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UNIVERSITAT DE BARCELONA

Resumen
Facultat de Física

Departament d’Astronomia i Meteorologia

High performance computing of massive Astrometry

and Photometry data from Gaia

por Javier Bernardo Castañeda Pons

El trabajo realizado en esta tesis se ha centrado en el diseño y desarrollo de

IDU, Intermediate Data Updating. IDU es una de las principales etapas

de calibración instrumental y de procesado de los datos astrométricos de

la misión espacial Gaia.

En los siguientes apartados se resumen los aspectos principales que han

sido cubiertos en esta tesis para la implementación de la primera versión

operacional del sistema IDU.

La misión Gaia y su procesado de datos

Gaia es la misión espacial astrométrica más ambiciosa de la Agencia

Espacial Europea (ESA). El satélite fue lanzado el 19 de Diciem-

bre de 2013 y su objetivo principal es la producción de un catálogo,

con una resolución y precisión sin precedentes, de las posiciones, dis-

tancias y velocidades de más de mil millones de estrellas de nuestra

galaxia. Este catálogo también incluirá información fotométrica y es-

pectroscópica para la mayor parte de los objetos observados durante

toda la misión.

El satélite Gaia está compuesto principalmente de dos telescopios

y un centenar de detectores CCD encargados de tomar las medidas
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astrométricas, potométricas y espectroscópicas de las estrellas ob-

servadas. Estos datos, junto con la información sobre la posición y

estado del satélite, son procesados y combinados para calcular los

principales parámetros que se incluirán en el catálogo final de Gaia.

La operación y la calibración de los telescopios e instrumentos mon-

tados en Gaia son muy complejas. Por este motivo, el estudio del

funcionamiento interno del satélite ha sido fundamental para poder

afrontar con éxito el diseño de IDU. Este conocimiento se ha ido

adquiriendo progresivamente durante esta tesis y ha sido determi-

nante en muchas de las decisiones de diseño adoptadas para IDU.

El procesado de los datos de Gaia es un gran reto científico y tec-

nológico. En particular, el gran volumen de datos a procesar y el

elevado número de procesos involucrados ha implicado la adopción

de un sistema de distribución y procesado de datos muy complejo.

Este procesado comienza con la recepción diaria de los datos del

satélite. Estos datos son procesados produciendo unos resultados in-

termedios preliminares que se utilizan para monitorear diariamente

el funcionamiento del satélite. Tras este procesado preliminar, los

resutados intermedios entran de forma continuada en un sistema it-

erativo de reducción de datos donde diferentes procesos se encargan

de resolver los diferentes aspectos científicos de la reducción de datos

de Gaia. Estos procesos, además, se ejecutan en diferentes centros

de procesado debido a los elevados requisitos computacionales que

necesitan.

De entre estos procesos iterativos, esta tesis se centra en IDU. En este

sistema, todos los datos en bruto recibidos del satélite se reprocesan

y se calibran de nuevo usando los resultados más recientes obtenidos

de los otros procesos iterativos. En este sentido, IDU es esencial

para conseguir la convergencia del proceso iterativo global ya que

es el encargado de regenerar y mejorar los datos intermedios que

constituyen, a su vez, el punto de partida para el resto de sistemas

de procesado.
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Diseño e Implementación de IDU

El diseño e implementación de IDU ha presentado una gran var-

iedad de retos; incluyendo los problemas puramente científicos pero

también las dificultades técnicas que aparecen en el procesado del

gran volumen de datos de Gaia. Adicionalmente, la gestión de to-

das las tareas de desarrollo, test y coordinación de los equipos que

contribuyen a este sistema también se han cubierto en esta tesis.

IDU se compone de siete tareas de procesado diferentes. Cada una

de estas tareas presenta características peculiares tanto en su im-

plementación científica como técnica. Estas características han sido

descritas y analizadas en detalle en esta tesis incluyendo los prin-

cipales motivos por los que cada tarea es imprescindible y como se

integran sus resultados en las demás tareas o sistemas.

Las tareas de procesado de IDU se ejecutan en el supercomputador

Marenostrum, gestionado por el Barcelona Supercomputing Center

(BSC). La integración de IDU en Marenostrum ha sido una de las

tareas más complejas de esta tesis. Esta integración ha consistido

básicamente en el desarrollo de una infraestructura para la imple-

mentación y distribución de las tareas de IDU en los nodos de com-

putación que ofrece Marenostrum. Esta infraestructura se ha dis-

eñado para ser lo más flexible y versátil posible de manera que pueda

ser fácilmente adaptada a cualquier entorno de procesado y ofrezca

las máximas facilidades para poder introducir nuevas funcionalidades

según sea necesario. Como parte de esta infraestructura, también se

ha desarrollado una capa de acceso a datos con el objetivo de ofrecer

un acceso lo más eficiente posible a los datos de Gaia.

Por otra parte, una parte importante del diseño de IDU se ha cen-

trado en el análisis de los datos de entrada y en la caracterización del

perfil de procesado de cada tarea. Esta información es fundamen-

tal para la ecualización del sistema de procesado. El conocimiento

detallado de los datos de entrada (volumen, distribución temporal/es-

pacial, etc.) y un buen modelo de la respuesta de las tareas a esos
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datos es fundamental a la hora de diseñar un sistema de distribu-

ción eficiente en un superordenador como Marenostrum. Para este

propósito se han llevado a cabo numerosos ensayos que también han

servido para la mejora y la identificación de problemas en las tareas

de IDU.

Por supuesto, el rendimiento tanto científico como computacional de

IDU ha sido también analizado en detalle. El conocimiento detallado

de este rendimiento es esencial para obtener resultados de calidad y

lograr un uso eficiente de los recursos. Por este motivo hemos desar-

rollado numerosas herramientas para la monitorización del correcto

rendimiento del sistema y para la validación y visualización de los re-

sultados científicos de las diferentes tareas. Estas mismas herramien-

tas son las que se han utlizado para generar la totalidad de las figuras

de resultados incluidas en esta tesis.

Primeros resultados operacionales de IDU

Esta tesis incluye los resultados de la primera ejecución operacional

de dos de las tareas principales de IDU en el Marenostrum. La

primera ejecución de estas tareas no estaba prevista hasta finales

de 2015 pero su ejecución fue adelantada seis meses para poder cor-

regir algunos de los problemas del procesado diario de datos. Esta

ejecución ha constituido el primer procesado oficial a nivel iterativo

sobre datos reales de Gaia y constituye uno de los mayores logros

conseguidos gracias a todo el trabajo realizado en esta tesis.

Los resultados científicos y el rendimiento computacional han sido

analizados en detalle enfatizando aquellos aspectos directamente rela-

cionados con las funcionalidades más relevantes desarrolladas especí-

ficamente para IDU en esta tesis. Además este ejercicio ha servido

también para presentar los diagnósticos que producen las herramien-

tas desarrolladas para el análisis del rendimiento de IDU. Estas her-

ramientas son fundamentales para monitorizar y detectar cualquier
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problema durante el procesado y además aportan información esen-

cial para la mejora del sistema.

Por último, con esta ejecución hemos podido demostrar como el sis-

tema que hemos diseñado y desarrollado para IDU es completamente

capaz de gestionar y procesar el gran volumen de datos de Gaia ha-

ciendo un uso eficiente de los recursos del supercomputador Marenos-

trum.

Conclusiones

IDU (Intermediate Data Updating) constituye una parte fundamen-

tal en el procesamiento de datos de Gaia. Este sistema se encarga

de varios procesos, de calibración del instrumento y de procesado de

datos, que son esenciales para poder lograr los objetivos finales de

precisión en astrometría de la misión. Además, el procesado en IDU

es muy exigente tanto en el volumen de datos que gestiona como en

los recursos de computación que necesita.

Esta tesis se ha dedicado al diseño e implementación de este sis-

tema de procesado. El trabajo desarrollado ha contribuido amplia

y positivamente a la definición, evolución y operación del sistema

de procesado iterativo de Gaia. Concretamente, dos de las tareas y

parte de la infraestructura que hemos desarrollado ya han sido eje-

cutadas con éxito en el procesado de datos reales de Gaia aportando

antes de lo previsto beneficios en los resultados obtenidos hasta el

momento.

Finalmente, los ensayos llevados a cabo indican además que, en gran

medida, IDU está preparado para poder gestionar el gran volumen

de datos de Gaia y que podrá afrontar sin problemas el exigente reto

de procesar los datos reales de Gaia durante los próximos años de

misión.
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UNIVERSITAT DE BARCELONA

Abstract
Facultat de Física

Departament d’Astronomia i Meteorologia

High performance computing of massive Astrometry

and Photometry data from Gaia

by Javier Bernardo Castañeda Pons

Gaia is an extremely ambitious astrometric space mission adopted within

the scientific programme of the European Space Agency (ESA) in Oc-

tober 2000. It aims to measure with very high accuracy the positions,

motions and parallaxes of a large number of stars and galactic objects, in-

cluding also for almost all the objects information about their brightness,

colour, radial velocity, orbits and astrophysical parameters. Gaia requires

a demanding data processing system on both data volume and processing

power. The treatment of the Gaia data has been designed as an iterative

process between several systems each one solving different aspects of the

data reduction system.

In this thesis we have addressed the design and implementation of the

Intermediate Data Updating (IDU) system. The Intermediate Data Up-

dating (IDU) is the instrument calibration and astrometric data processing

system more demanding in data volume and processing power of the data

processing system of the Gaia satellite data. Without this system, Gaia

would not be able to provide the envisaged accuracies and its presence is

fundamental to get the optimum convergence of the iterative process on

which all the data processing of the spacecraft is based.

The design and implementation of an efficient IDU system is not a simple

task and a good knowledge of the Gaia mission is fundamental. This design

and implementation work is not only referring to the actual design and
xiii
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coding of the system but also to the management and scheduling of all the

related development tasks, system tests and in addition the coordination

of the teams contributing to this system. The developed system is very

flexible and modular so it can be easily adapted and extended to cope with

the changes on the operational processing requirements.

In addition, the design and implementation of IDU presents a variety of

interesting challenges; covering not only the purely scientific problems that

appear in any data reduction but also the technical issues for the process-

ing of the huge amount of data that Gaia is providing. The design has

also been driven by the characteristics and restrictions of the execution

environment and resources – Marenostrum supercomputer hosted by the

Barcelona Supercomputing Center (BSC) (Spain). Furthermore, we have

developed several tools to make the handling of the data easier; including

tailored data access routines, efficient data formats and an autonomous

application in charge of handling and checking the correctness of all the

input data entering and produced by IDU.

Finally, we have been able to test and demonstrate how all the work done

in the design and implementation of IDU is more than capable of dealing

with the real Gaia data processing. We have basically executed two of the

IDU tasks over the first ten months of routine operational Gaia data. This

execution has been the very first cyclic data processing level run over real

Gaia data so far. Executing IDU at Marenostrum over that amount of data

for the first time has been a challenging task and from the results obtained

we are confident that the system, we have designed and that constitutes

the bulk of this thesis, is ready to cope with the Gaia data according to

the requirements sets. Furthermore, the presented design provides a solid

IDU system foundation for the demanding task of processing the Gaia data

during the forthcoming years.
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1 Gaia Mission Overview

1.1 Introduction

Gaia is an extremely ambitious astrometric space mission [Perryman et al.,

2001] adopted within the scientific programme of the European Space

Agency (ESA) in October 2000.

Gaia (Figure 1.1) aims to measure with very high accuracy the positions,

motions and parallaxes of a large number of stars and galactic objects

[ESA, 2014e]. Consequently, a detailed three-dimensional map of more

Figure 1.1: Gaia spacecraft in space – Concept Art (Credit: ESA/-
Gaia)

1



1. Gaia Mission Overview 2

Figure 1.2: Milky Way concept art on top and the expected Gaia
coverage on bottom (Credit: Gaia/DPAC/CU2)

than 1 billion stars of our Galaxy up to the 20th magnitude will be obtained

(approximately 1% of the stars populating the Milky Way). This map will

also include for almost all the objects information about their brightness,

colour, radial velocity, orbits and astrophysical parameters. Gaia will also

reveal and classify thousands of extra-solar planetary systems, minor bod-

ies within our solar system and millions of extragalactic objects, including

some 500.000 quasars. Figure 1.2 shows the expected Milky Way coverage

Gaia will achieve at the end of the mission lifetime.

Gaia scans the sky using the proven principles of its precursor ESA mission

Hipparcos [Perryman, 2010]. Hipparcos was the first satellite devoted to

precision astronomy, launched in 1989 and operated until 1993. The result-

ing Hipparcos Catalogue was published in 1997 and contains the positions,

distances and movements, 200 times more accurate than any previous mea-

surement, for almost 120.000 stars.

Gaia will significantly improve Hipparcos not only in the number of objects

mapped but also in the precision of the angular measurements obtained.
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Gaia will be able to measure the position and motions more accurately

than Hipparcos, reaching about 25 µas at 15th magnitude [ESA, 2014f].

The data produced during the mission lifetime will require over a Petabyte

of disk storage. The raw data will be originally transmitted and com-

pressed from the spacecraft to Earth (around 100 Terabytes) and then it

will be processed to turn it into a calibrated set of measurements for the

astronomical community. Gaia is one clear example on how mission data

sets are increasing in size and complexity which, additionally to the design

and building of the spacecraft itself, requires also the development of new

computer software for its efficient processing. With Gaia, engineers and

astronomers have a very big challenge for dealing with a massive flood of

data. To deal with this very large amount of data it is currently estimated

that Gaia will need a processing power of 1021 flops [Mignard et al., 2007].

Gaia will be acquiring astrometric and spectroscopic measurements over a

nominal period of five years and its science results will be released in the

form of progressive catalogues at several points in the mission starting in

2016. First releases will mainly include the main astrometric parameters

and they will be progressively extended until the completion of the science

mission, when the final catalogue will be released.

Next sections summarize some additional topics about the Gaia mission

which were considered relevant for the scope of this work, more extended

information can be found in ESA’s Gaia Brochure [Clark and EJR-Quartz,

2012] and ESA’s Gaia Portal [ESA, 2014a].

1.2 Spacecraft

Gaia, is a very complex space observatory developed and built by Airbus

Defence and Space (ADS).

Figure 1.3 shows the breakdown of the spacecraft in its more essential

parts. All these parts can be classified in three main modules: a Payload

Module, a Mechanical Service Module and an Electrical Service Module.
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Figure 1.3: Gaia spacecraft decomposition illustration - from top to
bottom: Thermal Tent, Payload Module, Service Module, Propellant
and Pressurant Tanks, Equipped Phase Array Antenna Panel, Deploy-
able Sun shield, Deployable Solar Panels and Fixed Solar Panels (Credit:

ESA/Gaia)
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Figure 1.4: Gaia Sunshield deployment illustration (Credit: ESA/-
Gaia)

The Payload Module is housed inside a protective Thermal Tent and con-

tains the two optical telescopes and the three science instruments further

described in Section 1.3. They are all mounted on a torus made of a ce-

ramic material presenting a very strong mechanical and thermal stability

performance which is essential for the measurement accuracy required for

Gaia.

The Electrical Service Module, located underneath the Payload Module,

contains the electronic units to run the instruments, the Payload Data

Handling Unit (PDHU), the power module, communications units and

other electronic subsystems. The Attitude and Orbit Control sub-System

(AOCS) and Star Trackers are also part of the Electrical Service Module

of Gaia and are in charge of determining the spacecraft orientation and

position in space. The Mechanical Service Module includes all mechan-

ical, structural and thermal elements that support the instruments and

electronics. It also includes the Propulsion Systems and the deployable

Sun shield. Gaia Sun shield is an essential component of the spacecraft.

It keeps Gaia in shadow, maintaining the Payload Module at an almost

constant temperature of around -110◦C. This Sun shield measures about

10 meters across and was build with folding panels to be deployed after

launch as shown in Figure 1.4.
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1.3 Instrument

Gaia has two optical telescopes which are combined into a single focal

plane. These two telescopes involve a total of ten mirrors of various sizes

and surface shapes to collect, focus and direct light to the Focal Plane of

Gaia.

The Focal Plane is composed of 106 Charge-Coupled Devices (CCDs) to

record the light coming from both telescopes. Figure 1.5 shows the actual

focal plane built and installed in Gaia by ADS. Added together, the Gaia

CCDs make the largest focal plane ever flown in space, a total of almost

one billion pixels (one Gigapixel).

The Focal Plane integrates the detectors of three instruments:

• The astrometric instrument is devoted to measuring the stellar posi-

tions, object flux and provide data to track their motion and parallax.

• The photometric instrument provides colour information through two

low-resolution spectra, one in the blue and one in the red range of

the optical spectrum which will be used for the determination of the

Figure 1.5: Gaia Focal Plane picture showing the 106 Gaia CCDs
integrated onto the support structure. The different instruments of the
focal plane can be recognized: (from left to right) the two BAM and the
first WFS, then the two SM, the nine AF (plus the second WFS), the
BP and RP and finally the RVS (last three columns) (Credit: ESA)



1. Gaia Mission Overview 7

stellar properties such as temperature, mass and chemical composi-

tion.

• The Radial Velocity Spectrometer determines the velocity of the

brighter objects along the line of sight of Gaia by measuring the

Doppler shift of absorption lines.

In this Thesis, we will mainly focus on the calibration of the astrometric

instrument and the processing of its related data which is the core of the

data reduction system of Gaia.

1.4 Launch, Orbit and Comissioning Phase

Gaia launch was originally planned in December 2011 but Payload Mod-

ule production complications, related to the focal plane and the telescope

mirrors, caused a notable delay of about 21 months. On October 2013,

a technical issue was identified in the transponders of another satellite al-

ready in orbit, which are also installed on Gaia. As precautionary measure,

the potentially faulty components were verified and replaced introducing

an additional delay of one month in the final verification test campaign.

At last, after two additional months to fit the launch into the overall sched-

ule at Kourou (French Guiana), Gaia was successfully launched on 19 De-

cember 2013 at 09:12 UTC from Europe’s Space port in French Guiana

by Arianespace [ESA, 2014a]. The spacecraft was carried into space by

a Soyuz-STB launch vehicle with a Fregat-MT upper stage. This three-

stage version Soyuz has been launched more than 850 times and is one of

the most-used and reliable launch vehicles. Figure 1.6 shows a detailed

overview of the launch sequence of Gaia until the burn to inject Gaia into

its L2 transfer trajectory.

The spacecraft reached its working orbit three weeks after launch, on 8

January 2014. Gaia follows a Lissajous Orbit around the Sun-Earth L2

point, one of the gravitationally stable Lagrangian Points. L2 offers a
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Figure 1.6: Overview of Gaia’s launch sequence (Credit: ESA/Gaia)

stable thermal environment with moderate radiation, which benefits the

longevity of the instrument detectors. Several other satellites have already

taken advantage of this location, including Herschel and Planck, also from

ESA.

Full sky coverage is accomplished thanks to the spin of the satellite around

its own axis, which itself precesses at a fixed angle of 45 degrees with respect

to the Sun-Satellite line. The spacecraft rotates at a constant angular rate

of 60 arcsecond per second around an axis perpendicular to the two fields

of view, thus describing a full great circle in 6 hours.

Thanks to the adopted scanning principle, Gaia will observe each star 75

times on average during the five years of duration of the mission. Figure 1.7

shows a Hammer-Aitoff Projection of the sky in terms of observation per

square degree already observed by Gaia during the first year of the mission.

In this figure it can be seen how Gaia has already scanned the full sky and

it can also be appreciated how the telescopes have scanned some regions

more than others, result of the observing scanning law adopted described

later in Chapter 2.
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Figure 1.7: Gaia observation density obtained during the first ten
month of routine operations, in Galactic coordinates

The commissioning phase to test and calibrate the spacecraft started while

Gaia was on route to the L2 point and continued until the end of July 2014.

During this phase, the Gaia team on ground sent commands to the space-

craft to adjust the spin rate, mirrors focus and many other configuration

parameters to bring the spacecraft up to full performance.

This phase, originally planned for four months, took three additional months

due to unforeseen issues [ESA, 2014c]. The most relevant issues were those

related to:

• Ice deposits on the mirrors, water was likely trapped in the spacecraft

before launch and emerged once it was in a vacuum causing a steady

drop in the transmission of the telescopes.

• High level stray light entering the detector from the astronomical sky

and the Sun, obtaining very high background levels, variable in time

and across the focal plane.

The ice deposits have been largely removed by repeated decontamination

activities on-board based on the selective heating of the affected optics and

most likely further decontaminations will be exercised during the mission
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as long as the degradation shows up. Regarding the stray light issue, the

main source was initially thought to be related with the ice deposits, but

later its source has been identified as the fibres of the Sun shield edges

[ESA, 2014g].

Fortunately, it has been concluded that the degradation in science perfor-

mance due to both issues for the astrometric instrument will be relatively

modest and mostly restricted to objects with low flux levels [ESA, 2015d].

The first science data products were released by the mission in June. The

measurements, acquired in the form of images centered in the detected

observations, with the astrometric CCDs (Figure 1.8) and the star spec-

tra acquired with the photometers (Figure 1.9) and the Radial Velocity

Spectrometer (Figure 1.10) showed the expected quality and matched the

ground-based references.

Since 18 of July 2014 [ESA, 2014b], the commissioning phase was consid-

ered accomplished and the operations team on-ground focused their efforts

on the complex task of processing the large amount of science data received

on a daily basis from the spacecraft.

At this point Gaia has been working for more than a year already observing

more than 25 billion transits (around 18 Terabytes of science data), seeing

objects fainter than required and even discovering its first Supernova [ESA,

2015a].
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Figure 1.8: Astrometric observation examples for SM, AF1 and AF2
CCDs (top, middle and bottom pane line respectively). Total window
flux decreases from left to right pane in each CCD cases - note that first
examples for AF1 and AF2 are gated observations. Additionally, a CI

of 4 TDIs can be clearly seen in the bottom right pane
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Figure 1.9: Photometer observations examples for different source
types; BP examples on left pane and RP examples on right pane (Credit:

ESA/Gaia/DPAC/Airbus DS)

Figure 1.10: Radial Velocity Spectrometer observation example from
a RVS CCD already with the corresponding wavelength determined for
each sample. Additionally, different spectral lines have been identified

(Credit: ESA/Gaia/DPAC/Airbus DS)
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1.5 Motivation of this Thesis

Most of the work described in this thesis was conducted at the University

of Barcelona in Spain. Since the beginning my work at the university has

been devoted to the Gaia data processing. After two years, when I finished

my Master’s degree on Computational and Applied Physics I started this

thesis for the fulfilment of the degree of Doctor of Physics.

In this thesis we address the implementation of the Intermediate Data

Updating (IDU) system. This implementation is not only referring to

the actual design and coding of the system but also to the management,

scheduling and coordination of all the related development and the teams

contributing to IDU. Since the very beginning of this thesis, a lot of work

has been devoted to chase the continuous changes in the instrument and

the processing algorithms affecting ultimately the final design of IDU. This

circumstance is clearly evident in the contents of this work.

In order to gain a better understanding of IDU goals, it is mandatory to

understand most of the Gaia instrument operation but also the basis of

the general astrometric data reduction processing. In this sense, the IDU

implementation presents a variety of interesting challenges; covering the

purely scientific problems that appear in any data reduction but also the

technical issues for the processing of the huge amount of data that Gaia will

provide. The design of IDU is additionally exciting from the point of view

of an engineer like me. IDU will run in the most powerful supercomputer

in Spain, Marenostrum, hosted in the Barcelona Supercomputing Center

(BSC).

During this thesis, we have actively participated in most of the major

decisions that have been taken in relation to the astrometric processing –

core of the data reduction system of Gaia – which have provided us with a

very good knowledge of the calibration of the astrometric instrument and

the processing of its related data. We have tried to include in the present

work most of this knowledge and we expect you find this information useful

for a better understanding of IDU and in general the Gaia data processing.
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1.6 Structure of this thesis

This thesis has been divided in seven chapters. The current one just aiming

to provide a general overview of the Gaia mission and to introduce the main

goals of this thesis.

In Chapter 2, we give an overview of the design of the Gaia spacecraft,

telescopes and instruments. Specific sections are devoted to the features

of the Gaia CCD detectors as well as the main issues identified during the

test campaign carried out while the instruments were build. Later, the

principle of astrometric measurement with a scanning satellite is described

and discussed, including a brief description of the Gaia telemetry stream.

The scanning law is then explained together with the spacecraft attitude

representation. Finally, we include the recipe for the determination of

the final sky coordinates from the observation measurements through the

several reference systems defined as part of the Gaia processing.

After this more detailed description of the Gaia instrument operation,

Chapter 3 is devoted to the data reduction processing. In this chapter

we explain how the complex data processing required for Gaia has been

divided and distributed in several systems and data processing centres.

We make a clear distinction between the daily and the cyclic processes –

processes involved in the iterative data reduction system. Then, we focus

on the systems directly involved in the astrometric core processing: IDU,

AGIS and PhotPipe. Finally, we explain the data reduction system from

the point of view of the data handling – data model, central data repository

(Main Database (MDB)), etc. We also include details on how the data is

identified, versioned and retracted if needed. The chapter is closed listing

the main contributions of this work to some of the topics covered during

the chapter.

Chapter 4 provides a full overview of the several IDU tasks. This overview

is focused mainly in the scientific topics affecting the design and implemen-

tation of the tasks. In the different sections the main data dependencies

are identified as well as the role of each task product within the astrometric
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reduction solution. This chapter additionally covers the several validation

and monitoring tools available for the analysis of IDU outputs.

After the scientific description, the foremost technical requirements and

constraints for the IDU integration at the Marenostrum supercomputer

are covered in Chapter 5. In this chapter, we also summarise the most

relevant standards and guidelines (to be followed by all the Gaia data pro-

cessing systems) and how they have been implemented in the case of IDU.

Additionally, specific sections are devoted to the processing decomposition

approach, the execution framework and the data access layer.

At this point, most of the work originally planned for this thesis has been

already covered. However, a remaining Chapter 6 has been included de-

scribing the very first operational execution of one of the main IDU task,

the Cross–Match (IDU-XM). This operational execution was not originally

scheduled but due to several issues in the daily processing, this early execu-

tion was requested. This chapter summarises all these issues and presents

the processing strategy approach adopted for serving the results in a very

tight schedule. The results are also reviewed, including a summary of the

main findings and issues found.

Finally, in Chapter 7, a summary of the contribution of this thesis is given,

including the foremost conclusions and presenting the most relevant pend-

ing features and tests that should be addressed in the near future.





2 Instruments Overview and
Spacecraft Operation

Generally speaking, Gaia is an spacecraft holding two combined space tele-

scopes, including several mirrors, a hundred of CCDs and a lot of hardware

and software pieces which must work in perfect harmony to achieve the mis-

sion goal. In this sense, Gaia is a really complex auto-calibrated instrument

[Lindegren and Bastian, 2010] where it is mandatory to know perfectly the

status of each spacecraft part to be able to obtain the envisaged precision

and accuracy on the final catalogue parameters.

This chapter provides specific details on the operation of the several space-

craft parts including their inter–dependencies. It also introduces the main

issues encountered during the design and building of the instrument which

have played an essential role in the main calibration and processing systems

design.

Firstly, the design and operation of the spacecraft and the instruments are

reviewed, with the requirements of scientific applications in mind. In par-

ticular, the telescope and instrument assembly is described in high detail.

Later, the principle of astrometric measurement with a scanning satellite

is described and discussed. Finally, we cover the main issues identified

during the instrument build and the test campaigns, namely:

• CCD Image Distortion; caused by the Charge Transfer Inefficiency

(CTI) or Charge Distortion as explained in Section 2.3.

17
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• CCD Bias Non-Uniformity; introduced during the image read–out as

described in Section 2.4.

These two issues are treated in detail due to their relevance when deter-

mining the astrometric Image Parameters, key parameters for the determi-

nation of the position, proper motion and parallax of the observed objects

by the on ground processing systems.

All the topics covered in this chapter are essential to understand how Gaia

works but also to understand the requirements and constraints of the data

reduction system described in Chapter 4.

2.1 Telescopes & Instrument Assembly

Gaia is composed of two telescopes providing two fields of view, 1 and

2 as illustrated in Figure 2.1. The images of the two fields of views are

combined into a single focal plane holding the detectors of the three science

instruments (already introduced in Section 1.3) as well as other hardware

elements for calibration purposes.

Figure 2.1: Gaia instrument illustrations showing the layout of the
two telescopes, with their main mirrors on top, and the shared Focal

Plane on the bottom right of the torus (Credit: ESA/Gaia)
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2.1.1 Basic Angle

The Basic Angle (BA) refers to the angular distance between the two fields

of view, 106.5 degrees for Gaia. The stability of the angle between the two

viewing directions is a critical calibration concern for the global astrom-

etry, mainly to the parallax measurements. The parallax determination

requires a rigid system of reference which in Gaia is obtained thanks to

the wide angle between the two telescopes and by precisely measuring the

relative positions of objects from both observing directions. Although the

thermodynamic mechanical design of the satellite assures the stability of

this BA on large time scales, a more accurate determination is done as part

of the data processing.

For the determination of the short-term variations on the BA Gaia incor-

porates two independent devices, Basic-Angle Monitors (BAMs). BAMs

are two optical devices, each directing a pair of low-intensity laser beams

towards its respective primary mirror. The beams produce two sets of in-

terference fringes that are detected by dedicated CCDs on the focal plane

(Figure 2.2). The beams form in principle a stable reference against which

any mechanical fluctuation can be detected as a relative displacement of

the two sets of interference fringes. By including these measurements in

the data processing chain, the astrometric effects of short-term variations

can be mitigated. From the two BAMs, only one is used an the other is a

spare.

The in–orbit performance and early results are described in Mora et al.

[2014]. These results indicates that the BA may not be as rigid as expected

which has implied the implementation of more sophisticated calibration

models than initially anticipated. This BA issue is further discussed in

Section 3.2.1.

2.1.2 Focal Plane

The Gaia focal plane holds the detectors of the three science instruments

as shown in Figure 2.2 and is operated by seven Video Processing Units
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Figure 2.2: Layout of CCDs in the focal plane of Gaia. Images travel
from left to right, crossing in turn the SMs, AFs, BPs, RPs, and (some
of them) the RVSs. Also shown are the CCDs for the BAMs and WFSs

(Credit: Gaia/DPAC)

(VPUs). Each VPU operates a single row of CCDs of the Focal Plane and is

in charge of the processing of the measurements of the science instruments.

We can distinguish five groups of CCDs according to their technical and

scientific functionalities [ESA, 2015c]:

• The WFS sensor and BAM, covering 2 plus 2 CCDs. WFS CCDs

are used for re-aligning the telescopes in orbit to cancel errors due to

mirror micro-settings and gravity release and BAM CCDs for contin-

uously measuring fluctuations in the BA between the two telescopes.

• The SMs, containing 14 CCDs (7 for each telescope/field of view),

which autonomously detect objects entering the fields of view. These

object transits are then tracked in the subsequent CCDs.

• The main AF, covering 62 CCDs, devoted to angular–position and

flux measurements. These measurements are essential to derive the

five astrometric parameters: position, proper motions, and parallax
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of the observed objects. The first strip of seven detectors (AF1) also

serves the purpose of object confirmation.

• The BPs, RPs, provide low-resolution spectrophotometric measure-

ments for each object over the wavelength ranges 330-680 and 640-

1050 nanometers, respectively. In addition these measurements en-

able the on-ground calibration of telescope–induced chromatic image

shifts in the astrometry measurements and the astrophysical classifi-

cation of the objects.

• The RVSs, covering 12 CCDs, collect high-resolution spectra of the

brighter objects allowing the derivation of radial velocities and stellar

atmospheric parameters.

2.1.3 CCD Detectors

One of the most important hardware components that allows Gaia to reach

the desired performance is the CCD. The CCDs are well-known and widely

used in optical astronomy for 2D imaging. More details on CCD imaging

is available at Williams et al. [1998].

Gaia will observe objects over a very wide range of apparent magnitude

and the CCDs must therefore be capable of handling a wide dynamic signal

range. Due to this requirement on the object brightness, an Anti-Blooming

Drain (ABD) and Gates features were implemented in the Gaia CCDs.

• The ABD allows the CCDs to observe very bright stars at the same

time as very faint ones, preventing the charge bleeding to adjacent

pixels.

• The Gates allow to adapt the integration time to the brightness of

the object. There are different Gates with different effective exposure

times available to cover the huge magnitude (brightness) range that

can be observed. These Gates are activated depending on the mag-

nitude of the objects and this magnitude is configurable individually
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for each CCD section. While a Gate is activated, the integration time

of all objects crossing that Gate is affected which may degrade sig-

nificantly the observations of the fainter objects. The configuration

of the Gates is important to get usable measurements for all mag-

nitudes but it must be chosen carefully to guarantee that enough

observations are available for the proper calibration on ground.

Additionally, the CCDs comprise two hardware tools to deal with the CTI

(later described in Section 2.3). This hardware tools are: a Charge Injec-

tion (CI) structure and a Supplementary Buried Channel (SBC).

• The CI structure is located all along the first CCD pixel line; and

is capable of generating artificial charges and a gate that controls

the number of electrons to be injected in the first pixel line and

subsequently transferred across the whole CCD [Kohley, 2012]. The

CI were included to be able to temporarily fill a large fraction of the

traps present in the CCD and effectively prevent the charge trapping

of the following photoelectrons generated and transferred through

the CCD.

• The SBC is a second and narrower doping implant on top of the

buried channel which creates a deeper potential minimizing the e-

lectron–trap interactions in the rest of the pixel volume. The SBC

was introduced mainly to improve the measurement of fainter objects

[Seabroke et al., 2013].

All these hardware additions make the Gaia CCD one of the most compli-

cated ever manufactured.

A Gaia CCD, due to its large format (40x60 millimetres), has been man-

ufactured by assembling smaller units with slightly different parameters

called stitch blocks. CCDs are thus composed by 9 stitch blocks in Across-

Scan (AC) direction and 2 in Along-Scan (AL) direction. This block-based

manufacturing with the assembly of the CCD in the focal plane, the BA
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and the optical path of the light through all the mirrors are another main

calibration issues. This calibration, referred as Geometric Calibration, en-

ables the possibility to do the transformations between the measurement

coordinates to the celestial coordinates which is essential for deriving the

astrometric parameters of the observed objects. Chapter 3 describes the

usages of the Geometric Calibration within the main processing systems

and in Section 2.7 an overview of the different Reference System (RS)

defined for Gaia is given.

The Gaia CCD features 4500 pixels in the AL direction and 1966 pixels

in AC, which means it nearly contains 9 million pixels. Figure 2.3 illus-

trates the main parameters of the Gaia CCD as well as some of the above

commented hardware additions. Here is a very short description of the

individual terms used when referring to CCD parameters (extracted from

Bastian [2007]):

• A pixel is the elementary charge generation and storage element in

the light-sensitive area of the CCD.

• A column is the set of all pixels having the same across-scan coordi-

nate (i.e. a one-dimensional pixel array extending along scan).

• A line is the set of all pixels having the same along-scan coordinate

(i.e. a one-dimensional pixel array extending across scan).

• The read–out register, also called serial register is the special pixel line

which is used to dump the accumulated charges to the digitisation

electronics.

2.2 Telescopes & Instrument Operation

2.2.1 Observation strategy

The spacecraft operates in a continuously scanning motion and during

the scan the CCDs integrate continuously the star images crossing both
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Figure 2.3: Schematic view of CCDs structure with physical and pixel
dimensions. It also shows the location of the different Gates, CI and

read–out line (Credit: Gaia/DPAC)

fields of view. This image integration is achieved by operating the CCDs

in Time Delayed Integration (TDI) mode. The TDI mode is commonly

used for imaging applications where an object is tracked by synchronising

the charge transfer rate between the CCD pixel lines with the speed of

motion of the object. This method allows for the integration of charge

as the image moves across the focal plane producing a final image with

better statistics. This improvement in the measurement is particularly

relevant for faint objects where the Signal-to-noise ratio (SNR) is highly

increased. Additionally, as each imaged object is sampled by every pixel

in the column, it is essentially detected with the mean efficiency of all the

pixels in the line reducing then the non-uniformities between pixels.

As the spacecraft sweeps the sky, the on board processing system is able to

detect any object brighter than 21st magnitude as it enters the focal plane.

Every object crossing the focal plane is detected either by SM1 or SM2.

These CCDs identify and record respectively, the objects coming from each
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telescope separately. This is achieved by a physical mask that is placed in

each telescope intermediate image in one of the beam–combiner mirrors.

Next, the acquisition of the object must be confirmed. This confirmation

can be:

• Conditional; depending on the object detection in the corresponding

AF1 observation.

• Unconditional; where AF1 observation is not verified. This is needed

for the virtual objects (Section 2.2.3) and to enable the acquisition

of those cases where the AF1 observation may not be reliable; sat-

urated objects, gated observations, observations containing a charge

injection, close to edge, etc.

This confirmation step eliminates false detections such as cosmic rays and

avoids the tracking of Solar System Object (SSO) with very high proper

motion.

Once the detection is confirmed, a window or set of CCD pixels is allocated

to the object, which is propagated through the following CCDs of the CCD

row as the imaged object crosses the focal plane. The actual propagation

is based on the spacecraft attitude available on board, from which the

position of each object in the focal plane can be predicted.

The object then progressively crosses the eight next CCDs strips in AF,

followed by the BPs, RPs, and RVSs detectors (the latter are present only

for four of the seven CCD rows).

All CCDs, except SMs, are operated in windowing mode so only selected

image regions of the CCD data stream containing objects of interest are

read out. The use of windowing mode reduces the computational resources

on board, the telemetry data stream volume and also the read–out noise

of the measurements.
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Depending on the magnitude determined in the detection, an object will

be observed with larger or smaller windows, with (2D) or without AC res-

olution (1D) and with or without binned samples/pixels. These different

window strategies are used to increase the SNR and reduce the data vol-

ume. Finally, each object gets assigned a priority inherited by the individ-

ual windows and samples, which is used when resolving conflicts between

overlapping windows.

At the beginning of the TDI period, charge is transferred in parallel from

one pixel line to the next one. Once the signal reaches the read–out Serial

Register, we have one TDI period available to flush all the integrated pixels.

This is done, except for SM by flushing at high speed all non selected pixels

before reading the samples of each window. In AF and BP/RP braking

samples are inserted before the first sample of each window, except of

course where we have contiguous window samples. These braking samples

mitigate the effects of the Bias Non-Uniformity or Proximity Electronics

Module (PEM) Non-Uniformity (PEM-NU) anomaly.

2.2.2 Pre-Scan Measurements

Each CCD is operated by a dedicated PEM. The PEMs feature the main

functions to operate the CCD: CCD biases generation, clock level transla-

tion and perform CCD image signal digitisation. The Pre-Scan pixels are

a number of additional pixels in the CCDs (columns 0 to 13) which are

not fed with photoelectric charges (outside the CCD illuminated area) but

nevertheless are always read out.

These Pre-Scan pixels are sampled in AC direction following in general

the same pattern of the image section pixels. Only two samples from each

TDI are acquired and downloaded in blocks of 1024 consecutive TDIs.

The sampling pattern, the samples to select and the period between the

blocks of 1024 pairs of Pre-Scan samples are configured separately for each

individual CCD although it is in general shared for all CCDs of the same

type (SM, AF, BP/RP, RVS).
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These measurements are fundamental to determine the so-called bias (offset

voltage), dark current and the read–out noise introduced by the PEM of

each individual CCD as explained in more details in Section 4.4.

2.2.3 Virtual Objects

The Gaia VPUs can be configured to do some custom fictitious observations

producing the so-called Virtual Objects (VOs). The VOs are very useful

and they were introduced to ease the determination and calibration of:

• The astrophysical background (see Section 4.5).

• The radiation damage of the CCD exposed through the CTI profile

in combination with CI (see Section 2.3).

• The CCD Bias Non-Uniformity response (see Section 2.4).

The number, frequency and properties of VOs are individually configurable

for each VPU. In general, the VOs are acquired together with the real star

observations but the VPUs can also be configured to only acquire VOs

which is done periodically in dedicated campaigns for the study of the

radiation damage and the calibration of the Bias Non-Uniformity model

parameters. The VO strategy for routine and special observation modes is

described in Davidson et al. [2013].

2.3 CCD Charge Transfer Inefficiency

Gaia CCDs suffer from CTI that progressively degrade the image quality

and may also degrade the astrometric performance of Gaia if not properly

addressed (Prod’homme et al. [2012] and Holl et al. [2012]).

Generally speaking, the CTI is the fraction of charge lost during the trans-

fer from one pixel to the next. During the charge movement process, a

little part of the charges are for example captured by traps and re-emitted
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Figure 2.4: Example of a simulated Gaia image with and without the
CTI effects included. In the right panel (the CTI damaged image) and
the bottom panel (AL image profile), it can be clearly seen how the
charge profile is distorted: electrons are trapped in the leading edge and

released later to form a charge tail (Credit: Gaia/DPAC/CU2)

at a later time, thus distorting the final image acquired (image smearing)

introducing systematic bias in the image location estimation and charge

loss compared to that of an undamaged/ideal CCD.

The CTI is present in both directions; in the AL direction or TDI direction

during image integration and in the AC direction or during image read–out

in the Serial Register.

The CTI will progressively increase by the radiation damage dose received

by the CCDs during the mission. The radiation may introduce defects on

the detector materials creating new traps which will degrade the CCDs

response. At L2, the radiation environment is dominated by energetic pro-

tons emitted during solar flares, which are governed by the cyclic activity

of the Sun.



2. Instruments Overview and Spacecraft Operation 29

In the AL direction and taking into account the expected end–of–mission

radiation dose, the systematic centroid shifts of the astrometric images

may amount to several milliarcsecond, depending in a complex way on

many factors including the recent illumination history of the pixel column

[Lindegren et al., 2008].

In the Serial Register, the reports of the test performed on ground (EADS As-

trium [2009b] and EADS Astrium [2009a]) confirmed the presence of a non-

negligible CTI effect in that direction. These tests also revealed that the

response was almost independent of the radiation and the main parameters

were the brightness of the star and the distance to the Serial Register out-

put: the fainter is the star and the farther from the Serial Register output,

the larger is the AC distortion.

The calibration of the radiation damage of the CCDs is one of the most

difficult calibration issues. To ease the calibration and mitigation of the

CTI in the AL direction, the possibility of artificially filling charge traps

prior to the transfer of signals in TDI mode was implemented in the CCD

in the form of CI. These injections have indeed a beneficial effect on the

signal distortion due to radiation damage, but they give rise to a charge

release signal that inflates the general background signal. This charge re-

lease signal must be modelled as part of the background processing, and

since charge release is some function of the injected signal at a given col-

umn and line of the CCDs, it is also essential to characterise the injection

levels as part of the processing [Cross and Hambly, 2010]. Thus, injection

levels have to be routinely monitored during the mission to enable injection

characterisation as part of the routine background processing.

In principle, all CCDs support the activation of periodic CIs but in SM, due

to the need to activate a permanent Gate to reduce the image smearing,

the CI is not included in the default baseline [EADS Astrium, 2008]. This

fact will imply a worse quality of the parameters derived from SM images

but this is not considered dramatical because the final solution will be

completely dominated by the AF measurements.
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The initial analysis carried out during the commissioning phase shows that

the charge trapping and release effects of the CCDs was extremely small

and stable. This analysis also confirmed that the current calibration models

match the effects seen on the real data received [Cross and Hambly, 2014].

See Chapter 4 for a more detailed information on how the CTI effects are

treated and corrected in the data processing.

2.4 CCD Bias Non-Uniformity

The calibration of the gross offsets introduced during the read–out by

means of Pre-Scan measurements processing was always planned for and

included in the ground segment design [Hambly and Fabricius, 2010]. Un-

fortunately as reported in EADS Astrium [2009c], it turned out that the

implemented read–out strategy introduces signal spikes on the electronic

bias correlated with the sequencing of the object being read–out. These

fluctuations in the bias are what are referred as the Bias Non-Uniformity

or PEM-NU anomaly.

During the read–out of the AF, BP/RP, and RVS CCDs, only the pixels

around the target windows are actually read, while the remaining pixels

are flushed out rapidly [Fabricius, 2012]. This strategy provides more time

for reading the pixels of interest which should in principle improve the

measurements quality.

There are two main effects involved in this offset instability. There is an

offset depending on the number of flushes carried out immediately before a

given sample, and there is an offset after each glitch, i.e. the periods where

read–out is interrupted or frozen. The level of the offset fluctuations then

decrease gradually while reading the regular samples – increasing again

when new flushes or glitches happen.

In order to mitigate this fluctuation, braking samples have been introduced

immediately before the target windows in AF and generally also in BP/RP,

but not in RVS. The braking samples are read like the window samples and
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therefore absorb most of the fluctuation. In AF the price has been that

more samples (resources) must be read in the little time available and the

read noise is therefore slightly increased.

Fortunately, the fluctuations are predictable, being based on the timing of

the samples during the read–out and can be calibrated. The corrections can

then be modelled as an unwanted instability of the gross bias offset which

is independent of the signal of the observed objects. In order to be able to

calibrate the offset non-uniformity, it is necessary to know the pre-history

of each sample: especially its situation with respect to the last glitch;

if it was contiguous with braking samples or with other science samples;

and how many pixels were flushed. These pieces of information are not

directly available in the telemetry packages, but must be reconstructed

from the list of confirmed observed objects provided in auxiliary telemetry

file Object Log (ASD7). For AF2-9, BP/RP and RVS, the effects can be

easily corrected [Hambly and Fabricius, 2010]. For SM, it is even easier

since the CCD is always fully read out and the effects of the glitches are

present always in the same columns. For AF1, the necessary information

regarding the read–out history is not available (the non-confirmed objects

are not logged in ASD7) and for this reason the read–out in this CCD

introduces an additional braking sample to better protect the samples of

interest.

2.5 Telemetry Stream

Each confirmed object will produce a telemetry Star Packet (SP1) with

the results from AF and BP/RP measurements, and a record in the object

log (ASD7). A minor part will also be selected for observation in the RVS

and produce a telemetry Star Packet (SP2) with the RVS observation, as

well as an additional record in ASD7. Additionally to the SP1, SP2 and

ASD7 telemetry packets, Gaia also produces more packet types containing

Auxiliary Science Data (ASD), measurements from BAM and WFS and
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also additional measurements from SM, AF and BP/RP in special VPU

operation modes used for calibration purposes.

Here is the list of the main data produced by Gaia and received on ground

[Airbus DS, 2015]:

• Housekeeping data, e.g. attitude and actuators data; with the atti-

tude quaternions, the spacecraft AL/AC rates, the commanded Mi-

croPropulsion Sub-system (MPS) force, the Phased-Array Antenna

(PAA) direction and power among others [Bastian and van Leeuwen,

2007].

• SP1 star packets, with science data from SM, AF and BP/RP.

• SP2 star packets, with science data from RVS.

• SP3 star packets, with science data from BP/RP of Suspected Mov-

ing Object (SMO).

• SP4 packets, with science data from the BAM.

• SP5 packets, with data from the WFS.

• SP6 packets, with data generated by the VPU in its Zoom+Gate

mode.

• SP7 packets, with data generated by the VPU in its Gate mode.

• SP8 packets, with snapshot data from AF1 in Service mode.

• SP9 packets, with snapshot data from SM in Service mode.

• ASD1 packets, with the AC shift correction applied to the coordinate

of the windows propagated along the focal plane due to the attitude

drift.

• ASD2 packets, with Pre-Scan data from all CCDs.

• ASD3 packets, indicating the window resolution changes in RVS.
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• ASD4 packets, reporting statistical data (counters) of objects pro-

cessing.

• ASD5 packets, logging the CI commands for each CCD.

• ASD6 packets, logging the Gate commands for each CCD.

• ASD7 packets, logging the confirmed detections which have in prin-

ciple lead to the creation of a SP1/SP2.

Some Star Packets (SPs) may never reach ground, either because of the

limited resource on board (computational or storage capacity) or because

of the limited capacity of the data transmission or due to transmission

errors. The ASD packets, on the other hand, are much smaller and have

dedicated storage resources and strategy which assures that no data is lost

and should therefore reach ground with high certainty. Additionally the

ASD packets may be retransmitted in case of a transmission failure. This

particular treatment of the ASD was introduced because the data in ASD

packets are essential for the full reconstruction of the SPs measurements

and for the proper parametrization of some calibration models.

To achieve its scientific goals, Gaia will have to detect, select and measure

hundreds of stars per second almost non-stop for the mission life time, pro-

ducing a prodigious volume of data. Each day, some 50 Gigabytes of data

will be generated and these must be sent to Earth. Appendix D summa-

rizes the expected data volume for the full data processing, including the

raw data, intermediate data and the final catalogue products.

This extraordinary data volume is achievable thanks to on board data pro-

cessing and compression, combined with a fast downlink speed (transmitter

on Gaia can maintain a rate of around 5 Megabit/sec). However, collecting

the faint signal requires the use of the most powerful ground stations from

ESA, the 35 meter diameter radio dishes in Cebreros (Spain), New Norcia

(Australia) and Malargüe (Argentina).
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2.6 Spacecraft Attitude

Gaia builds on the proven principles of Hipparcos to determine the astro-

metric parameters by combining a large number of one-dimensional (along-

scan) angular measurements in its focal plane. A continuous scanning mo-

tion ensures that every object is observed in several epochs per year which

is essential for the resolution of the astrometric parameters. The capabil-

ity to make accurate differential measurements over long arcs is the key

to obtaining absolute parallaxes as well as a globally consistent reference

system for the positions and proper motions [Lindegren et al., 2008].

The nominal scanning law of Gaia (illustrated in Figure 2.5) ensures that

each sky region is observed ∼ 75 times on average during the whole mission

with a nearly isotropic distribution of the orientations of the scanning

directions. It also maximizes the uniformity of the sky coverage during the

mission operation life.

To obtain accurate astrometry of the sources observed by Gaia a precise

determination of the attitude of the spacecraft is required [Hobbs and

Lindegren, 2010]. The attitude of Gaia is initially obtained from the AOCS

module in the spacecraft and is represented by Quaternions. Quaternions

provide a convenient and elegant mathematical notation for representing

orientations and rotations of objects in three dimensions. This raw attitude

data is received from the spacecraft every second and then a refined attitude

is reconstructed on-ground using improved algorithms.

The first attitude processing is just adjusting a B-spline to the received

quaternions, called Initial On–Ground Attitude (IOGA). With this IOGA

representation we can then interpolate the attitude for any desired time

in the data processing tasks on ground. From this initial attitude then

more sophisticated algorithms are executed where the raw attitude is ad-

justed applying the necessary corrections derived from the observations of

sources from a dedicated reference catalogue of well known bright sources

(Attitude Source Catalogue (ASC)). For this, an initial Cross-Match of

the observations is required. This second processing aims to achieve an
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Figure 2.5: The nominal scanning law of Gaia. The spacecraft rotates
around the z-axis in 6 h so that the fields of view scan approximately
a great circle on the sky. The z-axis is constrained to move on a sun-
centred cone of 45◦ half-aperture with a period of 62 days, forcing the
plane of scan to sway back and forth with inclinations to the ecliptic
between 45◦ and 135◦. The axis of the cone follows the annual solar mo-
tion leading to a full sky coverage after six months (Credit: ESA/Gaia)

accuracy of about 50 milliarcsecond. Subsequently, further refinements are

performed this time using the huge number of observations available to

reach the desired accuracy of less than 20 microarseconds [Hobbs, 2009].

Additionally, Gaia is exposed to micro–meteoroid impacts which may cause

a change in the angular velocity of Gaia and thus may introduce high fre-

quency noise in the attitude determination. These impacts must be cali-

brated and corrected in the processes in charge of the attitude reconstruc-

tion. During the first year of Gaia operation, small rotation rate changes

of the spacecraft were discovered at a frequency of about one per minute

which were generally interpreted as micro-meteorite hits. Recently, based

on more and better data, they were identified to be mostly due to sudden

small structural changes within the spacecraft, called micro–clanks Bastian

[2015]. At the time of writing this thesis, the treatment of these attitude
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jumps due to the micro–meteoroid and micro–clanks is being studied and

a first preliminary approach is outlined in Lindegren [2015].

2.7 Reference Systems

The data processing of Gaia requires a method to convert observations

on the focal plane (with plane coordinates of the centroid of the selected

images) to suitable celestial coordinates, that is, right ascension and decli-

nation, (α and δ). An overview of the several steps and reference systems

involved in the process of converting the observed positions on the focal

plane to physically sound coordinates is shown in Figure 2.6. Bastian [2007]

includes a detailed description of these reference systems but for the scope

of this work, it is useful to briefly describe the most significant properties

of the several conversion steps.

The top and target reference system for the final catalogue of Gaia is the

so-called Barycentric International Celestial Reference System (BCRS/I-

CRS), which is a quasi-inertial and rotation-free reference system with

respect to distant extragalactic objects. To obtain the coordinates of ev-

ery source in this RS, several additional instrumental reference systems are

introduced. The first of these (see Figure 2.6) is the Center-of-Masses Ref-

erence System (CoMRS). This RS moves with the Gaia spacecraft and is

defined to be kinematically non-rotating with respect to the BCRS/ICRS.

This RS orbits around the Sun and causes variable aberration of light,

varying coordinate velocities of the observed celestial bodies and other

undesired effects. The transformation of the BCRS/ICRS coordinate di-

rection towards a source into the CoMRS coordinate direction of a light

ray coming from that source (and vice versa) is one of the central issues

of the Gaia astrometric data reduction system. From the CoMRS, it is

useful to introduce a new RS co-moving and co-rotating with the body of

the Gaia spacecraft, namely the Scanning Reference System (SRS), which

is mainly used to define the satellite attitude. Celestial coordinates in the
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Figure 2.6: Overview of the several reference systems (RSs) adopted
in Gaia. From the RS for the final catalogue of Gaia to the RS used for
the acquisition parameters of the observations within each CCD of the
focal plane. RSs on the left can be seen as astronomical RS while the

ones in the right refers to purely mechanical RSs

SRS differ from those in the CoMRS only by an euclidean rotation given

by the attitude quaternions.

From this point, we need to distinguish two Field-of-View Reference Sys-

tems (FoVRS), one for each sky field seen by Gaia, with their origins at

the centre of masses of the spacecraft and with the abscissa axis pointing

to the optical centre of each of the fields of view (f1 and f2 in Figure 2.7).

The coordinates in this reference system, called field angles (η and ζ), are

defined for convenience of the modelling of the observations and instru-

ments. Celestial coordinates in each of the FoVRS differ from those in

the SRS only by a fixed nominal euclidean rotation around the Z axis.

These rotation angles are defined by the two viewing directions of the two

telescopes of Gaia in the form of the BA, already described in Section 2.1.

Finally, and through the optical projections of each instrument, we reach
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Figure 2.7: The x, y and z axes of the Scanning Reference System
(SRS), the two Gaia viewing directions (f1 and f2), and the Field-Of-
View Reference Systems (FoVRS) (η and ζ) for both viewing directions

(Credit: Gaia/DPAC)

the Focal Plane Reference System (FPRS). FPRS provides the location of

the individual CCDs on the focal plane but also the plane coordinates of the

observed image centroids: x and y. From FPRS only one conversion is left

to get the corresponding parameters of each individual acquired image in

the so-called Window Reference System (WRS) (introduced in Castañeda

and Fabricius [2012]). This RS is defined at CCD level and describes the

locations of the centroid of the images within each CCD. The coordinates

of the WRS are: the Field of View (FoV), the CCD row, the gate, the AL

pixel coordinate (κ) or observation time, and the AC pixel coordinate (µ).

The conversion of coordinates between the different reference systems is a

critical process within the data reduction systems in Gaia. This conversion

process is essential to link the Gaia observations to the source entries in

the catalogue and to calibrate the instrument response. During this thesis,

we have actively participated in the description and design of most of

the developed routines, always focusing in the needs of IDU processing

(described in more details in Chapter 4).



2. Instruments Overview and Spacecraft Operation 39

2.8 Conclusions & Contributions of this thesis

For a better understanding of forthcoming chapters in this thesis, we have

described the most relevant concepts related to Gaia instruments and its

operation. We have focused on the astrometric instrument and the fore-

most issues discovered during the testing of the instrument on ground and

during the early mission. We will show you, how these issues have moti-

vated some of the most challenging calibration tasks included in IDU.

Regarding the contribution of this thesis, it is limited to the topics cov-

ered in the last three sections: the telemetry stream, the attitude and the

reference systems.

During the first year of this thesis, the core processing routines for reading

the telemetry were implemented (see Castañeda et al. [2011b], Castañeda

and Portell [2009] and Castañeda et al. [2009b]). The undertaking of this

task provided an invaluable knowledge on the low level operations of the

Gaia VPUs which has been very useful for understanding several function-

alities as the CI and Gates and the more fundamental issues related to the

CTI.

Additionally, the reference systems were studied in high detail being the

major contribution the introduction of a new reference system, WRS, rep-

resenting the very basic coordinates defined at individual CCD level [Cas-

tañeda and Fabricius, 2012]. This reference system definition and the cor-

responding conversion procedure are essential for the proper interface be-

tween the AGIS solution and the LSF/PSF calibration – in the form of the

source location within the observed window. This interface is detailed in

Section 4.6.2.





3 Data Reduction Approach

The goal of the data reduction is to transform the raw telemetry data into

the final science data, consisting of an astrometric and spectrophotometric

catalogue based on all the measurements made of each observed object,

meeting the final accuracies of mission goals.

The core data reduction consists of several processing systems dealing with

raw astrometric, photometric and spectrometric measurements downloaded

since the beginning of the mission from the spacecraft. This data reduc-

tion starts with a preliminary treatment on daily basis of the most re-

cent data received and continues with the execution of several processing

chains included in a cyclic reduction system (shown in Figure 3.1). The

cyclic processing chains are reprocessing all the accumulated data again

in each iteration or Data Reduction Cycle (DRC), thus adding the latest

measurements and recomputing the outputs to obtain better quality on

their results [Mercier and Hoar, 2013]. This cyclic processing lasts until

the convergence of the results is achieved.

The catalogue releases then will consist on one or more DRCs exercises

which will be subsequently published and distributed to the international

scientific community [Prusti, 2012]. Updated data release scenario can be

checked online on ESA Web Portal [ESA, 2015b].

The Gaia mission requires a Ground Segment (GS) that shall be operative

beyond the end–of–life of the satellite. Therefore, the DRC exercises will

41
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Figure 3.1: Gaia data reduction overview; identifying the main sys-
tems and differentiating those systems involved in the cyclic processing

continue after routine satellite operations have finished. These DRCs will

finish when the mission accuracy and precision goals for the final publica-

tion are reached.

The GS is formed by six Data Processing Centers (DPCs), managed by the

Data Analysis and Processing Consortium (DPAC). DPAC is the European

Consortium responsible for the processing of the Gaia mission data. These

responsibilities are specifically:

• preparation of the data analysis algorithms to reduce the astrometric,

photometric, and spectroscopic data within a coherent and integrated

processing framework, including special objects such as multiple stars

and minor planets.

• generation and supply of simulated data to support the design, de-

velopment and testing of the entire data processing system.

• design, development, procurement and operation of all aspects of the

hardware and software processing environment necessary to process

the mission data throughout the simulation, mission operations and

final catalogue production phases.
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Figure 3.2: CUs and DPCs within DPAC

• design, development and operation of the Gaia database and archive,

which will contain the intermediate and final mission products of

interest to the scientific community at large.

The DPAC is funded through national funding agencies of the participating

ESA member states. These funding agencies have signed a Multi-Lateral

Agreement (MLA) with ESA which commits all parties to fund the DPAC

effort up to the completion of the final Gaia catalogue, expected around

2022. The Data Analysis and Processing Consortium Executive (DPACE)

supervises the formation and coordination of the different parts of the

Consortium and coordinates the work with ESA. The DPACE additionally

reports to the MLA Steering Committee with representatives of ESA and

the partner funding agencies. In parallel, ESA selected a senior body, the

Gaia Science Team (GST), representing the scientific community.

The complexity of the data reduction has implied the development of dif-

ferent modules or processing systems in charge of specific parts of the pro-

cessing (described in Section 3.2). These processing systems are managed

by nine Coordination Units (CUs), each one responsible for a particular

aspect of data processing. Figure 3.2 depicts the structure of DPAC, in-

cluding the connection between the several DPCs and the CUs.
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In general each DPC is dedicated to a specific part of the processing and

thus to a given CU. These are the main task of each CU (see LL: [2007]

for the full and more detailed task list):

• CU1, dedicated to define the overall system processing philosophy,

architecture and strategy. This CU develops the Interface Control

Documents (ICDs), coding guidelines, product assurance plans, con-

figuration management guides and additionally some central/com-

mon software libraries. Attached to DPCE.

• CU2, in charge of developing the Gaia simulators that gives simulated

data to allow the development and validation of the data reduction

of the mission, also generating big simulated samples to the common

usage of the other CUs. Attached to DPCB.

• CU3, in charge of the core processing, covering the entire processing

chain going from the raw telemetry to the astrometric core solution.

Attached to DPCB, DPCE and DPCT.

• CU4, responsible for Objects Processing: its tasks include the pro-

cessing of the astrometric and photometric data of more complex

objects not handled by the astrometric core processing, and specif-

ically: (a) non-single stars (binary and multiple stars); (b) SSOs

(asteroids, near-Earth objects, etc.); (c) extended objects. Attached

to DPCC.

• CU5, in charge of the photometric processing derived from AF and

BP/RP instrument measurements. Attached to DPCI.

• CU6, responsible for all aspects of the spectroscopic processing de-

rived from RVS instrument measurements. Attached to DPCC.

• CU7, responsible for the data processing and analysis of the variable

sources observed by Gaia. Attached to DPCG.

• CU8, focus on the extraction of Astrophysical Parameters of the

Sources that Gaia will observed. Attached to DPCC.
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• CU9, covers the management, documentation, archive architecture

and development, data validation, operation and services, education

and outreach, science enabling applications and visualisation of the

Gaia Catalogue releases [Luri et al., 2013]. Attached to DPCE.

The CU with the most relevant role in the present work are CU3 and CU5,

and - on a second level - CU1 and CU4.

More than 450 people across Europe are contributing to the development

of the huge Gaia data processing effort, including specialist astronomers,

engineers, programmers, etc. The participation of my group in DPAC

takes place in the CU3, CU5, CU9, CU2 and CU1. This multidisciplinary

participation has been of invaluable help during the elaboration of this

thesis.

Following sections in this chapter provide an overall description of the dif-

ferent data processing steps involved in the data reduction, describing the

main processing systems, data products and the iterative loop governing

this reduction. These topics have been grouped in three sections. The first

section describes the Daily or near-real-time processing - systems running

on a time scale of approximately a couple of days since the reception of the

data from the spacecraft. Whereas, the second section covers the Iterative

Reduction Processing, or DRCs processing. Finally, a last section has been

included to describe how all the received and produced data is managed

within DPAC.

3.1 Daily Processing

The downlinked science data along with the relevant housekeeping data

from spacecraft is received by Mission Operation Centre (MOC) which is

located at the European Space Operations Centre (ESOC) in Darmstadt,

Germany. This data is then relayed to the Science Operation Centre (SOC)

located at Data Processing Center ESAC (DPCE). When data arrives at

DPCE, it is first reconstructed by composing measurement packets from
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the raw telemetry packets, decompressed and backed up. Then it enters

the first of the scientific data processing systems, which is called Interme-

diate Data Treatment (IDT) [Portell et al., 2014a]. The IDT processes all

newly arrived telemetry and auxiliary data. The most important opera-

tions executed by IDT are the following:

• Rearranging and reformatting the data (SP and ASD packets) to

create raw astrometric, photometric and spectrometric information

ready for storage in the MDB. This part is not strictly data processing

since there is no change or addition to the information content, it only

reconstructs and transforms the measurements performed on board

to a more friendly Data Model (DM).

• Refining the raw attitude quaternions of the spacecraft by combining

them with the astrometric observations of a subset of bright reference

sources, called On–Ground Attitude (OGA1).

• Astrometric and photometric image parameter: transit times, cen-

troids, fluxes, colour wavelength, etc. In this stage, also the electronic

bias and the astrophysical background is determined.

• Approximate celestial coordinates for source identification; linking

the observations to sources present in the Gaia catalogue or else to

new ones if necessary.

All the IDT processing is done in near-real time as soon as data reach

DPCE. The processing is based on a data–driven approach; IDT has to

detect and identify the incoming data and trigger the associated process-

ing module - which, in turn, can trigger other processing modules. This

operation allows to promptly examine the data to diagnose the health of

all its systems and instruments. A quick examination is possible thanks to

several integrated monitoring tools developed during this thesis described

in more details in Section 4.8. IDT software design and development is

managed by the CU3-UB group and integrates developments from several

teams; CU5-DU10, CU3-Torino, etc.



3. Data Reduction Approach 47

Together with IDT it also runs First Look (FL). The primary objective of

the FL is to ensure the scientific health of Gaia. It produces a lot of diagnos-

tics indicating if there are anomalies in the scientific output of the satellite

which can be corrected on-board. FL processing carry out a restricted as-

trometric solution on a dataset from a small number of great-circle scans.

This solution generates a new refined attitude (OGA2), and a geometric

calibration and allows to detect as soon as possible inconsistencies on the

operation of the spacecraft instrument or in the processing performed by

IDT. Additionally, FL performs some calibration tasks regarding:

• Charge Injection (CI) and CI release profile (see Section 2.3).

• PEM Non-Uniformity (see Section 2.4).

• Instrument Line/Point Spread Function (LSF/PSF) response.

• CCD cosmetics: column defects, saturation levels, Column Response

Non Uniformity (CRNU), dark current signal, dead columns, etc.

These calibrations are just initial solutions for prompt feedback and usage

in IDT and most of them are refined and improved in the iterative reduction

processing. This improvement comes from having all the data available

(non-real time processing) and by means of more complex models.

The outputs of the daily systems are made available to all DPCs and

ingested into the MDB. In that sense, DPCE acts as a hub for the GS,

being the central interface between MOC and the other DPCs. The daily

data volume (from 40 to 100 Gigabytes, see Appendix D), may not look

very high for nowadays computing standards, but the complexity lies in

the millions of star transits contained in such data and the complex and

tight processing dependencies. See Appendix C to get an overall summary

of the Gaia Transfer System (GTS).

Another major daily task is the production of Science Alerts [Burgon et al.,

2010]. This task run in near-real time as soon as data is made available at

Data Processing Center Cambridge (DPCI) and aims to detect:
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• unexpected and rapid changes in the flux, spectrum or position.

• appearance of new objects.

• trigger ground-based follow-up to the community.

The first confirmed Gaia science alert, corresponding to a supernova, was

discovered September 2014 [ESA, 2014d].

3.2 Iterative Reduction Processing

As commented above, the complexity of the data reduction has implied

its decomposition into different tasks or processing systems in charge of

specific parts of the processing. The system break down approach is very

common for large processing systems to allow a distributed development.

The decomposition has been based on the identification of those major

processing tasks which may operate in a relatively independent manner

limiting the data interdependencies. Practically, all tasks are in fact in-

terdependent from the point of view of the data but from a development

point of view, a well defined ICD allows completely decoupled components

to be developed and even operated in different locations. This approach

was also taken due to the fact that Gaia processing system was developed

in many countries and by teams of varying competence [O’Mullane et al.,

2006b].

Gaia processing must be fully self–calibrating with very reduced external

connections. It must solve together the attitude, instrument parameters

and the object catalogue parameters (positions, proper motion, parallaxes,

etc.) mainly from the observations and the housekeeping data coming

from the spacecraft. Therefore, the same data that are ultimately forming

the astrometric catalogue are also used to reconstruct the attitude and to

determine the instrument calibration parameters. Similar considerations,

but with less entanglement, apply to the spectroscopic and photometric

data, where reference stars will be used to make the initial calibrations and
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determine the photometric system. For the work presented in the thesis,

the photometric and spectroscopic reduction operation is not relevant and

therefore it will not be covered.

The main iterative steps are:

Step 0

Reconstruct observational and housekeeping measurements from the

raw telemetry packets.

This is done only once by IDT as the data is received by MOC.

Step 1

Treat raw observational measurements to calibrate the Bias and the

Astrophysical Background.

Done for the first time in the daily pipeline at DPCE by IDT and

improved as part of the data reduction by IDU as later described in

Sections 4.4 and 4.5).

Step 2

Apply calibrations obtained from Step 1 to reconstruct the esti-

mated photo counts of the observed objects from the raw obser-

vational measurements. This step basically revert the CCD image

signal digitisation, subtract the Bias and Astrophysical Background

and correct the PEM-NU of the readout.

In this step external calibrations for the PEM-NU and CCD cosmet-

ics are also applied. This operation is performed in IDT and IDU and

it is a prerequisite for any further processing of the observed images.

Step 3

From the reconstructed photo counts of the observed objects (see

Step 2) the LSF/PSF response of the instrument is determined. The

LSF/PSF calibration is one of the more complex tasks. It depends

not only on the observations but also in the astrometric solution from

Astrometic Global Iterative Solution (AGIS), the photometric solu-

tion from Photometric Pipeline (PhotPipe) and the Cross-Match.

AGIS and PhotPipe solutions provide essential parameters required



3. Data Reduction Approach 50

for the proper modelling of the image shape response of the Gaia

instrument; such as the AC motion, magnitude and colour of the

source, zero-point reference for the model, etc. The full set of pa-

rameters and dependencies for the LSF/PSF task are provided in

Section 4.6.

A preliminary calibration is done in FL (or by offline processes) but

it is IDU the one in charge of computing and progressively improving

the final LSF/PSF calibration in each DRC.

Step 4

Using the calibrated LSF/PSF library (see Step 3), the Image Pa-

rameters are obtained.

This is also done for the first time in IDT for the newly received data

but they are subsequently improved by IDU on a DRC basis.

Step 5

Finally from the Image Parameters and the Cross-Match, the atti-

tude, theGeometric Calibration and the main astrometric parameters

of all objects are recomputed together providing a global update of

the Gaia catalogue.

The system in charge of this global update is called AGIS and runs

on a DRC basis.

The subsequent execution of all steps from Step 1 to Step 5 is what ulti-

mately will make it possible to reach the final mission goals on astrometry.

The time scale for the described iteration loop is much longer than that

of the near-real-time processing, of the order of six months. Six months is

approximately the time required to assure that new observations for almost

the full sky are made available for each DRC.

Next sections describe the most relevant DRC systems involved in the core

data reduction, namely AGIS, PhotPipe and IDU.
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3.2.1 Astrometric Global Iterative Solution

The AGIS or astrometric core solution is the cornerstone of the data pro-

cessing [Lindegren et al., 2012] and [O’Mullane, 2012]. It provides the

focal plane calibration, the improved attitude solution and updates the

main astrometric parameters of the Gaia catalogue. AGIS determines six

astrometric parameters:

• Position on celestial sphere: α and δ.

• Parallax (distance): $.

• Proper motion: µα∗ and µδ.

• Radial proper motion: µR (only computed for a small subset of

sources).

These parameters are determined using (in theory) no a priori knowledge

of these quantities but deriving them from observation data alone in a

self–consistent manner. The solution constitutes an internally consistent

celestial reference frame, but does not coincide with International Celestial

Reference System (ICRS). The solution is then transformed into ICRS

using a uniform rotation computed using a subset of primary stars and

quasars. Recent findings indicate that the BA is not as rigid as expected

and that fluctuations observed may not be completely corrected Mora et al.

[2014]. This issue may require the inclusion of some additional external

references to get rid of the systematic bias on the parallax parameters

[Hobbs and Lindegren, 2011].

Resolving the resulting system of equations combining the six astromet-

ric parameters of all sources, the attitude and the geometric calibration

parameters is intractable in a direct way with today’s computational capa-

bilities [Bombrun et al., 2010]. Basically one would obtain a system with

1012 measurements for determining 5 × 109 unknowns in a globally and

self-consistent manner. Instead of that, the adopted approach is to resolve

each block of parameters separately and iterate globally until reaching a
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Figure 3.3: Simple AGIS iteration diagram where A stands for At-
titude, S for source parameters and C for the Focal Plane geometry

calibration parameters (Credit: Gaia/DPAC/AGIS)

convergence in the parameters updates. Figure 3.3 illustrates this very

basic AGIS internal iteration. For more details on AGIS design and im-

plementation details see O’Mullane et al. [2011]

The geometric calibration model developed for AGIS is in charge of pro-

viding the transformation matrix between the focal plane coordinates and

the celestial coordinates [Lindegren, 2008a]. This transformation works

in both spatial (position in the field of view) and temporal scale (time of

the observation). It also tries to disentangle the purely geometric response

(GEO-CAL) with respect to the offsets introduced by the colour and mag-

nitude response of the instrument and the other image distortion terms i.e.

the CTI effects. The non-purely geometric terms (COMA-CAL) obtained

in the AGIS calibration should eventually be removed (set to zero) being

completely absorbed by the LSF/PSF model calibration.

AGIS is operated at DPCE.

3.2.2 Photometric Pipeline

Broad–band photometry will result from the fluxes measured in the AF

CCDs during the star transits, while the dedicated BP/RP CCDs will pro-

vide dispersed images in blue and red bands. The photometric calibrations

will ultimately provide the fluxes (magnitudes) and basic spectral informa-

tion for all observed stars. Combined with the parallax measurements this

will provide stellar luminosities, the actual fluxes produced by stars, for

stars in a wide range of temperatures, composition and stages of evolution.
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The system in charge of the photometric calibrations is called PhotPipe

[van Leeuwen et al., 2011]. The PhotPipe data processing has been de-

signed splitting the process into three steps:

Pre-processing:

In this first phase, the raw observations are processed in order to

”clean” them from several effects. At this stage Bias and Astro-

physical Background is subtracted and possible contamination and

blending effects are considered. Also the effects of the CTI are also

accounted for in this pre-processing stage.

Internal calibration

The internal calibration will combine all different transits of a given

source to a common reference internal system producing a mean Gaia

observation. This internal calibration accounts for the differential in-

strumental effects (in CCD sensitivity, flux losses by aperture effect,

variations of the LSF/PSF, spectral dispersion and geometry, etc.)

and depend on the colour and type of the source. It is worth men-

tioning that the selection of calibration sources ensuring a good rep-

resentation of all kind of observed sources is fundamental [Carrasco

et al., 2015].

External calibration

Once the mean Gaia observations are produced, a final step, the

external calibration, transforms them to absolute fluxes and wave-

lengths. In principle, few calibration sources are needed but they

need to have accurate determinations of their absolute fluxes and

their non-variability. For this purpose, a big international observa-

tional effort has been done using on ground telescopes.

For the astrometric reduction, the photometric processing basically pro-

vides the source colour information which is used for colour dependent

calibration and for the chromaticity correction of the astrometry. The

photometry result must, therefore, be available for the processing of the

next astrometric solution in each DRC.
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PhotPipe runs at DPCI in Cambridge. Within DPCI, the Source Envi-

ronment Analysis (SEA) is also run. The SEA software is used to check

for the presence of faint companions to sources, which can disturb, or even

distort, the astrometric and photometric measurements. This software is

to be implemented later during the mission, as SEA requires good data

coverage to be successful and eventually could also be used in the IDU

processing.

3.2.3 Intermediate Data Updating

Intermediate Data Updating (IDU) is the instrument calibration and data

reduction system more demanding in data volume and processing power of

DPAC. Intermediate Data Updating (IDU) aims to provide:

• An updated Cross-Match table using the latest attitude, geometric

calibration and source catalogue available

• Updated calibrations for Bias, Astrophysical Background and instru-

ment LSF/PSF model

• Updated Image Parameters; location and fluxes.

The design and development of the IDU system has been the main objective

of this thesis and thus the next two chapters have been devoted to its

detailed description and operation. This section, on the other hand, only

covers the role of IDU in the iterative data reduction.

As presented in Section 3.2, the successive iterations between IDU, AGIS

and PhotPipe (as shown in Figure 3.4) are what will make possible to

achieve the high accuracies envisaged for the final Gaia catalogue.

Basically, IDU incorporates the astrometric solution from AGIS resulting

in an improved Cross-Match but also incorporates the photometric solution

from PhotPipe within the LSF/PSF calibration obtaining also improved

Image Parameters. These improved results turns out to be the starting
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Figure 3.4: Diagram of the IDU, AGIS and PhotPipe system operation
and interdependency; from raw data until the updated source catalogue

updates

point for the next iterative reduction loop. Without IDU, Gaia would not

be able to provide the envisaged accuracies and its presence is key to get

the optimum convergence of the iterative process on which all the data

processing of the spacecraft is based.

IDU software design and development is also managed by CU3-UB group

and integrates developments from CU5-DU10 and CU3-Torino.

3.3 Data Management

As commented in this chapter, DPAC has enforced the adoption of a well

defined Interface Control Document (ICD) to ensure the intercommunica-

tion of all the processing systems participating in the data reduction effort

[Hernandez, 2014]. This ICD basically defines the interface or interfaces

between all the system through a well defined and controlled Data Model

(DM). All the data produced following this DM ends up in the Gaia MDB.

The MDB can be understood as a hub of all data produced by the Gaia

data processing systems as shown in Figure 3.1.

As mentioned several times, new data is received on a daily basis and enters

in the data processing pipeline continuously. It seem obvious that the data

– which will reach really huge volumes - need to be partitioned. This

data partition is actually useful for the definition and coordination of the

data entering the iterative processing. The data partition, in the form of

Data Segments (DSs), is defined according to the On Board Mission Time
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(OBMT) an nominally will cover periods of approximately six months. The

length of the DS will ultimately be adapted to the Gaia release schedule.

Finally, the DRC will always be phased with the definition of the DS.

The plan is to version the MDB at regular intervals in phase with the

DS and DRC [Hernandez, 2013]. Due to the iterative nature of the science

processing, new versions of the MDB will be always derived from the data of

the previous version and therefore this previous version will be completely

superseded by the new one. For this purpose all the data products are

uniquely tagged with a solution identifier - coding at least the DRC and the

software that generate the data [Hernandez, 2012]. This solution identifier

is also of great help for tracking the input data used to generate subsequent

data products or when data qualification is required, allowing for example

the retraction or deletion of invalid data.

In general, each DPC stores a fraction of the current and past MDB ver-

sions depending on the needs of their processing systems. Only DPCC

stores a full version of the MDB, including the raw data from the space-

craft. Once a MDB is closed, a new MDB is initialised, in general with

a new DM adjusted to the most recent updates in the calibration models

and data product changes.

It will be a normal scenario to have to deal with data from an earlier

version of the MDB and DM, typically we need to read the input data

with a newer version of the DM. In general, if no breaking changes have

been introduced in the DM, the DPAC software is capable of reading old

versions of the data. In case of breaking changes, tools are available for

the conversion which will be responsibility of each DPC.

All the operations related to the MDB and DM handling are fully described

in Els [2014]. This technical note also summarises all the details related

to data transfers, data naming conventions and the set of procedures for

data conversion and data recovery.

As described in previous sections, during the DRC the different processing

systems produce specific data products which are sent to DPCE for its
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addition to the MDB. In general, integrating these data products does not

imply any additional task except for the data contributing or updating the

source parameters of the Gaia catalogue. In practice, it is required the

execution of a last process in charge of the integration of the partial source

parameter solutions. This system is called MDB Integrator [Hutton, 2014]

and is in charge of merging the updates and resolving any conflict found in

the data to be integrated. More details are provided in Section 4.3 devoted

to the IDU Cross-Match task.

It is only when the MDB Integrator runs, at the end of the DRC, that

the current MDB can be effectively closed. DPCE is both, the MDB host-

ing and MDB Integrator. The expected data volume of the MDB has

been summarised in Appendix D whereas Appendix C describes the data

exchange scheme and technology adopted for the GTS.

Regarding the Gaia data releases, they will be created from the MDB

when a given DRCs is closed, initially only fraction of the catalogue will

be extracted but ultimately the full MDB contents will be made public to

the scientific community as described in Luri et al. [2013].

3.4 Conclusions & Contributions of this thesis

We have summarised the data reduction approach adopted for Gaia. This

summary has covered the most relevant systems starting from the daily

processing; IDT and FL and finishing with the main system involved in

the astrometric core solution: IDU, AGIS and PhotPipe. We have also

described in detail the main steps involved in the astrometric data iterative

reduction and the essential role of IDU and AGIS systems.

As remarked on Section 3.2, IDT and IDU have similar features. A large

fraction of the algorithms developed for IDU during this thesis has been

also integrated in IDT and are actively used in the daily pipeline at DPCE.

We must highlight the contributions done for the raw data handling (see

Section 2.8), the Cross-Match and the Image Parameters Determination
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(IPD) tasks. Also the work done for this thesis has contributed to the

improvement of the algorithms provided by other CUs, mainly CU1 and

CU5. Additionally, a lot of monitoring tools have been developed during

this thesis which have been integrated in both systems. A detailed list of

these tools is available in Section 4.8.

It is worth pointing out that the definition of this data reduction approach

has been achieved thanks to the efforts of all the CU and DPC teams.

We have participated as CU3 members but also as DPCB members, thus

assuring the fulfilment of the scientific requirements of IDU but also the

technical topics related to the data provision and processing scheduling.

Due to the iterative nature and the interdependencies between all the sys-

tems the definition of a detailed operations schedule is fundamental. Also

the adoption of a common DM and ICD plays an important role for the

success of the integration of all the systems. We have participated actively

on the definition of this DM which has required several updates to fulfil

the main interface requirements between the data reduction systems, in

our case AGIS and IDU.

At the time of writing, the first AGIS run is conducted using already the

Cross–Match (IDU-XM) results (see Chapter 6). In a few months, when

this data is distributed to all DPCs, the very first iterative loop will start.

This is a very relevant milestone and achievement, that should demonstrate

the correct interface of all systems developed during the last years.



4 IDU Scientific Overview

The Intermediate Data Updating (IDU) has two main objectives: to refine

the Image Parameters for the SM and AF measurements, and to refine the

Cross-Match for all Gaia detections using the more recent and thus most

accurate calibrations and source catalogues available [Castañeda et al.,

2011a] and [Fabricius et al., 2009]. For the achievement of these objec-

tives, IDU also includes some of the major Gaia calibrations tasks which

run in the same environment due to the strong relation between them, this

symbiosis will facilitate the delivery of suitable observations to the cali-

brations, and of calibration data to IDU tasks. Therefore, IDU software

product does not only refer to the updating of the intermediate data, it

also includes the calibration processes and all the processing framework

required to make everything work together.

IDU tasks can be logically grouped in three main blocks according to the

nature of their processing:

IDU-SDM

This first task group aims to provide information about the connec-

tion between Gaia observations and the actual observed sources 1. It

includes three tasks: Scene (IDU-SCN), Detection Classifier (IDU-

DC) and Cross–Match (IDU-XM).
1The term source refers to both stellar sources and Solar System Objects (SSOs)

59
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Figure 4.1: High level diagram of the data interfaces and tasks involved
in a standard IDU execution flow

IDU-CAL

Task group including all the calibration tasks: Bias (IDU-BIAS), As-

trophysical Background (IDU-APB) and LSF/PSF (IDU-LSF/PSF).

IDU-IPD

Task group responsible of the determination of the Image Parameters

carried out by a single task, namely Image Parameters Determination

(IDU-IPD).

Figure 4.1 presents a high level diagram of the tasks involved in a stan-

dard IDU execution flow. It also shows the main input interfaces and the

interdependencies between each task.

Additionally to the scientific tasks, IDU (through DPCB software facilities,

specifically DpcbTools) also implements a number of auxiliary processes.

In general, these processes are run just before the IDU main tasks start

and once the task results are made available. These processes particularly

covers:
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• Ingestion of new data in IDU environment.

• Determination of the initial job scheduling according to the require-

ment and constraints of each processing task.

• Collection and monitoring of the task outputs.

• Ingestion of the task outputs for the other IDU processing tasks.

• Backup of all task output results and configurations.

• Arrangement of output data for its transfer to the other DPCs.

In this chapter, we will cover the core processing tasks while the framework

and auxiliary processes will be treated in Chapter 5.

4.1 Scene Determination

The Scene (IDU-SCN) is in charge of providing a prediction of the objects

scanned by the two fields of view of Gaia according to the spacecraft at-

titude and orbit, the SSO ephemeris and the source catalogue [Castañeda

and Fabricius, 2012]. It was originally introduced to track the illumination

history of the CCD columns for the parametrization of the CTI mitigation.

However, this information is also valuable to identify the nearby sources

that may be affecting the Astrophysical Background and LSF/PSF profile

of a given observation - the IDU-SCN can easily tell us if the transit is

disturbed or polluted by a parasitic source.

The Scene will not only include the sources actually scanned by both fields

of view but it will also identify:

• Sources without the corresponding Gaia observations. This can hap-

pen in case of:

– Very Bright Sources (VBSs) and SSOs transits not detected in

the SM or not finally confirmed in AF1.
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Figure 4.2: Schematic data flow for the IDU-SCN task for catalogue
sources, showing the main inputs and outputs. In this case, the sky
region corresponding to the requested time interval is firstly determined
and then the subset of sources is treated by the scene processing core

– Very high proper motion SSOs, detected in SM but not success-

fully confirmed in AF1.

– High density regions where the on board resources are not able

to cope with all the crossing objects.

– Very close sources where the detection and acquisition of two

separate observations is not feasible due to the capacity of the

VPUs processing.

– Data losses due to: on board storage overflow, data transfer

issues or processing errors.

• Sources falling into the edges and between the CCD rows.

• Sources falling out of both fields of view but so bright that they may

disturb or pollute nearby observations.

It must be specially noted that the IDU-SCN is established not from the in-

dividual observations, but from the catalogue sources and SSOs. Figure 4.2

and 4.3 present the schematic processing diagrams and data dependencies

for each case: catalogue sources and SSOs.

For each object selected, this task provides the reference time when the

object has an AL field angle, η, corresponding to the un-gated AF1 Fiducial

Line - this time reference is equivalent to the one provided in the raw

data from the spacecraft but earlier by half the CCD integration time.
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Figure 4.3: Schematic data flow for the IDU-SCN task for SSOs, show-
ing the main inputs and outputs

The reference time is obtained by an iterative process as shown in Figure

4.4. The prediction algorithm, starting from a initial observation time

(tobs), computes the field angles of the given object. Then it compares

the obtained η value with the expected AF1 reference and estimates a

new observation time, tobs + δ t taking into account the scanning velocity

of Gaia until it reaches the desired convergence (AL/time distance). The

time needs not be accurate to better than about one TDI period, AL pixel.

It is meant to facilitate sorting and to facilitate direct comparison with the

transit identifiers of the actual observations. Finally, the predicted field

angles, η and ζ, for additional time offsets covering the full focal plane are

included in the scene record.

In general, the main criteria to select an object transit for the IDU-SCN

depends on its magnitude and the AC distance to the focal plane centre

at the AF1 Fiducial Line. Information about the expected AC size for

different Gaia magnitudes can be extracted from Mora et al. [2010]. How-

ever, recent findings on the instrument response for bright objects (more

described in Section 4.2) indicates that these initial estimations must be

largely increased to cope with the diffraction spikes.

In practice, the task splits the full DRC time interval in smaller sub-

intervals of less than 6 hours, expected time to complete a scan of one

great circle (6 hours x 60 arcsec/sec = 360 degrees). That way we make

sure there will be only one transit of each source in each interval and each

FoV.

From the scene data, we can find out which objects contribute to a given

transit. The accurate trail across individual CCDs at WRS level can be
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Figure 4.4: Diagram of the IDU-SCN core processing

interpolated from the estimated field angles points included in the same

record as illustrated in Figure 4.5.

The design and implementation of the IDU-SCN task as well as the corre-

sponding core routines have been responsibility of the CU3-UB, and more

specifically of the author of this thesis. Some examples of the results ob-

tained by IDU-SCN task have been included in Chapter 6.

4.2 Detection Classifier

The Gaia on board detection software was build to detect point like sources

and it is in principle capable of autonomously discriminating stars from

false detections i.e. cosmic rays. For this, parametrised criteria of the

shape of the LSF/PSF are used, which need to be calibrated and tuned.

Furthermore, this criteria of point like sources was relaxed as otherwise

Gaia would not get moving asteroids, little bit extended galaxies or pe-

culiar double star configurations. A study of the detection capability, in

Figure 4.5: A scene record parametrizes the object transit providing
three predicted knots over the trajectory of the transit over the focal

plane in the SRS - from SM (left) to AF9 CCD
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particular non-saturated stars, double stars, unresolved external galaxies,

and asteroids is provided in de Bruijne et al. [2015].

However, during Gaia commissioning, we detected several kinds of spuri-

ous detections and related issues, and in much larger quantities than we

expected [Fabricius, 2014b]. In fact, the number of spurious detections was

largely increased when it was decided to update the detection parameters

on board to make possible the observation of sources fainter than magni-

tude 20 with few rejections of real sources. Some mitigation procedures

were also introduced in the on board detection software [Fabricius, 2014a]

beginning 2015 but they are not enough when such faint observations are

pursued.

The main problem with the spurious detections arises from the fact that

each of them may lead to the creation of a new source in the Cross-Match.

Therefore, the goal of the Detection Classifier (IDU-DC) task is precisely

to avoid that these detections result in new sources in the catalogue, clas-

sifying detections in genuine and spurious and by maintaining a list of

blacklisted detections. In other words, IDU-DC results will prevent that

spurious sources are created in the Cross-Match and consequently that

spurious sources enter other calibration pipelines from other downstream

processes.

Here is a brief description of the several categories of spurious detections

found in the data so far:

• Spurious detections due to cosmic rays. These are relatively harmless

because they happen randomly across the sky.

• Spurious detections due to background noise or CCD cosmetics de-

fects (i.e. CCD bad columns). These are also relatively harmless and

normally rare, but depending on the detection criteria, they can lead

to a huge number of spurious detections. A study of the probability

of this kind of detections is available in Azaz [2014].

• Duplicated detections (essentially double detections) produced from

slightly asymmetric SM images where more that one local maximum
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is detected. In this case the acquired windows are basically containing

the same samples.

• Spurious detections around and along the diffraction spikes of bright

sources. Bright sources may easily lead to numerous (from hundreds

to thousands) of spurious detections in each transit, especially near

the source centre and along the diffraction spikes in the AL direction

(example included in Figure 4.7).

• Spurious detections appearing on the other FoV originated from un-

expected light paths and reflections within the spacecraft for very

bright sources and very close planets. This group of spurious can be

seen as ghost detections from those on the original FoV (Figure 4.7).

• Spurious detections from major SSO, mainly planets. These tran-

sits can easily pollute arbitrary sky regions with thousands spurious

detections (Figure 4.8).

• Spurious detections from extended and diffuse objects. One clear

example is the Cat’s Eye Planetary Nebula or NGC 6543 shown in

Figure 4.6. This case was detected during an IDU test campaign at

Data Processing Center Barcelona (DPCB) and it was published as

image of the week on December 2014 showing that Gaia is actually

detecting not only stars but also high surface brightness filamentary

structures.

The detections in the filamentary structures looks point like enough, then

Gaia SHOULD detect it

As commented above, the big impact of the spurious detections is an issue

recently identified. The current mitigation measures and software modules

implemented are still under active development in IDT and IDU. However,

it seems clear that in the long run, an effective mitigation scheme should

form part of the iteration from DRC to DRC with input from several down-

stream processes, mainly the SEA from CU5 and the results from CU4.
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Figure 4.6: The Cat’s Eye Planetary Nebula or NGC 6543 ob-
served with the Hubble Space Telescope (left image) and as Gaia de-
tections (the 84,000 blue points on middle and right images) (Credit:
Photo: NASA/ESA/HEIC/The Hubble Heritage Team/STScI/AURA;

Gaia Observation Plot: Gaia/DPAC/DPCB)

Currently the baseline is that each CU will provide its own list of black-

listed or whitelisted detections (list reverting the blacklisted detections)

which will have to be combined for the ultimate filtering of the detections.

Each spurious detection case listed above has its own complications and

particularities and most of them are still not being treated. Currently only

IDT and IDU implement the classification and the filtering of the spurious

detections in the Cross-Match.

The current implementation in IDT is just identifying the spurious detec-

tions in predefined regions or boxes around the actual observed bright stars

[Bestard, 2015]. The process basically looks for the brighter observations

in the object log (provided by the ASD7 packets) and select all the observa-

tions falling in a predefined set of boxes centred in the parent observation

coordinates. The selected observations are then analysed and classified as

spurious detections if given distance and magnitude decay conditions are

satisfied. These predefined boxes have been parametrized with the features

and patterns seen in the real data according to the parent magnitude. This
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Figure 4.7: Spurious detections around a bright source of magnitude
5.4 on the top panel. Very bright source of magnitude -1.4 on bottom
panel where it can be seen in blue the spurious detection structures

(ghost detections) created on the other FoV
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Figure 4.8: Spurious detections around Jupiter and Venus (red dots
on top and bottom panel respectively). For Jupiter, some of its satellites
are also recognizable. In the case of Venus, although the planet is not
directly observed by Gaia (being located far below the bottom CCD
row) it is producing a large amount of spurious detections in both FoVs
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Figure 4.9: Schematic data flow for the IDU-DC task, showing the
main inputs and outputs

implementation is quite limited and fails to identify quite large numbers of

spurious detections. This implementation will hardly be improved in IDT

due to processing restrictions, in both resources and introduction of addi-

tional dependencies such as the prior computation of some kind of transit

predictions as done in the IDU-SCN task.

For IDU the situation is quite different, and a more ambitious solution

is being implemented (see Figure 4.9 for a schematic diagram of the pro-

cessing and data dependencies of this task). First of all, the IDU-SCN

results are available which will enable the possibility of identifying more

spurious detections cases. The IDU-SCN removes the limitation of only

treating spikes of actually observed bright sources, even adding informa-

tion of sources transiting the CCD edges, which may produce orphan spikes

(without a parent observation to trigger the classification as in IDT).

Additionally, the IDU-SCN provides information of the far too bright

sources, the SSOs transits and the diffuse objects. These scene records

will trigger the corresponding tailored classifications. As an example, for

the VBSs and major SSOs we currently plan to filter all faint observations

around the predicted transits – even from both FoVs for the transits of

Venus.

The treatment of spurious created by faint sources is more tricky since no

observable structures like the spikes shown in Figure 4.7 can be detected.

In these cases, a multi–epoch treatment might be required to know if they

are genuine or spurious detections - i.e. checking if more transits are com-

patible or resolve to the same new source entry. Additionally, some kind
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of feed back from downstream processes such as SEA from CU5 and CU4

solution could be of great help to resolve such cases.

For the remaining cases; cosmic rays, background noise and CCD bad

columns, the damage caused is quite limited and we may consider a process

that check the observed samples for the presence of any useful signal. This

is in any case a low priority task, which will be for sure revisited as the

DRCs progress.

In addition, spurious new sources can also be caused by attitude large ex-

cursions leading to misplaced detections. These detections are not strictly

spurious detections but they are considered as well since they may cause

similar problems in the Cross-Match. Consequently, it is highly desirable

to identify and clean up these detections during the on ground data pro-

cessing.

The design and implementation of the IDU-DC task is lead by the CU3-

UB, and preliminary results have been also included in Chapter 6.

4.3 Cross–Match

The IDU-XM task is in charge of providing the links of the individual Gaia

detections with the entries in the Gaia catalogue (Castañeda et al. [2011a]

and Fabricius et al. [2011]). A first Cross-Match is carried out by IDT

for the newly arrived observations [Castañeda et al., 2011e]. However,

this Cross-Match will need to be updated due to the improvements on

the Gaia catalogue, the calibrations and the attitude coming from each

DRC exercise solution. Additionally, when IDT resolves the Cross-Match,

the data is processed separately in time batches and it is not necessarily

complete due to the downlink priority scheme. Therefore, the resolution

of dense sky regions or complex cases may be deficient. In fact, detections

of high proper motion sources may create duplicated sources that must

be merged, while occasionally resolved multiples may need the creation of

supplementary source entries. Furthermore, we can obtain much better
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results in IDU, not only because we have data completion, and the more

recent and accurate calibrations and source parameters available, but also

because the spurious detections list may have improved significantly by

using the more sophisticated IDU-DC implementation (see Section 4.2).

As already commented, the Gaia catalogue has an astrometric ambition

level corresponding to a very small fraction of a pixel in terms of accuracy,

and also a fraction of a pixel in terms of resolution. However, the starting

catalogue used for the daily processing has been initialised with sources of

quite heterogeneous provenance and this provenance must be taken into

account when determining the proper source match.

This Initial Gaia Source List (IGSL) has been compiled from the best

optical astrometry and photometry information on celestial objects avail-

able before Gaia launch: GEPC, GSC2.3, LQRF, OGLE, PPMXL, SDSS,

UCAC4, Tycho-2, Sky2000 and HIPPARCOS [Smart, 2013]. This cata-

logue is expected to be progressively updated and cleaned up during the

DRC exercises. Figure 4.10 plots the density of objects included in the

IGSL in galactic coordinates. The IGSL has more than 1.2 billion en-

tries with positions, proper motions (if known) and a blue, red, G and

Grvs magnitude estimation. Full report of the IGSL is provided in Antiche

et al. [2014]. All IGSL sources have been given unique source identifiers,

sourceId. This sourceId is basically a numeric field assigned to each Gaia

source to ease its identification and spatial arrangement. This numeric

field basically codes a spatial HEALPix index, the DPC producer and a

running number [Bastian, 2013].

The Cross-Match provides as results a single source link for each detection,

and consequently a list of linked detections for each source. This is given

in the Match Table. Additionally, when a detection has more than one

source candidate fulfilling the selected match criterion, we also provide an

additional table listing all these candidate sources, called AmbiguousMatch

Table. In these cases the Match Table will still provide a single source

match, which we will refer to as the principal match.
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Figure 4.10: Density of objects included in the IGSL (galactic co-
ordinates). The square grid visible near the plane is due to differing
photometric information and completeness in the overlap of the Schmidt
plates that were used for the PPMXL and GSC2.3 input catalogues. The
bands that traverse the plane are due to extra objects and photometric

information from the SDSS surveys

The resolution of the Cross-Match could require the creation of new sources.

These new sources could be derived from already existing sources in the

catalogue or created directly from unmatched detections. The newly cre-

ated sources are logged in the Track Table, where the relation to previous

sources, if any, is persisted. Section 4.3.3 lists all the currently foreseen

cases, including source deletion and source creation in splitting and merg-

ing scenarios.

Although the data volume entering the IDU-XM task is small, the number

of detections will be huge at the end of mission, reaching ∼ 1011. Ide-

ally the Cross-Match should handle all these detections in a single process,

which is clearly not an efficient approach, especially when deploying the

software in the DPCB computer cluster (Appendix A). The first solution

that comes to mind is to arrange the detections by an spatial index, such

as HEALPix (Gorski et al. [2005], Castañeda [2008] and Castañeda and

Fabricius [2010]), and then distribute and treat the arranged group of de-

tections separately. However, this solution presents some disadvantages:
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• Treatment of detections close to the region boundaries of the adopted

arrangement approach.

• Handling of detections of high proper motion stars which can not be

easily bounded to any fixed region.

• Repeated accessing to time-based data such as attitude and geomet-

ric calibration from spatially distributed jobs.

These issues could in principle be solved but we have preferred to follow

a procedure best adapted to the Gaia operation. The processing approach

developed during this thesis has consisted in the splitting of the task in

three steps. Figure 4.11 shows an schematic diagram of the three steps,

including the main input and output products.

Detection Processor

In this first step, we process the input observations in time order

to compute the detection sky coordinates and obtain the prelimi-

nary source candidates for each individual detection. Covered in

Section 4.3.1.

Sky Partitioner

This second step is in charge of grouping the results from the previous

step according to the source candidates provided for each individual

detection. The objective is to determine isolated groups of detections,

all located in a rather small and confined sky region. Therefore, this

step does not perform any scientific processing but simply provides an

efficient spatial data arrangement by solving region boundary issues

and high proper motion scenarios. In this sense this stage only acts

as a bridge between the core time-based and the final spatial-based

processing. See Section 4.3.2.

Match Resolver

Final step where the Cross-Match is resolved and the final data prod-

ucts are produced. This step is ultimately a spatial-based processing

where all detections from a given isolated sky region are resolved
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Figure 4.11: Schematic data flow for the IDU-XM task, showing the
main inputs and outputs

together, thus taking into account all observations of the sources of

that region from the different scans. See Section 4.3.3.

The design and implementation of the IDU-XM task is lead by the CU3-

UB in collaboration with CU3-Torino. Next sections describe with more

details all the operations involved in each one of these processing steps
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whereas Chapter 6 covers the results of an early execution of the current

IDU-XM implementation with real Gaia data.

To fulfil the task requirements and to be able to implement - in an efficient

way - the described modules, we have developed a specific data access layer

as part of the IDU framework. The detailed features of this framework will

be covered in Chapter 5.

4.3.1 Detection Processor

This processing step is in charge of providing an initial list of source candi-

dates for each individual observation. For the accomplishment of this ob-

jective, we have implemented two separated modules: the Obs–Src Match

and the Unmatches Processor.

The purpose of the Obs–Src Match module (depicted in Figure 4.12) is to

identify for each detection, all the possible matching sources from the Gaia

catalogue, producing the so-called MatchCandidates. In practice, we split

the mission data into small intervals or batches according to the observation

reference time. These batches are then processed independently.

The first step over these observation batches, is the determination of the

sky coordinates.In principle all Gaia observations enter the IDU-XM, with

the exception of VO, and data from dedicated calibration campaigns. Fur-

thermore, all the observations positively classified as spurious detections

are filtered out. From the selected observations, the sky coordinates are

computed using the reference AF1 acquisition time determined by the de-

tection algorithm on board. This reference time is thus limited by the

pixel resolution and the detection error. Eventually, better precision could

be obtained using the Image Parameters derived from SM and AF image

processing but the pixel binning and the lack of AC resolution for most of

the observations (1D measurements) may introduce undesired side effects.

Using the reference AF1 acquisition time is simple and robust, and gives a

fully sufficient accuracy [Fabricius et al., 2011].
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Once we have the observation sky coordinates, we compare the detections

with a list of sources. These sources are extracted from the Gaia catalogue

such that they cover the band of the sky seen by Gaia in that time interval,

and propagated with respect to parallax, proper motion, orbital motion,

etc. to the relevant epoch. The capability of predicting the sky seen by

Gaia from the spacecraft attitude is an essential functionality to access the

data more efficiently and to equalise properly the jobs for their distribution

in a computer cluster. We developed this tool, called AttitudeToHealpix,

as part of the master thesis prior to this thesis [Castañeda, 2008].

The candidate sources are selected based on a pure distance criterion. The

decision of only using the distance was taken because the position of a

source changes slowly and predictably, whereas other parameters as the

magnitude may change in an unpredictable way. Additionally, as com-

mented at the beginning of this chapter, the Gaia catalogue is quite het-

erogeneous, exhibiting different accuracies and errors which suggest the

need of a match criterion subjected to the provenance of the source data.

In the later stages of the mission, when the source catalogue is dominated

by Gaia astrometry, this dependency could be removed but then the cri-

terion should be updated to take advantage of the better accuracy of the

detection in the along scan direction. We can then use separate AL and

AC criteria, or use an ellipse with the major axis oriented AC which will

benefit the resolution of the most complex cases.

A special case is the treatment of SSO observations. In principle, its pro-

cessing is responsibility of CU4 and for this reason no special considerations

have been implemented in IDU-XM. SSOs will have Gaia Catalogue en-

tries created by IDT and those entries will remain, so the corresponding

observations will be matched again and again to their respective sources

without any major impact on the other observations.

The Unmatches Processor module is only required when we find observa-

tions with no source candidates at all after the first Obs–Src Match run.

In principle this situation should be rare as IDT has already treated all

observations before the IDU-XM run. However, unmatched observations
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Figure 4.12: Schematic data flow of the task in charge of the determi-
nation of the MatchCandidates, showing the main inputs and outputs

may arise because of IDT processing failures, updates in the detection clas-

sification, updates in the source catalogue or simply the usage of a more

strict match criterion in IDU-XM. Thus, this module (see Figure 4.12) is

basically in charge of processing the unmatched observations and creating

temporary sources as needed just to remove all the unmatched observa-

tions in a second run of the Obs–Src Match. The current implementation

is using a very simplistic strategy based on the following recursive recipe:

1. Load all observations for a given sky region.

2. Take the first observation and create and store a new source located

at the same position.

3. Take the next observation and check if it can be linked to any of the

already stored sources. If not a new source is created and stored.

4. Repeat previous step until no more observations are available.

It is clear that the matching solution provided by this process is far from

being optimal but it is more than enough for the goals of this module.

These new sources will only be used for obtaining a new set of MatchCan-

didates, free from unmatched observations but still providing reliable and

valuable information of the spatial dependencies between the observations.
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Figure 4.13: Schematic data flow of the task in charge of creating
temporary sources from the possible unmatched observations obtained

after the initial run of the Obs–SrcMatch task

The new sources created by this tasks will ultimately be resolved (by con-

firmation or deletion) in the last IDU-XM step.

Summarising, the result of this first step is a set of MatchCandidates for

the whole accumulated mission data. Together with the MatchCandidates,

an auxiliary table is also produced for the tracking of the links created

for each individual source. Each job generates its own SourceLinksCount

table and the absolute link counts can be obtained easily merging all the

partial results stored. Results are stored in a space based structure using

HEALPix for convenience of the next processing steps.

4.3.2 Sky Partitioner

The Sky Partitioner is in charge of grouping the results from the last Obs–

Src Match run according to the source candidates provided for each individ-

ual detection. The purpose of this process is to create self contained groups

of MatchCandidates. The process starts loading all MatchCandidates for

a given sky region. From the loaded entries, the unique list of matched

sources is identified and the corresponding SourceLinksCount information

is loaded. Once loaded, a recursive process is followed to find the isolated

and self contained groups of detections and sources. In a simplified way

the algorithm, illustrated in Figure 4.14, does the following:

1. Take the first MatchCandidate and initialise a new group from it,

called MatchCandidateGroup.

2. For each source listed in the latest MatchCandidate added:
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Figure 4.14: Schematic data flow of the Sky Partitioner task

• Select detections linked to the current source not already con-

tained in the MatchCandidateGroup.

• Check if all detections have been loaded by checking if the abso-

lute source link count equals the count retrieved only from the

loaded MatchCandidates.

If MatchCandidates are missing – not loaded due to the task

region filtering – we abort the current MatchCandidateGroup

(jump to step 3) storing the already collected MatchCandidates

for its later processing with a reduced task granularity (larger

task regions).

• For each loaded MatchCandidate:

– Add the MatchCandidate to the MatchCandidateGroup and

run again the process from step 2.

• Continue with the next source in step 2.

3. Take the next remaining MatchCandidate (not yet processed in pre-

vious step 2 run), initialise a new MatchCandidateGroup and replay

the processing from step 2 onwards.

As it can be deduced from the described algorithm logic, this recursive

process ends when we have classified all the input MatchCandidates in two

groups:
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• Resolved MatchCandidateGroups; set of MatchCandidates grouped

according to their links to the same group of sources. This implies

that it is not possible to find any observation from a certain group

linked to the same source of an observation belonging to another

group. In this sense we obtain self-contained and isolated group of

detections and sources.

• Deferred MatchCandidates; set of MatchCandidates which could not

be grouped because their companions are in neighbour region.

This process is initially run in parallel jobs following an equalisation of the

sky according to the observation density. In the first run, MatchCandidates

are always deferred mainly because they form part of an agglomeration of

observations exceeding the boundaries of the initial task regions. This sit-

uation is easily solved by running a new equalisation over all the deferred

MatchCandidates obtaining a new distribution which should solve the pre-

vious boundary issue. Sooner or later, a last run consisting in a single

task covering all the sky is always needed. A practical case is described in

Chapter 6.

The final result of this process is the set of MatchCandidateGroups where

all the input observations are included. Figure 4.15 includes two examples

of the groups obtained from the execution of this task. This figure has been

produced by a tailored tool developed in the frame of this thesis, called

SkyExplorer (for more detail see Section 4.8).

In early runs, there is a certain risk to end with unmanageably big groups.

For those cases we have introduced a limit in the number of sources per

group so the processing is not stopped. The adopted approach may create

spurious or duplicated sources in the overlapped area of these groups. How-

ever, as the DRC processing progress, these cases should disappear (groups

will be reduced) due to better precision in the catalogue, improved atti-

tude and calibration and the adoption of smaller match radius. During

the testing of this task, we have not encountered any of these cases and

therefore we can not provided any assessment on the practical limit for the

number of sources per group and the amount of cases that could be found.
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Figure 4.15: Three examples of the groups obtained from the exe-
cution of the Sky Partitioner task. From left to rigth, top to bottom,
the groups contain one, two and three sources respectively. Blue dots
corresponds to observations, Red dots are sources and the dashed lines

are the links provided in the MatchCandidates

4.3.3 Match Resolver

The final step of the IDU-XM is the most complex and it is responsible

of resolving the final matches and consolidating the new sources. In that

sense, the previous stages are mere preparation steps. Its main inputs are:
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Figure 4.16: Schematic and simple data flow of the Match Resolver
task

• TheMatchCandidateGroups, for convenience already stored in a space

based structure using HEALPix.

• The Gaia source catalogue, also spatially arranged.

• The NewSourceIdRunningNumber, table keeping track of a running

number or counter used when creating new sources in a given sky

region. The baseline is basically to take advantage of the HEALPix

tessellation and its hierarchical numbering scheme, by assigning a

separate counter for each pixel at level 6. By using this level, we

obtain 49.152 separate counters, each one covering 0.839 square de-

grees, which taking into account the maximum running number that

can be coded and the expected new source density should be more

than enough. The sourceId where this running number is coded, also

includes a HEALPix index at level 12 and therefore the corresponding

counter can be determined using a simple bit shifting of this index.

Two tasks are required to accomplish a final and integral Cross-Match

solution: MatchResolver and NewSourceIdConsolidator. The first one or

MatchResolver (Figure 4.16) is in charge of resolving separately each in-

put MatchCandidateGroup by detecting and resolving the conflicts present

among the candidate matches. We distinguish three main conflict cases:

• Duplicate matches: when more than one detection close in time and

observed by the same FoV are matched to the same source. In this

case we have to deprecate the existing source and create two new
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sources, we refer to this as source splitting. After the creation of

the new sources, the original MatchCandidates must be revised and

updated.

• Duplicate sources: when a pair of sources from the catalogue have

never been observed together, thus never identifying two detections

within the same time frame, but having the same matches. In this

case, we would want to merge those duplicates sources. As for the

splitting, this involves deprecating existing sources, creating a new

one and revising the MatchCandidates.

• Unmatched observations: strictly speaking no unmatched observa-

tions reach this part of the processing because the first step has

already created new sources when necessary. However, those new

sources are temporary and they have to be revised. In practice, once a

MatchCandidateGroup has been created the references to these tem-

porary new sources are removed so the MatchResolver is forced to

resolve them from scratch, this time having all relevant observations

and sources together.

All three cases will imply the creation of an entry in the Track table, logging

the new source created or the splitting and merging operation of the parent

sources. As already commented in Section 3.3, these Track entries will be

used by the MDB Integrator for the consolidation of the new catalogue

version. The Track table allows the migration of fields from the parent

sources to the new ones created by IDU. The migration is desirable since

IDU will only populate the very basic fields such us the source position

and magnitude.

It is not within the scope of the present thesis to document all the details

of the different algorithms available for resolving the conflicts and deciding

the best matches. Three implementations are available:

• Nearest neighbour solution: provided by CU3-Torino [Spagna and

Messineo, 2011].
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• 2–by–2 nearest neighbour solution: based on IDT implementation

[Castañeda et al., 2011e].

• Clustering solution: still in the very first design and development

stage and led by the CU3-UB team [Clotet et al., 2015] (in prepara-

tion).

The first two are basically a classification based solution while the new

one, in order not to lose generality, aims for the use of cluster analysis. At

the time of writing, only the second one is completely operational and has

been already successfully executed as part of the first DRC as described in

Chapter 6.

The main MatchResolver products are the Match, AmbiguousMatch, New-

Source, Track and the updated NewSourceIdRunningNumber tables. The

MatchResolver execution strategy is based on jobs equalised following the

HEALPix-based sky density of the input observations. These jobs are

executed in the DPCB computer cluster, being each job completely inde-

pendent from the rest. This execution strategy is by far the more robust

but it may introduce inconsistencies in the form of sourceId collisions.

The job equalisation is not restricted to any HEALPix level and therefore

different jobs may need to create new sources from the same NewSour-

ceIdRunningNumber entry. Other software systems (as IDT) implement a

central server in charge of serving the running numbers but this approach

was discarded to conform to the general IDU batch processing baseline (see

Chapter 5). Instead of the server, we have implemented a final consolida-

tion process, the NewSourceIdConsolidator.

The NewSourceIdConsolidator (Figure 4.17), is in charge of fixing the du-

plicated sourceIds present in the data generated by theMatchResolver jobs.

The sourceId collisions can be easily detected by comparing the entries of

the updated NewSourceIdRunningNumber generated in each job execution.

In practice, this task loads all the NewSourceIdRunningNumber for the full

sky. The size of these tables is really small and does not introduce any

performance complication. Once loaded, it looks for the HEALPix indexes
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Figure 4.17: Schematic data flow of the NewSource Consolidation task

updated by more than one job and determines the offset to apply in the

running number of the duplicated sourceIds of each individual job. Track-

ing the NewSourceIdRunningNumber and the data of each job is possible

because each job gets on execution an unique solutionId (see Section 3.3).

Finally, and taking into account that the correction (offset) computation

is deterministic and can be computed unequivocally, the consolidation can

again be executed efficiently in parallel following the same job equalisation

as the MatchResolver. With the completion of all NewSourceIdConsolida-

tor jobs, the IDU-XM can be considered finished and the results are ready

to be distributed to the rest of the DPCs.

A full report, including both scientific results and task performance reports

has been included in Chapter 6.

4.4 Bias Determination

The Bias (IDU-BIAS) task is responsible of the characterisation of the

Pre-Scan fluctuations in SM and AF CCDs to determine the gross bias

offset signal introduced on all samples by the PEM [Hambly and Fabricius,

2010]. The Bias processing is completely separable from the rest of the

signals added to the observed samples because the Bias is measured on a

dedicated set of Pre-Scan measurements (ASD2 packets).
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Figure 4.18: Schematic data flow for Bias treatment, showing the main
inputs and outputs

This task specifically recomputes the predictions of the time dependent

electronic bias in each detector and needs to run before any other task

requiring to de–bias the data [CU5 DU10, 2010]. This task re-analyses the

Pre-Scan telemetry packets in order to take more accurately into account

any anomalies present in the data, and re–analyses the read noise properties

of the PEMs. This objective is possible since IDU processes the Pre-Scan

over larger datasets reducing the possible non-linearities that systems like

IDT may introduce by its near–real time and time–chunked processing

approach. In principle, it is assumed that over short time scales (of the

order of seconds) there is no significant drift in the electronic Bias. The

only recommendation is to run the task over overlapping batches such that

the model fits are adequately constrained at the end points.

Figure 4.18 represents the schematic processing diagram for the Bias task

for a given data time interval. The core algorithm uses a configurable

functional fit (constant, single piece polynomial or spline of arbitrary order)

over the Pre-Scan samples to determine the median bias value and scatter

without mitigating the PEM-NU anomaly.

These predictions are mainly used in the Astrophysical Background pro-

cessing, in the LSF/PSF response calibration and in the determination of

the Image Parameters and in any other processes requiring the removal of

the Bias offset. The recomputing of the offsets is carried out to improve

the rough IDT estimations and to make use of the most recent calibrations

of the PEM-NU calibration from other DPAC systems (FL mainly).

Although this task is included in the standard iterative data reduction

cycle, it is envisaged that it will only be run a few times over each DRC
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data segment since gross Bias signal related calibrations should be quite

stable.

Regarding the low-level corrections to the gross Bias signal, mainly for

AF2-9 due to the PEM-NU as already discussed in Section 2.4, the current

baseline is simply to recompute the offset corrections given the most recent

PEM-NU calibration (in principle from FL). In this manner, the correction

is basically restricted to a more detailed bias determination issue in the

consumer tasks. The application of this additional correction for the Bias

is completely configurable, being necessary the full reconstruction of the

read out sequence for each observation if the more accurate mitigation

model is selected. The full reconstruction is always feasible thanks to the

ASD data, mainly the object log from ASD7 packets (see Section 2.5).

Finally, it is worth mentioning that the full mitigation of the PEM-NU has

a significant impact on processing performance and although it is disabled

by default in IDT, it is envisaged to be enabled in all IDU tasks requiring

Bias treatment.

The implementation of the core algorithm for the IDU-BIAS task is the

responsibility of the Institute for Astronomy - Royal Observatory of Edin-

burgh (IfA-ROE) team while its integration in IDU is done by CU3-UB.

4.5 Astrophysical Background Determination

The aim of the Astrophysical Background (IDU-APB) task is to produce

functional fits to the astrophysical background so that it can be derived

for any SM and AF window sample [CU5 DU10, 2010]. The effective

background for Gaia observations can be modelled as the combination of

the following components:

• Regularly spaced Charge Injections (CIs). See Section 2.1.3.

• Charge Release (CR) from these injections. See Section 2.3.

• Astrophysical Background coming from the two FoV.
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The Astrophysical Background and the Charge Release (CR) are a tiny

fraction of the charge level of an injection, and therefore the injection levels

can be characterised separately. The other two components are not so

easily separable; CR dominates at very short distances to previous charge

injections but is almost negligible at long distances. In any case, and for

simplicity, they are also processed separately. This breaks the background

determination problem into three main processes: CI characterisation, CR

characterisation and Astrophysical Background determination.

Initially, the CI and CR characterisation were also considered IDU tasks

but during the latest test campaigns before launch it was decided to drop

both tasks from IDU and integrate these processes within FL [Hauser et al.,

2014]. The CI and CR calibration processes are considered stable enough so

its reprocessing in each DRC is not necessary. However, we have included

a brief description of these calibration for the sake of completeness.

The CI characterisation is the first step in the overall background calibra-

tion process. Because of the CTI, CIs introduce a charge release signal (or

CR profile) that must be modelled as part of the background signal. The

level of CR depends on the precise injection levels, so it is mandatory to

determine accurately any variations of the injection levels in time and in

AC position before attempting to model the other combined background

signal components (see Cross and Hambly [2010] for the report on the AL

and AC stability study for the CIs). The CI is nominally a series of four

injections over the full height of the CCD, the first three of which aim to fill

up all the traps (Figure 4.19). Taking into account that the injection level

is many orders of magnitude greater than the astrophysical background

and that the last sample in the injection is barely affected by CTI effects,

the injection level can be determined by measuring the charge level in this

fourth sample. The CI calibration processes the VOs – adequately config-

ured to contain the four CI lines and covering the full AC extent – and fits

two 1D model functions for each CCD. One to fit the AC variation and one

to fit the time/AL dependent variation (although this last is envisaged to

be very little). The results are stored in the so-called CiAcProfile library.
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Figure 4.19: Charge Injection and Release simulation with zero (black)
and mean (blue) trapping levels (Credit: Gaia/DPAC/CU5/IfA-ROE)

After the CiAcProfile library has been determined, the CR is calibrated.

This second calibration process also uses the VOs and is based in the same

fitting model, using two 1D model functions for each direction. Initially the

CR curve model was modelled as a sum-of-exponentials charge release curve

model, but this model was replaced with an empirical release signature

[Hambly and Davidson, 2012]. This new model is more stable and provides

a better adjustment to the real data. The successful run of this calibration

process generates the CrBackground library.

Once the CI and CR characterisation is finished, the determination of the

Astrophysical Background is done to achieve the full characterisation of the

combined background. As for the other calibration processes, the model

is based on a two 1D functions fitting. Before launch, the Astrophysical

Background fitting was computed separately only for SM CCDs, whereas

the AF were computed as the combination of the two SM solutions. This

implementation was based on the assumption that the Astrophysical Back-

ground varies in both time and spatial position but does not vary for all

detections of the same object in the CCDs along the row. However, due

to the high level stray light (see Section 1.4), this approach was changed

and currently the Astrophysical Background fitting is performed for each
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Figure 4.20: Schematic data flow for SM and AF Astrophysical Back-
ground treatment, showing the main inputs and outputs.

CCD separately. With the new approach and algorithm improvements,

the fluctuations introduced by the stray light are successfully accounted

for [Brown and Jordan, 2014].

The fitting of the Astrophysical Background is not only done over the VOs

but also from a subset of normal observations. These observations are

included to improve the stability of the solution – more samples to the

fitting algorithm. In practice, only the samples on the edges of faint obser-

vations windows are used, where the observed source signal is supposed to

be negligible. It is possible that the selected samples, or even the VOs, are

contaminated by nearby bright sources but these can be easily identified

using the transit prediction provided by the IDU-SCN task.

In practice, the IDU-APB task can be divided in 3 main blocks as shown

in Figure 4.20. A first one in charge of the selection of the best calibration

measurements from both the VOs and observations. A second block in

charge of the computation of the Bias and PEM-NU corrections for each

selected sample. And the last one in charge of the actual fitting after

performing the corresponding Bias, the CI and CR treatment.

Note that for SM CCDs, since no CI is performed the CTI effects are not

mitigated. However, due to the permanent CCD gate the damage on the

acquired image is smaller.
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Finally, we want to emphasize the benefits obtained by running the IDU-

APB compared to those obtained in the analogous tasks in IDT:

• more accurate treatment of the bias; new gross offset derived in IDU-

BIAS and the capability of a full PEM-NU mitigation configuration.

• more accurate treatment of the CI and CR components in both di-

rections introduced by the improved calibrations coming from FL.

• more suitable calibration data – samples available for the background

determination – mainly because IDU is not affected by the telemetry

downlink priority.

• prior clean up of the calibration data; filtering any sample contami-

nated by sources as predicted from the IDU-SCN.

• better constraints at the beginning/end of the time dependent solu-

tions accomplished by processing overlapping time batches.

The implementation of the core algorithm for the IDU-APB task is also

the responsibility of the IfA-ROE team while CU3-UB is in charge of its

integration in IDU.

4.6 LSF/PSF Calibration

The LSF/PSF calibration task in IDU is in charge of determining the re-

sponse of the SM and AF instruments in the form of an LSF/PSF library

for the 1D windows and 2D windows respectively. The LSF/PSF calibra-

tion process must use the latest calibrations to process the window samples

and also the latest astrometric and cross–match solution to disentangle the

colour/chromatic dependency between observations of different sources and

to meet the formal requirements on the location estimation performance

[de Bruijne, 2009].

The very first strategy, known as forward modelling, was based in the ap-

plication of a Charge Distortion Model (CDM) over an LSF/PSF library



4. IDU Scientific Overview 93

Figure 4.21: Schematic data flow for the iterative CDM and LSF/PSF
calibration required in the forward modelling solution

for undamaged image profiles only accounting for optical projection dis-

tortion. The CDM must therefore describe the distortion of the charge

image resulting from radiation-induced CTI damage to the CCD [Linde-

gren, 2008b]. In this sense the forward modelling is trying to decouple the

optical response of the Gaia instrument from all other distortions coming

from the CCD detectors. Importantly, in the forward modelling no attempt

is made to correct the images for the effects of radiation damage and then

fit a undamaged LSF/PSF model but instead the CDM model is applied to

undamaged image profiles to arrive at a prediction of the observed image

which is then compared to the real Gaia observations.

In the forward modelling, the CDM calibration is closely coupled to the

LSF/PSF calibration, and this is only possible if both calibration processes

are performed within the same iterative process as shown in Figure 4.21.

Several CDMs have been developed: CDM-01 [Lindegren, 2008b], CDM-02

[Short, 2009], CDM-03 [Short, 2011] and CDM-02/03 [Weiler, 2013]. Each

of them moves towards a more complete and realistic physical model, as

for example the inclusion of the gate handling in CDM-03.

The CTI mitigation tests done with all available models before launch

raised fundamental issues blocking the proper development of the overall

LSF/PSF calibration [Hambly et al., 2011]. The main issues identified

were:
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• The complexity of the CDM calibration; including the track of com-

plex illumination histories and thus requiring a lot of computational

resources.

• The processing of 1D windows; where large systematic biases were

obtained in the along scan image location estimation.

Several options were then discussed, describing simplified CDM versions

for 1D windows and light CDM calibration processes (see Fabricius and

Torra [2011] and Davidson et al. [2011]). However, due to the lack of

available time to develop an improved and lighter CDM version on time

before launch, it was decided to proceed with the Empirical LSF/PSF

(ELSF) model [Davidson and Hambly, 2013]. The ELSF model is based

on the direct parametrisation of the final damaged image shape in a unique

library of LSF/PSF profiles, thus accounting for all the distortion effects.

A feasibility study of this approach is described in Brown and Crowley

[2012].

The ELSF was initially introduced only to cover the processing needs and

to meet the resource limitations of IDT/FL whereas the forward modelling

was maintained as the IDU baseline. IDU schedule was not so tight as it

was entering operations much later than IDT/FL and thus more time was

available for further CDM developments. Additionally, the computational

resources devoted to IDU allow more ambitious and complex processing

solutions.

Unfortunately, the research of new CDMs was discontinued and no major

progress has been made since the adoption of the ELSF model. Instead, an

extended version of the ELSF was suggested for use in IDU. This model, by

the name of eXtended Empirical LSF/PSF (XELSF) is still only a concept

for the inclusion of some parametrisation of the illumination history in the

formal ELSF.

The implementation of the ELSF based calibrations is much more simple

than the forward modelling removing the need of two separated processes

for the decoupling of the CDM from the undamaged LSF/PSF profile.
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Figure 4.22: Schematic data flow for ELSF calibration, showing the
main inputs and outputs.

A schematic implementation diagram of the ELSF task is shown in Fig-

ure 4.22.

Both LSF/PSF calibration strategies (Figures 4.21 and 4.22) basically split

the full mission data set in time chunks. They start from a similar prepara-

tory step in charge of the selection and preparation of the calibration data

set. This step involves the combination of various data and the calculation

(prediction) of the source location for the transits involved, etc. merely to

provide a flexible framework where iterations can be carried out at the low-

est cost. After this preprocessing of the observations, the core calibration

starts which sooner or later will fit the modelled windows with the ob-

served ones to construct the LSF/PSF library. Another point in common

is the assumption that the LSF/PSF, regardless of the model, is expected

to change slowly over the course of the mission, with the possibility of a

more rapid change due to increased radiation damage after solar flares, for

example. Consequently, there should be a running solution entering the

calibration process to keep the calibration up to date and to guarantee the

continuity of produced library solutions.

As for the IDU-BIAS and IDU-APB, the implementation of the core al-

gorithm is responsibility of the IfA-ROE team. At the time of writing

this thesis, the complete integration of the LSF/PSF calibration task in

IDU is still ongoing but latest activities indicate that most probably a first

working version based in the ELSF could be integrated on time for its first

execution in the next DRC, at the beginning of 2016.
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Following sections describe in more detail the LSF/PSF concept and imple-

mentation and how the astrometric solution is integrated in the LSF/PSF

calibration.

4.6.1 LSF/PSF Model

The Point Spread Function (PSF) describes the response of an imaging

system to a point source. It represents an essential tool for describing

the optical response of the Gaia instrument, mainly including the response

functions of the mirror, the optical projection and the detectors (CCDs).

The Line Spread Function (LSF) is in general derived by integrating the

PSF perpendicular to the direction of interest – for Gaia, in the AC direc-

tion which is required for the processing of the 1D windows.

The optical distortion across the Gaia instrument makes the shape of the

PSF vary with the CCD, the source brightness and colour, the gate and

the AC position. Additionally, the synchronization of the TDI with respect

the scan rate, the AC smearing and the CTI may enhance the variations

in the AL and AC directions.

The modelling of the PSF is quite complicated as it must consider a wide

range of parameters presenting both linear and non-linear responses. This

modelling is in general performed by means of:

1. Analytical basis functions decomposition.

2. Spline fitting over detailed (oversampled) 1D/2D numerical maps.

From the very beginning, the baseline for the PSF modelling in Gaia was

the adoption of the first method. This method is based on the parametri-

sation of the PSF as a linear combination of analytical basis functions.

The basis functions are such that the linear combination can represent

any observed profile with sufficient accuracy and precision. This requires

a certain minimum number of basis functions to be defined, spanning the

relevant subspace of possible profiles. Once the basis functions are defined,
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the function coefficients or model parameters are determined by a fitting

process over the observed data.

In practice, these basis functions are derived by Principal Component Anal-

ysis (PCA) over a set of minimally–damaged observations or over a large

ensemble of randomly generated, but physically plausible clean PSFs. This

procedure offers the possibility to derive models with a minimum number

of free parameters for given accuracy. It also implies that the first basis

should ideally be close to the expected (mean) PSF of the real instrument,

which may be used in the absence of any other information. With this

formulation the number of parameters and thus the accuracy of the model

can be adapted to the amount and quality of the data available. With

more and better data available, the number of fitted parameters can be

increased successively.

The full study on the LSF/PSF model formulation is described in several

technical notes: Lindegren [2003], Lindegren [2009a], Lindegren [2009b],

Lindegren [2010a] and Lindegren [2010b], which additionally describes a

general 2D PSF model, considering the integration of the AC smearing.

This LSF/PSF model defines a set of basis functions such that:

• their linear combination can represent any observed LSF to sufficient

accuracy.

• basis functions of increasing order only represent finer details of the

LSF, so that a truncated expansion provides a useful approximation

of the full expansion.

• the linear combination is normalised independently of the number of

functions combined, thus providing unbiased flux estimations.

• they allow the accurate interpolation and even a reasonably safe ex-

trapolation beyond the original fitted data.

• they clearly distinguish between the model origin and the geometric

model centroid, further described in Section 4.6.2.
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Figure 4.23: Example of the limitation of the PSF modelling using the
outer product of the ALxAC LSFs compared to the PSF obtained using
a 2D numerical mapping, left and right respectively (Credit: IfA-ROE)

• they minimize the number of free parameters as much as possible.

• they provide numerical stability of the fitting process.

The decomposition in basis functions is in general more flexible and ver-

satile than the oversampled numerical maps which have a large number

of free parameters coming from the need of increasing the oversampling

factor for reducing the interpolation errors.

A practical and rather simple implementation of the general PSF model

is provided in [Fabricius, 2011]. This implementation is based on the ap-

proximation of the 2D PSF as the product of the AL LSF and an analytic

smeared version of the ideal AC LSF. However, recent analysis of the 2D

PSF fitting performance has revealed that this approach may not be enough

since it is forcing a symmetrical profile not representative of the actual data

as shown in Figure 4.23.

For the 2D PSF case, the mapping solution could be the best approach

and new developments led by the IfA-ROE group have already started.

With this technique, the mean observed PSF for low AC rates could be

represented directly with a 2D spline fit whereas the AC smearing could be

modelled applying a rectangular convolution over the reconstructed image.

As commented at the beginning of this chapter, the complexity of a direct

CTI modelling in the form of a CDM has led to the adoption of the ELSF



4. IDU Scientific Overview 99

model. This model basically accounts for the image damage caused by the

CTI by adding additional parameters in the computation of the coefficients

of the LSF model. These parameters are the time since last injection

and the illumination history prior to the observation. This modelling is

accomplished in practice by modelling the coefficients of the different basis

functions with a multidimensional spline [Davidson and Hambly, 2013]. As

for the 2D PSF, it is constructed as the cross product of the AL LSF with

the AC LSF, this last one directly accounting for the AC smearing.

At the time of writing this thesis, the ELSF calibration is performed in

three steps for the provision of:

Mean LSF

This first step is in charge of the computation of the Mean LSF from

a set of minimally-damaged observations, i.e. those close to charge

injections. This calibration resolves the most basic parameter depen-

dencies; CCD, FoV, gate and more. These parameters are discrete

and they can therefore be treated as completely separate calibration

dimensions. Furthermore, this calibration does not need to be per-

formed often; perhaps every few months or as a result of a sudden

LSF change [Davidson and Hambly, 2013].

Optical Corrections

This second process takes the Mean LSF and a selection of suitable

minimally-damaged observations (with their corresponding image pa-

rameters and backgrounds) and minimises the residuals between the

model and data. The results are basically the updated optical cor-

rection coefficients in the form of multidimensional splines.

Electronic Corrections

This calibration is done in almost exactly the same way as the Optical

Corrections described above just modifying the inputs. In addition

to theMean LSF and the Optical Corrections this step requires obser-

vations covering the full range of the electronic correction parameter

values along with their image parameter estimates for all CCDs.
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The general response to CTI as a function of source magnitude and

distance to last injection is expected to be common for all devices and

therefore this calibration is done globally for all CCD observations.

It is anticipated that an additional step will be added for accounting the

actual difference in response caused by the variation in radiation dam-

age across the focal plane. This difference would be modelled as a CCD-

dependent CTI scaling factor applied to the general Electronic Corrections

computed in the last step. This factor would be calibrated in an analogous

way to both corrections.

With this approach we ultimately separate the detector effects from the op-

tical effects; so we first fit the Optical Corrections to obtain an undamaged

LSF from the Mean LSF and then we apply the Electronic Corrections to

obtain a damaged LSF from the final undamaged LSF.

The calibrations of both corrections are done in almost exactly the same

way, using Householder [Householder, 1958] least squares to solve for the

updated correction coefficients over a calibration dataset. The main dif-

ference lies in the characteristics of the datasets used in the calibration.

The main parameters used to determined the along–scan LSF are:

• For the Optical Corrections:

– The source colour; represented by the wave number and causing

charge diffusion.

– AC position; accounting for the distortion of the image projec-

tion and the variation on the response of each AC column.

• For Electronic Corrections :

– Distance to the last CI to incorporate parallel CTI.

– Magnitude of the observed source.

Analogously, the main parameters defining the across–scan LSF remain as:
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• For the optical corrections:

– The source colour.

– AC motion during integration along the CCD; accounting for

the AC smearing.

• For electronic corrections:

– AC position; which is known to be a good parametrisation of

the serial CTI.

– Source magnitude.

Early in the mission the Optical Corrections are likely to be much greater

than the Electronic Corrections. Later, when damage has accumulated,

the Electronic Corrections will become more important and the Optical

Corrections should be relatively stable and well-characterised.

It must be noted, that since the ELSF is magnitude-dependent it can no

longer be freely scaled and combined as the general LSF model. For the

purposes of Image Parameters Determination (IPD), it is important to

obtain good initial estimates of the source flux to ensure that a reasonable

LSF model is returned.

The most challenging part of the LSF/PSF calibration process is the miti-

gation of the CTI effects according to the illumination history of the CCD.

In general, determining the illumination is quite easy and in fact is basically

provided by the IDU-SCN task. However, finding a feasible formulation

based on the scene in function of the distance and flux of the sources con-

tributing in the illumination history is one of the more challenging aspects

for the instrument response modelling.

Figure 4.24 represents one practical example of the illumination history

that needs to be solved when processing an individual observation. In the

figure it can be easily identified the last CI and also the several sources

observed in between.

Additionally, the scene information is again used for filtering the observa-

tions entering each calibration step as it is done for the IDU-APB task.
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Figure 4.24: Example of the illumination history for a given observa-
tion (green boxed) starting from the latest CI (Credit: IfA-ROE)

4.6.2 Astrometric Solution Integration

As commented above, the astrometric and cross–match solutions must be

included in the LSF/PSF calibration process to be able to untangle the

chromatic dependency between observation of different sources.

The chromatic shift, i.e. between blue and red stars, can be handled by

the proper definition of the LSF/PSF origin with respect to the LSF/PSF

geometric centroid. The LSF/PSF origin is conceptually the reference

point from which the observation time and AC location are determined

after the fitting whereas the centroid can be understood as an average

(e.g. arithmetic mean) of the coordinates of all the points of the shape.

Figure 4.25 illustrates the difference between these two parameters and

how the chromatic shift can be easily accounted by a proper definition of

the LSF/PSF origin. This origin should be chosen to be equivalent to the

geometric centroid of an achromatic instrument response which in practice

is achieved using the astrometric solution from AGIS.

Following the overall philosophy of the IDU-AGIS iterative loop introduced

in Section 3.2.3, AGIS will be in charge of fixing the location of the LSF-

/PSF origin. Letting AGIS make the decision of where to put the origin

relieves the calibration from taking a rather arbitrary decision, but first of

all assures that the origin is achromatic. The chromatic shift between a

blue and a red star should be fully compensated with this definition of the

LSF/PSF origin during the fitting, and there should be no colour terms

left for later AGIS runs.

In practical terms, the LSF/PSF calibration task is in charge of computing

the expected location of the source image centroid within each calibration

window in the form of the expected observation time and AC position at
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the expected fiducial line (gate configuration). This expected location is

computed from the attitude, the geometric calibration (only accounting for

purely geometric terms GEO-CAL) and the corresponding astrometric so-

lution in the Gaia catalogue retrieved by means of the IDU-XM results.

These AL and AC coordinates could also be obtained from the correspond-

ing Scene record for that observation, interpolating the field angles and

from them the centroids at the fiducial lines of each CCD window.

The computation of these predicted coordinates can not be done directly

since the geometric calibration can not be inverted. Instead an iterative

process, depicted in Figure 4.26, must be followed where an initial guess is

progressively updated until the desired convergence threshold is reached.

During this process, the absorption of the chromatic shifts in the LSF-

/PSF calibration is enforced by using only the purely geometric term of

the geometric calibration done by AGIS, the GEO-CAL.

Following this approach, the errors in the LSF/PSF fitting will come from

the errors in the source parameters, attitude, and geometric calibration.

The errors will also be present in the corresponding derived Image Param-

eters which will then be used to improve the AGIS solution in the next run.

In the early stages of the mission as well as for IDT, it is much preferable

Figure 4.25: Definition of LSF origin with respect the image geometric
centroid adopted applied for chromatic shift correction
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Figure 4.26: Diagram of the iterative processing required for the esti-
mation of the expected source location within each calibration window

to adopt an LSF/PSF origin equal to the centroid, as being less suscepti-

ble, e.g., to attitude errors. However, it is clear that IDU should use the

approach described above since it will determine the LSF/PSF shape more

accurately – once the source and attitude parameters are accurate enough

[Lindegren, 2010b].

4.6.3 Input Calibration Data

The LSF/PSF calibration will be run on each DRC and whenever a new

astrometric solution is made available. This task, as the rest of IDU tasks,

will gradually receive and accumulate a huge amount of observational data

to be processed. However, not every transit is considered useful for LSF-

/PSF calibration, for instance due to acquisition problems or if its back-

ground has not been well-determined.

It is clear, that for the purpose of this calibration, processing the expected

∼ 1011 transits observed during the 5 years mission is not actually required.

In fact, for most of the IDU tasks only the well-behaved observations will

enter in the processing. Understanding as well-behaved the minimally-

damaged observations, windows free from the CI signature, without con-

taminating flux from other sources, with the nominal window geometry,
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with its bias and background well-determined, etc. However, in the case

of the LSF/PSF calibration a representation of almost all possible obser-

vations is required to get a complete and unbiased calibration – preferably

observations having also a good astrometry from AGIS.

The huge number of observations and the variety of parameters and effects

to be calibrated requires a full pre-processing and selection of the data

before running the calibrations. This selection must take into account the

following aspects:

• The calibration dataset must cover the complete magnitude range

and window sampling classes.

• Red and Blue sources do not have the same sky distribution and if

the sources are taken randomly, the attitude AC smearing and the

chromatic dependency will be mixed.

• Any information on the close source environment, to avoid the use

of binaries which may lead to inaccuracies in the calibrations.

• All major events of the spacecraft.

For the new data arriving to IDU, the selection will be based on the basic

information available from:

• The observation acquisition flags.

• The scene, cross–match and catalogue analysis.

• The quality indicators of the calibrations involved in the raw samples

processing; including Bias, CI, CR and Astrophysical Background.

4.7 Image Parameters Determination

The main purpose of the Image Parameters Determination (IPD) is to use

the latest calibrations of the Bias, the CI/CR, the Astrophysical Back-

ground, LSF/PSF, etc. to compute improved Image Parameters which
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Figure 4.27: Schematic example of the processing classification applied
to the sources (yellow and red) according to their position with respect
to the observed window (blue), the CI (green) and their FoV CI (Credit:

Gaia/DPAC/IDT/IDU)

were initially determined by IDT or previous DRC runs of IDU. The pre-

cision and accuracy of the AL location of a source within each individual

window observation is of the foremost importance for the astrometric re-

duction system, specifically for the loop between IDU and AGIS. The level

of error in this measurement affects the astrometric performance of the

mission and, as anticipated, this level of performance can only be achieved

after iterative processing.

To the Image Parameters Determination (IDU-IPD), all observations are

assumed to be of fixed point sources. Non-single sources and moving

sources are processed by CU4. The IPD may additionally consider known

sources from both FoVs (see Figure 4.27) for:

• Working out the illumination history prior to the window, considering

all the sources in between the last CI and the window.

• Treatment of contaminated pixels due to parasitic sources from the

other FoV.

The contribution of the sources from the given FoV within the window

are deferred to more sophisticated Image Parameters processes from other

DPAC processes as e.g. the SEA done by CU5. The complete list of sources

is provided by the IDU-SCN task.
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The Gaia observations present a wide range of effects and not all of them

can be easily treated. The main effects which must be considered when

computing the Image Parameters are:

• CTI effects: The treatment of CTI effects is highly non–trivial, as

we are dealing with not fully understood, non–linear effects, inter-

acting with other instrument deficiencies, and without the full CCD

data. With the ELSF adoption, these effects are accounted directly

in the LSF/PSF calibration.

• CCD Sensitivity: All columns in a window are assumed to have

the same sensitivity, and no attempt is made to include photometric

calibration parameters which will be handled by other DPAC sys-

tems.

• Saturation and non-linearity: These effects must be taken into

account when processing 2D windows but they can be neglected when

processing 1D windows in AF where the saturation level is far enough

from the estimated signal levels.

• Window geometry: Windows may suffer all kinds of complexities,

as a result of CCD gating, window truncation, AOCS updates (win-

dow AC shifts), CIs, etc. To avoid unnecessary complex processing

of damaged observation, the IPD will only process the set of samples

obtained with the same gate, having the same start column, and the

same length (binning) as described in Fabricius et al. [2012].

• CCD Cosmetics: Column defects may be taken into account when

processing 2D windows, by simply ignoring the affected column, while

this is not possible for 1D windows due to the AC binning.

The error on the estimated AL location can be described in general as a

function of the observation magnitude and the CCD strip. However, there

are major systematic errors introduced by the radiation damage and this

residual error can be an order of magnitude above the mission requirements

if no mitigation is applied.
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Figure 4.28: Schematic data flow for Image Parameters Determination
(IPD), showing the main inputs and outputs.

Figure 4.28 shows the principal components of the data processing flow for

the IDU-IPD task. The main differences of this data processing flow from

the one used in IDT are:

• The analysis of the scene, used for knowing the detailed illumination

history of each CCD, and in case we wish to treat parasitic signals

in the modelling of the observation.

• The retrieval of the photometric information from the Gaia catalogue

instead of the direct measurement obtained from the initial process-

ing of the BP/RP data.

As for the previously described tasks (IDU-APB and LSF/PSF (IDU-

LSF/PSF)) the raw observations are first preprocessed. This preprocessing

consists in the determination of the effective samples derived from the raw

observation and in the retrieval of all the suitable window-level calibrations,

such us Bias, CI/CR, Astrophysical Background, etc. Over this data, a

preliminary estimation of the Image Parameters (see Castañeda and Fabri-

cius [2010]) is carried out to provide good initial location and flux values

for the late fitting which may help when analysing the scene. Thereafter,

we look up the relevant source information for the observation accessing

the Cross-Match table. This information is required for the retrieval of
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the more suitable LSF/PSF solution, dependent on the source colour and

observation flux as described in Section 4.6.1.

The last step then consists in the fitting of the effective samples with the

LSF/PSF, giving as results the updated parameters. This fitting is based

on a Maximum-Likelihood Estimation (MLE), Lindegren [2008c] and [Cas-

tañeda and Fabricius, 2009]. Additionally to the Image Parameters, the

fitting provides several indicators, as formal errors and Goodness of Fit

(GoF), which are of great help for the monitoring and validation of the

processing itself and for the selection and compilation of the calibration

datasets for future iterations. See Section 4.8 for a more detailed descrip-

tion of the currently available validation and monitoring tools.

As described in previous sections, IDU includes several tasks, most of them

essential for the successful reduction of the astrometric solution. However,

all of them would be worthless without the execution of the IDU-IPD,

where the actual integration of all the partial solutions – including non

IDU products as FL and AGIS calibration – is done. Thanks to IDU-IPD

all these intermediate products are consolidated for the generation of the

most fundamental data required for the core astrometric reduction.

On the other hand, the processing and storage needs of this task represents

one of the most challenging design issues of IDU system. The IDU-IPD

not only has to process all the transits that will be accumulated during the

mission, but it has to process them repeatedly every data reduction cycle.

IDU will receive every cycle up to 20 × 109 new observations (200 × 109

windows in ∼ 4 Terabytes) which will be accumulated and reprocessed

again and again. Chapter 5 covers all the technical difficulties and design

issues found for the successful implementation of the IDU-IPD task.

The design and implementation of the IDU-IPD task is lead by the CU3-

UB in collaboration with IfA-ROE.
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4.8 Validation & Monitoring

The IDU scientific performance is assured by specific test campaigns fol-

lowing the approved DPAC standards described in leaders CU1 [2012] and

Guerra and leaders CU leaders [2013]. These tests are carried out regularly

by the DPCB team in close collaboration with all the IDU contributors.

For these tests, detailed analysis over the obtained results are done – even

including the execution of reduced iterations with other systems.

As already commented in previous sections, IDU processes a huge amount

of data and produces similarly a huge amount of output results. The con-

tinuous and progressive check on the quality of these results is more than a

desirable feature. However, the analysis of every calibration and parameter

produced by IDU (as it is done for the test campaigns) is not affordable – it

would have almost the same computational cost than the processing itself.

For this reason, we aim for the design and implementation of a modular

system able to assure the quality of the results up to a reasonable limit.

First of all, we have implemented in each IDU task several built–in consis-

tency checks over the input and output data. These are really basic checks

for:

• verifying the consistency of the configuration parameters including

its tracking along the full processing pipeline.

• verifying the consistency of the input data, so corrupted data or

inconsistent input data combinations do not enter the pipeline and

are not propagated to subsequent tasks.

• accounting for the number of outputs with respect to the inputs, so

data lost is detected and properly handled – in general forcing a task

failure.

Additionally, all IDU tasks integrates the Intermediate Data Validation

(IDV) framework [Valles et al., 2012]. This framework provides several

tools for the generation of statistical plots of different kinds. IDV provides:
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Bar Histograms

Histograms for the characterisation of the frequency of parameters

with limited number of values.

For example IPD processing status, counts of observations per row,

etc.

1D Histograms

Histograms for the computation of the frequency of non discrete pa-

rameters. This implementation supports the computation of several

percentiles and the Robust Scatter Estimator (RSE).

2D Histograms

Histograms showing the distribution of values in a data set across the

range of two parameters. They support static dimensions or abscis-

sae dynamic allocation – in general for analysis of the evolution of a

given parameter in function of a non restricted increasing parameter

as the observation time. They can be normalised globally or locally

for each abscissae bin. Percentiles and RSE as well as contours are

supported.

Mainly used for the analysis of 2D dependencies or 2D density dis-

tributions of two given parameters – usually the abscissae parameter

is the magnitude, or some kind of distance; to last CI, to a reference

observation/source, etc.

Sky Maps

Plots generated from a histogram based in the HEALPix tessellation

and implementing the Hammer-Aitoff Projection. It can represent

the pixel count, pixel density or the pixel mean value for a given

measured parameter.

Mainly used to obtain the sky distribution of some particular ob-

ject (sources, observations, etc.) or to analyse the alpha and delta

dependency of some parameter mean value, i.e. the Astrophysical

Background, proper motion, etc.

Sky Region Maps

Tool for plotting sources and detections in small ICRS-based sky
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regions.

Mainly used for the analysis of the IDU-XM and IDU-DC results.

Focal Plane Region Maps

For the representation of the observations according to their AL and

AC plane coordinates.

Mainly used for the analysis of the IDU-SCN and IDU-DC results.

Round-Robin Database (RRD)

RRD are used to handle and plot time-series data like network band-

width, temperatures, CPU load, etc. but also usable to handle

Quaternion evolution, observation density, match distance evolution,

etc.

Range Validators

Implement very basic range validation against the expected nominal

parameters defined in the MDB ICD

TableStats

Collector of statistics for miscellaneous MDB table fields. Basically

provides counters for the discrete values of predefined fields or for

boolean flags/fields.

All Histograms and the SkyMaps, share a common framework allowing

the split of the collected statistical data according to the FoV, CCD row,

CCD strip, window class, source type, etc. This functionality is quite useful

for restricting the origin of any features visible in the general plots – in

that sense the user can see if some plot peculiarity or feature are present

only in one of the FoV, rows or for a given source type.

It is worth mentioning that the Sky Region Plot can be generated di-

rectly from the code but also we have implemented a graphical tool for

the interactive generation of this kind of plots. This tool is called Sky-

Explorer. This tool allows the loading and visualisation of all kinds of

Cross-Match related data. It also implements the functionalities for sky

navigation, zoom, distance measurement, animation of Gaia scans and
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much more. The SkyExplorer has become an essential tool for the vali-

dation of the IDU-XM but also for the IDU-DC. Several examples of this

tool outputs have been already included in Section 4.3 in this chapter and

more can be found in Chapter 6.

All these tools have also been integrated in IDT and they are used for its

monitoring on a daily basis. A handful of examples of the plots obtained

using these statistics tools have been included in Chapter 6.

With all the listed IDV features, the monitoring of the IDU scientific re-

sults should be easy. The only thing pending is the definition of the best

diagnostics for each specific task. Some examples could be:

• For all task in general:

– Range validation against expected nominal parameters.

• For IDU-XM and IDU-DC:

– Monitoring of the amount of new sources created compared with

previous executions of the IDU-XM.

– Monitoring of the time evolution of the Cross-Match AL/AC

distance to the primary matched source per FoV.

– Check the evolution of matches to a predefined set of reference

sources, to check if the overall transits have been assigned dif-

ferently now, as compared to the previous cycle.

– Monitoring of the evolution of the number of spurious detection

density for very bright sources.

– etc.

• For IDU-IPD:

– Monitoring on the goodness–of–fit obtained.

– Comparison of the derived Image Parameters against the AGIS

solution over a pre–selection of well–behaved sources.
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– Cross—check of the residual from the previous statistic against

the chromatic calibration residuals from AGIS.

– etc.

Most of these checks are still done manually by the operator but their

progressive integration in the processing framework is envisaged so they

can be performed automatically and summarising reports are provided to

the user for inspection. At the time of writing this thesis, many efforts

have been devoted on identifying the best diagnostics – the ones assuring

the best control on the quality of the produced data – and some examples

are provided in Chapter 7.

Finally, it is worth pointing out that the computational performance and

the correct progress of the processing is also monitored. The detailed list

of functionalities designed and implemented so far for monitoring the job

performance and handling the jobs outcome is presented in Chapter 5

4.9 Conclusions

After describing in Chapter 3 the basis of the data reduction system, we

have described in more detail some of the most important tasks involved

in the astrometric reduction loop. Particular attention has been paid to

the IDU-XM, the IDU-SCN and IDU-IPD where most of the work done is

attributable to this thesis.

The LSF/PSF calibration has also been covered exhaustively. During

years, it has been discussed and studied the possibility of producing a

clean LSF/PSF library – free from the CTI effects – in conjunction with

a Charge Distortion Model (CDM). In this scenario, the IPD would have

been in charge of predicting the distorted image from both: the clean LSF-

/PSF library and the CDM and then performing the Maximum-Likelihood

Estimation (MLE) against the observed image. This direct modelling of

the charge distortion would be more transparent, versatile and will be able
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to cope more rigorously the illumination history. Unfortunately, this ap-

proach has been deferred since no suitable CDM has been achieved yet and

because the estimated development cost of this full direct modelling have

been considered not affordable at the current stage of the LSF/PSF cali-

bration developments. Instead an empirical modelling approach has been

followed, implementing an Empirical LSF/PSF (ELSF) library directly ac-

counting for all possible image distortion factors.

We have also described the IDU-IPD task, reasoning how this task brings

together all the partial solutions of the several processing and calibration

systems coming from different CUs, consolidating the starting of the as-

trometric reduction iteration loops. This consolidation is essential for the

improvement of the astrometric solution produced by AGIS.

It is worth pointing out the close cooperation with IfA-ROE team during

this thesis. The four months stay with this team during 2010 and 2011

procured a solid basis for the design and implementation of most of the

IDU tasks. This close cooperation continues and is fundamental for the

progressive improvement of most of the IDU tasks.

It must be noted, that the current design of IDU tasks, and their implemen-

tation later described in Chapter 4, fulfil to big extent all the requirements

for the Gaia data exploitation.

Finally, an overview of the several monitoring and validation tools imple-

mented in the frame of this thesis has been included. The autonomous

validation and monitoring of the outputs is still an ongoing task but this

fact can not be considered a major or stopping issue for the execution of

any of the developed IDU tasks.





5 IDU Operation and
Implementation

The design and implementation of IDU has been one of the main goals of

the work done within the frame of this thesis. This design has not been only

driven by the scientific goals and requirements [Castañeda et al., 2011a] but

also by the characteristics and restrictions of the execution environment

and resources.

The execution of IDU is done at DPCB, in particular at the Marenos-

trum supercomputer hosted by Barcelona Supercomputing Center (BSC).

This supercomputer offers a peak performance of 1.1 Petaflops and 100.8

Terabytes of main memory and is composed of more than three thousand

computing nodes. Because of the machine design, the use of databases

hosted in a dedicated hardware would be complicated and very costly and

it is discouraged by BSC. This implies consequently that all the processing

is based exclusively in files. The technical specifications of this supercom-

puter are given in Appendix A.1.1. More information about the DPCB

responsibilities and resources has also been included in Appendix A.

Additionally, hardware upgrades of Marenostrum are envisaged during the

mission – the latest one was done beginning of 2013. This circumstance,

covered in more detail in Appendix A.1.1, has also been taken into account

in the design of IDU to obtain a very modular and flexible implementation

as we described later on in Section 5.2.

117
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Figure 5.1: Schematic context of the IDU tasks within DPCB, includ-
ing some of its main interfaces with other DPAC products

Figure 5.1 illustrates the context in which IDU tasks operate, including

the main interfaces with DPCB resources and with the data products from

other DPAC software systems.

IDU itself is composed of seven sub–processes, which we call tasks, that

perform the operations on the Gaia data already described in Chapter 4.

In practice, IDU could be described as a batch processing system, where

series of processes or jobs are executed on a computer without external

communication or intervention. Jobs are set up with all the inputs prede-

fined so they can be run to completion in isolation. This is in contrast to

interactive or stream processing systems which expect the input from user

or other processes to trigger the processing. IDT would be a clear example
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of this stream processing where messages about the newly available data

are received and trigger the processing.

Batch processing is very efficient in processing high volume data, where

data is collected, entered to the system, processed and then results are

produced in batches. Besides, using partitioning allows multiple jobs to

run concurrently thus reducing the elapsed time required to process the

full data volume. Special care must be taken in the partitioning of jobs,

so they only process their assigned data set.

However, due to data dependencies between the tasks, the IDU task execu-

tion must be coordinated, and considerable data transfers and arrangement

are required. There are data dependencies between some of these tasks,

and the tasks must be executed in a particular order (see Figure 4.1).

For this reason the execution framework must permit the launching of the

tasks, the management of I/O data of each task, and additionally provide

monitoring and overall management of the task flow. Issues of efficiency are

especially important for this work, such as providing efficient data access,

and ensuring the efficient job partitioning.

In this chapter, we firstly cover the practicalities for a nominal IDU execu-

tion – data preparation, job definition and the execution plan according to

the DRC and DS definitions. Next section, is focused on the details of our

implementation of IDU, describing the developed interfaces and execution

framework. This section also presents the guidelines adopted for the soft-

ware development within DPAC, including the additional constraints due

to the DPCB environment and the strategy we have followed for testing

IDU system. Afterwards, we describe the main monitoring and profiling

tools available within IDU, fundamental to get the best performance at

DPCB. Finally, we summarise the main topics covered, highlighting the

work directly attributable to this thesis.
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5.1 IDU Operation

IDU only runs on DRC basis, which means it will be executed once or

twice a year over the accumulated Data Segments (DSs). The first DS,

covering the first ten months of Gaia routine operation, reaches already a

total amount of 7 TeraBytes only for the raw observations. Forthcoming

DSs will imply subsequent data volume increases of 3-6 TeraBytes.

Handling this volume of data is not an easy task and requires the adoption

of very strict procedures covering the data preparation, the task definition

and the detailed execution plan. The definition of the execution plan is

critical and must take into account the following:

• The time slot assigned for the IDU execution within the overall DRC

schedule, preventing any undesired delay which may affect the other

downstream systems.

• The feasibility to get enough resources for the processing. DPCB

resources are shared with other projects and the resources must be

requested in advance.

Furthermore, any official execution of software must follow strict proce-

dures so all inputs, software releases, algorithm configurations, etc. are

perfectly accounted for. In other words, any execution must be completely

deterministic and reproducible. To accomplish this premise, we have de-

fined three different stages (outlined in Figure 5.2):

Release Stage

Well before the IDU tasks execution, its functionalities must be fixed

according the latest developments carried out by the main contribu-

tors. This involves several CUs and software libraries (already intro-

duced in Section 5.2) from teams located at different places which in

general have their own software development schedules. Arranging

all these schedules is not an easy task since most of these software
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Figure 5.2: Schematic outline of the main steps (horizontal axis) that
must be followed for the execution of IDU tasks, also accounting for the

wall clock time requirements (vertical axis)

libraries must also fit in with other software releases not strictly tied

with the DRCs as IDT.

Once the main functionalities have been established, they have to

be implemented and integrated in IDU. During this stage, major

implementation issues or lack of man power may compromise the

original release functionalities but in these cases corrective actions

will be taken so the final scientific impact is minimised. Next releases

will eventually fix these issues as part of the nominal development

activities.

This stage could extend over periods of one or two months depending

on the new functionalities introduced or the major issues identified

in previous executions.
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Testing Stage

This stage starts when the IDU release is considered already stable.

At this point, all software changes must be approved by the DPCB

Configuration Control Board (CCB). During this stage, the release is

deeply tested at CU level and also at DPC level (see Section 5.2.5).

From the testing, essential information will be retrieved for the es-

timation of the resource requirements and for the elaboration of an

initial operation plan. New releases may include substantial perfor-

mance updates or new dependencies forcing changes on the already

existing operation plans consolidated in previous executions.

During this stage, preliminary input data arrangements and data

statistics are also carried out. From the results, fundamental infor-

mation is retrieved for the estimation of the resources required for

the processing.

Typically, this stage should last for one month allowing several ex-

ecutions and occasional small-scale iterations with external systems

as AGIS. This stage finishes once the release of IDU is done.

DRC Processing Stage

This is the stage where the actual execution of the IDU tasks is

performed. The time available for the processing will extend approx-

imately up to two months and during this period the following steps

will be followed:

1. Execution of IDU-DC and IDU-XM and distribution of the re-

sults to DPCE.

2. Reception of the new catalogue produced by the MDB Integra-

tor at DPCE.

3. Conversion of all the accumulated data to the new MDB DM.

4. Execution of the remaining task: IDU-SCN, IDU-BIAS, IDU-

APB, IDU-LSF/PSF and IDU-IPD.

Step 2 is only possible when the previous step has been completed.

This fact introduces a processing barrier for the execution of the
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Figure 5.3: IDU task flow with respect to the time of the data stream
(vertical axis) and the wall clock time (horizontal axis) – the DSs and
DRCs are defined over these same axes respectively. The height of the
boxes surrounding the tasks indicates the data segment length processed
whereas the width the corresponding start and end time of the process-
ing. Note that the DRC-02 scenario can be extrapolated to all subse-

quent DRCs

remaining IDU tasks included in step 4. However, the DM conversion

of step 3 is feasible during this period when the MDB Integrator runs

although not completely since the new catalogue has to be converted

as well.

As explained in Section 3.3, a given DRC is considered closed when

the MDB Integrator is run and the new catalogue is distributed to

all DPCs. In that sense, during this stage DPCB would be executing

tasks within two DRCs. In practice, this DRC transition only intro-

duces the just commented barrier in the processing and the need of

executing the DM conversion (which in case of DPCB is not a major

issue since the changes in raw data are very restricted).

Figure 5.3 illustrates the IDU task flow with respect to the DS and

DRC definitions.

The next sections will summarise the most relevant procedures from the
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last two stages – basically those procedures directly related with the execu-

tion of IDU tasks as well as the derived activities of the DPCB operators.

We refer as DPCB operators to the people in charge of executing and mon-

itoring the IDU tasks but also responsible of all those activities related to

the data and resources handling within DPCB. We will also describe some

of the more relevant functionalities – at the time of writing still under de-

velopment – that will be of great help to cope with the larger data volumes

in next cycles.

5.1.1 Data Preparation

Data arrives to DPCB on a daily basis following the processing flow of

IDT. DPCB receives the data in several transfers – from few to hundreds

of transfers of few to hundreds GigaBytes every day. These data then

present a large fragmentation and its sorting is not guaranteed due to

the downlink priority scheme on board. Data from a relative short time

interval on board – i.e. observations of faint sources from a period of one

hour from a crowded region of the sky – could take more than one week

to be downloaded and processed by IDT and be finally received at DPCB.

More details relative to the GTS between DPCs is included in Appendix C.

Most of the DPCs solve this data fragmentation and additionally sort the

data transparently by using database solutions. However, as commented

before, DPCB operates exclusively with files what has implied the devel-

opment of additional auxiliary processes to prepare the data before the

processing. Operating directly over the received data files is not desirable

for several reasons:

• A large number of files and folders is more prone to data losses.

• The data volume get increased, due to the file fragmentation.

• Basic operations like data filtering are more complex, even requir-

ing additional meta data or supplementary indexes to access only to

relevant files.
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• Large I/O overheads are introduced in the processing.

As it can be seen from the points raised, it is clear that a more intelligent

and sophisticated data arrangement is needed. The GTS is used anyway

(as it is the standard transfer system for DPAC), but an adequate layer

shall be added to it. This improved data handler will not only have to

arrange the data in a suitable structure but also has to process the IDU

outputs before they can be transferred to DPCE. Additionally, statistics

over the input data need to be performed to detect possible data gaps and

to ultimately report the results of all the DRC processing.

As soon as the data reach DPCB, the data is preprocessed. This prepro-

cessing is in charge of arranging the input data according to a predefined

time or HEALPix file structure. This preprocessing also gathers time and

the HEALPix statistics for each separate data type. The time statistics are

in the form of number of records per time bin (nominally bins of 1 second)

while the HEALPix statistics provide the counter for all pixels in a given

HEALPix level, 7 by default (196 608 pixels). This first arrangement is

still presenting the same base structure than the original transfers.

The next step is the consolidation of the data. This is done when no

more delayed data is expected (approximately two weeks since the first

reception of a given time bin) or when a current DS is closed. The first

step is the determination of the best file partition. This partition is done

according to the file system recommendations described in Section 5.2.4

and the information on time or HEALPix object densities.

The idea is to get equalised time intervals and HEALPix groups to reduce

as much as possible the number of files but avoiding also too small or too

large files. Too small files would imply more operations with the file system

increasing the I/O time and too large files would increase the memory

footprint to load the files degrading processing performance.

The time based equalisation is basically taking the time bins and grouping

them until a given limit of objects is reached. When this limit is reached

the resulting time interval is stored. These time intervals then are used



5. IDU Operation and Implementation 126

to configure the stores which will arrange all the input data following that

partition and producing a new set of data sorted and without the original

fragmentation. This time partition can also be done independently for each

CCD row if available. Figure 5.4 includes one example of the statistics

obtained for the raw astrometric observations and the resulting partition.

On the other hand, the HEALPix equalisation is a bit more complex being a

two dimensional process. The goal is again the partition of the data in files

with the same number of records but this time according to the location

of the sky, practically its HEALPix pixel. The solution implemented is

taking advantage of the hierarchical scheme used for the pixel numbering

following the following recursive processing:

1. Load the region counters from the initial statistics.

These initial regions represent the partition limit, the smallest regions

that can be produced by this process.

2. Compute the total amount of records, summing all loaded regions.

If the resulting count is less than the configured limit no partition is

required and the process finishes.

3. Move to the first HEALPix level, which is basically the split of the

sphere in 12 equal-area subregions.

4. For each subregion; determine the corresponding amount of records

and store those fulfilling the configured limit.

5. Move to the next HEALPix level. This basically means that each of

the current subregions is split in four subregions (see Figure 5.5).

6. Replay the step 4 and 5 until we reach the level of the initial regions.

The described process is the default implementation used for the data

arrangement. It produces equalised regions which can be named with the

corresponding pixel name at the given level (see Figure 5.5). This naming

is really convenient and simple for limiting the number of files to load

according to a given sky region.
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Figure 5.4: Example of the time statistics for raw astrometric observa-
tions represented in 1D and 2D and the resulting time interval equalised
partition (bottom). In the 2D plots the time advances from bottom
to top and left to right so each vertical column represent 6 hours of

consecutive observations
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Figure 5.5: On top the orthographic view of HEALPix partition of
the sphere. From left to right the grid is hierarchically subdivided in
subsequent level starting from 0 (Credit: Gorski et al. [2005]). On bot-
tom, the pixel naming convention (in bold) and its binary representation

adopted for Gaia for level 0 and 2

Alternative solutions have been implemented where neighbour regions at

the same level can be grouped for the creation of the final equalised regions.

This gives more flexibility to generate final regions having a more similar

number of records but on the other hand naming these multi–pixel regions

is more complex. In Section 5.1.2 we will see how these multi–pixel regions

are more useful for the job load balancing.

Figure 5.6 shows the equalisation obtained for the IGSL catalogue fixing a

limit of 106 sources per region for both implementations. In this figure, it

can be clearly seen that both solutions follow the sky object density but

also that the second one create more equalised group counts.

One may argue that this file arrangement is not actually required and that

by simply sorting and arranging the data in multiple files together with

some kind of meta data with the corresponding HEALPix information

would provide the same benefits. However, if we take into account that

the jobs will be based almost in the same equalisation then the arrangement

described before should considerably reduce file system access collisions.
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Figure 5.6: Sky region equalisation examples. On top the original in-
put regions counts at HEALPix level 7. Middle panel shows the result-
ing region counts for an equalisation based on multi–level single pixels
while the bottom panel is using the unrestricted/global neighbour pixel

grouping which results on a more equalised group counts
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Finally, it is worth pointing out that this kind of data arrangement – with

a physical meaning — provide some additional advantages compared to

other strategies. With this arrangement, the extraction and distribution

of selective partial data to IDU contributors for the analysis of general job

failures or performance issues is much easier.

5.1.2 Job Definition

As anticipated, the equalisation of the IDU tasks in the form of a set of

jobs is also a fundamental topic to get an efficient batch processing at

DPCB. In this case, the equalisation is not simply referring to the number

of objects or data volume to be processed in each job but to the resources

required to process those inputs.

In this context, the job definition refers to how a given processing task is

split in the form of distinct jobs for their batch processing in the comput-

ing cluster. This job definition is mainly based on two inputs: the detailed

statistics on the input data but also the task performance metrics. In

Section 5.3, we describe the main task profiling metrics that IDU frame-

work produces when a given task is executed. These metrics characterize

the task processing time and memory usage and together with the statis-

tics on the input data will allow determining the best task definition to

optimize DPCB resource use.

We distinguish two kinds of job definition strategies:

Time–Based

This strategy is applied to most of the IDU tasks: the IDU-SCN, the

IDU-DC, the Obs–Src Match step in IDU-XM, the IDU-BIAS, the

IDU-APB, the IDU-LSF/PSF and the IDU-IPD.

All these tasks, except the IDU-BIAS and IDU-SCN for SSOs, use

the statistics on the raw observation time density for dividing the

entire time interval to process (time covered by all the DSs entering

the current DRC).
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Regarding the IDU-BIAS task, the only input data used are the

Pre-Scan data. The Pre-Scan data volume is really small and the

time density profile is almost flat so no equalisation is really needed.

The IDU-BIAS task is then simply divided in regular time intervals

according to the available wall clock time and the available processing

resources.

Similar is the case of the IDU-SCN for SSOs, the time dependent

input data volume is negligible and the output data as well. In this

case, we simply split the full interval in regular chunks to fit the

resources and the execution wall clock constraints.

Finally, it is worth explaining why the jobs for the IDU-SCN for

the catalogue sources are also defined according to the raw observa-

tion time density profile. Although this task does not use the raw

observations (see Figure 4.2), its outputs – considered also a good

performance indicator – are expected to present the same time den-

sity profile.

Another option for the equalisation of this task (also applicable for

the Obs–Src Match) would be to combine the sky region density in-

formation with the estimated scanned region provided by the At-

titudeToHealpix tool (see Section 4.3). The resulting equalisation

would be for sure more accurate since it will take into account the

real density of the region covered during the scan, but probably the

effort would not be worthwhile.

Spatial–Based

This strategy is used mainly by the IDU-XM task, specifically the Sky

Partitioner and the Match Resolver. These tasks could use directly

the spatial density profile from the observations but a more accurate

equalisation (with respect to the memory usage) can be obtained if

the spatial density profile of the source candidates is retrieved from

the MatchCandidates produced in the Obs–Src Match. In that sense,

we would be accounting for both the time and the spatial object

density.
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Practically, the jobs are defined in the form of XML files as described in

Section 5.2.2. These job files are stored and in most cases will define stat-

ically the processing of each DS for the current but also the future DRCs.

However it is expected that the initial job definition may eventually fail in

some cases – incomplete input statistics or biased performance metrics for

example. In these few cases, the Extensible Markup Language (XML) file

of these jobs can be redefined (applying further splitting or merging) or

specific parameters added or overridden. These updates can then be also

persisted for proper tracking in forthcoming DRCs. The job parameters

will be further discussed in Section 5.2.2.

Finally, as for the data arrangement solution, this job definition can be

also exported and used outside the DPC. In other words, these job files

can be distributed to IDU contributors who will be able to reproduce the

job execution in almost the same conditions. This is extremely useful for

finding the underlying issues of job failures or job performance degradation.

5.1.3 Job Execution

The overall task flow of IDU has already been described in Section 5.1

as well as how each task is divided in several jobs for its execution in

Section 5.1.2. Therefore, the only pending topic to be described is how the

jobs are executed within DPCB.

The DPCB processing resources (the computing nodes) can only be ac-

cessed through job submission to a shared job queue (see Figure 5.7).

The queue system integrated is the IBM Platform Load Sharing Facility

(IBM-LSF): a powerful workload management platform for demanding,

distributed High Performance Computing (HPC) environments. It pro-

vides a comprehensive set of intelligent, policy-driven scheduling features

that enable the prioritization of jobs according to the requested resources

but also ensure optimal exploitation of the computing resources. It must

be noted that no direct access is granted to any computing node which

adds additional complications when deploying, executing and monitoring

the IDU task jobs.
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Figure 5.7: Diagram of Marenostrum computing resources and access
policies

First of all, it is necessary to clarify the different scope of the IDU task

jobs against the queue jobs. The first one represent the processing of an

IDU task over a given chunk of data whereas the queue jobs represent

the resource allocation request to the Marenostrum queue system and the

subsequently granted resources. The queue job could hold the execution

of one or more jobs from one or several IDU tasks without any kind of

restriction.

For a queue job, the operator can request from one single CPU to thousand

CPUs for a maximum wall clock time of 72 hours. Then, this queue job will

be scheduled according to corresponding user queue priority, the requested

resources and the already submitted jobs. Jobs limited to a single node

(less than 16 CPUs) are automatically redirected to an special queue. This

queue guarantees a quick response in time (matter of hours) but at the same

time does not restrict the node access to a single user. This queue is really

useful for executing light processes or for testing software deployments.

In all other cases, the job will always get the nodes in exclusive and will

be assigned a priority which will increase according to the job size (larger

resources) and job wall clock time. In that sense, bigger jobs are considered
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better because they reduce the job fragmentation on the queue and thus

the dead times of new job allocations. Furthermore, the resources available

for the single–node jobs are quite limited which means that you will obtain

a very low job concurrency – only few jobs will be running at the same

time.

The IBM-LSF provides a complete toolbox for the interaction with the

job queue [IBM, 2015]. Jobs can be submitted, paused or killed but also

grouped. Additionally, in IBM-LSF, whether a job should start can be

dependent on other jobs, usually based on the job states of preceding jobs.

Finally, the allocated resources for each individual job can be monitored

as explained in Section 5.3.

IDU tasks are implemented and executed as stand–alone applications and

can be distributed as follows:

• Independently; so one queue job is allocated for each separated IDU

job, thus requesting resources from a single node.

• Grouped; one queue job for the execution of several IDU jobs in

multiples nodes.

In general, as already commented, the preferred option is the second one,

thus reducing the number of jobs in the queue. However, this implies the

need of some framework in charge of handling the granted resources — in

other words in charge of distributing and managing the jobs among the

nodes allocated. To solve this issue we have two solutions available:

BSC Greasy

BSC offers for the HPC applications a tool called Greasy. This tool

is able to run in parallel a list of different commands, schedule them

and run them using the allocated resources of a given queue job.

This tool has been developed for those applications requiring the

execution of hundreds/thousands/millions of jobs without any inter–

communication among them.
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One of the main principles of Greasy is to keep it simple for the user,

the list of tasks is just a text file listing the commands corresponding

to each job to be executed. Then, each line in the file becomes a job

to be run by Greasy. Furthermore, it is able to manage dependencies

between tasks, or to rerun a task in case of failure (retry mechanism).

During the execution, Greasy generates helpful execution reports

where all greasy actions are recorded to keep track of what is the

progress of the run. From these reports, the user can check the

proper execution of the job chain and analyse the performance of

the jobs. Additionally, the corresponding lists of failed tasks and

pending tasks (not even allocated due to queue job time limit) can

be extracted for their subsequent execution.

Internally, Greasy is based on the Master/Slave load sharing model,

where one Master process has unidirectional control over one or more

Workers. These workers are in charge of running the jobs served by

the master. Greasy workers are configurable to get different config-

uration over a given set of nodes. Basically, user can fix the number

of workers to be executed in each node, which practically result in a

uniform distribution of the resources with the same number of CPUs,

memory and local hard disk allocated for each worker. This uniform

partitioning could be considered as a limitation of this tool, not al-

lowing the execution of jobs with different resource needs. Figure 5.8

shows a schematic view of a Greasy based job.

Another issue of this tool implementation is the resource usage when

Greasy is processing the last jobs. During this last phase a lot of

resources may become idle if the resource arrangement (number of

nodes and wall clock time) of the queue job do not match with the

jobs processing profile. This can be easily mitigated by means of

a good job equalisation and the corresponding queue job dimension

and scaling but it is almost impossible to have all jobs using all the

resources up to the very end of the processing.
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Figure 5.8: Diagram of the Greasy execution framework for a given
Marenostrum job, where worker slots are assigned statically to each
computing node and a master process is in charge of distributing the

user jobs

BSC is working in the possibility of getting dynamic allocation of

resources so the queue job can release nodes when idle and no job

allocations are pending.

DpcbTools NodeCoordinators

We have developed within DpcbTools an execution framework to

manage, as Greasy does, the parallel execution of a list of different

jobs. This framework implements a similarMaster/Slave load sharing

model but in this case local to each processing node in the form

of a NodeCoordinator which provides additional functionalities not

available in a pure Greasy environment. In practice, this framework is

deployed to the computing nodes using Greasy but the job scheduling

and execution is in charge of the these deployed NodeCoordinators.

The full description of this framework is provided in Section 5.2.3 as

it has been one of the main contributions of this thesis to the IDU

execution framework.

Greasy has been and is still used a lot for the execution of the CU2 simula-

tor. For these simulations, Greasy has been used to execute more than 50

thousand jobs in 200 nodes, consuming more than 200 thousand CPU hours
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in a single queue job for the generation of approximately a half terabyte of

data corresponding to a catalogue simulation.

For the first executions of IDU tasks, Greasy will also be the preferred tool.

However, as data volume increases and tasks gets more complex, the more

sophisticated NodeCoordinator solution will be used. Exhaustive tests are

ongoing at the time of writing, already showing the benefits of the dynamic

and interactive functionalities of the NodeCoordinator framework.

5.1.4 Results Handling

As for the data input, the volume of the results will also be considerable

(see Appendix D). Additionally, the results will also present a high frag-

mentation due to the job partitioning used during the batch processing.

Therefore, new data arrangements will be required.

In general this arrangement will only imply the data merging in a more

efficient data structure for the next task or for its tranfers to DPCE. How-

ever, in some specific cases it may involve the swapping from time–based

to spatial–based structures and vice versa. The main interface requiring

this swapping operation is the Match table produced by the IDU-XM task

(see Section 4.3). This arrangement is done similarly to the ones done

for the input data coming from DPCE so the same tools and equalisation

parameters can be reused.

The results from each individual IDU task job are tagged with a unique

solutionId, described in more details in Section 5.2.3. Together with the

solutionId an auxiliary table is also produced logging the solutionIds of

the input data involved in the processing of the corresponding output so-

lutionId. This table is called InputDataUsed and is essential to be able to

reconstruct the processing history providing a clear link between the input

data features and the characteristics of its derived outputs. In that sense,

the granularity of the DPCB solutionId is more than desirable and provides

a valuable information to analyse the IDU results. Finally, it is worth men-

tioning that some of the solutionIds produced at DPCB will be completely
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internal to the DPC and will not be distributed to the MDB. One clear ex-

ample is the intermediate data produced in the first and second steps of the

IDU-XM. For these cases, a solutionId consolidator has been implemented

to post-process the InputDataUsed table removing these intermediate solu-

tionIds. The final InputDataUsed table will then only contain solutionIds

present in the MDB.

Occasionally, some IDU outputs can be considered incorrect or even unus-

able. Although, the retraction of already transferred solutionIds to DPCE

will rarely occur, DPCB will eventually retract some of its outputs. The

main causes for a retraction would be:

• A retraction commanded by DPCE on the raw data accumulated at

DPCB. This may happen well before the start of the IDU processing

or during the actual processing. In the first case DPCB will apply

the retraction before starting the processing whereas in the second

case, which should rarely occur, DPCB will be forced to hold the

current processing and resolve the conflicts, notifying the retraction

of the data already transferred if necessary.

• A software bug in any of the IDU libraries, leading to a new software

release.

• A configuration error in the execution of a given task.

• An inconsistency in the execution environment or resources used, as

for example incorrect data repositories, wrong Java version, use of

an old deployment, etc.

All these retractions may imply the removal of a reduced or rather huge

set of solutionIds. The amount of data to be retracted will depend in the

primary affected inputs and outputs and their relation to subsequent tasks,

which can trigger the retraction of more outputs in cascade.
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Figure 5.9: Java library dependency tree of IDU project

5.2 IDU Implementation

During the design stage of IDU, the requirements and constraints of all

IDU tasks were compiled together with the main processing capabilities

of the DPCB resources. For this activity, the stay in the Institute for

Astronomy - Royal Observatory of Edinburgh (IfA-ROE) in 2010 and 2011

was of great help to settle and collect information for IDU-BIAS, IDU-APB

and IDU-LSF/PSF tasks. Additionally, the experience obtained from CU2

simulations activities at DPCB provided a very good basis for the design

and development of the IDU software.

As commented in Chapter 4, IDU integrates seven tasks in charge of dif-

ferent groups within DPAC. The processing core of these tasks are imple-

mented in two libraries; CalibrationTools and IDTools. The first one is a

library maintained by the IfA-ROE team whereas the second one is respon-

sibility of the CU3-UB team with some contributions from the CU3-Torino

team. Figure 5.9 illustrates the tree of library dependencies of IDU. Each

library contributes to different IDU functionalities as follow:
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• CU1 common libraries (including the MDB DM); shared by all DPAC

systems. These libraries define the main interfaces and provide gen-

eral implementations for the more basic processing tasks: spacecraft

configuration handling, attitude and geometric calibration servers,

coordinate transformations, solutionId tracking, telemetry and Gaia

Binary File Format (GBIN) reading and writing routines, etc.

• CalibrationTools: CU5-DU10 software library (developed by the IfA-

ROE team) including all the routines for the treatment and calibra-

tion of the Bias, Astrophysical Background, CCD calibrations and

LSF/PSF. This library also includes the new developments for the

IDU-IPD related to the 2D mapping (see Section 4.6.1).

• IDTools: common CU3 library shared by IDT and IDU mainly devel-

oped and maintained by the CU3-UB team. As already commented,

both systems implement similar functionalities and the creation of

this intermediate library reduces a lot the code duplication but also

allows the direct migration of any fix or improvement between both

projects. This library implements the processing core of the Cross-

Match, the Detection Classifier (DC), the IDU-SCN and the IDU-

IPD. Additionally it implements most of monitoring and validation

functionalities already described in Section 4.8.

• DpcbTools: library to assist the execution of IDU tasks at DPCB.

This library, developed also by the CU3-UB team, contains utili-

ties for performing I/O; data manipulation; communication; task

creation, job scheduling and launching; data visualisation; and mon-

itoring. This library implements additional functionalities related to

the GTS which have been described in Appendix A.2.1.

• IDU: main project where the IDU tasks are ultimately implemented

and integrated. Strictly speaking this project does not contain any

relevant scientific routine. Scientific implementation is completely

entrusted to IDTools, CalibrationTools and GaiaTools libraries. In

that sense, this project basically integrates the scientific routines

from these libraries with the framework provided in DpcbTools. The
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design and implementation of this project is responsibility of the

CU3-UB team.

In this section we will cover the most relevant design issues adopted for the

current IDU implementation. Firstly, we will present the general software

development guidelines that all DPAC software must follow, covering the

adopted standards, the programming language, etc. Afterwards, we will

focus in the more technical details of the IDU task framework design. A

specific section is devoted to the data access layer, fundamental concern

since it could potentially become a major bottleneck in the processing at

DPCB. Finally, a last section is devoted to summarising the overall testing

strategy that is followed for the software being developed.

5.2.1 Development Guidelines

The data processing system for Gaia can be seen as the combination of

machines, people, and software processes that for a set of inputs produces

a defined set of outputs. For the achievement of this goal, it is manda-

tory that all the parts follow a common set of guidelines to guarantee the

proper communication and compatibility. This section summarised the

more relevant guidelines that all DPAC processing system must follow.

DPAC has adopted the European Cooperation for Space Standardization

(ECSS) system, specially the software engineering standards for science

ground segment development. This ECSS system covers the management,

engineering and product assurance standards. These standards have been

tailored for Gaia and summarised in Lock [2007]. In practice, this implies

that any piece of software must be attached to the corresponding documen-

tation describing the purpose and requirements of the software, including

the traceability of these requirements with the actual software code. Ad-

ditionally, software manuals, test reports, code quality reports, etc. must

be also provided. For IDU, we have followed rigorously these standards,

producing a lot of documentation within the frame of this thesis.
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As the data processing at the DPCB may continue until around the year

2022 or a bit later, the hardware at the DPCB will go through a number of

major upgrades, and may completely change before the mission is complete

(see Appendix A). The other DPCs will also go through several changes

to their hardware, and at the time of writing, it is impossible to know the

hardware architecture that will be available at the end of the mission. For

this reason, it is very important that DPAC systems are developed to be

portable, and not dependent on any particular hardware features.

For this reason, the majority of DPAC systems are entirely written in Java.

Java is one of the most widely used computer programming languages in

the world [Tiobe, 2012]. It is a general purpose, Object-Oriented (OO),

high-level language, with a syntax quite similar to C++. Java is used

for creating software for all kinds of uses, and it runs on a vast range of

hardware environments from hand-held devices to supercomputers [Fries,

2012]. A fundamental strength of the Java platform is its portability.

This has huge advantages when distributing software amongst a group

of developers who may be using different operating systems or different

hardware environments. Additionally, Java is generally considered safer

and easier to master than other programming languages, implying higher

developer productivity thanks to the number of lightweight built-in features

designed to allow for its monitoring and debugging.

For systems like IDU – integrating several software routines from external

groups – choosing Java was one of the best decisions DPAC has ever made.

This decision is also reinforced by the extensive set of tools that are avail-

able for the development and maintenance of Java software. Furthermore,

DPAC has compiled in O’Mullane et al. [2006a] a summary of the more

relevant Java development guidelines, based on common practice in the

Java community.

Finally, it is also relevant to mention that DPAC has enforced the cre-

ation of CCBs at DPC and CU level. These CCBs are in charge of the

management and approval of any relevant change affecting the software

and documentation. In general, the majority of the CCB members must



5. IDU Operation and Implementation 143

be external to the software development teams and are chosen according

to their expertise on the software characteristics. The CCBs play a very

important role at the time of creating the software releases as well as when

software updates are required to solve any software bugs.

5.2.2 Job Interface

Adopting a flexible job interface is essential to be able to cope with the

particularities of all IDU tasks. In order to define this job interface we need

to identify the input and output requirements and dependencies of each

individual task. For this task, we have created a document template with

the guidelines to define the IDU tasks [Castañeda, 2009]. This template not

only requests the proper definition of all the input and output interfaces

but also requests specific information about:

• Expected data flow: data access policy, access frequency, etc.

• Estimation of the input and output data volumes for the overall task

• Minimum and maximum job dimension. In practice, this information

refers to the minimum amount of data required for a meaningful

execution of the task and the maximum amount of data the task

could handle.

• Expected scalability of the processing; whether it will be linear with

the data volume or not.

• Identify data dependencies with jobs from the same task and also

from the other tasks.

Once we have all the task well characterized, it is also fundamental to

identify which additional job parameters would be required to extend the

functionalities of the execution framework. The most relevant functionali-

ties would be the following:
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• Capability to detect and kill stuck jobs. This can be achieved for

example by simply defining a parametrised processing time limit so

the job manager kills the job when this time limit is reached.

• General procedures to improve the fault tolerance even recovering

completely from processing failures. This functionality would im-

ply a resubmission of the failed jobs according to some predefined

procedure. These procedures could include updates on the JVM pa-

rameters (to solve resource issues) or the use of alternative task con-

figurations. Also the basic retry mechanism is more than desirable

to be able to cope with occasional file system failures.

The flexibility of the job interface has been assured using XML for the

definition of all job parameters. At the time of writing, each job includes

the following information:

• Task, in the form of fully qualified name of the implementing Java

class.

• Time To Live (TTL); to limit the maximum execution time of the

job.

• JVM arguments; in general to set the JVM memory parameters.

• Java Properties files; fixing the overall task configuration.

• Time Interval; defining the mission time extent to be processed in

the job. This time interval is mainly used to filter the input data and

to restrict the extent of the outputs.

• HEALPix region: defining job spatial extent which is also used to

filter the input data and to restrict the output extent.

• Data Repositories; defining the base location of the input, output

and working/local repositories.

• Data Stores; for the specific definition of each input data types. It can

also define bounding data types, additional file filters, file pattern,

etc.
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Most of these parameters can also be fixed globally for each task type,

simplifying the XML and reducing its size. This XML configuration can be

also persisted to disk and then be reused in next executions or distributed

to the IDU developers for debugging purposes.

5.2.3 Execution Framework

Since DPCB resources are not exclusively dedicated to Gaia and the hard-

ware and administration is not under DPCB management, not all the CU1

infrastructure already developed for other DPAC system is suitable to be

used in this DPC. This infrastructure is mainly designed to work against a

central database and the execution framework deployment on the process-

ing nodes requires direct access to the processing nodes.

Adapting the CU1 infrastructure to the DPCB constraints, although pos-

sible, was not considered the best option, mainly because it was actively

used and updated according to the needs of the daily systems at DPCE.

This circumstance could have caused undesired delays and even the imple-

mentation of dubious solutions to be able to cope with the requirements of

both DPCs. Therefore, it was decided that a specific execution framework

should be developed. This framework should be able to handle the launch-

ing of IDU tasks in the assigned computing nodes and managing the huge

input and output data volumes, while efficiently exploiting the available

computing resources. IDU is quite data-intensive, in fact, it is the most

data–intensive of all the DPAC systems.

As anticipated at the beginning of this chapter, IDU framework has been

developed with the batch processing in mind. This decision was largely

based on the nature of the IDU tasks where a lot of data has to be processed

by lousily coupled tasks. Besides, the high partitioning of all the tasks is

also fundamental to understand the implemented solution. Taking into

account all these properties, the problem is then reduced to finding the

best way of distributing the task jobs efficiently among the computational

resources.
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As mentioned in Section 5.1.3, BSC provides a Master/Slave based frame-

work for this kind of applications, called Greasy. This framework however

has some limitations:

• The total resources are uniformly distributed among all the workers.

• Static job execution sequence (the one defined in the task list file).

This job sequence is static but job dependencies can be defined.

• Task list limited to hundreds of thousands of jobs.

• No dynamic job prioritization.

• No dynamic job creation.

• Limited fault tolerance, just job retry mechanism and logging.

• Manual assignation of solutionIds to each job

None of these limitations disqualifies Greasy for its usage for IDU but in

practice a more sophisticated and integral solution is more than desirable.

For this reason, we have developed an alternative framework which can be

seen as a Java alternative for Greasy tailored according to IDU needs.

The main difference between the two frameworks is theMaster/Slave topol-

ogy. Greasy creates statically a single master which distributes the re-

sources among a fixed number of workers. In our framework, on the other

hand, an additional control layer is added by creating dedicated masters

(called NodeCoordinators) in each computing node. Each NodeCoodinator

will be then in charge of executing the jobs by dynamically creating the

necessary workers according to the job resource request. Figure 5.10 shows

a schematic view of a NodeCoordinators based job. In fact, these NodeCo-

ordinators are currently deployed using Greasy, just configuring a single

worker per node.

Each NodeCoordinator implements an internal local queue where the jobs

are prioritized according to their configured parameters. This prioritization

is based on:
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• The individual requested resources. The jobs with higher resource

needs and thus probably the longest ones will be the first to be exe-

cuted. Running the longest jobs first in general benefits the overall

load balancing since we are avoiding that these long jobs are executed

just at the end when several nodes may already be idle.

• Job dependencies; independently of the original input sequence the

jobs having more consumers are executed first.

• Proper job sequence; basically the jobs will be sorted by its natural

ordering, by time or sky region. This behaviour will basically benefit

the progressive completeness of the output stream.

• Job status; re–queued jobs will also get the highest priority to pro-

vide as soon as possible indications about any error in the software

deployment, task configuration or any failure on the allocated re-

sources. This quick feedback is fundamental to be able to apply the

necessary corrective actions to avoid wasting resources.

The assignation of jobs to the NodeCoordinators can be:

• Static; defined at deploy time, in this case the input jobs are uni-

formly distributed among the allocated nodes. This method isolates

the NodeCoordinators not being possible the load balancing between

nodes.

• Dynamic; jobs are initially distributed as in the previous method but

the local job queue becomes public allowing the transfer of jobs from

one NodeCoordinator to another. This strategy minimises the com-

munication between the NodeCoordinator but enables the inter–node

load balancing as soon as all local queue jobs have been processed or

are already running.

The communication between NodeCoordinators is based on the establish-

ment of point–to–point channels using Java Message Service (JMS) or Java
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Figure 5.10: Diagram of the NodeCoordinator execution framework for
a given Marenostrum job, where a NodeCoordinator and local job queue
are assigned statically to each computing node. Each NodeCoordinator
is in charge of launching workers for executing its own jobs. Jobs are
initially homogeneously distributed among all the NodeCoordinators but

their queues are shared allowing job redistribution

Remote Method Invocation (RMI) Java APIs. Furthermore, an additional

service channel is also available. This service channel can be used to

check the NodeCoordinator status, change some configurations, stopping

and pausing the queue and eventually queuing more tasks. This service

channel thus removes the limitation of having static job lists but also pro-

vides on demand real time information about the node status.

Another implemented feature is the possibility of linking and unlinking

NodeCoordinators to a hot group. This feature permits the connection and

disconnection of NodeCoordinators to any group of interconnected Node-

Coordinators already running without affecting the existing instances. The

new NodeCoordinators would basically connect to all the already available

instances and the jobs from each local queue would be then available to

the new instances. These new NodeCoordinators could be launched to the

Marenostrum queue in a new queue job as a processing resource reinforce-

ment or simply to migrate all the pending IDU jobs to a new queue job

extending the runtime hard limit of 72 hours of the queue jobs.
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Although this framework is already operative, its exhaustive testing is still

pending in an official test campaign. Once this campaign is done and

the corresponding CCB approves the release it will replace the current

execution baseline which is still based on Greasy. This testing has not been

carried out yet mainly due to all the effort diverted to other operational

activities as the early execution of the IDU-XM included in Chapter 6.

Additionally to the job management, we also envisage the implementation

of the following functionalities:

• NodeCoordinator Data Exchanges: adding the capability to collect

and redistribute data between NodeCoordinators. This feature could

be useful to reduce the direct access to the global data repository (see

Section 5.2.4) from each individual job. In practice the NodeCoordi-

nator would determine and retrieve part of the input data (replicating

partially the contents of the global data repository in the local hard

disk) before launching the job. In the same way, the job would store

the final outputs in the local hard disk and the NodeCoordinator

would be in charge of storing the results in the global data reposi-

tory. These feature would be only necessary in later DRCs when the

data volume and job number could be too high to allow the direct

access from each individual job.

• NodeDataCaches and NodeDataServers: following the same goal than

the previous point, reduce the direct access to the global data repos-

itory but also aiming to exploit the high performance network con-

necting the nodes (see Appendix A).

• TaskMaster: a master process in charge of the full automatisation of

the execution of all IDU tasks. Currently the decision of starting the

execution of the next task is still a manual operator action.

• Dynamic job definition: so job partitioning of a given task is created

according to the results from previous tasks. This functionality could

be very useful for the second and last steps in the IDU-XM where
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the subsequent job partitioning depends on the produced MatchCan-

didate and MatchCandidateGroups.

• Job dependency determination according to additional consumer in-

formation of each output data product defined at task/job level

Another fundamental and mandatory feature for the IDU execution frame-

work is the automatic assignation of unique solutionIds to each job. This

is required to tag and track specific information related to the data pro-

cessing; input data, configuration used, etc. A centralized management for

the assignation of these solutionIds is again not desirable in IDU environ-

ment. To avoid this, the DPCB/IDU solutionId follows the scheme shown

in Figure 5.11 and it is currently coding the following information [Portell

et al., 2013]:

• Software identifier and version (10+11 bits), as defined in Hernandez

[2012].

• A composite execution identifier (42 bits) coding:

– The DRC identifier (5 bits, 0-31), to easily distinguish data from

the different DRC exercises.

– The task identifier (7 bits, 0-127), for coding the different task

types including arranging, processing and validation tasks.

– The execution node (12 bits, 0-4095), for the pool of ∼3000

nodes currently available in Marenostrum.

– Spare bits (3 bits, 0-7) for future extensions.

Figure 5.11: Decomposition of the unique DPCB/IDU solutionId as-
signed to each task job
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– The job sequence number (15 bits, 0-32767), indicating the job

sequence number of each executed job per node.

This solutionId codification has been fixed according to our preliminary

estimations on the job partitioning, the current task computational per-

formance and the wall clock time allocated for the execution of IDU tasks

within each DRC which ultimately is fixing the number of nodes used in

each task run.

5.2.4 Data Access Layer

Contrary to most of the DPCs, DPCB will not use databases but operate

exclusively with files. Fortunately, BSC file system is based on General

Parallel File System (GPFS) which provides a very good performance and

scalability [Schmuck and Haskin, 2002]. Additionally, each processing node

has a local hard disk up to 500 gigabytes which is used as temporary

working repository and may be used to hold data in the node for subsequent

task jobs.

The importance of efficient I/O increases with the number of concurrent

processes, and if the data is accessed repeatedly. In the case of I/O-

intensive applications as IDU, I/O can become a significant factor affecting

the overall performance of the application, and has the potential to become

a bottleneck in processing, if not implemented correctly. Furthermore, the

DPCB file system is shared with other users which introduce additionally

I/O limitations.

The input data used for IDU will reach about ∼100 Terabytes coming from

the mission raw data; this will be received from DPCE and will need to be

arranged as previously discussed in Section 5.1.1.

When building the final data repository structure we must consider some

constraints imposed by the current Marenostrum and GPFS capabilities,

namely:
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• Not exceeding more than 512 entries in each directory (either as files

or subdirectories).

• Not exceeding a folder tree with more than 256 levels.

• Using a file size much larger than the repository disk sector, which

is 512 kilobytes for the GPFS.

Fulfilling these constraints [BSC, 2015] will lead to a better performance

when accessing the data. These constrains will have to be also applied

to the output data – of the order of ∼75 Terabytes. A more detailed

information about the overall data volume for the Gaia mission – and IDU

in particular – is summarised in Appendix D.

For all these reasons, we have developed a data access layer within DpcbTools

providing all kinds of tools for accessing and storing the data. These spe-

cific tools extend the functionalities from the CU1 tool box, although some

of them have been reimplemented and new ones have been created. These

tools provide a transparent data access for all IDU developers, giving a

level of independence from the physical storage mechanism and format.

For this, it is normal to use some abstraction. Java interfaces provide an

excellent approach to provide such insulation with no overheads since they

only bind the using class and the providing class with no translation of any

kind.

The first concern for the design of this data access layer was the file for-

mat. The large data volume required an efficient storage data format,

including parallel access capabilities, data filtering and efficient indexing.

The CU1 file format standard, called GBIN, was designed as an archiv-

ing file format, to backup and transfer the data between the DPCs. This

circumstance brings in several drawbacks for the usage of GBIN format

during the processing. Consequently, we decided to adopt a more sophis-

ticated file format based on the Hierarchical Data Format (HDF) [Portell

et al., 2011]. A summary of the DPCB file format has been included in

Appendix E where preliminary performance results and comparison with

the GBIN format have been also included.
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For the data access, the main tools implemented are the data stores. These

stores handle the data in the form of Java Objects (which is generally

termed the Data Model (DM) for the system) and are in charge of:

• Loading the data from the configured repositories.

• DM conversions and the application of data qualification/retractions.

• Serving the data to the processing tasks; some of them even integrat-

ing final user functionalities as for example the attitude determina-

tion.

• Arranging and storing the output data.

The stores provide transparent access to the DPCB data repositories. Tak-

ing into account the IDU tasks descriptions provided in Chapter 4, we have

devised two main approaches for the structure of these repositories depend-

ing on the kind of data. Observational data will be distributed according

to a time criterion. On the other hand, source related data will be arranged

following a spatial criterion. The stores, then, are able to perform selective

an automatic file filtering for the data loading according to the time and

spatial job parametrisations.

In general, each individual IDU job retrieves the data from a global data

repository. However, it is envisaged that most of the jobs running in one

particular node may reuse the same input data. This often happens for

some calibrations, spacecraft configuration and attitude, etc. This data is

in general small in size and retrieving it from the global data repository

could introduce performance degradation. In these cases, adopting some

shared resource in the nodes could be advantageous to optimize the access

to this kind of data. Thus, the store interface has been defined also taking

into account this possibility.

These shared stores would act as local data caches or servers in charge of

serving this data to the jobs minimising the number of accesses made to
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the shared disk. This operation would be in any case completely trans-

parent to the job and will be managed by the IDU execution framework.

Furthermore, these cached stores could also be expanded to more than one

nodes, thus serving the data locally generated by jobs in other nodes. This

functionality is still under development but a deep feasibility study is avail-

able in Fries [2012]. This study was focused in the usage of the Message

Passing Interface (MPI) for transferring data among the NodeCoordinators

and thus be able to exploit the high performance network interconnecting

the Marenostrum nodes.

Finally, it is worth mentioning that all these tools have been implemented

with monitoring built-in features so very detailed I/O statistics are pro-

vided for the profiling of the IDU tasks. Thanks to this functionalities, the

developer or operator can easily identify any possible bottleneck or perfor-

mance degradation in any operation against the DPCB data repositories.

5.2.5 Testing Strategy

Following ECSS standards, IDU software is rigorously and periodically

tested to guarantee its quality and with the intent of finding software bugs

(errors or other defects). Designing these tests is not an easy task since the

number of possible tests for even simple software components is practically

infinite. For IDU we can distinguish two kinds of test Castañeda et al.

[2011c]:

Scientific Tests

To evaluate the overall scientific results of all integrated processing

tasks. No deep scientific test is carried on, instead we only check the

correctness and consistency of the results obtained and the absence

of processing error and exceptions. The specific scientific tests are

responsibility of the developers/contributors of each individual task

which are covered in other dedicated tests.

Computational Performance and Scalability Tests

To evaluate the overall performance of all tasks and the complete
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system. Also for profiling the system in order to find possible bottle-

necks and characterize the scaling profiles of each IDU task.

These tests contribute to a better understanding of the software and

eventually to a better integration in the execution environment.

All the test designs defined follow the DPAC system validation and test

plan [Guerra and leaders CU leaders, 2013] and the agreed performance

analysis and metrics tools from Hoar [2010].

Besides these tests, which are referred to as CU level tests, additional test

are included in DPCB documentation. These DPC level tests aim to check

the proper integration of the software at the DPC so they are focused in

the assessment of the correct execution of the tasks and their performance

in the DPC hardware [Gonzalez et al., 2015].

5.3 Profiling and Monitoring

As described in Chapter 4, IDU integrates seven different tasks. Each

task, presenting different I/O and computational requirements. A good

balancing of the task jobs is essential to exploit the DPCB resources and

to be able to meet the wall clock constraints of IDU DRC time slots. This

balancing is only feasible when we have a good knowledge of the processing

performance profile of each task in terms of CPU time, memory and I/O

load.

These performance metrics are a built-in feature of IDU framework. Each

task provide measurements for:

• Number of elements processed: sources, observations, time intervals,

etc.

• Total time elapsed for data loading, data writing and for each data

processing algorithm.

• File system timing on file access, copy and deletion.
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Figure 5.12: Task scalability profiles for IDU-SCN (top) and IDU-
APB (bottom). The N2 profile of the IDU-APB processing time as a
function of the input observations is noticeable whereas the IDU-SCN
present a linear profile as a function of the number of input sources.
Both plots include the timing for the different task stages; data loading,

pure processing, statistics and data writing

• Total CPU and I/O time accounted for each processing thread.

With all this information several diagnostics can be generated to obtain the

scalability of each task to different parameters. These diagnostics provide

very valuable information on how the tasks scale when the data inputs are

increased; linearly or exponentially as shown in Figure 5.12. These plots
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Figure 5.13: IDU-IPD processing performance for each observation
window sampling class. The time required for the processing of 2D
windows (in red) increases by a factor of 3 with respect to 1D windows
(in blue and green). Very few outliers can be identified which mainly

comes from occasional saturations of the node CPUs

are obtained by executing each task in isolation (one single process per

node) with different configurations, mainly covering larger time intervals

or sky regions.

Besides this overall task profiling, more detailed information can also be

obtained for the profiling of some specific parts of the processing. One

clear example has been included in Figure 5.13 where we have analysed

the IPD processing performance for each individual window class. These

diagnostics are very useful to detect possible bottlenecks or unexpected

performance degradation for specific parts of the processing.

Additionally to the task level metrics, the IDU and DpcbTools frameworks

provides more diagnostics as:

• Overall node CPU and memory usage (see Figures 5.14 and 5.15)

• Network and storage usage (see Figures 5.16 and 5.17)

• Job queue status (see Figure 5.18)
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Figure 5.14: CPU monitoring plot example

Figure 5.15: Memory monitoring plot example

• Job resource usage (see Figure 5.19)

The first two diagnostics are obtained directly from the Operation System

(OS) running in each node while the other two are basically obtained from

the Marenostrum job queue. All these diagnostics are published in the

DPCB Interface Server (described in Appendix A.1.3) so IDU operators

can monitor remotely the progress of the IDU task processing from a more

friendly interface.

The current operator interface (Figure 5.20) at the time of writing does

not implement yet the job management functionalities. The operator has
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Figure 5.16: Network usage monitoring plot example

Figure 5.17: Disk usage monitoring plot example

to connect to Marenostrum login nodes for interacting with the queue and

be able to launch new jobs or cancel the current ones.
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Figure 5.18: Marenostrum queue monitoring, listing all jobs in the
queue (including user and queue name) and showing the current job

status

Figure 5.19: Detailed Marenostrum job information, including re-
sources requested, job times and the status of each individual node

assigned to the job
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Figure 5.20: Schematic diagram of the user interface implemented for
IDU monitoring and management



5. IDU Operation and Implementation 162

5.4 Conclusions

This chapter is the second and closing part focused on the work done for

the design and implementation of an efficient IDU processing system.

We have described the IDU operation strategy in high detail, including

all the phases; release definition, testing and execution. This description

has also included the detailed timing with respect to the DS and DRC

definitions and dependencies with other DPAC systems. This timing has

been discussed several times within DPAC and our work has been essen-

tial to reach the current definition. The presented timing should provide

robust solutions as well as introduce fast improvements in the results of

the processing iterations.

Along this chapter, we have shown how the design has not been only driven

by the scientific requirements but also by the characteristics and restric-

tions of the execution environment and resources – Marenostrum super-

computer. The DPCB environment and the huge amount of data to pro-

cess leads us to the implementation of a batch processing system, where a

lot of jobs are executed on the computing resources without external com-

munication or intervention. However, the implementation of this batch

processing system is not so straightforward and trivial. Jobs needs to be

prepared and equalised properly and the resulting jobs must be distributed

and executed among the supercomputer processing nodes efficiently. We

have been working closely with BSC team and performing a huge amount

of tests in Marenostrum to be able to understand and characterise the full

potential and limitations of the DPCB environment. This knowledge has

helped us a lot to design an efficient IDU but also has helped to improve

and add new functionalities to some of the BSC services and applications.

As a result of this huge effort, we have designed and developed a process-

ing framework which should be capable of withstanding the high processing

demand of future IDU tasks.

For any batch processing, knowing in very high detail the processing re-

quirements and the performance profiles of the tasks is fundamental. This
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information has been collected initially from the IDU contributors but also

from the exhaustive tests carried out and the tools developed during this

thesis. These tools have not only provided the task performance profiles

but also have helped in the detection and fix of several tasks issues. Ad-

ditionally, we have implemented tools for the equalisation of the data and

the jobs; for its storing and processing respectively. This equalisation is

what allows us to define the best job flow and job distribution to take full

advantage of the Marenostrum computational resources.

For IDU, an efficient data access is also essential. We have worked on a

tailored file format based on HDF5 and also in the development on an

integral data access layer to provide all the necessary functionalities to the

final IDU tasks regardless the physical storage mechanism and file format.

This data access layer has been implemented to be portable and usable in

other environments so the developers are not forced to use DPCB resources

for their activities.

On the other hand, we have also discussed why the advanced features of the

Java language have been employed to ease the development of the software,

making this system work well and remain very portable. Additionally, the

DPAC guidelines have contributed positively to the achievement of a well

documented and easy to maintain IDU software.

Although, further work for the coming years has been already identified,

the implemented system is already capable of satisfying the performance

demands for the execution of IDU in the first DRCs.





6 IDU Early Execution

The first execution of an IDU task was initially scheduled after the first

two DSs, DS-00 and DS-01 (Mercier and Hoar [2013] and Castañeda et al.

[2013]). These two DSs would include all the accumulated data since the

start of nominal/routine operation of Gaia on 25th of July 2014 until ap-

proximately end of September 2015. Unfortunately, the daily pipeline at

DPCE accumulated some inconsistencies and produced poor cross match

results during this period, namely:

• Double detections on board. Identified end commissioning in June

2014 as already mentioned in Section 4.2. These detections caused

the duplication of some catalogue sources during the first four months

of the DS-00. The proper treatment of these cases was implemented

and activated in IDT around November 2014.

• Diffraction spikes of bright stars causing spurious on-board detections

(see also Section 4.2). Identified in August 2014 and mitigated at IDT

level from November 2014 onwards.

• Occasional excursions/spikes of the refined attitude.

• Inconsistencies introduced due to the clean ups performed over the

IDT new source table used in the DPCE pipeline. These clean ups

where requested by FL because some of its diagnostics were not

able to handle properly the large ambiguity present in the IDT cross

match results.
165
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• Unmatched sky areas of mostly triangular shapes caused by an issue

in IDT software when accessing the catalogue sources. Fixed in IDT

release end of September 2014.

The reprocessing of non–raw IDT products is not a nominal DPAC activ-

ity but the need of a consistent cross match data and a clean catalogue

was considered essential for all downstream systems, mainly to assure a

consistent input data for the AGIS and PhotPipe systems. Therefore, this

activity was discussed and was finally approved in the DPACE #28 meet-

ing on 28th of October 2014 and assigned to DPCE. It should have been

completed during November 2014.

This reprocessing activity at DPCE however was highly delayed, as of end

of March 2015:

• DPCE Hardware/Software performance issues during last two months

increased the data backlog and thus the processing load of the daily

pipeline.

• Increase of the processing load at DPCE due to the data volume

increase from the first galactic plane scan from end February and

beginning of March 2015.

• Priority clash with the upgrade activities of the software on board

Gaia in terms of manpower and hardware resources at DPCE.

At that time, the estimations indicated that the cross match reprocessing

completion at DPCE before end of the first DS (around first of July 2015)

was not feasible and estimations would point to mid August 2015. On top

of that, DPCI needed this data well before the DS end – approximately one

month before – to be able to restart the PhotPipe processing on time and

thus deliver its results according to the original schedule. This of course

added even more pressure to the already tight schedule.

In view of this situation, during the Operations Workshop #03 (Centre

National d’Études Spatiales (CNES), 25-27 of March 2015) the possibility
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to move to DPCB this reprocessing activity was discussed between DPCB

and DPCE. This discussion was then extended in a dedicated teleconfer-

ence on 30th of March 2015 with the CU3 Leader and Technical Manager,

CU3-IDU/DPCB Manager and DPCB QA Manager. After this telecon-

ference, we prepared the technical note [Castañeda et al., 2015] with the

assessment on the possibility of the execution of this reprocessing at DPCB

before the end of DS-00 using IDU . This note includes not only a detailed

execution proposal but also the impact that this activity would have for

the DPCB and IDU manpower and hardware resources. This proposal was

then presented to all the DPCs and was finally approved on 10th of April.

In this chapter, we firstly describe the main terms of the original execution

proposal and summarise how it was finally carried out. Then, we charac-

terise the input data of the DS-00 including a summary of the main issues

affecting the data. Afterwards, we present the scientific and computational

performances of the executed IDU tasks at DPCB. Finally, we summarize

the main findings and conclusions reached thanks to this first execution of

these IDU tasks over real Gaia data.

6.1 Execution Plan

IDU tasks run nominally just after a given DS is closed and DPCB has re-

ceived all its data (see Figure 5.3). The first tasks (IDU-DC, IDU-SCN and

IDU-XM) are then executed in one single run over the full data set extent

requiring a period of approximately three weeks to complete. Adopting this

execution plan would have implied that the reprocessed data would only

be available not sooner than approximately four weeks after the DS end

– after the full data was processed at DPCB and delivered first to DPCE

and then distributed to the remaining DPCs. This delay would have ru-

ined completely the operations schedule of the other processing systems

and for this reason the following alternative execution plan was proposed

as of beginning of April 2015:
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1. First bulk execution of all observations already received at DPCB

until mid March 2015, just covering the first eight months of Gaia

routine operations. This first stage would process 85% of the ex-

pected data entering the DS-00 and the processing and distribution

of the data could then be completed before end of April 2015.

2. Second execution covering all the newly accumulated observations

up to mid May 2015. The results would be obtained and distributed

downstream before end of DS-00.

3. Last execution including the remaining data up to the DS-00 end

beginning June 2015, approximately two additional weeks of data.

As it can be seen, the proposed plan was to split the processing in three

stages. In each execution stage the amount of data to be processed de-

creases considerably thus reducing also the time required to complete the

processing and to distribute the final data after the DS-00 end. Addi-

tionally, following this procedure, DPCB was able to provide progressively

most of the reprocessed data downstream before the end of the DS-00.

This situation was beneficial for the other DPCs since they could start

preparing the new data for their imminent processing activities avoiding

undesired delays on the schedule. This execution plan was presented and

discussed with all the DPCs and it was considered the best solution taking

into account the tight schedule.

For the accomplishment of this reprocessing using IDU, the following tasks

were executed at DPCB:

• Data arrangements over the received data, including the computation

of the time and spatial statistics for the job and task processing

definition. This data includes the attitude (from IDT and FL), FL

geometric calibration, catalogue sources and the raw observations.

None of the IDT new sources produced by the daily pipeline at DPCE

were used so a completely new, independent and consistent solution

would be produced.



6. IDU Early Execution 169

• IDU-DC: for the redetermination of the spurious detections to be

excluded during the Cross-Match. The execution of the IDU-SCN

was not necessary because the IDU-DC implementation at that time

was not yet capable of treating the IDU-SCN outputs.

• IDU-XM: using a similar algorithm than IDT featuring:

– Spurious detection filtering.

– Double detection handling.

– New source creation only from unmatched observations or du-

plicated matches resolution. Source merging/splitting function-

ality was still not functional at that time.

Additionally, to avoid DM interface issues downstream, IDU software was

updated to produce the same DM interfaces than IDT. As a result, the

other DPCs would not need to do any change on their systems – still

seeing the data as being generated by the daily DPCE pipeline. This was

also fundamental to keep the DRC tight schedule. These data however was

tagged with a specific solutionId so its origin could be clearly identified.

The only caveat was that since no photometric data is available at DPCB,

the new sources created in this reprocessing could not have any colour

information.

It is worth pointing out that while the reprocessing at DPCB was done,

IDT continued producing data which would eventually clash with the new

reprocessed data. For this reason, the devised plan also included the pro-

gressive retraction of the old data results together with the delivery of the

new DPCB reprocessed data.

At the end this progressive delivery of the results was not done and the

DPCs received first the information for the full retraction of the previous

IDT results and afterwards the new data reprocessed at DPCB. This de-

viation of the original plan was possible because the initial constraint for

providing the reprocessed data before the DS end was dropped – basically

PhotPipe run finally was deferred to the next DS – relaxing in this way

the requirements on the processing activities at DPCB.
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To accomplish the final goal of cleaning up the inconsistencies in IDT

products, an additional corrective operation on the DPCE pipeline was

necessary. Basically, before restarting the daily pipeline for DS-01, the

working source catalogue in IDT was updated using the new sources re-

generated at DPCB. This operation implied then the removal of ∼ 2.5

billion new sources created by IDT during the DS-00 followed by the in-

gestion of the new sources from DPCB, almost 2 billion sources as reported

in Section 6.3.5. With this last corrective operation, IDT could be started

again avoiding further inconsistencies in the new cross match data.

This execution plan for the reprocessing was clearly very tight and de-

manding for DPCB and IDU teams at the Universitat de Barcelona (UB)

and the following consequences were stated and accepted by DPACE:

• All the activities would be executed on best-effort basis and that

minor deviations on input data and algorithm configurations were

envisaged depending of the results obtained during the reprocessing

activities.

• DPCB would be entering operations four months in advance with

respect to what was indicated in its Operations Plan [Castañeda

et al., 2013].

• The rest of DPCB and IDU preparatory activities for operations

would be delayed by at least one month.

• Non-negligible additional BSC resources would be required and ac-

counted for.

The reprocessing at DPCB was completed beginning of June 2015. How-

ever, after the completion of this first operational activity, we processed

again the full DS-00 following the nominal procedure – running the IDU

tasks in a single run.

This additional reprocessing was done to get a more reliable reference so-

lution removing any unnecessary effects introduced by the data split. The
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data split might affect the final quality and consistency of the results mainly

because we are solving some cases without all the available observations.

The data split and consequently data incompleteness may:

• leave some spurious detections undetected leading to the creation of

unnecessary new sources.

• fail in creating new sources for actual resolved objects having separate

observations but treated in different processing stages.

In addition, few issues were detected in the IDU software during the ex-

ecution. These issues were progressively fixed including also some minor

improvements in the model parameters of the IDU-DC. As a result of these

updates some minor deviations are observable on the results of each pro-

cessing stage.

With this second run, we have consequently removed all these undesired

effects providing an improved solution more appropriate for analysis in this

thesis. Hence, we have preferred to present the scientific and computational

performances of the second run of the tasks at DPCB because it provides

a better and more compact overview of the obtained results. However, we

have also included the most relevant details of the original results obtained

in the first execution for each category in a separate section.

6.2 Data Segment 00

The DS-00 covers the first ten months of data after the commissioning

phase when Gaia started routine operations. The DSs are measured in

OBMT coordinates which basically are derived from the actual reading in

units of 50 nanoseconds of the master clock controlling all Gaia operations

[García-Berro et al., 2006]. More specifically the time range of the DS-00

is:

• OBMTRange: 23 292 998 211 919 880 to 44 001 099 999 999 999 [nanosec]
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• OBMT Length: 6285.48 [hour] = 305.40 [day] = 10.18 [month]

Table 6.1 shows a short summary of the relevant incoming data volume

and counts of this first data segment. The volume of data to be processed

was approximately 7 Terabytes mainly coming from the 22 billion observa-

tions received. Figure 6.1 and Figure 6.2 show the observation time density

with respect to the OBMT time – the density of the confirmed detected

objects and the successfully received observations on ground respectively.

In these figures it can be identified the increase of observations when scan-

ning the galactic plane. During these periods Gaia is acquiring more than

600 thousand observations per minute, which approximately translates to

an observation density of ∼ 400 thousand observations per square degree

taking into account the focal plane AC size (∼0.7 degrees) and the scan

rate (of 60 arc second per second). Figure 6.3 on the other hand shows

the magnitude distribution of the objects detected by Gaia. In this figure

a bulge around 12th magnitude and a peak at 13th magnitude are evident.

This behaviour probably comes from the detections of saturated sources

and the on board detection algorithm limitations. Also the detections of

bright cosmic rays might be contributing to this behaviour.

Data type Record count Disk Size
IGSL Sources 1 222 598 530 122.00 GBytes
Object Logs (ASD7) 24 681 840 626 239.50 GBytes
Observations (SP1) 22 097 513 352 6,489.34 GBytes
IDT Attitude 15 014 0.07 GBytes

Table 6.1: Incoming data summary of the Data Segment 00

While preparing the input data several issues were identified:

• A ∼3,52% of the DS-00 did not have attitude information or its

quality was too bad for its usage in the processing. The resulting

gaps are shown in Figure 6.4 for which no Cross-Match results could

be computed.

• A ∼4.8% of the attitude corresponding to the beginning of Septem-

ber 2014 was wrongly computed in the DPCE daily pipeline using
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Figure 6.1: Data Segment 00 object log density with respect the on
board time (time increasing from bottom to top and left to right). Re-
gions in white corresponds to empty time intervals (data gaps) and on
the right it can be identified the time intervals with missing data due to

the processing issues on the daily processing systems

Figure 6.2: Data Segment 00 acquired observation density. In this
plot it can be clearly identified the set of four consecutive scans (of
both FoVs) of the galactic plane done around days +215 and +270 (on

abscissa axis) from the start of the Data Segment
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Figure 6.3: Magnitude distribution in logarithmic scale of the detected
objects on board showing how the 90% of the observations are fainter
than 17th magnitude. The bin peak at 13th magnitude is caused by the
magnitude coding of saturated images while the ones at the faint end
are due to the rounding limitation of the magnitude coding on board

the nominal geometric calibration. This issue has a major impact on

the quality of the IDU-XM results since it implies attitude errors (i.e

excursions) of up to 800 milliarcseconds. These errors lead to obser-

vations being misplaced which consequently may imply the creation

of unnecessary new sources polluting the resulting catalogue.

• A ∼15% of the input observations were affected by several IDT pro-

cessing issues. Fortunately these issues did not affect any of the fields

used by IDU-XM (the reference acquisition time and the magnitude

field) and therefore this data was considered usable and was not fil-

tered out. There is a period of approximately one month of data

from December 2014 where some of these IDT issues affected the

attitude. For this period the attitude has lower quality in the AC

direction however this was also considered not a major issue for the

cross match reprocessing.

• A ∼1,12% of object logs were missing in the DS interval tail due

to configuration errors on board and DPCE pipeline data handling

issues. These gaps can be clearly identified in Figure 6.1.
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Figure 6.4: Attitude gaps for Data Segment 00 (in dark red) obtained
after filtering invalid/unusable data

All these issues in the input data could have been easily solved by means

of data reprocessing and data recovery activities at DPCE but the tight

schedule did not allow to include these additional processing dependencies.

These issues have been already scheduled at DPCE and in principle should

be all resolved for the next operational execution in October 2015.

Finally, it is worth pointing out that during the DS-00 the IDT new source

table was cleaned several times at DPCE. Consequently IDT may have cre-

ated again the same new sources when scanning again some sky regions.

This basically implies that the new sources created by IDT were inconsis-

tent at the time of the start of this activity which has prevented any kind

of scientific results comparison and/or regression checks against the IDT

data.

6.3 Scientific Performance

This section provides the overall scientific assessment over the configura-

tion, the processing steps and the data results obtained running the IDU
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tasks involved in this reprocessing activity. For the execution of these

tasks, the following scientifically relevant configuration was used:

• IDU-DC was configured to identify spurious detections from obser-

vations up to the 16th magnitude. This value was increased by one

magnitude with respect to the IDT configuration. This update was

chosen according to the results obtained in the daily pipeline which

indicated that spurious detections were also present around the ex-

tended magnitude range.

• The radius used for matching the observation to the IGSL sources

was fixed to 1.5 arcsecconds. This value was chosen according to the

IGSL errors and the results obtained in IDT; in both the attitude

and the Cross-Match.

• For the unmatched observations, a more restrictive radius was used,

of 1.0 arcsecond. This radius was reduced to be more in agreement

with the performance of the Gaia detection errors.

In next sections, we present the more relevant scientific diagnostics and

findings encountered in each one of the executed tasks; starting with the

IDU-DC and finishing with the results of the IDU-XM processing stages.

6.3.1 Detection Classifier

This section describes the scientific results obtained running the IDU-DC

task. A total amount of 3 204 227 611 spurious detections were identified,

∼ 14.50% of total amount of input observations. This percentage is similar

to the one obtained in IDT as expected since both systems used the same

core algorithm with minor improvements in the model parameters.

Figure 6.5 shows the time distribution of the identified spurious detections

whereas the Figure 6.6 shows its distribution on the sky.
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Figure 6.5: Spurious detections density with respect the on board
time identified in the Data Segment 00. The amount of spurious is
proportional to the real observation density (about 15%) as expected

Figure 6.6: Sky distribution of the spurious detections. Note that not
all the detections could be included due to missing attitude for some

periods
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Figure 6.7: Magnitude distribution of the identified spurious detec-
tions in the Data Segment 00 where ∼90% of the detections are fainter

than 19th magnitude

Figure 6.7 shows the magnitude distribution of the spurious detections.

The figure shows that the majority of detections have magnitudes fainter

than 19th magnitude as expected.

Figure 6.8 shows the distribution of the distances between the spurious

detections and the corresponding parent object position (in both AL and

AC directions) as a function of the parent magnitude. The AL distance

tends to increase for brighter parents in the following tail mainly because of

the CTI. This figure also shows a symmetric distribution for AC distance

which means the spurious are equally distributed around the parent in

the AC direction. These results are consistent with the cases described in

Bestard [2015].

As already commented, the current algorithm is under heavy development,

therefore some spurious detections are still not identified correctly. Only

further executions and testing will clarify if the obtained distribution of

spurious detections are really representing the actual response of the in-

strument. Figure 6.9 shows the comparison of a sky region before and after

cleaning the detections classified as spurious. In this figure we can see how
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Figure 6.8: Distribution of the AL and AC distance (top and bottom
panels) with respect to the brightness of the parent object magnitude.
On top, the positive distances correspond to spurious detections iden-
tified after the parent object and it covers larger distances as expected
due to the CTI effects. On the bottom panel, the AC direction, this
dependency is not present. The stepped profile is due to the current

magnitude bin parametrisation
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Figure 6.9: Example of the spurious detection performance. The left
figure represent the original input observations whereas the right figure
presents the same region after the clean up of more than 10 thousand
detections successfully classified as spurious. Unfortunately some de-
tections still remain which ultimately will pollute the final cross match

most of the spurious structures are successfully removed but unfortunately

some detections still remain nearby the brighter sources.

During the task execution, we also identified several not foreseen cases.

These new cases are being analysed and will probably imply the develop-

ment of additional models and algorithms for their proper handling within

the IDU-DC task. Below, a brief summary of these cases are presented.

Uncontrolled Spurious Detections

Figures 6.10, 6.11 and 6.12 show some examples of cases where the current

implementation fails to identify the spurious detections for regular objects.

These failures mainly come from:

• The simplistic model being used described in Section 4.2. This model

is clearly not appropriate for the treatment of the spurious detections

coming from very bright objects as well as for the fainter ones.
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Figure 6.10: Remaining detections around Hipparcos source HIP37243
with magnitude ∼ 5.6. The source is plotted in green whereas the de-
tections are plotted in filled blue dots if they have at least one source
candidate or empty dots otherwise. The dot size is for both cases propor-
tional to the brightness of the object. Unmatched observations nearby
the source (∼ 2 arcseconds) with similar brightness can be identified

Figure 6.11: Remaining spurious detections from two scans of Sirius.
In the blue scan the source fell in between two CCD rows

• The need of the parent observation in the algorithm inputs for the

triggering of the clean up process. Requirement which will be fulfilled

in the next executions at DPCB by means of the IDU-SCN outputs.
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Figure 6.12: Remaining spurious detections from the 41 scans (colored
in gradient) of Arcturus done during the DS-00. The larger spike has an
angular length of more than 25 arcminutes with respect to the source
location. In the plot more than 110 thousand spurious detections are

shown with an average magnitude of 19.7 ±1.16

SSO Spurious Detections

Other undesired spurious detection sources, not treated by the executed

DetectionClassifier algorithm, are the SSOs transits. The major planets

create a huge number of spurious detections following completely different

profiles than the regular objects as shown in Figure 6.13 corresponding to a

single Jupiter transit in end April 2015. Besides, these spurious detections

are not created at fixed sky positions but depend on the position of the

SSO at the scan time thus polluting different sky regions each time as

shown in Figure 6.14. An overwhelming situation appears for some Venus

transits (see Figure 4.8) where the full focal plane and both FoVs are highly

contaminated by spurious detections.

Extended Objects

A lot of extended objects have been identified during this reprocessing

activity, including:

• Galaxies, as the ones shown in Figures 6.15, 6.16 and 6.17
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Figure 6.13: Spurious detections around a Jupiter transit. The plot
corresponds to a single scan of the planet and includes more than 7
thousand observations. Also the spurious detections around four of its

satellites can be identified

• Planetary Nebulas, as in Figures 6.18, 6.19, 6.20 and 6.21

For both cases, Gaia is producing spurious detections over the brightness

filamentary structures of the ionized gas. It must be noted that each scan

of these extended objects produces a huge amount of spurious detections

which consequently lead to the creation of a considerable number of new

sources. Eventually, the detections from diffuse objects should be also

filtered out but no suitable algorithm has been yet developed although its

treatment can be easily triggered through to the IDU-SCN predictions.

Fortunately, these objects are always located in the same locations and

therefore do not pollute other sky regions as for the SSOs transit case.
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Figure 6.14: Spurious detections from several consecutive Saturn tran-
sits. The plot shows more than 22 thousand observations and how the

planet transit is polluting different sky regions

Figure 6.15: NGC 5866 (also called the Spindle Galaxy or Messier
102) characteristic because of its thin disk where almost no detections

are produced due to its dust
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Figure 6.16: Messier 77 (also known as NGC 1068) is a barred spiral
galaxy
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Figure 6.17: Messier 94 (also known as NGC 4736) spiral galaxy. The
two characteristics ring structures can be identified

Figure 6.18: NGC 6302, also called the Bug Nebula, Butterfly Nebula,
is a bipolar planetary nebula. The central star, a white dwarf, is never

observed by Gaia
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Figure 6.19: NGC 1535 planetary nebula. In this case the central star
of 12.12th magnitude can be identified

Figure 6.20: NGC 6826 planetary nebula around a bright star of 10th
magnitude. In this case some spurious detections coming from the bright

star spikes were not completely identified
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Figure 6.21: The Ring Nebula (also catalogued as Messier 57 or NGC
6720). Planetary nebula around a red giant star



6. IDU Early Execution 189

6.3.2 Cross–Match: Detection Processor

This section describes the scientific results for the first step of the IDU-

XM task, the Detection Processor. As described in Section 4.3.1, in this

step we basically compute the preliminary source candidates for each input

observation. In the first execution of this step we ended with more than

7 billion observations without any source candidate in the IGSL, Figures

6.22 and 6.23 show the time and spatial distributions of these unmatched

observations. Additionally, a ∼0.44% of the input observations could not

be processed because of the absence of suitable attitude data.

The magnitude distribution of the unmatched observations is shown in

Figure 6.24. The distribution basically follows the same profile as the

input observations previously shown in Figure 6.3). In this figure we can

also check that the ∼90% of the unmatched observation are fainter than

19th magnitude which was in principle expected due to the incompleteness

of the IGSL catalogue for the faint magnitude end. Ideally no unmatched

Figure 6.22: Time density distribution of the unmatched observations.
In the plot it can be identified the effects produced by the scanning law
and the updates on the detection magnitude limit at the beginning of

the mission
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Figure 6.23: Sky distribution of the unmatched observations. In the
plot it can be also identified the different source densities of the input
IGSL catalogue as well as the over densities produced by the scanning

law

Figure 6.24: Magnitude distribution of the unmatched observations

observations brighter than 12th magnitude should be obtained but in this

case they are probably caused by the quality of the attitude in some specific

periods and some cases could be caused by the ghost detections mentioned

already in Section 4.2.

The same figures are available for the matched observations: 6.25, 6.26 and

6.27. However, Figures 6.28, 6.29, 6.30 and 6.31 and are probably more
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Figure 6.25: Time density distribution of the matched observations
where the final attitude gaps can be clearly identified

Figure 6.26: Sky distribution of the matched observations. In the
plot, the different source densities of the input IGSL catalogue can be
identified as well as the over densities produced by the scanning law

relevant in this case.

Figure 6.28 presents the match performance in terms of AL and AC dis-

tance to the closest source candidate of each matched observation. The
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Figure 6.27: Magnitude distribution of the matched observations

plot indicates that ∼90% of the source candidates are closer than 1 arc-

second partly justifying the decision regarding the match radius adopted.

Also, the distance in the negative AL direction (increasing TDI) presents a

slightly higher spread which probably is due to the larger spikes on that di-

rection which consequently produce a larger number of spurious detections

than the other directions.

The second one, Figure 6.29, also characterizes the match performance

but this time as a function of the observation magnitude. The increasing

spread for fainter observations is probably due to the error on the IGSL

positions for the faint sources. The bulge starting at 16th magnitude is not

yet completely understood although it could be related to the magnitude

cut applied in the Detection Classifier parameters.

Finally, the last two figures present the distribution of the number of source

candidates per observation. Figure 6.30 presents the overall distribution

of the source candidate counts whereas Figure 6.31 presents the distribu-

tion as a function of the magnitude of the observation. In this plot each

magnitude bin is normalized individually and indicates that ∼90% of the

observations have only one candidate regardless of the magnitude.
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Figure 6.28: Match performance in terms of AL and AC distance
of the closest source candidate of each matched observation. The plot
includes the contours for the 99, 90, 60, 30 and 10 percentiles, this last

one corresponding to the smaller region

Figure 6.29: Number of source candidates as a function of the mag-
nitude and distance to the matched observation. The ∼90% of the
observations have less than two candidates within a match radius of 1.5

arcseconds
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Figure 6.30: Distribution of the number of source candidates per ob-
servation. The ∼41% of the observations do not have any match in the

IGSL catalogue and only a ∼5.5% have more than one candidate

Figure 6.31: Distribution of the number of source candidates as a
function of the magnitude of the observation. In this plot each mag-
nitude bin is normalized individually and indicates that ∼90% of the

observations have only one candidate regardless of the magnitude
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Figure 6.32 shows the sky distribution of the IGSL sources that have been

matched to at least one Gaia observations whereas Figure 6.35 shows the

distribution of the number of matched observations for each individual

source. About 11 billion of the 18 billion input observations (∼ 60%) have

been matched to the IGSL. The percentage of matched IGSL sources is

∼ 80.5% and the underlying causes for the unmatched sources could be

among others:

• The quality of the IGSL itself which might contain due to the quality

of the original catalogues:

- sources incorrectly placed

- duplicated entries mainly due to the overlap of the Schmidt

plates for the PPMXL and GSC2.3 catalogues

- dubious proper motions (as shown in Figure 6.34)

- etc.

• The reported attitude issues (bad quality, excursions, spacecraft de-

contamination, etc.) and poor geometric calibration might cause

observations to be misplaced. Figure 6.36 shows an example of the

observation misplacement for the extended object NGC7009. In this

unusual case, we can see an offset on the location of the observa-

tions of one of the scans of ∼ 30 arcseconds which was caused by a

decontamination activity performed in September 2014.

• IGSL sources brighter than 5th magnitude may not be detected by

Gaia.

• Gaia may resolve in separated observations some blended IGSL sources.

These resolved observations could present a significant offset with

respect the mean position defined in the corresponding IGSL entry

being this one left unmatched.

After this first execution, the unmatched observations are processed to

create intermediate new sources (see Section 4.3.1). With these tempo-

rary new sources, the source candidates for each input observation are
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Figure 6.32: Sky distribution of the 9 855 395 276 matched IGSL
sources

Figure 6.33: Sky distribution of 237 311 422 unmatched IGSL sources.
The unmatched sources are concentrated in the galactic plane, the Mag-
ellanic clouds and in the overlap of the Schmidt plates for the PPMXL

and GSC2.3 input catalogues
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Figure 6.34: Distribution of the absolute proper motion of the IGSL
sources. We can see that ∼ 24% of the sources have zero proper motion

Figure 6.35: Distribution of the number of observations matched to
an IGSL source



6. IDU Early Execution 198

Figure 6.36: Example of the observation misplacement for one scan
of NGC7009 during the decontamination activity in September 2014
where the attitude was not properly determined. The blue scan, with
522 observations, present an offset of 30 arcsecond with respect to the
other 8 scans of the same extend object. Each one of these misplaced
observations produces a new spurious source in the final catalogue

determined again. In the new results, all observations have at least one

source candidate, not leaving any unmatched observation. The statistics

of this second run are not scientifically relevant because these temporary

new sources will be removed in the Sky Partitioner run and ultimately will

be superseded in the final resolving step.

6.3.3 Cross–Match: Sky Partitioner

This section includes the main diagnostics and findings over the groups

of MatchCandidates created by the Sky Partitioner processing. From this

processing a total amount of 2 018 275 715 MatchCandidateGroups were

identified. Figure 6.37 shows the sky distribution of these obtained groups

which still present the characteristic distribution of the input observations

– where the Gaia scans are still visible. Ideally, this distribution should
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be more similar to the distribution of the sources without any trace of the

Gaia scans which should be completely blended by the grouping of the

observations. In this case, some scans are still visible probably due to the

remaining spurious detections, detection limit configuration on board and

the fact that some regions have been observed more times than the others.

Figure 6.38 and Figure 6.39 provide the distribution of the number of

observations and sources in the generated MatchCandidateGroups. From

these figures we can see how the majority of the groups have been created

from isolated single sources with very few observations in average. This fact

is even more evident in Figure 6.40 where both parameters are represented

in a single 2D plot.

Although these are relevant statistics to describe the generated Match-

CandidateGroups, they might be biased due to the large amount of groups

created from the spurious detections.

It is also interesting to analyse the MatchCandidateGroup composition re-

garding the number of unmatched and matched observations to the input

IGSL. Figure 6.41 and Figure 6.42 show the distribution of these two sets

whereas Figure 6.43 presents their ratio. In this last figure we can see

how ∼ 50% of the groups have been created from observations without

Figure 6.37: Sky distribution of the 2 018 275 517 MatchCandidate-
Groups



6. IDU Early Execution 200

Figure 6.38: Number of observations per MatchCandidateGroup indi-
cating that 90% of the groups have less than 12 observations, and 50%

less than 3

Figure 6.39: Number of sources per MatchCandidateGroup indicating
that 50% of the groups does not have any IGSL source included and

that 90% only have one single source
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Figure 6.40: 2D map providing the MatchCandidateGroups distribu-
tion according to the number of observations and sources grouped

Figure 6.41: Distribution of the number of unmatched observations
per MatchCandidateGroup

any match to an IGSL source whereas only ∼ 10% have been created com-

pletely from matched observations.

Figure 6.44 shows theMatchCandidateGroups distribution according to the

number of scans of the grouped observations. This is specially significant

as it shows how many times a group has been observed. This provides a

hint on the number of observations per source expected. For DS-00, 90%

of groups have been scanned less than nine times.
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Figure 6.42: Distribution of the number of matched observations per
MatchCandidateGroup

Figure 6.43: Distribution of the ratio of the matched and unmatched
observations per MatchCandidateGroup. In this plot we can see how
∼ 50% of the groups have been created from observations without any
match to an IGSL source whereas a ∼ 10% have been created only from

matched observations
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Figure 6.44: MatchCandidateGroups distribution according to the
number of scans of the grouped observations

Finally, we have also analysed the dispersion of the observations within

the created MatchCandidateGroup. Figure 6.45 shows the distribution of

the distance from the observations to the MatchCandidateGroup center.

From the plot we can see that the 90% of the observations are very close

to their respective group center thus indicating that most of the groups

are quite small and concentrated in an area with a radius smaller than 800

milliarcseconds. In fact more than 50% of the observations are closer than

100 milliarsecond which probably means that groups have been created

from a single source (which is again consistent with the previous plots

commented).

It is worth pointing out that this processing step is not only helpful for

grouping and isolating the detections for their later resolution but it can

also be used to identify and reveal complex structures of detections. One

example is the extended objects discussed previously in Section 6.3.1. In

practice, we could play with the match radius configuration in the Detec-

tion Processor step to be able to reveal in the Sky Partitioner processing

structures at quite different scales and sizes.

Finally, after analysing the results it is worth noting the following:
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Figure 6.45: Distribution of the distance between the MatchCandi-
dateGroup center and the grouped observations

• Identified groups are affected by the remaining spurious detections re-

sulting in unexpected groups covering large and elongated sky regions

and with a high amount of inter–linked observations and sources.

• The match radius used in the Detection Processor step must be cho-

sen carefully to avoid creating too big groups or on the contrary

separate groups of observations that should be resolved together.

Consequently, this match radius should be calibrated probably as a

function of the errors of the source catalogue parameters.

• The SkyPartitioner task can identify not only isolated groups of ob-

servations but also the observations in high surface brightness fila-

mentary structures as the ones corresponding to the extended ob-

jects.

6.3.4 Cross–Match: Match Resolver

This section includes all the diagnostics over the final products resulting

of the resolution of the MatchCandidateGroups.

The final step of the IDU-XM produced a total amount of 1 995 652 409 new

sources. This number basically duplicates the initial input source count
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of the IGSL catalogue. Figure 6.46 shows the sky distribution of the new

sources. The new sources are concentrated in the galactic plane but we can

clearly distinguish also the effects of the scanning law probably accentuated

by the remaining spurious detections. Additionally some bands present a

higher density that might also be caused, in part, by the original IGSL

catalogue incompleteness – issue to be studied further.

Figure 6.47 shows the distribution of the magnitude of the new sources.

This figure is again demonstrating that most of the new sources are very

faint (above 20.3). There is a peak at 5th magnitude that is suspected to be

the result of double detections and spurious detections around very bright

sources which have been detected by Gaia as 5th magnitude. The peak

around 13th magnitude is a reproduction of the one also seen in the input

observations (see Figure 6.3) which is then carried on through the different

processing steps until its final resolution. Therefore it is likely that this is

due to detections of cosmic rays and the on board detection limitations as

commented in previous sections and it might be perfectly normal.

Figure 6.48 shows the distribution of the number of matched observations

to the new sources where it can be seen how 50% of the new sources has

less than 2 observations. Similarly, Figure 6.49 shows the same distribution

Figure 6.46: Spatial distribution of the 1 995 652 405 new sources
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Figure 6.47: New source distribution by magnitude (same bin size
than the figures with the magnitude of the observations)

Figure 6.48: Distribution of the number of observations matched to
the new sources

this time as a function of the magnitude of the new sources. In this last

plot we have indicated the 60, 90 and 99 percentiles.

Figures 6.50 and 6.51 show the same information but this time limited

with the magnitude range limited from 18 to 21. These figures have been

included to demonstrate that half of the created new sources are very faint

(above 20.3magnitude). In the last figure, it can also be seen that ∼ 60% of

the new sources have very few observations compared to the mean number
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Figure 6.49: Distribution of the number of observations matched as a
function of the new source magnitude

Figure 6.50: New source distribution by magnitude – zoom from 18th

to 21th magnitudes

of scans and they are all concentrated in the spurious magnitude range.

Probably these new sources have been created from spurious detections

which will explain the few matched observations. Basically these new

sources are matched to other spurious detections from consecutive scan

with similar scan direction angles. This issue will require further investi-

gation from the IDT and IDU teams to understand better the situation.

Regarding the Match and AmbiguousMatch tables, Figure 6.52 shows the
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Figure 6.51: Distribution of the number of observations matched as a
function of the new source magnitude – zoom from 18th to 21th magni-

tudes

distribution of the distances of the primary source match. In this figure we

can see a peak at zero corresponding to ∼ 12% of the observations. This

peak reflects basically the features of the resolution algorithm used. This

algorithm basically creates the new sources directly using the position of

the first unmatched observation, thus having a zero distance. The step at

1 arcsecond is also related to the unmatched observations processing which

was configured to used a maximum match radius of 1 arcsecond. Finally,

the bulges at 100 and 700 milliarcseconds probably are related to the IGSL

errors and the attitude issues commented in Section 6.2 respectively.

Figure 6.53 shows the distribution of the number of ambiguous matches

for each observation. As can be seen, roughly 77% of the cases have only

one source candidate and only ∼ 5% of the observations have more than

two candidates.
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Figure 6.52: Distribution of distances to the primary matched source
with a bin size of 5 milliarcseconds

Figure 6.53: Number of source candidates per observation, also re-
ferred as ambiguous matches
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6.3.5 Summary of the Operational Execution

As anticipated, the scientific results obtained in the operational run present

exactly the same behaviour as the results just shown corresponding to the

second reprocessing. Only small differences in some counts and percentages

are appreciable, being the profiles in all diagnostics exactly the same.

Table 6.2 provides a list of the produced outputs during this exercise as

well as the comparison with the initial expected outputs. The expected

number of Match and AmbiguousMatch records shown in this table corre-

sponds to the number of observations after applying the filtering according

to the results from the IDU-DC. The missing records correspond to the

observations that could not be processed due to missing or corrupted atti-

tude as reported in the task logs. We can conclude that the data entering

the processing and produced were properly accounted for. The differences

detected correspond to data that could not be processed due to the already

noted issues at the beginning of this chapter.

MDB Table Expected Output Difference
BlackListedTransit N/A 3 241 067 614 N/A
Match 18 837 883 989 18 760 735 128 77 148 861

AmbiguousMatch 18 837 883 989 18 760 735 128 77 148 861

NewSource N/A 1 960 186 877 N/A
Track N/A 0 N/A

Table 6.2: Output data counts for the full DS-00

The first stage covered roughly 85% of the data entering the DS-00, includ-

ing the Ecliptic Pole scanning law data period acquired from 25th of July

to 27th of August 2014 and the first galactic plane scan end of February

2015. Table 6.3 and Table 6.4 present the most relevant counts for both

the input and output data involved during this stage. The total volume of

the output data produced was of 426.52 GBytes.

The second stage of the reprocessing was carried out over all the accumu-

lated observations from the end of the first stage up to the end of April

2015. This stage covers about a month of data including the second galac-

tic plane scan. The execution was initially scheduled to start by the 4th of
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Data type Record count Data Gap
IGSL Source 1 222 598 530

Attitude 11 414 2.28%
Object Log 18 033 996 583 0.86%
Observation 15 842 952 901 1.71%

Table 6.3: Summary of the main inputs involved in the first stage

Data type Record count Data Size
BlackListedTransit 2 383 736 073 17.69 GBytes
Valid Observation 13 382 127 410

Unmatched Observation 5 419 468 826

IGSL source hits 968 445 175

MatchCandidateGroup 1 946 673 321

Match 13 382 127 410 147.04 GBytes
AmbiguousMatch 13 382 127 410 209.85 GBytes
NewSource 1 747 699 573 51.94 GBytes

Table 6.4: Summary of the main outputs produced in the first stage

May but it was delayed due to inconsistencies in the input data received at

DPCB. Table 6.5 and Table 6.6 present the main counts for the input and

output data of this stage. The total volume of the output data produced

was of 152.28 GBytes.

Data type Record count Data gap
Object Log 6 316 525 432 4.37%
Observation 5 817 756 335 2.42%
Attitude 3217 2.42%
Stage 0 NewSource 1 747 699 573

Table 6.5: Summary of the main inputs involved in the second stage

Data type Record count Data Size
BlackListedTransit 780 365 735 5.84 GBytes
Valid Observation 5 037 331 604

Unmatched Observation 159 029 735

IGSL source hits 848 991 497

MatchCandidateGroup 1 441 243 602

Match 5 037 331 604 55.88 GBytes
AmbiguousMatch 5 037 331 604 84.51 GBytes
NewSource 201 147 620 6.06 GBytes

Table 6.6: Summary of the main outputs produced in the second stage

Last stage processed the remaining observations from the end of the pre-

vious stage to the end of DS-00. This stage covers about a week of data.
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Table 6.7 and Table 6.8 present the counts for the input and output data.

The total volume of the output data produced was of 10.63 GBytes.

Data type Record count Data Gap
Object Log 350 922 831 17.66%
Observation 418 242 367 0.60%
Attitude 403 0.60%
Stage 0 NewSource 1 747 699 573

Stage 1 NewSource 201 147 620

Table 6.7: Summary of the main inputs involved in the last stage

Data type Record count Data Size
BlackListedTransit 76 965 806 557.36 MBytes
Valid Observation 341 276 114

Unmatched Observation 9 274 928

IGSL source hits 55 602 934

MatchCandidateGroup 86 726 992

Match 341 276 114 3.89 GBytes
AmbiguousMatch 341 276 114 5.84 GBytes
NewSource 11 339 684 360.39 MBytes

Table 6.8: Summary of the main outputs produced in the last stage

Unfortunately, after the first trial run of the MDB Integrator, in late July

2015, it was discovered that some Match records were referring to non-

existing sourceIds. We investigated this issue and isolated the problem in

the new sourceId consolidation step (after the IDU-XM resolution). The

problem is quite complex to detail and it could happen only because of

the non-nominal splitting strategy followed for this activity – i.e. running

the IDU-XM in three different stages in the same DRC. In a nominal DRC

execution this issue would never have shown up.

A software implementation error in this consolidation process accidentally

allowed Match records from the last two stages to be wrongly updated.

As a result, the matches of these two stages referring to the new sources

created in previous stages were corrupted and this corruption led to the

following possible cases:

• Matches pointing to sourceIds that do not exist.

• Matches pointing to a wrong sourceId. This happens when a Match

pointed to a sourceId from a previous stage and after incorrectly
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applying the sourceId update in the Match the new sourceId has

clashed with a sourceId used in the new sources of the current stage.

From the analysis of all the data, we can ensure that:

• Matches to IGSL sources are not affected.

• All new sources created are valid. Consequently, there is no problem

in integrating them in the MDB Integrator run and IDT can also

safely use them.

• The Matches and AmbiguousMatches from the first stage (first 8

months of data) are not affected.

• Only a fraction of the Match and AmbiguousMatch from the second

and third stages are corrupted. This fraction is limited to theMatches

and AmbiguousMatches pointing to the new sources created during

the previous stages.

The number of Match entries affected by stage are:

• Second Stage: 2 670 530 955 out of a total of 5 037 331 604 observa-

tions (53.01%)

• Last Stage: 169 642 321 out of a total of 341 276 114 observations

(49.70%)

This issue may affect the downstream systems but the reprocessing of the

affected data was not considered a priority taking into account the following

facts:

• The affected data can be easily identified by means of the solutionId

of the new sources and the Match records.

• Most of the affected observations are from the faint magnitude end,

probably from spurious detections
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• A new IDU-XM will be performed which will supersede all the results.

This new execution is currently scheduled for October 2015, after a

very short DS covering only 3 months of new data.

6.4 Computational Performance

The early IDU execution was carried out in the nominal operational DPCB

hardware described in Appendix A. The common software used in the

Marenostrum processing nodes for this activity was the following:

• IBM J9 VM build 2.6, JRE 1.7.0 Linux amd64-64 (JIT enabled, AOT

enabled)

• Linux version 3.0.101-0.35-default (SUSE Linux)

The task jobs have been defined following the procedures described in

Section 5.1.2 and its distribution has been done using Greasy (introduced

in Section 5.1.3).

The following sections summarise the task execution plan followed for each

IDU task including the computational performance obtained. We focus not

only on the consumed CPU hours but also in all the details related to the

node usage and I/O load, searching for any kind of performance issues

during the processing. As already commented we only detail the results of

the second run of the reprocessing although specific statistics and metrics

for each one of the operational execution stages have been summarised in

Section 6.4.5.

6.4.1 Detection Classifier

For the IDU-DC execution, we split the processing of the full DS-00 extent

in time intervals of approximately one million observations. These jobs
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Figure 6.54: Job processing and I/O times for the Detection Classifier
execution

then were processed in Marenostrum using Greasy in several nodes. Ta-

ble 6.9 summarises the main execution parameters and metrics obtained

in the execution of the IDU-DC task.

Total Jobs 22 149

Resources 30 Nodes
10 Jobs/Node
1.6 CPUs/Job

Total Wall Clock 1h 58m 19s
Task CPU Time 946h 32m 00s
Job Time Total 558h 48m 53s

Avg 1m 30s
Min 29s
Max 10m 18s

Output Size Data 34.2 GBytes
Logs 2.8 GBytes

Table 6.9: Performance metrics of the preliminary Obs–Src Match step

From the statistics from Figures 6.54 and 6.55, it is clear that the current

IDU-DC implementation is dominated by the data loading. The jobs are

currently loading both the object logs and the observations (including the

samples). In both figures, a bimodal distribution of the data loading time

can be appreciated, this double distribution comes from the fact that half

of the jobs have loaded data from twice the files than the rest. The input
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Figure 6.55: Job processing and I/O times for the Detection Classifier
execution with respect the input object logs

data files were partitioned using the same equalisation record limit but due

to the gaps the job intervals present small offsets with respect to the file

partitioning in some periods where the loaded data have been increased.

Furthermore, the original equalisation of the jobs regarding the input data

is somehow lost by the fact that each job is loading extra margins at both

ends of the interval which depending on the density of the scanned region

could imply big changes in the estimated amount of input data finally

loaded. Figure 6.56 shows the final distribution of the observations entering

each job including the observations loaded due to the extra margins. In

this plot, we can see how in some cases we load more than 1.5 million

observations, a factor of 1.5 with respect to the initial limit.

Finally, it must be taken into account that these are only preliminary

results and that the computational performance could be highly modified

when more sophisticated algorithms are integrated. However, the change

in the task performance should not become a major concern compared with

other IDU tasks.
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Figure 6.56: Job processing and I/O times for the Detection Classifier
execution

6.4.2 Cross–Match: Detection Processor

The first IDU-XM stage requires three processing steps:

1. Preliminary Obs–Src Match processing, with jobs split by equalised

time intervals. This step identifies the unmatched observations and

provide a first indication of the matching performance for the selected

configuration.

2. Processing of unmatched observations for the creation of temporary

new sources.

3. Final Obs–Src Match processing, where no observation is left un-

matched and thus we are ready for the next processing IDU-XM

stage.

For the first and last processing steps, we have split again the processing

of the full DS-00 extent in time intervals, this time with no more than five

hundred thousand observations per job. These jobs then have been also

processed in Marenostrum using Greasy in several nodes. The Obs–Src
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Figure 6.57: Groups obtained after the spatial equalisation of the
unmatched observations. Note that this figure shows the distribution
in the Equatorial coordinate system instead of the Galactic one just
because the data HEALPix identifier is computed using that system

Match jobs require more memory since they have to load also the source

catalogue and for this reason we could not reuse the time equalisation from

the IDU-DC task.

For the processing of unmatched observations, on the other hand, we have

defined the jobs according to the spatial density of the resulting unmatched

observations obtained in the first Obs–Src Match. Figure 6.57 shows the

resulting equalised sky regions for the unmatched observations (see Fig-

ure 6.23 for the distribution of the unmatched observations).

Tables 6.10, 6.11 and 6.12 summarise the main execution parameters and

metrics obtained in the execution of the three processing steps.

Figures 6.58 and 6.59 present the job processing and I/O times for the two

Obs–Src Match executions with respect the ratio between the loaded input

observations and sources. Comparing both figures we can clearly see the

following:

• The processing time presents a non linear dependency with respect to

the ratio of observations and sources. This behaviour is completely

expected taking into account the internal operation of the algorithm.
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Task Jobs 44 356

Resources 60 Nodes
9 Jobs/Node

1.7 CPUs/Job
Task Wall Clock 7h 21m 25s
Task CPU Time 7062h 40m 00s
Job Wall Clock Total 3919h 20m 13s

Avg 5m 19s
Min 54s
Max 32m 01s

Output Size Data 144.4 GBytes
Logs 5.6 GBytes

Table 6.10: Performance metrics of the preliminary Obs–Src Match

Task Jobs 22 800

Resources 30 Nodes
13 Jobs/Node
1.2 CPUs/Job

Task Wall Clock 9h 37m 30s
Task CPU Time 4620h 01m 00s
Job Wall Clock Total 3692h 35m 58s

Avg 9m 43s
Min 34s
Max 37m 08s

Output Size Data 147.0 GBytes
Logs 15.1 GBytes

Table 6.11: Performance metrics of the unmatched observations pro-
cessing

The Obs–Src Match basically takes each observation and computes

the distances against a subset of selected sources. This subset of

sources is obtained by extracting from the input catalogue a small

region around the observation proportional to the configured match

radius. Therefore as more sources enters the job, more time is needed

for the processing.

• In the first run we can see ratios higher than one (abscissa axis)

which basically indicates the presence of unmatched observations –

we basically have less source candidates than observations.

• The observation to source ratio is always below one after the pro-

cessing of the unmatched observations.
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Task Jobs 44 356

Resources 80 Nodes
9 Jobs/Node

1.7 CPUs/Job
Task Wall Clock 16h 24m 58s
Task CPU Time 19782h 37m 20s
Job Wall Clock Total 10874h 07m 48s

Avg 14m 45s
Min 01m 31s
Max 1h 13m 39s

Output Size Data 584.0 GBytes
Logs 20.2 GBytes

Table 6.12: Performance metrics of the final Obs–Src Match

Figure 6.58: Job processing and I/O times for the first Obs–Src Match
processing with respect the ratio between the loaded input observations

and sources

• In the secondObs–Src Match execution we see an increase of the input

data load. This increase comes from the loading of the temporary

new sources.

• The processing time, excluding the input data loading, decreases with

the observation to source ratio as expected.

From the obtained results, it seems clear that it could be worth equalising

this task not only according to the time density but also taking into account
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Figure 6.59: Job processing and I/O times for the second Obs–Src
Match processing with respect the ratio between the loaded input ob-
servations and sources. This time including the temporary new sources
created by the unmatched observations processing which limit the ab-
scissa maximum value below one, indicating that we are now loading

more sources than observations

the sky density of the region loaded. This equalisation could be tricky

having to process the observation time density and the catalogue spatial

density together. However, a very good approximation of this equalisation

could be extracted from the results of the IDU-SCN task, which will provide

directly the combined density profile.

Regarding the unmatched observations processing, Figure 6.60 shows the

time response with respect the input observations. This figure shows that

the time used for loading the data is dominating the processing but in

this case the execution is affected by the large number of files (about 200

thousand files) resulting from the first Obs–Src Match. This time could be

reduced by means of a previous file arrangement but it was not considered

necessary since this arrangement would have in any case consumed a similar

amount of time. Finally, it is also worth noting that the processing time

presents a non linear response with respect to the input observations. The

non linear behaviour was expected but the task profile has not been yet

completely assessed although it should be close to N2.
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Figure 6.60: Job processing and I/O times for the unmatched obser-
vations processing with respect the number of input observations

6.4.3 Cross–Match: Sky Partitioner

The Sky Partitioner task processes theMatchCandidates in HEALPix batches

according to their spatial density distribution. This task will rather be

performed in a single execution and in general will require two or three

iterations for its completion. Figure 6.61 shows an example of the sky

distribution of the deferred MatchCandidates produced in the first Sky

Partitioner run. These MatchCandidates could not be grouped mainly in

the first run because not all observations were contained in the HEALPix

region of the job.

Tables 6.13, 6.14 and 6.15 summarise the main execution parameters and

metrics obtained in the execution of the three Sky Partitioner runs. As it

can be seen from the numbers, this task does not demand major compu-

tational resources. The I/O is reduced thanks to the adoption of the light

MatchCandidate interface design and the processing load is also small as

no mathematical computations are done. Figures 6.62 and 6.63 show the

processing and I/O times for all the Sky Partitioner jobs with respect to

the task sequence and the number of input observations respectively. In

the second figure, it can be seen that the time increases linearly with the
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Figure 6.61: Deferred MatchCandidates in the first Sky Partitioner
run where the HEALPix boundaries can be clearly seen

number of observations as expected. Also the time devoted for reading

and writing are almost the same as expected, since this task is basically

grouping the input data without generating additional outputs.

Considering the total number of MatchCandidates processed, ∼18 billion,

and the total CPU time, we obtain an average performance of 3986 Match-

Candidates per second (0.251 ms/AO). Performance can also be com-

puted by MatchCandidateGroup taking into consideration a total amount

of 3 387 925 964 groups: 716.88 groups per second (1.395 ms/group).
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Figure 6.62: Processing and I/O times for all the Sky Partitioner jobs.
The times increase from left to right basically because the job sequence
identifier has been assigned according to the volume of input data; that

is the equalised region counts

Figure 6.63: Processing and I/O times for all the Sky Partitioner jobs
with respect to the observations input count



6. IDU Early Execution 225

Task Jobs 40 821

Resources 40 Nodes
9 Jobs/Node

1.7 CPUs/Job
Task Wall Clock 0h 59m 52s
Task CPU Time 638h 34m 40s
Job Wall Clock Total 181h 12m 47s

Avg 1m 19s
Min 6s
Max 14m 45s

Output Size Data 406.9 GBytes
Logs 5.1 GBytes

Table 6.13: Performance metrics of the first Sky Partitioner run

Task Jobs 48

Resources 1 Nodes
8 Jobs/Node
2 CPUs/Job

Task Wall Clock 27m 48s
Task CPU Time 7h 243m 42s
Job Wall Clock Total 3h 35m 07s

Avg 4m 28s
Min 1m 05s
Max 13m 02s

Output Size Data 1.0 GBytes
Logs 59 MBytes

Table 6.14: Performance metrics of the second Sky Partitioner run
performed over the deferred MatchCandidateGroups previously grouped

according to spatial distribution

6.4.4 Cross–Match: Match Resolver

The Match Resolver task is the final resolution step of the IDU-XM. It pro-

cesses independently each MatchCandidateGroup and produces the Match,

AmbiguousMatch, NewSource and Track tables. Although the current im-

plementation could be distributed by any arbitrary condition we have used

the nominal distribution based on a spatial density criterion. This spa-

tial distribution is recommendable for those algorithm implementations

that require loading again the input sources for the final resolution of the

MatchCandidateGroups.

Table 6.16 summarises the main execution parameters and metrics ob-

tained for this task.
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Task Jobs 1

Resources 1 Nodes
4 Jobs/Node
4 CPUs/Job

Task Wall Clock 17m 57s
Task CPU Time 1h 58m 48s
Job Wall Clock Total 17m 57s

Avg -
Min -
Max -

Output Size Data 120.3 MBytes
Logs 2.9 MBytes

Table 6.15: Performance metrics of the last Sky Partitioner run per-
formed over the deferred MatchCandidateGroups. This time in a single

job covering the full sky

Task Jobs 28 977

Resources 30 Nodes
9 Jobs/Node

1.7 CPUs/Job
Task Wall Clock 1h 10m 04s
Task CPU Time 560h 32m 00s
Job Wall Clock Total 292h 49m 38s

Avg 36s
Min 19s
Max 07m 49s

Output Size Data 450.0 GBytes
Logs 550.0 GBytes

Table 6.16: Performance metrics of the Match Resolver

Taking into consideration the total number of MatchCandidateGroups gen-

erated, a bit more than 2 billions, and the total CPU time required shown

in Table 6.16, we obtain an average performance of 963.66 groups per sec-

ond (1.038 ms/group).

Finally, the only remaining processing task was the execution of the New-

SourceIdConsolidator. This task is also distributed according to the spatial

density of the observations. Its time response is completely dominated by

the I/O as it is basically loading data and storing again the same data with

the minor updates in the corresponding sourceIds.
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Figure 6.64: Job processing and I/O times for the Match Resolver
task with respect the input observations processed

6.4.5 Summary of the Operational Execution

The computational performance obtained in the operational run presents

exactly the same behaviour as the results shown for the second reprocess-

ing. Only minor differences in some total numbers are appreciable, being

the profiles in all diagnostics almost the same. Furthermore, the comput-

ing resources used in each stage follow a linear distribution with respect to

the data volume entering each stage.

Table 6.17 includes the total amount of inputs processed including their

corresponding size on DPCB repository.

Data type Record count Data Size
Spacecraft Configurations 16 684 128 MBytes
Object Log 24 681 840 626 221 GBytes
Observation 22 097 513 352 6.7 TBytes
Attitude 15 034 66 MBytes
IGSL Source 1 222 598 530 122 GBytes

Table 6.17: Summary of the main inputs involved in the operational
reprocessing

The total computing hours consumed for the operational reprocessing, only

including the successful run of the final tasks is detailed in Table 6.18.
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Task CPU hours
Detection Classifier 1163

Detection Processor 31 168

Sky Partitioner 1313

Match Resolver 977

Total 34 621

Table 6.18: Total computing hours consumed for operational repro-
cessing, only including the successful run of the final tasks

The total amount of 34 621 CPU hours for the three stages is consistent

with the 33 616 CPU hours used for the second reprocessing as expected.

In both cases, however the actual CPU hours consumed approaches 100 000

hours, approximately a factor of 3. This factor accounts for the resources

used in the preprocessing and arrangement tasks as well as the testing and

validation activities performed before each processing stage to check the

correctness of the deployment and the software patch releases.

The processing started on 14th of April 2015 and finished on the 9th of

June 2015. These were the execution period for each stage:

• First Stage: started on 14th of April 2015 and finished on 11th of

May 2015. Almost one month to process the 85% of the data (more

than eight months of data).

• Second Stage: started on 31st of May 2015 and finished on the 5th

of June 2015. Therefore one week to process the accumulated data

from end March to end May, approximately two month of data in-

cluding the second galactic plane scan. The start of this stage was

delayed almost three weeks due to the output transfer backlog accu-

mulated at DPCE and the time spent to clarify and resolve several

inconsistencies detected in the received data.

• Third Stage: started on the 6th of June of 2015 and finished on the

9th of June of 2015. The DS-00 was closed on the 3rd of June and we

started two days later just waiting for the data to arrive at DPCB.

For the last stage we consumed three days for processing the last two

weeks of data.
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As it can be noted, the processing performance improved from one stage to

the next. This was expected, and we already knew that the processing of

the first stage would be more costly and tricky. We were dealing for the first

time with a very large interval of real Gaia data. Also, several issues were

affecting this data period; including IDT and DPCE processing issues, and

also some particular Gaia spacecraft operations as the decontamination

activity in September 2014.

The data results were sent to DPCE in three separate transfers at an

average rate of 255.3 Mbps. Tables 6.19, 6.20 and 6.21 summarize the

main statistics of these transfers. For more detailed information of the

data transfer system see Appendix C.

Start Time 2015-06-10 15:38:02
End Time 2015-06-10 19:41:57
Elapsed Time 4h 3m
Data Transferred 426.4 GB
Average rate 250.3 Mbps

Table 6.19: Statistics of the first stage transfer to DPCE

Start Time 2015-06-11 07:54:27
End Time 2015-06-11 09:18:38
Elapsed Time 1h 24m
Data Transferred 152.3 GB
Average rate 259.0 Mbps

Table 6.20: Statistics of the second stage transfer to DPCE

Start Time 2015-06-11 11:47:02
End Time 2015-06-11 11:52:40
Elapsed Time 5m 38s
Data Transferred 10.6 GB
Average rate 270.1 Mbps

Table 6.21: Statistics of the last stage transfer to DPCE

Regarding the data volume, we consumed a total amount of 5.9 TBytes,

more specifically:

• First Stage: up to 3.5 TBytes of intermediate data and logs for pro-

ducing a final output of 426.52 GBytes.
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• Second Stage: 1.5 TBytes of intermediate data and logs. 152.28

GBytes for the output data.

• Third Stage: 35.67 GBytes of intermediate data and logs. 10.63

GBytes for the output data.

The intermediate data corresponds mainly to all the temporary data pro-

duced by the IDU-XM; MatchCandidates, MatchCandidateGroups. Also a

20% of this intermediate data corresponds to information related to the

solutionId and the input data used of each task job. From this activity we

have learned that this intermediate data could increase very quickly and

we have already taken some corrective actions to reduce and compact all

this data.

6.5 Conclusions

We have recomputed the Cross-Match for the full DS-00 extent. This exe-

cution has been the very first DRC level run over real data of DPAC. Exe-

cuting IDU at DPCB over that amount of data for the first time has been a

challenging task. The activity has been completed, with minor deviations,

following the envisaged schedule and fulfilling the resource estimations.

No major/critical issues have been identified during the execution of the

software nor in the obtained results.

The successfully accomplishment of this early execution of the IDU tasks

are one of the main achievements resulting of all the work done within this

thesis. In addition, it must be remarked that in the second execution we

have been able to process the full DS-00 extent in less than two weeks –

excluding the data arrangements and without the dependency on the data

availability from DPCE suffered in the first run. This achievement is very

important since we have demonstrated that our system, IDU, is already

capable of handling the processing of the real Gaia data. This has been

possible thanks to all our work in the execution framework, data analysis

and equalisation of the jobs described in this thesis in Chapter 5.
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Below, a brief analysis of each task is presented.

DetectionClassifier

The DetectionClassifier task has behaved as expected. The classification

has improved compared to the previous results provided by IDT as a newer

version of the algorithm has been used. Even between each stage, there

have been some additional improvements on the algorithm and configura-

tion changes driven by the results of the previous stages.

Even though the DetectionClassifier task has removed more spurious than

previously done in the IDT daily processing still a significant number are

left undetected and have entered the IDU-XM. This can be seen in the

results presented in Figures 6.10, 6.11 and 6.12. Additionally Figures 6.13

and 6.14 show the spurious detections from SSOs transits which were not

anticipated and no mitigation was implemented yet. The causes for the

remaining spurious detections are known and the algorithm is still under

development to improve the spurious identification efficiency.

The analysis of the IDU-XM results has allowed the identification of new

types of spurious detections previously unknown or not yet seen. These

include spurious detections caused by SSOs, spurious detections on the

other FoV for very bright objects and several other causes.

The task did not show any performance issue. Job equalization has allowed

the task to run in very short wall clock times. CPU consumption per

detection is also within acceptable ranges. Section 6.4.1 provides a detailed

analysis and further information.

Detection Processor

This task has been executed as expected. It has required a significant

amount of operator time for the executions. This is because it is the first

task in the sequence that has to deal with all the issues of the input data

for the first time, mainly related to the attitude.

The process of dealing with the features in the data (gaps, different attitude

quality, processing inconsistencies upstream, satellite activities, etc.) has
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been slow. Mainly because these events are not yet consistently reported in

a centralized way. Also, there is currently no way to input this information

to the processing software. Once tasks were adjusted to the input data

problems and features (filtering and discarding some ranges) the jobs run

correctly.

The task has produced consistent results, as reported in Section 6.3.2.

This task has also been affected by the presence of spurious detections. In

particular, Figure 6.28 shows that the match distances are affected by tails

and diagonal detection lines produced by the remaining spurious.

Further analysis is being performed to understand the IGSL match ratio

and distribution reported and presented in Figure 6.32.

The task has no performance problems. Job equalization has allowed the

task to be distributed without difficulties in the computing nodes. How-

ever, this is the task that has required far more CPU hours than the rest

of the tasks combined. In part, this is due to the fact that it is loading

all the observations (including the samples) and the catalogue sources. In

subsequent tasks only a minimum set of fields are kept, therefore reducing

the access time and memory footprint

CPU hours consumption per observation is within the expected ranges.

Section 6.4.2 provides a detailed analysis and further information.

SkyPartitioner

The SkyPartitioner task has run without any deviation and its execution

has been easy as all the problems with the input data have been absorbed

in the previous task.

A detailed study of the MatchCandidateGroup created by the task has

been performed. This included distributions by number of observations

and sources as well as the sky distribution. After the execution of the

task several off line tasks were executed to extract singular cases from all

the data. This has allowed the detection and analysis of the Gaia detec-

tion response for extended objects and Hipparcos bright sources. Also, it



6. IDU Early Execution 233

has been useful to identify new spurious detection configurations. Some

examples are shown in Section 6.3.3.

The task has no computational performance bottlenecks. Jobs are equal-

ized by HEALPix batches according to the sky density and incomplete

groups (close to region boundaries) have been resolved in subsequent jobs

at higher HEALPix levels as envisaged. Therefore, several runs of the task

are usually required to complete all the isolated groups. This equalization

has allowed the task to be distributed without difficulties in the computing

nodes.

CPU hours consumption is within the expected ranges. Section 6.3.3 pro-

vides a detailed analysis and further information.

Match Resolver

The Match Resolver task is the final resolution stage of the IDU-XM. This

task provides the final resolution of the MatchCandidateGroups creating

the Match, AmbiguousMatch, NewSource and Track tables. As noted in

Castañeda et al. [2015], in this particular case no merge or split opera-

tions can be performed by the algorithm. Therefore, no Track table was

generated.

The algorithm used for this stage is comparable to the one used in IDT.

Section 6.3.4 provides an analysis of the task results. In summary, the reso-

lution is highly affected by the remaining spurious detections that dominate

the creation of new sources. From the investigations carried out it is clear

that roughly 70% of the new sources have been created from observations

fainter than 20th magnitude with less than seven observations. The small

number of observations is relevant as it is below the 90 percentile of the

number of scans in each MatchCandidateGroup (nine scans as shown in

Figure 6.44). This fact could be an indication that these sources could

have been created from spurious detections not properly identified.

The large number of spurious sources created may have strong implications

for the final catalogue. Mainly, the created catalogue could be polluted
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with a high number of sources coming from spurious detections and un-

fortunately these sources would remain in the catalogue forever according

to the baseline defined in Bastian [2013]. This baseline specifies that no

sources are deleted from the catalogue but just left with zero matches. It

is clear that this baseline did not anticipate the large number of this kind

of sources and from our point of view the baseline should be updated to

allow their deletion in IDU.

In terms of performance the task has required very few resources. Jobs

are equalized by batches of MatchCandidateGroups which can be resolved

independently one from another. This equalization has allowed the task

to be distributed without difficulties in the computing nodes. As the used

algorithm does not require the input catalogue again, the I/O load is small

and the resolution is quick. Memory requirements are also low as no sources

have to be loaded. Therefore, the task has consumed less resources than

what is expected for a nominal IDU-XM resolution stage. Section 6.4.4

provides a detailed analysis and further information.

6.5.1 Recommendations

The aim of this activity was to consolidate and improve the IDT Cross-

Match results for DS-00. The activity has indeed provided an improved

Cross-Match solution despite the issue described in Section 6.3.5. However,

the amount of new sources created due to spurious detections is still a

problem. For this reason, the IDT, IDU and DPCB teams proposed the

adoption of the following mitigation actions in June 2015:

1. Filter the faintest new sources in the forthcoming MDB Integrator

run.

Specifically, new sources with magnitude fainter than 20th magnitude

having less than seven observations linked. This is about 70% of the

newly created sources.

2. For the next IDU-XM and MDB Integrator run after DS-01, do one

of the following:
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- Remove all new sources no longer matched, mainly due to better

spurious detection filtering.

- Start again with only the sources from the original IGSL cata-

logue, discarding again all the new sources created so far.

Additionally, the following actions are proposed to reduce the catalogue

pollution in the daily pipeline:

• Update IDT to avoid creation of new sources for unmatched obser-

vations fainter than 20.3 (about 50%)

• Include all the resulting unmatched observations as BlackListed tran-

sits (flagged accordingly). These observations will be reintegrated if

considered appropriate by IDU.

These recommendations were forwarded to DPACE for consideration one

week after the DS-00 but unfortunately none of the recommended actions

were taken into account so all the new sources have been integrated and

IDT has continued polluting the catalogue with these spurious new sources.

Hence, IDU will have to deal with a very polluted catalogue in the next

run.





7 Conclusions and
Future Work

Gaia requires a demanding data processing system on both data volume

and processing power. The treatment of the Gaia data has been designed

as an iterative process between several systems each one solving different

aspects of the data reduction system.

In this thesis we addressed the design and implementation of the Interme-

diate Data Updating (IDU) system. The IDU is the instrument calibration

and data processing system more demanding in data volume and processing

power of DPAC. Without this system, Gaia would not be able to provide

the envisaged accuracies and its presence is key to get the optimum con-

vergence of the iterative process on which all the data processing of the

spacecraft is based.

The design and implementation of an efficient IDU system is not a simple

task and a good knowledge of the Gaia mission is fundamental. The initial

chapters of this thesis have described the essential aspects of the spacecraft,

the instrument and the overall data reduction system of Gaia. These chap-

ters have shown consequently the depth of understanding acquired during

this thesis. This knowledge has been fundamental when implementing the

scientific algorithms and building an efficient IDU system. The main tasks

included in IDU were presented in Chapter 4 whereas the implementation

details were deeply discussed in Chapter 5.

237
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This design and implementation work is not only referring to the actual

design and coding of the system but also to the management and schedul-

ing of all the related development tasks, system tests and in addition the

coordination of the teams contributing to this system. Since the very

beginning of this thesis, a lot of work has been devoted to chase the con-

tinuous changes in the instrument and the processing algorithms affecting

ultimately the final design of IDU. This circumstance is clearly evident in

the contents of this work and it has led to the implementation of a modu-

lar and very flexible system. Thanks to this flexibility and modularity, the

system can be easily adapted and extended to cope with the changes on

the operational requirements. A clear example is the implementation and

integration of the IDU-DC task described in Section 4.2.

In addition, the IDU implementation presents a variety of interesting chal-

lenges; covering not only the purely scientific problems that appear in any

data reduction but also the technical issues for the processing of the huge

amount of data that Gaia is providing. The handling of this data volume

has also been one of the main topics covered in the present work. Within

DPCB, we have developed several tools to make this task easier; including

tailored data access routines, efficient data formats and an autonomous

application in charge of handling and checking the correctness of all the

input data entering to this DPC as well as for checking and transferring of

the IDU outputs to DPCE. These additional topics have been included as

appendixes to this thesis.

Finally, we have had the chance during this last year to test and demon-

strate how all the work done in the design and implementation of IDU is

more than capable of dealing with the real Gaia data processing. We have

basically executed the IDU-DC and IDU-XM over the first Data Segment

(DS) of the mission. This execution has been the very first DRC level

run over real data of DPAC. Executing IDU at DPCB over that amount

of data for the first time has been a challenging task and has addition-

ally provided valuable information for the improvement of the current IDU

implementation.
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Below, a brief summary on the foremost contributions and findings of this

thesis is presented. We also identify in each case the current work being

done and the future work envisaged.

Execution Framework

In Chapter 5 we have described in detail the design and implementation

of the IDU system which constitutes the main goal of this work. The im-

plementation of an efficient and versatile execution framework for the IDU

tasks has been one of the most challenging tasks accomplished. The IDU

design has not been only driven by the scientific requirements but also

by the characteristics and restrictions of the execution environment and

resources – Marenostrum supercomputer hosted by the Barcelona Super-

computing Center (BSC).

The framework we have developed can be run either in a common per-

sonal workstation or in hundreds of nodes of any computer clusters. For

the second case, the framework relies on a BSC tool to distribute the task

jobs in the computer nodes. This tool solves in a quite simple manner the

issue of distributing the jobs but we have added additional functionalities

on top to have more control of several distribution related topics as the

job prioritization and the capability of assigning the computing resources

individually for each job in runtime. These functionalities are very useful

for being able to exploit efficiently the BSC resources. Due to the charac-

teristics of the Gaia data and the IDU processing the perfect equalisation

of the jobs is not always feasible and therefore this capability of assigning

the resources dynamically is essential.

These extended functionalities are already operational but they have not

yet been used for any operational activity. Trial runs are scheduled for end

2015 and as soon as the stability and robustness is confirmed, this extended

framework will be used for all operational activities. In that sense, this

migration is one of the foremost improvements and steps forwards for the

nearest future.
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Detection Classifier

As commented in Section 4.2, the impact of the spurious detections on

the Cross-Match is an issue recently identified. A lot of effort has been

dedicated for the development of models to properly separate the spurious

detections from the real ones. However, the results obtained so far indicate

that much work is needed to obtain a data set free from these detections.

From the results obtained in the first run of IDU-DC presented in Chap-

ter 7, new kinds of spurious have been identified e.g. the spurious detections

around bright SSOs and the detections of diffuse objects. Additionally, this

exercise has provided valuable information about the statistics of all these

kinds of spurious detections and this better knowledge of the problem has

already implied major improvements on the current model. The more re-

cent updates in IDU at the time of writing these conclusions has been the

treatment of the major planets surroundings and the tracking of the VBSs.

Only with these two additions, only possible in IDU because of the avail-

ability of the IDU-SCN results, millions of detections will be blacklisted

thus contributing to a less polluted source catalogue.

However, the combination of the detection classifications done by other

CUs and the implementation of a 2D treatment of the detections will

remain pending. This last one may introduce new dependencies on the

IDU-DC task namely the attitude, having to compute the sky coordinates

of all the detections although we are also studying the possibility of doing

this analysis as an intermediate processing step before the resolution of the

Cross-Match where the sky coordinates are already available.

LSF/PSF integration

The LSF/PSF calibration is one of the more complex processes included

within IDU. This task together with the Image Parameters Determination

(IDU-IPD) task and with their successive iterations with AGIS and Phot-

Pipe is what will make it possible to achieve the high astrometric accuracies

envisaged for the final Gaia catalogue.
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The calibration of the instrument LSF/PSF response has been since the

beginning one of the more challenging issues of the Gaia processing sys-

tem. This calibration has to deal not only with the variation with time

of the optical properties of the mirrors but also with the image distortion

introduced by the detectors. The correction of these electronic distortions,

dominated by the CTI, has not been yet completely addressed. It is en-

visaged that more sophisticated models will be introduced in IDU in the

coming years when this distortion will progressively increase and degrade

the overall astrometric results. All these facts are evident in Section 4.6

where we have summarised the development history of the IDU-LSF/PSF

task. At the time of writing, the latest Empirical LSF/PSF (ELSF) im-

plementation was integrated in IDU and the corresponding scientific and

performance tests were started.

IDU-AGIS Loop

To assure the readiness of all the systems involved in the cyclic data pro-

cessing, DPAC has defined and exercised several testing campaigns during

the last years. These tests have been exercised over simulated datasets and

currently over the real data from the spacecraft. We can distinguish two

kinds of tests:

• Global Operation Rehearsals focused on testing the interfaces and

enforcing a common development road map for all systems and DPCs.

• Test campaigns of specific processing concepts and systems.

We have participated actively on the definition and execution of these test

campaigns covering the DPCB operation and the execution of the IDU

system. We have also provided support to the daily activities at DPCE,

mainly for IDT monitoring and software maintenance.

A special test campaign is the IDU-AGIS test, focused on the proof of

the astrometric iterative reduction concept by running several times both

systems and analysing the convergence and stability of the resulting astro-

metric parameters. Unfortunately, the operation of the daily systems and
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the handling and analysis of the results obtained during this first year of

mission has required more effort and manpower than expected and these

test campaign are highly delayed. We have already completed the first

test stage running IDU and shortly AGIS data should be made available.

Ideally, this test should be finished before the beginning of 2016 when the

first IDU-LSF/PSF and IDU-IPD task run is scheduled.

The successful completion of this test is currently one of the main priorities

in the IDU roadmap for 2016.

Autonomous Monitoring and Validation

The autonomous validation and monitoring of the IDU outputs is still an

ongoing task. We have developed and implemented several tools for this

specific purpose which have been essential for the analysis and understand-

ing of the Gaia data and for the improvement of the IDU task algorithms.

These tools have been described in Section 4.8 and they have been used

extensively for the presentation of most of the IDU results included in this

thesis. A quite complete set of these diagnostics have been included in

Chapter 6.

Although these tools are already integrated in all IDU tasks, a centralised

system must be implemented to provide an overall and quick view of the

system performance. We have already contributed to the implementation

of a similar system for the daily pipeline running at DPCE, specifically in

the IDT system. However for IDU we have a more ambitious goal. Con-

trary to IDT where the results can be easily monitored on a daily basis,

the high parallelism of the IDU execution requires a more sophisticated

solution to handle the large amount of results and at the same time guar-

antee the quality of the results. This system should also produce summary

reports to the operator for inspection.

The first approach will be based on the definition of several reference data

sets. These sets will be produced before the real task execution and they

will be deeply analysed by the corresponding scientists. Afterwards, these

reference sets will be compared with the operational outputs during the
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IDU execution. This comparison will then reveal any deviation on the task

execution or configuration thus assuring the proper deployment of the task.

These reference sets, in some cases will be extracted directly from previous

DRC exercises thus obtaining information regarding the evolution of the

task results. These kinds of evolution diagnostics are quite useful for the

analysis of tasks like the IDU-DC and the IDU-XMwhere better and clearer

results are expected due to the increase of the number of observations.

In addition to these static predefined references, external consistency checks

will also need to be performed as for the case of the IDU-LSF/PSF and

IDU-IPD where the residuals of the estimated locations will be compared

against the AGIS astrometric solution.

Finally, we think that the work presented has largely contributed to the

evolution and definition of the Gaia data reduction system and its oper-

ation. We are also confident that the system, we have designed and that

constitutes the bulk of this thesis, is ready to cope with the Gaia data

according to the requirements set. Furthermore, the presented design pro-

vides a solid IDU system foundation for the challenging task of processing

the Gaia data during the forthcoming years.





A DPCB Overview

Data Processing Center Barcelona (DPCB) is embedded in the Gaia DPAC

group at the Universitat de Barcelona (UB), in close cooperation with the

Barcelona Supercomputing Center (BSC) and the Consorci de Serveis Uni-

versitaris de Catalunya (CSUC), also in Barcelona, Spain. More specifi-

cally, the DPCB hardware used in operations is provided by BSC, whereas

the team at the UB carries out the management, operations, development

and tests of the software.

The main DPCB responsibilities are the execution of:

• CU1-GTS, described in Appendix C.

• CU3-IDU, covered in Chapter 4 and Chapter 5.

• CU2 Simulations: CU2-GASS and CU2-GOG.

Additionally, CU3-IDT and other related products are also developed and

tested within DPCB, mainly in CSUC resources. The complete list of

DPCB responsibilities are document in Portell et al. [2014b] and Castañeda

et al. [2013].

Focusing on the operational activities, DPCB is part of the DPAC cyclic

processing and receives data on a daily basis from DPCE (as described

in Appendix C.1) and runs the several stages of IDU (IDU-SDM, IDU-

CAL and IDU-IPD) every DRC (see Chapter 4). Depending on the inputs
245
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available, particularly at the beginning of operations, only some IDU sub-

systems might run. On later stages of the mission, repeated executions of

these subsystems may be needed during a given cycle.

Regarding the simulation activities, DPCB has generated most of the CU2

simulation datasets for development and testing of the whole DPAC prod-

ucts. CU2 simulations have been essential prior to Gaia launch to test

DPAC daily processing software and will still be used, even after launch,

to test the cyclic processing chains. Currently simulations are still being

generated for the CU9 software validation and testing. These simulations

are essential for the preparation for the first Gaia catalogue release.

A.1 Hardware Resources

The DPCB has access to computing resources at the BSC, and at CSUC,

for operational and testing activities respectively.

A.1.1 Barcelona Supercomputing Center (BSC)

BSC is a public research center located in Barcelona, Catalonia, Spain.

It is managed by a consortium composed of the Spanish Government, the

Generalitat de Catalunya and the Universitat Politècnica de Catalunya

(UPC). It hosts one of the most powerful supercomputers in Europe, called

Marenostrum.

The main resources provided by BSC are [BSC, 2015]:

Marenostrum

At the time of writing, Marenostrum offers a peak performance of 1,1

Petaflops and 100.8 Terabytes of main memory and is composed of

3056 computing nodes. Each node offers a peak performance of 332.8

Gigaflops, with 16 cores of Intel SandyBridge–EP E5–2670 processors

(2.6 Ghz), 32 GB of RAM and 500 Gigabytes (6Gbps) local disk.
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They are interconnected using a point–to–point fiber optic network

(Infiniband 10 Gigabit).

The last full upgrade took place beginning 2013. However, during

2014 and 2015, a memory upgrade was done over 256 nodes: 128

nodes to 64 GB and 128 nodes to 128 GB.

Storage

The main file system of Marenostrum, build upon GPFS, provides a

total capacity of 2 PB, offered globally to all the nodes and providing

a parallel access through a 10 Gigabit Ethernet.

Besides, a long-term storage is available, offering about 4 PB, which

will be used for long-term storage of IDU input data and also to store

the output data from each DRC.

Next full upgrade may take place around 2016-2017 but an agreement with

the Spanish Government and BSC guarantees the computing resources

for Gaia so an adequate portion of the current resources may be kept

(Figure A.1) in the unlikely scenario that BSC stops offering a general

purpose CPU architecture (i.e. migrate to Cell or GPU processors) where

no JVM implementation is available which is mandatory for running DPAC

software.

Figure A.1: BSC resources upgrade planning and service procurement
and migration strategy for DPCB operations
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Figure A.2: Overview of hardware resources at BSC

Figure A.2 provides an overview of the hardware resources available at

BSC.

Marenostrum has been largely used for the generation of CU2 simulation

and it will be running IDU for the Gaia data reduction processing.

It is important to note that this machine is not under exclusive DPAC

control, we do not have permanent dedicated resources assigned. Instead

DPAC systems running on Marenostrum share the computing resources

with other users. To access the system, users log into one of the login

nodes, from where they can submit jobs to the job management system.

The system used to manage jobs is the commercially IBM-LSF.

DPCB also owns a dedicated server integrated into the BSC for the in-

tegration of the GTS. This server is also used for the monitoring of the

operational activities. It basically collects and provides reports on the jobs

and system status. The Gaia team at the UB provides the hardware (de-

scribed in Appendix A.1.3) and is in charge of the implementation of the

necessary software to cover the previous commented functionalities.
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Figure A.3: Overview of CSUC hardware resources

A.1.2 Consorci de Serveis Universitaris de Catalunya (CSUC)

The Consorci de Serveis Universitaris de Catalunya (CSUC) provides ser-

vices to public and private universities, research centers and institutes,

libraries, and other entities which participate in R&D and innovation

projects. It is integrated by the Generalitat de Catalunya and ten Cata-

lan universities (UB, UAB, UPC, UPF, UdL, UdG, URV, UOC, URL and

UVic-UCC).

CSUC provides several hardware resources as shown in Figure A.3, being

the following ones the most relevant:

Prades

Xeon 8-core cluster with 45 nodes, each with 2 quad-core Intel Xeon

processors. 29 of the nodes have Xeon E5472 at 3 GHz and 32 GB

RAM, while the other 16 have Xeon X5550 at 2.66 GHz (identical

to those used for IDT operations at DPCE) and 48 GB RAM. The

total processing performance is 2.68 TFLOP.

Pirineus

Altix UV cluster, a shared-memory system with 1344 Intel Xeon

X7542 cores (2.66 GHz) and 6056 GB RAM, offering about 14 TFLOP.
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It is used for CU2-GOG simulations for CU9 and specific scientific

simulations related to Gaia.

Empedrat

It is a single node, but with a total of 48 cores and 64 GB RAM.

Currently this node hosts the Cache DB system for IDT tests.

Graftonita

This server is based on a Linux Virtual Machine. It offers public

HTTP/FTP services for the distribution of data generated at DPCB

(either CU2 simulations or CU3 test data) to other DPAC teams.

A.1.3 Interface Server

The current server specifications are:

• OS: SUSE 12.2 Mantis - Kernel 3.4.28 x86 64

• RAM: 16GB

• Processors: 8 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

• HDD: 4.5 TB RAID 5

• Gigabit Ethernet network card

A.2 Software

A.2.1 DpcbTools

The DpcbTools is intended to provide a common software toolbox in Java

to be used by the Gaia DPAC community for the implementation of data

processing tasks in the DPCB-BSC environment. This toolbox is being

developed to be able to exploit at the maximum level the resources of the

BSC environment and to provide a common processing infrastructure to
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Figure A.4: Decomposition of DpcbTools

the DPAC software engineering teams (Castañeda et al. [2011d] and Fries

et al. [2011]).

This toolbox implements (as shown in Figure A.4):

Data Access Layer

Set of routines providing simplified access to data stored in BSC

file systems. It also provides the tailored HDF5 file format, and

a stores interface for the implementation of data servers and data

caches. These stores exploit the Infiniband network for inter-node

connections and the Gigabit Ethernet for the communication with

remote file systems by the implementation of optimal and simplified

communication interfaces.

Infrastructure

Collection of frameworks for the handling of the computing nodes

and their tasks.

• Job/Task scheduling and management; interacting with the Marenos-

trum queue system (IBM-LSF [IBM, 2015]).

• Monitoring Tools for Job/Task/Node operation and status.

Applications

Additionally, DpcbTools implements several end-user applications:

• DPCB Data Manager (DDM), main interface between GTS and

the DPCB storage resources (see Appendix C).
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• Web based front-ends for the monitoring and management of

nodes and tasks.

• File tools for the extraction of data statistics, data filtering,

data conversions, etc.



B DPCB File Format

Contrary to most DPAC data processing centers, DPCB will not use databases

but operate exclusively with files. Furthermore, the DPCB file system is

shared with other users which additionally introduce I/O constraints and

performance limitations.

The current DPAC file standard GBIN was designed as a deployment for-

mat. The GBIN file consists basically of serialized Java classes compressed

using a ZIP algorithm. This implies that decompression is mandatory be-

fore the program is able to access any information from the file contents.

Although, the GBIN has some meta–data information and data is stored

in chunks, this full chunk has to be loaded for the proper de-serialization

of the Java classes. In other words, file contents has to be ’fully loaded’,

without regard for which part of the information is required. Additionally,

ZIP is very CPU intensive.

To tackle some of these issues, an HDF-based file format has been devel-

oped for DPCB. Hierarchical Data Format (HDF) is a set of file general

binary formats designed to store and organize large amounts of numerical

data. Originally developed at the National Center for Supercomputing Ap-

plications, it is supported by the non-profit HDF Group, whose mission is

to ensure continued development of HDF technologies, and the continued

accessibility of data stored in HDF. HDF is used for very large datasets,

fast access requirements and very complex datasets. Additionally HDF
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provides useful built-in features like chunking and several data compres-

sion solutions.

Another inherent limitation in the GBIN files not commented before is that

you require a JVM to read them. The HDF data format can be accessed

through multiple interfaces: C, Java, Python, Matlab, etc. Also, the HDF

data format is architecture independent as HDF library already handles

endianess problems and conversions transparently.

The HDF format is similar to XML documents in the sense that the HDF

files are self-describing and allow users to specify complex data relation-

ships and dependencies. However, HDF files can contain binary data and

allow direct access to parts of the file without first parsing the entire con-

tents.

B.1 HDF5 Implementation

The HDF Group already provides some HDF-Java wrappers, including a

Java browser for HDF files. The first integration of HDF5 in DpcbTools

was based on this Java library [Portell et al., 2011]. However, this imple-

mentation was insufficient because these Java wrappers do not provide all

the functionalities of the native library. The latest implementation uses

directly the native HDF5 routines through a Java Native Interface (JNI)

layer.

The most significant part of the data volume handled by IDU are in form of

raw astrometric observations. These data are almost accessed by all IDU

tasks and thus the efficient storage and access to this data is more than

desirable. For this reason, the HDF implementation was initially only

supporting this DM interface. The corresponding HDF5 data definition

follows the Java DM interface, defining the same fields but grouping them

in separated data sets – basically separating the raw window samples from

the rest of the fields. This grouping is fundamental to take full advantage
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Figure B.1: HDF5-GBIN File format performance comparison.

of the HDF5 available features; selective read of the file contents and the

application of specific compressors for each type of data.

For this specific implementation, we are getting a better compression ratio

and better I/O performance than GBIN as shown in Figure B.1 and Fig-

ure B.2. In the figures, we show the results of four different configurations

of our HDF5 format:

• Standard (STD): standard configuration.

• Primary Header (PH): where only the samples are compressed.

• Skip Samples: (SS): only reading the header fields, ignoring the ob-

servations samples.

• PH-SS: combining the previous two configurations.

For other data types a more generic HDF5 data format has been imple-

mented where the HDF implementation is simply storing the binary stream

of the Java serialisation. In this case, the only benefit may come from the

possibility of using better compression solutions.
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Figure B.2: HDF5-GBIN File format compression ratio comparison



C Gaia Transfer System

This appendix describes the GTS which is the service that permits data

exchange between the DPCs involved in the Gaia data reduction process-

ing. The data exchange plays an important role in ensuring compatibility

amongst all groups involved in the Gaia data processing. The data trans-

ferred between groups follow rigid procedures based on the MDB ICD

The GTS system is composed of Aspera and the DTSTool [Valette and

Dufourg, 2011]. Aspera is a commercial tool for fast data transfer which

has been customized and deployed to meet all GTS requirements (for more

details see Section C.2). The DTSTool (Data Transfer Subsystem Tool) is

responsible for building a simplified transfer service interface for Aspera,

common to all DPCs.

DTSTool can distinguish between 3 different transfer types or channels:

Daily Transfers

For the transfers of data produced be the daily processing system at

DPCE. This category also includes the transfer of offline calibrations

not assignable to a DRC activity and the spacecraft configuration

updates.

DRC Transfers

For the transfers of data generated by the DRC processing systems
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Figure C.1: DPCB Data Manager Input/Output Overview

Untagged Transfers

For any other type of transfers not fulfilling the previous description.

Each transfer type is in general associated to a predefined table mapping.

Only a limited number of tables can be sent through the first two categories,

being in general table representing data qualification or tables logging pro-

cessing related events. All transfers must start or end at DPCE which is

acting a the central hub for all the data transfers. This is done to assure

that all the data is tracked in the MDB central repository.

Finally, each DPC is responsibility of the implementation of any additional

software tools that may be required for a proper integration of the GTS on

their side. In case of DPCB, this tool is the DPCB Data Manager (DDM)

which is described in Section C.1

C.1 DPCB Data Manager

As introduced in Appendix A, DPCB has an Interface Server to provide

the link between DPCE and DPCB as shown in Figure C.1. The server

is physically located in the BSC premises and runs the Aspera software

and the DPCB Data Manager (DDM). The DPCB Data Manager (DDM)

[Clotet, 2015] is the system service integrating the GTS and also in charge

of handling the data at DPCB.
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DDM is included in DpcbTools and has been implemented using Python

which allows higher flexibility to quickly adapt to possible changes in the

BSC architecture. The main functionalities of the DDM are:

• to process the newly data arrived from DPCE, arrange and store it

in DPCB repositories.

• to detect the output data coming from IDU, arrange it and send it

to DPCE.

Furthermore, DDM interacts with the BSC systems to ensure data is prop-

erly backed up. The backup policy is described in Portell and Clotet [2015].

More actions might be required in future versions of the software, either

because of design changes or because of the underlying architecture upon

which the system works.

Logical environments are implemented by mean of several DDM service

instances for:

• Operations (OPS)

• Validation (NO-OPS)

• Testing (TEST)

The purpose of these environments is evident. They are configured by

means of their own configuration parameters (directory structure, pro-

cesses, data flow, bandwidth, etc.) separating the data streams and guar-

anteeing the quality of service.

The design of the DDM follows a data driven approach where several ac-

tions (within a job) are triggered when a given set of conditions over the

available data is fulfilled. These actions in general are basic file system

operations; copy, move, remove, rename, etc. although it is also possible

to execute Java based action. These Java actions are basically statistical,
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reporting or arrangement processes which can not be done using the sys-

tem built-in commands due to the impossibility to read and write the Gaia

data file format directly.

The BSC environment has two shared repositories amongst all the com-

puting nodes (GPFS Project and Scratch), and a long term storage system

(GPFS Archive). Due to BSC security policies the access to these storage

systems is strictly monitored and limited to queue jobs. The DDM has to

take these limitations into account, interacting with the job queue and still

deliver the expected functionality.

The DDM implements a monitoring utility, the so-called DDM-watch,

which is in charge of performing a specific set of checks in order to en-

sure the proper operation of the DDM in the DPCB environment.

This utility is launched through a Unix system crontab service configured

at the server and generates several reports with the result of all the checks

performed in both the IFS and the BSC. Once the checks are finished an

email is generated with a summary of the issues found, if any, and the

generated reports attached, so the DPCB operators can analyse them and

take action if needed.

C.2 Aspera

Aspera Point–to–Point is a complete file transfer application built upon

Aspera’s patented FASPTM file transfer technology. Aspera is the data

transfer tool used to transfer data between the different DPCs. The current

licence provides up to 500 Mbps secure data transfers and includes data

integrity checks.

Aspera’s file transfer protocol dramatically speeds transfers over IP net-

works by eliminating the fundamental bottlenecks in conventional tech-

nologies. FASPTM features include bandwidth control, transfer resuming

and encryption, content protection, data integrity and validation.



D Gaia Data Volume

Table D.1 table shows the MDB theoretical size at different DRCs assuming

a total of 10 DRCs in a 5 year mission. For simplicity in the first two

DRCs only CU1 and CU3 data is taken into account, in DRC 3 also CU5

data is added. All data which is consumed continuously or whose number

of estimated records is 8 × 1010 or has a field called transitId has been

assumed to grow linearly with the DRCs.

Table D.2 and Table D.3 show the DPCB theoretical data size that will be

accumulated after the last DRC exercise.

Table D.4 table shows the DPCB theoretical output data size for the last

DRC.

DRC MDB DPCB
1 80.20 TBytes 20.89 TBytes
2 143.53 TBytes 27.82 TBytes
3 217.15 TBytes 34.74 TBytes
4 703.17 TBytes 41.67 TBytes
5 872.83 TBytes 48.60 TBytes
6 1.02 PBytes 55.52 TBytes
7 1.18 PBytes 62.45 TBytes
8 1.35 PBytes 69.38 TBytes
9 1.52 PBytes 76.30 TBytes
10 1.68 PBytes 83.23 TBytes

Table D.1: MDB and DPCB theoretical accumulated data size at
different DRCs
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Table Record Size Records Total Size
CU3/IDT/Raw/AstroObservation 892 Bytes 8 x 1010 64.9 TBytes
CU3/IDT/Raw/AstroObservationVo 892 Bytes 109 830.74 GBytes
CU3/IDT/Raw/ChargeInjection 1.21 KBytes 1.1 x 108 124.12 GBytes
CU3/IDT/Raw/ObjectLogAFXP 25 Bytes 109 23.28 GBytes
CU3/IDT/Raw/PreScan 8.03 KBytes 3 x 106 22.99 GBytes
CU3/IDT/Raw/GateInfoAstro 171 Bytes 3 x 106 489.23 MBytes
CU3/IDT/Raw/AcShifts 89 Bytes 3 x 106 254.63 MBytes
CU3/IDT/Raw/AcShiftsSmearing 27 Bytes 3 x 106 77.25 MBytes
CU3/IDT/Raw/GateInfoRaw 22 Bytes 3 x 106 62.94 MBytes
CU3/IDT/Xm/NewSource 471 Bytes 109 438.65 GBytes
CU3/IDT/Xm/Match 31 Bytes 8 x 1010 2.26 TBytes
CU3/IDT/Xm/BlackListedTransits 51 Bytes 1.5 x 1010 712.46 GBytes
CU3/IDT/Interm/Oga1 601.91 MBytes 1 601.91 MBytes
CU3/FL/Oga2 601.91 MBytes 1 601.91 MBytes

Table D.2: Size of MDB extract sent to DPCB coming from the daily
processing pipeline

Table Record Size Records Total Size
CU1/Integrated/CompleteSource 15 KBytes 109 13.97 TBytes
CU3/AGIS/Oga3 198.97 MBytes 1 198.97 MBytes
CU3/AGIS/AstroCalibration 55 Bytes 1 55 Bytes

Table D.3: Size of MDB extract sent to DPCB coming from the DRC
processing

Table Record Size Records Total Size
CU3/IDU/Scene 57 Bytes 8 x 1010 4.15 TBytes
CU3/IDU/XM/WhiteListedTransits 51 Bytes 2 x 109 94.99 GBytes
CU3/IDU/XM/BlackListedTransits 51 Bytes 1.5 x 1010 712.46 GBytes
CU3/IDU/XM/NewSource 471 Bytes 109 438.65 GBytes
CU3/IDU/XM/Track 828 Bytes 109 771.14 GBytes
CU3/IDU/XM/Match 31 Bytes 8 x 1010 2.26 TBytes
CU3/IDU/XM/AmbiguousMatch 357 Bytes 8 x 1010 25.98 TBytes
CU3/IDU/BiasRecordDt 105 Bytes 5 x 106 500.68 MBytes
CU3/IDU/ApBackgroundRecordDt 90 Bytes 5 x 106 429.15 MBytes
CU3/IDU/EmpiricalLsf/OpticalCorrections 91 Bytes 2.5 x 107 2.12 GBytes
CU3/IDU/EmpiricalLsf/ElectronicCorrections 83 Bytes 2.5 x 107 1.93 GBytes
CU3/IDU/EmpiricalLsf/EmpiricalLsfLibrary 26 Bytes 5 x 105 1.24 MBytes
CU3/IDU/AstroElementary 751 Bytes 8 x 1010 54.64 TBytes
CU3/IDU/GsConfigParam 102 Bytes 100 9.96 KBytes
CU3/IDU/SolutionId/InputDataUsed 71 Bytes 2 x 109 132.25 GBytes
CU3/IDU/SolutionId/SolutionIdMetaData 73 Bytes 7 x 106 487.33 MBytes
CU3/IDU/SolutionId/SolutionIdQualification 41 Bytes 7 x 106 273.7 MBytes

Table D.4: Size of DPCB data sent to MDB



E IDU Task Templates

These are the main IDU task templates:
<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="detectionClassifierTask" class="gaia.cu3.idu.xm.infra.DetectionClassifierTask"
priority="5" ttl="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Qualification , required for Scene processing -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<!-- AstroCalibration , required for Scene processing -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstroCalibration" url="${ COMMONINPUT }/ac"/>
<!-- IDT/IDU Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.Scene" url="${ COMMONINPUT }/scn"/>
<!-- Raw data -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.ObjectLogAFXP" url="${ COMMONINPUT }/ol"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservation" url="${ COMMONINPUT }/ao"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.1: DetectionClassifier task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="scnTask" class="gaia.cu3.idu.scene.infra.SceneTask" priority="5" ttl="0">
<PROPERTIES >conf/idu.scene.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<!-- HEALPIXSET -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Qualification -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<!-- AstroCalibration -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstroCalibration" url="${ COMMONINPUT }/ac"/>
<!-- Attitude -->
<FILE dataType="gaia.cu1.mdb.cu1.basictypes.dm.BSplineFittedAttitudeData" url="${
COMMONINPUT }/att"/>

<!-- Source interfaces -->

263



Appendix E. IDU Task Templates 264

<FILE dataType="gaia.cu1.mdb.cu3.idt.xm.dm.NewSource" url="${ COMMONINPUT }/ nsrc_idt"
filePattern="healpix"/>

<FILE dataType="gaia.cu1.mdb.cu1.integrated.dm.CompleteSource" url="${ COMMONINPUT }/
src_mdb" filePattern="healpix"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.2: Scene task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="obssrcMatchTask" class="gaia.cu3.idu.xm.infra.ObsSrcMatchTask" priority="5" ttl
="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Qualification -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<!-- Attitude -->
<FILE dataType="gaia.cu1.mdb.cu1.basictypes.dm.BSplineFittedAttitudeData" url="${
COMMONINPUT }/att"/>

<!-- AstroCalibration -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstroCalibration" url="${ COMMONINPUT }/ac"/>
<!-- TransitId interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservation" url="${ COMMONINPUT }/ao"/>
<!-- DetectionClassification interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.xm.dm.BlackListedTransits" url="${ COMMONINPUT }/bl"
/>

<!-- Source interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.xm.dm.NewSource" url="${ COMMONINPUT }/ nsrc_idt"
filePattern="healpix"/>

<FILE dataType="gaia.cu1.mdb.cu1.integrated.dm.CompleteSource" url="${ COMMONINPUT }/
src_mdb" filePattern="healpix"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.3: ObsSrcMatch task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="unmatchProcessorTask" class="gaia.cu3.idu.xm.infra.UnmatchProcessorTask"
priority="5" ttl="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- HEALPIXSET -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- MatchCandidate interfaces -->
<FILE dataType="gaia.cu3.idtools.dm.MatchCandidate" url="${ TASKINPUT }/mc" filePattern="
healpix"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.4: Unmatch Processor task
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<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="skyPartitionerTask" class="gaia.cu3.idu.xm.infra.SkyPartitionerTask" priority="
5" ttl="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- HEALPIXSET -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- MatchCandidate interfaces -->
<FILE dataType="gaia.cu3.idtools.dm.MatchCandidate" url="${ COMMONINPUT }/mc" filePattern
="healpix"/>

<!-- SourceIdInfo interfaces -->
<FILE dataType="gaia.dpcb.dm.SourceIdInfo" url="${ COMMONINPUT }/si" filePattern="healpix
"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.5: Sky Partitioner task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="mcgCatResolverTask" class="gaia.cu3.idu.xm.infra.McgResolverTask" priority="5"
ttl="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- HEALPIXSET -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- Catalogue -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstrometricSource" url="${ COMMONINPUT }/src"
filePattern="healpix"/>

<!-- MatchCandidateGroup -->
<FILE dataType="gaia.cu3.idtools.dm.MatchCandidateGroup" url="${ COMMONINPUT }/mcg"
filePattern="healpix"/>

<!-- Reference XM -->
<!--FILE dataType="gaia.cu1.mdb.cu3.id.dm.Match" url="${ COMMONINPUT }/xm" filePattern="
healpix"/-->

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.6: MatchCandidateGroup Resolver task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="newSourceConsolidatorTask" class="gaia.cu3.idu.xm.infra.
NewSourceConsolidatorTask" priority="5" ttl="0">

<PROPERTIES >conf/idu.xm.properties </PROPERTIES >
<!-- HEALPIXSET -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- SrcRunningNumber -->
<FILE dataType="gaia.dpcb.dm.SrcRunningNumber" url="${ COMMONINPUT }/srn" filePattern="
FREE"/>

<!-- XM -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.NewSource" url="${ COMMONINPUT }/nsrc" filePattern
="healpix"/>

<FILE dataType="gaia.cu1.mdb.cu3.id.dm.Match" url="${ COMMONINPUT }/xm" filePattern="
healpix"/>

<FILE dataType="gaia.cu1.mdb.cu3.id.dm.AmbiguousMatch" url="${ COMMONINPUT }/xam"
filePattern="healpix"/>

<FILE dataType="gaia.cu1.mdb.cu1.dm.Track" url="${ COMMONINPUT }/track" filePattern="
healpix"/>
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</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.7: NewSourceId Consolidator task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="preScanTask" class="gaia.cu3.idu.bias.infra.PreScanTask" priority="5" ttl="0">
<PROPERTIES >conf/idu.bias.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- Raw data -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.PreScan" url="${ COMMONINPUT }/ps"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.8: Bias task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="apbTask" class="gaia.cu3.idu.cicrb.infra.ApbTask" priority="5" ttl="0">
<PROPERTIES >conf/idu.cicrb.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.BiasNUCalibrationLibrary" url="${ COMMONINPUT }/
nu_fl" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CiAcProfileLibrary" url="${ COMMONINPUT }/ci_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CrBackgroundLibrary" url="${ COMMONINPUT }/ cr_fl"
filePattern="FREE"/>

<!-- IDT/IDU Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.BiasRecordDt" url="${ COMMONINPUT }/bias"/>
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.Scene" url="${ COMMONINPUT }/scn"/>
<!-- Raw data -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AcShifts" url="${ COMMONINPUT }/as"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.ObjectLogAFXP" url="${ COMMONINPUT }/ol"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservation" url="${ COMMONINPUT }/ao"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservationVo" url="${ COMMONINPUT }/vo"
/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.9: Astrophysical Background task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="elsfCalibratorTask" class="gaia.cu3.idu.lsfpsf.infra.ElsfCalibratorTask"
priority="5" ttl="0">

<PROPERTIES >conf/idu.lsfpsf.properties </PROPERTIES >
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<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Qualification -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<!-- Attitude -->
<FILE dataType="gaia.cu1.mdb.cu1.basictypes.dm.BSplineFittedAttitudeData" url="${
COMMONINPUT }/att"/>

<!-- AstroCalibration -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstroCalibration" url="${ COMMONINPUT }/ac"/>
<!-- FL Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.BiasNUCalibrationLibrary" url="${ COMMONINPUT }/
nu_fl" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CiAcProfileLibrary" url="${ COMMONINPUT }/ci_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CrBackgroundLibrary" url="${ COMMONINPUT }/ cr_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CcdHealthLibrary" url="${ COMMONINPUT }/ ch_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CcdSaturationLibrary" url="${ COMMONINPUT }/ cs_fl"
filePattern="FREE"/>

<!-- Raw data -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AcShifts" url="${ COMMONINPUT }/as"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.ObjectLogAFXP" url="${ COMMONINPUT }/ol"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservation" url="${ COMMONINPUT }/ao"/>
<!-- IDT/IDU Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.BiasRecordDt" url="${ COMMONINPUT }/bias"/>
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.ApBackgroundRecordDt" url="${ COMMONINPUT }/apb"/>
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.Scene" url="${ COMMONINPUT }/scn" filePattern="
HEALPIX"/>

<!-- Match interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.Match" url="${ COMMONINPUT }/xm"/>
<!-- Source interfaces -->
<FILE dataType="gaia.dpcb.dm.DpcbSource" url="${ COMMONINPUT }/src" filePattern="healpix"
/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.10: ELSF Calibrator task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="elsfOptCorTask" class="gaia.cu3.idu.lsfpsf.infra.ElsfOptCorTask" priority="5"
ttl="0">

<PROPERTIES >conf/idu.lsfpsf.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- Raw data -->
<FILE dataType="gaia.cu3.idtools.dm.CompleteWindow" url="${ COMMONINPUT }/cwin"/>
<!-- Other data -->
<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.BasisComponentSet" url="${ COMMONINPUT
}/ elsf_bc" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.MeanLsf" url="${ COMMONINPUT }/ elsf_mean
" filePattern="FREE"/>

<!-- CorrectionsHH interfaces -->
<FILE dataType="gaia.cu5.du10.empiricallsfv2.householder.dm.ElectronicCorrectionsHH"
url="${ COMMONINPUT }/ elsf_echh"/>

<FILE dataType="gaia.cu5.du10.empiricallsfv2.householder.dm.OpticalCorrectionsHH" url="
${ COMMONINPUT }/ elsf_ochh"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>
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Listing E.11: ELS Optical Corrections task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="elsfLibSnapshotTask" class="gaia.cu3.idu.lsfpsf.infra.ElsfLibSnapshotTask"
priority="5" ttl="0">

<PROPERTIES >conf/idu.lsfpsf.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- Other data -->
<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.BasisComponentSet" url="${ COMMONINPUT
}/ elsf_bc" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.MeanLsf" url="${ COMMONINPUT }/ elsf_mean
" filePattern="FREE"/>

<!-- Corrections interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.ElectronicCorrections" url="${
COMMONINPUT }/ elsf_ec"/>

<FILE dataType="gaia.cu1.mdb.cu3.empiricallsf.dm.OpticalCorrections" url="${ COMMONINPUT
}/ elsf_oc"/>

<!-- EmpiricalLsfLibrary interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.empiricallsf.dm.EmpiricalLsfLibrary" url="${
COMMONINPUT }/elsf"/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.12: ELSF Library Snapshot task

<?xml version="1.0" encoding="UTF -8" ?>

<TASK name="ipdTask" class="gaia.cu3.idu.ipd.infra.IpdTask" priority="5" ttl="0">
<PROPERTIES >conf/idu.ipd.properties </PROPERTIES >
<!-- TIMEINTERVAL -->
<!-- CCDROW -->
<DATASTORES >

<!-- Configuration data -->
<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.GsConfigParam" url="${ COMMONINPUT }/gscp"
filePattern="FREE"/>

<!-- FL Qualification -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.FlQualificationInfo" url="${ COMMONINPUT }/ qi_fl"
filePattern="FREE"/>

<!-- Attitude -->
<FILE dataType="gaia.cu1.mdb.cu1.basictypes.dm.BSplineFittedAttitudeData" url="${
COMMONINPUT }/att"/>

<!-- AstroCalibration -->
<FILE dataType="gaia.cu1.mdb.cu1.dm.AstroCalibration" url="${ COMMONINPUT }/ac"/>
<!-- FL Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.BiasNUCalibrationLibrary" url="${ COMMONINPUT }/
nu_fl" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CiAcProfileLibrary" url="${ COMMONINPUT }/ci_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CrBackgroundLibrary" url="${ COMMONINPUT }/ cr_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CcdHealthLibrary" url="${ COMMONINPUT }/ch_fl"
filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.fl.dm.CcdSaturationLibrary" url="${ COMMONINPUT }/cs_fl"
filePattern="FREE"/>

<!-- Raw data -->
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AcShifts" url="${ COMMONINPUT }/as"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.ObjectLogAFXP" url="${ COMMONINPUT }/ol"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.GateInfoAstro" url="${ COMMONINPUT }/ga"/>
<FILE dataType="gaia.cu1.mdb.cu3.idt.raw.dm.AstroObservation" url="${ COMMONINPUT }/ao"/>
<!-- IDT/IDU Calibrations -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.BiasRecordDt" url="${ COMMONINPUT }/bias"/>
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.ApBackgroundRecordDt" url="${ COMMONINPUT }/apb"/>
<FILE dataType="gaia.cu1.mdb.cu3.idu.empiricallsf.dm.EmpiricalLsfLibrary" url="${
COMMONINPUT }/elsf" filePattern="FREE"/>

<FILE dataType="gaia.cu1.mdb.cu3.idu.dm.Scene" url="${ COMMONINPUT }/scn" filePattern="
HEALPIX"/>
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<!-- Match interfaces -->
<FILE dataType="gaia.cu1.mdb.cu3.id.dm.Match" url="${ COMMONINPUT }/xm"/>
<!-- Source/Color interfaces -->
<FILE dataType="gaia.dpcb.dm.DpcbSource" url="${ COMMONINPUT }/src" filePattern="healpix"
/>

</DATASTORES >
<PATHS>

<!-- COMMONINPUT -->
<!-- TASKINPUT -->
<!-- TASKOUTPUT -->
<!-- LOCAL -->

</PATHS >
</TASK>

Listing E.13: Image Parameters Determination task
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AC smearing AC image spread caused by the object motion in the AC
direction. 96–99

MDB Integrator MDB Integrator is in charge of the integration of the
source related results from the different processing systems involved
in the Gaia data reduction. 57, 84, 122, 123, 212, 213, 234

ADS Airbus Defence and Space is a division of Airbus Group responsible
for defence and aerospace products and services. Airbus Defence and
Space was formed in January 2014 from the former EADS divisions
Airbus Military, Astrium, and Cassidian. 3, 6

Anti-Blooming Drain Blooming dram occurs when the charge in a pixel
exceeds the saturation level and the charge starts to fill adjacent
pixels. Anti-blooming structures bleed off any excess charge before
they can overflow the pixel and thereby stop blooming. 21

API An Application Programming Interface (API) is a set of routines,
protocols, and tools for building software applications. An API spec-
ifies how software components should interact by expressing the soft-
ware component in terms of its operations, inputs, outputs, and un-
derlying types. 148

Arianespace Arianespace SA is a French-based multinational company
founded in 1980 as the world’s first commercial launch service provider.
It undertakes the production, operation, and marketing of the Ari-
ane 5 launch vehicle but it also operates the Soyuz-2 as a medium-lift
alternative to Ariane 5. 7

Astrophysical Background The astrophysical background refers to the
background signal observable in the Gaia images coming from the
near objects, the zodiacal light, etc.. xxvii, 49, 53, 54, 61, 87–91,
105, 108, 111, 140, 285, 288

285
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B-spline A B-spline is a piecewise polynomial function (generalization of
a Bèzier curve) constructed so as to pass through a given set of points
and have a certain number of continuous derivatives. These functions
can then be used to interpolate intermediate values reducing the
oscillation that can occur between points when interpolating using
high degree polynomials. 34

Bias The bias is the electronic signal offset introduced on all samples
during the image read–out by the PEM. xxvi, 49, 53, 54, 86–88, 91,
105, 108, 140, 285, 288, 290

BSC The Barcelona Supercomputing Center (BSC) is a public research
center located in Barcelona, Catalonia, Spain. It hosts the Marenos-
trum supercomputer [BSC, 2014]. xiv, xv, xxxiv, 13, 117, 134, 136,
146, 151, 162, 170, 239, 245–248, 250, 251, 258–260, 285, 287

C++ A programming language based on the C language, offering an
object-orientated programming model, but also supporting the pro-
cedural and functional models. The syntax of Java, and later, the
C# language, were heavily influenced by the syntax of C++. There
are many important differences between C++ and Java, and in many
cases Java simplifies, and reduces the possibility of bugs. For exam-
ple, C++ supports class multiple inheritance, as well as operator
overloading, neither of which are currently available in Java. 142

CCD Readout In order to obtain a digital signal that is appropriate
for doing quantitative analysis, it is necessary to convert the analog
signal to a digital format. When light is gathered on a CCD and
is ready to be read out, a series of serial shifts and parallel shifts
occurs. First, the rows are shifted in the serial direction towards the
serial register. Once in the serial register, the data is shifted in the
parallel direction out of the serial register, into the output node, and
then into the A/D converter where the analog data is converted into
a digital signal. 290

centroid The centroid designates the point at the centre of any shape,
sometimes called centre of area or centre of volume. The coordinates
of the centroid are the average (arithmetic mean) of the coordinates
of all the points of the shape. 97, 102, 104

CI The charge injections are artificial charges injected in the first pixel
line of the Gaia CCDs which are subsequently transferred across the
whole CCD. They are used to temporarily fill a large fraction of
the traps present in the CCD and prevent the charge trapping of
the following photoelectrons generated and transferred through the
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CCD. xxiii, xxiv, xxvii, 11, 22, 24, 27, 29, 33, 39, 47, 88–92, 104–108,
111

COMA-CAL The COlour-MAgnitude terms of the AGIS geometric cal-
ibration solution. 52

Cross-Match The cross-match provides the link information between the
observation and the Gaia source catalogue. This information is pro-
duced initially by IDT and updated by IDU. 34, 49, 50, 54, 57, 59,
65, 67, 71–74, 83, 108, 112, 113, 140, 169, 172, 176, 230, 234, 240

CU3-Torino CU3 team from OATo-INAF contributing in the design and
development of the cross-match tasks integrated in IDT and IDU.
46, 55, 75, 84, 139

CU3-UB CU3 team from DAM-ICC-IEEC-UB contributing in the design
and development of IDT and IDU systems. 46, 55, 64, 71, 75, 85, 88,
92, 109, 139–141

CU5-DU10 CU5 team from IfA-ROE contributing in the design and de-
velopment of several calibration tasks integrated in IDT and IDU,
including Bias, Astrophysical Background, PEM-NU and LSF/PSF.
46, 55, 140

DPCB DPCB is the Data Processing Center in Barcelona (Spain). DPCB
is partipated by the University of Barcelona (UB) and is composed
of two different institutions, namely, the BSC and the Consorci de
Serveis Universitaris de Catalunya (CSUC). xxvii, xxviii, xxxiv, 44,
58, 60, 66, 73, 85, 110, 117–120, 122–125, 130, 132, 137–142, 145,
150–155, 158, 162, 163, 167–171, 181, 211, 214, 227, 228, 230, 234,
238, 241, 245–248, 250, 253, 258, 259, 285

DpcbTools One of the DPAC systems developed to assist the execution
of other DPAC systems at the Data Processing Centre Barcelona
(see DPCB). DpcbTools contains utilities for performing I/O; data
manipulation; communication; task creation, scheduling and launch-
ing; data visualisation; and monitoring operations [Castañeda et al.,
2009a]. xxxiv, 60, 136, 140, 152, 157, 250, 251, 254, 259

DPCC DPCC is the Data Processing Center provided by CNES (French
space agency) hosting the processing center for the CU4 (Objects
Processing), CU6 (Spectroscopic processing) and CU8 (Astrophysical
Parameters). 44, 56

DPCE DPCE is the Data Processing Center at the European Space As-
tronomy Center (ESAC) in Madrid belonging to the European Space
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Agency (ESA). 44–47, 49, 52, 56, 57, 122, 125, 137, 138, 145, 151,
165–170, 172, 174, 175, 228–230, 238, 241, 242, 245, 257–259, 291

DPCG DPCG is the Data Processing Center in Geneva (Switzerland)
dedicated to the detection and characterization of variable sources
(CU7). 44

DPCI DPCI is the Data Processing Center in Cambridge (United King-
dom) and is responsible for the operation of the main photometric
pipeline. 44, 47, 54, 166

DPCT DPCT is the Data Processing Center in Torino (Italy) and par-
ticipates in the core processing of the Gaia data (CU3). DPCT is
partipatec by the Astronomical Observatory of Torino and the AL-
TEC industry team. 44

DS Gaia mission Data Segments refer to a well-defined continuous block
of data. drcs are adjusted to this data block typically of six months
duration. xxvii, 55, 56, 119, 120, 123, 125, 130, 132, 162, 165–172,
174, 175, 201, 210, 211, 214, 217, 228, 230, 234, 235, 238

Fiducial Line The fiducial line for a particular CCD can be thought of
as the central line of pixels, half-way between the observation Gate
and the read out lines. It can also be understood as the line over the
CCD corresponding to the half integrated AL area. In reality the
definition of the fiducial observation line is a bit more complex, as
some of the pixel lines are blocked out by an aluminium mask. 62,
63

Gate Gates are special lines within the light-sensitive area of the CCDs.
When activated they act like summing registers, holding up charges,
i.e. preventing them from moving/accumulating along scan in spite of
the TDI clocking. This causes a collapse of the already accumulated
TDI images into a single line, and the start of the charge from scratch
from this line onwards. xxiv, 21, 22, 24, 29, 33, 39, 286

GEO-CAL The purely geometric terms of the AGIS geometric calibration
solution. 52, 103

GEPC The Gaia Ecliptic Pole Catalogue, version 3.0 [Altmann and Bas-
tian, 2009], 6.1x106 entries in approximately 1 square degree around
the North and Southern Ecliptic Poles produced specifically for the
calibration of Gaia. 72

GoF The Goodness of Fit (GoF) of a statistical model describes how well
it fits a set of observations. Measures of goodness of fit typically
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summarize the discrepancy between observed values and the values
expected under the model in question. 109

GPFS The General Parallel File System (GPFS) is a high-performance
clustered file system developed by IBM. It is designed to allow many
concurrent accesses, while maintaining high performance. It also
provides fault tolerance, and optimal use of the storages devices.
The technology can involve splitting files into small blocks, and then
storing these blocks across several disks, thus obtaining the total
combined bandwidth of all the disks [Schmuck and Haskin, 2002].
151, 152, 247, 260

Greasy Greasy is a tool offered by BSC to the HPC applications for the
execution of parallel jobs in a computer cluster. xxviii, 134–137, 146,
149, 214, 215, 217

GS The ground segment refers to an ensemble of facilities responsible for
the acquisition, processing, distribution and archiving of the satellite
data and of the derived products. 41, 42, 47

GSC2.3 The Second Guide Star Catalogue version 2.3 [Lasker et al.,
2008], 9.4x108 objects all sky, magnitude limit RF 21.5. This cat-
alogue forms the bulk of the photometry and defines the red and
blue magnitudes as this is the sky survey with the largest number of
objects on a homogeneous system. xxvi, xxxii, 72, 73, 195, 196

Hammer-Aitoff Projection The Hammer-Aitoff equal-area projection,
also called the Hammer projection, is a map projection that is a mod-
ification of the Lambert azimuthal equal-area projection. It consists
of halving the vertical coordinates of the equatorial aspect of one
hemisphere and doubling the values of the meridians from the centre
[Snyder, 1987]. Like the Lambert azimuthal equal-area projection, it
is equal area, but it is no longer azimuthal. 8, 111

HEALPix Hierarchical Equal-Area iso-Latitude Pixelisation [Gorski et al.,
2005]. HEALPix largely improves the performance of other tessel-
lation techniques, such as HTM, in terms of computing time but
perhaps the most important one if the fact that the pixels obtained
using it all have the same area. More details on the usage of this
pixelisation in Gaia is available in Castañeda [2008]. xxviii, xxxiii,
xxxiv, 72, 73, 79, 83, 85, 111, 125, 126, 128, 129, 144, 218, 222, 223,
233, 291

HIPPARCOS Hipparcos catalogue [Perryman et al., 1997], 117x103 en-
tries. 72
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IBM-LSF IBM Platform Load Sharing Facility is a powerful workload
management platform for demanding, distributed HPC environments.
It provides a comprehensive set of intelligent, policy-driven schedul-
ing features that enable you to utilize all of your compute infras-
tructure resources and ensure optimal application performance [IBM,
2015]. 132, 134, 248, 251

IDU-CAL IDU tasks providing Gaia instrument calibrations: Bias, As-
trophysical Background and LSF/PSF. 60, 245

IDU-IPD IDU tasks involved in the redetermination of the Image Pa-
rameters. 60, 245

IDU-SDM IDU tasks providing the connection between Gaia observa-
tions and the actual sources or SSOs in the sky. 59, 245

Image Parameters The image parameters refers to the parameters that
can be derived from the processing of the Gaia images. These param-
eters are mainly the estimated image centroid (AL and AC centroid
location) and the estimated object flux obtained after a fitting pro-
cess of a LSF/PSF model. 18, 50, 54, 59, 60, 76, 87, 103, 105–109,
113, 288

JMS The Java Message Service (JMS) is a Java API that allows appli-
cations to create, send, receive, and read messages using reliable,
asynchronous, loosely coupled communication. . 147

JNI Java Native Interface (JNI) is a programming framework that enables
Java code running in a Java Virtual Machine (JVM) to call and be
called by native applications (programs specific to a hardware and
operating system platform) and libraries written in other languages
such as C, C++ and assembly. 254

Lissajous Orbit Lissajous Orbit is a quasi-periodic orbital trajectory
that an object can follow around a Lagrangian point of a three-body
system without requiring any propulsion. 7

LQRF Large Quasar Reference Frame [Andrei et al., 2009], 1.7x105 QSOs,
magnitude limit RF 22 and mostly fainter than RF 18. This is a
compilation of Quasi-Stellar Object (QSO)s with precise positions
produced as part of the Gaia auxiliary catalogue development. 72

Marenostrum MareNostrum is the most powerful supercomputer in Spain
and one of seven supercomputers in the Spanish Supercomputing
Network. ix–xi, xiv, xxviii, xxix, 13, 15, 117, 133, 136, 148, 150, 151,
154, 158–160, 162, 163, 214, 215, 217, 239, 246–248, 251, 284
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MDB Gaia Main Database holding both the raw and intermediate data
produced in the data processing pipeline of Gaia. in that sense, the
MDB is central repository for all Gaia mission data. 14, 46, 47,
55–57, 84, 112, 122, 123, 138, 140, 212, 213, 234, 257, 258, 283

Message Passing Interface A message passing system widely used in
computing for developing parallel software applications. Its is par-
ticularly used in distributed memory systems. MPI bindings are
available for a number of languages including Fortran, C, C++ and
Java. 154

MLE The Maximum-Likelihood Estimation (MLE) is a method of esti-
mating the parameters of a statistical model. When applied to a
data set and given a statistical model, maximum-likelihood estima-
tion provides estimates for all the parameters of the model. 109,
114

MOC The Mission Operation Centre (MOC) is located at the European
Space Operations Centre (ESOC) in Darmstadt, Germany. It is re-
sponsible for spacecraft operations and associated ground segment
development. It is also in charge of providing the downlinked sci-
ence data along with the relevant housekeeping data to the Science
Operation Centre (SOC). 45, 47, 49, 291

OBMT The On Board Mission Timeline is a time coordinate system de-
rived from the actual reading in units of nanoseconds of the master
clock controlling all operations in Gaia spacecraft. 55, 171, 172

OGLE Optical Gravitational Lensing Experiment version III [Szymański
et al., 2011], 2.2x108 objects in the bulge, LMC, SMC and Southern-
EPC. This catalogue was included at the request of the Gaia science
alerts team to improve the large incompleteness of the IGSL in the
very crowded regions. 72

Payload Module Payload is the carrying capacity of an aircraft or launch
vehicle, usually measured in terms of weight. Depending on the na-
ture of the flight or mission, the payload of a vehicle may include
cargo, passengers, flight crew, munitions, scientific instruments or
experiments, or other equipment. xxiii, 3–5, 7

PCA Principal Component Analysis is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of pos-
sibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. 97
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PPMXL Positions and Proper Motions “Extra Large” Catalogue, [Roeser
et al., 2010], 9.1x108 entries. The positions and proper motions
should be the most precise available for the objects fainter than the
UCAC4 limit. xxvi, xxxii, 72, 73, 195, 196

Pre-Scan Additional pixels in the Gaia CCDs (columns 0 to 13) which
are not fed with photoelectric charges (outside the CCD illuminated
area) but nevertheless are always read out. They are used for the
calibration of the Bias. 26, 30, 32, 86, 87, 131

Quaternion In mathematics, the quaternions are a number system that
extends the complex numbers. A quaternion is a four-element vector
that can be used to encode any rotation in a 3D coordinate system.
Technically, a quaternion is composed of one real element and three
complex elements. 34, 112

RMI The Java Remote Method Invocation (Java RMI) is a Java API
that allows invoking methods from a remote Java virtual machine
supporting the direct transfer of serialized Java classes. 147

RRD Round-Robin Databases are aimed to handle time–series data. The
data are stored in a circular buffer based database, thus the system
storage footprint remains constant over time. 112

RSE The Robust Scatter Estimator (RSE) is defined asRSE = 0.390152×
(P90−P10), where P10 and P90 are the 10th and 90th percentiles, and
the numerical constant is chosen to make RSE equal to the standard
deviation for a gaussian variable. 111

SDSS Sloan Digital Sky Survey data release 9 (http://www.sdss.org),
4.7x108 entries, magnitude limit RF < 22. This catalogue provides
precise astrometry, photometry and classification for one quarter of
the sky. xxvi, 72, 73

SEA Source Environment Analysis. 54, 66, 71, 106

Serial Register A row of pixels adjacent to the parallel register. When
the CCD is exposed to light, the serial register receives charge from
the parallel register and shifts it to the output node to form an image.
Also called a horizontal register. See CCD Readout. 26, 28, 29

Sky2000 The SKYMAP Master Catalogue, Version 4 [Myers et al., 2001],
300x103 entries brighter than 8.0 magnitude. 72

SNR Signal-to-noise ratio is a measure used in science and engineering
that compares the level of a desired signal to the level of background

http://www.sdss.org
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noise. It is defined as the ratio of signal power to the noise power.
24, 26

SOC The Science Operation Centre (SOC) is at Data Processing Center
ESAC (DPCE). It coordinates the distribution of the data received
from the Mission Operation Centre (MOC) to the relevant Coordi-
nation Units and the six Data Processing Centres. . 45, 289

solutionId The solution identifier is a numeric field in order to uniquely
tag the data produced by each processing systems. This field can be
used to track the software version and the DRC when a specific data
set was generated. xxviii, 86, 137, 138, 140, 146, 150, 151, 169, 213,
230

sourceId The source identifier is a numeric field in order to uniquely
tag the entries from the Gaia catalogue. This numeric field codes
a HEALPix spatial index, the DPC producer and a running number
which is increased on new source creation. 72, 83, 85, 86, 212, 213,
226

spline In mathematics, a spline is a numeric function that is piecewise-
defined by polynomial functions, and which possesses a sufficiently
high degree of smoothness at the places where the polynomial pieces
connect (which are known as knots). 96, 99

Star Tracker Navigational device which measures the angular separation
of stars with reference to a known time and place in order to achieve
precise navigation. 5

Tycho-2 Tycho-2 Catalogue [Høg et al., 2000], 2.4x106 stars, magnitude
limit RF < 12. This catalogue forms the backbone of all the major
ground based catalogues currently available. The astrometric infor-
mation is mostly superseded by UCAC4 however this catalogue pro-
vides the photometric information for most objects of this brightness.
72

UCAC4 USNO CCD Astrograph Catalogue version 4 [Zacharias et al.,
2004], 1.1x108 entries mostly stars, magnitude limit RF < 17. This
is the most precise astrometric catalogue in the range V=11-16 cur-
rently available that is all sky. 72, 290, 291

XML Extensible Markup Language (XML) is a markup language that
defines a set of rules for encoding documents in a format which is
both human-readable and machine-readable. 132, 144, 145
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AC Across-Scan. xxvii, 22, 23, 26, 28, 29, 32, 38, 50, 63, 76, 77, 89, 96–99,
102, 103, 105, 107, 112, 113, 172, 178, 191, 283, 288

AF Astrometric Field. xxiii–xxv, xxvii, 11, 20, 25, 26, 29–32, 44, 52, 59,
61–64, 76, 86, 88, 90–92, 107

AGIS Astrometic Global Iterative Solution. xxv, 14, 39, 49–52, 54, 55,
57, 58, 102, 103, 105, 106, 109, 113–115, 122, 166, 240–243, 285, 286

AL Along-Scan. xxiv, xxvii, 22, 23, 28, 29, 32, 38, 62, 63, 66, 77, 89, 96,
98, 99, 103, 106, 107, 112, 113, 178, 191, 192, 286, 288

AOCS Attitude and Orbit Control sub-System. 5, 34, 107

ASC Attitude Source Catalogue. 34

ASD Auxiliary Science Data. 31, 33, 46, 86, 88

ASD7 Object Log. 31, 33, 67, 88

BA Basic Angle. 19, 20, 22, 37, 51

BAM Basic-Angle Monitor. xxiv, 19, 20, 31, 32

BCRS/ICRS Barycentric International Celestial Reference System. 36

BP Blue Photometer. xxiii, xxiv, 12, 20, 21, 25

BP/RP Blue and Red Photometers. 26, 30–32, 44, 52, 108

CCB Configuration Control Board. 122, 142, 143, 149

CCD Charge-Coupled Device see. xxiii–xxvi, 6, 10–12, 14, 17–33, 37–39,
47, 49, 52, 53, 61–65, 69–71, 86, 89–91, 93, 96, 99–101, 103, 107, 108,
112, 126, 140, 284–286, 290

CDM Charge Distortion Model. xxvii, 92–94, 98, 114, 115

295
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CNES Centre National d’Études Spatiales. 166

CoMRS Center-of-Masses Reference System. 36, 37

CR Charge Release. 88–92, 105, 108

CRNU Column Response Non Uniformity. 47

CSUC Consorci de Serveis Universitaris de Catalunya. xxxiv, 245, 246,
249, 285

CTI Charge Transfer Inefficiency. xxiv, 17, 22, 27–30, 39, 52, 53, 61, 89,
91, 93, 96, 98–101, 107, 114, 178, 241

CU Coordination Unit. xxv, 43–45, 58, 67, 115, 120, 122, 142, 155, 240

CU1 Coordination Unit 1. 44, 45, 58, 140, 145, 152, 245

CU2 Coordination Unit 2. 44, 45, 136, 139, 245, 246, 248, 250

CU3 Coordination Unit 3. 44, 45, 140, 167, 245, 250, 285

CU4 Coordination Unit 4. 44, 45, 66, 71, 77, 106

CU5 Coordination Unit 5. 44, 45, 58, 66, 71, 106, 285

CU6 Coordination Unit 6. 44

CU7 Coordination Unit 7. 44

CU8 Coordination Unit 8. 44

CU9 Coordination Unit 9. 45, 246, 250

DAM-ICC-IEEC-UB Departament d’Astronomia i Meteorologia, Insti-
tut de Ciències del Cosmos (ICC), Institut d’Estudis Espacials de
Catalunya (IEEC), Universitat de Barcelona (UB). xv, 285

DC Detection Classifier. 140

DM Data Model. 46, 55, 56, 58, 122, 123, 140, 153, 169, 254

DPAC Data Analysis and Processing Consortium. xv, xxv, xxvii, 42, 43,
45, 54–56, 87, 106, 107, 110, 118, 119, 125, 139–142, 145, 155, 162,
163, 166, 230, 237, 238, 241, 245–248, 250, 251, 253,
Glossary: Data Analysis and Processing Consortium (DPAC)

DPACE Data Analysis and Processing Consortium Executive. 43, 166,
170, 235
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DPC Data Processing Center. xxv, 42–44, 47, 56, 58, 61, 72, 86, 122–124,
132, 138, 142, 145, 151, 152, 155, 167–169, 238, 241, 257, 258, 260,
291

DRC Data Reduction Cycle. xxvii, 41, 42, 45, 50, 53, 56, 57, 63, 66, 71,
72, 81, 85, 87, 89, 95, 104, 106, 119–123, 125, 130, 132, 149–151, 155,
162, 163, 169, 212, 230, 238, 243, 245, 247, 257, 291

ECSS European Cooperation for Space Standardization. 141, 154

ELSF Empirical LSF/PSF. xxvii, 94, 95, 98, 99, 101, 107, 115, 241

EPC Ecliptic Pole Catalogue. 289

ESA European Space Agency. xiii, 1–3, 8, 33, 41, 43

ESOC European Space Operations Centre. 45

FL First Look. 47, 50, 57, 87–89, 92, 94, 109, 165, 168

FoV Field of View. xxvi, xxvii, 38, 63, 66, 68, 70, 83, 88, 99, 106, 112,
113, 182, 231

FoVRS Field-of-View Reference Systems. 37

FPRS Focal Plane Reference System. 38

GBIN Gaia Binary File Format. 140, 152, 253–255

GST Gaia Science Team . 43,
Glossary:

GTS Gaia Transfer System. 47, 57, 124, 125, 140, 248, 257, 258

HDF Hierarchical Data Format. 152, 163, 251, 253–255

Hipparcos HIgh Precision PARallax COllecting Satellite. xxx, 2, 3, 34,
181, 232, 287

HPC High Performance Computing. 132, 134, 287

HTM Hierarchical Triangular Mesh. 287

ICD Interface Control Document. 44, 48, 55, 58, 112, 257

ICRS International Celestial Reference System. 51, 111
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IDT Intermediate Data Treatment. 46, 47, 49, 50, 57, 66, 67, 70, 71, 77,
78, 85, 87, 88, 92, 94, 103, 106, 108, 113, 118, 121, 124, 140, 165,
166, 168–170, 174–176, 207, 213, 229, 231, 233–235, 241, 242, 245,
249, 250, 285

IDU Intermediate Data Updating. xiii, xiv, xxv, xxvii–xxix, 13–15, 38,
39, 49, 50, 54, 55, 57–61, 66, 67, 70, 72, 76, 84, 85, 87–89, 92, 94, 95,
102, 104, 106, 109, 110, 113, 115, 117–125, 130, 132–134, 136–143,
145, 146, 148–155, 157, 158, 161–163, 165, 167–171, 175, 207, 214,
216, 230, 234, 235, 237–243, 245–248, 254, 259, 263, 285, 288

IDU-APB IDU Astrophysical Background Calibration task. xxviii, 60,
88, 91, 92, 95, 101, 108, 122, 130, 139, 156

IDU-BIAS IDU Bias Calibration task. 60, 86, 88, 92, 95, 122, 130, 131,
139

IDU-DC IDU Detection Classifier. xxvi, 59, 65, 70–72, 112, 113, 122,
130, 167, 169, 171, 176, 180, 210, 214, 215, 218, 238, 240, 243

IDU-IPD IDU Image Parameters Determination. xxix, 60, 106, 108, 109,
113–115, 122, 130, 140, 157, 240, 242, 243

IDU-LSF/PSF IDU LSF/PSF Calibration task. 60, 108, 122, 130, 139,
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