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Abstract

In this thesis we tackle two problems, namely, the data interpolation prob-
lem in the context of depth computation both for images and for videos,
and the problem of the estimation of the apparent movement of objects in
image sequences. The first problem deals with completion of depth data
in a region of an image or video where data are missing due to occlusions,
unreliable data, damage or lost of data during acquisition. In this thesis
we tackle it in two ways. First, we propose a non-local gradient-based en-
ergy which is able to complete planes locally. We consider this model as
an extension of the bilateral filter to the gradient domain. We have suc-
cessfully evaluated our model to complete synthetic depth images and also
incomplete depth maps provided by a Kinect sensor.

The second approach to tackle the problem is an experimental study of the
Biased Absolutely Minimizing Lipschitz Extension (biased AMLE in short)
for anisotropic interpolation of depth data to big empty regions without
information. The AMLE operator is a cone interpolator, but the biased
AMLE is an exponential cone interpolator which makes it more addapted
to depth maps of real scenes that usually present soft convex or concave
surfaces. Moreover, the biased AMLE operator is able to expand depth
data to huge regions. By considering the image domain endowed with an
anisotropic metric, the proposed method is able to take into account the
underlying geometric information in order not to interpolate across the
boundary of objects at different depths. We have proposed a numerical
model to compute the solution of the biased AMLE which is based on the
eikonal operators. Additionally, we have extended the proposed numerical
model to video sequences.

The second problem deals with the motion estimation of the objects in a
video sequence. This problem is known as the optical flow computation.
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viii ABSTRACT

The Optical flow problem is one of the most challenging problems in com-
puter vision. Traditional models to estimate it fail in presence of occlusions
and non-uniform illumination. To tackle these problems we proposed a
variational model to jointly estimate optical flow and occlusion. Moreover,
the proposed model is able to deal with the usual drawback of variational
methods in dealing with fast displacements of objects in the scene which
are larger than the object itself. The addition of a term that balance gra-
dient and intensities increases the robustness to illumination changes of
the proposed model. The inclusions of a supplementary matches given by
exhaustive search in specifics locations helps to follow large displacements.



Resumen

En esta tesis se abordan dos problemas: interpolacion de datos en el con-
texto del calculo de disparidades tanto para imagenes como para video, y el
problema de la estimacién del movimiento aparente de objetos en una se-
cuencia de imagenes. El primer problema trata de la completacién de datos
de profundidad en una regién de la imagen o video dénde los datos se han
perdido debido a oclusiones, datos no confiables, datos danados o pérdida
de datos durante la adquisiciéon. En esta tesis estos problemas se abordan
de dos maneras. Primero, se propone una energia basada en gradientes no-
locales, energia que puede (localmente) completar planos. Se considera este
modelo como una extensién del filtro bilateral al dominio del gradiente. Se
ha evaluado en forma exitosa el modelo para completar datos sintéticos y
también mapas de profundidad incompletos de un sensor Kinect.

El segundo enfoque, para abordar el problema, es un estudio experimen-
tal del biased AMLE (Biased Absolutely Minimizing Lipschitz Extension)
para interpolacién anisotrépica de datos de profundidad en grandes regiones
sin informacién. El operador AMLE es un interpolador de conos, pero
el operador biased AMLE es un interpolador de conos exponenciales lo
que lo hace estar més adaptado a mapas de profundidad de escenas reales
(las que comtinmente presentan superficies convexas, concavas y suaves).
Ademas, el operador biased AMLE puede expandir datos de profundidad
a regiones grandes. Considerando al dominio de la imagen dotado de una
métrica anisotrdpica, el método propuesto puede tomar en cuenta infor-
macién geométrica subyacente para no interpolar a través de los limites de
los objetos a diferentes profundidades. Se ha propuesto un modelo numérico,
basado en el operador eikonal, para calcular la solucién del biased AMLE.
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X RESUMEN

Adicionalmente, se ha extendido el modelo numérico a sequencias de video.

El calculo del flujo éptico es uno de los problemas mas desafiantes para la
vision por computador. Los modelos tradicionales fallan al estimar el flujo
Optico en presencia de oclusiones o iluminacion no uniforme. Para abordar
este problema se propone un modelo variacional para conjuntamente estimar
flujo 6ptico y oclusiones. Ademas, el modelo propuesto puede tolerar, una
limitacién tradicional de los métodos variacionales, desplazamientos rapidos
de objetos que son més grandes que el tamano objeto en la escena. La
adicién de un término para el balance de gradientes e intensidades aumenta
la robustez del modelo propuesto ante cambios de iluminacion. La inclusién
de correspondencias adicionales (obtenidas usando busqueda exhaustiva en
ubicaciones especificas) ayuda a estimar grandes desplazamientos.



Preface

Mbotivation

The objective of disparity completion is to complete the lack of information
in a region in which data are missing due to problems occurred during ac-
quisition, damage or occlusion. Disparity completion is an important task
in many applications in image processing such as construction of elevation
models from level curves Almansa et al. (2002), completion of 3D surfaces
Digne et al. (2010), super resolutions applications Yang et al. (2007), gen-
eration of a virtual view based on reference image and depth information
Ndjiki-Nya et al. (2010).

Depth data either acquired by Time-of-Flight cameras or computed using
an stereo algorithm, provides a sparse disparity map of reliable data which
can be improved by filtering. Inspired by the seminal paper of Perona
and Malik (1990) many work proposed to filter a sparse depth map using
an anisotropic filter Yin and Cooperstock (2004), Digne et al. (2010). In
Digne et al. (2010), the authors propose to diffuse depth values using an
iterated bilateral filter with weights given by the similarities of the reference
image. The bilateral filter was used also to compute correlation cost Yoon
and Kweon (2006) or to obtain a super resolution image Yang et al. (2007)
applying iterated bilateral filter.

A depth completion model based on bilateral filter presents one drawback,
the incapability to complete large areas of incomplete depth data. An inter-
esting alternative to tackle this drawback is the biased Absolutely Minimiz-
ing Lipschitz Extensions filter. AMLE and biased AMLE operator appear as
the simplest interpolators that satisfy a set of axioms Caselles et al. (2006).
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AMLE filter was discovered originally by Aronsson in Aronsson (1967) and
Aronsson (1968) as an interpolation tool from a theoretical point of view.

The actual commercial interest in exhibiting 3D movies has motivated the
extension of disparity completion to depth video completion. The main idea
is to perform depth completion in the actual frame using depth informa-
tion contained in previous or posterior frames. The position of depth data
information contained in previous or posterior frames should be compen-
sated considering apparent motion of the objects in the video sequence. In
general this apparent motion is not known and should be estimated for the
video sequence. This motion estimation should be precise enough in such
a way that the depth information compensated from other frames will be
located in the right position for the posterior depth completion. The ap-
parent motion of the objects in the video sequence is known as the optical
flow.

Optical flow estimation is one of the most challenging problem in computer
vision, specially in real scenarios where occlusions and illumination changes
occur. It has many applications, including autonomous flight of vehicles
Ruffier and Franceschini (2005), Kendoul et al. (2005), slow camera motion
generation, video deblurring, noise suppression Stiller and Konrad (1999),
video compression and many more.

In the seminal work of Horn and Schunck (1981) is presented a model that
estimates a dense optical flow based on two assumptions: the brightness
constancy assumption and a smooth spatial variation of the optical flow.
The optical flow obtained by this model is very smooth and sensitive to the
presence of noise. Nevertheless it has inspired many proposals that focus on
accuracy Brox et al. (2004a); Black and Anandan (1996); Sun et al. (2010a);
Zach et al. (2007), robust terms for brightness constancy assumption L? or
L' or for the smooth spatial variation: isotropic diffusion, image-adaptive,
anisotropic diffusion.

In general in real scenarios optical flow estimations methods presents some
drawbacks:

e Methods may fail in occlusion areas due to relative motion of the
objects in the scene.

e Shadows or light reflexions that appear and move in the image se-
quence can make the brightness constancy assumption to fail.
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e Traditional optical flow methods can not handle displacement of the
object in the scene if it is greater than the size of the object itself.

The importance of these two topics in media applications as well as the
number of publications appeared in recent years in these topics let us con-
sider to study the problem of disparity completion and robust optical flow.
This thesis proposes two methods for depth completion and an illumination
changes and large displacement robust optical flow method. It is organized
as follows. In Part I we present a non-local gradient-based energy for inter-
polating incomplete depth maps. It represents an extension of the bilateral
filter adapted to reconstruct locally planar disparity maps. In Part II, we
performed an experimental study of the biased-AMLE operator for com-
pletion of depth maps. We evaluated the performance of the method in
upsampling task, completion of depth video sequences and completion of
depth maps for large empty regions. In Part III we proposed a variational
model for joint optical flow and occlusion estimation, which is adapted for
both gray and color image sequences and is able to handle illumination
changes as well as large displacements. We close this thesis with conclu-
sions and future work presented in Part IV.

The next sections review in more detail the contributions of each part of
the thesis.

Part I: Non-local energy for depth completion

In this part we propose a non-local gradient-based model for interpolating
incomplete disparity maps. We apply this model to complete depth data
either acquired by Time-of-Flight cameras or computed using an stereo
algorithm. The proposed model can be shown to converge to an energy
involving second order derivatives, therefore the model presents the ability
to obtain higher order interpolations. By including an edge map our model
permits also to recover depth discontinuities.

Let us state some notation. We consider a reference image I(z) : Q C
R? — R3. We also considered a depth map u(z) : 2 € R?> - R and a
confidence map B(z) : Q C R? — [0,1]. We also consider a edge map
o) : QCR—=R.

In Chapter 2 we proposed a model for the problem of depth interpolation:

E(u) = D(u) + ARg(u) + (1 - \)Rp(u). (1)
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Where,

D(u) = /Q B() |u(x) — () * da, (2)
Ris(u) = /Q /Q wp(z, y) [u(z) - u(y) 2 dr, (3)

Rp(u) = /Q /Q wp(, )| Vu(z) — Vu(y) |2dz, (4)

Equation (2) is the attachment to the initial depth data u°, equation (3) is a
first order non-local regularizer and equation (4) is a second order non-local
regularizer. Where A is a constant value € [0, 1].

The term (3) is a non-local energy enforcing depth self similarities according
to the reference image’s self-similarity. The weights w(z,y) are computed
in terms of the distance and color similarity between x and y are given by:

wg = exp (_ “962;231’) exp (_W) (5)

The term (4) is a non-local energy that imposes gradient similarity based on
color similarity and pixel proximity. The main assumption is that surfaces
in the image are locally planar therefore, nearby pixels in the same object
have similar depth gradient. To allow depth discontinuities we define the
weights wp(z,y) = wpo(x)o(y), where o vanishes at strong image edges:

1
o(2) = I avT@T =077 (6)

We obtained the Euler-Lagrange equation and it is solved by iteration of a
second order Poisson equation.

In Chapter 3 we first present results obtained in a synthetic image. In
Figure 1 is shown a synthetic image with two planes. We added Gaussian
noise with a standard deviation of 10 to the disparity. We set 8 = 0 in
the interpolation domain and S = 0.5 weighting the data attachment. In
Figure 2 we compare the profiles of the solutions obtained with bilateral
filter (A = 1) and gradient-based energies (A = 0).
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Figure 1: Synthetic depth data (the black region indicates the interpolation do-
main or interpolation mask), reference image, result using as o(x) the edge map of
the reference image given by equation (6), result using bilateral filter.
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Figure 2: Profile of the result for the two planes synthetic image. We show 4
curves: Noisy data, output of bilateral filter, output of gradient-based with ¢ = 1,
output of gradient-based with o given by (6).

We assume that the discontinuities of the disparity map correspond to the
discontinuities of the reference image. Therefore, the edge map is com-
puted on the reference image and determines the map o(x). In Figure 2 we
show a profile of the interpolated disparity in the given mask (interpolation
domain). The model filters the disparity map outside the mask and inter-
polates it inside. The Figure shows the results of the bilateral filter (A = 1,
in red), the model considering only gradient (A = 0) without the edge map
(in green), and the model considering gradient with the edge map (in blue).
The Figure shows a profile of the interpolated result. We see that the result
for A = 1 is a piecewise constant map and does not continue the two planes.
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With A = 0 and ¢ = 1, the result continues the two planes but with a large
error. With A =0 and o(x) given by (6), we can continue the slopes of the
planes and get the discontinuity. The gradient-based solution considering
the discontinuity map performs better than bilateral filter.

Taking into account results obtained in Chapter 4 of the thesis we conclude:

e we exploit the given image both to guide the interpolation and to infer
the location of depth discontinuities.

e The model presents the ability to interpolate planes. The proposed
model can be regarded as an extension to gradient domain of the
bilateral filter.

e The Euler-Lagrange equation can be seen as a non-local fourth order
equation, which is solved as an iteration of a second order Poisson
equation.

Part II: Biased AMLE operator for depth completion

In this Part we present a numerical scheme and an experimental study of an
operator for interpolating incomplete or sparse depth maps. The operator is
the biased Absolutely Minimizing Lipschitz Extension that appeared in the
axiomatic analysis of the interpolation operators in manifolds in Caselles
et al. (2006) and also in the context of tug-of-war games in Peres et al.
(2010) (see also Armstrong et al. (2009)).

We are motivated by the extensive literature on filters to enhance sparse
depth data (coming from several depth sensors) that has been published in
the last years.

When a depth map is obtained either as a result of a stereo algorithm or
acquired by a Time-Of-Flight camera or by a Kinect sensor, usually the
depth map presents areas without information (holes). This lack of infor-
mation is due to occlusions between objects in the scene or to areas where
the depth data is not reliable or simply missing. Those holes or regions
without reliable depth information can have big areas which require appro-
priate interpolation operators to enhance the depth data. The problem of
depth interpolation consists in completing the empty depth data regions in a
depth image while guarantying compatibility with the information presents
in the depth image.
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To this goal, in this part of the thesis we considered the biased AMLE
model: Auc + 3 |Vul = 0.

This model has the capability to complete large areas of incomplete data due
to the inclusion of the gradient term. This interpolation operator exactly
fits the incomplete data at known values and it can interpolate values on
isolated points.

Many applications of depth completion technique does exist for example to
render new views from an image and its depth image to a different virtual
view Ndjiki-Nya et al. (2010) or interpolation of digital elevation models
(DEM) Almansa et al. (2002) from contour lines.

In Caselles et al. (2006) a set of axioms was introduce which should be
satisfied by any interpolation operator on a surface and derive the associated
partial differential equation. Then in Caselles et al. (2006) is deduced that
any operator which interpolates continuous data given on a set of curves on a
surface can be given as the viscosity solution of an elliptic partial differential
equation on a manifold (this is the extension of the corresponding results
obtained in the plane in Caselles et al. (1998) to manifolds).

In Chapter 8 we present a numerical scheme to solve the biased AMLE.
In Oberman (2005b) and Manfredi et al. (2015) is presented a numerical
scheme to compute the infinity Laplacian operator based on the eikonal
operator.

Given any two points in the grid x, y, then the geodesic distance d, is
defined by:
dyy = Inf{Ly(7y) : vis a curve joining xtoy }. (7)

Given a point z in the grid, let A'(x) be a neighborhood of x.

Following Manfredi et al. (2015) the positive eikonal operator on a graph is
defined by

u(y) — u(z)
Vu(z)||f = ma . 8
IVu@)ls = mox S )
The negative eikonal operator on a graph is defined by

Vu(z)|, = min
IVu(@)lz = min
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(b)

Figure 3: Original image and depth image for teddy and baby.

The discrete infinity Laplacian corresponds to (Oberman (2005b))

_ IVu@)llz + [[Vu(@)lls

Acogu(z) B

(10)

Inspired by these numerical schemes we compute a discrete version of the
biased AMLE in the form:

[Vu() |l + [ Vu(z)
2

le 4 g (17| = o, (11)

the solution u(x) depends on the parameter 3, ||Vul|™, ||Vu||~ and the sign
of the eikonal operator ||Vu(z)},

IVu(@) |l + [ Vu(z)
2

e, psign(|Vu(@) D) IVa@) [ =0.  (12)

Solving for u(z) this numerical scheme, we obtain an iterated version of the
biased AMLE:

k41 . ﬂ-i—dxzuk(y) + 6—dxyuk(z)
u (.17) - /8+de + ﬁ—dg:y )

k=0,1,... (13)

where . = § + Bsign(|Vu()||$) and f_ = 5.

In Chapter 9 we present the evaluation of the biased AMLE in the upsam-
pling task. We have taken the Middlebury standard database Baker et al.
(2011) that contains a reference color image and its depth image. We show
in Figure 3 an example of the database.
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mae=1.5068 mae=1.4727
(a) (b)

mae=1.4614 mae=1.5089
(c) (d)

Figure 4: Results of Upsampled task for an image of Middlebury database. (a)
Results obtained by AMLE. (b) Biased AMLE § = 1.1. (c) Biased AMLE 3 = 1.2.
(d) Bilateral filter.

We took one sample every 16 square pixels. Using this sampled version of
the depth image we upsample the data using the AMLE, biased AMLE and
bilateral filter as we show in Figure 4.

We show in Figure 4 results in upsampling task obtained by AMLE, biased
AMLE, bilateral filter. We have evaluated numerically the performance of
each method. We have evaluated the interpolation comparing the upsam-
pled image with the original depth image. We called this error mae (mean of
absolute error). We observe that the minimum mae value was obtained by
biased AMLE mae = 1.4615 with 5 = 1.2. We observe that using bilateral
filter the upsampled depth image is very blur.
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In Table 1 we show results numerical of the upsampling task with differente
sample rate.

Table 1: Results for AMLE filter, biased AMLE filter and for bilateral filter to
subsample teddy depth image

Size biased biased  bilateral
AMLE AMLE AMLE
Br=11 B+=12

Filtered 16x16 2.5749  2.5798 2.5988 2.5535
Filtered 8x8  2.0304  2.0010 2.0019 2.0935
Filtered 4x4  1.5068 1.4727 1.4614 1.5089
Filtered 2x2  1.0884 1.0891 1.0748 1.0288
Average 1.8001 1.7857 1.7842 1.7962

Results presented in Table 1 shown that the biased AMLE outperforms the
AMLE operator and the bilateral filter in the upsampling task. We have
extended the biased AMLE filter to temporal domain. We have tested in a
synthetic depth video sequence where we have at our disposal the reference
image, the depth map and the optical flow. Given that the sequence is
synthetic the depth map and the optical flow do not contains error neither
noise. We have added holes to the first depth image of the sequence and
we have propagate them to the rest depth image of the sequence, creating
a tube in the sequence. We have completed the holes in the video sequence
using biased AMLE. We demonstrated that using the optical flow helps to
improve results of the completion.

Taking into account the results we conclude:

e The interpolator is computed as a ratio between two terms: a sum of
function values weighted by distances and a sum of distances. This
simple operation made the operator easy to implement, simple and
fast.

e The numerical implementation considers many very strong approxi-
mation that experimentally we have shown that their are valid.

e We have evaluated the Biased AMLE in differents experiments: um-
sampling, temporal extension. Upsampling experiments show that the
biased AMLE and AMLE outperform the bilateral filter and biased
AMLE outperforms the AMLE.
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e We have extended the biased AMLE to temporal domain. We added
a new term to the distance metric. This new term considers the
available depth information in the next image. The use of the optical
flow helps to improve the performance of the depth interpolation in
video sequences.

Part III: Illumination changes and large displacement robust
optical flow

Optical flow problem concerns with the estimation of the apparent motion
between two consecutive images of a video sequence. Most adopted strate-
gies to solve the optical flow problem use a variational approach. In those
variational models, the optical flow computation is stated as an energy min-
imization problem where the energy has, in general, two terms; namely, the
data term and the regularization term.

In Part III, we propose a variational model for joint optical flow and occlu-
sion estimation, which is adapted for both gray and color image sequences
and is able to handle illumination changes as well as large displacements.

To better explain the different contributions, we have chosen to present
it progressively. First, we propose a joint minimization problem to esti-
mate both optical flow and occlusions while preserving discontinuities of
the flow. Our data term is based on the brightness constancy constraint for
the case of gray sequences and on the color constancy constraint for color
sequences. The color constancy assumption or constraint states that the
color of the pixels do not change along the displacement of the object Brox
et al. (2004b). The proposed energy model

incorporates information that allows to detect occlusions. This information
is based on the divergence of the flow and the energy favors the location
of occlusions on regions where this divergence is negative. Assuming that
occluded pixels are visible in the previous frame, the optical flow on non-
occluded pixels is forward estimated whereas is backwards estimated on the
occluded ones.

The optical flow constraint presents some drawbacks: often gray or color
constancy assumption is violated due to illumination changes, shadows or
reflexions, as well as due to occlusions that appear when objects or the
camera move. On the other hand, most of the variational models for op-
tical flow computation use the coarse-to-fine strategy to be able to handle
large displacement of the objects in images Stoll et al. (2012). This strat-
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egy consists in creating a multiscale pyramid, estimating the optical flow
at coarser scales and then refining the solution at finer scales Mémin and
Pérez (1998); Brox et al. (2004b); Meinhardt-Llopis et al. (2013). However,
the coarse-to-fine strategy is unable to handle large displacements of small
objects that move differently from their surroundings. In this Part of th
thesis we propose and analise a methodology to handle all these drawbacks.
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PART I

Non-local energy for depth
completion






CHAPTER ].

ntroduction to the problem

In this part we propose a non-local gradient-based energy for interpolating
incomplete disparity maps. It represents an extension of the bilateral filter
adapted to reconstruct locally planar disparity maps. Our method is a vari-
ational framework for non-local interpolation that exploits the selfsimilarity
of natural images to copy information in a consistent way from the known
parts of the image. We assume that we have at our disposal a reference
image from which similarity weights can be computed.

In the depth interpolation problem, the similarity weights are computed
using the reference image and the energy functional imposes that depths
should be similar for two nearby pixels that belong to the same object.

When the spatial extend of the weights tends to zero, the proposed model
can be shown to converge to an energy involving second order derivatives,
explaining thus its ability to obtain higher order interpolations. The pro-
posed energy can be minimized by solving its Euler-Lagrange equation via
an iteration of second order Poisson equations. By including an edge map
our model permits also to recover depth discontinuities.

1.1 Introduction

In this part we propose an interpolation method for incomplete (or sparse)
depth maps based on a gradient domain extension of the bilateral filter
(BF) Tomasi and Manduchi (1998). We assume that we are given both
an incomplete depth map and a corresponding reference image. The depth

3



map could be either obtained as a result of a stereo algorithm, or acquired
by a camera sensor, like a Kinect sensor or Time of Flight camera (ToF).
This depth map may be noisy or unreliable and one needs to filter it or to
interpolate a complete one. A ToF camera or a Kinect sensor also give an
image, taking it as a left image of the stereo pair, the depth map can be
used to generate the right view of the scene for 3D display.

In the task of interpolating disparity maps weights are computed using
the reference image. We propose an energy functional which imposes that
depths should be similar for two nearby pixels that belongs to the same ob-
jects. This is the basic priciple of the bilateral filter Tomasi and Manduchi
(1998) which has been adapted to address the depth interpolation problem
Yoon and Kweon (2006), Yang et al. (2007), Digne et al. (2010). Addition-
ally the edge information of the image can be incorporated into the depth
map, ensuring that discontinuities in depth are consistent with gray level
(or color) discontinuities.

We remark that BF computes at a pixel x a weighted average of the given
depth map at pixels y on a neighborhood of z, say N, (the weights being
given in terms of the distance and the color similarity between = and y). In
our case we took inspiration by the Poisson model of inpainting Arias et al.
(2009, 2011) and we extended it to copy not the disparity but the gradient,
enabling the interpolation of planes.

Thus, our model is formulated in terms of a nonlocal energy that compares
gradients (or a combination of gradients and intensities) at points where
the reference image is similar. In the present formulation, with weights
depending only on a reference image, we prove the I'-convergence of the
proposed energy, which is non-local, as we localize the neighborhood where
pixels are compared, obtaining the energy

/QTrace(DZU(:c)Q(VI(J:))DZU(:L')) dx, (1.1)

where D?u denotes the Hessian of v and Q(VI(z)) is a tensor inhibiting
the interpolation across edges (discontinuities) of the image I. This shows
that the non-local Poisson energy for disparity interpolation is a non-local
version of a second order functional. Moreover, thanks to the anisotropic
tensor Q(VI(x)) we are able to interpolate planes locally. The interphases
separating two different planes are given by the edges of the reference image.
Notice that the previous result is an extension of the asymptotic expansion
Buades et al. (2006) that identifies the anisotropic diffusion equation un-
derlying the bilateral filter. The proof is based on the results of Bourgain
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et al. (2001) approximating Sobolev norms by their non-local version. The
application of this energy model to the interpolation of disparity maps ac-
quired using a Kinect sensor together with the generation of the right image
of the stereo pair is the object of research in Lazcano et al. (2012).

1.1.1 Related work

Many correlation based stereo matching algorithms provide a sparse dis-
parity map of reliable data which can be improved by filtering. In Yin
and Cooperstock (2004), inspired by Perona-Malik equation, the authors
propose to use an anisotropic filter that inhibits diffusion accross edges of
the reference image. In Digne et al. (2010), the authors propose to diffuse
depth values using an iterated BF with weights given by the similarities of
the reference image.

The BF has also been used to post-process the similarity (or correlation)
cost in stereo matching. In Yoon and Kweon (2006) this similarity measure
is computed by bilateral filtering the pixel-based raw matching cost based
on color absolute differences, considering BF weights depending on color
similarity and geometric proximity to the reference pixel. In this way, one
gets an adaptive support window and weights that take into account image
discontinuities. In Yang et al. (2007), the authors have used a registered
high-quality reference image and the BF to enhance the resolution of low
quality depth maps given by range images. In an iterative way and starting
from the given range map, an aggregated cost volume is computed by bilat-
eral filtering each slice of an initial cost volume determined by the current
depth map.

The non-local Poisson model for image inpainting can be considered as a
higher order model (involving a non-local derivative of the gradient). As
we have seen it, it permits to create smooth transitions between given data.
Inspired by this, we study in this part of the thesis a gradient-domain exten-
sion of the bilateral filter Tomasi and Manduchi (1998) (named as neighbor-
hood filter in Yaroslavsky (1985)) for disparity interpolation from incom-
plete or sparse data for which higher order interpolation may be required.
For instance, we may need to interpolate disparity in a given region as a
step for stereo inpainting. We may also be given an incomplete disparity
map that may have been obtained either as a result of a stereo algorithm or
acquired by a camera sensor, like a Time-of-Flight camera (ToF) or Kinect
sensor, and a corresponding reference image.






CHAPTER 2

Proposed model and
discretization

In this chapter we present our proposed model to solve the problem of dis-
parity completion. As in the bilateral filter, the reference image constraints
the comparison of disparity gradients (and/or values) to neighboring pixels
that have a similar color. This is encoded by a weight function w(x,y)
that is given beforehand and is based on pixel (or patch) comparison. By
means of w(zx,y) the edge information of the image is incorporated into the
disparity map, ensuring that discontinuities in disparity are consistent with
gray level (or color) discontinuities. But in contrast to the bilateral filter,
that would compute at a pixel x a weighted average of the given disparity
map at pixels y on a neighborhood of x, say N, (the weights being given
in terms of the distance and the color similarity between x and y), we solve
a Poisson equation that tries to copy at x the weighted average of gradients
at pixels y € N,. We will show that use of gradient information permits to
extend the planes existing in the given disparity data.

2.1 The Proposed Model

Let us introduce some notation. We consider a reference image I : 2 — R™,
where n = 1 for a gray level image or n = 3 for a color image. As usual, the
image domain () is a rectangle in R?. We will also consider a depth map
u : Q — R and a corresponding confidence mask g : Q@ — [0,1]. At each
location z € Q, 5(z) measures the confidence we have on the depth value
u(z). If we have no data at z, B(z) = 0.

7
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2.1.1 The iterated bilateral filter

The bilateral filter Tomasi and Manduchi (1998) is a example of neigh-
borhood filter, Yaroslavsky (1985), which takes into account the gray level
values of the image to define neighboring pixels. Then the bilateral filter is

given by: .
BN = 15

where wg : Q x Q — RT is given by

lz —yl* | (x) - I(y)|?
C2k2 2h2 ) (2:2)

/ ws ()1 (y)dy, (2.1)
Q

ws(z,y) = exp (

and c(z) = [, ws(x,y)dy is the normalization factor, k, h > 0. Notice that
wp(z,y) incorporates both the Euclidean distance of y to the reference pixel
x and the photometric distance based on the comparison of I(x) and I(y).
The spatial extend (euclidean distance) of the neighborhood is controlled
by k, whereas the photometric extend is controlled by h. Thus the effective
extend of the photometric neighborhood is given by a packet of level lines
{y € Q: I(z) —3h < u(y) < I(x) + 3h}. When h and k are of the same
order, the behavior is similar to the Perona-Malik equation Perona and
Malik (1990) which inhibits diffusion along large gradients of the reference
image Buades et al. (2006).

The bilateral filter has found many applications to different problems in
image and surface processing. In particular, to the processing of disparity
maps. Indeed, many correlation based stereo matching algorithms provide
a sparse disparity map of reliable data which can be improved by filtering.
In Yoon and Kweon (2006); Yang et al. (2007); Digne et al. (2010) the
authors perform, respectively, disparity super-resolution and interpolation
by iterating a bilateral filter on the disparity map u:

1
k+1 k
W) = 5 [ (et (o)d, (23)
c(z) Ja
where the weights are given by (2.2) and incorporate a registered high-
quality reference image I. Thus, disparity values are diffused with weights
given by the similarities of the reference image in a neighborhood of .

The iterative bilateral filtering can be interpreted as a process to minimize
the non-local energy functional

Ris(u) = /Q /Q ws(z, y) (u(x) — u(y))2dydz. (2.4)
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Energy (2.4) favors constant or piecewise constant minima (on regions sep-
arated by high image gradients). This motivates the use of Rp as a reg-
ularization term, to be used together with a data attachment term to the
initial disparity:

E(u) = D(u) + ARg(u), A > 0. (2.5)

In the context of data interpolation we consider the following data attach-
ment

D(u) = /Q B() u(x) — ()P, (2.6)

where u? is a given data, 3(x) is a confidence mask (or the mask where the

data is known), and p =1, 2.

The regularization term Rp is based on the assumption that nearby loca-
tions with similar colors should correspond to the same object and have
similar disparity since the object’s surface is assumed to vary smoothly.
Although this assumption works well in many cases, it favors piecewise con-
stant disparity maps (see Figure 3.2).

2.1.2 A gradient based model

Taking account the limitations of the bilateral filter we propose a higher
order model so that nearby locations with similar colors have similar depth
gradient. This is equivalent to assume that objects are locally planar. To
achieve this, the corresponding regularization term is

Rew) = [ [ wple. )l Vu(e) - Vulw)|dyd.
Here wp(z,y) denotes a slight modification of the BF weights wp with the
aim of obtaining depth maps with discontinuities (or with high gradients).

In practice it is convenient to combine both regularization terms. Thus, we
define the energy

E(u) = D(u) + ARp(u) + (1 = A)Rp(u), Xe€[0,1].

2.1.3 The discontinuity map

Without a proper choice of the weights, the gradient-based regularization
term, Rp would not allow to recover discontinuities in the depth map (in
the continuous setting, a discontinuity has infinite energy). By choosing the
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weights we remove from Rp the regions of the image where a discontinuity of
the depth map is likely to occur. We obtain this information from the edges
of the reference image. For that, we define a discontinuity map o : Q — [0, 1]
by

1

T 1tex (Uwi@))2 - s0)/7)

where I is the reference image smoothed by a Gaussian kernel. This is
a (decreasing) soft-thresholding function around sy where —(27)~! is the
slope of the function at sg. We incorporate the ¢ into the weights, defining
a new weight function:

(2.7)

o(x)

wp(z,y) = wp(z,y)o(z)o(y).

Strictly speaking, discontinuities are only allowed when o(z) = 0. Still,
small non-zero values favor high gradients of the depth map (if needed).

The modified weights wp are only used in the gradient-based regularization
term Rp. For Rp we use the original weights wp.

2.1.4 Further justification

Since u(z)—u(y) can be considered as a nonlocal gradient and Vu(z)—Vu(y)
as a non-local second order operator, by suitably rescaling the energies we
can localize them and reveal what are the underlying differential operators.

To this aim, let us introduce a scale factor € > 0 and define pg(x) = }205(%)7
€ € I -1
and w(x, y) = ps(x —y)pr(F2HL).

We also consider rescaled versions of the energies:

Rstw) = 5 | [ wilo.9)(u(e) = u) Pdyd.

Ro(w) =5 [ [ whle.)|Vuta) - V() Pdyde.

Let us introduce some notation, necessary to state the result. For a given

v € R? we define the 2x 2 matrix Q(v) as: Q(v) = [zo ps(2)pr((v, 2)) 2@z dz,

where 2 ® z = 22T = (zizj)?’jzl. Note that Q(v) is defined using the non-

rescaled similarity kernels p; and pg. By explicit computation, we have

B A &2 ) -1/2 k72 -1
Q(v) =27k 1—|—h2|v\ I—i—hzv@z} .
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The following Theorem expresses the convergence of the ‘non-local’ energies
Ry (u), R%(u) to a corresponding ‘local’ version. This permits to show what
is the underlying differential operator (hence, the order of interpolation).
The corresponding result holds if we add the data terms.

Theorem 2.1. As e — 0+, the energies Ry I'-converge to the energy

R%(u) = /ﬁ Vu(z)' Q(VI(z))Vu(x) dr,

As € = 0+, the energies RS, I'-converge to the energy

RO () = /~ Tr(D2u(2)Q(VI(z)) D?u(z)) dx,
Q
where Tr(A) denotes the trace of the matriz A.

We will not give the precise definition of I'-convergence, it suffices to say
that with this notion the minima of the approximating energies converge to
minima of the limit one Braides (2002). We have denoted by D?u(z) the
Hessian matrix of u at . We give the proof of Theorem 2.1 in the appendix
A.0.1.

Notice that Q(VI) is small for large values of |VI(z)|. Assuming that it
is zero at a set of curves S given by the edges of the image, the energy of
piecewise affine functions u with eventual jumps at S is zero. This explains
the ability of the proposed model to obtain piecewise affine reconstructions.

2.2 Discretization

We discretize the energy using a finite differences scheme. We consider a
rectangular lattice Qg C Z2. For a discrete depth image u : 3 — R, we
define the discrete gradient as a forward difference operator:

I Joulrte) —u(x) ifzte ey
[VTu@)i = { 0 else,

with i = 1,2, where e; = (1,0) and e; = (0,1) and [V*u); denotes the
derivative in the direction e;. The gradients at the last row and column of
the image (set to zero) are removed from the energy by defining o(x) = 0
whenever z +¢; ¢ Qy for i =1 or i = 2.

The discrete gradient-based regularization term results,
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Rpa(u)i= 3 " wp(@,y)|VHu@) - Viu)|®.  (28)

€N, yGQd

Similarly we discretize the other energy terms Rp 4 and finally obtaining
Ei(u) as

Eg(u) =) Bx)(u(z) - u(y))+

e
AT ST wis(r, ) (u() — u(y)?+
zeQyYeN
(1= D> wplwy)(Vulz) - Vu(y))?,
zin) x€)

The resulting energy Ey(u)is quadratic. By computing the Euler-Lagrange
equations we obtain a linear system whose corresponding matrix is relatively
dense, due to the non-locality of the similarity weights. We solve it using
the following fixed point iterations

Ae(z)uP T — (1 = N div™ (a(z) VTP = f(u”, z),

in which we compute the right hand side using the previous iterate u”.

As initialization we use the given depth data u’. The new iterate u**!
is computed as the solution of a discrete Poisson equation. We use the
conjugate gradient to solve this pentadiagonal system.

The divergence operator div™ is computed as the dual of VT (i.e. using
backward differences), and

o(z) = Blz) + 21 Y wp(z,y),

IS OF

a(w) =2 3 wp(r,y),

Y€y
flu,z) = (1 = N)div v(u, z) + B(z)u’(x)

—2X ) wa(z, y)u(y),

yeEQlq

v(u,z) = Z wp(z,y)Vu(z).

YyEQ



CHAPTER 3

Results

3.1 Results

In this chapter we present we present results for four comparative exper-
iments. The first and second experiment were performed using synthetics
data. The third experiment was performed using data form Middlebury
stereo database. The fourth experiment was performed using real data ob-
tained by a Kinect sensor for Microsoft X-Box.

3.1.1 Synthetic data

To test our algorithm, we have created a synthetic image with two planes
displayed in Figure 3.1. We added Gaussian noise with a standard deviation
of 10 to the disparity. We set 8 = 0 in the editing domain and 8 = 0.5
weighting the data attachment. In Figure 3.2 we compare the profiles of the
solutions obtained with BF (A = 1) and gradient-based energies (A = 0).
Note that BF has been used in the literature (Digne et al. (2010), Yang et al.
(2007)) to address the problem of depth interpolation/superresolution.

The disparity map (the data) is only known outside the mask and we know
the reference image. We assume that the discontinuities of the disparity
map correspond to the discontinuities of the reference image. Thus the
edge map is computed on the reference image and determines the map o(z).
In Figure 3.2 we show a profile of the interpolated disparity in the given
mask. We have interpolated the disparity data with a Gaussian noise of
standar deviation 5. The model filters the disparity map outside the mask
and interpolates it inside. The Figure shows the results of the bilateral

13
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Figure 3.1: Synthetic depth data (the black region indicates the interpolation
domain), reference image, our result using as o(x) the edge map of the reference
image given by (2.7), result using BF.
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Figure 3.2: Profile of the result for the two planes synthetic image. We show 4
curves: Noisy data, output of BF, output of gradient-based with o = 1, output of
gradient-based with o given by (2.7).

filter (A = 1, in red), the gradient model (A = 0) without the edge map (in
green), and the gradient model with the edge map (in blue).

We see that the result for A = 1 is a piecewise constant map and does not
continue the two planes. With A = 0 and o = 1, the result continues the
two planes but with a large error. With A\ = 0 and o(z) given by (2.7),
we can continue the slopes of the planes and get the discontinuity. The
gradient-based solution considering the discontinuity map performs better
than BF.
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A synthetic example of a sphere In Figure 3.3 we display a synthetic
image with a sphere. The data is only known outside the mask (middle of
the first row) and we know the reference image from which we have extracted
the edge map (right of the first row). We used (2.7) to interpolate the data
in the given mask. In the second row of Figure 3.3 we show a profile of the
results: we display the result obtained using the gradient model (A = 0)
and the result obtained using the bilateral filter (A = 1). In both cases we
display the profile of the original sphere and the interpolated result.

40

60

a0

&

Eil - ®
Ny N
75 75 /
\\
! 70 \
L _,'
-3 & T
0 L]
% 55
5 50

a0

40

80

Figure 3.3: Interpolation of a section of a sphere.

3.1.2 Examples with real data

We present two examples with real test images. In our first experiment,
we are given a disparity map with a hole corresponding to an object that
has been eliminated and our purpose is to interpolate its disparity. The
data has been taken from the Middlebury database Scharstein and Szeliski
(2002) and is shown in Figure 3.4.

Note that the reference image is unknown in the interpolation domain. To
create the discontinuity map we extend the significant level lines Desolneux
et al. (2001) arriving at the hole, using Euler’s spiral as in Cao et al. (2011).
The extended lines determine five regions corresponding to the objects sur-
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Figure 3.4: Inpainting disparity data for cones image.

rounding the interpolation domain (see Figure 3.4). The similarity weights
are set to wp(z,y) = 1 if  and y are in the same region, or 0 otherwise.
The results corresponding to BF and gradient-based energies, together with
their profiles, are shown in Figure 3.4. The profiles are taken from the
column x = 130 (indicated as a red line), depicted in the figure (y = 0
corresponds to the top of the image). Note how the gradient-based method
captures the plane of the table, from y = 241 to the end.

In our second experiment with real data we are given a disparity map ob-
tained from Kinect’s depth data. The depth map is registered to the ref-
erence image using the matlab toolbox provided by Herrera et al. (2011).
We take the inverse value of the depth map to obtain the disparity, where
data is available. To demonstrate the performance of our model, we inter-
polate the remaining holes and additionally we suppress an object. Figure
3.5 shows our results obtained with A = 0.01, and an edge map o(z) given
by Eq. (2.7).
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S
\‘
Figure 3.5: Inpainting Kinect’s disparity data. Reference image, initial disparity

map, mask of interpolation domain, results of the disparity completion using A =
0.01, h=6, k=5.
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CHAPTER 4

Conclusions

We have presented a non-local gradient-based energy for disparity map in-
terpolation, knowing a reference image. We have taken advantage of the
given image both to guide the interpolation and to specify the location of
depth discontinuities. We have shown with synthetic examples and two real
examples the ability of our method to interpolate planes, concluding that
it improves on the bilateral filter. Its Euler-Lagrange equation can be seen
as a non-local fourth order equation, which can be solved as an iteration of
second order Poisson equations.

The proposed functional can be used as a regularizer in a full stereo algo-
rithm.

Our method presents some limitation in the case of textured images. The
completion of the disparity will follow the texture of the reference image.
Some regions of the completed disparity will stay isolated of the completion
process. Another limitation appears in the case of completion of huge re-
gions of incomplete disparity information. The algorithm converges before
the difussion process covers the entire huge regions. This second limitation
will be overcome by the method explained in the next part of this thesis.
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PART 11

Biased AMLE operator for
depth completion
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CHAPTER 5

Preliminary

In this second part of the manuscript we perform an in-depth experimental
study of an operator for interpolating incomplete disparity maps. The op-
erator is the biased Absolute Minimizing Lipschitz Extension that appeared
in the axiomatic approach proposed in Caselles et al. (1998) and Caselles
et al. (2006). This operator is the simplest interpolation operator satisfying
a well-founded set of axioms.

5.1 Introduction

In this work we present a numerical scheme and an experimental study of an
operator for interpolating incomplete or sparse depth maps. The operator
is the biased Absolute Minimizing Lipschitz Extension that appeared in the
axiomatic analysis of the interpolation operators in manifolds in Caselles
et al. (2006) and also in the context of tug-of-war games in Peres et al.
(2010) (see also Armstrong et al. (2009)).

We are motivated by the extensive literature on filters to enhance sparse
depth data (coming from several depth sensors) that has been published in
recent years.

When a depth map is obtained either as a result of a stereo algorithm or
acquired by a Time-Of-Flight camera or by a Kinect sensor, usually the
depth map presents areas without information (ofen referred to as holes).
This lack of information may be due to occlusions between objects in the
scene or to areas where the depth data is not reliable or simply missing.
Those holes or regions without reliable depth information can have big ar-
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eas which require appropriate interpolation operators to enhance the depth
data. The problem of depth interpolation consists in completing the empty
depth data regions in a depth image while guarantying compatibility with
the information presents in the depth image.

To this goal, in this work we consider the biased AMLE model: Aus +
B|Vueg| = 0. This model has the capability to complete large areas of
incomplete data due to the inclusion of the gradient term. This interpola-
tion operator exactly fits the incomplete data at known values and it can
interpolate values on isolated points.

Depth completion is an active area of interest mainly due to its many ap-
plications. For instance, depth completion techniques do exist to render
new views from an image and its depth image to a different virtual view
Ndjiki-Nya et al. (2010), or for interpolation purposes of digital elevation
models (DEM) from contour lines Almansa et al. (2002).

5.1.1 Previous work

The Absolute Minimizing Lipschitz Extension (AMLE) operator was first
introduced in Aronsson (1967) and Aronsson (1968) as an interpolation tool
from a theoretical point of view. In Caselles et al. (1998) and Caselles et al.
(2006), AMLE operator emerges as the simplest operator satisfying a set of
axioms.

The uniqueness of viscosity solutions of the AMLE presented in Aronsson
(1967, 1968) was proved in Jensen (1993). For a survey we refer to Aronsson
et al. (2004); Crandall (2008). The AMLE with variable coefficients was the
object of study in Juutinen (1998) and more recently in Gémez and Rossi
(2013).

As it is well known Caselles et al. (1998); Crandall et al. (2001); Aronsson
et al. (2004), the AMLE is a cone interpolator and is able to interpolate the
value at points. The biased AMLE offers an interesting alternative since
the value at the points will expand and produce a smoother profile. This is
of interest in applications to depth interpolation.

In Almansa et al. (2002) the AMLE is used to interpolate data between
level lines. They used it to create elevation reconstruction models from a
scanned map where only a few iso-level curves are available.

In Caselles et al. (2006) the AMLE operator was applied to the completion
on surfaces embedded in R? given the values on a set curves included in the
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surfaces.

In Belyaev and Seidel (2005) and in Galic et al. (2015) a new method
for image compression is proposed. With this goal they remove the less
significant pixels and the remaining pixels serve as scattered interpolation
data. The interpolation is performed by a diffusion process based on partial
differential equations.

The biased Absolutely Minimizing Lipschitz Extensions appeared in the
axiomatic analysis of the interpolation operators in manifolds in Caselles
et al. (2006) although was not experimentally studied there (and was also
unnoticed in Caselles et al. (1998)). It was also introduced in the context of
tug-of-war games in Peres et al. (2010) where it was mathematically studied.
It has been also been studied in Armstrong et al. (2009).

AMLE and biased AMLE operators are particularly efficient in order to
interpolate sparse disparity maps. This fact is very useful in the case of our
interest where we may have huge size disparity holes in a huge size disparity
map with few data, or few data with high confidence level.

5.1.2 Summary of contributions

The problem of depth interpolation consists in completing the empty depth
data regions in a depth image while guarantying the compatibility with
the information presents in the depth image. The biased AMLE opera-
tor exactly fits the available data and it can interpolate values on isolated
points. This is not satisfied for other interpolation operators like, e.g., the
Laplacian. On the other hand, while the AMLE operator is known to be a
cone interpolator which is able to interpolate the value at points, the biased
AMLE offers an interesting alternative since the value at the points will
expand and produce a smoother profile. Thus, the biased AMLE properties
make this operator capable to extend the known data to huge empty regions
which is of interest in applications to depth interpolation.

In this work, the task of interpolating sparse disparity maps is performed
using this reference image and the incomplete disparity map. Indeed, we
assume that we have at our disposal a reference image from which an
anisotropic metric g and a geodesic distance between points is computed.
We propose an algorithm and experimentally study the following equation

A gu+ B|Vul =0 in €, (5.1)
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coupled with the boundary condition
ulag =6, (5.2)

where 2 is a domain in R?, g is a metric defined on this set which takes
into account geodesic spatial distances and photometric similarities, and
B € RT. 0 is a continuous function on 99 providing the known values on
9.

In order to solve equation 5.1, we propose to use the discretization method
proposed in Oberman (2005b) and Manfredi et al. (2015).

We have tackled the problem of anisotropic interpolation of depth data
to big empty regions without information. By considering the the image
domain endowed with an anisotropic metric, the proposed method is able
to take into account the underlying geometric information in order not to
interpolate across the boundary of objects at different depths.

On the other hand, we extend the biased AMLE operator to time domain.
To do so, we consider the depth data in a video sequence. We experimentally
prove that this extension makes the operator capable for completion of
depths in depth video sequences.

5.1.3 Structure of Part I1

Chapter 6 reviews a set of suitable axioms (already presented in Caselles
et al. (2006)) that a simple and efficient interpolator should satisfy.

In Chapter 7 we review the Biased AMLE and we illustrate its behavior on
a toy example as a proof of concept .

In Chapter 8 we present a numerical scheme to solve the biased AMLE
which is based on the eikonal operator defined in Manfredi et al. (2015) and
Oberman (2005b).

Chapter 9 presents the evaluation of the biased AMLE in an upsampling
task. Also, we present its extension to temporal video sequences. On
the other hand, we provide a comparison of the performance of the biased
AMLE with AMLE and with bilateral filter.

In Chapter 10 we compare the performance of the biased AMLE with the
gradient-based non-local bilateral presented in the part IT of this manuscript.

Finally in Chapter 11 we discuss the obtained results and present our con-
clussions.



CHAPTER 6

Axiomatic for depth

interpolation operators on
Manifols

In this chapter we present a set of basics axioms to be satisfied by an in-
terpolation algorithm. Each interpolation algorithm appears as a viscosity
solution of a degenerated elliptic partial differential equation. These inter-
polation methods can be applied in several context: in Digital Elevation
Models models from a sample of its level curves, for interpolation of climate
maps, and for disparity interpolation. We then focus on one of those inter-
polation operators: the biased AMLE. Finally we present its extension to
temporal video sequences of incomplete depth data.

6.1 Axioms for biased Absolut Minimizing
Lipschitz Extension

To complete sparse depth maps, an efficient depth interpolation operator is
needed. In this section we consider the general problem of obtaining inter-
polation operators satisfying a set of suitable axioms and properly defined
on Riemannian manifolds. Such manifolds arise for instance for images de-
fined on R?, endowed with a suitable metric. The authors of Caselles et al.
(1998, 2006) studied models and algorithms for interpolating data which is
given on a set of curves. Following an axiomatic approach, they obtained
that the interpolation operators satisfying a set of suitable axioms are given

27
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in terms of possibly degenerate elliptic partial differential equations. In
this section, we review the results in Caselles et al. (2006), which are an
extension to manifolds of the results in Caselles et al. (1998).

Let (M, g) be a compact, connected smooth two-dimensional surface in R3.
As usual, given a point £ € M, we denote by T M the tangent plane to M
at the point £. Let C denote the family of continuous curves I : [a, b] — M
which are one-to-one in (a,b) and I'(a) = I'(b). Let D denote the family of
open subsets ) of M such that the boundary of €2, denoted by 9€) consists
of a finite union of curves in C. For each Q € D, let C(0f) be the set of
continuous functions defined on 0f).

We shall consider an interpolation operator as a transformation E which
associates with each 2 € D and each ¢ € C(99) a unique function u =
E(p,09Q) defined on  satisfying the following set of assumptions:

e (A1) Boundary Values:
E(p,0Q)|o0 = ¢ for any Q € D and ¢ € C(09).

In other words, F (¢, 0f2) represents an interpolation or extension of
@ into €.

e (A2) Comparison Principle:
E(p,09) < E(,00)
for any Q € D and any ¢, € C(092) with ¢ < Q.
e (A3) Stability Principle: Let Q,Q € D, ' C Q. Then
E(E(p, 0Q)|aey, 0Y) = E(p,09)|o

holds for any ¢ € C(99). This principle means that no new applica-
tion of the interpolation can improve a given interpolant.

e (A4) Regularity Principle: Let us briefly state the regularity axiom
Caselles et al. (2006). In any case, the concepts and notation used here
will be considered with more detail below in this section. Let & be a
point on M, U C R? an open set containing 0, and 7 : U — M be any
coordinate system such that ¢(0) = &. Let g;;(z) and I‘Z(:}:) (indices
i,7,k run from 1 to 2) denote, respectively, the coefficients of the
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first fundamental form of M and the Christoffel symbol computed
in the coordinate system . For simplicity we shall denote by G
the (symmetric) matrix (g;;(0)) and by T'* the matrix formed by the
coefficients (I‘fj(())), i,j,k = 1,2. Let us denote by B, the geodesic
ball of radius r around &. Let SM(2) be the set of symmetric 2 x 2
matrices. Let A = (A;) be a matrix such that GA € SM(2), and
p = (p') € R%. We shall use Einstein’s convention that repeated
indices are summed, and we denote by (a,b) = a;b’.

We can now state the regularity principle. For any quadratic polyno-
mial Q : U — R given by

1 o o
Qz) = 591'3'(0)14;95195] +9i;(0)p'z? + ¢

1
= §(GA;1:, x) + (Gp,x) + ¢,

the operator F should satisfy

lim E(Qov Y op,, 0B,)(&) — Qo 1(E)

r—0 7“2/2

= F(A,p,c,& G, T

(6.2)
where F' is a continuous function of its first argument. This require-
ment embodies several properties. First, it expresses that the inter-
polant of a quadratic polynomial near £ may be locally expressed in
terms of its elements A, p, ¢, the point £, and the metric tensor and
Christoffel symbols. Since any smooth function u on U is given locally
as a quadratic polynomial, this (together with the comparison prin-
ciple) implies that the operator depends only on the first and second
derivatives of u. Moreover, when combined with the comparison prin-
ciple it permits to prove that the interpolation operator is intrinsic
and the regularity axiom also gives the transformation properties of
F when we change coordinates (see Theorem 6.4).

Let us notice that, as in Caselles et al. (2006), in (6.2) we could have
written that the limit converges to a function F'(B, q,c,&, G, Fk) where
B = GA, ¢ = Gp. But this would mean only an equivalent change
of notation. Following Caselles et al. (2006), we prefer to use this
notation since it is more convenient in the proof of Theorem 6.2 (see
Caselles et al. (2006)). Some further clarifying remarks will be given
below.
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e (A5) Grey Scale Shift Invariance:
E(p+¢,00)=E(p,00)+c
for any Q € D, p € C(09), c € R.
e (A6) Linear Grey Scale Invariance:
E(A\p,0Q) = AE(p,00)
for any Q € D, ¢ € C(012), and any X € R.
Let us describe the interpolation operators satisfying the above set of as-

sumptions. To this goal, let us introduce some more notation which will
also clarify the notation used in the regularity principle.

Figure 6.1: A point £ on a manifold M and its tangent space at €.

For any £ € M, we denote by T¢ M the tangent space to M at the point
§. By Tg M we denote its dual space. The scalar product of two vectors
v,w € TeM will be denoted by (v, w), and the action of a covector p* €
T¢M, on a vector v € TeM, will be denoted by (p*,v). f ¢ : U - M is
a coordinate system such that ¢(0) = &, and g;j(x) are the coefficients of
the first fundamental form of M in v, we shall often write g;;(¢’) instead
of g;j(x) where z € U is such that ¢(z) = ¢’. Then, if v,w € T¢ M, we have
(v,w)e = gij(€)v'w’, where v, w’ are the coordinates of v,w in the basis
%k of TeM. Using this basis for Te M and the dual basis on T¢M, if

p* € T¢ M, and v € Te M, we have (p*,v) = p;v'. Notice that we may write
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(p*,v) = gi;(€§)p'v? where p’ are the coordinates of the vector p associated
to the covector p*. The relation between both coordinates is given by

pi=gi;(E)p’, or p'=g"(&)pj, (6.3)

where ¢/ (€) denotes the coefficients of the inverse matrix of g;;(£). By a
slight abuse of notation, we shall write (6.3) as

p"=Gp or p=G lp.

In this way G : TeM — T M. In the case that ¢ is a geodesic coordinate
system, the matrix G is the identity matrix I = (d;;), and I maps vectors
to covectors, i.e., I : TeM — Tg/\/l. We shall denote by I~! the inverse of
I, mapping covectors to vectors.

Let us now clarify the notation used in (6.1). If U C R?, and ¢ : U — M
is a coordinate system with (0) = &, then ¢ o dy)(0)~! : U’ C TeM — M
is a new coordinate system. If we identify ToU with R? and {e;} denotes
its canonical basis, then e; = dy)(0)e; satisfy (e;, ;) = g;;(§). From now on,
we shall use this identification, thus we shall interpret that any coordinate
system around a point € € M is defined on a neighborhood of 0 in the
tangent space Te M.

We shall also use this coordinate system to express a bilinear map AT, g Mx
TeM — R. Indeed, if (A;;) is the matrix of A in this basis, and v, w € TeM,
we may write A(v,w) = Agviw'. If Aij = g*(€) Ag;, then Aij determines
a map, called A : Ty M — T¢M such that fl(v,w) = (Av,w) = (GAv,w).
Observe that GA : TeM — T M. Observe also that our notation A
already indicates that A = (A;) maps vectors to vectors, and this is the
interpretation of the matrix argument A in (6.2). We shall identify matrices
with maps.

As usual, we say that a linear map C' : TeM — T¢ M is symmetric if
(Cv,w) = (Cw,v) for any v € TeM, w € Te M. From now on, we shall use
the notation

SM(2) :={A: TeM — T M, A is symmetric}.

Given the previous notations we can rewrite the Regularity priciple. Let
Ffj(az) the Christoffel symbol of M in the 1 coordinate system. Let us
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denote B, the geodesic ball of radius r around &. The operator E should
satisfy:

lim E(Qov¢ 1 op,,0B,)(&) — Qo1 (€)

r—0 T2/2

= F<A7p7 C? 67 G7 Fk)‘

The interpolation of a quadratic polynomial around £ may be expressed
in terms of its elements A, p, ¢, £, the metric tensor G and its Christoffel
symbol. Any smooth function u is given locally as a quadratic polynomial,
implies that the operator E depends only on its first and second derivative
of u.

We consider a function u on M with gradient and Hessian D qu and wau,

respectively. Considering Dy u as the covector of g;‘i and D/2\4U the matrix
8328723‘ - Ffj% Using this notation D}, u(§) : TeM X Tf/\/l — Ris a
bilinear map. We write V pqu the vector of coordinates g”%. So that

|VMu(§)|§ = (Vpmu(§), Vau(§))le. Instead of writing Dayu and V yqu to
simplify the notation we are going to write Du and Vu.

Given a function u on M, let us denote by D u and Df\,(u the gradient and
Hessian of u, respectively. In a coordinate system D qu is the covector g;ﬁ-,
and D%/[u is the matrix af%;j —Ffj% which acts on tangent vectors. Thus,
with this notation D%Vlu(g) :TeM X TeM — R s a bilinear map, £ € M.

Let us write Vqu the vector of coordinates ¢7-2%. Then ]VMu(ﬁ)lg =

oxd *
(Vamu(§), Vau(§))e. To simplify our notation we shall write Du and Vu

instead of D u, and V yqu. The vector field Vu satisfies (Vu,v)e = du(v),
v € Te M, du being the differential of w.

Now, we can recall here the results in Caselles et al. (2006) which are fun-
damental for our work. The main theorem of Caselles et al. (2006) shows
that the interpolation functions u = E(¢, 02) are solutions of a partial dif-
ferential equation. To simplify the presentation, we introduce the following
notation

Vu Vu
A (u,€) = Du <> ,
1(w8) Wl Wl ) ©
Vu Vaut
A U,f):DQU( 7) ’
2 [Vaule ™ [Vule (

mw@zD%<V“ W“)@,



6.1. AXIOMS FOR BIASED ABSOLUT MINIMIZING LIPSCHITZ EXTENSION33

Definition 6.1. Let (H) : SM(2) x R x (M)M — R. We shall say
that H(A,s,§) is elliptic if H is a nondecreasing function of A. If A =
<Z i) and we define H(a,b,c,s,§) = H(A,s,§), we shall also say that
H(a,b,c,s,€) is elliptic.

Theorem 6.2. Assume that the interpolation operator E satisfies (Al),
(A2), (A3), (A4), and (A5). Then there exists a continuous function H :
SM((2) x Rx M — R, H(A,q,&), which is nondecreasing in A such that if
QeD,0eC(09), and u= E(0,00), then u is a viscosity solution of

H (A1 (. €), Ao, €), Aa(u, ), [Vul §) =0 in @, (6.4)

satisfying the boundary data ulgpg = 6, that is, for any ¢ € C>°(Q) with
bounded derivatives such that u— ¢ has a local mazimum (minimum) at &,
and V(&) # 0, we get

H (A1(:60): Aa(p: §0): a2, €0), [ Viple, o) > 0 (6.5)

(respectively, < 0).

Lemma 6.3. Assume that the interpolation operator E satisfies (Al)—
(Ab5). If, in addition, it satisfies (A6), then

H(Aa, Ab, Ac, [Aple, §) = AH(a, b, ¢, [ple, £), (6.6)
for any a,b,c c R, { € M, peTeM, A > 0.

Let us finish this Section with some complementary information about .
For simplicity, in the next proposition we shall not denote the argument &
of H.

Proposition 6.4. i) If H does not depend upon its first or its third argu-
ment, then it also does not depend on its second argument. In other terms

If H(ev, 8,7, 8)
If H(e, 8,7, 8)

where o, 8,7,s € R.

—H(B,,5), then H = F(,5)
= ﬂ(a, B,s), then H = 7:[(a, s)
it) If H is differentiable at (0,0,0,0) then H may be written as H(A,s) =

tr(BA)+ds where B is a nonnegative matriz with constant coefficients and
d 1s a real constant.






CHAPTER 7

The case of the AMLE and
Biased AMLE. A Comparison.

In this Chapter we focus on particular cases of equation (6.4) of Theorem 6.2
in previous chapter, namely, the AMLE and biased AMLE operators and
discuss on their behavior. We illustrate it with a toy example. This proof of
concept shows their capability to extend data to big empty regions. Addi-
tionally, this toy example allows us to show the different qualitative behavior
of interpolation solution of the AMLE and of the biased AMLE.

7.1 Absolutely Minimizing Lipschitz Extensions
(AMLE) and Biased AMLE

From previous chapter (see also Caselles et al. (2006)), if we assume that H
is differentiable at (0,0,0,0) then we may rewrite Equation (6.4) as

al1(u, &) + 2bAs(u, &) + cAz(u, &) + d|V’LL’§ =0, (7.1)

where a, ¢ > 0 and ac—b?> > 0. If wetake a = ¢ = 1, b = d = 0 we recover the
Laplace-Beltrami operator. If we choose a = 1, b = ¢ = d = 0 we obtain the
extension to two-dimensional manifolds of the so-called infinite Laplacian or
AMLE, which stands for Absolutely Minimizing Lipschitz Extension. The
authors of Caselles et al. (2006) also showed experimental results showing
the potential applications of the AMLE model to interpolate data given on
a set of curves or points on a surface.

The biased Absolutely Minimizing Lipschitz Extensions appeared in the ax-
iomatic analysis of the interpolation operators in manifolds in Caselles et al.

35



36 THE CASE OF THE AMLE AND BIASED AMLE. A COMPARISON.

(2006) (e.g., a=1,b=c=0 and d = ) although was not experimentally
studied there (and was also unnoticed in Caselles et al. (1998)). It was also
introduced in the context of tug-of-war games in Peres et al. (2010) where
it was mathematically studied. It has been also been studied in Armstrong
et al. (2009).

Let us recall that the AMLE was introduced by G. Aronsson in Aronsson
(1967, 1968) and uniqueness of viscosity solutions was proved in Jensen
(1993). For a survey we refer to Aronsson et al. (2004); Crandall (2008).
On the other hand, the AMLE with variable coefficients was the object of
study in Juutinen (1998) and more recently in Gémez and Rossi (2013).

As it is well known Caselles et al. (1998); Crandall et al. (2001); Aronsson
et al. (2004), the AMLE is a cone interpolator and is able to interpolate the
value at points. The biased AMLE offers an interesting alternative since
the value at the points will expand and produce a smoother profile. This is
of interest in applications to depth interpolation.

The authors of Peres et al. (2010) proved that the solution of the bi-
ased AMLE in R" with the Euclidean metric d(x,y) is given by u(z) =
sign(B)(1 — elBldo.2)) " They refer to this solution as [-exponential cones.
Figure 7.3 show the exponential cones obtained for the toy experiments (see
also Figure 1 in Peres et al. (2010)). In general, d is a path distance between
point  and the point at the center in xg, and a continuous function is a
solution of the biased AMLE if and only if it satisfies a certain comparison
with g-exponential cones.

7.2 Biased AMLE

We consider the simple case where the Riemannian manifold (M, g) is given
by M = R?, or a domain € in R?, endowed with a metric g. Let § € C(99).
Let us consider the problem

A gu+ BVulg =0 inQ (7.2)
coupled with the boundary condition

ulon = 0. (7.3)

In (7.2) we have denoted

Vu Vu
Amgu:=D3u| 2 YU
gt = Pt <|Vu|§’ |vu€>
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The equation (7.2) is called in the literature the biased AMLE. We consider
equation (7.2) in the viscosity sense. Again, for convenience of notation, let
us write

d%u ou
Diigu(a) = 5o () = Th (@) 2% (o).

Then, we can write (7.2) as

WD%,UU(%)QM(:B);;(%)Q T(x )aauv( )+ BIVu(a)|, =0  (7.4)

where 9 5
2 _ ij Uy ot
Vu(@)2 = gV (2) 5o (@) 525 ()

Let us describe a particular case which is of interest for us here. Assume
that g;;(z) = h(z)d;;. In practice we assume that h(z) = (k1 + k2| VI(z)[?)P
for some p > 0, where [ is a given reference image. Then we may write (7.4)
as

1 ou , . Ou
————=D%44
‘V'LL( )|2 M,z]u(x) 8%7’( )8$J ( )
Note that the factors h(x) have been simplified in the numerator and the de-

nominator in the first term of (7.5). They remain in the Christoffel symbols
and in the modulus of the gradient in the second term.

+ BIVu(z)], = 0 (7.5)

Remark 7.1. We can write also (7.4) as

D3u()g () oo (2)g () S () + BIVu(@)E =0 (7.6

Remark 7.2. The AMLE is usually obtained as the limit of p — oo of
minimizers of the energy

/Q|vu|g|g|1/2 di (7.7)

where |g| = det(g(x)) satisfying specified Dirichlet boundary conditions. The
case p = 2 corresponds to the Dirichlet integral. One could say that the work
in Belyaev and Seidel (2005); Galic et al. (2015) is inspired by the Dirichlet
integral and the case of a metric given by the structure tensor.

Let us illustrate this behavior using a toy example, created synthetically to
be used as a proof of concept in the context of completion of sparse depth
maps. The toy example consists of a constant depth map which contains
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Figure 7.1: Left: Image of depth data. Outside the empty disc (the hole) the
value is set to 255 and the only value at the center of the hole is set to 175. Right:
Image of depth data. Outside the hole is set to 100 and the only value at the center
of the hole is set to 175.

a circular hole (a disc of radius 30 pixels) representing a region lacking of
depth data as we show in Figure 7.1 (a).

Actually, there is only one point in the disc with valid depth data, located
at the center of the disc. We have performed this experiment twice: first,
the constant depth value outside the disc is set to 255 and the only value at
the center of the hole (the disc) is set to 175 (Figure 7.1 (a) ); second, the
constant depth value is set to 100 and the value at the center of the hole is
set to 175 (Figure 7.1 (b)).

The result of both experiments is shown in Figure 7.2 and Figure 7.3. The
AMLE operator produces an interpolation solution which is a cone inter-
polating from the boundary of the hole (the disc) to the valid point depth
data located at the center of the disc. The biased AMLE operator produces
an interpolation solution which is a higher order interpolating surface from
the boundary of the hole (the disc) to the valid point depth data located at
the center of the disc. Results were obtained using the euclidena metric.

By comparing qualitatively the solution of the AMLE and the solution of
Biased AMLE for this toy example, we can interpret that the AMLE is a
more suitable interpolator when extending depth date in images that can
be approximated by planes between given values. On the contrary, for
interpolating depth data in images with more complex profiles, the Biased
AMLE results a more suitable interpolator.
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Interpolate depth wap for Toy Problem Interpolate depth map for AMLE

S S
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Figure 7.2: Left: AMLE interpolation solution when the constant value of the
depth data outside the empty disc (the hole) is set to 255 and the only value at
the center of the hole is set to 175. Right: AMLE interpolation solution when the
constant value of the depth data outside the hole is set to 100 and the only value
at the center of the hole is set to 175.

Interpolate depth map for Biased AMLE Interpolate depth map for Biased AMLE
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Figure 7.3: Left: Biased AMLE interpolation solution when the constant value
of the depth data outside the empty disc (the hole) is set to 255 and the only value
at the center of the hole is set to 175. Right: Biased AMLE interpolation solution
when the constant value of the depth data outside the hole is set to 100 and and
the only value at the center of the hole is set to 175. For both cases we consider
B=12






CHAPTER 8

Numerical implementation

In this chapter we propose a numerical scheme for the biased AMLE partial
differential equation (7.2). It builds on the convergent discretization of the
infinit Laplacian PDE proposed by Oberman (2005a) (also studied in Man-
fredi et al. (2012), reinterpreting the discretization as a PDE on a graph).
The algorithm turns out in an simple and fast explicit iterative scheme.

8.1 A numerical scheme for the biased AMLE

Let I : Q — R be a given image. This image is our reference image, used
to construct the metric g on  C R2. In Chapter 7 we commented that we
will consider a metric g;;(z) = h(x)8;; with h(z) = (k1||z||* + k2|VI(z)[?)P
for some p > 0, where [ is a given reference image.

Let us now define a geodesic distance on the discrete image domain  C Z2.
We consider the discrete grid as a graph. For each two points z, y in the grid,
let d,, be its distance, defined as follows. If the two points are neighbors
(that is, y is in the 4-neighborhood of z and x is in the 4—neighborhood
of y. Or, depending on the underlying discrete connectivity notion, both z
and y are in its respective 8 —neighborhoods), its distance is given by

— -

Aoy = kil [(x) = I(y)]* + Kol (21, 22) = (y1,92) 1%, (8.1)

where k., k; are real constants. We have denoted the references image
by I in order to stress that it is a color reference image. In other words,
dyy is a weighted sum of the square differences channel by channel of the
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- -

color values I(x) and I(y) with the euclidean distance between the points
x = (x1,22) and y = (y1,y2). Later on, we will additionally, test another
proposal for the distance that includes the depth map.

m

Given a curve {v(i)}", in the discrete grid (where (i) and (i + 1) are
neighbors), we define the length of v by

m

L) = dyi) miin1): (8.2)
=0

Given any two points in the grid, then its geodesic distance d, is defined
by:

dyy = inf{Ly(7y) : vis a curve joining xtoy }. (8.3)

The distance dgy is symmetric in z, y. Let us notice that this distance can
be computed using Dijkstra algorithm. In the remainder of this section we
give an algorithm for computing an approximation to d,, and we provide an
analysis of its accuracy with respect the exact dg, (computed using Dijkstra
algorithm).

8.1.1 Approximated discrete distance and a comparison
with the exact one computed using Dijkstra
algorithm

0.5
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Figure 8.1: Squared neighborhoods of the reference image I centered at at pixel
x of different radius.

Let us assume that we are given a gray level reference image I. Given any
two pixels x and ¥, in our implementation, we compute its distance approx-
imated dg, by (8.1). This approximation let us to reduce the processing
time. We present here an experimental comparison with respect the exact
dgy given by (8.3) and computed using Dijkstra algorithm.
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To this aim, let us fix a pixel z in the image domain and compute the
exact and the approximated distance d,, for all y belonging to the four
squared neighborhoods, of four different radius, shown in Figure 8.1. In
each neighborhood in Figure 8.1 w The computed geodesic distances from
the central pixel x to every pixel in the neighborhood is displayed in Figure
8.2, plotted a surface. The exact geodesic distances (8.3) are shown in the
left column while the approximated distances (8.1) are shown is the right
column. Let us notice that the plotted surfaces appear to be similar and
we claim that the error committed in the solution of the biased AMPLE
equation produced by this approximation of the geodesic distance will be
small.

8.2 Numerical implementation of Biased AMLE

Given a point z in the grid, let AV'(x) denote any neighborhood of x made
of a connected set of points on the grid, except the point x itself.

Following Manfredi et al. (2015) the positive eikonal operator on a graph is
defined by

IVul)l = max 7”@["“ (8.4)

The negative eikonal operator on a graph is defined by

IVuo)l; = min W (8.5)

The discrete infinity Laplacian corresponds to (Oberman (2005b))

[Vu(@)lld + [IVu(@)llz

Ao gu(x) = B)

(8.6)

We propose the following discrete version of the biased AMLE equation (7.2):

IVu() s + [ Vu(z)
2

ke, g |vu@)r| = 0 (8.7)

with 8 > 0. Thus, in order to numerically solve (8.7), we discuss on the
sign of |[Vu(z)||}. If the eikonal operator is positive, (8.7) writes

[Vu(@) |l + [|Vu(x)
2

by i@ =o, (3.8)
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Cost cbtained by Dijkstra Algor ithn fipproxinated Distance

Cost obkained by Dijkstra Algorithn

fpproxinated Distance
Cost.

Cost cbtained by Dijkstra Algorithn

fipproxinated Distance
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Figure 8.2: Exact and approximated geodesic distances computed from the cen-
tral pixel of the neighborhood to every pixel in the neighborhood. Each row corre-
sponds to different radius of the neighborhood, as shown in Figure 8.1. Left column:
exact geodesic distances (8.3) Right column: approximated geodessic distances.

and, if the eikonal operator is negative, (8.7) writes

IVu(@) |l + [ Vul@)ll,
2

= BlVu(z)[7 =0. (8.9)
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Both expresions (8.8) and (8.9) can be written as

[Vu() |l + | Vu(z)

PV sign(Ivu@)IVu@) I =0 (810)

Alternatively, the discrete version of the biased AMLE (8.10) can be written
as

BillVu(@)|[F + B Vu(z)]; =0, (8.11)

where B4 > B_ (actually, B4 = 5 + Bsign(||Vu(z)||}) and - = ). Notice
that, if 54 = f_, then (8.11) would be a multiple of the infinity Laplacian.
In that case, the scheme is known to be convergent Oberman (2005b) (and
the proof extends to open sets in a Riemann surface).

Finally, let us compute the explicit scheme. Given z, let y,z € N(z) be
such that ) (2)
u(y) — u(z
[Vu(a) 3 = “L
Ty

and
IVuo)l; = “EL=,

By introducing these expressions into (8.11) we obtain

_ Brdguly) + 5—d&?yu(z> _

u(x 8.12
( ) 6+da:z + /B—da:y ( )

The numerical scheme for the discrete biased AMLE is
Wb (g) = BrdasW) + Bodayuf(z) oy (8.13)

6+d:cz + B—d:ty 7

We will show experiments considering the several posibilities for 4+ and
- (e.g., B+ = 2, B+ = 1) and considering several neighborhoods N (z).
Let us stress again that if A/(z) coincides with the 4-neighborhood of z, or
the 8 —neighborhood of z, then the exact distances d,, are simply computed
by (8.1). If we take a larger neighborhood we use our approximation to (8.3).

This type of scheme was studied in Oberman (2005b) for the AMLE. Let us
also point out the connections with the approach in Almansa et al. (2002)
although the authors did not consider the case of manifolds.
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Figure 8.3: Color frames and depth map for a video sequence. In the color images
a red balloon moves from left to right. We show the optical flow as a black arrow in
frame t — 1. We show the depth map for the red balloon that moves and we show a
hole in the depth map. The hole has the same motion of the object. No additional
information can be obtained compensating the depth map by the optical flow.

8.3 Extension to video

We have extended the AMLE and the biased AMLE to also handle temporal
information. Let us consider two consecutive frames u;_1 and u; of a depth
video sequence. Suppose that the depth image wu;—; has holes or missing
data. We propose to consider the available depth data in u; 1 and the
available depth data in the consecutive frame u; in the video sequence as
well as the reference video.

We assume that there is an available optical flow computed from the video
sequence. We use this optical flow to compensate the depth map u;. With
this new information we construct a new interpolation mask considering the
information in u; and in wu;_1.
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Figure 8.4: Color frames and depth map for a video sequence. In the color images
a red balloon moves from left to right. The black arrow represents the optical flow.
We show the depth map for the red balloon that moves and we show a hole in the
depth map. In this example the hole has a different motion of the object, it means
that additional information can be obtained compensating the depth map by the
optical flow.

We show in Figure 8.3 a red balloon that moves from left to right. We also
show the depth map of the balloon. There is a hole in the depth map that
moves solidary with the balloon. By compensating u;, we don’t have new
depth information.

In Figure 8.3 we show a slightly different situation. The red ballon moves
from let to right but the hole in the depth map does not move solidary with
the object. When we compensate the depth data in u; we have new depth
information that helps to complete the depth data in u;_1.



48 NUMERICAL IMPLEMENTATION

We have at our disposal a depth map u; of a depth video sequence and also
a color reference image I,. The depth image can present lack of informa-
tion. In the place where lack of information is present (holes) we create a
binary mask (if we have depth data mask = 0 else mask = 1). This mask
represents the interpolation domain for a completion algorithm.

The presented procedure described above is a tool to brig new information
from depth map in u; to time the instant ¢ — 1. With this new information
we modify the interpolation binary mask. With the new information we fill
holes of the binary mask reducing the amount of points to be interpolated,
improving the quality of the interpolated depth map.

We apply these ideas completing depth video sequences in the next chapter.



CHAPTER 9

Experimental Results

In this chapter, we present some experimental results obtained with the
discussed interpolation operators. We also provide a comparison between
the biased AMLE, the AMLE and the bilateral filter in the context of depth
upsampling and enhancement. On the other hand, we present experiments
for the extension of these interpolation operators to the video case. We
evaluated the proposed methods on different database namely Middlebury,
ENPEDA EISATS and KITTY.

9.1 Sampling depth images

We evaluate on upsampling experiments the performance of AMLE, biased
AMLE and bilateral filter. To this goal we have sampled depth data. We
have used depth images of the Middlebury dataset. We also consider the
color reference image of the Middlebury dataset. In Figure 9.1 we show the
color reference image and the depth image.

We show in Figure 9.1 the images we used to evaluate the performance
AMLE, biased AMLE and bilateral filter. In 9.1 Figure (a) we show the ref-
erence image for the image teddy. In (b) we show the depth image (ground
truth) for teddy. In (¢) we show the reference images for image baby. In
(d) depth image (ground truth) for Baby. In (b) and (d) we superpose to
the original image a red square, the idea is to enlarge this area for posterior
processing.

We took the depth data in Figure 9.1 and we sampled it with differents
space sample rate. We show in Figure 9.2 the enlarged region of the teddy
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(d)

Figure 9.1: Reference color image and depth image for teddy and baby of Mid-
dlebury database.

sampled depth image using differents sample rate. We sample the depth
data in a regular regular grid as can be seen in Figure 9.2 ( ), (d).

() (d)

Figure 9.2: Sampled teddy depth image. In (a) there is 1 sample every other 4
pixels square. (b) 1 sample for every other 16 pixels square. (c) 1 for every other
64 pixels square. (d) 1 sample for every other 256 pixels square.

We present in Figure 9.3 sampled version of Baby depth image.
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(a) (b)

(c) (d)
Figure 9.3: Sampled version of the baby depth image. In (a) there is 1 sample
for every other 4 pixels square. (b) 1 sample for every other 16 pixels square. (c)

1 sample for every other 64 pixels square. (d) 1 sample for every other 256 pixels
square.

We show in Figure 9.3 the enlarged region of the Baby sampled depth image
using differents sample rate. We sampled the depth data in a regular regular
grid as can be seen in Figure 9.3 (a), (b), (c), (d).

We have compared three differents upsampling methods: AMLE, biased
AMLE and bilateral filter. These methods were tested in two sampled
depth images (teddy and baby) of Middlebury database Baker et al. (2011).

Table 9.1: Parameters for AMLE filter to complete sampled baby depth image

baby
radius 1 2 5
Ko 5 10 100
Ky 5 10 100

ke 50 100
Ka 50 100
g1
g~ 1

We show in Table 9.2 the parameter values for biased AMLE method used
in sampled depth image.
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Table 9.2: Parameters for biased AMLE filter to evaluate sampled depth image

baby

radius 1 2 )
Ko 5 10 100
Ky 5 10 100
Ke 50 10 100
Kd 50 100
Bt 1.1 1.2 1.5
8- 1

We show in Table 9.3 the parameters value for bilateral filter to complete
sampled depth image.

Table 9.3: Parameters for sampled baby depth image

baby  min max
radius 1 2 5

Ky 5 10 100

Ky 5 10 100
Ke 50 100 -
Kd 50 100 -

9.1.1 teddy evaluation

We have used the robust mean absolute error(mae) to evaluate the results
of each interpolation method:

1 N
mae = =Y |gt(x) —u(z)|, (9.1)
N
1€Q

where gt is the ground truth, u is the interpolated depth image, N is the
number of points to interpolate, 2 es the interpolation domain. This mae
has been chosen because of this robustness against outliers.

Our first goal is to validate the good performance of biased AMLE and
AMLE in the upsampling task. In Figure 9.4 we show results completing
sampled teddy depth image. We show in Figure 9.4 (a) result obtained
by AMLE. (b) and (c) result obtained by biased AMLE with different [
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mae=1.5068 mae=1.4727
(a) (b)

mae=1.4614 mae=1.5089
(c) (d)

Figure 9.4: Results of Upsampling task for an image of Middlebury database. (a)
Results obtained by AMLE. (b) Biased AMLE § = 1.1. (c) Biased AMLE 3 = 1.2.
(d) Bilateral filter.

parameter. (e) bilateral filter. We observe the minimum mae error was
obtained by biased AMLE with 8 = 1.2. The result in (c) looks more
defined in the edges compared with AMLE in (a) and bilateral filter in (d).

We have performed upsampling experiments using the AMLE filter, biased-
AMLE filter and bilateral filter. we have used the original depth map as a
ground truth to evaluate their performance. We see in Table 9.4 that the
biased AMLE outperform AMLE and bilateral filter in upsampling task. We
took the average value of results for every sampled version of teddy depth
image avoiding variations of the results. For this image results obtained by
AMLE, biased AMLE and bilateral filter are very similar.
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Table 9.4: Results obtained by AMLE filter, biased AMLE filter and by bilateral
filter for subsample teddy depth image

Size biased biased  bilateral
AMLE AMLE AMLE
Bt =11 B+=12

Filtered 16x16 2.5749  2.5798 2.5988 2.5535
Filtered 8x8  2.0304  2.0010 2.0019 2.0935
Filtered 4x4 1.5068 1.4727 1.4614 1.5089
Filtered 2x2  1.0884 1.0891 1.0748 1.0288
Average 1.8001 1.7857 1.7842 1.7962

9.1.2 baby evaluation

Table 9.5: Results obtained by AMLE filter, biased AMLE filter and by bilateral
filter for subsampled baby depth image

Size biased biased  bilateral
AMLE AMLE AMLE
Bt =11 B+=12

Filtered 16x16  1.2593 1.2589 1.2620 2.0485
Filtered 8x8  0.9618  0.9503 0.9516 1.6447
Filtered 4x4  0.7486  0.7312 0.7298 1.2091
Filtered 2x2  0.5614  0.5596 0.5548 0.9106
Average 0.8828 0.8750 0.8746 1.4532

Similar to the evaluation of teddy depth image we performed upsampling
experiments using the AMLE filter, biased-AMLE filter and bilateral filter
for Baby depth image. we have used the original depth map as a ground
truth. We see in Table 9.5 that the biased AMLE outperform AMLE and
bilateral filter in upsampling task. We also took the average value of the
mae to avoid variations of the results. For every sampled version of Baby
depth image AMLE and biased AMLE outperform the bilateral filter. The
size of the objects in Baby image is greater than objects in teddy. In this
image biased AMLE shows its capability to extend the depth information
to huge regions.
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9.1.3 Temporal extension experiment

We have extended to temporal domain the biased AMLE. We have con-
sidered the procedure explained in section 8.3. We evaluate the extended
biased AMLE filter in a video sequence of ENPEDA EISATS database. In
Figure 9.5 we present example frames of the selected video.

Figure 9.5: Images of the ENPEDA EISAT video sequence database. (a) frame
1 of the video sequence, (b) frame 25, (¢) frame 50, (d) frame 100, (e) synthetic
depth for frame 1, (f) frame 25 (g) frame 50 (h) frame 100.

In Figure 9.5 we present some frames of the synthetic video sequence. In 9.5
(a) we show frame 1, (b) frame 25, (c¢) frame 50 and (d) frame 100 in (e),
(f), (g), (h) we show the corresponding depth map for frame 1, 25, 50,100
respectively.

We added artificial holes to the depth data of the synthetic video. We show
in Figure 9.6 the original depth data and the depth data plus holes.

In Figure 9.6 we added holes to the original data. The holes are rectangular
holes located in random positions. Our idea is to produce this kind of
perturbation in the depth video sequence to complete the lack of information
using biased AMLE operator. Taking into account that we have at our
disposal the optical flow of the video sequence. We have two possibilities to
create perturbations in the depth data: i) add random holes to every frame
of the sequence. ii) propagate the holes using the optical and create a tube
in the video. In Figure 9.7 we show random holes added to every frame of
the depth video sequence and holes propagated using the optical flow.



56 EXPERIMENTAL RESULTS

(a)

Figure 9.6: Original depth data and holes added to the depth data. (a) original
image. (b) holes added to the original data.

(d)

Figure 9.7: Depth data perturbed with random holes. (a) frame 1 perturbed
with random holes. (b) frame 25 with random holes. (c¢) frame 1 with random
holes. (d) holes propagated uisng the optical flow.
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In Figure 9.7 in (a) and (b) we show random holes added to every frame
of the depth video sequence. In (c) and (d) the holes are propagated using
the optical flow. We see that the holes becomes lines due to in the initial
frame (c) the hole is a part of a tube of the video.

We have two perturbed video sequences: random holes and propagated
holes video sequences.

We evaluate the biased AMLE and time extended biased AMLE in this
video sequences. We show results obtained by the biased AMLE Table 9.6.
We show results obtained by the time extended biased AMLE Table 9.7.

Table 9.6: Results obtained by biased AMLE filter in EISATS video sequence

biased biased biased

AMLE AMLE AMLE

=11 p+=12 pBT=15
Propagates holes 1.529 1.624 2.197
Random holes 1.071 1.295 1.998

Table 9.7: Results obtained by time extended biased AMLE filter in EISATS
video sequence

biased biased biased

AMLE AMLE AMLE

pt=11 pBr=12 pT=15
Propagated holes 1.441 1.492 2.043
Random holes 1.026 1.180 1.550

We observe in Table 9.6 and in Table 9.7 that for Propagates holes video
sequences and for Random Holes video sequences the time extended biased
AMLE outperforms the biased AMLE. We conclude that the addition of
time information improves the depth completion. Additionally, we observe
that for larger S values larger error is obtained.

9.2 Completion of depth data in KITTI database

9.2.1 KITTI database

In this section, we present some results on completion of sparse data for
images for images of the KITTI database. The KITTI database consists
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(e) (f)

Figure 9.8: Images of the KITTI video sequence database. (a) first frame of
sequence 11, (b) first frame of sequences 32, (c) second frame of sequence 11, (d)
second frame of sequence 32, (e) depth image for first frame sequence 11, (f) depth
image for first frame sequence 32

of 194 real scenes recorded form a moving vehicle. The data set consists
of 194 pairs of consecutive color images. The database includes a ground
truth provided by a laser scanner.

We show in Figure 9.8 examples of KITTI database.

Figure shows results obtained using the AMLE, biased AMLE and bilateral
filter. Let us notice that the biased AMLE produces a result to the ground
truth reference image(see Figure (b)). Finally let us notice that the bilateral
filter result shown in Figure (c) is very blury.

The obtained results in Figure 9.9 shows that AMLE and biased AMLE
can we can extend the depth map to huge region (a) and (b). The bilateral
filter take weighted average and the final result is very blur (c). In the other
hand biased AMLE extend the depth taking into account the geometry of
the image (b).
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Figure 9.9: Results for an example from KITTI database. From top to bottom:
results obtained by AMLE (a), biased AMLE (b), Bilateral filter (c).
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Comparison between biased
AMLE and Gradient based
non-local bilateral filter

This chapter presents a comparison between the different depth enhanced
methods proposed and studies in tis manuscript, in particular, the gradient
based non-local filter presented in part I of this document and the biased
AMLE studied in Part II.

We have evaluated both methods in the experiments we already performed
in this Part I and in Part II.

10.1 Experiments

10.1.1 Two planes experiment

The experiment consists of completion of a two plane depth image. The
depth data is only known outside of the hole in the center of the depth
image. This hole defines the interpolation area as we show in Figure 10.1(a).
We have at our disposal the reference image 10.1(b).

In Figure 10.2 we compare the profiles of the solutions obtained by gradient-
based non-local bilateral filter and biased AMLE(S = 1.1).

In the Figure 10.2 we show a profile of the extended depth image in the
interpolation area. The Figure shows the results of the gradient-based non-
local bilateral filter (blue crosses) and the results by biased AMLE(red and
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(a) (b) (¢) (d)

Figure 10.1: In this Figure we present: synthetic depth data (the black region in-
dicates the interpolation area), reference image, result using gradient-based, result
using biased AMLE with g =1.1.
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Figure 10.2: Profile of the result for the two planes synthetic image. We show
3 curves: output of biased AMLE with § = 1.1, biased AMLE with g = 1.2 and
output of gradient-based non-local bilateral filter.

green lines). We see that the result for 5 = 1.1 presents staircase effect and
in the left side, the method is not able to estimate the slope of the plane.
With 8 = 1.2 (green line) the result improve the estimation of the slope in
the left side, but in the right side is not well estimated.

10.1.2 Examples with an image from Middlebury

We present results for upsampling experiment. We have already presented
in previous sections results of the biased AMLE for teddy image. In Figure
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(c) (d)
Figure 10.3: Results for upsampling teddy. (a) subsampled image teddy depth

image. (b) edge map for teddy. (c) Result obtained by gradient-based method. (d)
Result obtained by biased AMLE.

10.3 we show results for gradient-based non-local bilateral filter and biased
AMLE. We have upsampled teddy image considering filtered data with a
downsample factor 16 (in every other two hundred fifty-six square-pixel
there is one pixel).

In the Figure 10.3 we show the data to upsample, the gradient mask needed
for gradient-based algorithm, the output the gradient-based algorithm and
the result of biased AMLE. We have evaluated the mae for both method.
As we previously reported for biased AMLE we have a mae= 2.5798 and
for gradient based a mae= 4.1986.
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10.1.3 Examples with real image

We present the result of both algorithms for an image that presents large
areas with lack of depth information. The depth is not reliable in many
areas of the depth image.

We present in Figure 10.4 the reference image, the initial depth data and
the edge map. Note the large empty areas to the right and to the left border
of the depth image.

The Figure 10.5 shows results obtained by gradient-based(a) and by biased
AMLE (b). We see that output of the gradient-based in large empty areas
is blurry and the method can not extend the information till the end of
the region. Biased AMLE is precise in large empty areas and extend the
disparity as a flat area.
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()

Figure 10.4: (a) Color reference image. (b) Initial depth data obtained by a
depth sensor. (¢) Edge map for gradient-based non-local bilateral filter algorithm.
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(b).

Figure 10.5: Results obtained by gradiente-based(a) and biased AMLE(b).
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Conclusions

In the case we have a depth image that presents large region with lack of
information, the axiomatic stated by Caselles et al. (2006) lets us construct
an interpolator to complete these large empty regions.

The interpolator is computed a ratio between two terms: a sum of function
values weighted by distances and a sum of distances. This simple operation
made the operator easy to implement, simple and fast.

The numerical implementation consider many very strong approximation
that experimentally we have shown that their are valid.

We have evaluated the Biased AMLE in differents experiments: umsam-
pling, temporal extension. Upsampling experiments. Results show that the
AMLE and Biased AMLE outperform the bilateral filter. In upsampling
experiments, in the case of filtered depth images, the biased AMLE out-
performs the AMLE. That show that the inclusion of the gradient in the
biased AMLE helps to estimate better the depth data surface.

We have extended the biased AMLE to temporal domain. We added a new
term to the distance function. This new term considers the available depth
information in the next image. The use of the optical flow helps to improve
the performance of the depth interpolation in video sequences.

We have compared the biased AMLE and the gradient-based non-local bilat-
eral filter in different experiments that show their potential and differences.

As Future work we propose constructing a joint interpolator between the
gradient-base non-local bilateral filter and biased AMLE. We propose to
use a balance term between these two methods. This balance term should
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use the gradient-base algorithm in the case of depth images that can be
approximated by locally planes and in the case that the image presents
large areas of missing data, complete them using the biased AMLE.
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The optical flow problem

12.1 Introduction

The apparent movement of pixels in a sequence of images is usually called
the optical flow. Optical flow computation is one of the most challeng-
ing problems in computer vision, specially in real scenarios where occlu-
sions and illumination changes occur. It has many applications, including
autonomous flight of vehicles, insertion of objects on video, slow camera
motion generation, video compression and many more.

In video compression, the optical flow estimation helps to remove tem-
poral data redundancy and therefore to attain high compression ratios.
In video processing, optical flow estimation is used, e.g., for deblurring,
noise suppression or motion-compensated 3D sampling structure conversion
Stiller and Konrad (1999). Ruffier and Franceschini (2005), Kendoul et al.
(2005) present several autopilot systems controling aerial autonomous vehi-
cles which are based on optical flow. In the work of Ruffier and Franceschini
(2005), a bioinspired autopilot was developed to control an autonomous
aircraft. Their system is able to perform complex maneuvers such as au-
tomatically taking off or landing. In Kendoul et al. (2005) a joint optical
flow, depth and self position estimation system was developed to autopilot
an autonomous aircraft. They use a low resolution camera and an inertial
sensor. The complete system is able to work in real-time.

In order to estimate the flow field that represents the motion of points in
two consecutive frames of a video, most of the optical flow methods are
grounded on the optical flow constraint. This constraint is based on the
brightness constancy assumption which states that the brightness or inten-
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sity of objects remains constant from frame to frame along the movement
of the objects.

Let us consider two consecutive image frames, Iy and I, of a video sequence,
where I, I; : @ C R? —» R and Q C R? is the image domain (which is
usually assumed to be a rectangle in R?). The aim is to estimate a 2D
motion field u : © — R?, the optical flow, such that the image points Iy(z)
and I (z+wu(z)) are observations of the same physical scene point. In other
words, the brightness constancy assumption writes:

Ip(z) = I (z + u(x)) (12.1)

for x in Q. Let us assume that the displacement u(x) = (u1(z),u2(z)) is
small enough to be valid the following linearized version of the brightness
constancy assumption:

Ip(z) = Ii(z) + VIi(z) - u(z), (12.2)

where VI, denotes the gradient of I; with respect to the space coordinates.
This equation can be rewritten as:

olh + VI (x) - u(x) =0, (12.3)

where 0,1 denotes I (z)—Ip(z). Equation (12.3) is usually called the optical
flow equation or optical flow constraint.

The optical flow constraint equation (12.3) is only suitable when the partial
derivatives can be correctly approximated. This is the case when the motion
field is small enough or the images are very smooth. However, in the pres-
ence of large displacements, these conditions are not typically preserved, and
it is common to replace it with a nonlinear formulation Meinhardt-Llopis
et al. (2013).

Iy(xz) — L (z + u(x)) =0, (12.4)

for x € Q.

Neither (12.3) nor (12.4) can be solved pointwise since the number of pa-
rameters (the two components u; (), ug(x) of u(z)) to be estimated is larger
than the number of equations. On the other hand, occlusions produce lack
of correspondence between some points in the image sequence. Occluded
pixels include pixels of an image frame which are covered by the movement
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of object in the following frame. For those occluded pixels, there is no a
reliable optical flow. To challenge these problems, a variational approach
could be used and compute the optical flow u by minimizing the following
energy or error measure,

E(u) = /Q |Io(z) — I (z + u(x))|? dz. (12.5)

However, (12.5) is an ill-posed problem which is usually challenged by
adding a regularity prior. Then, the regularization term added to the energy
model allows to define the structure of the motion field and ensures that
the optical flow computation is well posed. Horn and Schunck (1981) pro-
posed to add a quadratic regularization term. Actually, the work of Horn
and Schunck (1981) was the first which introduced variational methods to
compute dense optical flow. An optical flow u is estimated as the minimizer
of the following energy functional

/\Io — I (z + u(x))| dx+/ \Vul? da, (12.6)

where Vu = (Vui, Vug) denotes the gradient of the optical flow. This L?
regularity prior does not cope well with motion discontinuities and other reg-
ularization terms have been proposed, Nagel and Enkelmann (1986); Black
and Anandan (1996); Brox et al. (2004a); Zach et al. (2007); Werlberger
et al. (2009); Sun et al. (2010a); Werlberger et al. (2010); Kréhenbiihl and
Koltun (2012); Xu et al. (2012); Chen et al. (2013); Sanchez et al. (2014);
Zimmer et al. (2011); Strekalovskiy et al. (2014); P.Palomares et al. (2015);
Ranftl et al. (2014); Sun et al. (2014). Although the original work of Horn
and Schunk reveals many limitations (e.g., the computed optical flow is
very smooth and sensitive to the presence of noise), it has inspired many
proposals. In order to cope with large displacements, optimization typically
proceeds in a coarse-to-fine manner (also called a multi-scale strategy). The
variational setting for estimating the optical flow will be briefly reviewed in
Section 12.2.

Let us now focus on the data term in (12.6), Ep(u) = / [Ip(z) — I (x + w)|? de.

0
The brightness constancy constraint assumes that the illumination of the
scene is constant over time (in other words, over the image sequence) and
that the image brightness of a point remains constant along its motion tra-
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jectory. Therefore, changes in brightness are only due to diferent objects
and different movements.

However, this assumption is flawed in realistic scenarios, where illumination
changes appear as well as occlusions due to the relative motion between ob-
jects in the scene or the camera movement. Also, shadows or light reflexions
that appear and move in the image sequence can also make the brightness
constancy assumption to fail. This is why in this work we consider an al-
ternative to the classical brightness constancy constraint which will provide
robustness against additive illumination changes.

Before finishing this introduction, let us briefly recall that a problem is
called ill-posed if its solution either does not exist or it is not unique. We
have observed that the optical flow equation (12.3) (or (12.4)) is an ill-posed
problem: it cannot be solved pointwise as there is a unique equation and
two unknowns u; and ug. The optical flow equation (12.3) can be rewritten
as:

VI-u=—-01I, (12.7)

where we have forgotten about the subindex and the point . By considering
a local orthonormal basis {e, ez} of R? on the directions of VI and VI,
the optical flow u can be expressed in this basis, u = upe; +u | ez, where upyeq
is the projection of u in the gradient direction and u, e is the projection
of the optical flow u in the direction perpendicular to the gradient. Then,
equation (12.7) could be formally written as

VI - (uper +uyez) = ||VI||up, = 0. (12.8)

This equation can be solved for uy,, u, = —H%—}H, if ||VI]| # 0. In other
words, the only component of the optical flow that can be determined from
(12.3) is the component parallel to the gradient direction. This indetermi-
nacy is called the aperture problem.

12.2 Optical flow estimation

Most accurate techniques that address the motion estimation problem are
based on the formulation of the optical flow estimation in a variational
setting. Energy-based methods are called global methods since they find
correspondences by minimizing an energy defined on the whole image (as the



12.2. OPTICAL FLOW ESTIMATION 75

minimizing problem (12.6)). They provide a dense solution with subpixel
accuracy, and are usually called dense optical flow methods.

In Horn and Schunck (1981), a seminal and highly influential work was
presented. It estimates a dense optical flow field based on two assumptions:
the brightness constancy assumption and a smooth spatial variation of the
optical flow. They proposed the following functional:

E(u) = / |0, Tuy + 8y Tug + 01| da + a2/ IVuy |* + |Vug|* dz,  (12.9)
Q Q

where « is a real parameter which controls the influence of the smooth
term. This functional is convex and has a unique minimizer. However, the
computed optical flow is very smooth and do not preserve discontinuities of
the optical flow. This is also the case for (12.6), which can be considered a
variant of (12.9).

After the initial work in Horn and Schunck (1981), a lot of approaches that
focus on accuracy have been developed. These works focus on the use of
robust estimators, either in the data or smoothness terms, to be able to deal
with motion discontinuities generated by movement of different objects or
by occlusions (e.g., Brox et al. (2004a); Black and Anandan (1996); Sun
et al. (2010a); Zach et al. (2007)). For the data term, L? or L' dissimi-
larity measures have been used as well as more advanced data terms Brox
et al. (2004a); Stein (2004); Miiller et al. (2011). For the smoothness term,
isotropic diffusion, image-adaptive, isotropic diffusion with non-quadratic
regularizers, anisotropic diffusion (image or flow-adaptive) or the recent
non-local regularizers have been proposed Nagel and Enkelmann (1986);
Black and Anandan (1996); Brox et al. (2004a); Zach et al. (2007); Werl-
berger et al. (2009); Sun et al. (2010a); Werlberger et al. (2010); Krahenbiihl
and Koltun (2012); Xu et al. (2012); Chen et al. (2013); Sénchez et al.
(2014); Zimmer et al. (2011); Strekalovskiy et al. (2014); P.Palomares et al.
(2015); Ranftl et al. (2014); Sun et al. (2014). However, these methods may
fail in occlusion areas due to forced, but unreliable, intensity matching. The
problem can be further accentuated if the optical flow is smoothed across
object boundaries adjacent to occlusion areas.

12.2.1 Robust motion estimation

Normally assumptions as brightness constancy and smooth space variation
of optical flow are violated in real images. Advanced robust optical flow
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Figure 12.1: From left to right: Two consecutive frames of the Backyard sequence
from Middlebury dataset and the occlusion layer (red) superimposed on the first
frame.

methods are developed with the goal to perform well even when violations
of the optical flow assumptions are present Igual (2006).

The model (12.9) to estimate the optical flow penalizes high gradients of
u and therefore doesn’t allow discontinuities of w. This model is highly
sensible to noise in the images and also to outliers. The functional can be
modified in order to allow discontinuities of the flow field by changing the
quadratic data term to a L' term and also changing the L? regularization
term. In Zack et al. (2007) the authors present a novel approach to estimate
the optical flow that preserves discontinuities and it is robust to noise. In
order to compute the optical flow u = (u1, us) : Q — R? between Iy and Iy,
the authors propose to minimize the energy

E(u) = /Q(Allo(:r) — L(z +u(@)| + |Vur| + |Vug|) dz, (12.10)

including robust data attachment and regularization terms (namely, the To-
tal Variation of u) with a relative weight given by the parameter A > 0.
This variational model is usually called the TV-L1 formulation. The use
of L' type-norm measures has proven a good performance in front of L?
norms to preserve discontinuities in the flow field and offers an increased
robustness against noise and illumination changes. We will extend in Chap-
ter 13 (Section 13.1) the model (12.10) to jointly compute the optical flow
and occlusions. We will model and estimate an occlusion mask identifying
the occluded pixels, i.e. pixels that are visible in Iy but not in I.

Occlusions are a challenging problem in the estimation of optical flow. Oc-
cluded regions in the current image of the video sequence are defined as
the set of pixels which become hidden by occluding (moving) objects in the
next image, as illustrated in Figure 12.1
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These pixels have no corresponding points in the next image and motion is
not observable at their locations. Therefor, methods may fail in occlusion
areas due to forced, but unreliable, intensity matching. The problem can be
further accentuated if the optical flow is smoothed across object boundaries
adjacent to occlusion areas. Hence, the occlusion issue must be carefully
addressed to ensure a reliable and accurate computed optical flow. Some
methods implicitely deal with occlusion by using terms robust norms in the
data term while others do an explicit occlusion handling.

A first step towards taking into account occlusions was done by jointly
estimating forward and backwards optical flow in Alvarez et al. (2007).
The authors argue that at non-occluded pixels forward and backward flows
are symmetric. Thus, the occlusion is determined by introducing into the
formulation an error measure that assesses, for each pixel, the consistency
between the forward and backward flows. Intensity matching is still forced
at occluded pixels. Optical flow estimation and occlusion detection are
decoupled. In Ince and Konrad (2008), the authors propose a formulation
that computes optical flow and implicitly detects occlusions, extrapolating
optical flow in occluded areas. Occlusions are determined again by assessing
the consistency of the forward and backward flows for each pixel. This cue is
used to penalize the intensity matching accordingly. Thus, the method does
not force matching at occluded pixels. The extrapolation mechanism in the
occlusion areas is based on anisotropic diffusion and uses the underlying
gradient to preserve optical flow discontinuities. Another joint approach for
optical flow and occlusion detection was developed in Xiao et al. (2006).
This work proposes a two step updating scheme. The first step updates the
flow field based only on the data and occlusion cues, given by the mismatch
in the intensity value between the two images. The second step performs
a flow diffusion process using a bilateral filter that locally adjusts filter
strength by means of the occlusion cue.

Layered approaches Wang and Adelson (1994) allow to realistically model
occlusion boundaries. In order to do this one has to correctly compute the
relative order of the surfaces. Performing inference over the combinatorial
range of possible occlusion relationships is challenging. A recent work that
explicitly models occlusions and depth ordering can be found in Sun et al.
(2010b). The authors present a method in which a visibility function is
estimated for each layer. Spatial and temporal constraints are imposed
to these functions in order to ensure layer consistency. These functions
are used to penalize the intensity matching functions correspondingly. The
results obtained are very good but the computational load to minimize the
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associated energy is high.

Other authors try to obtain occlusion boundary information by means of
an operator directly applied to the computed motion. In Thompson et al.
(1985), the authors argue that occlusion boundaries can be detected by as-
sessing the points at which the flow changes rapidly. Discontinuities in the
optical flow correspond in fact to zeros in the Laplacian fields of each motion
component along the direction perpendicular to the occlusion boundary. In
Sand and Teller (2008a) video motion is represented as a set of particles.
As the authors point out, the divergence of the motion field can be used
to distinguish between different types of motion areas. Schematically, the
divergence of a flow field is negative for occluded areas, positive for dis-
occluded, and near zero for the matched areas. Taking this into account,
the authors define an intensity matching term that is weighted by a func-
tion depending on the divergence of the motion. At each iteration of the
optimization procedure, the motion field is filtered, similarly to Xiao et al.
(2006), with a bilateral filter that depends on the divergence of the mo-
tion. The latter idea is used in Sun et al. (2010a) in order to perform a
robust median filtering of the motion. In another context, Corpetti et al.
(2002) analyzes the problem of estimating the motion of fluids. They use
a divergence-curl regularizer to be able to deal with large concentrations of
vorticity and divergence.

In Xu. et al. (2010) a method to estimate occlusions is used. They consider
the fact that multiple points mapped by the optical flow to the same point in
the target image (collision) are likely occluded. The authors count the pixels
of the reference image which are mapped to the same point in the target
image using forward warping. To avoid noise in the occlusion estimation
the authors use a small Gaussian filter.

A method to estimate occlusion is presented in A. Ayvaci et al. (2012). They
suppose Lambertianian surfaces and also that the illumination is static.
They state the occlusion estimation as a variational problem and simplify
the functional to a sequence of convex problems which are solvable by using
an efficient numerical scheme. The proposed method works for any num-
ber of independently moving objects. They present results in Middlebury
database.

On the other hand, in real video sequences the brightness constancy as-
sumption is frequently violated in practice due to changes in the illumina-
tion sources of the scene, shadows, noise in the acquisition process, specular
reflections or large and complex deformation. A common counter-example
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consists in moving the light source of an immobile scene, producing bright-
ness variations without motion of any objects. Robustness against it would
be desirable. Small variations in the brightness can be dealt with a criterion
that is invariant under brightness value changes. The gradient of the image
is robust to additive illumination changes in the images Brox et al. (2004b),
and the gradient constancy assumption writes:

Viy(z) — VIi(x+u(z)) =0 (12.11)

This equation can be included as a new data term in a variational energy
in order to compute the optical flow u Xu. et al. (2010).

The optimization strategy in variational optical flow is usually based on
local optimization in conjunction with a coarse-to-fine method. Indeed,
variational methods are embedded in a pyramidal coarse-to-fine approach
which consists in an iterative refinement of the motion field in each scale.
This strategy consists in creating a multiscale pyramid, estimating the opti-
cal flow at coarser scales and then refining the solution at finer scales Mémin
and Pérez (1998); Brox et al. (2004b). However, while traditional method-
ology work well in cases where the small structures move more or less the
same way as larger scale structures, the approach fails if the displacement
of the object in the scene is greater than the size of the object itself. In
recent years this topic has been tackled in interesting approaches. In Brox
et al. (2009), a method for large displacements is proposed that performs
region-based descriptor matching. This method estimates correctly large
displacement but it can match outliers. Steinbruecker and Pock (2009) also
propose a method in order to tackle large displacement. The methodology
performs well in real images with large displacements but it presents a lack
of subpixel accuracy.

The gradient constancy assumption and the robust L' norm are incorpo-
rated in an optical flow method in Xu. et al. (2010). To tackle large dis-
placement they incorporate matchings of SIFT features computed between
the images of the sequence. The fusion between the matchings of SIFT
features and optical flow estimation is performed using graph cuts.

Weinzaepfel et al. (2013) presents a variational approach which incorporates
sparse matches computed with what the authors call Deep Matching algo-
rithm, which they adapt to optical flow estimation. The matching algorithm
is based on a six layer-stage interleaving convolution and max-pooling, sim-
ilar to deep learning networks. The integration of deepmatchings to the
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optical flow estimation is performed adding a matching term to the varia-
tional model and solving it by a coarse-to-fine methodology.

SparseFlow finds sparse pixel correspondences by means of a matching al-
gorithm and these correspondences are used to guide a variational approach
to obtain a refined optical flow. SparseFlow matching algorithm uses an ef-
ficient sparse decomposition of pixels’ surrounding patch as a linear sum of
those found around candidate corresponding pixels Timofte and Van Gool
(2015). The matching pixel dominating the decomposition is chosen. The
pixel pair matchings in both directions (forward-backward) are used to re-
fine the optical flow estimation.

In R. Kennedy and C. J. Taylor (2015) a successful method to compute
optical flow is proposed which includes occlusion handling and additional
temporal information. The images are divided into discrete triangles and
this allows them to naturally estimate the occlusions which are then incor-
porated into the optimization algorithm to estimate an optical flow. They
define the concept ”Inertial Estimate” of the flow. Combining this concept
and classifiers to fusion optical flow they reach some improvements in the
final results.

D. Fortun et al. (2015) proposes a method to compute optical flow which
aims to tackle large displacements, motion detail and occlusion estimation.
The method consists of two stages. In the first stage they supply dense local
motion candidates. They estimate affine motion models over a set of size-
varying patches combined with patch-based pairing. They experimentally
demonstrate that the motion vector estimated that way provides at least one
accurate motion vector for each pixel. The second step consists on a discrete
optimization algorithm which selects candidates at each pixel while ensuring
piecewise smoothing of the resulting flow. Their method is evaluated in MPI
Sintel Butler et al. (2012) database achieves state-of-the-art results.

In Chapter 13 (see Section 13.2.3) we propose a pointwise confidence mea-
sure able to decide whether an optical flow estimation is reliable. Our
optical flow confidence measure allows to achieve better overall results by
improving the optical flow obtained by the variational approach we propose
in Section 13.1 and 13.2 with an optical flow obtained with sparse methods
in those unreliable regions. Confidence measures are used in the recent lit-
erature to validate the optical flow field by estimating its correctness at each
point. We finish this chapter by reviewing some of the existing proposals.
Traditional confidence measures used in the literature are build from:
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e Local analysis of the input images. The simplest one is the magnitude
of the gradient of the first image ||V I]|| justified by the assumptions
that we expect a higher accuracy in textured than in flat regions. The
motion of highly textured regions in general is well estimated and the
magnitude of the gradient of Iy can be interpreted as a measure of
texture of a region.

e Distance to the nearest edges. Image edges may occur with motion
boundaries, the higher the distance from edges, the lower the chase of
occlusion O. M. Aodha et al. (2013).

e A measure of error in optical flow estimation based on the values
‘I()(J}) — Il(l' + u)|

e Combinations of eigenvalues of the structure tensor.

e Bootstrap resampling: a computational statistical inference technique
based on repeating the optical flow calculation several times for differ-

ent randomly chosen subsets of pixel contributions Kybic and Nieuwen-
huis (2011)

e Intermediate results or parameters of a particular OF estimation method.
For instance, Bruhn and Weickert (2006) uses the local contribution
to the total energy being minimized to identify locations where model
assumptions are not valid and assignes low confidence to them.

The work of Patras et al. (2007) presents an statistical confidence measure
of the motion vectors estimated by a block matching. The matching of
blocks is expressed through a probability framework as a maximum likeli-
hood estimation scheme. The confidence measure is expressed as a function
of a posteriori probability and the likelihood of the estimated optical flow.

In C. Kondermann et al. (2008) a confidence measure for optical flow is
presented. The confidence measure relies on test theory and statistics of
the flow field. The confidence measure is applicable to any optical flow
algorithm. The authors perform comparison with other existing confidence
measures.

In O. M. Aodha et al. (2013), a supervised learning based method is pre-
sented to estimate a confidence value for each optical flow field at each pixel
and decide if an optical flow algorithm is likely to fail in their estimation.
The feature vector is constructed using temporal and spatial magnitudes.
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Using this confidence value they can fusion four differents optical flow algo-
rithms.



CHAPTER ]. 3

Proposed model

Optical flow problem concerns with the estimation of the apparent motion
between two consecutive images of a video sequence. As reviewed in previ-
ous Chapter 12, most adopted strategies to solve the optical flow problem
use a variational approach. In those vatiational models, the optical flow
computation is stated as an energy minimization problem where the energy
has, in general, two terms; namely, the data term and the regularization
term.

In this chapter, we propose a variational model for joint optical flow and
occlusion estimation, which is adapted for both gray and color image se-
quences and is able to handle illumination changes as well as large displace-
ments. To better explain the different contributions, we have chosen to
present it progressively. First, we propose a joint minimization problem to
estimate both optical flow and occlusions while preserving discontinuities of
the flow. Our data term is based on the brightness constancy constraint for
the case of gray sequences and on the color constancy constraint for color
sequences. The color constancy assumption or constraint states that the
color of the pixels do not change along the displacement of the object Brox
et al. (2004b). The proposed energy model incorporates information that
allows to detect occlusions. This information is based on the divergence of
the flow and the energy favors the location of occlusions on regions where
this divergence is negative. Assuming that occluded pixels are visible in the
previous frame, the optical low on non-occluded pixels is forward estimated
whereas is backwards estimated on the occluded ones.

As mentioned in previous chapter, the optical flow constraint presents some
drawbacks: often gray or color constancy assumption is violated due to il-
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lumination changes, shadows or reflexions, as well as due to occlusions that
appear when objects or the camera move. On the other hand, most of the
variational models for optical flow computation use the coarse-to-fine strat-
egy to be able to handle large displacement of the objects in images Stoll
et al. (2012). This strategy consists in creating a multiscale pyramid, esti-
mating the optical flow at coarser scales and then refining the solution at
finer scales Mémin and Pérez (1998); Brox et al. (2004b); Meinhardt-Llopis
et al. (2013). However, the coarse-to-fine strategy is unable to handle large
displacements of small objects that move differently from their surround-
ings. In this chapter we propose and analise a methodology to handle all
these drawbacks.

The remainder of this chapter is organized as follows. In Section 13.1, we
present a model that jointly computes the optical flow and occlusions. To
simplify, the model is presented for gray level sequences. Then, in section
13.2 we extend it to a method which able to handle illumination changes as
well as large displacements. Both sections include the proposed optimization
method. Finally, Section 13.3 is devoted to present the numerical algorithm.

13.1 A Model to Jointly Compute Optical Flow
and Occlusions

In order to construct a joint optical flow and occlusion estimation model,
we build up from ideas behind existing approaches and the fact that the
divergence of the field can be used to detect occlusion areas. We model the
occluded pixels by using a binary occlusion mask identifying the pixels that
are visible in a frame, but not in the following frame. Our proposal uses
three consecutive frames: the first frame, the central frame and the last
frame. We assume that pixels of the central frame that are not visible in
the last frame, are visible in the first frame.

The method is based on the minimization of an energy made of three terms.
The first term considers the L' norm in the brightness constancy assump-
tion, the second term is based on Total Variation of the flow and the third
term characterizing the occlusions considers the divergence of the flow mul-
tiplied by the estimated occlusion mask. The energy is strongly nonlinear
and the terms are decoupled by introducing auxiliary variables. Then the
energy is minimized by means of a numerical scheme which is based on: i)
a dual formulation of the Total Variation, ii) an efficient point-wise thresh-
olding step, and iii) a primal-dual algorithm to compute occlusion mask.
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Let us introduce the proposal. Given two consecutive image frames I, I :
Q — R, with Q C Z2, the authors in Zach et al. (2007) proposed the
following variational discontinuity preserving model in order to compute
the optical flow u = (ug,u2) :  — R? between Iy and Iy:

E(u) = /Q)\ [Io(x) — (2 + u(z))| doe + /Q (IVui| + |Vug|) dz,  (13.1)

with A > 0. This model considers the L' norm in the brightness constancy
assumption as data fidelity term and the total variation of u as the regular-
ization term.

Based on the model in (13.1) we present a joint optical flow and occlusions
estimation model. In Chapter 12 we have observed that the divergence of
the motion field can be used to distinguish between different types of motion
areas. As mentioned in Sand and Teller (2008b), the divergence of a flow
field is negative for occluded areas, positive for disoccluded, and near zero
for the matched areas.

Let us consider 3 consecutives gray level frames I_1, Iy, I; : 2 — R in order
to compute the optical flow between Iy, I1. Let x : © — [0, 1] be the function
modeling the occlusion mask, so that y = 1 identifies the occluded pixels,
i.e. pixels that are visible in Iy but not in 7;. Our model is based on the
assumptions

(i) Pixels that are not visible in frame I; are visible in the previous frame
of Iy. Let I_1 : Q — R be that frame.

(ii) Motions of the occluded background area are not fast.

Thus, if x(x) = 0, then we compare Ip(z) and [;(z + u(x)). If x(z) =1,
we compare Io(z) and I_j(z — u(z)). On the other hand, the occluded
region given by x = 1 should be correlated with the region where div(u) is
negative. Thus we propose to compute the optical flow and the occlusion
mask by minimizing the energy

B(ux) = Ea(u) + Enlu) + 3 [ xlufde+ 5 [ xdiv(wds, (132
Q Q

where
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Eq(u,x) = A /Q((l—x(x)) [Ho(z) — In(z + u(z))|+x(2) [{o(x) — I-1(z — u(x))|)dz,
and

B, (u,x) = /Q 9(2)([Vua| + Vo] + [ Vx|, (13.3)

with n > 0, 8 > 0 and g(z) =
choosen to be g(x) =1 or g(z) =

m,x69,7>0(gcanbealso

—L1___ where I is a smoothed version
1+9|Vio(2)

of Iy). We have included in (13.2) a term penalizing large displacements
where x = 1 (with 7 > 0 but small relative to A). This is motivated by two
observations. On one hand, we are assuming that the occluded background
area is moving slower than the occluding foreground. On the other, since
images have usually self-similarities, a pixel may have several possibilities
to match. Thus, with n > 0 we try to avoid false matchings due to self-
similarities in the image by encouraging to choose the smallest displacement
(in practice we take n = 0.01).

In order to cope with the nonlinearities in the energy terms, we propose to
use an auxiliary variable v representing the optical flow and we penalize its
deviation from u. That is, we introduce a term 5 [, [u(z) — v(z)]? and,
finally, the following energy is proposed

E@(U, v, X) = Ed(va X) + E’r‘(u7 X)+

1
n/X|v|2dx+,8/Xdiv(u)dx+ lu—v|*dz, (13.4)
2 Jq Q 20 Jq

depending on three variables, u, v and x. This decoupled energy can be
minimized by alternatively fixing two variables and minimizing with respect
to the third one.

To minimize (13.4) with respect to v, we linearize each expression |Ip(z) —
Ii(z + eu(z))], t = —1,1 (e-1 = —1,€; = 1), around a given vector field wug
(close approximation of u) and define the residual

pi(v) = Ip(z) — Ii(xz + €up(x)) — VIi(x + eup(x))(v(z) —up(x)). (13.5)
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This approximation procedure is applied by alternatively minimizing the
energy model:

Ey(u,v,X) = Eq(v, x) + Er(u, )+

Z/XM dm—i—ﬁ/xdw )dx + — /|u—v| dzr, (13.6)
with

Ealv,x) = A /Q (1= ) |02 ()] + x o1 (0) ),

where 7, A, 5, 8 are positive real constants.

The energy Fg(u,v, ) is minimized using an alternated minimization strat-
egy. That is, minimizing the energy with respect to one variable while keep-
ing the other two fixed. This optimization procedure is given by Proposi-
tions 13.1, 13.2 and 13.3 below. After iteration of these steps, we proceed
to redefine p;(v) (see Algorithm 13.8 in Section 13.3).

The minimization of E(; with respect to u is done using Chambolle’s algo-
rithm Chambolle (2004).

Proposition 13.1. The minimum of Eg with respect to u = (u1,uy) is
given by

u; = v; + 0div(g&;)

i=1,2, (13.7)
& and & are computed using the following iterative scheme

B4 T gV (v; + Odiv(gel) + 082X
getl = &+ 79V (9&) 685, ), k=0,1,2, .. (13.8)
L+ %19V (v + Gdlv(gﬁk) + 05 )|

where £) =0 and 7, < 1/8.

As in Zach et al. (2007), we can solve explicitly with respect to v:

Proposition 13.2. Assume that x : Q — {0,1}. The minimum of Ey with
respect to v = (v1,v2) s

*

mnu — ;LZEZVI( ) if Al(u) > M1|VIl(X*)|2
v =< mu+pieVIi(x *) it Aj(u) < =l VI (x*)]? (13.9)

i(x

u—eap(W) gy iAW) < ml V)P,
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where x* = x + e;ug and where i =1 and e =1, n1 =1, u3 = A0, A1(u) =

p1(u) when x = 0, and i = =1, e.; = —1, n_1 = ﬁ, o1 = %,

A_1(u) =p_i(u)+ %u -VI_1(x + €ug) when x = 1.

Notice that we omitted the arguments x in u,ug.

Having computed v, let F' = A(|p_1(v)| — |p1(v)]) and G = |v]>. As a
consequence of Chambolle and Pock (2011), we have

Proposition 13.3. Let 0 < 747, < 1/8. Given u, v, the minimum X of Ey
with respect to x can be obtained by the following primal-dual algorithm

Yt = Pp(¢™ + 14 g VX™)

X" = Py (X" + Ty (div(gw"“) — B divu — F — G)) , (13.10)

where Pg(1)) denotes the projection of 1y on the unit ball of R? and Poqy(r) =
max(min(r,1),0), r € R.

Notice that, by the co-area formula, the level sets of x are also minimizers
of Ey (u,v being fixed). Thus, before going to next minimization of Ey
with respect to u, we redefine x(x) = Ts(x(x)), where T5(r) = 1 (resp. 0)
if r >0 (resp. <9). A different relaxation that also produces good results
is obtained by replacing 1 — x and x by (1 —x)? and x?, respectively, in all
terms of (13.6) but E,.

13.2 A Model Considering Occlusions,
Illumination Changes and Large
Displacement

13.2.1 An optical flow and occlusions model for color video

Let us start by extending the occlusion and optical flow model presented
above to the case of color image sequences. The energy model will use
the color constancy assumption. We consider 3 consecutives color frames
I 1,Ip,I7 : Q@ — R3, which we assume to have values in the RBG color
space, hence each frame I; has three color components Iil, Ii2, If’, associated

to the red, green and blue channels, respectively. Thus, the model to jointly
compute the optical flow and occlusions becomes

E¢(u,x) = E5(u, x) + Er(u,x) + g/Q)(]uQ dx + /Q xdiv(u) dz, (13.11)
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where

3
Bo(u ) =AY / (1= @)~ I (@) x| T () ¥ (e—u(2)) ) de,
k=17
(13.12)

In order to minimize (13.11), we relax it and introduce three auxiliary vari-
ables vy, v2,v3 representing the flow and used to decouple the nonlinear
terms, where vy, v, vg correspond the red, green and blue components, re-
spectively. As before, we penalize the difference between the optical flow u
and each of the auxiliary variables vy, v9, v3. To simplify the presentation,
we use the same notation as in Xu. et al. (2010) and concatenate the vectors
in 9(x) = {v1(x),ve(x),v3(x)}T € R3*2 I(2) = {I'(x),I*(z), 3(z)}T €
R3, a(x) = {u(z),u(x),u(x)}’ € R3*2. In this context, let us remark that
the vector I(z +©) denotes I(x +9) = {I'(z +v1), [*(x + o), I3(z +v3)} .

Thus, to compute the occlusions and the optical flow between Iy, I1, we
propose to minimize the following energy:

E(u, x,0) = Eq(0, x) + Er(u, x)+

1
”/Xy@|2dx+ﬁ/xdw(u)dx+/ i — o> dz, (13.13)

3
where |6|? stands for 3 |vg|? and
k=1

E4(0,x) =

3 3

3 [a=0 Y o] de+a [ xS0 [k do. (1309
= k=1

k=1

and p¥ is the linearized version of I¥(z) — I¥(x + ¢;v}) around an approx-
imation ug of u, with ¢ = —1,1 and e_.;y = —l and ¢ = 1, and k£ = 1,2,3
(corresponding to each color channel). The linearization procedure is ap-
plied to each p¥(x).

As in previous Section 13.1, A\, > 0 and n > 0. When 1 > 0 the model
penalizes large displacements in places where x = 1 trying to avoide false
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matchings due to self-similarities in the image. In practice, 7 is choosen to
be small relative to A. Finally, the term E,(u,x) is given by

B, (u,x) = /Q g(@)(IVur(2)] + [Vua(a)| + [Vx(@)) dz,  (13.15)

where g(z) = z € Q,v >0, and I§ is the gray level version of

-1
14+7y|VI§(z)]
the frame at ¢ = 0.

Minimizing the Energy

As in Section 13.1, we minimize E° in (13.13) by alternating among the
minimization with respect to each variable while keeping the other two
fixed. In particular, the minimization of E° with respect to u, v* and y is
described in the following Propositions.

Proposition 13.4. The minimum of Eg with respect to u = (uy,u2) s

given by
3

1 i .
u; = 3 ; vy, + 0div(g&;) + 68

X
 =1,2 13.1
0z, 7 ,2, (13.16)

&1 and & are computed using the following iterative scheme

&+ GoV(3 iy v+ 0div(ge]) +655%)
L+ gV (5 Xy v + 0div(9€h) +0555)]

t+1
§i+:

t=0,1,2, ...

(13.17)
where £ =0 and 7, < 1/8.

Proposition 13.5. Assume that x : Q@ — {0,1}. The minimum of Ep with
1.2

respect to Vi = (vg,vg) 18
niu — i) VIE(x*) if  AF(u) > pia(x)|VIF(x*)?
niu+ piga(z)VIE(x*) if  AF(u) < —pa(2)|VIF(x)|?

VIFk(x* . %
u— () rienp i AR < pia@) VIFx)2,

Vi =

(13.18)
wheni =1 and ey = 1, 91 = 1, p1 = A0, A¥(u) = p¥(u) when x =0, and
. 0
i=-1l,eq1=-1,n1= Tlngf p—1 = %?79, A_i(u) = pby(u) + Fgu
VI* | (x + eug) when x = 1. Additionally we create x* = x + €;u.

The arguments x in u,uy are omitted.
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Once all vi, are computed, we define
3 13
F= —)\kz:l‘p’f‘ +3;(vk—u)2, (13.19)

and

:_Az‘p 1’ ;’kzi: _ (13.20)

Proposition 13.6. Let 0 < 747, < 1/8. Given u, v, the minimum X of E,
with respect to x can be obtained by the following primal-dual algorithm

Yt = Pp(y" + 1y g V")

X = Py (¢ + 7y (div(ge ) — g diva— F @), 132

where Pg(v)) denotes the projection of 1 on the unit ball of R? and Poqy(r) =
max(min(r,1),0), r € R.

13.2.2 Adding robustness to illumination changes

The color constancy assumption is frequently violated due to illumination
changes, shadows or specular reflections. A combination of the color con-
stancy assumption and the gradient constancy assumption in the data term
seems to be a valuable approach to alleviate this problem Xu. et al. (2010).
The gradient constancy assumption was already used in Brox et al. (2004b)
to obtain robustness against additive illumination changes. A good way
to introduce a combination of color and gradient is to use an adaptative
weight map « : © — [0, 1] that allows to adaptatively balance the contri-
bution of color and gradient constraints at each point in the image domain.
We propose the following model:

B¢ (u, x) = Eg o (u, X) + Er(u, x)+
n/x|u]2dx+ﬁ/xdiv(u)dx, (13.22)
2 Ja Q

where Ej ,(u, x) can be written as

ES o (u,x) = /Q (0(2) Dy (s o 2) + (1 — () D (s x,2)) da (13.23)
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and Dy (u, x,x) and Dyr(u, x,x) are pointwise data costs based on the
comparison of color and gradients of the image, respectively. Roughly speak-
ing, Dy, contains the comparison ||Io(x) — I1(x + u)|| and Dy, the com-
parison 7||VIy(z) — VI (x+u)||, with 7 > 0. We will detail below how these
terms are defined depending on x. Therefore, the data term in (13.22) is
made of two parts and «(z) provides an ad balance term between inten-
sity and gradient constraints. For instance, when a(z) = 0, the gradient
constraint is favoured.

To provide a compact presentation, we define a new vector I that includes
the gradient, ] = {1}, 12,13,0,1;,0,1;}. Where 0,1; and 9,1I; represents
partial derivatives with respect to x and y, respectively, of the gray level
frame I;, for i = 1, —1. Given z € Q, from the weight map value «a(z), we
define a new vector &(z) to represent the corresponding weights for color and
gradient constancy assumptions, namely, & = {«o, o, o, (1 — )7, (1 — )7},
where 7 > 0 is a constant value and we have omitted the point x and written
a = a(x). Next section presents the definition of o used in our model. For
a more compact notation, let us denote it as &(z) = {al,a2,a3,a4,a5},
where o' =a? = =aand o* =a® = (1 — a)7.

Then, we propose to add auxiliary variables vg,k = 1,...5, penalize its
deviation from the optical flow v and minimize the energy

Eg(u, x,0) = Eg (0, x) + Er(u, x)+

5 5
n 2 1 2 .
2/9)(;\1%\ d:c+20/9;|u—vk] da:—i—,B/Qxdw(u)dm. (13.24)

where ¢ > 0 and the new term EJ  that considers the color constancy
assumption, the gradient constancy assumption and the weight map & is
defined as

3 3
B 0(5,%) = A /Q [(1 0 3 0k @) ()| d + x 3 0k ) |p1<vk>|] da
k=1 k=1

5 5
o[ [(1—X)Za'“(w) phw)]+x Y ok (@) \ph(vk)(] dr. (13.25)
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For k = 1,2,3, p¥(v;) is a linearized version of I}(z) — I¥(z + ¢;u) around
an approximation ug of u. For k = 4,5, pf (vg) is a linearized version of
Oplo(x) — Opli(x + €sup) and Oylo(x) — Oyl;(x + €up), respectively, given by:

pi(vs) = Ouly — OpIi(x*) 4 €V (OuLi(x%)) (va() — ug(z))

and
p; (vs) = 8y Iy — B, Li(x*) + &V (9 1;) () (v5(x) — uo(x)).

Where z* = x + €up(z) with i = —1,1 (-1 = —1,¢; = 1).

An adaptative weight map «a(x) to balance color and gradient
constraints

The proposed model (13.24) depends on the definition of «(z), the func-
tion which selectively combines the color and gradient information. In Xu.
et al. (2010) the computation of a(x) is explicit and depends on the differ-
ence between two terms Dj(u,z) and Dyy(u,x). The term Dj(u,x) repre-
sents the color constancy assumption and Dy (u, ) represents the gradient
constancy assumption. In particular,

e The expression for the color constancy assumption, Dj(u,z) is given

by:
3

Di(u,z) =Y ’Igf(x) — Iz + ) (13.26)
k=1

where I§ and I} are the RGB components of two consecutive color
images.

e The term Dvyy(u,x) is computed as:

Dyi(u,x) =7 (|0xlo(x) — I1(z + )0y | + |0y lo(z) — Oyli(x + u)l),
(13.27)

where Iy and I; are the gray level version of the images in Dy (u,x).
Then, the weight map a(z) is defined in Xu. et al. (2010) as

1

a(z) = = )
1 + eB(Dr(u,m)—=Dyr(u,x))

(13.28)
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where § is a positive constant. Let us comment about the behaviour
of (13.28). If the term Dj(u,x) > Dyi(u,z), the difference Dy(u,x) —
Dy (u,z) will be positive and the exponential value ePDr(ux) =Dy (uz)) wil]
be large. Then, a(z) will be a small value, say near 0, and the data term
will have more confidence on the gradient constancy assumption. On the
other hand, if Dyy(u,x) > Dj(u,z), the difference Dj(u,x) — Dyy(u,x)
will be negative and the exponential value ef(P1(w2)=Dvi(w.2)) wi]] be very
small. Then, a(x) will produce a value near to 1. In other words, the data
term will be more confident on the color constancy assumption.

Our proposal extends definitions (13.26) and (13.27) for D; and Dyy, re-
spectively, to consider our occlusion layer x. We define the term Dy, as

3

Dy x(u, x; ) Zl— ‘Io — 17 ( ~’U+U‘+X’Io — 1" (x—w)|.
k=1

(13.29)

We can rewrite (13.29) using a linearized version of the difference I§(x) —
IF(z+e€v(x)) (where k = 1,2, 3 indicates the color component of the image,
and i =1,-1),

3
Dry(u,x,2) = (1-%) ‘p'f‘ +x’p'31’- (13.30)
k=1

Finally, Dyr(u, x,x) extends the gradient constancy assumption term in
order to consider the occlusion mask by

5
Dol x: ) = (1= 07 Y (| 1 (@) = B+ )| +
k=4
5
XT Z(‘I(I)“(:L") — 1% (x —w)|, (13.31)
k=4

where 7 > 0 and If, for k = 4 and k = 5 denote the partial derivatives with
respect to x and y, respectively, computed on the gray level frame I;, for
= —1,0,1. Finally,
1

a(x) = - , (13.32)
1 + QB(DLX(%X@)_DVI,X(u7X7x))
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with 8 > 0, and the proposed energy model for robust computation of
optical flow and occlusions is given by (13.24) presented at the beginning
of this section, that is,

Egg(ua e i}) = Eg,a(ﬁa X) + ET(U) X)+

5 5
77/ 2 1/ 2 .
= | x vg|“ de + — u—v dx—i—ﬁ/xdwudx. 13.33
JRIULES Y DA [ iz, (1333

Minimizing the Energy

As in Section 13.1, we minimize E& in (13.33) by alternating among the
minimization with respect to each variable while keeping the other two
fixed. In particular, the minimization of E‘g with respect to u, v* and y is
described in the following Propositions.

Proposition 13.7. The minimum of ES with respect to u = (u1,ug) is
given by
Ix

5
I~ e .
u; = 5k§lj v+ Bdiv(gS) + 0555 i=1.2 (13.34)

&1 and & are computed using the following iterative scheme

e _ &+ gV (LYo, v + 0div(gel) + 085X)
’ 1+ gV (3 Yooy vh + 0div(g€h) + 0855

t=0,1,2, ...

(13.35)
where £ =0 and 1, < 1/8.

Proposition 13.8. Assume that x : Q@ — {0,1}. The minimum of Ey with
respect to vi = (vi,v}) is

niu — pieia(z)VIE(x*) if  AF(u) > pa(2)|VIF(x)|?
vem | mut peal@VIEGE) i AR) < (@) VI
u— e grae iAW) < ma(@)| VIF),
(13.36)
wheni=1ande; =1, 1 =1, up = A\, A¥(u) = p§(u) when x =0, and
i=-1,€eq1=-1,n1= fn@’ o1 = %?79, A_1(u) = pF (u) + 1_22]9u-

VIE, (x + ¢ug) when x = 1. Additionally we create x* = X + €;up.

The arguments x in u,ugy are omitted.
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Figure 13.1: Images of the sequence Ambush_7. First row: frames 1, 7, 11.
Second row: frames 32, 41, 49.

Once all vy, are computed, we define

3 5 5
F=\ (—a(az) So|ek - a=a@n> |p1<vk>|> +z (Zwk - u>2) ,
k=1 k=4

k=1
(13.37)
and
3 5 5
G = (—a(ac) PIICAEIEENS |p1<vk>|> +3 (ZW) .
k=1 k=4 k=1
(13.38)

Proposition 13.9. Let 0 < 747y < 1/8. Given u,v, the minimum X of Ey
with respect to x can be obtained by the following primal-dual algorithm

U Pl 9 Nx) (13.39)
X" = Py (X" + Ty (div(g@b"“) — B divu — F — G)) ,

where Pg(1)) denotes the projection of 1 on the unit ball of R? and Py (r) =
max(min(r,1),0), r € R.

Let us assume that we have already computed an optical flow © minimizing
the functional (13.33). We refer to it as u,. (with rc standing for optical
flow for color images and robust to brightness changes).

As a proof of concept we present here a first validation of the performance
of this proposal for optical flow estimation. We present in Figure 13.1
some frames of the sequence Ambush_7 of MPI Sintel database Butler et al.
(2012). Sintel is a database of realistic video sequences from an open source
animated short film. It contains shadows, reflections and illumination, as
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Figure 13.2: Effect of the adaptative a(x). From left to right and top to bottom,
(a), (b), (c) show three consecutive frames where there are illumination changes
and shadows. (d) shows the absolute color difference between (b) and (c). Then,
(e), (f) and (g) show the optical flow obtained using a(z) = 1.0, a(x) = 0.0, and
adaptative a(x), respectively. Finally, (h) displays this adaptative map «(z).
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well as other challenges. We will give more details of MPI Sintel in chapter
14. In the video sequence shown in Figure 13.1, a girl takes a lance that
lays on the snow. In the five first frames of the video Ambush_7, the hand
of the girl approaches the lance. To empirically show the power of our
proposal, in Figure 13.2 we focus on three frames of the first part of this
sequence. In frames 2, 3 and 4, the hand is not in the scene (see Figure 13.2)
but the shadow of the hand appears in the scene and does move. In other
words, in those three frames there is no real movement in the scene only a
shadow that moves. In order to illustrate the effect of the adaptative weight
a(z) in the data term, we have computed the optical flow for these three
frames by minimizing (13.33) but with three differents options for o(z),
namely, a(z) = 1.0, a(x) = 0.0 and our adaptive a(x). In Figure 13.2(a),
(b) and (c), we first display the three consecutive frames used. In order
to display the changes in intensities and shadows, Figure 13.2(d) shows the
magnitude of the color difference ||Iy(z) — I1(x)|| between frames (b) (say
Ip) and (c) (say I;). For visualization purposes, the absolute differences
values were scaled between 0 and 255. Figure 13.2(e), (f) and (g) display
the estimated optical flow obtained when considering a(x) = 1.0, a(x) = 0.0
and adaptive a(x), respectively. The optical flow is represented with arrows
which length is proportional to the optical low modulus. Let us notice that
in the region where shadows moves in the video sequence the optical flow
is incorrectly computed when a(z) = 1.0 (only intensities) but the flow is
correctly computed using gradients. Finally, Figure 13.2(h) displays the
values of our adaptative a(x). Let us remark that in regions where shadows
moves, we obtain a(x) = 0.0, as can be seen on the snow and on the lance
handle. On other hand, let us notice that the average of the a(x) values in
the interval 0.1 < a(x) < 11is 0.5332. A value of a(z) = 0.5 means that
the terms D;, and Dyy, have a similar role in that regions and thus both
might be used.

13.2.3 Large displacement method

A drawback of the variational model described above is its incapability to
handle large displacements of small objects that move differently from its
neighbors. Indeed, in order to estimate large displacements using varia-
tional approaches, the optical flow computation is usually embeded in a
multi-scale optimization strategy. As commented previously, the idea be-
hind a multi-scale approach is to create a coarse-to-fine structure that en-
ables the estimation of the flow field at coarser scales and then to refine
the solution at finer scales Mémin and Pérez (1998); Brox et al. (2004b);
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Meinhardt-Llopis et al. (2013). But in this case, the method is unable to
estimate large displacements which are larger than the size of the object
that moves, specially if the small object moves differently from its neigh-
bours. As reviewed in Chapter 12, in recent years research has been done
for handling large displacements Xu. et al. (2010); Steinbruecker and Pock
(2009); Weinzaepfel et al. (2013); Timofte and Van Gool (2015). For in-
stance, the work in Steinbruecker and Pock (2009) is based on exhaustive
search performing block matching. In Stoll et al. (2012) the estimation of
optical flow is improved by the integration of supplementary matchings.
These supplementary matchings are used only at specific locations where
they are really needed and finally integrated into the variational model.

In this section we propose a new optical flow model for large displacement
and occlusion estimation. To this goal, we improve our robust color model
by combining it with exhaustive search. By using a pointwise confidence
measure, our strategy directly integrates the exhaustive point correspon-
dences into the variational model. The supplementary matchings will help
the optical flow estimation to avoid most of the local minima of the original
problem and will produce a better local minima capturing large displace-
ments. The proposed confidence measure is used to determine the spe-
cific location where the movement estimation could be improved using the
matchings computed by exhaustive search. Confidence measures have been
previosly used in the literature to validate the correctness of a given optical
flow field at each point and we refer to Chapter 12 for a review.

Specific location for exhaustive search

Let us assume that, from a given sequence of frames, we have already com-
puted an occlusion mask y and an optical flow. We assume that they have
been computed using by minimizing the energy (13.24) proposed in previ-
ous section. This is why we will denote the optical flow by u,. (standing
for optical flow for color images and robust to brightness changes). Let us
denote by a the obtained adaptative map. Now, in order to determine spe-
cific locations where supplementary matchings could improve the movement
estimation, we evaluate the data cost in (13.24) (equivalently, in (13.22)) at
each = € ) with the computed u,.(z) and x(z), namely,
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Ega(tre, X) (@)

3 3
A1 = () D (@) [ (wre(@))| + (@) D 0¥ (@) [0 s (ure(w)

The intuitive idea is that if the value ES_ (e, x)(x) is big, then the estima-
tion might be improved. Additionally, we consider the smaller eigenvalue
A(z) of the structure tensor associated to the image Iy. This structure
tensor is computed in a N x N block centered at x. From these values
ES, (ure, x)(x) and A(x) we define a set €2, , made of the points x where
supplementary matchings could improve the motion estimation, by

Qy, = {2 € Q| Eg(ure, X)(x) > 0 A XN(z) > 0)} (13.41)

where 0 and 6, are given constants (which we will determine empirically
and fix for the experiments in Chapter 14. That is, if £ > 0, then we
assume that the error in (13.40) is large enough to be improved using a
supplementary match. In this case, we ask for an enough structure, namely,
if A(x) > 0, we assume that the image has sufficiently structure to match
two points in a reliable form.

The set of points that belong to 2, define a binary mask, which we denote
by xp : 2 — [0,1] and that will be used below. The intuitive idea is that
if x ¢ Q,, (ie., xp(r) = 0), we assume that the optical flow of the point
is accurate enough computed using (13.24). Otherwise, if z € Q,, (ie.,
Xp(z) = 1), the computation will be helped integrating it with additional
matches.

A function x, was presented in Stoll et al. (2012) but tey do not consider
an occlusion mask or a balance term «(z)
Additional information by exhaustive search

Exhaustive search is performed to find correspondences between points of
the frame Iy (usually called reference image) and the points of the second
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frame I; (usually called target image). To perform the exhaustive search of
a point (z1,z2) in the reference image we consider a squared block centered
at this point and of semi-lenght p (that is, a block of size (2p+1) x (2p+1)
pixels) and we search for the most similar block in the target image. Figure
13.3 schematically illustrates it.

X X

¥

t t+1

Figure 13.3: Exhaustive search schematic representation for a secuence of two
frames where the white balloon moves in frame ¢ to a new position (indicated by
the black arrow) in frame ¢ + 1.

Figure 13.3 shows two frames of a sequence where a white balloon moves.
The movement of the balloon is represented with a black arrow in the ref-
erence image at time ¢. A point in the boundary of the balloon is choosed,
having coordinates (x1,x2). A squared block of radious p around this point
is indicated with red rectangle. Let denote it by B,. Then, the search re-
gion in the target image at time t + 1 is illustrated in blue and defined by
a squared region centered at (x1,x2) and with semi-lenght vmax. That is,
the size of the searching region is (2vmax + 1) X (2vmax + 1) pixels. Let us
remark that vmax represents an upper bound of the expected displacement.
In other words, in our algorithm vmax imposes a maximum displacement
that is possible to recover at each point.

It is performed the sum of the absolute differences between the block B,
of the reference image at time ¢ and each block at time t + 1, centered at
each point in the searching area in the target image, while keeping the point
(y1,y2) giving the minimum of these sums of the absolute differences.
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Figure 13.4: Cropped area RubberWhale sequence and Data term for intensity
blocks and gradient blocks. (a) Cropped frame 10. (b) Cropped frame 11. (¢) Dy
and Dy and balance term «(x).

In our case we propose, at each point (z1,z2) € Q,,, to perform block
matching minimizing an energy that considers the occlusion mask y and
the weight map a(x). As a proof of concept we present an experiment to
show the use of gradient term ( Dy ) and intensity(D;) term to improve the
block matching. In Figure 13.4 we show two cropped consecutives frames
of Rubberwhale sequence.

Figure 13.4 shows a cropped area of frame 10 and frame 11 of RubberWhale
video sequence. In Figure 13.4 (a) we took a neighborhood around the
central point, we called this neighborhood Bji. By is a block of size 7x7
pixels centered in the cropped image in Figure 13.4 (a), i.e in coordinated
(28,28). We search for By, in the cropped frame 11 (b) only in the horizontal
direction and only in row 28. The real movement of the point (28,28) in
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frame 11 is horizontal and approximately 1 pixel to the right. The presence
of shadows make the brightness constancy assumption to fail.

We have computed the sum of absolute differences of each color component
(Dr) between B, and each block in row 28 of frame 11. Additionally we
have computed the sum of absolute differences of each gradient component
(Dvr) between By and each block in row 28. We present in Figure 13.4 (c)
Dy in blue, Dy in green. We observe that the minimum of the blue curve
is located in x = —2 and in the other hand the minimum of the green curve
(Dyr) in located in o = 1 in the positive side of the "x” axis. Selecting the
minimum value between the minimum values of each curve, (the minimum
value of Dy ) we compute correctly the displacement. Additionally we show
the a(x) value computed for this example. This a(z) value is 0 for z = 1
means that gradient should be used to compute the displacement.

We present a second experiment to show the use of gradient term (Dvr)
and intensity (Dj) term to improve the block matching. In Figure 13.5 we
show another crop of Rubberwhale sequence.

Figure 13.5 shows the cropped area of frame 10 and frame 11 of Rubber-
Whale. In Figure 13.5 (a) we took also neighborhood around the central
point, we called this neighborhood Bps. B, also is a block of size 7x7 pixels
centered in the cropped image in Figure 13.5 (a), i.e in coordinated (28,28).
We search for By in the cropped frame 11 (b) only in the horizontal direc-
tion and only in row 28. The real movement of the point (28,28) in frame 11
is horizontal and approximately 4 pixel to the left. There is no shadows or
reflexions in this case, it means that the brightness constancy assumption
holds.

We have computed the sum of absolute differences of each color component
(Dr) between B,y and each block in row 28 of cropped frame 11. Addi-
tionally we have computed the sum of absolute differences of each gradient
component (Dyy) between By and each block in row 28. We present in
Figure 13.5 (¢) Dy in blue, Dy in green. We observe that the minimum of
blue curve (Dy) is located in x = —4 and the minimum of the green curve
(Dyr) in located in # = —4 in the negative side of the ”x” axis. Using the
minimum value between these two curves (the minimum of Dj) we compute
correctly the displacement. Additionally we show the a(x) value computed
for this example. This a(z) value is 1 for ¥ = —4 means that intensity
should be used to compute the displacement.

We propose to minimize the following energy using block matching:
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Figure 13.5: Second cropped area of RubberWhale sequence and Data term for
intensity blocks and gradient blocks. (a) Cropped frame 10. (b) Cropped frame
11. (¢) Dy and Dy and balance term a(x).
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Let us remark that the exhaustive search is only performed in 2, domain.
If ES, (tre,x) > Eegha(te, x(x))(x), we assume that previous exhaustive
search may improve the solution u,. at a z. If this holds, we keep x,(z) =1
else we modify it to x,(x) = 0.

The vector field that minimizes (13.42) is the optical flow u. we called a
prior vector field.

Finally, we define a confidence map as follows. For each point x € x,, we
define the confidence value ¢(x) by

oz) = (dzd_ldl>2 (Edca(“’"c’:”) )2 (13.43)

Eerha (Ue, 1‘)

where dq, ds is the distance to the first and second best candidate respec-
tively of the exhaustive search, ES, (uyc,x) is the error defined in (13.40)
and Eeppq(ue, x) is the error of the exhaustive search defined in 13.42.

A Confidence function with this structure was presented in Stoll et al. (2012)
but they do not consider occlusions or balance term a(x).

13.2.4 Integration of exhaustive matchings into the
variational model

Finally and as a last step, we present our variational model to handle large
displacements. It is based on adding to our optical flow model in (13.24)
a term p [ xpc(x) ju — ue|2 which incorporates the matchings obtained by
exhaustive search as explained above. We will refer to this additional term
as large displacement prior. Let us recall that the optical flow u,. is obtained
by exhaustive search using (13.42), x; is defined by (13.41) and p is a
constant positive value. Then, our robust color optical flow method to
handle large displacement is given by the minimization of

5
- - 1
2000 = Bia(0:00 + By ) + 55 | 3 lu—wf*de
i=1

3
n % Z o2+ 8 | xdiv(u)dz +p | c(x)xp|u—ue®, (13.44)
2)o" 0 Q

where ES, (7, x) and E,(u, x) are defined in (13.40) and (13.3). The large
displacement prior (u.) enforces and guide u to a better local minimum
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capturing large displacements. In Chapter 14 we will present several exper-
iments evaluating the proposal.

Minimizing the Energy

As in Section 13.1, we minimize Egl in (13.44) by alternating among the
minimization with respect to each variable while keeping the other two
fixed. In particular, the minimization of E," with respect to u, v* and x
is described in the following Propositions.

Proposition 13.10. The minimum of Egl with respect to u = (uy,ug) s
given by

LY 0y v+ 0div(gE) + 085X + phuexpe
Uy = , 1=1,2, (13.45)
1+ pbuexpe

&1 and & are computed using the following iterative scheme

&+ 39V (5 Yoy vj, + 0div(g€l) + 05 5%)
L+ B9V (5 Xy v + 0div(9€h) +6555)]

gt = t=01,2, ..

(13.46)
where €2 =0 and 7, < 1/8.

Proposition 13.11. Assume that x : Q — {0,1}. The minimum of Ey

with respect to vic = (vi,v) is

niu — pieia(2)VIF(x*) if  AF(u) > pa(@)|VIF(x*)[?
vie={ mutpea(@)VIFx) it Af(w) < —piale) VI ()P
u—cipf() e i AR < pia@)| VIF)2,
(13.47)

wheni=1and e; =1, 91 = 1, p1 = M\, A¥(u) = p¥(u) when x =0, and
no

i=-1,eq1=-1,n1= Tlng; IS %?79, Ai(u) = pF (u) + THna 0
VIE (x + eug) when x = 1. Additionally we create x* = x + €;up.

The arguments X in u, Ug, Ue, C are omitted.

Once all v, are computed, we define
3 5 A

F=) (—a(m) St - - atn \mm)r) - (Zwk - u>2) ,
k=4 =

k=1 k=1
(13.48)
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and
3 5 " 5
G = (—a(az) S|k - -aE) Y |p_1<vk>|) +5 (Zm)?) .
k=1 k=4 k=1
(13.49)

Proposition 13.12. Let 0 < 7y, < 1/8. Given u,v, the minimum x of
Ey with respect to x can be obtained by the following primal-dual algorithm

X" = Py, (x” + 7y (div(gw"“) — B diva— F — G)) , ’
where Pg(1) denotes the projection of 1 on the unit ball of R? and Poqy(r) =
max(min(r, 1),0), r € R.

13.2.5 Discussion on time consistency and
forward-backward consistency of the proposed
model

The proposed model jointly computes the optical flow and occlusions be-
tween two frames. The optical flow estimates the movement or trajectory
of points from its position in the given frame to its position in the following
frame. The occluded pixels, that is, the points that are visible in a given
frame but not in its following frame, are modeled by a binary occlusion
function so that x(x) = 1 at those points. Therefore, even if our model uses
three frames, the optical flow can be interpreted as a forward optical flow
and the occlusion mask can be interpreted as a forward occlusion mask.

In this section we are interested in also computing the disoccluded regions
which, up to some point that we will explain here, can be interpreted as
backward occluded points. Also, we are interested in introducing a certain
forward-backward robustness and time consistency as well as in introducing
and a certain symmetry in our model. Occluded and disoccluded points
will be relate with forward and backward occlusion masks. To do so, in
this section we consider more than three frames and we propose to iterate
forward and backward with respect to the frames.

Let us consider a video sequence of frames {I(¢,x)}, where t € [0,7] C R
stands for the time and z € Q C R? stands for the spatial variables. To
simplify the presentation, we assume that {I(¢,z)} is a gray level video. We
can rely on the method proposed in Section 13.1 for computing the forward
optical flow, denoted here by u!'(t,), from frame I(¢,-) at time ¢ to frame
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Figure 13.6: Schematic representation of three image frames used to compute
the forwards and backwards optical flow and occlusion masks. In this sequence a
white balloon moves from left to the right. Regions in red at ¢, which correspond
to OF (t), are occluded at ¢ + 1. Regions in blue at ¢, which correspond to OZ(t),
are disoccluded at time ¢ but occluded at time ¢ — 1 (and also regions in blue at
t + 1 are disoccluded at ¢ + 1 but occluded at time ¢).

I(t+1,-) at time t + 1. The method also provides with an occlusion mask,
that is, a mask of points that are visible at time ¢ and not at time t+1. Let us
call x¥'(¢,-) that forward occlusion mask. Strictly speaking u(t, -) is defined
in O\ OF (t), where O (t) denotes the set OF (t) = {z € Q, xF'(¢t,z) = 1}.
In any case, with our model we have given a sense to the flow u(¢,-) even
in O (t). The idea is to try to better explain this sense and use it to try to
also compute the disoccluded points.

Let us detail the underlying idea. First of all, let us remark that we can
also use the method of Section 13.1 to also compute a backward optical
flow and a backward occlusion mask, denoted here by u?(t,-) and x?(t,-),
respectively. Figure 13.6 illustrates our notation on a schematic example.
Regions in red (corresponding to OF(t)) represent points visibles at time
t but occluded at time ¢ + 1. Regions in blue at time ¢ (corresponding to
OB(t)) are disoccluded at time ¢ but occluded at time ¢ — 1. Analogously,
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regions in blue at ¢+ 1 (corresponding to OB (¢ +1)) are disoccluded at ¢+ 1
but occluded at time ¢. The vector field uf'(t, -) represents the forward flow
from frame ¢ to frame ¢ + 1 and u(t,-) the backward flow from frame ¢ to
frame ¢t — 1.

Actually, we would like to have u?(t+ 1,z +u® (t,7)) = —u’(t,z) for z and
y = x + uf'(t,7) belonging to a neither occluded nor disoccluded region.
Let ¢(t,x) = = + uf (t,z) the forward map. Thus, ¢(t,€Q) represents the
forward displacement of image t. The set DO(t 4+ 1) := Q \ ¢(t,Q) are all
the points that are dis-occluded at time ¢ + 1, that is, the points that are
visible at time t 4+ 1 but were not visible at time ¢. (The ¢t + 1 in DO(t + 1)
indicates that we think them as points at time ¢t + 1). Now, let us define
w(t+ 1,y) = —uf (t,¢(t,z)) for y = ¢(t,x) (i.e. we have reversed the flow
ut, z)) and we have a flow going from frame t+1 to frame t). Let ¢, (t,y) =
y+w(t,y). We could define O(t) := Q\ ¢, () (the ¢ in O(t) indicates that
we think them as points at time t). This should correspond to points which
are visible at frame ¢ (background at frame ¢) and not visible at frame ¢+ 1.
They should be the same as OF(t) = {x € Q, xF'(t,z) = 1}. Also, we
would like to have DO(t+1) = OB(t +1) :={z € Q, xP(t+1,2) = 1} and
w(t+1,y) = uB(t+1,y) for y = ¢(t, ). Therefore, we propose an iterative
method that enforces it.

Proposed method

In order to enforce to expected equalities

uf(t,2) = —uB(t+ 1,2 +uf (1)) for z € Q\ O (t)

uf (t, ) = —u®B(t, z) for z € O (t) (13.51)
and also

uB(t,x) = —uf'(t — 1,2 + uP(t, 1)) for z € O\ OB(t)

uB(t,z) = —ul'(t,z) for z € OB (1), (13.52)

we propose to iterate the minimization of the following pair of energies for
computing u®'(t,-), x¥'(t,-),uB(t,-) and xB(t,), for all values of t € [0,T],
namely,
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(forward computation)

B (u,,0) = Ealv,) + Er(u) + [ oo+ 5 [ xiv(wdo
Q Q

1 1
+201/(1—X)||u(t,:E)—i—uB(t—{—l,x—l—u(t,m))||2+202/X||u(t,x)+uB(t,a:)H2,
Q Q
(13.53)

and define

(' (t, ), xF(t, ), vF (t,-)) = arg min EX (u, x, v).

(u,x;0)

(backward computation)

B (u,x,0) = Ea(v) + Br(w) + [ oo+ [ xiv(wdo
Q Q

1 1
50 / (10t )b (1, e, ) [P+ 5 Co / llutt, ) 4P (¢, 2) |12,
Q Q
(13.54)

and define

(UB(t’ ')7 XB(ta ')7 UB(tv )) = arg min EB(uv X ’U).
(u,xv)
for all values of ¢ € [0,T]. Previous computation is iterated until conver-
gence. In Figure 77, Chapter 14, we show the forward and backward masks
for some frames of a sequence of the public Middlebury dataset.

Figure 13.7 displays the forward occlusion mask x'(,-) and the backward
occlusion mask xZ(¢,-), with ¢t = 10 for the Urban2 sequence. Notice that
the set of points x such that y* (t,z) = 1 represent pixels which are visible
in frame 10 but not in frame 11. On the other hans, the set of points x such
that XB(t,x) = 1 represent pixels which are visible in frame 10 but not in
frame 9, i.e., some of the points which are disoccluded in frame 10.

Additional remarks

We would like to remark that this proposal needs still some work. Indeed,
in practice these sets OF (t) (respectively x*'(t)) and OB (t) (respectively
xB(t)) may be irregular. A possible strategy could be to regularize them
with a total variation approach. For instance, let A(t) be any of the sets
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Figure 13.7: First row: From left to right, frame 9, frame 10 and frame 11 of
the Urban2 sequence. Second row: forward occlusion mask x'(¢,-), with ¢t = 10
containing, in white, the estimated set of pixels which are visible in frame 10 but
not in frame 11. Third row: backward occlusion mask x?(t, -) containing, in white,
the set of pixels which are visible in frame 10 but not in frame 9 (that is, some of
the points which are disoccluded in frame 10).

OF(t),08, DO(t + 1). Let H : Q — [0,1] be a function representing an
indicator function in a fuzzy way. A possibility could be to minimize:

min/ |DH| —l—)\/ |H — xa@) (13.55)
H o Q

This represents a denoising of A(t). The level sets of H give solutions.

13.3 Algorithm

This section is devoted to present the numerical algorithm for the mini-
mization of (13.6), including pseudo-codes describing its main steps. In
particular, Algorithm 13.8 present the steps of the numerical algorithm for
the jointly computing the optical flow and occlusions by minimizing the
model (13.6) presented in Section 13.1.

On the other hand, Algorithm 13.9 summarizes our illumination changes
and large displacement robust optical low model presented in section 13.2.3.
The value of a(z), for all x € Q are updated after each propagation of the
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optical flow to the finer scale, before starting the estimation of the flow field
at that scale.

The data attachment [ c(x)x,(u — u.)? depends on the confidence value
c(x), the mask x, and exhaustive matchings u.. The confidence value is
an estimation of the reliability of the exhaustive matchings. The confi-
dence value assign a higher weight to those matchings that presents strong
decrease of the error.

Input : Three consecutive gray level frames I_1, Iy, I
Output: Flow field u and occlusion layer y for I

Compute down-scaled images I°, I§, I for s = 1,..., Ngcales;
Initialize uVseales = v,iVS“IeS =0, and yNeeales =

for s + Ngcales to 1 do

for w <=1 to Nyarps do

Compute I7(x + €;ug(x)), VIS (x + €ug(x)), and p;, i = —1,1;
n < 0;

while n < outer_iterations do

Compute vi® using (13.9) (Proposition 13.2);

for [ < 1 to inner_iterations_u do

Solve for ff“’i i € {1,2}, using the fixed point
iteration (13.8);

end

Compute u® using (13.7) (Proposition 13.1)

for m < 1 to inner_iterations_y do

Solve for x™*! using the primal-dual algorithm
(13.10);
end
end
end

If s > 1 then scale-up u®, v*, x® to u®~!, vo=1 51

end
u=u! and x =T, (x")

Figure 13.8: Algorithm for joint optical flow and occlusion computation



13.3. ALGORITHM 113

Input : Three consecutive color frames I_1, Iy, I1 and ue
Output: Flow field u and occlusion layer x for Iy, and «(x)

Compute down-scaled images I® |, I, I{ for s = 1,..., Ngcales;

Nscales — 0’ and XNscales — O7 aNscaleS (:L‘) = 10’

Initialize u/Nscales = N
v =0;

for s + Ngcales to 1 do

Compute o®(x) using (13.28);

If s=1thenv=1;

for w < 1 to Nyarps do

Compute I7(x + €;up(x)), VIS (x + €ug(x)), and p;, 1 = —1,1;
n <+ 0;

while n < outer_iterations do

Compute vi*® using (13.47) (Proposition 13.11);

for | +— 1 to inner_iterations_u do

Solve for le-ﬂ’s, i € {1,2}, using the fixed point
iteration (13.46);

end

Compute u® using (13.45) (Proposition 13.10) considering
data attachment p [ c(z)xp(u — ue), if y=1;

for m < 1 to inner_iterations_y do

Solve for x™*! using the primal-dual algorithm
(13.50);
end
end
end
if v =1 then

Compute EY, (x), A(x);
Compute xp(ES, (), A(x), 0, 0g) implies Q,_;
end

If s > 1 then scale-up u®, v¥%, x* to w1, v 1

end

uw=u' and x = T,,(x")

Figure 13.9: Algorithm for illumination changes and large displacement
robust optical flow






CHAPTER ]. 4

Results

In this chapter we present quantitative and qualitative results obtained
from the different optical flow estimation models presented in Chapter 13.
The proposed methods have been tested in two publicly available databases,
namely, Middlebury database Baker et al. (2011) and MPI Sintel database But-
ler et al. (2012).

The chapter is organized as follows. First, we present in Section 14.1 optical
flow results obtained by using the model presented in Section 13.1 for the
gray level images of Middlebury database. Then, in Section 14.2 we present
results obtained with the model proposed in Section 13.2.1 for the color
images of Middlebury database. In section 14.3, we present results on the
Middlebury database of our model considering a weight map to balance the
contribution of intensity and gradient, corresponding to the energy model
of Section 13.2.2. Finally, Sections 14.4, 14.5 and 14.6 present results from
our complete model including a new term to handle large displacement and
proposed in Section 13.2.3.

14.1 Jointly Optical Flow and Occlusion
Estimation

We first evaluate the model proposed in Section 13.1, that jointly estimates
occlusions and optical flow by using three consecutive frames, on the Mid-
dlebury database. Thus we consider the Middlebury sequences having at
least three frames. Figure 14.1 and Figure 14.2 show some of these consec-
utive frames. In order to better illustrate the performance of the different
energies, we have chosen to divide the Middlebury sequences in two groups.

115
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The first one, made of all of those sequences where the displacements are
smaller than the size of the corresponding moving scene objects and having
no major illumination changes (see Figure 14.1). The second group is made
of Middlebury sequences containing displacements larger than the size of
the object itself, shadows or reflections (Figure 14.2).

Each row of each figure shows three consecutive frames, namely, frame 9,
frame 10 and frame 11. In our model, I; corresponds to frame 9, Iy to
frame 10 and I to frame 11. In the first sequence of Figure 14.1, Grove2,
the camera moves in the vertical direction. The movement of the camera
produces occlusion between the tree and rocks in the background. In the
second sequence, Grove3, the camera moves in diagonal direction to the right
bottom corner of the image. The movement of the camera occludes rocks,
leaves and branches. In the Rubberwhale sequence there are movements
fronto-parallel to the camera, actually to the right (e.g., curtains move to
the right) and the wheel rotates and moves to the left. There are occlusions
between the ”z” letter and the wheel and also between curtains and the
whale. In the Hydrangea sequence while camera moves to the left the flower
presents a rotation on its own axis. The flower rotate from right to left.
There are occlusions between the petals and leaves of the flower. In Urban2,
the camera moves to the right. The apparent movement of the buildings
produces occlusions between them. In sequence Urban3, camera moves in
the vertical direction, and the apparent movements of the buildings produces
occlusions oriented in the vertical direction. Let us notice that in all those
sequences in Figure 14.1, the displacements are smaller than the size of the
corresponding moving scene objects.

In Figure 14.2 we show images of the second set of Middlebury dataset.
Two of these natural sequences contain displacements larger than the size of
the object in the scene. The other two sequences, although presenting small
displacements, contain shadows and reflections. The first row of Figure 14.2
shows three consecutive frames of the Beanbags sequence. The man juggles
three balls. The camera keeps static and the balls move. Let us observe that
shadows moves on the T-shirt. The second row shows DogDance sequence.
In the sequence there is blur in the feet of the girls and camera movement
to the left. In sequence Minicooper there are lights and shadows that move
on the face of the man, and the sky reflects on the glass. The sequence
Walking presents a man that project a big shadow on the wall. There is an
apparent movement due to shadows on the wall.

Figures 14.4 and 14.5 show the obtained optical flow and the estimated
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Figure 14.1: Gray level images of the Middlebury database containg small dis-
placements. First column frame 09, second column frame 10 and third column
frame 11. From top to bottom. First row , Grove2 sequence. Second row: Grove3
sequence. Third row: Rubberwhale sequence. Fourth row: Hydrangea sequence.
Fifth row: Urban2 sequence. Sixth row: Urban3 sequence.
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Figure 14.2: Large Displacement images of the Middlebury database, some of
them containing illumination changes, shadows and light reflexions. From top to
bottom: sequence Beanbags, Dogdance, Minicooper, Walking.
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Figure 14.3: Encoding optical flow values.

occlusion mask. In order to display the optical flow results, we encode the
direction and magnitude of the optical flow using the color coding scheme
of Figure 14.3.

Figure 14.4 show our results for the first set of sequences with small dis-
placements of Figure 14.1. The ground truth is shown in the first column
using the same color coding of Figure 14.3. The middle column shows the
estimated optical flow. The third column shows the estimated occlusion
layer. Let us notice that the optical flow is correctly estimated in four
of the sequences: Grove2, Grove3d, Urban2 and Urban3. The presence of
shadows in the real sequences Rubberwhale and Hydrangea cause that the
optical flow estimation fails.

As for the occlusions, in the case of Rubberwhale and Hydrangea sequences
the provided ground truth of Middlebury dataset includes the ground thruth
occlusion layer, which is indicated on the optical flow ground truth image
as a black color region. By comparing our estimated occlusion layer with
the ground truth occlusion, we observe some differences on the wall in Hy-
drangea and on the ”Z” in Rubberwhale. On the other hand, for the case of
Urban2 and Urban3 sequences, our method is able to properly estimate the
areas of image Iy that get occluded at frame I; due to apparent movements
of the buildings (see the corresponding occlusion masks in the last two rows
of Figure 14.4). In the case of Grove2 and Grove3 the method estimate the
occlusion layer with (qualitatively) high precision.

The results for the second set of Middlebury sequences are presented in
Figure 14.5. The central reference image Iy (frame 10) is shown in the first
column. In the middle column we show the estimated optical flow and, in the
third column, the occlusion layer estimated for each sequence. The figure
shows that the optical flow for Beanbags is incorrectly estimated due to the
fast movements of the balls in the sequence, which are movements larger
that the size of the object itsel (the balls). In DanceDog video sequence the
optical flow seems correctly estimated. In sequence Minicooper we observe
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Figure 14.4: Optical flow and occlusion results obtained by our model (13.4).
The results are presented using he color coding scheme of Figure 14.3. Results
for Groove2, Groove3, Rubberwhale, Hydrangea, Urban2 and Urban3 sequences
of Figure 14.1. First column: reference image. Second column: estimated optical
flow. Third column: estimated occlusion mask.
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Figure 14.5: Optical flow and occlusion results obtained by our model (13.4).
The results are presented using he color coding scheme of Figure 14.3. Results
for Beanbags, DogDance, Minicooper and Walking sequences of Figure 14.2. First
column: reference image. Second column: estimated optical flow. Third column:
estimated occlusion mask.
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Table 14.1: Performance of our optical flow method, on the Middlebury gray
level images, based on the End Point Error (EPE) and the Average Angular Error
(AAE) of the computed optical flow.

Grove2 Grove3 Urban2 Urban3 RubberWhale Hydra
EPE(g) 0.121 0.547 0.311 0.382 0.164 0.253
AAE(g) 1.802 5.400 2.497 3.382 5.326 2.932

a movement on the glass of the car door due to the reflections. In Walking
sequence we observe a false motion detection due to the shadow on the wall.

In the case of Beanbags there are some occlusions which seems correctly
estimated: on the face of the man and the occlusion produced by the right
hand of the man. DanceDog sequence shows occlusions correctly estimated.
The girl moves to the right in the frame I; and the dog moves to the left.
In Minicooper there is false occlusions on the glass of the door and in other
parts on the door. In the case of Walking sequence the occlusion mask
presents error due to the shadow that moves.

We have also quantitatively evaluated the performance of the proposed
model in this database. To this aim, all the results have been obtained
with the same set of parameters, namely, A = 0.25, 6 =0.30, 5 =1, a =0,
g= W, v = 0.05, Nscales = 9, Nwarpings = 10. As usual, the evalua-
tion is based on the End Point Error and the Average Angular Error which
are defined as:

EPE =157 \/(g1i — w1i)? + (920 — u2i)?
(14.1)

AAE = — 1+g1iu1it+goiug;
= 1 E n_ COS 1
n =l VItgti o3/ 1+l +u3; )7

where n in the number of visible points of the image, g = (g1,92) is the
ground truth and uw = (uy,u2) is the computed optical flow. Table 14.1
shows the End Point Error and the Angular Average Error of the estimated
flow field. These two values are computed using the the occlusion layer Yy,
i.e. they are computed at visible pixels. Let us recall that we have evaluate
our method only on those sequences having at least three frames. Optionally
, we can use structure texture decomposition of the images, performing the
optical flow estimation in the texture part. The use of texture images allows
to improve results for real images, where it may degrade performance (with
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Table 14.2: Results using structure texture decomposition: EPE and AAE optical
flow results of the same Middlebury gray level images as in Table 14.1 but computed
from the texture images.

Grove2 Groved Urban2 Urban3 RubberWhale Hydra
EPE(t) 0.121 0.547 0.311 0.382 0.093 0.162
AAE(t) 1.802 5.400 2.497 3.382 2.895 1.977

respect to using the original image)on synthetic images. Considering the
texture component of the images we obtain in Table 14.2.

14.2 Color constancy assumption

In this section we present the results obtained with the model (13.13) that
extends to color images our model (13.4) for gray level images. This model
is first evaluated on the color video sequences of Middlebury database.

Figure 14.6 shows color image sequences of the Middlebury database, namely,
the synthetic sequences Groove2, Groove3, Urban2 and Urban3, and the se-
quences RubberWhale and Hydra which contain natural scenes.

Figure 14.7 shows the obtained optical flow. The first columns shows the
ground truth for each sequence. The estimated optical flow is showed in the
second column, also coded with the same color scheme. The third column
shows the estimated occlusion mask. Let us remark that the results in Fig-
ure 14.7 for the four synthetic sequences are similar to the corresponding
ones in Figure 14.4. However, in the case of the two real sequences Rubber-
Whale and Hydrangea, we obtain an improvement in the estimated optical
flow. The addition of color information improve the results: in the case of
Hydrangea there is less false movement due to shadows on the wall and,
in the Rubberwhale case, the method is able to obtain a thinner border
around the wheel than in Figure 14.4. On the other hand, the estimated
occlusions seems to be more noisy although in the case of RubberWhale
and Hydrangea seem to be more similar to the geometry of images. For
Urban2, Urban2, Grove2, Grove3 the occlusions look thinner.

Table 14.3 shows the corresponding EPE an AAE. For comparison, we
also report, in the first and second rows of the table, the values obtained
by the previous gray level model (denoted with the letter (g)). The third
and fourth rows in Table 14.3 correspond to our results for color images
(denoted with the letter (c)). Let us notice that the quantitative results
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Figure 14.6: Color sequences from Middlebury database. From left to right,
frame 9, frame 10 and frame 11. These sequences present small displacements.
The first row shows the Groove2 sequence, second row Groove3 sequence, third
row RubberWhale, fourth row shows the Hydrangea, fifth row Urban2 and sixth
Urban3 sequence.
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Figure 14.7: Results obtained by our extension (13.13) of the joint occlusion and
optical flow model to color images.



126 RESULTS

Table 14.3: EPE and AAE of the results obtained by our extension (13.13) to
color images.

Grove2 Grove3 Urban2 Urban3 RubberWhale Hydra

EPE(g) 0.121 0.547 0.311 0.382 0.164 0.253
AAE(g) 1.802 5.400 2.497 3.382 5.326 2.932
EPE(c) 0.148 0.510 0.282 0.456 0.127 0.201
AAE(c)  2.060 5.245 2.554 3.329 4.145 2.500

for the four synthetic are similar. In the case of real images, the results
are quite different. In other word, the inclusion of colorm information im-
proves performance (without any need of structure-texture decomposition
as before).

14.3 Gradient constancy assumption

This section presents some results obtained from the model (13.33) pre-
sented in Section 13.2.2 which includes an adaptative weight map «(x)
allowing to balance the contribution of color and gradient information.

In order to test this contribution, We performed the same experiments as
in 14.2 but with different « values. First, we fix the weight map to a
constant value a(z) = 0.5 for all . Second, we fix the weight map «(z)
to 0.0 (which means only gradient constancy assumption) and finally we
perform experiments using adaptive weight map a(z). The experiments in
Figure 14.7 and Table 14.3 of previous section are equivalent to perform
experiments of this section with a constant value a(z) = 1.0.

14.3.1 Results obtained using a constant weight map
a(x) =0.5

In Figure 14.8 we show the optical flow obtained with weight map a(z) =
0.5. We present in the first column the ground truth, in the second column
we present the estimated optical flow and in the last column the estimated
occlusions. Some improvements appear for real images but we do not appre-
ciate any improvements in synthetic images. Actually for Grove3 there is a
wrong optical flow and occlusion estimation on the surface of two buildings.

Table 14.4 presents the numerical evaluation of these resultswith a(z) = 0.5.
By comparing this results with the ones with « = 1.0 in Table 14.3 ,we
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Figure 14.8: Optical flow obtained from (13.33) with a(z) = 0.5. First column:
groud truth. Second column: estimated optical flow. Third column: estimated
occlusion mask. First row: Groove2 sequence. Second row: Groove3. Third row:
Rubberwhale. Fourth row: Hydrange. Fifth row: Urban2 and sixth row: Urban3.
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Table 14.4: EPE and AAE optical flow results from (13.33) extended to color
images using a(x) = 0.5.

Grove2 Groved Urban2 Urban3 Rubber Hydra

EPE(c) a(z) =05 0.150 0516  0.284  0.416  0.103  0.178
AAE(c) o) =05 2118 5261 2519 3460  3.373  2.230

observe that now the AAE for RubberWhale drops from 4.145 to 3.373
and for Hydra it drops from 2.500 to 2.230. This tendency is presented
also in the End Point Error: End point error of RubberWhale drops from
0.127 to 0.103 and for Hydrangea drops from 0.201 to 0.178. In the case
of synthetic images there is no clear tendency. In Urban2, Grove2, Grove3
the AAF rises from 2.060 to 2.118, from 5.245 to 5.261 and from 3.329 to
3.460 respectively. Only in the case of Urban2 the AAFE drops from 2.554
to 2.519.

This experiments reinforce the idea that the use of gradient helps to improve
the estimation of the optical flow in case of real images containing reflections
or shadows.

14.3.2 Results obtained using a constant weight map
a(x) =0.0

This set of experiments is equivalent to consider only gradients in the data
term. In Figure 14.9 we show the optical flow obtained by our method with
constant weight map «(x) = 0.0. Table 14.5 presents the corresponding
quantitative results. We observe an reinforcement of the tendency for the
values AAE an EPE. The AEFE and also EPFE rise for synthetics images.
In the case of real images (RubberWhale and Hydrangea) the AAE has
a tendency to drop. In the case of Rubberwhale AAE drops from 4.145
with a(z) = 1.0 to 2.998 with a = 0.0. For Hydrangea AAFE drops from
0.201 to 1.969 respectively. This tendency is presented also for End Point
Error. End Point Error for RubberWhale drops from 0.127 to 0.097 and for
Hydrangea drops from 0.201 to 0.162. In the case of synthetic images the
tendency is inverted; for instance in Grove2 the AAF rises from 0.148 to
0.173 similar for its AAF which rises from 2.060 to 2.530.
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.

Figure 14.9: Results obtained with a(z) = 0.0. First column: groud truth.
Second column: estimated optical flow. Third column: estimated occlusion mask.
First row: Groove2 sequence. Second row: Groove3d. Third row: Rubberwhale.
Fourth row: Hydrange. Fifth row: Urban2 and sixth row: Urban3.
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Table 14.5: EPE and AAE optical flow results from (13.33) extended to color
images using a(x) = 0.0.

Grove2 Groved Urban2 Urban3 Rubber Hydra

EPE(c) ax)

= 0. 0.173 0.644 0.343 0.544 0.097 0.162
AAE(c) a(z) = 0.

0
0 2.530 6.414 2.686 4.384 2.998 1.969

Table 14.6: EPE and AAE optical flow results from (13.33) extended to color
images using an adaptive a(z).

Grove2 Groved Urban2 Urban3 Rubber Hydra
EPE(c) a(x) 0.163 0.630 0.301 0.486 0.092  0.158
AAE(c) a(x)  2.350 6.306 2.525 3.787 2.830 1.943

14.3.3 Results obtained using an adaptive weight map a(x)

In Figure 14.10 we show the optical flow obtained by our method (13.33)
with an adaptive weight map «(x). Table 14.6, shows that using the adap-
tive map the AAF and P FE maintain the same tendency for the real images
RubberWhale and Hydrangea. In the case of synthetic images, the use of
and adaptive weight map do not decrease the AAE and FPFE, comparing
with the results obtained using a(z) = 1.0. Thus we decide to kept the
a(z) = 1.0 for synthetic images and for real image use an adaptive weight
map a(x).

We show in Figure 14.11 the color image and the adaptive weight map «(z)
computed for RubberWhale and Hydrangea. Values of the weight map was
scaled in order to be represented in a gray level scale. If the gray level of
the adaptive weight map is dark means that the gradient should be used
and in the other hand if the gray level is high means that intensity should
be used. If we compare the color image with the weight map, we see that it
is necessary to use gradient in the places with shadows and in places with
edges essentially is necessary to use the intensities.

14.4 Integration of exhaustive matchings

Figure 14.12 shows the optical flow obtained by using our method (13.44)
with the integration of the exhaustive matchings. We have added the addi-
tional information of the exhaustive matchings in the last scale of the multi-
scale pyramid. For all the experiments, the used parameters are: ¢ = 0.40,
A=0.60, «a=0.0, 8 =1.0, 051 = 0.98 and 0 = 0.98. For parameter y we
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Figure 14.11: Computed adaptive weight map a(x) for RubberWhale and Hy-
drangea. Left original image, right computed weight map.
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Table 14.7: Summary of the results FPE and AAF for optical flow extended to
color images using a(x) = 0.5 4+ exhaustive search.

Grove2 Groved Urban2 Urban3 Rubber Hydra

EPE(g) 0.121 0.547 0.311 0.382 0.164  0.253
AAE(g) 1.802 5.400 2.497 3.382 5.326 2.932
EPE(c) a(x) =1.0 0.148 0.510 0.282 0.456 0.127  0.201
AAE(c) a(x) =1.0  2.060 5.245 2.554 3.329 4.145 2.500
EPE(c) a(x) =05 0.150 0.516 0.284 0.416 0.103 0.178
AAE(c) a(x) =05  2.118 5.261 2.519 3.460 3.373 2.230
EPE(c) a(x) =0.0 0.173 0.644 0.343 0.544 0.097  0.162
AAE(c) a(x) =0.0 2.530 6.414 2.686 4.384 2.998 1.969
EPE(c) a(x) 0.163 0.630 0.301 0.486 0.092 0.158
AAE(c) a(x) 2.350 6.306 2.525 3.787 2.830 1.943
EPE(c) a(x)+ES 0.148 0.544 0.284 0.450 0.092 0.158
AAE(c) a(x)+ES 2.083 5.539 2.560 3.430 2.801 1.937

decreased its value in each iteration. We took and initial value p, = 300
and in each iteration update its value following the model p, = (0.6)"uo.
For real images we use blocks of 7 x 7 pixels and for synthetic images we
used blocks of 31 x 31 pixels. For synthetic images we fixed «(z) = 1.0.

Table 14.7 presents a summary of the quantitative numerical evaluations of
our model for a(z) = 1.0, a(x) = 0.5, a(z) = 0.0, adaptive a(x) and adap-
tive a(x) plus exhaustive search. We observe that for the synthetic images,
the AAF values present an increment with respect to results obtained with
the weight map a(x) = 1.0 (third row), and the same happens for EPE.
Only Urban3 drops from 0.456 to 0.450. Let us notice that the synthetic im-
ages present a lot of autosimilarities that causes erroneous matchings. For
instance, in the Groove 3 results in Figure 14.12, there is a region where
the optical flow was wrong computed due to false matchings caused by au-
tosimilarity. On the other hand, in the case of real images we observe in the
table that the performance of the method including exhaustive matchings
is better.
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Figure 14.12: Computed optical flow integrating exhaustive matchings. First
row, from left to right: optical flow for Groove2 and Groove3. Second row: Urban2

and Urban3. Third row: RubberWhale and Hydrangea
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14.5 Evaluation in Large Displacement
Middlebury

As commented before, the Middlebury database contains some video se-
quences of real scenes with large displacements, illumination changes, shad-
ows that moves in the sequences or light reflexions. Figure 14.13 displays
some of these examples, namely, the real sequences Beanbags, Basketball,
Backyard and Dogdance

In these video sequences the best results where obtained when we computed
the exhaustive search in every scale. We have modified the threshold 8y and
O from 6, = 0.98 and 0 = 0.98 to 0, = 0.90 and 6 = 0.85. The other
parameter are the same as before, namely, A = 0.60, # = 0.40, 3 =1, a = 0,

g = m7 v = 0.05, nscates = 5, Nwarpings = 10.

Figure 14.5 displays the obtained results for Beanbags. The maximum dis-
placement in this video sequence is vpq, = 41 pixels. We present in 14.5 (d)
the estimated occlusion mask. This occlusion mask is correctly estimated
thanks to the addition of exhaustive matchings that guide the optical flow.
We observe that the optical flow is correctly estimated. In the center of
the optical flow image (e) we observe a violet compact region that corre-
sponds to the estimated motion of the ball of the center in (b). The violet
color represents upward motion. In Figure (e) we observe a second compact
region in yellow color which represents the second ball that moves down-
ward. In (f) we show the smaller value of the structure tensor computed
in Iyp. The figure shows that does exist enough structure in the borders of
the ball, letters on the T-shirt, on the hinge, on the doorknob, and on the
door frame. The «(x) function (g) shows that the gradient is necessary on
the hands of the man and on the T-shirt. We show in figure (h) red points
indicating at which points the exhaustive flow u, is used account to guide
the optical flow estimation.

In Figure 14.15 we show the results for the DogDance sequence. We present
in (d) the estimated occlusion mask. This occlusion mask is correctly esti-
mated showing that the girl moves to the left and the dog to the right. The
estimations of the occlusion is noisy but preserves correctly the structure of
the image. (e) displays the estimated optical flow. By comparing the results
in (e) with the ones obtained in 14.5, we can observe that the computed
optical flow better captures the fast movements (e.g., the foot of the girl).
In (f) we show the minimum eigenvalue of the structure tensor computed
in Iy. The figure shows that does exist enough structure on the kimono
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Figure 14.13: Some Middlebury real sequences containing large displacements, il-
lumination changes, shadows that moves in the sequences or light reflexions. First
column, frame 9 of the video sequences. Second column, frame 10. Third col-
umn, frame. From top to bottom: First row: BeanBags video sequences. Second
row: DogDance video sequence. Third: MiniCooper video sequence. Fourth row:
Walking video sequence.

of the girl, on the flowers on the floor. There is no enough texture on the
shoe of the girl so the structure tensor presents a low intensity value at that
points. The «a(x) function is displayed in (g) and shows that the gradient
is necessary on the girl and on the dog. We show in figure (h) the points
where the exhaustive flow u, is taken into account to guide the optical flow.
For instance, there are no red points on the yellow shoe of the girl.
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(g) () (i)

Figure 14.14: Results obtained by our proposed model in Beanbags video se-
quence. (a), (b) and (c¢) I_; (frame 9), Iy (frame 10) and I; (frame 11) respectively.
(d) Estimated occlusion function x(z). (e) Estimated optical flow. (f) Smaller
eigenvalue of the structure tensor A\(x). (g) Balance term between brightness gra-
dient a(z). (h) Mask where X;, the exhaustive flow u. is considered to guide the
optical flow estimation. (i) Compensated image.

Figure 14.16 shows the results obtained by our model for MiniCooper se-
quence. We present in 14.16 (d) the estimated occlusion mask showing that
the door of the car moves downward and that also man moves downward.
The estimations of the occlusion is noisy but preserves correctly the struc-
ture of the image. In (e) we observe the estimated optical flow. We compare
our results in (e) with the one obtained in 14.5. We see that the obtained
optical flow is more homogeneous (orange color) than the one presented in
14.5. There is no estimated motion on the car bumper and less estimated
motion on the glass due to deflection in the sky. In (f) we show the minimum
eigenvalue of the structure tensor computed in Iy. The figure shows that
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(g) (h) (1)
Figure 14.15: Obtained results for the DogDance video sequence. Frames 09,
10 and 11 are shown in (a), (b) and (c), respectively. (d): x(x) function. (e):
estimated optical flow. (f) A(z). (g) a(x). (h) X;p. (i) Compensated image.

does exist enough structure on the shirt of the man on the edge between
trees and clouds. The «a(x) function shown in (g) shows that the gradient
is necessary on the door and on the glass door. On the sky we use both
gradient and intensity. We show in figure (h) in which points of the the
exhaustive flow u, are taking account to guide the optical flow. We see that
there are red points on the shirt of the man.

Figure 14.17 shows the results obtained by our model for the Walking se-
quence. (d) presents the estimated occlusion mask. In the video sequence
the man walks in direction to the camera, in these three frames the move-
ment of the man is very small but there is a shadow on the wall that moves.
The estimations of the occlusion is noisy but preserves structure of the im-
age. In (e) we observe the estimated optical flow. By comparing our results
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(g) (b) (i)
Figure 14.16: Obtained results for the MiniCooper video sequence. Frames 09,

10 and 11 are shown in (a), (b) and (c), respectively. (d): x(z) function. (e):
estimated optical flow. (f) A(z). (g) a(x). (h) X;p. (i) Compensated image.

with the ones in 14.5 we observe that our model assigns zero displacement
to the zone of the wall that constains shadow. In (f) we show the smaller
value of the structure tensor computed in Iy. The figure shows that does
exist sufficient structure on the shirt of the man and on the edge on small
the table. The a(x) function (g) shows that the gradient is necessary al-
most in the whole image. We show in figure (h) in which points of the the
exhaustive flow u. are taking account to guide the optical flow. We see that
there are red points on the shirt of the man.
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Figure 14.17: Obtained results for the Walking video sequence. Frames 09,
10 and 11 are shown in (a), (b) and (c), respectively. (d): x(z) function. (e):
estimated optical flow. (f) A(z). (g) a(x). (h) X;p. (i) Compensated image.

14.6 Evaluation in MPI

The MPI-Sintel database Butler et al. (2012) presents long synthetic video
sequences containing large displacements and several image degradations as
blur or reflections as well as differents effects as fog or shadows. Moreover,
there are two versions of the Sintel database: clean and final. The final ver-
sion is claimed to be more challenging and includes all the effects previously
mentioned. For our evaluation we take the final version of video sequences.
Figure 14.18 displays some examples of the MPI database. There are images
with large displacements, around 170 pixels for cave4, around 300 pixels for
temple3. In the cave_4 sequence a girl fight with a dragon inside a cave,
shown in the first and in second row of of Figure 14.18. In the first row the
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girl moves her lance to attack the dragon. In second row dragon moves its
jaws very fast. In the third raw we show the girl trying to cath the small
dragon but a claw appears and take the small dragon. In the fourth row
the girl fall on the snow. We observe large displacement and deformation
of her hands.

Figure 14.18: Some challenging images of the MPI database video sequence.
From top to bottom: First row: frame 10 and 11 of cave_4 video sequence. Second
row: frame 45 and 46 of cave_4 video sequence. Third row: frame 30 and 31 of
temple3 video sequence. Forth row: frame 06 and 07 of ambush_4 video sequence.

As a first experiment, we have computed the optical flow between frame 18
and frame 19 of the sequence market_6, by considering three frames: frame
17 which is considered to be I_; in our energy model, and frame 18 which is
I;. The results are shown in Figure 14.6. The original frames17, 18 and 19
correspond to subfigures (a), (b) and (c), respectively. We observe that the
occlusion mask shown in (e) is correctly estimated. Regions in the border of



142 RESULTS

the image disappear from framel8 to framel9. In (f) we show the estimated
optical flow. In (g) we show the minimum eigenvalue of the structure tensor
of the framel8. In (h) we show the adaptative balance term «a(z). This show
that in regions where the color constancy constrains holds, intensities are
used (a(x) = 1). In the other hand, where shadows are present, gradient is
used (a(z) = 0) (e.g., on the barrel or below the wooden wagon). Finally
in (i) we show the mask where the exhaustive search is computed. In this
example the End Point Error is EPE=1.7156.

We have computed the optical flow using the three frames 13, 14 15 of
the sequence cave_ 4. The results are shown in Figure 14.21. The frames
13, 14 and 15 corresponds to subfigures (a), (b) and (c) respectively. We
observe that the occlusion mask in (e) correctly estimates the occlusion due
to the movement of the dragon and the occlusion due to the movement
of the girl. In (f) we show the estimated optical flow. (g) displays the
minimum eigenvalue of the structure tensor of framel8. In (h) we show
the adaptative balance term which shows that in regions where the color
constancy constrains holds intensities are used (a(z) = 1). On the other
hand, where shadows are presents gradient is used (a(z) = 0), for examples
on the back of the girl or under the wing of the dragon. Finally in (i) we
show the mask where the exhaustive search is computed. In this example
the end point error is EPE=2.9857.

Figure 14.22 shows the estimation of the occlusion layer obtained by our
model together with the ground truth occlusion layer provided by MPI
Sintel database. Our estimated occlusions are thinner.

We have also quantitatively evaluated our proposed model in the final ver-
sion of the MPI database for video sequences with large displacement (se-
quences: ambush_2, ambush_4, ambush_5, ambush_6, market_5, market_6,
cave_2, cave 4, temple_3). Actually, we divided the database in three sub-
sets: large displacements, medium displacements and small displacements.
The quatitative results are shown in Table 14.8. For large displacements we
set the parameter v,q,; = 150, for medium displacements we set vy,q, = 40
and for small displacement we set v;,q, = 1. For large displacement we
set Ojumpda = 0.50 and 6. = 0.50, for medium and small displacement we
set 6y = 0.98 and 6, = 0.98. The Average End Point Error for each video
sequence in the subset of the database is presented in Table 14.8.

Let us observe from Table 14.8 that the obtained average is EPE = 18.82 in
the Large Displacement video sequences. The average FPFE in all sequence
reach 7.17. If we only consider the subset of frames of those sequences
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Table 14.8: Summary of results. End Point Error obtained by our model in
subset: large displacement, medium displacement and small displacement of MPI.

Large Medium Small
Displacement Displacement Displacement

Sequence EPE Sequence EPE Sequence EPE
Ambush_2 47.94 Alley_2 0.28 Alley_1 0.33
Ambush 4 23.16 Bamboo_1 0.40 Ambush_7 2.13
Ambush_5 13.75 Bamboo_2 1.32 Bandage_1 0.60
Ambush_6 20.05 Market_2 1.00 Bandage_2 0.50
Market_5 21.71 Temple_2 1.15 Montain_1 0.84
Market_6 6.03 Shaman_2 0.28

Cave_2 26.74 Shaman_3 0.52

Cave_4 5.63 Sleeping_1 1.81
Temple_3 21.71 Sleeping_2 0.07

Average EPE 18.82 Average EPE 141 Average EPE 0.80

Total Average EPE  7.17

containing displacements less than 150 pixeles (that is, in the range of our
parameter v,;,q,; = 150 which actually imposes a bound on the ability of
our method to capture the large displacement), the error drops. Table 14.9
shows the obtained subset of quantitative results. We present in Table 14.9
our results obtained in a subset of Large Displacement MPI. We also show
in Table 14.9 the results obtained in this subset of data by two well-known
large displacement methods, namely, DeepFlow (Weinzaepfel et al. (2013))
and Motion Detail Preserving (Xu et al. (2012)).



144

RESULTS

Table 14.9: End Point Error obtained by our model in subset of MPI with less

displacement < 150 pixels.

Large Our
Displacement model DeepFlow MDP-Flow?2
Sequence EPE EPE
Ambush_2 29.15 14.74 12.08
Ambush_4 12.17 14.65 15.57
Ambush_5 7.87 8.33 6.59
Ambush_6 12.91 9.93 8.47
Market_5 14.31 15.06 12.82
Market_6 3.96 6.61 5.38
Cave_2 16.98 10.08 8.48
Cave 4 3.82 4.23 3.82
Temple_3 14.67 11.90 9.01
Average EPE  8.82 10.61 9.12
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0 (0

Figure 14.19: Results obtained by our method in market_6 video sequence. Frame
17, 18 and 19 are shown in (a), (b) and (c), respectively. (d) Ground truth.
(e) Estimated occlusion mask x(z). (f) Estimated optical flow. (g) minimum
eigenvalue A(x) of the structure tensor. (h) Adaptative balance term a(z). (i) X;),
mask indicating additional matchings based on the confidence function.
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(i) &)
Figure 14.20: Results obtained by our method in ambush?7 video sequence. (a),
(b) and (c): frame 26, 27 and 28, respectively. (d) Ground truth. (e) x(z). (f)

Estimated optical flow. (g) A(z). (h) a(x). (i) X;, mask where exhaustive search
is computed.
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(i) ()
Figure 14.21: Results obtained by our method in caved4 video sequence. (a),
(b) and (c): frame 13, 14 and 15, respectively. (d) Ground truth. (e) x(z). (f)
Estimated optical flow. (g) A(z). (h) a(x). (i) X;p mask where exhaustive search
is computed.
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Figure 14.22: Occlusion layer estimation in the a video sequence of MPI. From
top to bottom. First row: frame 19 and frame 20 Alley_1 video sequences. Second
row: frame 21 and optical flow ground truth in video sequence Alley_1. Third row:
occlusion ground truth and estimated occlusion layer.



CHAPTER ]. 5

Conclusions and future work

15.1 CONCLUSIONS

We have presented a method to estimate jointly optical flow and occlu-
sions for realistic situations. In realistic situations occlusions, illumination
changes and large displacements occurs. Traditional optical flow models
may fail in realistic situations.

In this part of the thesis the first model we propose is a variational model
that jointly estimate the optical flow and the occlusions layer. This model
incorporate the occlusion information in its energy. Based on the divergence
of the flow the information on occlusions is incorporated to the energy.
Assuming that pixels occluded in the next frame are visible in the previous
frame, this model considers three gray level consecutive images. The optical
flow on visible pixels is computed forward. The flow on occlude pixels is
computed backward.

The second model we present is a variational model that estimate jointly
optical flow and occlusions. This second model is an extension of our first
model to color images. This second model handles illuminations changes
using a balance term between gradients and intensities. We demonstrate
that the inclusion of this balance term improves the performance of the
optical flow in scenarios with illumination changes, reflexions and shadows.

The third model we present is a variational model that is an extension of
our second model. This model include supplementary matches given by
exhaustive search in specifics locations. This supplementary marches helps
to follow large displacements.
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We also have presented a model to compute simultaneously forward and
backward flow. The main idea is to give time consistency to the flow esti-
mation. Preliminary results are presented.

15.2 Future work

Autosimilarity of the images, regions with lack of texture make the exhaus-
tive matchings to fail. A robust matching method may improve the obtained
results.

An implementation in a real parallel platform (for this model) is needed.
State of the art GPU permits to implement near real time optical flow
implementations.

Presented models depends strongly in the occlusion layer estimation. In sce-
narios with large displacement the estimated occlusion tends to be sparse.
The forward and backward flow estimation may help to improve the esti-
mation of occlusion layer in scenarios with large displacements.
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Conclusion of the thesis
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CHAPTER ]. 6

Conclusions

We have presented a non-local gradient-based energy for disparity map in-
terpolation, knowing a reference image. We have taken advantage of the
given image both to guide the interpolation and to specify the location of
depth discontinuities. We have shown with synthetic examples and two real
examples the ability of our method to interpolate planes, concluding that
it improves on the bilateral filter. Its Euler-Lagrange equation can be seen
as a non-local fourth order equation, which can be solved as an iteration of
second order Poisson equations.

The proposed functional can be used as a regularizer in a full stereo algo-
rithm.

Our method presents some limitation in the case of textured images. The
completion of the disparity will follow the texture of the reference image.
Some regions of the completed disparity will stay isolated of the completion
process. Another limitation appares in the case of completion of huge region
of incomplete information of the diparity. The algorithm converge before
the disfussion process cover the entire huge regions.

In the case we have a depth image that presents large region with lack of
information, the axiomatic stated by Caselles et al. (2006) lets us construct
an interpolator to complete these large empty regions.

The interpolator is computed as a ratio between two terms: a sum of func-
tion values weighted by distances and a sum of distances. This simple
operation made the operator easy to implement, simple and fast.

The numerical implementation consider many very strong approximation
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that experimentally we have shown that their are valid.

We have evaluated the Biased AMLE in differents experiments: upsam-
pling, temporal extension. Upsampling experiments. Results show that the
AMLE and Biased AMLE outperform the bilateral filter. In upsampling
experiments, in the case of filtered depth images, the biased AMLE out-
performs the AMLE. That show that the inclusion of the gradient in the
biased AMLE helps to estimate better the depth data surface.

We have extended the biased AMLE to temporal domain. We added a new
term to the distance function. This new term considers the available depth
information in the next image. The use of the optical flow helps to improve
the performance of the depth interpolation in video sequences.

We have compared the biased AMLE and the gradient-based non-local bilat-
eral filter in different experiments that show their potential and differences.

We have proposed a variational model for joint computation of occlusions
and optical flow in realistic scenarios. In realistic scenarios occlusions, il-
lumination changes and large displacements occurs. The proposed model
that estimate jointly occlusion and optical flow, was adapted for both gray
and color images sequences is able to handle illumination changes as well
as large displacements.

16.1 Contributions

In this section we outline the main contributions of the dissertation,

e Extension of the bilateral filter to gradient domain.
e Extension to the biased AMLE to time domain.

e Numerical implementation of the biased AMLE operator based on
eikonal operator.

e A model to jointly estimate optical flow and occlusions which is ca-
pable to tackle illumination changes and large displacements.
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APPENDIX A

Proofs of Theorem [-limit of
the gradient-based
neighborhood filter

In this appendix we proof formal results of Chapter 2.1.4.

A.0.1 The local model obtained as I'-limit of the
gradient-based neighborhood filter

In order to justify the performance of the gradient-based model to produce
higher order interpolations we prove that the underlying local model ob-
tained by asymptotic rescaling of the neighborhood functions is a second
order anisotropic energy that incorporates the information of the reference
image. This adds further justification to our experiments that exhibit this
higher order interpolation behavior. The proofs is based on the results in
Bourgain et al. (2001); Ponce (2004). For the approximation of local dif-
fusion equations by their non-local counterparts we refer to Andreu et al.
(2010).

Let Q be an open bounded set in RY which represents the image domain.
We assume (H)gq: there is a constant C > 0 such that given any two points
x,y € § there exists a curve 7y connecting x to y with L(vy) < Clx — y|,
where L(7y) denotes the length of 7. Let I :  — R be a given image. We
assume that I € W2°°(Q). In practice this means that we have convolved
a given and less regular image with a Gaussian kernel.

167



PROOFS OF THEOREM I'-LIMIT OF THE GRADIENT-BASED NEIGHBORHOOD
168 FILTER

Let p € LY(RY), p > 0. Let g € W1°(R) be such that

milglg(r) >ap >0 for any compact subset B C R. (A.1)
re

Let A€ Wh®(Q xQ), A>a>0.
Let us consider the energy P : L?(Q2) — R defined by

Plu) = /Q /Q oz — y)g(I(z) — 1) Vu(z) — Vu(y) 2A(z,y) dzdy, (A.2)

if u e WH2(Q), and P(u) = +oo if u € L?(Q) \ WH2(Q).

Let pe(z) = %Np(%), € RN, € > 0. Let us rescale this energy as

Pt = 5 [ [ oea =g (P ) 19ute) - Tutr) PGy o,

ifue Wh(Q). If u € L2(Q) \ Wh2(Q), we define Py (u) = +oo. A
Let
Q(w) = /]RN p(2)g((w, 2))z @ zdz. (A.4)
We define
Po(u) = /QTrace(Dzu(:r)Q(VI(x))Dzu(x))A(x, x) dx, (A.5)
if ue W22(Q), and Po(u) = +o0 if u € L?(Q2) \ W22(Q).
Theorem A.1. The energies P. I'-converge to Py as € — 0+.
This result will be a consequence of Propositions A.2 and A.4.
Proposition A.2. Let u. € WH2(Q), ue — u in L (). Then
Po(u) < liminf Pe(ue). (A.6)

e—0+

Proof. The result being obviously true if the right hand side of (A.6) is +o0,
we may assume that Pe(u.) is bounded. By (H)q we have that
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Since the right hand side is bounded when =¥ is in the support of p, using
(A.1) we have that

ue(x) — Vu 2
//pe |V e(x) QV (W)l Az, y) dedy < épﬁ(ue) <C, (A\)

€
for some o > 0 and some constant C' > 0.

Let us prove that we may assume that p is of compact support in RY.
Otherwise we replace p by pxpo,, and we prove that

Po(px (o), u) < lim inf Pe(pXB(0), te) < lim infPe(p, Ue). (A.9)

where we made explicit the dependence of the energies on the kernel px g )-
Letting » — oo, we obtain (A.6). Thus, we assume that p is of compact
support in RY. Without loss of generality assume that the support of p is
the ball B(0,1).

Step 1. Regularization of ue and preliminary inequalities. Let y : RN — R
be a smooth mollifying kernel with support in B(0,1), x > 0, [pnr x(z) dz =
1. Let xs(z) = (%Nx(g), r € RN, §>0. Let Q5 := {x € Q: dist(z,00) >
0}. Let ues = x5 * ue. To avoid a cumbersome notation, let us write A
instead of A(z,y), A" instead of A(x — h,y — h), A instead of A(x,z),
X3, = xa; () xa;(y), and

ge(@,y) =g (M) :

€

unless a more explicit notation is necessary. Then

/ / pel( — 9)ge(, ) [ Vues () — Vuues (3) 2 A drdy

Qs JQs

< / / / X (W) pel — 9)ge (2, 9)[Vute (& + h) — Vue(y + h)[2A ddydh
Qs JQs 05

- [/ / (W o — )9 (0, 9) [ Vel + h) — Vuely + h)2A dedydh
RN JRN 05)

_ / / / [ XDy = )=y = WIVuca) = V) A"

< //pE Y)ge(x,y)|Vue(x) — Vue(y)|2Adxdy

+ ///06 WX hynPe(® = Y)Qc(x,y, h)|Vue(x) — Vue(y)|? dzdydh
= T1+T2)
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where
Qc(w,y,h) = ge(z — hyy — W) A" — ge(z, y) A,
When z,y € Q, x — h,y — h € Qg, the segments [z — h,z],[y — h,y] C Q
and, using (H)q, we have
Ix—h)—I(y—h) I(z)—1(y)

€ €

1
’S@/ |\VI(zx —sh) — VI(y —sh)| ds
0

T —
< ol D1 Y.
(A.10)
Writing

ge(xz—h, y—h)Ah—gE(a:, y)A = g.(z—h, y—h)(Ah—A)—i-(gE(a:—h, y—h)—ge(x,y))A,

and using (A.8) and (A.10) we have

_ 2
2!T2!<01/// B hlpe( — y) LY 4@ GQWG(y) dwdydh
(0,6)
_ _ 2
+ 02/// 1)\ hlpe(a y)|x | Wuelz) = VW 4 g yar,
05) € €
001
<

where C1 = gl || All1.00, C2 = Cal|D*I|lx||Vglloo, and C, is a bound in
the compact support of p and some C > 0.

Step 2. Let § > 0 be fixed. Let us = xs * u and ufs = g—Zf. We prove that

1
1 / / pe(& — 9)ge(, 9)| Vs () — Vs (y) A dyda
€ Jas JQs

N
s L L s (1), 1T, ) A

as € — 04. First, observe that

1

=y Pe(T — ) ge(7,9) | Vues(2) — Vues(y)*Ady
)
2
r—y
< IP%usllgll 4l [ =9 @ — )y
Qs €
< cW©)
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for any x € Qs and € < §, where C(9) is a constant that does not depend
on €.

Letué—M Let y =z — ez, z € B(0,1). Since

g (1(33) - Ie(x - 62)) —g </01(Vl(ac  sez),2) ds) ,
1

= /Q pe(x — 1) ge(x,y)|Vues(z) — Vues(y)[*Ady
5

we have

2

a L(x) —uls(n — ez
= Z/RN XQ(S(x—EZ)p(Z)g€($,$—€Z)|u66( ) 625( ) A(z,x — €z)dz

X €
=1

N

- > [ xoste—entlg ( / (I sez).2) ds>
2

1
/ (Vuls(x — sez),z) ds| A(x,r —ez)dz
0

N

— 3 Afa,x) / p(2)g((VI(2), 2))| (Vi 2)[* d=

N
1 R

1=
as € — 0+. Then Step 2 follows by the dominated convergence theorem.

Step 3. Let us prove that

N
z x), 2 ul(x), 2)|*A dzdx
S [, [ AT IV ), 2) P

< hmlnf//pe T —Y)ge(z,y)|Vue(x) — vue(y)|2Ad$dy

e—0+ 6

Let ' CcC Q. Let 6 > 0 be small enough so that ' cc Qs cC Q. Using
the results of Step 1 and 2 and letting ¢ — 0+ we have

N
i 9—
;/’/RN p(2)g({VI(x), 2)){Vu§(z), 2)|* A dzdx

< liminf — //pe ge x y)‘vue( ) Vue(y)\QAdxdy—i—C(d),

e—0+ e
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where C'(9) is a constant independent of e. Letting § — 0+ and Q' 1 Q,
Step 3 follows.

Step 4. Conclusion. Since
N

> p(2)9((VI(z), 2)|(V' (), 2)

=1

N
= Trace (p(z)g((VI(x), 2)) (2 ® 2) Z (Vu'(z) ® Vu%x))) ,

i=1
then
/RN > p(2)9((VI(x),2))(Vu'(2), 2)]* = Trace (Q(VI(-’IJ)) Yo (Vi) @ Vu’(ﬂﬁ)))
=1 =1
= Trace (Dzu(x)Q(VI(x))Dzu(x)) .

Then (A.6) follows from this and Step 3.
O

Let us recall the following simple result.Bourgain et al. (2001)

Lemma A.3. Assume that Q is a bounded domain in RN with Lipschitz
boundary. Let w € WHP(Q), 1 < p < co and let p € LY(RY), p > 0. Then

w(z) —w(y)P
[ [ ote == dody < Clutrs ol (a)
QJa |z -yl
Proposition A.4. Let u € W22(Q). Then
Po(u) = lim Pe(u). (A.12)
e—0+

Proof. Since
N

Trace (D2u(x)Q(VI(x))D2u(x)) = Z(Q(VI(x))VuZ(x), Vu'(z)),

=1

it suffices to prove that

. /Q /Q pe(m_y)g<1<x>_1<y)> e ;u%y)? Ao, y) dedy

e—0+ €

_ /Q (Q(VI(@)) Ve (z), Vi (2)) A(, ) da
(A.13)
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forallt=1,...,N.

First we observe that it suffices to assume that u € C%(). Let us write
v=1u'. Let w € W12(Q). Let

mzﬁwa%szwnwm?@WEWL

m:ww%w%Cwlwvwwjmmﬂ@”
Then

IVells = IWellaf? < Ve = Wl
2
= [ [ oy (HeL 60 o) =) = o) = )

€

— v\xr) —v —(\wlr) —w 2
[ [ e =spg (R 10 062 = 00) 00w )

IN

€

Since p has compact support p(x —y) # 0 if and only if @ < C for
some constant C' > 0. In that case % < m—?y‘ We can continue the above
inequalities

— v\xr) — v —(wlxr) —w 2
0 [ [ ata—vig (L1160 Lote) = o)~ (000) — 0 1,

€ |z —yl?

IN

IN

Cllgllollpllll Allollv = wllw.2(0),

where the last inequality follows from Lemma A.3. Thus, by density we
may assume that u’ € C1(Q), i.e., u € C?(Q2). Then proceeding as in Step
2 of Proposition A.2 we obtain (A.13). O

2|2

1 — 53 N
We 202,0’>0,Z€R 5

Proposition A.5. Let us consider p(z) = o

r2
g(r) = e 222, r € R, h > 0. Let Q(w) be given by (A.4). Let B =
0—121'4— #w@w. Then

. 1 _ (Bz,z)
Qw) = W RN@ 2 2Qzdz
1 (2,2)
= — B_l/g/ — 5 B Y2zg B Y?%z4z.
(@ro?)N /2 (det B) o e 2 zZ® zZdz
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Since
1 2
and )
(2,2)
T2 zZzzdz=1,

(27T)N/2/RN Z®zadz

we have
2 -1/2 2 -1
Qw) = o> <1 + 13 |w\2> (I +Fw® w)

Thus

o2 —-1/2 o2 -1
Q(VI(z)) = o? (1 . |v1(x)2> (1 + ﬁvu;p) ® Vl(x)>

1S an anisotropic tensor.

Proposition A.6. In a similar way, if

5w =5 [ [ stemg (M) o) -ut) PG dody. we 22(0),

(A.14)

and we define

Bolw) = [ (@VIE@)(Vula)), Va@) Aoy do. (A3
if u € WH2(Q), and Bo(u) = +o0 if u € L*(Q) \ WH2(Q), we have
Theorem A.7. As ¢ — 0+, the energies Be I'-converge to the energy By.

Proposition A.8. One can also compute the T'-limit in L*(Q) of bilateral
filter energies in the case of a faster rescaling

ary L pe(z —y) I(2) = I \ | o) () A ) dee

where u € L2(), a > 0, and

I(x) - I(y)
Ce(z) = /Qpe(l‘ - )y <61+°‘ dy.
In that case the matriz Q(VI(z)) is replaced by Q*(VI(x)) = cP, where
P, =1- %, if VI(z) #0, and P, =1 if VI(x) = 0. We assume
that the set of points x € Q where VI(x) = 0 is a null set. We notice that it
is also not difficult to compute the T'-limit in W12(Q) in the case of gradient

energies with a faster rescaling although this result is not fully satisfactory.
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