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Chapter 1

Introduction

One hundred years of General Relativity (GR) and there is still so much that remains
to be understood. Einstein’s celebrated theory of gravitation is a geometric description
of the Universe fusing together space and time in a dynamical spacetime [4, 5]. GR
is the base for modern cosmology and astrophysics and so far is our best theory of
gravity. However we are are still testing it out.

The most surprising prediction of Einstein’s theory is the existence of black holes.
These are regions of spacetime from which gravity prevents anything, including light,
from escaping. The point of no return is defined by an event horizon. Amazingly, in
contrast to their extremely complicated behaviour and description, black holes can be
completely characterized by only three parameters: mass, electric charge, and angular
momentum [6, 7]. This is what it is called the “no hair theorem”. Thermal nature
of a black holes was another unexpected discovery. Black holes radiate and a finite
temperature and entropy can be associated to it as derived by Bekenstein and Hawking
[8, 9] in the context of quantum field theory. As result, a remarkable parallelism exists
between the laws of black hole mechanics and the laws of thermodynamics [10].

Unfortunately, GR and quantum mechanic seem to be incompatible. For instance,
the fact that black holes give off radiation leads to a non-unitary process. Quantum
evolution, apparently, does not preserve information when black holes are present. The
information is lost. This goes under the name of “information paradox” [11, 12]. An
additional interesting puzzle arises once we pass the event horizon. Indeed, a singularity,
a point where the spacetime curvature becomes pathological, is presumably hidden
behind it. This anomalous behaviour should be seen as an indication that GR fails to
provide a proper description. When the curvature of spacetime is around the Planck
length we are probably outside the domain of applicability of Einstein’s theory. It is
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therefore necessary to find an adequate quantum description of gravity able to cure
these problems.

In the last decade many improvements have been achieved in this direction but
a satisfactory theory, which combines quantum theory and GR in a consistent way,
still remains unknown. The great hope is string theory [13]. At fundamental level,
this theory considers matter as tiny loops of string substituting hence the concept of
point-particle. As any good theory of quantum gravity should do, at low-energies, string
theory naturally gives rise to GR. Even if it is still experimentally untested, string
theory provides an amazingly fruitful framework for physics exploring qualitatively new
phenomena and trying to shed light on fundamental outstanding problems. However,
there is a price to pay. String theory requires extra dimensions to keep its consistency.
Spacetime with dimension higher than four seems to be an essential property of
quantum gravity. This is one of fundamental reasons why people began to study gravity
in higher dimensions and surprisingly many new interesting features came out that are
absent in their four dimensional counterparts.

The dimensionality of the spacetime can be therefore seen as a parameter of the
theory. Beyond doubt, four dimensional spacetime is extremely unique. For black holes
this is particularly evident. Indeed, special characteristics that black holes possess in
four dimensions, such as uniqueness, spherical topology, dynamical stability, do not
hold more generally [14–16]. All these properties change drastically in more than four
dimensions. Black holes can have non-spherical horizon topology [17], e.g. black rings
[18], black branes [19], and their phase structure is incredibly richer [20]. Moreover
dynamical instabilities may appear since these new black holes are not necessarily
stable any more [21–23].

Among these new solutions, of particular interest in string theory are charged
gravitational string and brane solutions [24]. These spatially extended geometries
source a set of gauge potentials and are solutions of an appropriate supergravity (the
extension of GR to include supersymmetry) that are exactly interpreted as the classical
coherent state of a (large) stack of fundamental strings/branes each charged under
the corresponding potentials. This simple, yet profoundly deep, observation lies at
the very heart of the AdS/CFT correspondence [25–27]. Conjectured in 1997 by Juan
Maldacena, this correspondence relates strongly coupled quantum field theories to
gravity theories in higher dimensions (as classical theories). In its original form, it states
that maximally supersymmetric N = 4 Super Yang-Mills (SYM) theory, a conformal
field theory (CFT), is dual to Type IIB string theory on AdS5 × S5. Gravity solutions
in AdS spacetime can be mapped to conformal field theories located at the asymptotic
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timelike boundary giving an explicit realization of the “holographic principle” [28].
The two theories, indeed, live in a different number of dimensions. In this context,
black objects correspond to finite temperature states on the gauge theory side. The
AdS/CFT correspondence provides a practical way to answer complicated questions
about strongly-coupled gauge theories translating these in terms of classical gravity
problems. The same is true in the other way around as well, CFTs can help to a better
understanding of higher dimensional gravity.

The powerful potentialities of this correspondence are the reasons for its huge
success. Indeed, this duality has revealed surprising connections between unrelated
phenomena and equations of physics. Notable are its applications to problems in a
strongly coupled regimes as in certain condensed matter systems [29] or in quantum
chromodynamics (QCD) [30]. For the latter, the most celebrated prediction concerns
the calculation of the hydrodynamic properties of the quark-gluon plasma (produced
in relativistic heavy ions collisions) [31] which is believed to be a locally thermalized
phase of QCD and hence described by a relativistic fluid equation.

This result was obtained using the hydrodynamic limit of the AdS/CFT cor-
respondence where the effective description of gravity as an hydrodynamic theory
emerges naturally. Taking a certain limit, Einstein’s equations in a spacetime with
negative cosmological constant are equivalent to relativistic Navier-Stokes equations
as demonstrated in [32]. This is known as the “fluid/gravity correspondence”. The
long-wavelength effective description of some conformal theory can be identified with
a relativistic hydrodynamic theory and the dynamics of bulk spacetime is encoded
in a fluid living on its boundary. Here the transport coefficients (for a review on
relativistic fluid mechanics, see [33]) are directly computed from gravity using linear
response theory in [34] and from a direct perturbative gravitational computation in
[32]. Moreover, various generalizations including charged cases, have been carried out
in these schemes, see e.g. [35–39].

Inspired in part by the fluid/gravity correspondence, the “blackfold approach”
developed by [40, 41] is a long-wavelength effective theory that captures black holes
dynamics. When the system exhibits two widely separated scales, as for instance
rotating black holes in the ultra-spinning regime, the long-distance physics can be
simplified integrating out the short-distance degrees of freedom. In other words, we are
replacing the black hole with an effective source that, to leading order, takes the form
of a fluid living on a membrane. Using the blackfold approach, the long-wavelength
perturbations of black branes are hence described by an effective theory of viscous
fluid flows. The effective dynamics of the fluid is expressed in terms of an effective
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stress tensor computed in a derivative expansion. The dissipative transport coefficients
are associated to fluctuations along the world-volume directions of the brane. This
approach has previously been applied to the Schwarzschild black p-brane in [42], for
the Reissner-Nordström black brane in [43] and for black D3-branes in [44] where a
hydrodynamical analysis was carried out. Another interesting application worth to
mention is the study of fluctuations in the directions transverse to the brane. When
the thickness of a black brane is much smaller than the characteristic length scale
of the system the blackfold approach can be applied and one discovers that branes
behave like elastic materials. The effect of bending a brane it is encoded into new
response coefficients which take into account its elastic deformation. Black branes
are hydrodynamical objects but can also exhibit the properties of a solid as shown
in [45–47]. Remarkably, besides being useful for describing black hole dynamics, the
blackfold approach is also an excellent method for the construction of new approximate
black hole solutions as shown in [48–51].

The main purpose of this thesis is to gain a more advanced understanding of higher
dimensional gravity with a special focus on the study of black holes and black branes.
We developed two leading lines of investigation: one is devoted to the analysis of
the relation between different types of spacetime through maps which connect them
and the other concerns the study of effective theories which allow to describe higher
dimensional black holes and capture their dynamics. We are particularly interested in
understanding the connections between fluids and black holes from a broad perspective.
Using the blackfold approach we have investigated the effective hydrodynamics for
several classes of black branes, including charged black branes, and we were able to
extract their transport properties. The relevance of this analysis resides in the fact
that on one hand one can approximately study the very complicated dynamics of black
holes in terms of dissipative fluid flows and, conversely, by perturbation analysis of
black holes one can probe the correct theory of hydrodynamics.

Outline:

The structure of this thesis is the following:

• In Chapter 2, we review some of the effective theories we used to study higher di-
mensional black holes. We will present the details of two of them: the fluid/gravity
correspondence and the blackfold approach. We focus on how these effective
descriptions capture the hydrodynamical behavior of the fluid dual to a certain
gravity solution. Indeed, there exists an equivalence between the dynamics of
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Einstein’s equations and the dynamics of relativistic Navier-Stokes equations in
a long-wavelength regime.

• In Chapter 3, we introduce the AdS/Ricci flat correspondence as developed
in [52, 53] , which is a map between asymptotically AdS spaces and Ricci-
flat ones. We extend this work deriving a map between Einstein spaces of
positive and negative curvature, including scalar matter. Starting from a space of
positive curvature with some dimensions compactified on a sphere and analytically
continuing the number of compact dimensions, we obtain a space of negative
curvature with a compact hyperbolic subspace, and vice versa. Prime examples
of such spaces are de Sitter (dS) and anti–de Sitter (AdS) space, as well as black
hole spacetimes with (A)dS asymptotics and perturbed versions thereof, which
play an important role in holography. Such a map can also be used as a solution
generator, and we obtain a Kerr/AdS solution with hyperbolic horizon from a
known Kerr/dS one. The results are based on [2].

• In Chapter 4, we study the hydrodynamics of relativistic fluids with several
conserved global charges (i.e., several species of particles) by performing a Kaluza-
Klein dimensional reduction of a neutral fluid on a N -torus. Via fluid/gravity
correspondence, this allows us to describe the long-wavelength dynamics of
black branes with several Kaluza-Klein charges. We obtain the equation of
state and transport coefficients of the charged fluid directly from those of the
higher-dimensional neutral fluid. We specialize these results for the fluids dual
to Kaluza-Klein black branes. The analysis is based on [1].

• In Chapter 5, we study the long-wavelength effective description of two gen-
eral classes of charged dilatonic (asymptotically flat) black p-branes including
D/NS/M-branes in ten and eleven dimensional supergravity. In particular, we
consider gravitational brane solutions in a hydrodynamic derivative expansion (to
first order) for arbitrary dilaton coupling and for general brane and co-dimension
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and determine their effective electro-fluid-dynamic descriptions by exacting the
characterizing transport coefficients. The results are based on [3].

• In Chapter 6, we conclude with an overview of the work elaborated in the thesis
and show the main results.

• In Chapter 7, a summary of the thesis in Spanish is provided.

Notation: The notation we have used in this thesis will be explicitly specified for
each chapter. It is important to stress that the conventions and the terminology we
have adopted can be different in the Chapters 3, 4 and 5, and for this reason we will
make it clear as necessary to avoid possible confusion.



Chapter 2

Effective theories of gravity

2.1 The fluid/gravity correspondence

Understanding the early evolution of our universe is one of the main reasons to
study the state of matter known as quark-gluon plasma (QGP). This state, produced
from the collision of heavy-ions (e.g. at RHIC) at extremely high temperature and
density, consists of asymptotically free quarks and gluons. QGP is the deconfined phase
obtained when QCD is at strongly coupling. For this reason perturbation theory is not
appropriated to study such a system and it is necessary a new method to achieve that.

Holography provides a possible way out mapping strongly coupled systems to
some classical theory of gravity as mentioned in the introduction. Even though the
AdS/CFT correspondence is shown to work only for some special class of guage
theories quite different from QCD, one can at least get qualitative features about the
QGP. The most successful prediction of holography for strongly coupled systems is
the value for the shear viscosity η which is probably the most relevance transport
coefficient characterizing these. Indeed, in [34] they were able to compute the entropy
density to shear viscosity ratio of strongly coupled N = 4 supersymmetric Yang-
Mills plasma. Comparing their result with numerical fits to RHIC data one finds a
remarkable agreement. Superconformal field theories can therefore be treated as toy
models providing new insights into QGP. In [34] it was also conjectured that for any
CFT with a gravity dual there exists a universal lower bound for the entropy density
to shear viscosity ratio, that is

η

s
≥ 1

4π . (2.1.1)

Interestingly, the QGP is characterized by a very small ratio near the saturation value
of the bound.
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If quantum field theory is in a local thermal equilibrium hydrodynamics is the
appropriated effective theory to describe it. Holography then translates the dynamics
of the effective fluid into classical gravitational dynamics. The long-wavelength limit of
the AdS/CFT correspondence can be therefore seen as the duality between an AdS
gravity solution in the bulk and a conformal fluid at thermal equilibrium living at the
boundary of AdS. This equivalence, known as the fluid/gravity correspondence, was
originally introduced by [32]. Later an extension to classes of non-conformal fluids was
presented in [54]. A review of the fluid/gravity correspondence and its extensions can
be found in [55].

Even if fluids and black holes seem to be completely unrelated, in a certain regime,
there exists a strong and extremely useful relation between them. Long wavelength
dynamics of black holes governed by Einstein’s equations with a negative cosmological
constant is equivalent to fluid dynamics described by Navier-Stokes equations in one
dimension less as demonstrated in [56]. In other words, the long wavelength limit
of D dimensional Einstein’s equations in an asymptotically AdS space reduces to
(D − 1)-dimensional relativistic fluid dynamics. Hence, remarkably, hydrodynamics
enables us to understand various aspects of the dynamics and the phase structure of
black holes.

Before entering into the details of the fluid/gravity correspondence we will give a
brief review of fluid dynamics since we will widely use these in the following chapters.

2.1.1 Elements of fluid dynamics

Hydrodynamics is the effective description of interacting systems nearly thermal
equilibrium at long enough distance. To be more precise, consider a quantum system
in a global thermal equilibrium characterized by a temperature field T and a fluid
velocity field uA. We now allow these fluid parameters to vary slowly, perturbing the
system with fluctuations whose wavelengths are large compared to the scale set by the
thermodynamic variables. Under this condition the system is well described by fluid
dynamics. In some sense one is examining it at a length scale where is not important
the movement of single elements. Therefore, the dynamics simplifies substantially and
the effective description of its variables is completely captured by fluid dynamics. The
long-wavelength physics of any interacting quantum field theory in a local thermal
equilibrium can be described in terms of a relativistic fluid flow.

Hydrodynamics is governed by conservation laws of the stress-energy tensor TAB

and the charge currents JAI with index I = {1, 2, ..} corresponding to the number of
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conserved charges characterizing the system. These are

∇AT
AB = 0, ∇AJ

A
I = 0 , (2.1.2)

where ∇A is the covariant derivative corresponding to the background metric gAB on
which this fluid lives. From now on, for simplicity, we consider only one conserved
current (I = 1 and JA1 ≡ JA) since the extension is trivial. It is also necessary to
define the equation of state which allow to express the stress-energy tensor and the
charge current as functions of the fluid variables. In general, one constructs these in
a derivative expansion of the fluid dynamical fields. Order by order, it is possible to
determine their form using thermodynamics and symmetry arguments. At zeroth order
in the derivative expansion, the stress tensor is simply that of a perfect fluid given by

TAB = (ϱ+ P )uAuB + PgAB , (2.1.3)

in terms of the energy density ϱ, the pressure P and the normalized velocity field uA

(gABuAuB = −1). The velocity field is chosen to be aligned to the direction of energy
flow. The charge current takes the form

JA = QuA , (2.1.4)

where Q is the charge density. Since for a perfect fluid there is not production of
entropy another current conserved exists, the entropy current. This is expressed as

JAs = suA , (2.1.5)

with entropy density s.
When one allows the fluid variables to fluctuate as result entropy is produced and

dissipative corrections must be added. So, the stress tensor and the charge current are
corrected by extra contributions as

TAB = (ϵ+ P )uAuB + PgAB + T dissAB , JA = QuA + JdissA . (2.1.6)

Dissipation is the effect of the equilibration of the fluid trying to recover an equilibrium
configuration. This is reflected on TAB and JA where the extra terms added, T dissAB and
JdissA account for the viscous corrections.

Before giving the explicit form of the dissipative corrections it is required to choose
a frame. We consider the one in which the velocity field is orthogonal to the dissipative
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contributions, called the Landau frame, satisfying the conditions

T dissAB u
A = 0 , JdissA uA = 0 . (2.1.7)

We are now able to express the dissipative part of the stress tensor that, to first order,
takes the form

T dissAB = −2ησAB − ζPABθ , (2.1.8)

where η and ζ are the shear and bulk viscosities. The determination of these coefficients
for certain systems will be part of the main results shown in the following chapters. In
D dimensions, the expansion θ, the projector PAB and the shear viscosity tensor σAB
are defined as

θ = ∂Au
A, PAB = gAB + uAuB , σAB = PC

A P
D
B ∂(CuD) − 1

D − 1θPAB. (2.1.9)

For a conformal fluid the bulk viscosity is null.
The charge current at leading order in gradient expansion it is written in terms of

the temperature T and chemical potential µ as

JdissA = −κPB
A ∂B

(
µ

T

)
, (2.1.10)

where κ is the charge diffusion coefficient.
The first order contribution to the entropy current is given by

JA,disss = − 1
T
uBT

AB
diss . (2.1.11)

From the positivity of the entropy current one can demonstrate that the shear and the
bulk viscosities must satisfy η ≥ 0 and ζ ≥ 0.

After this brief overview on relativistic hydrodynamics, we are now able to connect
the effective fluid to the corresponding black hole using the fluid/gravity correspondence
as follows.

2.1.2 Fluid dynamics from gravity

As presented at the beginning of this section, the fluid/gravity duality describes
the relation between gravity solutions of a certain AdS spacetime and a fluid living
on its time-like boundary. At any order in a derivative expansion, a solution of
Einstein’s equations with a negative cosmological constant can be mapped to some
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effective fluid configuration and vice versa. A perturbed fluid flow corresponds to
an inhomogeneous, time-dependent black hole with a slowly varying horizon. This
black hole approximates a black brane in AdS in a long-wavelength limit. Thanks to
the fluid/gravity correspondence we have a practical way to compute the transport
coefficients of the fluid associated to some class of strongly coupled field theories from
the analysis of classical perturbation equations of black holes.

At zeroth order or equivalently in a global thermal equilibrium a static solution of
AdS-Einstein equations with regular horizon is described by the stress-energy tensor of
a perfect fluid of the form in Eq. (2.1.3). The temperature associated to the fluid is the
Hawking temperature of the black hole, while its horizon boost velocity corresponds to
the fluid velocity.

To study the dynamics of this black brane we promote the temperature T (or
equivalently the radius of the horizon) and the boost velocity uA to functions of the
xA coordinates on the boundary spacetime on which the fluid lives. These parameters
T (xA), uA(xA) are required to vary sufficiently slowly. The perturbed black brane is
not a solution of the Einstein’s equations any more. For this reason we have to correct
it order by order in a derivatives expansion. Once we determine the complete bulk
metric at a give order we are then able to compute the corresponding effective TAB
at the boundary which will be of the form expressed in (2.1.6). In order to do this
we use the prescription presented by Brown-York in [57]. In Chapt. 3 we will give
more details about the construction of this effective stress tensor. To summarize, from
black brane’s deformations we can compute the corresponding effective stress energy
tensor and extract the transport coefficients characterizing the viscous fluid flow at the
boundary which in turn, in a long wavelength regime, encodes the behaviour of some
strongly coupled field theory.

The mathematical details used to obtained the corrected metric and the stress
energy tensor from a perturbed black hole solution will be outlined in Sec. 5.2.1 and
more specifically in App. C. Even if there we have considered a charged black brane in
an asymptotically flat space the procedure is substantially equivalent to the one valid
in solutions AdS.

In the next section, we will introduce another long-wavelength effective theory used
to study black holes dynamics but in a generic spacetime.



12 Effective theories of gravity

2.2 The Blackfold Approach

In four dimensions, asymptotically flat black holes possess necessarily a spherical S2

event horizon [58]. In contrary, for higher dimensional gravity the topology of the event
horizon can differ from the spherical one. The presence of black holes with a non-trivial
horizon topology is probably one of the most surprising peculiarity of gravity in D ≥ 5.
Higher is the dimension of the spacetime richer is the phase structure of the possible
black holes but unfortunately, as one can imagine, the difficulty of finding such solutions
increases as well.

In five dimensions an extension of the Kerr black hole, a Myers-Perry (MP) black
hole, was presented in [59] maintaining the spherical horizon topology (that is S3).
Lately, Emparan and Reall in [60] succeeded in finding a five dimensional regular
rotating asymptotically flat black ring. A generalization to a charged black ring,
solution of D = 5 Einstein-Maxwell theory, was presented in [61]. The topology of the
black ring horizon is S1 × S2 where the rotation is along S1 identified by a radius R
and the horizon radius is r0. An interesting feature of this solution is that its angular
momentum, for a given mass, is unbounded from above. In four dimensions this is
forbidden. There exists a regime in which the ring can rotate so fast that it can reach
the condition R ≫ r0.

The presence of horizons with characteristic lengths of very different size is a novel
property exclusive of higher dimensional gravity. Generally, in D dimensions a black
hole is characterized by two length scales ℓM and ℓJ as

ℓM ∼ (GM)
1

D−3 , ℓJ ∼ J

M
, (2.2.1)

delineated by its mass M and angular momentum J . These scales can differ arbitrarily.
Consequently, we identify three possible regimes for the phase structure of stationary
black holes. Nothing new is believed to happen when ℓM ≫ ℓJ , the only stable phase
is the Myers-Perry solution. Black holes qualitatively behave similarly to the four
dimensional spherical black hole. Things get more interesting when ℓM ≈ ℓJ . A variety
of new solutions is expected together with the manifestation of possible instabilities
(in four dimensions black holes are stable).

The last condition refers to the ultra-spinning regime obtained when ℓJ ≫ ℓM . As
evident, for this limit a clear hierarchy of scales is present and one can treat the system
in terms of an effective theory. In order to understand what we mean by this, let us
analyse the behaviour of black hole solutions when the ultra-spinning limit is reached.
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Consider for instance a black ring and, as before, spin it very fast. Due to the
centrifugal force the radius R begins to increase, the black ring becomes very thin and
eventually we reach the regime R ≫ r0. Here a peculiar characteristic appears: in a
region very near to the horizon the ultra-spinning black ring looks locally like a boosted
black string. The same argument can be applied to MP black holes as shown in [23].
When the angular momentum is very large, the MP black hole “pancakes” along the
direction of the rotation and looks locally as a flat boosted black brane.

So, the main lesson from these examples is that when a generic black hole presents a
wide separation of scales we can describe it in terms of black string or brane. Integrating
out the short-distance physics of the system and replace it with a long-distance effective
theory. Essentially, it is the same principle behind hydrodynamics as explained for
the fluid/gravity correspondence. Finding solutions of higher dimensional gravity or
analysing their dynamics can be a very difficult task but when the length scales
characterizing the system differ substantially the model simplifies and we can use
approximate methods for studying these.

Assuming that black holes in a certain limit become locally black branes we can
instead change the perspective and consider black branes as the starting point to
construct new black hole solutions. One can indeed solve perturbatively Einstein
equations order by order from a wrapped or bent black branes. This is conceptually
the basis of the blackfold approach developed in [40, 41, 62] (a review can be found in
[63]). Indeed, a blackfold is defined as a black brane (possibly locally boosted) whose
worldvolume is bent into the shape of a submanifold of a background spacetime. The
blackfold approach describes the way in which a black brane can be bent into a given
background spacetime.

We can therefore use it to study the space of solutions and possibly construct new
ones. Applications of this method to black ring in different backgrounds are given in
[48] for flat space, in [49] for (A)dS, and in [64] for Taub-Nut asymptotics. Note that
the blackfold approach is not a peculiarity of flat space. Blackfolds embedded in (A)dS
background were studied by [49, 50].

Since the blackfold method captures the long-wavelength effective physics of black
holes it is also very useful for probing their dynamics and analysing their stability
properties. When the system presents a separation of scales one can integrate out the
short-distance degrees and the physics is then captured by an effective stress tensor. A
possible way to compute this tensor is using the Brown-York procedure as mentioned
previously for the fluid/gravity correspondence. Once again hydrodynamics is the
appropriate theory capturing the effective description of worldvolume theory. So, in
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a long wavelength regime, the black brane behaves like an effective fluid. At leading
order, a stationary solution will correspond to a perfect fluid with stress energy tensor
(2.1.3).

This blackfold approximation to study black brane dynamics is based on the
assumption that fluctuations considered along the worldvolume of the brane possess a
wavelength λ much larger than r0. In other words, we want that the perturbation scale
is large enough compared to the microscopic scale of the brane geometry that, in our
case, is set by the horizon radius. Blackfolds capture the long-distance dynamics of
higher-dimensional horizons that in turn is captured by viscous fluid dynamics and
elasticity of a brane. A black p-brane, hence, take the form of a fluid flow living on a
dynamical worldvolume. The main difference with the fluid/gravity correspondence is
that the fluid is not located at boundary of AdS space time but lives on a dynamical
wordvolume of arbitrary co-dimension.

From a given gravitational solution, order by order in a derivative expansion, we
are able to construct the effective stress energy tensor (and vice versa) which encodes
the effect of the perturbations at long-distances r ≫ r0. Once we have computed the
stress tensor we are then able to extract the transport coefficients that characterize the
effective theory of the black brane under analysis. We are basically replacing the problem
of investigating complicated gravitational physics by an achievable computation of
response coefficients.

The method was developed in [42] to study the hydrodynamical properties of a
neutral black brane and later extended to the charged case by [43] for a Reissner-
Nordström black brane and in [44] for the Black D3-brane solution. In Chapt.5 the
blackfold approach will be used for the analysis of the fluid dual to charged dilatonic
black branes. In App.C we give the details of the computation.

An interesting outcome of having the dissipative corrections of the system is that
one can therefore analyse the response to small long-wavelength perturbations and
deduce the stability of the brane. This is a very straightforward method to examine
the phase structure of possible solutions. In Sec.5.2.3 and 5.3.2 we will perform the
stability analysis for the Maxwell and fundamentally charged branes.

In the following section we will give an example of how the blackfold approach
works illustrating the procedure for a perturbed neutral black brane.

2.2.1 Applying the blackfold approach

As outlined very much repeatedly, the key ingredient to applied the blackfold approach
is the existence of a wide separation of scale. Blackfolds, indeed, capture the long-
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distance dynamics of higher-dimensional horizons which will be constructed from
solving Einstein equations using a matched asymptotic expansion (MAE). MAE is a
common approach to solve differential equations when the system exhibit two regions
were the equations simplify. In these regions we are then able to solve the equations
and each solution provides the appropriate boundary condition for the other in an
the intermediate region. This leads to a systematic approach for constructing an
approximated solution correcting it order by order a in perturbative expansion.

To give an idea of the blackfold construction we analyse the long wavelength
description of a flat, boosted black p-brane in D = p + n + 3 spacetime dimensions
with metric

ds2 =
(
ηab + rn0

rn
uaub

)
dσadσb + dr2

1 − rn0/r
n

+ r2dΩn+1 , (2.2.2)

where ηab is the Minkowski metric and the coordinates σa = (t, zi), i = 1, .., p, span the
brane worldvolume where zi are flat spacial directions of the brane. The volume of the
transverse unit sphere is label with Ωn+1. This solution is parametrized by the horizon
radius r0, the normalized boost velocity ua and the D − p− 1 transverse coordinates
X⊥ to the worldvolume of the brane which we identify as collective coordinates
φ = {X⊥, r0, u

i}.
We now perturb this metric with a long-wavelength perturbation and examine two

possible regions of the system:
– the near horizon region: R ≫ r, where R delineates a characteristic scale

length of the system, typically given by the smallest intrinsic or extrinsic curvature
radius of the worldvolume. This region is well described by (2.2.2) when R → ∞ (at
zeroth order) but when R is finite the collective coordinates become functions of the
worldvolume coordinates , that is φ(σa). Near the horizon this metric captures the
distortion caused by the background curvature on the black brane. The appropriate
metric describing the near region than takes the form

ds2 =
(
ηab(σ) + r0(σ)n

rn
ua(σ)ub(σ)

)
dσadσb + dr2

1 − r0(σ)n/rn + r2dΩn+1 + ...

(2.2.3)
where the dots indicate we have to correct it since is not a solution of the Einstein’s
equations any more. For this reason we perform a derivative expansion of the
equations and correct the solution order by order. It is important to remark that
we need to preserve the regularity of the horizon after the perturbations.
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– the far region: r ≫ r0. To zeroth order in r0/R, the far region geometry is
determined by the background metric. We than need to consider backreaction for
the next order. The metric deviates from its form and the variation is sourced by
the appropriate blackfold effective stress energy tensor. This effective stress tensor
solves the conservation equations

∇aTab = 0 . (2.2.4)

which will give the blackfold effective equations of motion.
So, once we obtain the corrected metric (2.2.3) to a given order using the Brown-

York prescription we are able to compute Tab in the overlap region R ≫ r ≫ r0 where
the gravitational field is weak.

At leading order, for the boosted black p-brane this tensor is given by

T ab = Ωn+1

16πGr
n
0

(
nuaub − ηab

)
. (2.2.5)

Comparing it with the stress tensor of an isotropic fluid in (2.1.3) we obtain the values
of the pressure and the energy density of the effective fluid. These are

ϱ = Ωn+1

16πGr
n
0 , P = − 1

n+ 1ϱ . (2.2.6)

The first order corrections can be found in [42].
Computing the horizon area and the surface gravity one can determine the entropy

density and the local temperature, respectively, associated to the fluid in its rest frame
that are

s = Ωn+1

4G rn+1
0 , T = n

4πr0
(2.2.7)

using the Bekenstein-Hawking identifications. It is easy to verify that the Euler-Duhem
relation

ϱ+ P = T s (2.2.8)

is satisfied.
So, in this section we have shown how to apply the blackfold method to construct

the effective theory that capturing the brane dynamics. This effective long-wavelength
theory is expressed in term of a fluid living on a dynamical worldvolume which satisfies
the conservation equations in (2.2.4). This method is an efficient way to investigate
new solutions of higher dimensional gravity and to determine the properties of black
branes in a certain limit.
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In the next section we turn our attention to another kind of correspondence. We
discuss how to connect different spacetimes with very few ingredients: a dimensional
reduction and an analytic continuation. This can help in the perspective of obtaining a
holographic description for a spacetime different from AdS.





Chapter 3

Map for different spacetimes

3.1 AdS/Ricci flat correspondence

Holography works extremely well in AdS and it seems that the structure of such
spacetime is a key ingredient for the correspondence to work. During the last fifteen
years people have been trying to develop an holographic dictionary that applies to
spacetimes other than AdS. Unfortunately we are still quite far from a clear under-
standing of holographic duality for these cases. Recent progress towards holography for
asymptotically flat spacetimes has been achieved in [52, 53]. They derived a map, called
“AdS/Ricci flat correspondence”, between solutions of the Einstein equations with
negative cosmological constant and Ricci-flat solutions using generalized dimensional
reduction, a diagonal Kaluza-Klein (KK) dimensional reduction [65, 66] followed by an
analytic continuation in the number of dimensions [52, 53, 67, 68], which in particular
includes a map between asymptotically AdS and asymptotically flat spacetimes. This
map does not involve an analytic continuation in the complex plane, but instead rests
on a suitable compactification of some coordinates in each space. It is important to
stress that the correspondence works not only for the equations of motion, but also at
the level of the action. The basic procedure of the AdS/Ricci flat correspondence is
the same as the one used for developing the map between de Sitter (dS) spaces and
AdS shown in Sec.3.2. For this reason we omit the explication of the derivation of the
map and its applications.

We want to stress the importance of this correspondence for holography. In [52, 53]
a relevant result was found: the holographic stress tensor in AdS is mapped to a brane
situated at r = 0 in Minkowski spacetime, which serves as the source for the metric
perturbations. This is in contrast to previous works that, in analogy with the AdS
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case, studied holography at various boundaries of flat space [69–71]. Such result can
therefore possibly give hints for understanding how to set up holography in flat space.

In the next section, we present the generalization of the AdS/Ricci flat map for dS
including moreover matter fields.

3.2 Mapping AdS to dS spaces and back

3.2.1 Introduction

Since the discovery of the AdS/CFT correspondence, a concrete realization of the
holographic idea that theories with gravity can be described by theories without gravity
in one dimension less, a lot of effort has been invested in the study of this and other
holographic dualities. An area in which a holographic duality would be very useful is
for the description of the early Universe, especially for inflation. However, the geometry
of the Universe at that time is close to dS space [72], and also today the measured
cosmological constant is positive [73], so that the AdS/CFT correspondence is not
directly applicable. A dS/CFT correspondence has been proposed by Strominger [74, 75]
(see also Refs. [76–81]), but the boundary CFT can be nonunitary and contain complex
conformal weights (e. g., for sufficiently massive scalars in dS). Another approach to
use holography in inflation has been put forward by McFadden and Skenderis [82–
85], where correlators are calculated using the standard AdS/CFT correspondence
and then analytically continued to complex momenta to obtain results for de Sitter
spacetime. This construction has been tested to give the right predictions for correlators
of gravitons and inflaton perturbations, which are both massless fields, but it is not
assured that it works for massive fields as well.

Recently, as presented in Sec.3.1 a map between solutions of the Einstein equations
with negative cosmological constant and Ricci-flat solutions was derived [52, 53]. In
this section, we generalize such construction to solutions of the Einstein equations with
positive and negative cosmological constants, including matter in the form of a scalar
field — a map that can bring AdS to dS and vice versa. The possibility of such a map
had already been mentioned in [53], but only the matter-free reduced action in the
Jordan frame was calculated there. We organized this section as follows: First, we derive
the map using a diagonal KK dimensional reduction of the action. Reducing also the
higher-dimensional Einstein equations (which leads to the same result), we then show
that the reduction ansatz is consistent. Afterwards, we give some examples: the maps
between empty AdS and dS spaces, between black holes with AdS/dS asymptotics and
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for perturbations near the boundary of AdS, which are relevant for holography. For
this last case, we calculate the Brown-York stress tensor and compare with holographic
expectations. By mapping a known Kerr/dS black hole, we also find a (most probably
new) solution for a rotating black hole in AdS with a hyperbolic horizon, showing the
feasibility of using the map as a solution generator.

For the metric and curvature tensors, we use the “+++” convention of Ref. [4].
Capital latin indices denote coordinates in the higher-dimensional space before reduc-
tion, and lowercase latin (greek) indices denote coordinates in the reduced (compact)
directions. Quantities which refer to (asymptotic) dS space are indicated by a prime,
while quantities without a prime either are general or refer to (asymptotic) AdS space.

3.2.2 Deriving the map

In this section, we show how the map can be derived by a diagonal KK dimensional
reduction of a higher-dimensional system, once directly at the level of the action and
once by reducing the higher-dimensional Einstein equations. We start from a (n+ ν)-
dimensional spacetime that is a solution of the Einstein equations with a cosmological
constant (which can be either positive or negative) and matter. Of these coordinates,
ν will be compactified, with the size of the compactification determined by a scalar
field φ (a dilaton) that only depends on the n reduced coordinates. That is, we start
from a metric

ds̄2 = ḡMN dXM dXN , M,N = 0, . . . , n+ ν − 1 (3.2.1)

that solves the Einstein equations with matter

ḠMN + ΛḡMN = 8πGn+ν
N T̄MN (3.2.2)

in n+ ν dimensions. We perform dimensional reduction by taking the ansatz

ds̄2 = e2αφ(x) ds2 + e2βφ(x) dσ2 (3.2.3)

with the n-dimensional reduced metric

ds2 = gab(x) dxa dxb (3.2.4)
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and the ν-dimensional compact metric

dσ2 = γαβ(y) dyα dyβ . (3.2.5)

We take the metric of the compact space γαβ to be fixed, while the reduced metric gab is
dynamical and, like the scalar φ, only depends on the coordinates xa. The parameters
α and β are constants and can be chosen at will; however, β cannot be zero for a
consistent reduction, as can be seen later on from the reduced equations (3.2.15).

Generalized dimensional reduction of the action

The (n+ν)-dimensional action is the Einstein-Hilbert action with cosmological constant
Λ and a free, canonically normalized scalar field χ

S =
∫ [

R̄ − 2Λ
16πGn+ν

N
− 1

2 ḡ
AB∂Aχ̄∂Bχ̄

]
√

−ḡ dn+νX , (3.2.6)

where Gn+ν
N is Newton’s constant in n+ ν dimensions. For the dimensional reduction,

the scalar χ̄ is taken to only depend on the reduced coordinates, and to simplify the
formulas we rescale it

χ =
√

16πGn+ν
N χ̄ . (3.2.7)

Calculating the curvature tensors for the ansatz (3.2.3), which is done in App. A.1,
and substituting them into the action (3.2.6), we obtain (after integration by parts
and ignoring surface terms)

S = 1
16πGn+ν

N

∫
e[(n−2)α+νβ]φ

[
R − 2e2αφΛ

+ e2(α−β)φR[γ] − 1
2∇aχ∇aχ

+
(

(n− 1)(n− 2)α2 + 2(n− 1)ναβ

+ ν(ν − 1)β2
)

∇aφ∇aφ

]
√

−g √
γ dnx dνy .

(3.2.8)

In this expression, R[γ] is the Ricci scalar of the compact metric γαβ, and ∇ is the
covariant derivative with respect to the reduced metric gab. Setting α = 0, β = 1/ν
and χ = 0, we recover the matter-free reduced action in the Jordan frame derived in
Ref. [53].
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Now take the compact space to be an Einstein space which has Rµν [γ] = k(ν −
1)H2γµν , where H is a constant with dimensions of inverse length related to the radius
of the compact space (e. g., for a sphere, the radius would be H−1). The constant k
takes the values ±1, and the compact space has volume V k

ν ∝ H−ν . We express the
cosmological constant as Λ = λ(n+ν−1)(n+ν−2)/(2ℓ2) with λ = ±1, and a constant
ℓ with dimensions of length (e. g., in pure AdS, ℓ is the AdS radius). Integrating out
the compact coordinates, we get

S = V k
ν

16πGn+ν
N

∫ [
R − λ

(n+ ν − 1)(n+ ν − 2)
ℓ2 e2αφ

+ ν(ν − 1)kH2e2(α−β)φ − 1
2∇aχ∇aχ

+
(

(n− 1)(n− 2)α2 + 2(n− 1)ναβ

+ ν(ν − 1)β2
)

∇aφ∇aφ

]
e[(n−2)α+νβ]φ√−g dnx .

(3.2.9)

To construct a map between a space which is a solution for Λ > 0 and one for
Λ < 0, we perform this reduction twice, with different internal spaces. On one hand,
we consider the reduced action S with Λ < 0 (and thus λ = −1), and on the other
hand a second reduced action S ′ (denoted by primes) with Λ′ > 0 (and thus λ′ = +1).
The actions S and S ′ are proportional to each other,

S = Gn′+ν′

N
V k′
ν′

V k
ν

Gn+ν
N

S ′ , (3.2.10)

if and only if k = −1, k′ = +1 and

ℓ = 1/H ′ , H = 1/ℓ′ , (3.2.11a)
α = α′ − β′ , β = −β′ , (3.2.11b)
n = n′ , ν = 2 − n′ − ν ′ . (3.2.11c)

This is consistent with the AdS/Ricci-flat correspondence [52, 53], where, however, the
constants α and β were fixed (choosing a specific frame and a canonical normalization
for the scalar field).

That is, given a solution of the Einstein equations with negative cosmological
constant of the form

ds̄2 = e2αφ(x)g
(n)
ab dxa dxb + e2βφ(x)γ

(ν)−
αβ dyα dyβ , (3.2.12)
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where we have shown explicitly the dimensions of the metrics and denoted the negative
curvature of the compact space by a minus sign, and a scalar field χ, the line element

ds̃2 = e2α′φ(x)g
(n′)
ab dxa dxb + e2β′φ(x)γ

(ν′)+
αβ dyα dyβ

= e2(α−β)φ(x)g
(n)
ab dxa dxb

+ e−2βφ(x)γ
(2−n−ν)+
αβ dyα dyβ

(3.2.13)

with the same metric g(n)
ab and scalar field φ as well as the same scalar χ gives a solution

of the Einstein equations with positive cosmological constant. This map is valid in
general dimensions, and while the dimensions of the reduced spaces are the same, the
dimension of the compact space changes. For sufficiently large n and ν, ν ′ will be
negative and must be analytically continued to a positive value. This poses no problem
as long as no factors of 1/ν ′ (or similar) appear.

It is important to note that any explicit factors of n, ν, ℓ or H appearing in the
metric and the scalar fields (or α and β) must be identified as well using (3.2.11), so
that one needs to know the solution for arbitrary ν (since n′ = n, one may fix n). If one
wants to work in a specific frame (Einstein or Jordan), one may fix α or β, but this is
not necessary for the map. Furthermore, exchanging primed and unprimed quantities
in (3.2.11), we see that the map works likewise both ways.

Since the actions are equal up to an overall constant (3.2.10), the equations of
motion for the reduced space and the scalar field are the same. However, we need to
check the consistency of the reduction, i. e., that the Einstein equations that follow
from the reduced action (3.2.9) can be obtained by reducing the equations that follow
from the starting action (3.2.6). This will be done in the next section.

Reduction of the Einstein equations

The Einstein equations that follow from the original (n+ ν)-dimensional action (3.2.6)
are

R̄AB − 1
2R̄ḡAB + ΛḡAB

= 1
2

[
∇̄Aχ∇̄Bχ− 1

2 ḡAB∇̄Cχ∇̄Cχ
]
,

(3.2.14)

and the scalar field equation reads ∇̄A∇̄Aχ = 0. Using the product space metric
ansatz (3.2.3), they can be decomposed using the formulas from App. A.1. Imposing
(as in the last section) that the compact metric is Einstein with Ricci tensor Rµν [γ] =
k(ν − 1)H2γµν and taking Λ = λ(n + ν − 1)(n + ν − 2)/(2ℓ2), we obtain after some
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algebraic manipulations

Rmn − λ(n+ ν − 1)/ℓ2e2αφgmn − αgmn∇a∇aφ

− [(n− 2)α + νβ] ∇m∇nφ

+
[
(n− 2)α2 + 2ναβ − νβ2

]
∇mφ∇nφ

− α [(n− 2)α + νβ] gmn∇aφ∇aφ = 1
2∇mχ∇nχ ,

(3.2.15a)

β
[
∇a∇aφ+ [(n− 2)α + νβ] ∇aφ∇aφ

]
+
[
λ(n+ ν − 1)/ℓ2 − k(ν − 1)H2e−2βφ

]
e2αφ = 0 ,

(3.2.15b)

∇a∇aχ = [(n− 2)α− νβ] (∇aφ) ∇aχ . (3.2.15c)

These are exactly the equations that follow by varying the reduced action (3.2.9). We
thus conclude that the reduction is consistent. Here we also see why the restriction
β ̸= 0 is important: for β = 0, the second equation does not give any restriction on the
dilaton, but instead relates the sizes of the extended and the compact space.

In the Einstein frame, we have (n− 2)α + νβ = 0, and the equations reduce to the
simpler ones

Rmn − λ(n+ ν − 1)/ℓ2e2αφgmn − αgmn∇a∇aφ

+ νβ(α− β)∇mφ∇nφ = 1
2∇mχ∇nχ ,

(3.2.16a)

β∇a∇aφ =
−
[
λ(n+ ν − 1)/ℓ2 − k(ν − 1)H2e−2βφ

]
e2αφ ,

(3.2.16b)

∇a∇aχ = 0 . (3.2.16c)

Note that while α, β and ν individually change under the map (3.2.11), “being in
the Einstein frame” is a condition that is preserved, as can be easily seen from the
term-by-term comparison of the corresponding actions. However, it is almost always
easier to work with α = 0 or ±1 and β = ±1, as we will do in the following.

3.2.3 Applications

In this section, we apply the map derived above to concrete examples. First, we give a
short introduction to compact hyperbolic spaces, which are an example of Riemannian
Einstein manifolds of constant negative curvature, and which are the simplest space
of negative Ricci curvature to use in the map. Afterwards, we show that we can map
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pure dS to pure AdS. The next subsection then treats small perturbations on top of
AdS, which arise in holography in the AdS/CFT correspondence, in order to explore
a possible dS/CFT correspondence via our map. Lastly, we show how to map the
Schwarzschild-dS black hole to the Schwarzschild-AdS black hole, and map a rotating
Kerr/dS black hole to AdS, obtaining a (probably new) Kerr/AdS black hole solution
with hyperbolic horizon.

Compact hyperbolic spaces

Hyperbolic spaces are the analogue of AdS in Riemannian geometry, in the same
way that the sphere is the Riemannian analogue of dS. It is well known that the
ν-dimensional unit sphere can be defined by embedding it into a (ν + 1)-dimensional
flat Euclidean space known as ambient space, where it arises as the submanifold

δABX
AXB = 1 , A,B = 1, . . . , ν + 1 . (3.2.17)

The metric of the sphere is then the induced metric obtained by restricting the flat
ambient metric δAB to this submanifold. In the same way, hyperbolic spaces (of unit
radius) are obtained from an ambient space with flat Lorentzian metric ηAB as the
submanifold

ηABX
AXB = −1 . (3.2.18)

Choosing

X1 = 4δαβyαyβ − 1
4y1 , XA = yα

y1 , A = α = 2, . . . , ν (3.2.19)

and solving equation (3.2.18) for X0, one obtains the induced metric

γαβ = ηAB
dXA

dyα
dXB

dyβ = δαβ
(y1)2 . (3.2.20)

In these coordinates, it is clear that hyperbolic space is the Riemannian analogue
of AdS (identifying y1 with r, where r is the radial coordinate). Another coordinate
system which will be more suited for the purposes of the map later on is obtained by
choosing

X1 = sinh y1 cos y2 (3.2.21)

and taking the coordinates XA for A = 2, . . . , ν to be spherical coordinates with radius
sinh y1 sin y2. This choice gives the induced metric

γαβ dyα dyβ = dy2
1 + sinh2 y1 dΩ2

ν−1 . (3.2.22)



3.2 Mapping AdS to dS spaces and back 27

Spaces which do not have unit radius are then obtained by simply multiplying the
metric by the (constant) radius.

One now has to compactify this space, which is done by taking the quotient by a
discrete subgroup of isometries (which are the isometries of the ambient space that
leave invariant the submanifold (3.2.18)). Of course, the local metric does not change
under this compactification, and one easily calculates that

Rabcd[γ] = −H2(γacγbd − γadγbc) (3.2.23)

for all compact hyperbolic spaces (CHSs). An example of such a compactification can
easily be given: take the two-dimensional hyperbolic space with metric

ds2 = dx2 + dy2

(Hy)2 . (3.2.24)

The isometry group of this metric is formed by the transformations

(x+ iy) → a(x+ iy) + b

c(x+ iy) + d
(3.2.25)

with ad − bc = 1 (the Möbius transformations), as one can easily check. A discrete
subgroup of this group is the modular group, where the parameters a, b, c and d are
restricted to be integers. One then identifies points which are mapped one into the other
by the action of this subgroup, which e. g. includes x → x+ k, k ∈ Z (for a = d = 1,
b = k and c = 0). A fundamental domain for this group action is given by points which
have x2 + y2 ≥ 1 and |x| ≤ 1

2 , and the CHS is obtained by identifying the borders, just
like the torus can be obtained by identifying the sides of a rectangle. The volume of
this space is given by

V −
2 =

∫ 1
2

− 1
2

∫ ∞
√

1−x2
(Hy)−2 dy dx = π

3H2 , (3.2.26)

which is finite, showing that this CHS really is compact. In higher dimensions, there
are plenty of CHSs [86–88], and so there is no problem using them in our map.

AdS/dS spacetimes

Of course, the simplest examples for the map are empty dS/AdS spaces. Taking χ = 0,
it turns out to be easier to start from the dS side, where the (n′ + ν ′)-dimensional
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metric (in the Poincaré patch) takes the form

ds̃2 = (ℓ′)2

η2

(
− dη2 + dx⃗2

n′−2 + dr2 + r2 dΩ2
ν′

)
, (3.2.27)

where we compactified ν ′ coordinates on a sphere, with metric dΩ2
ν′ . Comparing with

the general formula (3.2.13), the most economic choice is to take α′ = 0 and β′ = −1,
which means α = β = 1. The reduced metric then reads (using the identification (3.2.11)
for the second equality)

g
(n)
ab dxa dxb = (ℓ′)2

η2

(
− dη2 + dx⃗2

n′−2 + dr2
)

= 1
(Hη)2

(
− dη2 + dx⃗2

n−2 + dr2
)
,

(3.2.28)

and the scalar field is given by

φ = ln
(

η

H ′ℓ′r

)
= ln

(
Hℓη

r

)
(3.2.29)

(recall that the compact space was taken to be of radius 1/H ′ in the map (3.2.11), which
needs to be compensated by the scalar field since there is no H ′ in the metric (3.2.27)).
The map tells us that the metric obtained from equation (3.2.12)

ds̄2 = e2φg
(n)
ab dxa dxb + e2φ dσ2

ν

= ℓ2

r2

(
− dη2 + dx⃗2

n−2 + dr2 + η2 dΥ2
ν

)
,

(3.2.30)

with dΥ2
ν the ν-dimensional line element of a CHS of unit radius, is a solution of the

Einstein equations with negative cosmological constant. To recover the metric of the
Poincaré patch of AdS, we take the metric of the CHS in the form (3.2.22)

dΥ2
ν = dy2

1 + sinh2 y1 dΩ2
ν−1 (3.2.31)

and perform the coordinate transformation

η2 = t2 − z⃗2
ν , sinh2 y1 = z⃗2

ν

t2 − z⃗2
ν

. (3.2.32)
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Then we obtain (analogous to the Milne universe [72])

− dη2 + η2 dΥ2
ν = − dt2 + d|z⃗ν |2 + z⃗2

ν dΩ2
ν−1 = − dt2 + dz⃗2

ν , (3.2.33)

so that the metric (3.2.30) reduces to

ds̄2 = ℓ2

r2

(
− dt2 + dx⃗2

n−2 + dr2 + dz⃗2
ν

)
(3.2.34)

which is AdS in n + ν dimensions, with r the radial/holographic coordinate. By
compactifying ν ′ coordinates of de Sitter space on a sphere and applying the map, we
thus find AdS space.

An interesting feature of the map concerns the position of the AdS boundary, which
is located at r = 0. Since the extended metric does not change under the mapping,
this surface is located in the bulk of dS, and has itself the geometry of a dS space: an
(n− 1)-dimensional dS brane. This happens in a similar manner in the AdS/Ricci-flat
correspondence [52, 53], where the AdS boundary is mapped to a flat brane in the
bulk of Minkowski spacetime, and we will discuss implications of this fact in Sec. 3.2.3,
where we treat perturbations in AdS/dS.

Just like AdS, empty dS enjoys a conformal symmetry. Of special importance
are dilatations and special conformal transformations. We undo the compactification
in (3.2.27), writing

dr2 + r2 dΩ2
ν′ = dr⃗2

ν′+1 , (3.2.35)

so that the metric takes the form

ds̃2 = (ℓ′)2

η2

(
− dη2 + dx⃗2

n′−2 + dr⃗2
ν′+1

)
. (3.2.36)

The dilatations are given by

η → λη , x⃗ → λx⃗ , r⃗ → λr⃗ . (3.2.37)

The invariance of the metric under this transformation is clear. Defining z⃗ = {x⃗, r⃗},
special conformal transformations read

η → η − 2η(⃗bz⃗) , (3.2.38a)
z⃗ → z⃗ + b⃗(z⃗2) − 2z⃗(⃗bz⃗) − η2⃗b , (3.2.38b)
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with b⃗ an infinitesimal constant vector. One can easily verify that (3.2.36) is invariant.
After the compactification, we are only interested in the transformation of the reduced
part. We decompose therefore b⃗ = {⃗bx, b⃗r} and define c ≡ (⃗brr⃗)/r. The transformation
of the reduced coordinates then only depends on b⃗x and c, and we calculate

η → η − 2η(⃗bxx⃗+ cr) , (3.2.39a)
x⃗ → x⃗+ b⃗x(x⃗2 + r2 − η2) − 2x⃗(⃗bxx⃗+ cr) , (3.2.39b)
r → r + c(x⃗2 + r2 − η2) − 2r(⃗bxx⃗+ cr) . (3.2.39c)

The reduced metric (3.2.28) is invariant under this transformation, but the dila-
ton (3.2.29) changes as

φ → φ− c

r
(x⃗2 + r2 − η2) . (3.2.40)

We see that the compactification breaks the original conformal symmetry, but the
resulting transformations can be seen as a generalized conformal structure — the
reduced metric is conformally invariant, but the dilaton introduces a scale in the theory.
These transformations are, however, solution generating transformations, as can be
checked from the equations (3.2.15). Since the map brings solutions to solutions, the
same transformations are valid in AdS space.

Asymptotic AdS with perturbations

In the AdS/CFT correspondence, the large N and large ’t Hooft coupling limit of the
conformal field theory corresponds to a weakly coupled gravity theory that can be
described by supergravity in an asymptotically AdS space. The dictionary, the precise
relation between these theories including renormalization, is known [89, 90], and in
this section we calculate how perturbations near the AdS boundary, which are relevant
in this holographic dictionary, are mapped to perturbations around dS. Again, we treat
vacuum solutions and take χ = 0.

We therefore approach the mapping from the other direction: take α = 0 and β = 1,
and a reduced metric and dilaton of the form

g
(n)
ab = ℓ2

r2 (ηab + hab(η, x⃗, r)) (3.2.41a)

φ = ln
(
Hℓη

r

)
+ ψ(η, x⃗, r) , (3.2.41b)

where we take the Fefferman-Graham gauge [91]: hab does not have components in
the radial direction, and both hab and ψ vanish as r → 0. Both hab and ψ can be
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considered as perturbations on top of the background AdS metric, and we retain the
correct asymptotic behavior as r → 0. The full metric then reads

ds̄2 = ℓ2

r2

[
(ηab + hab) dxa dxb + e2ψη2 dΥ2

ν

]
, (3.2.42)

with dΥ2
ν the line element of a CHS of unit radius (3.2.31). We thus leave the compact

space unperturbed, and only vary its radius. For hab = ψ = 0, the map gives the same
de Sitter metric (3.2.27), showing that α and β can be chosen freely and in a suitable
way for the problem at hand.

Since our boundary metric is flat (we just have the Poincaré patch of AdS in
the unusual coordinates (3.2.32)), the relevant corrections are of the form [53, 90]
(n+ ν ≥ 4)

hab = rdh
(d)
ab (η, x⃗) + rd+2h

(d+2)
ab (η, x⃗) + O

(
rd+3

)
, (3.2.43a)

ψ = rdψ(d)(η, x⃗) + rd+2ψ(d+2)(η, x⃗) + O
(
rd+3

)
, (3.2.43b)

where we defined d ≡ n+ ν − 1. The (reduced) Einstein equations (3.2.15) then give

h(d) = −2νψ(d) , (3.2.44a)
h(d+2) = −2νψ(d+2) , (3.2.44b)

η∂mh(d)
mn = νh

(d)
n0 − δ0

nh
(d) , (3.2.44c)

2(d+ 2)η2h(d+2)
mn = −η2∂2h(d)

mn + νη∂ηh
(d)
mn

− 2νδ0
(mh

(d)
n)0 + 2δ0

mδ
0
nh

(d) .
(3.2.44d)

For ν = 0 (i. e., no compact dimensions), we should recover perturbations around pure
AdS, and we indeed obtain

h(d) = 0 , (3.2.45a)
∂mh(d)

mn = 0 , (3.2.45b)
2(d+ 2)h(d+2)

mn = −∂2h(d)
mn , (3.2.45c)

which are the well-known conditions for asymptotically AdS spaces with a flat bound-
ary [53, 90].
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After performing the map (3.2.13), (3.2.11), we obtain the de Sitter metric with
perturbations of the form

ds̃2 = (ℓ′)2

η2 e−2ψ
[
(ηab + hab) dxa dxb + r2 dΩ2

ν′

]
. (3.2.46)

However, due to the now singular factor rd = r1−ν′ in the perturbations, they no
longer fulfill the source-free Einstein equations (3.2.15). On the de Sitter side after the
map, we have α′ = β′ = −1, so that the reduced Einstein equations (with a general
source (A.1.3)) read

Rmn + gmn∇a∇aφ− (n′ + ν ′ − 1)/(ℓ′)2e−2φgmn

+ (n′ + ν ′ − 2) (∇m∇nφ+ ∇mφ∇nφ− gmn∇aφ∇aφ)

= 8πGn′+ν′

N

(
Tmn − 1

(n′ + ν ′ − 2)gmnT
)
,

(3.2.47a)

− ∇a∇aφ+ (n′ + ν ′ − 2)∇aφ∇aφ− (ν ′ − 1)(H ′)2

+ (n′ + ν ′ − 1)/(ℓ′)2e−2φ = 8π
(n′ + ν ′ − 2)G

n′+ν′

N T ,
(3.2.47b)

where T = gmnTmn = (H ′)2r2ηmnTmn. Putting the perturbations (3.2.43) into these
equations and using the conditions (3.2.44) (taking care to replace n → n′, ν → 2−n′−ν ′

and d → 1 − ν ′ according to the map), we obtain

Tmn = − (1 − ν ′)
16πGn′+ν′

N
h(d)
mnr

−ν′
δ(r)

= −
[( 1
H ′

)d−1 d

16πGd+1
N

h(d)
mn

]
δ1+ν′(r⃗) ,

(3.2.48)

where we have “uncompactified” the compact coordinates as in (3.2.35), and defined
the (d+ 1)-dimensional Newton’s constant as

Gd+1
N ≡ Gn′+ν′

N
V +
ν′

= Gn′+ν′

N
(H ′)−ν′Ων′

. (3.2.49)

We thus see that the perturbations after the map are sourced by a stress tensor situated
on a brane (with intrinsic de Sitter geometry) located in the bulk of de Sitter at r = 0.
This map is shown in Fig. 3.1. Furthermore, if the conformal field theory living at the
(n+ν−1)-dimensional boundary of AdS before the compactification can be consistently
reduced to an n-dimensional theory plus an additional scalar operator, the expectation
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η,x

r

AdS dS

r

η,x

map

AdS boundary at r = 0 dS-brane at r = 0

hab hab

r

Fig. 3.1 The map for perturbations around (anti-)de Sitter spacetime. On the AdS
side, the perturbations live near the boundary at r = 0, while the map puts them near
a brane located in the bulk of dS at r = 0.

value of the n-dimensional holographic stress tensor would be given by the term in
brackets in (3.2.48), 〈

TCFT
mn

〉
= dℓd−1

16πGd+1
N

h(d)
mn (3.2.50)

(taking into account the map: n = n′ and H ′ = 1/ℓ). This is the same conclusion that
has been reached in the AdS/Ricci-flat correspondence [52, 53]: the (negative) dual
stress tensor of the holographic CFT serves as a source for the metric perturbations
after the map, with support on a brane situated in the bulk of Minkowski spacetime.

To reinforce these indications, we calculate the (subtracted and rescaled) quasilocal
Brown-York stress tensor [57, 89, 90, 92] associated with a surface r = const. in the
metric (3.2.42). The normal vector to this surface is given by

nA = r

ℓ
δAr (3.2.51)

and normalized to nAnA = 1. The extrinsic curvature tensor KAB of the surface is
defined by

KAB = (δMA − nAn
M)(δNB − nBn

N)∇MnN , (3.2.52)
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and we calculate
∇MnN = ℓ

r2 δ
r
Mδ

r
N + r

2ℓ∂rgMN (3.2.53)

and from this

Kab = − ℓ

r2 (ηab − δraδ
r
b ) + ℓr

2 ∂r
( 1
r2hab

)
= − ℓ

r2

(
ηab − δraδ

r
b − (d− 2)

2 rdh
(d)
ab

)
+ O

(
rd
)
,

(3.2.54a)

Kaβ = 0 , (3.2.54b)

Kαβ = ℓr

2 η
2γ

(−1)
αβ ∂r

( 1
r2 e2ψ

)
= − ℓ

r2η
2γ

(−1)
αβ

(
1 − (d− 2)rdψ(d)

)
+ O

(
rd
)
,

(3.2.54c)

where γ(−1)
αβ is the metric of a CHS of unit radius, dΥ2

ν = γ
(−1)
αβ dyα dyβ. The trace of

the extrinsic curvature follows as (using the conditions (3.2.44))

K = gMNKMN = −d

ℓ
+ O

(
rd+2

)
. (3.2.55)

The unsubtracted Brown-York stress tensor can be shown to be equal to [89, 92]

8πGn+ν
N TBY

MN = KMN −KgMN , (3.2.56)

and the counterterms that one needs to subtract from the stress tensor to make it well
defined as r → 0 depend on the dimension. For dimensions up to four, they are given
by [89, 90]

8πGn+ν
N TCT

MN = −(d− 1)
ℓ

gMN

− ℓ

d− 2

(
RMN − 1

2RgMN

)
,

(3.2.57)

where RMN is the Ricci tensor of the induced boundary metric gMN(r = const). In
even dimensions, there is an additional term (related to the conformal anomaly) which
we do not consider here. The Ricci tensor for the induced boundary metric can be
found in App. A.2, and using the perturbation (3.2.43) and the conditions (3.2.44), we
find up to corrections of order O

(
rd
)

8πGn+ν
N TBY

ab = ℓ

r2

[
(d− 1)ηab + (3d− 2)

2 rdh
(d)
ab

]
, (3.2.58a)
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8πGn+ν
N TBY

aβ = 0 , (3.2.58b)

8πGn+ν
N TBY

αβ = ℓ

r2η
2γ

(−1)
αβ

[
(d− 1) + (3d− 2)rdψ(d)

]
, (3.2.58c)

8πGn+ν
N TCT

ab = −(d− 1) ℓ
r2

(
ηab + rdh

(d)
ab

)
, (3.2.58d)

8πGn+ν
N TCT

aβ = 0 , (3.2.58e)

8πGn+ν
N TCT

αβ = −(d− 1) ℓ
r2η

2
(
1 + 2rdψ(d)

)
γ

(−1)
αβ . (3.2.58f)

Note that to leading order, only the first counterterm in (3.2.57) contributes, while
the others are of order O

(
rd
)
. The subtracted and rescaled stress tensor is then given

by [90]

T SR
MN = lim

r→0

( ℓ
r

)d−2 (
TBY
MN + TCT

MN

) , (3.2.59)

and we finally obtain

T SR
ab = dℓd−1h

(d)
ab

16πGn+ν
N

, (3.2.60a)

T SR
aβ = 0 , (3.2.60b)

T SR
αβ = 2η2γ

(−1)
αβ

dℓd−1ψ(d)

16πGn+ν
N

. (3.2.60c)

This is consistent with our earlier remarks around equation (3.2.50), and shows explicitly
what form the stress tensor expectation value in the dual CFT would have to take.

Black holes

In the case of black objects, solutions for general n are much more difficult to obtain.
Since the AdS/Ricci-flat map has been used to study hydrodynamics of black branes,
we would also like to apply the AdS/dS map to a (planar, vacuum) black brane, with
the metric

ds̄2 = ℓ2

r2

(
−f(r) dt2 + dx⃗2

n−2 + dr2

f(r) + dz⃗2
ν

)
(3.2.61)

and f(r) = 1 − (r/b)n+ν−1 with a constant b. However, if we try to compactify z⃗ν

using the coordinate transformation (3.2.32), the dilaton depends on the compactified
coordinates, in contrast to our initial ansatz.

If we start from the dS side, a (vacuum) black brane solution is not known.
Nevertheless, we can consider the Schwarzschild-dS black hole with fixed n′ = 2, since
the dimension of the reduced space does not change under the map. This solution is
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given in static coordinates by [93, 94]

ds̃2 = −f(r) dt2 + dr2

f(r) + r2 dΩ2
ν′ , (3.2.62)

with
f(r) = 1 −

(
rS

r

)ν′−1
− r2

(ℓ′)2 = 1 −
(
r

rS

)ν+1
−H2r2 , (3.2.63)

and where rS is the Schwarzschild radius of the black hole, while ℓ′ is the dS radius.
Again, we already used the identification (3.2.11) for the second equality. Comparison
with (3.2.13), taking α′ = 0 and β′ = −1 and thus α = β = 1, gives us

g
(n)
ab dxa dxb = −f(r) dt2 + dr2

f(r) , (3.2.64a)

φ = − ln(H ′r) = − ln(r/ℓ) , (3.2.64b)

and the corresponding AdS metric obtained via the map (3.2.12) reads

ds̄2 = ℓ2

r2

(
−f(r) dt2 + dr2

f(r) +H−2 dΥ2
ν

)
. (3.2.65)

Changing coordinates to z = ℓ/(Hr) and t = τ/(Hℓ), we obtain

ds̄2 = −f̄(z) dτ 2 + dz2

f̄(z)
+ z2 dΥ2

ν (3.2.66)

with

f̄(z) = z2

ℓ2 f(ℓ/(Hz)) = −1 − (HrS)−(ν+1)
(
ℓ

z

)ν−1

+ z2

ℓ2 , (3.2.67)

which is the metric for an AdS black hole with hyperbolic horizon geometry [95, 96].
What happens to the horizons? We concentrate on the case of a small black hole,

where rS ≪ ℓ′. The black hole horizon is situated at rBH ≈ rS, while the cosmological
horizon is at rCH ≈ ℓ′. The map gives ℓ′ = 1/H, so that we have HrS ≪ 1. After the
coordinate transformation, the black hole horizon is mapped to zBH ≈ ℓ/(HrS) ≫ ℓ,
and the cosmological horizon to zCH ≈ ℓ. Plugging these values into f̃(z), we see
that for the black hole horizon we have f̃(zBH) ≈ 0 (since we can neglect the −1
in comparison with the huge term (HrS)−2), but for the cosmological horizon we
obtain f̃(zCH) ≈ −(HrS)−(ν+1) ̸= 0. This can be understood from the map: the term
−(rS/ℓ

′)ν′−1, which was negligible at the cosmological horizon for positive ν ′, became
−(HrS)−(ν+1), which is large for positive ν.
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We see that the black hole horizons are mapped to each other, while the cosmological
horizon disappears because of the analytic continuation in the number of dimensions.

Another class of black hole solutions which are interesting to analyze are rotating
ones. Kerr/dS black holes have been constructed in higher dimensions with any number
of rotation parameters [97], but to show examples of the map one rotation parameter
is enough. We use the metric given in Ref. [98], which describes a rotating black hole
with mass parameter M and (one) angular momentum parameter a. This metric reads

ds̃2 = −∆r

ρ2

(
dt− a

Ξ sin2 θ dφ
)2

+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2

+ ∆θ sin2 θ

ρ2

(
a dt− r2 + a2

Ξ dφ
)2

+ r2 cos2 θ dΩ2
ν′ ,

(3.2.68)

where

∆r = (r2 + a2)
(

1 − r2

(ℓ′)2

)
− 2Mr3−ν′

, (3.2.69a)

∆θ = 1 + a2

(ℓ′)2 cos2 θ , (3.2.69b)

Ξ = 1 + a2

(ℓ′)2 , (3.2.69c)

ρ2 = r2 + a2 cos2 θ . (3.2.69d)

The reduction proceeds in the same way as before, and again taking α′ = 0 and β′ = −1,
we have

gab dxa dxb = ds̃2 − r2 cos2 θ dΩ2
ν′ , (3.2.70a)

φ = − ln(H ′r cos θ) = − ln
(
r

ℓ
cos θ

)
. (3.2.70b)

The mapped rotating black hole in AdS is then given by

ds̄2 = ℓ2

r2 cos2 θ

[
− ∆̃r

ρ2

(
dt− a

Ξ̃
sin2 θ dφ

)2
+ ρ2

∆̃r

dr2

+ ρ2

∆̃θ

dθ2 + ∆̃θ sin2 θ

ρ2

(
a dt− r2 + a2

Ξ̃
dφ
)2

+H−2 dΥ2
ν

]
,

(3.2.71)
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where

∆̃r =
(
r2 + a2

) (
1 −H2r2

)
− 2Mr3+ν , (3.2.72a)

∆̃θ = 1 +H2a2 cos2 θ , (3.2.72b)
Ξ̃ = 1 +H2a2 . (3.2.72c)

One can see that this metric is singular near θ = π/2, which is due to the fact that
the compactified space (the ν ′-sphere) has vanishing radius at that point, and thus
gives a singular dilaton. Such singular dilatons have also been found in some cases of
T-duality [99, 100]. Calculating, e. g., the Kretschmann scalar one finds, however, the
completely regular result

RABCDR
ABCD = 2(ν + 3)(ν + 4)

l4
+ O

(
θ − π

2

)
. (3.2.73)

Since also for a → 0 the metric does not reduce to the Schwarzschild-AdS black
hole (3.2.67), it is thus possible that a suitable coordinate transformation exists which
yields a manifestly regular metric also for θ = π/2. We leave a detailed investigation
for further study.

3.2.4 Discussion

In this section, we have presented a map between Einstein spaces of negative and
positive curvature, including a scalar field. In order to obtain such a map via generalized
dimensional reduction, these spaces need to have the form of a direct product between
an extended spacetime (the bulk) and a compact subspace, whose curvature has the
same sign as the total space. Especially, spacetimes which are asymptotically AdS, with
the subspace being a compact hyperbolic space, are mapped to a spacetime which is
asymptotically de Sitter (deep in the bulk), with the transverse subspace a sphere. This
map is a generalization of the AdS/Ricci-flat correspondence [52, 53], and we expect it
to generalize to the case of additional matter fields such as gauge fields. Furthermore,
nondiagonal reductions are probably possible, as well as the study of moduli of the
internal space (note, however, that compact hyperbolic spaces do not possess massless
shape moduli by the Mostow rigidity theorem [87, 101]). In general, the mapping is
between solutions with different compact dimensions, and the number of compact
dimensions must be analytically continued after the map to a positive value. One must
therefore know the solution for a general compact dimension ν, and it must be regular
as ν → 0 for the continuation to be unambiguous. However, this does not seem to be a
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strong restriction in practice, as exemplified by the application of the map to empty
AdS/dS, black hole spacetimes and perturbations on top of AdS/dS.

A very direct application of the map is as a solution generator, mapping known
solutions of positive and negative curvature to each other in nontrivial ways as exem-
plified by the asymptotically dS/AdS rotating black holes, where the AdS solution
is most probably new. Other contexts of study suggest themselves: for example, the
AdS/Ricci-flat map has been used to study hydrodynamics of black branes and the
Gregory-Laflamme instability [1, 43, 52, 53]. Using the AdS/dS map derived in this
section, these considerations could be extended also to de Sitter spacetime.

An important fact (which applies in the same way in the AdS/Ricci-flat correspon-
dence) concerns the mapping of the AdS boundary, which is sent to a brane in the bulk
of dS. This brane has itself an intrinsic de Sitter geometry, and supports a stress tensor
which serves as the source of perturbations, and which is the negative of the Brown-York
stress tensor in the perturbed AdS geometry. These perturbations are obtained by
mapping perturbations near the boundary of AdS that encode holographic information
from the AdS/CFT correspondence, and the stress tensor on the brane is compatible
with what one would expect if the dual CFT at the AdS boundary can be consistently
reduced over a compact hyperbolic space (for the AdS/Ricci-flat correspondence, the
reduction over a torus is consistent [102, 103] and the corresponding statement can be
made). This discovery suggests that a putative holographic dual to de Sitter space is
not to be found at infinity in analogy with the AdS case, but instead on such a brane.

In the next chapter we come back to the study of black hole solutions and their
relation with fluids. In this context the AdS/Ricci flat will give us a useful way to
check our result in asymptotically flat space with known results in AdS.





Chapter 4

Kaluza-Klein reduction of
relativistic fluids and their gravity
duals

4.1 Introduction

Kaluza-Klein dimensional reduction is a well known method to obtain solutions to a
gravitational theory coupled to a Maxwell field, plus a scalar (dilaton) field. Velocities
(or momenta) along the compactified direction result in electric charges in the reduced
theory [66]. Thus, if we take a neutral black string solution of the vacuum Einstein
theory, perform a boost along the direction of the string and then dimensionally reduce
in this direction, we obtain an electrically charged black hole of the Einstein-Maxwell-
dilaton theory, for a particular value of the dilaton coupling [104].

It should be clear that this method is not exclusive to gravitational theories. The
identification between momenta along the internal direction and conserved charges in
the reduced theory is in fact generic. Note, however, that in a non-gravitational theory,
one obtains charges of a global symmetry group — e.g., a global U(1) for reduction in
a circle — while in the gravitational case, since the relevant spacetime symmetries are
gauged, they are charges of a gauge symmetry group.

In this chapter we are interested in applying the Kaluza-Klein procedure to relativis-
tic hydrodynamics. That is, we begin with a relativistic fluid without any conserved
particle number in p spatial dimensions, where p − N of these are non-compact di-
rections and N of them form an N -torus. We assume that none of the fluid variables
depend on the internal directions, but the fluid can have non-trivial velocity along
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them. These velocities give internal momenta that in the reduced theory appear as
conserved global charges, i.e., particle numbers for N different species. For a perfect
fluid, this reduction is a straightforward one. Of more interest is the reduction of the
first-order dissipative terms. Viscosity of the higher-dimensional fluid in the internal
directions gives rise not only to viscosities but also conductivities in the reduced theory.

We shall do our analysis for a generic relativistic fluid in p spatial dimensions with
no conserved particle number, without assuming any specific equation of state nor
constituent relation for its first-order transport coefficients. When applying our results
to particular fluids, we will consider a class of recent interest in the context of dual
relations between fluid dynamics and black brane dynamics. These are the fluids that
correspond to neutral black p-branes of the vacuum Einstein theory, and which feature
in the blackfold approach, presented in Sec.2.2 , to black brane dynamics [41, 42].
Ref. [42] developed the dictionary between the spacetime fluctuations of these black
branes and the fluctuations of specific fluids. Using this mapping, our results yield a
mapping between the dynamics of charged black branes in Kaluza-Klein theory and
the hydrodynamics of certain charged fluids. The map includes their fluid equation
of state and first-order transport coefficients. Note that the Kaluza-Klein black brane
solutions differ from other charged black branes in their coupling to the dilaton. While
the dilaton plays no direct role in the dual fluid description, since it is not associated to
any conserved quantity of the black brane, the value of its coupling affects the equation
of state and constituent relations.

There have been some previous studies of Kaluza-Klein reduction in the context of
fluid/gravity correspondences [54, 67, 68, 105, 106]. However, these have been restricted
to the fluids that are dual to AdS black branes, and moreover they only work out
explicitly the cases of circle [67] and 2-torus reduction [68]. The results of [67, 68] can
be mapped, via the AdS/Ricci-flat connection of [52], to our results for circle reductions
of a neutral vacuum black brane. Vice versa, our results can be readily translated into
results for AdS black branes with N different charges using this mapping. The perfect
fluid dynamics of asymptotically flat charged branes (with arbitrary dilaton coupling)
was studied in [51, 107]. Dissipative effects of non-dilatonic asymptotically flat charged
branes have been analyzed in [43]. The first-order hydrodynamics of asymptotically
flat black D3-branes has been studied in [44], but the charge in this case can not
be redistributed along the worldvolume and therefore the dynamics is qualitatively
different. Moreover, in [46, 47] the Kaluza-Klein approach has been applied, in a slightly
different manner, to obtain first-derivative corrections of charged black brane (extrinsic)
dynamics.
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In our opinion it is useful to treat the Kaluza-Klein reduction of fluids separately
from any specific fluid/gravity dualities. First, this makes clear how the procedure
stands on its own within the context of hydrodynamics without any reference to General
Relativity. Second, by not tying the reduction to any particular fluid, we achieve a
large degree of generality. Clearly, the method can be extended to the case in which
the higher-dimensional fluid carries a particle number or some other property, but we
will not pursue this in the present thesis.

4.2 Hydrodynamic Kaluza-Klein ansatz and reduc-
tion of the perfect fluid

Let us consider a neutral relativistic fluid in flat space-time in p+1 dimensions described
by a stress energy tensor of the form in (2.1.3). The hydrodynamical behaviour of this
fluid is governed by the stress energy tensor conservation equations ∂ATAB = 0. Its
complete description requires the specification of the equation of state, namely the
relation between P and ϱ, and of the viscosities. For the most part we will keep them
general, and will only specify them in Sec. 4.4. Furthermore, we consider that the
uncharged fluid is in the Landau frame where uAT dissAB = 0.

We assume moreover that the spacetime in which the fluid moves contains N
compact directions that form an N -torus

dŝ2 =
N∑
j=1

dy2
j + ηabdσ

adσb , (4.2.1)

where the metric ηab is the Minkowski metric in p−N + 1 spacetime dimensions and
the coordinates yj are identified with periodicity 2πRj . We take the fluid to move with
non-zero velocity along the N compactified dimensions. On Kaluza-Klein reduction
this will give rise to charges in the reduced fluid.

The Kaluza-Klein ansatz for the field requires that none of the fluid variables
depend on the internal directions yj. The velocity profile is

ua = ûa
N∏
i=1

coshαi, uyj
= sinhαj

j−1∏
k=1

coshαk , j = 1, . . . , N (4.2.2)

where αi are boost parameters characterizing the velocity along the compact directions
and ûa is the velocity in the reduced spacetime, which is unit-normalized with respect
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to ηab,
ûaûbηab = −1 . (4.2.3)

Note that it should be possible to formulate an ansatz for the velocity field where
the different boosts enter in a manner that preserves the local symmetry SO(N) that
rotates them (this is broken globally by the compact size of the torus). The above
ansatz does not show this, but it is a convenient one for our calculations.1

Let us apply this Kaluza-Klein reduction ansatz to the perfect fluid stress energy
tensor. Substituting (4.2.2) in (2.1.3) we obtain

Tab = V

(
(ϱ+ P )ûaûb

N∏
i=1

cosh2 αi + Pηab

)
,

Tayj
= V (ϱ+ P ) sinhαjûa

N∏
i=1

coshαi
j−1∏
k=1

coshαk ,

Tyjyj′ = V

(ϱ+ P ) sinhαj′ sinhαj
j−1∏
k=1

coshαk
j′−1∏
i=1

coshαi + ηjj′P

 ,

(4.2.4)

where V = ∏N
j=1(2πRj) is volume of the torus. The factor V appears because TAB

refers to densities so we have to include the internal volume we are going to integrate
out. The form of the stress energy tensor in the reduced theory is

T̂ab = (ϱ̂+ P̂ )ûaûb + P̂ ηab , T̂ayj
= uaq̂j , (4.2.5)

where the energy density, the pressure and a set of N charge densities q̂j ( one for each
boost parameter αj) in the reduced theory, respectively, are given by

P̂ = PV , ϱ̂ = P̂ (−1 +
N∏
i=1

cosh2 αi) + ϱV
N∏
m=1

cosh2 αm ,

q̂j = (P̂ + ϱ̂) sinhαj∏N
i=j coshαi

.

(4.2.6)

The temperature associated to the reduced fluid becomes

T̂ = T∏N
i=1 coshαi

(4.2.7)

1Our choice is in this sense analogous to choosing polar coordinates for a sphere, which allows easy
explicit calculation but obscures the rotational symmetry.
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due to the fact that we have changed the timelike Killing vector. From the conservation
of the entropy current for the initial fluid, we can read off the reduced entropy density.
We obtain

ŝ = sV
N∏
i=1

coshαi . (4.2.8)

From the Euler relation
P̂ + ϱ̂ = T̂ ŝ+

N∑
j=1

q̂jµ̂j (4.2.9)

the chemical potential for each charge takes the form

µ̂j = sinhαj∏N
i=j coshαi

. (4.2.10)

Since we assume that the first law is satisfied for the initial neutral fluid, it is
possible to verify that the same is true for the reduced fluid. The neutral fluid obeys
the law

dϱ = T ds (4.2.11)

from which it follows
dϱ̂ = T̂ dŝ+

N∑
i=1

µ̂idq̂i (4.2.12)

using

ϱ̂+ P̂ = V (ϱ+ P )
N∏
i=1

cosh2 αi from Eq.(4.2.6),

dαj+1 = dαj
tanhαj+1

sinhαj coshαj
from Eq.(B.1.5)

(4.2.13)

and that ϱ+ P = T s.

4.3 Reduction of dissipative terms

The Kaluza-Klein reduction has given us a charged fluid. When including dissipative
terms we expect the presence of another set of transport coefficients, namely a heat
conductivity matrix. These coefficients measure the response of the charge current to
changes in temperature and in chemical potential.

In order to reduce the first-derivative terms in the stress energy tensor, we need to
express the expansion θ defined in Eq.(2.1.9) in terms of the new velocities. We find
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that
θ =

N∏
i=1

coshαi
(
θ̂ +

N∑
k=1

tanhαkûa∂aαk
)
, (4.3.1)

where θ̂ = ∂aûa.
The equation of conservation of the stress energy tensor relates the gradients of the

rapidities to θ̂ as

ûa∂
aαj = θ̂

coshαj sinhαj
∏N
l=j+1 cosh2 αl

1 + (−1 + ϱ′)∏N
i=1 cosh2 αi

, (4.3.2)

where
ϱ′ = c−2

s = ∂ϱ

∂P
, (4.3.3)

where cs is the speed of sound. The explicit calculation can be found in the App. B.1.
Substituting this result in Eq.(4.3.1) the expansion becomes

θ = θ̂
ϱ′∏N

i=1 cosh3 αi

1 + (−1 + ϱ′)∏N
l=1 cosh2 αl

. (4.3.4)

The orthogonal projectors tensor in Eq.(2.1.9) is given by

Pab =
N∏
i=1

cosh2 αiûaûb + ηab ,

Payj
= ûa sinhαj

N∏
i=1

coshαi
j−1∏
k=1

coshαk ,

Pyjyj′ = sinhαj′ sinhαj
j−1∏
k=1

coshαk
j′−1∏
i=1

coshαi + ηjj′ .

(4.3.5)

The shear viscosity tensor in Eq.(2.1.9) takes the form

σab =
N∑
i=1

P c
(aP

yi

b) ∂cuyi
+ P c

aP
d
b ∂(cud) − Pabθ

p
,

σayj
= P c

aP
d
yj
∂(cud) +

N∑
i=1

P yi

(aP
d
yj)∂duyi

−
Payj

θ

p
,

σyjyj′ = P c
yj
P d
yj′∂(cud) +

N∑
i=1

P yi

(yj
P d
yj′ )∂duyi

−
Pyjyj′θ

p
.

(4.3.6)
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We have all the ingredients to compute the new transport coefficients. However, our
reduced fluid is not in the Landau frame. Indeed, we find that uATAB = 0 implies

uaT dissab +
N∑
j=1

uyjT dissyjb
= 0 , uaT dissayj

+
N∑
j′=1

uyj′T dissyj′yj
= 0 , (4.3.7)

or using Eq.(4.2.2)

ûaT dissab = −
∑N
j=1 sinhαj∏N
i=j coshαi

T dissyjb
, ûaT dissayj

= −
∑N
j′=1 sinhαj′∏N
i=j′ coshαi

T dissyj′yj
. (4.3.8)

This means that we cannot directly extract the coefficients from the reduced stress
energy tensor but we need to introduce some frame-invariant formulae. In [108] was
proposed an efficient way to extract those coefficients based on a general dissipative
correction to the stress energy tensor and the charge currents. In order to avoid
unphysical solutions we require the semi-positivity of the divergence of local entropy
current. Following the same procedure as in [108] and generalizing the result for N
charges we construct frame invariant formulae

P̂ a
c P̂

b
dT

diss
ab − 1

p−N
P̂cdP̂

abT dissab = −2η̂σ̂cd ,

P̂ b
a

(
T dissbyj

+ q̂j

ϱ̂+ P̂
ûcT disscb

)
= −

N∑
j′=1

κ̂jj′P̂ b
a∂b

(
µ̂j′

T̂

)
,

P̂ abT dissab

p−N
− ∂P̂

∂ϱ̂
ûaûbT dissab +

N∑
j=1

∂P̂

∂q̂j
ûaT dissayj

= −ζ̂ θ̂ .

(4.3.9)

Using these we can extract the viscosities η̂, ζ̂ and the matrix of conductivities κ̂jj′ .
The derivative ∂P̂ /∂ϱ̂ is evaluated at constant charges, while ∂P̂ /∂q̂j are evaluated
keeping fixed the energy density and the other charges qk ̸=j.
We obtain

η̂ = ηV
N∏
i=1

coshαi , κ̂jj = ηV T̂
(

1 − sinh2 αj∏N
l=j cosh2 αl

) N∏
i=1

coshαi ,

κ̂jk = κ̂kj = −ηV T̂ sinhαj sinhαk∏N
i=j coshαi

k−1∏
l=1

coshαl , with k ̸= j ,

(4.3.10)
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ζ̂ = 2ηV
N∏
i=1

coshαi
[ 1
p−N

+ (−1 +∏N
i=1 cosh2 αi)

∑N
l=1 sinh2 αl

∏N
m=l+1 cosh2 αm

(1 + (−1 + ϱ′)∏N
i=1 cosh2 αi)2

− ϱ′2∏N
h=1 cosh4 αh

p(1 + (−1 + ϱ′)∏N
i=1 cosh2 αi)2

]
+ ζV

ϱ′2∏N
h=1 cosh5 αh

(1 + (−1 + ϱ′)∏N
i=1 cosh2 αi)2 .

(4.3.11)

These are the main results of this article.
The transport coefficients can be rewritten in terms of the independent thermody-

namic variables of the reduced theory, the temperature and the chemical potentials,
using Eq.(4.2.7) and Eq.(4.2.10) functions of the rapidities.

Observe that the viscosity to entropy density ratio remains constant under the
reduction,

η̂

ŝ
= η

s
. (4.3.12)

Furthermore, since the entropy current for our charged fluid in a canonical form is

Ĵas = ŝûa − ub

T̂
T abdiss − 1

T̂

N∑
j=1

µjT
ayj

diss (4.3.13)

using the relations in Eq.(4.3.8) and substituting the values of the chemical potentials
Eq.(4.2.10), it is easy to see that

Ĵas = ŝûa . (4.3.14)

Comparing this result with the entropy density of our neutral initial fluid

ĴAs = suA (4.3.15)

multiplied by the volume factor V , we recover the result obtain from the Euler relation
in Eq.(4.2.8).

Finally, the speed of sound is given by

ĉ2
s = ∂P̂

∂ϱ̂
= 1

1 + (−1 + ϱ′)∏N
i=1 cosh2 αi

, (4.3.16)

where the derivative is considered at fixed ŝ/q̂j for every q̂j.
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4.4 Charged black brane/fluid duals

The previous analysis can be applied to the case of the fluid dual to a black p-brane.
Let us consider a black p-brane in D = p+ n+ 3 dimensions with p+ 1 worldvolume
coordinates of the p-brane and n+ 2 coordinates in directions transverse to that. Since
we perform a Kaluza Klein reduction exclusively on the wordvolume directions, we
focus only on the p + 1 coordinates. This means that the p dimensions of the black
p-brane can be seen as the p spatial dimensions of the previous fluid.

In [42] was shown that the long-wavelength dynamics of a neutral black brane in
D = p+ n+ 3 dimensions can be described in terms of a fluid with equation of state

ϱ = −(n+ 1)P , (4.4.1)

and viscosities
η = s

4π , ζ = 2η
(

1
p

+ 1
n+ 1

)
. (4.4.2)

If we substitute these values in Eqs.(4.2.13), (4.3.10), we obtain the reduced ther-
modynamic quantities

P̂ = PV, ϱ̂ = −P̂ (1 + n
N∏
i=1

cosh2 αi) ,

q̂j = −P̂ n sinhαj
N∏
i=1

coshαi
j−1∏
k=1

coshαk ,
(4.4.3)

and the transport coefficients of the charged fluid

η̂ = Ωn+1V

16πG

(4πT̂
n

)−n−1
(1 −

N∑
i=1

µ2
i )

n
2 ,

κ̂jj = Ωn+1V

16πG

(4π
n

)−n−1
T̂ −n(1 − µ2

j)
(

1 −
N∑
i=1

µ2
i

)n
2

,

κ̂jk = −Ωn+1V

16πG

(4π
n

)−n−1
T̂ −n µkµj

(
1 −

N∑
i=1

µ2
i

)n
2

,

ζ̂ = 2η̂
[

1
p−N

− (−1 − n− (∑N
i=1 µ

2
i )2)

(−1 − n−∑N
m=1 µ

2
m)2

]
,

(4.4.4)

using the explicit values of the temperature and the shear viscosity in (2.2.7).
We can compare our results with those found in Eq.(3.4.17) and Eqs. (3.4.38)-

(3.4.40) in [67] for N = 1 in AdS. This can be done using the AdS/Ricci flat map
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in [52] which allows to relate the dynamics of Ricci-flat black p-branes in n + p + 3
dimensions to that of black d-branes in AdS2σ+1, by identifying

−n → 2σ , p → d . (4.4.5)

If we apply this map to the equation of state and the transport coefficients that we
obtain for N = 1, we find the same results as in [67] with

αi → ωi and Ωn+1V

16πG → −L. (4.4.6)

where L is defined after Eq.(3.1.3) in [67]. For N = 2 the map to black d-branes in
AdS2σ+1 is

−n → 2σ , p → d+ 1. (4.4.7)

In this case we recover the results of [68] in Eq.(3.1.18) and Eqs. (3.2.42)-(3.2.51) for
the Kaluza-Klein Einstein-Maxwell-Dilaton theory containing two Maxwell fields, three
neutral scalars and an axion in AdS, again using Eqs.(2.2.7). Note that the speed of
sound and the other thermodynamic quantities as entropy, temperature and chemical
potential agree too.

Finally, we study whether the bound

ζ̂

η̂
≥ 2

(
1

p−N
− ĉ2

s

)
(4.4.8)

proposed in [109] is satisfied. The bulk viscosity for a charged black (p − N)-brane
takes the form

ζ̂ = 2ηV
N∏
i=1

coshαi
(

1
p−N

− 2∏N
i=1 cosh2 αi − (n+ 2)∏N

m=1 cosh4 αm − 1
(1 − (n+ 2)∏N

i=1 cosh2 αi)2

)
.

(4.4.9)
In terms of the speed of sound

ĉ2
s = 1

1 − (2 + n)∏N
i=1 cosh2 αi

, (4.4.10)

the bulk to shear viscosity ratio can be written as

ζ̂

η̂
= 2

(
1

p−N
− ĉ2

s

)
− 2ĉ4

s

(
(n+ 4)

N∏
i=1

cosh2 αi − (n+ 2)
N∏
m=1

cosh4 αm − 2
)
.

(4.4.11)
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The relation (4.4.8) requires that

n ≥ −2 + 2∏N
i=1 cosh2 αi

, (4.4.12)

which is satisfied for all n ≥ 0. Thus the bound is always satisfied. In contrast, the
bound is always violated in [67, 68] for the black d-branes with σ > 1, where 2σ + 1
are the initial spacetime dimensions.

An alternative bound was proposed in [67],

ζ̂

η̂
≥ 2

(
1

p−N
− ĉ2

q

)
(4.4.13)

in terms of the speed of sound at constant charge density

ĉq = ∂P̂

∂ϱ̂

∣∣∣∣
qj

= 2∏N
l=1 cosh2 αl − 1

1 − (2 + n)∏N
i=1 cosh2 αi

. (4.4.14)

It is straightforward to show that in our case this bound is always violated. We obtain

ζ̂

η̂
= 2

(
1

p−N
− ĉ2

q

)
− 2ĉ4

s

(
(2 + n)

N∏
i=1

cosh2 αi(−1 +
N∏
m=1

cosh2 αm)
)
. (4.4.15)

In order to satisfy the bound in (4.4.13) we would need n ≤ −2. The inversion of
the results regarding both bounds (4.4.8) and (4.4.13) as compared to [67] and [68] is
expected from the mappings (4.4.5) and (4.4.7). On the other hand, for electrically
charged, non-dilatonic asymptotically flat black brane solutions, ref. [43] finds that
the bound (4.4.8) is satisfied only for small enough charge density, while the bound
(4.4.13) is always violated.2 Note Eq.(4.3.12) implies that the KSS bound [31, 110] is
saturated.

2Jakob Gath informs us (private communication) that for sufficiently large values of the dilaton
coupling these bounds are satisfied/violated in the same manner as we have found: (4.4.8) is always
satisfied, and (4.4.13) is always violated, for all values of the charge density.





Chapter 5

Probing the Hydrodynamic Limit
of (Super)gravity

5.1 Introduction

Remaining in the context of black hole hydrodynamics, in this chapter we shall be
interested in the effective behavior of a quite general class of black brane solutions
captured by the action (5.2.1) which will be introduced in Sec. 5.2. Although this
action is rather general, we will restrict ourselves to the cases where the black p-branes
source a (p+ 1)-form or a 1-form gauge potential. In the following we will refer to these
two types of brane charge as fundamental charge and Maxwell charge, respectively.
In particular, the treatment of these two cases will allow us to capture the effective
hydrodynamic descriptions of the NS and Dp-branes of type II supergravity along with
the M2 and M5-branes of eleven dimensional supergravity. Moreover, our computation
also captures the effective theory of (p+ 1)-dimensional smeared brane configurations
of D0 of type IIA supergravity. However, instead of fixing the value of the dilaton
coupling and spacetime dimension to the ones relevant for the specific supergravities,
we will keep these parameters free. This allows us to extract the dependence of these
parameters in the hydrodynamic transport coefficients, which turns out to be quite
useful for examining the general features of the hydrodynamics. We note that the part
of the computation pertaining to Maxwell charge also provides the non-trivial dilatonic
generalization of the results for the Reissner-Nordström black brane worked out in
[43]. Moreover, we emphasize that in this work we do not consider asymptotically
(co-dimension 1) AdS branes but rather asymptotically flat configurations of general
co-dimension.
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Considerable research has gone into understanding the stability properties of black
branes carrying various types of smeared charges (the literature is extensive, for a
review see e.g. [111]). Understanding these properties is interesting from a pure general
relativistic point of view viz. the Gregory-Laflamme (GL) instability [21, 22], black
hole phase transitions [112] etc., but also plays an important rôle for understanding
aspects of the (un)stable vacua of string and M-theory. In general, having access to an
effective fluid dynamic description naturally allows one to address questions regarding
the stability properties of the system in question. For example, to leading order, i.e., at
the perfect fluid level (equivalently; at the thermodynamic level), an imaginary speed of
sound signifies a fundamental instability in the system. In the context of brane physics,
this was noted in [41] where an instability in the sound mode of the effective fluid of the
Schwarzschild black brane exactly was identified with the GL instability of the brane.
A GL instability is naturally characterized by a dispersion relation which describes
the “dispersion” of the instability on the worldvolume. Although the exact form of this
relation is only accessible numerically many of its features can be understood from
the hydrodynamic description. In particular, turning the picture around, the lack of
unstable hydrodynamic modes in the effective theory (to a given order in the derivative
expansion) is equivalent to the lack of a GL instability, at least to that given order.

One of the main results stressed in this chapter is that (to first order in the fluid
derivative expansion) the stability properties of the fundamentally charged dilatonic
black brane remains solely determined by the speed of sound. In this way, the system
will exhibit a stable branch of configurations for sufficiently small values of the dilaton
coupling. This includes the Dp-branes, p < 5, of type II supergravity along with the M2
and M5 branes of M-theory. However, it does not include the D5, D6 and NS5 brane.
We note that a similar conclusion was reached in [107], but we refine the analysis to
first order and use the correct value for the bulk viscosity. This result is furthermore
in accordance with expectations from various numerical works [21, 22, 113]. On the
other hand, we find that the dilatonic Maxwell charged black branes cannot be made
stable for any value of the dilaton coupling or the charge. In particular, this includes
the smeared D0 configurations of type IIA supergravity. Again, this is in accordance
with general expectations [114, 115]. We note that, as in Ref. [43], this is a genuine
first-order derivative effect, meaning that the instability is not visible to leading order.

Another interesting aspect of our computation relates to various proposed hydro-
dynamic bounds in gravity [31, 34, 109, 110, 116]. As mentioned above, we keep the
dilaton coupling free in our computations. In addition to elucidating the (in)stability
properties of the various branes this also provides us with an extra turnable parameter
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to examine the possible violation of the hydrodynamic bounds. As expected, we find
that the shear viscosity-to-entropy ratio bound η/s ≥ 1/4π is saturated for our entire
class of gravitational solutions. In contrast we find that the (holographic) bulk viscosity
“bound” is violated for the entire class of fundamentally charged branes thus providing
a simple example of its violation.

Although the setup employed in this work is conceptually quite different from
the hydrodynamic limit of AdS/CFT (the fluid/gravity correspondence), some of the
results of the two approaches can nevertheless be related. This is perhaps not too
surprising since the latter should in principle be obtainable from the former in the
near-horizon limit. The precise connection between the effective fluid dynamic theory of
the asymptotically flat (non-dilatonic) D3-brane and the fluid/gravity correspondence
on AdS5 was explored in Ref. [44]. Here the effective gravitational dynamics of the
D3-brane subject to Dirichlet boundary conditions at an appropriate cutoff surface was
considered along the lines of ideas introduced in the paper(s) [117, 118]. It was directly
shown that the fluid/gravity correspondence and the hydrodynamic effective theory
are obtained as the two (most interesting) extremes where the cutoff surface is taken
to be located in the near-horizon throat region and at spatial infinity, respectively.
Perhaps more surprisingly, the results of the fluid/gravity correspondence can also be
related to the effective hydrodynamics of the (neutral) Schwarzschild black p-brane.
This was shown in the paper(s) [52, 53] where the authors managed to derive a mapping
from a certain class of asymptotically AdS solutions to asymptotically flat solutions
and vice versa presented in detail in Sec. 3.1. This class of solutions (on each side of
the mapping, respectively) exactly includes the Ricci-flat and the AdS Schwarzschild
black branes, respectively. More technically, the mapping is established by noting
that the hydrodynamic sector on either side (of the mapping) is completely included
in a reduced lower dimensional theory. Solutions to these two reduced theories can
then be related by a simple analytical continuation in the dimension of the particular
space on which the reduction is performed (a sphere and a torus, respectively). In
this way, solutions on one side can be reduced, analytically continued and consistently
uplifted to the other side and vice versa. This, conceptually quite simple, procedure
neatly allowed [52] to derive the second-order fluid dynamic transport coefficients of
the asymptotically flat Schwarzschild black brane from the results of the (co-dimension
one) AdS black brane in general dimensions [119]. In this chapter we will present a
modified version of the mapping which allows us to include Maxwell charge.
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This chapter is organized as follows. In the Sec. 5.2 we introduce the leading
order (seed) geometries around which we will consider hydrodynamic perturbations.
Before presenting the first-order results of the fundamentally charged black brane and
analyzing their stability, we briefly review the associated thermodynamics and explain
how the perturbative procedure is carried out. In Sec. 5.3 we turn our attention to
Maxwell charged black branes and work out the first-order transport coefficients and
discuss the associated hydrodynamic stability properties. We conclude the chapter by
performing a non-trivial cross-check of our results with known results from AdS by
introducing a modified version of the AdS/Ricci-flat correspondence.

5.2 Hydrodynamics of black p-branes

In this section we shall be interested in D dimensional p-brane solutions (i.e., solutions
with horizon topology Rp × SD−p−2) of the following action1 [120, 121]

I =
∫
D

R ∗ 1 − 2 dφ ∧ ∗ dφ− 1
2
∑
q∈I

F(q+2) ∧ ∗F(q+2)

 . (5.2.1)

Here F(q+2) = eaqφ dC(q+1), q ∈ I, are the dilaton weighted field strengths associated
with the gauge potentials C(q+1) and I denotes the collective set of gauge potentials in
the theory. Notice that some of the forms can be of the same rank nonetheless they
have different couplings aq to the dilaton which distinguishes them. The action (5.2.1)
is quite general, however, for specific choices of I and dilaton couplings, it captures the
(bosonic part of the) supergravity descriptions of type IIA/B (in the Einstein frame)
and M-theory relevant for description of the D/NS/M-branes and their intersections.
Notice that the aforementioned supergravity actions also contain a topological term
needed to preserve supersymmetry of the full theory, however, this term does not play a
rôle for obtaining the flat p-brane solutions [122]. The action (5.2.1) corresponds to IIA
(IIB) supergravity for D = 10, IRR = {0, 2} (IRR = {1, 3}) and INS = {1} [123–125]
and eleven-dimensional supergravity for D = 11 and IM = {2} [126]. In general, the
D/NS/M-branes couple both electrically and magnetically to the above potentials. We
unify the description in the standard way by writing the field strengths in the electric
ansatz, where now the index q in the action (5.2.1) runs over the (allowed) spatial
dimensions of the branes of the theory. Given a dilaton coupling a, it will be convenient

1We work in units where GNewton = 1
16π .
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to define a parameter N to further unify the description through the relation

a2 = 4
N

− 2(q + 1)(D − q − 3)
D − 2 . (5.2.2)

The real positive parameter N (usually an integer for string/M-theory corresponding to
the number of different types of branes in an intersection [127]) in general is preserved
under dimensional reduction [51].2 Also note that the parameter N mods out the Z2

reflection symmetry of the solution space a → −a. For all the fundamental D/NS/M-
branes of type II string theory and M-theory N = 1, and aDp = (3 − p)/2 for the
Dp-branes, while a2 = 1 for the F1 (aF1 = −1) and NS5 brane (aNS5 = 1). Also notice
that the dilaton coupling (5.2.2) vanishes for D = 11, q = 2, 5, consistent with the fact
that M-theory contains no dilaton.

In the following we will consider singly fundamentally charged p-branes, i.e., q = p.
We therefore (consistently) truncate the action (5.2.1) to I = {p}. Moreover, we will
keep the dilaton coupling a ≡ ap free. One easily works out the equations of motion,

�φ = a

4(p+ 2)! F2 , d
(
eaφ ∗ F

)
= 0 ,

Gν
µ = 1

2(p+ 1)! (F · F)νµ +
(

2 (∂φ)2 − F2

4(p+ 2)!

)
δνµ ,

(5.2.3)

where Gµν denotes the Einstein tensor and µ, ν label the spacetime directions. As
explained in Sec. 5.1, we are interested in p-brane solutions to the theory (5.2.1)
characterized by horizon topology Rp × Sn+1, where we break the ∂i symmetries on
Rp (and thus implicitly breaking ∂t as well) perturbatively while maintaining the
SO(n+ 2) symmetry on the transverse sphere (note that the total spacetime dimension
D is related to the positive integer parameter n according to n = D − p− 3). These
perturbations exactly capture the hydrodynamic sector of the black brane as we review
below.3 The family of leading order unperturbed (seed) p-branes solutions to the EOMs

2Since we require the dilaton to be physical (i.e., we require a2 ≥ 0), the parameter N is bounded
from above N ≤ 2(D−2)

(D−q−3)(q+1) .
3Breaking the SO(n + 2) would roughly correspond to elastic perturbations, see [45] and related

works.
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(5.2.3) was worked out in Ref. [51] and takes the form

ds2 = h− Nn
p+n+1

− fuaub dxadxb + ∆ab dxadxb + hN
(
f−1dr2 + r2 dΩ2

(n+1)

) ,

φ = aN

4 log h , A(p+1) = −

√√√√N (
γ0 + 1
γ0

) (
h−1 − 1

)
⋆ 1 .

(5.2.4)

Here we have applied a general boost ua (uaua = −1) to the solution in the p + 1
worldvolume directions labeled by xa = (t, xi). The tensor ∆ab = ηab + uaub is the
projector onto the directions parallel to the brane but orthogonal to ua, while ⋆1 =
dx0 ∧ . . . ∧ dxp denotes the induced volume form on the brane geometry. The two
functions f and h are given by,

f(r) ≡ 1 −
(
r0

r

)n
, h(r) ≡ 1 + γ0

(
r0

r

)n
. (5.2.5)

Here r0 parametrizes the horizon radius and γ0 parametrizes the charge of the solution.
According to fluid/gravity lore (review in Sec. 2.1) there is a one-to-one correspon-

dence between the solutions to the EOMs (5.2.3) around the solution (5.2.4), and the
relativistic Navier-Stokes equations,

divT = 0 , d ⋆ j = 0 . (5.2.6)

Here T = T ab is the effective stress tensor and j is the effective current which are
matched order by order in a relativistic fluid derivative expansion. The effective stress
tensor and current encompass the asymptotic data of the perturbed solution and the
correspondence allows one to reconstruct the full gravitational solution (to any given
order in the derivatives) from these asymptotic tensor structures. At lowest order,
i.e., no derivatives and flat intrinsic geometry, the correspondence is trivial as it is
non-dynamical. Indeed, computing the asymptotic stress tensor and current of the
solution (5.2.4), one obtains the stress tensor and current [107]

Tab = ϱ uaub + P∆ab , j = Q ⋆ 1 . (5.2.7)

Here ϱ, P and Q denotes the energy (density), pressure and charge of the brane and
can be computed from the Gibbs free energy G, which in turn is computed from the
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on-shell action and takes the form

G = Vol(Sn+1)

 n

4π T

√√√√(1 − Φ2

N

)N

n

. (5.2.8)

The temperature T and the chemical potential Φ are the intensive thermodynamic
variables which do not depend on Newton’s constant and are easily written in terms of
the parameters r0 and γ0 using standard methods,

T = n

4πr0

√
(1 + γ0)N

, Φ =
√

Nγ0

1 + γ0
. (5.2.9)

Notice that the entropy s and charge Q are conjugate to T and Φ and are computed
from G in the usual way. The energy density ϱ and pressure P are then derived using
the Gibbs-Duhem relation w ≡ ϱ+P = T s and the defining identity G = −P −ΦQ. At
lowest order and flat intrinsic geometry, the correspondence between fluid dynamics and
gravity is therefore just a convenient repackaging of black hole thermodynamics in terms
of a relativistic (perfect) fluid. However, note that if one abandons the requirement
of flat intrinsic geometry, the statement becomes an equivalence between gravity and
perfect fluid dynamics on a curved p-submanifold (known as the blackfold approach,
see Sec.2.2 for a review), which is a non-trivial statement. In this work we keep the
intrinsic geometry flat, or equivalently, we do not perturb the transverse sphere Sn+1.

5.2.1 The perturbative expansion

In order to carry out the perturbative procedure we proceed in the standard way. Here
we will give a brief summary of the computation and refer to Appendix C for many of
the details (also see the papers [32, 42, 43]). In order to ensure that the perturbative
problem is well-posed, we need to cast the metric (5.2.4) into Eddington-Finkelstein
(EF) form (i.e., a coordinate transformation xa → σa(r) tailored so that |dr| = 0). In
these coordinates the metric (5.2.4) takes the form

ds2 = h− Nn
p+n+1

(− fuaub + ∆ab

)
dσadσb − 2hN

2 ua dσadr + hNr2 dΩ2
(n+1)

 . (5.2.10)

Transforming the coordinates of course also induces a transformation of the gauge field,
however, one can easily show that in the case of Schwarzschild → EF coordinates the
transformation of the gauge field can be undone by a suitable gauge transformation.
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We therefore keep the form of the gauge field (5.2.4) consistent with our gauge choice
introduced below. According to the ideas of fluid/gravity outlined above, the solution
(5.2.10) (along with the associated matter fields) is part of a larger class of solutions
ds2

f for which the parameters ua, r0 and γ0 (collectively denoted by ξ = (ua, r0, γ0))
are worldvolume fluctuating functions. This solution, which reduces to (5.2.10) for
constant ua, r0 and γ0, is in general unknown, but can be probed perturbatively in a
derivative expansion. Therefore for long-wavelength perturbations,

ds2
f = ds2 + ds2

∂ + O(∂2) , Af = A+A∂ + O(∂2), φf = φ+ φ∂ + O(∂2) . (5.2.11)

Here ds2 is the geometry (5.2.10) expanded to first order in worldvolume derivatives
and ds2

∂ denotes the first-order correction coming from the full solution ds2
f (and

similarly for the matter fields). The main purpose of this section is to compute the
first-order expansion of the full solution and extract the first-order effective currents.
The EOMs exhibit a large gauge redundancy. In order to simplify the computations
it is convenient to choose a (consistent) gauge where the transverse components of
(A∂) are taken to zero and furthermore (g∂)rr = 0, (g∂)ΩΩ = 0. The latter gauge
choice allows us to reduce over the transverse sphere Sn+1, effectively leaving us with
a p+ 2 dimensional problem. Notice that although the transverse Sn+1 drops out of
the problem, the parameter n still plays an important rôle as it will enter the various
coefficients in the resulting set of equations. Choosing the appropriate ansatz for the
perturbations (collectively denoted by ψ∂ = (g∂, A∂, φ∂)) and plugging them into the
EOMs (5.2.3) produces two sets of qualitatively different equations, schematically of
the form

Constraint: C∂ ∂ξ + O(∂2) = 0 , Dynamical: L(1)
r L(2)

r ψ∂ = s∂(r) + O(∂2) .
(5.2.12)

Here C∂ is an operator acting on the derivatives of the intrinsic fields ξ and L(1)
r and

L(2)
r are two first-order linear differential operators acting on the perturbations ψ∂ as

a function of the radial coordinate r (and only r) and finally s∂(r) is a source term
(which is a rational function in r whose coefficients depend on ∂ξ). We note that
in order to obtain the dynamical equations one has to explicitly use the constraint
equations. The constraint equations are independent of the radial coordinate and, as
the name suggests, put constraints on (i.e., relations between) the derivatives of the
intrinsic fields. As expected, the constraint equations are found to be equivalent to
the conservation equations of the leading order perfect fluid stress tensor and current
(5.2.7). Notice that the conservation of j takes the form ∂aQ = 0, which just expresses
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that the charge Q is non-fluctuating along the worldvolume. Locally the inverses of
the differential operators L(1)

r and L(2)
r exist and the formal solution to the dynamical

equations reads

ψ∂ =
(
L(2)
r

)−1 (
L(1)
r

)−2
s∂ +

(
L(2)
r

)−1
h1 + h2 . (5.2.13)

Here h1 and h2 denote functions in the kernel of L(1)
r and L(2)

r , respectively. We note
that the inverse operators of L(1)

r and L(2)
r in general involve various integrations which

when evaluated on s∂ are quite complicated leading to various types of hypergeometric
functions. The local decomposition (5.2.13) is of course not unique, however, if we
require the inverse of L(1)

r to exist globally (in particular at r = r0) or equivalently
require horizon regularity, the homogeneous solution h1 is forced to vanish leaving only
h2, which is then fixed by the boundary conditions and choice of fluid frame. Indeed, a
subset of the freedom in the homogeneous solution h2 comes directly from the seed
solution (5.2.10) and can be generated by O(∂) shifts r0 → r0 + δr0, γ0 → γ0 + δγ0 and
ua → ua + δua (along with gauge transformations of Af ). Such shifts of course map to
new (regular) asymptotically flat solutions which differ from (5.2.10) by O(∂). From
a relativistic fluid point of view, this freedom is expected and corresponds to O(∂)
redefinitions of the temperature, chemical potential and fluid velocity. In order to fix
the gauge (the fluid frame), we require that the first-order solution reduces to (5.2.10)
when the fluctuations vanish, which in turn corresponds to choosing the Landau frame
on the fluid side. The remaining freedom in h2 parameterizes non-renormalizable modes
which we require to vanish by virtue of asymptotic flatness.4 In this way the freedom
in the homogeneous solution h2 can be completely removed and we obtain the full
solution to first order in the derivative expansion.

5.2.2 Transport coefficients

Having obtained the first-order regular asymtotically flat corrected solution and reex-
pressing it in Schwarzschild coordinates, it is straightforward to compute the induced
effective stress tensor using familiar techniques and extract the first-order transport
coefficients. By direct computation we obtain the following effective stress tensor

Tab = ϱ uaub + P∆ab + Π(1)
ab + O(∂2) with Π(1)

ab = −2ησab − ζϑ∆ab . (5.2.14)

4For n = 1 one needs to fix some additional gauge freedom in g∂ri in order to ensure asymptotically
flatness.
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Here σab and ϑ are the (fluid) shear and expansion of the congruences ua, respectively,
and the coefficients η and ζ are the corresponding shear and bulk viscosity.5 They
explicitly evaluate to

η = s

4π ,
ζ

η
= 2

1
p

+ C − 2n
n+ 1 + Cγ0

γ0 +
(n+ 1)

(
1 + (C − 2n)γ0

)
(n+ 1 + Cγ0)2

 , (5.2.15)

where we have defined the constant C ≡ 2 − n(N − 2). For fixed r0, the viscosities
are parametrized by the charge parameter γ0 and the parameter N . The neutral limit
can be obtained independently by taking either of the parameters to zero. Indeed, for
large values of the dilaton coupling the dynamics of the brane effectively reduces to
that of the neutral black p-brane (we have checked that our results reduce to those
obtained in the neutral limit [42]). We note that the shear viscosity increases with the
charge while bulk-to-shear viscosity ratio decreases as charge is added to the brane (for
fixed r0). As expected the gravitational solution saturates the hydrodynamic bound
η/s ≥ 1/4π [110, 116]. We also note that the charge current j = Q ⋆ 1 does not receive
any first-order contribution. This is of course just a reflection of current conservation in
the effective theory. Finally, we have checked that our results agree with those obtained
for the D3-brane in Ref. [44] (here p = 3, D = n+ p+ 3 = 10, a = 0).6

5.2.3 Dynamical stability

With the fluid transport determined, we can now address the stability properties of
fundamentally charged branes by analyzing the response of their corresponding effective
fluids under small long-wavelength perturbations. The dynamics of a charged fluid is
governed by the worldvolume conservation equations given by Eq. (5.2.6). Here, we are
interested in the case where the stress tensor T takes the form of a general dissipative
fluid to first order (5.2.14). For the sound mode(s) we write the dispersion relation,
valid up to second order in the wave vector k =

√
kiki ,7 as

ω(k) = ±csk + iask
2 . (5.2.16)

Here cs is the speed of sound given by c2
s = ∂P/∂ϱ, where the thermodynamical quantity

kept fixed when taking the derivative depends on the specific type of charged fluid in

5Notice that for p = 1 the shear tensor vanishes.
6One has to employ the limit Rc → 1 and make use of the identifications r4

− = r4
0γ0, r4

+ = r4
0(1+γ0)

and γ0 = (1 − δe)/δe.
7Here the relativistic wave vector is ka = {ω, ki}.
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question. The attenuation coefficient as controls the dampening of the longitudinal
sound mode and is determined by the first-order transport coefficients (5.2.15). In order
for the fluid to be dynamically stable we must require that the speed of sound squared
c2
s and the attenuation coefficient as are both positive. In addition to the sound mode,

the fluid also exhibits a transverse shear mode,

ω(k) = iη

w
k2 , (5.2.17)

which is stable provided that η > 0.
Now, for fundamentally charged p-branes the charge is not allowed to redistribute

itself on the worldvolume of the brane, since it is conserved along all directions as noted
previously. This means that the dynamics of the effective fluid will be reminiscent of
that of a neutral brane, since the charge only plays a rôle in the equation of state. In
particular, the leading order stability is solely determined by the sound mode (5.2.16).
The system will therefore be stable to linear order in k as long as the speed of sound
squared,

c2
s =

(
∂P

∂ϱ

)
Qp

= −1 + (2 − nN)γ0

n+ 1 + Cγ0
, (5.2.18)

is positive. We note that in the limit of vanishing charge (γ0 → 0) we recover c2
s =

−1/(n+1) [42] signifying that the neutral brane exhibits a Gregory-Laflamme (GL)
instability [21, 22]. However, for finite γ0 we find, as in Ref. [107], that there exists a
threshold,

γ̄0 = 1
nN − 2 , (5.2.19)

above which the black brane is stable under long-wavelength perturbations to linear
order. For fixed temperature, the threshold value γ̄0 is precisely where the brane
configuration reaches its maximal charge. As illustrated in Fig. 5.1, this point exactly
corresponds to a transition point between an unstable branch and a stable branch of
configurations with the neutral brane configuration located at the endpoint γ0 → 0 of
the unstable branch. For sufficiently large dilaton coupling all fundamentally charged
p-branes are therefore unstable, since they approximates the neutral brane. On the
other hand, the stable branch connects with the extremal limit and since γ0 measures
the ratio between local electrostatic energy and thermal energy of the fluid, the stable
regime is where the electrostatic energy is dominant. Notice that the limit γ0 → ∞
corresponds to flat space. However, it is not entirely clear if any of the hydrodynamic
interpretation survives in the strict limit. The threshold value does not exist in instances
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Brane a γ̄0 c2
s

was/η

Dp 3−p
2

1
5−p

(5−p)γ0−1
8−p+(9−p)γ0

72−17p+p2+8(8−p)γ0+4(9−p)γ2
0

(8−p+(9−p)γ0)2

M2 0 1
4

4γ0−1
7+8γ0

1
2

(
1 + 63

(7+8γ0)2

)
M5 0 1 γ0−1

4+5γ0
4
5

(
1 + 9

(4+5γ0)2

)

Table 5.1 The expansion coefficients of the sound mode (5.2.16) for the p-branes of
ten and eleven dimensional supergravity (N = 1). For a sufficiently large value of γ0
the threshold value γ̄0 is exceeded and the fundamentally charged branes are stable.
We note that the threshold value in ten dimensional supergravity increases with the
spatial dimension and that black NS/Dp-branes are always unstable for p ≥ 5. It is
also worth noting that the values for the D1 and D4 are equivalent to those of the M2
and M5, respectively, due to Type II A ↔ M-theory relation. Finally, the values for
the fundamental string and NS5 are equivalent to those of the D1 and D5, respectively,
as N is invariant under a → −a.

where nN < 2, since γ0 is a non-negative parameter. In those cases, the speed of sound
is imaginary for all values of γ0. Finally, for the branes in ten and eleven dimensional
supergravity we have listed several values of interest in Table 5.1. In particular, we
note that the threshold γ̄0 does not exist for p = 5, 6 in D = 10. This is in agreement
with the expectation that the supergravity descriptions of D/NS/M-branes are stable
with the exception of the D5, D6 and NS5 brane [21, 22, 107, 113].

We can now proceed by refining the analysis to quadratic order in k by including the
second-order term in the sound mode. As explained, in the absence of charge diffusion,
the attenuation coefficient will take the exact same form as a neutral fluid, hence

as = 1
w

((
1 − 1

p

)
η + ζ

2

)
. (5.2.20)

The effects of the fluid carrying charge therefore only appears through the explicit
dependence on Q in the shear and bulk viscosities given by Eq. (5.2.15). When the
threshold (5.2.19) exists, we find, as shown in Fig. 5.1, that the attenuation coefficient is
positive for both branches of configurations. The stability is therefore fully determined
by the linear order, i.e., by the speed of sound. This is in contrast to configurations
with smeared charges where the attenuation coefficient plays an important rôle for
the stability properties of the effective fluid as we shall see in Sec. 5.3.2. When the
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0
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−1 γ0 = 0

γ0 = γ̄0

γ0 → ∞

Q

ĉ2
s

âs

Fig. 5.1 The qualitative behavior of the coefficients of the sound mode given by
Eq. (5.2.16) as a function of the charge Q for a fixed temperature T . The quantities
ĉ2
s and âs correspond to the speed of sound squared and the attenuation coefficient

normalized with respect to their neutral values, respectively. There is one unstable
branch connected to the neutral limit (γ0 → 0) plotted with dashed lines and one
stable branch connected to the extremal limit where both coefficients are positive. The
stable branch is reached exactly when the charge parameter γ0 exceeds the threshold
γ̄0 given by Eq. (5.2.19). This point corresponds to the maximal charge of the brane
configuration for a given fixed temperature.

threshold exists, the fundamentally charged p-brane is therefore dynamically stable for
sufficiently large charge parameter γ0 at least to next-to-leading order.

An occurrence of a dynamical GL-like instability is conjectured to be intercorrelated
with a thermodynamical stability [113, 128, 129] viz. the correlated stability conjecture.
It is therefore interesting to relate the above dynamical analysis to the thermodynamic
properties of the effective fluid. The condition for thermodynamic stability is computed
in the canonical ensemble, since the charge is fixed in the system and thus only requires
positivity of the specific heat cQp . Using the thermodynamic quantities (5.2.9) and
the expression for the speed of sound (5.2.18) one can show that the point where the
specific heat becomes positive overlaps precisely with the threshold value given by
Eq. (5.2.19), i.e., the configuration with the maximally allowed charge (for a given
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temperature). Indeed, as pointed out in Ref. [107], there is a direct relation between
the speed of sound and the specific heat cQp at fixed charge given by

c2
s =

(
∂P

∂ϱ

)
Qp

= s

(
∂T
∂ϱ

)
Qp

= s

cQp

. (5.2.21)

For this system, we therefore find that the dynamical stability is in agreement with
the correlated stability conjecture. Although, our results are only valid to first order
we expect the statement to hold to all orders.

5.3 Hydrodynamics of dilatonic Maxwell charged
branes

In this section, we write down the first-order effective hydrodynamic expansion for the
p-branes of the theory (5.2.1) with q = 0 (Einstein-Maxwell-Dilaton (EMD) theory).
These results provide the dilaton generalization of the results originally presented in
Ref. [43]. In terms of the parameter N , the dilaton coupling a now takes the form,

a2 = 4
N

− 2
(
D − 3
D − 2

)
. (5.3.1)

In particular, for the parameters relevant for type IIA supergravity, we have a = 3/2,
and the action (5.2.1) is that appropriate for describing smeared configurations of
D0-branes. The leading order solution is given by

ds2 = h−( n+p
n+p+1)N

− fuaub dxadxb + hN
(
∆ab dxadxb + f−1dr2 + r2 dΩ2

(n+1)

) ,

φ = aN

4 log h , A(1) =

√√√√N (
γ0 + 1
γ0

) (
h−1 − 1

)
uadxa .

(5.3.2)

The effective stress tensor and Maxwell current are computed from the asymptotics of
the solution and take the perfect fluid form,

Tab = ϱ uaub + P∆ab , ja = Qua . (5.3.3)

Here the energy density ϱ, pressure P and charge density Q are obtained from the free
energy in the usual way. Direct computation of the on-shell action reveals that the free
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energy G again takes the from (5.2.8). Moreover, the two parameters r0 and γ0 are
related to the temperature T and chemical potential Φ as in Eq. (5.2.9). However, the
Gibbs-Duhem relation now takes the form w ≡ ϱ+ P = T s+ ΦQ. Here we have used
a calligraphed Q to denote the monopole charge density in order to distinguish it from
the fundamental dipole type charge Q considered in the previous section.

5.3.1 Transport coefficients

Carrying out the perturbative computation of the first-order corrected fields and the
corresponding effective currents follows the procedure explained in Sec. 5.2 (see App. C
for many of the details and e.g. Ref. [43]). The most important difference between the
two computations consists of the existence of an additional SO(p) vector (dynamical)
equation in the Maxwell case. This is in accordance with the fact that a worldvolume
one-form potential contains p more degrees of freedom than a top-form potential. The
constraint equations coming from Einstein’s equations take the same form as before but
the constraint equation deriving from the Maxwell equation is shown to be equivalent
to current conservation, ∂aja = 0. This allows for fluid dynamical fluctuations in
the charge density Q, which in turn shows up as a new charge diffusion transport
coefficient in the effective theory. The most general first-order derivative corrected
effective current, consistent with the second law of thermodynamics, takes the form
(here written in the Landau frame)

ja = Qua + Υa
(1) + O(∂2) with Υa

(1) = −D
(QT
w

)2
∆ab∂a

(
Φ
T

)
. (5.3.4)

Here D is the transport coefficient associated with diffusion (appropriately normalized).
Without further ado, we now present our results for the transport coefficients. The

shear and bulk viscosities are given by

η = s

4π ,
ζ

η
= 2
p

+ 2
C

(
2 −N + (n+ 1)N

(n+ 1 + Cγ0)2

)
, (5.3.5)

here C is the constant introduced below Eq. (5.2.15). Again, for fixed r0, the viscosities
are parametrized by γ0 and N and they reduce to the values of the neutral limit if
either of the parameters are taken to zero. As expected, the shear viscosity saturates
the bound η/s ≥ 1/4π. The diffusion constant D, associated with the effective current
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(Eq. (5.3.4)), is determined to

D

η
= 4πr0(1 + γ0)
nNγ0

√
(1 + γ0)N

, (5.3.6)

As is straightforward to check, these results agree with those of [43] in the limit where
the dilaton coupling goes to zero, or equivalently, N → 2(D−2)

D−3 .

5.3.2 Dynamical stability

We now analyze the dispersion relations of the fluid associated to the Maxwell charged
branes. In contrast to the fundamentally charged branes, discussed previously, the
Maxwell charged branes exhibit charge diffusion which significantly changes the effective
dynamics. Most notably, since the charge density can redistribute over the worldvolume,
this gives rise to an additional longitudinal mode with the following dispersion relation,

ω(k) = iaDk
2 . (5.3.7)

This mode is associated to the attenuation of the (long-wavelength) diffusion of charge
and is a first-order derivative effect. The existence of this charge diffusion mode explicitly
means that the stability of the system to second order in k is not only determined by
the attenuation coefficient as of the sound mode (5.2.16), but also by the attenuation
coefficient aD. In order for the system to be stable to second order one must therefore
require both to be positive. As before this system also exhibits a transverse shear mode
given by Eq. (5.2.17). However, since the shear viscosity is positive, this mode does
not play any rôle for the stability properties of the fluid.

To linear order in k, the stability of the Maxwell system is, similarly to the
fundamentally charged brane, solely determined by the sound mode. More precisely, it
is dictated by the speed of sound squared which for the Maxwell system is given by

c2
s =

(
∂P

∂ϱ

)
s
Q

= − 1 + (2 −N)γ0

(1 + γ0N)(n+ 1 + Cγ0)
. (5.3.8)

In the limit of vanishing charge (γ0 → 0) we again recover the neutral value for the
speed of sound. For finite γ0 we find the threshold,

γ̄0 = 1
N − 2 , (5.3.9)
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Brane a γ̄0 c2
s

was/η waD/η

D0 3
2 −1 − 1

8−p+(9−p)γ0
(9 − p)(8 − p)(γ0 + 1)2c4

s 1

Table 5.2 Coefficients of the longitudinal sound and diffusion mode for the black
D0-brane smeared in p ≥ 1 directions. Note that the first-order coefficient (speed of
sound squared) is negative whereas both of the second-order attenuation coefficients
are positive.

above which the Maxwell charged black brane is stable to leading order. Note that
the threshold only exists for N > 2, or equivalently, when the dilaton coupling a

is sufficiently small.8 The qualitative behavior of the speed of sound (for N > 2) is
illustrated in Fig. 5.2. In particular, we find that there exist two branches of brane
configurations for the same charge density; an unstable branch (γ0 < γ̄0) connected to
the neutral brane configuration and a stable branch (γ0 > γ̄0) connected to the extremal
brane configuration. However, in contrast to the fundamentally charged brane, the
merging point (defined by γ̄0) does not coincide with the maximal charge configuration.
On the other hand, if the threshold does not exist, i.e., N < 2, the speed of sound
is imaginary for all charge densities. The system is thus unstable independent of the
charge. This instability is in accordance with the one observed for configurations of
smeared D0-branes (N = 1) [114, 115]. In Table 5.2, we list the values of interest
connected to this special case.

We now address the stability to quadratic order in k. We therefore consider the
two attenuation coefficients as and aD associated to the sound and diffusion mode,
respectively. For the sound mode we find, in contrast to Eq. (5.2.20), the following
modification due to the presence of charge diffusion,

as = 1
w

(1 − 1
p

)
η + ζ

2 + 2
T

Q2

c2
s

(
Q2

wΦ
c

CQ

)2

D

 , (5.3.10)

where we have introduced the specific heat capacity CQ and the (inverse) isothermal
permittivity c given in Eq. (5.3.12). For the diffusion mode (5.3.7), we find

aD = Q2

c2
sw

c

CQ
D . (5.3.11)

8Explicitly the dilaton coupling squared has to be smaller than ā2 = 2
n+p+1 .
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γ0 = 0

γ0 = γ̄0γ0 → ∞
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ĉ2
s

âs

âs

âD

âD

Fig. 5.2 The qualitative behavior of the coefficients of the longitudinal modes given
by Eq. (5.2.16) and Eq. (5.3.7) as a function of the charge density Q for fixed local
temperature T . The quantities ĉ2

s, âs and âD are given by the Eqs. (5.3.8), (5.3.10)
and (5.3.11) normalized with respect to their individual neutral values. Dashed lines
are for γ0 < γ̄0 while filled lines are for γ0 > γ̄0. We observe that no region exists
where all three quantities are positive at the same charge density Q. Furthermore, the
attenuation coefficients both show a hyperbolic behavior at the threshold γ̄0 indicated
by a vertical dashed line. Note that due to the choice of normalization of the diffusion
coefficient in Eq. (5.3.4), the attenuation coefficient āD takes a fictitious finite value in
the neutral limit.

Assuming that N > 2, the attenuation coefficients exhibit a hyperbolic divergence
around γ̄0. We refer to Fig. 5.2, where we have plotted a generic case of the two
longitudinal modes. This divergent behavior at γ̄0 is very different compared to the
continuous behavior observed for as in Sec. 5.2.3 (see Fig. 5.1). Indeed, it seems that
the linearized analysis breaks down at the threshold γ̄0. However, besides this new
feature we still find that both the speed of sound squared and the attenuation coefficient
as are positive when γ0 surpasses the threshold. The stability of the sound mode is
therefore, similarly to the fundamentally charged branes, solely dictated by the speed of
sound. In contrast to the attenuation coefficient of the sound mode, it is quite apparent
from Eq. (5.3.11), that the hyperbolic feature of the diffusion attenuation coefficient
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is simply dictated by the inverse speed of sound. We therefore find that the diffusion
mode has exactly the complementary behavior of the sound mode, that is, when the
sound mode is stable the charge diffusion mode is unstable and vice versa. The Maxwell
charged brane configurations therefore suffer a GL instability for all charge densities.

Finally, we check whether the dynamical GL-like instability observed above is
connected with the thermodynamic stability of the system as predicted by the corre-
lated stability conjecture. The conditions for thermodynamic stability of the Maxwell
black brane are computed in the grand canonical ensemble since charge is allowed to
redistribute itself in the directions of the brane. This exactly leads to the requirement of
positive specific heat capacity and positive (inverse) isothermal permittivity [130, 131],

CQ =
(
∂ϱ

∂T

)
Q

=
(

n+ 1 + Cγ0

(nN − 2)γ0 − 1

)
s ,

c =
(
∂Φ
∂Q

)
T

=
(

1
(γ0 + 1)(1 − (nN − 2)γ0)

)
1
sT

.

(5.3.12)

It is straightforward to see that these two conditions CQ > 0 and c > 0 are com-
plementary and can never be satisfied. Indeed, the two quantities exchange signs at
γ0 = 1/(nN−2). Comparing with the dynamical analysis above, we observe that it is not
sufficient to consider the dispersion relations to leading order, i.e., only considering the
speed of sound cs, since it predicts the system to be stable above the threshold (5.3.9).
However, when we include first-order corrections (the attenuation terms as and aD),
we exactly identify a similar complementary behavior between the sound mode and the
diffusion mode. We therefore find that the dynamical and thermodynamical analysis
predict a similar behavior for the system, but point out that while the threshold value
for the above thermodynamic quantities exactly corresponds to the point where the
configuration obtains maximal charge density, the threshold (5.3.9) for the dynamical
stability corresponds to a smaller charge density as noted above (with the coincidentally
exception of n = 1). A similar effect was also observed in [43]. This can seem puzzling
at first, but we emphasize that it is not in contradiction with the correlated stability
conjecture.

5.3.3 A check: Mapping to AdS

In the previous section we have analyzed the hydrodynamic behavior of dilatonic
Maxwell charged brane solutions. In this section, we present a non-trivial check of our
results with Ref. [67] using a modified version of the AdS/Ricci-flat correspondence [52,
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53] which in its original form provides a map relating a certain class of asymptotically
locally AdS solutions to Ricci-flat solutions. Starting with pure Einstein gravity, we
modify the map by performing a Kaluza-Klein (KK) reduction. This gives us the
possibility to connect with EMD theory, which is a subset of the class of theories
(5.2.1). From this starting point, we continue as Ref. [52, 53] by performing a diagonal
reduction and connect the reduced theory (after an appropriate analytic continuation)
to theories which admit asymptotically local AdS solutions. With this modification in
hand, we can map the first-order corrected solutions of the previous section to their
corresponding class of asymptotically locally AdS spacetimes obtained in Ref. [67].

We begin by performing a KK reduction of the Einstein-Hilbert action. This takes
us to EMD theory and connects with the action (5.2.1) in (n+ p+ 3)-dimensions with
q = 0 and fixes the coupling constant a to

a2 = 2(α + 1)
α

, (5.3.13)

with α ≡ n+ p+ 1. We then perform a diagonal reduction (over the sphere Sn+1) with
metric ansatz

ds2 = e
2
α
χ(x,r)

(
ds2

p+2(x, r) + dΩ2
(n+1)

)
, (5.3.14)

where the (p+ 2)-dimensional reduced metric, the Maxwell field, the dilaton field, and
the scalar field χ are independent of the (n+ 1)-directions of sphere. Note that this
ansatz includes the solutions given by Eq. (5.3.2). The action of the lower dimensional
theory takes the form

I = Vol(Sn+1)
∫
p+2

eχ
(

R ⋆ 1 + ⋆ n(n+ 1) − 1
α(α + 1)dφ ∧ ⋆ dφ

+
(
α + 1
α

)
dχ ∧ ⋆ dχ− 1

2e
− 2

α
(χ+φ)F2 ∧ ⋆F2

)
, (5.3.15)

where R is the (p+ 2)-dimensional Ricci scalar and F2 is the field strength of the KK
gauge field. Note that the second term comes from the integration over the sphere and
that we have performed a suitable Weyl rescaling

φ2 → 1
2α(α + 1)φ

2 . (5.3.16)
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To establish the map, we now consider Einstein gravity with a negative cosmological
constant Λ = −d(d− 1)/2 in (d+ 1)-dimensions,9

IΛ =
∫
d+1

(
RΛ − 2Λ

)
∗ 1 . (5.3.17)

We compactify the theory on a β ≡ (d− p− 1)-dimensional torus using the following
ansatz

ds2
Λ = ds2

p+2(x, r)+e2 φ(x,r)+χ(x,r)
β

(
dy−Aa(x, r) dxa

)2
+e

2
β (χ(x,r)− φ(x,r)

(β−1) )dℓ2
β−1 . (5.3.18)

Here y is a distinguished direction along the torus Tβ and dℓ2
β−1 denotes the line

element of the remaining part of the torus. Using the reduction ansatz (5.3.18), the
reduced action is (dropping a total derivative)

IΛ = Vol(Tβ)
∫
p+2

eχ
(

R ⋆ 1 + ⋆ d(d− 1) − 1
β(β − 1)dφ ∧ ⋆ dφ

+
(
β − 1
β

)
dχ ∧ ⋆ dχ− 1

2e
2 φ+χ

β F2 ∧ ⋆F2

)
, (5.3.19)

with F2 = dA. Suppose that we now have access to closed analytic expressions of
solutions to the reduced action (5.3.19) for any positive integer d. It then makes sense
to extend the domain via an analytic continuation [54] of the parameter d. In this way,
we can view solutions as a function of d which now can take any real value. In particular,
it makes sense to consider solutions for negative values of d. The same reasoning can be
applied to the action (5.3.15) where the solutions are viewed as functions of n. Direct
inspection of the two actions (5.3.19) and (5.3.15) shows that they are proportional
under the analytic continuation d ↔ −n,

Vol(Sn+1) IΛ ↔ Vol(Tβ) I . (5.3.20)

This implies that we can obtain solutions to the reduced theory (5.3.15) by a simple
reflection of the dimensionality parameter starting from the reduced theory (5.3.19) and
vice versa. In this way, knowing solutions of the form (5.3.14) of the higher dimensional
theory (for any n ∈ N) allows us to consistently uplift to solutions of the form (5.3.18)
(for any d− 1 ∈ N) using the connection between the two reduced theories (5.3.20) and
vice versa.

9Working in units where the AdS radius is set to unity.
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Now, with the modified version of the mapping in hand, we can relate brane
solutions of EMD theory + hydro to those of AdSd+1 compactified on (d− p− 1) flat
directions.10 The effective hydrodynamics of branes in AdSd+1 compactified on a torus
(as described above) was worked out in the Ref. [67] directly from the AdS results
in general (d + 1) dimensions [119]. We can thus map the solutions of the reduced
AdS theory to solutions of EMD considered in this work and in turn compare the
transport coefficients. This provides us with a non-trivial cross-check of our results for
the particular value (5.3.13) of the dilaton coupling. Going through this exercise, we
find a perfect agreement between the transport coefficients (Eqs. (5.3.5)-(5.3.6) and
Eqs. (3.4.38)-(3.4.40) of [67], respectively.11).

Finally, we can in a similar way as in Sec. 5.3.2 check the dynamical features of
the asymptotically local AdS solutions explicitly by computing the dispersion relations
of the associated fluid. In contrast to the asymptotically flat solutions one finds that
all the coefficients of both the sound mode (5.2.16) and the diffusion mode (5.3.7) are
continuous and positive for all values of the charge density. We therefore find that no
threshold value exists for the particular dilaton coupling (5.3.13) and furthermore that
the hyperbolic behavior has been resolved through the analytic continuation (compare
e.g. with Fig. 5.2). The solutions are thus stable to first order which is perhaps not too
surprising, since they originate from stable neutral AdS branes [132] through consistent
reductions. In addition, one can easily check that they are also thermodynamically
stable by computing the specific heat and isothermal permittivity (see Eq. (5.3.12))
and checking explicitly that they are positive for all values of the charge.

5.4 Discussion

We have performed the perturbative procedure which captures the hydrodynamic sector
of fundamentally charged (dilatonic) black branes and branes with Maxwell charge
smeared over their worldvolume. The main result of this section are the first-order
transport coefficients that determine the dissipative behavior of the effective fluids.
They are listed in Eq. (5.2.15) and Eqs. (5.3.5)-(5.3.6). Furthermore, for each class of
branes we have obtained the dispersion relations of the effective fluids for which we
refer to Fig. 5.1 and 5.2. As explained in the main text, many of our results apply to

10We note that care must be taken for fixing n = 1 after the analytic continuation, since while this
might still be some perturbed solution it will not correspond to the asymptotically flat perturbed
solution that we have been considering. In a similar way one should take care from the reversed
perspective if fixing d = 2.

11Note, that [67] uses a different normalization of the diffusion coefficient.
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brane descriptions arising in string and M-theory. We have highlighted the interesting
values in Table 5.1 and 5.2.

We have computed the shear and bulk viscosities and in particular found their
dependence on the (local) charge and dilaton coupling. We find that both classes
of black branes have a shear viscosity satisfying η/s = 1/4π thus saturating the
universality KSS bound [110, 116]. It is reasonable to expect that this result holds for
any kind of smeared brane solution of the action (5.2.1). Even though there, at least to
our knowledge, does not exist a universal bound on the bulk-to-shear viscosity ratio, it
is nevertheless still interesting to test our result against the well-known (holographic)
“bound” proposed by Buchel [109]. We find that the ratio for fundamentally charged
branes always violates this bound for all non-zero values of the charge and only saturates
it in the neutral limit. In contrast, we find that branes with smeared charge continue to
satisfy the bound for small charge parameter, but break the bound for sufficiently large
values of the charge parameter. Although violations of the Buchel bound already exist
in the literature [133], our setup thus provides two additional and physically simple
examples. In Ref. [67] a different inequality and potential bound was proposed for
Maxwell charged AdS branes, but it is always violated for our asymptotically flat branes.
This was also observed in [1]. Indeed, if a universal bound on the shear-to-bulk exists,
it would need a rather a non-trivial modification, it seems. Finally, the presence of
smeared charge on the worldvolume gives rise to an additional hydrodynamic diffusion
mode. We have determined the value of the transport coefficient D associated with
charge diffusion and explicitly found its dependence on the dilaton coupling. In fact, we
note that even though it generalizes the result for zero dilaton coupling in [43], it takes
exactly the same form in terms of the parameter N . We note that all the transport
coefficients are positive as required by thermodynamic consistency (the second law of
thermodynamics).

We have analyzed the dynamical stability of both classes of charged black branes by
considering the response of their corresponding effective fluids to small long-wavelength
perturbations. To leading order, both systems have a branch of configurations that
suffers from a GL instability in the sound mode [21, 22]. This branch connects naturally
with the neutral brane configuration which is indeed known to be unstable [42]. However,
for a certain regime of the solution parameters, both systems also have a branch of
stable configurations for a given charge connecting with the extremal limit. When
taking first-order effects into account, this seemingly similar behavior of the two systems
breaks down. For the system with fundamental charge we find that the attenuation
coefficient of the sound mode is positive for all values of the charge and thus the
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stability is fully determined by the leading order i.e. by the speed of sound. In contrast,
an additional longitudinal diffusion mode plays a crucial rôle for the Maxwell system
which in turn leads to a complementary behavior between the stability of the sound
and diffusion mode. The Maxwell black brane therefore suffers from a GL instability
for all values of the charge. This complementary behavior is similar to the behavior of
thermodynamic stability under change of charge and hence our result is in accordance
with the correlated stability conjecture [128, 129]. We note that this was also observed
for the Reissner-Nordström black brane considered in [43] and that similar observations
have been done for other smeared branes, see e.g. [130, 134] for the case of smeared
Dp-branes.

In Sec. 5.3.3, we presented a cross-check of the transport coefficients associated
with the fluid dynamics of the Maxwell charged branes utilizing a modified version
of the “AdS/Ricci flat correspondence” [52, 53]. Although, it would be interesting
to obtain a deeper understanding of whether any physics can be attributed to the
existence of such a mapping, we can at least here comment with a partial answer
with respect to its possible generalizations. In our endeavors trying to relate generic
theories with an action of the type (5.2.1) to theories with a cosmological constant, we
found that mappings of this kind are indeed possible. Unfortunately, despite allowing
for a substantial amount of freedom between the field contents of the theories one in
general ends up with pathological theories containing a scalar field having a kinetic
term with the “wrong” sign. This is mainly due to severe restrictions arising from the
requirements of consistent dimensional reductions. However, it is worth mentioning
an interesting application of the current map (as it is presented in Sec. 5.3.3), namely,
that it provides us with a tool for working out the second-order corrected charged
solutions by starting directly from the known second-order results in AdS [32, 119]. We
leave this exercise for the future. Before ending this paragraph, it is also interesting to
note that since part of our computation is connected to the fluid description of the
near horizon throat geometry (AdS) of stacks of D/M-branes, there are two, seemingly
unrelated, schemes relating the results of the fluid/gravity correspondence to those of
the asymptotically flat branes (and vice versa). It is therefore tempting to think that
the two approaches are related although the precise connection still remains unclear.
Hopefully our results will help shed some light over these unresolved issues. In this
regard it is also interesting to note that the hydrodynamic regimes of the spinning black
D3-brane was recently considered in [135] extending the work of [44]. Here, the theory
naturally includes a U(1) gauge field. In the light of our results for the Maxwell black
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brane it would be of considerable interest to review whether they can be related (for
specific parameters) to at least a subsector of the hydrodynamic limit of the spinning
D3.





Chapter 6

Conclusions

In this thesis we have made progress on the study of higher dimensional gravity by
focusing on the properties of black holes and branes and their dynamics. We have
developed two main projects:

• we have provided several maps between different dynamical spacetimes,
• we have determined the hydrodynamical behaviour of fluids dual to some classes

of black holes.
Detailed discussions about the results obtained, and about future directions, can

be found at the end of each chapter. Here we give a brief summary of the new, original
results presented in this thesis.

In the first part of the thesis we have developed an extension of the AdS/Ricci
flat correspondence to spacetimes with positive cosmological constant, including scalar
matter, and found a new Kerr/AdS solution with hyperbolic horizon from a known
Kerr/dS solution using this map. The AdS/dS correspondence may help understanding
how to set up holography in dS space.

Another line of research was the study of fluids using the KK dimensional reduction.
Choosing a generic relativistic fluid, without assuming any specific equation of state
nor constituent relation, performing a boost in N internal dimensions, compactifying
them and reducing on a N dimensional torus, we have obtained a charged fluid with
N charges. Momenta in the compactified directions are interpreted as charges in the
reduced theory. We were able to compute the transport coefficients of this charged
fluid as the shear viscosity, bulk viscosity and the thermal conductivity. The same
analysis has been applied to a particular fluid: the fluid dual to a black p-brane. We
have obtained the shear viscosity, bulk viscosity and thermal conductivity matrix for a
black p-brane with N charges in the compact directions. This method is particularly
interesting since it allows to study the hydrodynamics of charged objects without
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performing a perturbative analysis. Indeed, the results were obtained algebraically
from those of a neutral brane by simply applying dimensional reduction techniques.

In the last part of the thesis we have investigated the hydrodynamics properties
of fundamentally charged (dilatonic) black branes and branes with Maxwell charge
smeared over their worldvolume. We have determined the dissipative behavior of the
effective fluids associated to those branes and analysed their dynamical stability. We
have moreover modified the AdS/Ricci flat correspondence to include charged cases
using a non diagonal KK reduction. This generalized map has been used to give a non
trivial check of our results which indeed agree with the mapped coefficients in [67].

To conclude, in this thesis we have shown how higher dimensional gravity is
surprisingly rich of new phenomena. Playing with spacetime dimension and mapping
apparently unrelated theories living in different number of dimensions has revealed
various successful predictions and results. This work improves the current comprehension
of GR in spacetimes with general dimension and gives hints to holography in spacetimes
with asymptotics different than AdS.



Chapter 7

Resumen en castellano

La teoría de la Relatividad General (RG) en mas de cuatro dimensiones es especialmente
interesante. Añadir dimensiones extra genera una multitud de nuevos fenómenos que
nos dan indicios para entender mejor e investigar la naturaleza de esta teoría de
la gravitación. Los agujeros negros son nuestra mejor herramienta para estudiar la
GR en dimensiones superiores. Si tratamos la dimensión del espaciotiempo como un
parámetro libre de la teoría, sorprendentemente emergen agujeros negros con topologia
del horizonte no esférica y con una estructura de fase mucho mas rica. Además estos
agujeros negros no siempre son soluciones estables y pueden manifestar inestabilidades.
Investigar estas nuevas características y propriedades contribuye a comprender el por
qué GR en cuatro dimensiones es tan peculiar.

Una de las principales razones para estudiar la gravedad en más dimensiones
se debe a la teoría de cuerdas. Esta teoría es nuestro candidato mas prometedor
para resolver el problema de la inadecuada descripción cuántica de la gravedad. Lo
sorprendente es que para ser consistente la teoría de cuerdas necesita dimensiones extra
(10 dimensiones o 11 para M-theory). Probablemente el mayor éxito en el contexto
de teoría de cuerdas es el descubrimiento de la dualidad entre teorías cuánticas de
campo (QFT) y gravedad. Más precisamente, existe una equivalencia entre la física
cuántica de sistemas fuertemente acoplados y la dinámica clásica de teorías de gravedad
en una dimensión mas alta. Denominada “Correspondencia AdS/CFT”, en su forma
original relaciona una teoría de gravedad en espacio anti-de Sitter (AdS) con una
teoría de campo conforme (CFT) que vive en su frontera. Curiosamente las dos
teorías duales viven en un número diferentes de dimensiones. Por esto se dice que
la correspondencia AdS/CFT es holografica. Particularmente interesante es el limite
hidrodinámico de la correspondencia, la “dualidad fluido/gravedad”. Cuando la teoría
cuántica de campo se encuentra en un estado de equilibrio local está correctamente
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descrita por la hidrodinámica. Esto se traduce en perturbaciones de longitud de onda
larga en la teoría dual de gravedad. En cierto régimen, las ecuaciones de Einstein en D
dimensiones son equivalentes a las ecuaciones de Navier-Stokes en D − 1 dimensiones.
Esto permite describir la dinámica de agujeros negros en termino del fluido dual que
vive en la frontera de su espaciotiempo.

Esta tesis se desarrolla en este contexto teórico centrándose principalmente en el
estudio de la gravedad en dimensiones superiores con un enfoque en las relaciones entre
diferentes tipos de espaciotiempo y el análisis y caracterización de agujeros negros.
Para este último objetivo hemos desarrollado y adaptado teorías efectivas que nos
permiten estudiar la dinámica de agujeros negros en ciertos regímenes. La relación
entre gravedad y fluido, introducida anteriormente en espacio AdS, es una de ellas.
Otro método aproximado para el estudio de agujeros negros es enfoque de “blackfold”.
Esta teoría efectiva describe la dinámica de agujeros negros en un espaciotiempo
genérico en el régimen en que la longitud de onda λ de la perturbaciones considerada es
mucho mayor que el radio del horizonte. También en este caso el agujero negro admite
una descripción hidrodinámica. Ambas teorías efectivas permiten calcular entonces el
tensor energía-impulso asociado al fluido dual al agujero negro y es posible extraer
los coeficientes de transporte al primer orden en derivadas. Los detalles de estos dos
métodos utilizados se han presentado en el Capitulo 2.

Otra línea de estudio analizada es el desarrollo de mapas entre espaciotiempos
diferentes. El primer ejemplo de este relación es la correspondencia AdS/Ricci-plano que
hemos presentado en el Capitulo 3. Tomando como punto de partida la teoría Einstein y
utilizando reducciones dimensionales sobre toros y sobre esferas es posible encontrar una
serie de relaciones entre soluciones de las teorías reducidas. Específicamente, reduciendo
la acción en AdS sobre un toro y en un espacio Ricci-plano sobre una esfera, hemos
encontrado una correspondencia que permite relacionar una con otra mediante una
correspondencia en el número de dimensiones. La utilidad de este mapa está en el poder
predecir resultados en espaciotiempos Ricci-planos partiendo de AdS sin necesidad de
resolver separadamente las ecuaciones en cada caso.

En esta tesis hemos conseguido desarrollar una extensión de el mapa anterior para
espacios de Einstein con curvatura positiva y negativa. A partir de un espacio de
curvatura positiva compactificando algunas dimensiones sobre una esfera y continuando
analíticamente en el número de dimensiones compactas se obtiene un espacio de
curvatura negativa con un subespacio hiperbólico compacto, y viceversa. Una vez
derivado el mapa, lo hemos aplicado a espacios de Sitter (dS) y AdS y a agujeros negros
de Schwarzschild-dS/AdS. Además, hemos estudiado perturbaciones en la frontera de
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AdS, que a través del mapa nos dan sugerencias sobre una posible construcción de
holografía en espacio de dS. De hecho, la frontera de un espacio asintóticamente AdS se
mapea en una brana en el centro de dS y las perturbaciones cerca de la frontera tienen
como fuente un tensor energía-impulso confinado en esta brana. Este tensor resulta
ser igual al negativo del tensor de Brown-York para la métrica perturbada de AdS.
Interesante es el uso del mapa como generador de soluciones. A partir de una solucion
nota en un determinado espaciotiempo el mapa genera directamente la correspondiente
solution en el otro espaciotiempo sin necesidad de resolver ninguna ecuación. Utilizando
el mapa para el agujero negro de Kerr/dS hemos obtenido entonces una nueva solucion
de Kerr/AdS con horizonte hiperbolico.

En el Capitulo 4 hemos estudiado la hidrodinámica de fluidos utilizando la reducción
dimensional de Kaluza Klein (KK). Escogiendo un fluido relativista, sin fijar ecuaciones
de estado o relaciones constituyentes, haciendo un boost en N dimensiones internas,
compactificándolas y reduciendo sobre un toro N dimensional obtendremos un fluido
cargado con N cargas. Los momentos en las direcciones compactificadas se interpretan
como cargas en la teoría reducida. Por lo tanto, en este contexto hemos investigado
como varían los coeficientes de transporte de la teoría inicial como la “shear and bulk
viscosity” y además hemos conseguido calcular la conductividad térmica. Presentamos
los resultados obtenidos en (4.3.10).

El mismo estudio ha sido también aplicado a un fluido específico: el fluido dual una
p-brana negra. Como hemos mencionado antes, dada la correspondencia entre gravedad
y fluidos podemos describir branas negras como fluidos y calcular los coeficientes
de transporte. Utilizando la reducción dimensional de KK a partir de una p-brana
negra neutra en D dimensiones en un espacio asintóticamente plano, hemos conseguido
calcular la viscosidad de shear, la viscosidad de bulk y la matriz de conductividad
térmica de una p-brana negra con N cargas en las direcciones compactas. Este resultado
es muy interesante porque permite estudiar la hidrodinámica de objetos cargados sin
necesidad de rehacer el análisis de perturbaciones de la brana: los resultados se obtienen
algebráicamente a partir de los de una brana neutra, mediante la técnica de reducción
dimensional. Ademas utilizando la correspondencia AdS/Ricci-plano hemos podido
mapear los coefficientes obtenidos y compararlos con los resultados conocidos para
branas negras cargadas en Anti-deSitter presentados en [67, 68]. Hemos podido verificar
así que los coeficientes de transporte obtenidos con ambos métodos coinciden.

En el Capitulo 5 hemos extendiendo el estudio de las propiedades hidrodinámicas
de branas negras a los casos en que las branas llevan cargas de diferentes tipos. Hemos
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analizado la hidrodinámica del fluido dual en dos clases generales de branas negras
cargadas y con acoplo dilatónico incluyendo D/NS/M branas en supergravedad en once
y diez dimensiones. En particular, consideramos los casos en que la brana negra está
acoplada a un potencial de (p+ 1)-forma, que llamamos brana con carga fundamental,
y brana acoplada a un campo de Maxwell. En ambos casos el acoplo dilatónico y la
dimensión de la brana son arbitrarios. Estudiando perturbaciones de estas soluciones en
régimen hidrodinámico hemos derivado los coeficientes de transporte (5.2.15) y (5.3.5)-
(5.3.6) al primer orden en derivadas.

También hemos investigado las propiedades de estabilidad de estos sistemas hidrod-
inámicos analizando la respuesta a pequeñas perturbaciones de longitud de onda larga.
En el caso de branas con carga fundamental hemos encontramos que existe una rama de
configuraciones cargadas estables por un determinado régimen del espacio de parámet-
ros. Esto confirma que D/NS/M-branas tienen configuraciones estables, excepto las
D5, D6, y NS5, como es de esperar por argumentos termodinámicos. En contraste, las
branas con carga de Maxwell presentan inestabilidad de Gregory-Laflamme independi-
entemente del valor de su carga. Esto verifica el resultado de que las configuraciones
de D0-branas son inestables.

Hemos ademas extendido la correspondencia AdS/Ricci-plano, que relaciona solu-
ciones de Einstein sin y con constante cosmologica negativa, utilizando reducciones
dimensionales de Kaluza-Klein no diagonales y una continuación analítica en el número
de dimensiones. Esta modificación del mapa permite conectar soluciones cargadas y
con acoplo dilatónico de AdS a espacios asintóticamente planos. Hemos utilizado esta
extensión y mapeado los coeficientes de transporte encontrados. Esto nos ha permi-
tido comprobar que nuestros resultados coinciden con los coeficientes de transporte
calculados anteriormente en AdS en [67].

Acabamos la tesis con una discusión en el Capitulo 6 sobre los resultados obtenidos
y proponemos posibles proyectos para el futuro. Detalles técnicos de nuestros cálculos
se pueden encontrar en los apéndices que siguen a la conclusión.



Appendix A

Curvature tensor from dimensional
reduction

In this appendix we explicitly give the equations obtained from a diagonal dimensional
reduction for a given metric ansatz. In particular we compute the curvature tensors in
the two cases presented in Chapt.3.

A.1 Curvature tensors for a product metric

For the product space metric (3.2.3), one easily calculates the Christoffel symbols
directly from the definition

Γ̄abc = Γabc + α (δac∇b + δab∇c − gbc∇a)φ , (A.1.1a)
Γ̄abγ = 0 , (A.1.1b)
Γ̄aβγ = −βe2(β−α)φγβγ∇aφ , (A.1.1c)
Γ̄αbc = 0 , (A.1.1d)
Γ̄αbγ = βδαγ ∂bφ , (A.1.1e)
Γ̄αβγ = Γαβγ[γ] . (A.1.1f)

The curvature tensors follow as

R̄mn = Rmn − [(n− 2)α + νβ] ∇m∇nφ

+
[
(n− 2)α2 + 2ναβ − νβ2

]
∇mφ∇nφ

− αgmn

[
∇a∇aφ+ [(n− 2)α + νβ] ∇aφ∇aφ

]
,

(A.1.2a)
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R̄mν = R̄µn = 0 , (A.1.2b)

R̄µν = Rµν − βe2(β−α)φγµν∇a∇aφ

− βe2(β−α)φγµν [(n− 2)α + νβ] ∇aφ∇aφ ,
(A.1.2c)

e2αφR̄ = R + e2(α−β)φR[γ] − 2 [(n− 1)α + νβ] ∇a∇aφ

−
[
(n− 1)(n− 2)α2 + 2(n− 2)ναβ

+ ν(ν + 1)β2
]
∇aφ∇aφ .

(A.1.2d)

If we put an additional stress tensor on the right-hand side of (3.2.14), which only
has components in the extended directions Tmn, the reduced equations of motion (3.2.15)
have the form

Rmn − λ(n+ ν − 1)/ℓ2e2αφgmn − αgmn∇a∇aφ

− [(n− 2)α + νβ] ∇m∇nφ

+
[
(n− 2)α2 + 2ναβ − νβ2

]
∇mφ∇nφ

− α [(n− 2)α + νβ] gmn∇aφ∇aφ

= 8πGn+ν
N

(
Tmn − 1

(n+ ν − 2)gmnT
)
,

(A.1.3a)

β
[
∇a∇aφ+ [(n− 2)α + νβ] ∇aφ∇aφ

]
+
[
λ(n+ ν − 1)/ℓ2 − k(ν − 1)H2e−2βφ

]
e2αφ

= 8π
(n+ ν − 2)G

n+ν
N T ,

(A.1.3b)

where the trace is defined by T = gmnTmn.

A.2 Curvature tensors for asymptotically AdS with
a CHS

For the metric (3.2.42) at r = const, we calculate to leading order in hab and ψ

Γabc = 1
2 (∂bhac + ∂ch

a
b − ∂ahbc) , (A.2.1a)

Γabγ = 0 , (A.2.1b)
Γaβγ = γ

(−1)
βγ η

(
δa0 − η∂aψ + 2δa0ψ + ha0

)
, (A.2.1c)

Γαbc = 0 , (A.2.1d)
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Γαbγ =
(
η−1δ0

b + ∂bψ
)
δαγ , (A.2.1e)

Γαβγ = Γαβγ
[
γ(−1)

]
. (A.2.1f)

From this we obtain the Ricci tensor and scalar (using that the compact space is
Einstein)

Rbd = ∂a∂(bhd)a − 1
2∂

2hbd − 1
2∂b∂d(h+ 2νψ)

− ν

η

[
∂(bhd)0 − 1

2∂ηhbd + 2δ0
(b∂d)ψ

]
,

(A.2.2a)

Rbδ = 0 , (A.2.2b)

Rβδ = γ
(−1)
βδ

[
− η2∂2ψ − η∂mhm0 + 1

2η∂η(h+ 4νψ)

+ (ν − 1) (2ψ + h00)
]
,

(A.2.2c)

R = r2

ℓ2

[
∂m∂nhmn − ∂2(h+ 2νψ) − 2ν

η
∂mhm0

+ ν

η
∂η(h+ 4νψ) + ν(ν − 1)

η2 (2ψ + h00)
]
.

(A.2.2d)





Appendix B

Extracting transport coefficients

In this appendix we compute the equations of motion of the N -charge hydrodynamic
system presented in Chapt. 4 from energy momentum conservation relations. We than
show how to extract the transport coefficients for the reduced theory making use of
the frame-independent method introduced in [108].

B.1 Equations of motion for the reduced theory

The perfect fluid part of the reduced stress energy tensor in (4.2.4) satisfies the following
conservation equations

∂aTab = 0 = (1 + ϱ′)ûaûb
N∏
i=1

cosh2 αi∂
aP̂ + ∂bP̂ (B.1.1)

+ (ϱV + P̂ )
N∏
i=1

cosh2 αi

(
2ûaûb

N∑
k=1

tanhαk∂aαk + θ̂ûb + ûa∂
aûb

)
,

∂aTayj
= 0 =

[
(1 + ϱ′)ûa∂aP̂ + (ϱV + P̂ )

( N∑
i=1

tanhαiûa∂aαi (B.1.2)

+
j−1∑
l=1

tanhαlûa∂aαl + cothαjûa∂aαj + θ̂
)]

sinhαj

N∏
i=1

coshαi
j−1∏
k=1

coshαk

where
ϱ′ = ∂ϱ

∂P
and ∂ϱ

∂P̂
= ϱ′ 1

V
.
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If we contract the Eq. (B.1.1) with ûb we find

ûa∂
a log P̂ = −(ϱV + P̂ )

P̂

N∏
i=1

cosh2 αi
2∑N

k=1 tanhαkûa∂aαk + θ̂

(1 + ϱ′)∏N
i=1 cosh2 αi − 1

. (B.1.3)

In addition, Eq. (B.1.2) can be rewritten as

ûa∂
a log P̂ = −(ϱV + P̂ )

P̂ (1 + ϱ′)

( N∑
i=1

tanhαiûa∂aαi +
j−1∑
l=1

tanhαlûa∂aαl

+ cothαjûa∂aαj + θ̂
)
.

(B.1.4)

If we take the latter relation for two different indices, j and k with j ≠ k (corresponding
to the conservation of two different components of the stress energy tensor) and we
subtract them, we obtain

j−1∑
i=k

tanhαiûa∂aαi = cothαkûa∂aαk − cothαjûa∂aαj , j > k (B.1.5)

or equivalently
ûa∂

aαi+1 = ûa∂
aαi

tanhαi+1

sinhαi coshαi
. (B.1.6)

Now, let us compare Eq. (B.1.3) and Eq. (B.1.4). This gives

− 2∑N
k=1 tanhαkûa∂aαk + θ̂

(1 + ϱ′)∏N
i=1 cosh2 αi − 1

N∏
i=1

cosh2 αi =

− 1
(1 + ϱ′)

 N∑
i=1

tanhαiûa∂aαi +
j−1∑
l=1

tanhαlûa∂aαl + cothαjûa∂aαj + θ̂

 (B.1.7)

Since we want the relation between the reduced expansion and a derivatives of specific
rapidity αj, we replace in Eq. (B.1.7) the other derivatives of the remaining rapidities
in term of the one chosen using Eq. (B.1.5). This gives

ûa∂
aαj = −θ̂

∏j−1
i=1 sech2 αi tanhαj

1 − ϱ′ +∏N
l=1 sech2 αl

(B.1.8)

that can be rewritten as

ûa∂
aαj = θ̂

coshαj sinhαj
∏N
l=j+1 cosh2 αl

1 + (−1 + ϱ′)∏N
i=1 cosh2 αi

. (B.1.9)
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The Eq. (B.1.3) in terms of ûa∂aαj only is given by

ûa∂
a log P̂ = −ϱV + P̂

P̂
cothαj

j−1∏
i=1

cosh2 αiûa∂
aαj (B.1.10)

using the result in Eq. (B.1.9).
The reduced acceleration is obtain from Eq. (B.1.1)

ûa∂
aûb = − ∂b log P̂

(1 + ϱV

P̂
)∏N

i=1 cosh2 αi
− P̂ (1 + ϱ′)

P̂ + ϱV
ûbûa∂

a log P̂

− 2ûaûb
N∑
k=1

tanhαk∂aαk − ûbθ̂ .

(B.1.11)

Using Eqs. (B.1.5), (B.1.9), and (B.1.10), this becomes

ûa∂
aûb = − ∂b log P̂

(1 + ϱV

P̂
)∏N

i=1 cosh2 αi
+ ûaûb∂

aαj

coshαj sinhαj
∏N
i=j+1 cosh2 αi

. (B.1.12)

B.2 Dissipative transport coefficients

Shear viscosity

The first term in Eq. (4.3.9) is given by

P̂ a
c P̂

b
dT

diss
ab = −V P̂ a

c P̂
b
d

(
2η
( N∑
i=1

P l
(aP

yi

b) ∂luyi
+ P l

aP
m
b ∂(lum) − Pabθ

p

)
+ ζPabθ

)
.

(B.2.1)

Taking into account that

P̂ a
c P̂

b
dP

l
aP

m
b = P̂ l

cP̂
m
d , P̂ l

cP̂
m
d ∂(lûm) = 0 , P̂ a

c P
yj
a = 0 (B.2.2)

the Eq. (B.2.1) becomes

P̂ a
c P̂

b
dT

diss
ab = −V

(
2η
( N∏
i=1

coshαiP̂ l
cP̂

m
d ∂(lûm) − P̂cdθ

p

)
+ ζP̂cdθ

)
. (B.2.3)
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For what concerns the second term in Eq. (4.3.9) we get

1
p−N

P̂cdP̂
abT dissab = −V

(
2η
( 1
p−N

N∏
i=1

coshαiP̂cdP̂ ab∂(aûb) − P̂cd
p
θ
)

+ ζP̂cdθ
)

considering that

P̂ abPab = p−N , P̂ cd∂(cαiûd) = 0 , P̂ abP c
(aP

yi

b) = 0 . (B.2.4)

If now we subtract (B.2.4) with (B.2.3) we are able to extract the shear viscosity. In
fact

− 2V η
N∏
i=1

coshαi
(
P̂ l
cP̂

m
d ∂(lûm) − 1

p−N
P̂cdP̂

ab∂(aûb)

)

= −2V η
N∏
i=1

coshαi
(
P̂ l
cP̂

m
d ∂(lûm) − 1

p−N
P̂cdθ̂

)
= −2η̂σ̂cd ,

where P̂ ab∂(aûb) = θ̂ and σ̂cd is defined as

σ̂cd = P̂ a
c P̂

b
d∂(aûb) − 1

p−N
θ̂P̂cd . (B.2.5)

We recover the result anticipated in Eq. (4.3.10), that is

η̂ = ηV
N∏
i=1

coshαi . (B.2.6)

Heat conductivity matrix

We now compute the heat conductivity matrix elements. The second equation in
(4.3.10) can be simplified substituting the Eqs. (4.3.8) that leads to

P̂ b
a

(
T dissbyj

− sinhαj∏N
i=j coshαi

N∑
j′=1

sinhαj′∏N
i′=j′ coshαi′

T dissbyj′

)
(B.2.7)

where we have also replaced the values of the reduced density charge, pressure and
energy density from (4.2.6). It is convenient to split the above expression into two
parts: one with index j′ = j and the other with different indices k ̸= j as

P̂ b
aT

diss
byj

(
1 − sinh2 αj∏N

i=j coshα2
i

)
− P̂ b

a

sinhαj∏N
i=j coshαi

N∑
k=1

sinhαk∏N
i′=k coshαi′

T dissbyk
. (B.2.8)
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So, we extract the heat conductivity coefficients from the relations

P̂ b
aT

diss
byj

(
1 − sinh2 αj∏N

i=j coshα2
i

)
= −κ̂jjP̂ b

a∂b

(
µ̂j

T̂

)
, (B.2.9)

−P̂ b
a

sinhαj∏N
i=j coshαi

N∑
k=1

sinhαk∏N
i′=k coshαi′

T dissbyk
= −

N∑
k=1

κ̂jkP̂
b
a∂b

(
µ̂k

T̂

)
. (B.2.10)

The P̂ b
aT

diss
byj

term is given by

P̂ b
aT

diss
byj

= −ηV P̂ c
a

(
sinhαj

j−1∏
l=1

coshαl
N∏
l′=1

coshαl′

(−∂c
N∏
i′=1

coshαi′ +
N∏
i=1

coshαiûb∂bûc) +
N∑
j′=1

P
yj′
yj ∂cuyj′

)
.

(B.2.11)

Using the expression (B.1.12) for the acceleration, and the fact that P̂ abub = 0, this
becomes

− ηV P̂ c
a

[
sinhαj

j−1∏
l=1

coshαl
N∏
l′=1

coshαl′
(

− ∂c
N∏
i′=1

coshαi′ − ∂c log P̂
(1 + ϱV

P̂
)∏N

i=1 coshαi

)

+
N∑
j′=1

P
yj′
yj ∂cuyj′

]
(B.2.12)

Making explicit the value of P yi
yj

and simplifying we obtain

P̂ b
aT

diss
byj

= −ηV P̂ c
a sinhαj

j−1∏
l=1

coshαl
( j−1∑
l′=1

tanhαl′∂cαl′ + cothαj∂cαj − ∂c log P̂
1 + ϱV

P̂

)
.

(B.2.13)
For what concerns the right part of the formula (B.2.9), if we substitute the values

(4.2.7) and (4.2.10) we find

P̂ b
a∂b

(
µ̂j

T̂

)
= P̂ b

a∂b

(sinhαj
∏j−1
i=1 coshαi
T

)

= P̂ b
a

T̂
sinhαj∏N
i=j coshαi

(
cothαj∂bαj +

j−1∑
l=1

tanhαl∂bαl − ∂b log P̂
1 + ϱV

P̂

)
.

(B.2.14)
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Now we are able to extract the elements of the heat conductivity metric from Eq.
(B.2.9) only replacing the result obtained in Eq. (B.2.13) and (B.2.14). This leads to

− ηV P̂ c
a sinhαj

j−1∏
l=1

coshαl
(

1 − sinh2 αj∏N
i=j coshα2

i

)(j−1∑
l′=1

tanhαl′∂cαl′ + cothαj∂cαj

− ∂c log P̂
(1 + ϱV

P̂
)

)
= −κ̂jj

P̂ c
a

T̂
sinhαj∏N
i=j coshαi

(
cothαj∂cαj +

j−1∑
l=1

tanhαl∂cαl − ∂c log P̂
1 + ϱV

P̂

)
.

So, the diagonal elements are

κ̂jj = ηV T̂
N∏
i=1

coshαi
(

1 − sinh2 αj∏N
i=j coshα2

i

)
, (B.2.15)

as already shown in Eq. (4.3.10).
The same procedure is performed for the Eq. (B.2.10). We find that

− P̂ b
aT

diss
byk

sinhαj∏N
i=j coshαi

N∑
k=1

sinhαk∏N
i′=k coshαi′

(B.2.16)

= −
N∑
k=1

κ̂jk
P̂ c
a

T̂
sinhαk∏N
i=k coshαi

(
cothαk∂cαk +

k−1∑
l=1

tanhαl∂cαl − ∂c log P̂
1 + ϱV

P̂

)
.

Comparing the last two equations, term by term, in the sum it is easy to find that

κ̂jk = −ηV T̂ sinhαj sinhαk∏N
i=j coshαi

k−1∏
l=1

coshαl . (B.2.17)

Bulk viscosity

First of all, we need to compute the derivatives of the pressure with respect to energy
density and the charges. Due to the fact that ∂P̂ /∂ϱ̂ is calculated with constant charges
q̂j and ∂P̂ /∂q̂j keeping fixed the energy density and the remaining qk ̸=j charges, we
need to use

dϱ̂ = 0 ⇒ d log P̂ = −2(P̂ + ϱV )
P̂

∏N
m=1 cosh2 αm

∑N
l=1 tanhαl

[−1 + (ϱ′ + 1)∏N
k=1 cosh2 αk]

dαl

(B.2.18)

dq̂j = 0 ⇒ d log P̂ = −(P̂ + ϱV )
P̂ (1 + ϱ′)

[ N∑
l=1

tanhαldαl + cothαjdαj

+
j−1∑
k=1

tanhαkdαk
]
. (B.2.19)
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The considered derivatives are given by

∂P̂

∂ϱ̂
= 1[

−1 + (1 + ϱ′)∏N
l=1 cosh2 αl

]
+ 2 P̂+ϱV

P̂

∏N
i=1 coshα2

i

∑N
l=1 tanhαl ∂αl

∂ log P̂

,

∂P̂

∂q̂j
= 1

(1 + ϱ′)A+ P̂+ϱV
P̂

AB
,

(B.2.20)

with

A = sinhαj
N∏
i=1

coshαi
j−1∏
k=1

coshαk

B =
N∑
l=1

tanhαl
∂αl

∂ log P̂
+

j−1∑
k=1

tanhαk
∂αk

∂ log P̂
+ cothαj

∂αj

∂ log P̂

(B.2.21)

Combining conveniently Eqs. (B.2.18) and (B.2.19) in Eqs. (B.2.20) we obtain that

∂P̂

∂ϱ̂
= 2∏N

i=1 cosh2 αi − 1
1 + (−1 + ϱ′)∏N

l=1 cosh2 αl
,

∂P̂

∂q̂j
= −2 sinhαj

∏N
i=1 coshαi

∏j−1
m=1 coshαm

1 + (−1 + ϱ′)∏N
l=1 cosh2 αl

.

(B.2.22)

Let now evaluate the first term in Eq. (4.3.9). We find that

P̂ abT dissab

p−N
= −θ̂V

N∏
l=1

coshαl
(

2η
p−N

+
(

−2η
p

+ ζ

)
ϱ′∏N

m=1 cosh2 αm

1 + (−1 + ϱ′)∏N
i=1 cosh2 αi

)
.

(B.2.23)
The remaining terms can be simplified considering the Eqs. (4.3.8). These become

−
N∑
j′=1

sinhαj′∏N
m=j′ coshαm

∂P̂
∂ϱ̂

N∑
j=1

sinhαj∏N
i=j coshαi

+
N∑
j=1

∂P̂

∂q̂j

T dissyjyj′ (B.2.24)

Using the Eqs. (B.1.9), (B.1.5), (B.2.22) and replacing the components of the stress
energy tensor T dissyjyj′ we find

−ζ̂ θ̂ = −2ηθ̂V
N∏
i=1

coshαi
[ 1
p−N

− ϱ′2∏N
h=1 cosh4 αh

p(1 + (−1 + ϱ′)∏N
i=1 cosh2 αi)2

+ (−1 +∏N
i=1 cosh2 αi)

∑N
l=1 sinhα2

l

∏N
m=l+1 cosh2 αm

[1 + (−1 + ϱ′)∏N
i=1 cosh2 αi]2

]
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− ζθ̂V
ϱ′2∏N

h=1 cosh5 αh

(1 + (−1 + ϱ′)∏N
i=1 cosh2 αi)2 .

in terms of θ̂ only. Remember that for the initial expansion we use the values found in
the Eq.(4.3.4) . It is straightforward to read now the bulk viscosity as already presented
in Eq.(4.3.10).



Appendix C

Details on the perturbative
computation for Chapter 5

In this appendix we provide some of the details on our perturbative computation
outlined in Sec. 5.2.1. When solving the perturbative equations we focus on the
Maxwell charged case as it is in many regards the most intricate due to extra dynamical
freedom in the vector sector. In section C.3 we provide the most relevant equations
(and differences) pertaining to the fundamentally charged case.

C.1 Setting up the perturbative problem

As explained in Sec. 5.2.1, in order for the pertubative problem to be well-posed, we need
to cast the fields into (ingoing) Eddington-Finkelstein (EF) form (xa, r,Ω) → (σa, r,Ω)
with σa = (v, σi), defined in the usual way, i.e., so that |dr|2 = 0. It is not difficult to
verify that the coordinates,

σa = xa + uar⋆ , r⋆(r) = r +
∫ ∞

r
dr

(
f − hN/2

f

)
, (C.1.1)

will do the job for both brane solutions (5.2.4) and (5.3.2). Note that we have chosen
the integration constant appearing in r⋆ so that r⋆ → r for large r. In this way the
EF coordinates reduce to ordinary Schwarzschild light cone coordinates far from the
horizon. Notice that it is possible to write down a closed form expression for r⋆ in
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terms of the hypergeometric Appell function F1,

r⋆(r) = rF1

(
− 1
n

; −N

2 , 1; 1 − 1
n

; 1 − h, 1 − f
)

≈ r
(

1 − 1
n− 1

rn0
rn

(
1 + Nγ0

2

))
,

(C.1.2)
where the last equality applies for large r and is valid up to O

(
1

r2n−1

)
. With this

definition of r⋆, we will limit our analysis to the case where n ≥ 2 (the analysis for
n = 1 needs some modifications, however, at the end of the day, the results for the
transport coefficients can be obtained by setting n = 1 in the results derived below).

In EF coordinates (C.1.1), the metric (5.2.4) for the fundamentally charged brane
takes the form

ds2 = h− Nn
p+n+1

(− fuaub + ∆ab

)
dσadσb − 2hN

2 ua dσadr + hNr2 dΩ2
(n+1)

 . (C.1.3)

Similarly, the Maxwell charged brane (5.3.2) takes the form

ds2 = h−( n+p
n+p+1)N

(− f uaub + hN∆ab

)
dσadσb − 2hN

2 ua dσadr + hNr2dΩ2
(n+1)

 .

(C.1.4)
Transforming to the coordinates (C.1.1) introduces non-zero radial components to the
two gauge fields. This transformation can, however, be undone by a suitable gauge
transformation and the EF form of the gauge fields and in this particular gauge read

A = −1
h

(
r0

r

)n√
Nγ0(γ0 + 1) ⋆ 1 and A = 1

h

(
r0

r

)n√
Nγ0(γ0 + 1) uadσa ,

(C.1.5)
for the fundamentally and Maxwell charged branes, respectively. In particular, the two
gauge fields only have components in the brane directions. Also note that the dilaton
remains invariant under the coordinate transformation as it is independent of the brane
directions.

We now promote the parameters ua, r0 and γ0 to slowly varying worldvolume fields
and look for the corrections ds2

∂ , A∂ , φ∂ , so that ds2
f , Af , φf solve the full set of EOMs to

first order in the derivatives (cf. Eq. (5.2.11)). In order to do this, we first need to expand
the leading order seed solutions (C.1.3)-(C.1.5) to first order in the derivatives. Carrying
out this expansion is of course straightforward, however, the resulting expressions are
rather lengthy and not very illuminating and therefore we omit them here. Moreover,
in the following we employ the inherent Lorentz symmetry of the background to work
in the rest frame in the point P around which we consider hydrodynamic fluctuations
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(in the ultra-local sense). We therefore take ua(σa)|P = (1,0). Moreover, we define
r0(σa)|P ≡ r0 and γ0(σa)|P ≡ γ0. Similarly, all the (worldvolume) derivatives are
understood to be evaluated at P . For example, ∂ar0(σa)|P ≡ ∂ar0 and so forth.

The rest frame has a residual SO(p) invariance which we use to split the resulting
equations up into different sectors characterized according to their transformation
under SO(p). For the fundamentally charged black brane the scalar sector contains
five scalars, the vector sector contains two vectors and the tensor sector contains one
tensor. We parameterize the SO(p) perturbations according to

Scalar: (A∂)vi1...ip = −
√
Nγ0(1 + γ0)

rn0
rn
h−1avi1...ip , (g∂)vr = hN( 1

2 − n
n+p+1)fvr ,

(g∂)vv = h1− Nn
n+p+1fvv , Tr (g∂)ij = h− Nn

n+p+1 Trfij , φ∂ = fφ ,

Vector: (g∂)vi = h− Nn
n+p+1fvi , (g∂)ri = hN( 1

2 − n
n+p+1)fri , (C.1.6)

Tensor: (g∂)ij = h− Nn
n+p+1 f ij ,

where (g∂)ij ≡ (g∂)ij − 1
p
(Tr(g∂)kl)δij, i.e., the traceless part of (g∂)ij and f ij ≡

fij − 1
p
(Trfkl)δij. Similarly, the scalar sector of the Maxwell charged system contains

five scalars while the vector and tensor sector contain three vectors and one tensor, re-
spectively. Here we parameterize the SO(p) perturbations in the three sectors according
to

Scalar: (A∂)v = −
√
Nγ0(1 + γ0)

rn0
rn
h−1av , (g∂)vr = hN(− 1

2 + 1
n+p+1)fvr ,

(g∂)vv = h1−N( n+p
n+p+1)fvv , Tr (g∂)ij = h

N
n+p+1 Trfij , φ∂ = fφ ,

Vector: (A∂)i = −
√
Nγ0(1 + γ0) ai , (g∂)vi = h

N
n+p+1 fvi , (C.1.7)

(g∂)ri = hN(− 1
2 + 1

n+p+1)fri ,

Tensor: (g∂)ij = h
N

n+p+1 f ij .

As explained in the outline of Sec. 5.2.1, we will work in a gauge where all the rest
of the components of ds2

∂ and A∂ are taken to be zero. The consistency of this gauge
choice can be checked a posteriori. We now proceed with solving the resulting EOMs
to first order in the derivatives. The EOMs (from the action (5.2.1)) take the form,

Rµν − 2∇µφ∇νφ− Sµν ≡ Eµν + O(∂2) = 0 ,

∇µ

(
eaφFµ

ρ0...ρq

)
≡ Mρ0...ρq + O(∂2) = 0 ,

gµν∇µ∇νφ+ a

4(q + 2)!F
2 ≡ E(φ) + O(∂2) = 0 .

(C.1.8)
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Here q = 0 for the Maxwell system and q = p for the fundamentally charged system
and F denotes the dilaton-weighted field strength F = eaφdA. Moreover, we have
defined

Sµν = 1
2(q + 1)!

(
Fµρ0...ρqF ρ0...ρq

ν − q + 1
(D − 2)(q + 2)F2gµν

)
. (C.1.9)

Notice that the right-hand sides of the EOMs (C.1.8), Eµν , Mρ0...ρq and E(φ) are all
O(∂). The parameterization of the anzätze (C.1.6) and (C.1.7) are exactly chosen in
such a way that the resulting equations only contain derivatives of fab, a0...q and fφ and
will thus be directly integrable as explained below Eq. (5.2.13). In the two subsequent
sections we provide the most important details for solving the two systems.

C.2 Solving the Maxwell system

In this section we give some of the details for solving the three SO(p) sectors for the
Maxwell charged system.

Scalars of SO(p)

The scalar sector consists of eight independent equations which correspond to the
vanishing of the components: Evv, Erv, Err,TrEij, EΩΩ, E(φ),Mv and Mr (cf. Eq. (C.1.8)).

Constraint equations: There are two constraint equations; Erv = 0 and Mr = 0.
The two equations are solved consistently by

∂vr0 = − r0(1 − (N − 2)γ0)
n+ 1 + (2 − n(N − 2))γ0

∂iu
i , ∂vγ0 = − 2γ0(1 + γ0)

n+ 1 + (2 − n(N − 2))γ0
∂iu

i .

(C.2.1)
The first equation corresponds to conservation of energy while the second equation can
be interpreted as current conservation. These are equivalent to the scalar conservation
equations given by (5.2.6) in the rest frame. Under the assumption that the fluid
configuration satisfies the above constraints one is left with six dynamical equations
with five unknowns.

Dynamical equations: The coupled system constituted by the dynamical equations
is quite intractable. One approach to obtaining the solution to the system is to decouple
the trace function Trfij. Once Trfij is known, it turns out, as will be presented below,
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that all the other functions can be obtained while ensuring that they are regular on the
horizon. It is possible to obtain a 3rd order ODE for Trfij by decoupling it through a
number of steps. However, first it is useful to note that the particular combination of
TrEij and E(φ) leads to the equation

d
dr
[
rn+1f(r)T ′(r)

]
= −(∂iui)rn

(
2(n+ 1) + C

rn0
rn
γ0

)
h(r)N

2 −1 , (C.2.2)

where we have defined the constant C ≡ 2 − n(N − 2) and

T (r) = Trfij(r) + 4p
(n+ p+ 1)afφ(r) . (C.2.3)

As we shall see this equation is very reminiscent of the equations for the tensor
perturbations for which we know the solution to be

T (r) = c
(1)
T − 2(∂iui)

(
r⋆ − r0

n
(1 + γ0)

N
2 log f(r)

)
. (C.2.4)

Here we have imposed horizon regularity, since Trfij and fφ are individually regular
on the horizon. Once fφ is known in terms of Trfij we can use Err to eliminate f ′

rv and
then take linear combinations of the remaining equations. The resulting combinations
can then be used to eliminate f ′

vv and f ′′
vv such that one is left with two equations in

terms of av and Trfij which can then be decoupled by standard means. The resulting
equation is schematically of the form

H
(n,p)
3 (r) [Trfij]′′′ (r) +H

(n,p)
2 (r) [Trfij]′′ (r) +H

(n,p)
1 (r) [Trfij]′ (r) = STr(r) , (C.2.5)

where H1, H2 and H3 do not depend on the sources (world-volume derivatives) and the
source term STr only depends on the scalar ∂iui. The expressions for these functions
are however very long and have therefore been omitted. After some work, one finds
that the equation is solved by

Trfij(r) = c
(1)
Tr + γ0c

(2)
Tr G(r) − 2(∂iui)Trf (s)

ij (r) , (C.2.6)

where the terms containing the two integration constants c(1)
Tr and c

(2)
Tr correspond to

the homogeneous solution. The entire family of homogeneous solutions to equation
(C.2.5) of course has an additional one-parameter freedom which has been absorbed in
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the particular solution Trf (s)
ij (r) and been used to ensure horizon regularity.1 With the

introduction of c(1)
Tr we can safely take c(1)

T = 0. The function G is given by

G(r) = − N

n+ p+ 1
rn0
rn

(
2 +

(
2 − Nn

n+ p+ 1

)
rn0
rn
γ0

)−1

, (C.2.7)

and has an intricate relation to the gauge choice (g∂)ΩΩ = 0 as we shall see later. The
particular solution which is regular on the horizon is given by

Trf (s)
ij (r) = r0

n
(1 + γ0)

N
2 αγ0G(r) +

(
r⋆ − r0

n
(1 + γ0)

N
2 log f(r)

)
(1 + βγ0G(r)) ,

(C.2.8)
with the coefficients

α = 2p
(

2(n+ 1) + Cγ0

(n+ 1)2 + Cγ0(2(n+ 1) + Cγ0)

)
and β = p

(
n+ 2 + Cγ0

n+ 1 + Cγ0

)
. (C.2.9)

With Trfij (and fφ) given, the equation Err = 0 will provide the derivative of frv,

f ′
rv(r) = r(

2(n+ 1) + C
rn

0
rnγ0

)
h(r)N

2 −1

(
d
dr
[
h(r)N

2 [Trfij]′(r)
]

− 4a d
dr
[
h(r)N

2
]
f ′
φ(r)

)
.

(C.2.10)
Since this equation is a 1st order ODE, the regularity of the horizon is ensured by Trfij .
Note that it is possible to perform integration by parts and use that the derivative
of r⋆ takes a simpler form. One can thereafter obtain an analytical expression for the
resulting integral. This expression is, however, quite cumbersome and we therefore only
provide its large r asymptotics

frv(r) ≈ f (h)
rv (r) + (∂iui)

∞∑
k=1

rnk0
rnk

[
α(k)
rv r + β(k)

rv r0
]
. (C.2.11)

Here the homogeneous solution takes the form

f (h)
rv (r) = crv + γ0Nc

(2)
Tr
rn0
rn

2p(n+ p+ 1) + (n+ p)(2p+ C) r
n
0
rnγ0

2p
(
2(n+ p+ 1) + (2p+ C) r

n
0
rnγ0

)2

 , (C.2.12)

1Note that equation (C.2.5) has been derived under the assumption that ∂iu
i ̸= 0. This especially

means that when there are no sources the one-parameter freedom disappears in accordance with
(C.2.6).
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and the particular solution is given in terms of the coefficients α(k)
rv and β(k)

rv which
depend on n, p, a, and γ0. These coefficients are in general very long and their expressions
are therefore omitted.

Using the expression for f ′
rv in terms of Trfij, the Maxwell equation Mv = 0

becomes a 2nd order ODE for the gauge field perturbation,

d
dr

[ 1
rn−1a

′
v(r)

]
= nr2(

2(n+ 1) + C
rn

0
rnγ0

) d
dr

[
1

rn+1 [Trfij]′(r) + 4a(n+ 1)
rn+2 f ′

φ(r)
]

.

(C.2.13)
This equation is solved by a double integration. The inner integral is manifestly regular
at the horizon, one can therefore work directly with the asymptotic behavior of the right-
hand side before performing the integrations. The large r behavior of the perturbation
function is thus found to be

av(r) ≈ a(h)
v (r) + (∂iui)

(
− n

n− 1r +
∞∑
k=1

rnk0
rnk

[
α(k)
v r + β(k)

v r0
])

, (C.2.14)

where the first term constitute the homogeneous solution,

a(h)
v (r) = c(1)

v rn + c(2)
v − γ0c

(2)
Tr
rn0
rn

 2p+ C

2p
(
2(n+ p+ 1) + (2p+ C) r

n
0
rnγ0

)
 , (C.2.15)

and the particular solution is given in terms of the coefficients α(k)
v and β(k)

v depending
on n, p, a, and γ0.

The last perturbation function fvv can be obtained from TrEij = 0 which provides
a 1st order ODE for the perturbation. Horizon regularity is therefore ensured by the
horizon regularity of Trfij. Using the expression for f ′

rv in terms of Trfij the equation
is schematically of the form

f ′
vv(r) = G1 [Trfij(r)] +G2 [av(r)] +G3 [fφ(r)] + Sii(r) , (C.2.16)

where G1, G2, G3 are differential operators and the source Sii depends on ∂iu
i. Again,

the full expressions have been omitted and we only provide the large r behavior,

fvv(r) ≈ f (h)
vv (r) + (∂iui)

∞∑
k=1

rnk0
rnk

[
α(k)
vv r + β(k)

vv r0
]
, (C.2.17)
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with the homogeneous part given by

f (h)
vv (r) =c(1)

vv + rn0
rn

1
h(r)

− 2(1 + γ0)(c(2)
v − c(1)

v rn0γ0) + c
(1)
Tr

(n+ p+ 1)(1 + γ0)a2

2p

+
(n+ p+ 1 + (2p+ C)γ0)h(r) − pγ0Nf(r)

p
(
2(n+ p+ 1) + (2p+ C) r

n
0
rnγ0

)
c(2)

Tr

 ,

(C.2.18)

and where the coefficients α(k)
vv and β(k)

vv again depend on n, p, a, and γ0.
Finally, one must ensure that the remaining equations coming from Evv and the

angular directions (EΩΩ = 0) are satisfied. This will require the following relation

c(1)
vv = −2crv . (C.2.19)

This completes the analysis of the scalar sector. The remaining undetermined integration
constants are thus: c(1)

Tr , c
(2)
Tr , crv, c

(1)
v , c(2)

v . Note that the above functions reproduce the
neutral case as γ0 → 0.

Vectors of SO(p)

The vector sector consists of 3p independent equations which correspond to the vanishing
of the components: Eri, Evi and Mi.

Constraint equations: The constraint equations are given by the Einstein equations
Eri = 0 and are solved by

∂ir0 = r0(1 +Nγ0)∂vui , (C.2.20)

which are equivalent to conservation of stress-momentum. These are part of the
conservation equations given by (5.2.6) in the rest frame. Similar to above we now
proceed solving for the first-order corrections to the metric and gauge field under the
assumption that the fluid profile satisfies the above constraint (C.2.20).

Dynamical equations: The remaining equations consist of p pairs of one Einstein
equation Evi = 0 and one Maxwell equation Mi = 0. The structure of these equations
is the same as in the scalar sector. The Einstein equation Evi = 0 is schematically of
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the form,

L
(n,p)
3 (r)f ′′

vi(r) + L
(n,p)
2 (r)f ′

vi(r) + L
(n,p)
1 (r)a′

i(r) = Svi(r) , (C.2.21)

while the Maxwell equation Mi = 0 is,

M
(n,p)
3 (r)a′′

i (r) +M
(n,p)
2 (r)a′

i(r) +M
(n,p)
1 (r)f ′

vi(r) = Si(r) . (C.2.22)

We omit the expressions for the functions Lk and Mk, k = 1, ..., 3.
To decouple the system we differentiate Evi once and eliminate all ai(r) terms in

Mi. Doing so, one obtains a 3rd order ODE for fvi(r) which can be written on the
form

d
dr

rn+1f(r)
hN

(
1 − c1

rn0
rn

)2 d
dr

 rn+1hN+1(
1 − c1

rn
0
rn

)f ′
vi(r)

 = Svi(r) , c1 ≡ N − 1
1 +Nγ0

γ0 .

(C.2.23)
It is possible to perform the first two integrations analytically and ensure regularity at
the horizon. The first integration is straightforward while the second involves several
non-trivial functions. The large r behavior of the fvi function is found to be

fvi(r) ≈ c
(1)
vi −

(
1 − f(r)

h(r)N

)
c

(2)
vi − (∂vui)r +

∞∑
k=1

rnk0
rnk

[
α

(k)
vi r + β

(k)
vi r0

]
, (C.2.24)

where the first two terms constitute the homogeneous solution and we find, in particular,
that in order to ensure horizon regularity one must have

β
(2)
vi = −N

4n

(
2γ0(1 + γ0)(∂vui) + (∂iγ0)

(1 + γ0)
N
2 −1(1 +Nγ0)

)
. (C.2.25)

The remaining set of coefficients α(k)
vi and β

(k)
vi are in general complicated expressions

depending on the parameters in the problem. We therefore omit them as they provide
no insight. Also, we notice that the sum in the function (C.2.24) vanishes in the neutral
limit.

Once the solution of fvi is given we can use Evi to determine ai,

ai(r) ≈ c
(1)
i + rn0

rn
1

h(r)c
(2)
vi +

∞∑
k=1

rnk0
rnk

[
α

(k)
i r + β

(k)
i r0

]
, (C.2.26)
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where the first two terms correspond to the homogeneous solution. Again, we choose to
omit the coefficients α(k)

i and β
(k)
i . The remaining undetermined integration constants

are thus: c(1)
i , c

(1)
vi , and c

(2)
vi .

Tensors of SO(p)

There are no constraint equations in the tensor sector which consists of p(p+ 1)/2 − 1
dynamical equations given by

Eij − δij
p

Tr(Eij) = 0 . (C.2.27)

This gives an equation for each component of the traceless symmetric perturbation
functions f̄ij,

d
dr
[
rn+1f(r)f̄ ′

ij(r)
]

= −σijrn
(

2(n+ 1) + C
rn0
rn
γ0

)
h(r)N

2 −1 , (C.2.28)

with the same structure as Eq. C.2.2. The spatial part of the shear tensor is

σij = ∂(iuj) − 1
p
δij∂ku

k . (C.2.29)

The solution is given by,

f̄ij(r) = c̄ij − 2σij
(
r⋆ − r0

n
(1 + γ0)

N
2 log f(r)

)
, (C.2.30)

where horizon regularity has been imposed and the integration constant(s) c̄ij is
symmetric and traceless.

C.3 Solving the fundametally charged system

As already explained, many of the differential equations appearing in fundamentally
charged system are similar to the ones appearing for the Maxwell system. Instead of
repeating these, in this section we provide the most important differences.
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Scalars of SO(p)

The scalar sector consists of eight independent equations which correspond to the
vanishing of the components: Evv, Erv, Err,TrEij, EΩΩ, E(φ),Ma1...ap+1 and Mri1...ip with
i ∈ {σi}.

Constraint equations: There are two constraint equations; Erv = 0 and Mri1...ip = 0
with i ∈ {σi}. The two equations are solved consistently by

∂vr0 = − r0(1 + 2γ0)
n+ 1 + (2 − n(N − 2))γ0

∂iu
i , ∂vγ0 = − 2nγ0(1 + γ0)

n+ 1 + (2 − n(N − 2))γ0
∂iu

i .

(C.3.1)
The first equation corresponds to conservation of energy while the second equation can
be interpreted as the charge density being constant in time.

Dynamical equations: After the constraint Eqs. (C.3.1) have been imposed one is
left with a system very similar to the one obtained in the presence of Maxwell charge
(q = 0). It consists of the six equations given by the components: Evv, Err, TrEij, EΩΩ,
E(φ), and Ma1...ap+1 .

The particular combination of TrEij and E(φ) gives Eq. (C.2.2), but now with the
relation

T (r) = Trfij(r) − 4np
(n+ p+ 1)afφ(r) , (C.3.2)

and is solved by the same expression given by Eq. (C.2.4). The equation for the trace
Trfij is again similar to the q = 0 case and the solution can be put on the form given
by (C.2.6) with (C.2.8), but where

G(r) = −N(p+ 1)
n+ p+ 1

rn0
rn

(
2 +

(
2 − Nn(p+ 1)

n+ p+ 1

)
rn0
rn
γ0

)−1

, (C.3.3)

and the coefficients are given by the expressions

α = 2pn2

p+ 1

(
2(n+ 1) + Cγ0

(n+ 1)2 + Cγ0(2(n+ 1) + Cγ0)

)
and β = p

p+ 1

(
n2

n+ 1 + Cγ0

)
.

(C.3.4)
The solution of Trfij dictates the perturbation of the dilaton field through Eq. (C.3.2).
With Trfij determined, one can find the remaining perturbation functions as follows: frv
from Err and fvv from TrEij by a single integration while the gauge field perturbation
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avi1...ip can be obtained from Mva1...ap by a double integration. Finally, we note that
remaining undetermined integration constants are equivalent to the q = 0 case.

Vectors of SO(p)

The vector sector consists of 3p independent equations which correspond to the vanishing
of the components: Eri, Evi and Mvrj1...jp−1 with j ̸= i.

Constraint equations: The constraint equations are given by the Einstein equations
Eri = 0 and Mvrj1...jp−1 = 0 with j ̸= i. For each spatial index i one has a pair of
equations that are solved by

∂ir0 = r0(1 + 2γ0)
1 − (nN − 2)γ0

∂vui , ∂iγ0 = − 2nγ0(1 + γ0)
1 − (nN − 2)γ0

∂vui . (C.3.5)

The first equation corresponds to conservation of stress-momentum while the second
equation censures that the charge density does not have any spatial gradients over
the world-volume. We see that the current is more constrained compared to the case
with Maxwell charge which is tied to the fact that the p-brane charge is not able to
redistribute itself.

Dynamical Equations: After the constraint Eqs. (C.3.5) have been imposed the
remaining p equations consist of 2nd order differential equations Evi = 0 of the form

d
dr
[
rn+1f ′

vi(r)
]

= Svi(r) . (C.3.6)

Each equation can be integrated analytically in order to obtain the perturbation
functions fvi. Horizon regularity is ensured due to the form of the differential operator.
We note that the homogeneous solution gives rise to two integration constants: c(1)

vi and
c

(2)
vi .

Tensors of SO(p)

It turns out that with the parametrization given by Eq. (C.1.6), the equations for the
tensor perturbations take the exact same form as found for the Maxwell charge given
by the form (C.2.28). The solution is therefore,

f̄ij(r) = c̄ij − 2σij
(
r⋆ − r0

n
(1 + γ0)

N
2 log f(r)

)
, (C.3.7)
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with σij given by Eq. (C.2.29) and regularity of the horizon has been imposed. The
constant c̄ij is again symmetric and traceless. Because of this closed-form expression,
the shear viscosity will take the same form as found for the system with Maxwell
charge.

C.4 Fixing the integration constants

We have determined the first-order derivative corrected solution for both types of
branes. Both solutions are completely determined up to a set of integration constants,
c

(1)
Tr , c(2)

Tr , c(1)
v , c(2)

v , c(1)
vi , c(2)

vi , crv, c̄ij (and c(1)
i for q = 0). As explained in Sec. 5.2.1, these

constants are fixed by virtue of asymptotic flatness and choice of fluid frame (gauge).
The latter freedom exactly corresponds to constant O(∂) shifts of the parameters of the
O(∂0) fields, i.e., it parameterizes the homogeneous solution to the above differential
equations. Indeed, for the zeroth order Maxwell solution (C.1.4), consider order O(∂)
constant shifts r0 → r0 + δr0, γ0 → γ0 + δγ0 and a constant gauge shift av → av + δav.
Moreover, by redefining the r coordinate as,

r → r (1 + γ0(nδ log r0 + δ log γ0)G(r)) , (C.4.1)

withG(r) given by (C.2.7), the angular directions do not receive first-order contributions
in accordance with the gauge choice (g∂)ΩΩ = 0. The resulting expressions after the
shifts and coordinate transformation are of course still solutions and the overall change
exactly corresponds to the homogeneous solution to the above differential equations in
the scalar sector. More precisely, one can relate the integration constants to the shifts
by,

c
(2)
Tr = −2p(nδ log r0 + δ log γ0) , c(1)

v = − δav

rn0
√
Nγ0(1 + γ0)

,

c(2)
v = −nδ log r0 − 1 + 2γ0

2(1 + γ0)
δ log γ0 − γ0√

Nγ0(1 + γ0)
δav .

(C.4.2)

For the vector sector one finds that the homogeneous part of the above solution
corresponds to global constant shift of the boost ui → ui + δui and in the gauge
ai → ai + δai. With the same choice of radial coordinate, one has

c
(2)
vi = δui , c

(1)
i = − δai√

Nγ0(1 + γ0)
. (C.4.3)



110 Details on the perturbative computation for Chapter 5

Similar expressions relating the shifts to the integration constants can be derived for
the fundamentally charged solution. In the following we require all the O(∂) shifts
to vanish. In the effective fluid description this exactly corresponds to choosing the
Landau frame. This fixes the integration constants, c(2)

Tr = c(1)
v = c(2)

v = c
(2)
vi = 0 (and

c
(1)
i = 0 for q = 0).

To fix the remaining integration constants, we now impose asymptotic flatness to
O(∂). In order to do so, we must first transform our results back into Schwarzschild
form. In addition to making the asymptotics more transparent, this is also needed
for extracting the effective hydrodynamic currents. In order to change coordinates,
we use the inverse of the transformation stated in equation (C.1.1) to O(∂). The
inverse transformation is worked out iteratively order by order. To first order, the
transformation from EF to Schwarzschild coordinates is found to be,

v = t+ r⋆ +
[
(t+ r⋆) (∂r0r⋆∂tr0 + ∂γ0r⋆∂tγ0) + xi (∂r0r⋆∂ir0 + ∂γ0r⋆∂iγ0)

]
+ O(∂2) ,

σi = xi +
[
(t+ r⋆)∂tui + σj∂ju

i

]
r⋆ + O(∂2) . (C.4.4)

It is now possible to express all the fields in Schwarzschild coordinates and impose
asymptotic flatness. This leads to

crv = 0 , c
(1)
vi = 0 , c

(1)
Tr = 0 , c̄ij = 0 , (C.4.5)

for both types of branes. Having obtained the full first-order derivative corrected
asymptotically flat solutions for both the Maxwell and fundamentally charged brane, it
is now possible to read off the effective hydrodynamic currents using standard methods
(see also [43]). Our results for the transport coefficients are presented in Sec. 5.2.2 and
5.3.1.
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