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Abstract 
 

Cellular behaviour is regulated by a very precise system in which the 

complex interplay between various types of biomolecules plays a crucial role 

for the proper functioning of the system itself. Proteins interacting with 

DNA are in charged of its replication, packaging repair and recombination, 

among them, transcription factors regulate gene expression, but in turn they 

are part of a larger network of proteins interactions.  

In this thesis I addressed these aspects, in relation to a certain phenotype, 

in first instance by identifying common regulators of genes with similar 

expression signatures derived from high-throughput experiments, and then 

by computationally modelling the signal transduction by means of a message-

passing algorithm. This allowed the identification of main regulators in the 

specific systems describing the infection process of Salmonella spp. in two 

different hosts:  Arabidopsis thaliana and Homo sapiens. The same approach 

showed encouraging results in the pharmaco-dynamic study of drug-drug 

interactions.  
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Resum 
 

El comportament cel·lular està regulat per un complex conjunt de 

relacions entre diferents tipus de biomol·lècules que juguen un paper 

fonamental per al correcte funcionament del propi sistema cel·lular. 

Diferents proteïnes s’encarreguen de la replicació, l'empaquetament, la 

reparació i la recombinació de l’ADN i en regulen la seva expressió per mitjà 

de factors de transcripció. Aquests modulen la seva activitat mitjançant 

interaccions amb altres proteïnes tot formant part d’una xarxa d’interaccions 

molt més extensa. 

En aquesta tesi, m’interesso per aquests aspectes en relació a certs 

fenotips. Primer, identificant reguladors comuns de gens amb patrons 

d’expressió similars, obtinguts d’experiments d’alt rendiment; després, fent 

servir algoritmes de transmissió del missatge per al modelat computacional 

de la transducció de la senyal. D'aquesta forma he identificat reguladors 

principals en el procés d’infecció de Salmonella spp. en ambdós Arabidopsis 

thaliana  i  Homo sapiens. Una aproximació idèntica aporta resultats 

esperançadors en l’estudi de la farmacodinàmica de les interaccions entre 

drogues. 
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Preface 
Taking into account that I wanted to be a medical doctor… I never 

expected to become a computational biologist when I started my bachelor 
degree many years ago.  

 For combinations of life I decided to start statistics, with the idea that 
translating events into numbers would have been a relatively easy task whose 
implications would have been extremely interesting. After the first year I still 
had the same idea but started to sweat having to study and justify very long 
formulas for, most of the times, easy concepts. After a few years, at the end 
of that tough path, I had clear in mind two things: I wanted to go back to 
study biological subjects and wanted to get away, at all costs, from everything 
that contained formulas. I read of a master degree in Bioinformatics and had 
no idea what it was. They sold it to me very well: a biology-oriented learning 
of informatics… They didn’t mention any formulas. After one year and a 
half trying to fill my biological gaps I arrived at the structural bioinformatics 
lab of Baldo Oliva. New city, first time away from home but, most of all, for 
the first time I had to deal with real data analysis. Suddenly statistical 
formulas came back into my life, together with informatics and biology. I did 
not remember that much about my recent past but this time I was not 
overwhelmed by what I had to do. That is the point in which, in my opinion, 
I started learning. Of course it has not been an easy route to get here, but 
once you start seeing outcomes, your results start travelling, being 
questioned, validated (or not), then it all makes sense.  Meanwhile the 
learning process never ends, things may turn out not to be as expected but 
understanding why becomes a new challenge. This work never gets boring. 
Maybe sometimes frustrating but that’s the time to let experts in the field 
enter into play to help. This thesis collects my first steps into computational 
biology, my successes and my frustrations. I enjoyed this interdisciplinary 
field and I hope this little grain of knowledge can be useful and interesting, if 
not in its entirety, at least part of it. On my side, taking into account that I 
wanted to be a medical doctor, I am glad to have the opportunity to disclose 
this thesis. 
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  examining	
  the	
  shortest	
  

path	
   from	
   the	
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   the	
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   the	
   adverse	
  

effect.	
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  taken	
  from	
  [251].	
  ........................................................................	
  48	
  
- Figure	
   3-­‐1:	
   Graphical	
   representation	
   of	
   the	
   set	
   of	
   hypothesis.	
  

Salmonella	
  proteins	
  can	
  be	
  known	
  effectors	
  or	
  other	
  proteins	
   from	
  

the	
  Salmonella	
  proteome	
  (in	
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   invited	
   to	
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Prologue 

 

Chapter 1: Introduction. This chapter takes the reader from the 
Discovery of the DNA up to the specific context in which this thesis fits. It 
starts with a brief explanation of the flow of genetic information, from the 
“central dogma” of biology to the mechanisms of transcriptional regulation 
of gene expression and, in particular, the one carried out by transcription 
factors. A separate section is dedicated to microarrays because of their 
central role in the experimental part of all this work, especially for time series 
data. Some introductory principles of graph theory are the preamble of two 
sections in which the reader acquires a broader view concerning protein-
protein and protein-gene interactions. Once this is achieved the focus is 
aimed at even more specific types of networks, as is the case of disease-
related, host-pathogen and drug-drug interactions. In this introductory part I 
tried to maintain always a double vision from the experimental and 
computational point of view.  

 

Chapter 2: Objectives. The objectives of this thesis are listed in this 

chapter with the indication on where they are addressed in this manuscript. 

 

Chapter 3: Salmonella infection in arabidopsis. In this chapter is 
presented a system wide approach for the study of Salmonella spp. 
mechanisms of infection in Arabidopsis thaliana. From the clustering of time 
series microarray data a set of transcription factors regulating the expression 
of the genes in the same group (MRs) are computationally derived. A cross-
species protein interaction network is inferred and used for the analysis of 
the shortest path between the MRs and i) plasma membrane proteins, ii) 
known Salmonella effectors. The predicted regulators are employed, then, to 
identify which pathways trigger the plant response under the bacterial 
infection. For this they are used i) as seeds of a message-passing algorithm 
through the host-pathogen interaction network, ii) as potential targets of the 
signalling pathway originated by Salmonella effectors. Finally the prediction 
on the key role played by a small set of host’s proteins during the bacterial 
infection is experimentally validated. 
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Chapter 4: Salmonella infection in human. In this section is presented an 

analysis of salmonella-infected human data. With the same approach adopted 

in the previous chapter: from the clustering of time series microarray data a 

set of MRs is computationally derived. A cross-species protein interaction 

network is inferred and used for the analysis of those shortest path, between 

known salmonella effectors and the predicted MRs, that contain any plasma 

membrane protein. The hypothesis of a therapy targeting the predicted 

regulators based on a drug-specific genetic signature is then investigated and 

its results are used corroborate the MRs predictions. 

 

Chapter 5: Drug- drug interactions. In this chapter is presented a new 

approach for the study of pharmaco-dynamic drug-drug interactions. Form 

public databases direct and indirect drug-targets are derived. In this context 

indirect are considered the most affected genes by the consumption of the 

chemical compound. This information is used then to predict which TFs are 

affected by the drug (MRs). The combination of experimentally validated 

TF-gene and protein-protein interactions into a single human “signalling 

network” allows the description of the mechanisms of signal transduction 

leading from direct to indirect drug targets. Based on the hypothesis that 

interacting drugs should act on the same paths we modelled computationally 

the signal transduction by means of a message-passing algorithm. The targets 

of both drugs are used as signal emitters and their gene profiles (through the 

proposed MRs) as receivers. Then we compared and analysed the scores 

retrieved by the common transcription factors and genes differentially 

expressed by both drugs for a few selected examples of interacting drugs.  

 

Chapter 6: Discussion. This section includes a final summary of the 

work presented in this thesis packed with some observations about it and 

about possible future directions that can continue the path initiated in this 

book.  
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Chapter 7: Conclusions 

 

Finally, in the Appendix are the resulting manuscripts from the 

participation, during the thesis period, to the HPN-DREAM breast cancer 

network inference and to the HPN-DREAM rheumatoid arthritis responder 

challenges that do not directly belong to its content. 
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1.1 Flow of genetic information 
 

1.1.1 Central dogma: from DNA to proteins 

 

A milestone in modern genetics is the work published by Watson and 

Crick in 1953 [1]. For the first time they described the structure of the 

Dexyrobose Nucleic Acid (DNA). They describe it as “two helical chains 

each coiled around the same axis”. Such double helical structure is kept 

together by the pairing of four nitrogen-containing bases, namely Adenine 

(A), Thymine (T), Cytosine (C) and Guanine (G). A will only pair with T in a 

double hydrogen bond, while C will bind exclusively with G with a triple 

hydrogen bond, making this last bind stronger then the previous one. The 

backbone of DNA consists in molecules of a monosaccharide sugar 

(deoxyribose), to which the bases are attached, one for each sugar molecule, 

and phosphates joined by phosphodiesteric bonds. The description of the 

structure of DNA briefly lead to the “central dogma of molecular biology” 

that consists in a first explanation of how, in a biological system, the genetic 

information contained in the double stranded DNA (dsDNA) is translated 

into proteins passing through the phase of transcription into single stranded 

ribonucleic acid (ssRNA1). ssRNA is a nucleic acid with a structure very 

similar to the one of DNA but while DNA contains deoxyribose, RNA 

contains ribose [2] and the complementary to adenine is not thymine but 

uracil (U), an unmethylated for of thymine [3]. A cartoon is represented in 

Figure 1-1.   
                                                        
1 For the sake of this introduction we have to mention that it exists also a double 
stranded RNA (dsRNA), which is composed by two complementary strands, just 
like DNA. dsRNA can be found inside some viruses  and it has been 
demonstrated that, like siRNA, it can trigger RNA interference in eukaryotes, as 
well as interferon response in vertebrates[412]–[415]. 
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Figure 1-1 DNA and RNA structure. DNA and RNA have a very similar 
structure. The backbone consists in sugar molecules linked by phosphodiesteric 
bonds. In the case of DNA the sugar is deoxyribose while RNA has ribose. The 
double helical structure of DNA is kept together by hydrogen bonds between the 
pairing of four bases linked to the sugar molecules. The four bases are adenine 
(A), which can only bind to thymine (T) with a double hydrogen bond, and 
cytosine (C), which can only bind to guanine (G) with a triple hydrogen bond. In 
RNA thymine is substituted by uracil (U).  

The first hypothesis on the translation of genetic information into protein  

was born originally in 1941 by Beadle and Tatum [4] and was then stated by 

Crick in 1958 [5]  and revised with a publication in Nature in 1970 [6]; it 

linked the genotype, the genetic material that each individual inherits,  with 

the phenotype, the specific characteristics of each individual. In this context 

the locus, or region, of the DNA that encodes a functional RNA or a protein 

product, is called gene. After many decades of investigation nowadays we 

known that, according to the controversial data of the ENCODE project, in 

human, the 93% of the DNA is transcribed into primary RNA products [7], 

[8]. Transcription is regulated by a category of proteins, called transcription 

factors (TFs), that are in charge of promote (in the case of activators) or 

inhibit (in the case of repressors) the recruitment of the RNA polymerase II 

(Pol II) complex.  RNAs can be classified in two categories:  
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- coding RNA In this category we find the messenger RNA (mRNA) 

which is used for the translation into proteins. 

- non-coding RNA (ncRNA) Normally this type of RNAs are 

involved in translation, post-transcriptional regulation and 

chromatin remodelling.  The category includes small interfering 

RNA (siRNA) and micro-RNAs (miRNA). 

The relevance of ncRNAs in controlling transcription and translation and 

their influence on gene expression have lead to the addition of an extra layer 

of regulation to the central dogma of molecular biology. In this thesis we will 

not cover the gene expression regulation performed by ncRNAs, we will 

thus focus on the action of TFs. 

 

1.1.2 Transcriptional regulation of gene expression  

 

Transcriptional regulation of genes is not an easy task, several 

components play crucial roles in the characterization of its setting and many 

regulatory signals define the final transcription production. It is now widely 

known that each DNA sequence defines a unique landscape for molecules to 

bind and, in turn, all the molecules that interact and bind to DNA show a 

unique distribution of binding configurations for each sequence. [9] The first 

evidence of proteins controlling the gene expression was the lac operon 

discovery in bacteria by Jacob and Monod [10]. Since then, this mechanism 

has been widely studied and we now know that basal TFs, recruited by 

transcription adapter proteins, form the RNA pre-initiation complex (PIC). 

The PIC binds to DNA regions, called gene promoter regions, located 5’ 

upstream of the transcription start site (TSS) and positions the RNA 

polymerase II complex. The region in which this last complex is recruited is 

called core promoter. The remaining part of the promoter region is the 
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transcription factor binding site (TFBS) and there resides the specificity of 

the transcription process.  From the work of Kawaji et al., [11] we learned 

that, for the majority of core promoters, there is not a single TSS, thus two 

positional distributions of TSSs can be found in core promoters: the ones 

with a single dominant peak (this derives from a single TSS or a group of 

TSSs located in less then 10bp) and the ones with a more extensive 

distribution derived form a group of initiation sites closely located. As an 

example of this last condition, in mammals, some regions of DNA, with 

length comprised between 200bp and 1Kb, have a frequency of Cs close to a 

Gs higher then 50%; those regions are called CpG islands (CGIs). 

Transcription from those regions initiates from multiple weak start sites in 

regions that are about 100 bp wide [12], [13]. In addition there can be genes 

with alternative promoters. In this case core promoters are far away in the 

genome and the use of one promoter region or the other depends on the 

different cell conditions. Alternative promoters differentially regulated are a 

common feature in protein-coding genes [14]. 

 

1.1.2.1 Experimental methods for testing gene expression 

Several experimental methods have been developed in the past decades to 

quantitatively measure gene expression. They can be divided in two main 

categories: low and high-throughput methods. In this introduction I will 

summarize, in chronological order, those techniques but the core of this 

thesis is based on just one of them: microarrays. Among the low-mid-

throughput techniques: 

• Reporter gene. This technique consists in using a so called 

“reporter gene” to test whether another gene of interest is expressed 

or not in a certain condition. This implies to create a construct, 

called gene fusion, to introduce the reporter gene and the gene of 

interest in the organism or in the cell culture. The two genes should 
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have the same promoter elements so that they can 

be transcribed into a single mRNA molecule. This is then translated 

into proteins. The two resulting proteins should be able to properly 

fold into their active conformations and interact with their 

substrates despite being fused. To obtain this, a DNA segment 

coding for a flexible polypeptide linker region is included in the 

artificial DNA construct. In this way the interference of the reporter 

gene with the one of interest is minimalized. The same technique is 

also used, in a more complex way and on a larger scale, to test 

protein-protein interaction in two-hybrid screenings [15]. 

• Northern blot. This technique was developed in 1977 at Stanford 

University [16]. It is based on the electrophoretic separation of RNA 

(or isolate mRNA) from different samples. Then a detection step, 

involving the use of an hybridization probe complementary to all or 

to a part of the target sequence, is applied. Thanks to this very 

specific technique even small changes in gene expression can be 

detected and the false positive results are minimized [17], [18].  

• Western blot. This technique was developed in 1979 at the 

Friedrich Miescher Institute [19]. It is used to detect specific 

proteins in a sample. In all its variants the basics steps are the same. 

After an electrophoretic separation on gel of the proteins, depending 

on their structure or length (if denatured), a membrane stained with 

specific antibodies is in charged of capturing the target proteins.  

• Fluorescent in  s i tu  hybridization (FISH). This technique was 

developed in 1982 [20]. It is used to detect specific DNA sequences 

on chromosomes using specifically designed fluorescent probes that 

bind only those parts of the chromosome with a high degree of 

sequence complementarity. It can be used also to detect and localize 

specific RNA targets in different types of cells (including tumour 
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cells) and tissue samples, helping then in the characterization of 

spatial-temporal patterns of gene expression within cells and tissues. 

• Reverse transcription PCR (RT-PCR). This technique is used to 

clone expressed genes by reverse transcribing the RNA of interest 

into its DNA complement through the use of reverse transcriptase. 

The newly synthesized cDNA is then amplified using traditional 

polymerase chain reaction (PCR). Quantitative PCR, also called 

qPCR, can be added to the RT-PCR for RNA quantification using 

fluorescent probes. This technique, also called quantitative RT-PCR 

(qRT-PCR). It is considered to be the most powerful, sensitive, and 

quantitative assay for the detection of RNA levels. It is frequently 

used in the expression analysis of single or multiple genes, and 

expression patterns for identifying infections and diseases [21].  

Among the high-throughput techniques we find: 

• Serial analysis of gene expression (SAGE). We can date back this 

technique to 1995 [22]. Ten years later the most recent version: 

SuperSAGE [23]. The final output is a list of short sequence tags 

and the number of times this is observed. The aim of this technique 

is to obtain a picture of the mRNA present in a sample and the 

small tags correspond to fragments of transcripts. The 

improvements in the technique allowed a better identification of the 

source gene by obtaining longer tags. 

• Microarrays. This technique was described for the first 

time in 1991 [24] and designed in 1995 [25]. It physically consists in 

a slide (chip) with a collection of DNA spots that are used to 

measure gene expression levels on a large scale. In a standard 

microarray, the probes are synthesized and then attached to a 

chemical matrix on a solid surface by a covalent bond. The solid 

surface can be glass or a silicon chip, in which case they are 
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colloquially known as an Affy chip when an Affymetrix chip is used. 

Other microarray platforms, such as Illumina, use microscopic 

beads, instead of the large solid support. Alternatively, microarrays 

can be constructed with a direct synthesis of oligonucleotide 

probes on the solid surface. DNA arrays are different from other 

types of microarray only in that they either measure DNA or use 

DNA as part of their detection system. The very first arrays used a 

two-channel technology for comparing two different conditions, 

disease vs. control, (also known as comparative hybridization). Each 

sample is distinguished by a fluorochrome of different colour: green 

(Cy3) and red (Cy5). If genes in the sample labelled with red (or 

green) are over-expressed, the spot on the microarray will appear red 

(or green). The spot will appear yellow or orange if the ratio of gene 

expression between both samples is the same. Single channel 

microarrays, thus using only one fluorochrome and one chip per 

sample, were also introduced. Gene expression difference between 

the samples is computed using the expression ratio of the 

corresponding hybridized chips. The most used single channel arrays 

are the Affymetrix "Gene Chip", the Illumina "Bead Chip" and the 

Agilent single-channel arrays. Many types of arrays, each aimed at a 

specific biological aspect, have been created. Among others array-

comparative genomic hybridization (aCGH) [26] to study copy-

number variations (CNVs), single nucleotide polymorphisms (SNP) 

arrays [27] to detect polymorphisms in a sample population and 

ChIP-on-chip (ChIP: Chromatin-Immunoprecipitation) to find 

interactions between proteins and DNA [28]. Microarrays have been 

successfully used to identify gene signatures, to detect important 

biomarkers and aid in cataloguing the diverse molecular patterns 

underlying biological and physiological processes [29]–[31]. 

Typically, after the “wet” part of a microarray experiment, there is a 
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pre-processing phase and then a subsequent analysis that may 

include clustering, differential gene expression analysis and 

overrepresentation analysis (e.g. gene ontology (GO) enrichment or 

gene set enrichment (GSE) analysis) and classification. In Figure 1-2 

is represented a typical two channel microarray experiment.  

 

 

Figure 1-2 A two channels microarray experiment. The first step in a 
microarray experiment consists in the purification and isolation of the mRNA 
from the samples object of the study. Then reverse transcriptase is used to retrieve 
complementary DNA (cDNA). The cDNA is then coupled with fluorescent dyes 
to distinguish between the origin samples. Hybridisation with probes on a chip 
will cause the activation of the fluorescence that is detected by a laser and 
transformed into an image. This image is then processed and, to each probe, a 
value of intensity ratio is assigned. This, after normalization, allows the analysis 
and comparison between the samples.  

• Tiling arrays (ChIP-chip and ChIP-seq). They are very similar to 

microarrays; they also work by hybridization DNA or RNA to 

probes fixed to a solid surface. They differ from the previous 
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technique because instead of using probes of known (or predicted) 

genes that can be dispersed in the genome, they are meant to work 

for sequences in contiguous regions, allowing the characterization of 

regions whose sequence is known but not the specific local 

functions. The most used are ChIP-chip in which chromatin 

immunoprecipitation allows the identification of binding sites of 

proteins. Experiments can be done genome-wide. Formaldehyde is 

used to cross link proteins and DNA in direct contact and then cell 

lysate is added and DNA fragmented via sonication. All the resulting 

fragments are immunoprecipitated and specific antibodies are used 

to capture only the protein of interest together with the crosslinked 

DNA fragments. These are then reversed so that the bound DNA 

can be amplified and characterized using microarrays (ChIP-chip) 

[32] or high-throughput sequencing (ChIP-seq) [33]. 

• RNA sequencing (RNA-seq). Also known as whole 

transcriptome shotgun sequencing, is a next generation sequencing 

technique that allows the study of whole transcriptomes, at a given 

moment in time, at an incredible depth. In addition to measure the 

presence and amount of RNA, this technique is currently used also 

for studies on alternative splicing [34], host-pathogen interactions 

[35], and fusion genes [36]. Several technologies are currently 

available from different manufacturers and, thanks to the results 

derived by the extensive usage made of this method by the 

ENCODE (encyclopedia of the regulatory elements) [37] and 

TCGA  (the cancer genome atlas) projects, a lot of emphasis is 

currently put in this next generation sequencing technique. 

RNA-seq vs microarrays 

The main difference between the two techniques is that, in microarrays, 

gene expression levels are measured using fluorescence after hybridization, in 

RNA-seq is the number of fragments that can be mapped to a gene, an exon 
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or a transcript. Since RNA-seq does not depend on genome annotation, it 

can be used for the detection of novel expressed regions, alternative 

isoforms, allele-specific expression or, as mentioned, fusion genes. In 

addition species lacking a reference genome can be sequenced [38]. Specific 

arrays have been introduced for splicing but the sequencing technique seems 

to better detect exon/exon junction [39]. Microarrays have biased signals due 

to cross-hybridization and limited dynamic range due to the saturation of the 

fluorescence signals [40]. Nowadays microarrays are still a good choice 

because of the well-established protocols and their relatively low cost 

compared to RNA-seq. In addition the analysis of the resulting RNA-seq 

data needs more infrastructural and computational resources [41] than the 

ones for microarray results. The tendency for RNA-seq protocols is to be 

every day more standardized and, in a near future, costs for sequencing, 

storage and computation will be significantly lowered and probably RNA-seq 

will supplant microarrays but then the great strides of technology will, 

probably, make us live new revolutions in the field. 

 

1.1.2.2 Epigenetic regulation of gene expression 

As mentioned, the transcription complex is formed by specific TFs, 

general TFs, co-factors, and RNA polymerase II [42] but the process of 

transcription is not only dependent on those proteins and their interaction 

but also on the chromatin structure. In eukaryotes, in order to fit almost 2 

meters of genetic material (in the case of human) into a single cell [43], DNA 

is tightly packed into chromatin. This is a complex of macromolecules 

composed by proteins, called histones, wrapped by DNA. The single 

macromolecule is called nucleosome. Arrays of nucleosomes, formed by 

histones wrapped into a 30 nm fibre, represent the most condensed form of 

chromatin: heterochromatin. This form of chromatin is too compact and 

transcription will not take place. However some molecular changes can 

revert the situation. These are known as epigenetic factors.  
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Regulatory proteins of the chromatin remodelling complex are attracted 

or repelled by specific patterns of histone tail modifications [44] . These 

covalent modifications are caused by chromatin-remodelling factors and 

enzymes ad hoc recruited by gene specific TFs and lead to the binding of 

other regulatory factors. These, together with the chromatin, create a 

favourable or non-favourable environment for gene expression [45]. During 

RNA synthesis, the mentioned chromatin-modifying factors are situated 

ahead of RNA pol II, this generates a permissive context for transcription.  

Methylation (the addition of a methyl group) and acetylation (the addition 

of an acetyl group) are types of histone modification that are known to 

control gene expression. Acetylation opens the chromatin and eases the 

access for TFs to the DNA. Methylation, essentially, leads to a repression of 

transcription by interfering with the binding sequence of TFs and through 

the binding of methyl-CpG binding proteins (MBD) [46]. In vertebrates we 

known that CGIs often contain unmethylated CpG dinucleotides and this 

transcriptionally active genomic regions contain multiple TSSs [12].  

Once the genomic region is uncoiled, epigenetic factors can bind to 

histones and stretch DNA at the TFBS.  

 

1.1.3 Transcription factors 

 

As already pointed out TFs are DNA binding proteins that bind to short 

DNA sequences (5-20 bp). They regulate the recruitment of RNA pol II to 

the promoter region of a gene acting alone or as part of a protein complex. It 

has been proved that, in a promoter region, we can find from 10 to 50 

binding sites corresponding to 5 to 15 different TFs [47]. TFs are so crucial 

that their mutations is directly associated to many diseases among which we 

find cancer [48] and one third of the human developmental disorders [49]. 
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Some studies related the number of TFs among different species and their 

proportion with respect to the number of genes and it has been found that 

their number grows proportionally to the genome size [50]. For eukaryotes 

this proportion is around the 5-10% of the total number of genes [51]–[55]. 

In human the absolute number of TFs should be around 2,000 [56]. 

 

1.1.3.1 Regulatory motifs 

The DNA region responsible for the regulation of gene expression is 

called cis-regulatory element. Cis-regulatory elements, in turn, are organized 

in cis regulatory modules, as in the case of TFBSs. On the other side we have 

TFs that are trans-regulatory elements that, interacting with cis-regulatory 

modules (CRMs), carry out their regulatory function. The functionality of the 

cis-regulatory elements depends on their accessibility and on the relative 

amount of active TFs. We already described the mechanisms by which DNA 

regions become accessible or not for transcription, we will now focus our 

attention on the mechanisms by which, in the cell, the concentration of TFs 

is controlled. The two main basic mechanisms by which this happens are 

synthesis and degradation. Alternative splicing [57] and translational 

regulation [58] give rise to TF isoforms that may also have different 

regulatory functions. In this context is important to highlight that, from a 

metabolic point of view, protein synthesis is very expensive and probably it 

does not have a response quick enough for the regulation of inducible gene 

response. The fastest mechanisms to regulate the function of TFs are 

represented by protein phosphorylation, protein-ligand binding and protein-

protein interactions (PPIs). 

Apart from gene repertory variance, phenotypic differences between 

organisms may come from differences in the regulation of gene expression 

[59]. For example the same family of TFs can have different functions in 

eukaryotes while others are specific to particular lineages.  For the majority 
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of TFs it has been demonstrated that the DNA-binding domain is highly 

conserved among eukaryotes, while the remaining protein sequence, the one 

that give rise to PPI and activation domains for example, is often very 

divergent [60]. Slipped-strand mispairing can quickly change the length of, 

for example, amino acid (AA) tandem repeats, that are included among these 

very divergent domains [61]. All this evidences lead the community to 

strongly accept the idea that changes in regulatory networks will more likely 

affect the cis part (TFBS) then the trans part (TFs), because of the weaker 

effects in the first case [62]. 

 

1.1.3.2 Recognition of DNA binding sites 

A typical example to illustrate how TFs work in the formation of the PIC 

is the TATA-box promoter. When the sequence TATAAA is present in the 

promoter region of a gene it is called TATA-box. TATA-box binding 

proteins (TBP) recognize this motif, bind to the promoter and modify the 

structure of the DNA in order to recruit more TBP-associated factors 

(TAFs). On one hand activators increase the binding of TBPs to the TATA-

box during transcriptional activation [63] . On the other hand, negative 

factors are in charged of suppressing the binding activity of the TBP (for 

example Mot1 or the Taf1 N-terminal domain) [64]. TFs are among the 

TBPs. The interaction between the TBP and the DNA is initially stabilized 

by TFIIA that has to compete with NC2, Mot1 and Taf1 for binding to the 

TBP. In yeast, in addition, the interaction of TFIIA with TAF40, allows the 

addition of TFIID to the complex [65]. A stable PIC is formed when TFIIB 

binds to the flanking regions of the TATA-box [66]. A loop from the N-

terminal region of TFIIB, named “B-finger”, has been found to interact with 

the DNA but also with the nascent RNA in the catalytic centre of the 

polymerase [67]. More recently it has been discovered that is the C-terminal 

of TFIIB that, being located above the polymerase active centre cleft, that 

guides the “B-finger” towards the catalytic centre. The DNA active centre is 
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opened thanks to the TFIIB helix/strand interaction with the polymerase 

rudder. Once this happens a helical region of the TFIIB, the “B-reader” 

helps in finding the DNA start site while this slides into the cleft, in the 

catalytic centre of the polymerase. Once the transcript reaches the length of 

5 nucleotides in forms a stable complex with the “B-finger” and, once it 

reaches the length of 7 nucleotides, it collides with the “B-finger” causing the 

displacement of TFIIB from the promoter [68], [69]. The binding, at this 

point, of the RNA pol II and TFIIF stabilizes the PIC and allows the 

recruitment of two general TFs (TFIIH and TFIIE) that, together with the 

mediator complex, initiate the transcription process. The role of TFIIH has 

been recently linked with the control of an ATP-dependent transition from 

the closed to open PIC, a fundamental step for a successful transcription 

initiation [70]. A cartoon representing the transcription initiation is reported 

in Figure 1-3. 

 

Figure 1-3 Transcriptional Regulation. To initiate transcription, several factors 
are necessary. Activators bind to their target at the upstream activation sequence 
(UAS), recruiting the mediator complex. The TATA-binding protein (TBP) 
subunit of TFIID bind to the promoter TATA-box an recruits TFIIA and TFIIB. 
The mediator complex, together with the Polymerase II, TFIIF, TFIIE and TFIIH, 
at this point, are ready to start the transcription. Upon initiation RNA POLII is 
released from the complex and the transcription process takes place. Figure from 
https://mutagenetix.utsouthwestern.edu/phenotypic/pfile.cfm/744/tran.  

TATA-box promoter is just an example, we known that in yeast only 

20% of genes present a TATA-box in their promoter regions and most of 

them are associated with stress response. Most of eukaryotic promoters 
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don’t have a typical TATA-box promoter. TATA-less genes, represented by 

most of the housekeeping genes [71], show other elements useful for the 

recognition of the promoter by the transcription complex, for example 

downstream promoters and Initiators [72]. 

 

1.1.3.3 In silico prediction of regulatory motifs   

While protein coding sequences have an easy connection with their 

phenotype, represented by a determined sequence of amino acids, regulatory 

sequences have a context dependant relationship with their phenotype: a 

particular profile of transcription [62]. Methods for the in silico prediction of 

regulatory motifs, the TFBS, can be divided in two main categories: pattern 

matching and pattern discovery algorithms; all of them assume that TFs tend 

to bind to similar DNA sites, in other words a set of transcriptionally co-

regulated genes under specific conditions is likely to be regulated by a set of 

common TFs. 

 

Pattern matching. 

From a set of TFBS a regular motif is derived. The first step is a multiple 

sequence alignment of the TFBS, each column of the alignment is then 

represented by a letter of the International Union of Pure and Applied 

Chemistry (IUPAC) notation in such a way to have an idea of the relative 

importance of each nucleotide. With such a representation, the information 

on the relative frequencies of nucleotides at each position is lost.  Position 

matrices have been introduced in order to have the number (with position 

frequency matrices PFMs) and probability (position weight matrices PWMs) 

of the normalized frequencies of the four possible nucleotides at each 

position. Thanks to this approach, given a DNA sequence, it is possible to 

calculate a quantitative score based on the observed nucleotides at each 

position. In 1998 Stormo et al. demonstrated that for large and 
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representative collections of binding sites, the scores are proportional to the 

binding energies [73], [74] but it does not take into account methylation and 

acetylation events (for example there are TFs that influence acetylation by 

recruiting acetylases) [75]. Suffix trees have also been used to predict TFBS 

but, although criticized [76], PWMs are still the most popular method for 

this kind of predictions. 

 

Pattern discovery  

This strategy consists in finding a common motif in a group of sequences 

but without aligning them. Two type of detection are possible:  

- De novo methods. Those strategies compare sequences putatively 

bound by the same TF with each other (these can be derived for 

example by a group of genes co-expressed in a microarray 

experiment or from orthologous promoter sequences) [77]. 

Hidden Markov Models (HMMs), expectation maximization 

(EM) and neural networks are extensively used to refine the 

initial matrix or binding sequence. From the first algorithm of 

this kind, in 1985, by Galas et al. [78], other discovery methods 

in this category include the Gibbs-sampling [79], MEME (which 

uses multiple EM for motif elicitation) [80], AnnSpec [81] and 

Dispom [82]. 

- Scanning tools. These methods use collections of PWMs, such as 

TRANSFAC [83] or JASPAR [84], which will be better described 

in the next paragraph. They move the PWM along the DNA 

sequence and, for each position calculate a score. This score is 

then compared to the one calculated for background sequences, 

like intergenic regions or CGIs, for determining its significance. 

CGIs can also be used as a second reference due to the histone 

acetylation of those regions. Among these tools we mention, in 
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chronological order, STORM [85], TOUCAN [86], MotifViz [87] 

and PEAKS [88].  

Most of the method we mentioned here, being them based directly on 

word counting (k-mers), pattern matching or pattern discovery algorithms, 

predict common motifs using phylogenetic footprinting or over-

representation methods, this leads, most of the times, to functionally relevant 

predictions as the background is taken into account. However we should not 

forget that low affinity binding sites, non conserved functional binding sites 

[89] and alternative recognition motifs are very common in mammalian 

TFBS and, at the same time, very difficult to identify with currently available 

methods. Multiple transcripts, from the same gene, can be generated from 

different TSS and this, together with distal and proximal TFBS, depending 

on their distance from the TSS, increases the complexity of the fundamental 

task of TFBS identification [90]. The way in which TFBS are represented in 

silico is depicted in Figure 1-4. 

 

Figure 1-4 In silico representation of TFBS. A) A position frequency matrix 
(PFM). At each position reports the number of times each nucleotide has been 
found. B) The PFM is transformed into a logo. This helps for the identification of 
motifs at a glance. 
Figure from: https://sites.google.com/site/iiserbioinformatics/tutorials.  
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1.1.3.4 Databases of regulatory elements  

As previously mentioned, scanning tools for TFBS discovery use 

databases of annotated TFBSs, PWMs and sequence logos. These data 

repositories differ among them for their contents, validation procedures and 

commercial nature. Among the most famous ones, and widely used, we 

mention JASPAR [84], [91]. It is a curated database that contains literature-

derived, non-redundant motifs in the form of PWMs and sequence logos. It 

is constantly extended and freely available (http://jaspar.genereg.net). A 

manually curated commercially available database, with a limited contents 

free version, is represented by TRANSFAC [83], from the Biobase company 

(http://www.biobase-international.com). CisRED [92] contains predictions 

of TFBS derived from neutral evolution, phylogenetic foot printing and 

homology based analyses (http://www.cisred.org). RegulonDB [93], specific 

for Escherichia coli, provides comprehensive data including regulatory 

network, binding sites and interactions between TFs 

(http://regulondb.ccg.unam.mx). Finally, CIS-BP 

(http://cisbp.ccbr.utoronto.ca) [94] is a library of TF-DNA binding motifs 

and specificities that also offers on-line tools for scanning DNA sequences 

and looking for putative TFBS, assigning a DNA sequence where a given TF 

could bind and, given a DNA motif, assign a TF that may recognize it. 
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1.2 Microarrays analysis  
 

Many different types of microarrays are available depending on the 

scientific problem addressed. General principles of microarray experiments 

are contained in the previous section. A part from single channel and two 

channels arrays, there is variability in the chip material, cost, manufacturer 

and way of production. Oligonucleotides can be spotted onto glass using fine 

pins, using photolithography and pre-made masks or dynamic micro-mirrors, 

or using electrochemistry on microelectrode arrays. In this chapter the two 

types of microarrays used for the biological experiments contained in this 

thesis are explained, together with the theory behind the computational 

analysis of the resulting data.  

 

1.2.1 CATMA 

 

As mentioned in the prologue, in this thesis we analysed microarray time 

series data, specifically from the two channels complete Arabidopsis 

transcriptome microarray (CATMA). It was constructed in the frame of the 

CATMA European program framework and is based on Genes Specific Tags 

(GST), designed with “Specific Primers & Amplicons Design Software” 

(SPADS) [95], which are short and specific sequences for most Arabidopsis 

genes designed based on “Eugene” annotation software [96]. The 

AGRIKOLA (Arabidopsis Genomic RNAi Knock-out Line Analysis) 

European project, focusing on the large-scale systematic RNAi silencing of 

Arabidopsis genes (http://www.agrikola.org/), is fundamentally based on 

those GSTs. An exhaustive benchmark study established the CATMA array 

as a mature alternative to the Affymetrix and Agilent platforms [97].  
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1.2.2 Multiplex BeadArray Assays 

 

Another type of two channels microarray technology that we used for 

analysing human time series data is the Multiplex BeadArray Assays 

developed by Illumina [98]. In this case the chip consists in a multicore 

optical imaging fiber or in a planar silica slide. This is engraved to obtain 

micron-sized wells on its surface that allow thousands of 3-micron silica 

beads, covered by different oligonucleotide capture sequences, to self-

assemble in its interior. To distinguish the position of the beads with respect 

to the wells a decoding process is carried out. Complementary 

oligonucleotides present in the sample will bind to the beads and the 

bounding activates a fluorescent label.  

 

1.2.3 Microarray data processing 

 

1.2.3.1 Pre-processing / normalization 

The first processing step of the raw data includes image quantification, 

quality control, background correction, normalization and summarization. 

This pre-processing is fundamental taken into account that technical noise 

may heavily influence the results. One of the most used tools in this context 

is the AffyPLM package [99], [100]. This quality control is performed on the 

probe level and chips that do not pass this step are filtered out from the 

analysis. AffyPLM fits models on probe set level to identify the chips of 

lower quality. Two measures are used in this phase of the analysis:  

- Relative log expression (RLE). It is calculated by comparing probe 

expression on each array against the median expression across all 

arrays.  
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- Normalized unscaled standard error (NUSE). It is the standard error 

estimate for each gene, standardized across all arrays.  

Robust multichip average (RMA) [99], [101] is a very useful tool for 

background correction, normalization, summarization of the raw intensities 

and scaling of the expression values to a proper scale. Background correction 

is fundamental to remove the effect of non-specific binding of the 

fluorophore on the array. Normalization is a crucial step in order to have the 

same distribution of values on each chip and make those values comparable. 

One of the most used and efficient is the quantile normalization method 

[99]. This involves sorting the values per sample in ascending order, 

substitute the value with the average of each gene across samples and then 

reorganize with the original order for each sample. Then, to each chip the 

same mean value is set. Summarization is the fundamental step to pass from 

probe’s values to genes. Each probe only matches to a part of the sequence 

of a gene and, on the array, probes are grouped into sets thus it is 

fundamental to combine those sets into a single signal. This step can use one 

or multiple chips, in the first case median or mean background corrected and 

normalized probe intensities values are calculated. RMA, based on the idea 

that the same probe sets respond similarly over different chips, uses a 

multichip approach. Different probes on the same chip have a higher 

variability than the same probe on different chips [102]. The multi-chip 

model includes probe and chip response parameters, to account for the 

probe effect as well as the relationship of concentration and gene expression 

[100]. In this thesis we applied the invariant set normalization [103] that 

allows the arrays to have a similar overall brightness. The procedure is based 

on the selection of a non-differentially expressed set of genes, called 

invariant set. This is calculated iteratively until it reaches a stable number of 

points that are used to compute a piece-wise linear running median curve 

that will be used for normalization.  

 



Microarrays analysis 

24 

1.2.3.2 Batch Effects  

Batch effect, generally speaking, is a systematic bias introduced in a 

biological experiment. Typically batch effects emerge from the laboratory 

where data are produced and processed: different people may have 

performed the same experiment, or different parts of it, of different 

experiments to be compared, the variability of the chips, the specific day, or 

days in which experiments are done. All these aspects increase the variability 

in the study thus lowering the confidence on results reflecting real biological 

signals and even the best-planned and organized study on earth will be 

affected by technical variation. As Baggerly et al. point out: “Batch effects are 

common in large-scale expression studies, but are not commonly addressed” 

[104]. Most of the methods for correcting batch effects are addressed to 

microarray experiments [105]. Batch effects in microarrays have already been 

reported with the emergence of the first microarray experiments [106].  

Among the methods that can be used to address batch effects we find 

single value decomposition (SVD) [107] and distance weighted 

discrimination (DWD) [108]. A minimum of 25 samples within each batch is 

needed by both methods in order to identify which variables explain the 

batch effect variation. Specifically DWD, with the hyper plane it tries to find 

in order to separate two batches, only works by pairwise analysis; it then 

calculates the batch mean and subtracts it in order to obtain corrected values. 

To overcome the lower limit of 25 samples the approach by Johnson et al., 

(2007) [109], which applies empirical Bayes methods, called ComBat, can be 

used. It has been proved that this approach is among the ones that better 

address the problem [110]. If the technical variables influencing the 

expression are not known, surrogate variable analysis (SVA) [111] can be 

used to identify these hidden components [112] and then create a linear 

model that will be used during the analysis to adjust for batch effects. 
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1.2.3.3 Clustering and the special case of short time series data 

Several clustering algorithms have been applied to gene expression data 

[113]. In general the grouping is preceded by the calculation of a pairwise 

coefficient, such as Pearson correlation or Euclidean distance, and 

subsequent application of a clustering method on that measure. In this 

paragraph we will focus on the clustering of time series expression data. 

Three of the most popular algorithms in the field are hierarchical clustering 

[114], k-means [115], and self-organizing maps (SOMs) [116]. All these 

methods are not specifically designed for time series data thus they ignore 

data sequentiality and treat the observations, at each time point, as if they 

were independent of each other. Nevertheless interesting biological results 

have been retrieved. Other well established algorithms for clustering time 

series data have been implemented. Schilep et al., (2003) proposed a 

clustering method based on a mixture of HMM [117]. In an EM style 

algorithm genes are associated with the HMM most likely to have generated 

their time courses, then the parameters of the HMMs are estimated based on 

the genes associated with them. This algorithm requires the number of time 

points to be much larger than the number of states (or nodes in each Markov 

chain). Thus, while this algorithm works well for long time series datasets it 

is not appropriate for short ones. The method proposed by Bar-Joseph et al. 

(2003) [118], is based on a continuous representation of profiles. This 

algorithm requires the estimation of a few parameters related to the class 

and, for each gene other five parameters. All this will clearly overfit if the 

dataset contains only a small number of points ad fail in the resulting 

clustering. The method by Ramoni et al. (2002), is based on gene expression 

dynamics [119]. It relies on regression and aims to cluster genes whose 

dynamics can be expressed with almost the same auto-regressive equation. 

This approach fails in separating clusters of short time series. For example 

using a regression with the minimum number of parameters to distinguish 

between “up” and “down” trend, that is two, in a 5 points time series in can 
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use only the last three and this may lead to over fitting and a deficient cluster 

separation.   

As mentioned, the common problem of all this algorithm, in case the 

data represent only a few time points, is the over fitting and the difficulty in 

discerning between real clusters related to a significant biological responses, 

and random patterns that may occur just by chance. These last are very 

probable in the case of short series data because of the basal noise and the 

small number of points studied. Zhao et al. (2001) [120] and Lu et al. (2004) 

[121] used a set of predefined profile shapes. This requires the a priori 

knowledge of the shape of the curve, thus of the gene behaviour in time, 

that, in most cases is not available. In the method by Möller-Levet et al. 

(2003) [122] a comprehensive set of profiles is calculated and then genes are 

clustered by assigning them to the matching profiles. The number of 

potential profiles grows exponentially with the number of time points 

making this algorithm efficient only in the case of very few time points. In 

addition, with such approach, is impossible to differentiate between patterns 

that arise just by chance and real biological responses. Inequality constraints 

for the selection of expression profiles have been proposed by Peddada et al., 

(2003) [123]. Their statistical analysis, based on several repeats, assigns genes 

to the profile that they best matched. In this case the availability of replicates 

and the fact that the user has to specify the set of profiles of interest, are 

crucial aspect for the method to properly work. The approach of De Hoon 

et al. (2002) [124], fits linear splines with the aim to leverage the statistical 

power of the different repeats to better estimate gene profiles and their 

differential expression, when few time points and several repeats are 

available. In the light of these considerations, for our analysis, where only a 

few time points and replicas where available, we preferred to use an 

algorithm specifically designed for clustering short time-series data that 

outperforms the others. The short time-series expression miner (STEM) 

[125], can work even if no repeats are available by leveraging the statistical 



Introduction 

27 

power obtained from the large number of genes being profiled 

simultaneously. First a set of model profiles is selected, and then genes are 

assigned to the profiles that better represent them among the preselected 

profiles. This step of selection of model profiles independently from the data 

allows the algorithm to calculate the significance of the different clusters.  
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1.3 Network biology 
 

Biomolecules inside the cell (DNA, RNA, proteins and other small 

molecules) do not act alone. It is clear that, in order to direct cell’s activities, 

it must be established a complex, large and well-.organized system of 

interactions. The advances in biotechnology and bioinformatics allowed the 

massive collection of an impressive amount of biological data. Thanks to 

this, a new perspective emerged in which the characterization of a phenotype 

is not anymore gene-centred; the new core is represented by the interactions 

between biomolecules. The dynamics of the biological system are studied 

analysing the interactions between the components of the system but 

contemplating it as a whole. Protein sequences, gene expression data, 

protein-protein interactions (PPI) are just a few examples about the sources 

of data that can be integrated in order to understand how the different 

functions of an organism are handled. Thanks to this we are now aware of 

groups of molecules working together: PPI networks, regulatory networks 

(represented by gene-protein interactions), genetic interaction networks 

(represented by gene-gene interactions). These networks are interconnected 

through common biomolecules. The study of these interconnections, object 

of a relatively new brunch of science called system biology, aims to identify, 

understand and model, in a quantitative way, the topological and dynamic 

properties of biological networks [126]. In his famous book titled 

“Foundations of System Biology”, Hiroaki Kitano defined and made explicit 

the final aim of system biology: “[…] a new field in biology that aims at 

system-level understanding of biological systems” [127] but the real origin of 

system biology can be dated back to 1968 with the system theory of Ludwig 

von Bertalanffy [128]. To pursue the objective, many massively parallel 

experimental techniques have been developed and adopted, in different 

fields, the so called –omics (for example genomics and proteomics). The 

complete set of results of these techniques for each specific context, are 
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described by terms ending in –ome (genome, proteome…). It is clear that the 

key, for such a holistic understanding of biological systems, is the interplay 

between the experimental world and modelling methods. Many of the 

approaches involved have their origin in physics or other natural sciences, 

for example the formulation and analysis of non-linear models, the theory of 

complex networks, the characterization of stochastic phenomena, the idea of 

noise or the statistical methods to identify a model. Thanks to this, the 

system is converted in a dynamic interaction network and its properties arise 

directly from the network topology and its dynamic behaviour. Under this 

new light we can think about diseases as perturbations in the normal 

biological networks that characterize the cell processes; thus the role of 

system biology becomes evident to understand and fight against pathologies. 

Although with modern tools significant progresses have been made in very 

short time, this branch of science is still in its beginning. Before getting 

deeper into this, a quick excursus on networks is required.  

 

1.3.1 General principles of network characterization  

 

With the term network we refer to a set of elements with connection, or 

interactions, between them. The formal representation of a network is 

achieved through the mathematical concept of graph. A graph is an object, 

consisting in vertices and edges, representing elements and connections 

respectively. Thus a graph G =(V, E) consist of a set of vertices (aka nodes 

or points) V and a set of edges (aka arcs or links) E, where each edge is 

assigned to two (not necessarily disjoint) vertices. The traditional 

representation of a graph uses a point for each of the vertices and a line for 

each edge connecting interacting nodes. Two nodes, u and v are neighbours 

(or adjacent) if they are connected by an edge e, also represented with {u, v}.   

This concept of adjacency leads to the representation of a network as an 
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adjacency matrix. Each row (and each column) represents a node and, when 

u interacts with v, the corresponding cell at the intersection of row u and 

column v, is filled with a 1. A node that interact with itself, a self-loop, will 

contain 1 on the diagonal, otherwise, when no interactions or no self-loops 

are present, the cells are filled with zeros (see Figure 1-5).  

 

Figure 1-5 Graph representation. On the right side an adjacency matrix and, on 
the left, the corresponding graphical representation. Interactions between node 
pairs are indicated with a 1 in the adjacency matrix, self loops, like for node 4, 
with ones in the diagonal, no interactions with zeros. Figure from: 
http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture15.html.  

The first foundations of graph theory can be dated back to 1735 with the 

famous Königsberg problem enunciated by Euler [129].  The river Pregel 

divides the two main areas of the city of Königsberg. Seven bridges connect 

the two islands and the problem consists in finding a walk that crosses every 

bridge once and only once and that ends exactly where it started. Euler 

proved that the problem was unsolvable and his explanation was based on 

the concept of node degree (or connectivity). The degree of a node is the 

number of edges having the node on one extreme. The conclusion of Euler’s 

work is that “a graph has a path traversing each edge exactly once if exactly 

two vertices have an odd degree” [129]. If all edges of a walk are distinct 

then it is called a path. Shortest path between two nodes is the path of 

minimal length connecting the two vertices. The distance between the two 

nodes is the length of the shortest path between them. 
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1.3.1.1 Models and measures 

Graphs can be directed or undirected and the direction represent the flow 

of information in the graph, when this is known. For this reason, in a 

directed graph, nodes have an in-degree and an out-degree. These describe, 

respectively, the number of edges pointing at the node and the number of 

edges that have the node as source. Calculating the degree of all nodes in a 

network allows the degree distribution calculation [130]. This measure 

represents the probability distribution of the degrees over the whole network 

and can be used distinguish between different types of networks. The first 

mathematical model of random networks is from 1960 [131] and it assumes 

that each node has the same probability to be connected to another, thus the 

connections in the network occur by chance. In this case most of the nodes 

have degrees very close to the average degree of the network, thus the node 

degree distribution P(k) will have a uniform Poisson distribution [132]. What 

has been discovered in late 1990’s is that most of the real natural networks 

are far away from being normal. In such webs the majority of nodes seem to 

have only a few links while only a few of them, called hubs, have very high 

degrees. Usually, in biological networks, those hubs are essential, for example 

it has been proved that removing one of these nodes in utero leads to 

embryonic lethality [133], [134]. This type of networks is called scale-free.  In 

this case it’s not possible to use a single node to characterize the network 

[135]. Scale-free and random networks are compared in Figure 1-6. 

Figure 1-6 Random and scale-free networks. On the left a representation of a 
random network. On the right a scale-free one. In both cases the number of nodes 
and edges is 32. Hub nodes, in the scale free net are highlighted in grey and they 
allow to have, on average, shortest paths lengths. Nodes degree distributions next to 
each network: for the random network it is clearly a Poisson while for the scale-free 
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one is a power law. Probability distributions are from [136] while networks are taken 
from : https://en.wikipedia.org/wiki/Social_network.  

The degree distribution P(k) for this type of networks follows, almost, a 

power-law distribution and, in general, any path between two nodes tend to 

be short. The small world property states that the distance between two 

randomly chosen nodes grows proportionally to the logarithm of the number 

of nodes in the network. This property is present in scale-free networks. To 

measure how relevant is a specific node in a network, centrality measures are 

adopted [137]. Three different measures of centrality, all based on shortest 

path computation [138], are available: degree, closeness, and betweeness. 

Farness is the sum of the distances from all other nodes and closeness is its 

reciprocal [139], [140]. Betweenes consists in the number of shortest paths 

that go through a certain node from any other node [140]. Bottlenecks are 

nodes with a high betweeness [141] and usually, because they connect hubs, 

these nodes have a high control on the information flow [142], eventually 

also on its direction, converting them in potential drug targets [141].    

The small world property perfectly fits with the hierarchical connectivity 

structure of biological networks and accounts for the high modularity and 

interconnections of genes within the same cluster [126]. Network theory has 

studied certain graph properties that perfectly suit to biological networks and 

allow the identification of sub networks involved in diseases [142]. The very 

basic form of interaction that may be represented in a network is the one 

that occurs between two nodes. In addition to this there are motifs 

(patterns), in complex networks, that generate predictable functional 

consequences [143]. The simplest motif of network architecture is 

represented by small circuits, composed of three nodes, between TFs and 

target genes [144], [145]. The loops composing the circuits can be: feed-

forward loops (FFL) [143], that act as filters for transient signals, single-input 

motifs (SIMs), the best example is a TF controlling various genes, and 

multiple input motifs (MIMs) [143], for example a group of genes sharing a 

reduced set of regulators [145]. 
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1.3.1.2 Examples of networks in systems biology 

Biology, by definition, is the science of life; it describes the processes of 

our environment, from the molecular to the ecosystem level. At all levels of 

detail networks appears to be a good representation of the connections 

between the respective processes. For example networks appear to be 

perfect models to study the interactions that control cell’s biological 

functions because, in a single representation, it is possible to understand 

relationships and functions among the different biological entities into play 

[146]. Different type of networks can represent different biological aspects 

and are used to answer different biological questions: for example in PPI the 

nodes are proteins and the edges are physical interactions among them, in 

transcriptional regulatory networks nodes are genes and proteins and the 

edges are represented by TFs regulating a gene. Different types of biological 

networks, at the macroscopic level, include phylogenetic networks (aimed at 

analysing evolutionary processes through the interrelationships among 

biological entities) and ecological networks (aka food webs, they describe 

consumer-resource interactions detailing who is present and who affects 

whom, directly or indirectly, by feeding interactions, aka trophic interactions, 

that may also contain quantitative information); at microscopic level we find 

metabolic networks (in which metabolites and their interconversions by 

enzymes are represented), cell signalling networks [147], protein-protein 

interaction [148], [149], pathway cross-talk [150], transcriptional regulatory 

networks [151], gene-disease networks [152] among others. The core of this 

thesis is based on gene regulatory and protein-protein interaction networks.  

 

1.3.2 PPI networks 

 

PPIs can be studied from many different points of view and at very 

different levels of detail. Available methods, both experimental and 
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computational, reflect the current needs in biology, not without some 

problems and challenges to be solved in the near future. Depending on their 

scale, they can be divided in low-throughput and high-throughput. The first 

category addresses to a very reduced set of proteins while in the second a 

massive group is studied.  Best quality PPI data arises from experimental 

methods, either in vivo (using a living organism) or in vitro (using organisms 

outside their biological context). These types of experiments are very time 

consuming and expensive, thus computational methods, have been 

developed to integrate, and/or to guide, experimental ones. A flux of 

information is created in which the knowledge acquired with experiments is 

used to study PPI in silico, predictions are made and validated through 

experiments, the new notion updates the previous knowledge and so on so 

forth. It appears evident that, in order to obtain relevant and accurate in silico 

results, a high quality of the starting data is fundamental.   

 

1.3.2.1 Experimental study of protein-protein interactions 

Thanks to the HUPO proteomics standard initiative [153] in supporting 

the open biological ontology (OBO) [154], a structured, controlled,  

vocabulary for PPI experiments annotation is now available. It includes 

around 168 different experimental methods. Each technique provides 

information for a specific level of detail.  

Protein complementation assays (PCA) represent the largest group of 

experimental techniques to characterize PPIs [155]. Generally speaking these 

protocols involve the use of fragments of a “reporter” protein, usually a TF 

that activates a gene with some known and visible effect on the phenotype, 

to which the “bait” and “prey” (the two proteins whose interaction is object 

of the experiment) are covalently linked. In case of interaction between the 

bait and prey proteins the reporter fragments are close enough to make 

detectable the activity of the reporter. These techniques work in vivo and the 
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most common ones are yeast two hybrid (Y2H) [156] and tandem affinity 

purification (TAP) [157]. To detect weak and transient interaction in the 

living cell, fluorescence based methods are the way to go. Biomolecular 

fluorescence complementation (BiFC) [158] and green fluorescence protein 

(GFP) [159] are the most common ones, together with Förster/fluorescence 

resonance energy transfer (FRET) [160]. In this technique a transfer of 

energy directed from the donor to the acceptor fluorophore represents the 

interaction. The bioluminescence resonance energy transfer (BRET) system 

[161] is even more sensitive because the fluorophores are substituted by 

luciferases.  Arrays can also be used in the study of PPIs. Tangible examples 

are protein binding microarrays (PBM) [162] in which many probes 

(proteins) are covalently attached to a surface and labelled proteins are 

included in the system to test their interaction. In surface plasmon resonance 

arrays (SPR) [163] the labelled samples are substituted with an optical 

biosensor that adds information on the kinetic of the interaction in real time 

by detecting changes in the local refractive index. High resolution methods 

include X-ray crystallography, the most widely used for determining the 

structure of large biomolecules. The macromolecule needs to be crystallized 

and its atoms will cause a diffraction of incident X-rays in different 

directions. The study of the resulting diffraction map allows understanding 

the position of the atoms and their chemical bonds. Problems here are 

represented by the fact that the crystallization may differ significantly from 

the in vivo condition and not all the contacts observed in a crystal may have 

some biological relevance [164]. Nuclear magnetic resonance (NMR) tries to 

solve these problems by keeping the macromolecule in a solution. A strong 

magnetic field is applied, together with radio frequency pulses; the analysis of 

the resulting chemical shift produced in the nucleus of the macromolecule 

allows to measure the distance between the atoms and to build a 3D model, 

at atomic resolution, of the macromolecule. The size of the complex studied 

is the only limit of this technique [165]. In small-angle scattering the 
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macromolecule is exposed to X-rays (or neutron beams) and the scattered 

radiation is detected. At this point the scattering curve of the X-rays (or 

neutron beam) is used to create a model at a low resolution of the complex 

(around 15 Å). No crystal is required, allowing the macromolecule to stay in 

more realistic fluid environment, and in a few days results are available. In 

cryo-EM tomography the macromolecule is observed with an electron 

microscope at cryogenic temperatures. This technique results in difficult to 

interpret density maps in the case of highly dynamic systems. With both the 

last two methods presented here one can retrieve useful hints about shape 

and size of the macromolecule and use such information in computational 

methods. The most common experimental and computational methods are 

listed in the following table. 

 

Table 1-1 Experimental methods commonly used to gather information 
related with protein protein interactions. 

 

Method Class. Specific advantages or drawbacks 

Yeast Two Hybrid 

(Y2H) [156] 

(Binary interactions) 

PCA. Several variants depending on reporter used 

(such as GAL4-VP16 or LexA-b52). Possible to apply 

in high-throughput experiments. 

Bimolecular 

Fluorescence 

Complementation 

(BiFC) [158] 

(Binary interactions) 

PCA. Based on the reconstitution of a Fluorescent 

Protein to become functional. Under physiological 

conditions. Interaction strength based on 

fluorescence intensity. Spatial resolution. Can detect 

weak and transient interactions. 

Förster/fluorescence 

resonance energy transfer 

(FRET) [160] 

Proximity-based assay. A fluorophore is transferred 

from a donor to an acceptor, which are genetically 

fused to proteins of interest. Two necessary 
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(Binary interactions) conditions limit their sensitivity: the donor and 

acceptor must fall within a specific distance range and 

be found in favorable orientations. 

Bioluminescence 

Resonance Energy 

Transfer (BRET) [161] 

(Binary interactions) 

Proximity-based assay. Similar to the FRET 

experiment, but the donor is replaced by a luciferase. 

Compared with FRET, BRET do not require an 

excitation light source, avoiding some of the 

problems associated with FRET. Useful in 

photosensitive tissues. 

Protein binding 

microarrays (PBM) [162] 

(Complex/Binary 

interactions) 

Array technology. Several proteins are printed onto a 

chip and probed with labeled proteins. 

Highthroughput experiment. 

Surface Plasmon 

Resonance Array (SPR) 

(Biacore) [163] 

(Complex/Binary 

interactions) 

Array technology. Based on an optical biosensor that 

measures changes in metal array surface refraction 

index upon protein binding. Not required to label 

proteins. Provides Kinetic data in real-time. 

Tandem Affinity 

Purification (TAP) [157] 

(Complex composition) 

Based on affinity chromatography. Selective 

purification due to two purification steps. Possible to 

apply in high-throughput experiments. 

Protein footprinting 

(Interaction interface) 

Binding regions of interacting proteins are protected 

from the effect of external agents, such as degradative 

enzymes or oxidative agents. It can be used to detect 

ligand-induced conformational changes. 

Cryo-electron 

microscopy 

(Low resolution 

structural details) 

Imaging technique. Based on electron microscopy. 

Supra-macromolecular structures. Resolution is on 

average around 10 Angstroms. 
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X-ray crystallography 

(High resolution 

structural details) 

Biophysical experiment. Based on the diffraction 

patterns generated by a single crystal. Only applicable 

to proteins which can be crystallized. 

Nuclear Magnetic 

Resonance (NMR) 

(High resolution 

structural details) 

Biophysical experiment. Based on the hydrogen 

nuclei relaxation after the application of radio 

frequency pulses of electromagnetic radiation. It 

allows for the detection of multiple conformations. 

Molecules are in solution. 

 

1.3.2.2 In silico prediction of protein-protein interactions 

Although high-throughput methods for predicting PPI are very powerful 

tools the resulting data may be unreliable and will not cover all possible 

interactions between proteins. To overcome this, many computational 

methods have been developed to predict the full range of interactions 

between proteins with good accuracy. Depending on the level at which the 

prediction goes, these methods can be divided in two main categories: the 

ones for predicting binary interactions and the ones for predicting the region 

or interface involved in an interaction. 

Predicting partners of a binary interaction 

With the task of identifying pairs of proteins interacting, without 

specifying which regions are involved in such interaction or its atomic 

details, these methods can be useful not only for predicting but also for 

validating experiments. Under this category we find: 

- Genome-scale methods (e.g. domain fusion [166], gene 

neighbourhood [167] and phylogenetic profiles [168]) 

- Experimental knowledge based methods (e.g. interologs [169], 

domain profiles [170], and sequence signatures [171]) 

- Evolution based methods (e.g. correlated mutations [172], and 

phylogenetic mirror trees [173]) 
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- Chemistry based methods (e.g. prediction of kinetic rates for 

molecular association [174]) 

- Docking. Although this is usually used to gain knowledge about the 

interacting region, it has also been used to predict binary PPI [175]) 

Predicting interacting region/interface 

To properly understand, at a molecular level, the mechanism involved in 

the docking between proteins, understanding their spatial conformation 

is essential. To do this, methods to unravel the regions involved in an 

interaction are essential and they can be divided into two categories 

depending if they need an a priori knowledge on the members of the 

interacting partners or not. If not information on the interaction 

participants is known the prediction of interacting regions can be made 

because it is known that evolution tends to conserve amino-acids on 

protein surfaces [176]. Interacting interfaces, thus, tend to have certain 

“known” residues and this has consequences from the chemical point of 

view [177]–[179]. This leads to structural characteristics by which certain 

areas will be more favourable than others, energetically, when involved 

in interactions. This characteristic can be measured, for example, using 

the Optimal Docking Area (ODA) [180]. Machine learning methods, by 

combining different sources of information, are also able to predict 

protein-binding sites [181], [182].  

On the other hand if the interacting pairs are known it is known that co-

evolution affects the amino-acids involved in an interaction [183], [184]. 

Of course not all the residues involved in an interaction are just as 

important: hot spots [185] are the residues that contribute more to the 

binding free energy and they have more rigid restrictions both 

structurally [186] end evolutionary [187] with respect to the other amino-

acids of the protein.  
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Topology based methods may also a valid alternative for discovering 

interacting regions in PPIs [188]. 

Table 1-2: Computational methods commonly used to determine information 
related with protein-protein interactions. Updated from [189]. 

 
Method Principle Output 

Phylogenetic 
profiles 

Correlation about the presence 
and the absence of two proteins in 
different genomes. 

Functionally related 
proteins 

Gene 
neighborhood 

Genomic conservation of 
topological neighborhood is used to 
infer functionally related proteins. 

Functionally related 
proteins 

Text mining 

Automated processing of 
scientific literature, on the search of 
proteins co-occurring in the same 
sentence. 

Functionally related 
proteins, Complex and 

binary interactions 

Interologs 
mapping 

Extension of experimentally 
detected interactions in an organism 
to other organisms assuming that 
homologue proteins maintain their 
interaction properties. 

Complex and binary 
interactions 

Domain fusion 
Proteins whose homologues in 

other organisms happen to be fused 
into a single protein chain are likely 
to interact. 

Binary interactions 

Domain profile 
pairs 

The regions or domains involved 
in the interactions of a given 
organism are used to create profiles 
of interactions. The resulting domain 
profiles are then used to screen the 
proteome of another organism and 
domain-domain interactions are 
inferred. 

Binary interactions 

Interacting region 

Correlated 
mutations and 
conservation 

Proteins having correlated 
mutations during evolution are likely 
to be interacting due to co-adapted 
evolution of their protein interacting 
interfaces. 

Binary interactions 

Interacting region 

Propensities of 
the residues 

The general composition of the 
residues located in the interface of 
PPIs is different from the rest of the 
protein, and this can be used to infer 
interacting regions. 

Interface region 

Computational 
alanine-scanning 

mutagenesis 

Amino acids are mutated by 
alanine in the protein-protein 
interface and its thermodynamic 
effect on binding free energy is 
studied in the complex structure. 

Interface region 

Docking Looks for best tridimensional 
structure of the two proteins based 

3D Structural model 
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on shape or electrostatic 
complementarity between protein 
surfaces. It also has been used to 
infer new PPI binary pairs. 

Binary interactions 

Comparative 
modeling 

 

Complex structures can be 
modeled by means of similarity with 
other complexes with known 
structure, assuming the same 
direction of each partner of the 
interaction. It also has been used to 
infer new PPI binary pairs. 

3D structural model 

Binary interactions 

Integrated 
Modeling Platform 

Integration of multiple sources of 
data including a wide range of 
resolutions to build complex models. 

3D structural model 

 

Local structural 
feature 

Uses data from known protein 
interactions and putative non-
interacting proteins (co-localized, 
non redundant, non-interacting 
random protein pairs non-similar to 
PPIs), assigning positive and 
negative scores to the structural 
features. 

Binary interactions 

 
1.3.2.3 Databases of protein-protein interactions 

All the data generated by the listed experimental methods are stored in 

multiple databases and publications. Among others the biomolecular 

interactions network database (BIND) [190], the biological general repository 

for interaction datasets (BioGRID) [191], the database of interacting proteins 

(DIP) [192], the human protein reference database (HPRD) [193], the  

MIntAct [194], MIPS [195] and its version for yeast, MPact [196]. Access the 

information from a single database, most of the times, is an easy task but 

when it comes to cross information coming from different sources, each 

with its own platform and nomenclature, the problem is not trivial. Although 

the biological entities may be the same, their identifiers may differ, the level 

of information may be different, thus obtaining a general view among all 

levels of knowledge of PPIs at a glance has become a challenging task. 

Among the computational tools that tried to solve this problem: ONDEX 

[197],PIANA [198] and its newer version BIANA [199]. By the way the 

incompleteness of interaction data (that lead to false negative predictions), 

the presence of noisy interactions (that lead to false positive predictions) and 
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the fact that the majority of the mentioned methods are not able to capture 

time and location dependent aspects of the cellular events, the networks 

created using available interaction data serve only as a hint of the real, 

dynamic and context dependent PPI networks. 

 

1.3.2.4 PPI prediction and non-interacting pairs 

Although not directly involved in the methods used in this thesis, a 

fundamental aspect, when developing a prediction method, is to have “gold 

standard” both for positives and negatives [200]. In the field of PPI 

prediction it is not a trivial to have the negative set. For example proteins in 

different location are unlikely to interact [201] but this adds a level of 

information about cellular localization, which makes the task of predicting 

PPI easier. Since it has been estimated that for each 1000 protein pairs only 1 

of them actually interacts [202]–[204] using random pairs [200], [205]–[207] 

may be an option but the risk of including false positives interactions when 

studying certain protein families can be unacceptable or may increase when 

adding constrains to the randomness (for example using only proteins with 

similar functional annotation).  The ideal would be to have a set of 

experimentally validated set of known non-interacting protein pairs. PCA 

methods have the potential to give this kind of information but only recently 

it has been exploited [208]. It’s worth mentioning also the Negatome 

database [209]. It also contains information on negative PPI. It is partially 

derived from literature and partially from structural analysis of protein 

complexes but it is experimental biased and centred in its scale limitation. 
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1.3.3 Gene regulatory networks 

 

Being the product of gene expression and, at the same time, playing a 

fundamental role in controlling it, proteins significantly contribute to linking 

genes to each other and forming what is called gene regulatory network 

(GRN). By definition a GRN represents highly interconnected processes in a 

cell that control how genes are expressed in time. The usual representation 

involves pairs of proteins/genes in which the first element regulates the 

activity or abundance of the second. Thus, GRN are used to link genes and 

their products. In this introduction we already mentioned the mechanisms 

controlling gene expression and the crucial role of TFs in this process. There 

are TFs in the cytoplasm that, after their activation, translocate to the 

nucleus and promote the transcription of their regulated genes. In order to 

accomplish their mission, these TFs have to interact with many other 

proteins, like membrane receptors, kinases and adaptor proteins. As a clear 

example of TFs interacting with other proteins we find dimers, the process 

of dimerization, in fact, increases the specificity and affinity of TFs for DNA 

and allows them to interact with different proteins, for example in some 

cases, different combinations of monomers can transform the dimer from 

one that activates gene transcription to one that represses it. 

Finally, In eukaryotes, it is known that transcription factors can act 

cooperatively forming “enhancesomes”, which are assemblies of 

transcription factors stabilised by protein-protein as well as protein-DNA 

interactions (for example the enhanceosome that is formed in the human 

interferon beta gene [210]). Most signalling molecules are products of gene 

expression and are part of multiple regulatory circuits, thus GRNs involves a 

huge set of systems that cover many different aspects of the very complex 

relationship between genes and their products. From these considerations 

GRNs can be thought of as a kind of qualitative framework, on which 
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quantitative data can further be superimposed for modelling and making 

simulations.  

 

1.3.3.1 Databases on gene regulation 

In the section Databases of regulatory elements we introduced a list of 

databases in which information on TFBSs and PWMs (or PFMs) is stored. 

Regulatory interactions can thus be retrieved from such databases, for 

example from JASPAR [84], [91] or the commercially available TRANSFAC 

[211]. Regulatory interactions are contained also in ORegAnno [212] and  

PAZAR [213]. Using tools like FIMO [214], for searching into a nucleotide 

or protein sequence database for each of the motifs provided,  

TReg comparator [215], which compares PWMs or binding sequences 

against  a user provided collection of PWMs, or Tomtom [216], that 

compares one or more nucleotide motifs against a database of known motifs, 

it is possible to link TFs to the each of the genes regulated. 

 

1.3.3.2 Gene regulatory network reconstruction 

Several approaches use high-throughput techniques, like microarrays, to 

reconstruct networks of interactions. The very basic form for this procedure 

is to use clustering. Although this is mainly applied to infer molecular 

signatures, it can also be used to link elements that, for example, pass a fixed 

correlation threshold [217]. One of the most famous tools for reverse 

engineering from microarray data is based on mutual information [218] and 

its name is ARACNE [219]. The algorithm by Zhand and Horvath, (2005) 

[220], uses pairwise Pearson correlations to estimate a parameter for 

obtaining a scale free network. Then average linkage hierarchical clustering 

and a dissimilarity measure are used with the aim to identify modules. 

Gaussian graphical models (GGMs) [221], and partial correlations are two 

approaches that, in contrast to previous ones, are able to distinguish between 
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directed and undirected correlations. A covariance matrix contains all the 

pairwise covariance for each pair of nodes in the network and, on the 

diagonal are the variances. The inverse of the covariance matrix, aka 

concentration matrix, shows zeros where the nodes in the network are 

conditionally independent, so disconnected. In a microarray, being the 

number of genes much higher then the number of sample, the sample 

covariance matrix cannot be inverted and partial correlations cannot be 

computed. To solve this some statistical tricks have been thought:  a 

Bayesian approach with sparsity inducing prior [222], graphical lasso [223] 

and limited-order partial correlations [224]–[226]. The qpgraph package in 

Bioconductor, contains an ad hoc method for microarray data reverse 

engineering. It estimates the network topology by calculating the non-

rejection rate (NRR), which is based on partial correlations [225]. This 

represents a good estimate of the weight of a direct pairwise interaction 

between two genes. 

Usually, when trying to model the signalling and regulatory interaction 

using high-throughput data, knockout (KO) experiments are performed in 

order to have a set of starting (or end) points. The objective of the 

computational methods becomes to link start and end points and to integrate 

the paths identified in different KO experiments.  In order to do so the 

physical network models (PNM) technique [227] builds a PPI and protein-

DNA interaction network in which it tries to connect with direct paths 

deleted genes and their targets. Knocked out genes are the starting point also 

for SPINE [228] that it focused on the positive or negative effect of edges or 

proteins rather then orienting the PPIs. Another method that tries to explain 

KO is the one developed by Peleg et al., (2010) [229] in which the output is 

not a list of paths but a functional network. ResponseNet [230] combines 

genetic screens with gene expression data to return a condition specific 

integrated signalling and regulatory network. 
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1.3.3.3 Integration of PPI networks with gene regulatory 
networks 

After these considerations, the interactions between proteins appear 

among the most important determinants for the translation of the genotype 

into the phenotype. This step is not straightforward and to understand it 

better one of the key aspects is to study the system in its entirety. PPI are 

essential to regulate gene expression, not only for the PIC formation but also 

for the transduction of external signals into the expression of one gene or 

another. All the mentioned approaches for reconstructing GRN, and others 

[231]–[233], are not capable of modelling redundant and parallel pathways 

independently of the type of input data. In addition many genes are essential 

(e.g.~20%of yeast genes) [234] but, although they are known to play crucial 

roles, cannot be used as starting points. Knockout experiments are done one 

gene at a time and this only allows a static picture of the situation and last, 

but not least, regulatory networks use backup mechanisms [235]–[237] and 

the majority of the methods that reconstruct the dynamic regulatory 

networks, reviewed in Gitter et al., (2010) [238], do not explain the 

mechanisms of activation of the TFs involved. For all these reasons, in our 

study, we decided to use the signalling dynamic regulatory events miner 

(SDREM) [239] which requires a small set of starting points, upstream 

proteins that are known to initiate the response to the perturbation, and gene 

expression data to identify the TFs that control the differentially expressed 

genes. Sensory proteins are linked to the active TFs, identified with the 

dynamic events regulatory miner (DREM) [240] using a network orientation 

algorithm.  
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1.4 Networks and diseases 
 

In a simplistic view anomalies in gene activity may lead to a pathological 

condition. Although gene expression signatures have been successfully 

implied to classify subtypes of cancer [31], the underlying pathway changes, 

are far from being entirely understood. What is known at the network level, 

for some diseases like type 2 diabetes, glioblastoma or coronary artery 

disease, is that small changes in many genes cause the disease phenotype and 

not very heavy changes in just a few genes [241]. This reinforces the idea that 

complex disease phenotypes unlikely result from the behaviour of a single 

disease-gene.  

Inclusion and deletion of nodes (can be genes or proteins) are frequent 

events during evolution, with the duplication of genes for example, or in 

alternative splicing events. Although these events occur, it has been proved 

that the system (many model organisms have been tested) is perfectly 

capable of holding them and this, from a topological point of view, is thanks 

to its scale free organization [242], [243]. Hub proteins are encoded by 

essential genes and expressed in many different tissues [152], [244]–[246]; 

their mutation or modification may have severe outcomes, including death. 

Consequently non-hub proteins mutation just creates “variation” [133].  

Disease driving genes tend to cluster together in the periphery of a 

complex network and to create a module, a sub network [133], [134], [152], 

[247]. The disease driving modules principle consists in the idea that when 

one or more members of the module are dysfunctional it may arise a disease 

phenotype [142], [248]. This is based on PPI and genome-wide network 

studies in which it has been demonstrated that a single-gene knock-out does 

not affect the phenotype, while multi-gene knock-out may lead to “in silico” 

death or sickness [249]. This disease modularity implies that, after the 

identification of disease pathways, with the aim to highlight disease-driving 
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genes and identify putative drug targets, the entire disease module should be 

target of the treatment, paying attention not to affect essential genes because 

of the severe possible side effects. Gene signatures in different diseases or 

biochemical experiments are available from MSigDB and these can be used 

to find disease modules or to figure out if a certain set of genes is involved 

or not in a disease-phenotype [250]. When no gene set is available for the 

studied disease or new disease modules want to be discovered, network 

derived pathways are fundamental. In Figure 1-7 are summarized basic 

notions related to disease-genes in the context of PPI networks. 

Figure 1-7 Disease-genes attributes in PPI networks. A) Scale-free PPI 
network is characterized by the presence of peripheral nodes, hubs (nodes with a 
high degree), hubs-bottleneck (nodes with a high degree and high betweeness 
centrality), non-hubs-bottlenecks (node with low degree but high betweenes 
centrality). B) A protein mutation may result in two different effects in the 
network: node removal, typical of truncating mutation, or edge rewiring, aka 
edgetic perturbations, typical of in-frame mutations. C) Nodes with common 
biological processes identify functional modules in a network. In the same way 
disease modules can be identified by a group of nodes involved in the same 
disease. The resulting groups may have some overlapping. D) The association 
between a drug and a potential adverse effect can be studied by examining the 
shortest path from the drug-target to the node associated with the adverse effect. 
Figure taken from [251]. 
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1.4.1 Disease-gene prioritization and “guilt-by-
association” principle  

 

The results of experimental studies on genetic variants, usually, highlight 

huge genomic regions with thousands of genes associated with a certain 

disease. Experimentally filtering this large set of candidates to obtain only the 

causal disease-gene(s) can be very expensive, thus computational methods, 

reviewed in [252]–[254], came into play.  Evidences used to link genes with 

each other, and with a disease phenotype, are described below. 

Table 1-3 Available data repositories for genetic variants and disease-gene 
associations (reproduced from [Capriotti et al., 2012]).  

Database URL 

Short variations 

1000 Genomes www.1000genomes.org  

dbSNP www.ncbi.nlm.nih.gov/projects/SNP  

HapMap www.hapmap.org  

Structural variations 

dbVar www.ncbi.nlm.nih.gov/dbvar  

DGV  projects.tcag.ca/variation 

DGVa www.ebi.ac.uk/dgva  

General variants associated with phenotypes 

HGMD www.hgmd.org  

OMIM www.omim.org  

SwissVar swissvar.expasy.org  

GWAS and other association studies 

dbGaP www.ncbi.nlm.nih.gov/gap  

EGA www.ebi.ac.uk/ega  

GAD geneticassociationdb.nih.gov  
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NHGRI GWAS 
Catalog 

www.genome.gov/gwastudies  

Cancer genes and variants 

ICGC www.icgc.org  

COSMIC sanger.ac.uk/genetics/CGP/cosmic  

Cancer Gene 
Census 

sanger.ac.uk/genetics/CGP/Census  

Cancer Gene Index ncicb.nci.nih.gov/NCICB/projects/cgdcp  

TCGA cancergenome.nih.gov  

Pharmacogenomic genes and variants 

DrugBank drugbank.ca  

PharmGKB www.pharmgkb.org  

CTD ctdbase.org  

KEGG www.genome.jp/kegg  

Crowdsourced genes and variants 

Gene Wiki en.wikipedia.org/wiki/Portal:Gene\_Wiki  

SNPedia www.snpedia.com  

WikiGenes www.wikigenes.org  

Computationally-derived / meta databases 

GeneCards www.genecards.org  

PhenoGO www.phenogo.org  

PhenomicDB www.phenomicdb.de  

DisGeNet www.disgenet.org 

 

- Literature Text-mining may be of help in relate genes with 

diseases, for example by checking co-ocurrence of relevant 

terms.  

- Sequence / structure Genes with similar functions tend to be 

involved in the same disease phenotype. Functional similarity 

derives from homology that, in turn, depends on structural 

similarity and common sequence. Thus components derived 

from the sequence and structure are used to distinguish between 
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disease-genes and not (for example protein subcellular location,  

length of the coding region, sequence motifs, chromosomal 

location, exon number, sequence conservation, structural 

domains).  

- Mutations SNPs functional annotation tools, both using 

predictions or existing knowledge, may contribute in link genes 

and diseases. Reviewed in [252], [254], [255], 

- Ontologies Phenotypic and functional similarity, fundamental 

for disease-genes identification, may also be represented by the 

same ontological annotation (e.g., from GO [256]). 

- Pathway involvement Many biological pathways are affected by 

disease-genes. If genes belong to the same path it means that, 

probably, they share some similar function. Thus if a set of genes 

belongs to a pathway known to be implicated in a disease, they 

are more likely disease-related genes. Gene regulatory networks 

(with functional links like gene co-expression) and PPI networks 

are extensively used [126], together with annotated paths 

databases (for example MSigDB [257], KEGG [258], GenMAPP 

[259], Reactome [260], BioCyc [261]). 

- Orthology The information derived from orthology studies can 

help in the disease-genes identification in human. 

Disease-gene prioritization methods make extensive use of the “guilt-by-

association” principle. This consists in considering genes linked to disease-

genes more likely to be implicated in a disease. It becomes clear thus the 

relevance for this process of the evidences discussed above. Due to the 

advent of high-throughput technologies, the amount of information available 

on pathways is rapidly increasing, for example on gene co-expression or 

PPIs, thus the prioritization approaches that use paths involvement as 

evidence are experiencing a significant growth.  
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1.4.1.1 Disease-gene prioritization based on PPI networks 

In order to distinguish between gene prioritization methods based on 

pathways one has to focus on the definition of each method of proximity 

between gene products in the PPI network. At an early stage those methods 

were trying to identify new disease-candidate genes using the direct 

neighbourhood idea: checking if the protein encoded by the gene of interest 

interacts with the product of genes already known to be associated with the 

disease (seeds) [262]–[267]. The direct neighbourhood approach can be 

extended to indirect neighbourhood, thus considering nodes neighbours of 

neighbours in the network and this is achieved using clustering methods 

[268], [269]. The newcomers in the field are global topology based 

approaches that try to take full advantage of the network topology. The 

shortest distance with respect to seeds has been used in order to rank the 

remaining nodes [266], [270]–[273], kernel based diffusion over network 

edges has also been applied, so to reduce the importance of further nodes 

[274]–[276], or random walks, that assign to each node a probability of 

ending up in the node during a random walk through the edges of the 

network [271], [272], [277], [278]. These last were demonstrated to 

outperform the local topology based methods [269], [271], [278]. Random 

networks have been proposed to normalize the scores of the prioritization 

algorithms in order to correct the bias towards highly connected known 

disease nodes in PPI networks [279]. 

To overcome the problem of data incompleteness (leading to an increase 

in the false negative results) and noisiness (leading to more false positives) 

another approach consists in data integration, thus in the addition of gene 

expression data or functional similarity to increase the quality of the network 

upon which genes are prioritized [86], [267], [270], [280], [281].  

 

 



Introduction 

53 

Table 1-4 Available disease-gene prioritization tools (adapted and updated 
from [254] ).  

Method URL Description* 

aGeneApart www.esat.kuleuven.be/ageneapart L 

BITOLA ibmi.mf.uni-lj.si/Bitola L 

CAESAR polaris.med.unc.edu/projects/Caesar ESPNOML 

CANDID dsgweb.wustl.edu/hutz/candid.html ESPNL 

DADA compbio.case.edu/dada PL 

DomainRBF bioinfo.au.tsinghua.edu.cn/domainRBF/gene SOML 

ENDEAVOR www.esat.kuleuven.be/endeavour ESPNOL 

G2D www.ogic.ca/projects/g2d\_2 ESPOL 

GeneDistiller www.genedistiller.org ESPNOL 

GeneMANIA www.genemania.org ESPNOL 

GeneProspector www.hugenavigator.net SNML 

GeneSeeker www.cmbi.kun.nl/GeneSeeker NL 

GeneWanderer compbio.charite.de/genewanderer/GeneWanderer PNML 

Genie cbdm.mdc-berlin.de/tools/genie ESPNL 

Gentrepid www.gentrepid.org ESPL 

GUILD/ 

GUILDify 

http://sbi.imim.es/web/GUILDify.php ESPNOL 

MedSim www.funsimmat.de SPNOL 

MimMiner www.cmbi.ru.nl/MimMiner SL 

PGMapper www.genediscovery.org/pgmapper ESPL 

PhenoPred www.phenopred.org SPO 

PINTA www.esat.kuleuven.be/pinta EP 

PRINCE www.cs.tau.ac.il/˜bnet/software/PrincePlugin EP 

PolySearch wishart.biology.ualberta.ca/polysearch L 

PosMed omicspace.riken.jp/PosMed L 

PROSPECTR www.genetics.med.ed.ac.uk/prospectr SNML 

SNPs3D www.snps3d.org SPNOML 

SUSPECTS www.genetics.med.ed.ac.uk/suspects ESPNML 

ToppGene toppgene.cchmc.org ESPNOL 

VAAST www.yandell-lab.org/software/vaast.html EM 

*(E) Experimental observation (S) Sequence, structure, tissue specificity (P) 
Pathway involvement (N) Non-human data (O) Ontologies (M) Mutations 
(L) Literature 
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For the purposes of this thesis the genes underlying inheritance linked 

disorders (GUILD) network prioritization framework has been used [282]. It 

is freely available and contains four network-based gene prioritization 

algorithms: NetShort, NetZcore, NetScore and NetCombo. The approach 

used in GUILD differs from the one of other network prioritization 

algorithm in the way the information is spread through the network 

topology. NetShort “shortens” the path length between two nodes if this 

contains seeds. NetScore takes into account that more than one shortest 

path may exist from one node to another. NetZcore is capable, by randomly 

substitute nodes but maintaining the original network configuration, to 

determine the biological relevance of the neighborhood of a node. Finally, 

the consensus method we choose for our analysis, the one that better 

performs with respect to existing prioritization algorithms because it 

combines the previously described ones: NetCombo. 

1.4.2 Host-pathogen PPIs 

Bacteria and viruses are external pathogens that may cause infectious 

diseases. In the context of this thesis we are interested, at the molecular level, 

in the interaction between the pathogen and its host(s) and how this occurs 

in terms of PPIs. Pathogen proteins physically bind with host proteins to 

manipulate its biological processes and being able to thrive, grow and 

multiply, without host’s immune system repressive intervention.  

1.4.2.1 Experimental studies  

In order to understand these interactions, experimental techniques can be 

adopted (as it has been the case for Herpesvirus and human cells [283]). We 

can split these experimental techniques in two groups: 

- Small-scale methods. Biochemical, biophysical and genetic 

experiments (co-immunoprecipitation, far-western blot analysis, 

co-crystallization, pull down assays) that involve a small set of 
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proteins. These methods tend to be very time consuming but 

their results are very reliable. 

- Large-scale methods. High-throughput methods (yeast two-

hybrid, affinity purification, mass spectrometry, microarrays 

among others) to scan the entire proteomes of the studied 

organisms. Usually those experiments are relatively rapid in 

relation to the amount of data they produce, their cost is 

becoming reasonable but they tend to produce a much higher 

false positives rate. 

1.4.2.2 Interactions predictions 

Computational methods complement the wet-lab based ones. They take 

advantage of previous experimental results to make new predictions that, in 

turn, will need validation to weed out false positives and increase the set of 

real interacting proteins between the pathogen and the host. Computational 

methods in the field use supervised machine learning algorithms to train the 

data with many other features (for example protein sequences from Uniprot 

[284], protein families from Pfam [285], protein structure and domains from 

PDB[286], gene ontologies from the GO database [256], gene expression 

from GEO [287], interactions between protein families from iPfam [288], 

protein domain interactions from 3DID[289] among others). Once the 

training phase is over the problem becomes a classification problem in two 

categories: “interacting” and “non-interacting”. Some problems with the 

machine learning may arise because of the unbalanced set of “interacting”. 

These are just a small proportion of the total number of proteins. It is very 

recent a catalogue of non-interacting domains but we are still far from the 

“non interacting proteins database”. For various reasons some of the 

properties mentioned before may not be available for some proteins and the 

available data are stored in many databases but only a few pathogens have 

been intensively studied (PIG [290] for example only contains data for 12 
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pathogens). All these aspects may heavily influence a machine learning 

approach intended to classify pairs of proteins in two categories. 

Another family of computation tools are based on the idea that homolog 

proteins, preserving their functional behaviour, will also maintain their ability 

to interact thus will share interactions [169], [291]. The so called interlog 

based tools include, among others, InterlogFinder [292], PPISearch [293] and 

a recently developed perl module [294] but for the analysis contained in this 

thesis we used the BIANA interlog prediction server (BIPS) [295]. As the 

name suggests, BIPS is based on the integration framework BIANA [199] 

allowing the usage of a very large dataset of PPIs (derived from the 

integration of 10 databases: DIP [192], HPRD [193], IntAct [296], MINT 

[297], MPact [196], PHI_base [298], PIG [290], BioGRID [191], BIND [299]  

and VirusMINT [300]) and a fine tuning regarding the prediction parameters. 

1.4.2.3 Host-pathogen PPIs databases 

Specific manually curated databases for host-pathogen PPIs are PHI-base 

[298], PIG [290], HPIDB [301] and PHISTO[302]; they collect interactions 

from low and high-throughput sources.  

 

1.4.3 The drug-target space 

Networks can be used to represent interactions between drugs and the 

genes encoding their modulated proteins, aka targets. Doing so, researchers 

found out the so called drug “promiscuity”: this modulation does not only 

occur on the proteins specifically targeted by the drug, but also to a others 

[303]. This discovery is crucial for the so called “drug repositioning”, that 

consists in finding new therapeutic indications to existing drugs. Sometimes 

multi-targeting is intrinsic for the therapeutic efficacy [304] but the 

expansion of the drug-target space derived from the promiscuity discovery 

led to a deepening in its study. Among these studies the ones on side effects, 
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in which drugs with similar unexpected side effects lead to group together 

their target genes and these, in turn, are used to identify new targets, thus 

new therapeutic indications [305]. From this approach it has been possible 

the creation of a database containing all repositioned drugs due to their side 

effects, it is called SIDER [306]. Another validated approach [304], based on 

chemical properties, involves a previous classification of ligands according to 

their chemical similarity, then, to increase one drug target space, an algorithm 

similar to BLAST [307] is applied in order to find additional drug targets 

with similar affinities to its ligands [304], [308].  The high interconnection 

between drugs and their targets is evident but there is still a lot to explore in 

the area.   

1.4.3.1 Integration with gene signature 

The basic approach to find drug targets is scanning collections of 

approved compounds but thanks to the recent explosion of high-throughput 

technologies, gene expression profiling has fully entered in the drug finding 

and repositioning processes. Its ability to find the molecular changes that 

occur during disease progression [309] allowed a better comprehension of 

the relations between physiological profiles and gene expression signature of 

test animals [310]. Given that genomic profiles are capable of identifying all 

biological states [309], [311], [312], gene expression can describe disease 

phenotypes [313] and it can be used to measure physical reaction after 

exposure to a compound, thus also for inferring drug effectiveness.  A 

collection of gene signatures in response to different compounds is 

represented by the connectivity map database (cmap) [314]. Thanks to this 

database the user can compare its own disease signature with the ones in the 

database and find a potentially effective compound. Other databases that 

contain genomic profiles obtained with drug perturbation studies are the 

gene expression omnibus (GEO) [287], and, specific for cancer, the cancer 

cell line encyclopedia [315], a collection of cancer data that includes gene 

expressions, sequencing data and chromosomal copy number from 947 
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human cancer cell lines. Good examples of usage of these databases for 

finding new drug disease association are the study of Sirota et al., (2011) [316] 

and Dudley et al., (2011) [317]. 

1.4.3.2 Drug-Drug interactions 

Unpredictable clinical effects arise when drugs interact between 

themselves. This happens when the pharmacologic effect of a given drug is 

altered by the action of another drug and this can be the cause of severe (or 

not) adverse drug reactions. Interaction between drugs can be divided into 

three categories: 

- Pharmaceutical. The cause is a physical or chemical 

incompatibility. 

- Pharmacokinetic. The cause is the interference of one drug in 

the absorption, distribution, metabolism or excretion of another. 

The target sites will receive a different amount from the 

planned. 

- Pharmacodynamics. This type of interaction occurs if drugs 

are antagonistic, additive, synergistic or with an indirect 

pharmacologic effect one on the other. 

Although the majority of studies have been focused on pharmacokinetic, 

a large number of interactions can be explained only with 

pharmacodynamics. To address the problem, computational methods took 

two main approaches:  

- Similarity based. Measures drug information and predicts 

interactions. The study of Gottileb et al., (2012) [318] is an 

example. Many of the methods mentioned to identify new drug 

targets can be applied also to study drug interactions depending 

on the type of data available. 

- Knowledge based. Scientific literature is used to predict 

the type of interaction, together with information available on 
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the FDA adverse event reporting system and electronic medical 

record database. 

The biggest limitation of these computational methods is that for novel 

drugs no information is available and the fact that considering the action of a 

drug and its effects in the context of a complex biological network is quite 

unusual. 
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1.5 Thesis motivation 
As we have shown during this introduction, every organism carries an 

impressive amount of functions as much in its normal state as when this is 

disrupted. Complex biological processes can be represented through 

networks, thus analysed with methods derived from maths, statistics and 

physics. Biology has become a much more interdisciplinary field and the 

advent of high-throughput technologies also accelerated this process and 

computer science came into the field. This lead to a massive development of 

in-silico technologies trying to study, understand and replicate natural 

processes. The interpenetration between in-vivo and in-silico is essential: to 

create and validate hypothesis in a two-way connection. This thesis contains 

this essential two-way link between the two worlds. Using available 

experimental and computational technologies we addressed the problem of 

understanding the modification in the normal signalling path of the cell 

derived from some external agent. Starting from the effect at the gene 

regulation level, measured with high-throughput techniques like microarrays, 

using specific clustering algorithms we derived sets of transcription factors 

that may regulate the behaviour of the clustered genes. In this sense, using 

gene regulatory links, we tried to answer the question: “WHO is responsible 

for the observed gene expression response?” We integrated this approach 

with the analysis of the paths, in the protein-protein interaction network, that 

also link the initial disruptive cause to the final response, with the aim to 

answer the question: “HOW does the organism react to a certain stimulus? 

Which paths are modulated?” 

 



 

 2 OBJECTIVES
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This thesis aims to fulfil the following objectives: 

• Identify, with currently available computational tools, biological 

pathways and cell networks that underlie a specific phenotype, e.g. 

infection process. 

• Identify the transcription factors, or main regulators (MRs), from a 

set of genes with similar behaviour (gene signatures) by integrating 

DISPOM’s [82] predictions, i.e.  putative binding motifs, and the 

information on specific transcription factors collected for example 

from JASPAR [84] or CIS-BP[94]. The link between the predicted 

MRs and the regulated genes, would lead to the creation of a gene 

regulatory network (GRN). 

• Combine predicted GRN and protein-protein interactions (PIN) to 

derive a combined network: GRN + PIN underlying the given 

phenotype. 

• Apply a message-passing algorithm from the predicted MRs, using 

the derived GRN+PIN network, to pinpoint the regulatory 

elements of the genetic signature and the molecular basis of the 

given phenotype.  

• Apply this strategy to two specific systems describing the infection 

process of Salmonella spp. in two different hosts:  Arabidopsis thaliana 

and Homo sapiens. Implied in this objective is the use of interology 

relationships to infer cross-species interaction networks. 

• Demonstrate the potential of the approach in the field of pharmaco-

dynamic drug-drug interactions. To achieve this objective drugs-

specific genetic signatures will be extracted from the cmap database 

[314] and common MRs identified. Drug targets from Drug Bank 

[319] will be used as emitters for a message-passing algorithm and 

the scores of the MRs will be compared in the cases of mono-drug 

and drug combination therapies.  
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In this chapter I introduce a method for unveiling main regulators of sets 

of genes with similar behaviour during Salmonella spp. infection in Arabidopsis 

thaliana. I combined this analysis with the application of a message-passing 

algorithm on a predicted host-pathogen protein-protein interaction network 

and with the use of a specific software to reconstruct the dynamic and causal 

response pathways related to the invasion. The problem is tackled from both 

sides: predictions of new putative Salmonella spp. effectors are made explicit 

and, on the other hand, Arabidopsis thaliana, key regulators are proposed and 

subsequently experimentally validated.  

 

 

This article is in the process of being submitted.  

 

Supplementary Tables S1, S2, S3 and S4 are not included in this book but are 

available on the CD copy of this thesis. 
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3.1.1 Abstract 

Salmonellae are gram-negative bacterial pathogens capable of infecting a 

wide range of organisms, including Arabidopsis among others. To ensure 

survival and propagation, the bacteria secretes effector proteins into the 

host. However, the roles of some of them and the mechanisms activated 

on Arabidopsis defence-response still remain unknown.  

In this study, we took a system-wide approach to fully grasp the 

mechanisms by which Arabidopsis responds to Salmonella infection. We 

integrated the analysis of high-throughput data together with 

computationally predicted protein-protein interactions to identify the key 

genes/proteins involved in the response to infection. Based on time-series 

microarray data of Arabidopsis infected samples, we clustered genes with 

similar expression profiles and predicted potential transcription factors 

that could regulate each cluster. We further analysed putative signalling 

pathways pointing on the activation of the predicted regulators and 

combined the approach into a rational selection of candidates to trigger 

the Arabidopsis response under Salmonella infection.  

As a result of this analysis, WRKY18, WRKY40 and WRKY60 were 

selected and knocked-out to validate their role as main-regulators. The 

predicted gene-regulatory network model was tested with a designed qPCR 

experiment of a selected group of genes. The effect was in agreement with 

the model, confirming the role of WRKY18, WRKY40 and WRKY60 in 

the defense–response of Arabidopsis and justifying the signalling networks 

derived from the model. 
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3.1.2 Author summary 

Salmonella typhimurium is the causative agent of various human and 

animal diseases. According to the World Health Organization, 

salmonellosis is the most frequent foodborne disease with around 1,5 

billion infections worldwide yearly. Although hygiene conditions have 

considerably improved, the number of Salmonella infections has increased 

over the last decade due to antimicrobial resistance, as well as the ability of 

Salmonella to hide inside host cells.  To address this global health 

problem, we present the results of a novel multidisciplinary approach in 

which we combined biological data with computational predictions. Our 

results, which have been experimentally validated, suggested three proteins 

as key factors during Arabidopsis early response to Salmonella infection.  

The identification of key genes/proteins involved in the process of 

infection is a key step towards a hypothetical scenario in which we will be 

able to fully grasp the mechanisms of host-pathogen interaction, allowing 

changing or modulating the infection virulence. 
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3.1.3 Introduction 

Salmonella includes several members of the Enterobacteriaceae family that 

can be discriminated into two main species: S. enterica and S. bongori. The 

first one, in turn, has been divided in more than 2500 serovars depending 

on different biochemical characteristics, as for example the composition of 

their somatic and flagellar antigens.  

Thanks to these characteristics, the mentioned pathogens can invade 

both cold and warm-blooded hosts. Salmonellosis, by definition, is the 

infectious disease of humans and animals caused by organisms of the 

before specified two species of Salmonella [320]. According to the World 

Health Organization S.enterica, subs. enterica and serovar Typhimurium, is 

the major human pathogenic serovar. Only in the United States it is 

responsible for almost 1 million infections and more than 350 deaths every 

year [321].  

Thus Salmonella enterica subspecies enterica serovar Typhimurium, often 

written as Salmonella Typhimurium is capable of finding hosts not only in 

the Animalia but also in the Plantae kingdom, including Arabidopsis, Medicago 

sativa (alfalfa), Solanum lycopersicum (tomato plant) among other species with 

green leafs [322]–[331]. S. Typhimurium uses natural openings and sores 

to assault plant tissues [324]–[326] where, at different levels, it can endure 

and reproduce [322]–[324], [328]. The immune system of plants is able to 

recognize pathogenic or beneficial invasions and reacts accordingly. The 

inoculation of S. enterica provokes the activation of many defence 

mechanisms, including stomatal closure, ROS production, activation of 

mitogen-activated protein kinases (MAPKs) and defence gene expression 

[324], [330], [332], [333]. One of the plant strategies to control endophytic 

colonization [323]–[325], [328], [331] involves a PAMP-triggered system 

that consists in the detection of pathogen (or microbe)-associated 

molecular patterns (PAMPs) by membrane-resident receptor kinases [334]. 
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On the other hand, one of the known mechanisms of infection employed 

by S. enterica consists in the use of a type III secretion system-1 (T3SS-1) 

expressed at the extracellular stage and a T3SS-2 that is induced after 

internalization into animal cells. Both systems are encoded by two, so 

called, Salmonella pathogenicity islands (SPI-1 and SPI-2 respectively) and 

secrete a set of effectors proteins that are related to the bacterial 

pathogenicity [335]. Studies on plant invasion using S. Typhimurium 

mutated in both secretion systems have highlighted an enhancement of the 

host immune reaction, with a consequent reduction of the bacterial 

proliferation, which, in turn, leads to the idea that T3SS effectors play a 

key role in Salmonella invasion of plants [330], [332]. In this regard, the 

Salmonella gene prgH, which is known to encode a constituent of the 

T3SS-1 needle complex, is expressed only under determined culture 

conditions.  This observation suggests that prgH is activated by factors 

either present or secreted on the Arabidopsis surface. Interestingly a S. 

enterica type III secretion system (T3SS) prgH- mutant, that would cause 

deficiencies in animal cell invasion [336], [337], induced stronger defence 

gene expression than wild type (WT) bacteria in Arabidopsis, which 

suggests that T3SS effectors are involved in host defence suppression 

[338].  

Although much is known about the infection strategies of the 

pathogen, there are still open questions regarding the specific functions of 

the known effectors and the variations in virulence related to the different 

hosts. We were interested in understanding the mechanisms of host-

pathogen interaction thus in studying the dynamic of the infection process 

and identifying which genes are involved during its different stages. The 

potential of a complete understanding of such mechanisms will lead to 

address existing or novel therapeutic strategies to control the infection. 
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For this purpose the analysis of time series expression data appeared a 

straightforward tool but, as pointed out in Ernst et al., 2005 [125], 

although there have been time series experiments with as many as 80 time 

points [339], almost all time series are much shorter. Specifically in the 

case of Salmonella, infection occurs quickly and obtaining microarray data 

for many time points at short intervals is technically challenging and 

expensive.    

Furthermore, differential expression between infected cells or tissues 

and non-treated controls identifies the main transcriptional effects of an 

infection. However, an infection process may not necessarily result in a 

significant increase or decrease of the targets' mRNA level [340]. Also, 

there are cases in which genes with related functions show very different 

expression profiles or even exceptional cases of inverse correlation [341]. 

In this work we have studied the systemic actions of plant taken upon 

invasion by including Protein- Protein Interaction (PPI) networks in our 

analysis. Early studies [342], [343] on possible relations among mRNA and 

protein expression level pinpointed, to some degree, a correlation between 

expression levels and protein abundances [344] and also the association 

between PPI and gene expression [345], [346]. Since then, many gene 

prioritization algorithms (Reviewed in [347], [348] and benchmarked in 

[349]) , use seeds, genes known to be related to a certain disease 

/condition/phenotype derived from the literature, GWAS studies or other 

sources, for a functional association between genes. In other words 

disease-genes are clustered o close in the network, thus being “similar” 

genes. The concept of gene similarity may include, among others, text 

mining, pathway membership, functional annotations, protein properties, 

sequence, co-expression and closeness in protein–protein interaction (PPI) 

networks [350]. 

In this work, we used the wild type Salmonellae strain 14028s (WT) and 

a prgH- mutant (that we will call prgH-). We combined short time 
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microarray analysis of Arabidopsis infected with Salmonella WT or prgH- 

mutant with the study of predicted Protein-Protein Interaction (PPIs) 

networks. We used predictions of interactions based on interologs (when 

there are known interactions of similar proteins) by including interactions 

obtained by Tandem Affinity Purification (TAP) methods. We analysed 

the biological pathways involved in Salmonella infection of Arabidopsis 

using Shortest Paths (SPs) analysis, a gene-prioritization method such as 

GUILD [282], and a specific method to unveil signalling pathways, 

SDREM [32]. This last is a computational method that integrates 

condition specific time-series expression data with PPI and Protein-DNA 

interactions. In addition, based on the idea that genes with similar 

behaviour can have one, or more, common regulator(s), we introduced 

also a protocol of prediction of Main Regulators (MRs) that integrates 

ChIP data. A graphical representation of our set of hypothesis is shown in 

Figure 1 and detailed in the results section. 

Finally, we confirmed our findings with two experiments: a microarray 

on samples harvested 30 minutes after Salmonella inoculation and a qPCR 

experiment performed with a mutant of Arabidopsis lacking (by knockout) 

the most relevant MRs predicted by our approach. 

 

3.1.4 Materials and methods 

3.1.4.1 Microarray data 

We used microarray data on the response of Arabidopsis to Salmonella 

infection[338], (both 14028s and prgH- mutant). The data comprise two 

independent hybridizations, consequence of two biological repetitions, on 

CATMA arrays [95], [351], [352], of samples harvested at 2, 4, 6, 12 and 24 

hours after inoculation of Salmonella (WT or prgH-). The data can be 
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accessed at CATdb (http://urgv.evry.inra.fr/CATdb/, Project: RA11-

01_prgH-) and at Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/, accession no. GSE38828). For the 

sake of comparison, we further applied the invariant normalization 

method[353] contained in the  DNA-Chip Analyzer software [103], [354] 

using as baseline the sample with median overall intensity. The resulting 

box-plots and MAXY-plots confirmed that the normalization step 

smoothed any differences among the different samples (see Supplementary 

Information Figure S1). 

 

3.1.4.2 Clustering of genes with similar profiles 

We clustered Arabidopsis genes according to the similarity of their time 

expression profiles upon Salmonella infection (wilde-type and prgH- 

mutant form) on CATMA arrays (see before). For a global view of time-

series data, we applied the Short Time-series Expression Miner (STEM) 

algorithm [125], which is specifically designed for clustering genes looking 

at their expression profiles derived from microarray experiments with a 

few time points (~8 time points or fewer). We computed Gene Ontology 

(GO) enrichments of the clusters using the default STEM parameters (see 

details on STEM application in the Supplementary Information). We 

computed the correlations among the clusters of the two infections (WT 

and prgH-) and identified TFs within each cluster, obtained from the Cis-

BP database [94]. Similar profiles of both infections were identified by a 

correlation higher than 0.99 and low (<0.0001) or lowest significant p-

value, calculated with the hypergeometric distribution of the number of 

shared genes. Correlated profiles were named with the same code for 

further analyses (usually the same as the profile code for wild type 

infection, this was named the merged-code).  
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3.1.4.3 Prediction of main regulators 

For each cluster obtained with STEM (see before), we retrieved the 

promoters of all of its genes from the database AGRIS AtcisDB [355]–

[357]. Then, with the DISPOM program [82], we extracted a putative 

binding-site motif common to the maximum number of genes within the 

cluster. We used the promoters of the genes in the remaining clusters as 

background. Potential binding motives for each cluster were reported by 

means of position-weight matrices (PWM) if they reached a p-value 

smaller than 10-4. Then, with TReg comparator [215], we searched for 

matches between the retrieved PWMs and the PWMs available for 

Arabidopsis TFs. We used a dissimilarity score of 0.9 to accept the TFs as 

potential main regulators (MRs) of the cluster. Finally, we used these MRs 

to build a gene regulatory network and identify MRs common to WT and 

prgH- (hereafter named CMRs). Some MRs were found within clusters 

while others were not. As expected, highly similar profiles of both 

infections were regulated by CMRs (we specifically named them CCMRs). 

MRs would regulate the expression of specific clusters (i.e. a specific 

profile). Thus, the probability that a TF would act as MR of two clusters 

was calculated using a hypergeometric distribution formulae: 

 

using the total number of TFs of Arabidopsis as background (M), 

being R the total number of predicted MRs,  n is the size of the set of 

MRs that regulate each cluster, and L is the number of MRs that we found 

in common (CMRs). 
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3.1.4.4 Cross-species network 

To infer the complete Arabidopsis-Salmonella PPI network (PIN), we 

used the server BIPS[295]. We set the conditions of sequence similarity as 

follows: maximum blast e-value threshold 0.001, percentage of identical 

residues limited to 60%, 80% minimum coverage between Salmonella-

query and Arabidopsis-template sequences. We applied the “matrix” 

model for co-complex methods, such as tandem affinity purification. The 

“resulting network containing Salmonella and Arabidopsis proteins was 

named “TAP” network. We then filtered those interactions retrieved using 

co-complex methods, obtaining a subset of interactions that we called 

“NOTAP”.  Results presented in the manuscript refer to the TAP 

network, and we have included the most restricted analysis (NOTAP 

network) in the Supplementary Information. 

 

3.1.4.5 Pathways reconstruction 

We used the Signaling Dynamic Regulatory Events Miner (SDREM) 

[239], [350] to reconstruct the dynamic and causal response pathways 

related to the infection and highlight the most relevant Arabidopsis TFs 

using the time-series data. We split the results, as before, in groups of 

potential main regulators common for the infection by WT Salmonella or 

prgH- mutant form (CCMRs and CMRs). SDREM integrates condition-

specific time-series expression data with general PPI and protein-DNA 

data. Starting from a set of known source-target interactions, the algorithm 

tries to orient them and then applies a variant of the Dynamic Regulatory 

Events Miner (DREM) [240], [358] to identify the active TFs in the 

response at each time point. The iteration of these two methods predicts 

additional TFs and other proteins that can be involved in the response 

pathways. We ran SDREM using the default parameters, integrating the 

gene-regulatory network provided by DREM (associations between TFs 
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and their regulated genes) and the PPI data of the Salmonella-Arabidopsis 

network obtained before. 

 

3.1.4.6 Gene prioritization 

We predicted proteins that could be involved in salmonellosis using 

GUILD [282], a network-based gene prioritization tool. The method 

requires as input a list of genes whose implication in a disease is known, 

also called seeds, and a PPI network. We applied the NetCombo message-

passing algorithm to transfer disease-gene association through the network 

and identify new putative disease-associated candidates (in this study we 

search for candidates associated with the infection and the response to 

infection). We applied default parameters: an initial score of 1 for seeds 

and 0.01 for non-seeds, with edge weight of 1, no more than 5 iterations 

and up to 100 sampled graphs for Z-score calculation (see references [33], 

[359], [360]). The PPI networks were the cross-species networks defined 

previously: TAP and NOTAP. We used different seeds depending on the 

search: Salmonella effectors to find the specific connection with potential 

MRs and other TFs of Arabidopsis; all Salmonella proteins, to find new 

potential effectors if they were connected with Arabidposis TFs and in 

particular predicted MRs; CMRs (with special attention to CCMRs), to 

find Salmonella proteins or transmembrane receptors that could eventually 

trigger the Arabidopsis response. Then, according to the seeds used, we 

selected the best ranked (top 20%) TFs of Arabidopsis, or Salmonella 

proteins, or Arabidopsis transmembrane proteins. 
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3.1.4.7 Shortest paths analysis 

We obtained shortest paths (SPs) smaller than 4 steps between CMRs 

and membrane proteins using NetworkX[361]. We also investigated SPs, 

with the same characteristics as before, between CMRs, with special 

attention to CCMRs, and Salmonella proteins, highlighting the ones that 

involve known effectors.  

 

3.1.4.8 Detection of potential Arabidopsis TFs among 

Salmonella proteins 

We tested the hypothesis that a Salmonella protein could act directly as 

a host TF. We checked potential homologs between Arabidopsis TFs and 

Salmonella proteins on the basis that two TFs are more likely to bind 

(consequently promoting the transcription of the same set of genes) if 

their sequences are highly similar and have common PPIs [237]. For the 

criterion of sequence similarity we used Rost’s sequence identity curve of 

the twilight-zone [362], and forced to share at least one DNA-binding 

domain from Pfam [285]. For the criterion of sharing PPIs, we used a 

threshold of at least one common interactor (this idea is graphically 

represented in the Supplementary Information Figure S2). 

We used the sequences of the 1,727 Arabidopsis TFs and the Salmonella 

proteome from UniProt [284]. For each Arabidopsis TF, we performed a 

BLAST [363] search against Salmonella and identified all hits according to 

Rost’s sequence identity curve [362]. For the Pfam-based orthology, the 

sequences of both Arabidopsis and Salmonella proteins were scanned against 

Pfam [285] using HMMER (version 3.0) [364]. We only considered hits 

over the HMMER inclusion threshold involving Pfam domains classified 

as DNA-binding domains.  
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3.1.4.9 Experimental integration with qPCR 

In order to integrate our predictions on highly relevant genes during 

Salmonella infection, qPCR experiments were made using the knockout of 

three WRKY genes that had been identified with high probability as 

potential CMRs. These genes were selected among those involved in the 

mechanisms triggering the signal response of Arabidopsis upon infection. 

All knocked-out genes were selected to be in a SP<4 connecting them 

with Salmonella effectors. Wild-type Salmonella (WT) and the prgH- 

mutant (prgH-) infection were used for the analysis of the model 

describing the regulation of defence response. The expression of several 

genes (using qPCR) was analysed according to their role in the system as it 

was predicted by our approach. Therefore, the tested genes were selected 

among STEM’s expression clusters, with explicit attention to the clusters 

of genes with specific profile for each type of infection (WT and prgH-) 

and for similar profiles under both infections. Their expression levels were 

checked at 2 and 24 hours post- infection and compared with the basal 

expression calculated with the exposure to a Mock solution.  

 

3.1.4.10 Early infection stage experimental integration with 

microarray at 30 minutes post inoculation 

In order to check genes expression at early stages of the infection we 

performed a microarray experiment on two weeks old seedlings infected 

with Salmonella WT. The plants were treated exactly in the same way as 

we did for the previous microarrays. Samples were collected after 30 

minutes post-inoculation of Salmonella. Data have undergone the same 

processes for normalization as before (see above). Since it was not a time 

series experiment it was only possible to search for 3-fold differentially 

expressed genes. 
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3.1.5 Results 

3.1.5.1 Strategy to unveil the response system of Arabidopsis 
on infection 

 

Figure 3-1:Graphical representation of the set of hypothesis. Salmonella 
proteins can be known effectors or other proteins from the Salmonella 
proteome (in red). Some of them can act as one of the Arabidopsis transcription 
factors (TF). Arabidopsis proteins (in blue) can also transfer a signal if they are 
located in the plasma membrane.  

Our goal is to find the key players on the defence response of 

Arabidopsis upon infection by Salmonella. Therefore, we have pondered 

all possible mechanisms of signalling involved in the profiles of gene 

expression. We have considered the following possible sources to start the 

signal (see Figure 1): i) receptors in the plasma membrane that become 

activated by Salmonella when it approaches the cell-wall; ii) Salmonella 

proteins, in particular those considered effectors, cross-talking with the 

proteome of Arabidopsis. Once started, the signal is transferred through 
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interactions to the plant transcription factors (TFs) causing the specific 

profile expression of response, i.e. acting as main regulators (MRs).  

The protein-interaction network (PIN) is constructed with proteins of 

both species, Salmonella and Arabidopsis (i.e cross-species network). The 

signalling paths are usually short, thus all transcription factors at distance 

shorter than 4 steps are potential candidates to receive the signal. A 

particular case is when the Salmonella protein can activate the gene 

profiles of Arabidopsis, acting as one of the TFs of Arabidopsis (i.e. the 

number of steps of the shortest path is zero). This implies that the 

Salmonella protein is similar to one or more TFs (the detection of 

potential activity as TFs is described in methods).  In this work we have 

applied two methods to predict the signalling network: i) SDREM and ii) 

GUILD. SDREM is a method specifically addressed to solve this problem, 

while GUILD is a message-passing method for gene-prioritization that 

uses the underlying topology of the network and a set of nodes with 

starting non-null score (seeds) acting as source of the information. We 

have used GUILD to score the nodes of the network and select the top 

scoring receivers. The approach can use as seeds the sources of the signal 

as before, in which case we plan to unveil the potential MRs among the set 

of TFs being the receivers of information, or use the predicted MRs as 

seeds and then suggest potential Arabidopsis membrane receptors or other 

Salmonella proteins acting as effectors. Thus, top-scoring proteins 

identified with GUILD can also be used to reinforce MRs in both ways: 1) 

using as seeds Salmonella proteins (specially known effectors) and 

selecting TFs of Arabidopsis with highest scores as their potential targets, 

hence predicting potential MRs; 2) using predicted MRs as seeds and 

checking for Salmonella proteins within the top selected nodes of the 

cross-talking PIN, specially known effectors, hence reinforcing the 
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prediction of the MR at the same time as we predict new potential 

effectors of Salmonella. 

Finally, we integrate all the information and select a few Arabidopsis 

TFs that have been predicted as MRs by several methods for further 

experimental validation. 

3.1.5.2 Gene regulatory network 

3.1.5.2.1 Time series analysis of gene expressions 

We used microarray data on the response of Arabidopsis to Salmonella 

typhymurium infections of WT strain and prgH- mutant from CATMA 

arrays [95], [351], [352]. We applied the same protocol to both infections 

(see methods). First, genes without sufficient response were filtered out 

from the analysis, setting the threshold of minimum absolute expression 

change to 1. Second, we applied STEM to cluster genes with similar 

profiles and used the Arabidopsis Thaliana ontology database 

(TAIR/JCVI) contained in STEM [365]. We obtained 11 significant 

profiles for WT infection containing 732  

genes (2.78% of the total number of genes in the array) (Figure 2A). 

Details on the genes contained in each cluster and significant GO 

enrichments with enough significance (p-value <0.01) are in 

Supplementary Information (Tables S1 and S2, respectively). Similarly, we 

obtained 13 significant profiles for the infection with prgH- mutant form 

of Salmonella, containing a total of 972 genes (3.68% of the total number 

of genes in the array) (Figure 2B). Also details on the genes contained in 

each cluster and the GO enrichments with enough significance (p-value 

<0.01) are in Supplementary Information (Tables S3 and S4, respectively) 
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Figure 3-2: Clusters of Arabidopsis’ genes producing similar time-
expression profiles after Salmonella infection WT (A) and prgH- mutant 
(B). Significant clusters are shown in coloured background. The number on the 
top left corner of each coloured cell indicates the cluster/profile ID and in the 
bottom left corner is shown the number of genes contained in the cluster. 

 

When comparing the profiles of the infections by WT and prgH- mutant 

forms we obtained 8 similar profiles as defined in methods (with 

correlation higher than 0.99 and a significant highest number of shared 

genes). In Table 1 we summarize the comparison and indicate the code for 

considering genes of any of the profiles from WT or prgH- Salmonella 

infections. Three additional pairs of clusters are compared in Table 1, but 

their correlations were too small to be considered similar. We also 

compared the enrichment of GO terms between similar profiles: a total of 

1024 GO terms are the same for both infections, while 244 (18%) are 

specific for WT and 399 (24%) for prgH- (see details in Tables S2 and S4). 



Salmonella infection in arabidopsis 

85 

. 

 

Table 3-1 Summary of correlations (C) between profiles/clusters of 
Arabidopsis genes after response to infection with wild-type (WT) and 
prgH- forms of Salmonella. The number of common genes (#shared) is 
calculated with the p-value of significance based on a hypergeometric test (p-
value). In addition, out of the common genes found, the common TFs are 
identified (Common TFs) and clusters with C>0.99 and sufficient common 
genes are renamed with the merged-code (Merge). 

 

WT prgH C # Shared p-value Common TFs Merge 

44 

44 
49 
41 
46 

1.00 
0.70 
0.59 
0.59 

27 
6 
6 
5 

3e-47 
5e-9 
7e-9 
3e-6 

AT5G49520 
None 

AT4G01250 
None 

44 

46 

46 
 

44 
 

41 
49 

 
45 
43 

1.00 
 

0.50 
 

0.50 
0.60 

 
0.54 
0.27 

26 
 

13 
 

9 
8 
 

6 
5 

7e-42 
 

2e-15 
 

2e-12 
6e-11 

 
1e-7 
5e-7 

AT4G36990; 
AT5G26920 
AT3G15500; 
AT3G23250 
AT5G67450 
AT4G08350; 
AT5G13080 
AT4G23810 

None 

46 

48 

48 
47 
44 
49 

1.00 
0.59 
0.35 
0.61 

20 
8 

10 
5 

1e-39 
2e-14 
1e-12 
4e-7 

AT5G61890 
None 

AT3G49530 
None 

48 

45 

45 
 
 

48 
41 
46 
44 

1.00 
 
 

0.52 
0.47 
0.54 
0.00 

18 
 
 

10 
6 
6 
5 

2e-32 
 
 

3e-16 
2e-8 
3e-7 
3e-5 

AT5G47230; 
AT5G51780; 
AT2G14760 

None 
AT1G51700 

None 
None 

45 

49 

49 
39 

 
24 
44 

1.00 
0.63 

 
0.66 
0.70 

18 
13 

 
12 
13 

4e-29 
5e-18 

 
1e-17 
1e-14 

AT1G18860 
AT2G47270; 
AT5G47370 
AT5G49450 
AT1G43160 

49 

39 

39 
 
 
 

11 

1.00 
 
 
 

0.36 

17 
 
 
 

9 

4e-29 
 
 
 

1e-12 

AT3G04070; 
AT3G23030; 
AT4G31800; 
AT5G39610 
AT1G71030 

39 

42 
42 
46 
45 

1.00 
0.47 
0.31 

15 
8 
6 

5e-27 
2e-11 
3e-9 

None 
None 
None 

42 

47 
46 
44 
49 

0.49 
0.63 
0.51 

12 
9 
6 

4e-19 
3e-12 
2e-9 

None 
None 
None 

- 

17 
11 

 
2 

0.23 
 

0.20 

9 
 

6 

2e-14 
 

9e-10 

AT3G61890; 
AT5G59780 
AT5G65210 

- 

43 

43 
44 
46 

 
41 

1.00 
0.53 
0.27 

 
0.27 

7 
10 
7 
 

5 

6e-12 
5e-13 
3e-9 

 
4e-7 

None 
None 

AT5G47220; 
 AT2G38470 

None 

43 

37 41 
46 

0.45 
0.45 

6 
6 

2e-9 
3e-8 

None 
None 
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3.1.5.2.2 Prediction of main regulators (MRs) 

Figure 3-3: Gene regulatory network of transcription factors predicted as MRs. 
Nodes in the graph represent either gene clusters of Arabidopsis (profiles) obtained with 
STEM in response to Salmonella WT infection (A) and Salmonella prgH- infection (B) 
or single TF predicted as MRs. Edges between profiles indicate that the MR of a cluster 
was found within another cluster (the code of the MR is shown in the edge). An arrow 
indicates the direction of the control: the profile containing the MR towards the profile 
it regulates. Similar clusters of both infections are shown in blue (specific clusters for 
WT infection in orange and for prgH- in green) and CCMRs are highlighted in red. 
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We were able to predict a total of 107 putative Arabidopsis MRs for 10 

out of 11 profiles obtained with the clustered data for WT infection using 

the approach described in method (the list of predicted MRs is shown in 

Table S5A in Supplementary Information). We predicted more than one 

potential MR for each cluster (only cluster 48 was predicted to be 

regulated by a single TF), but also some predicted MRs could regulate 

more than one profile, for example AT5G24590 could regulate genes in 

clusters 44, 45 and 47; AT5G22570 for clusters 43, 44 and 47; 

AT1G13300 and AT3G25790 for clusters 37, 42 and 45; AT2G25000 for 

43 and 47; AT2G24570 (47 and 49); AT4G31800 (44 and 47), etc.. In 

total, only 70 Arabidopsis TFs were predicted as MRs for the response to 

Salmonella WT infection. In figure 3A is shown the network of regulation 

of Arabidopsis under Salmonella WT infection, indicating the potential 

MRs of each cluster.  Some MRs were also clustered within a profile. This 

indicates the dependence between profiles and is shown in figure 3A with 

an arrow from the profile containing the MR towards the regulated profile, 

while the code of the predicted MR is in bold on top of the edge (e.g. 

AT4G31800 shows the regulation of profile 39 on profiles 44 and 47). 

Similarly, we predicted 145 MRs for 12 out of 13 clusters obtained with 

the clustering of STEM of the data for Salmonella prgH- mutant form 

infection (Figure 3B). As before, we observed the same MR for more than 

one cluster: AT5G45580 (for clusters 2, 24 and 46), AT5G62000 (11, 24 

and 44), AT5G12840 (11, 41 and 42) or AT5G24590 (44, 45 and 48). 

Thus, only 97 TFs were predicted as MRs (the list of predicted MRs is 

shown in Table S5B in Supplementary Information). We found 52 

common MRs (CMRs) when we compared the predicted Arabidopsis MRs 

in response to Salmonella WT and prgH- infections. On the rest of MRs, 

18 were specific for WT and 45 for prgH- infections (see the list in Table 

S6 of Supplementary Information). By focusing on similar profiles, we 

found CMRs (referred as CCMRs) only for three profiles. We found a 
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total of 9 CCMRs that are highlighted in red in Figure 3 and listed in Table 

2.  

. 

 

Table 3-2: Common MRs of the merged clusters. The significance of 
common MRs is calculated with an hypergeometric test (p-value). 

 

We calculate the probability that a CMR regulates the expression of 

two profiles with a hypergeometric distribution (where the total number of 

TFs is used as background, see methods).  Particular attention can be 

shown at AT4G31800, which is found within two similar profiles (merged-

code 39) and controls two other similar profiles (merged-code 44). 

Besides, the two profiles identified by the merged-code 44 are controlled 

by a relevant number of common MRs (with a p-value ~1-10). 

 

  

Cluster 
WT 

Cluster 
prgH Common MRs p-value 

39 39 None 1.0 
42 42 None 1.0 

43 43 AT3G32090 
AT1G80590 0.0153708865751 

44 44 

AT5G65310 
AT5G22570 
AT3G62340 
AT5G41570 
AT5G24590 
AT4G31800 

9.64153201721e-11 

45 45 AT5G24590 
AT5G60850 0.0166140853446 

48 48 None 1.0 
49 49 None 1.0 
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3.1.5.3 Signalling pathways 

3.1.5.3.1 Combining expression and the interaction network 
into oriented paths (SDREM) 

We used the approach of SDREM [239], [350] on the Salmonella-

Arabidopsis PIN, using Salmonella effectors as the original source of the 

signalling pathways and searching for Arabidopsis’ TFs as potential targets. 

SDREM uses as input the PIN, the time-series expression of genes and 

the links of TFs with their regulated genes by means of TF-DNA binding 

promoters. We used Arabidopsis TFs from DREM 2.0 and included the 

potential MRs predicted in the previous steps (i.e. the links between the 

MRs and the genes that were predicted to regulate).  

While the algorithm DREM identifies the potential TFs regulating the 

network, the algorithm of SDREM orients the edges of the network to 

generate potential signalling pathways. The approach runs 10 iterations 

with thousands of potential pathways. Target nodes of the network can be 

any node receiving the signal (being connected to the original source). 

Nodes’ ranking arises from the percentage of pathways involving each 

node (i.e. running through it). Additionally, SDREM also infers what are 

the best potential pathways and ranks them. Thus, targets can also be 

inferred by selecting the nodes with more than 1% of the highest 

confidence oriented paths going through them.  

We focus our study in candidate TFs of Arabidopsis. In Table 3 are 

shown the results of best-ranked nodes of the PIN, indicating those that 

correspond to TFs of Arabidopsis and are considered as potential MRs, 

being the final step of the signalling pathway that was started in Salmonella 

effector proteins.  
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Table 3-3: SDREM results. In A are the results for Salmonella WT 
infection and in B for prgH- form. The column “target” indicates if the node 
of the PIN is a TF of Arabidposis (Y) or not (N). We have included the degree 
of the node in the PIN (TAP network) and the score of SDREM based on the 
ratio of the number of oriented paths with highest confidence that go through 
the node (see methods).  

  

Results were limited to those with a percentage higher than 1% of the 

top 1000 best-ranked paths (the same approach as in previous 

references[239], [350]). We analysed both Salmonella forms of infection 

(WT and pgrH-). Further details on a more restrictive PIN (NOTAP) are 

shown in the Supplementary Information (Table S7). The change to a 

more restricted network, with less number of edges, produces different 

results, accusing the high dependence on the selection of the underlying 

network. By using the largest network (TAP), SDREM identified two 

CMRs previously described: AT2G25000 and AT4G31800, both included 

as CCMRs. Besides these two MRs, SDREM also highlighted other 

potential targets when studying the infection of the prgH- mutant of 

node Target Degree SDREM score 
D0ZV15 N 1 0.065 
AT2G25000 Y 289 1.000 
D0ZWZ8 N 543 0.028 
D0ZVQ4 N 3 0.113 
D0ZY43 N 8 0.709 
D0ZY42 N 3 0.113 
 

node Target Degree SDREM score 
AT2G43140 Y 50 0.021 
D0ZV15 N 1 0.078 
AT1G06070 Y 32 0.020 
D0ZVQ4 N 3 0.135 
D0ZY42 N 3 0.135 
D0ZWZ8 N 543 0.011 
AT5G15850 Y 49 0.123 
D0ZY43 N 8 0.652 
AT1G43700 Y 51 0.019 
AT4G31800 Y 289 0.734 
AT4G17750 Y 25 0.083 
 

A) 

B) 
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Salmonella: AT2G43140, AT1G06070, AT5G15850, AT1G43700, and 

AT4G17750. The satisfied paths connecting the sources (Salmonella 

effector proteins) and the potential CCMRs AT2G25000 and AT4G31800 

are shown in Figure 4. We calculated the Gene Ontology terms 

enrichment of this network using BinGO [366]. The most significant 

enriched biological processes are shown in Figure 4 and detailed in Table 

S11. Still significant, but ranking in lower position, we also found the 

terms “defense response to bacterium” and “response to bacterium”. In 

the graph of Figure 4, we coloured the nodes according to its functional 

association, using only the GO terms selected [367]. Response to stimulus 

(abiotic and chemical), cellular metabolic processes and small GTPase 

mediated signal transduction were among the top enriched processes. We 

neglected some very general process, such as cellular process. 
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Figure 4A: Highly SDREM-scored paths between Salmonella effectors and 
Arabidopsis TFs. Graph representation of shortest paths selected when using 
SDREM for the analysis of Samonella WT infection. TFs are placed at the 
bottom (predicted MRs in the last row) and Salmonella proteins and effectors 
at the top. The size of nodes is proportional to the SDREM score of the protein. 
Functional enrichment of the network was analysed with BinGO [366] and 
nodes representing Arabidopsis proteins are coloured according to their 
association to the functions selected. Nodes representing Salmonella proteins 
are coloured in red. The legend shows the colours applied for the GO terms of 
the top enriched functions and those associated with Arabidopsis-defense under 
bacteria infection. 
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Figure 4B: Highly SDREM-scored paths between Salmonella effectors and 
Arabidopsis TFs. Graph representation of shortest paths selected when using 
SDREM for the analysis of Samonella prgH- mutant infection (B). TFs are 
placed at the bottom (predicted MRs in the last row) and Salmonella proteins 
and effectors at the top. The size of nodes is proportional to the SDREM score 
of the protein. Functional enrichment of the network was analysed with BinGO 
[366] and nodes representing Arabidopsis proteins are coloured according to 
their association to the functions selected. Nodes representing Salmonella 
proteins are coloured in red. The legend shows the colours applied for the GO 
terms of the top enriched functions and those associated with Arabidopsis-
defense under bacteria infection. 
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3.1.5.3.2 Paths shorter than 4 steps in the PIN between 
MRs and potential receptors or Salmonella 
effectors 

3.1.5.3.2.1 Path at 0 steps: when a Salmonella protein acts 
as an Arabidopsis TF 

In order to cover the hypothesis of a Salmonella protein acting directly 

as a host TF, we tested the sequence and function similarities between 

Salmonella proteins and TFs of Arabidopsis (see methods). 

 

 Table 3-4: Salmonella proteins that could act as Arabidopisis TF 
(AT4G38680) according to the criteria of: i) sequence similarity; ii) 
common Pfam domains involved in DNA binding; and iii) common 
interactions. Percentage of identical residues aligned (sequence identity) and 
coverage of the aligned region with respect to the TF (Coverage of TF) and the 
Salmonella protein (Coverage of target) are shown for the criteria of sequence 
similarity. The name of the PFAM domains in common and the percentage of 
common interactions over the total of interactions of AT4G38680 are shown in 
the last two columns, respectively. 

 

Among the proteins that pass the twilight-zone threshold of sequence 

similarity, following Rost criterion [362], we searched for common 

interactions in the cross-species PIN. We could only find shared 

interactions between four Salmonella proteins and the TF AT4G38680 of 

Arabidopsis when using the TAP network (see Table 4 for details). 

According to our approach AT4G38680, also known as Cold Shock 

protein 2 (CSP2), not only shares a few interactions with this four proteins 

of Salmonella, but they also share the Pfam domains Cold-shock domain 

Salmonella 
Uniprot 
entry 

Sequence 
Identity 

Coverage 
of target 

Coverage 
of TF 

Common 
Pfam 

domains 

% Common 
interactions 

D0ZK33 51% 95% 33% CSD;OB_RNB 3% 
D0ZKM1 52% 75% 27% CSD;OB_RNB 3% 
D0ZLC6 56% 75% 27% CSD;OB_RNB 3% 
D0ZPD2 57% 75% 27% CSD;OB_RNB 3% 
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(CSD) and the Ribonuclease B OB domain (OB_RNB), the first associate 

with DNA binding proteins and the second with RNA binding. 

When using less restrictive criteria (i.e. without considering neither 

common interactions nor shared Pfam domains, and bordering the limit of 

the twilight-zone), D0ZQV5 from Salmonella was similar to one of the 

predicted CCMRs (AT4G31800) with percentage of sequence identity 

40% and covering only 4% of the sequence, while other 8 proteins from 

Salmonella (D0ZNU3, D0ZY02, D0ZLV4, D0ZIB1, D0ZM01, D0ZV29, 

D0ZTT0 and SSPH2) were similar in sequence to predicted CMRs 

(respectively AT5G45580, AT2G27058, AT2G28340, AT4G37790, 

AT2G46970, AT5G23650, AT5G43290 and AT2G25000). We report in 

Table S8 the list of Salmonella proteins similar to predicted MRs (CMRs, 

CCMRs and other predicted MRs specific for the WT and prgH- 

Salmonella infections). 

3.1.5.3.2.2 Paths between 1 and 3 steps 

We calculated all paths sorter than 4 steps around the predicted MRs 

and retrieved all plasma-membrane proteins that could act as receptors or 

direct interactions with Salmonella proteins using the TAP network 

(details for the NOTAP PIN are shown in Supplementary Information 

Table S9). We found two plasma-membrane proteins: AT2G18960 and 

AT4G30190 within the radius of 4 CMRs (AT5G52830, AT2G25000, 

AT5G45260 and AT4G40060) and one CCMR (AT4G31800). Although 

these are not protein receptors, we could suspect some relationship 

between the defence response of Arabidopsis upon infection and the ATP 

synthesis through protons exchange. 

We found several Salmonella proteins on a distance shorter than 4 

steps to some of the predicted MRs. First, with the TAP network, we 

found a direct interaction between the Salmonella protein D0ZWZ8 and 
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four predicted CMRs: AT4G31800 (which is also CCMR), AT5G52830, 

AT5G45260 and AT2G25000. Then, at distance 3, we found 11 CMRs 

(AT4G31800, which is a CCMR and AT2G25000, AT5G52830, 

AT4G31550, AT5G06960, AT5G28650, AT5G62000, AT2G24570, 

AT2G46130, AT5G45260 and AT2G30590) from 4 known Salmonella 

effectors (D0ZY43, D0ZY42, D0ZV15 and D0ZVQ4). When using a 

more restrictive PIN, the NOTAP network, the number of connections 

diminished.  First, we found a path of two steps between the Salmonella 

protein D0ZRU7 and the CCMR AT5G22570. Then, at three steps, we 

only found one path between the predicted CMR AT5G62000 and the 

known effector D0ZY43.  Further details of other Salmonella proteins at a 

radius distance smaller than 4 steps in the TAP and NOTAP networks are 

shown in supplementary Table S10. 

3.1.5.3.3 Scoring the network to connect potential MRs and 

Salmonella effectors 

We used the gene prioritization method, GUILD, to score the nodes of 

the PIN connecting the predicted MRs and the known Salmonella protein 

effectors or other Salmonella proteins that could potentially act as 

effectors. We used the TAP network and analysed the network with the 

top 30% nodes (nodes with scores ranking among the best 30% of all 

nodes) to predict MRs and Salmonella neweffectors, and to unveil the 

most relevant functions by means of the enrichment of GO terms.   

3.1.5.3.3.1 Using predicted MRs as seeds 

When using the predicted MRs as seeds we search for Salmonella 

proteins that could act as effectors and, at the same time, if some of the 

known effectors are among the top ranking scores, then we can confirm 

the potential of the predicted MRs. Table 5 shows the scores and ranking 
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of the known effectors that obtained a positive score with GUILD 

NetCombo approach. Only 4 effectors were found when using the 

predicted CMRs, but they were not among the top ranking (i.e. D0ZY43 

was the best ranked, 2651 out of 6162 proteins). Still, the three best-

ranked effectors are among the top 50% of the total ranking of Salmonella 

proteins. We did also check the 10 best scores of Salmonella proteins, 

because they could act as potential effectors (these results are also included 

in Table 5, with the corresponding ranking). This hints some potential 

protein-effector candidates of Salmonella for further studies. 

 

Table 3-5: GUILD scores and ranking of Salmonella proteins. Scores of 
GUILD are calculated with the NetCombo approach (Netcombo scores) using 
the predicted CMRs as seeds. The second column indicates if the Salmonella 
proteins are known effectors (Y) or not (N). We show the results for 
Salmonella protein effectors with a positive score and the best 10 scores of 
Salmonella proteins. The third column shows the ranking among the total 
number of nodes in the PIN and the fourth column the ranking over the total 
number of Salmonella proteins in the PIN. 

 

  

Salmonella 
protein Effector #Ranking/ 

#Total 
#Ranking/ 

#Salmonella 
NetCombo 

score 
D0ZY43 Yes 2651/6162 241/1196 0.02594 
D0ZVQ4 Yes 3170/6162 617/1196 0.024873 
D0ZY42 Yes 3187/6162 634/1196 0.024873 
D0ZV15 Yes 3807/6162 1025/1196 0.024419 
D0ZWZ8 No 241/6162 1/1196 0.102867 
D0ZMT5 No 399/6162 2/1196 0.034938 
D0ZW18 No 435/6162 3/1196 0.034374 
D0ZIR2 No 547/6162 4/1196 0.03383 
D0ZR32 No 754/6162 5/1196 0.032507 
D0ZQF4 No 786/6162 6/1196 0.032303 
D0ZIM1 No 963/6162 7/1196 0.03128 
D0ZQ18 No 967/6162 8/1196 0.031266 
D0ZNB8 No 1034/6162 9/1196 0.03116 
D0ZIQ6 No 1081/6162 10/1196 0.030915 
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3.1.5.3.3.2 Using Salmonella known effectors 

We used Salmonella known effectors as seeds and tested the scores of 

TFs of Arabidopsis, specifically checking those that were predicted as MRs. 

The best scores are obtained, as expected, by Salmonella proteins (details on 

the top 10 scored nodes are shown in supplementary Table S12). We 

found a subset of 17 TFs among top 30% of best-scored nodes. Four out 

of 17 were CMRs (AT4G31800, which is a CCMRs, AT2G25000, 

AT5G52830 and AT5G45260), which is a significant enrichment among 

all the predicted MRs for Salmonella WT infection (p-value=0.004) and 

prgH- infection (p-value=0.01). 

 

Figure 5: Top scored subnetwork of GUILD scores. Predicted CMRs 
participating in the network are located at the very bottom of the figure. TFs of 
Arabidopsis are located at the bottom rows and Salmonella proteins at the top, 
being at the very top the effectors used as seeds in GUILD. Nodes are coloured 
according to the most relevant functions as in figure 5.   The size of nodes 
representing Arabidpopsis proteins is proportional to the scores of GUILD (this 
was not applied on Salmonella proteins in order to help visual inspection). 
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Figure 5 shows the sub-network of the top 30% nodes, indicating the 

seeds (known Salmonella effectors), the 4 predicted CMRs and other 

Salmonella proteins and Arabidopsis TFs. We calculated the enrichment of 

biological processes in this subnetwork using BinGO [366] (as above, see 

section 3.1), and coloured the nodes associated with the four most relevant 

terms plus “defense response to bacterium” and “response to bacterium” 

(enrichment scores are shown in supplementary Table S13). As in our 

previous analysis of shortest paths, cellular metabolic processes and small 

GTPase mediated signal transduction were on the top, after neglecting the 

most general terms, such as “cellular processes”. 

We further analysed the top 20% of best ranked Arabidopsis TFs (116 

TFs ) with positive GUILD scores when using the TAP network. Among 

them, 13 were predicted as MRs, 11 were CMRs and one of the a CCMR 

(AT4G31800), which was among the best top 10 ranked TFs. Table 6 

shows the best scored MRs and their position in the total ranking of the 

PIN and within the top 20% of TFs with positive scores.  

We also studied the results on a more restrictive network, NOTAP, but 

the best position of a CMRs was ranked 22 (AT5G28650) and only 8 of 

the predicted MRs were found in the top 20% subnetwork (results are 

included in the supplementary table S14. Probably, not only the lack of 

known experimental interactions between Salmonella and Arabidopsis affects 

the message-passing in the NOTAP network, but also restricting mostly to 

yeast-two hybrid known interactions entails the lost of many of the 

interactions of TFs and consequently the lost of score-transfer through its 

connections.  
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Table 3-6: Predicted MRs among Arabidopsis TFs with best and positive 
GUILD scores (top 20% of TFs). We calculated the NetCombo GUILD 
scores using Salmonella effectors as seeds and the TAP network as the 
underlying PIN. In the second column (MR) we indicate if the TF was 
predicted for WT or prgH- infection, as CMR or CCMR. The third column 
shows the score and the next two columns show the ranking with respect to the 
total number of nodes in the network and the relative ranking with respect to 
the 20% of the total number of TFs in the PIN.  

 

In Figure 6 we show the subnetwork of the shortest path between the 

seeds (known Salmonella effectors) and the predicted MRs found among 

the 116 TFs best scored (top 20%). As before, we calculated the 

enrichment of biological processes in this subnetwork and the nodes 

associated with the four most relevant terms plus “defense response to 

bacterium” and “response to bacterium” (for enrichments scores see 

supplementary Table S15). Interestingly, the top biological processes were 

the response to stimulus, in particular response to inorganic, chemical and 

metal substances, which were also significantly enriched in previous 

analysis. Furthermore, as expected, in all networks connecting Salmonella 

Node MR GUILD 
score Ranking/Total Ranking/TFs 

AT4G31800 CCMR 0.395464 1786/6162 9/116 
AT2G25000 CMR 0.395464 1787/6162 10/116 
AT5G52830 CMR 0.395462 1790/6162 12/116 
AT5G45260 CMR 0.395429 1832/6162 17/116 
AT4G16110 WT 0.383318 2497/6162 24/116 
AT3G19510 prgH- 0.380545 2665/6162 33/116 
AT5G62000 CMR 0.379974 2743/6162 36/116 
AT5G22220 prghH- 0.37938 2795/6162 42/116 
AT5G59820 WT 0.378787 2842/6162 43/116 
AT2G46130 CMR 0.376413 3106/6162 69/116 
AT5G28650 CMR 0.376229 3208/6162 88/116 
AT2G24570 CMR 0.376229 3214/6162 90/116 
AT4G31550 CMR 0.376200 3250/6162 95/116 
AT2G30590 CMR 0.376200 3259/6162 98/116 
AT5G06960 CMR 0.376173 3301/6162 106/116 
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effectors and selected Arabidopsis TFs, the response to bacterium and 

defence response to bacterium were significantly enriched.  

 

 

Figure 6: Network of SPs between Salmonella effectors and predicted MRs 
among the top 20% Arabidopsis TFs ranked with GUILD. Subnetworks of 
shortest paths on Salmonella WT (A) and prgH- (B) infections. Predicted MRs 
are shown at the bottom of the figure and Salmonella proteins and effectors at 
the top. Nodes are coloured according to the enriched GO term biological 
processes and the size of the nodes representing Arabidopsis proteins is 
proportional to the GUILD scores (as in figure 5).  
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3.1.5.4 Integration of approaches and validation of key 
players on the system response to infection 

3.1.5.4.1 Unveiling potential key players of the defence 
system of Arabidopsis 

 

 

Table 3-7: Integrated results for the prediction of CMRs of Arabidopsis. A 
Tick indicates that the TF was predicted as MR, a cross indicates that either the 
TF was not predicted as MR or it did not fulfil the requirement of the column. 
Main columns are then split in results for Salmonella WT and prgH- mutant 
form infections. The first column (TF) shows the name and TAIR code of 
Arabidopsis TFs. The second column (clustered) shows if the TF belongs to 
some of the clusters obtained with STEM. The third column (SP Plasma 
membrane) indicates if a plasma membrane is found within a shortest path 
smaller than 4 steps to the TF. The fourth and fifth columns indicate if a 
Salmonella protein is found at a shortest path smaller than 4 steps when the 
Salmonella protein is a known effector (SP effector) or not (SP non-effector). 
The sixth column indicates if there is one or more similar Salmonella proteins 
under the less restrictive criteria (see Table S8 in Supplementary Information). 
The next two columns show if the TF was predicted as MR by SDREM or 
belonged to the top 20% best scored TFs with GUILD when using Salmonella 
effectors as seeds (GUILD). The last column (30’) shows if there is a 
differential expression of the TF after 30’ of infection by Salmonella WT. 

 

TF 

Clustered SP plasma 
membrane 

SP Effector SP Not 
effector 

Remote 
homolog

y 

Diff 
30’ 

SDREM GUILD 

WT PrgH
- 

WT PrgH
- 

WT PrgH
- 

WT PrgH
- 

WT WT Prg
H- 

WT PrgH- 

AT4G31800 
(WRKY18) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 

AT2G25000 
(WRKY60) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 

AT5G59820 
(ZAT12) 

✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ 

AT1G80840 
(WRKY40) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ 

AT4G23810 
(WRKY53) 

✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 

AT5G49520 
(WRKY48) 

✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

AT5G47370 
(HAT2) 

✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

!
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In Table 7 we summarize the results of a selected set of TFs of 

Arabidopsis that could act as MRs, with particular attention to CCMRs 

and CMRs. For each of the candidates we outline the approach taken for 

the prediction: shortest paths connecting them with Salmonella effectors 

or potential actors in the plasma membrane, or the scoring obtained with 

SDREM and GUILD. Therefore, we focused our attention on WRKY18 

(AT4G31800) and WRKY60 (AT2G25000). The two TFs are predicted as 

MR for both prgH- mutant and WT forms, they are in a radius shorter 

then 4 steps from plasma membrane proteins and also from Salmonella 

proteins (specifically from known effectors). Consequently, they also got a 

positive score with GUILD, being included in the top 30% nodes with 

best scores and among the top scoring TFs. Additionally, WRKY18 and 

WRKY60 were predicted by SDREM as MRs on the response to 

Salmonella prgH- mutant form and WT infections, respectively.  

According to our model, WRKY18 is in cluster 39 and it regulates the 

profiles 44 of both infections. Also, WRKY60 is in cluster 39 and it 

regulates profile 43 in WT infection and cluster 41 in prgH- infection. 

Consequently, we expect the knockout of these two TFs of Arabidopsis to 

affect the profiles 43 and 44 of Salmonella WT and prgH- infections. Both 

TFs act together with (WRKY40) AT1G80840 inhibiting the expression of 

AT2G36270 (ABI5) and/or AT2G40220 (ABI4). Hence they are involved 

in the regulation of the phytohormone abscisic acid (ABA) which is a 

signalling path known to respond to environmental stress and plant 

pathogens [368]. Besides, AT4G31800 (WRKY18) and AT1G80840 

(WRKY40) play a significant role in resistance to S. littoralis herbivory[57]. 

WRKY40 was not predicted as MR but it was found within clusters 42 

(infection by prgH-) and 41 (infection by WT) and also in shortest path 

distance from Salmonella effector proteins and within the top 20% best 

scored TFs. There is a cooperative behaviour of AT1G80840 (WRKY40), 

AT4G31800 (WRKY18) and AT2G25000 (WRKY60) in biological 
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processes associated with stress functions, that were significantly enriched 

in the sub-networks connecting Salmonella effectors and the predicted 

MRs. This cooperative behaviour was recently shown: AT4G31800 

(WRKY18) and AT2G25000 (WRKY60) act as weak transcriptional 

activators while AT1G80840 (WRKY40) is a transcriptional repressor 

modulating gene expression under stress [369]. Therefore, we concluded 

to knock-out these three genes and test the effect on the regulation of 

expression of genes during Salmonella infection. 

3.1.5.4.2 qPCR validation of the potential players 

In order to validate the predictions we have obtained a mutant of 

Arabidopsis (hereafter named 3KO mutant) with the knock-out of 

WRKY18 (AT4G31800), WRKY40 (AT1G80840) and WRKY60 

(AT2G25000) and have checked the expression of five Arabidopsis genes 

under infection by Salmonella WT and prgH-: WRKY33 (AT2G38470), 

TET8 (AT2G23810), NUDT7 (AT4G12720), TIR-NBS (AT1G66090) 

and NHL3 (AT5G06320). We have analysed by qPCR the levels of 

expression of these genes at 2 and 24 hours after infection (2h and 24h, 

time points, respectively). We used three replicas to estimate the noise on 

the comparison of expression levels (usually due to experimental 

deviations). After 24 hours of inoculation of Salmonella, the changes of 

expression of the genes under test were too small and the results were less 

consistent between the different replicas. We presume that the response 

after 24 hours of inoculation of Salmonella has already been produced and 

many of the genes involved in the starting defence of Arabidopsis have 

lost their activity. Consequently, we only use the 24h time point of this 

analysis to corroborate that the levels of expression are diminished and the 

genes affected correspond to the starting response of Arabidopsis defence. 
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The five genes selected for the test belong to clusters 43 and 44, but 

only TIR-NBS and NHL3 are shared by the profiles of infection of 

Salmonella WT and prgH- (TIR-NBS in profile 43 of WT infection and in 

profile 44 of prgH- infection, while NHL3 is in profile 44 of both WT and 

prgH-). For the other genes, WRKY33 and TET8 have a specific pattern 

of expression only for the response to Salmonella WT (i.e. WRKY33 is in 

profile 43 and TET8 in 44), while NUDT7 has a specific pattern of 

expression only for the infection by Salmonella prgH- (i.e. it belongs to 

cluster 44) 

In Figure 7 we compare the levels of expression of these genes in 

Arabidopsis wild type (WT) and the 3KO mutant form after 2hours of 

infection. We corroborate that the expression levels of WRKY33 and 

TET8 are not affected under the infection by Salmonella prgH-, while 

after inoculation of Salmonella WT its expression in Arabidopsis WT is 

higher than in 3KO mutant form. This implies that the knockout has 

changed the levels of response, affecting the profiles of expression of 

clusters 43 and 44 produced on the inoculation of Salmonella WT. These 

results are in agreement with the our model of the regulatory network. 

Furthermore, the expression of NHL3, which is in similar profiles of 

infection by Salmonella WT and prgH- (merged-code 44), is also affected 

by the knockout, being its expression diminished with respect to 

Arabidopsis WT. The changes of expression of TIR-NBS and NUDT7 are 

almost in agreement with our reasoning. We expected that the expression 

of NUDT7 would be affected after inoculation of Salmonella prgH-, 

diminishing the levels of expression in Arabidopsis 3KO mutant form 

with respect to the WT. This effect is shown in Figure 7 after 2 hours of 

infection. However, we also saw a decrease in Arabidopsis 3KO mutant 

form with respect to the WT for the infection with Salmonella WT. Still, 

this was smaller than the decrease observed for prgH-. Finally, the 

expression of TIR-NBS at 2h after Salmonella WT infection suffers a 
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dramatic decrease in Arabidopsis 3KO mutant form with respect to the 

WT. We would expect a similar decrease for the infection with Salmonella 

prgH- mutant form, as TIR-NBS also belongs to one of the affected 

profiles of the prgH- infection, but this was not observed. For all genes, 

the changes of expression were not observable after 24 hours of 

exposition to Salmonella, which implies that the knocked-out TFs were 

involved in the first response of Arabidopsis, as expected. 

 

 

Figure 7: qPCR Experimental test of selected genes of Arabidopsis. We 
have tested the average levels of expression of WRKY33, TET8, TIR-NBS, 
NUDT7 and NHL3 in histogram bar-plots. The interval deviation of expression 
is shown in error-bars. Levels of expression for Arabidopsis wild-type (blue) 
and triple-mutant knock-out (3KO) of WRKY18, WRKY40 and WRKY60 
(red) are shown after 2 hours and 24 hours time-points of infection by 
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Salmonella WT and prgH- mutant form. For the sake of comparison, 
Arabidopsis WT and triple mutant form (3KO) were also treated with Mock 
solution to test the basal effect of the reagent.  

3.1.5.4.3 Short time expression changes 

We analysed the immediate changes of expression in the first 30’ after 

infection by Salmonella WT and prgH-. We found 396 genes differentially 

expressed: 363 are up and 33 down regulated with respect to the basal 

state without infection (see the total list in table S16). AT4G31800 

(WRKY18) and ZAT12 are the only CMRs among the up-regulated genes, 

and we also observed other changes in MRs, such as AT5G59820 and 

AT3G46090 that are among the MRs specific for Salmonella WT 

infection. 

3.1.6 Conclusions and discussion 

We presented a multidisciplinary approach that, integrating the analysis 

of data coming from high-throughput technologies and the information 

from in-silico PPI prediction methods, is capable of identifying key proteins 

during Salmonella infection of its host (Arabidopsis). Due to the rapidity of 

the invasion process our approach has been specifically designed for short 

time series expression data. The integration step with in-silico predictions 

allowed us to explore the connections of the infection process in both 

directions: from Salmonella effectors to Arabidopsis transcription factors and 

vice versa. The approach helped us to unveil the potential role of 

transcription factors in the regulation of the defence response of 

Arabidopsis and the mechanisms of activation.  

The overlapping among the results obtained with the gene 

prioritization algorithm and the ones derived from the shortest path 

approach can be imputable to the usage of the same networks. Besides, 

the consistency observed with the output of SDREM, that integrates 
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protein-DNA interaction and our predictions on putative main regulators, 

increases the potential of our extrapolations. 

Finally, the results of two experiments (qPCR of some check-point 

genes and 30 minutes post-infection microarray) help us to conclude that 

AT4G31800 and AT2G25000, members of the same WRKYs family, play 

a crucial role in response to Salmonella infection at its early stages. 

To contextualize our findings, it has been demonstrated that 

Arabidopsis activate the synthesis of the phytohormone jasmonate-

isoleucine in response to insect herbivory infection. Jasmonate-isoleucine 

binds to a complex formed by the receptor COI1 and JAZ repressors. 

Upon proteasome-mediated JAZ degradation, AT1G32640 (MYC2), 

AT5G46760 (MYC3), and AT4G17880 (MYC4) become activated and 

this results in the expression of defence genes. [370]. In the same study it 

was shown that AT4G31800 (WRKY18), AT1G80840 (WRKY40) and 

AT5G59820 (ZAT12) play a significant role in resistance to S. littoralis 

herbivory, together with other 6 TFs. Besdies, Shen et al. [371] 

demonstrated that  WRKYs retain the natural ability of the plant to 

activate stimulus-dependent, PAMP-triggered, defence response genes. 

From Brotman et. al [372] we know that an enhancement in the 

expression of AT4G31800 (WRKY18) and AT1G80840 (WRKY40) 

suppresses JAZ repressors, thus provoking the negative regulation of the 

expression of the defence genes AT1G19250 (FMO1), AT3G26830 

(PAD3) and AT2G30770 (CYP71A13). This allows the non-pathogenic 

Arabidopsis root colonization by the Trichoderma fungi. Jasmonic Acid (JA) 

is just one of the phytohormones that is known to play a role during plant 

response to adverse environmental conditions, together with salicylic acid 

(SA), ethylene (ET) and abscisic acid (ABA). Nowadays we are aware of 

the key role of plant WRKY DNA-binding transcription factors for 

defence responses. Specifically in Arabidopsis a majority of its WRKY 
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genes are induced by pathogen infection or SA treatment [373]. This 

happens because most of plant defence, or defence related genes, contain 

W box sequences in their promoter regions and this allows them to be 

recognized by the WRKY proteins [374].  

As mentioned in results (section 4.1), AT4G31800 (WRKY18) and 

AT2G25000 (WRKY60), together with AT1G80840 (WRKY40), 

cooperate in biological processes associated with stress. They inhibit the 

expression of AT2G36270 (ABI5) and/or AT2G40220 (ABI4) genes, 

which is consistent with their negative role in ABA signalling [368]. The 

three WRKY transcription factors antagonize or aid each other in a highly 

complex manner and they play roles in both plant biotic and abiotic stress 

responses. These functions were significantly enriched in the subnetworks 

connecting the predicted MRs and Salmonella effectors studied by 

SDREM (see results section 3.1). Studies on their expression, DNA 

binding and transcription-regulating activities have lead to understand that 

they interact physically with themselves and with each other through a 

leucine-zipper motif[375]. Specifically AT4G31800 (WRKY18) and 

AT2G25000 (WRKY60) act as weak transcriptional activators and 

AT1G80840 (WRKY40) is a transcriptional repressor. Such complex 

pattern of DNA binding and transcription regulatory activities is the key 

aspect by which the three WRKYs are known to modulate gene 

expression in both plant defence and stress responses [369] and this makes 

the results of our analysis consistent with previous studies. 

About Salmonella proteome, we highlighted a subset of known 

effectors: D0ZY43, D0ZV15, D0ZVQ4 and D0ZY42, and predicted the 

potential role of some other proteins. Not much is known about the 

mechanisms by which Salmonella is able to colonize its hosts. We suggest 

further analysis on the Salmonella proteins: D0ZWZ8 (fumC), involved in 

fumarate metabolic process; D0ZIR2 (dnaK), involved in protein folding 

and ATP binding; atpD (D0ZMT5), involved in plasma membrane ATP 
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hydrolysis coupled proton transport; and gapA (D0ZW18) which takes 

part in the glucose metabolic process. The functions associated with these 

proteins were also enriched in the subnetworks analysed that connected 

the Salmonella effectors with the predicted MRs of Arabidopsis. DnaK is 

known to be essential for cell survival inside macrophages, thus leading to 

systemic mechanism of infection [376]. FumC is known to be activated by 

soxS, thus it is somehow related to oxidative stress response [377]. These 

proteins were not in the list of effectors, but our analyses suggest they 

could be implicated in the mechanisms of infection. In conclusion, our 

multidisciplinary study, focused on the interaction between Arabidopsis 

and Salmonella, represents a systematic approach to understand the 

mechanisms by which Salmonella is capable of invading a multitude of 

different hosts and in particular the triggering response of Arabidopsis. 

 

3.1.7 Bibliography 

The Bibliography for this article is at the end of this thesis. 
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3.1.8 Supplementary Information 

 

3.1.8.1 STEM 

 

The program is intended to apply the mentioned algorithm and to 

visualize and compare the behavior the genes also across multiple 

conditions. Each gene is assigned to a model profile, from a set of 

previously computed outlines to be representative of any possible 

behavior. To test the null hypothesis that observing a certain value at any 

time point does not dependent on past and future ones a Bonferroni’s 

corrected permutation test is applied. As distance metric we decided to use 

the correlation coefficient because the authors proved that, when working 

with this type of data, two very different profiles cannot be both similar to 

a third one. Once significant groups have been found, in case they have a 

minimum correlation of 0.75, they are grouped together. Such method is 

proved by its authors to perform better, in terms of Gene Ontology (GO) 

enrichment of the clusters, with respect to k-means and CAGED (Ramoni 

et al., 2002) algorithms.  In our analysis we included only GO terms at 

maximum level 3 in the hierarchy and to have a corrected p-value for the 

multiple hypothesis testing for the actual size base enrichment using 500 

randomized samples. 
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3.1.8.2 Common main regulators (CMRs) and correlated 
clusters common main regulators (CCCMRs) 

 

After calculating the predicted main regulators of the clusters we found 

a set of 52 proteins in common between the two infections and we called 

them common main regulators (CMRs). Here we list the set of 52 CMRs:  

 

AT5G49520, AT5G52830, AT2G37590, AT5G65310, AT5G06710, AT5G65230, AT3G62340, 

AT4G37790, AT4G23550, AT2G46130, AT5G46350, AT5G45260, AT5G56270, AT1G13300, 

AT2G28340, AT3G25790, AT2G30590, AT2G27050, AT2G46970, AT4G36240, AT4G40060, 

AT1G80590, AT5G07100, AT4G31550, AT5G45580, AT2G30250, AT5G25810, AT3G32090, 

AT5G47370, AT2G46680, AT5G22570, AT3G04850, AT5G60850, AT5G62000, AT5G25830,  

AT5G41570, AT5G43290, AT5G47390, AT5G12840, AT1G69490, AT5G28650, AT4G31800, 

AT5G06960, AT2G25000, AT4G36740, AT5G23650, AT5G52660, AT5G67580, AT2G24570, 

AT5G24590, AT5G15130, AT1G71450 

 

Among this set of CMRs there are 9 proteins that have been predicted 

to be main regulators of the correlated clusters between the two infection. 

We called them correlated clusters common main regulators (CCCMRs). 

Here the list of those 9 CCCMRs: 

 

AT5G65310, AT4G31800, AT5G22570, AT3G62340, AT5G41570, AT5G24590, AT5G60850, 

AT3G32090, AT1G80590  
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3.1.8.3 Shortest Paths results 

 

We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators with plasma membrane, using the TAP network.  

- WT:  

['AT2G25000', 'AT2G18960'] 

['AT2G25000', 'AT4G30190'] 

['AT5G45260', 'AT2G18960'] 

['AT5G45260', 'AT4G30190'] 

['AT4G40060', 'AT5G57050', 'AT2G18960'] 

['AT4G40060', 'AT5G57050', 'AT4G30190'] 

['AT4G31800', 'AT2G18960'] 

['AT4G31800', 'AT4G30190'] 

 

- PrgH: 

['AT2G25000', 'AT2G18960'] 

['AT2G25000', 'AT4G30190'] 

['AT5G45260', 'AT2G18960'] 

['AT5G45260', 'AT4G30190'] 

['AT4G40060', 'AT5G57050', 'AT2G18960'] 

['AT4G40060', 'AT5G57050', 'AT4G30190'] 

['AT4G31800', 'AT2G18960'] 

['AT4G31800', 'AT4G30190'] 
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We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators with plasma membrane, using the NOTAP 

network.  

- WT:  

['AT4G31550', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT4G31550', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT2G24570', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G24570', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT2G30590', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G30590', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT5G06960', ' AT2G41110', 'AT2G42590', 'AT2G18960'] 

['AT5G06960', ' AT2G41110', 'AT2G42590', 'AT4G30190'] 

['AT2G46130', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G46130', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT5G28650', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT5G28650', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

 

- PrgH:  

['AT4G31550', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT4G31550', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT2G24570', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G24570', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT2G30590', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G30590', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT5G06960', ' AT2G41110', 'AT2G42590', 'AT2G18960'] 

['AT5G06960', ' AT2G41110', 'AT2G42590', 'AT4G30190'] 

['AT2G46130', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT2G46130', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 

['AT5G28650', 'AT3G22930', 'AT1G26480', 'AT2G18960'] 

['AT5G28650', 'AT3G22930', 'AT1G26480', 'AT4G30190'] 
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We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators, with Salmonella known effectors, using the TAP 

network.  

 

Effectors found:  D0ZY43, D0ZY42, D0ZV15, D0ZVQ4 

 

- WT: 

 

['AT4G31550', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT4G31550', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT4G31550', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT4G31550', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT4G31800', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT4G31800', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT4G31800', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT4G31800', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 

['AT2G24570', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G24570', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G24570', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT2G24570', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT2G30590', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G30590', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G30590', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT2G30590', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G22570', 'AT4G38130', 'AT1G69960', 'D0ZY43'] 

['AT5G22570', 'AT4G38130', 'AT4G37910', 'D0ZY42'] 

['AT5G22570', 'AT4G38130', 'AT4G37910', 'D0ZVQ4'] 

['AT5G28650', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT5G28650', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT5G28650', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT5G28650', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G62000', 'AT3G21860', 'AT1G10430', 'D0ZY43'] 
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['AT5G62000', 'AT3G21860', 'AT4G37910', 'D0ZY42'] 

['AT5G62000', 'AT3G21860', 'AT4G35020', 'D0ZV15'] 

['AT5G62000', 'AT3G21860', 'AT4G37910', 'D0ZVQ4'] 

['AT5G06960', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT5G06960', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT5G06960', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT5G06960', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT2G46130', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G46130', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G46130', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT2G46130', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G45260', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT5G45260', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT5G45260', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT5G45260', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 

['AT2G25000', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT2G25000', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT2G25000', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT2G25000', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 

 

- PrgH: 

['AT4G31550', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT4G31550', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT4G31550', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT4G31550', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT4G31800', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT4G31800', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT4G31800', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT4G31800', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 

['AT2G24570', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G24570', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G24570', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT2G24570', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT2G30590', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G30590', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G30590', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 
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['AT2G30590', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G22570', 'AT4G38130', 'AT1G69960', 'D0ZY43'] 

['AT5G22570', 'AT4G38130', 'AT4G37910', 'D0ZY42'] 

['AT5G22570', 'AT4G38130', 'AT4G37910', 'D0ZVQ4'] 

['AT5G28650', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT5G28650', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT5G28650', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT5G28650', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G62000', 'AT3G21860', 'AT1G10430', 'D0ZY43'] 

['AT5G62000', 'AT3G21860', 'AT4G37910', 'D0ZY42'] 

['AT5G62000', 'AT3G21860', 'AT4G35020', 'D0ZV15'] 

['AT5G62000', 'AT3G21860', 'AT4G37910', 'D0ZVQ4'] 

['AT5G06960', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT5G06960', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT5G06960', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT5G06960', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT2G46130', 'AT2G27030', 'AT1G10430', 'D0ZY43'] 

['AT2G46130', 'AT2G27030', 'AT4G37910', 'D0ZY42'] 

['AT2G46130', 'AT2G27030', 'AT4G35020', 'D0ZV15'] 

['AT2G46130', 'AT2G27030', 'AT4G37910', 'D0ZVQ4'] 

['AT5G45260', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT5G45260', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT5G45260', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT5G45260', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 

['AT2G25000', 'AT5G59370', 'AT1G10430', 'D0ZY43'] 

['AT2G25000', 'AT5G66280', 'AT4G20360', 'D0ZY42'] 

['AT2G25000', 'AT3G12580', 'AT4G35020', 'D0ZV15'] 

['AT2G25000', 'AT5G66280', 'AT4G20360', 'D0ZVQ4'] 
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We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators, with Salmonella known effectors, using the 

NOTAP network.  

 

Effectors found: D0ZY43, D0ZV15 

 

- WT: 

 

['AT5G62000', 'AT3G21860', 'AT1G10430', 'D0ZY43'] 

 

- PrgH: 

 

['AT5G62000', 'AT3G21860', 'AT1G10430', 'D0ZY43'] 

 

We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators, with Salmonella proteins not known to be 

effectors, using the TAP network.  

 

- WT: 

 
['D0ZWZ8', 'AT5G45260'] 

['D0ZWZ8', 'AT2G25000'] 

['D0ZWZ8', 'AT4G31800'] 
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- PrgH: 

 
['D0ZWZ8', 'AT5G45260'] 

['D0ZWZ8', 'AT2G25000'] 

['D0ZWZ8', 'AT4G31800'] 

 

We report here the SPs found to connect the predicted common main 

regulators of the two infections, these include also correlated clusters 

common main regulators, with Salmonella proteins not known to be 

effectors, using the NOTAP network.  

 

- WT: 

 

['D0ZWE1', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZL47', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZL47', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZXJ7', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZQW8', 'AT5G59160', 'AT3G21860', 'AT5G62000'] 

['D0ZXH6', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT5G28650'] 

['D0ZW18', 'AT5G56030', ' AT2G41110', 'AT5G06960'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT2G30590'] 

['D0ZW18', 'AT1G07820', 'AT4G38130', 'AT5G22570'] 

['D0ZW18', 'AT5G55260', 'AT3G21860', 'AT5G62000'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT2G24570'] 

['D0ZW18', 'AT5G56000', 'AT3G51920', 'AT2G46130'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT4G31550'] 

['D0ZS62', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['MGTC', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZWJ3', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 

['D0ZWJ6', 'AT4G38780', 'AT5G63110', 'AT5G22570'] 

['D0ZQN7', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 
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['D0ZNS4', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT5G28650'] 

['D0ZMT5', 'AT1G26480', ' AT2G41110', 'AT5G06960'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G30590'] 

['D0ZMT5', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMT5', 'AT1G04820', 'AT3G21860', 'AT5G62000'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G24570'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G46130'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT4G31550'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT5G28650'] 

['D0ZSK0', 'AT5G65430', 'AT3G22930', 'AT5G06960'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT2G30590'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT2G24570'] 

['D0ZSK0', 'AT5G65430', 'AT3G22930', 'AT2G46130'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT4G31550'] 

['D0ZXX7', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZXX7', 'AT1G09080', 'AT3G21860', 'AT5G62000'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT5G28650'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT5G06960'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G30590'] 

['D0ZR32', 'AT3G50000', 'AT5G63110', 'AT5G22570'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G24570'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G46130'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT4G31550'] 

['D0ZWF9', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMY4', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZSF6', 'AT5G59160', 'AT3G21860', 'AT5G62000'] 

['D0ZX84', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZX84', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZUE5', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZUE5', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT5G28650'] 

['D0ZIR2', 'AT5G56030', ' AT2G41110', 'AT5G06960'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT2G30590'] 

['D0ZIR2', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZIR2', 'AT5G56030', 'AT3G21860', 'AT5G62000'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT2G24570'] 
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['D0ZIR2', 'AT5G56000', 'AT3G51920', 'AT2G46130'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT4G31550'] 

['D0ZRU7', 'AT4G38130', 'AT5G22570'] 

['D0ZMH8', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZSC9', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT5G28650'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT5G06960'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G30590'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G24570'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G46130'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT4G31550'] 

['D0ZMW7', 'AT3G51260', 'AT3G21860', 'AT5G62000'] 

['D0ZIM1', 'AT3G19980', 'AT3G21860', 'AT5G62000'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT5G28650'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT5G06960'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G30590'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G24570'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G46130'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT4G31550'] 

 

- Prgh: 

 

['D0ZWE1', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZL47', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZL47', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZXJ7', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZQW8', 'AT5G59160', 'AT3G21860', 'AT5G62000'] 

['D0ZXH6', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT5G28650'] 

['D0ZW18', 'AT5G56030', ' AT2G41110', 'AT5G06960'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT2G30590'] 

['D0ZW18', 'AT1G07820', 'AT4G38130', 'AT5G22570'] 

['D0ZW18', 'AT5G55260', 'AT3G21860', 'AT5G62000'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT2G24570'] 

['D0ZW18', 'AT5G56000', 'AT3G51920', 'AT2G46130'] 

['D0ZW18', 'AT5G56030', 'AT3G22930', 'AT4G31550'] 
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['D0ZS62', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['MGTC', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZWJ3', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 

['D0ZWJ6', 'AT4G38780', 'AT5G63110', 'AT5G22570'] 

['D0ZQN7', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 

['D0ZNS4', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT5G28650'] 

['D0ZMT5', 'AT1G26480', ' AT2G41110', 'AT5G06960'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G30590'] 

['D0ZMT5', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMT5', 'AT1G04820', 'AT3G21860', 'AT5G62000'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G24570'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT2G46130'] 

['D0ZMT5', 'AT1G26480', 'AT3G22930', 'AT4G31550'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT5G28650'] 

['D0ZSK0', 'AT5G65430', 'AT3G22930', 'AT5G06960'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT2G30590'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT2G24570'] 

['D0ZSK0', 'AT5G65430', 'AT3G22930', 'AT2G46130'] 

['D0ZSK0', 'AT1G26480', 'AT3G22930', 'AT4G31550'] 

['D0ZXX7', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZXX7', 'AT1G09080', 'AT3G21860', 'AT5G62000'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT5G28650'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT5G06960'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G30590'] 

['D0ZR32', 'AT3G50000', 'AT5G63110', 'AT5G22570'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G24570'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT2G46130'] 

['D0ZR32', 'AT3G50000', 'AT5G37780', 'AT4G31550'] 

['D0ZWF9', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZMY4', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZSF6', 'AT5G59160', 'AT3G21860', 'AT5G62000'] 

['D0ZX84', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZX84', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZUE5', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZUE5', 'AT3G12580', 'AT3G21860', 'AT5G62000'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT5G28650'] 
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['D0ZIR2', 'AT5G56030', ' AT2G41110', 'AT5G06960'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT2G30590'] 

['D0ZIR2', 'AT5G28540', 'AT4G38130', 'AT5G22570'] 

['D0ZIR2', 'AT5G56030', 'AT3G21860', 'AT5G62000'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT2G24570'] 

['D0ZIR2', 'AT5G56000', 'AT3G51920', 'AT2G46130'] 

['D0ZIR2', 'AT5G56030', 'AT3G22930', 'AT4G31550'] 

['D0ZRU7', 'AT4G38130', 'AT5G22570'] 

['D0ZMH8', 'AT3G46520', 'AT5G63110', 'AT5G22570'] 

['D0ZSC9', 'AT1G75780', 'AT3G21860', 'AT5G62000'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT5G28650'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT5G06960'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G30590'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G24570'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT2G46130'] 

['D0ZJT9', 'AT5G65430', 'AT3G22930', 'AT4G31550'] 

['D0ZMW7', 'AT3G51260', 'AT3G21860', 'AT5G62000'] 

['D0ZIM1', 'AT3G19980', 'AT3G21860', 'AT5G62000'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT5G28650'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT5G06960'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G30590'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G24570'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT2G46130'] 

['D0ZVP7', 'AT1G35160', 'AT3G22930', 'AT4G31550'] 
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Figure S 3-1: A) Box plot distribution of raw data of the Microarray 
CATMA experiment. Each array is represented indicating the type of 
infection (S means Salmonella WT, Sm stays for Salmonella prgH mutant), the 
time point (2h, 4h, 6h, 12h and 24h) and the replica (a and b). B) Box plot of 
the Microarray data after dChip normalization (see methods). For each 
time point the mean value between replicas has been calculated. C and D) 
MAXY plots for WT and prgH- Salmonella infection after dChip 
normalization, respectively. 
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Figure S 3-2: Representation of the transcription factor (TF) complex 
formation and substitution by similar proteins. A protein (TF’) may be 
similar to a known transcription factor (TF), but to produce the translation and 
bring the RNA polymerase still requires a minimum number of similar 
interactions, usually with the necessary co-activators. Therefore, similarities 
between potential transcription factors depend on: global sequence similarity, 
similar specific DNA binding domains, and a minimum percentage of common 
interactors. 
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Table S 3-1: STEM clustered genes for Salmonella WT infection. 

 

This table is not included on this book but is available in the CD of 

this thesis. 

 

Table S 3-2: Significant GO terms enrichment (p-value < 0.01) of clusters 
obtained with STEM on Salmonella WT infection. 

 

This table is not included on this book but is available in the CD of 

this thesis. 

 

 

Table S 3-3: STEM clustered genes for Salmonella prgH- mutant form 
infection 

 

This table is not included on this book but is available in the CD of 

this thesis. 

 

 

Table S 3-4: Significant GO terms enrichment (p-value<0.01) of clusters 
obtained with STEM on Salmonella prgH- infection.  

 

This table is not included on this book but is available in the CD of 

this thesis. 
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Table S 3-5 A: Predicted Putative MRs of the clusters obtained applying 
the STEM clustering algorithm on Salmonella WT infections. and prgH- 
mutant form (B) infections. 

 

 

 

 

  

Cluster(ID( Putative(Main(Regulators((MRs)(
Profile_17+ AT5G23650,+AT5G47390,+AT5G41570,+AT5G58340+
Profile_37+ AT4G36240,+AT4G16110,+AT2G01760,+AT4G36240,+AT2G28340,+

AT5G25830,+AT1G13300,+AT3G25790,+AT5G47390,+AT5G58340+
Profile_39+ AT5G59820,+AT2G37590,+AT3G60580,+AT5G67450,+AT5G60200,+

AT3G46090,+AT5G45580+
Profile_42+ AT4G16110,+AT2G01760,+AT2G28340,+AT4G36240,+AT5G25830,+

AT1G13300,+AT3G25790+

Profile_43+
AT5G12840,+AT5G41570,+AT5G52830,+AT5G22570,+AT5G65230,+
AT1G71450,+AT5G62000,+AT3G32090,+AT1G80590,+AT2G25000,+
AT5G25810,+AT4G25470+

Profile_44+ AT5G24590,+AT3G62340,+AT5G41570,+AT5G22570,+AT4G23550,+
AT5G65310,+AT1G80590,+AT4G31800+

Profile_45+

AT4G28610,+AT3G04850,+AT5G25790,+AT5G60850,+AT2G46680,+
AT5G17320,+AT4G37790,+AT5G06710,+AT5G47370,+AT4G40060,+
AT5G52170,+AT3G25790,+AT5G45580,+AT1G13300,+AT5G42630,+
AT4G36740,+AT5G52660,+AT5G65310,+AT5G24590,+AT1G23420,+
AT2G27050+

Profile_47+

AT5G43290,+AT3G62340,+AT5G28650,+AT2G24570,+AT5G46350,+
AT5G41570,+AT5G45260,+AT2G30590,+AT5G22570,+AT5G07100,+
AT5G49520,+AT5G56270,+AT1G69490,+AT5G52830,+AT4G31550,+
AT2G30250,+AT4G23550,+AT3G32090,+AT5G67580,+AT4G31800,+
AT1G80590,+AT2G46130,+AT5G15130,+AT5G06960,+AT2G25000,+
AT5G06839,+AT5G24590,+AT5G24590,+AT5G58340+

Profile_48+ AT2G46970+
Profile_49+ AT5G51990,+AT5G28650,+AT5G07100,+AT5G56270,+AT5G07680,+

AT2G24570+
+
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Table S 3-5 B: Predicted Putative MRs of the clusters obtained applying 
the STEM clustering algorithm on Salmonella prgH- mutant form 
infections. 

 

 

 

  

Cluster(ID( Putative(Main(Regulators((MRs)(
Profile_2* AT5G67580,*AT5G45580*

Profile_11*
AT5G18450,*AT5G52020,*AT1G53230,*AT5G62000,*AT5G65130,*
AT5G25810,*AT5G21960,*AT5G25390,*AT5G12840,*AT3G15030,*
AT1G71450,*AT5G53950,*AT5G67190,*AT3G27010,*AT5G22220,*
AT5G62165,*AT4G18390*

Profile_24*
AT5G47390,*AT5G65230,*AT2G37590,*AT5G23650,*AT3G10113,*
AT1G19000,*AT1G20710,*AT5G45580,*AT4G35550,*AT5G06710,*
AT2G46680*

Profile_39* AT4G09180,*AT5G61270*

Profile_41*
AT5G65230,*AT5G12840,*AT4G35550,*AT5G52830,*AT4G37790,*
AT5G41570,*AT5G22570,*AT2G46680,*AT3G32090,*AT1G80590,*
AT2G25000,*AT5G06710,*AT5G47370*

Profile_42* AT4G09180,*AT5G62610,*AT5G12840,*AT5G62000*

Profile_43*

AT5G50915,*AT1G28300,*AT2G27050,*AT2G40620,*AT5G67300,*
AT5G61270,*AT5G07100,*AT4G36540,*AT1G69490,*AT2G46130,*
AT4G34530,*AT1G80590,*AT5G67110,*AT2G46970,*AT3G32090,*
AT5G15130,*AT5G56270,*AT5G49520,*AT2G30250,*AT5G45260,*
AT4G31550,*AT4G28815,*AT2G24570,*AT2G30590,*AT5G44080,*
AT4G09180,*AT5G46760*

Profile_44*

AT2G46680,*AT5G06710,*AT1G20710,*AT5G62000,*AT5G47370,*
AT5G65310,*AT4G35550,*AT4G31800,*AT5G45260,*AT4G36740,*
AT3G62340,*AT5G46350,*AT5G24590,*AT1G69490,*AT3G62340,*
AT5G63790,*AT4G40060,*AT3G20770,*AT5G41570,*AT3G32090,*
AT3G03200,*AT5G13180,*AT5G22570,*AT3G19510*

Profile_45*
AT5G24590,*AT5G47660,*AT3G56660,*AT5G11510,*AT2G24570,*
AT5G06960,*AT5G13180,*AT5G28650,*AT5G60850,*AT5G43290,*
AT2G30590,*AT4G23550,*AT3G60030,*AT5G07100,*AT5G49520,*
AT5G45260*

Profile_46*
AT5G67300,*AT5G55020,*AT3G03200,*AT1G13300,*AT3G25790,*
AT3G56660,*AT5G45580,*AT4G09180,*AT5G28770,*AT3G61910,*
AT5G60850,*AT5G11510,*AT3G10113,*AT3G09230,*AT5G61430*

Profile_48* AT2G37590,*AT5G24590*
Profile_49* AT2G28340,*AT4G36240,*AT5G65310,*AT5G66320,*AT4G40060,*

AT3G04850,*AT5G52660,*AT5G25830*
*
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Table S 3-6: List of MRs divided by their type. The ones predicted to 
regulate only STEM clusters from Salmonella wt infection are called WT 
specific. The ones found to regulate only clusters of the prgH- mutant are 
called prgH- specific. Common MRs (CMRs) are the one predicted to regulate 
clusters from the two infection and correlated common MRs (CCMRs) are 
CMRs that regulate similar clusters of the two Salmonella infection. 

 

 
  

Type of MRs List of main regualtors 

WT specific 

AT5G52170; AT3G60580; AT5G58340; AT5G59820; 
AT5G51990; AT4G28610; AT2G01760; AT4G25470; 
AT1G23420; AT5G07680; AT5G67450; AT5G17320; 
AT5G25790; AT5G60200; AT3G46090; AT4G16110; 

AT5G42630; AT5G06839 

PrgH- specific 

AT5G61270; AT1G53230; AT3G09230; AT5G46760; 
AT3G19510; AT5G63790; AT5G66320; AT2G40620; 
AT3G61910; AT4G09180; AT5G67300; AT5G52020; 
AT3G10113; AT4G36540; AT1G28300; AT5G67110; 
AT3G27010; AT5G22220; AT5G28770; AT5G65130; 
AT4G35550; AT5G25390; AT5G62610; AT5G67190; 
AT5G53950; AT5G11510; AT5G62165; AT5G47660; 
AT5G21960; AT5G50915; AT5G18450; AT5G44080; 
AT5G13180; AT4G18390; AT4G34530; AT5G61430; 
AT3G20770; AT4G28815; AT3G56660; AT3G03200; 
AT5G55020; AT3G15030; AT1G20710; AT3G60030; 

AT1G19000 

Common MRs 
(CMRs) 

AT5G49520; AT5G52830; AT2G37590; AT5G65310; 
AT5G06710; AT5G65230; AT3G62340; AT4G37790; 
AT4G23550; AT2G46130; AT5G46350; AT5G45260; 
AT5G56270; AT1G13300; AT2G28340; AT3G25790; 
AT2G30590; AT2G27050; AT2G46970; AT4G36240; 
AT4G40060; AT1G80590; AT5G07100; AT4G31550; 
AT5G45580; AT2G30250; AT5G25810; AT3G32090; 
AT5G47370; AT2G46680; AT5G22570; AT3G04850; 
AT5G60850; AT5G62000; AT5G25830; AT5G41570; 
AT5G43290; AT5G47390; AT5G12840; AT1G69490; 
AT5G28650; AT4G31800; AT5G06960; AT2G25000; 
AT4G36740; AT5G23650; AT5G52660; AT5G67580; 
AT2G24570; AT5G24590; AT5G15130; AT1G71450; 

Correleated 
Common MRs 

(CCRMs) 

AT5G65310; AT4G31800; AT5G22570; AT3G62340; 
AT5G41570; AT5G24590; AT5G60850; AT3G32090; 

AT1G80590 
!
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Table S 3-7: SDREM results: In A) are the results for Salmonella WT 
infection and in B) Salmonella prgH- , both using the NOTAP PIN. The 
column target indicates if the node of the PIN is a TF of Arabidposis (Y) or not 
(N). We have included the degree of the node in the PIN and the score of 
SDREM based on the ratio of oriented paths with the highest confidence 
passing through the node. 

 

A) 

 

 

 

B) 
 

  

Name% Target% Degree% SDREM%
score%

AT5G15850( Y( 38( 1.000(
D0ZY43( N( 7( 0.895(
D0ZV15( N( 1( 0.105(
(

Name Target Degree SDREM score 
AT3G56400 Y 4 0.031 
AT5G15840 Y 38 0.079 
D0ZV15 N 1 0.072 
AT5G59820 Y 97 0.022 
D0ZY43 N 7 0.928 
AT5G15850 Y 38 0.083 
AT4G17750 Y 24 0.683 
AT3G46070 Y 97 0.023 
AT4G14540 Y 6 0.022 
AT3G02380 Y 38 0.082 
AT3G02990 Y 4 0.048 
AT3G46080 Y 97 0.020 
AT5G16820 Y 4 0.048 
!
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Table S 3-8: Low similarity between Arabidopsis TFs and Salmonella 
proteins. We limited the results to those CCMRs, CMRs, and WT or prgH 
specific MRs are similar with any protein of the pathogen according to the 
sequence criteria (see methods). For each pair we indentify the common Pfam 
domains, if there are common interactions, the percentage of Sequence identity 
of the aligned residues (SI) and the percentage of sequence coverage (COV) of 
aligned residues versus the Arabidopsis TF and the Salmonella query. 

 Arabidopsis 
proteins 

Salmonella 
proteins 

Shared Pfam 
domains 

Shared 
PPI Homology 

CCCMRs AT4G31800 D0ZQV5 NO NO 
SI:40% 

COV:4% 

CMRs 

AT5G45580 D0ZNU3 NO NO 
SI:42% 

COV:16% 

AT2G27050 D0ZY02 NO NO 
SI:34% 

COV:18% 

AT2G28340 D0ZLV4 NO NO 
SI:24% 

COV:14% 

AT4G37790 D0ZIB1 NO NO 
SI:32% 

COV:41% 

AT2G46970 D0ZM01 NO NO 
SI:38% 

COV:15% 

AT5G23650 D0ZV29 NO NO 
SI:32% 

COV:33% 

AT5G43290 D0ZTT0 NO NO 
SI:37% 

COV:37% 

AT2G25000 SSPH2 NO NO 
SI:34% 

COV:10% 

Prgh 
MRs 

AT5G50915 D0ZMQ3 NO NO 
SI:34% 

COV:10% 

AT5G50915 D0ZW61 NO NO 
SI:31% 

COV:31% 

AT5G50915 D0ZW61 NO NO 
SI:31% 

COV:31% 

AT5G66320 D0ZUX2 NO NO 
SI:33% 

COV:12% 

AT1G28300 D0ZV29 NO NO 
SI:30% 

COV:27% 

AT3G61910 D0ZQQ4 NO NO SI:32% 
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COV:33% 

AT5G25390 D0ZS23 NO NO 
SI:35% 

COV:26% 

AT3G27010 D0ZJ78 NO NO 
SI:44% 

COV:8% 

AT4G18390 D0ZX97 NO NO 
SI:45% 

COV:12% 

AT1G53230 D0ZRV3 NO NO 
SI:39% 

COV:9% 

WT MRs 

AT2G01760 D0ZJD2 Response_reg NO 
SI:31% 

COV:49% 

AT2G01760 D0ZL42 Response_reg NO 
SI:28% 

COV:87% 

AT2G01760 D0ZL43 Response_reg NO 
SI:34% 

COV:27% 

AT2G01760 D0ZM78 Response_reg NO 
SI:34% 

COV:51% 

AT2G01760 D0ZMP4 Response_reg NO 
SI:32% 

COV:13% 

AT2G01760 D0ZNE3 Response_reg NO 
SI:30% 

COV:56% 

AT2G01760 D0ZNY7 Response_reg NO 
SI:35% 

COV:21% 

AT2G01760 D0ZPC8 Response_reg NO 
SI:28% 

COV:59% 

AT2G01760 D0ZPL1 Response_reg NO 
SI:34% 

COV:11% 

AT2G01760 D0ZPV9 Response_reg NO 
SI:30% 

COV:62% 

AT2G01760 D0ZQX8 Response_reg NO 
SI:34% 

COV:29% 

AT2G01760 D0ZS20 Response_reg NO 
SI:27% 

COV:52% 

AT2G01760 D0ZS32 Response_reg NO 
SI:27% 

COV:53% 

AT2G01760 D0ZSP8 Response_reg NO SI:30% 
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COV:22% 

AT2G01760 D0ZU07 Response_reg NO 
SI:29% 

COV:53% 

AT2G01760 D0ZV78 Response_reg NO 
SI:33% 

COV:43% 

AT2G01760 D0ZV90 Response_reg NO 
SI:27% 

COV:52% 

AT2G01760 D0ZVQ4 Response_reg NO 
SI:28% 

COV:12% 

AT2G01760 D0ZWR1 Response_reg NO 
SI:33% 

COV:47% 

AT2G01760 D0ZWR7 Response_reg NO 
SI:34% 

COV:12% 

AT2G01760 D0ZX87 Response_reg NO 
SI:27% 

COV:48% 

AT2G01760 D0ZY26 Response_reg NO 
SI:25% 

COV:18% 

AT4G16110 D0ZJD2 Response_reg NO 
SI:30% 

COV:51% 

AT4G16110 D0ZL42 Response_reg NO 
SI:32% 

COV:90% 

AT4G16110 D0ZL43 Response_reg NO 
SI:32% 

COV:29% 

AT4G16110 D0ZMP4 Response_reg NO 
SI:29% 

COV:17% 

AT4G16110 D0ZNE3 Response_reg NO 
SI:30% 

COV:41% 

AT4G16110 D0ZNH4 Response_reg NO 
SI:28% 

COV:50% 

AT4G16110 D0ZNY7 Response_reg NO 
SI:41% 

COV:21% 

AT4G16110 D0ZPL1 Response_reg NO 
SI:35% 

COV:12% 

AT4G16110 D0ZPV9 Response_reg NO 
SI:29% 

COV:53% 

AT4G16110 D0ZQB7 Response_reg NO SI:28% 
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COV:51% 

AT4G16110 D0ZQQ5 Response_reg NO 
SI:29% 

COV:24% 

AT4G16110 D0ZQX8 Response_reg NO 
SI:33% 

COV:26% 

AT4G16110 D0ZS32 Response_reg NO 
SI:30% 

COV:48% 

AT4G16110 D0ZSP8 Response_reg NO 
SI:35% 

COV:24% 

AT4G16110 D0ZU07 Response_reg NO 
SI:25% 

COV:58% 

AT4G16110 D0ZV68 Response_reg NO 
SI:36% 

COV:33% 

AT4G16110 D0ZV90 Response_reg NO 
SI:30% 

COV:52% 

AT4G16110 D0ZVQ4 Response_reg NO 
SI:31% 

COV:12% 

AT4G16110 D0ZWR7 Response_reg NO 
SI:30% 

COV:11% 

AT4G16110 D0ZY26 Response_reg NO 
SI:31% 

COV:14% 
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Table S 3-9: Shortest path lengths between CMRs and plasma membrane 
proteins in the two cross-species PINs (TAP and NOTAP). “Not in net” 
means that the CMR is not in the network and “NO Paths” means that there is 
no connection between the plasma membrane and the CMRs. 

 

 
 
 
Table S 3-10: Shortest path lengths between CMRs (two of them are 
CCMR) and Salmonella proteins in the two cross-species PINs 
studied (TAP and NOTAP). “Not in net” means that the CMRs is not 
in the network and “NO Paths” means that there is no connection 
between the plasma membrane and the CMRs. Not all Salmonella proteins 
in the table were in the NOTAP network. 
 
 
 

 
 

 
Plasma membrane 

AT2G18960 AT4G30190 
TAP NOTAP TAP NOTAP 

CCMRs AT4G31800 1 NO Paths 1 NO Paths 

CMRs 

AT2G25000 1 NO Paths 1 NO Paths 
AT5G52830 1 Not in net 1 Not in net 
AT5G45260 1 Not in net 1 Not in net 
AT4G40060 2 4 2 4 
AT5G06960 3 3 3 3 
AT2G30590 3 3 3 3 
AT5G28650 3 3 3 3 
AT2G24570 3 3 3 3 
AT2G46130 3 3 3 3 
AT4G31550 3 3 3 3 

!

 

Salmonella Proteins 
Effectors Not Effectors 

D0ZY43 D0ZY42 DOZV15 D0ZVQ4 D0ZWZ8 D0ZRU7 
TAP NOTAP TAP TAP NOTAP TAP TAP TAP NOTAP 

CC 
MRs 

AT4G31800 3 NO 
Paths 3 3 NO 

Paths 3 1 3 NO 
Paths 

AT5G22570 3 4 3 4 4 3 3 2 2 

CMRs 

AT2G25000 3 NO 
Paths 3 3 NO 

Paths 3 1 3 NO 
Paths 

AT5G52830 3 Not in 
net 3 3 Not in 

net 3 1 3 Not in 
net 

AT5G45260 3 Not in 
net 3 3 Not in 

net 3 1 3 Not in 
net 

AT4G40060 4 6 4 4 6 4 3 4 5 
AT5G06960 3 4 3 3 4 3 3 3 4 
AT2G30590 3 4 3 3 5 3 3 3 4 
AT5G28650 3 4 3 3 5 3 3 3 4 
AT2G24570 3 4 3 3 5 3 3 3 4 
AT2G46130 3 4 3 3 5 3 3 3 4 
AT4G31550 3 4 3 3 5 3 3 3 4 
AT5G62000 3 3 3 3 4 3 3 3 4 

!
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Table S 3-11: Most significant Gene Ontology enrichments of the 
Arabidopsis genes found in the top scoring paths* after the last iteration of 
SDREM. We included the GO terms “response to bacterium” and “defense 
response to bacterium”, which are still significant. We reported the 
corresponding GO term identifier, its description, and the significance of the 
hypergeometric test (p-value) after Benjamini-Hochberg false discovery rate 
correction for multiple testing (corrected p-val). We provide the total number 
of genes associated with the term with respect to the total number of nodes in 
the network (Net frequency), the same proportion with respect to the entire 
Arabidopsis genome (Total genome frequency) and the GO term ranking with 
respect to the total enriched biological processes.  

*Note: The top biological process enriched was neglected (cellular process), 
because it was a too general description. 

 

 

GO-ID Description P-val Corrected 
p-val 

Net 
frequency 

Total 
genome 

frequency 
Ranking 

50896 Response 
to stimulus 3.7702E-27 1.6476E-24 122/313 

(38.9%) 
3207/22304 

(14.3%) 2/362 

44237 
Cellular 

metabolic 
process 

5.3528E-21 1.5595E-18 152/313 
(48.6%) 

5407/22304 
(24.2%) 3/362 

42221 
Response 
to chemical 

stimulus 
2.7664E-19 6.0445E-17 75/313 

(24.0%) 
1710/22304 

(7.6%) 4/362 

9628 
Response 
to abiotic 
stimulus 

2.7877E-17 4.8729E-15 58/313 
(18.5%) 

1168/22304 
(5.2%) 5/362 

9617 Response 
to bacterium 2.3381E-10 6.3860E-9 20/313 

(6.4%) 
241/22304 

(1.0%) 32/362 

42742 
Defense 

response to 
bacterium 

6.3672E-7 6.9562E-6 14/313 
(4.5%) 

193/22304 
(0.8%) 80/362 

!

SDREM WT 

GO-ID Description P-val Corrected 
p-val 

Net 
frequency 

Total 
genome 

frequancy 
Ranking 

44237 
Cellular 

metabolic 
process 

5.7675E-
58 

3.3653E-
55 

365/704 
(51.8%) 

5407/22304 
(24.2%) 2/461 

44267 

Cellular 
protein 

metabolic 
process 

1.5517E-
46 

6.0360E-
44 

230/704 
(32.6%) 

2767/22304 
(12.4%) 3/461 

7264 

Small 
GTPase 
mediated 

signal 
transduction 

2.4770E-
46 

7.2266E-
44 

40/704 
(5.6%) 

59/22304 
(0.2%) 4/461 

44238 
Primary 

metabolic 
process 

3.8780E-
43 

9.0513E-
41 

348/704 
(49.4%) 

5719/22304 
(25.6%) 5/461 

9617 Response to 
bacterium 

2.0472E-
7 2.1142E-6 25/704 

(3.5%) 
241/22304 

(1.0%) 113/461 

42742 
Defense 

response to 
bacterium 

1.2417E-
5 8.5743E-5 19/704 

(2.6%) 
193/22304 

(0.8%) 169/461 

!

SDREM PrgH- 
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Table S 3-12: Ten best-scored TFs of Arabidopsis with positive GUILD 
score and top ten scored proteins of the whole PIN (TAP and NOTAP). 

 

 

Salmonella(total(NOTAP! ! Salmonella(total(TAP!
Gene!name! Score! pos/total!

genes!
Gene!name! Score! pos/total!

genes!
D0ZW18! 1,000000! 1/3833! D0ZXZ4! 1,000000! 1/6162!

D0ZY00! 0.929911! 2/3833! D0ZMT5! 0.997038! 2/6162!

D0ZMT5! 0.923493! 3/3833! DTPD! 0.991079! 3/6162!

D0ZSP7! 0.913460! 4/3833! D0ZXT3! 0.991079! 4/6162!

D0ZXX9! 0.910222! 5/3833! D0ZW73! 0.991079! 5/6162!

D0ZT42! 0.910222! 6/3833! D0ZVX3! 0.991079! 6/6162!

D0ZQV0! 0.910222! 7/3833! D0ZT28! 0.991079! 7/6162!

D0ZLL1! 0.910222! 8/3833! D0ZT24! 0.991079! 8/6162!

D0ZIL6! 0.910222! 9/3833! D0ZMQ3! 0.991079! 9/6162!

D0ZIL1! 0.910222! 10/3833! D0ZW75! 0.991078! 10/6162!

ATCG00780! 0.618335! 136/3833! AT4G20360! 0.819646! 1156/6162!

ATCG00065! 0.600495! 137/3833! AT4G02930! 0.765853! 1187/6162!

AT4G18440! 0.520317! 139/3833! ATCG00065! 0.750892! 1197/6162!

AT1G36280! 0.520317! 140/3833! AT4G37910! 0.739776! 1198/6162!

ATCG00820! 0.421072! 141/3833! ATCG00820! 0.732302! 1199/6162!

AT4G01900! 0.417658! 142/3833! ATCG00780! 0.720396! 1200/6162!

AT3G57560! 0.417658! 143/3833! AT4G18440! 0.626171! 1201/6162!

AT4G35830! 0.412489! 144/3833! AT1G36280! 0.626171! 1202/6162!

AT4G26970! 0.412489! 145/3833! AT5G43940! 0.625525! 1203/6162!

AT2G05710! 0.412489! 146/3833! AT3G04120! 0.489252! 1206/6162!

!

Effectors_NOTAP! ! Effectors_TAP!

Gene!name! Score! pos/total!
genes!

Gene!name! Score! pos/total!
genes!

D0ZY43! 1,000000! 1/3833! D0ZY42! 1,000000! 1/6162!

D0ZV15! 0.978725! 2/3833! D0ZVQ4! 1,000000! 2/6162!

D0ZPZ6! 0.629487! 3/3833! D0ZY43! 0.953970! 3/6162!

AT5G66760! 0.603949! 4/3833! D0ZV15! 0.894847! 4/6162!

AT2G18450! 0.603949! 5/3833! AT4G20360! 0.624522! 5/6162!

AT1G47420! 0.603949! 6/3833! AT4G02930! 0.602221! 6/6162!

AT1G08480! 0.603949! 7/3833! AT4G37910! 0.564660! 7/6162!

D0ZQ18! 0.543037! 8/3833! ATCG00065! 0.521198! 8/6162!

AT5G40650! 0.474168! 9/3833! AT5G43940! 0.504357! 9/6162!

AT3G27380! 0.457688! 10/3833! ATCG00820! 0.492953! 10/6162!

AT1G69960! 0.425645! 11/3833! ATCG00780! 0.473732! 11/6162!

AT1G59830! 0.424713! 12/3833! AT5G35390! 0.470838! 14/6162!

AT1G10430! 0.424713! 13/3833! AT1G79860! 0.464640! 105/6162!

AT2G42500! 0.422210! 14/3833! AT3G04120! 0.452439! 264/6162!

!
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Table S 3-13: Ontology terms enrichment of Arabidopsis  genes in the 
subnetwork of best GUILD scores (top 30%) with GUILD using as seeds 
Salmonella effectors and the TAP PIN.  We report the GO term identifier of 
the top biological processes and the selected GO terms: “response to 
bacterium” and “defense response to bacterium”. We include the functional 
description and the significance of the hypergeometric test (p-value) after 
Benjamini-Hochberg false discovery rate correction for multiple testing 
(corrected p-value). We provide the total number of genes associated with the 
term with respect to the total number of nodes in the network (Net frequency), 
the same proportion with respect to the entire Arabidopsis proteome (Total 
genome frequency) and the GO term ranking with respect to the total of 
enriched processes. 

 

Table S 3-14: Predicted MRs among the best scored Arabidopsis TFs with 
GUILD. GUILD scores were calculated with NetCombo approach using 
Salmonella effectors as seeds and the NOTAP network. In the second column 
we indicate if the TF was predicted as WT or prgH- specific MR, CMR or 
CCMR. The third column shows the GUILD score and the next two columns 
the ranking with respect to the total number of nodes in the NOTAP network 
and the relative ranking with respect to the top 20% of TFs. 

GO-ID Description P-val Corr p-val Freq in 
net 

Freq in 
genome Ranking 

44237 
Cellular 

metabolic 
process 

2.6001E-63 1.4405E-60 364/676 
(53.8%) 

5407/22304 
(24.2%) 2/402 

44267 

Cellular 
protein 

metabolic 
process 

1.4987E-53 5.5351E-51 236/676 
(34.9%) 

2767/223 
(12.4%) 3/402 

19538 
Protein 

metabolic 
process 

1.0925E-49 3.0263E-47 
247/676 
(36.5%) 

3147/22304 
(14.1%) 4/402 

7264 

Small 
GTPase 
mediated 

signal 
transduction 

6.4997E-49 1.4403E-46 41/676 
(6.0%) 

59/22304 
(0.2%) 5/402 

9617 Response 
to bacterium 3.6551E-7 3.6160E-6 24/676 

(3.5%) 
241/22304 

(1.0%) 112/402 

42742 
Defense 

response to 
bacterium 

1.8358E-6 1.5294E-5 20/676 
(2.9%) 

193/22304 
(0.8%) 133/402 

!

Node% MR% GUILD%score% Ranking/Total%% Ranking/%
TFs%%

AT4G16110( WT( 0.324083( 482/3833( 3/106(
AT5G59820( WT( 0.304402( 932/3833( 12/106(
AT5G28650( CMR( 0.302121( 1054/3833( 22/106(
AT4G31550( CMR( 0.302121( 1064/3833( 25/106(
AT2G30590( CMR( 0.302121( 1095/3833( 28/106(
AT2G24570( CMR( 0.302121( 1097/3833( 29/106(
AT5G06960( CMR( 0.301971( 1113/3833( 33/106(
AT2G46130( CMR( 0.301479( 1256/3833( 56/106(
AT5G62000( CMR( 0.297816( 1500/3833( 102/106(
AT5G22570( CCMR( 0.296976( 1509/3833( 103/106(

(
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Table S 3-15: Gene Ontology terms enrichment in the subnetwork of 
shortest paths between the best-scored (top 20%) Arabidopsis TFs and 
Salmonella effectors. Scores were calculated with the Netcombo algorithm 
using Salmonella effectors as seeds in the underlying TAP network. We 
selected the top GO terms of biological processes and included the “response to 
bacterium” and “defense response to bacterium”. We report the GO term 
identifier, its description, the significance of the hypergeometric test (p-value) 
after Benjamini-Hochberg false discovery rate correction for multiple testing 
(corrected p-value). We also provide the total number of genes associated with 
the term with respect to the total number of nodes in the network (Net 
frequency), the same proportion with respect to the entire Arabidopsis 
proteome (Total genome frequency) and the GO term ranking with respect to 
the total enriched processes. 

 

  

GO#ID& Description& P#val& Corrected&
p#val&

Net&
frequency&

Total&
genome&
frequency&

Ranking&

50896& Response&to&
stimulus&

6.3158E6
23&

2.6084E6
20&

60/110&
(54.5%)&

3207/22304&
(14.3%)& 1/168&

42221&
Response&to&
chemical&
stimulus&

4.3113E6
22&

8.9029E6
20&

45/110&
(40.9%)&

1710/22304&
(7.6%)& 2/168&

10035&
Response&to&
inorganic&
substance&

6.7623E6
20&

9.3094E6
18&

25/110&
(22.7%)&

434/22304&
(1.9%)& 3/168&

10038& Response&to&
metal&ion&

1.2996E6
19&

1.3419E6
17&

23/110&
(20.9%)&

350/22304&
(1.5%)& 4/168&

9617& Response&to&
bacterium&

3.1063E6
8& 6.1090E67& 11/110&

(10.0%)&
241/22304&
(1.0%)& 21/168&

42742&
Defense&

response&to&
bacterium&

4.9372E6
7& 7.5521E66& 9/110&

(8.1%)&
193/22304&
(0.8%)& 27/168&

&

GO#ID& Description& P#val& Corrected&
p#val&

Net&
frequency&

Total&
genome&
frequency&

Ranking&

50896& Response&to&
stimulus&

7.3196E7
22&

3.1987E7
19&

60/114&
(52.6%)&

3207/22304&
(14.3%)& 1/164&

42221&
Response&to&
chemical&
stimulus&

2.4554E7
21&

5.3651E7
19&

45/114&
(39.4%)&

1710/22304&
(7.6%)& 2/164&

10035&
Response&to&
inorganic&
substance&

1.7209E7
19&

2.5067E7
17&

25/114&
(21.9%)&

434/22304&
(1.9%)& 3/164&

10038& Response&to&
metal&ion&

3.0658E7
19&

3.3494E7
17&

23/114&
(20.1%)&

350/22304&
(1.5%)& 4/164&

9617& Response&to&
bacterium&

4.5139E7
8& 9.3932E77& 11/114&

(9.6%)&
241/22304&
(1.0%)& 21/164&

42742&
Defense&

response&to&
bacterium&

6.6903E7
7& 1.0525E75& 9/114&

(7.8%)&
193/22304&
(0.8%)& 27/164&

&

WT 

PrgH- 
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Table S 3-16: Arabidopsis genes 3-fold differentially expressed 30 minutes 
after inoculation of Salmonella flg22 mutant. The comparison has been 
performed with respect to mock treated plants. 

UP regulated 

 

  

AT3G48640 

AT5G46080 

AT2G20142 

AT1G18740 

AT4G21920 

AT1G24140 

AT1G72920 

AT4G13395 

AT2E21980 

AT1G20510 

AT2G46940 

AT5G27420 

AT5G43620 

AT5G46295 

AT2G31865 

AT3G56710 

AT4G11280 

AT1G07000 

AT1G07160 

AT1G59590 

AT1G02400 

AT2G29110 

AT2G20960 

AT2G32030 

AT2G33710 

AT4G37370 

AT1G69890 

AT2G25460 

AT3G46090 

AT4G18540 

AT5G42380 

AT1G22810 

AT2G37940 

AT2G18210 

AT4G38560 

AT4G19515 

AT1G49000 

AT4G28085 

AT2G36440 

AT2G44840 

AT2G47140 

AT1G26410 

AT5G24110 

AT2G39650 

AT2G46400 

AT1G53080 

AT3E13410 

AT1G35210 

AT1G09940 

AT5G22530 

AT5G51190 

AT5G64660 

AT4G24570 

AT4G33050 

AT1G42990 

AT2G05050 

AT3G52520 

AT2G41640 

AT5G01100 

AT1G73540 

AT4G37780 

AT3G23230 

AT5G59820 

AT1G69900 

AT1G66090 

AT5G47960 

AT5G41740 

AT4G23160 

AT3G14225 

AT5G56960 

AT4G14370 

AT3G52800 

AT4G39640 

AT2G40180 

AT1G79680 

AT3G61190 

AT2G35658 

AT4G02200 

AT3G50930 

AT1G57990 

AT4G27280 

AT2G22500 

AT3G50060 

AT1G80840 

AT4G26090 

AT3G17690 

AT2G34930 

AT1G70740 

AT4G14450 

AT2G32200 

AT5G62150 

AT1G61340 

AT4G12720 

AT4G01010 

AT5G12880 

AT2G29720 

AT3G46930 

AT4G40020 

AT3G44720 

AT5G41550 

AT5G04340 

AT1G68340 

AT3G45960 

AT2G03540 

AT1G64065 

AT1G72910 

AT1G72520 

AT1G16420 

AT1G05575 

AT3G57640 

AT5G13190 

AT3G46080 

AT5G52750 

AT4G36500 

AT3G03030 

AT5G26920 

AT4G11170 

AT5G52760 

AT1G32928 

AT1G32920 

AT5G58680 

AT1G69930 

AT3G48650 

AT2G32020 

AT5G47850 

AT4G39320 

AT5G64870 

AT1G68765 

AT5G66650 

AT2G01180 

AT3G56400 

AT5G26030 

AT3G54420 

AT1G70170 

AT2G22880 

AT2G30020 

AT3G09870 

AT5G45340 

AT2G35980 

AT1G56240 

AT1G18300 

AT1G67880 

AT5G36925 

AT4G18197 

AT4G18195 

AT2G04495 

AT4G39580 

AT1G59865 

AT3G29000 

AT2G17040 

AT1G24147 

AT1G24145 

AT5G61600 

AT2G47550 

AT4G20780 

AT2G36780 

AT5G15870 

AT2G24600 

AT2G25735 

AT3G44260 

AT1G28370 

AT1G56060 

AT5G63130 

AT1G75000 

AT3G52450 

AT4G24310 

AT2G22290 

AT1G50740 

AT3G15518 

AT5G25930 

AT2G44500 

AT1G13340 

AT3G23630 

AT1G61470 

AT3G50800 

AT5G52050 

AT4G31800 

AT1G19020 

AT1G23830 

AT3G09830 

AT1G14480 

AT2G37430 

AT5G61900 

AT5G01550 

AT5G64905 

AT4G15417 

AT3G59080 

AT4G22780 

AT3G11080 

AT1G32720 

AT4G18250 

AT1G72950 

AT2G31945 

AT5G46910 

AT4G28460 

AT5G54490 

AT1G28480 

AT2G35930 

AT1G01560 

AT3G27140 

AT1G36640 

AT5G36920 

AT5G44070 

AT1G80820 

AT1G68450 

AT3G25250 

AT5G59550 

AT1G72900 

AT3G10114 

AT4G02410 

AT1G11050 

AT5G47910 

AT3G25780 

AT4G18170 

AT1G43000 

AT1G14540 

AT1G23710 

AT3G02840 

AT1G09932 

AT5G58120 

AT2G32190 

AT2G15390 

AT3G10930 

AT5G43420 

AT3G57740 

AT4G31950 

AT5G41680 

AT1G27890 

AT4G34150 

AT4G23610 

AT2G40140 

AT4G23220 

AT4G23180 

AT5G59730 

AT5G57010 

AT3G08720 

AT2G38790 

AT2G26190 

AT5G64890 

AT3G25600 

AT1G56250 

AT3G18710 

AT2G38470 

AT1G74360 

AT1G58420 

AT5G22250 

AT3G45640 

AT3G62260 

AT4G29780 

AT3G09520 

AT1G17420 

AT5G25250 

AT1G72940 

AT1G74440 

AT5G14700 

AT1G64610 

AT4G18880 

AT5G39670 

AT1G35230 

AT1G78410 

AT5G60900 

AT2G18670 

AT3G01830 

AT2G26530 

AT5G37490 

AT3G02800 

AT1G06137 

AT1G21326 

AT1G06135 

AT3G16860 

AT3G49530 

AT4G11470 

AT1G51700 

AT5G65600 

AT4G01950 

AT3G21150 

AT1G71520 

AT5G11210 

AT1G26380 

AT5G11140 

AT4G16820 

AT4G23810 

AT5E46700 

AT3G60420 

AT5G28610 

AT3G28340 

AT4G11070 

AT5G01540 

AT5G57510 

AT1G18570 

AT2G31345 

AT3G46620 

AT4G34380 

AT1G51915 

AT2G37820 

AT5G35735 

AT1G61360 

AT4G22030 

AT1G27770 

AT3G21070 

AT3G55840 

AT1G20823 

AT4G23030 

AT3G57530 

AT5G18470 

AT5G39020 

AT3G09020 

AT5G57220 

AT1G17750 

AT5G22690 

AT3G11840 

AT4G20000 

AT1G61560 

AT3G07195 

AT2G23270 

AT2G46620 

AT4G01360 

AT4G28350 

AT1E38580 

AT4G37290 

AT5G22520 

AT3G52430 

AT4G21390 

AT1G71400 

AT2G31990 

AT5G47230 
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AT5G38310 

AT1G63720 
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AT5E08990 

AT3G25610 

AT3G13600 

AT4G19520 

AT1G13210 

AT1G17240 

AT5G17350 

AT1G51920 

AT1G02360 

AT5G66210 

AT4G24110 

AT1G74450 

AT4G08260 

AT4G30430 

AT3G19615 

AT4G39570 

AT5G6431
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Down- regulated 

 

AT2G40230, AT5G57780, AT4G38825, AT1G78170, AT4G38860, 

AT1G29440, AT2G21210, AT3G59940, AT2G25200, AT1G49200, 

AT4G38840, AT1G49220, AT4G34770, AT1G26920, AT1G50040, 

AT3G25717, AT1G31173, AT5G18080, AT4G34760, AT5G61590, 

AT5G54145, AT5G56550, AT2G21220, AT1G76220, AT2G44130, 

AT3G10120, AT1G29490, AT5G01740, AT4G10910, AT2G42870, 

AT4G34750, AT1G15670, AT5G67480 

 

 





 

 4 SALMONELLA INFECTION IN HUMAN 
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In this section is presented an analysis of salmonella-infected human data. 

As in the previous chapter, from the clustering of time series microarray data 

a set of MRs is computationally derived. Human- salmonella cross-species 

protein interaction network is inferred and used for the analysis of those 

shortest paths, between known salmonella effectors and the predicted MRs, 

that contain any plasma membrane protein. The hypothesis of a therapy 

targeting the predicted regulators based on a drug-specific genetic signature 

is then investigated and its results are shown to corroborate the MRs 

predictions. 

 

 

 

Results presented in this chapter will be published together with the software 

implemented. This manuscript is in preparation. 
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4.1.1 Abstract 

Salmonellae are gram-negative bacterial pathogens capable of infecting a 

wide range of organisms, including human. To ensure its survival and 

proliferation within the host, the bacterium secretes effector proteins. 

However the roles of some of them and a complete picture of which 

mechanisms are activated in the human immune system still are unknown. 

This capacity to infect a wide range of hosts, together with its exceptional 

antimicrobial resistance have meant that, despite the overall improvement of 

health and sanitary conditions, Salmonellosis, nowadays, is the most frequent 

food-borne diseases. 

In this study, we took a system-wide approach to grasp which 

mechanisms are activated upon salmonella infection in human. We 

integrated the analysis of high-throughput data with computationally 

predicted cross-specie protein-protein interactions to identify the key 

genes/proteins involved in the response to the infection. Based on time-

series microarray data of human infected samples, we clustered genes with 

similar expression profiles and predicted potential transcription factors that 

could regulate the expression of the genes in each cluster. Subsequently we 

analysed by means of shortest topological distance between known effectors 

and our predicted regulators, which paths can be involved during the 

infectious process. Finally we tested the hypothesis of a pharmaceutical 

therapy of the infection using gene-specific drug signatures. 

The results we retrieved show, among the gene-specific top ranking drugs 

derived from our predictions on the clusters’ regulators, antimicrobials. This 

corroborates the potential of our approach to be combined with gene-

specific drug targeting.  

 



 

4.1.2 Introduction 

 

According to the world health organisation, Salmonellosis is the most 

frequent food-borne disease with around 1,5 billion infections world-wide 

yearly [320]. Disease in mammals usually occurs by oral ingestion of 

contaminated food or water. Systemic infection of animals and humans 

depends on the ability of the bacteria to survive the harsh conditions of the 

gastric tract before entering intestinal epithelial and subsequently other host 

cells. After entering the small intestine, Salmonella traverses the intestinal 

mucous layer and can invade non-phagocytic enterocytes of the intestinal 

epithelium by bacterial-mediated endocytosis. Once the epithelial barrier has 

been breached, Salmonella can enter intestinal macrophages, sensing the 

phagosomal environment and activating various virulence mechanisms in 

order to survive in the microbicidal environment of the host cells. 

Salmonella replicates within host cells in a membrane-bound 

compartment, the Salmonella-containing vacuoles (SCVs). Intravacuolar 

bacterial replication depends on tightly controlled interactions with host cell 

vesicular compartments. Salmonella type III secretion (T3SS) effector 

proteins subvert trafficking events and alter vacuole positioning by acting on 

host cell actin filaments, microtubule motors and components of the Golgi 

complex [378]. Salmonella replicates in SCVs in both nonphagocytic 

epithelial cells and macrophages by recruiting actin filaments (F-actin) and 

microtubule-dependent motors to migrate to the perinuclear region, where 

they intercept secretory traffic from the Golgi apparatus [378]. Once 

positioned, maturation is stalled and bacterial replication is initiated. 

Salmonella encodes two distinct T3SS on chromosomal pathogenicity islands 

1 and 2 (SPI1 and SPI2). Among 13 identified SPI1 factors, at least six 

coordinately trigger actin cytoskeletal rearrangements to force bacterial 

internalization into nonphagocytic cells [379]. The other SPI1 factors are 
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mostly involved in modifying signalling processes with indirect consequences 

on the host cell cytoskeleton. SPI2 effectors act subsequently in both 

epithelial cells and macrophages to promote intracellular replication and 

systemic spread [380]. Among the 19 currently known SPI-2 effectors, 

several interact with microtubules and microtubule-associated motors such 

as kinesin and dynein [381]. However, taking a system-wide view and 

determining the network of interactions between these proteins and the host 

proteins, is critical to grasp the mechanisms of host-pathogen response, is in 

its infancy. 

The identification of global networks of protein-protein interactions has 

been accelerated by the development of new high throughput technologies 

such as two-hybrid assays [382] and affinity purifications followed by mass 

spectrometry [383]. Thus, a vast amount of protein-protein interaction data 

has been collected for a number of different organisms, deposited in multiple 

repositories and codified using various nomenclature. Protein interaction 

networks are a useful tool for better understanding the biology of the cell, 

[126], [384] and characterizing diseases [152], [264]. The topology of 

networks and the neighbourhood of a of a given protein within a network 

[385] has been used to functionally characterize proteins [386] and their role 

in human diseases [387]. It is therefore expected that the use of system-wide 

approaches to study infectious diseases, and thus the protein interaction 

networks mediating the communication between pathogen and host, will 

yield new approaches to design target the pathogens. Thus, the relationship 

between a pathogen and its host has been studied by means of the common 

proteins in their signal transduction and metabolic pathways [283], [388]–

[390]. 

In this work we focus on Salmonella infection in human, we take a 

system wide approach using predictions of interactions based on interologs 

(when there are known interactions of similar proteins) by including 

interactions obtained by Tandem Affinity Purification (TAP) methods. We 
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analysed the biological pathways involved in Salmonella infection of human 

using Shortest Paths (SPs) analysis and, based on the idea that genes with 

similar behaviour can have one, or more, common regulator(s), we used a 

protocol for prediction of Main Regulators (MRs) that integrates ChIP data. 

With this approach we address the inter-specie mechanisms that allow the 

bacteria to hide and thrive inside human cells. On the other side, although 

we are aware that the increase of Salmonella infections in the last decade is 

due its antimicrobial resistance, we address the hypothesis of a 

pharmaceutical therapy of the infection using gene specific drug signatures. 

 
4.1.3 Materials and methods 

 

4.1.3.1 Microarray data 

We used microarray data on the response of 21 days monolayer cultured 

Human HT-29 cells to Salmonella wild-type infection. The data comprises 

three replicates, on Illumina Multiplex BeadArray Assays [98] harvested at 

15’, 30’, 1, 2, 4, 6, 8 and 24 hours after Salmonella infection (at OD600 nM= 

0,2). Additionally,the assays were set up on different days, using different 

cells grown from different stocks. For the sake of comparison, we further 

applied the invariant normalization method [353] contained in the  DNA-

Chip Analyzer software [103], [354] using as baseline the sample with median 

overall intensity. The resulting box-plots confirmed that the normalization 

step smoothed any differences among the different samples (Figure 1). 
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Figure 4-1: Box plots pre (left) and post (right) invariant normalization of 
Salmonella infected human microarray data. 

 

4.1.3.2 Clustering of genes with similar profiles  

We clustered human genes according to the similarity of their time 

expression profiles upon Salmonella infection on Illumina Multiplex 

BeadArray Assays (see before). For a global view of time-series data, we 

applied the Short Time-series Expression Miner (STEM) algorithm [125], 

which is specifically designed for clustering genes looking at their expression 

profiles derived from microarray experiments with a few time points (~8 

time points or fewer). We computed Gene Ontology (GO) enrichments of 

the clusters using the default STEM parameters.  

 

4.1.3.3 Prediction of Main Regulators 

For each cluster obtained with STEM (see before), we retrieved the 

promoters of all of its genes from the Eukaryotic Promoter Database [391]. 

Then, with the DISPOM program [82], we extracted a putative binding-site 

motif common to the maximum number of genes within the cluster. We 

used the promoters of the genes in the remaining clusters as background. 

Potential binding motives for each cluster were reported by means of 

position-weight matrices (PWM) if they reached a p-value smaller than 10-4. 

Then, with TReg comparator [215], we searched for matches between the 
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retrieved PWMs and the PWMs available for human TFs. We used a 

dissimilarity score of 0.9 to accept the TFs as potential main regulators 

(MRs) of the cluster. Finally, we used these MRs to find existing chemical 

compounds that are known to affect their expression from the cmap 

database (v.02) [314]. This database provides a total ranking of almost 22,000 

Uniprot accession of genes, according to their differential expression profiles 

when treated with different bioactive small molecules. 

 

4.1.3.4 Cross-species network  

To infer the complete human-Salmonella PPI network (PIN), we used 

the server BIPS[295]. We set the conditions of sequence similarity as follows: 

maximum blast e-value threshold 0.001, percentage of identical residues 

limited to 60%, 80% minimum coverage between Salmonella-query and 

human-template sequences. We applied the “matrix” model for co-complex 

methods, such as tandem affinity purification.  

 

4.1.3.5 Detection of potential Human TFs among Salmonella 
proteins. 

We tested the hypothesis that a Salmonella protein could act directly as a 

host TF. We checked potential homologs between Human TFs and 

Salmonella proteins on the basis that two TFs are more likely to bind 

(consequently promoting the transcription of the same set of genes) if their 

sequences are highly similar and have common PPIs [237]. For the criterion 

of sequence similarity we used Rost’s sequence identity curve of the twilight-

zone [362]. Additionally, we tested a second filter if they shared at least one 

DNA-binding domain from Pfam [285]. Finally, we used a third filter if they 

shared at least one common interactor.  

We used the sequences of the 1,624 human TFs and the Salmonella 

proteome from UniProt [284]. For each host TF, we performed a BLAST 
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[363] search against Salmonella and identified all hits according to Rost’s 

sequence identity curve [362]. For the Pfam-based orthology, the sequences 

of both human and Salmonella proteins were scanned against Pfam [285] 

using HMMER (version 3.0) [364]. We only considered hits over the 

HMMER inclusion threshold involving Pfam domains classified as DNA-

binding domains.  

 

4.1.3.6 Shortest paths analysis 

We obtained shortest paths (SPs) smaller than 4 steps between effectors 

and MRs using NetworkX[361]. Among these paths we focused on those 

containing human plasma membrane proteins in order to restrict the analysis 

to a small amount of shortest paths involving the first contact with the 

Salmonella-containing vacuoles (SCVs). 

 
4.1.3.7 Gene-specific drug signature Shortest paths analysis 

Given the ability of Salmonella to hide inside host cells, we addressed this 

problem by searching any pharmaceutical compound with the potential to 

affect the observed gene expression. We tackled this by searching in the 

connectivity map database (cmap v.02) [314] which drugs are reported to 

affect the predicted MRs. This database provides a total ranking of almost 

22,000 Uniprot accession of genes, according to their differential expression 

profiles when treated with different bioactive small molecules. Our 

approach, depicted in Figure 2, searches for the MRs in the cmap gene 

ranking and extracts the drugs that are reported to have more effect on the 

expression of the MRs. We thus obtain a ranking of drugs according to their 

capacity to cause changes in the expression of the TFs that, in turn, we 

predicted to control the expression of the genes in the clusters. 
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Figure 4-2: Toy example of MRs specific drugs ranking. A) In the cmap 
ranking of the genes according to their drug specific differential expression 
profiles we search for our predicted MRs. B) We extract the minimum ranking 
value for each drug, in other words we search which drugs are reported to affect 
more the expression of each MR. C) We rank drugs in descending order 
according to the minimum value found earlier.   

 

4.1.4 Results 

 

4.1.4.1 Time series analysis of gene expression 

We used microarray data on the human response to Salmonella typhymurium 

WT strain infections from Multiplex BeadArray Assays. First, genes without 

sufficient response were neglected, setting the threshold of minimum 

absolute expression change to 1. Second, we applied STEM to cluster genes 

with similar profiles. We obtained 4 significant profiles containing 121 genes 

(Table 1), this is 0.35% of the total number of genes in the array.  
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Profile 

6 

ANXA4, C12ORF23, C13ORF7, FLJ43681, FNIP2, G3BP1, KRT20, 

LOC100129657, LOC100131261, LOC100131572, LOC100132863, 

LOC646909, LOC647673, MRPL1, PTGES3, RPL7 

Profile 

10 

CDCA5, CTPS, DSCC1, FUT4, HMGCS2, HSPE1, KHK, KIFC1, 

LOC731314, METTL1, MOSC1, MYB, RAB7B, SIGMAR1, SRM 

Profile 

37 

CXCL1, CYP51A1, EPS8, FOSB, FOXA3, IL8, LOC100134504, 

LOC220433, LOC286512, LOC641848, LOC642989, LOC646527, 

LOC730255, RN7SK, TSC22D1, ZFP36L1 

Profile 

39 

AARS, ADM, ADM2, ASNS, ATF3, AXUD1, BCL3, BIRC3, C6ORF223, 

CCL20, CEBPG, CHAC1, CLK1, CTH, DDIT3, DDIT4, DUSP1, DUSP5, 

EFNA1, ENO2, ERN1, ERO1L, FAM129A, FTH1, GDF15, GTPBP2, 

HBEGF, IFITM3, IFRD1, IL15, IL1RAP, IRAK2, IRF1, IRF7, JMJD1A, 

LARP6, LCN2, LINCR, LOC730256, LTB, MT1X, MUC1, NFIL3, 

NFKB2, NFKBIA, NUPR1, P8, PCK2, PHGDH, PI3, PIM1, PPP1R15A, 

PSAT1, PTGS2, RBCK1, RELB, S100A3, S100P, SARS, SAT1, SBNO2, 

SDC4, SERPINA3, SLC3A2, SLC7A5, SLCO4A1, SMOX, SNORD48, 

SPIRE1, TAP1, TGM2, TRIB3, ULBP1, VEGFA 

 

Table 4-1: Genes clustered according to the similarity of their expression 
profiles. 

 
4.1.4.2 Prediction of Main-Regulators (MRs) 

We were able to predict a total of 43 putative MRs for 3 clusters 

(encoded 6, 39 and 10) when using the approach described in methods (see 

Table 4-2). For cluster “37” the prediction failed and we were unable to 

assign any predicted TF acting as MR. 
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Profile 39 
ZIC2,ZBTB7C,ZIC4,ZIC3,PLAGL1,KLF7,EGR4,KLF15

,ZIC5,SP5,ZNF202,MZF1,ALX1 

Profile 6 
MTL5,ARID3C,ARID5A,HOXB6,RAX2,LHX3,NANO

GP1,HLX,PDX1,HOXC13,HOXB13 

Profile 10 
ZBTB7C,KLF7,EGR4,ZIC5,GLIS2,ZIC3,ZNF202,ZIC2,

ZIC4,ZNF148,SP5,SP9,PLAGL1,ZNF740,MZF1,ZNF26

3,KLF15,MLL, DNMT1 

 

Table 4-2: Putative MRs retrieved for the gene expression clusters retrieved 
with STEM. 

 

Overall, we predicted more than one potential MR for each cluster, while 

some predicted MRs could regulate more than one profile. We also found a 

direct connection between clusters that were regulated by the same TFs: for 

example, all the predicted putative MRs of profile 39, with the exception of 

ALX1, are also predicted putative MRs of the profile 10. In total, only 31 

TFs were univocally predicted as MRs of one single cluster. 



Salmonella infection in human 

 

157 

Figure 4-3: Predicted MRs and clusters regulated. In the figure we 
highlighted, by separating them, the common MRs between clusters 39 and 10. 

 

4.1.4.3 Paths shorter than 4 steps in the PIN between MRs and 
potential receptors or Salmonella effectors 

4.1.4.3.1 Path at 0 steps: when a Salmonella protein acts as a 
human TF 

In order to cover the hypothesis of a Salmonella protein acting directly as 

a host TF, we tested sequence and function similarities between Salmonella 

proteins and human TFs (see methods). 

We obtained several proteins in agreement with the criterion of sequence 
similarity (see methods) and searched for common interactions in the 
Human-Salmonella PIN. Interestingly we found 4 Salmonella effectors and 6 
human TFs with sequence similarity. However, none of them shared 
interactions or a Pfam domain specific of DNA binding ( 
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Table 4-3).  

 

Human Uniprot entry 
Salmonella 

Uniprot entry 

Sequence 

Identity 

Coverage of 

Target 

Coverage 

of TF 

RFX1_HUMAN SSPH1_SALT1 31% 12% 9% 

FOXI2_HUMAN SOPA_SALT1 36% 9% 28% 

MEF2B_HUMAN SOPA_SALT1 34% 9% 22% 

GBX2_HUMAN SSPH2_SALT1 41% 7% 18% 

PRRX1_HUMAN SSPH2_SALT1 42% 6% 25% 

ZHX1_HUMAN SLRP_SALT1 36% 10% 10% 

 

Table 4-3: Salmonella effectors that could act as Human TFs according to 
the criteria of sequence similarity. Percentage of identical residues aligned 
(sequence identity) and coverage of the aligned region with respect to the TF 
(Coverage of TF) and the Salmonella protein (Coverage of target) are shown for 
the criteria of sequence similarity. 

We also studied the similarity between any Salmonella protein and the 
predicted MRs (

 

Human Uniprot 

entry 

Salmonella 

Uniprot entry 

Common Pfam 

domains 

Sequence 

Identity 

Coverage 

of Target 

Coverage 

of TF 

ZN202_HUMAN D0ZNY7_SALT1 NA 31% 33% 26% 

SP5_HUMAN D0ZIU5_SALT1 NA 31% 22% 29% 

KLF7_HUMAN D0ZM42_SALT1 NA 28% 26% 65% 

MZF1_HUMAN D0ZUX2_SALT1 NA 40% 9% 12% 

ZN263_HUMAN D0ZRV5_SALT1 NA 33% 5% 14% 

DNMT1_HUMAN D0ZLC0_SALT1 DNA methylase 29% 36% 12% 

PLAL1_HUMAN 
D0ZLN1_SALT1 NA 62% 3% 7% 

D0ZXB6_SALT1 NA 36% 15% 17% 

ODPX_HUMAN 

D0ZJZ1_SALT1 NA 33% 35% 47% 

D0ZKY0_SALT1 NA 34% 13% 29% 

D0ZQF2_SALT1 NA 32% 96% 90% 
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Table 4-4). We found 8 putative MRs similar to Salmonella proteins 

according to the sequence criterion. None of these sequences shared 

common interactions, and only for 1 sequence (D0ZLC0_SALT1) we found 

a common Pfam domain with the MR (DNMT1_HUMAN) that  could be 

indirectly associated with DNA-binding (a DNA-methylase Pfam domain).  
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Table 4-4: Salmonella proteins that could act as Human MRs of the STEM 
clusters according to the criteria of i) sequence similarity; ii) common Pfam 
domains. Percentage of identical residues aligned (sequence identity), coverage of 
the aligned region with respect to the TF (Coverage of TF) and the Salmonella 
protein (Coverage of target) are shown for the criteria of sequence similarity. In 
the third column we mention, eventually, the names of the Pfam domains in 
common. 

4.1.4.3.2 Paths between 1 and 3 steps 

We calculated all paths shorter than 4 around the predicted MRs 

connecting them with Salmonella effectors and focused only on those 

involving human plasma membrane proteins. The implication of plasma-

membrane proteins would be relevant for acting as receptors of a direct-

interaction with the bacterial effectors in the SCVs entering the human cell. 

A large number of SPs were 3-step connections between a set of 6 MRs 

(ZIC2_HUMAN, GLIS2_HUMAN, PDX1_HUMAN, ZIC5_HUMAN, 

ODPX_HUMAN and A1YLA_HUMAN) and two Salmonella effectors: 

SPVB_SALT1 and SOPA_SALT1.  We additionally found some SPs, also of 

3-steps, between SPVB_SALT1 and four predicted MRs (ZN148_HUMAN, 

ZN740_HUMAN, DNMT1_HUMAN, and Q4FD37_HUMAN,) and two 

Human Uniprot 

entry 

Salmonella 

Uniprot entry 

Common Pfam 

domains 

Sequence 

Identity 

Coverage 

of Target 

Coverage 

of TF 

ZN202_HUMAN D0ZNY7_SALT1 NA 31% 33% 26% 

SP5_HUMAN D0ZIU5_SALT1 NA 31% 22% 29% 

KLF7_HUMAN D0ZM42_SALT1 NA 28% 26% 65% 

MZF1_HUMAN D0ZUX2_SALT1 NA 40% 9% 12% 

ZN263_HUMAN D0ZRV5_SALT1 NA 33% 5% 14% 

DNMT1_HUMAN D0ZLC0_SALT1 DNA methylase 29% 36% 12% 

PLAL1_HUMAN 
D0ZLN1_SALT1 NA 62% 3% 7% 

D0ZXB6_SALT1 NA 36% 15% 17% 

ODPX_HUMAN 

D0ZJZ1_SALT1 NA 33% 35% 47% 

D0ZKY0_SALT1 NA 34% 13% 29% 

D0ZQF2_SALT1 NA 32% 96% 90% 
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more between SOPA_SALT1 and the predicted MRs B2RG49_HUMAN 

and ZBT7C_HUMAN.   

 

4.1.4.4 Prediction of drugs for Salmonella infection based on 
MR-targets 

We searched in cmap [314] for any drug with the potential to affect the 

expresison of the predicted putative MRs (see methods). Among the best 

ranked TF we found ARI5A_HUMAN , which is affected by Trichostatin A. 

Trichostatin A can be used to alter the profile of gene expression by 

interfering with the removal of acetyl groups of histones (histone 

deacetylases, HDAC) and the ability of DNA transcription. Ranks third and 

fourth are for ornidazole and despiramine also acting on ARI5A_HUMAN 

and affecting the regulation of the genes in profile 6. It’s noteworthy that, we 

found tetracycline ranking five. Tetracycline affects the predicted main 

regulator that produces ZIC4_HUMAN, an inhibitor of the protein 

synthesis indicated for use against many bacterial infections. Reinforcing this 

point, in rank seven we found another known broad-spectrum antimicrobial 

drug, berberine, also affecting the expression of ZIC4_HUMAN and 

consequently the expression of genes in profiles 39 and 10. 
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4.1.5 Conclusions and discussions 

This is a multidisciplinary approach that integrates the analyses of high-

throughput sources of data, in-silico PPI predictions and protein-DNA 

binding to predict potential transcription factors implicated Salmonella 

infection of its host (human), and the underlying mechanisms of activation. 

Due to the rapidity of the invasion process of Samonella, our approach was 

specifically designed for short time series expression data. The integration 

step with in-silico predictions allowed us to hypothesize which transcription 

factors may be more involved in the regulation of the response of human 

cells upon invasion. Finally, we explored the potential role of drugs, some of 

them already applied in the therapy of Salmonellosis, that are directed to the 

predicted regulation and TFs of the cell response. The response of human 

cells can be modified by the drug, preventing Salmonella from hiding and 

evading the immune response.   

We are aware of the spectacular and to date unique tolerance of 

Salmonella to extreme divergence of host species from plants to animals. 

This, combined with its antimicrobial resistance properties, leads to the 

necessity of the development of novel approaches to fight this growing 

global health problem.  

A more detailed picture from the system biology approach may arise by 

the consideration that the networks we studied are static. Furthermore, it is 

known that Salmonella proteins can have different functions depending on 

their location [392]. Therefore, dealing with network time and location 

dependant may add an extra level of information. The prediction of main 

regulators involved in the response of the human cell to the invasion by 

Salmonella can be very useful to address this dynamic behaviour. 

Finally, our approach can help to understand the mechanisms of action of 

some drugs used for therapy of Salmonellosis. Although antimicrobial 

therapy is not recommended for uncomplicated Salmonella gastroenteritis, 
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the determination of antimicrobial resistance patterns is often valuable for 

surveillance purposes [393]. Our approach based on drug specific gene 

signature retrieves coherent results with the actual therapies. Our results are 

encouraging, despite of suffering from the lack of genetic signatures for all 

drugs stored in Drug Bank. 

 

4.1.6 Bibliography 

The Bibliography for this chapter is at the end of this thesis. 
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In this chapter is presented a novel approach for the study of pharmaco-

dynamic drug-drug interactions. Form public databases direct and indirect 

drug-targets are derived. In this context indirect are considered the most 

affected genes by the consumption of the chemical compound. The 

previously described methodology to reveal putative regulators is then 

applied to synthetically identify which transcription factors are affected by 

the drug. The combination of experimentally validated TF-gene and protein-

protein interactions into a single human “signalling network” allows the 

description of the mechanisms of signal transduction leading from direct to 

indirect drug targets. Based on the hypothesis that interacting drugs should 

act on the same paths we modelled computationally the signal transduction 

by means of a message-passing algorithm. The targets of both drugs are used 

as signal emitters and their gene profiles (through the proposed MRs) as 

receivers. Then we compared and analysed the scores retrieved by the 

transcription factors and genes differentially expressed by both drugs for a 

few selected examples of interacting drugs. 

 

 

This approach demonstrated promising results. I plan to benchmark it 

(see Discussion of this thesis) before its publication. 
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5.1.1 Abstract 

 

For many decades the drug discovery field was dominated by the 

paradigm “single-drug, single target”. Experience taught us about drug un-

specificity, leading to side effects and toxicity. Recent advances in network 

pharmacology have enabled a system-biology view by which the chemical 

compound not only affects its targets but also their interactions. Thus, 

considering the cellular context of therapeutic targets has the potential to 

reduce toxicity and drug resistance while improving their clinical efficacy. 

The study reported here perfectly fits into this frame. Through the 

integration of protein-protein interactions (PIN) and gene regulatory 

networks (GRN), we propose the application of a two-phase approach in 

order to identify the type of pharmaco-dynamic interaction occurring 

between two drugs. The first step consists in the identification of the 

transcription factors that are more likely to be affected by the consumption 

of a given drug, that we will call main regulators (MRs). We base this search 

on drug-genetic signatures, high-throughput derived and publicly available. 

In the second stage a message-passing algorithm is adopted to simulate the 

signal transduction from the known drug targets to the previously identified 

MRs. The results retrieved from the comparison of the scores obtained by 

the MRs and the regulated genes when the drugs are used alone or in 

combination, show that this approach allows distinguishing between 

different types of pharmaco-dynamic interactions.  
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5.1.2 Introduction 

Adverse effects of drugs are one of the major risks of patient care and 

has become one of the major expenses of wellbeing in developed countries 

[394]. Several researches have addressed this problem by ranging from 3D 

pharmacophoric similarity studies [395] to mined databases and networks of 

chemicals and bio-targets (i.e. SIDER [306] and STITCH [396]). For many 

decades the drug discovery field was dominated by the paradigm “single-

drug, single target” but experience taught us about drug “promiscuity”: drugs 

that were theoretically single-target designed turned out not to be so specific. 

This leads to drug side effects and toxicity. The most widely known case is 

Sildenafil (known as Viagra), initially designed to relax coronary arteries to 

increase blood flow, turned out to have a side effect more profitable: penile 

erection [397]. Another example is the one of efalizumab, approved to treat 

autoimmune diseases, like psoriasis, five years later was removed from the 

market because it was responsible for the reactivation of the latent 

polyomavirus JVC [398]. The recent advent of network pharmacology [247] 

exploits the current knowledge of systems biology to study how one or more 

drugs affect not just their molecular targets, but also their network. This 

approach accommodates for the presence of multiple functions, alternative 

paths and backup circuits that lead to an increase of the robustness of 

biological systems to perturbations [399], such as a drug. Considering the 

cellular context of therapeutic targets has the potential to improve clinical 

efficacies through different strategies and to reduce toxicity and drug 

resistance. The most promising strategies include drug repositioning, finding 

new uses of existing drugs, and the identification of interacting drugs that 

can be used in combination to treat a certain phenotype in a synergistic 

fashion. Drug-drug interaction (DDI) occurs when the pharmacologic effect 

of a given drug is altered by the action of another drug leading to different 

clinical outcome than with individual drugs alone. Two types of DDIs are 

possible: pharmaco-kinetic and pharmaco-dynamic ones. The first type 
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consists in one drug changing the systemic concentration of another, thus 

altering its effect. The second ones occur when interacting drugs have either 

additive or synergistic effects, in which case the overall effect is increased, or 

opposing/antagonistic effects, in which case the overall effect is decreased or 

even ‘cancelled out’.  

Among the advantages of studying DDI, apart from the mentioned 

reduction in the risk of undesired side effects and drug resistance, is the fact 

that the single compounds have already been human approved, allowing an 

eventual experimentation on the combination to enter directly in Phase II, 

reducing cost and time of the study.  

In the context of network pharmacology, an increasing number of 

computational methods has been developed, or adapted, to predict DDI, 

which allows for high-throughput in-silico screening and predictions, thus 

further lowering cost and time. Such computational methods can be 

similarity based or knowledge based. The first ones include methods based, 

for example, on the chemical structure of the compounds, two drugs are 

linked if they share structural properties [304], on the targets, two drugs are 

connected if they share at least one target protein [400], on indications, the 

drugs are connected if they share a common therapeutic indication [401], on 

side effects, the link derives from the similarity of the drug’s side effects 

[305], on gene expression profiles, that connect drugs according to the 

correlation of the resulting gene expression data [314] and on clinical effects 

[402]. Most of them were previously applied for drug discovery but can be 

employed also for studying DDI. Another tool for predicting DDI is INDI, 

whose predictions are based on chemical and side effect similarity to known 

interactions [318]. Knowledge-based methods predict DDI based on 

scientific literature, for example STITCH [403] that links two drugs 

according to a literature co-occurrence scheme, electronic medical record 

database [404] and the Food and Drug Administration Adverse Event 

Reporting System. In the latter case drugs are connected if they are 
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associated at least to one reported adverse event not attributable to the 

individual drugs alone [405].  

In this work we propose the integration of protein-protein interaction 

networks (PIN) and gene regulatory networks (GRN) for studying DDIs. 

After the creation of a joint PIN-GRN network and the identification of 

putative main regulators (MRs) derived from the gene expression signatures 

specific for each drug, we apply a message passing algorithm to the paths 

starting from the drug targets, first individually for each drug and then in 

combination. We compare, for each type of DDI, the scores obtained by the 

predicted MRs and the most affected genes derived from cmap (see 

methods) in the individual and combined cases.   

 

5.1.3 Materials and methods 

 

5.1.3.1 Direct and indirect targets of drugs retrieved from 
public databases 

Given a drug of interest the first step of our approach is to search for its 

targets in Drug Bank (v.4.3) [319]. We then investigate which genes are most 

affected by the consumption of the pharmaceutical compound. To do this 

we build drug-genes connections derived from the connectivity map 

database (cmap v.02) [314]. This database provides a total ranking of almost 

22,000 uniprot accession of genes, according to their differential expression 

profiles when treated with different bioactive small molecules.  

5.1.3.2 Prediction of transcription factors affected by drugs 

We then retrieve the promoter regions of the top 15 most affected genes 

(profiled-genes), by using the Eukaryotic Promoter Database [391], and, 

subsequently, we look for putative transcription factor binding motifs at 

their promoter shared by the majority of the 15 genes, by using DISPOM 
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[82]. The promoters are then scanned for occurrences of these motifs using 

FIMO [214] in a combined database of Position Weight Matrices of TFs 

collected from CisBP [94] and Jaspar [84]. Thanks to this we will be able to 

create paths that go from the drug to its most affected genes, passing from 

drug targets first and then from the TFs responsible for such difference in 

expression, that we call putative main regulators (MRs).  

5.1.3.3 Signalling network of drugs: from direct targets to 
genes expression 

First, we expanded the gene-regulatory network (GRN) linking TFs and 

the respective regulated genes, with the data of PAZAR [213], a public 

repository that contains transcription factors and regulatory sequence 

annotations. Second, we used the framework BIANA (release 2013.1)[199] 

to integrate several sources of protein-protein interactions (biogrid [191], dip 

[192], hprd [193], intact [296], mint [297] and, from the UniProt consortium, 

Swiss-Prot and Trembl [406]) and obtain the an experimentally validated 

human PPI network (PIN) by yeast two hybrid experiments. However, there 

is a low number of interactions for TFs that can be trusted by yeast-two-

hybrid experiments. Therefore, we added the protein-protein interactions 

associated with TFs obtained by affinity purification methods. Finally, we 

merged both networks (PIN+GRN) to describe mechanisms of signal-

transduction into a single “signalling network” (SN) and mapped our drug-

target knowledge: i) identifying the protein drug-targets from Drug Bank; 

and ii) selecting the most affected genes by the drug from the cmap database, 

together with their putative MRs previously predicted.  

 

5.1.3.4 Computational modelling and analysis of the signalling-
network (SN) 

Our objective was to compare the connections linking drug-targets with 

its cellular expression consequences between two drugs. We were interested 

in those paths implicated in the expression signature of a drug and identify if 
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two drugs could be related or associated if they were acting on the same 

paths. Therefore, we modelled the signal transduction computationally by 

means of a message-passing algorithm for gene prioritization, using drug 

targets as sources of the signal (seeds) and the gene profiles of the drug 

(throught the proposed MRs) the receivers of the signal. We applied a 

modified version of the NetScore algorithm of GUILD [282], to obtain the 

raw scores, running 5 iterations. First, we scored the nodes of the SN for 

each drug, using their corresponding seeds. Second, we used the seeds of 

both drugs to score again the nodes of the network. Then, we compared and 

analysed the scores of all nodes and in particular the set of common 

transcription factors and genes differentially expressed by both drugs.  

 

5.1.3.5 Analyses of drug-drug interactions 

We tested our comparison on a few selected examples of interacting 

drugs from the drug combination database (DCDB v.2.0) [407], which 

contains and organizes 1363 known examples of drug combinations with 

their activity/indications, possible mechanisms and drug interactions 

between its components. The database classifies efficacious or non-

efficacious combinations: all the ones approved from the Federal and Drug 

Administration (FDA) are classified as efficacious, for drug combinations in 

Phase I trial are considered efficacious if the overall outcome is a “pass” and 

there is evidence of improved benefits. In case it is a Phase II/III/IV trial 

the efficiency depends on the absence of unacceptable toxicity and on the 

increase of effectiveness compared to current first-line or single mono-drug 

therapies. In case of a pre-clinical trial only this last aspect is taken into 

consideration to categorize the combination. The interactions of two drugs 

toward a specific phenotype can be classified as synergistic, additive or 

antagonistic: synergistic when both drugs address the same phenotype and 

the measure of their action is higher than the simple addition of both; 

additive when the result in efficiency of two drugs can be interpreted as the 
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sum of both; and antagonistic, when the effect of one drug is diminished by 

the other. 

Consequently, we compared the scores of predicted MRs and drug-

profiled genes. For each predicted MR and gene of the drug-profile, we 

calculated the score-difference of drugs A and B, and named ∆AB, between 

the scores obtained when using the seeds of both drugs (score of the 

combination, ScAB) and the sum of scores obtained when using each single 

drug (ScA and ScB).  

 

5.1.4 Results 

From DCDB (v.2.0) [407] we extracted a few examples for all the types 

of pharmaco-dynamic interactions mentioned above for which we could find 

data relative to their targets in Drug Bank, most affected genes in cmap and 

consequent prediction of putative MRs. We ran our algorithm and here we 

present our first results both in terms of MRs and most affected genes from 

cmap. The predicted genetic interactions for each drug in this study are listed 

in Supplementary Material. 

 

5.1.4.1 Additive drug-drug interactions 

In the case of additive interaction, the effect of the combination of two 

drugs should be reflected by the “sum” of the effects of each individual drug. 

Thus, we expect the scores obtained by drug-profiled genes and their 

putative MRs with the seeds of the combination of the two drugs to be equal 

to the sum of scores obtained when using individual drugs. We tested our 

results for the combinations involving dorzolamide and timolol on one side 

and, on the other hydrochlorotiazide and metoprolol (Table 1). The results 

are in agreement with our hypothesis, implying that for additive drug-drug 
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interactions the pathways connecting the targets with the main-regulators of 

the expression profile of each drug are the same or equally distant.  

A) 

B) 

Table 5-1: GUILD scores of putative MRs in the case of additive DDI. In the 
table are shown the scores obtained by the predicted putative MRs, derived from 
the cmap database (in the first column), using the targets of each drug 
individually as seeds (second and third columns) and for the drug combination 
(fourth column). Scores are calculated using the NetScore algorithm in GUILD. 
Section A) refers to the combination dorzolamide-timolol and section B) to 
hydrochlorothiazide-metoprolol. 

Our approach did not find any putative MR (see methods) for 

dorzolamide and hydrochlorothiazide, thus we checked, for each 

combination, the scores of their most affected genes according to cmap and 

we confirm the same observation (Table S1). Only exceptions, in the case of 

dorzolamide and timolol, are EFNB3_HUMAN and CASL_HUMAN, with 

a non-significant lower (∆=-0.0357) and higher score (∆= 0.00045), 

respectively,. 

 

 Uniprot entry 
Dorzolamide 

ScA 

Timolol 

ScB 

Combination 

ScAB 

ΔAB 

Putative 

MR 

Timolol 

SIX3_HUMAN 0.0128 0.02515 0.03796 0.0000 

Q8TBA2_HUMAN 0.0128 0.2515 0.03796 0.0000 

SIX4_HUMAN 0.00001 0.0247 0.02471 0.0000 

SIX1_HUMAN 0.02469 0.02561 0.0503 0.0000 

!

 Uniprot entry 
Hydrochlorothiazide 

ScA 

Metoprolol 

ScB 

Combination 

ScAB 
ΔAB 

Putative 

MR 

Metoprolol 

GLIS3_HUMAN 0.00047 0.00093 0.0014 0.0000 

ZN281_HUMAN 0.00137 0.00184 0.00321 0.0000 

D3GC14_HUMAN 0.01326 0.02607 0.03933 0.0000 

ZFY_HUMAN 0.00047 0.00093 0.0014 0.0000 

NFKB1_HUMAN 0.02515 0.03796 0.06311 0.0000 

!
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5.1.4.2 Antagonistic drug-drug interactions 

For antagonistic interactions, we considered the examples of the 

interactions diphenhydramine-theophylline and aminophylline-theophylline. 

The difference ∆ calculated on MRs were always negative (Table 2). In fact, 

we corroborated that the score of the combination of two drugs was always 

the best score of one of them, probing that the connection between the 

targets of one drug and its MRs were shorter than for the other drug. We 

also checked the drug-profiled genes and  we observed the same feature 

(Table S2). In particular for theophylline, it was not possible to predict a MR, 

therefore we could only perform this analysis on the drug-profiled genes. 

A) 

 

B) 

 

Table 5-2: GUILD scores of putative MRs in the case of antagonistic DDI. In 
the table are shown the scores obtained by the predicted putative MRs, derived 
from the cmap database (in the first column), using the targets of each drug 
individually as seeds (second and third columns) and for the drug combination 
(fourth column). Scores are calculated using the NetScore algorithm in GUILD. 
Section A) refers to the combination diphenhydramine-theophylline and section 
B) to aminophylline-theophylline. 

 
Uniprot 

entry 

Diphenhydramine 

ScA 

Theophylline 

ScB 

Combination 

ScAB 
ΔAB 

Putative MR 

diphenhy-

dramine 

SP1_HUMAN 0.05075 0.51989 0.5583 -0.01234 

A0PJI1_HUMAN 0.00275 0.03979 0.07865 0.03611 

!

 Uniprot entry 
Aminophylline 

ScA 

Theophylline 

ScB 

Combination 

ScAB 
ΔAB 

Putative MR 

aminophylline 

D3GC14_HUMAN 0.15135 0.01372 0.15135 -0.01372 

AP2C_HUMAN 0.1989 0.02561 0.1989 -0.02561 

KLF8_HUMAN 0.0279 0.01372 0.0279 -0.01372 

!
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5.1.4.3 Synergistic drug-drug interactions 

For synergistic interactions we selected the pairs: enalapril-

hydrochlorothiazide, imatinib-vorinostat and glipizide-metformin. 

The difference ∆ calculated on MRs were always 0, as in the case of 

additive interactions, the only exception we found is for enalapril-

hydrochlorothiazide (Table 3A). We could not retrieve putative MRs for 

hydrochlorothiazide and imatinib but in the case of glipizide and metformin 

we identified 9 common putative MRs:  

C9JXZ2_HUMAN, 

C9J6N8_HUMAN, 

F8WEX2_HUMAN, 

Q96SH1_HUMAN, 

AP2E_HUMAN, 

H7C5E5_HUMAN, 

C1K3N0_HUMAN, 

F8WDC8_HUMAN  

H7C4N4_HUMAN. 

Any of them was present in the network thus we could not check their 

scores. We then compared the differences ∆AB calculated on the top ranking 

nodes derived from the cmap database (Table S3). T22D4_HUMAN is the 

only case in which we observe an increased ∆AB combining the seeds of 

enalapril and hydrochlorothiazide. The other scores ∆AB,retrieved for the 

synergistic combinations studied show diminished values or 0s.  

A) 

B) 

 
Uniprot 

entry 

Enalapril 

ScA 

Hydrochlorothiazide 

ScB 

Combination 

ScAB 
ΔAB 

Putative MR 

Enalapril 
AP2C_HUMAN 0.02607 0.0375 0.06311 -0.0005 

!

 
Uniprot 

entry 

Imatinib 

ScA 

Vorinostat 

ScB 

Combination 

ScAB 
ΔAB 

Putative MR 

Vorinostat 

MEF2A_HUMAN 0.02561 0.06585 0.09146 0.0000 

HES4_HUMAN 0.03749 0.37403 0.41153 0.0000 

!
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C) 

 

Table 5-3: GUILD scores of putative MRs in the case of synergistic DDI. In 
the table are shown the scores obtained by the predicted putative MRs, derived 
from the cmap database (in the first column), using the targets of each drug 
individually as seeds (second and third columns) and for the drug combination 
(fourth column). Scores are calculated using the NetScore algorithm in GUILD. 
Section A) refers to the combination enalapril-hydrochlorothiazide, section B) 
to imatinib-vorinostat and section C) to glipizide- metformin.  

  

5.1.5 Conclusions and discussions 

Our network pharmacology approach for studying pharmaco-dynamic 

interactions integrates gene regulatory and protein-protein interaction 

networks for a better traceability of drug effects in the cell. It aims to find 

key players for defining the type of DDI. To do this a central role is played 

by a gene prioritization algorithm and we entrust the task to the comparison 

of the scores obtained by previously predicted main regulators in the genetic 

response to the specific drugs in the case of individual and combined drug 

consumption. The different topological combinations and how they can 

 Uniprot entry 
Glipizide 

ScA 

Metformin 

ScB 

Combination 

ScAB 
ΔAB 

Putative 

MR 

Glipizide 

SP1_HUMAN 0.1358 0.02515 0.16096 0.0000 

Q5T6X2_HUMAN 0.00092 0.00092 0.00184 0.0000 

AP2C_HUMAN 0.03704 0.01327 0.0503 0.0000 

SP5_HUMAN 0.00047 0.00001 0.00048 0.0000 

AP2B_HUMAN 0.03704 0.01327 0.0503 0.0000 

Putative 

MR 

Metformin 

I6L9H2_HUMAN 0.03704 0.01281 0.04985 0.0000 

!
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affect the specific ΔAB score calculations depending on the message passing 

algorithm are depicted and explained in Figure 1.  

 

 

Figure 5-1: Topology effects on the ΔAB score. The figure shows the different 
topological combinations that our ΔAB score reflects. It can assume negative 
values when the shortest path (SP) connecting the emitter of one drug to the 
receiver is shorter then the other. Thus the score assigned to the receiver will 
depend only on the message sent by the closer emitter. ΔAB can assume a value of 
0 when i) the emitter of one drug is not connected with the receiver or ii) the SP 
connecting the emitters from the two drugs and the receiver has exactly the same 
length. Finally we can observe positives scores when, using as seeds the 
combination of the two drugs targets, a node that was previously getting a lower 
score, now, being connected with both emitters, exhibits a higher score. The SP 
from this node to the receiver must of equal length than the previously found SPs. 

 

With some examples we proved that this approach reflects the 

expectations, in terms of scoring, for additive and antagonistic DDIs. 

Limitation to this type of approaches is the inability to handle novel drugs 

and the scarse availability of drug specific gene expression signatures, 

ScAB=ScSP= ScA 
ΔAB=ScA-ScA-ScB<0 

Emi$ers(

Receiver(

ΔAB<0 

ΔAB=ScAB-ScA-ScB 

ΔAB=0 

ScB=0 
ScAB=ScA+ScB= ScA 
ΔAB=ScA-ScA-ScB=0 

ScB=ScA 
ScAB=ScA+ScB= 2ScA 
ΔAB=2ScA-ScA-ScB=0 

ΔAB>0 

ScA’>ScA 
ScB’>ScB 
ScAB=ScA’+ScB’  
ΔAB=ScA’+ScB’-ScA-ScB>0 
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together with limited knowledge in the field of gene regulation. 

Notwithstanding this, it can be definitely considered a high potential 

approach as this type of information is collected in databases of increasing 

completeness. Further improvements to our approach involve the possibility 

to tune the initial scores of the seeds representing individual drug dosage and 

study the impact on the scores of the predicted putative MRs and gene 

expression signature. This better reflects that synergism is not merely a 

property of two drugs. It also depends on the doses of each in the 

combination. Thus, to determine synergism, point where our approach 

seems to be most deficient, a quantitative approach should begin with the 

individual dose-effect curves from which the combined additive effect is 

calculated. If the combined effect is significantly greater than the expected 

(additive) effect, there is synergism. 

Despite this, gene prioritization algorithms, together with the integration 

of PINs and GRNs appears to be a promising line for the pharmaco-

dynamic study of drug interactions. 

 

5.1.6 Bibliography 

The Bibliography for this article is at the end of this thesis. 
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5.1.7 Supplementary Information 

5.1.7.1 Predicted regulators of the top ranking genes found in 
cmap for each drug studied. 

 

Drug TF Gene 

Aminophylline 

 

ZIC5 klhl25 

KLF8 dusp9 

TFAP2A klhl25 

TFAP2E dusp9 

KLF6 dusp9 

KLF7 dusp9 

KLF7 klhl25 

KLF6 klhl25 

KLF8 klhl25 

TFAP2E klhl25 

TFAP2C klhl25 

Diphenhydramine 

 

TFAP2A ttll1 

SP1 s100a8 

HIC1 miip 

SP1 ndrg2 

MZF1 ndrg2 

MZF1 s100a8 

Enalapriil 

 

TFAP2C hps4 

TFAP2A hps4 

MECP2 hps4 

TFAP2E hps4 

ZIC5 hps4 

Glimepiride 

 

DNMT1 map4 

MLL plscr3 

ZIC5 map4 
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ZIC5 cat 

Glipizide 

 

KLF4 scaf4 

Klf4 scaf4 

TFAP2B klf6 

TFAP2C klf6 

KLF5 scaf4 

SP9 msh3 

KLF7 msh3 

TFAP2A klf6 

SP7 scaf4 

KLF5 msh3 

SP9 scaf4 

KLF7 scaf4 

TFAP2E klf6 

SP1 msh3 

SP1 scaf4 

SP6 scaf4 

SP7 msh3 

KLF4 msh3 

SP5 scaf4 

SP6 msh3 

SP5 msh3 

Klf4 msh3 

Metformin 

 

DNMT1 flnc 

DNMT1 ap1s1 

TFAP2E ap1s1 

TFAP2A ap1s1 

TFAP2E rpl10 

ZIC5 ap1s1 

Metoprolol NFKB1 fgfr2 
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 TFAP2A srpk3 

KLF6 irf9 

ZFY fgfr2 

GLIS3 irf9 

TFAP2A tp53i11 

Sox3 fgfr2 

KLF6 fgfr2 

ZNF281 irf9 

KLF7 irf9 

TFAP2A fgfr2 

ZIC5 irf9 

KLF7 srpk3 

KLF7 fgfr2 

KLF6 srpk3 

Vorinostat 

 

MEF2A dnajc6 

HES4 st3gal5 

TCFL5 st3gal5 

MEF2A st3gal5 

HES4 dnajc6 
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Table S 5-1: GUILD scores of top ranking cmap genes in the case of additive 
DDI. In the table are shown the scores obtained by the top ranking genes from the 
cmap database (in the first column), obtained using the targets of each drug 
individually as seeds (second and third columns) and for the drug combination 
(fourth column). Scores are calculated using the NetScore algorithm in GUILD. 
Section A) refers to the combination dorzolamide-timolol and section B) to 
hydrochlorothiazide-metoprolol. 

A) 

 

 

  

 Uniprot entry 
Dorzolamide 

ScA) 

Timolol 

ScB 

Combination 

ScAB 
ΔAB 

Cmap 

Timolol 

IFIT1_HUMAN 0.00091 0.013172 0.01463 0.0005 

TTC38_HUMAN 0.00091 0.00183 0.00274 0.0000 

Q86V38_HUMAN 0.12346 0.04938 0.17284 0.0000 

CXCR4_HUMAN 0.00046 0.01372 0.01418 0.0000 

STX7_HUMAN 0.00091 0.11248 0.1134 0.0000 

EFNB3_HUMAN 0.02469 0.02561 0.01463 -0.03567 

Cmap 

Dorzolamide 

PLS3_HUMAN 0.0128 0.01372 0.02652 0.0000 

MASP1_HUMAN 0.02469 0.13626 0.16095 0.0000 

CFLAR_HUMAN 0.00091 0.00183 0.00274 0.0000 

ZN609_HUMAN 0.00091 0.00183 0.00274 0.0000 

ZN639_HUMAN 0.00046 0.00093 0.00139 0.0000 

PGFRA_HUMAN 0.0046 0.00002 0.00049 0.0000 

FGF1_HUMAN 0.00091 0.01372 0.01463 0.0000 

ENOX1_HUMAN 0.11157 0.00183 0.1134 0.0000 

CASL_HUMAN 0.0128 0.00138 0.01463 0.0005 

!
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B) 

 

 

 

  

 Uniprot entry 

Hydrochloro-

thiazide 

ScA 

Metoprolol 

ScB 

Combination 

ScAB 
ΔAB 

map 

Metoprolol 

MX1_HUMAN 0.00137 0.12483 0.12621 0.0000 
Q8TCE5_HUMAN 0.02515 0.00229 0.02744 0.0000 

IFIT1_HUMAN 0.00092 0.00229 0.00321 0.0000 
SRPK3_HUMAN 0.01236 0.00093 0.01374 0.0000 

IRF9_HUMAN 0.02515 0.00229 0.02744 0.0000 
Q96E98_HUMAN 2e-05 2e-05 3e-05 0.0000 
OAS1_HUMAN 0.00092 0.00184 0.00276 0.0000 
IFI6_HUMAN 0.00092 0.00184 0.00276 0.0000 

Cmap 

hydrochloro-

thiazide 

DOK5_HUMAN 0.0247 0.11249 0.13719 0.0000 
PBIP1_HUMAN 0.01326 0.02561 0.03887 0.0000 
SVIL_HUMAN 0.11203 0.04985 0.16187 0.0000 

GBRB2_HUMAN 0.00092 0.00229 0.00321 0.0000 
ZN230_HUMAN 0.00092 0.00184 0.00276  
HSP76_HUMAN 0.01281 0.00138 0.01419  
PLCD1_HUMAN 0.01326 0.00184 0.0151  
NPHP1_HUMAN 0.00137 0.01418 0.01555  

!
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Table S 5-2: GUILD scores of top ranking cmap genes in the case of 
antagonistic DDI. In the table are shown the scores obtained by the top ranking 
genes from the cmap database (in the first column), obtained using the targets of 
each drug individually as seeds (second and third columns) and for the drug 
combination (fourth column). Scores are calculated using the NetScore algorithm in 
GUILD. Section A) refers to the combination diphenhydramine-theophylline and 
section B) to aminophylline-theophylline. 

A) 

 

 

B) 

 

 

 

 

  

 Uniprot entry 
Diphenhydramine 

ScA 

Theophylline 

ScB 

Combination 

ScAB 
ΔAB 

Cmap 

Diphenhy-

dramine 

S10A8_HUMAN 0.13763 0.17513 0.30041 -0.0124 
NDRG2_HUMAN 0.02607 0.06402 0.07775 -0.0123 
S10A7_HUMAN 0.02653 0.0407 0.05488 -0.0123 

MIIP_HUMAN 0.0023 0.04024 0.04208 -0.0005 

Cmap 

Theophyl-

line 

DNJA4_HUMAN 3e-05 0.00277 0.00279 0.0000 
RBGP1_HUMAN 0.0023 0.11568 0.11752 -0.0005 
TRPS1_HUMAN 0.05075 0.05258 0.09099 -0.0123 
AKA11_HUMAN 0.00139 0.04024 0.04118 -0.0006 
RB11B_HUMAN 0.01464 0.0279 0.04208 -0.0004 
SP100_HUMAN 0.05075 0.18701 0.22542 -0.0123 

!

 Uniprot entry 
Aminophylline 

ScA 

Theophylline 

ScB 

Combination 

ScAB 
ΔAB 

Cmap 

Thephylline 

DNJA4_HUMAN 0.00277 0.00138 0.00277 -0,0014 
RBGP1_HUMAN 0.11568 0.00183 0.11568 -0,0018 
TRPS1_HUMAN 0.05258 0.01372 0.05258 -0,0137 
AKA11_HUMAN 0.04024 0.02561 0.04024 -0,0256 
RB11B_HUMAN 0.0279 0.00183 0.0279 -0,0018 
SP100_HUMAN 0.18701 0.02561 0.18701 -0,0256 

Cmap 

Aminophylline 

B2RAL8_HUMAN 0.02835 0.00183 0.02835 -0,0018 
EFNA3_HUMAN 0.13901 0.00138 0.13901 -0,0014 
CC85B_HUMAN 0.08825 0.03749 0.08825 -0,0375 
CO1A1_HUMAN 0.05213 0.01372 0.05213 -0,0137 
TLR2_HUMAN 0.00277 0.00093 0.00277 -0,0009 

!
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Table S 5-3: GUILD scores of top ranking cmap genes in the case of 
synergistic DDI. In the table are shown the scores obtained by the top ranking 
genes from the cmap database (in the first column), obtained using the targets of 
each drug individually as seeds (second and third columns) and for the drug 
combination (fourth column). Scores are calculated using the NetScore algorithm 
in GUILD. Section A) refers to the combination enalapril-hydrochlorothiazide, 
section B) to imatinib-vorinostat and section C) to glipizide- metformin.  

A) 

 

B) 

 

 

 

 Uniprot entry 
Enalapril 

ScA 

Hydrochloro- 

Thiazide 

ScB 

Combination 

ScAB 
ΔAB 

Cmap 

Hydrochloro

-thiazide 

DOK5_HUMAN 0.11249 0.12347 0.23595 0,0000 
PBIP1_HUMAN 0.02561 0.02516 0.05077 0,0000 
SVIL_HUMAN 0.04985 0.13627 0.17377 -0,0124 
GBRB2_HUMAN 0.00229 0.00138 0.00321 -0,0005 
ZN230_HUMAN 0.00184 0.00138 0.00321 0,0000 
HSP76_HUMAN 0.00138 0.00138 0.00275 0,0000 
PLCD1_HUMAN 0.00184 0.00093 0.00231 -0,0005 
HPHP1_HUMAN 0.01418 0.00183 0.01555 -0,0005 

Cmap 

Enalapril 

Q5ST80_HUMAN 0.02607 0.02516 0.03888 -0,0124 
DYST_HUMAN 0.23549 0.01372 0.24875 -0,0005 
LZTR1_HUMAN 0.02607 0.02561 0.05122 -0,0005 
RRBP1_HUMAN 0.03751 0.02516 0.06266 0,0000 
T22D4_HUMAN 0.02607 0.11249 0.16187 0,0233 
NDE1_HUMAN 0.00183 0.00048 0.00229 0,0000 

!

 Uniprot entry 
Imatinib 

ScA 

Vorinostat 

ScB 

Combination 

ScAB 
ΔAB 

Cmap Vorinostat 

CTGF_HUMAN 0.13626 0.06585 0.20211 0,0000 
DPYL4_HUMAN 0.01372 0.01739 0.01922 -0,0119 
GLRX1_HUMAN 0.00138 0.0037 0.00507 0,0000 
CASL_HUMAN 0.14815 0.07774 0.22589 0,0000 
H10_HUMAN 0.01372 0.36215 0.37586 0,0000 
TBB2A_HUMAN 0.03749 0.18884 0.21445 -0,0119 
TBB2B_HUMAN 0.35848 0.1765 0.5231 -0,0119 

Cmap Imatinib 

Q5ST80_HUMAN 0.00183 0.21217 0.214 0,0000 
TGT_HUMAN 0.03749 0.07774 0.10334 -0,0119 
TRPC1_HUMAN 0.03749 0.1765 0.20211 -0,0119 
PI51A_HUMAN 0.00047 0.01331 0.01378 0,0000 
NPRL2_HUMAN 0.01372 0.0183 0.02012 -0,0119 
HSP74_HUMAN 0.01372 0.02928 0.04299 0,0000 
ENOX2_HUMAN 0.02561 0.01694 0.04255 0,0000 

!
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C) 

 

 

 

 

 Uniprot entry 
Glipizide 

ScA 

Metformin 

ScB 

Combination 

ScAB 
ΔAB 

Cmap Glipizide 

MILK1_HUMAN 0.00047 1e-05 0.00048 0,0000 
SFR15_HUMAN 0.00137 0.00092 0.00229 0,0000 
Q5T6X2_HUMAN 0.03704 0.00137 0.03841 0,0000 
CDK20_HUMAN 0.02515 0.00047 0.02562 0,0000 
IFI6_HUMAN 0.01326 0.00092 0.01418 0,0000 
SUGP1_HUMAN 0.00092 2e-05 0.00094 0,0000 
CUL7_HUMAN 0.01326 0.00092 0.01418 0,0000 

Cmap Metformin 

AP1S1_HUMAN 0.02515 0.00183 0.01463 -0,0124 
NEBL_HUMAN 0.11203 0.00137 0.1134 0,0000 
Q59H94_HUMAN 0.03704 0.02515 0.06219 0,0000 
PLK4_HUMAN 0.00137 0.00092 0.00229 0,0000 
DOK5_HUMAN 0.12391 0.00092 0.12483 0,0000 
RL10_HUMAN 0.01326 0.11157 0.12483 0,0000 

!
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 6 DISCUSSION





Discussion 

 

I have presented three different studies in this thesis, all of them 

revolving around a common theme: discovering new components of 

signalling pathways leading to the activation of main regulators of diverse 

biological processes from different biological species. Particularly, I have 

applied the same rationale to tackle two completely different problems: i) the 

invasion of a pathogen and its subsequent interaction with the hosts, 

Arabidopsis (in chapter 3) and human (chapter 4), and ii) the study of drug-

drug interactions.  Despite of the inherent biologically diversity among these 

three pieces of work, they share a number of common denominators 

allowing for a common strategy to address them :  

- Analysis of high-throughput data. Both the study of the 

mechanisms of Salmonella spp. infection (chapters 3 and 4), and 

the research for the two HPN-DREAM Challenges in which I 

participated (in the Appendix of this book), required the analysis 

of multiple types of data coming from different microarray 

platforms. In the study on drug-drug interactions (chapter 5) I 

made use of the connectivity map database that collects drug 

specific gene signatures derived from microarray experiments 

[314]. As previously introduced, this technology suffers from 

biased signals due to cross-hybridization and limited dynamic 

range from saturation of the fluorescence signal [40]. In 

addition, it is genome-annotation dependant. All these aspects 

have been solved with the advent of RNA-seq. With this 

technique gene expression levels of thousands of genes are 

measured simultaneously. The amount of additional 

information, with respect to microarrays, includes alternative 

splicing, allele-specific expression, un-annotated exons and 

novel transcripts (genes and non coding RNAs). The global 

view that can be obtained is much more detailed, with less prior 

knowledge. For these reasons, it is widely spreading in the 
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scientific community. Costs related to this technology are 

lowering and protocols are being unified. In part this 

revolutionary technology has already been used in drug 

discovery to identify drug-related genes [408] but clearly there is 

still much to learn in terms of cellular drug response, drug 

resistance and drugs combinations.  

Apart from microarrays, I exploited several databases containing 

high-throughput derived transcription factor (TF) DNA-binding 

profiles (CIS-BP [94], PAZAR [213] and JASPAR [84]) in order 

to predict putative main regulators (MRs) for a set of expressed 

genes of interest (chapters 3, 4 and 5). I would like to remark 

the fact that in all the work I modelled gene expression as a 

function of the sole activity of TFs. Although I am aware of the 

limitations of this assumption, which does not consider other 

crucial elements in transcriptional regulation, such as epigenetic 

factors, I showed that, by integrating several knowledge-based 

databases and experimental results, it is possible to identify 

those TFs which could, potentially, drive major gene expression 

signatures. This, using a simplified, easier to understand and to 

process analysis model, with the sufficient amount of data it is 

possible to obtain an acceptable prediction level.   

 

- Integration of the analysis of in -v ivo  data with protein-

protein interaction networks. Despite the continuous growth 

of available protein-protein interaction (PPI) data, our current 

knowledge of the mechanisms governed by such interactions is 

still limited. In order to gain insight in this topic –i.e. how 

specific PPI contribute to the expression of gene products 

performing certain biological functions, I made extensive use of 

BIANA [199] (chapter 5) and of the BIANA-derived server 
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BIPS [295] (chapters 3 and 4) for the study of Salmonella 

infection. The flexibility provided by the integration protocol of 

BIANA is one of the most remarkable features of this 

framework and very unique to it. This  flexibility allowed for 

selecting the exact type of interactions that better suited  the 

study of each biological question posed in this thesis. Taking 

advantage of such feature was specially relevant in the case of 

bacterial infection. The use of BIANA allowed mapping 

proteins from both the host and the pathogen on the same 

network. Applying, then, the message passing algorithm 

contained in GUILD [282] for the identification of new 

function-related components allowed the discovery of the host’s 

MRs and the prediction of more bacterial effectors (see below in 

this discussion). 

 

- Prediction of the main regulators of a group of genes. It has 

been previously introduced that checking the expression of 

thousands of genes provides the opportunity to find similarities 

among them.  Clustering algorithms play a central role on this 

task, grouping in the same cluster genes for which common 

transcriptional mechanisms can be hypothesized. This strategy is 

widely applicable in different experimental and computational 

settings. In these pages I consistently adopted the same strategy 

trying to identify one or more TFs, which I refer to as MRs, 

whose activity influences a larger group of downstream genes 

(chapters 3, 4 and 5). I used a variety of bioinformatics tools (i.e. 

DISPOM [82], T-reg comparator [215], FIMO [214] and 

Tomtom [216]) and databases (named in the first point of this 

list: Analysis of high-throughput data) to predict the MRs. Therefore 



Discussion 

196 

the predictions rely on a combination of genomic sequence 

information and database mining.  

This allowed the creation of a predicted gene regulatory network 

(GRN) that I further integrated in the PPI network in order to 

understand the regulatory elements (who) and the molecular 

basis (how) of an observed genetic signature. 

 

- Application of gene prioritization algorithms. A straight 

forward step after the prediction of MRs, as already anticipated 

in this discussion, is to understand which paths of the network 

are more likely to be responsible for the observed gene 

expression, thus for the phenotype. Gene prioritization 

algorithms are specifically designed to handle this task. In the 

study of Salmonella infection in Arabidopsis (chapter 3), I choose 

to apply NetCombo from the GUILD framework [282], the 

performances of which has been shown to be better than other 

state-of-the-art gene prioritization methods [359]. However, for 

the study on drug-drug interactions (chapter 5), the same exact 

algorithm could not be applied, so I opted for a modified version 

of NetScore from the same framework. The algorithm 

propagates the score assigned to the message emitters (seeds) 

through the network, specifically each node to its neighbours. I 

used a modified version of this algorithm because the original 

contains a normalization step at the end of each iteration. That 

would have limited the variability of the resulting scores for each 

individual drug, and for the drug combination, separately. Since 

the aim of this analysis was to focus on the comparison of these 

scores, any variation, although minimal, needed to be observable. 

For this reason the modified version used returns raw scores 

instead of normalized ones.  
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Identifying key network components through gene prioritization 

algorithms can prove the foundation to develop or combine 

already approved drugs to target specific paths and, for example, 

disrupt the cycle of an infecting pathogen. 

 

The application of the afore mentioned strategy lead to the production of 

several in silico predictions about the involvement of different Arabidopsis 

proteins in the regulation of the gene expression during Salmonella infection 

(see Chapter3). Notably, my predictions about the early involvement of two 

proteins (WRKY18 and WRKY60) in early stages of the bacterial infection 

have been experimentally validated (see Chapter 3.1.5.4.2 ). Both proteins 

belong to the same family (WRKY) which are known to activate stimulus-

dependant, PAMP-triggered, defence response genes [371].  

After deriving the putative MRs from Salmonella infected human data (see 

Chapter 4), the search result of a gene specific drug therapy addressing those 

TFs resulted coherent with the type of infection. Although antimicrobial 

therapy is not recommended for uncomplicated Salmonella gastroenteritis, 

the determination of antimicrobial resistance patterns is often valuable for 

surveillance purposes [393]. In addition to the extraordinary resistance to 

antimicrobials, Salmonella proteins can have different functions depending 

on their location [392]. This may increase its ability to evade the response of 

the immune system of its huge variety of hosts. Therefore, dealing with time-

spatial dependant networks may add an extra level of information. The 

prediction of MRs involved in the cellular response to the invasion by 

Salmonella can be very useful to address this dynamic behaviour and, if 

applied to different species, may unveil communalities that can be, 

eventually, targeted by gene-specific drugs.  

The network pharmacology approach for studying pharmaco-dynamic 

drug-drug interactions (see Chapter 5), as stated, reflects the expectations, in 
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terms of scoring, in the case of additive and antagonistic drug-drug 

interactions. Its current high potential will be definitely increased by the 

adoption of next generation sequencing technologies for collecting drug-

specific genetic signatures and the consequent increasing completeness of 

the related databases. Then, by tuning the parameters of the algorithm, it will 

be possible to reflect the drug combination proportions, better reflecting the 

definition of drug synergism. On the long run, being able to calculate 

synergistic drug combinations might derive into treatments combining lower 

doses of multiple drugs and the reduction of their individual side effects. 

All the studies included in this book derive from data on cellular 

populations. Latest development in biotechnology have seen the born of 

single cell RNA-seq. This will allow the characterization of the genetic 

profiles of groups of cells. In the case of a disease or in response to a 

treatment, it would be interesting to monitor the behaviour of a determined 

group of cells. For example it may happen that, depending on the type of 

cell, some MRs are activated while others are not. This technology has the 

potential, if applied to each individual, to be the focus around which the 

personalized medicine will orbit.  

 

Computational approximation to biomedical research cannot supplant 

experimental analysis as of today. Regardless, with full species genomes 

being characterized at an increasing rate and the growing interest towards 

personalized medicine, it is clear that experimental approaches are not going 

to be able to keep up with the amount of new data they themselves are 

generating. Thus, the development of new methods and analytical pipelines, 

such as the ones I describe in this work, is meant to become a requisite 

towards modern research protocols that will depend on the constant 

feedback between experimentally validated data, computationally derived 

analysis and prediction of new targets of interest. If computational analysis is 
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precise and accurate, it will considerably speed up the scientific progress, 

thus the technological one; if not this development process is destined to 

stall. 
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6.1.1 Future Perspectives 

 

A GRM within a cell is a combination of DNA regions indirectly 

interacting with each other via their RNAs and protein expression products, 

thereby determining the cell’s gene expression. As mentioned in the 

introduction of this thesis, apart from the information on the TFs binding 

sites, other elements are fundamental for the creation of this type of 

networks. Among them, two are of special relevance: i) the causal link 

between the activity of the TF and the expression of the regulated gene, and 

ii) knowledge on the expression of the TF in space and time. The availability 

of small to medium size GRNs is testimony that this is not a trivial problem. 

The low specificity TFs have and the lack of available TFs profiles [94], 

together with the few causal conditions tested are among the causes for such 

lack of information. An additional level of complication comes from the 

cooperation between TFs in the formation of enhanceosomes, which may 

include members of the complex located far away from the gene promoter 

region [409]. From an experimental point of view, new technologies are 

being proposed, like ChIA-pet and HI-C, to study chromatin interactions. 

This will expand our knowledge on distal interactions between TFs and the 

promoters of their regulatory targets and opens new bioinformatics 

challenges for the integration of this information in the current 

methodologies. 

The spatial-temporal knowledge will certainly be fundamental for a better 

understanding of certain cellular mechanisms. In fact the cost of high-

throughput sequencing is decreasing, and more time courses experiments are 

being devised in order to study how a system changes through time.  

Eventually, this understanding will be achieved combining the newly derived 

GRNs with any other type of network to which the same principles can be 

applied: metabolic networks and signalling pathways just to name a few.  
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In the light of this technological rush, in a close future, out of the 

proposed Salmonella infection analysis (chapters 3 and 4), I will release an 

automatized version of the code implemented. Its possible future expansions 

may include, for example, the use of ChIP-seq. data. I made predictions on 

TFs and their binding motifs but being able to experimentally test a set of 

TFs with great accuracy, speed and at a reasonable price would increase the 

strength of the presented approach. Current limits to this are represented by 

the cost that a large-scale analysis, on many TFs, could reach, specifically for 

testing all the needed antibodies. Another possible improvement for the 

methodology implemented could be including in the analysis non-coding 

RNAs. This aspect has been excluded because of the microarray limitation 

but, when a disease occurs, non coding RNAs have been reported to be 

strong sources of regulation and immunity [410], specially in the case of viral 

infections [411]. 

Improvements, in a short-medium term future, of the approach for 

studying pharmaco-dynamic drug-drug interaction (see Chapter 5) include 

one more comparison, between the different types of interactions 

(synergistic, antagonistic and additive), in terms of common putative MRs 

among the positively scored nodes after the message-passing algorithm. This 

would give one more hint on the involvement of common paths between the 

two drugs studied. We are also planning to analyse directly the raw data 

contained in the cmap database [314]. The aim of such an effort would be to 

be able to determine specifically for each gene not only the differential 

expression, but if this happens to be an up-regulation or a down-regulation. 

This could represent additional information for the method that could help 

in discerning between synergistic and antagonistic effect. 

Community experiments, called challenges, are a very good opportunity 

for testing one’s algorithm performances as blind tests (to avoid any bias or 
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over-fitting) are provided. The DREAM initiative [14] is currently organizing 

a series of systems biology competitions. These kind of initiatives have 

demonstrated that the collection of outcomes from a variety of participants 

leads to robust and top-performing final results. In this regard, I report two 

submitted papers derived from my collaboration in the participation to 

previous DREAM Challenges in the Appendix of this thesis. By chance, one 

of the challenges currently opened is the AstraZeneca-Sanger drug 

combination prediction DREAM challenge. It has the aim to understand 

effective combination treatments and drug synergy through the use of 

baseline genomic data. The core of the challenge is the release of about 

~11.5k experimentally tested drug combinations measuring cell variability 

over 119 drugs and 85 cancer cell lines, and monotherapy response data for 

each drug and cell line. In addition, gene expression data, mutations, copy 

number alterations and methylation data will be provided. This appears to be 

the perfect benchmark framework to test the predictive capabilities of my 

method for the study of drug-drug interactions. To this end, I've already 

enrolled myself in the challenge. I am currently preparing the software to 

deal with the provided data and I expect to have the first assessment of the 

double-blinded predictions on drug-drug interactions as soon as possible. 

During the whole development of my thesis I dug into many topics of 

the system biology field. This framework relies on the very basic assumption 

that many different biological phenomena are  interwoven and uses a 

network graphical representation for the elements participating in such 

phenomena and the connections between them. In order to find biological 

paths activating MRs, I used many tools that integrate data from many 

different sources or collect algorithms for the most diverse computations. I 

would like to conclude this discussion by pointing that I strongly appreciate 

that and I am very grateful to their creators, especially when they come with 

a good user manual. Not only because it shortens the necessary time to 
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complete the analysis, but also because it reflects the effort of the scientific 

community towards a universal knowledge. 
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 7 CONCLUSIONS





Conclusions 

 

The main achievements of the work presented in this thesis are: 

• Main regulators (MRs) of a set of genes with similar behaviour 

(derived from microarray experiments) were identified by integrating 

DISPOM’s [82] predictions and information on specific 

transcription factors DNA binding sites (collected from JASPAR 

[84] and CIS-BP [94]).   

• The combination of the gene regulatory network (GRN), derived 

from the prediction MRs-regulated genes, with protein-protein 

interactions (PIN) was achieved using a bespoken unification 

protocol in the BIANA framework [199]. 

• The application of a message-passing algorithm, from the predicted 

MRs into the GRN+PIN network, was determined to be a 

successful strategy to identify the regulatory elements (who) and the 

molecular basis (how) in Salmonella spp. infection.   

• Using the developed strategy it was identified a set of key proteins, 

or MRs, in Arabidopsis thaliana (a small of transcriptions factors 

belonging to the same family) that play a central role in the infection 

process by Salmonella spp. The predicted set of MRs were 

subsequently experimentally validated and proved their importance 

at early stages of the infection.   

• In the case of the Salmonella spp. – Homo sapiens infection process, 

predicted MRs were confirmed by comparing them to drug-specific 

gene signatures collected from the cmap database [4]: the top 

ranking drugs for the given MRs were mainly antimicrobials. 

• The same strategy was adapted and used to study 

pharmacodynamics drug-drug interactions. Initial encouraging 

results suggest that the strategy could be useful to identify synergistic 

and antagonistic mechanisms in drug-drug interactions. Further 

developments and future directions are proposed in this thesis.  
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As mentioned earlier in this chapter, in the Appendix are reported two 

submitted manuscripts about previous participations in these challenges. In 

the HPN-DREAM 8 (see Appendix 8.1) breast cancer network inference 

challenge my contribution consisted in analysing the microarray data 

provided and in the computation of cross-correlations among the profiles of 

differentially expressed genes that were later used as features for the Random 

Forest classifier used to infer the network. In the DREAM 8.5 rheumatoid 

arthritis responder challenge (see Appendix 8.2), my contribution consisted 

in the normalisation and analysis of the microarray data provided by the 

organizers. 





Appendix 

 

8.1 Empirical assessment of causal network 
inference through a community-based 
effort 

Steven M. Hill1,*, Laura M. Heiser2,*, Thomas Cokelaer3, Michael Unger4, 
Nicole K. Nesser19, Dan Carlin5, Yang Zhang6, Artem Sokolov5, Evan Paull5, 
Chris K Wong5, Kiley Graim5, Adrian Bivol5, Haizhou Wang6, Fan Zhu7, Bahman 
Afsari10, Ludmila V. Danilova10, Alexander V. Favorov10,11,12, Wai-shing Lee10, 
Dane Taylor13,14, Chenyue W. Hu15, Byron L. Long15, David P. Noren15, 
Alexander Bisberg15, HPN-DREAM Consortium, Gordon B. Mills16, Joe W. 
Gray2,17,18, Michael Kellen19, Thea Norman19, Stephen Friend19, Amina A. 
Qutub15, Elana J. Fertig10, Yuanfang Guan7,8,9, Mingzhou Song6, Joshua Stuart5, 
Paul T. Spellman20, Heinz Koeppl4, Gustavo Stolovitzky21,^, Julio Saez-
Rodriguez3,^, Sach Mukherjee1,22,^ 

 
1. MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge CB2 0SR, UK 
2. Department of Biomedical Engineering, Oregon Health and Science University, Portland, 
OR, USA  
3. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), 
Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK 
4. Automatic Control Laboratory and Institute of Biochemistry, ETH Zurich, 8092 Zurich, 
Switzerland 
5. Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA, USA 
6. Department of Computer Science, New Mexico State University, Las Cruces, NM, USA 
7. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann 
Arbor, Michigan, USA 
8. Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA 
9. Department of Electrical Engineering and Computer Science, University of Michigan, Ann 
Arbor, USA 
10. Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel 
Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA 
11. Department of Computational Systems Biology, Vavilov Institute of General Genetics, 
Russian Academy of Sciences, Moscow, Russia 
12. Laboratory of Bioinformatics, Research Institute of Genetics and Selection of Industrial 
Microorganisms, Moscow, Russia 
13. Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC, USA 
14. Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA 
15. Rice University, Department of Bioengineering, 6500 Main St. Room 613, Houston, TX, 
USA, 77030 
16. Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA 
17. Center for Spatial Systems Biomedicine, 
18. Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA 
19. Sage Bionetworks, Seattle, WA, USA 
20. Department of Molecular and Medical Genetics, Oregon Health and Science University, 
Portland, OR, USA 
21. IBM Translational Systems Biology and Nanobiotechnology, Yorktown Heights, NY 
10598, USA 
22. Cambridge Institute, School of Clinical Medicine, University of Cambridge, Cambridge 
CB2 0RE, UK  
 
Haizhou Wang Present address: SimQuest Inc, Boston, MA, USA  
Yang Zhang Present address: Amyris Inc, Emeryville, CA, USA 



Publicat com:

Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, 
Sokolov A, Paull EO, Wong CK, Graim K, Bivol A, Wang H, Zhu F, Afsari B, 
Danilova LV, Favorov AV, Lee WS, Taylor D, Hu CW, Long BL, Noren DP, 
Bisberg AJ; HPN-DREAM Consortium, Mills GB, Gray JW, Kellen M, 
Norman T, Friend S, Qutub AA, Fertig EJ, Guan Y, Song M, Stuart JM, 
Spellman PT, Koeppl H, Stolovitzky G, Saez-Rodriguez J, Mukherjee S. 
Inferring causal molecular networks: empirical assessment through
a community-based effort. Nat Methods. 2016 Apr;13(4):310-8. doi:
10.1038/nmeth.3773.

http://www.nature.com/nmeth/journal/v13/n4/full/nmeth.3773.html
U16319
Rectángulo





Appendix 

265 

8.2 Crowdsourced assessment of genetic 
contribution to predicting anti-TNF 
treatment response in rheumatoid 
arthritis 

Organizers: Solveig K. Sieberts, Eli Stahl, Abhishek Pratap, Gaurav Pandey, 
Dimitrios Pappas, Jing Cui, Andre O. Falcao, Christine Suver, Bruce Hoff, 
Venkat S.K. Balagurusamy, Donna Dillenberger, Elias Chaibub Neto, Thea 
Norman, Stephen Friend, Robert Plenge, Gustavo Stolovitzky, Lara M. 
Mangravite 

 

Solvers: Fan Zhu, Javier García-García, Daniel Aguilar, Bernat Anton, Jaume 
Bonet, Ridvan Eksi, Oriol Fornés, Emre Guney, Hongdong Li, Manuel 
Alejandro Marín, Bharat Panwar, Joan Planas-Iglesias, Daniel Poglayen, Tero 
Aittokallio, Muhammad Ammad-ud-din, Chloe-Agathe Azencott, Víctor Bellón, 
Valentina Boeva, Kerstin Bunte, Himanshu Chheda, Lu Cheng, Jukka Corander, 
Michel Dumontier, Anna Goldenberg, Peddinti Gopalacharyulu, Mohsen 
Hajiloo, Daniel Hidru, Alok Jaiswal, Samuel Kaski, Beyrem Khalfaoui, Suleiman 
Ali Khan, Eric R Kramer, Pekka Marttinen, Aziz M. Mezlini, Bhuvan Molparia, 
Matti Pirinen, Janna Saarela, Matthias Samwald, Véronique Stoven, Hao Tang, 
Jing Tang, Ali Torkamani, Jean-Phillipe Vert, Bo Wang, Tao Wang, Krister 
Wennerberg, Nathan E. Wineinger, Guanghua Xiao, 

Yang Xie, Rae Yeung, Xiaowei Zhan, Cheng Zhao, The Rheumatoid Arthritis 
Challenge 

Consortium, Baldo Oliva, Yuanfang Guan 

 

Data Contributors: Jeff Greenberg, Joel Kremer, Kaleb Michaud, Anne 
Barton, Marieke Coenen, Xavier Mariette, Corinne Miceli, Nancy Shadick, 
Michael Weinblatt, Niek de Vries, Paul P. Tak, Danielle Gerlag, Tom W. J. 
Huizinga, Fina Kurreeman, Cornelia F. Allaart, S. Louis Bridges Jr., Lindsey 
Criswell, Larry Moreland, Lars Klareskog, Saedis Saevarsdottir, Leonid Padyukov, 
Peter K. Gregersen, Robert Plenge 

 

Solveig K. Sieberts1*, Fan Zhu2*, Javier García-García3*, Eli Stahl4,5, Abhishek 
Pratap1, Gaurav Pandey5, Dimitrios Pappas6,7, Daniel Aguilar3, Bernat Anton3, 
Jaume Bonet3, Ridvan Eksi2, Oriol Fornés3, Emre Guney8, Hongdong Li2, 
Manuel Alejandro Marín3, Bharat Panwar2, Joan Planas-Iglesias3, Daniel 
Poglayen3, Jing Cui9, Andre O. Falcao10, Christine Suver1, Bruce Hoff1, Venkat S. 
K. Balagurusamy11, Donna Dillenberger11, Elias Chaibub Neto1, Thea Norman1, 
Tero Aittokallio12, Muhammad Ammad-ud- din13,14, Chloe-Agathe 
Azencott15,16,17, Víctor Bellón15,16,17, Valentina Boeva15,16,17, Kerstin 



 

266 

Bunte13,14, Himanshu Chheda12, Lu Cheng12,13,14, Jukka Corander14,18, Michel 
Dumontier19, Anna Goldenberg20,21, Peddinti Gopalacharyulu12, Mohsen 
Hajiloo21, Daniel Hidru20,21, Alok Jaiswal12, Samuel Kaski13,14,22, Beyrem 
Khalfaoui21, Suleiman Ali Khan12,13,14, Eric R. Kramer23, Pekka Marttinen13,14, 
Aziz M. Mezlini20,21, Bhuvan Molparia23, Matti Pirinen12, Janna Saarela12, 
Matthias Samwald24, Véronique Stoven15,16,17, Hao Tang25, Jing Tang12, Ali 
Torkamani23, Jean-Phillipe Vert15,16,17, Bo Wang26, Tao Wang25, Krister 
Wennerberg12, Nathan E. Wineinger23, Guanghua Xiao25, Yang Xie25,27, Rae 
Yeung28,29, Xiaowei Zhan25,30, Cheng Zhao20,21, The Rheumatoid Arthritis 
Challenge Consortium, Jeff Greenberg7,31, Joel Kremer32, Kaleb Michaud33,34, 
Anne Barton35,36, Marieke Coenen37, Xavier Mariette38,39, Corinne Miceli38,39, 
Nancy Shadick9, Michael Weinblatt9, Niek de Vries40, Paul P. Tak40,41,42,43, 
Danielle Gerlag40,44, Tom W. J. Huizinga45, Fina Kurreeman45, Cornelia F. 
Allaart45, S. Louis Bridges Jr.46, Lindsey Criswell47, Larry Moreland48, Lars 
Klareskog49, Saedis Saevarsdottir49, Leonid Padyukov49, Peter K. Gregersen50, 
Stephen Friend1, Robert Plenge51, Gustavo Stolovitzky5,11, Baldo Oliva3^, 
Yuanfang Guan2^, Lara M. Mangravite1^ 

 
 

Affiliations 

1 Sage Bionetworks, Seattle, Washington, USA. 

2 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann 
Arbor, Michigan, USA. 

3 Structural Bioinformatics Group (GRIB/IMIM), Departament de Ciències Experimentals 
i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain. 

4 Center for Statistical Genetics, Division of Psychiatric Genomics, Icahn School of 
Medicine at Mount Sinai, New York, New York, USA. 

5 Icahn Institute for Genomics and Multiscale Biology and Department of Genetics 
and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New 
York, USA. 

6 College of Physicians and Surgeons, Columbia University, New York, New York, 
USA. 

7 Corrona LLC, Southborough, Massachusetts, USA. 

8 Center for Complex Network Research. Northeastern University and Center for Cancer 
Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA 

9 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, 
Harvard Medical School, Boston, Massachusetts, USA. 



Appendix 

267 

10 Department of Informatics. Faculty of Sciences. University of Lisbon, Lisbon, 
Spain. 

11 IBM T.J.Watson Research Center, Yorktown Heights, New York, USA. 

12 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 
Finland. 

13 Department of Computer Science, Aalto University, Espoo, Finland. 

14 Helsinki Institute for Information Technology (HIIT), Esbo, Finland. 

15 MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 
Fontainebleau, France. 

16 Institut Curie, Paris Cedex ,France. 

17 INSERM U900, Paris Cedex, France 

18 Department of Mathematics and Statistics, University of Helsinki, Helsinki, 
Finland. 

19 Stanford Center for Biomedical Informatics, Stanford University, Stanford, CA, 
USA. 

20 Department of Computer Science, University of Toronto, Toronto, ON, Canada. 

21 Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada. 

22 Department of Computer Science, University of Helsinki, Helsinki, Finland. 

23 The Scripps Translational Science Institute and Department of of Integrative 
Structural and Computational Biology The Scripps Research Institute, La Jolla, 
California, USA. 

24 Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of 
Vienna, Vienna, Austria. 

25 Quantitative Biomedical Research Center, University of Texas Southwestern Medical 
Center, Dallas, Texas, USA. 

26 Department of Computer Science, Stanford University, Stanford, California, USA. 

27 Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern 
Medical Center, Dallas, Texas, USA. 

28 Department of Paediatrics, Department of Immunology, Institute of Medical Sciences, 
University of Toronto, Toronto, Ontario, Canada. 

29 Cell Biology, SickKids Research Institute, Toronto, Ontario, Canada. 

30 Center for the Genetics of Host Defense, University of Texas Southwestern Medical 
Center, Dallas, Texas, USA. 

31 New York University School of Medicine, New York, New York, USA 

32 Albany Medical College, Albany, New York, USA. 

33 University of Nebraska Medical Center, Omaha, Nebraska, USA. 



 

268 

34 National Data Bank for Rheumatic Diseases, Wichita, Kansas, USA. 

35 Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal 
Research, Manchester Academic Health Sciences Centre, The University of Manchester, UK. 

36 NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester 
Foundation Trust, Oxford Road, Manchester, UK. 

37 Department of Human Genetics, Radboud University Nijmegen Medical Centre, 
Nijmegen, The Netherlands. 

38 Université Paris-Sud, Orsay, France 

39 APHP–Hôpital Bicêtre, Center of Immunology of Viral Infections and Autoimmune 
Diseases (IMVA) INSERM U1184, Paris, France. 

40 Department of Clinical Immunology and Rheumatology, Academic Medical 
Center/University of Amsterdam, Amsterdam, The Netherlands. 

41 Cambridge University, Cambridge, UK. 

42 Ghent University, Ghent, Belgium. 

43 Glaxo Smith Kline, Stevenage, UK. 

44 Clinical Unit, GlaxoSmithKline, Cambridge, UK. 

45 Department of Rheumatology, Leiden University Medical Centre, Leiden, The 
Netherlands. 

46 Division of Clinical Immunology and Rheumatology, Department of Medicine, 
University of Alabama at Birmingham, Birmingham, Alabama, USA. 

47 Rosalind Russell / Ephraim P Engleman Rheumatology Research Center, Division of 
Rheumatology, Department of Medicine, University of California San Francisco, San 
Francisco, California, USA. 

48 Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 
Pittsburgh, Pennsylvania, USA. 

49 Rheumatology Unit, Department of Medicine, Karolinska Hospital and Karolinska 

Institutet, Solna, Sweden. 

 

ADDITIONAL TITLE PAGE FOOTNOTES: (includes description of co-
first authors) 

*  These authors contributed equally to this work 

^ These authors contributed equally to this work 

 



Appendix 

269 

8.2.1 Abstract 

 

Although one-third of RA patients fail to enter clinical remission 

following anti-TNF treatment, no algorithm currently exists to 

accurately predict likelihood of response. This study was designed as 

a blind open-science competition to test whether disease-lowering 

anti-TNF-a response could be predicted based on genetic, 

demographic and clinical information.  73 teams submitted 

predictions (top predictor, AUROC=0.62 and an AUPR=0.51). 

Given this relatively low predictive performance, a collaborative 

effort across top performing teams was conducted to formally assess 

the contribution to performance of genetic information. Despite a 

significant genetic heritability estimate of the treatment non-

response trait (h2 = 

0.18, p-value = 0.02), no statistical differences were observed 

between models that incorporated rational SNP selection relative to 

models containing no genetic information, indicating that current 

algorithms are not able to effectively leverage polygenic signal for 

prediction. As such, future efforts toward predicting anti-TNF 

efficacy should focus on use of clinical and biomarker measures 
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8.2.2 Introduction 

Rheumatoid arthritis (RA), a chronic inflammatory disorder affecting 

synovial joints, is treated with disease-modifying antirheumatic drugs, 

including those that block the inflammatory cytokine, tumor necrosis factor-

α (anti-TNF therapy). However, response to anti-TNF therapy is variable 

with nearly one-third of RA patients failing to enter clinical remission1,2. 

Although clinical and lifestyle predictors of RA disease risk have been 

developed that are of sufficient accuracy to merit clinical consideration3–5, 

no algorithm currently exists to accurately assess likelihood of response prior 

to treatment6. Technological advances in DNA genotyping and sequencing 

have afforded the opportunity to assess the contribution of genetic variation 

to heterogeneity of RA response to therapy.  Meta-analysis across patient 

cohorts has identified many loci associated with RA disease risk independent 

of treatment7 and several loci associated with therapeutic response to anti-

TNF agents8  have been identified.  Here we leverage this information to 

assess whether common genetic variation can be used to predict anti-TNF 

treatment response. 

This project leveraged the DREAM framework9–12 to implement a 

blind, open, community-based analysis. This framework, which has been 

successfully implemented to solve a range of modeling problems, provides a 

formalized and rigorous mechanism to compare performance across 

independent methods and has demonstrated that, under the right conditions, 

the most robust predictions are developed by combining solutions across 

multiple complementary methods13–15. 

We further extend the competition-based DREAM framework, to include 

a collaborative analysis from the top performing teams in order to determine 

whether predictions can be improved by creating ensemble predictions of 

multiple methods, and to determine the degree to which genetic predictors 

contribute to the accuracy of treatment response predictions. 
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Specifically, this analysis was designed as a two-phase experiment (Fig. 

1A). Algorithms best suited to address this question were identified within 

the Competitive Phase, which ran as a traditional DREAM challenge, by 

inviting research teams across the world to compete to build accurate 

predictions of anti-TNF response. Two tasks or “sub-challenges” were 

presented to the partipants: the “classification” sub-challenge, in which 

participants were asked to predict whether or not a patient would respond to 

treatment, and the “quantitative response” sub- challenge, in which 

participants were asked to predict the quantitative change in disease severity 

after treatment. Those teams with the most accurate models were brought 

together in a subsequent Collaborative Phase to conduct a comparative 

analysis that formally assessed the contribution of genetic information to 

accuracy in predicting anti-TNF treatment effects. 

 

8.2.3 Results 

Genetic analyses were conducted using whole genome SNP data derived 

from two cohorts: a primary 2,706 anti-TNF treated RA patients combined 

across 13 collections of European ancestry8 and 591 patients in the 

CORRONA CERTAIN study16.  Treatment efficacy was measured using 

the absolute change in disease activity score in 28 joints17 (DAS28) 

following 3-6 months of anti-TNF treatment. Data from the two cohorts 

were harmonized, and the resultant data have been made publicly available as 

a resource for use by the research community 

(https://www.synapse.org/#!Synapse:syn3280809).  Significant SNP-

heritability was estimated for change in DAS28 (ΔDAS28), via variance 

component modeling (VCM)18,19, within the 2,706 patient, primary cohort 

(SNP-h2=0.18, p=0.02, Fig. 1B). Heritability estimates were strongest in the 

subset of patients treated with anti-TNF monoclonal antibodies relative to 

those treated with the circulating biologic, enteracept (Fig. 1B).   These 
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heritability estimates are similar to those reported for other treatment 

response traits20 and suggest that there may be sufficient genetic 

contribution to anti-TNF therapeutic response to support the use of 

predictive modeling methods to identify polygenic predictors of 

response21,22. 

The primary endpoint used throughout both phases of the challenge was 

the classification of nonresponse to anti-TNF therapy as defined by EULAR 

response criteria23, a categorical definition based on DAS28 that is used 

widely in clinical practice. As a secondary endpoint, participants were also 

challenged to predict ΔDAS28 as a continuous measure. Throughout both 

phases, participants trained models using a data set containing whole genome 

SNP data, age, gender, anti-TNF therapy, concomitant methotrexate 

treatment, and baseline DAS28 in a subset of 2,031 individuals from the 

primary cohort (Fig. 1C, Supplementary Table 1 and Methods)8.  

Participants were provided with a leaderboard, which evaluated the 

performance of their predictions with real-time feedback, relative to the 

remaining 675 individuals from that cohort. To reduce the potential for 

overfitting or reverse- engineering of treatment outcomes from the 

leaderboard, each team was limited to 100 leaderboard submissions.  Final 

evaluation of algorithms was conducted relative to the separate test dataset 

consisting of data collected from the CORRONA CERTAIN16 study.  

Participants remained blinded to outcomes from both the leaderboard and 

test data sets throughout the experiment. 

The competitive phase of the challenge attracted 242 registered 

participants representing 30 countries and 4 continents. 73 teams submitted a 

total of 4874 predictions for evaluation on the leaderboard data over the 

course of the 16-week training period.  After that time, final models were 

formally compared based on their performance in the test data, and teams 

were allowed up to 2 final submissions per challenge endpoint. For the 

classification challenge, models were scored using both the area under the 
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receiver-operator curve (AUROC) and the area under the precision-recall 

curve (AUPR). Ultimately, 27 final submissions were received from 15 

teams.  Overall rank for each submission was determined as the average of 

the AUROC rank and the AUPR rank among all valid submissions. AUROC 

and AUPR were interpolated in the case of binary classifications or in the 

case of tied predictions24. Of 27 submissions, 11 performed significantly 

better than random for both AUPR and AUROC after Bonferroni 

correction for multiple submissions. The AUPR of all submissions ranged 

from 0.345 to 0.510 (null expectation 0.359), and the AUROC ranged from 

0.471 to 0.624 (null expectation 0.5). Using bootstrap analysis of submission 

ranks (Fig. 2A), we determined that the top two submissions performed 

robustly better than all remaining solutions (Wilcoxon signed-rank test of 

bootstraps p-value = 5e-34 and 1e-66, relative to the third ranked 

submission, respectively) but were not distinct from one another (p-value = 

0.44). These submissions had AUPR of 0.5099 and 0.5071 and AUROC of 

0.6152 and 0.6237, respectively. Both of these teams used Gaussian Process 

Regression (GPR)25 models but they differed in their implementation (see 

‘Team Guanlab’ and ‘Team SBI_Lab’ in the Supplementary methods for 

more details). The code and provenance for the winning algorithms have 

been cataloged and made available for reuse and are available through the 

challenge website. Team Guanlab selected SNP predictors based on the 

training data and previous analyses described in the literature and applied a 

GPR model to predict non-response classification directly. Team SBI_Lab 

selected SNP predictors using only the training data, applied a GPR model to 

predict ΔDAS28, and refactored these predictions into classification weights.  

For the quantitative sub challenge, 28 final models from 17 teams were 

received that predicted ΔDAS28 as a continuous measure. In this case, 

performance was evaluated based on correlation between predicted and 

observed ΔDAS28 (observed range: r = 0.393 to -0.356). Of these, 18 

submissions performed significantly better than random (r= 0.393 to 0.208), 

and the top performing submission was robustly better than all remaining 
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solutions (p-value = 2e-32 relative to the 2nd ranked submission, 

Supplementary Fig. 1). The winning model used a similar GPR model to 

predict ΔDAS28 as described above (see ‘Team Guanlab’ in the 

Supplementary methods for more details). 

The Collaborative Phase leveraged the top performing algorithms to 

formally assess the contribution of genetic information to model 

performance. The 8 teams with the best predictive performances (7 in each 

subchallenge) from this competitive phase were invited to participate. This 

was motivated in part by the narrow range and low predictive performance 

observed across submitted predictions in the competitive phase, suggesting 

that genetic variation was not substantially contributing to predictions. First, 

a direct comparison of models built in the presence and absence of genetic 

information was performed. For this analysis, each team developed a pair of 

predictions based on a model built in the presence of genetic information 

(genetic model) and a model built using only clinical and demographic 

covariates (non-genetic model). Pairwise comparison across models 

demonstrated that there was no statistical difference between the non-genetic 

and genetic models (paired t-test p- value = 0.85, 0.82, for classification 

AUPR and AUROC, respectively, and p-value = 0.65 for continuous 

prediction correlation) (Fig. 2B, Supplementary Fig. 2). These results 

indicated that, while there may be weak underlying genetic contribution to 

treatment effect, such genetic effects had no detectable contribution to 

predictive performance.  To assess the ability of modeling techniques to 

detect weak genetic contribution, a comparative analysis was performed 

between genetic models built with researcher-selected SNP sets - guided by 

prior biological knowledge and data-driven SNP selection - relative to 100 

random SNP sets of equivalent size. For 5 of 7 classification algorithms, 

models using knowledge-mined SNPs significantly outperformed models 

using random SNPs for AUPR, AUROC or both (enrichment p- value=3.3e-

05) (Fig. 2C). This suggests that there is a non-zero contribution of genetic 

information to treatment effect even if it is not of sufficient magnitude to 
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have a significant contribution to modeling performance. No relationship 

between modeling algorithm selection and performance was observed. 

The challenge framework provided several advantages over traditional 

predictive modeling approaches.  First, comparison with an independent, 

blinded test dataset reduced the contribution to estimated accuracy of 

overfitting to the training dataset, as indicated by comparing predictive 

performance between leaderboard and test data predictions for both the PR 

and AUROCs (Supplementary Fig. 3). Of note, for the quantitative 

subchallenge, the correlation between the leaderboard and final scores was 

negative (pearson correlation = -0.052) suggesting the presence of 

widespread overfitting. Second, the use of a diverse set of methodological 

approaches across teams provided the opportunity to assess whether 

performance was more robust using an ensemble approach to combine 

information across submissions.  In previous DREAM challenges, 

unsupervised ensemble predictions have been demonstrated to perform as 

well as or better than top performing team submissions9.  In this challenge, 

ensemble analysis was performed using a supervised approach to leverage the 

diversity across the submitted predictions26. Ensemble models were trained 

for the classification subchallenge using leave-one- out cross-validated 

(LOOCV) predictions generated on the original training set using the 

individual methods, and, as with individual submissions, analyzed in a 

blinded fashion using the test data. The first principal component (PC) 

discovered by applying supervised PC analysis27 to these training LOOCV 

classifications significantly separated responders from non-responders 

(Wilcoxon rank-sum p- value=5.40e-62), thus indicating that learning a 

supervised model over these submitted classifications can help boost 

discriminative/predictive power. Motivated by this observation, two separate 

ensemble classifications were developed using the stacking method28,29 

from the class of heterogeneous ensemble learning methods26 and both 

performed well: the first was based on LOOCV predictions during the 
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competitive phase (AUPR=0.5228, AUROC=0.622) and the second based 

on LOOCV predictions in the collaborative phase (AUPR=0.5209, 

AUROC=0.6168). Compared to the 7 collaborative phase models, these 

ensemble models ranked first and third, respectively (Supplementary Fig. 4). 

These results indicate that the individual classifications provided some 

complementary information that, when appropriately aggregated, improved 

classifications.  Supervised ensembles also substantially outperformed 

predictions developed using an unsupervised ensemble30 (Competitive 

Phase Unsupervised Ensemble Predictor: PR=0.415, ROC=0.575, Wilcoxon 

signed-rank test of bootstraps p-value =5.3e-167; Collaborative phases 

Ensemble Predictor: PR=0.415, ROC=0.576, Wilcoxon signed-rank test of 

bootstraps p-value =8.7e-167).  The capability of ensemble methods to 

provide predictions with highly ranked relative accuracy supports the use of 

this approach to boost predictive performance in situations where analyses 

are performed in the absence of a gold standard with which to identify the 

best performing individual methodology to use. Despite this, these 

predictions need to be further improved to merit consideration in clinical 

care. 

 

8.2.4 Discussion 

 

Although theoretical heritability estimates for polygenic models indicate 

significant genetic contribution to variation in treatment response, current 

predictive algorithms are not able to translate this estimated signal into 

practical predictions likely due to the complex nature of the genetic 

contribution.  Future studies with larger sample sizes would provide the 

opportunity to detect smaller SNP effects as well as include more complex 

relationships amongst the data including epistasis. The most effective 

approaches explicitly modeled drug-specific genetic signal, suggesting that 
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there may be heterogeneity in response mechanisms across different anti-

TNF drugs.  We anticipate that there is also heterogeneity across the patient 

population that is not genetic in nature and was not fully captured by the 

clinical information available, which was limited relative to the breadth of 

information typically available within clinical practice. Given that the most 

successful methodologies employed in this study used within-group 

predictions based on stratified subsets of patients, we anticipate that data 

modalities – clinical, molecular, or other - that capture the heterogeneity in 

RA disease progression will provide more accurate predictive information13. 

The adoption of predictive algorithms within clinical trial enrollment 

provides a powerful mechanism to reduce heterogeneity, to increase 

statistical power to observe positive outcomes and/or to decrease study size. 

Although genetic information did not provide a meaningful contribution to 

the predictions in this study, these methods were able to leverage the small 

set of available clinical features to develop a prediction that performed 

significantly better than random. 

Incorporation of additional clinical information - including seropositivity, 

treatment compliance, and disease duration - may provide the best 

opportunity to leverage these methods in clinically meaningful ways. 

 

8.2.5 Methods 

 

8.2.5.1 Datasets 

Two separate data sets were provided to participants to train and test the 

predictive models, respectively (Table 2). In the case of the test data, only 

predictor variables were released, and the teams remained blinded to the 

response variables. The training data consisted of a previously published 

collection of anti-TNF treated patients (n=2,706) of European ancestry, 
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compiled from 13 collections8, of which the response variables from 675 

patients were held out as a leaderboard test set. All patients met 1987 ACR 

criteria for RA, or were diagnosed by a board-certified rheumatologist and 

were required to have at least moderate DAS2817 at baseline (DAS28>3.2). 

Available clinical and demographic data included DAS28 at baseline and at 

least one time point after treatment, gender, age, anti-TNF drug name and 

methotrexate use. Follow-up DAS28 was measured 3–12 months after 

initiating anti-TNF therapy, though precise duration of treatment was not 

available. Genotypes for each sample were imputed to HapMap Phase 2 

(release 22) as previously described8. We note that although this dataset does 

not represent the full spectrum of patient information that may be utilized 

within a clinical setting to inform treatment - including synovial tissue and 

novel soluble biomarkers like MRP8/14 levels2,31,32, it did present 

sufficient data to explicitly assess the contribution of genetics to prediction. 

The final test set was derived from a subset of patients enrolled in the 

CORRONA CERTAIN study16. CERTAIN is a prospective, non-

randomized cohort study of adult patients with RA fulfilling the 1987 ACR 

criteria, having at least moderate disease activity defined by a clinical disease 

activity index (CDAI) score>10 who are starting or switching biologic 

agents. DAS28 was provided at baseline and 3 month follow-up. At the time 

of challenge launch, 723 subjects had initiated anti-TNF therapy and had a 3 

month follow-up visit. Of these patients, 57.4% were previously naïve to 

biologics. Genotypes were generated on the Illumina Infinium 

HumanCoreExome array and imputed to HapMap Phase 2 (release 22) using 

IMPUTE233. While data for all 723 were released to participants, 93 patients 

were excluded for the purposes of scoring because their genotyping data 

were not consistent with European ancestry. In addition, a subset of patients 

in the test data set were treated with anti-TNF drugs that were not 

represented in the training data set:  golimumab and certolizumab. The 39 

patients receiving golimumab were excluded because this drug was not 
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represented in the training data and predictions showed that participants 

were unable to successfully predict response in these subjects. In contrast, 

prediction in certolizumab-treated patients was similar to prediction in the 

remaining three drugs and so these data were included in the final test set. 

Two ancillary datasets were made available for participant use. The first 

measured TNFα protein level in HapMap cell lines 34. The second included 

blood RNA-seq data and genotypes for 60 RA patients from the Arthritis 

Foundation-sponsored Arthritis Internet Registry (AIR), 30 who displayed 

high inflammatory levels and 30 who displayed low inflammatory levels. 

Inflammatory levels were assessed using blood concentrations of C-reactive 

protein (CRP), and elevated disease was defined as CRP greater than 0.8 

mg/dL, while low disease activity was defined as CRP less than 0.1 mg/dL. 

In addition to CRP levels, rheumatoid factor (RF) antibody levels, and cyclic 

citrullinated peptide (CCP) levels were also assayed. Genotypes were assayed 

on the Illumina HumanOmniExpressExome array. 

Data use within the scope of this challenge was performed with the 

approval of an Internal Review Board for all data sets. All four data sets can 

be assessed through the Synapse repository (syn3280809, 

doi:10.7303/syn3280809). 

 

8.2.5.2 Scoring methods 

For the classification subchallenge, teams were asked to submit an 

ordered list of patients ranked according to the predicted response to 

therapy. Special treatment was given to the computation of the curve 

statistics when the order was ambiguous such as in the case in the case of ties 

or binary predictions, in which case an average across all possible consistent 

solutions was used24. The average of the rank of the AUPR and AUROC 

was used to rank solutions. 
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For the quantitative subchallenge, teams were asked to submit predicted 

ΔDAS28, and the pearson correlation between the predicted and actual 

ΔDAS28 was used to score submissions. 

 

8.2.5.3 Comparative phase challenge 

The challenge was open to all individuals who agreed to the DREAM 

terms of use and obtained access to the challenge data by certifying their 

compliance with the Data Terms of Use. The training and ancillary data were 

released for use on February 10, 2014. The leaderboards opened on March 5, 

at which time participants were able to test their models in real-time against a 

held-out portion of the training dataset. The prediction variables of the test 

data set were released to participants on May 8 and submission queues for 

final submissions were open between May 21st and June 4th. Only the final 

two submissions per team per subchallenge were scored. Participants who 

didn’t have enough computational resources in their home institutions were 

offered the option to use an IBM z-Enterprise cloud, with two virtual 

machines running Linux servers, one with 20 processors, 242 GB memory, 9 

TB storage space and the other with 12 processors, 128 GB memory and 1 

TB of storage space. Cloud users could access the Challenge data directly 

through the IBM system. 

 

8.2.5.4 Evalutation of submissions 

Predictions were evaluated using two data sets: 675 individuals from the 

training cohort (leaderboard test set) and all individuals from the 

CORRONA CERTAIN data (final test set). In both cases, response variables 

were withheld from participants. Participants were allowed 100 submissions 

to the classification sub-challenge leaderboard and unlimited submissions to 

the quantitative sub-challenge leaderboard throughout the competitive phase 

of the competition, and were provided near-instant results. Participants were 
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allowed 2 final submissions per sub-challenge and scores were revealed after 

the submission deadline. A permutation test was used to assess whether the 

classifications or ΔDAS28 quantitative predictions were better than expected 

at random using a one-sided p-value.  In order to assess the robustness of 

the relative ranking of predictions, 1,000 bootstraps were performed by 

sampling subjects with replacement. Within each bootstrap iteration, 

evaluation scores were computed for each submission, along with the within-

iteration rank. A prediction was deemed “robustly” better than another if the 

Wilcoxon signed-rank test of the 1000 bootstrap iteration estimates was 

significant with p-value < 0.05. While this is not the same as strict statistical 

significance, it was the criteria we used to differentiate models given the 

relatively small improvements from one to another. 

 

8.2.5.5 Development and scoring in the collaborative phase 

One of the aims of DREAM Challenges is to foster collaborative 

research. As such, the collaborative phase was designed to foster cooperation 

between the best performing teams in the competitive phase. Teams came 

together to develop research questions and analytical strategies to answer 

specific questions related to the ability to predict non-response to anti-TNF 

treatment. Each team submitted a number of classifications/predictions 

and/or sets of classifications/predictions that were designed to be able to 

answer questions about the degree to which genetic data were contributing 

to the models, and the classifications were scored and analyzed across teams 

by the challenge organizers. In order to compare across methods and 

approaches, we asked the collaborative phase participants to submit 

classifications/predictions using their own knowledge- and data-mined SNP 

lists, which they refined from the competitive phase after peer review from 

fellow participants. Additionally, they were asked to submit a non-genetic 

classification/prediction, which did not include genetic predictors. We also 

asked the participants to submit 100 sets of classifications/predictions in 
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which the SNPs used as potential predictors were randomly sampled from 

the genome and matched the number of SNPs in their genetic model. Eight 

teams participated in the collaborative phase, seven in each sub-challenge. 

Ranked results for the genetic models are shown in Supplementary Figure 4. 

 

8.2.5.6 Ensemble classifications 

The goal of ensemble learning was to aggregate the classifications 

submitted by individual teams to the classification subchallenge, including 6 

from the Competitive Phase and 7 from the Collaborative Phase, by 

effectively leveraging the consensus as well as diversity among these 

predictions. We focused on learning heterogeneous ensembles16, which are 

capable of aggregating classifications from a diverse set of potentially 

unrelated base classifiers, as is the case with the submissions to this 

subchallenge. Specifically, we followed the stacking methodology28,29, 

which involves learning a meta-classifier (2nd level predictor) on top of the 

base classifications. This methodology was applied to the training set 

classifications generated through a leave-one-out cross-validation (LOOCV) 

procedure applied to the training set for the initial ensemble learning. To 

address the potential calibration issue in this task35, we investigated using the 

raw base classifications and the output of two other normalization 

procedures – Z-score (mean=0, std. dev.=1) and Scale0-1 (maximum=1, 

minimum=0) – applied to the raw base classifications. Next, sixteen different 

classification algorithms (Supplementary Table 3) were used to train 

ensemble models from each of the above normalized versions of the base 

classifications. The implementations of these algorithms were obtained from 

the Weka machine learning suite36, and their default parameters were used. 

Supplementary figure 5 shows the performance of different combinations 

of normalization and classification methods on the leaderboard test set in 

terms of (A) AUPR, (B) AUROC and (C) the overall rank. Several 
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observations can be made from these results. First, the ensemble learnt with 

normalization using Z-score and subsequent learning of a Naïve Bayes 

classifier that uses kernelized probability distribution functions37 produced 

the best aggregate performance on the leaderboard test set (AUROC= 

0.7569, AUPR=0.49), indicating the conditional independence of the base 

classifications and the non-normality of their underlying distributions. In 

general, normalization (either Z-score or Scale0-1) improved the 

performance for 14, 14 and 13 of the 16 classifiers examined in terms of PR, 

ROC and overall rank respectively, thus indicating the importance of 

effective calibration in such ensemble learning tasks. Of these, 10, 9 and 7 

classifiers, including NaiveBayes_kdf, saw the best performance due to the 

use of Z-score normalization, thus giving this normalization method an edge 

over Scale0-1. 

Based on the conclusions above, we applied the ensemble model trained 

using Z-score and NaiveBayes_kdf to the individual team classifications 

submitted for the CORRONA CERTAIN test set in the competitive and 

collaborative phases. The ensemble of the competitive phase 

(AUPR=0.5228, AUROC=0.622) performed better than each of the 

individual classifications and slightly better than the ensemble of the 

collaborative phase (AUPR=0.5209, AUROC=0.6168). These results 

indicate that it is indeed possible to modestly improve classifications for RA 

anti-TNF response by aggregating classifications submitted by individual 

teams to this subchallenge using supervised heterogeneous ensemble 

methods. 

For comparison, we also generated unsupervised ensemble classifications 

using the Spectral Meta-Learner (SML) method30. Specifically, the binary 

input classifications needed for this method were obtained using the signs of 

the z-scored base classification. 
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8.2.6 Author contribution 

The following authors contributed to organizing the challenge: LM Mangravite , SK 
Sieberts, G Stolovitzky, E Stahl, A Pratap, G Pandey, D Pappas, J Cui, AO Falcao, C 
Suver, T Norman, S Friend, R Plenge 

The following authors contributed to data analysis: SK Sieberts, E Stahl, A Pratap, G 
Pandey, J Cui, AO Falcao, EC Neto 

The following authors contributed to software and technical solutions for the 
challenge: A Pratap, B Hoff, VSK Balagurusamy, D Dillenberger 

The following authors contributed data for the challenge: J Greenberg, J Kremer, K 
Michaud, A Barton, M Coenen, X Mariette, C Miceli, N Shadick, M Weinblatt, N de 
Vries, PP Tak, D Gerlag, TWJ Huizinga, F Kurreeman, CF Allaart, SL Bridges Jr., L 
Criswell, L Moreland, L Klareskog, S Saevarsdottir, L Padyukov, PK Gregersen, R 
Plenge 

The following authors participated in the predictive modeling challenge: F Zhu, J 
García-García, D Aguilar, B Anton, J Bonet, R Eksi, O Fornés, E Guney, H Li, MA 
Marín, B Panwar, J Planas-Iglesias, D Poglayen, T Aittokallio, M Ammad-ud-din, 
CA Azencott, V Bellón, V Boeva, K Bunte, H Chheda, L Cheng, J Corander, M 
Dumontier, A Goldenberg, P Gopalacharyulu, M Hajiloo, D Hidru, A Jaiswal, S 
Kaski, B Khalfaoui, SA Khan, ER Kramer, P Marttinen, AM Mezlini, B Molparia, M 
Pirinen, J Saarela, M Samwald, V Stoven, H Tang, J Tang, A Torkamani, JP Vert, B 
Wang, T Wang, K Wennerberg, NE Wineinger, G Xiao, Y Xie, R Yeung, X Zhan, C 
Zhao, The Rheumatoid Arthritis Challenge Consortium, B Oliva, Y Guan  
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8.2.8 Figures 

 

 

Figure 8-1: Challenge schematic. (a) This analysis was performed in two 
phases. In the Competitive phase, an open competition was performed to 
formally evaluate and identify the best models in the world to address this 
research question. 73 teams representing 242 registered participants joined the 
challenge.  Organizers evaluated model performance for test set predictions 
submitted by 17 teams. The 8 best performing teams were invited to join the 
collaborative phase. In this phase, a collectively designed experimental design 
was developed, in which each team independently performed analyses and 
challenge organizers performed a combined analysis. (b) Heritability estimates 
within the Primary Cohort. (c) Two datasets were used in the analysis: The 
discovery cohort and the CORRONA CERTAIN study.Participants were 
provided with 2.5 SNP genotypes + 5 covariates from two cohorts and with the 
response trait for 2031 individuals in the Discovery cohort (‘Training Set’).  At 
the completion of the 16 week training period, participants were required to 
submit a final submission containing predictions of response traits in a completely 
independent dataset, the CORRONA CERTAIN study (‘Validation Test Set’). 
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Figure 2: (a) Bootstrap distributions for each of the 27 models submitted to 
the classification subchallenge ordered by overall rank. The top 11 models 
were significantly better than random at Bonferroni corrected p-value < 0.05. (b) 
AUPR and AUROC of each collaborative phase team’s genetic model versus 
their non- genetic model. There was no significant difference in either metric 
between genetic and non-genetic models (paired t-test p-value = 0.85, 0.82, for 
AUPR and AUROC, respectively). (c) Distributions of the models built with 
SNPs selected at random, by team, along with scores for the genetic (pink) 
and non-genetic (blue) models. For 5 of 7 teams, the genetic models are 
significantly better relative to the random SNP models for AUPR, AUROC or 
both. 
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