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Summary 

 

This thesis is focused on the mechanisms of formation of microparticles and their 

granular films, obtained by electrospraying polymer solutions in the steady cone-jet 

mode. Electrosprays (ES’s) are dispersions of highly charged droplets which are 

released by electrohydrodynamic microjets into a gas. Electrospray is a unique method 

for producing electrically-charged micro- and nano-droplets in the gas phase, with near 

size monodispersity, and is unsurpassed by other liquid fragmentation methodologies, 

which produce larger droplets, and/or wider dispersion of droplet sizes. Therefore they 

have attracted interest for making solid nanoparticles. However, many questions remain 

about the mechanisms leading to the formation of such particles.  

In the first study, we have produced polymeric particles and films of such particles 

under carefully controlled conditions of operation of the electrospray. We have 

performed by electrospraying different polymeric solutions under dry ambient 

conditions, and we have determined the role of the following factors on the drying 

process of the electrosprayed polymer solution droplets, and resulting morphologies: 

polymer (PMMA, EC, and PS), solvent (butanone, dichloromethane), initial polymer 

concentration, and polymer molecular weight (either “low” ~10-35 kDa, or “high” 220-

350 kDa). The collected deposits have been analyzed by scanning electron microscopy, 

revealing a wide variety of particle morphologies. We show that these morphologies 

present transitions as the initial polymer concentration is reduced, depending on the 

fluid dynamic regime at which polymer vitrification happens. All of the morphologies 

have been attributed to either of four regimes identified to be: (1) Incomplete jet break 

up, (2) complete jet breakup without coulomb instabilities, (3) coulombic instabilities 

without progeny droplets, and (4) coulombic fission of main droplets (with emission of 

progeny droplets).  

In our second study, we have used the solutions from the first study, and have 

established the changes in particle morphology due to water vapor in the ambient in 

which the electrosprays are produced. In these experiments, ambient relative humidity 

(RH) was added to the factors from the first study. The most notable effect due to RH is 

the prevention of coulombic instabilities, due to earlier vitrification of the polymer 
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shell. Surface porosity changes from being inexistent under dry conditions, to porous at 

humidified conditions (~60-70 %RH) only under high molecular weight and high 

concentration when using butanone. However, when using dichloromethane, surface 

porosity develops for the low molecular weight solutions. For this solvent, we attribute 

the formation of the marked porous structure to the templating of the droplet surface by 

condensed water nanodrops. This proposed mechanism is similar to the phenomenon 

called breath figure formation (BFF), which has been described to explain similar 

structures on spin coating films, as well as on electrospun nanofibers. Another 

mechanism that agrees with the observations is vapor-induced phase separation (VIPS).  

In our third study, we demonstrate that granular films made by deposition of dry 

polymeric particles from electrosprays grow non-linearly in time, due to accumulation 

of electrostatic charges on the film and their effect on the electrospray particle 

trajectories. This phenomenon has not been previously reported in the literature. We 

have characterized the growth dynamics (not only the expansion rate) of granular films 

of ethyl cellulose particles, in terms of film thickness, accumulated mass, and porosity, 

as a function of key factors: deposition time, ambient humidity, and deposition flux. 

This study is focused on a single-electrospraying source or needle, but has important 

implications for multiplexed systems, where the deposition fluxes can be significantly 

larger. 
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1. Introduction 

1.1. Electrospray and its unique features 

This thesis is focused on the mechanisms of formation of microparticles and their 

granular films, obtained by electrospraying polymer solutions in the steady cone-jet 

mode. Electrosprays are dispersions of highly charged droplets which are released by 

electrohydrodynamic microjets into a gas. Therefore, electrospray is sometimes called 

electro-hydrodynamic spraying (EHDS), or electro-hydrodynamic atomization 

(EHDA). The droplets are in the micrometer range or smaller (depending on liquid 

properties and operating conditions), and their release from the end of an EHD-microjet 

is regular (quasi periodic), producing narrowly dispersed droplet sizes. Since the 

electrical field is the driving force for the atomization, there is no need for assistance 

from additional energy sources, such as gas streams (used for pneumatic atomization). 

Consequently, electrospray has low specific power consumption. In addition, since 

electrospray is based on laminar (non turbulent) microjet flows, different liquids can be 

combined in the same jet coaxially in order to produce structured multi-phase droplets, 

which can be used to make core-shell particles [1,2]. 

In sum, electrospray (ES) is a facile method for dispersing liquids as charged 

microdroplets and nano-sized droplets, with near size monodispersity, and is 

unsurpassed by other liquid fragmentation methodologies, which produce larger 

droplets, and/or wider dispersion of droplet sizes.  
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1.2. Applications of electrospray 

The electrospray methodology has attracted much interest for applications [3,4] which 

seek either the small, uniform droplet size, or the high electrical charge density of the 

droplets, or need to obtain a fine dispersion over a large collection surface. It has been 

applied to the making of micro- and nano-particles of many different materials with 

diverse applications in mind [5].  

The best known application of electrosprays probably is electrospray ionization mass 

spectrometry, or ESI-MS. It is an ionization method for converting ions in a solution to 

ions in the gas phase, which are transferred to a vacuum where their charge-mass ratio is 

determined by a so called mass spectrometer. This method has revolutionized 

biomedical science since John B. Fenn and colleagues developed it to generate protein 

ions [6], work for which Fenn received the Nobel Prize in chemistry in 2002 [7]. ESI-

MS has nowadays become a standard analytical chemistry method. One interesting 

variation on this method is secondary electrospray ionization (SESI), in which an 

electrospray is used to ionize vapor molecules that are dispersed in trace quantities in 

ambient air, such as explosives, chemical warfare agents, or drugs, or in human breath, 

such as drugs, metabolites, or bacterial emissions [8,9].  

Electrosprays have also been proposed as means to do size spectrometry of colloidal 

nanoparticles and viruses (MDa complexes) by means of aerosol characterization 

methods like differential mobility analysis [10,11]. In this methodology, the objects to 

be sized are dispersed by electrospray, and then their charged residues are charge-

reduced using small gas-phase ions produced by either radioactive or soft x-ray sources.  

Electrosprays have been also proposed as a one-step method to produce micro- and 

nano-particles via the spray-drying route [3,5,12,13] or by deposition in coagulation 

liquids [14], especially for pharmaceutical applications [3,5,15], often involving a drug 

and a polymer, and for electronics and power applications. The polymer in 

pharmaceutical particles is used for stabilizing the drug against crystallization and for 

controlling the rate of drug release in the body. In this application, the droplet can be 

viewed as a liquid template where the solute precipitates. The scaling up of particle 

production by electrospray faces challenges which are still being addressed in research 

work. However, the unique features of electrospray continue to draw researchers 
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interested in it as a versatile method for particle engineering. One of the attractive 

features of electrospray is the possibility of making core-shell structures by combining 

different solutions in a co-flow arrangement [1,15-19]. Another interesting 

configuration of electrospray for particle production is bipolar coagulation, in which 

electrospray droplets of different composition and opposite electrical polarity are 

generated in two opposing cone-jets, and are allowed to coagulate and chemically react 

in a micro-confined space [20].  

Another field of application is electrospray deposition, or ESD, in which electrosprays 

are directed at solid surfaces for producing coatings or for dispersing small amounts of 

materials over large surface areas [21]. Interesting examples of ESD are the dispersion 

of platinum nanoparticles on carbon films for use as cathodes of PEMFC's (proton 

exchange membrane fuel cells) [22,23], and the coating of pharmaceutical carrier 

particles with drug nanoparticles [24,25]. One variation of ESD is patterned deposition 

using dielectric masks [26-30], or ion-induced focusing masks [31-33].  

Some other related areas of research and application should be mentioned: (1) EHD 

direct writing, also called EHD printing or EHD jet printing [34,35], in which the cone-

jet is used for directing a jet or micro-drops to precise locations on a moving planar 

substrate, (2) electrospinning [36-39], an important method for making polymeric 

nanofibers, which have interest in nanocomposites [40] and biomedical applications 

[41] (3) colloidal thrusters, designed for imparting thrust to spacecraft by accelerating 

electrospray-generated droplets or ions [42,43], and (4) focused ion beams, or FIB [44]. 

The latter two are vacuum applications in which a highly-conducting non-volatile liquid 

is used, e.g. an ionic liquid or liquid metal, whose Taylor cone can emit ions instead of a 

liquid jet [45]. Recently, Gamero-Castaño et al. has carried out sputtering of 

semiconducting surfaces by electrospray nanodroplets in vacuum without attempting 

focusing, demonstrating high etching rates and amorphization of silicon [46-48]. 

Electrospray and electrospining have been used for creating a super-hydrophobic 

coating made of balls and nanofibers of polystyrene [49].  

Non-steady EHD jetting modes has been used for “drop-on-demand”, which is the use 

of pulsed fields to eject electro-hydrodynamically and at will droplets or streams of 

droplets, typically for printing [50-55].  
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One constraints of electrospray is that the electrical conductivity of the liquid 

determines the range of flow rates at which it can be operated stably. In addition, the 

flow rate is generally low, typically about 0.1 mL/hr for typical solutions used in ESI-

MS, and much lower for applications requiring high conductivity liquids such as 

colloidal thrusters or FIB. Therefore, electrospray excels in low flow rate applications. 

However, in many applications, the flow rate is insufficient, and has led to the 

development of multiplexed arrays of electrospray emitters.  

The use of electrosprays for producing a wide range of nanomaterials require much 

higher flows than are possible with a single emitter, and motivate the development of 

robust multiplexing of ES emitters. Although this thesis will not develop multiplex 

systems, it is pertinent to review some of the key efforts in this direction. ES 

multiplexing has been proposed at lab scale for diverse goals. For example, 

pharmaceutical particles have been produced using 2D hexagonal arrays [56,57] and 1D 

linear arrays [58]. 2D arrays have also been designed for use as colloidal thrusters 

[59;60]. 1D arrays (linear or circular) have also been tested for nano-ESI-MS [61-63], 

and linear ones for near-field pulsed deposition [64] and electrohydrodynamic (EHD) 

jet printing [65]. Circular 1D, when equidistant nozzles in a circle experience identical 

electric field conditions [66], have become popular in electrospinning devices, which 

are closely related to electrospray. Another application of multiplexed electrosprays is 

gas cleaning [67] 

 

1.3. Particle and film formation by electrospray of polymer 

solutions: Physics and engineering aspects 

Given the importance and technological potential of using EHD microjets to produce 

particles and coatings (as reviewed in previous section), it is relevant to understand the 

drying process of droplets and films in electrospray systems. Our particular interests are 

polymeric solutions, because of their relevance as reviewed in the previous section. 

This section deals with electrosprays with solute precipitation (from solutions of non-

volatile solutes). 
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1.3.1. Overview of electrospray physics 

Steady electrohydrodynamic spraying and scaling laws 

Figure 1-1(a) shows the typical configuration of electrospray. Liquid is pumped at a 

fixed known rate Q through a capillary tube (or “needle”), for example a flat-ended 

hypodermic needle. This needle is held at a high electrical potential V relative to a 

nearby electrode, in the Figure an Earth-grounded flat collector plate. For sufficiently 

high values of V and Q, the liquid meniscus adopts a stationary conical shape, whose 

vertex ejects a continuous stream in the form of an EHD microjet, which breaks into 

droplets. Since the microjet radius is independent of the needle radius (especially when 

the needle is much wider), clogging is not an issue, unlike in microjet methods based on 

extruding liquid through microholes. 

 

Figure 1-1 Schematics of (a) typical electrospray configuration with Taylor cone and 

electrohydrodynamic microjet and (b) jet breakup modes in Newtonian and 

viscoelastic liquids. 
 

This thesis is concerned with the so called “steady cone-jet mode”, in which stable 

electrified liquid menisci produce continuous EHD microjets. Stable conical menisci 

can only be produced within finite ranges of V and of Q (defined by minimum and 

maximum values of these two parameters) which depend on the liquid mechanical and 

electrical properties and on the electrodes configuration. Typically, the operation flow 

rate decreases with increasing liquid electrical conductivity K, while the voltage 
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increases with liquid surface tension γ [68-71]. Outside of those limits, a rich variety of 

fluid dynamic modes exist, which include oscillatory modes, astable modes, multijet 

modes, etc. [72-77]. In addition, for high surface tension liquids, such as water sprayed 

in standard air, a Taylor cone may coexist with corona discharges [78,79]. 

In steady cone-jet mode, the electrified meniscus is conical, and is usually called 

“Taylor cone” in honor of G. I. Taylor, who proved mathematically that conical 

electrically charged interfaces at constant electrical potential can be in hydrostatic and 

electrostatic equilibrium [80-82]. In fact, conical menisci encountered in electrospraying 

are not in equilibrium because the jet emission convects electrical charge, thus 

overcoming charge transport by electrical conduction, which is necessary for 

maintaining electrostatic equilibrium [83,84]. 

Physical models have been developed to describe the electro-hydrodynamics of the 

transition region between the cone and the jet [85,86]. These models predict droplet 

mean size dd (or jet radius) and electrical current I, as functions of Q and the liquid 

properties: liquid density  , surface tension  , dynamic viscosity  , electrical 

conductivity K, and dielectric constant  . Such relationships are called scaling laws of 

electrospray. Fernández de la Mora and Loscertales’s pioneered this approach with a 

model that considers relaxation of electrical charge in the transition region [83]. This 

model predicts the following scaling relationships for the jet diameter and the current: 
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where Q0 is defined as )(0  K . Additional works have checked that these laws are 

fulfilled to different degrees depending on the electrosprayed liquid [86-92]. 

Experimentally, the current is better predicted than the droplet diameter, in part because 

the ratio of jet diameter to droplet diameter depends on factors not considered by these 

laws. Additional analytical and numerical models have been developed around this 

problem [19,84,85,93-99].  

EHD microjet breakup 

Liquid jets are produced and sustained when any unstable perturbations of the jet flow 

are convected downstream faster than they can travel upstream [100]. Unstable 

perturbations can eventually grow downstream, typically by the action of surface 

tension, leading to jet breakup. Such a jet is said to be convectively unstable [101]. In 

electrospray (Fig. 1-1(b)), Newtonian liquids form convectively unstable EHD microjets 

which break up into droplets. Examples of such liquids are water, organic solvent, or a 

dilute solution or nanoparticle dispersion in those solvents. On the other hand, EHD 

microjets of viscoelastic liquids, such as concentrated polymeric solutions, can resist the 

action of surface tension and form continuous filaments thanks to polymer chain 

entanglements (Fig. 1-1(b)). This is the basis of electrospinning [38]. However, in 

addition to chain entanglements, Fong et al. have shown that the electrical charge plays 

a key role in resisting the breaking action of surface tension on electrospun jets [102]. 

The rest of this section deals with jet behavior of Newtonian liquids. In electrospray, the 

best known jet breakup mode is the periodic (regular) breakup of a jet called 

axisymmetric breakup mode, varicose breakup mode, or Rayleigh breakup mode, in 

honor of Lord Rayleigh, who developed the first linear stability analysis of an infinitely 

long, neutral cylinder of an inviscid (i.e. non viscous) liquid [103,104]. Rayleigh’s 

analysis predicts a droplet to jet diameter ratio dd/dj of ~1.89. In reality, Rayleigh 

breakup of either electrically neutral or charged jets often leads to two droplet types: 

“main droplets” and “satellite droplets”, shown in Figure 1-1(b). Main drops form by 

accumulation of liquid at the wave crests (or swells), whereas satellite droplets form at 

the wave nodes (or valleys) as the liquid bridges formed between wave crests develop 

two breakup points [101]. Typically, the main droplets are significantly larger than 

satellite droplets. 
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Satellite drops do not always form [89], or, when they do, they may forward merge with 

the leading or rear merge with the trailing main drop, typically at low Re [69,101,105]. 

In these cases, the distribution of droplet sizes will be monomodal (made of main 

droplets only) and quasi monodisperse (due to the breakup periodicity). The merging of 

satellite droplets has been reported only in a few electrospray works [69,89,106]. 

Viscous stresses, neglected in Rayleigh’s analysis, are noticeable when the Reynolds 

number for the capillary flow within the jet, Re, is ~1 or smaller, where

  
21

Re jd , and where   is the liquid density,   its surface tension coefficient, 

  its dynamic viscosity, and 
jd  the initial jet radius [107,101]. This Reynolds number 

is equal to the jet radius times the characteristic velocity of the capillary flow during 

breakup, called capillary velocity, namely    21
2 jd , over the dynamic viscosity. 

The ratio dd/dj = 1.89 has been confirmed in electrospray studies where dj > 7 µm and 

Re in the range ~10-30 [69,108,109]. However, this ratio becomes larger for much 

thinner microjets, for which viscous stresses cannot be neglected [87,110]. On the other 

hand, the role of electrical stresses on the jet break up is to reduce the fastest growing 

wavelength, thus reduce dd/dj [89,110,111]. 

Another common instability of EHD microjets is the bending instability, which causes 

the jet to undergo whipping as the result of amplification of non-axisymmetric 

perturbations [69,87,89]. (This instability is called kink instability in some older 

electrospray literature.) In the whipping mode, the jet either thrashes chaotically or 

undergoes helicoidal motions [17,112]. Jet whipping starts at a critical value of the 

liquid flow rate Q* (>Qmin, the lowest flow rate compatible with stability), where the 

main droplet size distribution bifurcates into two modes [87,113]. As Q is increased 

further from this value (as V is also increased), the jet whipping increases in amplitude, 

while the droplet size distribution becomes broader due to irregular jet breakup [87,89]. 

Cloupeau and Prunet-Foch attribute the appearance of whipping to the increase in 

charge-to-volume ratio of the jet [69]. Hartmann et al. [89] establish experimentally 

that, as the liquid flow rate is increased, jet whipping sets in when the normal electrical 

stress on the jet exceeds ~0.23 times the capillary stress (following Melcher’s model 

[111]). Hohman et al. predict mathematically that high charge tends to suppress the 

axisymmetric break up mode and enhance the bending instability [114]. The bending 
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instability is common also in electrospinning, as the growth rate of axisymmetric 

perturbations is greatly suppressed [38]. 

Electrospray plume structure 

Electrosprays are fine dispersions of liquid droplets into a gas, kept typically at 

atmospheric pressure, which expand under the repulsion of the droplets. The high 

electrical charge on the droplets prevents their agglomeration [115]. They are laminar 

aerosol flows, i.e. non-turbulent, unless gas turbulence is introduced by external energy 

sources. When the jet undergoes Rayleigh breakup, the satellite droplets segregate to the 

periphery of the spray plume, forming a shroud around the main spray made of the main 

droplets (see Figure 1-2) [106,109,116-118]. This effect is due to the fact that a 

unidimensional array of charges is radially unstable, as any fluctuations in the charges’ 

radial positions are amplified by the (always-positive) radial electrical force due to the 

other droplets (especially neighboring ones). The radial acceleration is expected to be 

much higher for the satellite droplets than the main droplets because both of the key 

factors involved, charge-over-mass ratio and radial electrical field (whose product 

equals acceleration), are higher for the satellite droplets [106,109]. This mechanism is 

similar to that of the bending instability mentioned earlier. Note, however, that when the 

jet breaks up irregularly, ejecting droplets into a wide cone, the droplets also segregate 

by size in the spray [119]. 

The electrospray structure arising from Rayleigh-mode jets in the tube-collector 

configuration has been characterized by different methods, such as (i) Phase Doppler 

Anemometry and Sizing for supermicron main droplet sizes [109,118,120,121], (ii) 

time-of-flight and energy analysis methods, for submicron droplets in vacuum [106], 

and (iii) by numerical simulations of electrosprays [115,122-125]. From these studies 

we know that the number density varies strongly along the axis, and weakly in the radial 

direction. For electrosprays at ~1 atm and droplets under, roughly, 10 microns, the 

droplets’ inertia (mass times acceleration) becomes negligible compared to the electrical 

and drag forces, some distance away from the zone of jet breakup. Then, the droplets 

follow electrophoretic motion, where the vector sum of the drag and electric forces is 

equal to zero [126]. Therefore, the electrical power gained by the charged particle is 

transmitted to the surrounding fluid (gas), where it is (partly) dissipated into heat by 

viscous stresses, which, however, cause negligible raises in gas temperature. The 
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droplet force on the gas (called reactive drag force) induces a laminar (i.e. non 

turbulent) gas flow pattern. This “induced gas flow” has been neglected on the argument 

that its average speed was much smaller than the droplet speed [127]. However, the data 

and analysis of Hartman et al. [117] and more recent numerical simulations [123,124] 

show that the axial gas speed near the spray centerline can be significantly higher than 

the average gas speed, up to 30-40% of the droplet axial velocities. 

 

 

 

 

 

 

 

 

Figure 1-2 Example of (a) electrospray (needle-collector distance: 20 mm, negative image), 

(b) Taylor cone and jet (cone-jet) (needle OD: 200um), and (c) beginning of spray, 

showing outer spray due to satellite droplets surrounding inner spray due to main 

droplets (negative image). 

 

Electrosprays of evaporating droplets have been studied also by both experimental and 

numerical methods [121,125,128]. In electrosprays of volatile electrosprays of 

methanol-water mixtures by Olumee et al. [121], the average drop diameter d10 

decreases along the spray axis, as expected due to evaporation, when the initial droplet 

diameter is relatively large (5-7 μm). However, it decreases when the initial droplet 

diameter is much smaller (1-2 μm). This is either due to depletion of smaller sizes by an 

analogous mechanism to satellite-primary segregation [121], or by droplet shrinking 

below the smallest detectable size, due to evaporation and coulombic fission. 

Homopolar droplet coagulation is suggested also by these authors, but as less likely. 

The importance of each mechanism could be tested using numerical simulations as 

performed by Arumugham-Achari et al. [125]. 

a) 

b) 

c) 
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Another important effect due to droplet evaporation is droplet cooling, which is very 

fast initially, as the latent heat is removed the droplet, and becomes slower, as the 

droplets become sufficiently cold and the latent heat is provided by heat conduction 

from the warmer gas to the droplet [125]. At this stage, the droplet temperature 

stabilizes at close to the wet bulb temperature of the solvent [125]. Recent experimental 

droplet temperature data obtained by ratiometric fluorescence agree with this picture 

[129]. Lagrangian numerical simulations of methanol, acetone, and heptane 

electrosprays of average drop diameter d10 = 10 µm confirm also this trend [125], and 

further show that (i) the background solvent vapor does not build up significantly 

compared to the saturation value, except very near the droplet generation zone, and (ii) 

that the temperature of the gas changes only slightly (a few º C). These simulations, 

which consider induced gas flow, have also shown that main droplets undergo Coulomb 

explosions within regions which are approximately conical, with distance from the 

electrospray needle of 7-15 mm, being slightly larger on the axis than at the spray 

periphery. Note that any progeny droplets from Coulomb explosions would not migrate 

to the periphery of the spray, but rather follow similar trajectories as the parent droplets 

under electrophoretic motion (as a result of their low inertia). 

Coulombic instabilities of the droplets 

Coulombic instability occurs to electrically charged droplets as they evaporate. While 

the droplet shrinks, the destabilizing electrical stress due to electrostatic repulsion 

between net charges on the droplet’s surface increases faster than the stabilizing 

capillary tension stress. Rayleigh also developed the linear stability analysis for this 

problem, for a spherical droplet of an inviscid perfectly conducting fluid [104,130]. 

Instability is predicted for the critical droplet diameter  
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where q is the droplet charge, 0  the electrical permittivity of vacuum (8.854 pF/m) and 

  the surface tension coefficient of the liquid [130,131]. Another way of expressing 

Rayleigh’s critical condition is with the charge necessary for a droplet with diameter d 

to undergo instability, or Rayleigh limit charge [82]: 

3

0

28 dqR  .        (1-6) 
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The stability criterion for a drop is the same when slight viscosity and charge relaxation 

by conduction are allowed, or when very rapid charge relaxation on a very viscous drop 

is allowed; but it is different for dielectric drops [104]. 

One of the characteristics of electrosprays is the high charge of its droplets, which is 

comparable (though smaller) than qR. Therefore, droplets of volatile electrosprays are 

known to undergo extensive coulombic instabilities [125,132]. 

The Rayleigh instability of a charged droplet is a complex problem, which is still not 

fully understood theoretically, even for Newtonian (i.e. non rheological) fluids. Droplets 

made of low viscosity, conductive liquids undergo fragmentation (called coulombic 

fission or Coulomb explosion), in which two small jets form and break up into so called 

progeny droplets (or offspring droplets) [82]. Coulombic fissions of droplets in 

electrosprays were first captured photographically by Gomez and Tang [132]. Their 

unstable heptane droplets are tens of µm’s in diameter, and some examples are shown in 

Figure 1-3(a)-(c). Similar behaviors have been photographed for electrodynamically 

levitated droplets of similarly large sizes, as shown in Figure 1-3(d) [133-135]. Using 

this technique, Giglio et al. [135] have been able to record detailed deformation 

pathways of droplets with dR ~50-100 µm, and show that initially an unstable droplet 

elongates during the first few 100 µs, becoming spindle-shaped, and then, over the 

following 1-5 µs, it emits two microjets (dj ~1 µm) from the pointed ends of the droplet. 

Micro- and nano-droplets are too small to be imaged by current methods (both because 

their shape cannot be captured accurately by optical imaging, and because the times 

scales are much shorter). Some electrospray studies have formed solid relics during 

coulombic instability of such droplets, by precipitation of a solute, e.g. for polymeric 

solutions [56,136] and for droplets undergoing a sol-gel reaction triggered by ambient 

moisture [137]. These images show spindle-like shapes probably associated to double-

jet emissions, and single-filamented relics indicating single jet emissions, but also 

dumbbell shapes not seen with larger droplets. Sometimes, the filaments found in 

electrosprayed polymeric solutions are very long (many times the droplet diameter, 

unlike in the imaging studies with microdroplets). This suggests that viscosity or 

viscoelasticity (or both) plays an important role in stabilizing the emitted jets, and 

maybe in their formation as well. 
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The charge and mass fractions released in coulomb fissions of large drops (dR~5-50 µm) 

have been determined by various methods: (a) levitation in electrodynamic balances 

(EB) combined with detection of light Mie scattering detection for accurate droplet 

sizing before and after the explosion [138], (b) phase Doppler interferometry (PDI) 

detection in a “ping-pong” electrophoretic cell [139]. One conclusion from these studies 

is that coulombic explosions result in a large droplet charge loss (typically) 10-25% and 

negligible mass loss (<5%) (as reviewed in [139]; also [133]). Hunter and Ray have 

studied the effect of electrical conductivity by the EB method, and find that increases in 

conductivity result in reduced mass loss (< 3%), increased charge loss up to a limit 

(~30%) [140].  

 

 

 

 

 

 

 

 

 

Figure 1-3 Examples of droplets undergoing Coulomb fission.(a-c) [132], (d) [134] 

 

The formation of one jet, instead of two opposite jets, can be produced when a droplet 

charged below the Rayleigh limit (q < qR) breaks up under the action of an applied field. 

In this case, the electrical stresses are significantly higher on one side of the droplet, 

from where a single jet is emitted [141,142]. Electrosprays of volatile droplets can 

experience such high field strengths only near the region of jet break up [82,132]. 

Conceivably, the field due to a near passer-by charged drop (having different speed) 

could also trigger single-jet emission. Therefore electrospray droplets can undergo 

single-jet or double-jet emissions. 

 

a) b) 

c) 

d) 
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1.3.2.  Physics of particle formation 

The manufacturing of particles from liquid sprays is known as spray drying, and is 

widely used in the food, cosmetic, and pharmaceutical industries [143,144]. In spray 

drying, a precursor solution or nanosuspension is atomized (usually by pneumatic or 

pressure atomization), as the spray is being mixed with drying gas, and then the dry 

particles are collected. 

Although electrospray drying has not been implemented industrially, it has proven to be 

able to make unique particles of potential use in many technological fields [13]. In 

particular, electrosprayed polymeric particles have attracted much pharmaceutical 

research [3,5,144], because of the promise of easy drug encapsulation and particle 

design. 

The key processes that must be controlled in spray drying are solvent evaporation and 

solid phase formation. Solute concentration is expected to enrich at the droplet surface 

as solvent evaporates from it [143]. However, they explain that surface solute 

concentration will be reduced by solute transport to the droplet core, i.e. by diffusion 

(and, we may add, internal circulation, as well). Vehring et al. have developed a one-

dimensional model which predicts solute concentrations versus radial position within 

the droplet. Shell formation is assumed to start happening at the surface of the droplet 

when the surface concentration exceeds the solute solubility concentration. However, 

their model is for small molecular weight compounds. In addition, they alert that 

crystallization is not immediate, due to the dynamics associated with crystal nucleation 

and growth. 

A similar model to Vehring’s does not exist for polymeric solutes. On the one hand, the 

diffusion coefficients of polymers are difficult to estimate, as they are highly dependent 

on molecular weight, as well as polymer chain conformation, and polymer 

concentration. Furthermore, the times needed for polymer chains to reach 

thermodynamic equilibrium may be large compared to the droplet drying time. In 

addition, the kinetics of polymer nucleation and growth of the glassy amorphous phase 

(vitrification) is not completely understood. 

Some of the physics can be anticipated, however. As the solvent evaporates, the 

polymer will accumulate on the droplet surface, forming a rubbery skin, which can 

eventually vitrify (solidify forming a glassy skin) and grow into a shell by precipitation 
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of polymer from inside the droplet. The concentration of polymer on the surface is 

determined by the interplay between polymer accumulation due to drying (solvent 

evaporation) and diffusional transport of polymer from the droplet surface towards its 

core, which will depend on molecular weight, and perhaps internal droplet circulation. 

Yao et al. [145] explain shell formation in electrosprayed droplets of polymeric 

solutions as being due to diffusional-limited polymer accumulation at the droplet 

surface; while they explain compact particles as forming when diffusion is dominant. 

While generally agreeing with this picture for pharmaceutical microparticles formed by 

spray drying, Vehring et al. [143] caution that thin shells can form even when solute 

diffusion is dominant, if the solute is surface active. Clearly, Yao et al.’s model should 

be expanded to take into account the solubility of the polymer, and the rate of polymer 

vitrification. 

In addition, in electrospray, the electrical charge on the droplets can cause coulombic 

instabilities during their drying. Such instabilities could result in the formation of 

nanoparticles, which will broaden the particle size distribution. In addition, exploding 

droplets can solidify while drying, especially when polymers are dissolved in the 

droplet. In this case, the instability may be slowed down due to the increase in viscosity 

and/or polymer chain entanglements. Therefore, the solvent can evaporate significantly 

from the emitted jet while the jet is forming, leading to polymer precipitation and the 

halting of the emission. Subsequently the droplet dries up. This scenario therefore leads 

to particles carrying thin filaments attached. Such particle geometry is often not 

desirable, especially for pharmaceutical applications. To avoid this scenario, some 

authors simply follow the approach of using the highest possible concentration to get 

non-exploded individual particles [136,146] have found that for PLGA in chloroform 

there is a range of concentrations over which spherical particles are found, and such 

range becomes narrower as the molecular weight of the polymer increases. However, 

Almería el al. [56] show that for a given polymer concentration, the liquid flow rate Q 

can be adjusted to preclude the coulombic instabilities. A reduction in Q lowers the 

initial charge-to-Rayleigh limit charge ratio (q/qR), and delays the coulombic instability 

to a later time in the droplet history. Therefore, when the concentration of polymer is 

high enough, polymer chain entanglements will prevent the coulombic instability, and 

filament-free particles will be formed [56]. 
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Besides the variation of shapes due to Coulomb explosion, the morphology (surface 

structure) of electrospray particles is also diverse, from smooth to textured with highly 

porous surfaces and even with a hollow structure [5, 3]. The explanations given for the 

formation of the different morphologies are qualitative, and usually involve solvent 

properties only. One usual explanation is that fast solvent evaporation reduces the time 

needed for the polymer chains to re-arrange within the droplet during solidification 

[3,5,147]. However, we know from electrospinning literature that relative humidity in 

the ambient surrounding the fiber can lead to fiber porosity. Strangely, the role of this 

factor has almost not been highlighted in electrospray review literature (e.g. [3], [5]). 

 

1.4. Thesis aims and structure 

In electrospraying of polymeric solutions, important questions still remain open, which 

are addressed in this thesis. More specifically, these questions refer to the 

electrospraying of non-water soluble polymeric solutions in organic solvents, and are 

addressed in this thesis as follows: 

1) The control over Rayleigh instability in electrosprays of polymeric solutions could be 

a powerful tool for particle engineering, whether the goal is spherical fiberless particles 

or particles with fibers. However, whereas the Rayleigh instability happens often in 

electrospray of volatile solvents, it is yet not sufficiently studied and explained in the 

case of polymeric solutions. Our aim is to identify the main factors and mechanisms 

leading to different morphologies in the presence of Rayleigh instabilities. In Chapter 2 

we address this goal, in an investigation over the formation of polymeric microparticles 

and nanoparticles by electrospray under low ambient humidity. 

2) The use of vapors which are non-solvents for the polymer is another powerful tool 

for particle engineering. For many polymers water vapor in the spray can have a 

profound influence on the particle formation process and its nanostructure. 

Nevertheless, the non-solvent effects due to ambient humidity on the electrospraying of 

polymeric solutions has not been sufficiently studied, often not even recognized. In the 

closely related field of electrospinning, where the effect has been explained, there is still 

no consensus about how ambient humidity influences polymeric nanostructure 

formation. Our aim in Chapter 3 is, therefore, to systematically study the effect of 
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ambient humidity on the particle morphology obtained by electrospraying dilute 

polymer solutions, and to provide interpretations of the mechanisms of formation based 

on thermodynamic and transport concepts. 

3) Collecting dry polymeric particles made by electrospray onto solid substrates leads to 

the expansion of the granular film. This phenomenon, which has not been reported in 

the literature before this investigation, is studied in detail in Chapter 4. Here, we are 

interested in understanding the growth dynamics of such granular films (not only the 

expansion rate), as a function of key factors: deposition time, ambient humidity, and 

deposition flux. This study is focused on a single-electrospraying source or needle, but 

has important implications for multiplexed systems, where the deposition fluxes can be 

significantly larger. 

All of the experiments reported in this thesis have been performed in the Sescelades 

Campus of Universitat Rovira i Virgili in Tarragona, Catalonia, Spain. 
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2. Polymeric microparticles and 

nanoparticles by electrospraying 

2.1. Introduction 

Electrospray (ES) is often portrayed as a unique and facile method to produce 

monodisperse micro- and nano-particles from liquid solutions comprising precursor 

solutes. One important challenge in ES is to understand the conditions leading to 

different particle morphologies, and specifically spherical or globular particles, which 

are of interest to different applications [1, 2]. In the electrospray process, the electrical 

stresses overcome the surface tension forces that resist its atomization into droplets, 

pulling a liquid meniscus into a Taylor cone and a microjet which breaks up into a fine 

spray (atomizate). Typically this process is sustained in steady state by continuously 

flowing liquid solution through a tube held at a high electrical potential relative to its 

surroundings. The key to obtaining monodisperse size particles is controlling the mode 

of microjet breakup. The mode of greatest interest is the Rayleigh mode, where 

axisymmetric “varicose” waves develop on the jet surface leading to main droplets, and, 

often satellite droplets. The satellite droplets segregate spontaneously to the periphery 

of the spray soon after forming, due to an electrostatic/inertial separation process [3, 4]. 

Therefore, nearly monodisperse droplets can be sampled from the center of the spray by 

excluding the region occupied by satellite droplets. However, this is not the only mode 

in which the jet can break up [5]. 
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In addition the charge that is necessary to form small monodisperse droplets causes later 

on Rayleigh instability in the droplets as they loose solvent by evaporation, which lead 

to droplet fragmentation (called coulombic fissions or Coulomb explosions) [56]. 

Filaments from the exploding droplets can release smaller droplets which lead to 

smaller polymer residues, which upset the initial monodisperse size distribution of the 

droplets. 

Furthermore, the instability happens by the emission of one or two small filaments 

which can dry up in the process, leading to solute residues or particles which have a 

filament or tail. Studies with high molecular weight linear polymers (few hundred kDa) 

show that nearly spherical particles are accompanied by thin nanofilaments [6, 7]. These 

have been interpreted as incomplete jet breakup [6, 7]. Other times, particles without 

such tails are obtained, because the polymer precipitates out on the surface of the 

evaporating electrospray droplets, thus stabilizing them against (and preventing) 

coulombic fission. Therefore, controlling the appearance of filaments requires 

understanding which phenomena compete against their formation. 

In addition evaporation from the surface of the cone (and the jet) may lead to significant 

increase in polymer concentration. In the case of polymer solutions, solvent evaporation 

from the jet, may lead to increased viscoelasticity, which may prevent the jet breakup 

forming beaded fibers (or beads connected by thin filaments) instead of droplets. A 

direct demonstration of this are the experiment of Larsen et al [8] in which the addition 

of solvent vapor co-flow around the Taylor cone changes the particle morphology, from 

beaded fibers to individual particles. 

Meng et al [9] have found that for PLGA in chloroform there is a range of 

concentrations over which spherical particles are found, and such range becomes 

narrower as the molecular weight of the polymer increases. Almeria et al. [10] have 

shown that flow rate and initial polymer chain entanglements (dependent on the 

polymer, the molecular weight and the concentration) determine, whether spherical 

particles can be formed. Yao et al [11] argue that the formation of a shell is favored 

when the Brownian diffusion time of the polymer is small enough so that it cannot 

diffuse as the droplet evaporates. 

In conclusion, the morphologies are diverse, and the phenomena involved are complex. 

Therefore, in this work we aim to interpret the mechanisms leading to the different 
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morphologies of micro-particles which are formed in electro-hydrodynamic 

atomizations of dilute solutions of polymers, specifically water-insoluble amorphous 

linear homopolymers. The main factors influencing particle morphology are the 

polymer, the polymer molecular weight, the solvent, and the initial (solution) polymer 

concentration. The effects of these factors on the morphology of the collected 

microparticles are explained in terms of the dominant transport and phase-change 

phenomena involved, and to deduce which regime they formed in: (I) incomplete jet 

break up, (II) precipitation in spherical (stable) droplets, (III) precipitation during a 

coulombic instability, (IV) precipitation after a coulombic fission. 

The polymers chosen in this study are polystyrene (PS), poly(methyl methacrylate) 

(PMMA), and ethyl cellulose (EC). “Low” and “high” molecular weights are used for 

each polymer, from about 15 kDa to few hundred kDa, in order to have different 

polymer-chain entanglement dynamics, and different Brownian diffusion speeds of the 

polymer chains in the liquid phase. Butanone (MEK) and dichloromethane (DCM) have 

been chosen as solvents, since their different boiling points and polarity should lead, 

respectively, to widely different evaporation rates and polymer-solvent interactions. 

Critical to these experiments are (1) the use of dry ambient conditions (near zero 

relative humidity), and (2) the use of a co-flow of solvent-vapor-laden gas around the 

nozzle (following Larsen et al. [8]). Elevating the ambient relative humidity can 

critically change the morphology of the particles formed, and such effects will be 

described in Chapter-3. The use of co-flow prevents premature polymer precipitation at 

the nozzle, ensuring perfectly stable jetting conditions. 

 

2.2. Materials and Methods 

2.2.1. Materials 

Polystyrene, PS (Mw=350,000 and 35,000), Poly(methyl methacrylate), (Mw=350,000 

and 15,000), Ethyl cellulose, EC (48% ethoxyl content, 100 cP viscosity grade, 

Mw~220,000 and 48% ethoxyl content, 4 cP viscosity grade, Mw~15-20,000 [12, 13]) 

were purchased from Sigma-Aldrich and used without further purification. ACS grade 

butanone (MEK) and reagent grade dichloromethane (DCM) (stabilized with ethanol - 
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0.3 v%) were purchased from Scharlau. We added rhodamine 6G to the DCM solutions 

(Rh6G, Sigma-Aldrich) at 1:1250 Rh6G:polymer weight ratio to raise the electrical 

conductivity of the solution. Some polymer properties can be found in Table 2-1. 

Polymeric solutions of different concentrations (100, 50, 30, 10 and 2 mg/ml solvent) 

were prepared at room temperature and stirred with magnetic stirrer for at least 6 hours. 

After preparation the solutions were stored at room temperature. The electrical 

conductivities of the solutions (shown in Table 2-2 in section 2.3.3) were determined by 

measuring the current through a Teflon tubing (length: 120mm, ID: 0.254mm) filled 

with our solutions when applying a voltage difference (~30 V) between the two ends of 

the tube. 

 

Table 2-1 Some polymer properties 

 entanglement 

molecular weight 

 

Me (Da) 

density 

@ 25 ºC (c 

 

ρ (g/ml) 

glass 

transition 

temperature (c 

TG (ºC) 

Mark-Houwink parameters 

in MEK 

 

interaction parameter 

with MEK 

 

χ K (10-3) a 

PMMA 13600(a 1.16 105 6.8(d 0.72(d 0.46-0.47(g 

EC 7830(b* 1.14 129 18.2(e 0.84(e 0.42(e 

PS 16600(a 1.04 95 39(f 0.58(f 0.478(h 

a [14]; b [41], *EC with 46wt% ethoxyl content; c supplier information; d [42]; e [16]; f [43]; g [15]; h [44] 

 

2.2.2. Electrospraying 

A schematic diagram of the electrospraying arrangement and a picture of a working 

needle with co-flow are shown in Figure 2-1(a) and (b). We electrosprayed in a chamber 

of glass walls and a methacrylate top plate. The glass walls define a square top-view 

section of about 10cm x 10 cm. The setup rested on an aluminium bottom plate. We 

introduced and dispersed dry N2 (Carburos Metálicos, Premier grade) flow into the 

chamber at ~0.5 slpm at the top of the chamber. Chamber humidity was monitored 

using a Vaisala HM34 meter probe inserted through the bottom plate. A syringe pump 

(HARVARD Apparatus) was used to generate liquid flow. Polymeric solutions were 

sprayed typically at a flow rate of 2 μL/min. The needle was a square-terminated 

stainless steel needle (400 μm OD, 165 μm ID), and the tip was polished with diamond 

paste (Figure-2.1(b)), which was passed through a tee and was centered in a glass 

capillary (ID:1.16 mm) from which the needle protruded by ~0.22 mm. Nitrogen gas 
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containing (saturated with) solvent vapor flowed through the tee to create a sheath flow 

around the silica capillary of ~18 cc/min (linear exit gas velocity near needle ~340 

mm/s). The distance between needle and collector plate was 20 mm. Positive high 

voltage from a HV power supply (Ultravolt HV-RACK-4-250-00228) was applied to 

the SS capillary. An additional electrode ('back plate/electrode'), a 10 cm diameter 

circular brass plate was placed 17 mm behind the needle end and connected to the same 

potential as the needle. The back electrode contained twenty 3 mm holes, letting the 

chamber flow go through, but the N2 also flowed through the spaces between the brass 

plate and the chamber walls. The holes did not change the electric field. The bottom 

aluminium plate was connected to a home-made nanoammeter. The signal from the 

nanoammeter and the applied voltage was recorded with a National Instrument data 

acquisition board (NI–DAQ-PCI6221). 

 

 

 

 

 

 

 

Figure 2-1  Electrospray setup, a) chamber, b) ES needle with co-flow exit during ES, and 

photo of the polished needle end, needle OD: 400 µm. 

 

Some ancillary tests were done in the same chamber, but with a different needle 

configuration. The needle was a square-cut polyimide-coated fused-silica tubing (OD = 

200 μm, ID = 100 μm, length ~80 mm). (Results shown in Figures 2-11(b,c) and 2-12 

(b,c).) 

a) b) 
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2.2.3. Particle collection and imaging 

The particles/polymeric residues were collected on pieces of silicon wafer (SiMat, 

prime grade, P/Boron, <100>, 500 µm thickness, 1-30 ohm•cm) of approximately 

20x20 mm size. The collection time was 10 seconds (± 1s), unless noted otherwise. The 

Si wafers were slid under the spray during stable ES conditions (without disturbing the 

cone-jet) and then pushed rapidly away to terminate the collection. 

All samples were gold coated (~10 nm) for SEM imaging and imaged at different 

locations in the collection spot, using a Quanta 650 apparatus (run typ. at 30kV, ~10 

mm working distance). 

 

2.3. Results 

2.3.1.  Terminology 

In order to properly identify and classify the different particle morphologies observed 

by SEM, we find it necessary to define terminology that does not presume the 

mechanism of formation. Whenever possible, we choose terminology that is already 

widely accepted in the electrospray, electrospinning, and fluid dynamics literatures (see 

Chapter-1). 

2.3.1.1. Particle kinds arising from jet break up 

The term particle is reserved to individual solid objects, namely unconnected to other 

particles (except for contact points formed on arrival at the collector). The largest 

particles in a deposit are here called main particles. We will assume that main particles 

evolve from the main droplets that form by breakup of the EHD microjet that is emitted 

from the Taylor cone (see Chapter-1). The term main droplets is used for the droplets 

that arise from the swells in the breakup of free-surface flows [17], of which EHD 

microjets are an example. 

The term beaded fibers is used here to describe the solid structure made of globular 

volumes, or beads, connected by solid fibers. This meaning is common in the 

electrospinning field [18, 19], where beaded fibers’s use for material nano-
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encapsulation is widely known [20]. EHD polymeric jets produce beaded fibers by 

solidification while undergoing axisymmetric capillary instability. The corresponding 

fluid structure is called the beads-on-string structure [17]. The fluid bulges are the 

beads, which form by the growth of the crests/swells of the capillary wave responsible 

for the breakup of the jet, while the fibers develop from the nodes of the wave [17]. 

Therefore the term bead may be used to refer to a solid or a liquid structure. By beading 

we refer to the formation of a beads-on-string structure. 

Smaller beads can grow on a liquid filament that strands two larger beads. The larger 

beads will be called main beads, and the smaller ones secondary beads. Here, the term 

secondary again parallels usage in the fluid dynamics literature: During axisymmetric 

break up of a neutral jet, secondary swellings can develop between two main swells of 

the capillary wave, resulting in satellite droplets in the case of Newtonian liquids [17, 

21]. Secondary, as well as tertiary and higher order swells, can also develop during 

elastocapillary thinning of liquid bridges of high molecular weight polymer solutions 

[22]. 

The term fiber is used to describe a solid fiber, while the liquid structure that dried into 

this fiber is called filament or bridge, or jet. A filament is formed by an extensional flow 

driven by surface tension stresses, which cause liquid mass flow into two opposite 

directions (along the filament). On the other hand, a jet is a mass which is ejected from 

a reservoir of larger size, for example, during a Coulomb fission of an electrically 

charged drop. 

2.3.1.2. Coulombic instability vs. fission, and progeny particle 

Coulombic instability is used to refer to the fluid motions that occur to an electrically 

charged droplet when, as a result of solvent evaporation, the electrical stresses 

overcome the capillary stresses. This instability is also referred in the literature as the 

Rayleigh instability in honor of Lord Rayleigh, for his linear stability analysis of the 

problem (Chapter-1). We use the term coulombic instability instead, in order to avoid 

confusion with the Rayleigh mode of jet breakup. A coulombic instability can be called 

a Coulomb explosion or Coulomb fission when it results in the fragmentation of the 

unstable droplet, typically through development of a jet of diameter substantially 

smaller than the droplet diameter, and subsequent breaking of this jet into smaller 
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droplets, so called progeny droplets (or offspring droplets) (Chapter-1). Progeny 

droplets could in principle undergo further subdivision by the same pathway. Particles 

which form by drying of progeny droplets are here called progeny particles. When a 

droplet undergoes coulombic fission while in electrophoretic motion, all of the droplet 

fragments will follow nearby trajectories. As a result main and progeny particles will be 

collected in substantially the same regions of the collection substrate. 

2.3.2. Effects due to the solvent vapor jacket 

Long term stability of the Taylor cone is essential for extended deposition experiments. 

The use of the solvent vapor jacket, as used by Larsen et al. [8] (Fig. 2-1) helped 

stabilize the EHD jetting process against drying at the meniscus. The effect was critical 

when using high concentration solutions of high molecular weight polymers. Figure 2-2 

shows how turning off and back on the solvent vapor co-flow affected the Taylor cone, 

for the PMMA 350kDa 5% w/v MEK solution. Starting from the steady state, 46 s after 

turning off the co-flow the meniscus has evolved several filaments (Figure 2-2(b)). The 

two filaments on the left side are dry, while the one on the left is the liquid jet. The 

steady state is fully recovered after restarting the co-flow (at t= 2’16’’), as shown in 

(Figure 2-2(d)). The other concentrated solutions in MEK used in this work did not 

recover reversibly (Figure 2-2(e-k)). 

Co-flow was not necessary to stabilize low molecular weight PMMA and PS solutions 

at any concentration. However, it was critical for the 15 kDa EC solution at 5% w/v, 

since the contact line of the Taylor cone moved from the outer rim of the steel needle 

(Figure 2-2(b-r)), perhaps because this polymer requires much lower concentration for 

gelling than PMMA or PS. 
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Figure 2-2  Effect of co-flow on Taylor cone for various solutions in MEK. Co-flow is 

turned off at time 0 (OFF: 0) and back on at the indicated times (ON: ). 

 

Aside from stabilizing the Taylor cone, the solvent co-flow also reduces solvent 

evaporation from the jet, keeping its viscosity lower. Small changes in viscosity and 

viscoelasticity can have a noticeable effect on the jet length, and breakup pattern, as 

schematically represented in Figure 1-2 and explained in Chapter-1. Without co-flow, in 
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-0’36’’     +1’48’’ 
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a-d) 

 

5% w/v PMMA350 

 

OFF: 0  

ON:  1’ 

e-f) 
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g-k) 

 

5% w/v PS350 

 

OFF: 0  
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our high initial concentration solutions of high molecular weight PMMA and PS in 

MEK, the jet did not break up, resulting in the formation of numerous fibers and beads 

to which the fibers are attached, as shown in Fig. 2-3(a-b). Secondary beading is 

extensive. With co-flow the fibers either disappear completely (PS) or become much 

thinner and appear broken (PMMA) (Fig. 2-3(c-d)). Fiber breakage could be caused by 

the pull the fibers experience as the main beads drift apart in the “spray” impelled by 

electrostatic repulsion. We should note incidentally that the beads are deflated, 

indicating that a polymer glassy layer grew out of the liquid-gas interface on the droplet 

or bead. However, the mechanical properties of such layers are different for PS, which 

collapsed into raisin-like shapes, and PMMA, which produced a cup-like (or bowl-like) 

shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3  Effect of co-flow on jet break-up in the case of high Mw 5% w/v a,c) PS and 

b,d) PMMA; scale bars: 1µm. 

 

Figure 2-4 shows the effect of the use of solvent co-flow for two concentrated low 

polymer molecular weight solutions. As will be proved later, the fibers we see in these 

pictures are formed by drying of nanojets ejected from main drops undergoing 

a) PS 350kDa – co-flow OFF 

ON 

OFF 

b) PMMA 350kDa – co-flow OFF 

d) PS 350kDa – co-flow ON d) PMMA 350kDa – co-flow ON 
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coulombic instabilities. When co-flow is used, the frequency of such fibers is increased 

in both cases. The reason is that the concentration of polymer is high enough when co-

flow is not used to prevent the development of the coulombic instability (formation of 

nanojets). We should note that, from an engineering point of view, if one desires to 

reduce the number of fibers, one should not turn off the co-flow but increase the initial 

polymer concentration, achieving the same result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4  Effect of co-flow on jet particle morphology in the case of low Mw 5% w/v   

a,c) EC and b,d) PS; scale bars: 1µm. 

 

2.3.3. Particle morphologies vs. initial concentration 

Particle morphologies were obtained for different polymers and concentrations in MEK. 

Ancillary experiments with DCM were also performed, but for fewer polymer 

concentrations. Solutions were electrosprayed at 2 µL/min flow rate, except in the cases, 

where it became necessary to increase the flow rate to attain stable cone-jetting. During 

electrospraying, solvent-saturated co-flow (gas jacket) was provided around the 

a) EC 15kDa – co-flow ON 

ON 

OFF 

b) PS 35kDa – co-flow ON 

d) EC 15kDa – co-flow OFF d) PS 35kDa – co-flow OFF 
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meniscus. The particles were collected on clean silicon wafers for 10 seconds, unless 

noted. 

 

Table 2-2 Solution properties and electrospray conditions. 

a For the computations we have used the measured electrical conductivity of our solutions, and 

other properties have been assumed equal to those of the pure solvent, at 20 ºC. dFL and IFL are 

computed using eqs. (1-1) and (1-2).  

 

The particle deposits onto the silicon wafers were round and white, indicating a dry 

deposit, or had a small wet center, as described later below. The outer edge of the zone 

populated by main particles disappeared over a few tens of microns, as inspected by 

SEM. The characterization of the particle morphologies observed by SEM as a function 

of polymer concentrations is a powerful methodology for ruling out morphology 

formation pathways. For example, knowledge that the EHD microjet breaks up implies 

that the jets from more dilute solutions (at same liquid flow) must do so as well. 

Therefore, fibers encountered with such dilute solutions are more likely to be formed 

during coulombic instabilities, than as string-on-bead structures arising during jet 

instability. 

 polymer 

concentration 

C0 

(mg/ml 

solvent) 

electrical 

conductivity 

solution 

flow 

rate 

Q 

(µl/min) 

temperature 

 

 

T  

(ºC) 

applied 

voltage  

 

V  

(kV) 

measured 

electrospray 

current 

I 

(nA) 

estimated from charge 

relaxation model [23] (a 

at 

T 

(ºC) 

 

K 

(µS/m) 

current 

IFL 

(nA) 

droplet size 

dFL 

(µm) 

PMMA-350-MEK 50 25 56 2 23 6 6 16.2 4.60 

PMMA-350-MEK 30 25 52 2 27.1 6.6 10 15.6 4.72 

PMMA-350-MEK 10 25 48 2 27.1 7.9 15 15.0 4.84 

PMMA-350-MEK 2 25 32 2 27.1 10 10 12.3 5.55 

PMMA-15-MEK 50 25 143 2 23 7.5 26 25.9 3.37 

PMMA-15-MEK 10 25 88 2 27.1 7.5 20 20.3 3.96 

PMMA-15-MEK 2 25 56 2 27.1 6.6 15.5 16.2 4.60 

EC-220-MEK 50 23.5 593 2 21.8 7.5 50 52.7 2.10 

EC-220-MEK 10 2.35 96 2 26.7 8.2 27 21.2 3.85 

EC-220-MEK 2 23.5 72 2 26.7 9.4 12 18.4 4.23 

EC-15-MEK 50 25 247 2 21.8 6 34 34.0 2.81 

PS-350-MEK 50 25 32 2 26.2 8 8 12.3 5.55 

PS-350-MEK 10 25 40 2.5 26.7 8.9 9 15.3 5.55 

PS-350-MEK 2 25 32 3.5 26.7 10.5 14 16.2 6.68 

PS-35-MEK 100 22 42 2 26.7 9.7 10 14.0 5.07 

PS-35-MEK 50 22 63 2 24 6.2 13.5 17.2 4.42 

PS-35-MEK 10 22 59 2 26.3 6 12 16.6 4.52 

PS-35-MEK 2 22 63 2 26.7 7.7 12 17.2 4.42 

EC-15-DCM 50 22.5 47 2 26.3 7.0 13 13.4 3.83 

PS-35-DCM 50 22.5 56 2 26.3 6.7 18 15.5 3.47 
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2.3.3.1. Poly(methyl)methacrylate morphologies from MEK solutions 

350 kDa PMMA / MEK 

Figure 2-5 shows the morphologies obtained from PMMA/MEK solutions 

corresponding to the high molecular weight (350 kDa) PMMA solutions, and Figure 2-6 

corresponding to our low molecular weight (15 kDa) solutions. The similar current and 

conductivity values from these solutions suggest very similar initial droplet size (Table 

2-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Particle morphologies obtained from 350 kDa PMMA/MEK solutions;   

scale bars: 1µm. 

 

a) 3% w/v b)   1% w/v c)    0.2% w/v 

periphery of b) periphery of c) 

magnification of a) magnification of b) magnification of c) 
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Recalling Fig. 2-3(d), PMMA-350 at the highest polymer concentration tested of 5% 

w/v produced relatively “large” beads surrounded by very thin fibers (of about 50 nm in 

diameter). Some of these fibers presented secondary beads. Figure 2-5 shows the 

sequence as c0 is decreased from this value. At 3% w/v (Fig. 2-5(a)) only similarly sized 

particles are formed, indicating that the jet break up occurred in Rayleigh mode. The 

absence of any fibers further indicates that these particles did not become coulombically 

unstable during solvent evaporation. 

At c0= 1% w/v (Fig. 2-5(b)), mostly main particles connected to one thin fiber are 

formed, and many of these particles are elongated in the direction of the fiber. At c0= 

0.2% w/v (Fig. 2-5(c)), most main particles are attached to fibers, however, mixed 

shapes appear. In addition, these main particles are surrounded by much smaller 

nanoparticles. These are very numerous, consistently with being progeny particles 

produced in Coulomb fission events. The small progeny particles are connected by very 

thin nanofibers, which may mean that for this high molecular weight PMMA, the 

solution could be entangled at the moment of coulombic instability not letting the 

progeny beads separate into droplets. It is interesting that these nanoparticles 

accumulate in the spaces between main particles, as if their trajectories were 

electrostatically segregated from those of the main particles down to the moment of 

impact with the collection surface. 

The fibers in this sample (Fig. 2-5(c)) are thicker than those found at higher c0 (Fig. 2-

5(b)). In addition, the fibers are connected to typically two particles, suggesting that the 

two formed by splitting of an original particle. In these cases, the two connected 

particles often present pointed ends on the “outer” sides. In addition, some fibers 

present a secondary bead. Taken together, these morphological features suggest very 

different fiber formation mechanisms from these two solutions. 

15 kDa PMMA / MEK 

The solutions with 15 kDa PMMA (Fig. 2-6(a-c)) produced fiber-free main particles 

(predominantly), whose size decreases with decreasing initial polymer concentration, as 

expected for similar initial droplet sizes (Table 2-2). A small fraction of the main 

particles hold a fiber. For the two most dilute solutions (Fig. 2-6(b-c)), the main 

particles are surrounded by numerous nanoparticles, whose size scales with the main 

particle size. The presence of two particle sizes modes, and the much greater relative 
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abundance of the smaller particles prove that these nanoparticles are relics from progeny 

droplets in Coulomb fission events, as seen for high molecular weight case in Fig. 2-

5(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6  Particle morphologies obtained from 15 kDa PMMA/MEK solutions;   

scale bars: 1 µm. 

 

2.3.3.2. Polystyrene morphologies from MEK and DCM solutions 

350 kDa PS / MEK 

Figure 2-7 shows the morphologies obtained from high molecular weight (350 kDa) 

PS/MEK solutions, The electrospray was run at 2 uL/min, except for 1 w/v% and 0.2% 

w/v cases, for which the flow rate was raised in order to attain stable conditions. This 

means that in these cases the flow rate was close to the minimum stable value (Qmin; see 

Chapter 1). However, because of the higher flow rate, the deposits had a wet center 

surrounded by a white band containing dry main particles. In these cases, the images are 

from this band. 

Turning off the solvent vapor co-flow resulted in incomplete jet breakup for the 5% w/v 

PS-350 solution, as shown earlier in Fig. 2-3(a). With the co-flow on, the jet broke up 

into main and satellite droplets. The satellite droplets segregated to the periphery of the 

a) 5% w/v b)   1% w/v c)   0.2%  w/v 

magnification of a) magnification of b) magnification of c) 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



44 

 

spray, leaving a central round spot of main particles (Fig. 2-7(a)) surrounded by a 

circular band of much smaller particles. Fig. 2-7(b) shows one area from the beginning 

of this band, showing a few main particles, and also intermediate sizes (whose 

contribution to the size distribution is not statistically relevant). The main particles are 

buckled (deflated) shells, whereas the satellite particles are predominantly cup-like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Particle morphologies obtained from 350kDa PS/MEK solutions;  

 scale bars: 1µm. 

 

For the next lower polymer concentration, 1% w/v (Fig 2-7(c)), the main particle size 

reduces, as expected, given the similar initial droplet size (see Table 2-2). These 

particles often have fibers attached which can be quite long and curl on the collector, as 

a) 5% w/v    center b) 5% w/v  periphery 

c) 1% w/v     d) 0.2% w/v     

periphery of c) magnification of d) 
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shown in the inset of panel (c). Since the EHD microjet contains less polymer than just 

needed to prevent complete jet breakup (5% w/v), the jet breakup must also be complete 

at this lower concentrations, and the fibers must be due to droplet coulombic instability. 

At 0.2% w/v, Fig. 2-7(d), the trend toward smaller main particles size continues. 

Droplets in this spray underwent coulombic instability, as shown by the mixed pointed 

and elongated morphologies, as well as by the significant fraction of the deposited mass 

in the form of small nanoparticles (much greater than for the 1% w/v sample). Some 

main particles are pointed on two opposite ends, either with a short or a long fiber 

attached. Mixed with these are long stretched particles, also double pointed, and 

typically flat (ribbon-like). These shapes are reminiscent to the ones encountered with 

PMMA-350 at the same initial polymer concentration (Fig. 2-7(c)). 

High molecular weight PS-MEK solutions show similar trends in the transitions 

between morphologies to the PMMA-MEK high molecular weight solutions, as the 

initial polymer concentration is reduced: Incomplete jet break up (turning off the co-

flow)  complete jet breakup without coulomb instabilities  Coulomb instabilities 

without progeny particles  extensive coulombically unstable main particles and 

progeny particles (progeny particles might be connected by nanofilaments). However, 

for PS, the transitions happen at slightly higher polymer concentrations. 

35 kDa PS / MEK 

Particle collections from the 35 kDa PS/MEK solutions are shown in Fig. 2-8. The main 

particles get smaller as initial polymer concentration is reduced (again, as expected, 

since the initial droplet size is expectedly similar; Table 2-2). All particles present little 

or no buckling, unlike the high molecular weight solutions, or any of the PMMA 

solutions. 

In the most dilute solution (0.2% w/v), the amount of progeny particles increases, and 

many of the main particles hold a single fiber (Fig. 2-8(d)). 

In the three most dilute cases, the particles become more elongated pointed/elongated 

towards the fiber as polymer concentration decreases. 
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Figure 2-8  Particle morphologies obtained from 35 kDa PS/MEK solutions;  

 scale bars: 1µm. 

 

35 kDa PS / DCM 

We also sprayed 5% w/v PS-35 in DCM. DCM has lower boiling point than MEK; 

therefore, we expect faster droplet evaporation rate than MEK solutions, at least 

initially. Another key difference is in the electrospraying. In order to electrospray it 

stably at 2 µL/min we had to raise the conductivity of this solution, done by adding 

rhodamine (see section 2.2.1). 

Fig. 2-9(a) shows that main particles of mixed elongated shapes, which indicate 

formation (solidification) during coulombic instabilities. In order to pick the 

predominant shape, we imaged the particles collected while moving the silicon substrate 

a)   10% w/v     b)   5% w/v     

c)   1% w/v     d)   0.2% w/v     

magnification of c) magnification of d) 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



47 

 

under the spray (Fig. 2-9(b)). The predominant shape is dumbbell like, namely two 

terminal beads connected by a fiber. Round (flat) particles are also found. The particle 

flatness and lack of progeny particles suggest a very thin shell formed early in the 

droplet history, before or during the first coulomb instability. Fig. 2-9(c) shows the 

periphery of the deposition spot, where the main particles (of similar size to the main 

particles of Fig. 2-9(a) are all double pointed (have two opposite fibers), with 5-10 µm 

long nanofibers, the longest of which have beading. This behavior is similar to that 

found for the same polymer in butanone (1% w/v concentration), where the main 

particles at the periphery predominantly had two fibers, while those in the center had 

one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9  Particle morphologies obtained from 35 kDa PS/DCM solution;  

 scale bars: 1 µm. 

 

These morphologies differ from those from the MEK solution of this polymer at the 

same initial concentration (Fig. 2-9(f)). First, the flowrate in the PS/DCM system was 

not required to be close to the minimum; possibly being why the main particles come in 

many sizes (expected from a whipping EHD microjet; Chapter-1). Second, the 

elongated shapes suggest a coulombic instability pathway which does not involve jet 

emission. 

a) center b) periphery c) short deposition 

magnification of a) magnification of b) magnification of c) 
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2.3.3.3. Ethyl cellulose morphologies from MEK and DCM solutions 

Electrospraying high molecular weight EC in butanone resulted in a variety of particle 

shapes: circular, elongated, sometimes pointed but usually without long fibers (Fig. 2-

10). The 5% w/v and 1% w/v EC solutions were the most difficult ones to handle in this 

work, as they became sticky fast upon drying. With the 5% w/v solution, the main 

particles showed mixed forms (circular, elongated or pointed). Most are very flat, 

indicating that they were made by a thin collapsed shell, which formed early and 

flattened on drying. The absence of much smaller particles indicates that the main 

droplets do not undergo coulombic fission before they dry up to form particles. Fig. 2-

10(b) is from just outside of the white central area of the deposit, made of main 

particles. This outer region is populated by much smaller particles, strongly suggesting 

that Rayleigh jet breakup into two distinct droplet sizes took place and let to segregation 

of the satellite droplets, which led to satellite particles. Interestingly, the satellite 

particles are very long with either one or two pointed ends, due likely to coulombic 

instability. 

For the 1% w/v solution (Fig. 2-10(c)), the predominant shape is elongated and pointed 

towards one side. However, some of the particles are globular (without fibers), and 

some are pointed along two opposite sides (double pointed). In addition, some much 

smaller particles are collected, which must be progeny particles resulting from 

coulombic instabilities (Chapter-1). Such progeny particles are elongated, like the 

satellite particles of (Fig. 2-10(b)). 

For the 0.2% w/v solution, except for the size of the particles, the picture is similar to 

the previous solution, with main particles are surrounded by progeny particles. 
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Figure 2-10 Particle morphologies obtained from 100 cps EC/MEK solutions, *same sample 

as c), from a slightly different spot; scale bars: 1 µm. 

 

 

 

a)   5% w/v - center    b)   5% w/v - edge  

c)   1% w/v     d)   0.2% w/v     

magnification of a) magnification of b) 

magnification near c)* magnification of d) 
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14 kDa EC / MEK 

For the 5 and 1% w/v initial concentrations (Fig. 2-11(a-b)), the particles are also cup 

like, though rounder and more uniform (in size and shape) than for the high molecular 

weight. Size uniformity suggests Rayleigh jet break up. The particles are surrounded by 

debris. A few particles are pointed. Again, these elements suggest that the debris are not 

jet fragments but are due to Coulomb fissions. (The particle size is smaller for the 1% 

w/v as expected.) At the lowest concentration, 0.1% w/v (Fig. 2-11(c)), the particles are 

much smaller and elongated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11 Particle morphologies obtained from 4cps EC/MEK solutions b-c: b-c: ancillary 

tests (described in section 2.2.2) without co-flow; scale bars: 1 µm. 

 

EC in DCM 

We electrosprayed 5% w/v low molecular weight EC/DCM and 1% w/v EC/DCM with 

low and high molecular weights in an ancillary setup (described as ancillary tests in 

section 2.2.2). 

 

 

a)      5% w/v b)    1% w/v 

c)    0.1% w/v magnification of a)  
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Figure 2-12 Particle morphologies obtained from EC/DCM solutions, a with co-flow, b-c: 

ancillary tests (described in section 2.2.2), b: without co-flow c: with co-flow, scale 

bars: 1 µm.  

 

5% w/v 15 kDa EC solution led to globular particles without fibers (Fig2-12(a)). In fact 

the particles are quite uniform in size, and no satellite droplets were found for this 

electrospray. The regime led to true monomodal and nearly monodisperse production of 

particles. 

1% w/v 15 kDa EC in DCM without co-flow and the 220 kDa EC in DCM with co-flow 

show elongated main particles, with big deformation towards one or two fibers, and 

absence of smaller particles. In the absence of co-flow (Fig. 2-12 (b)) the DCM 

evaporated quickly, forming a skin of EC at the  meniscus liquid-gas interface (the cone 

dried up). In both cases the particles are very thin as hinted by the “transparency” of 

their shapes under SEM imaging, suggesting the formation of a skin early in the 

droplet’s evaporation history. The skin resists coulombic fission but not coulombic 

instability. 

 

2.4. Discussion 

Our experiments and others’ show that many different solid morphologies can be 

produced by electrospraying polymeric solutions. This variety attests to the complex 

interplay of variables thermodynamic, transport, mechanical, and electrical variables. A 

complete physical model that can predict the detailed evolution of an electrospray 

droplet from its birth till the formation of the final solid relic is beyond our scope. 

However, we aim to understand why different morphologies are observed when 

changing the initial polymer concentration, or the polymer molecular weight, or the 

a) 5% w/v, 15 kDa b) 1% w/v, 15 kDa c) 1% w/v, 220 kDa 
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kind of polymer used. Our interpretations should be consistent with prior knowledge 

about the mechanical and physico-chemical behavior of polymer solutions. 

2.4.1. Fluid dynamic-to-solid structure transformation 

Solid morphologies are formed when polymer vitrifies from liquid structures. However, 

in the presence of a polymer, the properties of the viscoelastic solution will change with 

time as polymer concentration increases due to solvent evaporation. In turn, the fluid 

motions involved in instabilities (EHD jet breakup and droplet coulombic instabilities) 

will be strongly affected by these viscoelastic properties. And the slowing down of 

these motions will make solvent evaporation more important. Therefore, the theoretical 

prediction of these complex coupled transport mechanisms is not trivial, and has not 

been tackled yet. In addition, with currently available methods it is virtually impossible 

to experimentally probe the evolution of the fluid properties in situ in the spray, 

especially for micro- and nano-droplet sizes. In sum, we must resort to isolate and 

analyze parts of the problem. In this sense, an understanding of the various regimes is 

key. 

Our results shown a repeating pattern in the transitions between different collected 

morphologies. As the initial polymer concentration is reduced, we have observed:  

Incomplete jet break up  Complete jet breakup without coulomb instabilities  

Coulombic instabilities without progeny particles  Extensive coulombically unstable 

main particles and progeny particles. However, the concentration at which these 

transitions happen depend on the polymer, and on its molecular weight. 

These transitions are consistent with the currently accepted mechanisms for polymeric 

nanostructure formation from electro-hydrodynamic (EHD) jetting (electrospray and 

electrospinning). These are summarized in Figure 2-13. The history of a liquid micro-

structure as released from an EHD cone-jet is followed left-to-right in the diagram, as 

solvent evaporates from it. Different scenarios A to E are considered, depending on the 

initial polymer concentration (c0), where in A at the top the dilute-solution regime main 

drops are released and undergo a series of Coulomb explosions, and in E at the bottom a 

concentrated solution leads to electrospinning. In scenario A, at each coulombic fission 

of the main drops, one or two symmetric nanojets form transiently, emitting a train of 

significantly smaller progeny droplets which relieve charge and electric tension from 
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the parent droplet (Chapter-1). The Coulomb instabilities can occur to the progeny 

droplets, as well, but are not followed in the schematic. At an ultimate stage (not 

shown), the electrical field on a droplet’s surface becomes high enough (of order 1 

V/nm) to desorb ions by field emission/evaporation, or a charged residue of one or 

several solute molecules is left [24, 25]. Such ions are the basis for electrospray 

ionization mass spectrometry [26, 27]. Charged-residue ions can also be formed from 

very large solute species. Nanoparticles are also expected to form when the last parent 

droplets dry up, or become too viscous to be able to undergo more fission. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13  Mechanisms for polymeric nanostructure formation from electro-hydrodynamic 

(EHD) jetting. 

 

In scenarios B-C, for higher initial polymer concentration, solute precipitation happens 

earlier in the droplet’s history. In B, polymer precipitation starts at the emitted nanojet 

during the first coulomb explosion. Two effects take place: Viscosity and viscoelasticity 

result in a long jet which does not break up, and the nanojet thinness results in rapid 

evaporation of the solvent from the nanojet. Therefore the nanojet could be vitrified at 

its leading end while it is still being emitted, and before the droplet surface polymer 
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vitrifies. Eventually, polymer accumulated on the droplet surface vitrifies to form a 

glassy skin. 

In scenario C, solute precipitation happens even before the first Rayleigh droplet radius 

is reached, resulting in fiber-free spheres. When the EHD microjet breaks up in 

Rayleigh mode (Chapter-1), these spheres are uniformly sized, and they are not 

surrounded by smaller particles on the collected sample. 

For sufficiently high initial concentration (scenarios D and E), the jet will not break up 

as a result of viscoelastic stabilization of the bridges connecting the beads formed 

during jet breakup, due to polymer chain overlaps and entanglements [28]. In scenario 

D the beads-on-string fluid structure is formed as a result of viscoelasticity (see 

Chapter-1). According to Shenoy et al. [Sh05] this regime requires a minimum average 

entanglement number per polymer chain of about 2:  (ne)soln > 2. In scenario E, the 

polymer chains are sufficiently entangled to resist the growth of capillary axisymmetric 

perturbations. The concentration of polymer chain entanglements depends on the 

polymer concentration and the critical minimum molecular weight needed for 

entanglements in the melt (see [29,30]). Shenoy et al. claim that the polymer chains 

must entangle with an average number of chain entanglements per chain exceeds ~3.5: 

(ne)soln > 3.5 [29]. 

However, beaded fibers and fibers (scenarios D & E) has also been produced with 

polymers of low enough molecular weight, which are not expected to entangle [31]. In 

this case, vitrification of the jet is due to solvent evaporation from the jet, before 

capillary waves can grow. Solvent boiling point has a strong influence on this outcome. 

However, in our experiments, the use of solvent co-flowing stream delays solvent 

evaporation from the jet. Another important note is that the determinations of minimum 

critical entanglement numbers for the appearance of beads-on-string or the formation of 

electrospinning, are referred to the initial solution concentration. 

The exact path which an electrospray droplet follows to become a particle depends on 

other variables. For example, the initial electrical charge on the droplet determines how 

much solvent must be evaporated from the droplet before its first CE. Almería et al. [10] 

show that lowering the liquid flowrate in their PLGA-TFE systems lowers the charge to 

Rayleigh limit charge ratio of the initial droplet, thus promoting the formation of 

spherical particles (scenario C). 
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2.4.2. Polymer precipitation during jet breakup 

As shown in Figure 2-3(d), while seeking particle production using initial polymer 

concentration of 5% w/v, the PMMA-MEK solution led to polymer precipitation during 

jet breakup (unlike the other solutions at this concentration). We know that this formed 

during jet breakup instead of coulombic instabilities, because when lowering the 

polymer concentration from 5% to 3%, the nanofibers disappear and no progeny 

particles are collected. And, on further lowering of the initial polymer concentration to 

1%, the regime of coulomb instabilities was reached (Fig. 2-5(a)). The (ne)soln for this 

solution is 1.33, significantly lower than the onset value of 2 established by Shenoy et 

al. [29, 32]. One possible reason for this deviation is solvent evaporation from the jet 

despite the use of solvent co-flow around the Taylor cone. The solvent vapor jacket 

would prove ineffective to prevent solvent evaporation from the very (several mm) long 

EHD microjet (see Fig.2-2) This effect is compounded by the fact that a drier jet is more 

viscous, thus more stable and, thus longer. 

Similar situations are found in the literature. Hogan et al. [6] find incomplete jet 

breakup from a solution for which (ne)soln = 0.79 (56kDa polyvinyl pyrrolidone (PVP) at 

0.237 volume fraction in 1:1 v/v water-ethanol). These solvents have similar volatilities 

to our case, and the flow rates used and jet sizes obtained are also similar to our case. 

Eda and Shivkumar [31] determined (or bracketed) the critical concentrations for the 

two transitions from fiber-free particles to bead-free fibers in THF and DMF solutions 

of polystyrenes of different weight-average molecular weights (Mw). They conclude that 

the solvent has minimal effect on the critical concentrations for Mw > 100 kDa, where 

they are consistent with the entanglement model of Shenoy et al. [29]. For Mw < 100 

kDa, on the other hand, fibrous structures can be obtained at concentrations appreciably 

lower predicted by the model; and attribute this departure to rapid jet solidification. 

Interestingly, however, the only samples showing fibers as thin as we have found in the 

PMMA-MEK experiment (relative to bead size) correspond to Mw > 100 kDa. 

None of these works used solvent co-flow. However, Eda and Shivkumar [31] use much 

higher flow rates, while Hogan et al. [6] use similar flow rates. 

Finally, we should also point out that the beaded jet morphology in Figure 2-3 shows 

extremely thin fibers, with extensive secondary beading. The ratio of bead (particle) 
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diameter to fiber diameter is in this case of about 50. Studies on the fluid dynamics of 

the thinning of the beads-on-string structure formed in electrically neutral jets (of dilute 

solutions of high molecular weight polymers) show that the “string” attains zero 

diameter in finite time (it eventually breaks under the “squeezing” of capillary stresses). 

In the case of an unbroken EHD jet, the charged main beads soon depart from the initial 

axial trajectory due to their electrical repulsions. These repulsive forces on the main 

beads should transfer tensile stresses (pull) on the connecting nanofibers. If, at this 

stage, the nanofibers are still rubbery (viscoelastic) they can undergo further thinning; 

whereas, if the polymer vitrifies, they may break. 

2.4.3. Production of non-filamented particles 

The term “non-filamented” is used here to identify particle shapes which are globular, 

namely are devoid of any filaments resulting from incomplete jet break up or coulombic 

instabilities. Such shapes include (i) spheres, solid or porous, or else, (ii) corrugated 

particles. Uniformly sized globular particles are of great interest to diverse applications. 

For example, corrugated particles of low effective density are of interest for pulmonary 

drug delivery [33]. Therefore, it is important to understand the conditions that lead to 

polymer precipitation before coulombic instability. 

In electrospray particle production, non-filamented particle morphologies appear in the 

regime of “complete jet breakup without coulomb instabilities” identified in section 

2.4.1. Solution polymer concentration must be intermediate: low enough to allow the 

EHD microjet to break up, but high enough for the polymer shell to become strong 

enough (or viscous enough) before reaching or at the first coulombic instability. The 

window of concentration depends on the polymer (and its molecular weight) and the 

solvent. However, it does not depend on the rate of solvent evaporation, since the 

condition for coulombic instability is the reaching of a critical diameter d* which is a 

fraction of the droplet initial diameter, d0. Provided the droplet surface tension stays 

nearly constant during the evaporation process, the ratio of the two diameters d*/d0 is 

mostly a function of the ratio of the initial droplet charge q0 to the Rayleigh limit charge 

q0R (Chapter-1), such that if we define a=q0/q0R, then d*/d0 = a
2/3

. When this ratio is 

closer to the Rayleigh limit, the droplet will reach the limit radius sooner (i.e. will have 

to shrink less). 
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A theoretical model is beyond the scope of this discussion, but we can point out some of 

the important elements that such model should have. As described by Vehring et al [33] 

for uncharged droplets, solvent evaporation rate determines the solute enrichment at the 

droplet surface, as solvent evaporates. Solute surface concentration depends on the rate 

at which solute is transported by diffusion from the droplet surface to its interior, and 

the rate at which solute accumulates on the surface as the gas-liquid interface advances 

towards the droplet center, as solvent evaporates. The ratio of the two solute mass 

transport fluxes is called the Péclet number: 
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where Pei is the Péclet number of solute i, rs is the droplet radius, Di is the diffusion 

coefficient of solute i, and κ is the evaporation rate defined as   tdtd  2

0

2
, where d 

is the droplet diameter, d0 is the initial droplet diameter. 

Interestingly, this number does not depend on droplet radius. For a given 

polymer/solvent combination, higher Péclet numbers will lead to greater accumulation 

of polymer at the surface radius. Therefore, increases in Péclet number should lead to 

greater surface solute concentration, if all other factors are the same (such as initial 

solute concentration profile in the initial droplet). 

In our experiments, the Péclet numbers range between 2 and 15. From this perspective it 

is clear why, for every polymer/solvent combination we have tested, the highest 

concentration leading to coulombically unstable particles is higher for the low 

molecular weights. Lower molecular weight polymers experience faster diffusion from 

the droplet surface, thus must evaporate more until a critical concentration of polymer 

builds on the droplet surface. In addition, all else being equal, a low molecular weight 

polymer will lead to a mechanically weaker shell than a high molecular weight polymer. 

Therefore there will be a range in initial concentration (w/v) in which the low molecular 

weight polymer leads to coulombic instability while the high molecular weight leads to 

globular particles. 

Another element of the model should be the understanding the conditions preventing the 

Coulombic instability. This would require also solving the linear stability analysis of the 

motions of a charged droplet with a polymer rich layer in an electrocapillary instability, 

along the lines of the famous charged-drop analysis by Rayleigh for a simple fluid [34, 
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35, 36]. However, whereas Rayleigh’s analysis has been extended to viscous liquids, 

too [45], the new model would have to include both viscosity and elasticity. 

Furthermore, the new model would have to consider inhomogeneous liquid properties, 

caused by the inhomogeneous composition so long as a polymer rich layer is allowed to 

build on the particle surface. The spherical symmetry condition could also be 

questioned for an electrospray droplet which travels relative to the surroundings, and 

thus experiences inhomogeneous solvent evaporation [37]. 

Solute solubility is another important factor. It has been said that small Péclet numbers 

(Pe<1) will necessarily lead to solid spherical particles, that is particles with zero 

porosity [11]. However, simple arguments lead to the conclusion that a solid particle 

cannot form at any Péclet number. Depending on solution thermodynamics, the polymer 

may precipitate at lower or higher concentrations. Since the precipitation will occur first 

at the surface of the droplet, where solute concentration is always the highest regardless 

of the Péclet number, polymers with low solubility will lead to early precipitation, 

forming a thinner shell. However, recirculation of the droplet, while it is liquid, could 

change this picture, particularly if the nucleation and growth of a new polymer-rich 

phase is slow enough. Therefore all of these elements could also be important. 

Let us examine the special case when the formed particles have spherical shape (e.g. see 

[6, 10, 38]). We can show that such spherical porous particles will be porous, provided 

the droplet stops shrinking before or at the theoretical Rayleigh limit radius is reached. 

We compute the increase in average polymer volume fraction (concentration) c from its 

initial value c0 as the droplet evaporates from its initial diameter d0 to the Rayleigh limit 

diameter d*. Taking as typical range for a=q0/q0R between 0.5 and 0.9, c would increase 

between 4 and 1.23 times its initial value c0, respectively. (We have assumed that the 

surface tension stays approximately constant). In order to electrospray polymeric 

solutions, it is necessary to use relatively low initial polymer concentration c0 to allow 

for jet break up (section 2.4.1). For example, in our experiments with high 350 kDa 

PMMA, the upper limit for c0 is 5% w/v. Taking c0=0.04 as an example, and worst-case 

scenario for a of 0.5, the average volume fraction of the polymer when the droplet 

reaches the Rayleigh limit diameter would be c=0.16, which is still in the soluble range 

for many polymers. However, the Péclet number is typically larger than one, and 

therefore, the concentration at the surface would be significantly greater, leading 

hypothetically to a stable spherical skin or shell which resists deformation. Therefore, 
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assuming no further shrinking of the droplet, a hollow or porous inner structure with a 

porosity of 84% (=1-0.16) would be obtained. If the droplet shrinks, however, this 

porosity would be reduced. However, it would have to shrink many times from the 

moment it has formed a stable shell, before it can be said to be compact (attain zero 

porosity). 

In conclusion, in electrospray droplet drying, the spherical morphology is likely to 

involve the intermediate formation of a stable spherical skin or shell which resists 

deformation, thus leading to a porous inner structure. 

One example of spherical particles by electrospray are the PLGA particles made by 

several groups [6, 39, 10, 38]. Although the porosity of electrospray-generated PLGA 

particles has not been studied systematically, Almería et al. [38] find large voids in such 

spherical particles. It is possible that the dimpled texture of these particles reflects their 

porous inner structure. It is also unclear the role of the drug mixed in these particles on 

the shell formation and its mechanical properties. For example, Hong et al. [39] find 

that adding drug to PLGA particles changes their morphology from spherical to 

wrinkled. 

The formation of voids within the spherical particle by electrospray can be explained by 

either ingress of ambient gas or solvent boiling [40]. After stabilization of the shell, 

solvent evaporation will continue. In the formation of spherical particles voids could 

form by ingress of gas into the droplet by diffusion through the shell or transport 

through nanopores. Porosity in electrospray particles can also be produced within the 

shell by other mechanisms involving the non-solvent action of a vapor (such as water 

from ambient humidity), as shown in next chapter. 

2.5. Conclusions 

We have electrosprayed different polymeric solutions, studying the effect of the 

following factors on particle morphology: polymer, solvent, initial polymer 

concentration, and polymer molecular weight (with weight mean in the 15-350kDa 

range), in order to identify the role of these factors on the drying process of the 

electrosprayed polymer solution droplets. As polymers we have used 

poly(methyl)methacrylate, polystyrene, and ethyl cellulose; and as solvents, butanone 

and dichloromethane. In these experiments, it has been essential to use a co-flowing 
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stream of solvent saturated gas around the electrospray needle, in order to prevent 

drying of the Taylor cone, particularly in the case of high molecular weight polymers 

above a polymer concentration (of a few % w/v typically). 

The collected deposits have been analyzed by scanning electron microscopy, revealing 

many particle morphologies. We show that these morphologies present transitions as the 

initial polymer concentration is reduced, depending on the fluid dynamic regime at 

which polymer vitrification happens. Four regimes have been identified as: (1) 

Incomplete jet break up, (2) complete jet breakup without coulomb instabilities, (3) 

coulombic instabilities without emission of progeny droplets, and (4) coulombic 

instability of main droplets with emission of progeny droplets (coulombic fission). 

The first regime leads to main particles surrounded by thin nanofibers, which present 

secondary beading. This regime happens only at the high end of the concentration range 

for the high molecular weight solutions. The second regime is characterized by globular 

particles, which may be buckled to different extent depending on the polymer and its 

molecular weight. These particles do not have filaments attached. The solution 

concentration for this regime has a narrow range. 

In the third regime, obtained at lower concentrations, the particles have one or two 

opposite filaments, or display elongated shapes, such as dumbbell shapes. These shapes 

reflect different coulombic instability pathways, some occurring with jet emission, and 

some without. The absence of additional nanoparticles in any of these deposits indicates 

that the polymeric solution dried while the particle was undergoing coulomb instability, 

before fragmentation. The filaments are interpreted as vitrified Rayleigh nanojets that 

did not break up into progeny droplets. 

The fourth regime, encountered only with low molecular weight polymers, led to 

deposits which had particle residues from progeny droplets arising from coulombic 

droplet fissions. In the case of high molecular weight polymers, this regime was not 

observed, as the third regime extended to the lowest concentrations (0.2% w/v). 

In all four regimes the polymer accumulated on the droplet surface during droplet 

drying, where it vitrified forming a shell. The capsule thus formed deflated as solvent 

evaporated from its interior. As a result, none of our polymeric solutions led to spherical 

particles. We argue that spherical particles made by electrospray (in other 
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polymer/solvent systems) will have hollow or porous interior. The shell thickness 

depends, among other factors, on the rate of polymer accumulation relative to the rate of 

polymer diffusion to the droplet interior (or their ratio, the Péclet number). The shell 

thickness on the collected particles was dependent on the polymer and on its molecular 

weight, but only slightly (or not) on the initial polymer concentration. 
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3. Polymeric nanostructures by 

electrospraying in non-solvent water 

vapor environment 

3.1. Introduction 

The function of polymeric micro and nanoparticles is strongly dependent on their 

internal and surface porosity. Electrospray have been used to make particles with many 

different morphologies [1,2]. In particular, porous particles made by electrospray have 

been reported from various polymer solvent systems: poly(methylmethacrilate) 

(PMMA)/methylene chloride (MC) [3], poly(lactic-co-glycolic acid) 

(PLGA)/acetonitrile [4], polystyrene (PS)/tetrahydrofuran (THF) [5-8], 

Polycaprolactone (PCL)/chloroform [9], PMMA/THF [8], polylactic acid/chloroform 

[10], PLGA/acetone [11], PLGA/MC [12], ethylcellulose (EC)/butanone (methyl-ethyl-

ketone, MEK) [13], Polyhydroxybutyrate/chloroform [14], and PLGA/trifluoroethanol 

[15]. Hollow particles with torn thin shells have been also found in other systems: 

PMMA/THF and PS/THF [8], PLGA/acetonitrile [11], and PMMA in various solvents 

[16]. 

Understanding the mechanisms responsible for the different morphologies of 

electrosprayed particles should be important for advanced particle engineering. 

However, we found only a few studies on such mechanisms. One is [7], where they 

change the tetrahydrofuran (THF)/ dimethylformamide (DMF) solvent ratio and they 
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find bigger porous particles for THF and smaller smooth and compact particles for 

DMF. Xie et al. in a recent review [1] qualitatively explain pore formation as depending 

on the solvent vapor pressure: fast solvent evaporation reduces the time available to the 

polymer chains to re-arrange themselves within the droplet during rapid solidification 

[1]. 

Some studies suggest that relative humidity is also an important factor. [13] report that 

ethylcellulose (EC) particles with smooth surface are formed at low RH and particles 

with surface porosity are formed at high RH in EC/MEK solutions. Ikeuchi et al [10] 

have studied the effect of RH in polylactic acid (PLA)/chloroform system, and found 

smooth, buckled particles at low RH, and porous globular particles at high RH. They 

explain the effect of RH with electrostatic expansion of the droplet. They found also 

that when instead of pure chloroform, they use a mixture of chloroform/ethanol they got 

smaller particle diameter and filamented particles. Except [13,10,5], none of the other 

mentioned electrospray works identify the role of relative humidity and did not control 

this parameter. 

In the electrospinning field, forming porous fibers is well studied. Using of water vapor 

environment has proven to be a convenient and versatile tool to create nanostructures on 

polymer fibers [5,17-28]. Polystyrene (PS) is the polymer that has received 

overwhelming attention, mostly in tetrahydrofuran (THF) [5,19,20,23,25-28] or in 

dimethylformamide (DMF) [18,20-24], or mixtures of these. Similar studies on other 

polymer systems are: poly(acrylonitrile) and (polysulfone) from DMF solutions [17], 

poly(methyl methacrylate) (PMMA) from DMF/dichloromethane (DCM) mixture [29], 

PMMA from DCM, Ethyl acetate, acetone, THF, DMF [30], PCL from Chloroform, 

DCM, THF and formic acid [31]. The PS/DMF and PS/THF works are described more 

extensively in the next subsection (3.1.1.). 

Given the similarities between electrospray and electrospinning, in the present work we 

have hypothesized that water vapor can also be used as a tool to engineer micro and 

nanoparticles made by electrospray. 

Therefore, in the present work we study the effect of relative humidity in different 

polymer-solvent systems. The water insoluble polymers chosen in this study are 

polystyrene (PS), poly(methyl methacrylate) (PMMA), and ethylcellulose (EC). 

Primarily we have used a water soluble solvent, butanone (methyl-ethyl-ketone, MEK) 
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which has a moderate boiling point (80ºC). In a few additional tests, we have used 

dichloromethane (DCM) which has a lower water solubility and lower boiling point 

(40ºC). We use three different initial concentrations and two different molecular 

weights per polymer (“high” molecular weight ranging from 220-350 kDa and a “low” 

molecular weight ranging from 15 kDa to 35 kDa) in order to find out which are the 

important parameters that lead to porous polymeric particles at high RH. 

3.1.1. Pore formation at high RH in electrospinning of PS solutions 

Several electrospinning studies have recognized and studied the role of RH as the 

responsible factor for pore formation in polystyrene fibers [5,18-28]. We can distinguish 

two types of fiber structures. The first type is typically found in PS/DMF studies, where 

usually a glassy skin and a porous internal structure are found. The skin surface is either 

smooth with a thin glassy skin [22,24] or porous or wrinkled [18]. Pore formation in 

PS/DMF system is explained by Vapor Induced Phase Separation (VIPS) mechanism 

[18,20-23]. During VIPS the non-solvent vapor (typically water) diffuses into the fiber, 

where it is absorbed and, as more solvent evaporates, eventually leads to phase 

separation by liquid-liquid demixing (see more detailed description in section 3.1.2). 

Because DMF evaporates slowly (boiling point: 152ºC) the phase separation can happen 

before drying. Transport and phase-separation model exists for this system [18]. 

On the other hand, electrospinning PS/THF solutions in water vapor environment, 

generally leads to fibers with compact internal structure and a porous surface 

[5,19,20,23,25-28]. These studies (PS/THF) clearly show that water vapor is responsible 

for the surface porosity where water is not able to diffuse deeper into the core of the 

fiber. However, there is no consensus on how the water exactly leads to the porous 

structure. Some authors claim the key mechanism is similar to Breath Figure Formation 

(BFF) which is the formation of patterns template by condensed non-solvent (water) 

droplets [20, 23] (see more detailed description in section 3.1.2). THF is a volatile 

solvent (boiling point: 66ºC) thus water can easily condense on the solution surface, as 

it does in BFF (see section 3.1.2). Other authors claim, that the key mechanism is 

liquid-liquid demixing [21,26], and others yet a combination of these mechanisms 

[25,27]. Table 3-1 shows the studied factors influencing surface porosity in PS/THF 

studies and their interpretation about pore formation. We have included studies where 

porosity is controlled by the DMF/THF at high RH. 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



68 

 

 

Table 3-1 Factors influencing surface porosity in PS-THF electrospinning studies and their 

interpretation about pore formation, up/down arrows indicate increase/decrease (RH: 

relative humidity, T: temperature, Mw: polymer molecular weight). 

Ref.    RH  ↑   T  ↑ polymer 

conc.   ↑ 

THF/DMF 

ratio     ↑ 

    Mw   ↑ Interpretation 

[19] pore size ↑ - pore size 

uniformity ↑ 

surface 

porosity ↑ 

- Combination 

VIPS and BFF 

[27]  pore size ↑ 

pore density ↑ 

- - - pore size
(a 

↑ Combination 

VIPS and BFF 

[5] - pore size ↓ pore size 

uniformity ↑ 

fiber diameter 

↑ 

- VIPS or BFF 

[26] - - - - - TIPS 

[23] pore size ↑  - surface 

porosity ↑ 

- mechanism 

similar to BFF 

[20] pore size ↑ pore size ↓ pore size ↑ surface 

porosity ↑ 

- BFF 

[25] pore density ↑ - - - - TIPS(BF) or 

VIPS 

[21]  pore size ↑ - - - - VIPS most 

dominant 

[28] - - - surface 

porosity ↑ 

- TIPS+water 

imprint 

BFF: Breath Figure Formation mechanism, VIPS: vapor induced phase separation, TIPS: thermally 

induced phase separation; a) at lowest Mw: secondary pores 

 

3.1.2. Description of VIPS/TIPS and BFF 

Theoretical background in provided here for convenience of the reader. This section can 

be skipped by those knowledgeable in vapor induced phase separation (VIPS)/thermally 

induced phase separation (TIPS) and Breath Figure Formation (BFF). 

The mechanisms proposed in the electrospinning literature for pore formation are i) 

liquid-liquid demixing by VIPS/TIPS and ii) water imprinting by BFF. A schematic 

comparison between VIPS and BBF is provided in Fig. 3-1. 
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Figure 3-1 Schematic comparison between VIPS and BFF. 

 

i) liquid-liquid demixing by VIPS/TIPS 

It is well-known in membrane technology that porous polymeric structures can form by 

phase separation from an originally homogenous solution into two liquid phases: one 

liquid phase being polymer-rich and the other polymer-poor [32-34]. Drying of the 

liquid-liquid phase separated solution would lead to porous or nodular polymeric 

structures Liquid-liquid phase separation can be achieved by two main approaches [35]: 

(1) cooling down the homogeneous polymer solution below the upper critical solution 

temperature (UCST), so-called thermally induced phase separation (TIPS, Figure 3-

1(a)) or (2) introducing a non-solvent into the polymer solution, so-called non-solvent 

induced phase separation (NSIPS, Figure 3-1(b)). NSIPS is usually explained using 

equilibrium phase diagrams in a ternary polymer-solvent-non-solvent (P-S-NS) system, 

such as in Fig. 3-2(b), where the solution composition in the region of the demixing gap 

is thermodynamically unstable. The size (and shape) of the demixing gap depends on 

the interaction parameters of the compounds [34,35]. Lu et al. show that is not likely to 

form porous fibers in PS/THF systems solely by TIPS, because they observed porous 

structures only at high RH, but not at low RH [21]. Of course, temperature still can play 

a role, as T has an effect on glass transition concentration and on the miscibility gap. 

Vapor Induced Phase Separation 

(VIPS) 

Breath Figure Formation 

(BFF) 

typically for low vapor 

pressure, water miscible 

solvents 
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solvents 

solvent vapor pressure 

solvent-water solubility 

solvent boiling point 

thin polymer layer around the water 

droplets;  

water droplets leave an imprint 

water condensation 

with minimal water 

dissolution 

fast solvent 

evaporation 

air 

polymeric 

solution 

air 
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solution 

water 

water absorption 

with no (or minimal) 

water condensation  
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and diffusion 

solvent evaporation 

polymeric 
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UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



70 

 

A special case of non-solvent induced phase separation is vapor induced phase 

separation (VIPS). This is when the non-solvent is introduced into the polymer solution 

from the vapor phase by absorption or/and condensation [36]. The nonsolvent uptake 

and mixing into the polymer solution (along with the solvent evaporation), changes the 

solution composition, and with further solvent evaporation, it leads to thermodynamic 

unstable solution composition and thus liquid-liquid demixing. 

 

 

 

 

 

 

 

 

Figure 3-2 Phase separation trajectories (A, B) in a) binary (solvent/polymer) systems by 

TIPS, and b) ternary solvent/non-solvent/polymer system by VIPS; A: glass transition 

without demixing, B: liquid-liquid demixing on reaching the bimodal decomposition 

line; D-gap stands for demixing-gap. 

 

As the composition changes at the surface layer, the composition also changes inside 

the droplet (or fiber) due to polymer, solvent and water transport (considering only 

diffusion, but recirculation inside the droplet is also possible). Fig. 3-3. shows the 

trajectory of a material element on the droplet surface in the ternary phase diagram and 

the corresponding concentration profiles along the droplet radius. As the solvent 

evaporates and water diffuses into the solution, the ternary composition is shifted from 

its initial binary composition at t=0 towards point A, at t=t1, where it meets the binodal 

decomposition line. The solution decomposes into two separate phases, represented by 

points B and C, at t=t2. On the concentration radial profile of Figure 3-2(a) the radius of 

the droplet also changes. For glassy skin formation the polymer concentration should 

reach a critical value, the vitrification concentration, cvitr.. When a skin forms, the water 

D-gap 
c0 

polymer 

solvent non-solvent 

A 

at constant 

temperature 

D-gap 

UCST 

TG-polymer 

initial 

solution 

temperature 

solvent 

only 
polymer 

only 
c0 

A 

B 

glass transition 

line 

B 

a) 

binodal line 

b) 

Temperature 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



71 

 

and solvent transport thought the skin are slowed down. A clear examples of this kind 

of phase separation is the PS/DMF system in electrospinning experiments, where DMF 

is water miscible and evaporates slowly. Before the skin forms water can be absorbed 

deeply into the fiber, and dissolved into the solution. Later, with more DMF evaporation 

and water absorption the composition inside the fiber reach the binodal line and will 

phase separate (demix) into polymer-rich and polymer-poor liquid domains. In the next 

stage the polymer rich phase vitrifies into an internally porous structure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3  (a) Composition change in a material element on the droplet surface represented 

in a ternary phase diagram and (b) a corresponding theoretical concentration profiles 

along the droplet radius. 

 

ii) water imprinting by BFF 

Breath Figure Formation in membrane technology and electrospinning refers to the 

arrangement of water droplets formed by condensation of water vapor on a polymer 

solution surface and their subsequent role as templates during polymer precipitation 

[37-39]. The monodisperse droplets can arrange into a hexagonal array and sink into the 
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polymer solution forming Breath Figure (BF) patterns. The condensation is caused by 

the temperature difference between the atmosphere and the surface of the solvent, which 

is colder due to solvent evaporation. Therefore the physical properties of solvents, such 

as vapor pressure, latent heat of evaporation and surface tension are fundamental [38, 

40]. The typical solvents used in BFF are highly volatile and water-immiscible [38]. 

Ferrari et al studies different solvents (including MEK, DCM, THF) for PS solutions 

and they point out that the solvent affinity between the polymer and the solvent is a key 

parameter, too. They agree with Tian et al. [41], who concluded that a thin polymer film 

is formed on the surface of the condensed water droplet only for polymeric solutions in 

a good solvent. This thin polymer film decreases the surface tension between the 

solvent and the water droplets, and as a consequence hinder the coalescence of the water 

droplets. In a poor solvent, the migration of the polymer chains to the water/solution 

interface is restricted, and the water droplets coalesce resulting poor regularity of pores 

or no BFF [40]. 

 

3.2. Materials and Methods 

3.2.1. Materials 

Polystyrene, PS (Mw=350,000, and 35,000), Poly(methyl methacrylate), PMMA 

(Mw=350,000 and 15,000), Ethyl cellulose, EC, (48% ethoxyl content, 100 cP viscosity 

grade, Mw~220,000 and 48% ethoxyl content, 4 cP viscosity grade, Mw~15-20,000) 

were purchased from Sigma-Aldrich and used without further purification. ACS grade 

butanone (MEK) and reagent grade dichloromethane (DCM) (stabilized with ethanol - 

0.3 v%) were purchased from Scharlau. Some solvent properties are in Table 3-2. We 

added rhodamine 6G (Rh6G, Sigma-Aldrich) at 1:1250 Rh6G:polymer weight ratio to 

the DCM solutions in order to raise the electrical conductivity of the solution. 

Polymeric solutions of different concentrations (50, 10 and 2 mg/ml solvent) were 

prepared at room temperature and stirred with magnetic stirrer for at least 6 hours. After 

preparation the solutions were stored at room temperature. The electrical conductivity of 

the solution was measured (shown in Table-2-2). We measured the cloud point of the 

solutions by titration method as follows, 500 µl of the prepared solutions was placed in 

a glass vial and added water by 10 µl portions (Fig. 3-4). Cloud point was taken when 
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the solution phase separated and did not dissolved back to one phase after mixing it well 

(shaking). 

 

Table 3-2 Some solvent properties 

 solubility 

in water(a 

@ 20 ºC 

(g/100 

mL) 

interfacial 

tension with 

water(a @ 25 

ºC 

(mN/m) 

boiling 

point(a 

(ºC) 

MEK 29 1.0 80 

DCM 2 28.3 40 

THF* miscible - 65 

DMF* miscible - 153 

  * used in cited electrospinning works, a) [38] 

 

 

 

 

 

 

 

 

Figure 3-4  Cloud point boundaries represented in ternary phase diagram. 

 

3.2.2. Electrospraying 

We used the same electrospray setup as in Chapter-2 with the addition of humid N2 

flow. A schematic diagram of the electrospraying arrangement is shown in Figure 3-

5(a). We electrosprayed in a chamber of glass walls and a methacrylate top plate, of 

about 10 cm size. The setup rested on an aluminium bottom plate. Thin slits exist under 

two of the chamber walls, through which collection substrates are moved in and out of 

the chamber, and drying gas flows out of the chamber. We introduced and dispersed N2 

(Carburos Metálicos, Premier grade) flow into the chamber at ~0.5 slpm at the top of 

100% MEK 20% water 

20% polymer 

EC220 
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the chamber. We increased the relative humidity (for the high RH tests) by adding water 

vapor to the N2 gas through a bubbler. The humidity in the chamber was monitored 

using a Vaisala HM34 meter probe inserted through the bottom plate. We considered 

RH values below 10% as “low RH” and values above 60% as “high RH”. The measured 

low RH values (<10%) was higher than in the pure N2 gas, due to mixing with ambient 

air through the slits at the bottom of the chamber. A syringe pump was used to generate 

liquid flow. Polymeric solutions were sprayed typically at a flow rate of 2 μL/m. The 

needle was a square-terminated stainless steel needle (400 μm OD, 165 μm ID), and the 

tip was polished with diamond paste (Figure 3-5(b)), which was passed through a tee 

and was centered in a glass capillary (ID:1.16 mm) from which the needle protruded by 

~0.22 mm. Nitrogen gas containing (saturated with) solvent vapor flowed through the 

tee to create a sheath flow around the silica capillary of ~18 cc/min (linear exit gas 

velocity near needle ~340 mm/s). The distance between needle and collector plate was 

20 mm. Positive high voltage from a HV power supply (Ultravolt HV-RACK-4-250-

00228) was applied to the SS capillary. An additional electrode ('back plate/electrode'), 

a 10 cm diameter circular brass plate was placed 17 mm behind the needle end and 

connected to the same potential as the needle. The back electrode contained several 3 

mm holes, letting the chamber flow go through, but the holes did not change the electric 

field. The bottom aluminium plate was connected to a home-made nanoammeter. The 

signal from the nanoammeter and the applied voltage was recorded on a personal 

computer equipped with a National Instruments data acquisition board (NI–DAQ-

PCI6221). 

 

 

 

 

 

 

Figure 3-5  Electrospray setup, a: chamber, b: ES needle with co-flow exit during ES, and 

photo of the polished needle end, needle OD: 400 µm. 

 

a) b) 
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Conditions were adjusted in order to produce a cone-jet mode – see Figure 3-6 for the 

5% w/v concentrations. The liquid meniscus was monitored throughout the 

experiments. Needle voltage was found to vary slightly for the different solutions used. 

The room temperature during the experiments was around 27 ºC. 

3.2.3. Particle collection and imaging 

The particles/polymeric residues were collected on pieces of silicon wafer (SiMat, 

prime grade, P/Boron, <100>, 500 µm thickness, 1-30 ohm•cm) of approximately 

20x20 mm size, for 10 seconds. The Si wafers were slid under the spray during stable 

ES conditions (without disturbing the cone-jet). 

All samples were gold coated (~10 nm) for SEM imaging and imaged at the center of 

the collection spot, using a Quanta 650 apparatus (run typ. at 30kV, ~10 mm working 

distance). 

 

3.3. Results and Discussion 

In all of our systems the ES jet broke up into separate droplets, in accordance with our 

expectations, except for the high Mw PMMA at the highest 5% w/v concentration 

(Chapter-2). 

Figure 3-6 shows the liquid meniscus during electrospray at the highest, 5% w/v 

concentration at low and high relative humidity (left and right panels, respectively). It 

shows that humidity did not change the shape of the cone-jet. However, we measured 

much higher electrospray current above a certain humidity level (~50% RH). The fact 

that the shape of the meniscus was not affected by high humidity suggests the 

appearance of an electrical leak, perhaps over the chamber walls. 
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Figure 3-6  Cone and jet photos at low (left) and high (right) RH. Initial polymer 

concentration: 5% w/v. 

 

3.3.1. PMMA-350 morphologies from MEK solution at low and high RH 

In the case of the highest initial concentration, 5% w/v PMMA350 (Fig. 3-7(a)) we 

found thin fibers with secondary beading suggesting that the jet did not break up 

completely, probably due to the long viscoelastic jet in this case. The jet break-up point 

falls outside of the region protected by the co-flow and some solvent evaporation from 

the jet takes place (see Chapter-2). The transition from electrospinning and electrospray 

depends on the viscoelasticity of the solution/or entanglement between the polymer 

chains [42]. In the case of volatile solvents the solvent evaporation also plays a 

significant role, as Larsen et al showed studying a solvent saturated gas-jacket [43]. The 

particles (beads) are about 2 um in size, they have a cup-like shape and are smooth. The 

shape is cup-like in agreement with other electrospray studies of PMMA electrosprayed 

particles [16, 44]. The cup-like shape and the smooth surface show that a glassy skin 

formed on the surface of the droplet during solvent evaporation and droplet shrinking. 

PMMA – 350 kDa  PS – 350 kDa  EC – 220 kDa  

PS – 35 kDa EC – 14 kDa 

MEK 

DCM 

PS – 35 kDa  EC – 15 kDa  PMMA – 15 kDa  
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The polymer glass transition happened as the polymer accumulated on the surface due 

to relatively slow diffusion of the polymer chains (detailed description in Chapter-2) 

and as the droplet cooled down due to evaporative cooling. After skin formation, the 

solvent evaporation slows down (as it has to diffuse through the skin layer). The skin 

formation may prevent the droplet from further shrinking. However if the formed skin is 

flexible enough the capsule defined by the skin will buckle or wrinkle as the solvent 

continues to evaporate, or it can deflate. These changes can occur during flight, or after 

arriving to the collector. 

When we increase the RH in the same system (PMMA-350; 5% w/v), the particle shape 

and size are very similar, and the thin filaments are present, too (Fig. 3-7(b)). The most 

obvious difference is the surface porosity. The pores are relatively small and uniformly 

distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 350 kDa PMMA-MEK at different initial concentration; flow rate: a-e) 2 

µl/min, f) 3.5 µl/min, scale bar: 1 µm. 

a) 5 w/v%  10% RH       b) 5 w/v%    60% RH  magnification of b) 

c) 1 w/v%  8.6% RH       d) 1 w/v%     83% RH  magnification of d) 

e) 0.2 w/v%  8.6% RH       f) 0.2 w/v%     70% RH  magnification of f) 
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Lowering the initial concentration (1.0% w/v) of the high Mw PMMA solution (Fig. 3-

7(c-d)), the jet broke up into droplets at both low and high RH. At low RH (Fig. 3-7(c) 

we found filaments connected to the particles, which were formed due to coulombic 

instability during the drying stage. We think that the filaments are not remnants from 

uncomplete jet breakup because the polymer concentration is low, the entanglement 

number is low, and additionally the jet was shorter, than for the 5% w/v concentration, 

so it could break up in the co-flow protected region (see also in Chapter-2). Additionally 

we can see that at high RH (Fig. 3-7(d)) there are no filaments, which strongly suggest, 

that at low RH the jet broke-up, too. Thus the filaments seen at low RH are present 

because at the droplet shrunk below the Rayleigh instability diameter, and the droplet 

ejected a viscoelastic liquid jet which dried up without disintegration into progeny 

droplets (Chapter 2). At low RH the collected particles are deflated (again cup-like) and 

a little bit stretched toward the filaments. The particle size gets smaller as the initial 

concentration decreases, as expected, since the computed initial droplet sizes are similar 

(see table 2-). The particle surface is smooth again. 

At high RH (Fig. 3-7(d)) at 1% w/v polymer concentration, the shape is very different 

from the shape obtained at low RH. The filaments are missing, the particle diameter is 

slightly larger with open shell (probably thinner) and the surface is rough with nano-

pores. At high RH the skin formed before the droplet reached the Rayleigh instability 

diameter during shrinking, disallowing jet emission. We also see that the particles are 

hollow inside, they consist of a thin shell. Probably the shell wanted to deflate similarly 

to the higher concentration or lower RH case (before or after losing the charge) but it 

was mechanically weaker, and it torn/broke instead. At 1% w/v the surface is not as 

porous as at the 5% w/v. 

At the most dilute PMMA350 solution (0.2% w/v) at low RH, we see particles which 

went through extensive stretching due to Coulomb forces during the drying. They are 

elongated with smooth surface (Chapter-2). At high RH a film of fused structures forms, 

which appear to be thin shells. It is difficult to distinguish what was the shape of the 

individual particles. 
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3.3.2. PMMA-15 morphologies from MEK solutions at low and high RH 

We repeated the same sequence of experiments (low and high RH, three concentration 

levels) with MEK solutions of a lower molecular weight PMMA, 15 kDa. Due to the 

fact that this molecular weight is close to the entanglement critical value (Table 2-1), 

the polymer chain entanglement is very low. Also the polymer diffusion can be faster in 

the same butanone solvent than for the higher molecular weight polymer. 

In general at low RH (Fig. 3-8(a,c,e)) the main particle shape is similar to the PMMA-

350 case (section 3.3.1.2), but a little bit more compact, which is in accordance with the 

faster diffusion for the low molecular weight polymer (Chapter-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 15 kDa PMMA-MEK at different initial concentration; flow rate: 2 µl/min, 

scale bar: 1 µm. 

a) 5 w/v%    7.5% RH     b) 5 w/v%    63% RH  magnification of b) 

c) 1 w/v%  9% RH       d) 1 w/v%    60% RH  magnification of d) 

e) 0.2 w/v%  10% RH     f) 0.2 w/v%    63% RH  magnification of f) 
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At high RH at 5% w/v initial concentration (Fig. 3-8(b)) we see bigger particle size than 

at low RH indicating earlier polymer precipitation. The lack of fibers means that no 

Coulomb explosion happened at high RH, similarly to the PMMA-350 case. The 

particle surface is textured instead of a smooth, but not porous (maybe nano-pores) as in 

the case of high Mw (Fig 3-7). The buckling is less extensive, than for the low RH case, 

the shell remained more spherical. At the same time, the shell is torn at some places 

showing that the shell/skin is weaker and less elastic, than at low RH. It can also be seen 

from/through the surface holes that the particles are hollow inside. 

At 1% w/v concentration at high RH particle size also increases compared to the low 

RH case, the progeny particles disappear, and the shell is also open (perhaps torn apart) 

and a bit sticky (Fig. 3-8(d)). At the lowest concentration (0.2% w/v – Fig. 3-8(f)) wet 

shell residues were collected similarly to the PMMA-350 case of the same lowest 

concentration (Fig. 3-7(f)). Only pieces of shells can be identified, it seems that the 

particles/shells were still wet when they were deposited and fused together extensively. 

3.3.3. EC morphologies from MEK solutions at low and high RH 

We studied another polymer, ethyl cellulose (EC), in butanone, to see whether similar 

trends happen when changing RH. We studied high Mw EC at three concentration 

levels, and a low Mw only at the highest concentration (5% w/v) level. At low RH the 

collected particles are smooth both for high and low Mw (Fig. 3-9(a) and Fig. 3-10(a)). 

The particles are flattened instead of cup-like shape in the case of EC-220 (Fig. 3-9(a)), 

suggesting thinner shell for EC than for PMMA. Some of the droplets vitrified while 

undergoing coulombic instability at both Mw, at all concentrations, as the pointed, tailed 

or elongated particles show (Figs. 3-9(a,c,e) and 3-10(a)). For the lower concentration 

levels of high Mw EC (Fig 3-9(e)), we found progeny particles, as a result of Coulomb 

explosions (see Chapter 2). 
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Figure 3-9 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 220 kDa EC-MEK at different initial concentration; flow rate: a-d) 2 

µl/min, e) 2.5 µl/min , f) 3.5 µl/min, scale bar: 1 µm. 

 

At high RH at 5% w/v initial concentration (fig. 3-9(b)), the size did not change 

significantly from the low RH case, but the elongated and pointed shapes have 

disappeared, and we find small pores on the surface, similarly to the high Mw, high 

concentration PMMA case (Fig 3-7(b)). At 1% w/v (Fig. 3-9(d) the effect of RH is also 

similar to the PMMA case (Fig. 3-7(d)). The polymer precipitated out on a bigger 

droplet, before the first coulombic instability happened, thus protecting the droplet from 

fission and the surface is not as porous as in the case of 5% w/v. At 0.2% w/v the 

particles are again fused, clearly indicating that they arrived “wet” at the collector (Fig. 

a) 5 w/v%  13% RH  b) 5 w/v%  60% RH 

c) 1 w/v%  10% RH  d) 1 w/v%  60% RH 

e) 0.2 w/v%  10% RH  f) 0.2 w/v%  60% RH 

magnification of b) 

magnification of f) 

magnification of d) 
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3-9(f)), following the general trend we observed for the lowest concentration high 

humidity cases. Since EC, like PMMA, are not water soluble, the particles must have 

retained some solvent (MEK). 

For low molecular weight EC, 5% w/v concentration (Fig. 3-10(a-b)), the RH has a 

similar effect. At low RH particles went through coulombic instability and deflated into 

cup-shape capsules. At high RH no signs of Rayleigh instability are found, instead very 

corrugated shapes. Small pores at high RH are visible on some of the particle surfaces. 

The pores are smaller and much less apparent than for the high molecular weight spray 

shown in the magnification of Fig. 3-9(b). 

 

 

 

 

 

Figure 3-10  Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 15 kDa EC-MEK; flow rate: 2 µl/min. 

 

3.3.4. PS-350 morphologies from MEK solutions at three RH levels 

We also studied polystyrene (PS) of high and low molecular weights at three 

concentration levels. PS is a non-polar polymer with very low affinity for water. We 

included intermediate humidity levels in these experiments, too. 

For PS-350 in butanone at 5% w/v initial concentration we got bucked, deflated 

particles with a smooth surface (Fig. 3-11(a)). As we have shown in the previous 

chapter, the polymer precipitated out forming a shell before the Rayleigh instability 

diameter could be reached during droplet shrinking. 

 

 

a) 5 w/v%  13% RH      b) 5 w/v%  71% RH  magnification of b) 
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Figure 3-11 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 350 kDa PS-MEK at different initial concentration; flow rate: a-c) 2 µl/min, 

d) 2.5 µl/min , e-i) 3.5 µl/min, scale bar: 1 µm. Inset in i) shows a single main particle 

from the periphery of this collection. 

 

At high RH (Fig. 3-11(c)) the particles become globular and present extensive surface 

porosity. The pore sizes are non-uniform, as well unevenly distributed over the particle 

surface. We speculate that the particles remained more spherical than in the previous 

systems we studied because pores connecting through to the interior would keep the 

inner and outer pressure of the microcapsule in equilibrium during solvent evaporation. 

The structure at intermediate RH (Fig. 3-11(b)) was unexpected. The particles show 

asymmetric porosity and buckling. The porous side is bent concave and the smooth side 

buckled similarly to the low RH case. It appears as though the exposure to moisture was 

consistently greater on one side of the droplets during their travel (at least while the 

a) 5 w/v%    9.7% RH    b) 5 w/v%  37% RH      c) 5 w/v%  60% RH  

d) 1 w/v%    8.9% RH     e) 1 w/v%  40% RH      f) 1 w/v%  60% RH  

g) 0.2 w/v%  9.8% RH    h) 0.2 w/v%  41% RH      i) 0.2 w/v% 64% RH  
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outer, porous shell formed). Later, as more solvent evaporated, the asymmetric shell 

mechanical properties led to asymmetric buckling. The random orientation of the shapes 

indicates that the microstructure formed prior to deposition. 

For 1.0 and 0.2% w/v initial polymer concentration solutions sprayed at low RH the 

particles carry filaments (Fig. 3-11(d) and (g)) or are elongated (Fig. 3-11(g)) showing 

that Rayleigh instability has been reached during droplet shrinking (Chapter-2). Upon 

increasing RH the filaments disappear (Fig. 3-11(e) and (h)), and porous thin spherical 

shells form, many of which appear to be broken. The pore size decreases with reduced 

initial polymer concentration. In Figure 3-11(f) we see that the concave “inside” surface 

of the shells is also porous. Shell breaking could mean a more fragile structure than at 

low RH, and could be broken by (i) electrostatic disintegration (a sort of Coulomb 

fission in the solid state), or (ii) compressive failure (breakage) induced by mechanical 

stresses generated on collision with the particulate film. At very low concentration at 

the highest RH the droplets again arrived sticky (Fig. 3-11(i)), but they kept the porous 

shell structure. 

3.3.5. PS-35 morphologyes from MEK solutions at three RH levels 

For the lower molecular weight PS (35 kDa) at low RH at all the concentrations tested 

(Fig. 3-12(a,d,g)) we find filamented deflated particles with smooth surface. At 5 and 

1% w/v initial concentration the filaments do not disappear at intermediate RH (37%), 

but their frequency is reduced. In addition holes appear on the particle shell (Fig. 3-

12(b,e)). At the highest RH (Fig. 3-12(c,f)) the filaments have mostly disappear and 

hollow particles are formed with a shell with holes. At the lowest concentration 

intermediate RH (35%) the particles arrive wet again, we assume that at high RH the 

particles to be wet, but we do not have data for high RH. 
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Figure 3-12 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 35 kDa PS-MEK at different initial concentration; flow rate: 2 µl/min, scale 

bar: 1 µm. 

 

3.3.6. PS-35 and EC-15 morphologies from DCM solution at low and 

high RH 

We tested the effect of humidity in the case of low molecular weight PS and EC with 

another water-immiscible solvent, DCM at 5% w/v initial concentration. DCM has a 

lower boiling point and lower water solubility, than butanone (Table 3-2). 

At low RH we again got smooth particles (Fig. 3-13(a,c)). The ethyl cellulose particles 

were more spherical (Fig. 3-13(c)) than the PS particles, which clearly reached Rayleigh 

instability as we can see from the elongated, dumbbell shapes of Fig. 3-13(a). The effect 

of RH is remarkably different for the two polymers. At elevated RH (60%) the PS 

a) 5 w/v%   9.9% RH   b) 5 w/v%  37 RH%    c) 5 w/v%  60% RH 

e) 1 w/v%   10% RH     f) 1 w/v%  39% RH    g) 1 w/v%  81% RH 

h) 0.2 w/v% 7.1% RH   i) 0.2 w/v%  35 RH% 
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particles are porous and globular with a small degree of buckling (Fig. 3-13(b)). Again, 

the fact that at high RH we got spherical particles supports the hypothesis, reached in 

Chapter-2, that the particle shapes at low RH are the results of coulombic instabilities, 

rather than incomplete jet break-up. (As shown in Figure 3-6, the cone-shapes and the 

jet lengths are similar.) 

In the case of EC, the particles are porous with a quasi regular cell structure at the 

surface (Fig. 3-13(d)). The magnification of Fig. 3-13(d) shows that the cell wall itself 

is porous. High molecular weight EC in DCM was attempted but could not stabilized 

easily. So those tests were not pursued further. Nevertheless 1% w/v EC-220 in DCM at 

~60% RH gave very similar structures to the low molecular weight EC solution shown 

in Fig. 3-13(d). 

 

 

 

 

 

 

 

 

 

Figure 3-13 Effect of RH on the deposited morphologies obtained by electrospraying 

solutions of 35 kDa PS/DCM (a,b) and 15 kDa EC/DCM (c,d); flow rate: 2 µl/min, 

scale bar: 1 µm. 

 

a) 5 w/v%  9.7% RH   b) 5 w/v% 60 % RH    magnification of b) 

c) 5 w/v%  9.7% RH    d) 5 w/v%  60% RH       magnification of d) 
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3.3.7. Proposed mechanisms 

Similarly to electrospinning works (see section 3.1.1) we have found differences in 

microstructure (of the particle in this case) depending on the type of polymer, its initial 

concentration, its molecular weight, and the solvent. 

 

Table 3-3 Main trends in particle surface topography observed in the present study, changing 

different factors at high RH. 

(1)  

effect of solvent 

(c0 = 5% w/v) 

 

 

 

PS-35 

MEK                     DCM     

EC-15 

MEK                    DCM 

 

 

       

DCM gives more porous structures for PS and more “holey” for EC  

(2) 

effect of 

polymer in 

MEK 

(c0 = 5% w/v) 

 

low Mw polymer  

EC-15                PMMA-15            PS-35 

high Mw polymer 

EC-220             PMMA-350          PS-350  

EC (most deflated, corrugated)  PMMA  PS (most rigid/spherical)  

(3) 

effect of 

concentration 

in MEK 

 

From wet, sticky shell like particles  hollow particles, thin shells  thicker shells for 

low Mw/porous surface for high Mw 

(4)  

effect of 

polymer Mw in 

MEK 

(c0 = 5% w/v) 

 

PMMA 

15 kDa            350 kDa M 

EC 

15 kDa              220 kDa  

PS 

35 kDa              350 kDa  

higher Mw results in more porous surface than low Mw 

 

The most obvious effects due to RH in our experiments are the disappearance of 

nanojets arising in coulombic instabilities, the appearance of surface porosity and the 
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wet deposition at the lowest initial polymer concentrations. In addition to these 

morphological changes, we observe differences in extent of corrugation (buckling). 

The four most important effects caused by RH on particle porosity (or surface 

topography) versus the studied factors are summarized in Table 3-3, and are listed in 

more detail next: 

(1) The primary effect of solvent is for DCM to give more porous structures than MEK, 

(both in PS and in EC). 

(2) The main effect from the polymer is that PS (the tested polymer with the lowest 

affinity for water) forms more globular particles than EC or PMMA, and high molecular 

weight PS has the biggest tendency to form porous microstructure. 

(3) The main effect from initial polymer concentration is to form a wet, sticky 

deposition at low (0.2% w/v) concentration; less sticky or solid, thin sometimes porous 

shell at intermediate (1% w/v) concentration, and thicker, sometimes porous shells at 

high (5% w/v) concentration. Pore size increases with initial polymer concentration in 

the case of the high molecular weight polymers (PS-350, PMMA-350, EC-220). For the 

low molecular weight polymers (PS-35 and PMMA-15) increasing the initial 

concentration did not give more porous structures, the effect of initial concentration is 

reflected only in a thicker shell for the higher initial concentration. 

(4) The main effect from polymer molecular weight (at least at high concentration) is to 

give more porous structures for the high Mw than for the low Mw. This trend is 

observed for the 5% w/v polymer concentration, but is not present in the moderate (1% 

w/v) concentration case. 

A complete physical model and its mathematical formulation would be quite complex, 

and is therefore beyond the scope of this work. Instead we attempt a qualitative 

explanation of the major effects based on expected mechanisms and phenomena leading 

to the observed trends. 

Our model starts by considering the droplet temperature. Our solvents, MEK and DCM 

are water immiscible and quite volatile. The surface temperature of the evaporating 

droplets can be easily estimated considering pure solvents. Using the relation between 

the solvent’s wet bulb temperature and its boiling point, proposed by Miller et al [45] 
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the droplet surface temperature for MEK is around 9ºC and for DCM is -18ºC. At these 

temperatures and at any of the elevated RH test conditions used, water vapor is expected 

to condense on the droplets. So water condensation is expected to be the dominant 

mechanism for the water getting the droplet surface (while the droplet is liquid and the 

polymer remains dilute on the droplet surface). The net charges on the droplet surface 

may act as nucleation sites for water. 

One candidate location for the start of polymer precipitation (vitrification) on the 

electrosprayed droplets is just underneath the nanodrops of condensed water. Since this 

is where the water and the polymer concentrations are the highest, therefore where 

thermodynamic instability would first occur. It is more likely for the polymer to 

precipitate (or vitrify) at the water-solution interfaces between the droplet and its many 

nanodrops of condensed water. At the same time the water nanodrops are expected to 

imprint dimples on the droplet surface due to the higher surface tension of water. The 

dimples will act as templates during polymer precipitation similarly to BFF. Therefore, 

one way to explain the observed differences in porosity is to predict differences in 

nanodrop size at the time of polymer precipitation. 

The rate of water condensation on a DCM droplet ought to be faster, for a given RH, 

than on a MEK droplet of equal initial size. The reason is that the water vapor 

concentration gradient will be steeper next to a DCM droplet because the water vapor 

concentration at the colder droplet surface will be lower. As more water accumulates 

(per amount of solvent lost) in the case of DCM, the condensed nanodrops will grow in 

size and perhaps coalesce. Furthermore, water solubility in DCM is negligible, while it 

is finite in MEK. This means that water will diffuse into MEK droplet more readily. As 

a result, the condensed water nanodrops on a MEK droplet will grow slower, if at all, 

than on a DCM droplet. In addition, in the case of a faster evaporating droplet (DCM), 

the polymer Péclet number would be higher, resulting in higher polymer concentration 

at the droplet surface (for a given % loss of the solvent). In conclusion, it seems more 

probable to find imprints left by water nanodrops on DCM droplets than on MEK 

droplets, for the same polymer and initial concentration (considering similar polymer 

solubilities in the two solvents). This is indeed found in the experiments; see Table 3-3 

and Figures 3-12(b) and 3-13(b) (PS-35) and Figures 3-10(b) and 3-13(d) (EC-15). 
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This model would predict that a polymer with less affinity for water, such as PS in our 

experiments (i.e. having lower cloud-point water concentration), would precipitate 

earlier (on the solution/water interface), when the nanodrops are smaller (see row (1) in 

the Table 3-3).. If these nanodrops cause templating smaller pore size would be 

obtained with such polymer. This may explain why smaller pores form for PS-35 than 

for EC-15 in DCM, a solvent for which the templating scenario is more probable (as 

argued before). 

In the low concentration samples in MEK, we would not expect significant surface 

porosity by BFF. In these cases, although water condensation is expected, templating by 

this water may not be happening, either because (1) water diffuses into the solution 

phase (more so in MEK than in DCM, as mentioned earlier), or because (2) the polymer 

does not precipitate forming a layer around the water nanodrops. Thus, significant 

amount of water can get into the core of the droplet at low polymer concentration. The 

presence of water in the core may explain the hollow particle formation (found typically 

at 1% w/v concentration), as it may slow down the polymer diffusion into the core 

(compared to the low humidity cases). It is also possible, that at low concentrations 

MEK and water phase separate in the process due to their low affinity (immiscibility) 

before polymer precipitation takes place. The wet particle (or droplet) deposition at the 

lowest concentration indicates that polymer vitrification was delayed by the presence of 

water in these cases. 

As we discussed earlier, the mechanism for surface pore formation is possible by 

nanodrop templating for high molecular weight samples at the highest concentration. 

However, for the lower molecular weight samples we have not found surface porosity, 

but hollow particles, instead. Similarly to the low relative humidity cases, we would 

expect less polymer accumulation on the droplet surface for low than for high molecular 

weight polymers. According to the discussed model, the higher polymer concentration 

on the surface would prevent the condensed water nanodrops to coalesce. The higher 

viscoelasticity of the high molecular weight polymers may also play a role in preventing 

such coalescence. However, for the lower molecular weight samples the water may 

coalesce forming a bigger template in the polymer solution droplet. 
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3.4. Conclusions 

We have studied the effect of ambient relative humidity (RH) on the particle formation 

mechanism during electrospray with different solutions of non-water soluble polymers 

(PMMA, EC, and PS) having either “low” (~10-35 kDa) or “high” (220-350 kDa) 

molecular weight, and a volatile, water immiscible solvent (either butanone or 

dichloromethane), at different initial concentration (0.2, 1.0, or 5.0% w/v).  

We have found that the most notable effect due to RH is the prevention of coulombic 

instabilities (while at low RH we found Coulombic instabilities only with a few 

exceptions). We interpret that water from the ambient is transported into the polymer 

solution phase, accelerating the formation of a glassy polymer phase, which becomes a 

shell that is rigid enough to prevent the reaching of the Rayleigh instability diameter.  

The surface porosity of the particle also differs much at low and high RH comparing the 

corresponding initial solutions. At low RH (very dry ambient) the particle surface is 

smooth, while at high (~60-70%) RH, it is not smooth, being porous at high molecular 

weight and high initial polymer concentrations. At lower concentrations, the surface 

pores become smaller and less obvious, even disappearing. For the low molecular 

weight solutions, the porosity is not present or visible. Under high RH, the solutions 

with lowest polymer concentration (0.2% w/v) leads to wet collection at the same 

collection distance from the electrospray needle as used at other concentrations. This 

result (not described before, or attributed to the presence of high RH in any electrospray 

works) is surprising, and might be related to plasticization by the water in the solution.  

When using butanone as solvent, the pores are significantly smaller than when 

dichloromethane is used. We think that water condenses on the surface of the droplet 

and interacts with the solution in different ways. In the case of dichloromethane solvent 

evaporation and water condensation are faster than for butanone. Therefore, we attribute 

the formation of the marked porous structure to the templating of the droplet surface by 

condensed water nanodrops, leaving an imprint. This proposed mechanism is similar to 

the phenomenon called breath figure formation, which has been described to explain 

similar structures on spin coating films, as well as on electrospun nanofibers. However, 

this mechanism is not as prominent for the case of butanone, where the pores are 

smaller and occupy a smaller fraction of the particle envelope, or do not form. 
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4. Structure and growth of granular films 

produced by electrospray deposition 

This chapter is a revised and updated version of published article [56]. 

 

4.1. Introduction 

ElectroSpray Deposition (ESD) is suitable for preparing micrometer-thin or thinner 

layers as it is based on micro- or nano-droplets of uniform sizes. In addition, the high 

electrical charge on the droplets prevents their agglomeration in the spray, and allows 

electrophoretic precipitation onto electrically conducting substrates [1]. Films of 

different materials have been prepared by ESD in the context of different applications: 

(a) Inorganics (e.g. metals, ceramics, semiconductors, etc) have been prepared from 

electrosprays of nanoparticle suspensions (sols) and solutions of precursors which are 

pyrolyzed post deposition [1]. A 2005 review [1] cites ~90 articles dealing with ESD-

coated inorganics for uses in diverse applications, like fuel cells, solar cells, lithium 

battery electrodes, gas sensors, optoelectronic devices, and ferroelectric materials. To 

these, we have found more recent works [2-9]. (b) Synthetic polymers constitute a 

second material category, which has been wet-coated to form continuous films for uses 

in organic photovoltaic structures [10], organic light emitting diodes (OLED’s) [11-13], 

superhydrophobic or controllable wetting surfaces [14, 15], drug-eluting coatings of 

coronary stents [16, 17], PEM fuel cell membranes [18], coatings for SAW resonators 
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[19], and photoresist coatings over fragile thin films [20]. (c) Finally, Biopolymers 

(proteins, DNA, polysaccharides) have been electrosprayed for creating protein and 

DNA-based arrays for biosensors and cell research [21-24], and starch films [25]. Other 

materials are cited in [1]. 

In most ESD studies the function of the film depends on its film-averaged behavior, 

while the morphological characterization of the film is local. However, the distribution 

over the film of the variables characterizing morphology (such as thickness or porosity) 

is not investigated, or assumed to be uniform. However, electrospray studies by 

Rietveld et al. [20] and Morozova et al. [24] have shown that film thickness can vary 

significantly from the film center to its edge. Non uniform profiles of particle collection 

mass flux have also been predicted in numerical simulations of the ESD process, both 

for single electrosprays [26, 27] and multiple-electrospray systems [28-30]. Therefore, 

uneven distribution of the local film properties (thickness, porosity, etc) ought to be 

expected a priori, before any optimization of the process (e.g. electrical field) is 

attempted. 

Therefore, the objective of this work is to investigate the factors which can influence the 

distribution of thickness, mass and porosity. Specifically, we characterize 

experimentally the growth dynamics of coatings by electrospray-generated ethyl 

cellulose (EC) particles. The EC particles form by drying of the electrospray droplets 

while in flight towards the collection surface. EC, a water-insoluble polysaccharide, has 

been chosen as the solute for this study because its coatings are highly stable under 

storage, thus convenient to work with, and because it leads to measurable effects. We 

follow the structure and dimensions of the granular coatings in time, and study how they 

are influenced by chamber relative humidity and collection mass flux. Mass flux is 

varied via the electrodes separation. These factors have been studied because they 

influence the accumulation of electrical charge on the coating. Indeed, the coatings 

grow not only thicker, but wider as well. We show the reason to be electrostatic buildup 

on the coatings, wherein electrical charges taken to the coating by the electrospray 

particles modify the electric field in the spray. ESD has long been performed over 

conducting substrates in order to prevent electrostatic charging [31]. However, we know 

of no research (experimental or numerical) that have looked into the question of how 

electrostatic charging of the coating affects its own growth dynamics. 
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4.2. Materials and Method 

4.2.1. Materials 

All reagents were used as purchased, without further purification. Ethyl cellulose (EC, 

Sigma-Aldrich, 4 cP viscosity, 48% ethoxyl content, density ρEC = 1.14 g/ml) was 

dissolved at 50 g/L (5% w/v) in 2-butanone (MEK, Sigma-Aldrich, ACS reagent grade) 

at room temperature. From the viscosity a number-average molecular weight around 13-

15 thousand Dalton has been estimated by applying the Mark-Houwink equation [32]. 

The electrical conductivity of the solution was measured by measuring the DC current 

through a narrow polyimide-coated fused silica capillary across which a low DC voltage 

was established. The measured value is 5.9·10-4 S/m at 25.3ºC. Nitrogen (Carburos 

Metálicos, Premier grade) is used as primary drying gas and as co-flow gas around the 

electrospray needle. Substrates used for particle collection were cut from p-type boron 

doped silicon wafers (Compart Technology Ltd., P/Boron, <100>, 500 µm thickness), 

and were used without cleaning or removal of native SiO2. 

4.2.2. Electrospray deposition apparatus 

The electrospray capillary tube (‘needle’) is a square-cut polyimide-coated fused-silica 

tubing (OD = 200 μm, ID = 100 μm, length ~80 mm). It is housed within a chamber, as 

shown in Fig. 4-1(a). The chamber is defined by four glass walls, a methacrylate top 

plate, and an aluminum plate (Al plate) at the bottom. Collection substrates are placed 

on the Al plate. Thin slits exist under two of the chamber walls (as shown in Fig. 4-

1(a)), through which collection substrates are moved in and out of the chamber, and 

drying gas flows out of the chamber. A circular back plate electrode (back plate) is 

placed 17 mm behind the needle in order to better define a directional electric field in 

the space occupied by the electrospray. The distance between the electrospray needle 

and the collection plate (H in Fig. 4-1(a)) was adjusted by moving the needle and back 

plate together within the chamber. 

The plate is perforated at several locations to allow nitrogen flow. However, nitrogen 

also flows in the space between the back plate and the chamber walls. The total nitrogen 

flow into the chamber is 1.0 slpm. Water vapor is sometimes added to the nitrogen 

stream in order to elevate the relative humidity (RH) in the chamber. The chamber RH 
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is monitored using a Vaisala HM34 humidity meter, whose probe (not shown) is 

inserted through the Al and teflon plates. 

 

 

 

 

 

 

 

 

Figure 4-1  (a) Electrospray deposition chamber (approx. to scale, with H = 20 mm as 

shown) and surrounding equipment, (b) close up of the silica tube (“needle”) and sheath 

gas tube, (c) Taylor cone-jet meniscus at the end of the needle, (d) annealed film with 

Newton rings. 

 

Concentric with the electrospray needle is a glass tube (1.3 mm ID, 1.8 μm OD) (Fig. 4-

1(b)) used for supplying a gentle stream (0.015 slpm) of solvent vapor-laden nitrogen, 

around the electrospray needle. Such sheath gas was found to be essential to prevent 

drying of the Taylor cone meniscus [33]. 

The collection substrates are sufficiently conductive to be at the same potential as the 

bottom plate. The electrospray current was determined by collecting the current on a 

homemade nano-ammeter connected to the Al plate. It was acquired at 10 Hz into a 

computer (PC). 

EC/MEK solution is infused into the electrospray needle using a Harvard Apparatus 

HD-2000 syringe pump, at a constant volumetric rate of 2 μL/min. High voltage was 

applied to the liquid at the metal connector shown in Fig. 4-1(a). The high voltage is 

generated with power supply (HVPS) Matsusada AMS-10B2-LC. It is fed through a 

safety resistor (not shown) to the metal connector and to the back plate (Fig. 4-1(a)). 

The voltage at these elements was measured using a high voltage probe. 

c) b) 

d) 

a) 
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4.2.3. Electrospray film deposition 

In a typical experiment, the Taylor cone meniscus characteristic of the cone-jet 

electrospray mode was established at the needle end (Fig. 4-1(c)). A Si substrate was 

quickly positioned under the electrospray, and, after a desired length of time (deposition 

time), it was quickly removed. Metal foils were used as ancillary substrates to keep the 

Al plate clean. The chamber temperature during all of the experiments fell between 25.6 

and 26.1 ºC. The current-vs-time traces are collected to monitor the electrospray 

process. Since the motion of the substrates left a pulse on this trace, they could be used 

to obtain accurate determinations of the actual duration of each deposition. 

The nitrogen flow pattern in the chamber did not cause non-circular depositions at H = 

20 mm, whereas at H = 40 mm the deposits were slightly non circular (although this 

effect may not be due to the airflow pattern). 

4.2.4. Deposits characterization 

Local thickness (film thickness) was determined both on the granular films, and on the 

compact film obtained after thermal annealing. These data allow us to determine 

profiles of surface mass density (kg/m2) and film porosity. To determine these film 

thicknesses, the samples (substrate + film) were prepared as follows. The granular film 

sample as collected was placed onto a glass slide with its edge positioned under the 

desired fracture line. It was then nicked with a diamond tip, and gentle pressure caused 

the sample to fracture. The cut was aimed at the geometrical center (within 1 mm), and 

any samples with erroneous cuts were discarded. One half of the granular film sample 

was then saved for thickness measurement, while the other half (or, sometimes, a whole 

new film) was annealed on a hot plate at 160 ºC for 30 s. This temperature is slightly 

higher than the softening temperature of the EC used (155 ºC). When molten, a clearly 

visible light-interference pattern of Newton rings develops (Fig. 4-1(d)). The Newton 

ring pattern does not change even if the heating is sustained for much longer than the 

minimum time needed to develop the pattern (less than 1/2 min). This test demonstrates 

that the polymer collapses vertically under the heat, but does not flow along the film. 

After annealing the samples, they were then fractured along the symmetry plane at 

liquid N2 temperature, using the already outlined procedure. All samples were gold 

coated (~10 nm) and imaged by SEM in top and cross section views in a Quanta 650 
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scanning electron microscope (run typically at 30kV, with a 10 mm working distance). 

This procedure is based on the circularity of the deposits, since the profiles are taken 

from the fractured films along two orthogonal symmetry planes. 

4.2.5. Spray imaging experiments 

The photos of the ES plume of 5.0 w/v% EC-butanone solution were taken in a separate 

experiment from the detailed thickness profile study. We used the same electrode 

configuration and the co-flow settings but we removed the walls of the chamber to 

obtain proper illumination and avoid light scattering from the glass walls of the 

chamber. Therefore, these experiments were carried out without the humidity controlled 

N2 flow, and the ambient relative humidity was 60.1 %. Other conditions were similar 

to the other runs (see Table 4-1): H = 20 mm, liquid flow rate = 2 μl/min, applied 

voltage = 6.14 kV, T = 26.7 ºC. The measured DC current was 65 nA, and the film 

diameter after 14 min deposition was 20.75 mm.  

The illumination was 1-point backlighting at ~45º angle to the left to the camera 

objective. These settings were necessary to make the spray visible, but it also induced 

strong light scattering from the needle, and from the collected film itself, especially 

after longer collection time, as well as from other light scatterers (mostly dust particles 

and edges). Thus, the region close to the needle is clearly visible, but the bottom part of 

the spray is much more difficult to analyze. However, it is possible to see the outline of 

the spray. The digital camera exposure was 8 s, and the time reported (t) marks the end 

of the exposure time. 

 

4.3. Results and Discussion 

4.3.1. Macroscopic features of the film 

Fig. 4-2 shows camera images of two samples collected for 15 minutes, which is the 

longest deposition time of this study, at two RH conditions, using normal and long 

exposures. Under normal exposure, spots or regions of uneven grayness can be clearly 

seen at the center of the film collected at low RH (Fig. 4-2(a)), suggesting uneven 

topography. On the other hand, the film at high RH (Fig. 4-2(b)) has uniform grayness, 
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indicating smooth topography. The overexposed images (Figs. 4-2(c-d)) reveal tracks 

left on the substrates as they were moved under the electrospray. These tracks are a few 

times narrower than the circular deposits, showing that the electrospray was narrower 

than the size of the particle deposit. This effect, noted in all samples of the study, is due 

to the spray expansion over time as the particles are collected on the same spot. 

Additionally, the low RH image (Fig. 4-2(c)) shows the presence of an uneven crown 

around the coating, which would appear to be made of particles ejected from the 

circular deposit (rather than deposited from the spray). 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Short exposure (top) and long exposure (bottom) photographs of 2 EC films 

collected during 15 minutes under dry (a, c) and under humid (b, d) chamber ambient 

conditions. H = 20 mm. 

 

4.3.2. Particle size, shape, and segregation by size 

In order to optimize the spraying and collection conditions that allow for complete 

drying of the particles, the Si substrates have been electrospray-deposited for short time 

and the particles were inspected by SEM. The duration of the collection was kept short 

in order to avoid overlapping of the collected particles (droplet relics). Larger particles 

distributed in a main central region of the coating (Fig. 4-4(a)), and much smaller 

7.9% RH 60% RH 

a) b) 

c) d) 
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particles are found at the periphery of the coating (Fig. 4-4(b)). Figs. 4-4(c-d) show 

magnified SEM images from these locations. The particles from the central region (Fig. 

4-4(c)) are uniformly sized and are cup (or bowl) shaped, suggesting that they first form 

as capsules by formation of a polymeric skin at the droplet surface, and then the 

capsules deflate as solvent leaves from within the capsule. On the other hand, the 

smaller particles at the periphery of the coating are not uniform in size and shape (Fig. 

4-4(d)), many of them being elongated or pointed (tear shaped) indicating that they 

underwent coulombic instability as they dried up (see chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3  Electrical current vs. time traces for two consecutive collections of EC/MEK 

electrospray coatings under dry and humid conditions. Same conditions as in Fig. 2. 

 

The formation of two distinct size modes is characteristic of droplet formation by the 

breaking up of a liquid jet by growth of axisymmetric varicose waves, the so called 

Rayleigh jet break up mechanism [34, 35, 36]. The larger mode is made of so called 

main droplets (or primary droplets), while the smaller size mode is made of so called 

satellite droplets, The diameter of the main drops is fairly regular. Their mean diameter 

is about twice the jet diameter (theoretically, 1.89 times in the case of inviscid liquids; 
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see Chapter 1. Introduction). Satellite droplets are more variable in size, and grow in the 

liquid bridges that form between main droplets when they detach from the jet. 

The distribution of our particles with large, uniformly sized, particles in the center of 

the collection region, and small, broadly sized, particles in the periphery is also 

consistent with the Rayleigh jet break up mechanism. Because of their smaller inertia, 

satellite droplets formed from EHD microjets typically migrate towards the periphery of 

the spray, while the main droplets remain within the spray core [35, 37]. 

When electrospraying under elevated chamber RH (Figs. 4-4(e)-(f)), the particles 

arising from the main droplets (Fig. 4-4(e)) become flatter, pancake-shaped, with a 

corrugated or dimpled wall. The particles from satellite droplets (Fig. 4-4(f)) are now 

round instead of elongated. As discussed in the previous two chapters, this is related to 

the difference in polymer precipitation mechanism, which facilitates the earlier 

formation of a glassy shell on the droplet surface. Thus, coulombic instability is 

thwarted for the satellite droplets. 

Filaments are nearly absent from the main particles in the low RH case, and completely 

absent in the elevated RH case. Therefore, it is reasonable to conclude that the main 

particles in Fig. 4-4 form early in the droplet evaporation history, before the first 

coulombic instability is met. The mechanism of formation is polymer precipitation on 

the surface of the droplet, before the critical droplet radius for coulombic instability. 

Next, the solvent leaves the droplet by diffusion through the polymeric shell, wherefrom 

it evaporates into the gas surroundings. In doing so, the shell collapses, adopting a bowl 

shape, as found in the deposits. The mechanical strength of the initial polymeric shell 

prevents the development of coulombic instability, even despite the fact that during 

droplet collapse the electrical stresses will increase, as the net charges on the particle 

surface are brought closer together. 

The shape change experienced by the satellite particles, from elongated to round, as the 

RH is elevated (Fig. 4-4(d) to 4-4(f)) suggests that ambient water vapor acts in this case 

as a non-solvent for the water-immiscible polymer, accelerating its precipitation on the 

droplet surface (see chapter 3). 
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Figure 4-4  SEM images of droplet residues collected from EC/MEK at dry (a – d) and 

humid conditions (e, f). Sampling locations: (a, c, e) are from near center of coating, (b, 

d, f) are from the edge of the coatings. Deposition time = 10 s; H = 20 mm; 2 μL/min. 

Scale bar = 1 μm. 

 

4.3.3. Local mass distribution on the particulate film 

Coatings from EC/MEK electrosprays were collected under low and high chamber RH 

values (‘low’ being below 10%, and ‘high’ above 50%), and different combinations of 

needle-to-plate separation H, and deposition time t. At needle-to-plate separation H = 20 

mm, collection times were t =1, 4, and 15 min; whereas the effect of reducing the 

deposition flux was studied by increasing H to 40 mm for t = 4 min. Table 4-1 lists the 

conditions tested along with some film characteristics. Fifteen minute depositions at low 

a)  EC/MEK             8.2 %RH               b)  EC/MEK     8.2 %RH 

c)  EC/MEK             8.2 %RH                d)  EC/MEK     8.2 %RH 

e)  EC/MEK             68 %RH                f)  EC/MEK    68 %RH 

CENTER         EDGE 
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RH at H = 20 mm were not analyzed by SEM because, as discussed earlier in the 

context of Figs. 4-2(a) and 4-3(a), they had unstable electrical current and variable 

topography and particle deposition beyond the deposit circular outline. 

Fig. 4-5 shows SEM views of the cross sections at different radial positions, for one 

coating sprayed under low chamber RH (left side) and another under high RH (right 

side). Near the center of the coating (Fig. 4-5, top two images) the particles are 

uniformly sized and similarly shaped. However, a thin underlying sublayer made of 

relics from satellite droplets is found at more peripheral locations (in the two r2 images, 

as well as the r3 image on left side). The steadiness of the electrical current-time traces 

during these depositions (Fig. 4-3) proves that the electrospraying process was stable. 

Consequently, we conclude that the electrospray, made of a core of main 

droplets/particles and a shroud of satellite droplets/relics, must have widened 

throughout the duration of the deposition process. 

Figure 4-5 also shows the influence of RH on the radial distribution of film thickness. 

At the center of the coating (r1), the film is much thicker at high than at low RH. Away 

from the center, at r3 and beyond, the reverse happens. In sum, the particulate mass 

spreads out more when electrospraying at low than at high RH; in other words, the 

electrospray appears to be widening. 

Figure 4-5 also shows that the particle shape varies with radial location for the high RH 

collection. Particles are distinctly flatter at r2 (‘pancake’ like) than at r1 (‘bowl’ like). 

The reason for this effect is still unclear, but it indicates the high sensitivity to droplet 

history, perhaps also to initial droplet properties (size and charge, expected to be 

slightly different for the main droplets depending on deposition location). 

The insets of the top images in Fig. 4-5 (r1) show the differences in particle texture 

depending on RH. The skin of the particles is smooth for low RH (Fig. 4-6(a)), but 

dimpled and pin-holed for high RH (Fig. 4-6(b)). Surface dimples are also visible at 

high RH at r2. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5  SEM micrographs of two EC deposits collected at dry conditions (on left side) 

and humid conditions (on right side), for different radial positions from the center (r = 

0). High magnification insets show differences in surface texture of the particles. 

Deposition time = 4 min. H = 20 mm. Scale bar = 1 μm. 

 

The formation of pores has been observed when fibers are electrospun into humid air. It 

is believed that different mechanism are at play, including the non-solvent action of 

water vapor during polymer precipitation, or of water condensed on the liquid-air 

interface by evaporative cooling (breath figure formation) [50]. 

Finally, the coatings in Figure 4-5 are relatively dense, having a rough surface, as is 

typical of ballistic deposition [49], namely particle deposition in which Brownian 

diffusion plays a negligible. Ballistic deposition is characterized by large values of the 

dimensionless number called Péclet number, DaUPe  , which is the ratio of the 

      0                     10 mm 

   r1            r2 r3  r1           r2    r3    r4       

      0                     10 mm 

a) 7.7 %RH             b)   60 %RH 

 
r1: 0.5 mm (center)   b)   60 %RH r1: 0.6 mm (center)   b)   60 %RH 

r2: 6.4 mm   b)   60 %RH 

r2: 6.3 mm   b)   60 %RH 

r3: 7.4 mm   b)   60 %RH 

r3: 7.0 mm (edge)   b)   60 %RH 

r4: 8.4 mm (edge)   b)   60 %RH 
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deposition speed of the particles U  to the effective thermal speed associated with 

Brownian movement aD / , where a  is the particles diameter, and D  their diffusion 

coefficient [57]. This value can be estimated at about 6.5×10
5
; therefore, diffusion plays 

a negligible role on the deposition process. 

4.3.4. Film thickness, mass and porosity profile 

Next, the EC deposits collected at different H, RH, and t were sectioned and annealed 

(as described in section 4.2), and the thicknesses of the granular and annealed films 

were determined at different radial locations. Film annealing consolidates the film 

without causing redistribution of the polymer from one radial location to another (as 

discussed in section 4.2). The local granular film thickness Gh  has been determined 

from SEM images such as those of Fig. 4-5, averaging 17 measurements evenly 

distributed across each SEM image. Each measurement is taken from the Si substrate to 

the highest point of the uppermost particle in focus. This is equivalent to considering 

particles within a depth of two or three particle diameters, typically, from the focal 

plane (cross sectioned plane). 

The local depth-averaged porosity P  (or volume fraction of the matrix, gas phase) can 

be obtained easily from the thicknesses of the granular film Gh  and of the annealed film 

Ah  (at the same radial location): 

G

AG

h

hh
P


           (4.1) 

P  equals 1 minus the depth-averaged solid fraction or density GA hh / . By using Eq. 

(4.1) to determine P, we assume that the density of the solid phase is the same in the 

granular (porous) film as in the annealed (consolidated) film. In other words, we assume 

that the annealed film does not have air bubbles. However, it is possible if not probable 

that the particles in the granular film will have some fraction of voids. If these disappear 

during annealing, these voids will contribute to the porosity P. 

Radial profiles of Gh , Ah , and of P  are shown in Figure 4-6 for deposits formed with H 

= 20 mm, at high and at low RH. The local porosity values have been computed from 

the polynomial fits of the radial profiles of the h data ( Gh  or Ah ) shown fitting the data 
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points. The Gh - and 
Ah -profiles (Figs. 4-6(a)-d) show that the films widen over time, 

both at high and at low RH. However, this expansion is slower when the RH is higher.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 Radial profiles of local thickness and porosity for granular coatings for different 

deposition times and RH, and local thickness for the annealed films. H = 20 mm. The 

trend lines are best fit polynomials of different degrees, and are used to compute the 

porosity according to Eq. (4-1). Actual RH values are provided in Table 4-1. 

 

Fig. 4-7 shows similar graphs for the films collected during 4 min at H = 40 mm, at low 

and high RH. As before films show more spreading at low RH than at RH. However, 

the spreading is less than in Fig. 4-6 (H= 20 mm) for the same deposition time, because 

the mass flux is smaller at a larger H, such that the same electrostatic charge is 

distributed over a much wider area. 

granular 

annealed 

granular 

annealed 

60 %RH      8 %RH 
a) b) 

c) d) 

f) e) 
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Figure 4-7  Radial profiles of the local thickness of granular coatings and of annealed films, 

and the local porosity of granular coatings (Eq. 4-1), for H = 40 mm and t = 4 min, 

under high and low RH (as indicated). The data scatter near to the film edge in Fig. 4-

7(a) is due to lack of roundness of these films. 

 

An interesting feature of the annealed profiles in Figs. 4-6 and 4-7 is the non-zero slope 

at the film axis (r= 0). Any mass flux with zero slope at the axis should result in a mass 

profile with slope zero at the same location on the coating. Perhaps in the experiments, 

the slope at the axis is zero but this is not resolved. This explanation is consistent with 

greater mass flux within one or two millimeters from the spray axis, as predicted in 

numerical simulations by Arumugham-Achari et al. [51] who show that spray drag 

causes faster air motion near the spray axis (as also anticipated by Hartmann et al. [37]). 
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The radial profiles of porosity P are graphed at the bottom of Figs. 4-6 and 4-7, and 

show a local minimum of P at the spray axis, with a slightly greater porosity at the 

lower RH, more so at smaller H. Figs. 4-6(e-f) show that the porosity profiles are very 

similar for different deposition times, despite the fact that the film grows both in 

thickness and width. 

The minimum P at the axis is consistent with the aforementioned stronger gas motion 

near the axis, as the droplets entrained by this part of the gas flow would be expected to 

collect with higher impact velocity. 

Table 4-1 summarizes several film properties: film diameter, overall porosity, surface 

roughness, and collection efficiency. Overall porosity is defined consistently with Eq. 

(4.1) as GAG VVV /)(  , where VG and VA are the total volumes of the granular and the 

annealed film. These volumes are obtained by integration of the h vs. r functions from 

Figs. 4-6 and 4-7. Overall porosity follows the same trend with humidity as the local 

porosity (Figs. 4-6(e), 4-6(f), 4-7(c)). 

Surface roughness is the RMS roughness based on the thickness data: 
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Surface roughness is quite small in all cases (Table 4-1), being several times smaller 

than the particle cup diameter (1.2 μm). As mentioned earlier, this is expected for a 

compact granular film formed by ballistic deposition [49]. 
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Collection efficiencies,   , are also shown in Table 4-1. They have been computed as 

the ratio of the mass in the annealed film and the polymer mass pumped through the 

electrospray needle, as  

M

V ECA  100(%)          (4.3) 

Here, the mass in the annealed film is VA times the density of EC, ρEC, divided by the 

mass of polymer infused into the electrospray needle during deposition tQcM  , 

with c being the EC/MEK concentration (w/v), Q the infusion rate of solution (2 

μl/min), and t the actual deposition time. 

Table 4-1 shows that    values are as low as 67%, being less for the high RH condition 

(all else being equal). For a given {RH, H} combination, the efficiencies get smaller as 

the films get thicker (as collection time increases), showing that the trend is not due to 

errors from measurement for the thinnest films. However, the very lowest value of   = 

67%, found for the case of t = 4 min and low RH at H = 20 mm, may be explained in 

part by the large noise in the data for this case, as shown Fig. 4-6(b). Also, crown 

collection patterns forming outside the film as in Fig. 4-2(b), and any coarse liquid 

emissions associated to Taylor cone bursts observed during the longest low RH 

collections, may explain the mass defects, at least partly. 

4.3.5. Hypothesis of electrostatic charging 

The existence of satellite particles sublayers (Fig. 4-5, r2 locations) and film growth 

over time (Figs. 4-6 and 4-7) strongly suggest that the electrospray becomes wider over 

time, during the film formation process. Spray widening is easily shown in images of 

the spray (Fig. 4-8). Fig. 4-8(a) shows the spray captured at the start of deposition, 

while Fig. 4-8(b) after 12.9 minutes from the start of collection. By overlapping the two 

spray outlines in Fig. 4-8(c), we see nearly coincident sprays near the needle, while the 

rest of the spray broadens significantly after 12.9 minutes. The other significant 

observation relates to the angle at which the spray outline, which coincides 

approximately with an electric field line (as expected for electrophoretic motion), meets 

the collection surface. At t = 0.13’ is the spray meets the collector at an angle of ~90º, as 

expected for a conducting substrate. At t = 12.9', however, the angle has been reduced 
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by a half, which indicates that the film has developed a strong parallel field component. 

In other words, the electrical potential is no longer uniform over the film. The radial 

component of the electric field must be comparable in magnitude to the axial 

component when the spray-collector angle is about 45º. Clearly, the radial field is 

created by electrostatic charging that has accumulated on the granular deposit. 

The fact that the chamber relative humidity slows down the growth in film width (Fig. 

4-6, and Table 4-1) is consistent with this hypothesis, since charge transport by 

conduction mediated by adsorbed water molecules on surfaces is an effective 

mechanism for “dissipation” of static electricity. 

The electrical field caused by accumulated charge on the film should be noticed sooner 

near the film than near the needle, because (i) the electric field (total field) near the 

needle is dominated by the high potential gradients caused by needle curvature, and (ii) 

the field strength due to the film charge should weaken with distance from it. As argued 

below, the electrical field caused by the film charges and their images in the conductive 

substrate is dipolar, which has a faster decay with distance than the field caused by a 

monopolar distribution of charge. 

 

 

 

 

 

 

Figure 4-8  Spray plume evolution during ES deposition. Photos of the plume correspond to 

collection times of (a) 0.13 min and (b) 12.9 min. c) Spray outlines at different collection 

times. The digital camera exposure was 8 s. 

 

A detailed computation of the distribution of collected charge on the film, and its effects 

on the electric field and the spray dynamics is beyond the scope of this work. However, 

the following simplified calculation can be used to show that the total amount of charge 

deposited on the collector can be sufficient to perturb the spray electrostatically. 
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The electrospray can widen only if the contribution to the electric field strength due to 

the charge accumulated in the film E is comparable or exceeds the field strength without 

charge accumulation E0, of order V/H0 = 1.6×10
5
 V/m, where V is the back plate voltage 

(6 kV) and H0 is the back plate-to-collection plate separation (37 mm). To compute E 

we follow Uecker et al. [52]. In truth, E is not only associated to the charges 

accumulated on the film. In addition to the collected “free charge”, the film will develop 

polarization charges which partly neutralize the free charge through an effective 

dielectric constant  . Because, in the film, the free charges are localized at or near the 

interface between the gas and the polymer phases (except at the contacts between 

particles), the value of   will lie between 1 (air) and 4 (dielectric constant of EC). In 

addition, the free and polarization charges induces “image” charges of the same amount 

and opposite polarity inside the substrate, effectively producing a charged double layer 

centered on the substrate-film interface. The field due to the double layer along the 

spray axis is a vector that points in the opposite direction as the electric field that drives 

the spray towards the collector (due to the needle, back plate, and spray). The 

magnitude of this field E can be estimated as follows [52]. We assume uniform film 

thickness h , and uniform electrical charge distribution in the film with a volume 

density   (C/m
3
). The field strength E along the spray centerline at a distance from the 

double layer that is small compared to h  but large compared to its radius R is given by 

[52]: 

R

h
E

0

2

2 


 ,          (4.4)  

where   is the average free charge,   is the effective dielectric constant of the film, 0  

is the electric permittivity of vacuum (8.854×10
-12

 F/m). (Uecker et al. [52] studied a 

planar distribution of surface charge of density  , while we have made use of the 

relationship h  .) The maximum attainable   can be easily computed as 

 

EC

EC

cQ

IP 





1
max          (4.5) 

where P is the film porosity (~0.6), I is the electrospray measured current (5×10
-8

A), 

EC  is the mass density of EC (1.14×10
3
 kg/m

3
), Q is the liquid flow rate (3.3×10

-11
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m
3
/s), and ECc  is the concentration of EC in the solution (50 kg/m

3
). Therefore, max = 

1.6 × 10
4
 C/m

3
. This represents a maximum charge density that our films could 

accumulate, assuming that it is not dissipated away from the film, for example by 

adsorbed water molecules on surfaces. By using the maximum value of max  in Eq. 

(4.4), we obtain an upper bound on the electric field caused by the deposited charge. For 

representative values of film thickness of 5 μm and radius of 7 mm, we obtain E = 

3.3×10
6
 V/m for   = 1, and E = 8.4×10

5
 V/m for   of 4. These upper bound estimates 

exceed the reference field strength E0 of 1.6×10
5
 V/m. Therefore, we must conclude that 

(1) the electrostatic charge transported by the spray to the film is enough for distorting 

the field and thus change the spray trajectories near the collector, and (2) that probably, 

the charge that accumulates on the film is much less than the charge that has been 

transported to the film by the spray. This charge reduction could be caused by 

dissipation or conduction through the film, or perhaps, even electrical discharges within 

the film. 

To close, the hypothesis of electrostatic charging of the film can also explain 

qualitatively why RH has less influence at H = 40 mm than at 20 mm (for equal 

collection time). At H = 40 mm, the same spray charges spread over a wider area, thus 

producing a smaller field (since h   present in Eq. (4.3) is reduced), and the 

coating is thinner (smaller h ). As predicted by our simple model, the reduction in both 

of these factors in Eq. (4-3) (smaller surface charge density, and smaller spacing 

between the charges and their images) causes a reduction in E. Therefore, less spray 

expansion will be expected. 
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Table 4-1 Characteristics of the EC films. 

a Except where noted, the deposition time differed by less than 3% from the nominal value shown here.  
b Values downstream of the safety resistor, measured with a high voltage probe. 
c Determined from thickness vs. position data by SEM. 
d Equal to the integrated film volume divided by the actual deposition time, by integration of the h vs r data. 
e For this condition, the actual deposition time differed by less than 5% from the nominal (63 sec. for the granular, 

and 58 sec. for the annealed films). 
f Initial current value is reported, as the current becomes unstable during the deposition (as shown in Fig. 4-2(e)). 
g Determined from analysis of Fig. 4-2(a). 

 

 

4.4. Conclusions 

A study has been made of the shape and morphology of granular coatings produced by 

the electrospray deposition of ethyl cellulose microparticles. The main droplets from 

this electrospray evaporate to form dry particles, before they become coulombically 

unstable. They are collected ballistically to form compact deposits of uneven thickness. 

As the deposition time increases, these films become wider, while the deposit thickness 

in the inner regions grows slower than linearly with time. Thin sublayers of small 

particles (satellite residues) appear ‘buried’ under a significantly thicker layer of large 

particles (main residues) at some radial positions in the film away from the center. All 

of these observations suggest that over time the electrospray widens, as the film grows. 

Imaging of the sprays have confirmed this hypothesis. 

The radial growth of the films is slowed down when the relative humidity is raised (to 

about ~60% in our experiments). This observation is consistent also with the hypothesis 

H RH 
Deposition 

time t (a 

Applied 

voltage 
(b 

Collected  

current 

Film 

diameter 
(c 

Film volume rate (d Overall 

porosity 
 

rms 

surface 

roughness 

Collection 

efficiency 

 
granular  

GV  

annealed  

 

(mm) (%) (min) (kV) (nA) (mm) (mm3/min) (mm3/min)  (µm) (%) 

           

20 7.6          dry 1(e 6.0 51 13.9 0.246 0.074 0.70 0.20 85 

20 7.7         dry 4 6.0 51 17.5 0.208 0.059 0.72 0.43 67 

20 7.9         dry 15 6.0 51(f 24.3(g - - - - - 

           

20 60      humid 1 6.0 54 11.7 0.234 0.082 0.65 0.26 94 

20 60      humid 4 6.0 54 14.3 0.206 0.072 0.65 0.32 82 

20 60      humid 15 6.0 54 19.3 0.207 0.066 0.68 0.29 75 

           

40 8.7     dry 4 7.9 54 26.3 0.235 0.075 0.67 0.21 86 

40 62      humid 4 7.9 58 22.9 0.226 0.084 0.63 0.25 96 

GAG VVV  /)(   
AV
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that the spray expands over time due to the electrostatic repulsion between the spray and 

the charges that accumulate on the granular coating. 

While the electrostatic repulsion is reduced at RH of 60 %, the EC films still grow in 

radius significantly over time at that condition, indicating charge accumulation in the 

film even at that RH. 

An incidental observation at this RH is the radial variation of main particle morphology 

(shape and texture). 

The distribution of polymer mass has been obtained from the film thicknesses of the 

thermally annealed coatings. It is not uniform over the collection area in any of the 

coatings made. A maximum in film thickness suggests enhanced mass flow near the 

spray centerline, also seen in numerical simulations by Arumugham-Achari et al. [51] 

The porosities of the granular films were determined from the local coating thicknesses 

for the granular and the annealed film. Porosity is relatively uniform, decreasing slightly 

in the central region of the coating. The porosity is somewhat affected by RH, being 

slightly higher for the low RH condition. 

The data generated in this study could further be used for validating theoretical models 

which consider the electrostatic charging of the coating. Two simplifying features of our 

spray is that its droplets do not suffer coulombic instabilities, and their size is 

distributed bimodally, as a result of quasi-periodic axisymmetric jet break up (in 

absence of whipping instabilities, which are more difficult to model). 
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4.6. Appendix 

Film top view photographs 

Top view photographs of films collected at low RH reveal uneven grayness, which 

suggests variable film topography. Shown here are photographs of these films for 

deposition times of 1, 4, and 15 minutes. The images on the left side are without 

processing, and are shown again on the right side after having been enhanced (contrast 

raised to 27 and gamma taken to 0.32). A film deposited under high RH (for 15 min) 

has been included for comparison on the next page. All cases correspond to H = 20mm. 

 

1 min. 

7.7 %RH 

  

10 mm 

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAYING OF POLYMER SOLUTIONS FOR THE GENERATION OF MICRO-PARTICLES, NANO-STRUCTURES AND GRANULAR FILMS 
Eszter Bodnár 



123 

 

4 min. 

7.8 %RH 

  

15 min. 

7.9 %RH 

  

15 min.  

60 %RH 
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5. General conclusions 

We have electrosprayed different polymeric solutions, studying the effect of the 

following factors on particle morphology: polymer, solvent, initial polymer 

concentration, and polymer molecular weight (with weight mean in the 15-350kDa 

range), in order to identify the role of these factors on the drying process of the 

electrosprayed polymer solution droplets. As polymers we have used 

poly(methyl)methacrylate, polystyrene, and ethyl cellulose; and as solvents, butanone 

and dichloromethane. In these experiments, it has been essential to use a co-flowing 

stream of solvent saturated gas around the electrospray needle, in order to prevent 

drying of the Taylor cone, particularly in the case of high molecular weight polymers 

above a polymer concentration (of a few % w/v typically).  

The collected deposits have been analyzed by scanning electron microscopy, revealing 

many particle morphologies. We show that these morphologies present transitions as the 

initial polymer concentration is reduced, depending on the fluid dynamic regime at 

which polymer vitrification happens. Four regimes have been identified as: (1) 

Incomplete jet break up, (2) complete jet breakup without coulomb instabilities, (3) 

coulombic instabilities without emission of progeny droplets, and (4) coulombic 

instability of main droplets with emission of progeny droplets (coulombic fission). 

The first regime leads to main particles surrounded by thin nanofibers, which present 

secondary beading. This regime happens only at the high end of the concentration range 

for the high molecular weight solutions. The second regime is characterized by globular 

particles, which may be buckled to different extent depending on the polymer and its 
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molecular weight. These particles do not have filaments attached. The solution 

concentration for this regime has a narrow range. 

In the third regime, obtained at lower concentrations, the particles have one or two 

opposite filaments, or display elongated shapes, such as dumbbell shapes. These shapes 

reflect different coulombic instability pathways, some occurring with jet emission, and 

some without. The absence of additional nanoparticles in any of these deposits indicates 

that the polymeric solution dried while the particle was undergoing coulomb instability, 

before fragmentation. The filaments are interpreted as vitrified Rayleigh nanojets that 

did not break up into progeny droplets. 

The fourth regime, encountered only with low molecular weight polymers, led to 

deposits which had particle residues from progeny droplets arising from coulombic 

droplet fissions. In the case of high molecular weight polymers, this regime was not 

observed, as the third regime extended to the lowest concentrations (0.2% w/v). 

In all four regimes the polymer accumulated on the droplet surface during droplet 

drying, where it vitrified forming a shell. The capsule thus formed deflated as solvent 

evaporated from its interior. As a result, none of our polymeric solutions led to spherical 

particles. We argue that spherical particles made by electrospray (in other 

polymer/solvent systems) will have hollow or porous interior. The shell thickness 

depends, among other factors, on the rate of polymer accumulation relative to the rate of 

polymer diffusion to the droplet interior (or their ratio, the Péclet number). The shell 

thickness on the collected particles was dependent on the polymer and on its molecular 

weight, but only slightly (or not) on the initial polymer concentration. 

We have also studied the effect of ambient relative humidity (RH) on the particle 

formation mechanism during electrospray with different solutions of non-water soluble 

polymers (PMMA, EC, and PS) having either “low” (~10-35 kDa) or “high” (220-350 

kDa) molecular weight, and a volatile, water immiscible solvent (either butanone or 

dichloromethane), at different initial concentration (0.2, 1.0, or 5.0 % w/v). 

We have found that the most notable effect due to RH is the prevention of coulombic 

instabilities (while at low RH we found Coulombic instabilities only with a few 

exceptions). We interpret that water from the ambient is transported into the polymer 
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solution phase, accelerating the formation of a glassy polymer phase, which becomes a 

shell that is rigid enough to prevent the reaching of the Rayleigh instability diameter. 

The surface porosity of the particle also differs much at low and high RH comparing the 

corresponding initial solutions. At low RH (very dry ambient) the particle surface is 

smooth, while at high (~60-70%) RH, it is not smooth, being porous at high molecular 

weight and high initial polymer concentrations. At lower concentrations, the surface 

pores become smaller and less obvious, even disappearing. For the low molecular 

weight solutions, the porosity is not present or visible. Under high RH, the solutions 

with lowest polymer concentration (0.2 % w/v) leads to wet collection at the same 

collection distance from the electrospray needle as used at other concentrations. This 

result (not described before, or attributed to the presence of high RH in any electrospray 

works) is surprising, and might be related to plasticization by the water in the solution. 

When using butanone as solvent, the pores are significantly smaller than when 

dichloromethane is used. We think that water condenses on the surface of the droplet 

and interacts with the solution in different ways. In the case of dichloromethane solvent 

evaporation and water condensation are faster than for butanone. Therefore, we attribute 

the formation of the marked porous structure to the templating of the droplet surface by 

condensed water nanodrops, leaving an imprint. This proposed mechanism is similar to 

the phenomenon called breath figure formation, which has been described to explain 

similar structures on spin coating films, as well as on electrospun nanofibers. However, 

this mechanism is not as prominent for the case of butanone, where the pores are 

smaller and occupy a smaller fraction of the particle envelope, or do not form. 

Another study has been made of the shape and morphology of granular coatings 

produced by the electrospray deposition of ethyl cellulose microparticles. The main 

droplets from this electrospray evaporate to form dry particles, before they become 

coulombically unstable. They are collected ballistically to form compact deposits of 

uneven thickness. As the deposition time increases, these films become wider, while the 

deposit thickness in the inner regions grows slower than linearly with time. Thin 

sublayers of small particles (satellite residues) appear ‘buried’ under a significantly 

thicker layer of large particles (main residues) at some radial positions in the film away 

from the center. All of these observations suggest that over time the electrospray 

widens, as the film grows. Imaging of the sprays have confirmed this hypothesis. 
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The radial growth of the films is slowed down when the relative humidity is raised (to 

about ~60% in our experiments). This observation is consistent also with the hypothesis 

that the spray expands over time due to the electrostatic repulsion between the spray and 

the charges that accumulate on the granular coating. 

While the electrostatic repulsion is reduced at RH of 60 %, the EC films still grow in 

radius significantly over time at that condition, indicating charge accumulation in the 

film even at that RH. 

The distribution of polymer mass has been obtained from the film thicknesses of the 

thermally annealed coatings. It is not uniform over the collection area in any of the 

coatings made. A maximum in film thickness suggests enhanced mass flow near the 

spray centerline, also seen in numerical simulations by Arumugham-Achari et al. [51] 

The porosities of the granular films were determined from the local coating thicknesses 

for the granular and the annealed film. Porosity is relatively uniform, decreasing slightly 

in the central region of the coating. The porosity is somewhat affected by RH, being 

slightly higher for the low RH condition. 
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