).  

 

- In decentralized control (or local control) there are separate control units designed for each 

pool.  This strategy divides the whole system into subsystems (Gómez et al., 2002).  There 

are as many subsystems as pools in the irrigation system.  Each controller receives 

information from its downstream or upstream neighbor pool. This strategy is normally 

based on simpler control methods than the centralized one. The hydraulics transmission of 

information no requires additional equipment, so in this way the implementation and 

maintenance of this approach is considerably cheaper and less complex than the centralized 

one. 

 

 

2.3 Literature review  

 

In the last three decades, significant research and development efforts have been reported in the 

literature concerning the design of automatic controllers for irrigation canals. A detailed 

classification of control algorithms that had been developed till 1998 is given in (Malaterre et al., 

1998),while some unifying essentials in the formulation of control algorithms are discussed in 

(Rogers et al., 1998).  The state of the art in canal automation is summarized in several works such 

as (Malaterre et al., 1998), (Rogers & Goussard, 1998), (Mareels et al., 2005), (Rivas Pérez et al., 

2008), (Sepúlveda, 2008), (Bastin et al., 2009), (Malaterre, 2011) and (Horváth, 2013).   The 

following subsection presents various types of automatic control algorithms that have been applied 

either in simulation or real-time control of irrigation canals. 

 

2.3.1 Types of Automatic control applied on irrigation canals 

 

2.3.1.1 Proportional-Integral-Derivative (PID) Control 

 

The PID control is a feedback control strategy widely used in industrial control, including the 

hydraulics processes.  In PID approach, the control variable is obtained based on the measured 

error which is the difference between the controlled variable and the desired setpoint. In the control 

of irrigation canals, and especially in downstream water level control, the time delay has very high 

values.  This time delay makes that the positive effect of the derivative action on phase and gain 

margins minimal, and therefore, the derivative action is usually not implemented (Aguilar et al., 

2012).     

Some examples of PID control implemented on irrigation canals can be found in the literature. For 

instance,  (Schuurmans et al., 1999) proposed a controller that has a master-slave structure where 
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every pool is controlled by its upstream discharge under gate.  The master controller consists of a 

PI-based controller for feedback and a decoupler with feedforward capability.  The decoupling is 

based on the inversion of a simple dynamic model of the canal system.  The tuning procedure of 

the controller is based on the Integrator Delay model, and a filter is also used to minimize the effect 

of the canal inherent resonance.  The applicability of the controller is tested in field experiments. 

Meanwhile, (Litrico & Georges, 1999) implements a PID controller for a dam-river system and 

the simulation results indicated that the controller responds quickly to unpredicted disturbances, 

but with oscillations.  In (Ratinho et al., 2002), a Proportional-Integral (PI) upstream water level 

control is developed and tested experimentally  in a prototype canal.   (Litrico et al., 2005) tuned 

the PI controller parameters using frequency response of each pool.  Making use of the gain margin 

obtained for different discharge conditions, a series of robust controllers were calculated.   The 

downstream control tested in a laboratory canal showed a satisfactory behaviour.  In (Montazar et 

al., 2005), a downstream water level controller is presented for the first nine pools of the Narmada 

main canal in India.  The control system consists of a downstream PI feedforward controller. 

On the other hand, (van Overloop et al., 2005) addressed the problem of controller tuning from the 

perspective of multiple models based optimization.  The authors propose an optimization function 

and its gradient to obtain the variation of the gains of decentralized PI controllers considering the 

minimization of a cost function which penalizes the deviation of error against the control outputs.  

Adjustment of controller parameters for various values of the flow rate operation had resulted in 

performance improvement, better disturbance rejection and smoother gate movements.  The goal 

of the author was expanding the operating range while maintaining a good performance.  The 

validation of the controller is done at simulation using the channel model Umatilla Stanfield 

Branch Furnish (USBF) located in Oregon. Meanwhile, (Rijo & Arranja, 2010) presents a 

supervisory control system, which used an optimization method in order to determinate the 

globally optimal tuning parameters of the PI upstream controllers for the entire canal.  Finally,  

(Aguilar et al., 2009) implements a decentralized PI control in the Canal de Lodosa, Spain. The 

model describing the dynamic behavior includes experimental identification with positive 

performance. 

2.3.1.2 Fuzzy Logic 

 

The fuzzy logic control is a kind of nonlinear control which is based on a knowledge database 

consisting of the so-called fuzzy IF-THEN rules.  A fuzzy IF-THEN rule is a statement (not an 

equation) in which some words are characterized by continuous membership functions (Wang, 

1997). The control algorithm is transparent and intuitive, the tuning procedure is easier than 

classical controllers such as PI controller, and no linearization of the governing equations are 

involved.  The disadvantage of the algorithm is reduced precision in its outputs due to the 

approximation inherent in the fuzzy logic (Gopakumar & Mujumdar, 2009).  A study developed 

by (Lobbrecht et al., 2005) has demonstrated the applicability of the fuzzy logic technology for 

management and control of an irrigation system.   

Two examples of fuzzy control developed for irrigation canals control can be found in (Gopakumar 

& Mujumdar, 2009) and (Begovich, Martinez, et al., 2007).  In (Gopakumar & Mujumdar, 2009), 

simulations results of centralized control for downstream discharge and water level of the ASCE 
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test canal 2 are presented.  The algorithm is based on the Saint-Venant equations, where the 

momentum equation is replaced by a fuzzy rule based model, while retaining the continuity 

equation in its complete form.  The authors came to the conclusion that the main limitation of the 

fuzzy algorithm relates to the non-applicability in those situations where very significant 

backwater effects exist.   Meanwhile, (Begovich et al., 2005) and (Begovich, Martinez, et al., 2007) 

present a decentralized fuzzy gain scheduling controller for the downstream water levels of an 

irrigation canal prototype.  Each local control is a gain scheduling controller composed by a Linear 

Quadratic Gaussian (LQG) regulators and the switching among controllers is fulfilled using fuzzy 

logic. 

 

2.3.1.3  Optimal control 

 

In optimal control, the control law for a given system is found based on the optimization of a 

certain optimality criterion.  In (Malaterre, 2008), a linear quadratic optimal controller is applied 

to control an eight-pool irrigation canal.  The model used to design the controller is derived from 

the Saint-Venant equations discretized through the Preissmann implicit scheme.  The MIMO 

structure of the controller exhibited big advantages to counteract the canal coupling and transport 

delay effects, however the method have three disadvantages. First, the large dimensions of vectors 

and matrices. Second, the model validation is assured only for subcritical flows.  And third, the 

difficulty of Linear Quadratic (LQ) optimal control to include gate restrictions. 

There are several examples of optimal control strategies used to control irrigation canals, such as 

(Sawadogo et al., 1995), which presents an application of optimal control theory to the automatic 

control of a single irrigation canal pool.  (Durdu, 2005) used a Linear Quadratic Gaussian (LQG) 

optimal controller for a multipool irrigation canal in order to test different state observers.  (Litrico 

& Fromion, 2006) presents experimental results on a real canal of a mixed controller designed into 

the 𝐻∞ optimization framework. The controller considers a compromise between the water 

resource management and the performance in terms of rejecting unmeasured perturbations.   

Meanwhile, (Weyer, 2006)  presents a LQ water levels control of an irrigation canal using overshot 

gates located along the channel.  The results demonstrated that the designed controller has very 

positive performance in field tests on a fully operation channel, the multivariable centralized  LQ 

controller attenuated disturbances as they travelled upstream and had better error propagation 

characteristics than decentralized PI controllers.  A drawback is that LQ control requires further 

design effort than decentralized PI control, but the author suggests to use optimal control provided 

that performance improvements justify the additional effort. 

 

2.3.1.4 Predictive control  

 

The application of predictive control for water systems has been investigated mainly since the 90s.  

One of the first numerical evidence of a predictive controller was on channel-West Maricopa 

(Arizona, U.S.) published by (Ruiz & Ramirez, 1998).   The analytically linear time-invariant state 
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space prediction model was derived from Saint Venant equations. According to results, the 

generalized predictive control was slightly sensitive to the magnitude and delay variation.  In 

(Sawadogo et al., 1998) a centralized predictive control approach was used to control the automatic 

operation of gates of each pool in an irrigation canal;  the designed controller considers explicitly 

the interactions among subsystems.  Meanwhile, a predictive control with constraints was 

proposed by (Pages et al., 1998) for water management applications in France. On the other hand, 

(Akouz et al., 1998) showed simulation results about the centralized generalized predictive control 

(GPC) technique used to control the downstream water levels of the first three reaches of the ASCE 

canal test 2.  The strategy demonstrated to compensate the time delay and to overcome the system 

nonlinearity. 

 

Other examples of predictive control strategies to control of irrigation canals in the last two 

decades can be found in (Rodellar et al., 1989), (Pages et al., 1998), (Gómez et al., 2002), (Wahlin, 

2004) (van Overloop, 2006), (Begovich, et al., 2007), (Sepúlveda, 2008),  (Mantecon et al., 2010),  

(Delgoda et al., 2012), (Horváth, 2013), (Álvarez et al., 2013), (Horváth et al., 2014a), (van 

Overloop et al., 2014) and (Horváth et al., 2015).    

 

Predictive control has demonstrated a positive performance when it has been implemented and 

tested in actual irrigation canals.  An implementation of real-time control for eight-pools of the 

WM Canal at the Maricopa-Stanfield Irrigation and Drainage District (USA) was reported by  (van 

Overloop et al., 2010).  The results show that the water could be efficiently delivered to users with 

little deviations in the water level.  However, the behavior of the system with known setpoint 

changes in water demand was not as effective as expected, thus the authors suggested to continue 

exploring in this area to take advantage of all the benefits of this control technique.  Meanwhile, 

an implementation of adaptive predictive expert (ADEX) control of water levels in the Canal 

Imperial de Aragon, Spain was fulfilled by (Aguilar et al., 2012).  The results showed that 

predictive control had a better performance than PI control in field tests related to both change in 

setpoint levels and disturbance rejection. 

In addition to nonlinear predictive control, there are some variants of predictive control, the most 

popular being adaptive predictive control, distributed model predictive control and predictive 

control based on multiple models.  The following paragraphs describe briefly the application of 

these variants of predictive control to irrigation canals control. 

 

In adaptive predictive control, the predictive control is proposed within the framework of adaptive 

systems (Martín Sánchez & Rodellar, 1996).  Adaptability plays an important role in practical 

applications such as control involving time delay or when the predictions made by the model are 

not satisfactory due to unmodeled dynamics.  Examples of adaptive predictive control applied to 

irrigation canals can be found in (Cardona et al., 1997), (Sawadogo et al., 2000), (Aguilar et al., 

2009),  (Lemos et al., 2009) and (Aguilar et al., 2012).  

 

Distributed control is a control structure that involves centralized and decentralized control in the 

same structure.  In distributed control, each local controller communicates with neighbor 

controllers in order to find a cooperative solution for the overall control problem (Maestre et al., 

2011).  Examples of distributed predictive control for water systems can be found in (Dunbar, 
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2007),  (Negenborn et al., 2009),  (Zafra-Cabeza et al., 2011), (Alvarado et al., 2011) and (Lemos 

et al., 2013). 

 

 Although industrial processes are nonlinear, most predictive control applications are based on the 

use of linear models.   However there are several examples of  nonlinear predictive control applied 

to water systems such as (Igreja & Lemos, 2009), (Arnold et al., 1999) and (Georges, 2009).  

Meanwhile, (Xu et al., 2012) develops a comparison between linear and nonlinear schemes applied 

to control of open channel flow.  The first scheme is based on a linearized Saint-Venant model and 

the second one is based on the discretization of the Saint-Venant equations and its formulation as 

linear time-varying state-space model.  The performance is evaluated in terms of control accuracy 

and computational time.  The authors came to the conclusion that both schemes can control the 

water system with positive performance, but the drawback of the schemes is that computational 

complexity of nonlinear predictive control is higher and the computational time longer than the 

linear one. 

Predictive control based on multiple models is an extension of the standard predictive control 

framework that incorporates more than a single model in the predictive control formulation. The 

methodological approach was proposed by (Murray-Smith & Johansen, 1997).  The main 

advantage of the multi-model strategy is that well known linear system theory can be used.  The 

strategy is useful when there are different operating points, the approach is based on the ‘divide-

and-conquer’ strategy, which develops local linear models corresponding to specific operating 

conditions.  The global model is obtained by the integration of local linear models.  Results 

obtained by both (Duviella et al., 2010) and (van Overloop et al., 2008) have shown the suitability 

to use this approach to improve the performance of controllers in canal systems. 

 

2.3.2 Control of canals under large change in operating condition 

 

Two examples of control strategies applied to irrigation canals under large change in operating 

conditions can be found in (Duviella et al., 2010) and (Charbonnaud et al., 2011).   In (Duviella et 

al., 2010) two model-based gain scheduling controllers have been proposed for canals systems in 

order to deal with large operating condition.  The first controller is based on representing the canal 

behavior as a Hayami linear parameter varying model that allows to consider the way that the 

parameters vary according to the operating point.  The second control strategy is based on 

representing the canal behavior as a set of linear time-invariant models that can be obtained 

through a multi-modeling identification process.  The supervision of the operating mode is fulfilled 

on-line and it is combined with a control accommodation method which switches to the best 

controller.  Both controllers have given similar performances.  In (Charbonnaud et al., 2011), a 

supervised robust predictive multi-controller strategy is proposed.  The ‘divide and conquer’ 

strategy is used to divide the system operating range into four operating range discharges in order 

to control a canal under large changes in operating condition (from 0 m3/s to 5 m3/s ).  The overall 

controller follows a multi-controller approach, namely, from the identified discrete models, a bank 

of robust predictive controllers was designed.  Every predictive controller corresponds with an 

identified discrete model. 
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It is noteworthy that, during the last 20 years, the research community has focused on control 

methods to improve the operational management of water conveyance systems. However, 

automatic canal closure operation has received much less attention in the literature of irrigation 

canals.  A case study on night closure feasibility for water saving of the Upper Swat-Pehur High 

Level canal system in Pakistan is found in (Ghumman et al., 2009).  The results show that where 

canal lengths are less than 5 km, the potential to save water in the irrigation system is quite positive.  

Reducing the discharges rate at night have demonstrated to save a significant amount of water in 

medium-sized canal networks (De Bievre et al., 2003). For instance, significant water savings were 

achieved through night-time closure of Shingrai Minor in Pakistan (Khan & Ghumman, 2008).  In 

general, the feasibility of night-time closure depends on the speed of filling and emptying the canal 

each day, and the time required to meet full irrigation demand during the day. 

 

 An application of open-loop predictive control on automatic closure/opening operations of the 

Ebro River Left Bank canal in Spain is found in (Soler et al., 2010) and (Soler et al., 2014).  The 

left bank canal usually works at its maximum capacity of 19 m3/s.  The objective of the closure 

operation is to isolate the irrigation system from a scenario considering a pollutant flowing in the 

supplier river.  The closure operation is designed to be performed in three stages.  The first stage 

carries the canal from the unknown initial state to a 15 m3/s steady state by applying only one gate 

movement.  The second stage is devoted to drive the canal from the 15 m3/s steady state to another 

defined by 2 m3/s.  The third stage carries the canal to zero discharge with only one gate movement, 

in this way, the canal is isolated totally.  Namely, in both first and third stage, the gates are moved 

in automatic manual operation, while in the second stage the optimal gate trajectories are obtained 

with open-loop predictive control in order to change the discharge from 15 m3/s  to 2 m3/s as 

smooth as possible.  Meanwhile, the opening operation is designed to be performed in two stages.  

In the first stage, the open-loop predictive strategy generates the gate opening trajectories in order 

to drive the canal from 0 m3/s to a 15 m3/s steady state in a smooth way.  The second opening stage 

is devoted to raise all the gates above the water surface except the most upstream gate (Soler et al., 

2014).  

 

2.4 Predictive control essentials 

 

This subsection is devoted to explain basic concepts related to predictive control, which is chosen 

in this dissertation as control strategy to manage irrigation canal operations involving abrupt 

changes in the operating conditions. Predictive control is known with several names in the 

literature, such as model predictive control, model-based predictive control or receding horizon 

control.  Throughout this dissertation, only the name predictive control will be used.  

Some of the advantages of predictive control that have received special interest from researches in 

both industrial and academic communities are (Maciejowski, 2002; Wang, 2009):   

 Ability to handle constraints on the inputs, states and outputs of the controlled system and 

also with safety and equipment constraints. 

 Completely multivariable framework. 
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 Predictive Control is more powerful than Proportional-Integral-Derivative (PID) control 

 Ability to perform on-line optimization. 

 Based on a model of the process, predictive control makes the predicted process dynamic output 

equal to a desired dynamic output conveniently predefined (Martín Sánchez & Rodellar, 1996).  

Predictive control essentially relies on the use of a model able to predict the system output as a 

function of the system inputs on a moving horizon scenario.  The model allows to compute the 

control sequence that makes the predicted output to follow a desired trajectory through the 

minimization of a performance criterion (also called cost function or objective function in technical 

literature).  A predictive control problem has the framework of a finite horizon optimal control 

problem. One of the elements of the predictive controller is the optimizer, which computes at each 

sampling time, the optimal output based on the controlled variable error, the cost function, 

constraints and process disturbances.  Figure 2.5 shows a block diagram of the predictive control 

strategy.  Predictive control essentially solves a standard optimal control problem on-line (each 

sampling time) for the current state of the plant. 

 

Figure 2.5 Predictive control block diagram. 

An implementation of predictive control must consider the following requirements: 

- An accurate model that captures the dynamic behavior to obtain a positive closed-loop 

performance. Besides, a control-oriented model must be also simple enough for allowing 

the on-line optimization.  It is noteworthy that real systems often have problems as 

nonlinearity, strong coupling, uncertainty and wide operating range, which makes the 

synthesis of an appropriate model a challenging task. 

 

-  The optimization problem must be solved at each sampling time, which implies 

computationally demanding algorithms in terms of load (burden) in real-time 

implementation. 

 

A great amount of survey papers may be found in the literature.  For instance, (Henson, 1998), 

(Morari & Lee, 1999), (Mayne et al., 2000), (Qin & Badgwell, 2003), (Morari & Barić, 2006),  

(Camacho & Bordons, 2010), (Darby & Nikolaou, 2012), (Martín-Sánchez et al., 2012), (Xi et al., 
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2013), (Christofides et al., 2013) and (Mayne, 2014), most of them highlighting developments and 

challenges proposed until their publication date.  It is widely agreed that one of the most attractive 

feature of predictive control lies in the ability to explicitly handle constraints.   In the last 30 years, 

predictive control has been successfully applied to complex industrial processes, showing its great 

potential of handling complex control problems.  Currently a considerable number of industrial 

applications demand on-line optimization with constraints management in the control system 

design rather than only solving the traditional regulating problem (Xi et al., 2013). 

The fundamentals of the predictive control developed in this dissertation follows the approach 

proposed by (Martín Sánchez & Rodellar, 1996).  This approach has been used in the control of a 

canal with single pool configuration (Rodellar et al., 1993, 1989) and also in a multi-pool 

configuration in (Gómez et al., 2002) and (Aguilar et al., 2009, 2012). 

 

The system is usually represented by a difference equation, which may be expressed as follows:  

𝐴(𝑧−1)𝑦(𝑘) = 𝐵(𝑧−1)𝑢(𝑘) + 𝑤(𝑘) (2.1) 

where 𝑦(𝑘) is the output variable.  𝑢(𝑘) is the control variable and  𝑤(𝑘) is the disturbance signal.   

𝐴(𝑧−1) and 𝐵(𝑧−1) are polynomials in the backward shift operator given by 

𝐵(𝑧−1) = 𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯ 𝑏𝑚𝑧
−𝑚 (2.2) 

𝐴(𝑧−1) = 1 − 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯ 𝑎𝑛𝑧
−𝑛 (2.3) 

In predictive control, in order to stablish the prediction, a time horizon [𝑘, 𝑘 + 𝜆] is considered, 

where 𝑘 is the present instant and λ is the prediction horizon. The notation �̂�(𝑘 + 𝑗|𝑘) indicates 

the control variable for a future time instant 𝑘 + 𝑗.  Meanwhile, the future sequence of control 

actions 

�̂�(𝑘) = [�̂�(𝑘|𝑘)  �̂�(𝑘 + 1|𝑘)… �̂�(𝑘 + 𝜆 − 1|𝑘)]𝑇 

is optimized at each sampling time, by minimizing a cost function.  The minimization may include 

penalties on deviations of the controlled variable of the desired reference and penalties on the 

requested control variable changes, namely: 

min
𝑢
 𝐽 =∑�̂�𝑗  (𝑘 + 𝑗|𝑘)

𝑇𝛹𝑗�̂�𝑗(𝑘 + 𝑗|𝑘)

𝜆

𝑗=1

+ ∑ �̂�(𝑘 + 𝑗|𝑘)𝑇𝑅𝑗

𝜆−1

𝑗=0

�̂�(𝑘 + 𝑗|𝑘) 

(2.4) 

where �̂�𝑗(𝑘 + 𝑗|𝑘) = �̂�(𝑘 + 𝑗|𝑘) − 𝑦𝑟(𝑘 + 𝑗|𝑘) is the signal error and  𝑦𝑟(𝑘 + 𝑗|𝑘) is the reference 

trajectory.  𝛹𝑗  and 𝑅𝑗 are weighting factors.  

The prediction model may be linear as in (2.1), or nonlinear.   Therefore, based on the type of 

model used in the optimization, predictive control can be categorized as linear or nonlinear.  The 

theory of predictive control using linear models is more developed than the nonlinear one.  Thus 

almost all commercial implementations are based on a linear prediction model (Álvarez et al., 

2013).   The nonlinear predictive control is applied when the process has severe nonlinearities or 
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when the processes operate in continuous transitions, namely with no operation around a stationary 

state, and therefore, linear modelling is not enough to model the main dynamic characteristics of 

the process. 

In practice, virtually all systems operate under practical constraints. In many systems, control 

variables cannot be arbitrarily large and may have some magnitude limits.  Actuators such as 

valves or gates have a limited operating range and limited slew rate (maximum rate of change).  

Even state variable values must be limited in many applications.   

The problem of dealing with constraints is tackled systematically by using optimization.  The 

constraints are presented as linear inequalities of the control variable.  Since the cost function J is 

a quadratic function and the constraints are linear inequalities, the problem of finding the optimal 

predictive control can be stated as a standard quadratic programming problem.  Therefore, the 

predictive control problem may be expressed as follows: 

min
𝑢
𝐽 =  

1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏  

subject to:        𝑀𝑢 ≤ 𝛾 

(2.5) 

where 𝑢 is the control variable and 𝑀 is a matrix that collects the constraints. 𝐻, 𝑏, and 𝛾 are 

compatible matrices and vectors.  It is noteworthy that, it takes a longer time to calculate the 

constrained predictive control optimal value in comparison with the unconstrained one. Thus,  the 

real-time implementation demands for either fast algorithms that require less computation time or 

high performance computing devices with small sampling time (Xi et al., 2013).  

The feasibility is also an important issue in order to guarantee that the optimizer satisfies the 

constraints.  Usually, the normal way of using a constrained predictive control algorithm is to 

compute 𝑢(𝑘) using (2.5) and apply it to the process. If 𝑢(𝑘) violates the constraint then 𝑢(𝑘) is 

saturated to its limits by either the predictive control algorithm or the actuator (Camacho & 

Bordons, 2004).   However, in case of unfeasibility, there are methods dealing with the constraint 

management in order to try to recover the feasibility.  Such methods act over the constraints in 

different ways, such as disconnection of the controller, a temporary elimination of constraints or a 

temporary relaxation of the constraints limits. 

 

2.5 Final remarks 

 

The control methodology developed in this thesis combines prediction issues as described above 

with constrained optimal control as described in (2.5), all of them within a supervised decentralized 

control scheme with a strategy to manage constraints in a time-varying manner. 
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Description and modelling of case 

studies 
 

 

3.1 Introduction 

 

This chapter is devoted to present the case studies where the dynamically-constrained predictive 

control strategy will be tested. The first part of the chapter presents a general description of the 

case studies, the experimental platform canal PAC-UPC and the Ebro River Left Bank canal. The 

laboratory canal was specially designed to test irrigation canal control algorithms. The second case 

study is the canal where the motivational work fulfilled by (Soler et al., 2014) was developed.  

Secondly, some aspects about the implementation of the numerical model developed in SIC 

software are presented.  Finally, the mathematical models used in the derivation of the proposed 

predictive control algorithms are described.   

 

3.2 Laboratory canal PAC-UPC  

 

Laboratory canals may be considered as an intermediate step between the numerical simulation 

and real-time implementation on the field.  Although there are few laboratories for experimentation 

in irrigation canals in the world, these are very useful tools to test control algorithms.  Canal PAC-

UPC is the acronym of  "Canal de Pruebas de Algoritmos de Control – Universitat Politècnica de 
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Catalunya. The canal was built in 2006 and it is located at the Laboratory of Physical Models of 

the Technical University of Catalonia, Barcelona, Spain.  

The experimental facility has the following characteristics and instrumentation components: 

 Length of 220 m in a serpentine shape (see Figure 3.1 ), this shape aims to minimize the 

space to be occupied by the canal. 

 Bottom slope of 0 m/m in order to achieve the largest possible time delay (Horváth, 2013). 

 Rectangular cross section with canal width of 0.44 m and deep of 1 m.  

 Area of 22.5 m x 5.4 m. 

 Manning’s coefficient of 0.016. 

 Maximum discharge of 150 l / s.  

 A head reservoir. 

 Three pools in series with length of 87, 90.2 and 43.5 m. 

 Three sluices gates of 1m x 0.4 m (G1, G2 and G3 in Figure 3.1). The gate velocities are 

1.524 mm/s for G2 and 3.125 mm/s for G1 and G3. 

 Four rectangular weirs used for lateral offtakes. Weirs are at the end of each pool and 

another one at the end of the canal. The weirs consist of a wall of plastic specially designed 

to cover a broad range of weir heights. 

 Three orifices connected to manual valves (see Figure 3.2b).   

 Electromechanical devices.  Each gate is controlled by a three-phase servomotor of 0.75 

CV of power. The servomotors are located on top of the gates (see Figure 3.2c).  Each 

servomotor has a motor driver which has been installed in a control box beside the canal. 

The control boxes allow either the local or the distant operation of the motorized gates. 

 Ten water level sensors (LS in Figure 3.1). Sensors are located upstream and downstream 

of each gate and at every rectangular weir. 

 Three PCI data acquisition cards made by Advantech, with analog output channels and 

single-ended analog inputs. 
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Figure 3.1 Schematic layout of the  UPC PAC canal, from (Sepúlveda, 2008). 
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Figure 3.2 Experimental canal facility 

 

A Simulink/Matlab-based SCADA system has been developed in order to manage the control 

system in the facility.   The Supervisory Control and Data acquisition (SCADA) system provides 

both monitoring and control of remote sensors and actuators.  The HMI (human-machine interface) 

implemented in the control room (see Figure 3.2d) has been developed in Matlab/Simulink 

environment (see Figure 6.43).  The supervisory system is combined with a data acquisition 

system. In this way, the system receives as input signals the measurements of water levels from 

different points of the canal and also the three gate opening measures.  The analog output signals 

are sent to the actuators (servomotors) which execute the control actions allowing gate movements. 

The 4-20 mA standard analog communication protocol is used for communicate sensors with the 

computer-based controller over a pair of conductors. In the standard protocol, the current signal 

range is 4 mA to 20 mA, this means 0% to 100% of measurement range, respectively. A flow path 

of sensor signals is depicted in Figure 3.3. 
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Figure 3.3 A flow path of the sensor signals in canal PAC-UPC 

The canal, its software and hardware facilities have been documented in two PhD dissertations 

(Sepúlveda, 2008) and (Horváth, 2013). Subsequently it has been used for testing control 

algorithms in (Aguilar et al., 2009), (Horváth et al., 2014b) and (Horváth et al., 2015) and also for 

teaching purposes (Mantecon et al., 2010).  The general maintenance tasks of the facility, the 

calibration procedure guidelines and some improvements of the SCADA system, including a more 

accurate and documented version of the gate position controller has been part of the work fulfilled 

during the development of the dissertation presented here. 

Flow measures on gates and weirs discharge are calculated based on hydraulic relationships. 

Discharge under gates are obtained using water level measures in submerged flow conditions using 

(1.1).  The rectangular weirs (see Figure 3.4) are used in the canal as control structures, weir 

discharge is calculated using the Kindsvater-Carter’s equation (Herschy, 1995): 

𝑄 = 𝐶𝑑𝑤
2

3
√2𝑔(𝐵𝑤 + 0.003)(𝐻𝑒 + 0.001)

3/2 
(3.1) 

where                                                  𝐶𝑑𝑤 = 0.587 (1 − 0.003
𝑊

𝐻𝑒
) (3.2) 

 

Figure 3.4 Rectangular weir (taken from (Horváth, 2013)) 



3. Description and modelling of case studies       26 

 

In the laboratory canal, undershot gates and rectangular weirs and their respective coefficients 

have been calibrated using experimental data in (Sepúlveda, 2008) and (Horváth, 2013).  The 

accuracy in the gate position control is a big deal for the algorithms tested in the facility, 

consequently the hysteresis phenomenon is considered in order to calibrate the gates properly.  

Hysteresis refers to the dependence characteristic of the actuator on both current state and past 

inputs.  In this way, for the position control, the calibration curve when motorized gate is moving 

up is different to the calibration curve when the motorized gate is moving down, as it is illustrated 

in Figure 3.5.  Consequently, the gate position control algorithm is implemented with two 

calibration curves.   

 

Figure 3.5 Calibration curves of Gate-3 Position Control 

There are some physical and instrumentation limits in the facility, for instance, the minimum 

accurate gate movement is about 2 mm, the accepted water level measurement error is around 10 

mm and the accepted discharge error is around 6 l/s. Meanwhile, the servomotors which move 

gates have a 4 mm-pitch, namely the minimum change in gate opening is 4 mm at every sampling 

time, and this gate opening is equivalent to 2 l/s approximately.   

 

3.3 Ebro River Left Bank canal (ERLB Canal) 

 

The cultivated area associated to the Ebro River Left Bank canal (ERLB canal hereafter) in Spain 

is mostly irrigated by surface flooding and its water delivery system is always operating to avoid 

seawater intrusion. The delivery system consists of a tree-shaped network of open canals. The 

ERLB canal inlet takes off water from the Ebro River at the Xerta weir and proceeds downstream 

parallel to the river until Tortosa, in Catalonia, Spain (see Figure 3.6).  The main canal is 15 km 

in length, 3 m depth, it has a capacity of 19 m3/s, and it has been designed with five pools separated 

by five check gates.  Characteristics of the whole canal have been documented in (Soler et al., 

2010, 2014).  
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Figure 3.6 The river Ebro delta, taken from (“Portal de CHEbro,” 2015) 

In the hydraulic model proposed by (Soler et al., 2014), the canal has been divided into 18 reaches.  

The model includes two types of sections, namely, trapezoidal with bank slope of 0.176327 m/m 

and rectangular with zero bank slope.  The Manning coefficient is 0.016. The main characteristics 

of the pools are given in Table 3-1. The main characteristics of check gates are detailed in Table 

3-2. 

Reach 
Elevation 

[m] 

Length        

[m] 

Depth 

  [m] 

Manning 

Coeff. 

Bottom 

Width [m] 

Bank 

slope 

1 7.06 0 3 0.016 8 0 

2 7.21 75 3 0.016 7.6 0.176327 

3 6.98 1200 3 0.016 7.6 0.176327 

4 6.83 1875 3 0.016 7.6 0.176327 

5 6.78 2375 3 0.016 4 0 

6 6.65 2475 3 0.016 4 0 

7 6.01 3675 3 0.016 10 0.176327 

8 5.89 5475 3 0.016 4 0 

9 5.63 5825 3 0.016 8.2 0.176327 

10 5.61 6150 3 0.016 10.5 0 

11 5.63 6200 3 0.016 8 0.176327 

12 5.55 6300 3 0.016 10.5 0.176327 

13 5.3 9475 3 0.016 8.2 0.176327 

       

14 5.22 10450 3 0.016 10.5 0.176327 

15 5.12 11100 3 0.016 4 0 

16 4.98 11350 3 0.016 10.5 0.176327 

17 4.63 13025 3 0.016 4 0 

18 3.89 13125 3 0.016 3.8 0 

 3.29 14825 3       

       

Table 3-1 Canal pool characteristics 
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Gate Upstream 

reach 

Downst. 

reach 

Width 

[m] 

Discharge 

coefficient 

Step 

[m] 

Haul 

[m] 

1 -- 1 8 0.61 0 3 

2 5 6 4 0.61 0.5 3 

3 10 11 8 0.61 0 3 

4 14 15 4 0.61 0 3 

5 17 18 4 0.61 0.7 3 

Table 3-2 Check gates characteristics 

 

3.4 Models of irrigation canals  

 

For the design of control systems, mathematical models are needed to describe adequately the 

dynamic behavior of the system. A concept map related to system models used in control and 

systems engineering is depicted in Figure 3.7.  Models can be of many kinds (Soderstrom & Stoica, 

1989): 

 Mental, intuitive or verbal models. 

 Graphs and tables. A Bode plot of a servo system is a typical example of a model in a 

graphical form.  The step response, i.e. the output of a process excited with a step input, 

is another type of model in a graphical form. 

 Physical models. 

 Mathematical models.   

 

The mathematical models may be described in several forms, such as differential equation, 

difference equations, transfer functions and state-space equations.  The variables of the model are 

usually inputs, outputs, system variables and disturbances.  In order to capture the most relevant 

dynamics of the canals, the model may have first, second or higher order.  Mathematical modelling 

could be obtained by system identification or analytical approach. A widely used approach 

involves the construction of mathematical equations based on physical laws known to govern the 

behavior of the system (H. Garnier et al., 2008).  Meanwhile, the system identification considers 

experimental data in order to model the system dynamic. In this dissertation, the mathematical 

models used in the predictive controller design are obtained by both analytic approach and system 

identification techniques. 
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Figure 3.7 Concept map related to models of systems 

 

Currently, the most accepted analytic approach to model open channels are the Saint Venants (SV) 

equations, which contain the following mass and momentum conservation equations (Chow, 

1988): 

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 𝑄𝑤𝑖 

(3.3) 

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
[
𝑄2

𝐴
] + 𝑔𝐴

𝜕𝑦

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0 

(3.4) 

where 𝐴 is the wetted cross sectional area [m2], 𝑥 is the longitudinal coordinate in the flow 

direction, 𝑡 is time, 𝑦 = 𝑦(𝑥, 𝑡)  is the water level, 𝑄 = 𝑄(𝑥, 𝑡) is the discharge [m3/s],  𝑄𝑤𝑖 is the 

lateral discharge (see Figure 3.8), 𝑆𝑓 is the friction slope [m/m],  𝑆0 is the bottom slope [m/m],  and 

𝑔 is the gravity acceleration [m2/s].  It is noteworthy that 𝐴 depends explicitly on both the water 

level and the canal cross section shape. 



3. Description and modelling of case studies       30 

 

   

Figure 3.8 Simplified representation of a canal pool 

The SV equations are nonlinear hyperbolic partial differential equations that do not have analytic 

solutions in most cases.  Consequently, given a problem (defined by its initial and boundary 

conditions), numerical methods are needed to solve the equations.  The method of characteristics 

of Abbott (Abbott, 1966) and the implicit difference method (Preissmann, 1961) are classical 

methods in the one dimensional case.  As simulation tools, these numerical solutions can be quite 

accurate but require enormous computational burden that make them inadequate models as a basis 

for designing control systems (Aguilar et al., 2011).  A concept map of how the Saint Venant 

equations are usually addressed is shown in Figure 3.9. 

For control design purposes, methods involving simplified linearized models are preferred over 

complex models. Linearized models such as black box and white box models are widely used for 

control purposes.  The black box models are obtained by system identification. The white box 

models are based on linearized SV equations around an operating point (Litrico & Fromion, 

2004a).  The preference of linearized models is mainly due to that the pair of partial differential 

SV equations has no analytic solution for an arbitrary geometry as it was mentioned in former 

paragraph.  An analysis of behavior of linearized SV equations is fulfilled by (Malaterre et al., 

1998). 

The linearized deterministic model is categorized as linear whether the model obey the 

superposition principle, otherwise the model is a nonlinear one.  Linear Time-Invariant (LTI) 

models are models whose parameters do not change over the time.  An example of Linear Time 

Variant (LTV) model is the linear parameters varying. An LPV model is essentially a 

parameterized family of LTI models.  A common identification strategy used to obtain LPV 

models is to define range of operating points, and then collect enough data to identify  LTI models 

with different coefficients around specific operating points (Bolea et al., 2014).  The identified 

LTI coefficients then can be used as interpolation points to find the coefficients as polynomial 

functions. Meanwhile, the state-space model is a descriptive form which considers input, output 

and state variables. A  explanation about how to obtain the linearized SV model  can be found in 

(Litrico & Fromion, 2004b).  A detailed discretization of the Saint-Venant equations and the 

formulation as linear time-varying state space model is proposed by (Xu et al., 2012).  
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Figure 3.9 Concept map of solution of  Saint Venant equations 

 

3.5 Numerical models of the case studies 

 

3.5.1 Numerical model of the canal PAC UPC 

 

Simulations of case studies in this thesis are fulfilled by the SIC (Simulation and Integration of 

Control for Canals) modeling software developed by IRSTEA France, which is a one dimensional 

hydrodynamic software based on the Preissmann Scheme (Malaterre, 2012).  This scheme belongs 

to the category of implicit finite differences.  The SIC software permits simulating the hydraulic 

behavior of the irrigation canals under steady and unsteady flow conditions.  A model in SIC is 

composed by three main units.  The first unit is used to describe the canal geometry.  Unit 2 is 

devoted to steady flow calculation and unit 3 is used for the unsteady flow calculation.  The 

software was especially developed for simulation of automatic control of irrigation canals, and 

there are several possibilities to model different hydraulic structures, such as gates and weirs. Some 

of the most common control algorithms, such as PID control, are incorporated in a regulation 

module. An advantage of SIC software is that it is possible to evaluate any control algorithm 

written in Matlab® (see Figure 3.11). 
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The canal PAC-UPC has been modelled in SIC using 6 nodes and 5 reaches (a reach is a part of 

the canal bounded by nodes).  This configuration is depicted in Figure 3.10 . The last node is 

located in the end of the canal, in the place of weir 4 (see Figure 3.14).  The three gates G1, G2 and 

G3 are placed in nodes Nd2, Nd3 and Nd5 respectively.  The discharge over weir W4 as a function 

of the water level is included as a system boundary condition.  The validation of the model using 

experimental data has been fulfilled in (Horváth, 2013). 

 

 

Figure 3.10 SIC window with the canal PAC-UPC geometry. 

 

 

Figure 3.11 The regulation module of  SIC software.  

3.5.2 Numerical model of the Ebro River Left Bank canal 

 

The Ebro River Left Bank canal, has been modelled in SIC using 19 nodes (N1,…, N19 ) and 18 

reaches as is depicted in Figure 3.12.  The water level of 4.5 m is the upstream boundary condition 

in order to obtain water surface profile of the initial steady state.  The discharge over spillway 
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located at the canal end is included as downstream boundary condition.  The model simulation 

results were validated  by comparison with results obtained by (Soler et al., 2014). 

 

 

Figure 3.12 Sketch of the ERLB canal for simulation purposes  

 

 

Figure 3.13 Simulation of the ERLB canal including a regulation module in SIC 

 

3.6 Model of canals for control purposes 

 

In canal control, models may be categorized as “flow-flow” and “flow-water level" models 

according to the control and controlled variable which are chosen to represent inputs and system 

outputs.  The flow-water level mathematical model gives the information about the behaviour of 

the water level based on the upstream flow that the predictive controller needs in order to predict 
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the future output of the system.  Along the canal there are offtakes to farms and secondary canals.  

Offtakes are usually treated as disturbances (Weyer, 2003).  In a single pool configuration, such 

as it is depicted in Figure 3.8, a basic mass balance gives:  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑄𝑖(𝑡) − 𝑄𝑖+1(𝑡) − 𝑄𝑤𝑖(𝑡) 

(3.5) 

where 𝑉 is the volume of the pool, 𝑄𝑖 is the input discharge, 𝑄𝑤𝑖 is the lateral offtake, and  𝑄𝑖+1 

is the output discharge.  A mathematical model that considers the water level 𝑦𝑖 as output variable, 

may be described as function of the discharge along the canal.  A simple description is possible 

assuming that the volume in a pool is proportional to the water level. 

Particularly, in downstream water level control, the task of the controller is to move an upstream 

gate in order to achieve the required downstream water level. One of the difficulties that makes 

this task a challenging one, it is the time delay, which is the time taken for the water to arrive from 

upstream to downstream. Therefore the model must consider the time delay explicitly.  Subsections 

3.5.1 and 3.5.2 present the discrete-time models used in the controller design in this dissertation. 

 

3.6.1 Parametric model of the canal PAC UPC 

 

A transfer function model is used to describe the first case study of this dissertation.  The transfer 

function is expressed as a difference equation based on a multivariable Auto-Regressive with 

eXogenous input (ARX) model.  This black-box model has been obtained by parametric 

identification by (Sepúlveda, 2008).  The model is a relationship between the downstream water 

level and the upstream flow in the canal pool. The difference equation consider in this model only 

has constant coefficients. The canal was already introduced in Section 3.2 and its scheme is 

illustrated in Figure 3.14.   In this sketch, y1, y2 and y3 are the controlled downstream water levels; 

QG1, QG2 and QG3  are the discharge under gates; QW4  is the weir discharge at the end of the canal.  

Qw1 and QW2  are the lateral weir discharges. The model parameters were obtained using a sampling 

time of 10 s. 

The model for the three pool configuration of the laboratory canal has the following form: 

[

𝑦1(𝑘)

𝑦2(𝑘)

𝑦3(𝑘)
] = [

1 − 𝐴𝑝1(𝑞) 0 0

0 1 − 𝐴𝑝2(𝑞) 0

0 0 1 − 𝐴𝑝3(𝑞)

] [

𝑦1(𝑘 − 1)

𝑦2(𝑘 − 1)

𝑦3(𝑘 − 1)
]

+ [

𝐵11(𝑞) 𝐵12(𝑞) 0

0 𝐵22(𝑞) 𝐵23(𝑞)

0 0 𝐵33(𝑞)
] [

𝑄𝐺1(𝑘 − 1)

𝑄𝐺2(𝑘 − 1)

𝑄𝐺3(𝑘 − 1)
]

+ [
𝐵12(𝑞) 0
0 𝐵23(𝑞)
0 0

] [
𝑄𝑤1(𝑘 − 1)
𝑄𝑤2(𝑘 − 1)

] 

where q is the shift operator: 𝑞𝑓(𝑘) = 𝑓(𝑘 + 1), 𝑞−1𝑓(𝑘) = 𝑓(𝑘 − 1)  

(3.6) 
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Figure 3.14 Scheme of the Canal PAC 

The ARX model for the first pool is 

𝐴𝑝1(𝑧)𝑦1(𝑘) = 𝐵11𝑄𝐺1(𝑘 − 1) + 𝐵21(𝑄𝐺2(𝑘 − 1) + 𝑄𝑤1(𝑘 − 1)) (3.7) 

where 

𝐴𝑝1(𝑧) = 1 − 0.6918𝑧
−1 + 0.091𝑧−2 + 0.07062𝑧−3 + 0.1638𝑧−4

+ 0.2801𝑧−5 + 0.213𝑧−6 

𝐵11 = 𝑧
−3 − 0.2895𝑧−4 

𝐵12 = −1.154𝑧
−1 + 0.4729𝑧−2 − 0.0675𝑧−3 + 0.4496𝑧−4 − 0.4899𝑧−5 

 

The ARX model for the second pool is 

𝐴𝑝2(𝑧)𝑦2(𝑘) = 𝐵22𝑄𝐺2(𝑘) + 𝐵23(𝑄𝐺3(𝑘) + 𝑄𝑤1(𝑘 − 1)) (3.8) 

where 

𝐴𝑝2(𝑧) = 1 − 0.0.4315𝑧
−1 − 0.1178𝑧−2 − 0.0393𝑧−3 + 0.03022𝑧−4

− 0.1962𝑧−5 + 0.05333𝑧−6 − 0.3033𝑧−7 − 0.3838𝑧−8 

𝐵22 = 0.1644𝑧
−4 

𝐵23 = −1.994𝑧
−1 + 0.4728𝑧−2 − 0.1484𝑧−3 + 0.6077𝑧−4 − 0.4835𝑧−5 

 

 

And the  ARX model for the third pool is 

𝐴𝑝3(𝑧)𝑦3(𝑘) = 𝐵33𝑄𝐺3(𝑘 − 1) (3.9) 

where 
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𝐴𝑝3(𝑧) = 1 − 0.6495𝑧
−1 − 0.2344𝑧−2 + 0.142𝑧−3 − 0.3175𝑧−4 − 0.2122𝑧−5 

𝐵13 = 0.1422𝑧
−2 − 0.9872𝑧−3 

 

 

There is a need to convert the calculated discharge into gate opening, since the control variable is 

discharge and the actuators are check gates.  This problem is addressed in (Litrico et al., 2008) and 

(Sepúlveda, 2008).  The gate openings are calculated using the desired discharge, the water level 

measurements and the inverse non-linear gate equation (Ferro & Ansar, 2001).  If the gate opening 

is physically unfeasible, for instance it is higher that the canal bank, the maximum allowed gate 

opening is fixed in the actuator.  

 

The validation of the ARX model using experimental data have been fulfilled by (Sepúlveda, 

2008).  Meanwhile, Figure 3.15 and Figure 3.16 show the numerical results of the response of the 

ARX models in comparison with the response of SV model simulated by the SIC software.  The 

ARX model step responses were simulated by Simulink® with the same data input.  The validation 

in the time-domain is illustrated in Figure 3.15 and Figure 3.16, the test was performed producing 

a step discharge (dotted line) in the upstream gate, while keeping the downstream discharge 

constant.  The system output are the water levels (solid lines).  The test results in Figure 3.15 are 

related to the first pool of the canal PAC-UPC only, and the results show that the step response for 

both positive change (left) and negative input discharge are quite similar for the ARX model in 

comparison with the SV model.  In order to quantify the similitude of step responses in every canal 

pool, the square of the correlation coefficients are 𝑅𝑐1
2 = 0.9998 for pool 1, 𝑅𝑐2

2 = 0.9996 for pool 

2 and 𝑅𝑐3
2 = 0.961 for pool 3. 

 

 

 
Figure 3.15 Step responses of the ARX model of pool 1. 
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Figure 3.16 Step responses of the ARX models of pool 2 and 3. 

 

Another way to validate the model is considering the frequency domain. For instance, a 

comparison between the SV model and the ARX model for the first pool is depicted in Figure 3.17.  

Results indicate that the Bode magnitude and phase plots for both models are almost equal in the 

low frequency area and the first resonance peak is located in the same frequency in both models. 

A validation in frequency domain for the rest of the canal pools is illustrated in (Sepúlveda, 2008). 

 

 

Figure 3.17 . Bode plot diagrams of SV model and ARX model for Pool1 
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3.6.2 State-space model of the canal PAC UPC 

 

In order to get a model for the whole canal, the linear model of each pool may be transformed into 

a state-space model described by 

𝑥𝑚𝑖(𝑘 + 1) = 𝐴𝑚𝑖𝑥𝑚𝑖(𝑘) + 𝐵𝑚𝑖𝑢𝑖(𝑘) + 𝐵𝑑𝑤𝑖(𝑘) (3.10) 

𝑦𝑖(𝑘) = 𝐶𝑚𝑖𝑥𝑚𝑖(𝑘) (3.11) 

  

where 𝑥𝑚𝑖(𝑘 + 1) is the n-dimensional state vector of the i-th pool containing the water levels and 

the discharges under gates in previous sampling times, u(k) is the control variable containing the 

discharge under gate, 𝑤𝑖 is the input disturbance, 𝑦𝑖 is the controlled variable (water level), 𝐴𝑚𝑖, 

𝐵𝑚𝑖, and  𝐶𝑚𝑖 are matrices of proper dimension.  

The model may be stated to use system input and output variables as its state variables.  The space-

state variable for the first pool 𝑥𝑚1(𝑘), for instance, considers the downstream discharge 𝑄𝐺2 and 

𝑄𝑤1 as the measurable disturbances for a decentralized control scheme.  In this way, based on the 

ARX model, the state-space variable for the first pool may be written as follows: 

𝑥𝑚1(𝑘) = [𝑦1(𝑘) 𝑦1(𝑘 − 1) 𝑦1(𝑘 − 2)…  𝑦1(𝑘 − 5)  𝑢1(𝑘 − 1)  𝑢1(𝑘 − 2)  𝑢1(𝑘 − 3)]
𝑇 

where  𝑢1(𝑘) =  𝑄𝐺1(𝑘)   [
𝑚3

𝑠
] , 𝑛1 = 9,   𝐴𝑚1  ∈  ℜ

𝑛1𝑥𝑛1 , 𝐵𝑚1 ∈  ℜ
𝑛1𝑥1 ,   𝐶𝑚1  ∈  ℜ

1𝑥𝑛1               

𝐴𝑚1 =

[
 
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴13
1 0 0
0 1 0
0    0   1
0    0   0
0    0   0
0    0   0
0    0   0
0    0   0

   

𝐴14 𝐴15 𝐴16
0 0 0
0 0 0
0    0    0
1    0   0
0    1   0
0    0   0
0    0   0
0    0   0

    

𝐴17 𝐴18 𝐴19
0 0 0
0 0 0
0    0    0
0    0   0
0    0   0
0    0   0
1    0   0
0    1   0 ]

 
 
 
 
 
 
 
 

 

(3.12) 

𝐵𝑚1
= [0    0   0       0    0   0      1    0   0 ]𝑇 

𝐶𝑚1 = [1    0   0     0    0   0       0    0   0] 

 

where A11=0.6819, A12=-0.091,  A13=0.07, A14=-0.1638, A15=0.2801, A16=0.213, A17=0, A18=1, 

A19=-0.289 

For the second pool, the space-state variable 𝑥𝑚2(𝑘), considers the downstream discharge 𝑄𝐺3 and 

𝑄𝑤2 as the measurable disturbances.  Meanwhile, based on the ARX model, the state-space 

variable may be written as follows: 

𝑥𝑚2(𝑘) = [𝑦2(𝑘)  𝑦2(𝑘 − 1)… 𝑦2(𝑘 − 7) 𝑢2(𝑘 − 1)  𝑢2(𝑘 − 2)  𝑢2(𝑘 − 3)]
𝑇 
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Other parameters of the state-space model for the second pool are: 

 𝑢2(𝑘) =  𝑄𝐺2(𝑘)   [
𝑚3

𝑠
],  𝑛2 = 10,  𝐴𝑚2  ∈  ℜ

𝑛2𝑥𝑛2  ,     𝐵𝑚2 ∈  ℜ
𝑛2𝑥1 ,   𝐶𝑚2  ∈  ℜ

1𝑥𝑛2 

where

11 12 13 14 15 16 17 18 19 1A 1B

2

 

           A          A         A          A         A         A        A         A         A          A        A

            1            0            0            0          

       A  m 

  0            0            0            0            0            0            0

            0            1            0            0            0            0            0            0            0            0            0

            0            0            1            0            0            0            0            0            0            0            0

            0            0            0            1            0            0            0            0            0            0            0

            0            0            0            0            1            0            0            0            0            0            0

            0            0            0            0            0            1            0            0            0            0            0

            0            0            0            0            0            0            1            0            0            0            0

            0            0            0            0            0            0            0            0            0            0            0

            0            0            0            0            0            0            0            0            1            0            0

            0            0            0            0            0            0            0            0            0            1            0

 
 
 
 
 
 
 
 
 
 
 
 
 



 






 

with A11=0.04315, A12=0.1178, A13=0.0393, A14=-0.030, A15=0.1962, A16=-0.053, A17=0.3033, 

A18=0.3838, A19=0, A1A=0, A1B=1.644  

and 

𝐵𝑚2 = [0    0   0       0    0   0      0    0   1     0 0 ]𝑇 

𝐶𝑚2 = [1    0   0     0    0   0       0    0   0    0 0] 

 

Finally, for the third pool, based on the ARX model, the state-space variable may be written as 

follows: 

𝑥𝑚3(𝑘) = [𝑦3(𝑘) 𝑦3(𝑘 − 1) 𝑦3(𝑘 − 2) 𝑦3(𝑘 − 3) 𝑦3(𝑘 − 4)  𝑢3(𝑘 − 1)  𝑢3(𝑘 − 2)  𝑢3(𝑘

− 3)]𝑇 

Other parameters of the state-space model for the third pool are: 

  𝑢3(𝑘) =  𝑄𝐺3(𝑘)   [
𝑚3

𝑠
],  𝑛3 = 7,  𝐴𝑚3  ∈  ℜ

𝑛3𝑥𝑛3  ,     𝐵𝑚3 ∈  ℜ
𝑛3𝑥1 ,   𝐶𝑚3  ∈  ℜ

1𝑥𝑛3               

where 

m3

 

  0.6495    0.2344    -0.142    0.3175    -0.2112   1.422   -0.9872

            1            0            0            0            0            0            0

            0            1    

      A  =

        0            0            0            0            0

            0            0            1            0            0            0            0

            0            0            0            1            0            0            0

            0            0            0            0            0            0            0

            0            0            0            0            0            1            0
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𝐵𝑚3 = [0    0   0       0    0   1   0  ]𝑇 

𝐶𝑚3 = [1    0   0     0    0   0    0   ] 

 

3.6.3 IDZ model of the Ebro River Left Bank canal 

 

The model used in this dissertation to describe the second case of study is based on the Integrator 

Delay Zero (IDZ) model proposed by (Litrico & Fromion, 2004b).  The integrator delay zero (IDZ) 

model is an expansion of the ID model that incorporates a zero in the transfer function.  The 

integrator delay (ID) model assumes that the canal consists of two parts: a downstream part 

(characterized by backwater) and an upstream part (characterized by uniform flow).  In the part 

affected by backwater, a simple reservoir model is used, and the parts with uniform flow are 

approximated by the kinematic wave model.  The two models are connected in the ID model.  

Meanwhile, the IDZ model is able to represent the canal behavior in low and high frequencies; the 

integrator delay accounts for low frequencies, whereas the zero represents the direct influence of 

the discharge on the water level in high frequencies and the delay is related to the system delay. 

The transfer function of the IDZ model describes the ratio of the downstream water level and the 

upstream discharge under gate in the Laplace domain.   In a single pool configuration (see Figure 

3.8), the IDZ model is written as follows: 

𝐺𝐼𝐷𝑍𝑖(𝑠) =
𝑦𝑖(𝑠)

𝑄𝐺𝑖(𝑠)
=
𝐾1𝑖𝑠 + 1

𝐴𝑒𝑖𝑠
e−τ𝑖s 

(3.13) 

where 𝐾1𝑖 is a parameter calculated from the canal properties, 𝜏𝑖 is the delay time and 𝐴𝑒𝑖 is the 

integrator/backwater approximation.  The downstream water level considering the downstream 

discharge may be expressed as (Litrico & Fromion, 2004b): 

𝑌(𝑠) =
𝐾𝑖𝑠 + 1

𝐴𝑖𝑠
𝑒−𝑇𝑖𝑄𝑖(𝑠) −

𝐾2𝑠 + 1

𝐴𝑖𝑠
𝑄𝑖+1(s) 

(3.14) 

The Ebro River Left Bank canal was already introduced in Section 3.3, and a scheme of this canal 

is illustrated in Figure 3.18. 
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Figure 3.18 Scheme of the ERLB canal  

 

The model parameters of each pool for different operating points (𝑄𝑜𝑝) are given in Table 3-3. 

Pool Qop [m3/s] Ki Ai [m2] Ti  [s] K2 

1 15 353.50 18959.07 433.55 513.92 

2 15 210.03 26212.79 635.32 741.62 

3 15 451.98 49153.04 880.94 989.85 

4 15 103.63 20623.44 380.74 462.19 

5 15 213.47 5614.43 243.55 299.70 

       

1 2 16.38 20460.94 501.74 522.22 

2 2 0.08 29041.42 747.75 778.35 

3 2 3.13 53151.90 993.58 1023.32 

4 2 0.00 21467.16 425.71 439.80 

5 2 39.11 6426.29 329.30 355.24 

      

1 8.5 288.39 19877.15 466.48 530.02 

2 8.5 101.91 27788.81 690.26 781.22 

3 8.5 305.40 51581.19 937.40 1028.76 

4 8.5 28.02 21181.13 402.60 456.21 

5 8.5 203.80 5849.50 282.11 338.49 

      

1 19 360.60 18476.69 415.08 500.08 

2 19 213.99 25519.02 607.51 748.05 

3 19 481.55 47881.54 847.64 958.51 

4 19 142.66 20212.77 368.15 460.86 

5 19 216.83 5763.97 223.13 274.36 

Table 3-3 parameters of the IDZ models of ERLB canal 
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The discretized model with five downstream controlled water levels has the following form: 
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In order to validate the models in time-domain, the open-loop discharge step response of each pool 

has been tested. The numerical results are shown in Figure 3.19.  The tests were performed 

producing a step discharge (dotted line in Figure 3.19) in the upstream gate, while keeping the 

downstream discharge constant.  The system output are the water levels (solid lines).  The step 

response of the IDZ models is compared numerically with the response of SV model obtained by 

the SIC software.  The IDZ model step responses were simulated by Simulink® (see Figure 3.20) 

with the same data input generated by SIC.   In order to quantify the similitude of step responses 

in every canal pool, the square of the correlation coefficients are: 𝑅𝑐1
2 = 0.9889 for pool-1 model, 

𝑅𝑐2
2 = 0.9986 for pool 2, 𝑅𝑐3

2 = 0.9964 for pool 3, 𝑅𝑐4
2 = 0.9964 for pool 4 and 𝑅𝑐5

2 = 0.9444 

for pool 5 model.   

 

3.7 Final remarks  

 

As a summary, this chapter has described the two case studies that will be further used to validate 

the control developments.  Numerical schemes solving the SV equations have been presented for 

simulation purposes. And linearized models have been derived, which will be used for the control 

design. 

The following chapter is devoted to illustrate some common canal operations involving abrupt 

changes in the operating conditions.  Abrupt changes are tested using the SV models presented in 

this Chapter 3.  It is expected that the numerical simulation results highlight some problems that 
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arise when the canal operations are not managed properly, and motivate the need for automatic 

control. 

 

 

 

          Figure 3.19 Comparison of the IDZ models and the 1D-Saint-Venant equations  

 

 

Figure 3.20 Simulink block diagram for IDZ model validation 

 

 



3. Description and modelling of case studies       44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4. Management practices involving canal closure and opening operations       45 

 

 

4 Management practices involving 

closure and opening operations  
 

Chapter 4 

 

Management practices involving 

canal closure and opening operations  
 

 

4.1 Introduction 

 

Modern management policies for irrigation canals aim to delivery water on demand, thus allowing 

the users to handle their irrigation needs with flexibility instead of receiving water under rigid 

scheduling.  This means to ensure adequately water delivery at the  turnouts with the actual 

requirements, taking into account timing and quantity of the particular crops served (Goussard, 

1993).  However, there are situations in which abrupt changes in the operating conditions must be 

managed. Typical examples are the canal closure during non-demand periods (e.g. to save water 

for other purposes as energy production), or the emergency closure of an open canal as a result of 

pollutants flowing along the supplier river, or when elements of the canal, such as canal lining or 

check structures, require corrective or preventive maintenance.  Restarting a closed canal to its 

normal operating conditions is another problem in which abrupt changes in the operating 

conditions must be considered.  This chapter is focused mainly on the closure operation problem, 

but opening involves similar issues. 

Canal closure is a required operation in virtually all canal facilities. Typically, when irrigation 

season ends, canals are closed and emptied to clean sediments, repair structural damages and 

maintain electromechanical elements as gates, motors, cables and communication devices, among 

others (see Figure 4.1).  However, there are situations in which canals must be closed but not 
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emptied, namely maintaining a prescribed water volume despite the zero flow condition. This 

dissertation refers to this type of canal closure. 

 

Figure 4.1 empty canal (from http://www.gauthiere-engineering.com) 

The main motivation for a canal closure operation is to save water, which can be used for several 

purposes such as drinking water resources or energy production. Turning the canal off (canal 

closure) means setting zero flow conditions by gradually closing the gates along the canal in a 

smooth way, while maintaining specific water levels between maximum and minimum critical 

values in order to avoid overtopping, drying up or canal fracture by sub-pressure effects, which 

could involve both economic and environmental issues.  

The objective of this chapter is to discuss the main motivation and issues related to canal closure.  

It describes several management practices involving abrupt changes in operating conditions of 

canals and some of the related common issues encountered in water conveyance systems.  The 

discussion is also illustrated with simulation results of closure operations using local manual 

control. 

 

4.2 Management practices involving closing and opening operations 

 

4.2.1 Night closure to save water  

 

Night closure to save water can be used in both irrigation canals and canals used for hydraulic 

power generation.  In irrigation canals, there are cases in which farmers do not irrigate over the 

night in order to save water, and gates are consequently closed reach zero flow through the canal. 

Namely, these canals operate at maximum discharge at daytime only.  Meanwhile, in canals used 

for hydraulic power generation, the power output in the hydro-plant depends on the volume of 

water travelling through the canal.  In this way, when night falls and when the power consumption 

decreases considerably, the gates may be closed in order to save water.  In these canals, an opening 

operation is fulfilled next day early in the morning to produce electricity again. 
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4.2.2 Night closure in rotational delivery systems 

 

When farmers practice a rotational delivery system, night irrigation is done only during times of 

peak crop water demand (some reasons to do this are personal safety, cold and darkness). So, as a 

result water does not flow continuously, and a large proportion is saved in medium-sized canal 

networks (Ghumman et al., 2009).   A typical strategy developed in a tree-shaped net of open 

canals is day and night opening of main canal but night closure of secondary canals (see the layout 

depicted in Figure 4.2 ). 

 

Figure 4.2 A typical irrigation scheme (from (Van den Bosch et al., 1992)). 

 

4.2.3 Canal closure on weekends 

 

When a canal decreases the irrigation on weekends, it is advisable to close it in order to reduce 

operational labor and energy and subsequently save water, money and manpower. 

 

4.2.4 Emergency plan 

 

Another motivation for closing a canal is the danger of contamination of water due to a pollutant 

flowing in the supplier river.  Once any pollutant flowing down the river is detected in the upstream 

main canal, some authorities decide to call for an emergency plan in order to avoid pollutants travel 

downstream the canal.  Typically, in those situations a warning signal is sent to the canal 

management staff who must then initiate the emergency procedure.  The procedure starts closing 

the upstream pool in order to isolate the overall system.  Subsequently, the gates can be closed as 

quickly as the water delivery system allows, while maintaining the water level between prescribed 

allowed maximum and minimum operating levels.   The aim is to prevent damages in the canal 

lining (Soler et al., 2014). 

The polluted water takes time to travel along the canal pools, and this time is a function of the 

geometry and the canal flow.  For instance, in the Ebro River left bank canal in Spain, the pollutant 
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takes approximately 7.3 h traveling 40 km downstream from a gauging station to the canal inlet.  

The gauging station is in charge to detect whether any pollutant is flowing downriver and emits an 

emergency warning.  Namely, the 15 km-long canal system has a period of time of 7.3 h in which 

it has to be isolated (Soler et al., 2014). Therefore, the challenge for the emergency plan is to 

design a strategy able to close the canal as quickly as possible considering physical characteristics 

that impose some constraints to the control possibilities.  Some characteristics are maximum 

capacity, amount of depth fluctuations and amount of storage, among others. 

 

4.2.5 On demand partial closure 

 

Canals must irrigate agricultural crops in some periods of  short rainfall, however in specific 

periods of time, irrigation is not required, although canal must remain filled -with less amount of 

flow but filled- to supply freshwater for nearby population. That means that the canal acts as source 

or reservoir of potable water for human consumption. 

On demand operation, a lot of farmers choose not irrigate their crops overnight, namely, the canal 

management operators need to slow down the discharge in order to save water. This operation 

involves to change a large percentage of the operating point but without driving the canal to zero 

flow. 

 

4.2.6 Opening operation 

 

Opening a previously closed canal means restoring a non-zero operating flow without altering the 

prescribed water levels. The goal is to move gradually the gates from zero flow condition to a 

nominal flow value.  The upstream gates movement will generate naturally a waving effect in the 

canal, however there are two main objectives to ensure during the opening operation. The first 

objective is to maintain specific water levels between maximum and minimum critical values in 

order to avoid problems, such as, canal overtopping. The second objective is to execute the opening 

operation as quick as possible.  In some canals, finally all the gates will be completely open. 

Consequently, restarting the canal on (canal opening) requires a progressive and well planned set 

of actions to achieve a prescribed flow condition maintaining water levels between the permitted 

values under normal operating conditions.  The opening operation must be done as quickly as 

possible but considering that to lead the system to a desired steady state, some variables such as 

water levels, gate opening, and flow at the end of the canal will have a transient behavior until the 

water demand is reached.  Since restarting the canal to the previously steady state implies to supply 

an extra water volume to compensate water losses during the time that the canal has been closed, 

the opening operation is expected to be longer than the closing operation. 
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4.3 Drawbacks associated to closure operation 

 

An operating point change within a wide range, as in closure operations, must not imply water 

level changes in the same proportion.  Whatever the reason to change drastically the operating 

point in the system, the experience indicates to leave enough canal freeboard to avoid some 

hydraulic issues like cracking in the canal lining and overtopping.  For instance, in the Ebro river 

left bank canal, which has 3 m of canal depth, it is recommended around 1 m-freeboard in several 

checkpoints in order to protect the canal lining (Soler et al., 2014). 

 

4.3.1 Cracking in the canal lining  

 

A common problem related to canal closure is the transient wave phenomenon originated when 

the gates are suddenly closed along the canal, which usually leads to the risk of exceeding the 

minimum/maximum safety levels required on the canal.  Particularly, if the water level decreases 

below the minimum safety level, it can lead to structural damage or cracking (see Figure 4.3).   

Cracking in the canal lining arises by reason of the pressure that the concrete canal lining are 

subject to the effect of outside water by sub-pressure effects.  Namely, cracking occurs when the 

equilibrium between the subsurface water pressure and that of water in the canal is broken, and 

the pressure difference generates over tension on the canal lining.  The cracked concrete canal 

lining may result in a significant loss of water and money.  Leakage often starts on a small scale, 

but the moment when water finds a way through a canal embankment, a hole will develop through 

which water will leak.  Serious leakage can be avoided when the canal system is inspected 

frequently and when repairs are carried out immediately.  The longer a hole or crack is left, the 

larger it will become (Van den Bosch et al., 1992).  

  

Figure 4.3 Photo and schematic of longitudinal cracking (taken from (Moreno, 1986)) 
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4.3.2 Overtopping 

 

Another important issue to bear in mind in both closure and opening operations is the transient 

wave phenomena originated when the gates are suddenly closed/open along the canal.  The wave 

travels in downstream direction and it arrives at the downstream end and bounces back iteratively. 

Exceeding the maximum safety level may lead to the water exceeds the top of canal bank with 

negative consequences (Figure 4.4). Overtopping is a problem because it causes erosion of the 

canal banks and may lead to serious breaches (Van den Bosch et al., 1992).  Overtopping of a canal 

section is induced by an exaggerated discharge in a particular section exceeding the actual canal 

capacity.  Moreover, canal banks that are frequently overtopped are very probably eroded and 

lowered, and thus the actual capacity will be less than the original one for which the canal has been 

designed.  

  

Figure 4.4  Photo and schematic of overtopping (from (Van den Bosch et al., 1992)) 

 

4.4 Feasibility of closure operation 

 

Depending on the reason to closing a canal, the feasibility of closure operation must be analyzed 

from two points of view mainly.  First, when the closure operation has the objective to save water. 

Secondly, when the closure operation has the objective to isolating a canal in the presence of 

pollutant flowing in the supplier river. 

 

Feasibility of closure operation to save water 

 

The feasibility of closure operation with the objective to save water, considers night-closure, 

closure on weekends and night-closure in rotational delivery systems.  Particularly, canals can be 

closed at nights provided that the closure operation is fast enough to make it feasible.  To determine 

feasibility of closure, some aspects have to be assessed, such as time taken to achieve a new steady 
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state, and time required to meet full crop water demand in the service (Ghumman et al., 2009).  

These aspects are analyzed below. 

 Time taken to achieve steady state hydraulic conditions after the canal is opened in the 

morning.  Canal physical characteristics determine both the time taken to achieve steady 

state hydraulic conditions after the canal is opened in the morning and the minimum time 

required to perform the closure operation. A case study of feasibility of night closure of the 

Upper Swat-Pehur canal (USC) system in Pakistan is found in (Ghumman et al., 2009).  

Based on hydrodynamic simulation models, the results show that where canal lengths are 

less than 5 km, there is good potential to make savings. In the particular case of Dagai 

Distributary (3.2 km long), it attained a steady state within 2 hours of canal opening, and 

later took 60 min to drain (with discharge 0.16 m3/s).  Namely, mainly values of both time 

filling and emptying make suitable the night-time closure. 

 

 Time required to meet full crop water demand in the service area.   Required time to meet 

full crop water demand in the service during the day due to crop water demand varies 

through a season. The management of an irrigation system must offer flexible service in 

order to deliver the required amount of water at an appropriate time to meet the farmers’ 

needs.  The goal is deliver optimal water supply at peak demand and reduce the amount at 

early growth stage of crops (Ghumman et al., 2009).  

 

Feasibility of closure operation due to an emergency plan 

 

The feasibility of closure operation with the objective to isolate the canal in the presence of 

pollutant flowing in the supplier river is mainly evaluated by the time taken for discharges to go 

from a baseline to zero in a downstream checkpoint of the canal.  This time is evaluated in both 

closure and opening operations.   A detailed study on the closure as a result of pollutant flowing 

in the supplier river is found in (Soler et al., 2014).   In the event of a pollutant discharge, the water 

users’ association have decided to design an emergency plan in order to isolate the system for the 

protection of the main canal lining. In thus study, the pollutant takes approximately 7.3 h traveling 

40 km downstream from a gauging station to the canal inlet in the Ebro River left bank canal.  The 

gauging station is in charge to detect whether any pollutant is flowing downriver and emits an 

emergency warning.   Therefore, the system has the period of time of 7.3h as the maximum value 

in which system must be isolated. 

In summary, the feasibility and usefulness of a closure operation is mainly determined by 

comparing the time required to achieve the objective (i.e. closing the canal before the pollutant 

arrival to specific checkpoints) and the minimum time required to perform the closure operation, 

which relies on the canal geometry, flow conditions and velocity of check structures.  
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4.5 Manual closure simulation results in the cases of study 

 

The aim of this section is to illustrate, by simulation results, several scenarios of closure operation 

using local manual control. Simulations are fulfilled in SIC (Simulation of Irrigation Canals) 

modeling software.  In particular, it is expected that some scenarios reveal evidence of the 

previously discussed problems and motivates the need of automatic control systems.  The closure 

simulations suppose idealized motorized gates, whose velocities can be changed manually. 

Simulation results include three variables, downstream water levels, discharges under gates and 

gate openings.   

Five scenarios have been designed to check the transient response after closing gates of cases of 

study under manual local control.  Scenarios depending on the gates velocities.  The first scenario 

is devoted to test the downstream water levels closing all gates at the same velocity.   In the second 

scenario, all gates are closed at the same velocity but with a value lower than the first scenario.  In 

the third scenario, gates are closed with different velocities and the velocity of most upstream gate 

is higher than the rest of the gates.  In the fourth scenario, gates are closed with different velocities 

and the velocity of most upstream gate is lower than the rest of the gates.  The fifth scenario 

simulates a closure operation when only the most upstream gate is closed.  Disturbances are not 

considered in these scenarios. 

 

4.5.1 Manual closure of the canal PAC-UPC 

 

The laboratory canal is a zero-slope rectangular one, having 220 m length, 44 cm width, 1m depth 

and a Manning’s coefficient of 0.016.  The maximum affordable inflow is around 150 l/s. The 

maximum and minimum operating levels recommended for accuracy and safety purposes are 97 

cm and 63 cm respectively (Subsection 3.2 contains more information related to characteristics of 

the canal). 

To fulfill simulations, a three pool configuration has been used (Figure 4.5).  There is a rectangular 

weir, W4 at the end of the canal.  In Figure 4.5, L1, L2 and L3 are openings of gates G1, G2 and G3 

respectively;  y1, y2 and y3 are downstream water surface elevations;  yup is the reservoir water 

level;  Q1, Q2 and Q3 are discharges under gates;  QW1, QW2 are lateral offtakes (site of turnouts);  

and QW4  is the flow-rate through the rectangular weir W4.  
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Figure 4.5 Illustration of canal PAC-UPC in three pool configuration 

Scenarios 

Simulation results include three variables: downstream water levels, discharges under gates and 

gate openings.  The scenarios are the following: 

 Scenario 1:  Closing all gates at the same velocity with  𝑉𝑔1 =  𝑉𝑔2 =  𝑉𝑔3 = 3.125 mm/s  

 Scenario 2:  Closing all gates at the same velocity with  𝑉𝑔1 =   𝑉𝑔2 =  𝑉𝑔3 = 1.5  mm/s  

 Scenario 3: Closing all gates with different velocity, 

  𝑉𝑔1 = 3.125 ;  𝑉𝑔2 =  𝑉𝑔3 = 1.5  mm/s 

 Scenario 4: Closing all gates with different velocity,  

𝑉𝑔1 = 1.5 ;  𝑉𝑔2 = 3.125;  𝑉𝑔3 = 3.125   mm/s 

 Scenario 5:  closure of gate G1 only with velocity 𝑉𝑔1 = 1.5 mm/s.  The rest of the gates 

remain in the same position along the time of simulation. 

For each scenario, two operating steady state flows are considered: 

- Low flow (52 l/s) 

- High flow (121 l/s) 

 

Canal closure at low flow  

 

Figures 4.6 to 4.8 show results for the low flow cases.  In Figure 4.6, simulation starts with an 

operating point around a steady state of 52 l/s, then after 5 seconds all the gates close 

simultaneously.  In the first scenario, all gates closed at 3.125 mm/s in left part of Figure 4.6.  

Simulation results of Scenario 2 are illustrated in the right part of Figure 4.6 . 
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Figure 4.6 Simultaneous closing of all gates with the same velocity at low flow  

  

As it can be noted, starting from a relatively low flow (52 l/s), closing can be done in less than 1.5 

minutes maintaining water levels y1 and y2 inside the safety band prescribed for this canal.  

Meanwhile, water level in the third pool decays exponentially as a result of the presence of the 

weir at the end of the canal.  The wave phenomenon still remain for a period of time even after all 

the gates have been closed.  Open loop responses show a relatively low maximum error: 2.71 cm 

for first pool and 1.9 cm for second pool at 3.125 mm/s and 0.91 cm for the 87 m-long pool and 1 

cm for second pool at 1.524 mm/s, it indicates that, water levels in two first pools have less 

variation closing at 1.524 mm/s than closing at 3.125 mm/s. 

Simulation results using different velocities in the closure operation are illustrated in Figure 4.7.  

In both scenarios, there are no overtopping despite wave phenomenon.  However, in the fourth 

scenario, the velocity of G1 slower than G3 and G2, produces a higher ripple in the transient 

response of water level y1. 
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Figure 4.7 Closing scenarios 3 and 4 at low flow (different velocities)  

 

 

Figure 4.8 Scenario 5 at low flow  

0 1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

Scenario 4

 

 

y
1

y
2

y
3

0 1 2 3 4 5
0

10

20

30

40

50

 

 

Q
G1

Q
G2

Q
G3

0 1 2 3 4 5
0

2

4

6

8

10

12

t (min)

 

 

L
1

L
2

L
3

0 1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

W
a
te

r 
L
e
ve

ls
 (

m
)

Scenario 3

0 1 2 3 4 5
0

10

20

30

40

50

 D
is

c
h
a
rg

e
s
 (
l/
s
)

0 1 2 3 4 5
0

2

4

6

8

10

12

G
a
te

 O
p
e
n
in

g
 (

c
m

) 

t (min)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

W
a

te
r 

L
e

v
e

ls
 (

m
)

Scenario 5 (Only  gate G
1
 is closed.  )

 

 
y

1

y
2

y
3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

 D
is

c
h

a
rg

e
s
 (

l/
s
)

 

 
Q

G1

Q
G2

Q
G3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

t (min)

G
a

te
 O

p
e

n
in

g
 (

c
m

) 

 

 

L
1

L
2

L
3



4. Management practices involving canal closure and opening operations       56 

 

The fifth scenario aims to isolate quickly the downstream pools from the water source (reservoir) 

by only closing the upstream pool.  This operation results in water levels that go further below the 

minimum allowed values, as is depicted in Figure 4.8. 

 

Canal closure at high flow  

 

When the input flow increases, the operation scenarios get more complicated and problems could 

arise.  Simulation results of both scenarios 1 and 2 starting from a steady state of 121 l/s are shown 

in Figure 4.9.  Initial water levels y1, y2 and y3 are 93.3, 80.8, and 66.5 cm respectively and the 

initial gate openings are 17.4, 30 and 26.1 cm for G1, G2 and G3 respectively.  The gate velocities 

are 3.125 mm/s in the left plot and 1.524 mm/s in the right plot. When the gates are all closed 

simultaneously following a straight line trajectory, the resulting water profiles decrease their 

amplitude in the deepest value around 6.88% at 3.125 mm/s and 10.9% at 1.524 mm/s.  Percentage-

wise, the first pool water level has decreased further with respect to the operating point of 52 l/s. 

 

 

Figure 4.9 Simultaneous closing of all gates at high flow  
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Figure 4.10 Scenarios 3 and 5 at high flow (different velocities) 

 

Figure 4.11 Scenario 4 at high flow (leading to overtopping)  
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In the scenarios 3, 4 and 5 where gate movements have two different velocities, the transient 

behavior gets worse in the upstream pool.  Scenarios 3 and 5 are shown in Figure 4.10.  The 

simulation of the Scenario 4 is shown in Figure 4.11, where the system starts from a steady state 

of 121 l/s and water levels y1, y2 and y3 of 93.3, 80.8 and 66.5 cm respectively.  When all the gates 

are closed simultaneously following a straight line trajectory, the resulting water profiles exhibit 

an unaffordable amplitude leading to overtopping in the first canal pool.  

 

4.5.2 Manual closure of the Ebro River left bank canal 

 

 The Ebro River left bank canal in Spain has been designed with five pools separated by five sluice 

gates. The maximum operating level for safety purposes is 2.99 m.  Depending on the water level 

of the river, the aquifer affects the canal lining by creating external pressure. In this way a 

minimum operating level of 2 m is recommended to avoid problems of cracking in the canal lining.  

To fulfill simulations, the configuration depicted in Figure 4.12 has been used.  In this sketch, 

y1,…, y5 are downstream water levels; QS1,…,QS4  are turnouts in the lateral spillways and QW5  is 

the discharge in the spillway S5.  

 

Figure 4.12 Sketch of the ERLB canal 

Scenarios 

Simulation results include three variables: downstream water levels, discharges under gates and 

gate openings.  The scenarios, depending on the gate velocities, are the following: 

 Scenario 1:  Closing all the gates at the same velocity, 

    𝑉𝑔1 = 𝑉𝑔2 = 𝑉𝑔3 = 𝑉𝑔4 = 𝑉𝑔5 = 3.125 
mm

s
= 18 

cm

min
   

 Scenario 2: Closing gates at the same velocity, 

  𝑉𝑔1 = 𝑉𝑔2 = 𝑉𝑔3 = 𝑉𝑔4 = 𝑉𝑔5 = 0.5 
mm

s
= 3 

cm

min
 

 Scenario 3: Closing at different velocities, 

  𝑉𝑔1 = 3.125 
mm

s
;    𝑉𝑔2 = 𝑉𝑔3 = 𝑉𝑔4 = 𝑉𝑔5 = 1.5

mm

s
 = 9 

cm

min
 

 Scenario 4: Closing gates at different velocities, 

 𝑉𝑔1 = 1.5 ;       𝑉𝑔2 = 𝑉𝑔3 = 𝑉𝑔4 = 𝑉𝑔5 = 3.125 
mm

s
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 Scenario 5:  closure of gate G1 only with velocity of 𝑉𝑔1 = 3.125 
mm

s
 .  The rest of the 

gates remain in the same position along the time of simulation. 

To simulate the manual closure operation, each scenario starts from an operating point around 

15.29 m3/s.  At time 𝑡 = 0, gate openings are 𝐿1 = 0.456, 𝐿2 = 2.737, 𝐿3 = 1.325, 𝐿4 = 1.749   

= and 𝐿5 = 2.109 m.  The initial water levels are 𝑦1 = 2.78, 𝑦2 = 2.22, 𝑦3 = 2.73, 𝑦4 = 2.3   = 

and 𝑦5 = 2.5 m. The minimum gate opening is 0.008 m, this means less than 2% of the initial 

operating point in each discharge under gate. 

In the first scenario (Figure 4.13), after 30 seconds all the gates close simultaneously.  This 

scenario assumes that all gates are equal and it attempts to resemble a situation of panic in which 

the water master decides to close simultaneously all the gates.  As can be noted, the resulting water 

profile of  y3 reaches an unaffordable amplitude leading to overtopping in less than 9 minutes.  

 

Figure 4.13 Simulation results of Scenario 1, illustrating overtopping.  

Simulation results of Scenario 2 are illustrated in Figure 4.14. In this scenario, the closure 

operation starts at the same initial steady state of 15.29 m3/s.  In this scenario gates are closed 

simultaneously but at lower gate velocity than in Scenario 1.  As can be noted, after 45 minutes of 

simulation there is no to overtopping in any pool (the maximum value is y3 = 2.9 m), however 

water level y1 has decreased to 1.35m (51% of its initial value). This water level is lower than the 

2m-minimum recommended safeguard, which is not admissible. 
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Figure 4.14 Simulation results of Scenario 2 

 

Figure 4.15 Simulation results of Scenario 3 
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Simulation results of scenarios 3 and 4 are illustrated in Figure 4.15 and Figure 4.16 respectively.  

In both scenarios gates movements have two different velocities. In the scenario 3, water level y1 

has decreased around 30 cm in 12 minutes.  In Scenario 4 there is overtopping of water level 𝑦3 in 

less than 8 minutes.  

 

 

Figure 4.16 Simulation results of Scenario 4 (leading to overtopping) 

 

Simulation results of Scenario 5 are shown in Figure 4.17.  This scenario attempts to resemble a 

situation where the water master decides to close only the most upstream gate. As a result, most 

of the water levels are lower than the 2m-minimum recommended safeguard in less than 2.6 hours. 
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Figure 4.17 Simulation results of Scenario 5 

 

4.5.3 Discussion of the simulation results 

 

The quality of the closure operation is determined by aspects, such as closing velocity, water levels 

inside the minimum/maximum safety levels required on the canal, and to keep the water levels as 

close as possible to the setpoint. Using different gate closing velocities in the canal closure 

operation produces meaningful changes in the amplitude, peak, trough (valley) and wavelength of 

both upstream and downstream water levels.  Wave phenomenon occurs regardless which are the 

initial conditions or which are the motor velocities.  Oscillatory behavior is a result of reflections, 

gate movements and disturbances in pools.  A canal system to be closed is affected by upstream 

and downstream disturbances.  Therefore, the controller to manage closure and opening operations 

must avoid the risk of exceeding the minimum/maximum safety levels required on the canal.   

Operating the canal gates sequentially, progressing either downstream or upstream, is a technique 

commonly used to change canal system flow. On conventionally operated canals, the basic 

procedure is to initiate a discharge change in the headwork and progress in the downstream 

direction (Buyalski et al., 1991).  Based on the results on (Soler et al., 2014) and on the simulation 

and real-time experiment carried out on during the development of this thesis, have demonstrated 

that overtopping risk can be reduced by closing the gates sequentially from upstream to 

downstream with some time delay between a gate and the next one.  The results have been obtained 

by imposing a trajectory to each gate in an open-loop control system.  In this sense, a simulation 
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of manual closure operation using the strategy of sequential gate movements in the laboratory 

canal PAC-UPC is illustrated in Figure 4.18.  For comparison purposes, this simulation starts from 

the same steady state that illustrated in Figure 4.11 (scenario 4) but closing the gates sequentially 

from upstream to downstream and imposing a smooth trajectory to each gate.  As it can be 

observed, with this strategy, water levels in pools 1 and 2 are lower than those in Figure 4.11.  

Nevertheless, maintaining the levels in each pool inside the safety band prescribed for the canal is 

not guaranteed.  Moreover, amplitude variations of levels 1y and 2y  from its original positions are 

higher than 3 cm (lower than the case depicted in Figure 4.9).  Therefore, there is an improvement 

in that there is no overtopping, however the problem of closure is not completely solved because 

the open loop-control system does not consider neither the influence of the output variable (water 

levels) in the control action nor the disturbances that may occur during the closure and opening 

operations. 

 

 

Figure 4.18 Sequential closure of all gates with no overtopping in Canal PAC-UPC 
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4.6 Conclusion 

 

Based on the issues described in this chapter, a proper closure operation of a given canal system 

must consider the following operation requirements:  

 To drive any canal pool from its initial steady state to another state with a minimum 

discharge, the closure operation must be as smooth as possible by way of moving the gates 

in a progressive and smooth manner. 

 

 The water levels on the canal pools must be settled to given set-points between the 

minimum and maximum safety water levels for each pool during the closure/opening 

operations. 

 

 The gates along the canal must be closed subsequently from upstream to downstream to 

avoid as much as possible both the oscillatory behavior of the water profiles and the 

potential overtopping.  

 

 The closure/opening operations must be done as soon and quick as possible.  The minimum 

allowed time is determined by the geometry of the canal, the flow conditions, the velocity 

of the check structures and the final objective pursued with the closure operation.  

 

The closure operation is a very challenging task whose primary goal is to save water.  The 

operational requirements of the closure operation are almost impossible to achieve using local 

manual control methods.  In this dissertation, an automatic control strategy is proposed to 

guarantee the users’ water demands while keeping the water levels within specified maximum and 

minimum values in order to prevent damages to the canal. 
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5 Predictive control with dynamic 

constraints in canal automation 
 

Chapter 5 

 

Predictive control with dynamic 

constraints in canal automation 

 

 

5.1 Introduction 

 

This chapter develops the control strategy and the formulation to carry out the closing operation 

with the aim of minimizing the problems discussed in Chapter 4.  Due to its advantages and results 

highlighted in the literature review subsection, predictive control has been chosen in this 

dissertation as the control methodology in order to deal with abrupt changes in operating 

conditions of irrigation canal systems.  

A key aspect of predictive control is the use of a model explicitly in the design methodology. The 

model is used as part of the control algorithm and hence its performance is influenced by the 

accuracy of the model.  In control engineering, the suitable process models should be accurate 

enough to represent the most important dynamics of the process and simple enough to make the 

real-time implementation feasible when online optimization is required.  

The dynamics of a canal may be approximated around a given operating point with linear time-

invariant (LTI) models in order to use linear control design tools, as it is usual in control 

engineering practice (Duviella et al., 2010).  However, in the canal control context, when the 

operating point changes within a wide range, it results in changes of LTI model parameters and in 

the time delay.  These changes represent a problem for predictive control, as well as others model-

based control techniques (a related concept map is depicted in Figure 5.1), where the linearized 
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model obtained around a particular operating point considers a positive performance only over a 

small interval of discharges. Therefore, this problem is an extra challenge to face in the controller 

design. The main control strategies to tackle the problem when parameters change in time are 

robust control, adaptive control and predictive control. There are four approaches to deal with this 

problem when using predictive control (PC): adaptive PC (Martín Sánchez & Rodellar, 1996), 

multimodel PC (van Overloop et al., 2008), nonlinear PC (Allgower et al., 2004) and 

multiobjective PC (Bemporad & Muñoz de la Peña, 2009). For instance, in the multimodel PC 

approach, when the operating conditions are too wide, the dynamic relationship between input and 

output is approximated using decomposition into a set of operating regimes (each of them 

associated to a local model). 

 
Figure 5.1 Concept map related to the model-based control  

This thesis focuses on designing controllers for irrigation canal systems involving abrupt changes 

in operating condition such as closure and opening operation.  These abrupt changes lead to models 

used for control purposes that should change along the time. To deal with those problems, this 

dissertation proposes a new strategy called supervised decentralized predictive control with 

dynamic constraints (SDPC) from now on.  Within this approach, the overall canal is decomposed 

into a number of pools connected by controllable gates in a local manner.  Every local controller 

observes the downstream pool behavior to control its local subsystem, considering the interaction 

between pools as a measurable disturbance. Each controller also considers the external 

disturbances such as the interacting flow caused by downstream lateral offtake/intake variation.  

In an upper hierachical level, a supervisor is designed, which coordinates a sequential operation 

of the local controllers, manages the tuning of the control parameters depending on the operating 

mode and dinamically updates constraints on the control gates depending on the presence and 

magnitude of abrupt changes. 

The chapter is organized as follows.  Section 5.2  describes the overall supervised control strategy. 

Section 5.3 presents the formulation of the local predictive controllers and two ways to obtain the 

optimal solution (unconstrained and constrained). Section 5.3.3 introduces the idea of dynamic 

constraints in the canal closure operation, while Section 5.5 turns this idea into a component within 

the supervised control scheme. Finally, Section 5.6 focuses on some issues concerning the 
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implementation of the developed control scheme, prior to the numerical assessment that will be 

presented in Chapter 6. 

 

5.2 Overall control strategy  

 

5.2.1 Basic objective 

 

As it was mentioned in Chapter 4, closing a canal means changing form an operating flow 

condition to an almost zero discharge steady state while maintaining the prescribed water levels in 

all the canal pools. There are two main objectives involved in the problem of automatic 

closure/opening in canals. The first objective is to regulate the water levels in order to keep them 

as close as possible of the setpoint (constant reference). The second objective is to regulate the 

discharge passing through the check gates, in order to change the operating discharge within a 

wide range.  The purpose of the control system is to manipulate the upstream discharge in order to 

maintain the downstream water level within specified maximum and minimum values to avoid the 

related problems mentioned in Section 4.2. Namely, in order to make the closure operation 

feasible, once the closure operation has started, the gate openings must decrease as faster as 

possible but avoiding overtopping, and other problems related to surpassing the safety band for 

the water levels.   

 

A schematic of a feedback control in a one-pool configuration irrigation system is illustrated in 

Figure 5.2 to control the downstream water level. Water level is used as feedback signal for the 

computer-based controller, which sends the control variables to the position controller through a 

data acquisition card (DAQ card). The computer takes the downstream water level to calculate the 

control variable at each sampling time. The position controller is an inner control loop that converts 

the desired gate openings into actual gate movements.  The system considered herein can be an 

isolated pool or it may also be a controlled pool within a multi-pool irrigation network, such as it 

is considered in this thesis. 

 

 

 

 

 

 

 

Figure 5.2 Illustration of the control problem for a decentralized operation (taken from (Rodellar et al., 

1993)) 



5. Predictive control with dynamic constraints in canal automation      68 

 

5.2.2 Controller architecture: supervised control 

 

The problems that arise in a closure operation when all the gates in a canal are simultaneously 

closed (see Subsection 4.3) and the improvements obtained when the gates are sequentially closed, 

suggest the convenience of an agent (supervisor) in the control system determining the right 

moment to move the different gates in the canal. Operating the canal gates sequentially, 

progressing either downstream or upstream, is a technique commonly used to change the canal 

system flow. On conventionally operated canals, the basic procedure is to initiate a discharge 

change in the headwork and progress in the downstream direction (Buyalski et al., 1991).    

 

Figure 5.3 Supervised decentralized downstream control system  

 

In supervised decentralized control, the global scheme is composed by a set of gates operating 

along a series of pools as depicted in Figure 5.3. The cyclic sequential movement of the gates is 

the responsibility of the supervisor.  Each pool is seen as a system controlled by its upstream gate 

(Gómez et al., 2002).  Every individual gate moves as a result of the computation of the control 

law on its corresponding decentralized controller, which may facilitate the real time operation. 

Hence, the overall system is decomposed into a set of coupled subsystems (controlled pools) and 

the design effort is placed in deriving decentralized controllers for each subsystem. Therefore, for 

a N-pool configuration, the controller architecture is composed by N decentralized controllers and 

a global supervisor, which commands the convenient order of closing the gates.  Each local control 

unit or local controller (see Figure 5.4) is responsible for closing its motorized gate following a 

smooth trajectory able to maintain the water level in the pool inside the allowed safety band.  
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Figure 5.4 Decentralized control of a single-pool configuration 

 

The predictive local controllers designed in this dissertation consider the interactions between 

adjacent pools.  Check structures, such as gates and offtakes are located along the canal and 

strongly interact with the canal dynamics.   Thus, the whole canal has to be regarded as a complex 

dynamic system with high number of variables related to states, inputs and outputs. (Gómez et al., 

2002). In this way, an upstream gate movement affects directly the controlled water levels of its 

controlled pool but also the water level in neighbor pools, namely the interactions occur between 

input and output of adjacent pools in the system. Consequently, disturbances occur both 

downstream and upstream. There are two unknown disturbances considered in the proposed 

controller, first the downstream disturbances caused by the downstream gate opening and second, 

the lateral offtakes/intakes.  Therefore, each controller includes in its control law the control 

actions computed by its neighbors as a measurable disturbance (feedforward input).   

Three operating modes at supervisory level are proposed:  

 Normal 

  Closure 

 Opening 

   

The operating mode (OM) is determined manually by the water manager depending on the 

operation that the facility requires to fulfill. In normal operating mode, the main goal of the control 

system  is to keep the water levels as close as possible to the setpoints, this goal is enough to judge 

the controller’s ability to deliver the needed offtakes discharges (Clemmens et al., 1998).  There 

is no abrupt changes in the operating conditions under normal operation. The closure operation 

mode means change from a baseline operating regime to setting zero discharge conditions by 

closing all the gates along the canal.  The discharge decreasing tendency is imposed once the 

supervisory level decides to close the canal.  In the opening operation mode, the gates are moved 

in order to restarting the operating discharge from zero.   
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The supervisory level in the controller is the monitoring structure responsible for the following 

tasks: 

 Coordinating the sequential operation of each local controller.  For closure mode without 

disturbances, the sequence initiates with a discharge change in the headwork and progress 

in the downstream direction, then the sequence repeats itself till to reach zero flow in all 

the pools.  Meanwhile, on opening operation without disturbances, the sequence of 

operation is to initiate a discharge change in the headwork and progress in the downstream 

direction, then the sequence repeats itself till to reach the new steady state with a baseline 

flow in all the pools.   

 

 Scheduling the controller parameters according to the OM. The predictive controller 

parameters, prediction horizon, constraints, and weighting factor, are different for each 

operating mode. Tuning of each controller must be done offline and separately. In the 

normal operating mode, for instance, the plant model and constraints are time-invariant 

because the operation is assumed to be around a particular operating point. In the closure 

(or opening) operating mode, the supervisor changes the parameters of the dynamic 

constraints that determines the maximum discharge of each controlled pool in the presence 

of unknown disturbances.  Namely, the constraints are dynamic because change over the 

time (see Subsection 5.3.3). 

 

 Locating disturbances. In the presence of an unexpectedly large disturbance, the supervisor 

must detect the location where a sudden raise of water level has occurred and then to decide 

which is the next controller to operate during the closure operation. For instance, in case 

of an unexpectedly large intake QW1 (see Figure 5.3) during a closure operation, the 

supervisor sends an enable signal to the local controllers in order to restart the sequence 

with a change in the position of gate G2 first.  Meanwhile, in case of an unexpectedly intake 

QW2, the supervisor decides to restart the sequence changing the position of G3 first, in 

order to reduce the effect of the disturbance. 

 

5.3 Local water level predictive controllers 

 

In this section, a generic control law is formulated using predictive control. In a first step, the 

control is derived assuming no constraints; a further step introduces constraints in the control 

variable. 

 

5.3.1 Unconstrained Predictive Control 

 

Predictive control essentially relies on the use of a model able to predict the system output as a 

function of the system inputs on a moving horizon scenario.  The model allows to compute the 

control sequence that makes the predicted output to track the setpoint through the minimization of 
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the cost function. The model is usually given as a difference equation. In this work it is assumed 

that the process is described by the following discrete transfer function:  

𝑦(𝑧) =
𝐵(𝑧−1)

𝐴(𝑧−1)
[𝑢(𝑧) + 𝑤(𝑧)] 

(5.1) 

where 𝑦(𝑧) is the output variable with the 𝑍-transform applied to 𝑦(𝑘),  𝑢(𝑧) is the control action 

or input and  𝑤(𝑧) is the measurable disturbance.   𝐴(𝑧−1) and 𝐵(𝑧−1) are the polynomials: 

𝐵(𝑧−1) = 𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯ 𝑏𝑚𝑧
−𝑚 (5.2) 

𝐴(𝑧−1) = 1 − 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯ 𝑎𝑛𝑧
−𝑛 (5.3) 

The next step in the design process is to compute the future control signal sequence that will make 

the predicted output equal to a conveniently selected output trajectory along the prediction horizon.  

Incremental formulation of the predictive model is used in this dissertation because it introduces 

some practical advantages in the real time implementation. One of the advantage is that the 

incremental formulation is able to handle potential steady state deviations from the setpoint due to 

load disturbances (Martín Sánchez & Rodellar, 1996).  Taking a difference operation at instant k, 

the control action 𝑢(𝑘) and the predicted output 𝑦(𝑘) can be written as 

∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) 

∆𝑦(𝑘) = 𝑦(𝑘) − 𝑦(𝑘 − 1) 

where ∆𝑢 is the incremental control variable, and ∆𝑦 is the incremental output.  

A predictive model is used to predict the sequence of incremental outputs ∆�̂�(𝑘 + 𝑗|𝑘) as a 

function of an incremental control sequence ∆�̂�(𝑘 + 𝑗 − 1|𝑘) over the entire interval [𝑘, 𝑘 + 𝜆] at 

the present sampling instant 𝑘, namely 

∆�̂�(𝑘 + 𝑗|𝑘) =∑�̂�𝑖∆�̂�(𝑘 + 𝑗 − 𝑖|𝑘)

�̂�

𝑖=1

+ +∑�̂�𝑖∆�̂�(𝑘 + 𝑗 − 𝑖|𝑘) +

�̂�

𝑖=1

∑�̂�𝑖∆�̂�(𝑘 + 𝑗 − 𝑖|𝑘)

𝑝

𝑖=1

 

(5.4) 

𝑗 = 1,2, …  𝜆 

Where       �̂�(𝑘 + 1 − 𝑖|𝑘) = 𝑦(𝑘 + 1 − 𝑖)            𝑖 = 1,… , �̂� 

�̂�(𝑘 + 1 − 𝑖|𝑘) = 𝑤(𝑘 + 1 − 𝑖)            𝑖 = 1,… , �̂� 

�̂�(𝑘 + 1 − 𝑖|𝑘) = 𝑢(𝑘 + 1 − 𝑖)            𝑖 = 1,… , �̂� 

(5.5) 

 

 

where 𝑦(𝑘 + 1 − 𝑖) and 𝑢(𝑘 + 1 − 𝑖) are the measured output and inputs already applied at 

instant 𝑘.  𝑤(𝑘 + 1 − 𝑖)  is the measureable disturbance at the present time 𝑘. This extended 

prediction thus includes the specific case of λ=1.  In problems where disturbances are known in 

advance, the disturbances may be added to the controller in order to introduce feedforward 
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capability, which allows both tracking setpoint changes and overcoming the unmeasured 

disturbances that are usually present in the canal. 

The controller proposed in this dissertation is based on a decentralized control strategy, therefore 

the predictive model (5.4) describes a single-input, single-output (SISO) process.  Hereinafter, the 

formulations of the local controller are based on the model (5.4).   At every sampling time, the 

future sequence of control actions is optimized over the prediction horizon.  The optimization is 

fulfilled by minimizing an objective function with penalties on deviations from setpoint and 

penalties on requested control signal changes.  The objective function used in this dissertation is 

the following linear quadratic function: 

𝐽 =∑𝛹𝑗(�̂�(𝑘 + 𝑗|𝑘) − 𝑦𝑟(𝑘 + 𝑗|𝑘))
2

𝜆

𝑗=1

+ ∑𝑅𝑗∆�̂�(𝑘 + 𝑗|𝑘)
2

𝜆−1

𝑗=0

 

(5.6) 

where 𝑦𝑟(𝑘 + 𝑗|𝑘) is a reference trajectory.  𝛹𝑗  and  𝑅𝑗 are weighting factors defined for each 

future time 𝑘 + 𝑗.  For simplicity, they can be constant (𝛹, 𝑅) along the whole prediction horizon.  

 The next step is to express the predictive model (5.4) as a function of the information of the 

process inputs and outputs at instant 𝑘, as well as the predicted control input, ∆�̂�.   In this way, by 

using the initial condition (5.5) recursively, the predictive model (5.4)  may be written as follows: 

∆�̂�(𝑘 + 𝑗|𝑘) =∑�̂�𝑖
(𝑗)
 ∆𝑦(𝑘 + 1 − 𝑖)

�̂�

𝑖=1

+ ∑�̂�𝑖
(𝑗)
∆𝑢(𝑘 + 1 − 𝑖) +

�̂�

𝑖=2

∑�̂�𝑖
(𝑗)
∆𝑤(𝑘 + 1 − 𝑖)

𝑝

𝑖=2

+∑�̂�1
(𝑗−𝑖)

∆�̂�(𝑘 + 𝑖|𝑘)

𝑗−1

𝑖=0

+∑�̂�1
(𝑗−𝑖)

∆�̂�(𝑘 + 𝑖|𝑘)                         (𝑗 = 1,2, … , 𝜆)

𝑗−1

𝑖=0

 

(5.7) 

Assuming that future disturbances  �̂�(𝑘 + 𝑖|𝑘) for 𝑗 > 0 remain unchanged and constant, then the 

values ∆�̂�(𝑘 + 𝑖|𝑘) = 0, and  equation (5.7) may be simplified as follows: 

∆�̂�(𝑘 + 𝑗|𝑘) =∑�̂�𝑖
(𝑗)
∆𝑦(𝑘 + 1 − 𝑖)

�̂�

𝑖=1

+ ∑�̂�𝑖
(𝑗)
∆𝑢(𝑘 + 1 − 𝑖) +

�̂�

𝑖=2

∑�̂�𝑖
(𝑗)
∆𝑤(𝑘 + 1 − 𝑖|𝑘)

𝑝

𝑖=1

+∑�̂�1
(𝑗−𝑖)

∆�̂�(𝑘 + 𝑖|𝑘)

𝑗−1

𝑖=0

                           (𝑗 = 1,2, … , 𝜆)  

(5.8) 



5. Predictive control with dynamic constraints in canal automation      73 

 

where  �̂�𝑖
(𝑗)
, �̂�𝑖

(𝑗)
and �̂�𝑖

(𝑗)
 are coefficients obtained from the parameters �̂�𝑖 and �̂� of the predictive 

model by means of the following recursive algorithm (Martín Sánchez & Rodellar, 1996): 

�̂�𝑖
(𝑗)
= �̂�𝑖

(𝑗−1)
�̂�𝑖 + �̂�𝑖+1

(𝑗−1)
 ;      i = 1,… , �̂�;       j = 2,… , λ 

�̂�𝑖
(𝑗)
= �̂�𝑖

(𝑗−1)
�̂�𝑖 + �̂�𝑖+1

(𝑗−1)
 ;      i = 1,… , �̂�;       j = 2,… , λ 

�̂�𝑖
(𝑗)
= �̂�𝑖

(𝑗−1)
�̂�𝑖 + �̂�𝑖+1

(𝑗−1)
 ;      i = 1,… , �̂�;       j = 2, … , λ 

(5.9) 

with 

�̂�𝑖
(1)
= �̂�𝑖  ;         i = 1,… , �̂�     

�̂�𝑖
(1)
= �̂�𝑖   ;          i = 1,… , �̂�     

�̂�𝑖
(1)
= �̂�𝑖  ;          i = 1,… , �̂�     

�̂��̂�+1
(𝑗−1)

= 0  ;      j = 2,… , λ      

�̂��̂�+1
(𝑗−1)

= 0  ;      j = 2,… , λ      

�̂�𝑝+1
(𝑗−1)

= 0  ;      j = 2,… , λ      

In a compact matrix-vector form, the predicted output in (5.8)  may be expressed as follows: 

∆�̂� = 𝐸∆𝑌 + 𝐺∆𝑈 + 𝑃∆𝑊 + 𝐺0∆�̂� (5.10) 

where 

∆�̂� = [∆�̂�(𝑘 + 1|𝑘), ∆ �̂�(𝑘 + 2|𝑘),… , ∆�̂�(𝑘 + 𝜆|𝑘)]𝑇 

∆�̂� = [∆�̂�(𝑘|𝑘), ∆ �̂�(𝑘 + 1|𝑘), … , ∆�̂�(𝑘 + 𝜆 − 1|𝑘)]𝑇 

∆𝑌 = [∆𝑦(𝑘), ∆𝑦(𝑘 − 1),… , ∆𝑦(𝑘 − �̂� + 1)]𝑇 

∆𝑈 = [∆𝑢(𝑘 − 1), ∆𝑢(𝑘 − 2),… , ∆𝑢(𝑘 − �̂� + 1)]𝑇 

∆𝑊 = [∆𝑤(𝑘), ∆𝑤(𝑘 − 1),… , ∆𝑤(𝑘 − �̂� + 1)]𝑇 

Superscript 𝑇 indicates matrix transpose,  ∆�̂� and ∆�̂� are vectors of 𝜆 length, and matrices  𝐸 ∈

ℝ𝜆 𝑥 �̂�,  𝐺 ∈ ℝ𝜆 𝑥 (�̂�−1),  𝑃 ∈ ℝ𝜆 𝑥 (𝑝−1)  and  𝐺0 ∈ ℝ
𝜆𝑥𝜆.  

Matrices 𝐸, 𝐺, 𝑃 and 𝐺0 are calculated offline just once, they are computed as follows: 

𝐸 =

[
 
 
 
 �̂�1
(1)

�̂�2
(1)

… �̂��̂�
(1)

�̂�1
(2)

�̂�2
(2)

… �̂��̂�
(2)

⋮ ⋮ ⋱ ⋮

�̂�1
(𝜆)

�̂�2
(𝜆)

… �̂��̂�
(𝜆)
]
 
 
 
 

 ;        𝐺 =

[
 
 
 
 �̂�2
(1)

�̂�3
(1)

… �̂��̂�
(1)

�̂�2
(2)

�̂�3
(2)

… �̂��̂�
(2)

⋮ ⋮ ⋱ ⋮

�̂�2
(𝜆)

�̂�3
(𝜆)

… �̂��̂�
(𝜆)
]
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𝑃 =

[
 
 
 
 �̂�2
(1)

�̂�3
(1)

… �̂�𝑝
(1)

�̂�2
(2)

�̂�3
(2)

… �̂�𝑝
(2)

⋮ ⋮ ⋱ ⋮

�̂�2
(𝜆)

�̂�3
(𝜆)

… �̂�𝑝
(𝜆)
]
 
 
 
 

 ;      𝐺0 =

[
 
 
 
 �̂�1
(1)

0 0 … 0

�̂�1
(2)

�̂�1
(2)

0 … 0
⋮ ⋮ ⋮ ⋱ ⋮

�̂�1
(𝜆)

�̂�1
(𝜆−1)

�̂�1
(𝜆−2)

… �̂�1
(1)
]
 
 
 
 

 

 

The objective function (5.6) may be represented in matrix form as follows: 

𝐽 = [𝑌𝑟 − �̂�]
𝑇
𝛹[𝑌𝑟 − �̂�] + ∆�̂�

𝑇𝑅∆�̂� (5.11) 

The error, 𝑒 is 

𝑒 = 𝑌𝑟 − �̂� (5.12) 

where 𝑌𝑟 is the reference trajectory, and  �̂� is the predicted output:   

𝑌𝑟 = [𝑦𝑟(𝑘 + 1|𝑘), 𝑦𝑟(𝑘 + 2|𝑘), … , 𝑦𝑟(𝑘 + 𝜆|𝑘)]
𝑇 

�̂� = [�̂�(𝑘 + 1|𝑘), �̂�(𝑘 + 2|𝑘), … , �̂�(𝑘 + 𝜆|𝑘)]𝑇 

The prediction horizon, λ is chosen greater than the delay time.   The weighting matrices 𝛹 and 𝑅 

are chosen in this work by setting 𝛹  = 𝐼𝜆𝑥𝜆 and   𝑅 = 𝑅𝐶𝐼𝜆𝑥𝜆  (𝑅𝐶 > 0).  𝐼𝜆𝑥𝜆  means λ-by-λ 

identity matrix.  This means that a single weighting factor is to be tuned, which penalizes the 

changes in the control variable (∆�̂�) in a relative way with respect the error 𝑌𝑟 − �̂�. 

The value for 𝑅𝐶 may be calculated by normalizing the objective function (5.11) with maximum 

allowed values estimate (MAVE).  The MAVE captures the estimation of how much an input or 

output may vary  (van Overloop, 2006).  In this dissertation, ∆�̂�  is the discharge under gate and 

the error, 𝑒 is related to the water level deviation, thus, a calculated maximum discharge change 

has the same penalty as a maximum water level deviation that need to be corrected.  For instance, 

the maximum allowed water level error is chosen to be 0.03 m, therefore, the maximum allowed 

value estimated of the water level, 𝑒𝑀𝐴𝑉𝐸  is equal to 0.03 m.   

Since in the objective function (5.11), ∆�̂� is penalized with the weighing factor  , and 𝛹 has been 

chosen equal to the identity matrix, the sub-objectives in the objective function are normalized.  In 

this way, equation (5.11) may be written as follows: 

𝐽 = [𝑌𝑟 − �̂�]
𝑇 1

(𝑒𝑀𝐴𝑉𝐸)2
[𝑌𝑟 − �̂�] + ∆�̂�

𝑇
1

(∆𝑢𝑀𝐴𝑉𝐸)2
∆�̂� 

(5.13) 

where ∆𝑢𝑀𝐴𝑉𝐸  is the maximum allowed value estimated of the change in discharge.  𝑅𝐶  is 

calculated with the reciprocal of the square of the ∆𝑢𝑀𝐴𝑉𝐸 , namely   

𝑅𝐶 =
1

(∆𝑢𝑀𝐴𝑉𝐸)2
 

(5.14) 
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In order to obtain a value for 𝑅𝐶, the equation (5.14) must be multiplied by (𝑒𝑀𝐴𝑉𝐸)
2 due to the 

normalization, namely: 

𝑅𝐶(normalized) =
1

(∆𝑢𝑀𝐴𝑉𝐸)2
∙ (𝑒𝑀𝐴𝑉𝐸)

2 
(5.15) 

On the other hand, note that equations (5.8)  and (5.10) give the predictions of the incremental 

outputs  ∆�̂� over the interval [𝑘, 𝑘 + 𝜆], as function of the increments of the measured outputs ∆𝑌 

available at the current time 𝑘 , the previous applied control ∆𝑈, the previous disturbance ∆𝑊, as 

well as a function of the future controls included in the vector ∆�̂�.   Within this scheme, a relation 

between the absolute predicted output vector �̂� and the corresponding incremental vector ∆�̂�  is 

obtained below. 

 The outputs predicted at the subsequent time instants over the predictions interval can be 

expressed in the form 

�̂�(𝑘 + 1|𝑘) = 𝑦(𝑘) + ∆�̂�(𝑘 + 1|𝑘) 

�̂�(𝑘 + 2|𝑘) = 𝑦(𝑘) + ∆�̂�(𝑘 + 1|𝑘) + ∆�̂�(𝑘 + 2|𝑘) 

⋮ 

�̂�(𝑘 + 𝜆|𝑘) = 𝑦(𝑘) + ∆�̂�(𝑘 + 1|𝑘) +  …  + ∆�̂�(𝑘 + 𝜆|𝑘) 

Therefore, �̂� may be written as follows: 

�̂� = 𝑍∆�̂� + 𝑌𝑘  (5.16) 

where 𝑍 is the λ-by-λ matrix.  

𝑍 = [

1 0 0
1 1 0
⋮ ⋮ ⋮

… 0
… 0
⋱ ⋮

1 1 1 … 1

] 

and 𝑌𝑘 is a vector with λ elements defined by 𝑌𝑘 =  𝑦(𝑘) ∙  [1 1 …   1] 
𝑇 

By replacing (5.16) in (5.11) , the objective function is written as follows: 

𝐽 = [𝑌𝑟 − 𝑍∆�̂� − 𝑌𝑘]
𝑇
𝛹 [𝑌𝑟 − 𝑍∆�̂� − 𝑌𝑘] + ∆�̂�

𝑇𝑅∆�̂� (5.17) 

  

Substituting (5.10) into (5.17) , the cost function may be expressed as follows: 

𝐽 = [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘 − 𝑍𝐺0∆�̂�]
𝑇
𝛹 [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊)

− 𝑌𝑘 − 𝑍𝐺0∆�̂�] + ∆�̂�
𝑇𝑅∆�̂� 

(5.18) 
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The unconstrained optimal solution ∆�̂� is obtained by minimizing the cost function (5.18) in a 

finite horizon involving λ unknowns ∆�̂�(𝑘|𝑘), ∆�̂�(𝑘 + 1|𝑘),… ∆�̂�(𝑘 + 𝜆 − 1|𝑘) . The necessary 

condition of the minimum 𝐽 is obtained by 

𝜕𝐽

𝜕∆�̂�
= 0 

Taking the first derivative of the cost function (5.18) , it gives 

𝜕𝐽

𝜕∆�̂�
= −2𝑍𝑇𝐺0

𝑇
𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘 − 𝑍𝐺0∆�̂�] + 2𝑅∆�̂� = 0 

Hence, the unconstrained optimal solution ∆�̂� may be expressed as follows: 

∆�̂� = [𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]

−1
𝐺0

𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘] 
(5.19) 

 

 

Predictive control use the receding horizon control principle, consequently despite the optimal 

parameter vector ∆�̂� contains the controls ∆�̂�(𝑘|𝑘), ∆ �̂�(𝑘 + 1|𝑘), … , ∆�̂�(𝑘 + 𝜆 − 1|𝑘), the 

controller only implements the first sample of this sequence, while the rest of the sequence is 

neglected.  This procedure is repeated iteratively every sampling time. 

From Equation (5.19), the control law (unconstrained) may be written as follows: 

∆�̂�(𝑘|𝑘) = 𝐾𝑝𝑐(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊 − 𝑌𝑘) (5.20) 

where 𝐾𝑝𝑐 is the first row of matrix [𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]

−1
𝐺0

𝑇𝛹. The matrix[𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅] is 

assumed to be positive definite. 

 

5.3.2 Predictive control with constraints 

 

In process control, there are four types of operational constraints that are frequently observed: 

control variable slew rates, control variable ranges, constraints on the state variable and constraints 

on the controlled variable. This dissertation considers the first two types of constraints: 

1. Constraints related to the control variable slew rate (maximum rate of change).  The values 

for these constraints are determined by the slew rate of the actuators.  These constraints are 

independent of time. The constraints are defined for the increment of the control signal as 

follows: 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘)  ≤ ∆𝑢𝑚𝑎𝑥 (5.21) 

where ∆𝑢𝑚𝑖𝑛 is the lower limit and ∆𝑢𝑚𝑎𝑥 is the upper limit.  The value of ∆𝑢𝑚𝑖𝑛 is determined 

by the actuator nonlinearities because gates in general exhibit a dead zone.  In the experimental 

canal PAC-UPC, for instance, the servomotors which move gates have a 4 mm-pitch, namely the 

minimum change in gate opening is 4 mm in a sampling time.  This gate opening is equivalent to 

∆𝑢𝑚𝑖𝑛 = 2 l/s approximately.  The value ∆𝑢𝑚𝑎𝑥 is directly related to the maximum rate of change 
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of the gate opening, in such a way that gates can move only a percentage of the operating range in 

a sampling time.  

It is noteworthy that the constraints are imposed over the whole control variable vector ∆�̂�. 

However, since the predictive controller only implements the first sample of the ∆�̂� sequence, in 

order to simplify the computation burden and considering that the controller only implements the 

first sample of this sequence, the constraints are imposed only on the first element of ∆�̂�. 

Therefore, ∆𝑢(𝑘) is used instead of ∆�̂� hereinafter in  this  section to simplify the discussion.  

In order to solve the predictive control optimization problem, all these inequalities need to be 

translated into inequalities regarding the control variable, ∆𝑢(𝑘) (Maciejowski, 2002). The 

operational constraints related to discharge slew rate permit to the control variable ∆𝑢(𝑘)  increase 

in a magnitude less than ∆𝑢𝑚𝑎𝑥 every sampling time, and decrease in a magnitude less than ∆𝑢𝑚𝑖𝑛 

every sampling time.  Thus, the control variable slew rate constraints (5.21) may be formulated by 

two inequalities: 

−∆𝑢(𝑘) ≤ −∆𝑢𝑚𝑖𝑛 

∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥 

The inequalities may be expressed in a matrix form as follows: 

[
−1
1
] ∆𝑢(𝑘) ≤ [

−∆𝑢𝑚𝑖𝑛
∆𝑢𝑚𝑎𝑥

] 
(5.22) 

 

(5.23) 

2. Constraints related to the control variable range.  In DCPC control, these constraints are 

used in order to consider the amplitude of discharge which must decrease along the closure 

operation.  The constraints may be formulated as follows: 

𝑈𝑚𝑖𝑛  ≤ 𝑢(𝑘)  ≤ 𝑈𝑚𝑎𝑥 (5.24) 

Equation (5.24) must be expressed in incremental form due to the predictive control has been 

formulated in incremental form. Therefore, 𝑢(𝑘) is replaced by its incremental value, ∆𝑢(𝑘) =

𝑢(𝑘) − 𝑢(𝑘 − 1), namely: 

𝑈𝑚𝑖𝑛  ≤ 𝑢(𝑘 − 1) + ∆𝑢(𝑘)  ≤ 𝑈𝑚𝑎𝑥 

                                           𝑈𝑚𝑖𝑛 − 𝑢(𝑘 − 1)  ≤ ∆𝑢(𝑘) ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1) (5.25) 

This constraint may be formulated by two inequalities: 

−∆𝑢(𝑘) ≤ −𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1)  

∆𝑢(𝑘) ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)   

(5.26) 

  

The inequalities may be expressed in a matrix form as follows: 
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[
−1
1
] ∆𝑢(𝑘) ≤ [

−𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1) 

𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)
] 

 

(5.27) 

Due to the requirements of the canal operating modes, some constraints are imposed in the control 

signal in order to achieve the control objectives.  To consider measurable constraints and actuator 

dead zone, it is necessary to formulate the predictive control problem as a standard optimization 

problem to solve it at every sampling time.  The predictive control problem focuses on obtaining 

the optimal solution ∆�̂�  by minimizing the cost function (5.18) in a prediction horizon.  Then, the 

predictive control problem is formulated considering the related constraints (5.21) and (5.24)  in 

the context of the optimization problem (2.5).  Therefore, the new problem may be expressed as 

follows: 

min
∆𝑈
 𝐽 = [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘 − 𝑍𝐺0∆�̂�]

𝑇
𝛹 [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈

− 𝑃∆𝑊) − 𝑌𝑘 − 𝑍𝐺0∆�̂�] + ∆�̂�
𝑇𝑅∆�̂� 

(5.28) 

 Subject to:      −∆𝑢(𝑘) ≤ −∆𝑢𝑚𝑖𝑛 

∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥  

 

∆𝑢(𝑘) ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)  

−∆𝑢(𝑘) ≤ −𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1)  

In this study, the controlled variable is water level and the control variable is the discharge under 

gates. Therefore, in the canal closure (or opening) operation context, 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 are the 

minimum and maximum available discharge respectively.   

The next step is to express the problem (5.28) as the following standard quadratic programming 

problem  

min
𝑢
  
1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏 

 subject to:        𝑀𝑢 ≤ 𝛾 

(5.29) 

To do this in a simple manner, the following variable change may be considered: 

 𝜃 = 𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘 (5.30) 

It is noteworthy that 𝜃 does not depend on ∆�̂�.   

Replacing (5.30) into equation (5.18), allows to write the objective function as follows: 

𝐽 = [𝜃 − 𝑍𝐺0∆�̂�]
𝑇
𝛹[𝜃 − 𝑍𝐺0∆�̂�] + ∆�̂�

𝑇𝑅∆�̂� (5.31) 

Now, properties of transpose matrices are applied to (5.31) to develop the cost function as follows: 
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𝐽 = [𝜃𝑇 − ∆�̂�𝑇𝐺0
𝑇𝑍𝑇]𝛹[𝜃 − 𝑍𝐺0∆�̂�] + ∆�̂�

𝑇𝑅∆�̂� 

𝐽 = 𝜃𝑇𝛹𝜃 − 𝜃𝑇𝛹𝑍𝐺0∆�̂� + ∆�̂�
𝑇𝐺0

𝑇𝑍𝑇𝛹𝑍𝐺0∆�̂� − ∆�̂�
𝑇𝐺0

𝑇𝑍𝑇𝛹𝜃 + ∆�̂�𝑇𝑅∆�̂� 

Grouping the elements with common factor: 

𝐽 = 𝜃𝑇𝛹𝜃 − 2∆�̂�𝑇𝐺0
𝑇𝑍𝑇𝛹𝜃 + ∆�̂�𝑇[𝐺0

𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]∆�̂� (5.32) 

Finally, replacing (5.30) into (5.32)  leads to 

𝐽 = [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘]
𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘]  

− 2∆�̂�𝑇𝐺0
𝑇𝑍𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘]  

+ ∆�̂�𝑇[𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]∆�̂� 

(5.33) 

Due to the first factor of (5.33) does not depend on ∆�̂�, the optimization problem (5.28) may be 

reformulated considering (5.33) as follows: 

min
∆𝑈
 𝐽 = −2∆�̂�𝑇𝐺0

𝑇𝑍𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘]  

+ ∆�̂�𝑇[𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]∆�̂� 

(5.34) 

 Subject to:      −∆𝑢(𝑘) ≤ −∆𝑢𝑚𝑖𝑛 

∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥  

 

∆𝑢(𝑘) ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)  

−∆𝑢(𝑘) ≤ −𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1)  

In order to formulate the problem (5.34)  as (5.29) comparing factors, let us consider: 

𝑢 = ∆�̂� 

𝐽 =  
1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏 

where 

𝐻 = 𝐺0
𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅 (5.35) 

𝑏 = −2𝐺0
𝑇𝑍𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘] (5.36) 

Meanwhile, the inequalities in (5.34)  may be expressed in a matrix form as follows: 

 𝛾 = [

∆𝑢𝑚𝑎𝑥
∆𝑢𝑚𝑖𝑛

𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)
−𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1)

] 

(5.37) 

Due to the predictive controller only implements the first sample of the ∆�̂� sequence, the matrix 

𝑀 in (5.29) may be considered as follows: 
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𝑀 = [

   1 0   0…  0
−1 0  0 … 0
   1 0  0…  0
−1  0  0…   0 

]

⏟          

  

(5.38) 

where  𝑀 ∈ ℝ4𝑥𝜆  .     

Finally, within the optimization framework, the complete constrained predictive control problem 

(5.28) is reformulated as follows:  

min
∆𝑈
 
1

2
∆�̂�𝑇[𝐺0

𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]∆�̂� − ∆�̂�
𝑇𝐺0

𝑇𝑍𝑇𝛹 [𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘]   

𝑠. 𝑡. :     𝑀∆�̂� ≤ [

∆𝑢𝑚𝑎𝑥
∆𝑢𝑚𝑖𝑛

𝑈𝑚𝑎𝑥 − 𝑢(𝑘 − 1)
−𝑈𝑚𝑖𝑛 + 𝑢(𝑘 − 1)

] 

(5.39) 

Downstream water level control 

As was mentioned in Section 5.2, the irrigation canal control stated in this dissertation defines the 

discharge as control variable and the water level as controlled variable.  The discharge is used as 

control variable in order to state the control problem as linear, the use of gate opening directly 

would lead to a nonlinear control problem (Sepúlveda, 2008).   

The optimal solution of (5.39) gives the values of the incremental control action at instant k for the 

canal in a normal operating mode.  In normal operation the main goal is achieve a water level error 

equal to zero. In the decentralized operation, the control algorithm computes the required gate 

discharge at every pool as follows: 

�̂�(𝑘) = �̂�(𝑘) = ∆�̂�(𝑘) + �̂�(𝑘 − 1) (5.40) 

Finally, a gate discharge controller (see Figure 5.4) converts the required discharge into gate 

opening (L) in the real-time algorithm by inverting the gate discharge equation (Chow, 1988) as 

follows: 

𝐿(𝑘) =
�̂�(𝑘)

𝐶𝑑𝑓𝐵𝐿√2𝑔(𝑦1(𝑘) − 𝑦2(𝑘))
 

(5.41) 

 

 

5.3.3 Predictive control with dynamic constraints  

 

The control scheme derived in Section 5.3.2 presumes that the canal is operating in a normal mode. 

Two objectives are involved in the optimal predictive control: minimizing the error (𝑒 = 𝑌𝑟 − �̂�) 

between the controlled water level and the reference trajectory related to the setpoint, while 

keeping the control variable within “small” enough values and increments, as prescribed by the 

following cost function  subject to specified constraints: 
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𝐽 = [𝑌𝑟 − �̂�]
𝑇
𝛹[𝑌𝑟 − �̂�] + ∆�̂�𝑇𝑅∆�̂�   (5.42) 

 

In a canal closure operation, a third control objective needs to be addressed, which is conflicting 

with the objectives in the normal mode operation: it is the fact that the control variable has to 

decrease throughout time since the goal is that the gate openings decrease to get closed. 

The closure operation of a canal by manipulating the discharges under gates is not an easy task. 

Decreasing the discharge by means of closing an upstream gate affects directly two controlled 

water levels (𝑦1 and 𝑦𝑑) in adjacent pools as it is illustrated in Figure 5.5 and described by the 

following relation: 

𝑄 = 𝐶𝑑𝑓𝐵𝐿√2𝑔(𝑦1 − 𝑦2) 
(5.43) 

 

 

 
Figure 5.5 One pool configuration canal 

 

On the other hand, during the closure operation, the control must keep the water level within 

specified maximum and minimum safety levels to avoid problems in the canal as it has been 

mentioned in the Subsection 4.3.1. There are two natural reactions in case of a closing warning.  

The first natural reaction is to consider closing all the gates in the canal at maximum velocity, 

however this reaction may result on overtopping as has been illustrated in some scenarios in 

Subsections 4.5.1 and 4.5.2. The second reaction is to move the gates slowly and as smooth as 

possible during the closure operation.  However, this reaction is conflicting with the fact that 

feasibility of closure operation depends on the closing velocity.  For instance, night closure must 

be as fast as possible to make it feasible, as it has been discussed in Section 4.4.   

 

Consequently, minimizing the cost function (5.42) as an attempt to minimize the error during the 

closure operation is not enough to solve the challenging problem in closing/opening operating 

modes. Then, the optimization problem with only one cost function is not feasible because two 

control objectives cannot be achieved simultaneously. Therefore the predictive control problem 

must be reformulated in a multiobjective way.  Another contribution of this thesis is related to 

handling a predictive control problem that cannot be solved optimizing the typical cost function 

(5.42) even considering time-invariant constraints.  The problem is tackled with a versatile strategy 
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called dynamically-constrained predictive control (DCPC), which keeps the constrained predictive 

control formulation presented in previous section, but introducing dynamic constraints to help to 

drive the closure operation smoothly with the maximum discharge changes, while keeping the 

water level under the control objectives.  

  

The physical idea is to restrict the control variable inside a moving interval that makes the gates 

to follow a smooth trajectory along the time.  A significant number of  simulation and experimental 

results executed in the cases of study proposed in this dissertation, have led to the evidence that a 

very convenient shape for a smooth gate trajectory that drastically reduces the amplitude peak 

value of the resulting water profile oscillation is the trajectory given by a sigmoid function. 

The sigmoid function, also called the sigmoidal curve, is a bounded differentiable real function. 

The curve has a pair of horizontal asymptotes as 𝑡 → ±∞.  In the DCPC context applied to 

irrigation canal control, the sigmoid function may be expressed as follows:  

𝑈𝑚𝑎𝑥(𝑡) =
𝑄𝑚

1 + 𝑒−𝑎(𝑡−𝑐)
 

 (5.44) 

where a is the slope of the curve, 𝑄𝑚 is the maximum amplitude (discharge), the parameter c 

determines the time where value 𝑈𝑚𝑎𝑥 is half of 𝑄𝑚 and t is the time. Depending of the sign of the 

parameter a, the function is inherently open to right or to the left.  Values less than zero are useful 

for closure operations and greater than zero for opening operations.  Whether the discharge under 

gate follows an imposed sigmoidal function, the velocity of the closure of each gate in a multiple-

pool canal may be managed just varying the parameters, a and c.  Figure 5.6 (left) illustrates an 

example of sigmoidal function with values of c=100 min, 𝑄𝑚 = 15.06 m3/s and 𝑎 = −0.0011. 

Figure 5.6 (right) illustrates an example of sigmoidal function with values of c=100 min, 𝑄𝑚 =

15.06 m3/s and 𝑎 = 0.0011.   

  

Figure 5.6 Examples of sigmoidal functions used as dynamic constraints.  

In the proposed DCPC strategy, each local predictive controller considers two constraints.  The 

first constraint is the time-invariant constraint related to discharge slew rate (5.21).  The second 

one, is the time-variant constraint related to the discharge range (5.24).  
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At each control instant k, the optimal control problem (5.39) is solved to obtain the discharge 

control under the gate, where constraints are imposed on the increment (∆𝑢𝑚𝑎𝑥) and the absolute 

value (𝑈𝑚𝑎𝑥).  In the case of a closure operation (similarly for opening), when the water master 

decides to initiate the operation, the sigmoidal function is used in the solution of the control 

problem (5.39). Time t=0 in Figure 5.6 is the initial time and, for subsequent control instants k, 

the constraint on the discharge amplitude is made time-varying (𝑈𝑚𝑎𝑥(𝑘)) and it is determined by 

the sigmoidal function (5.44) with 𝑡 = 𝑘𝑇𝑠  (𝑇𝑠 is the sampling time).  Therefore, the sigmoidal 

function is used in the DCPC control as a dynamic constraint imposed to the controller in order to 

allow the discharge under gates change along the time in a smooth way in the direction of closing 

or opening, depending on the operation mode. 

 

5.4 Supervised decentralized predictive control (SDPC) 

 

The result of Section 5.3 is a control scheme able to govern the upstream gate of a single pool 

through the solution of the optimal predictive control (5.39) at each control instant k, including the 

dynamic constraints in the closure and opening modes.  When the objective is to control a multi-

pool canal, the individual controllers are assembled to set up the overall supervised decentralized 

predictive control (SDPC) scheme outlined in Section 5.2.2 and illustrated in Figure 5.3 

The supervisor is responsible for managing a cyclic sequential movement of each motorized gate 

that delimits the pool of the entire irrigation canal. The supervisor may be located at headquarter 

(master station).  Each subsystem corresponds with a controlled pool.   Each decentralized control 

(control unit) is a local automatic water level controller.  Each control unit requires the current 

state of its controlled pool and information of neighbor pools.   For the practical implementation, 

the proposed control system requires a remote terminal unit (RTU).   The RTU monitors the water 

levels and equipment status, and transmit these data to the supervisor.   

The supervisor is also responsible for scheduling the parameters of the controllers depending on 

the operating mode.  Particularly important is the management of the constraints in the closure and 

opening modes, which becomes fundamental in the presence of unexpectedly large disturbances. 

In a well (a priori) defined operation scenario (a closure, for instance) the supervisor may tune the 

sigmoidal curve to state reasonable dynamic constraints according to the maximum allowed 

discharge for each controlled pool. However, during a closure operation, the presence of an 

unexpectedly large disturbance may force the control variable outside its limits. Therefore, the 

optimizer cannot find a practical value to introduce the control variable into its feasible region. In 

these circumstances, the constraints become temporarily incompatible (Camacho & Bordons, 

2004) and the predictive control problem can become infeasible, because the region defined for 

the control variable by the set of constraints is empty.   

In the proposed DCPC control scheme, a large disturbance may occur under two situations. The 

first situation is a sudden discharge change more than 10% of the operating discharge with regard 

to the previous discharge. The second situation is a sudden change in water level greater than 5% 

of the set point with regard to the previous measured water level.  
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The solution proposed in this thesis to tackle the unexpectedly large disturbance problem, is a 

supervised automatic control that reshapes systematically the sigmoidal function through the 

constraints relaxation. The relaxation or softening is present throughout the disturbance. As a result 

of relaxation, constraints related to the control variable range are treated as soft constraints in the 

optimization problem statement.  In the literature of quadratic programming, constraints which 

cannot  violated are referred to as hard constraints, while those which can be violated are known 

as soft constraints (Camacho & Bordons, 2004).   

In order to include the soft constraints, the general form of constraints are expressed as follows:  

𝑀∆𝑢 ≤ 𝛾 + 𝑉z (5.45) 

In this inequality, matrix M, vectors 𝛾  and 𝑉 depend on both process parameters and signal limits. 

M, and  𝛾  are calculated before starting an operation that involve an abrupt change in the operating 

condition. Matrix M and hard constraints related to discharge slew rate do not change throughout 

the closure/opening operations. Meanwhile, z depends on the process state that changes every 

sampling time, and it is recomputed accordingly to the disturbances along the canal. For instance, 

in the presence of a positive disturbance caused by a strong runoff or a storm that add water to a 

pool during a closure operation, constraints relax by increasing its value.  

 

With soft constraints, the optimization problem (5.29) is modified to 

min
𝑢
     
1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏 

𝑠. 𝑡. :    𝑀𝑢 ≤ 𝛾 + 𝑉z 

(5.46) 

Consequently, the complete optimization problem (5.39) may be expressed as follows: 

min
∆𝑈
  
1

2
∆�̂�𝑇[𝐺0

𝑇𝑍𝑇𝛹𝑍𝐺0 + 𝑅]∆�̂�                                                                   

− ∆�̂�𝑇𝐺0
𝑇𝑍𝑇𝛹[𝑌𝑟 − 𝑍(𝐸∆𝑌 − 𝐺∆𝑈 − 𝑃∆𝑊) − 𝑌𝑘] 

(5.47) 

𝑠. 𝑡. :     𝑀∆�̂� ≤

[
 
 
 

∆𝑢𝑚𝑎𝑥
∆𝑢𝑚𝑖𝑛

𝑈𝑚𝑎𝑥(𝑘) − �̂�(𝑘 − 1)

−𝑈𝑚𝑖𝑛(𝑘) + �̂�(𝑘 − 1)]
 
 
 

+ [

0
0
1
1

] [𝑄𝑤𝑖(𝑘)] 

(5.48) 

where the 𝑈𝑚𝑎𝑥 value is computed at any control instant, k  according to the sigmoidal function 

(5.44), 𝑈𝑚𝑖𝑛 = 𝑈𝑚𝑎𝑥 − 𝐵𝑝𝑧 , where 𝐵𝑝𝑧 is a scalar that determines the width of the permitted zone 

during a close/opening operation and 𝑄𝑤𝑖 is the disturbance of i-th pool of the canal (lateral 

offtake/intake).  

When this control problem is integrated to the overall decentralized control scheme, the supervisor 

plays two important roles in:  a) locating the pool where the large disturbance 𝑄𝑤𝑖 occurs, and     

b) re-tuning the sigmoidal trajectory to adapt to the new discharge conditions.  Practical details 

illustrating these issues are made clear in chapter 6, in different scenarios involving large 

disturbances. 
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5.5 Computational implementation 

 

There is not an explicit analytic solution of the optimization problem (5.46) as it exists in the case 

without constraints.  Subsequently, the predictive control problem may be solved minimizing the 

quadratic cost function and the linear constraints recursively  (Camacho & Bordons, 2004).   The 

predictive control solves the optimal control problem, this is performed on-line for the current state 

of the plant at each control instant k considering the moving prediction horizon.  The initial state 

is the current state of the system being controlled. There are several techniques to solve the 

quadratic programming problem. (Camacho & Bordons, 2004) shows a revision of the main 

algorithms used in predictive control.  This section is not intended to describe in detail an 

optimization technique, merely to highlight some relevant aspects of the algorithm used in this 

dissertation. 

To obtain the numerical solution of the constrained optimization problem, the Hildreth’s quadratic 

programming algorithm (Luenberger, 1969), (Wismer & Chattergy, 1978) has been used in this 

dissertation. The Hildreth’s procedure solves the optimization problem (5.46).  All the required 

information about the algorithm can be found in (Wang, 2009).  To deal with inequality 

constraints, the Hildreth’s procedure reduces the problem to an equality constraint problem using 

Lagrange multipliers. In this way, the procedure solves the following dual problem:  

max
𝜆≥0

min
𝑢
[
1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏 + 𝜆𝑇(𝑀𝑥 −  𝛾)] 

(5.49) 

The problem (5.49) considers the so-called Lagrange expression, which is expressed as the 

objective function 

𝐽𝐿 =
1

2
𝑢𝑇𝐻𝑢 + 𝑢𝑇𝑏 + 𝜆𝑇(𝑀𝑥 −  𝛾) 

(5.50) 

The minimization of the Lagrange expression, gives the optimal λ and u taking the first partial 

derivatives and then equating these derivatives to zero (Wang, 2009): 

𝜕𝐽𝐿
𝜕𝑢

= 𝐻𝑢 + 𝑏 +𝑀𝑇𝜆 = 0 
(5.51) 

𝜕𝐽𝐿
𝜕𝜆

= 𝑀𝑥 −  𝛾 = 0 
(5.52) 

Both equations (5.51) and (5.52) contain n+m variables u and λ, where n is the dimension of u and 

m is the dimension of λ.  The variables u and λ are the necessary conditions for minimizing the 

Lagrange expression with equality constraints.  The Lagrange multipliers are the elements of 

vector λ. 

Isolating u from  (5.51) and then replacing it into  (5.52) leads to 

𝑢 = −𝐻−1(𝑀𝑇𝜆 + 𝑏) (5.53) 
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𝜆 = −(𝑀𝐻−1𝑀𝑇)−1 (𝛾 + 𝑀𝐻−1𝑏) (5.54) 

 The optimal solution of (5.46) using a simple and effective algorithm implemented with the 

Hildreth’s procedure gives the values of the incremental control action at instant k  of the 

supervised decentralized predictive control with dynamic constraints.  The implementation of the 

algorithm in Matlab (Mathworks, 2008) is shown in appendix A. 

 

5.6 Concluding remarks 

 

The main outcome of this chapter is a supervised decentralized predictive control strategy for the 

automatic operation of a multi-pool irrigation canal.  Local controllers are derived based on the 

on-line computational solution of optimal control problems with time-varying constraints. A 

supervisor is used to manage the sequential operation of the local controller and the tuning of the 

constraints, particularly in the closure/opening scenarios in the presence of large unknown 

disturbances.  Practical details related to the implementation and the performance are presented 

and discussed in the next chapter. 
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6 Simulation and real-time results 
 

Chapter 6 

 

Simulation and real-time results  
 

 

6.1 Introduction 

 

The aim of this chapter is to illustrate, by both simulation and experimental results, the 

performance of the supervised decentralized predictive control (SDPC) with dynamic constraints 

developed in Chapter 5, as a convenient strategy for the automatic closure and opening of irrigation 

canal systems.  The simulations results in the two cases of study have been obtained using the SIC 

software.  The SDPC is tested in real time in the experimental facility of the Technical University 

of Catalonia.  This chapter also shows some practical aspects related to the real-time 

implementation in the laboratory canal to allow doing experiments involving abrupt changes in 

the canal operating points.  

 

6.2 Simulation results in the case studies 

 

The simulations of this subsection are mainly focus on the unsteady flow calculation.  Simulation 

experiments are stablished to test scenarios that involve abrupt changes in the operating regime.  

All simulation experiments start from a steady state conditions.  All the algorithms have been 

implemented using Matlab/Simulink environment (Mathworks, 2008).  The interaction between 

the control algorithms and the hydraulic scenarios implemented in SIC is achieved using the 

regulation module available in SIC.  
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Figure 6.1 Performance evaluation indexes 

In order to evaluate the perfomance of the control system in irrigation canals, test experiments as 

setpoint tracking and disturbance rejection are fulfilled.  Some performances indexes suggested by 

the American Society of Civil Engineers (ASCE) committee are considered to evaluate the 

performance. The strength of the control system against modeling error and disturbances is also 

assessed (see the concept map depicted in Figure 6.1). 

The evaluation of the waveform is related to the oscillatory nature of the response of the water 

levels. This oscillatory behavior prevents the controlled variable to reach the setpoint  value 

quickly.  If the oscillations increase, water level becomes considerably larger than the setpoint. 

This situation might lead to harmful effects on the canal as was depicted in Subsection 4.3.   A 

performance index such as maximum absolute overshoot is included in the properties of the 

waveform. 

In order to evaluate the quality of the controlled responses, the following error based performance 

indexes proposed by (Clemmens et al., 1998) are used in this dissertation: 

RMSE: Root Mean Squared Error 

MAPE:  Mean Absolute Percentage Error  

ISE:  Integral Squared Error  

IAE:   Integral Absolute Error  

MAO:   Maximum Absolute Overshoot 

SSE:   Steady State Error 

 

The performance indexes are defined as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑘 − �̂�𝑘)

2
𝑁

𝑘=1

 

𝑀𝐴𝑃𝐸 =
100

𝑁
√∑|

𝑌𝑘 − �̂�𝑘
𝑌𝑖

|

𝑁

𝑖=1
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𝐼𝑆𝐸 =∑(𝑌𝑘 − �̂�𝑘)
2

𝑁

𝑘=1

 

𝐼𝐴𝐸 =
𝑇𝑠
𝑇
∑|𝑌𝑘 − �̂�𝑘|

𝑇

𝑘=1

 

where 𝑌𝑘 − �̂�𝑘  is the error related to the difference between the controlled water level and the 

setpoint (target water level).  The controlled water level, 𝑌𝑘  is the observed water level at time k.  

N is the number of samples in the test.  𝑇 = 𝑁 ∗ 𝑇𝑠 is the time period for the test.   

The RMSE is a measure related to the standard deviation of the difference between the setpoint 

and the measured value.  Meanwhile, the MAPE is an index used to express the accuracy as a 

percentage.  The ISE is a measure of error that integrates the square of the error over time. The 

ISE penalizes large errors more than smaller ones and the IAE integrates the absolute error over 

time.  

Practical performance indexes useful in control system are the maximum absolute overshoot 

(MAO) and the steady state error (SSE).   The MAO is a quantity applied to both disturbance 

rejection and setpoint tracking responses.  The MAO is estimated with the maximum peak of the 

water level waveform.  The SSE is the difference between the setpoint and the actual water level 

when a canal reach a new steady state.   

 

6.3 Simulation of water level control at canal PAC-UPC 

 

This section is devoted to show the numerical simulation of both closure and opening operations 

on the canal PAC-UPC.  The automatic control system uses the predictive controller with dynamic 

constraints presented in Chapter 5. The tests have been done on the three pools configuration 

depicted in Figure 6.2.  Water is drawn at two points along the length of the canal, as it is illustrated 

in Figure 6.2.  The lateral discharges are lateral offtakes, which are equivalent to the disturbances 

for the control system. The gate discharge coefficients are 0.63, 0.65 and 0.69 for G1, G2 and G3 

respectively. 

6.3.1 Control objective and operating scenarios 

 

The overall control objective is to drive the system to an equilibrium state for which the water 

levels are equal to the setpoint (constant reference), meanwhile the operating point is changed 

abruptly.  The regulating task is evaluated by both setpoint tracking and disturbance rejection. The 

specific requirements to bear in mind for the proposed tests are: 

 Canal freeboard of 8 cm.   

 Manage the canal operation to drive the discharges from 120 l/s to 1.6 l/s in less than eight 

minutes. This mean an 8 min-settling time. 
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 The accepted steady state offset (error of the controlled water levels) is 2 cm (lower than 

2%). 

 The maximum absolute overshoot (ripple value) must be less than 5% of the setpoint for 

every controlled water level. It is expected less than 92 cm for the first pool, this value 

means a percentage overshoot lower than 8% of the top of the canal lining. 

 

 

Figure 6.2 Scheme of the Canal PAC 

 

Three scenarios have been simulated with the Saint Venant (SV) model of the laboratory canal in 

order to check the controller performance in presence of abrupt change in operating condition. 

 Scenario 1:  Automatic canal closure without disturbances. The initial operating flow is 

113 l/s.  

 Scenario 2: Automatic canal opening from 0 l/s to 113 l/s without disturbances. The 

opening time must be less than 12 minutes. 

 Scenario 3: Automatic closure in the presence of a disturbance Qw1 of 42 l/s during 0 ≤

𝑡 ≤ 2 min. After on, the disturbance changes suddenly to 0 l/s.  The 42 l/s are equivalent 

to 31% of the operating discharge in the first pool of the canal.  

 

6.3.2 Implementation issues 

 

In order to implement the supervised decentralized predictive control (SDPC) for water level 

control in the canal PAC UPC, three local DCPC controllers were designed. The parametric 

models used in the control are described in Subsection 3.6.   The incremental formulation of the 

predictive control has been used to control the downstream water levels. The control action 

implemented in each pool is determined by solving equations (5.47) and (5.48) at each sampling 

time, k.  The supervisor is in charge of coordinating the overall work of the controllers and the 

dynamic constraints as described in Section 5.3.3.  Particularly, in the presence of large unknown 

disturbances along the closure/opening scenarios, the supervisor is also responsible for redefining 
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(reshaping) the dynamic constraints.  The maximum gate opening is determined by the water level 

value, because the undershot gates are not allowed to come out the water.  

The general tuning parameters of each local controller are obtained considering the time delay and 

the dynamics of each pool.  The prediction horizon (λ) is chosen greater than the time delay. The 

weighting parameter 𝑅𝐶 is calculated by normalizing the objective function with maximum 

allowed values estimates.  The maximum accepted water level error is chosen to be 3 cm, therefore, 

the maximum allowed value estimated of the water level, 𝑒𝑀𝐴𝑉𝐸  is equal to 0.03 m.  The MAVE 

of the change in discharge, ∆𝑢𝑀𝐴𝑉𝐸  is chosen to be 0.01 m3/s.  These MAVE values were used 

with positive results in a previous experimental work by (Horváth, 2013).   In this dissertation, 

several sets of tuning values were tested in simulation. For the prediction horizon (λ), it is 

recommended integer values over the entire interval [10, 20].  For the weighting factor, it is 

recommended  𝑅𝐶 > 10.   The chosen tuning parameters are detailed in Table 6-1.  The sampling 

time has been fixed to 10 s.  

Pool λ RC 

Pool 1 10 15 

Pool 2 10 15 

Pool 3 10 15 

Table 6-1 Tuning parameters of local controllers at canal PAC UPC 

 

6.3.3 Results  

 

 Scenario1:  This test is devoted to analyze a closure operation without changes in the lateral 

offtakes. This scenario starts from the steady state detailed in Table 6-2. The initial 

operating flow is 0.113 m3/s and the height of the final weir (W4) is 35 cm. The Backwater 

curve is illustrated in Figure 6.3.   

Qop 

[l/s] 

y1  

[cm] 

y2 

[cm] 

y3 

[cm] 

L1 

[cm] 

L2 

[cm] 

L3 

[cm] 

W1 

[cm] 

W2 

[cm] 

W4 

[cm] 

113 88 77 65 15 29.8 26.1 90 90 35 

Table 6-2 Initial steady state for Scenario 1 

Simulation of the closure operation of the canal PAC-UPC using SDPC without any presence of 

disturbances is depicted in Figure 6.4.  The test is detailed in Table 6-3.  The water level setpoint 

(SP1) is 88 cm for the first pool and SP2 is 77 cm for the second pool.   There are only two controlled 

water levels because of the presence of the sharp crested weir (W4) at the downstream end of the 

canal.  The final value of y3, after a considerable time, is determined by the weir height.  In this 

closing scenario, the flow through each canal pool decrease gradually from its initial value (113 

l/s) to a zero discharge in a progressive and smooth manner in less than 7 minutes.  The SDPC 
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control makes the gates operate sequentially progressing downstream till reach a zero gate 

opening. 

 

Figure 6.3 Backwater curve of the initial steady state of Canal PAC-UPC obtained by SIC 

The controlled system exhibits a satisfactory behaviour based on performance requirements given 

in Subsection 6.3.1.  The maximum absolute overshoots are 89.45 cm and 78.3 cm for y1 and y2 

respectively (lower than 2 % of the setpoint for both cases).  The steady state errors for y1 and y2  

are 1.16 and 0.37 cm respectively, which represent values lower than 1.5 % of the setpoint for both 

cases. 

Time 

[sec] 

Qop  

[l/s] 

SP1  

[cm] 

SP2 

[cm] 

SP3 

[cm] 

W1 

[cm] 

QW1 

[l/s] 

W2  

[cm] 

QW2 

[l/s] 

W4 

[cm] 

0 113 88 77 65 90 0 90 0 35 

5 113 88 77 -- 90 0 90 0 35 

480 0 88 77 -- 90 0 90 0 35 

Table 6-3 Test of closure operation without disturbances 
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Figure 6.4 Simulation results of automatic closure of canal PAC-UPC under SDPC  

 

 Scenario 2:  This scenario is devoted to analyze the automatic canal opening from 0 l/s to 

113 l/s without disturbances. This scenario starts from the steady state detailed in Table 

6-4 

Qop 

[l/s] 

y1  

[cm] 

y2 

[cm] 

y3 

[cm] 

L1 

[cm] 

L2 

[cm] 

L3 

[cm] 

W1 

[cm] 

W2 

[cm] 

W4 

[cm] 

0 88 77 36 0 0 0 90 90 35 

Table 6-4 Initial Steady State for Scenario 2 

 The automatic opening operation using SDPC is depicted in Figure 6.5.  The time taken to achieve 

a new steady state hydraulic condition after the canal has been opened is ten minutes long 

approximately. The three discharges change from 0 l/s to a baseline in a smooth way.  The opening 

operation is longer than the closure one due to the system has to fill up the downstream pool whose 

water level was just determined by the downstream weir height W4.   
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Figure 6.5 Simulation results of opening operation of canal PAC-UPC under SDPC  

In this scenario there are three controlled water levels.  It is noteworthy that the opening scenario 

assumes that a closure operation has been executed previously, which means that the volume of 

the third pool (and therefore its water level) has decreased after the closure operation due to the 

presence of the weir at the end of the canal.  In this way, the water level setpoint in the first pool 

(𝑆𝑃1) has been set to 88 cm and 𝑆𝑃2  has been set to 77 cm for the second pool.  Meanwhile, for 

the third pool, a setpoint curve for water level 𝑦3 (𝑆𝑃3(𝑡)) has been proposed as the reference 

trajectory in the formulation of the cost function (5.6).  The goal of the reference trajectory is 

helping to fill up the third pool in a smooth way. 

The reference trajectory 𝑆𝑃3 avoids large positive changes in the setpoint of the third pool.  

𝑆𝑃3 also prevents from a significant overshooting in the water level 𝑦3 because the gates are 

moving in such a way that they reduce the oscillations.  In this way, the automatic control system 

leads the controlled variable to a desired value following a suitable sigmoidal function described 

by: 

𝑆𝑃3(𝑡) =
𝑦3
∗

1 + 𝑒−𝑎(𝑡−𝑐)
+ 𝑦3(0) 

 (6.1) 

where 𝑦3
∗ is the desired water level final value, 𝑦3(0) is the water level at time t=0,  parameter a 

determines the slope of the curve, the value c is the half of the opening time and t is the time.  Time 

t=0 is the opening initial time and, for subsequent control instants k, the setpoint of the water level 

𝑦3 is made time-varying with 𝑡 = 𝑘𝑇𝑠, where  𝑇𝑠 is a the sampling time. An example of the 

reference trajectory, 𝑆𝑃3(𝑡) is illustrated in Figure 6.6. 
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Figure 6.6 Sigmoidal function of 𝑆𝑃3,  with 𝑎 = 0.014, c=5 min, 𝑦3
∗ =65 cm  and 𝑦3(0)=35 cm   

 

The closed-loop automatic control exhibits a positive behaviour based on various performance 

indexes.  The maximum absolute overshoots of both levels are lower than 2%.  The MAO of 𝑦1is 

88.73 cm, which is equivalent to 0.83% of SP1.  The MAO of 𝑦2 is 78.3 cm, which is equivalent 

to 1.72% of SP2.  The steady state errors are: 0.44 cm for 𝑦1, 0.4 cm for  𝑦2 and 0.45 cm for  𝑦3. 

These values are lower than 1.5 % of every water level setpoint.  

 Scenario 3:  This scenario is devoted to analyze the automatic closure in the presence of a 

strong disturbance.  The lateral offtake Qw1 of 41 l/s is present during 0 ≤ 𝑡 ≤ 2 min.  

After on, the disturbance changes suddenly to 0 l/s.  The test is detailed in Table 6-5.   

Time 

[sec] 

Qop  

[l/s] 

SP1  

[cm] 

SP2 

[cm] 

SP3 

[cm] 

W1 

[cm] 

QW1 

[l/s] 

W2  

[cm] 

QW2 

[l/s] 

W4 

[cm] 

0 131 82 73 61.2 65 41 90 0 35 

5 131 82 73 -- 65 41 90 0 35 

120 120 82 73 -- 90 0 90 0 35 

480 0 82 73 -- 90 0 90 0 35 

Table 6-5  Disturbance test in the Scenario 3. 

The 41 l/s are equivalent to 31% of the operating discharge in the first pool of the canal. The 

purpose of this scenario is to resemble that, at the beginning of the simulation, there were a farmer 

irrigating his/her local crops during the closure operation.  However, at time t = 2 min, the farmer 

suddenly decided stop irrigation due to a warning of closure.  In this scenario, only the appointed 

disturbance is considered, the lateral offtake Qw2 being equal to zero. 

The closure operation of Scenario 3 under SDPC is depicted in Figure 6.7.  The closing time is 7.5 

minutes approximately.  The process duration is longer than the closure operation without 
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disturbances due to that the supervisor redefines the dynamic constraints to deal with the strong 

disturbance (as it is explained in Subsection 6.3.4). The higher the disturbance, the longer the 

closing time.   

The closed-loop automatic control exhibits a satisfactory behaviour even in presence of 

disturbance along the closure operation.  The maximum absolute overshoots of both levels are 

lower than 7%. The MAO of 𝑦1is 87.16 cm, which is equivalent to 6.3% of SP1.  The MAO of 

𝑦2is 73.6 cm, which is equivalent to 0.83% of SP2.  The SSE for y1 and y2 are 0.13 and 0.07 cm 

respectively, which represent values lower than 1 % of the setpoint for both cases. 

 

Figure 6.7 Simulation results of closure operation with disturbance test at canal PAC-UPC. 

  

6.3.4 Discussion of results 

  

In all the scenarios, water levels in each pool remain inside the safety band along both transient 

and steady response.  As it can be noted in figures 6.4, 6.5 and 6.7 there is no overtopping neither 

in the closure nor in the opening operation.  The closure operation performance has improved 

comparing to open-loop closure operations illustrated in the local manual closure at Section 4.5.1. 

The laboratory canal is prismatic and the lengths of the first two pools are quite similar (87 m and 

90.2 m respectively).  As a consequence, the dynamic constraints for pools 1 and 2 are quite similar 

during a closure operation without disturbances, as it is illustrated in Figure 6.8 (left).   The 

sigmoidal function that determines the constraint for discharge in the third pool, 𝑈𝑚𝑎𝑥3, has a little 
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bit higher slope because the length of pool 3 (45 m) is approximately a half of pools 2 and 1.  As 

it has been observed from the experimental data, the time delay of pool 3 is lower than the first 

two pools in the laboratory canal. 

In closure scenarios without disturbances, the gate openings decrease in a smooth way till reach 

the zero gate position.  The supervisor set the parameters of the dynamic constraint that determines 

the maximum discharge of the i-th pool following the sigmoidal function (5.44).  

On the other hand, if a sudden raise of the water level occurs, then the supervisor will reshape the 

dynamic constraints in the next sampling time.  The supervisor is checking values of water levels 

at every sampling time and compares current values with previous values in order to determine 

higher rates of water level changes caused by a change in the lateral offtake/intake (disturbance).  

Consequently, the dynamic constraints (and therefore the gate openings) are different in the 

presence of disturbances, as it is illustrated in Figure 6.8 (Scenario 3).     

As a consequence of the measurement of the higher rates of water level changes, the supervisor 

detects where the disturbance is located, and then it decides the way to operate the canal during 

the closure/opening operating mode.  For instance, in the presence of a positive disturbance 

(intake) during a closure operation, the upstream local controller remains with the same constraint.  

However, the rest of downstream discharge constraints change their parameters to allow the 

transmission of the incorporated discharge to the canal.   The gate openings change the negative 

slope as soon as a raise of water is detected (see Figure 6.8 and Figure 6.9 related to the Scenario 

3).   Assuming that  𝑄𝑤1 changes suddenly at time 𝑘 = 𝑘𝑑, making the water level 𝑦1 increase 

suddenly, then the dynamic constraint 𝑈𝑚𝑎𝑥
1 (𝑘) does not change over the closing time (see Figure 

6.8 related to the Scenario 1).  However, the supervisor will change both constraints, 𝑈𝑚𝑎𝑥
2 (𝑘) and 

𝑈𝑚𝑎𝑥
3 (𝑘), by means of updating their amplitude value 𝑄𝑚

2   and 𝑄𝑚
3   in proportion to the disturbance 

amplitude presented in the canal, namely:  

𝑄𝑚
2 (𝑘𝑑

+) = 𝑄𝑚
2 (𝑘𝑑

−) + 𝑄𝑤1 

𝑄𝑚
3 (𝑘𝑑

+) = 𝑄𝑚
3 (𝑘𝑑

−) + 𝑄𝑤1 

where 𝑄𝑚
𝑖 (𝑘𝑑

+) indicates the discharge value defined a sampling time after the change of 𝑄𝑤1 and 

𝑘𝑑
− indicates a sampling time before the sudden change of 𝑄𝑤1.   

An additional way used by the supervisor to reshape the dynamic constraints in the presence of 

large disturbances, is by time shifting the original dynamic constraint to Δc. In this way, the 

original constraint given by (5.44) is modified to the following sigmoidal function:  

𝑈𝑚𝑎𝑥(𝑡) =
𝑄𝑚

1 + 𝑒−𝑎(𝑡−(𝑐+∆𝑐)
 

 (6.2) 

where the parameter Δc shifts the function left or right according to its sign.  Effectively, 𝑈𝑚𝑎𝑥(𝑡 −

𝛥𝑐) equals what 𝑈𝑚𝑎𝑥(𝑡) was before as long as both parameters Qm and a remain with the same 

value. 
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Figure 6.8 Sigmoidal functions of Scenarios 1 and 3 

 

Figure 6.9 Gate openings of Scenarios 1 and 3 

  

6.4 Simulation of water level control at Ebro River left bank (ERLB) canal 

 

This subsection is devoted to the simulation of the downstream water level control of the ERLB 

canal.  In order to conduct a series of simulations, the configuration depicted in Figure 6.10 has 

been used.  Water may be drawn at four points along the length of the canal, as it is illustrated in 

Figure 6.10.  The lateral discharges, QS1, QS2, QS3  and QS4  are the disturbances for the control 

system.  The disturbances may be positive or negative.  A positive disturbance or intake (a 

pumping for instance) is equivalent to impose a constant discharge as boundary condition at the 
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offtake in SIC.  For the simulation, it is assumed that the pump has a flowmeter to measure the 

positive disturbance.  Meanwhile, a negative disturbance is equivalent to a lateral offtake, which 

is a point of outflow.  The negative disturbances are calculated using the formula of the discharge 

over a sharp crested weir (Horváth, 2013): 

𝑄 =
2

3
√2𝑔𝐶𝑑𝑤𝐵𝐻𝑒

3/2
 

(6.3) 

where 𝐻𝑒 is the head over the weir, 𝐶𝑑𝑤 is the discharge coefficient and 𝐵 is the width of the weir.  

 

Figure 6.10  Sketch of the ERLB canal 

 

 

Figure 6.11 Water surface profile of initial steady state of ERLB canal obtained by SIC. 

The simulation for closure operation starts with an operating point of 15 m3/s.  In order to obtain 

the initial state conditions, the gate openings are: 𝐿1 = 0.483, 𝐿2 = 1.827, 𝐿3 = 1.326, 𝐿4 =

1.753  and 𝐿5 = 2.109 m.  The steady state water levels are: 𝑦1 = 2.5, 𝑦2 = 2.54, 𝑦3 = 2.46,
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𝑦4 = 2.51  and 𝑦5 = 2.5 m.   These gate openings will remain the same along 79 min of simulation. 

After on, at  𝑡 = 80 min, it is considered the beginning of the closure operation.  The time  𝑡 =

250 min is considered the end of the simulation for the canal closure operations.  Figure 6.11 

shows the backwater curves of steady state of the ERLB canal.  

 

6.4.1 Control objective and operating scenarios 

 

The overall control objective of the predictive control system is to regulate the downstream water 

level while the operating flow changes in a wide range.  The specific requirements to bear in mind 

during the automatic closure and opening operations are: 

 Once the closure (or opening) operation has started, the setpoints for all water levels is 2.5 

m.   

 Managing the canal operation in order to drive the discharges from 15 m3/s to 2 m3/s in 

less than 3 hours, namely a three hours-settling time. This time is also a requirement for 

the opening operation. 

 The accepted steady state offset (error for the controlled water levels) is ±5 cm (2%). 

 The maximum absolute overshoot is expected to be less than 2.7 m, namely a percentage 

overshoot lower than 8%.   Large overshoots are undesirable because percentage overshoot 

exceeding 20% produces overtopping. 

Nine scenarios have been designed to simulate the performance of the predictive control system 

with abrupt changes in the operating conditions in the canal.  The first scenario is devoted to test 

a partial closure of the ERLB canal.  Seven scenarios have been simulated in order to check the 

disturbance rejection during a closure operation.  The eighth scenario simulates the closure 

operation and the ninth scenario simulates the opening operation.  Simulation results include three 

variables, downstream water levels, discharges under gates and gate openings.  In the scenarios 

only the appointed disturbance is considered, while the rest of the spillway discharges are equal to 

zero.  The scenarios are the following: 

 Scenario 1:  Partial closure from 15 m3/s to 2 m3/s with no disturbances. 

 Scenario 2: Partial closure with a positive disturbance (lateral intake) Qs1 of 5.8 m3/s, for 

100 ≤ 𝑡 ≤ 140 min.  

 Scenario 3: Partial closure with a lateral intake of Qs1 of 6.8 m3/s, for 100 ≤ 𝑡 ≤ 162 min. 

 Scenario 4: Partial closure with a lateral intake of Qs2 of 5.8 m3/s, for 100 ≤ 𝑡 ≤ 140 min. 

 Scenario 5: Partial closure with a lateral intake of Qs3 of 5.8 m3/s, for 100 ≤ 𝑡 ≤ 150 min. 

 Scenario 6: Partial closure with a lateral offtake of Qs1 of -4.3 m3/s, for 100 ≤ 𝑡 ≤ 250 

min. 

 Scenario 7: Partial closure with two lateral offtakes of Qs1 of -4.3 m3/s, for 100 ≤ 𝑡 ≤

250 min and Qs3 of -3.8 m3/s, for 110 ≤ 𝑡 ≤ 250 min. 

 Scenario 8:  Total closure from 15 m3/s to 0 m3/s without disturbances. 

 Scenario 9:  Total opening from 0 m3/s to 15 m3/s without disturbances. 
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For the closure operation scenarios, 1 to 7, the downstream boundary condition at the end of the 

canal is determined by the scheduled hydrograph shown in Figure 6.12.  The discharge starts at 15 

m3/s and it ends at 2 m3/s. Changing from an operating point of 2  m3/s to zero discharge could be 

done closing all the gates simultaneously at maximum velocity with no risk of overtopping as it is  

remarked by (Soler et al., 2014). 

 

Figure 6.12 Downstream boundary condition for closure operation 

 

6.4.2 Open-loop and closed-loop predictive control applied on the ERLB canal 

 

A considerable number of scenarios have been tested to make a comparison between open-loop 

and closed-loop control.  The open loop control is implemented using a predictive control 

algorithm so-called GoRoSo (Soler et al., 2012) and the closed loop control is implemented using 

the supervised decentralized predictive control (SDPC) control strategy developed in this 

dissertation.  The open-loop control assumes that there are not disturbances along the closure 

operation.  This implies that the same gate trajectories have been implemented for Scenario 1 and 

the rest of scenarios (2 to 7).   On the other hand, the closed-loop control considers the disturbances, 

therefore the supervisor will manage the dynamic constraints to achieve a positive performance 

even in presence of disturbances.  

Open-loop control 

The GoRoSo algorithm may be categorized as open-loop centralized predictive control.  It is a 

feedforward control algorithm for irrigation canals based on sequential quadratic programming 

(SQP).  The SQP method is proposed by (Fletcher, 2013) and (Luenberger, 1969). With the 

GoRoSo algorithm, it is possible to compute the gate trajectories that smoothly carry the canal 

from the initial state to the final state by keeping the downstream water levels constant (Soler et 

al., 2014).  The algorithm minimizes a linear quadratic objective function with penalties on water 

level deviations from setpoint as follows:  
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𝐽 =
1

2
∑(�̂�(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝)

2
𝜆

𝑗=1

 

(6.4) 

where 𝑦𝑠𝑝 is the water level setpoint and �̂�(𝑘 + 𝑗|𝑘) denotes the future water levels.  

The gate trajectories are calculated offline before the closure operation starts.  The prediction 

horizon (λ) is 6-h long and it is discretized into 72 operation periods of 5 min each one. Each gate 

trajectory is defined by means of a piecewise time function divided into the same 72 pieces.  In 

this way, each gate trajectory consists of 72 sequential gate openings, one for every sampling time. 

The implementation also considers functional constraints over the gate movements, such as the 

gate openings are lower than 15 cm of the previous position at every sampling time. 

 

 

Closed-loop control 

Within the SDPC strategy, the analytically obtained IDZ models described in Chapter 4 are used 

to make predictions of the behavior of the 5-pool configuration.  The incremental formulation of 

the predictive control has been used to control the downstream water levels.  The control action 

implemented in each pool is determined by equations (5.47) and (5.48) at every sampling time.  

The SDPC algorithm has a functional constraint over the maximum gate opening. The maximum 

gate opening is determined by the water level. Increasing a gate opening over the water level is 

pointless.  However, whether during a specific time an undershoot gate goes out of the water (it 

means neither submerged nor free flow), the SIC software applies the unidimensional Saint-

Venant equations directly to calculate the discharge in this node.  Namely, SIC automatically 

considers that there is no effective structure when a gate opening is greater than the water depth. 

The decentralized controller considers the downstream disturbances caused by the change of both 

the output discharge and lateral offtake/intake. In the canal, pools are coupled to each other, 

therefore, a gate movement affects directly the controlled water levels in adjacent pools.  In this 

way, disturbances occur both downstream and upstream.  Namely, each decentralized controller 

considers the measured disturbances as the sum up of both the downstream discharge and the 

discharge change caused by the lateral disturbance.  

For the tuning procedure, the maximum allowed water level error is chosen to be 10 cm, namely, 

the maximum allowed value estimated of the water level, 𝑒𝑀𝐴𝑉𝐸  is equal to 0.1m.  The MAVE of 

the change in discharge, ∆𝑢𝑀𝐴𝑉𝐸  is chosen to be 0.1 m3/s.  For the closed-loop control system, 

several set of tuning values were tested in simulation.  The chosen tuning parameters for the closure 

scenarios are detailed in Table 6-6.  For the diagonal matrix of weighting factor (R), it is 

recommended 𝑅𝐶 < 2  (𝑅 = 𝑅𝐶𝐼𝜆𝑥𝜆 ).   The sampling time for the supervisor has been fixed to 60 

s.  Meanwhile, the sampling time for the decentralized controllers is 300 s.   

The supervisor is in charge of managing the dynamic constraints for each decentralized predictive 

controller in case of large  disturbances, in a similar way as previously described in Section 6.3.4 

for the canal PAC-UPC.   
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Pool λ RC a      

[x10-3] 

c 

[min] 

∆𝑼𝒎𝒂𝒙 

[m3/s] 

∆𝑼𝒎𝒊𝒏 

[m3/s] 

Pool 1 15 1 1.1 150 0.5 0.5 

Pool 2 21 1 1.2 157 0.5 0.5 

Pool 3 23 1 1.5 166 0.5 0.5 

Pool 4 12 1 2 178 0.5 0.5 

Pool 5 9 1 2 181 0.5 0.5 

Table 6-6 Parameters for each controlled pool for the closure scenarios 

 

6.4.3 Results 

 

 Scenario1: Partial closure from 15 m3/s to 2 m3/s without disturbances.  In this scenario 

all the spillways are closed, the spillway height being at its maximum (3 m).  Discharge is 

only over spillway 5, at the end of the canal. 

 

 

Figure 6.13. Sketch of the Scenario 1  

The closure operation managed by the open-loop controller is depicted in Figure 6.14. The 

procedure is to initiate a discharge change in the most upstream gate and progress in the 

downstream direction.  The optimal gates trajectories for the closure operation can be seen in the 

bottom part of Figure 6.14.  As it can be observed the performance is really positive because the 

closure operation transient is short (lower than 3h).  The oscillations have ripple values lower than 

2.552 m and the water levels remain practically around the setpoint value of 2.5 m. The maximum 

water level decrease is 3 cm. 
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Figure 6.14 Simulation results of automatic closure of ERLB canal under open-loop control in Scenario 1 

The closure operation managed by the SDPC controller is depicted in Figure 6.15 .   The closed-

loop control modifies the discharges under gates in a sequential order driven by the supervisor.  

The procedure is to initiate a discharge change in the most upstream gate and progress in the 

downstream direction. In the simulation results, the water depths remain practically around the 

setpoint value of 2.5 m. The steady state errors are lower than 2.2 cm.  The closure operation 

generates a positive translational wave with a maximum height of 2.563 m.   

The automatic closure operation under the SDPC control exhibits a satisfactory performance. The 

values of all performance indexes proposed in Section 6.2 are detailed in Table 6-7.  According to 

results, both controllers (open and closed loop) present a positive performance with small 

oscillations, none of them presenting a clear better performance for all the performance indexes.  

The closure generates a positive translational wave that results into oscillations along all the pools.  

The highest values of MAO are presented at pool 4 (2.559 for open-loop control and 2.562 for 

closed-loop control).   

The comparison of the evolution of water level error over the closing time is depicted in Figure 

6.16.  Given the larger prediction horizon used in the open-loop control (6 h), the gates are moved 

from the beginning of the closure operation, which generates small oscillations in the water levels.  

On the other hand, two situations, first the smaller prediction horizon of closed-loop controller,  

and second the almost zero slope in the sigmoidal  function at the beginning of the closure 

operation produces small changes in gate openings and therefore, no oscillations in the water level 

are produced along the first 40 minutes. 
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Figure 6.15 Simulation results of closure operation of ERLB canal under closed-loop control in scenario 1 

Pool Control RMSE        MAPE          ISE             IAE          MAO         SSE 

   [m]             [%]            [m]              [m]           [m]            [m]    

Pool 1 
OL 0.0133      0.4436        0.0303       1.8856       2.533        0.0117 

CL 0.0270      0.96241      0.1244      4.0902        2.5526     0.0257 

Pool 2 
OL 0.0306      1.0075        0.1593        4.2818      2.552       -0.0051 

CL 0.0236      0.7607       0.0948         3.2329       2.5436        0 

Pool 3 

OL 0.0210      0.7721       0.07522       3.2815       2.5247    -0.018 

CL 0.0275        1.031       0.12935       4.3819       2.5352     0.022 

Pool 4 
OL 0.0261      0.9064      0.11625       3.8525       2.5591     0.0217 

CL 0.0243      0.8183      0.10076       3.4779       2.5622    -0.0130 

Pool 5 

OL 0.0085      0.2661      0.01253       1.1312       2.5127     0.0195 

CL 0.0107      0.3070      0.01970       1.3049       2.522      -0.0020 

Table 6-7 Performance indexes of Scenario 1 (OL = Open-Loop, CL = Closed-loop) 
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Figure 6.16 Water level error during the closure process (open loop vs. closed loop control) 

 

 Scenario 2: Partial closure from 15 m3/s to 2 m3/s with the presence of a large 

disturbances. The sketch of the Scenario 2 is depicted in Figure 6.17.   

The automatic control has to deal with the disturbance discharge Qs1 = 5.8 m3/s along 40 minutes 

of the closure operation, and for the remaining time Qs1 = 0 m3/s.  This value of Qs1 is equivalent 

to 38.6 % of the operating point of 15 m3/s.  The purpose is to simulate a pumping station to resemble 

a rain event or a runoff flooding into the canal.  To implement a positive disturbance (intake) at 

node 7 in SIC, an imposed discharge (pump) has been defined in the SIC software, as it is 

illustrated in Figure 6.18. 

 

Figure 6.17 Sketch of the Scenario 2 
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Figure 6.18 Implementation of positive disturbance in SIC 
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In the presence of a large disturbance along the closure operation, the fixed gate trajectories 

computed by the open-loop control may lead the canal to the problem of overtopping.   In the case 

of Scenario 2, where results are shown in Figure 6.19, the overtopping occurs at time t = 140 min. 

 

 

Figure 6.19 Simulation results of closure operation of ERLB canal under open-loop control in Scenario 2 

 

The SDPC control considers the effect of the strong disturbance and it reconfigures the constraints 

of the decentralized controllers to reject the disturbance properly, in such a way that the sigmoidal 

functions that determine the maximum discharge along pools 2, 3, 4 and 5 are time shifted as 

described in (6.2).  Figure 6.20 illustrates the advantages of closure operation under SDPC control 

over the operation managed by the open-loop control depicted in Figure 6.19.   In this scenario, 

the SDPC avoids the overtopping in the canal, and all the water levels remain with steady state 

errors lower than 5 cm. 
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Figure 6.20. Simulation results of automatic closure of ERLB canal under SDPC control in Scenario 2 

 

 Scenario 3: Partial closure from 15 m3/s to 2 m3/s with the presence of a strong disturbance 

Qs1 of 6.8 m3/s for 100 ≤ 𝑡 ≤ 162 min.  For the remaining time, Qs1 = 0 m3/s. 

 

Figure 6.21. Sketch of the Scenario 3 

In this case, the disturbance in the first pool is both longer and higher than in the Scenario 2, as it 

is illustrated in Figure 6.22.  In this scenario, the open-loop control leads the canal to the problem 

of overtopping after longer time in comparison with the Scenario 2.  On the other hand, the closed-

loop control avoids the overtopping, as it is illustrated in Figure 6.24.  With the results presented 
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in Table 6-8, it is clear that the closed-loop control performed better than the open-loop control for 

most of the performance indexes in all pools. 

 

Figure 6.22 Simulation results of closure operation of ERLB canal under open-loop control in Scenario 3 

 

Figure 6.23 Water level error during the closure process in Scenario 3 
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Figure 6.24. Simulation results of automatic closure of ERLB canal under closed-loop control  

 

Pool Control RMSE        MAPE         ISE            IAE            MAO          SSE 

   [m]             [%]           [m]             [m]              [m]            [m]    

Pool 

1 

OL 0.52444       19.157       46.756       81.417        3.3023      -0.5089 

CL 0.17577       4.8579       5.2519       20.646        2.8187       0.0035 

Pool 

2 

OL 0.14388       5.3867       3.5192       22.893        2.6845      -0.1767 

CL 0.06553       2.1181       0.7301        9.002         2.65         -0.0259 

Pool 

3 

OL 0.06210       2.1084       0.6557        8.961         2.6015      -0.0954 

CL 0.06936       2.2084       0.81798      9.386         2.6437      -0.0464 

Pool 

4 

OL 0.02829       0.8926       0.1361       3.7937        2.5696     -0.0035 

CL 0.09981       2.9816       1.6938       12.672        2.6977      -0.0157 

Pool 

5 

OL 0.00822       0.2595      0.0114        1.1029        2.513        0.01703 

CL 0.01809       0.5555      0.0556        2.361          2.5328      -0.0097 

Table 6-8 Performance indexes of Scenario 3 (OL = Open-Loop, CL = Closed-loop) 
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 Scenario 4: Partial closure from 15 m3/s to 2 m3/s with an imposed disturbance intake of 

Qs2 of 5.8 m3/s.  In this scenario, the intake adds water to the canal for 100 ≤ 𝑡 ≤ 140 

min.  For the remaining time of simulation Qs2 = 0 m3/s.  

 

Figure 6.25. Sketch of the Scenario 4 

In this scenario, the open-loop control approach leads the water levels 𝑦2 and 𝑦3 outside the 

accepted steady state error band, as it is illustrated in Figure 6.26.  On the other hand, the scenario 

tackled with SDPC control leads the system to a final steady state where all water level errors are 

lower than 5 cm, as it is shown in Figure 6.27, namely inside the safety water level band. 

 

Figure 6.26 Simulation results of automatic closure of ERLB canal under open-loop control in scenario 4 
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Figure 6.27. Simulation results of closure operation of ERLB canal under SDPC control in scenario 4 

 

 Scenario 5:  Partial closure from 15 m3/s to 2 m3/ with the presence of the disturbance Qs3 

of 5.8 m3/s, 100 ≤ 𝑡 ≤ 150 min.  For the remaining time, Qs3 = 0 m3/s. 

 

Figure 6.28. Sketch of the scenario 5 
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In this scenario, the open-loop control leads to steady state errors of 𝑦2 and 𝑦3 greater than 5 cm, 

as it is illustrated in Figure 6.29.  Meanwhile, the supervisor in the SDPC control considers the 

value of the disturbance Qs3 to reshape the constraints as described in (6.2).  The final steady state 

errors for all water levels under SDPC control are lower than 5 cm, as it is shown in Figure 6.30. 

 

 

Figure 6.29 Simulation results of closure operation of ERLB canal under open-loop control in scenario 5 
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Figure 6.30. Simulation results of closure operation of ERLB canal under SDPC in Scenario 5 

 

 Scenario 6: Partial closure from 15 m3/s to 2 m3/s with a lateral offtake of Qs1 of -4.3 m3/s, 

for 100 ≤ 𝑡 ≤ 250 min.  For 0 ≤ 𝑡 < 100 min, Qs1 is equal to zero. 

 

 

Figure 6.31. Sketch of the Scenario 6 

 

50 100 150 200 250
2.4

2.5

2.6

2.7

2.8
W

a
te

r 
L

e
v
e

l 
(m

)

Scenario 5: Closed-Loop Control

 

 y
1

y
2

y
3

y
4

y
5

50 100 150 200 250
0

5

10

15

20

D
is

c
h

a
rg

e
 (

m
3
/s

)

 

 Q
G1

Q
G2

Q
G3

Q
G4

Q
G5

Q
S3

50 100 150 200 250
0

0.5

1

1.5

2

2.5

G
a

te
 O

p
e

n
in

g
 (

m
) 

Time, t (min)

 

 
L

1

L
2

L
3

L
4

L
5



6. Simulation and real-time results       116 

 

The implementation of a negative disturbance at node 7 in SIC is shown in Figure 6.32.  A lateral 

offtake (discharge as function of elevation) has been selected as a boundary condition at 

downstream devices in the SIC window.  

 

Figure 6.32 Simulation of lateral offtake in SIC 

 

In this scenario, the final value of water level 𝑦1 is determined by the lateral weir height.  However 

a suitable control strategy must allow the rest of the water levels remain around the setpoint of 2.5 

m.  The setpoint tracking is affected in the open-loop control performance because the water level 

𝑦2 is around 2.4 m at the end of the simulation, as it is illustrated in Figure 6.33.   The performance 

of the closed-loop control is better than the open-loop control partly because the SDPC control 

makes the closure of the downstream pools quicker than the first pool (upstream pool).  Finally, 

the use of dynamic constraints allows gradually decrease the discharge of each pool keeping the 

setpoints water levels of 𝑦2, 𝑦3, 𝑦4 and 𝑦5 around 2.5 m, as it is illustrated in Figure 6.34. 
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Figure 6.33. Simulation results of automatic closure of ERLB canal under open-loop control in scenario 6 

 

Figure 6.34 Simulation results of closure operation of ERLB canal under closed-loop control in scenario 6 
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 Scenario 7: Partial closure from 15 m3/s to 2 m3/s with two disturbances, and lateral 

offtake of  Qs1 of -4.3 m3/s  at 100 ≤ 𝑡 ≤ 250 min and another Qs3 of -3.8 m3/s at 110 ≤

𝑡 ≤ 250 min.    For the remaining time, 0 ≤ 𝑡 < 100 min, Qs1 and Qs3 being equal to 0 

m3/s.  

 

Figure 6.35. Sketch of the Scenario 7 

Similar to the Scenario 6, the final values of water levels 𝑦1 and 𝑦3 of Scenario 7 are determined 

by their respective spillway heights.  The automatic closure in this scenario under open-loop 

control leads to values of SSE of 18.96 cm for  𝑦2 and 12.44 cm for 𝑦4.  Namely, both water levels 

𝑦2 and 𝑦4 are lower than 2.4 m in the open loop control operation, as it is illustrated in Figure 6.37.  

Meanwhile, the SDPC control is able to tackle the problem of partial closure with two disturbances, 

allowing to improve the performance indexes for the closure operation, as it is indicated in Table 

6-9,  for instance,  the steady state errors are 0.88 cm for  𝑦2 and 0.44 cm for 𝑦4.  Simulation results 

of closure operation of ERLB canal under open-loop control in Scenario 7 are illustrated in Figure 

6.38. 

 

Figure 6.36 Water level error during the closure process in Scenario 7 (open loop vs. closed loop control) 
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Figure 6.37 Simulation results of closure operation of ERLB canal under open-loop control in Scenario 7 

 

Figure 6.38 Simulation results of closure of ERLB canal under closed-loop control in Scenario 7 
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Pool Control RMSE        MAPE         ISE            IAE            MAO          SSE 

   [m]             [%]           [m]             [m]              [m]            [m]    

Pool 

1 

OL 0.35538        12.76        21.47         54.23        2.5223        0.5157 

CL 0.41255       14.362       28.934        61.04       2.5172        0.6404 

Pool 

2 

OL 0.11821       4.0452       2.3757       17.192       2.5547       0.1896 

CL 0.04122       1.308        0.2888        5.5589       2.5436       0.0088 

Pool 

3 

OL 0.172          6.2239       5.0293        26.452       2.4981        0.248 

CL 0.17565       6.3564       5.2448       27.015       2.493         0.2692 

Pool 

4 

OL 0.07617       2.3528      0.98632       9.999        2.5157       0.1244 

CL 0.01739      0.5918       0.05144       2.5154       2.5344     -0.0044 

Pool 

5 

OL 0.0119        0.3333       0.02415       1.4167       2.5116      0.0312 

CL 0.0158        0.3712       0.0425         1.5778       2.5142      0.0041 

Table 6-9 Performance indexes of Scenario 7 (OL = Open-Loop, CL = Closed-loop) 

 

So far, the study scenarios were all examples of partial closure to show the advantages of closed-

loop control over the open-loop control. The two remaining scenarios, which are related to the 

total closure operation and total opening operation, are tested only under the SDPC control. 

 

 Scenario 8: Total closure from 15 m3/s to 0 m3/s with predictive control without 

considering disturbances.  In this scenario, all spillway’s thresholds are above water levels, 

namely, the spillway heights being at its maximum of 3 m and discharge is only over 

spillway 5, at the end of the canal. 

The automatic closure operation under SDPC control exhibits a satisfactory behaviour based on 

the performance indexes given in Table 6-10.   The total closure operation is executed in less than 

3 hours, as it is depicted in Figure 6.39.  After a series of tests on this scenario, it was determined 

that the minimum time to closure the canal is 110 min without disturbances. The closure operation 

with the minimum closing time is illustrated in Figure 6.40.  Effectuating the closure operation 

quicker, results into higher rates of gate opening and higher values of MAO in all pools. 
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Figure 6.39 Simulation results of total closure operation 

 

Pool Control RMSE        MAPE         ISE            IAE            MAO          SSE 

   [m]             [%]           [m]             [m]              [m]            [m]    

Pool 1 CL 0.03024       1.0675      0.1554       4.5368         2.561          0.0282 

Pool 2 CL 0.02878       0.9614      0.1408       4.0863        2.5602         -0.002 

Pool 3 CL 0.02941       1.0995      0.1470       4.6729        2.5543           0.03 

Pool 4 CL 0.02708       0.881        0.1247       3.7445        2.5726         -0.014 

Pool 5 CL 0.01067       0.3114      0.0193       1.3235        2.5223           0.0 

Table 6-10 Performance indexes of scenario 8 (CL = Closed-loop control). 
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Figure 6.40. Simulation results of total closure operation in 110 min. 

 

 Scenario 9: Total opening operation from 0 m3/s to 15 m3/s without disturbances along the 

opening operation.  

The automatic opening operation under the SDPC control is achieved in 130 minutes 

approximately.  The chosen tuning parameters of the controller are detailed in Table 6-11.  It is 

noteworthy that the slope of all sigmoidal functions have increase in comparison with the same 

parameters in the closing Scenario 1.  In general, the automatic opening operation under SDPC 

control exhibits a satisfactory behaviour based on the indexes given in Table 6-12.    

Pool λ Rw a    

[x10-3] 

c 

[min] 

∆𝑼𝒎𝒂𝒙 

[m3/s] 

∆𝑼𝒎𝒊𝒏 

[m3/s] 

Pool 1 15 1 1.6 90 0.5 0.5 

Pool 2 21 1 2 91 0.5 0.5 

Pool 3 23 1 2.1 100 0.5 0.5 

Pool 4 12 1 2.1 113 0.5 0.5 

Pool 5 9 1 2 119 0.5 0.5 

Table 6-11 Parameters for each controlled pool for the opening operation 
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Figure 6.41 Simulation results of opening operation at ERLB canal 

 

Pool Control RMSE        MAPE         ISE            IAE            MAO         SSE 

   [m]             [%]           [m]             [m]              [m]           [m]    

Pool 1 CL 0.04054       1.2936      0.44549       8.7641       2.5391       0.01 

Pool 2 CL 0.02697      0.9124      0.19723       6.1815       2.5698       0.027 

Pool 3 CL 0.01897       0.6977      0.09752       4.7269       2.5282       0.03 

Pool 4 CL 0.01569      0.5034      0.06677       3.4105       2.5433      0.0067 

Pool 5 CL 0.02034      0.6120      0.11219       4.1466       2.5365      0.0275 

Table 6-12 Performance indexes of opening operation at ERLB canal (CL = Closed-loop control) 

 

6.4.4 Discussion of the results 

 

Most of the figures demonstrate that the supervised decentralized predictive control with dynamic 

constraints is a convenient strategy for closure and opening of irrigation canals automatically. With 

the simulation results of automatic closure of the ERLB canal, without any presence of 

disturbances, both open-loop and closed-loop control present a positive performance with small 
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oscillations (less than 10 cm).  However, if during the closure operation, a large disturbance (intake 

or offtake) is presented along the canal, then the disturbance rejection is better tackled by the 

closed-loop control than the open-loop control.  Indeed, the performance of open loop control 

presents undesirable large overshoots that lead to overtopping in two scenarios. In general, the 

steady state errors are lower for the closed-loop than the open-loop control. 

The sluice gates movement along the closure operation leads to the occurrence of oscillations of 

small amplitude that limits both the precision of the setpoint tracking performance and the 

minimum closing time.  It has been established numerically that the minimum time to closure the 

canal without constraints is 110 min., as it is illustrated in the Scenario 8.  However, this period of 

time increases to 165 min. in the presence of a positive disturbance Qs1 of 6.8 m3/s, as it is 

illustrated in the simulation results of Scenario 3. 

An important contribution of this dissertation is the development of a strategy for automatic canal 

operations involving abrupt changes in operating conditions, which is even able to tackle strong 

disturbances when the operating point is changing.   It is widely agreed that to control a five pool 

configuration canal, such as the ERLB canal, is more complicated that a three-pool configuration 

canal, such as the canal PAC-UPC. The SDPC control designed in this dissertation has 

demonstrated a satisfactory behaviour in both case studies.  

In summary, adding dynamic constraints to the predictive control, makes it feasible to tackle the 

canal closure problem involving a wide change in the operating condition while the water levels 

are keeping as close as possible to the setpoints. Based on the knowledge of canal system 

operation, it is possible to generate sigmoidal functions that allow the predictive controller drive 

the canal from an operating point to another with the occurrence of water level oscillations of small 

amplitude.  In the presence of large disturbances, the controller requires a time shift of the 

sigmoidal functions that determines the maximum discharge in the downstream pools and 

consequently the performance indexes of the opening process will improve.  The tradeoff of the 

time shifted operation is that the closure operation takes longer time in comparison with the closure 

operation without disturbances. 

 

 

6.5 Real-time implementation of supervised decentralized predictive control 

on the laboratory canal 

 

This section is devoted to present the experimental results of automated closure and opening 

operations on the canal PAC-UPC, using the SDPC strategy presented in Chapter 5.  The 

experiments have been done on a three pool configuration of the canal (see Figure 6.2).  This 

section also includes some aspects related to the real-time implementation. 
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6.5.1 Real-time control 

 

A new supervisory control and data acquisition (SCADA) system for the laboratory canal facility 

has been built as part of the development of this thesis.  It is based on the original one designed by 

(Sepúlveda, 2008) and illustrated in Figure 6.42.  A considerable number of changes in the 

SCADA software have been implemented to enable imposing abrupt changes in operating 

conditions.   

The SCADA system enables the water master collecting data from the hydraulic variables in field 

and to send control commands to the motorized gates.  The SCADA includes the human-machine 

interface depicted in Figure 6.43.  The operator interface functions as the operator window into 

the canal.  The SCADA is based on a computer which functions as the master terminal unit (MTU).  

The MTU, located in the master station, is the system controller which may supervise and control 

the canal operation in real-time.  The MTU contains blocks of supervisory level, water predictive 

control, and gate discharge control (see the control system architecture described in Section 2.2.1).  

The control philosophy used in the canal PAC-UPC is a cascade control which contains a set of 

control loops placed one inside another, as it is illustrated in Figure 6.42.  Every pool has a gate 

position controller (block labeled as GPC in Figure 6.43) which is a feedback control that converts 

the required gate openings (SPI) into gate movements. The gate discharge controller (blocks 

labeled as GDC in Figure 6.43)  converts the requested discharge under gate (SPq) into required 

gate openings (SPI) by inverting the Ferro’s flow formulas (Ferro & Ansar, 2001).  In the outer 

loop, the water level control can be fulfilled with several control schemes, for instance the 

constrained predictive control developed in this dissertation.  

 

Figure 6.42 Canal Control philosophy used in the PAC-UPC canal (taken from (Sepúlveda, 2008) ) 

 

The SCADA system has been implemented in Matlab/Simulink® environment. The real-time 

control is executed by a Matlab’s tool so-called Real-Time Windows Target (RTWT).   The RTWT 

toolbox enables to run Simulink models on the MTU that interacts in real-time with the remote 

devices.  The canal control algorithms have been developed in Embedded Matlab language, the 
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script is inside the block labeled as “Predictive_control” in the lower left part of Figure 6.43. In 

the canal instrumentation, the MTU requests an update from remote site devices every 0.1 s.  

Meanwhile,  the predictive control updates the control variable every 10 s.   In the Simulink model, 

RateTransition (RT) blocks have been used in order to transfer data between ports operating at 

different rates.  The 11 water level sensor signals are collected with a DAQ card installed in the 

MTU.   The raw signals are filtered digitally using a low pass filter (block labeled as LPF in Figure 

6.44) in order to minimize the random deviation of the sensor signal.  After the filtering, signals 

are modified using calibration curves in order to obtain accurate measurements within the 

specification limits. 

 

 

Figure 6.43 Operator Interface in the SCADA system 
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Figure 6.44 Acquisition of water level signals in the SCADA system 

The accuracy of the measurements of the SCADA system is affected by both physical and 

instrumentation constraints in the canal. For instance, the accepted gate position error is 2 mm, 

owing to the fact that it is not possible to move the motorized gate less than a minimum distance.  

There are level sensors located upstream and downstream of each gate and at every rectangular 

weir in order to measure discharge based on these water level measures.   The accepted water level 

error is around 1 cm and the minimum control variable incremental flow variation is around 6 l/s.   

The canal has three vertical sluice gates hoisted by three-phase servomotors located on top of the 

gates. Each servomotor has a position measuring gear embedded in the motor chassis. At the time 

when the experiments where fulfilled, the gate velocities were 3.125 mm/s for G1, 1.524 mm/s for 

G2 and 3.125 mm/s for G3.  On the other hand, to achieve an operating discharge equal to zero is 

not allowed in the actual laboratory canal owing to the fact that the minimum gate openings are 3, 

5 and 5 mm for gates G1, G2 and G3 respectively.  A discharge value around 5% of the operating 

flow had chosen as minimum discharge in the experiments. 

Finally, the watermaster may manipulate the canal-related data in the HMI.  The operator may 

decide when to start a closure/opening operation. The operator may also adjust other parameters 

such as setpoint along a normal canal operation, penalization over setpoint variation, closing time, 

opening time, prediction horizon and manual/automatic operation. 

 

6.5.2 Water level control at canal PAC-UPC 

6.5.2.1 Control objective and operating scenarios 

 

The general objective of the SDPC controller is to keep the water levels as close as possible to the 

setpoint, while the operating discharge changes in a wide range. The regulating task is evaluated 
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by both setpoint tracking and disturbance rejection. The specific requirements to bear in mind for 

the proposed experimental tests are: 

 Canal freeboard of 8 cm.   

 Manage the canal to execute a closure operation with an 8 min-settling time (as long as 

there are no lateral offtakes). 

 The accepted steady state error (SSE) is 3 cm for controlled water levels. 

 The maximum absolute overshoot must be less than 5% of the setpoint for every controlled 

water level. It is expected less than 92 cm for the first pool, which means a percentage 

overshoot lower than 8% of the top of canal lining. 

A series of experiments were conducted to test the hypothesis of the dissertation, namely that the 

supervised decentralized dynamically-constrained predictive control is a convenient strategy for 

closure and opening of irrigation canals automatically. In the laboratory canal PAC-UPC, the 

proposed scenarios are: 

 Scenario 1:  Automatic closure with no disturbances. The initial operating flow is 100 l/s.  

 Scenario 2:  Automatic canal opening from 5 l/s to 90 l/s with no disturbances. The 

opening time must be less than 12 minutes. 

 Scenario 3: Automatic closure in the presence of a disturbance Qw1 of 36 l/s during 0 ≤

𝑡 ≤ 2.4 min, and after on the disturbance changes suddenly to 0 l/s.   

 

6.5.2.2 Experimental results  

 

 Scenario1:  This test is devoted to analyze the closure operation without changes in the 

lateral offtakes.  The initial operating flow is 100 l/s.   

This scenario starts from the steady state detailed in Table 6-13.  The lateral weirs, W1 and W2  are 

settled to the maximum height of 90 cm and the height of the final weir (W4) is 35 cm.  For this 

closure operation, levels y1 and y2 are the controlled variables.  For the new steady state obtained 

after the closure operation, level y3 is determined by final weir height at the end of the canal.  

Setpoint for levels y1 and y2 are 0.88 and 0.72 m respectively.   

 

Qop 

[l/s] 

y1  

[cm] 

y2 

[cm] 

y3 

[cm] 

L1 

[cm] 

L2 

[cm] 

L3 

[cm] 

W1 

[cm] 

QW1 

[l/s] 

W2 

[cm] 

QW2 

[l/s] 

W4 

[cm] 

100 88 72 59 11.2 20 20 90 0 90 0 35 

Table 6-13 Initial Steady State for scenario 1 

The automated closure operation using SDPC is depicted in Figure 6.45.  The controlled system 

exhibits a satisfactory behaviour based on performance requirements given in Subsection 6.5.2.1.   

As it can be observed, after 6 minutes the closure operation is completed with the flow reaching a 

close to zero value, while the water levels are maintained all the time inside the permitted safety 
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band. The maximum absolute overshoots are 89.53 cm and 72.78 cm for y1 and y2  respectively 

(lower than 1.8 % of the setpoint for both cases).  The steady state errors for y1 and y2  are 0.1 and 

0.8 cm respectively. These SSE values represent magnitudes lower than 1.3 % of the setpoint for 

both cases. 

 

Figure 6.45. Experimental results of automatic closure of canal PAC-UPC under SDPC   

 

 Scenario 2:  This experiment is devoted to analyze the automatic canal opening from 6.5 

l/s to 91 l/s without changes in the lateral offtakes.  

This scenario starts from the steady state detailed in Table 6-14.   For this opening operation, 

the three downstream levels are the controlled variables.  The setpoints are SP1 = 90 cm,    

SP2 = 72.5 and SP3 = 57 cm.  The experimental results of the automated opening operation 

under SDPC control are depicted in Figure 6.46.   

 

Qop 

[l/s] 

y1  

[cm] 

y2 

[cm] 

y3 

[cm] 

L1 

[cm] 

L2 

[cm] 

L3 

[cm] 

W1 

[cm] 

QW1 

[l/s] 

W2 

[cm] 

QW2 

[l/s] 

W4 

[cm] 

6.5 90 72.5 40 0.9 0.67 0.73 90 0 90 0 35 

Table 6-14 Initial Steady State for Scenario 2 
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The experimental results of the automatic opening under SDPC exhibits a positive performance. 

For instance, the time taken to achieve a steady state condition for the opening operation is 12 

minutes approximately.  The maximum level errors are 0.2 cm (lower than 0.5 %) for 1y  and 3.6 

cm (lower than 5 % of the setpoint value) for 𝑦2.  The steady state errors are 0.2 cm (lower than 

0.5%) for 𝑦1 and 0.6 cm (around 0.9 % of the setpoint value) for 𝑦2.  The water level 𝑦2  is affected 

directly by the increase of volume at the end of the canal where there is a rectangular weir, the U-

shape of 𝑦2  is modulated by the increase of volume at pool 3.   The opening operation duration is 

longer than the closure operation since the system has to fill up the downstream pool with a volume 

of 325 m3 approximately.  

 

Figure 6.46 Experimental results of automatic opening of canal PAC-UPC under SDPC. 

 Scenario 3: This scenario is devoted to analyze the automatic closure in the presence of a 

disturbance. The lateral offtake Qw1 of 36 l/s is present along 2.4 min, and after on the 

disturbance changes suddenly to 0 l/s.   

The initial operating flow in the first pool is 138 l/s.  The 36 l/s are equivalent to 26% of the 

operating discharge in the first pool of the canal.  In this closing scenario only water levels y1 and 

y2 are the controlled variables.   The setpoints for levels y1 and y2 are 84 and 70 cm respectively.   

Qop 

[l/s] 

y1  

[cm] 

y2 

[cm] 

y3 

[cm] 

L1 

[cm] 

L2 

[cm] 

L3 

[cm] 

W1 

[cm] 

QW1 

[l/s] 

W2 

[cm] 

QW2 

[l/s] 

W4 

[cm] 

138 84 70 59.6 17.8 29.4 21.8 65 36 90 0 35 

Table 6-15 Initial Steady State for Scenario 3 
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The closed-loop automatic control exhibits a satisfactory behaviour even in presence of 

disturbance along the closure operation.  For instance, the maximum absolute overshoots for both 

water levels are lower than 6%, namely,  the MAO of 𝑦1is 88.7 cm, which is equivalent to 5.6% 

of SP1 and the MAO of 𝑦2is 72.7 cm, which is equivalent to 3.85% of SP2.  Meanwhile, the steady 

state errors for y1 and y2 are 2 and 3 cm respectively.  These SSEs represent values lower than 5 % 

of the setpoint for both cases.  Experimental results of the automated closure operation under 

SDPC are depicted in Figure 6.47 

 

Figure 6.47 Experimental results of closure operation with disturbance rejection at canal PAC-UPC  

 

6.5.2.3 Discussion of the experimental results 

 

In all the experimental scenarios, the controlled water levels in every pool remain inside the safety 

band along both transient and steady response.  In real-time implementation, the gates are moved 

sequentially from upstream to downstream (with at least 10 seconds delay between them) as driven 

by the supervisor.  The dynamic constraints that determine the maximum discharge of predictive 

control are defined by the sigmoidal function described in (6.2).  The controlled variables converge 

to the reference with a small acceptable error. As it can be noted in Figures 6.45, 6.46 and 6.47, 

no overtopping is produced in the automatic operations involving abrupt changes in operating 

conditions. 
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The Embedded Matlab® code for real-time control that allows the implementation of the on-line 

optimization-based control approach has been implemented with a sampling time of 10 sec. The 

matrices 𝐸𝑖, 𝐺𝑖 , 𝑃𝑖 and 𝐺0 involved in the predictive control formulation (see Subsection 5.3.1) are 

calculated offline for the controller algorithm.  So, once the SCADA system starts up, a file with 

the matrices is loaded just one time. The controller tuning parameters used in the real-time 

implementation are the same used in simulation (see Table 6-1).  

The experimental results reveal that the success of the automatic control strategy for closure and 

opening operations proposed in this dissertation depends highly on the degree of accuracy of the 

gate position control and the proper calibration of the water level sensors.  Therefore, a regular 

preventive maintenance of the canal instrumentation is highly recommended.  Devices that require 

more technical attention include water level sensors, flowmeters, and motorized check gates.  In 

actual canal irrigation system, control equipment hardware must resist the canal bank environment 

and function for long continuous periods without failure.  The actual implementation in field 

requires a two-way radio system in order to communicate the headquarter (supervisory controller) 

with the decentralized control units. 
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7 Conclusions and future research 
 

 

Chapter 7 

 

Conclusions 

 

7.1 Summary and general conclusions 

 

This dissertation has been motivated by the interest for developing automatic control strategies to 

manage closing and opening operations in irrigation canals that are composed by several pools 

connected by controllable gates. Such types of operations are challenging and scarcely studied 

within the literature related to irrigation canals and, in particular, within the state of the art covering 

the applications of automatic control systems.  Main difficulties with closing (and similarly 

opening) operations are related to the following factors:  

 They involve large changes in water discharges, and are sensitive to the couplings between 

the different pools and to the presence of unknown disturbances. 

 They require a critical command of the gate trajectories, with a compromise between 

producing feasible smooth excursions and completing the canal closing within a 

specifically needed short time, while keeping the water levels within prescribed bounds. 

To contribute towards the solution of the problem, this work has combined knowledge of two wide 

and different areas: control engineering and hydraulic engineering. From the last side, the thesis 

has addressed two benchmark case study problems: a laboratory canal available at the Technical 

University of Catalonia (PAC-UPC) and a main canal of the left bank of the river Ebro in Spain 

(ERLB).  Both have been numerically simulated via a state of art computational code, while the 

canal PAC-UPC has been additionally used for real-time implementations.  



7. Conclusions      134 

 

Following a constructive approach, the core of thesis has been initiated by studying the problem 

of closing and opening these benchmark canals, checking different manual operations. The 

outcome of this study (in Chapter 4) has been twofold: (1) learning significant issues and 

difficulties that arise when check structures are required to get completely closed; and (2) getting 

practical inputs for the automatic control design. 

Numerical simulation results have highlighted problems, such as overtopping, that arise when the 

closure canal operations are not managed properly. These problems motivate the need for 

automatic control. Five scenarios, depending on the gate velocities, have been designed to check 

the transient response after closing gates of cases studies under manual local control.  

The quality of the closure operation in canals is determined by aspects such as closing velocity, 

water levels inside the minimum/maximum safety margins required on the canal, and to keep the 

water levels as close as possible to the setpoint. Wave phenomenon occurs regardless which are 

the initial conditions or which are the velocities of motorized gates.  A canal system to be closed 

is affected by upstream and downstream disturbances. Therefore, the control system to manage 

closure and opening operations must avoid the risk of exceeding the safety levels required on the 

canal to avoid problems such as overtopping and cracking.  The closure/opening operations must 

be done as soon and quick as possible to make feasible the closure in management practices such 

as, night closure to save water.  The minimum allowed time to complete the operation is 

determined by the geometry of the canal, the flow conditions, the velocity of the check structures 

and the final objective pursued with the closure. The operational requirements of the closure 

operation are almost impossible to achieve using local manual control methods. The simulation 

and real-time experiments in Chapter 4 have demonstrated that closing the gates sequentially from 

upstream to downstream in a smooth manner may reduce the overtopping risk. 

  

From the control engineering side, the outcome of the thesis (Chapter 5) has been a control strategy 

for automatic closure and opening of irrigation canals, which has been developed in a two-level 

architecture: (i) individual decentralized downstream water level predictive controllers formulated 

via an optimal control problem under dynamic constraints and implemented by upstream local 

gates; and (ii) a supervising scheme to achieve the compromise of fast execution with smooth gate 

trajectories and water level regulation, even in the presence of disturbances.  

The aim of the supervisor is being responsible for allowing the cyclic sequential movement of each 

motorized gate of the entire canal system. In the presence of an unexpectedly large disturbance, 

the supervisor detects the location where a sudden raise of water level has occurred and then 

command the next controller to operate during the closure operation.  Each decentralized control 

is a local automatic water level controller, which requires the current state of its controlled pool 

and information of neighbor pools.  For the practical implementation, the proposed control system 

requires a remote terminal unit (RTU). The RTU monitors the water levels and equipment status, 

and transmits these data to the supervisor. 

The final supervised decentralized predictive control (SDPC) strategy has been evaluated (in 

Chapter 6) by means of numerical simulation on the two cases of study in a variety of operating 

scenarios. This includes comparisons of the performance with respect to the use of optimal 
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predictive open-loop control of gate trajectories.  In addition, it has been experimentally validated 

through real-time implementation in the laboratory canal PAC-UPC.  

Most of the simulation results show that the closed loop predictive control with dynamic 

constraints is a convenient strategy for automatic closure and opening operation of canals. In all 

the simulation scenarios, water levels in each controlled pool remain inside the safety band along 

both transient and steady response.  Nine scenarios have been designed to check the performance 

of the predictive control in the ERLB canal. Three scenarios have been simulated to check the 

controller performance in the canal PAC-UPC.  Overtopping is avoided in both closure and 

opening operations.  The closure operation performance under SDPC has improved comparing to 

open-loop closure operations.  In the simulation results of closure operation in the ERLB canal, 

without any presence of disturbances, both open-loop and closed-loop control present a positive 

performance with small oscillations (less than 10 cm).   However, if during the closure operation, 

a large disturbance (intake or offtake) is present along the canal, then the disturbance rejection is 

better tackled by the closed-loop control than by the open-loop control.  The performance of open-

loop control presents undesirable large overshoots that lead to overtopping in two scenarios. In 

general, the steady state errors are lower for the closed-loop than for the open-loop control. 

In all the experimental closure and opening scenarios fulfilled in the canal PAC-UPC, the 

controlled water levels in every pool remain within the safety margins along both transient and 

steady response. In the real-time implementation, the gates are moved sequentially from upstream 

to downstream. The experimental results reveal that the success of the automatic control strategy 

for closure and opening operations proposed in this dissertation depends highly on the degree of 

accuracy of the gate position control and the proper calibration of the water level sensors. 

Therefore, a regular preventive maintenance of the canal instrumentation is highly recommended. 

Devices that require more technical attention include water level sensors, flowmeters and 

motorized check gates.  In actual canal irrigation systems, control equipment hardware must resist 

the canal bank environment and function for long continuous periods without failure.   

The results presented in Chapter 6, in summary, conclude the efficiency of the control strategy 

proposed in this thesis to face the problem of closing/opening irrigation canals. 

 

 

7.2 Contributions of this thesis 

 

The main contribution of this dissertation is the development of a strategy for automatic canal 

operations involving abrupt changes and disturbances in operating conditions, which has been 

called supervised decentralized predictive control with dynamic constraints (SDPC).   

Another contribution is related to how to tackle a predictive control problem that cannot be solved 

by optimizing the typical linear quadratic cost function with time-invariant constraints when two 

conflicting control objectives are stated in the control problem.  A sigmoidal function, acting as a 

dynamic constraint, has been proposed in the control design, which contributes to generate the 
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controlled gate movements in a smooth way. In the presence of disturbances, a supervisor reshapes 

systematically the sigmoidal function through the relaxation of constraints as soon as a raise of 

water is detected.  

It has been the first time that real-time predictive control with constraints has been implemented 

in the canal PAC UPC facility. The Hildreth’s quadratic programming algorithm has been used in 

this work to obtain the on-line numerical solution of the constrained optimization problem. A new 

supervisory control and data acquisition (SCADA) system for the laboratory canal facility has 

been built as part of the development of this thesis. The SCADA system is an extension of the 

original one designed by (Sepúlveda, 2008). 

 

7.3 Future research 

 

For further research and applications, some ideas could be considered: 

 To extend the validations of the supervised decentralized predictive control with dynamic 

constraints by simulating the implementation in the two ASCE test canals in 

closing/opening scenarios.   

 

 The transient wave phenomenon originated when the gates are suddenly closed along the 

canal presents higher peaks in pools which length are shorter than the upstream neighbor 

one. Therefore the maximum absolute overshoot values are lower in the upstream pool in 

comparison with the downstream pool. In this way, to compare the performance by means 

of simulation in another canals is a challenge to extend the results achieved in this 

dissertation. 

 

 To validate the SDPC control methodology by means of closure/opening operations in a 

real field irrigation canal. Indeed, field testings would give significant lessons on the 

different components of the overall system, regarding both the methodologies and the 

supervision and control practical units. 

 

 To test the SDPC control methodology using gate opening directly as control action 

variable instead of discharge such as it is proposed in the work (Horváth et al., 2014b). It 

may be interesting to make a comparison between the two schemes in terms of formulation 

and performance. 

 

 To propose new scenarios under abrupt change conditions to validate the SDPC strategy.  

For instance, a scenario where some of the canal gates broke down along the closure 

operation.  Another example could be testing an on demand partial closure involving abrupt 

change in the operating condition in less time than the total closure operation.  
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7.4 Publications derived from this thesis 

 

Galvis, E., Mantecón, J., Horváth, K., Gómez, M., & Rodellar, J. (2014). An automatic control 

strategy for closure and opening of irrigation canals. In USCID Water Management 

Conference. Phoenix, USA. 

Horváth, K., Galvis, E., Gómez, M., & Rodellar, J. (2015). New offset-free method for model 

predictive control of open channels. Control Engineering Practice, 41, 13–25. 

doi:10.1016/j.conengprac.2015.04.002 

Horváth, K., Galvis, E., Gómez, M., & Rodellar, J. (2014a). Experimental comparison of canal 

models for control purposes using simulation and laboratory experiments. Journal of 

Hydroinformatics, 16(6), 1390–1408. doi:10.2166/hydro.2014.110 

Horváth, K., Galvis, E., Gómez, M., & Rodellar, J. (2014b). Is it better to use gate opening as 

control variable than discharge to control irrigation canals? Journal of Irrigation and 

Drainage Engineering, 141(3), 04014054. doi:10.1061/(ASCE)IR.1943-4774.0000798 

Galvis, E., Mantecon, J., Horváth, K., Gómez, M., & Rodellar, J. (2014b). Predictive control based 
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Appendix A 
 

 

Quadratic programming using Hildret’s 

Procedure 

 

 

%filaname: QPhild.m 

%Quadratic programming using Hildret’s Procedure as it is described in 

% Wang, L. (2009). Model Predictive Control system design implementation 

%using Matlab. Springer. Pag. 67 

%The program finds the global optimal solution and checks if all the 

constraints are satisfied. If so, the program returns the optimal solution. 

%If not, the program then begins to calculate the dual variable lambda. 

  

function [eta]=QPhild(H,f,A_cons,b) 

                    % M=A_cons; % gamma=b; 

                    % eta =u 

[n1,m1]=size(A_cons); 

eta=-H\f;           %global optimal solution without constraints 

kk=0; 

for i=1:n1 

    if (A_cons(i,:)*eta>b(i)) kk=kk+1; 

    else 

        kk=kk+0; 

    end 

end 

  

if (kk==0)  

    return;  

end 



 

  

% Note that in the quadratic programming procedure, the ith Lagrange 

%multiplier  Lambda_i becomes zero if the corresponding constraint is not 

%active. Otherwise  it is positive. We need to calculate the Lagrange % 

multipliers iteratively. 

% We will first set-up the matrices of the dual quadratic programming, 

% followed by the computation of the Lagrange multipliers. 

  

P=A_cons*(H\A_cons'); 

d=(A_cons*(H\f)+b); 

[n,m]=size(d); 

x_ini=zeros(n,m); 

lambda=x_ini; 

al=10; 

  

for km=1:38 

    %find the elements in the solution vector one by one 

    % km could be larger if the Lagranger multiplier has a slow 

    % convergence rate. 

    lambda_p=lambda; 

        for i=1:n 

            w= P(i,:)*lambda-P(i,i)*lambda(i,1); 

            w=w+d(i,1); 

            la=-w/P(i,i); 

            lambda(i,1)=max(0,la); 

        end 

    al=(lambda-lambda_p)'*(lambda-lambda_p); 

    if (al<10e-8);  

        break;  

    end 

end 

  

eta=-H\f -H\A_cons'*lambda; 
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