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ABSTRACT

The limited dynamic range of digital images can be extended by composing images of the same scene
with different exposures to produce high-dynamic-range (HDR) images. This is a standard procedure
for static scenes but a challenging task for dynamic ones. Pixels of the different exposures need to

be perfectly aligned before being combined into an HDR values free of artifacts. This thesis is composed of
an overview of the state of the art techniques and three different methods to tackle the image alignment
and deghosting problems in the HDR imaging domain.

The first method is focused on HDR image acquisition of dynamic scenes from static cameras. It
detects the areas affected by motion, registers the dynamic objects over a reference image, and combines
low-dynamic range (LDR) values to recover HDR values in the whole image. The motion detection method
generates a ghost mask that contains pixels affected by motion in the sequence. Such pixels are selected
and registered to a reference image. Once matches are found, the assembling step guarantees that all
aligned pixels will contribute to the final result which enlarges the dynamic range of affected areas. Unlike
previous works, our solution includes the maximal amount of information available in the sequence. The
results of testing this method on several scenes are robust for cases where the dynamic objects are globally
rigid.

3D HDR imaging also requires matching pixels from differently exposed images. Our second approach
builds multiscopic HDR images from LDR multi-exposure images. The method is based on a patch match
algorithm which was adapted and improved to take advantage of epipolar geometry constraints of stereo
images. To our knowledge, it is the first time that an approach different than traditional stereo matching
has been used to obtain accurate matching between the stereo images. Experimental results show accurate
registration and HDR generation for each LDR view.

It is challenging to find matches inside large under/over exposed areas. We introduce the new concept
of in-HDR-painting which aims to recover valid color values in such regions. We propose to replace
under/over exposed pixels in the reference image by using valid HDR values from other images in the
multi-exposure LDR image sequence. The algorithm is fully automatic and is based on the assumption that
the scene might be dynamic and that images are not aligned. The algorithm first detects the target areas
and classifies them as under-exposed or over-exposed areas. Search for matching pixels in other images
starts on target area contours, imposing content-based, and geometrical constraints. The best matches are
selected using a color-based criterion. Using the selected matches, an inpainting interpolation technique
reconstructs the missing information in the target areas. The results show that in-HDR-painting can
reconstruct HDR images even when the lowest or highest exposures are used as reference images and
they contain large under/over-exposed areas.
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RESUMEN

E l limitado rango dinámico de las imágenes digitales puede ampliarse mezclando varias imágenes
adquiridas con diferentes valores de exposición. Este es un procedimiento estándar para escenas
estáticas pero complejo en escenas dinámicas. Los píxeles de las diferentes imágenes deben estar

perfectamente alineados para combinar las diferentes exposiciones sin introducir errores. Esta tesis
incluye un detallado resumen del estado del arte y tres métodos diferentes para alinear las imágenes y
corregir el efecto ’ghosting’ en imágenes HDR.

El primer método propone recomponer imágenes HDR de escenas dinámicas adquiridas con una
cámara estática. Está centrado en detectar las áreas afectadas por el movimiento y registrar los objetos
dinámicos sobre una imagen de referencia de modo que se logre recuperar información a lo largo de toda la
imagen. Los métodos de detección de movimiento generan una máscara que contiene los píxeles de objetos
en movimiento. Estos píxeles son seleccionados y registrados sobre la imagen de referencia. Una vez
encontradas las correspondencias, nuestro método garantiza que todos los píxeles alineados contribuyan
al resultado final. A diferencia de los trabajos anteriores, esta solución incluye la máxima información
disponible en la secuencia de imágenes. Los resultados de probar este método en diversas escenas son
prometedores en casos donde los objetos dinámicos son aproximadamente rígidos.

Las imágenes 3D HDR tambien requieren encontrar correspondencia entre píxeles de imagenes con
exposición diferente. Nuestra segunda propuesta es un método para obtener imágenes HDR multiscópicas
a partir de diferentes exposiciones LDR. Está basado en un algoritmo de ’patch match’ que ha sido adaptado
para aprovechar las ventajas de las restricciones de la geometría epipolar de imágenes estéreo. Hasta
donde conocemos, es la primera vez que se utiliza un enfoque diferente a la tradicional búsqueda de
correspondencias estéreo para este propósito. Los resultados experimentales muestran que el registro y la
generación de las imágenes HDR correspondientes a cada vista son adecuados.

Resulta complejo encontrar correspondencias en áreas con sobre/baja exposición. Esta tesis presenta el
concepto de ’in-HDR-painting’ que intenta recuperar valores adecuados para estas regiones. Proponemos
reemplazar dichos píxeles en la imagen de referencia usando valores correctos de otras imágenes de la
secuencia. El algoritmo es completamente automático y asume las escenas son dinámicas y las imágenes
no están alineadas. Primero detecta las zonas a tratar y las clasifica en saturadas o oscuras. Se buscan
correspondencias para los puntos en el contorno de dichas zonas imponiendo restricciones geométricas
y se seleccionan las mejores correspondencias. Un proceso de interpolación usa dichas correspondencias
para reconstruir la información en las zonas afectadas. Los resultados muestran que este método puede
reconstruir imágenes HDR incluso usando como referencia la imagen con menor o mayor valor de exposición
en la secuencia, con amplias zonas oscuras o saturadas.
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RESUM

E l limitat rang dinàmic de les imatges digitals pot ampliar-se barrejant diverses imatges adquirides
amb diferents valors d’exposició. Aquest és un procediment estàndard per a escenes estàtiques però
complex per a escenes dinàmiques. Els píxels de les diferents imatges han d’estar perfectament

alineats per combinar les diferents exposicions sense introduir errors. Aquesta tesi inclou un detallat
resum de l’estat de l’art i tres mètodes diferents per alinear les imatges i corregir l’efecte ’ghosting’ en el
domini de les imatges HDR.

El primer mètode proposa recompondre imatges HDR d’escenes dinàmiques adquirides amb una
càmera estàtica. Està centrat en detectar les àrees afectades pel moviment i registrar els objectes dinàmics
sobre una imatge de referència de manera que s’aconsegueixi recuperar informació al llarg de tota la
imatge. Els mètodes de detecció de moviment generen una màscara que conté els píxels dels objectes en
moviment. Aquests píxels són seleccionats i registrats sobre la imatge de referència. Una vegada trobades
les correspondències, el nostre mètode garanteix que tots els píxels alineats contribueixin al resultat final.
A diferència dels treballs anteriors, aquesta solució inclou la màxima informació disponible en la seqüència
d’imatges. Els resultats de provar aquest mètode en diverses escenes són prometedors en casos on els
objectes dinàmics són aproximadament rígids.

Les imatges 3D HDR tambien requereixen trobar correspondència entre píxels de imatges amb
exposició diferent. La nostra segona proposta és un mètode per obtenir imatges HDR multiscópicas a
partir de diferents exposicions LDR. Està basat en un algorisme de ’patch match’ que ha estat adaptat per
aprofitar els avantatges de les restriccions de la geometria epipolar d’imatges estèreo. Fins a on coneixem,
és la primera vegada que s’utilitza un enfocament diferent a la tradicional cerca de correspondències
estèreo per a aquest propòsit. Els resultats experimentals mostren que el registre i la generació de les
imatges HDR corresponents a cada vista són adequats.

Resulta complex trobar correspondències en àrees amb sobre/baixa exposició. Aquesta tesi presenta el
concepte de ’in-HDR-painting’ que intenta recuperar valors adequats per a aquestes regions. Proposem
reemplaçar aquests píxels en la imatge de referència usant valors correctes d’altres imatges de la se-
qüència. L’algorisme és completament automàtic i assumeix les escenes són dinàmiques i les imatges no
estan alineades. Primer detecta les zones a tractar i les classifica en saturades o fosques. Es busquen
correspondències per als punts en el contorn d’aquestes zones imposant restriccions geomètriques i se
seleccionen les millors correspondències. Un procés d’interpolació usa aquestes correspondències per
reconstruir la informació a les zones afectades. Els resultats mostren que aquest mètode pot reconstruir
imatges HDR fins i tot usant com a referència la imatge amb menor o major valor d’exposició en la
seqüència, amb àmplies zones fosques o saturades.
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INTRODUCTION

In digital photography, one of the main limitations for reproducing real world appearances relies on
the constrained luminance and contrast ranges that are captured by most digital cameras, stored
by the majority of image and video formats and reproduced in display devices [RKMS15]. There is a

huge gap between the range of light that the human visual system (HVS) perceives and what common
digital cameras and displays are able to capture and visualize respectively. The human eye can see objects
both in a dark night and in a sunny day, despite of the luminance level of the sunlight is about 105cd/m2

while the stars light is about 10−3cd/m2. This means that the HVS is capable of adapting to a large
variation of lighting in a range of nearly 10 orders of magnitude and about 5 orders of magnitude within
the same scene [RWD+10]. In contrast, most user-level displays show images within a luminance range
of approximately 1:300 cd/m2 [SHS+04] and most digital cameras produce images in a range lower than
1:1000 [JLW08].

Dynamic range in digital images can be defined as the ratio between the darkest and the brightest
points captured from a scene. It can be expressed in orders of magnitude (powers of ten), in stops (powers
of two) or in decibels (db). High Dynamic Range (HDR) imaging aims to increase the dynamic range
recorded in a digital image from a given scene. Pixels in an HDR image are proportional to the radiance of
the scene, dark and bright areas can be recorded within the same image. Visually, this means avoiding
under and over exposure in such areas. The vast majority of digital images are still Low Dynamic Range
(LDR), stored usually in 24 bits per pixel (8 bits per color channel in RGB) which represents approximately
2 orders of magnitude while HDR images are represented using floating point formats. Since common
displays or printers represents only 8 bits per color channel, images need to be adapted (Tonemap) to 8
bits per color channel to display or print them in LDR devices. Figure 1.1(c) shows a tone mapped example
of HDR image, notice that both bright and dark parts of the scene are properly exposed.

Common digital camera sensors are physically limited for capturing the full illumination range from
nature. Finding the appropriate exposure value is challenging, especially in scenes with large dark and
bright areas. For example, taking a picture on a sunny day implies in practice deciding whether to
appropriately expose the bright sky or the details in the shadow, like in Figure 1.1(a) and 1.1(b). Most
digital cameras provide an auto-exposure algorithm to set the ISO value, aperture and shutter speed for
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CHAPTER 1. INTRODUCTION

capturing the best exposure for a given scene. However, when the amount of energy reaching the sensor
exceeds the maximum allowed value, details in bright areas are clamped to the maximum allowed value
which is white(known as over-exposure or saturation). On the other hand, if not enough energy reaches
the sensor under-exposure takes place (the opposite of saturation).

(a) Low exposure

(b) High exposure (c) Tone Mapped HDR image

Figure 1.1: Scene represented using two different LDR exposures and a tone mapped version of
the HDR image.

The idea of solving these problems by enlarging the range of values represented in one image is not
recent. It was pioneered by Gustave Le Gray back in 1857. In a picture of the sea (Figure 1.2(a)), he
captured the extreme luminance difference between the sky and the sea by combining two negatives into a
single positive print that showed details in both areas. However, the term ′HDR′ was first cited in the
1940s by Charles Wyckoff, who implemented a local neighborhood tone mapper to combine differently
exposed film layers into one single image of wider dynamic range [Cer06]. In May of 1954 Wyckoff
published a picture of a nuclear explosion that was the result of combining different exposures (Figure
1.2(b)).

The combination of latest advances in digital imaging such as 4K image color resolution, 3D stereo-
scopic, and HDR imaging, promise an unprecedented experience for users. However, big challenges of
different nature are still to be overcome before such technologies converge. In particular, there are unsolved
limitations in each steps of the HDR imaging pipeline (acquisition, compression, transmission and display).
Solutions are required before we can enjoy 3D HDR content on a TV at home. Among such challenges, the
capture of dynamic scenes and the extension from static HDR images to HDR video and stereoscopic HDR
plays a very important role.

Techniques for HDR acquisition have been a hot research topic in recent years. There are three main
approaches for creating HDR content: Computer Graphics (CG) synthesized images, native HDR sensors
and LDR multiple exposure combination. This work is focused on the third approach, HDR acquisition
using conventional digital cameras. Multiple differently exposed LDR images can be merged to recover
HDR values [MP95, DM97, MN99]. Each exposure covers a different range of light. Short exposures
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(a) Le Gray, Mediterranean Sea-1857 (b) Wyckoff, HBomb-1954

Figure 1.2: Examples of dynamic range enlargement in film photography.

provide details in the brighter parts of the scene because the shutter speed is fast enough minimizing
over-exposure. Meanwhile, long exposures allow to capture light coming from the darker parts of the scene.

The Automatic Exposure Bracketing function available in many digital cameras facilitates the ac-
quisition of different exposures of the same scene consecutively. The camera automatically calculates
the best aperture/ISO/shutter speed combination for the lighting conditions that minimizes under and
over-exposure. Once the parameters are set for the best exposure, all values are kept constant except the
shutter speed. The camera captures images consecutively varying the shutter speed to acquire different
ranges of light from the scene.

1.1 Problem statement and thesis goals

HDR image acquisition of static scenes with a fixed camera is considered a standard procedure nowadays.
However, dealing with dynamic scenes or cameras is still challenging. The acquisition of a multiple
exposure sequence takes at least the sum of the shutter speed of each shot. If there are dynamic objects
in the scene or the camera moves during the acquisition, the pixels in the sequence of images will be
misaligned. Merging non-aligned exposures produce artifacts similar to the ′ghosting′ effect of large
exposure times in traditional photography.

Countless image alignment or ′deghosting′ algorithms were proposed in recent years [War03, Gro06,
TM07, PH08, JLW08, GSL08, SPS09, PK10], but even the best existing solutions are slow [Bog00, KAR06,
GGC+09, GKTT13, HGPS13], reference dependent, and might fail under highly dynamic range scenes
[KUWS03, MG10, RKC09, RC11, HLL+11, HGP12, SKY+12, KSB+13].

Although alignment and deghosting are often used as synonyms in HDR literature, in this thesis the
term alignment is used to name methods focused on correcting global misalignment caused by camera
movement and the term deghosting for methods dealing with local artifacts caused by dynamic objects in
the scene.
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CHAPTER 1. INTRODUCTION

This thesis presents a thorough state-of-the-art report on techniques for multiple exposures alignment
and deghosting. Moreover, three different approaches to produce ghosting-free HDR content under different
conditions were developed. We propose reference-independent solutions for the following multiple exposure
acquisition setups:

• Dynamic scenes from a static camera.

• Multiscopic exposure sequences.

• Dynamic scenes acquired with a free camera.

1.2 HDR content acquisition from multiple exposures

The combination of multiple exposures implies dealing with images acquired in different moments, in
some cases also from a different viewpoint and representing a changing scene. Therefore, some temporal
and spatial aspects must be considered to tackle the problem.

1.2.1 Temporal considerations

There is a debate in the HDR community about how many exposures and which exposure values should be
used to obtain a good HDR image depending on the characteristics of the scene [GN03b]. This is not a
problem for static scenes, because in such case it is possible to increase or reduce the exposure time to
capture a wider range of the available light. In cases where either the camera or the scene moves during
the acquisition, using long exposure times might introduce large misalignment in the scene. None of the
existing techniques for alignment and deghosting in HDR are robust under large misalignment [OTTE15].

Timing restrictions are a very important issue in HDR video acquisition from multiple exposures.
The typical frame rate to play video is around 24 to 30 fps; it means that we need to create at least 24
HDR frames per second. Unlike for still HDR images, we cannot just capture longer exposures trying to
increase the range of light captured. The sum of the exposure times for each frame must be small enough
to guarantee video frame rates. The difference in exposure times between consecutive frames is limited for
temporal coherence. Such limitations must be considered before extending methods designed for image
alignment. Some of them are suitable to generate plausible results only when using as reference the best
exposed images in each multi-exposed sequence [SKY+12, HGPS13, GKTT13]. In the video context, the
use of long exposure times to increase dynamic range is not always possible without compromising video
frame rates.

Besides, stereo HDR requires at least two views of the same scene, while some multiscopic displays
may accept more than 9 different views. To achieve stereo HDR, one HDR image per view is needed.
Depending on the characteristics of the system, four different solutions can be considered:

1. Every view has the same exposure time at each shot [Ruf11]. The exposure value changes from one
shot to the next. While synchronization is here simplified, it is difficult to reconstruct temporarily
coherent HDR information in over- and under-exposed areas.

2. Different views have different exposure times [TKS06, LC09, SMW10, BRG+14]. While finding
HDR information in all areas of the images is ensured, synchronization is problematic: either
each objective waits for the others before taking the next frame or frames need to be synchronized
afterward.
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1.2. HDR CONTENT ACQUISITION FROM MULTIPLE EXPOSURES

3. Bonnard et al. [BLV+12] propose an alternative to the first two solutions. It consists of placing
neutral density filters on the camera objectives in order to simulate different exposure times.
An advantage to this is that all objectives use the same exposure time even if the resulting
images simulate different exposures. Synchronization is thus reduced to synchronizing the different
objectives. A major drawback comes with the fact that each view takes the same exposure at each
frame. Under- or over-exposed areas might remain as such through the entire video.

4. Acquiring several exposures at once for each objective is also an option. It could be done through a
beam splitter [TKTS11] or a spatially varying mask [NB03]. Optical elements can split light beams
onto different sensors with different exposure settings [TKTS11].

1.2.2 Spatial considerations

While taking LDR multiple exposures for HDR reconstruction, spatial variations are likely to occur. In
the following table we classify those variations according to their origin and the type of misalignment
they produce (sect 1.2.2.1). Types of misalignment are discussed in section 1.2.2.2. Finally, we review the
different approaches specifically designed to manage misalignment of multi-exposed LDR images for HDR
generation (see section 1.2.3).

1.2.2.1 Camera vs scene movement

Misalignment can be classified into different categories according to the kind of movement of the camera
and the objects in the scene. Table 1.2.2.1 shows the types of possible misalignments present in multiple
exposures for HDR generation.

Table 1.1: Different configurations of camera and scene

Camera Scene Misalignment HDR Video

1 Static Static - Time-lapse
2 Static Dynamic Local Camera Constrained
3 Free Path Static Global Scene Constrained
4 Free Path Dynamic Local and Global General case
5 Stereo / Multiscopic Static / Dynamic Constrained Global Stereo / Multiscopic

A static camera refers to a camera fixed to a tripod or any other support that keep the objective still
during the acquisition. Free path classification considers camera movement either because the camera is
hand held or following a free path. Stereo or multiscopic acquisition includes stereo pairs of cameras or
camera rigs composed by two or more positions of one or more cameras horizontally aligned, to capture
respectively two or more views of the same scene. The scene is classified as dynamic if any object moves
during the acquisition, no matter the amount of movement nor the size of the object. Otherwise the scene
is considered static.

In every cases described above it is possible to generate HDR video. Even for static images (1st row
of Table 1.2.2.1), it is possible to repeat the acquisition for a given time step and combine the resulting
HDRs into a time-lapse HDR video [CA06, Est12]. Time-lapse (also known as slow motion) is a technique
for capturing frames significantly slower than video frame rates. When played at video rates, time appears
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to be faster. This is often used to capture natural phenomena like sunrise or sunset, or in the animation
industry. Camera and scene constrained sequences are in general easier to align than the general case as
only one kind of misalignment takes place. The three cases (2nd, 3rd and 4th rows of table 1.2.2.1) are
used in film production. The last case (5th row of Table 1.2.2.1) concerning stereo and multiscopic cameras,
has become very popular since stereo and auto-stereoscopic displays appeared on the market.

1.2.2.2 Local and/or global misalignment

Misalignment as defined in the previous section can be categorized in three different types:

• Global misalignment is the consequence of camera motion (changes in position or orientation)
and affects every pixel in the image (3rd and 5th rows of Table 1.2.2.1). It is common in exposure
sequences acquired with hand held cameras although it is possible to find small global misalignment
even for still sequences acquired using tripods (because of camera shaking with the mechanism
activation or because of the wind). Between consecutive pairs of images, it is generally a small
movement corresponding to translations or rotations. It may cause ghosting in the resulting HDR
but some efficient techniques help to correct this misalignment. However, even for small movements,
object occlusion and parallax could be difficult to solve.

• Local misalignment is produced by dynamic objects in the scene and affects only certain areas
inside the image (2nd row of Table 1.2.2.1). Capturing a set of LDR images takes at least the sum
of the shutter speed of each picture. This time is enough to introduce differences at the position of
dynamic objects in the scene. In this case some areas occluded in some images may be visible in
others. Depending on the speed of the dynamic object and the kind of the movement it may produce
important differences between the inputs.

• Local and Global misalignment combines the two previous types and concerns the 4th row of
Table 1.2.2.1. When a camera follows a free path to record a dynamic scene, each frame may contain
both local and global misalignment. Pixels in the image could be affected by different types of
transformation.

Figure 1.3 shows examples of movement in common multi-exposure sequences. The miniatures in
the first column correspond to three exposures of the original sequences for each scene. The first row
corresponds to local misalignment, a static camera captures consecutive images using different exposure
times. Only dynamic pixels are affected by ghosting in the result, like the car in this example. Figures
1.3(a) and 1.3(b) show the results of merging the images without applying deghosting techniques and
using the technique presented in the Chapter 3 [OMLV12].

In stereo sequences (Figure 1.3, second row), images were acquired at the same time by different
cameras. Even if the scene is dynamic, both images correspond to the same time and no local misalignment
is possible. The only misalignment possible is global, due to changes in the perspective from the two points
of view. Figures 1.3(c) and 1.3(d) represent the results of merging the images without alignment and using
the technique presented in the Chapter 4 [OMLA15] respectively.

In a sequence acquired from a hand held camera (Figure 1.3, third row), each exposure corresponds to
different time instants but also to a slightly different viewpoint. Every pixel in the image is affected by
global misalignment due to changes in the position of the camera while some pixels are also affected by
local misalignment due to dynamic objects, like the pianist in this figure. Figure 1.3(e) shows the result of
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1.2. HDR CONTENT ACQUISITION FROM MULTIPLE EXPOSURES

(a) Weighted average (b) HDR obtained using [OMLV12]

(c) Weighted average (d) HDR obtained using [OMLA15]

(e) Weighted average (f) HDR obtained using Chapter 6

Figure 1.3: Examples of local misalignment, global misalignment and a combination of both.
Images courtesy of Sen et al.[SKY+12] and the Middlebury dataset [Mid06]

merging the images directly and figure 1.3(f) is the result of using the technique presented in the Chapter
6.

1.2.3 Generating HDR content

If both the scene and the camera remain static during the acquisition, the exposures are aligned. The only
possible result is an HDR image, although it can be used afterward for time lapse video production. In
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such case, any of the existing techniques [MP95, DM97, MN99] can be used to recover radiance values
and merge them into an HDR image. Otherwise, misalignment needs to be corrected before merging the
different exposures.

In cases where the camera remains static recording a dynamic scene, it is possible to detect the
areas affected by dynamic objects of the scene and treat them locally. Several techniques exist for motion
detection in the context of HDR image generation. Some of them focus on removing dynamic objects
from the scene [KAR06, PH08, GSL08, SPS09]; this approach produces HDR images that are different
from the original scene. Other works propose to replace the dynamic objects with the content of one
exposure [Gro06, JLW08, LC09, GGC+09, PK10, GKTT13], which in fact might introduce LDR content in
the HDR. A few approaches recover HDR values by combining information of all sources in the sequence
[RKC09, RC11, HLL+11, OMLV12].

In the opposite case (static scene and dynamic camera), the movement between consecutive frames
is very small and can be solved by finding homographies, or simply shifting one of the images. Some
computationally efficient methods were proposed to solve such misalignment [Can03, War03, Cer06, TM07,
Yao11].

The most difficult case is when both the camera and the scene move. In such case, dense correspon-
dences between frames are required [ZBW11, HGP12, HGPS13, SKY+12, OMLA15].

1.3 Structure of the thesis

The first chapter of this thesis provides the necessary knowledge to understand how light and color
is measured. It summarizes what a digital image is and how it is represented. Chapter 2 presents a
detailed introduction to HDR imaging, focused on the acquisition from multiple exposures including motion
compensation and deghosting solutions.

Chapter 3 describes a first method to solve the ghosting artifacts in scenes with dynamic objects
acquired from a fixed camera. Pixels in misaligned regions are detected and registered to the reference
image. It includes a comparison on existing ghosting detection techniques and similarity measures for
image registration.

Chapter 4 presents a method to generate multi-stereo HDR content. It is an extension for multi-stereo
multiple exposure of an existing technique [SKY+12]. We discuss the main drawbacks of the original
method and propose improvements to use it on multi-stereo images.

Chapter 5 introduces the in-HDR-painting method to generate non reference dependent ghost free
HDR images in fully dynamic scenes. This method is based on detecting the under and over-exposed areas
and replace the content in such areas with correctly exposed values from other exposures in the sequence.

The results of the proposed methods are discussed at the end of each chapter and Chapter 6 summarizes
as well as discusses about future work related to this thesis.
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2
FUNDAMENTALS AND PREVIOUS WORK

HDR imaging is inherently linked to disciplines related with light and color modeling and digital
image processing. This chapter aims to provide a theoretical background on such disciplines
that are fundamental for a better understanding of HDR imaging. It comprises also a detailed

analysis on the state-of-the-art of multi-exposure alignment and deghosting for HDR acquisition. The
last sections provide an overview of stereoscopic imaging and epipolar geometry that support a further
analysis on stereoscopic HDR acquisition methods including the latest techniques for multiple exposures
stereo matching.

2.1 Light measurement

The physics of light is described by two different models representing its dual nature: electromagnetic
wave and particles (photons). Hence, there are two domains related with light measurement. Radiometry,
that studies electromagnetic waves. The HVS is only sensitive to a small range of the spectrum, called
visible light. Light in the visible spectrum can be described by Photometry, which describes the behavior of
photons and light as humans perceive it. There is equivalence between radiometric quantities and the
photometric ones. Table 2.1 shows the basic quantities to measure luminous energy.

Radiant energy describes the energy of light as an electromagnetic wave, it is denoted by Qe and
measured in joules (J). The flow of radiant energy in a time interval is called radiant power (Pe), measured
in joules per second or watts (W). The amount of light incident on a surface is the radiant energy per time
unit and per unit of area. This is the total radiant flux hitting a surface divided by its area or irradiance
(Ee), measured in W /m2. Radiance (Le) measures the light incident on a surface from a particular direction,
which is the irradiance of the surface over the solid angle of the light direction ( W/m2sr ). Radiance
hitting the camera sensors is transformed into digital images in a process described in section 2.3.

The radiance Le registered in digital images can be approximated by a function known as the
measurement equation. It is a function expressed in terms of the radiant energy in a given exposure time
t over the surface area A of a pixel and the solid angle relative to the aperture value ω being θ the angle
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Table 2.1: Photometric and Radiometric quantities.

Quantity Symbol Unit

Radiometry

Radiant Energy
Radiant Power
Irradiance
Radiance

Qe
Pe
Ee
Le

J ( Joules )
J/s = Watt
W /m2

W /(m2sr)

Photometry

Luminous Power
Illuminance
Luminous Intensity
Luminance

Pv
Ev
Iv
Lv

lm ( Lumens )
lm/m2 = lx ( Lux )
lm/sr = cd ( Candela )
lm/(m2sr)= cd/m2(Nit)

between the surface normal and the angle of incidence.

(2.1) Le = d2(dQe/dt)
dAcosθdω

The HVS is sensitive to a small range of wavelengths and it strongly varies with wavelength. Humans
can perceive light with a wavelength in the range of approximately 400 to 700 nanometers (nm), with the
highest sensitivity at 555 nm which corresponds to green light. Due to variations in the spectral sensitivity,
a human may perceive a surface lit by blue light darker than one lit by green light of the same radiant
power [Gut12].

The illuminance Ev corresponds to the brightness of a surface as humans perceive it. It is the result of
weighting Ee with the sensitivity function V (λ) proposed by the Commission Internationale de l’Eclairage
(CIE). Each photometric quantity is the result of weighting the corresponding radiometric measure with
V (λ). They represent the same principle but adapted to our perception.

Luminous power is photometrically weighted radiant energy and is measured in lumens. If it is
measured over a differential solid angle we obtain luminous intensity which is given in (lm/sr) or "candela".
Illuminance is given in lumens per square meter (lm/m2) or "lux". Luminance is the radiance as perceived
by humans, it is specified in equation 2.2 and measured in (cd/m2), also called "nits" [RWD+10].

(2.2) Lv =
∫ 830

380
Le,λV (λ)dλ

Radiometric and photometric quantities can be measured with lab instruments. Digital cameras are
sensing devices not measuring devices. They could be used to approximately measure light but their
nonlinear response to light must be characterized. This is a paramount step in HDR acquisition known as
camera response function (CRF) recovery.

2.2 Color representation

Color is a perceptual phenomena although it could be defined simply as light of different wavelengths.
Colorimetry is the field in charge of quantifying the human color perception in relation to the physics of
light. Color space is a mathematical representation to describe color as a combination of primary color
values (i.e. color components or color channels).
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The human eye has around 130 millions of receptor cells, nearly 6 millions of them correspond to
cones which are responsible to the perception of color, fine details, and fast changes. Three different types
of cones determine our perception of color. Each of them is sensitive to different wavelengths: long L(λ),
middle M(λ) and short wavelength S(λ). The peak of wavelength sensitivities in each case is approximately
564 nm (red), 533 nm (green) and 437 nm (blue) [Boi14].

The color of a stimulus is rarely one pure wavelength but multidimensional, where each dimension is
associated with particular wavelength. A visible color is a projection of this multidimensional variable to
three primaries, corresponding to three types of cone cells.

In 1931, the Commission Internationale de l’Éclairage (CIE) standardized a set of primaries for the
standard colorimetric observer. The standard was established to describe the visible color gamut (complete
range or scope of a color space) in CIE XYZ color space. In 1976, the CIE presented two color spaces, the
CIE LAB and the CIE LUV which are (approximately) perceptually uniform. This means that a variation
in the color value will correspond to the same difference in perception. These definitions are still widely
used today. However, there are multiple different color spaces grouped in five main models (CIE, RGB,
YUV, HSL/HSV, and CMYK) suited for diverse specific purposes.

2.3 Digital Images

A digital image is a two-dimensional discrete representation of a continuous space stored in a digital
support. Images can be generated digitally or captured using devices such as digital cameras or scanners.
In case an image is acquired using a camera, it represents a projection of a real scene that passed through
a set of lenses to a photosensitive surface in a digital sensor. In a digital picture, light intensity information
is transformed in a color value stored at each picture element (pixel). The measured intensity values
depend on the physical lighting distribution of the scene being recorded as well as on photosensitive sensor
characteristics.

Sampling is the operation that converts the continuous light signal into a discrete digital representa-
tion. Digital images are formed of a finite number of points sampled from the scene. A photographic digital
sensor consists of a set of sensor cells spatially distributed in the image plane that measures incoming
light simultaneously. The number of recorded pixels is known as spatial resolution, given usually in rows
per columns or in millions of pixels (megapixel). The resolution of digital devices has improved rapidly
during the last decades, from VGA (640×480) in the ’80s to today’s 4K from (4096×3972) and rising.

Digital pictures are the result of exposing the camera sensor to light during certain exposure time that
determines how long radiant flux is integrated in the sensor. Sensor cells have a fixed surface area, the
lens optics with the aperture value limit the solid angle from which light reaches the sensor. The radiant
energy Qe accumulated in one shot for each cell is converted into a voltage and then to a discrete color
value in a process known as quantization. The color depth of an image is limited by the number of bits
used to store color information for each pixel. While resolution has been increasing during the last decades,
a vast majority of images are still represented using 24 bits per pixel, although most sensors are capable
of producing RAW images at 12-14 bits per color channel.

The cell elements of a camera sensor have a single spectral response curve instead of three different
ones like our visual system. They have a single response coefficient to brightness so they can not distinguish
between the wavelength distributions of different light stimuli. The most extended approach is to place a
color filter over the sensor that allows only the transmission of a certain wavelength range for cell. In this
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Figure 2.1: HDR image pipeline from scene to display

case, each sensor cell measures the red, green, or blue component of the incoming light in a distribution
know as Bayer pattern. An interpolation process (known as demosaicing) is performed then to reconstruct
a final RGB image.

Usually, the acquired image is encoded three 8-bit integer numbers (0-255). LDR images store only a
small part of visible color gamut and their values correspond to a particular acquisition. LDR images have
a non linear relation to the physical quantity of light reaching the camera sensor from the scene. Pixels
with the same RGB color value in different images might represent very different intensities according
to the acquisition setup. For instance, if a pixel has twice the intensity value of another from the same
scene, it is unlikely that the sensor received twice the light. The contrast of real world scene can not be
represented using LDR images, and it is not possible to reproduce accurately phenomenas like luminous
surfaces or specular highlights.

2.4 HDR Images

HDR images are also known as radiance maps because they are directly related to the scene radiance.
HDR pixels with certain luminance values always correspond to the same light intensity. HDR images
are intended to store ’radiance’ values to represent a scene accurately, rather than gamma corrected pixel
color values. The range of values that can be represented is much wider than LDR images, which enables
to get more details and minimizes the risk of over or under-saturated areas.

Figure 2.1 illustrates the pipeline of HDR imaging form acquisition to display. There are three ways to
acquire or generate HDR contents:

• CG Image synthesis: CG simulates the propagation of light into a virtual 3D scene to obtain
physically-based images from its projection into a virtual camera. Such simulations are performed in
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floating point to represent a wider dynamic range of scene radiance and minimize the quantization
step.

• Native HDR sensors: Some HDR camera prototypes were presented lately to the research com-
munity [NB03, CBB+09, TKTS11], but they are not yet available for commercial use. Commercial
counterparts like the Viper camera [Tho05] or the Phantom HD camera [Res05] and the Red Epic
[Red06] are only a few. Several companies claim to have HDR sensors (Kodak KAC-9628, IMS Chips
HDRC sensors, Silicon Vision Products, SMaL Camera or Pixim). However, the addressed dynamic
range remains limited (under 16 f-stops in most cases), and prices for such equipment are far from
affordable for the average customer budget.

• Multiple LDR exposures: The dynamic range of a scene can be captured by a set of LDR images
covering different ranges of light. This images can be merged afterwards into an HDR image. This
option has become very popular and is already available in tools like Adobe Photoshop, HDRShop or
Photomatix or mobile phones apps. When the LDR images are not aligned, some alignment process
needs to be performed before or with the merging step to avoid artifacts. The following sections
analyse existing techniques to deal with such cases.

LDR image formats like JPEG, PNG or BMP are known as device-referred because they were designed
to cope with the capabilities of display devices. They are not directly related to the actual radiometric
properties of the represented scene which makes difficult to reproduce its appearance accurately or to
adapt the visualization to devices with different characteristics. On the other hand, HDR formats are
scene-referred and they encode the actual photometric characteristics of the depicted scene. The conversion
from such formats to a representation for a given device must rely on the device itself. This way devices
can exploit their own capabilities to provide the best representation possible for a given image.

Pixel HDR values are stored in floating point triplets which means that the amount of possible values
exceed the capabilities of the HVS in any viewing conditions [ RKMS15]. They can be stored in extended
formats like RGBE, HDR or OpenEXR [LJ10]. These representations increase the amount of stored data,
an HDR pixel uses 96 bits while their LDR counterparts are four times less, 24 bits. This is the main
challenge of HDR imaging, every step in the image pipeline (capture, storage and display) designed for
LDR images needs to be adapted to deal with HDR formats.

Existing consumer devices are unable to deal with HDR values since most of the existing encoding
algorithms or image processing tools are based on 8-bits images. Extending them to manipulate HDR
images is not straightforward. Radiance values contained in HDR images can not be displayed on regular
displays. For example, consider an HDR image with a very bright spotlight; the weak backlight of an
LCD screen is unable to reproduce such amount of brightness. Even when an HDR image is generated or
captured, it can only be displayed natively in HDR displays. HDR images need to be tone mapped to 8-bit
images suitable for LDR displays.

2.5 HDR acquisition from multiple exposures

This section presents a detailed review of the state-of-the-art on HDR acquisition from multiple exposures,
with special emphasis on image alignment. The acquisition process consists of a set of steps (setting
parameters and capturing, radiance conversion, image registration, and HDR stitching) that are covered
in this section. For a complete overview on HDR imaging refer to [RWD+10, BADC11, RKMS15].
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2.5.1 Acquisition setup

Combining multiple exposures of the same scene, each covering a different radiance range, is a solution
for HDR acquisition using conventional digital cameras.

There are three parameters conditioning the amount of light reaching the sensor and how sensitive it
is. The so called "exposure triangle" is formed by the aperture opening, the shutter speed (or exposure
time), and the sensor sensitivity (ISO-value). The exposure value (EV) relates them in a way that each
variation of 1 in EV corresponds to a change of one stop i.e., half or double of the exposure, either by
halving or doubling one of them while keeping constant the rest, or a combination of changes.

Each of the variables in the exposure triangle are defined as follow:

1. The aperture of a camera is controlled by opening or closing a diaphragm, which is usually located
in the middle of the lens assembly. The aperture is then specified as an F-number N, defined as
N = f /D, where f is the focal length, and D is the diameter of the diaphragm opening. N is given as
a sequence of square roots, e.g. f/4, f/5.6, f/8, f/11, f/16, f/22 which implies that a change in of one
f /stop halves or doubles the area of the aperture by 2x. Changing the aperture provokes changes
in the depth of field which means changes in image focus, so it is not a good approach to control
exposure for HDR merging purposes.

2. The exposure time is controlled by opening and closing a shutter. It is the time the sensor is
exposed to light and is measured in fractions of a second. The longer the sensor is exposed, the more
light enters and brighter is the image, which allows to get details in the dark areas. Longer exposure
times increase the risk of having blurred images either because of hand held camera movements
or moving objects. On the opposite, shorter shutter speeds reduce the amount of light and provide
details in brighter areas of the scene, but dark areas will appear noisier.

3. The ISO-value defines the sensor sensitivity to light by varying the voltage observed at each pixel
position before the A/D conversion. By convention, ISO 100 refers to no special modification, so it is
the lowest ISO number available on most digital cameras. Doubling the ISO means an amplification
by 2x of the voltage. Increasing the ISO makes the image brighter but also augments the noise, a
random variation. Noise means random variation in the intensity of pixels that correspond to the
same color in the scene.

The most common approach is to take pictures sequentially at regular exposure time intervals to
ensure that each image contains useful information of different ranges of the scene. The auto-bracketing
function available in many cameras is very useful to capture a set of LDR images at different EV. Using the
auto exposure function, the camera automatically calculates the best aperture/shutter speed combination
EV0 for the current lighting conditions to minimize over or under-exposure. Once EV0 is established,
the auto bracketing function takes darker and brighter pictures respectively increasing and decreasing
the shutter speed at regular intervals. Placing neutral density filters in front of the lens to attenuate the
amount of light that enters the sensor is also an option used to control the exposure of images.

The accuracy of the radiance recovery is limited by the saturation and noise of the camera sensor.
After the maximum allowed brightness level is reached the value of the sensor cells remains the same
which makes impossible to measure radiance. On the contrary, there is a point where the incident light is
indistinguishable from noise in the circuitry. Hence, radiance is best measured in the upper segment of
the sensor cell’s operating range just below saturation, where signal-to-noise ratio is the optimal [Gut12].
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The optimal number of exposures depends on the dynamic range of the scene, a compromise should be
found in each case. Using the higher number of images would reduce the noise in the final HDR, but also
increase the acquisition time which implies bigger misalignment and ghosting artifacts in dynamic scenes.

2.5.1.1 Multiple exposures HDR video

Increasing the number of exposures or the shutter speeds is not always possible. When merging differently
exposed video frames to generate HDR video this is not even an option. In this case, time constraints to
keep video rates becomes first priority.

Similarly to auto exposure control of digital cameras, digital video cameras have a function called auto
gain control (AGC) in charge of measuring the brightness distribution of the scene and calculating the
best exposure settings for the scene conditions.

The most extended idea is to design a real-time exposure control algorithm that captures exposures at
multiple steps up and down this optimal EV (for example, ± 2 stops) to obtain a high and a low exposures.
In Kang’s et al.[KUWS03] implementation, the exposure settings alternate between two different values
with a ratio varying from 1 (if a single exposure is adequate to capture the scene intensities) to a maximum
of 16. Mangiat [MG10] updated the exposure values every four frames trying to maximize shutter speed in
the high exposure and the opposite for the low exposure as a way to increase the dynamic range covered.

Many authors use only two exposures (low and high) to generate frames of HDR video [KUWS03,
ST04, MG10], while a most recent approach [KSB+13] uses three (low, medium and high) exposures to
generate the same number of HDR frames.

2.5.2 Image alignment and deghosting

The information of different dynamic range of the scene, captured in the multiple LDR exposures, must be
merged into one HDR image. During the acquisition both the camera or the scene might move. Merging
pixels in the same (x, y) position of different images that does not correspond to the same point in the
scene produces artifacts in the HDR image. This is one of the main problems in HDR image acquisition
using multiple exposures.

This section summarizes most of existing techniques presented in the last years to tackle this problem.
They are grouped using the criteria established in Table 1.2.2.1 that classifies misalignment into global
(subsection 2.5.2.1) or local (subsection 2.5.2.2). Subsection 2.5.2.3 considers approaches to avoid ghosting
artifacts that does not rely on image alignment. Finally, subsection 2.5.2.4 describes the extension from
image alignment and deghosting into HDR video acquisition from multiple exposures.

Previous surveys was published about this issue [SS12, HTM14, OTTE15]. Srikantha and Sidibé
presented the first known classification for deghosting methods. Hadziabdic et al. [HTM14] present a
comparison between state-of-the-art methods and alignment algorithms implemented on commercial
software and propose a methodology to evaluate their results. More recently, Tarhan et al. [OTTE15]
present a survey on deghosting methods.

2.5.2.1 Global alignment

Ward [War03] presented a technique called Median Bitmap Transform (MBT) to align differently exposed
images. The algorithm transforms a set of 8 bit images (using only the green channel or a gray scale
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representation of the LDR) to a bitmap. The median intensity value is used as threshold because it is
nearly insensitive to exposure variations. If the difference of two bitmaps is defined as a logical XOR, it
shows where the images are misaligned. The alignment process is implemented iteratively to minimize
differences with respect to a reference image. A pyramid of MTBs is used to speed up the process.

This method provides good results for images with a rather bimodal brightness distribution. But when
a large number of pixels are near the median value, noise appears in the MTB. The noise is prevented
using another threshold to exclude pixel values near to the median. Ward’s proposal was designed for
small translations of the camera and not for dynamic objects in the scene.

Different implementations and variations of this technique were proposed later. Grosch [Gro06]
published a GPU implementation that considers also rotation of the camera not only on 8-bit images but
also in radiance space. He used the CRF to predict the color of pixels in consecutive images. A threshold
over the difference between the predicted and the actual image helps to identify ghost regions.

Pece and Kautz [PK10] designed a Bitmap Movement Difference (BMD) algorithm to detect and isolate
clusters of moving pixels in a sequence. This method calculates a MTB for each image and mark areas that
change their MTB value along the sequence. The moving areas are detected by summing all the bitmap
values along the sequence and selecting pixels that are neither 0 or N, being N the number of images in
the sequence. Morphological dilation and erosion help to refine the ghost mask in case of noise. If part
of the scene is over or under exposed over all the sequence, or movement objects and background have
similar intensity values, BMD fails.

MTB-based methods does not depend on the camera response function and their computational cost is
low. On the other hand, they are only effective for small global misalignment or to detect ghosting areas.

A registration scheme based on scale invariant feature transform (SIFT) that tracks dynamic objects
by matching their key points in the sequence were applied as well to this problem by Tomaszewska and
Mantiuk [TM07]. A modified SIFT algorithm extracts key point descriptors that represent correspondences
between key points in the reference image and the remaining LDR images. After finding SIFT features,
homographies are calculated using the random sample consensus (RANSAC) algorithm.

Akyüz [Aky11] assumes that misalignment between consecutive images is translational and the
correlation between pixels remains constant. For instance, if a pixel intensity is larger than its neighbor
in the left and smaller than the right one, this relation will be the same in the next exposure except for
over and under exposed values or pixels affected by noise. Correlation maps are constructed for areas of
interest in the images based on this relation. The algorithm looks for the most similar correlation map in
consecutive images using Hamming distance as a measure of similarity.

2.5.2.2 Local alignment

Bogoni [Bog00] used an optical flow based technique to perform per pixel registration applied after global
affine registration. They use a Laplacian pyramid representation which decreases the sensitivity to
exposure changes.

Sand et al. [ST04] proposed a combination of feature matching and optical flow for video matching.
The idea is to identify parts of the image that can be easily matched to make the warping process. Their
method is robust to changes in exposure and lighting, but dynamic objects sometimes hide parts of the
scene in certain exposures and reveal them in others which leads to the optical flow parallax problem
where there is not enough information to reconstruct HDR over the entire image [JLW08]. If there are
objects moving at high speed in the scene, artifacts still appears [BDA+09].
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Zimmer et al. [ZBW11] present an optical-flow, energy-based method for image alignment. A dense
displacement fields between the reference image and each other image in the sequence is estimated using
an energy minimization equation that combines a data term to evaluate the alignment in gradient domain
and a smoothness term penalizing outliers. It is a robust method for image alignment. However, ghosting
artifacts persist in areas with dynamic objects.

Sen et al. [SKY+12] recently presented a method based on a patch-based energy minimization that
integrates alignment and reconstruction in a joint optimization for HDR image synthesis. Their method
relies on a patch-based nearest neighbor search proposed by [BSFG09] and a multi-source bidirectional
similarity measure inspired by [SCSI08]. This method allows producing an HDR result that is aligned
to one of the exposures and contains information from all the remaining exposures. The results are very
accurate but dependent on the quality of the reference image. Artifacts may appear if the reference image
has large under exposed or saturated areas.

Hu et al. [HGPS13] proposed a method to synthesize aligned images given a reference in a sequence
of multiple LDR exposures. An energy minimization equation is used to calculate a color value for
pixels in under/over exposed areas. The energy minimization uses two terms for radiometric and texture
consistencies between the reference and the source image.

2.5.2.3 Deghosting

Some researchers focus their works on local misalignment assuming that images where acquired from a
still camera or a global alignment was applied previously. Instead of finding correspondences between
pixels, they try to generate HDR images without ghosting artifacts. Some different strategies have been
proposed: to identify the misaligned pixels and exclude them in the HDR reconstruction, to modify the
merging step to avoid misaligned pixels, detect the areas affected by misalignment, and replace them with
content from the best exposure only. This section presents some of these approaches.

Background reconstruction:
Khan et al. [KAR06] proposed a probabilistic method for weighting pixels without any explicit move-

ment detection. Weights are assigned not only to avoid over and under exposed values, but also according to
their probability of pertaining to the background. Pixels are averaged using the weighted average function
like in equation 2.5. But instead of weighting only according to the intensity values, a non-parametric
estimation scheme calculates their probability of pertaining to the background. This method is compu-
tationally expensive because it requires several iterations and artifacts still may persist for scenes with
deformable objects or complex transformations. The same principle is used by Pedone et al. [PH08] to
improve Khan’s work. They propagate the influence of low probabilities using energy minimization to
avoid artifacts in the result. This method requires less iterations than Khan’s.

Granados et al. [GSL08] presented a method for background estimation that can be also applied to
HDR generation. It is an energy minimization method based in two assumptions: background objects are
static and they represent the major part of the image. A cost function that includes constrains of intensity
differences along the sequence is minimized using graph cuts.

A GPU based application was presented by Markowski [Mar09] which uses probabilities to automat-
ically detect ghosting. A ghost map is generated for each LDR image estimating the probability that a
pixel belongs to static or moving objects. This ghost map is used to exclude dynamic objects from the HDR
composition.
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Despite the degree of success of methods in this section, all of them share the same drawback: dynamic
objects are omitted in the HDR image which makes it inconsistent with the original scene.

Ghosting detection:
Grossberg et al. [GN03a] proposed a method based on the Image Mapping Function (IMG). The IMF is

a function that relates accurately pixel intensities of two images without recovering the CRF. The IMF is
deduced from properties of the cumulative histogram. Differences between two consecutive images are
calculated by applying a threshold around IMF. They can be combined with a logical XOR, and stored in a
ghost mask that contains pixels affected by movement through the sequence.

Jacobs et al. [JLW08] presented two methods for motion detection in a sequence of LDR exposures. The
first one assumes that the radiance variations across exposures are higher for pixels affected by movement.
Hence, variance is considered an indicator of movement [JLW08, LJ10, RWD+10]. A Variance Image (VI)
is created with the weighted variance of radiance over the different exposures. Movement clusters are
detected in a mask applying a threshold over the VI. The resulting binary image shows clusters of pixels
that might be affected by movement. The assumption that radiance values in static pixels has low variance
requires a reliable CRF estimation, if the CRF is not accurate, false positives appears in the mask. The
second method calculates an Uncertainty Image (UI) using entropy as an indicator of potential movements.
Local entropy at each pixel location in a neighborhood of radius five is computed, which generates the UI.
The authors justify the use of entropy because it is not affected by intensity values. The pixels marked
in the ghost mask are not included in the HDR merging. The VI method is implemented in the HDR
reconstruction software named Photosphere but it may fail under large dynamic range scenes [PK10].

Gallo et al. [GGC+09] presented a technique to deal with large amount of movement in the scene. The
method detects region patches that do not cause artifacts when combined with a reference image. The
HDR image is generated just using these patches. This method assumes that pixels measuring the same
radiance have a linear relation. To select valid pixels the algorithm applies a threshold over the deviation
of pixels from the predicted model. The HDR image is composed only by valid patches of each input image.

The solution proposed by Raman et al. [RKC09] is similar, they detect ghosting using block based
comparison between exposures. They assume images are globally aligned and the first rows (5-10 upper
rows in the images) are static. This region is used to calculate the IMF through a sixth order polynomial
approximation. Similar to [GGC+09], they compare predicted images to the actual ones and mark patches
that does not follows the IMF to be ignored in the HDR composition.

Zhengguo et al. [LRZ+10] used the IMF to detect moving objects forward and backward in the
sequence using threshold operations over the sequence and predicted images. They propose to fill pixels
corresponding to ghosting areas in the sequence by evaluating the IMF in a reference image bidirectionally.

Heo et al. [HLL+11] calculate a joint probability density function (PDF) between a reference image
and the rest of LDRs to estimate the global intensity transfer functions. A ghost mask is calculated by
thresholding the joint PDF for each non-reference image.

Sidibe et al. [SPS09] presented an approach based in the fact that the inverse CRF is monotonic
increasing. For two images I1 and I2, if their respective exposure times are related such that ∆t1 <∆t2,
then the radiance values satisfy E1 ≤ E2. This is enough to ensure that pixel intensities in both images
satisfy the same order relation I1 ≤ I2, which can be generalized in a sequence of N exposures ∀k ∈ [1...N]
if k < k′, any pixel in (x, y)
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I(x,y),k ≤ I(x,y),k′

Pixels that break this relation are part of dynamic regions or another unexpected variation of in-
tensity over the sequence. This technique works in certain conditions, but it is susceptible to some color
combinations between dynamic objects and background.

Granados et al. [GKTT13] presented an approach based on Markov Random Field. In the first step,
input images are aligned with a global homography calculated from SURF key-points. The second step
minimizes an energy function to find consistent and inconsistent subset of input exposures. Their function
considers consistency and noise potential terms that penalize pixels prompt to introduce ghosting and
noise in the resulting HDR. However, their method cannot recover the dynamic range of moving objects
since moving objects are reconstructed from a single input image. The absence of semantic constraint in
the HDR reconstruction may introduce artifacts such as object repetitions.

2.5.2.4 Per-frame HDR video generation

Merging stacks of differently exposed frames is the most extended approach for capturing HDR video with
conventional digital cameras. After the alternating-exposure video are captured, a registration algorithm
is applied to reconstruct an HDR result at every frame (see Fig. 2.2 and Fig.2.3).

(...)

Figure 2.2: Multi-exposure video sequence alternating three different exposures.

To our knowledge, [KUWS03] proposed the first method to extend multiple exposure images methods
to video sequences. Every HDR frame for a given time ti is generated using information from adjacent
frames ti−1 and ti+1. They re-expose the short exposure frame with the long exposure times. Once images
are transformed to the same exposure, motion estimation is performed for the two adjacent images. It
consists of two steps:

1. Global registration by estimating an affine transform between them.

2. Gradient-based optical flow to determine dense motion field for local correction.

In the regions where the current frame is well-exposed, images are merged using a weighted function
to prevent ghosting. For the over or under-exposed regions, the previous/next frames are bidirectionally
interpolated using optical flow and a hierarchical homography algorithm.

Despite the novelty of this work and the promising results for some scenes, gradient-based optical
flow is not accurate enough to find forward/backward flow fields. Boosting the short exposure to the long
one will increase the noise, details like edges may be lost and slight variations of brightness may persist
because of inaccuracies in the Camera Response Function (CRF). This may produce ghosting and errors in
registration for fast non-rigid moving objects.

Sand and Teller [ST04] proposed an algorithm to register two different video sequences of the same
scene. Video HDR is one of the most direct applications of their method. Differently exposed videos can be
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matched using their method. To initialize the process, they first compute a sparse set of features in both
the reference and the target videos using a Harris corner detector [HS88], and find a preliminary set of
correspondences. For each feature point identified, a matching cost is evaluated using two terms:

1. Pixel Consistency, instead of comparing equal pixels or patches in two images, they compare
a single pixel in the reference image with a 3x3 patch in the source image. Correspondence is
evaluated within a window around each pixel and pixel matching probabilities are assigned. The
pixel consistency score is only penalized if the reference pixel is outside this a given range.

2. Motion Regression and Consistency, to determine how well a particular correspondence is consistent
with its neighbors. The motion consistency score is high if the motion vector is well approximated by
this regression.

Obtained matching are used to find regression predictions that are improved in a regression process.
After finding high likelihood correspondences, a locally weighted linear regression method is used to
interpolate and extrapolate correspondences for the rest of pixels, obtaining a dense correspondence field.
This scheme is extended to all frame pairs of the video sequence. This method offers very good results
for highly textured scenes but poor results otherwise. Processing each pair of frames might take up to
1.31 seconds and full video matching might take several minutes for each second of video input (on a
single-processor desktop PC back in 2004).

Mangiat [MG10] proposed to improve the problems of the optical flow in Kang’s [KUWS03] method
by using a block-based motion estimation algorithm. They work also in a video sequence that alternate
two exposure values. They use a CRF recovered using a sequence of 12 static exposures using the method
presented by Devebec [DM97]. The short exposure is boosted using the CRF to match the long exposure.

They use a software [Süh08] to calculate block-based forward and backward motion estimation vectors
for each frame with respect to the adjacent ones. However, such estimation is likely to fail in saturated
areas. A second step of bidirectional motion estimation is performed to fill in the saturated areas with
information from previous and next frames. The cost function is the Sum of Absolute Differences (SAD)
adding a cost term that relates the motion vector estimated for adjacent frames. Block-based motion
estimation is prone to artifacts such as discontinuities at block boundaries. Differences between the images
in radiance domain are detected and assumed as artifacts. Such pixels are considered like holes and are
replaced by pixels in the contour of such areas. Even though, poorly registered pixels may pass to the HDR
merging step. They propose to use a cross-bilateral filter to treat the tone mapped HDR image using edge
information at each frame. Despite the different attempts to avoid artifacts, fast motion (like eyes blinking
for example) remains unsolved. The filtering step executed in the tone mapped images cannot be used for
HDR displays.

The current state-of-the-art algorithm in HDR video reconstruction from an alternating-exposure
sequence is the work of [KSB+13], which extends the patch-based HDR reconstruction algorithm of Sen et
al. [SKY+12] to video. Although Sen’s method produces still HDR images that are aesthetically pleasant,
it does not maintain temporal coherence between subsequent frames. In their work, Kalantari et al. modify
the HDR image synthesis equation to include an extra term that enforces temporal coherence.

To solve this new equation, their algorithm first approximates the global motion between consecutive
frames using a similarity transform. It then uses optical flow to solve for the approximate local motion.
To make the optical flow computation more robust, the algorithm performs a validation test between
consecutive frames to ensure that the flow is consistent. Once this flow is computed, a window is set
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around each destination pixel with size inversely proportional to the accuracy of the flow estimation. These
windows help constrain the patch-based search to ensure that the synthesized content is more coherent
from frame to frame.

Once this pre-process is done, the algorithm minimizes the energy using a two-stage algorithm similar
to that of Sen et al., except that the bidirectional similarity term also enforces a similarity with the
neighboring frames to ensure further coherence. This algorithm iterates until convergence, producing the
final sequence of HDR images. Some results of this algorithm are shown in Fig. 2.3.

2.5.3 HDR merging

HDR pixels represent a radiance map E(x, y) for every pixel in the image. After image alignment, every
pixel (x, y) represents the same point in the scene for all LDR images. The intensity value I(x, y) of LDR
pixel values that were taken under different conditions need to be transformed into a common (scaled)
radiance domain and merged by computing a weighted average.

When using a digital camera to acquire HDR images, values like the pixel surface area or the solid
angle of the aperture are generally unknown and assumed to be constant. The result of inverting the
image formation process represents radiance only up to an unknown scale. It worth specifying that in
HDR the term radiance usually refers to a quantity that is proportional to radiometric radiance by an
unknown factor [Gut12].

In many cameras there is a way to get data directly from the camera in RAW format. A RAW
file is the record of data captured by sensor, it is not a single format but a general term for several
proprietary file formats (.CRW, .MRW, .ORF, .NEF) that stores at least 12 bits per color channel. Most
of images non-linearities are originated during conversion from RAW to 8 bits formats. This conversion
includes processes like demosaicing, white balance, colorimetric interpretation, gamma correction and

...

...

...

...

High Low Middle High Low

Figure 2.3: Results of the Kalantari et al. [KSB+13] method to reconstruct an HDR video stream
from a set of alternating exposures. The top row shows the input, in this case a scene that
was imaged at three different exposure levels. The bottom row are the HDR frames that were
reconstructed by the algorithm. Images courtesy of Kalantari et al.[KSB+13].
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noise reduction. RAW images are affected only by sensor saturation and quantization noise [Cer06].
Therefore, no CRF calculation is required while using RAW images.

A point in the scene corresponds to the same radiance E(x, y) in each LDR images. Radiance is
integrated inside a sensor cell for the duration of the exposure time ∆t, which is different for each LDR.
What a sensor cell actually measures is the exposure E(x, y)∆ti, which is radiance integrated over time.
Digital cameras introduce a function f (equation 2.3) that maps the radiance to intensity values in a range
of 0 to 255. Next section 2.5.3.1 shows details on how f can be approximated.

(2.3) In(x, y)= f (E(x, y) ·∆tn)

Knowing the inverse of f and the shutter speed for each exposure, E can be approximated using equation
2.4.

(2.4) Ẽ(x, y)= f −1(In(x, y))
∆tn

The final radiance map is calculated as a weighted average of the radiance values for each exposure[MP95,
DM97, MN99]:

(2.5) E(x, y)=
∑N

n=1 w(In(x, y))( f −1(In(x,y))
∆tn

)∑N
n=1 w(In(x, y))

The weighting function (w in the equation 2.5) is chosen to minimize the contribution of pixels that are
under or over-exposed, hence its value should be small for pixel values close to 0 or 255. Typical weighting
functions have Gaussian or Hat shape. Mann and Picard [MP95] used the derivative of the CRF for each
color channel as weighting function. Devebec and Malik [DM97] and Khan et al.[KAR06] used simple hat
functions like the one in equation 2.6 Figure 2.4.

(2.6) w(I(x, y))= 1− (2 · I(x, y)−1)12

Figure 2.4: Weighting function proposed Khan et al.[KAR06], equation 2.6.
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Figure 2.5: Image Acquisition Pipeline shows how radiance from the scene is converted to
pixel intensity values for both film and digital cameras. Unknown nonlinear mappings can occur
during exposure, development, scanning, digitization, and remapping. Image courtesy of Devebec
et al.[DM97].

2.5.3.1 Camera Response Function

In order to transform pixel values to radiance, the transformation between values acquired by the sensor
and pixel intensities needs to be known. This function is know as Camera Response Function (CRF), it
is not linear and in most cases it is not provided by camera vendors. The most significant non-linearity
occurs at the saturation point, where any pixel above this point is mapped to the same value, 255 . Figure
2.5 shows the pipeline of transformations that occurs since the light pass through the lens until digital
values are assigned to pixels.

The inverse of the CRF is required to combine LDRs into an HDR image because it allows to convert
from pixel intensities to radiance. Sensors produce a charge directly proportional to the amount of light
that they receive. The digitization process uses analog-digital converters to transform the accumulated
charge to integer values in [0, 255].

This function is assumed to be monotonically increasing and it approximate the non-linear transfor-
mations introduced at different stages of the acquisition process. The CRF depends on the camera vendor,
who considers it part of their proprietary product so we need to calculate it. Under the assumption thatf
is monotonically increasing, the existence of g in equation 2.7 is guaranteed [DM97].

(2.7) E ·∆t = f −1(I)= g(I)

Several approaches attempt to obtain g making assumptions on its shape and behavior. Mann and Picard
[MP95] defined a Wyckoff ’s set like a collection of images that differ only in the exposure. Having different
exposed images of the scene ensures that at least one of them would contain correct information on the
different exposed areas, so all the information of the scene can be recovered and stored in a HDR image.
They proposed an automatic method to combine them in a single picture of extended dynamic range and
improved color fidelity.

The algorithm assumes an empirical function with gamma shape g =α+βIγ, where α is the minimal
density obtained from a picture taken with lens covered, β is an arbitrary scale factor and γ is a contrast

parameter estimated by regression. This method is highly restrictive so it does not lead to accurate results
and does not support most of CRFs [BDA+09].

Debevec and Malik [DM97] presented instead a less restrictive method for recovering HDR images
from photographs captured with conventional equipment. Their method used the different exposed images
to recover the camera response function. With the response curve, pixel intensity values are converted
into irradiance and combined in a HDR. It is based in the reciprocity equation 2.6, where halving the
irradiance E and simultaneously doubling the exposure time ∆t result in the same pixel values I. They
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take the natural logarithm on both sides of the equation to approximate the CRF:

(2.8) ln f −1(I)= lnE+ ln∆t

From this equation we know I and ∆t, it is also reasonable to assume that f −1 is smooth and monotonic.
Devebec et al. used least square error to calculate both f −1 and E minimizing the error from the set of
equations resulting of equation 2.8. This approach is less restrictive than Mann’s and obtains good results
for images that are not too noisy [MN99].

There is another solution presented by Mitsunaga et al. [MN99] that does not require precise estimates
of the exposure times used. They improve the previous approach using a flexible polynomial model for
representing a wide range of response functions. This method determines the minimum required order N
and the coefficient cn.

(2.9) E = f −1(I)=
N∑

n=0
cnIn

2.6 Multiscopic HDR

In this section we address the generation of HDR images for two or more views. Multiscopic HDR is a
special case for general HDR acquisition from multiple exposures. However, there are constrains in the
geometry of stereoscopy that transform the general image alignment into a stereo matching problem. It is
worth to present it in a different section for a better understanding.

Orozco et. al. [OMLA16] resume most relevant existing works on multiscopic and HDR video. In this
section we first review the basics of stereoscopic imaging (section 2.6.1 and epipolar geometry (section
2.6.2), before we discuss the recent contribution for the generation of multiscopic HDR images (section
2.6.3).

2.6.1 Stereoscopic Imaging

Apart from a huge amount of colors and fine details, our visual system is able to perceive depth and
tridimensional shape of objects. Digital images offer a representation of reality projected in two dimensional
arrays. We can guess the distribution of objects in depth because of monoscopic cues like perspective,
but we cannot actually perceive depth in 2D images. Our brain needs to receive two slightly different
projections of the scene to actually perceive depth.

Stereoscopy is any imaging technique which enhances or enables depth perception using the binocular
vision cues [SDBRC13]. Stereo images refers to a pair of images horizontally aligned and separated
at a scalable distance similar to the average distance between human eyes. The different available
stereo display systems project them in a way such that each eye perceives only one of the images. In
recent years, technologies like stereoscopic cameras and displays have become available to consumers
[UCES11, MPS12, DPPC13]. Stereo images requires to record at minimum two views of a scene, one for
each eye. However, depending on the display technology it could be more. Some auto-stereoscopic displays
render more than 9 different views for an optimal viewing experience [LLR13].

Some prototypes were proposed to acquire stereo HDR content from two or more differently exposed
views. Most approaches [TKS06, LC09, SMW10, Ruf11, BRG+14, AKCG14] are based on a rig of two
cameras placed like a conventional stereo configuration that captures different exposed images. Next
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sections offer a background of the geometry of stereo systems (section 2.6.2) as well as a survey on the
different existing approaches for multiscopic HDR acquisition (section 2.6.3).

2.6.2 Epipolar Geometry

One of the most popular topic of research in computer vision is stereo matching, which refers to the
correspondence between pixels of stereo images. The geometry that relates 3D objects to their 2D projection
in stereo vision is known as epipolar geometry. It explains how the stereo images are related and how
depth can mathematically be retrieved from a pair of images.

Figure 2.6 describes the main components of the epipolar geometry. A point x in the 3D world
coordinates is projected onto the left and right images IL and IR respectively. cL and cR are the two
centers of projection of the cameras, the plane formed by them and the point x is known as the epipolar
plane. xL and xR are the projections of x in IL and IR respectively.

(a) Epipolar Geometry.

(b) Epipolar Geometry Rectified.

Figure 2.6: Main elements of the epipolar geometry.

For any point xL in the left image, the distance to x is unknown. According to the epipolar geometry,
the corresponding point xR is located somewhere on the right epipolar line. Epipolar geometry does not
mean direct correspondence between pixels. However, it reduces the search for a matching pixel to a single
epipolar line. The accurate position of a point in the space requires the correct matches between the two
images, the focal length and the distance between the two cameras. Otherwise, only relative measures can
be approximated.

If the image planes are aligned and their optical axes are parallel, the two epipolar lines (left and
right) converge. In such case, correspondent pixels rely on the same epipolar line in both images, which
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simplifies the matching process. Aligning the cameras to force this configuration might be difficult but
images can be aligned.

This alignment process is known as rectification. After the images are rectified, the search space for
a pixel match is reduced to the same row which is the epipolar line. To the best of our knowledge, all
methods in Stereo HDR are based on rectified images and they take advantage of the epipolar constrain
during the matching process. Rectified image sets are available on the Internet for testing purposes, like
[Mid06].

If corresponding pixels (matches) are on the same row on both images, it is possible to define the
difference between the images by the horizontal distance between matches in the two images. The image
that stores all the horizontal shifts between stereo pairs is called disparity maps.

Despite epipolar geometry simplifies the problem it is far from being solved. Determining pixel matches
in regions of similar colour is a difficult problem. Moreover, the two views correspond to different projections
of the scene, which means that occlusion takes place between objects. The HDR context adds the fact that
different views might be differently exposed reducing the possibilities of finding color consistent matches.

2.6.3 Multiple exposure stereo matching

Stereo matching (or disparity estimation) is the process of finding the pixels in the different views that
correspond to the same 3D point in the scene. The rectified epipolar geometry simplifies this process to
find correspondences on the same epipolar line. It is not necessary to calculate the 3D point coordinates to
find the correspondent pixel on the same row of the other image. The disparity is the distance d between a
pixel and its horizontal match in the other image.

Akhavan et al. [AYG13, AKCG14] compared the different ways to obtain disparity maps from HDR,
LDR and tone-mapped stereo images. A useful comparison among them is offered and illustrates that the
type of input has a significant impact on the quality of the resulting disparity maps.

Figure 2.7 shows an example of a differently exposed multi-view set corresponding to one frame in a
multiscopic system of three views. The main goal of stereo matching is to find the correspondences between
pixels to generate one HDR image per view for each frame.

Correspondence methods rely on matching cost functions to compute the color similarity between
images. It is important to consider that the exposure difference needs to be compensated. Even using
radiance space images were pixels are supposed to have the same value for same points in the scene, there
might be brightness differences. Such differences may be introduced by the camera due to image noise,
slightly different settings, vignetting or caused by inaccuracies in the estimated CRF. For good analysis
and comparison of the existing matching costs and their properties, refer to [SS02, HS09, BVNL14].

Exist different approaches to recover HDR from multi-view and multi-exposed sets of images. Some of
them [TKS06, LC09, SMW10] share the same pipeline as in Figure 2.8. All mentioned works take as input
a set of images with different exposures acquired using a camera with unknown response function. In such
cases, the disparity maps need to be calculated in first instance using the LDR pixel values. Matching
images under important differences of brightness is still a big challenge in computer vision.

2.6.3.1 Per frame CRF recovery methods

To our knowledge, Troccoli et al. [TKS06] introduced the first technique for HDR recovery from multiscopic
images of different exposures. They observed that Normalized Cross Correlation (NCC) is approximately
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(a) Multiscopic different exposures

(b) Multiscopic tone mapped HDR images

Figure 2.7: LDR Multiscopic sequence and the HDR counterpart. Up: ’Aloe’ set of LDR multi-view
images from Middlebury web page. Down: the Tone-mapped HDR result. Images courtesy of
[Mid06].

Figure 2.8: General multi-exposed stereo pipeline for Stereo HDR. Proposed by [TKS06], used by
[SMW10, LC09] and modified later by [BRG+14].

invariant to exposure changes when the camera has a gamma response function. Under such assumption,
they use the algorithm described by Kang et al. [KS04] to compute the depth maps that maximizes the
correspondence between one pixel and its projection in the other image. The original approach [KS04]
used Sum of Squared Differences (SSD) but it was substituted by NCC in this work.

Images are warped to the same viewpoint using the depth map. Once pixels are aligned, the CRF is
calculated using the method proposed by Grossberg and Nayar [GN03a] over a selected set of matches.
With the CRF and the exposure values, all images are transformed to radiance space and the matching
process is repeated, this time using Sum of Squared Differences (SSD). The new depth map improves the
previous one and helps to correct artifacts. The warping is updated and HDR values are calculated using a
weighted average function.

The same problem was addressed by Lin and Chang [LC09]. Instead of NCC, they use SIFT descriptors
to find matches between LDR stereo images. SIFT is not robust under different exposure images. Only the
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matches that are coherent with the epipolar and exposure constraints are selected for the next step. The
selected pixels are used to calculate the CRF.

The stereo matching algorithm they propose is based on a previous work [SZS03]. Belief propagation
is used to calculate the disparity maps. The stereo HDR images are calculated by mean of a weighted
average function. Even using the best results only, SIFT is not robust enough under significant exposure
variations.

A ghost removal technique is used afterward to tackle the artifacts due to noise or stereo mismatches.
The HDR image is exposed to the best exposure of the sequence. The difference between them is calculated
and pixels over a threshold are rejected considering them like mismatches. This is risky because HDR
values in areas under and over exposed in the best exposure may be rejected. In this case ghosting would
be solved but LDR values may be introduced in the resulting HDR image.

Sun et al. [SMW10] (inspired by [TKS06]) also follow the pipeline described in Figure 2.8. They assume
that the disparity map between two rectified stereo images can be modeled as a Markov random field. The
matching problem is presented like a Bayesian labeling problem. The optimal label (disparity) values are
obtained by minimizing an energy function.

The energy function they use is composed of a pixel dissimilarity term (NCC in their solution) and a
disparity smoothness term. It is minimized using the graph cut algorithm to produce initial disparities.
The best disparities are selected to calculate the CRF with the algorithm proposed by Mitsunaga and
Nayar [MN99].

Images are converted to radiance space and then another energy minimization is executed to re-
move artifacts. This time the pixel dissimilarity cost is computed using the Hamming distance between
candidates.

The methods presented until here have a high computational cost. Calculating the CRF from non-
aligned images may introduce errors since the matching between them may not be robust. Two exposures
are not enough to obtain a robust CRF with existing techniques. Some of them execute two passes of the
stereo matching algorithm the first one to detect matches for the CRF recovery and a second one to refine
the matching results. This might be avoided by calculating the CRF in a previous step using multiple
exposures of static scenes. Any of the available techniques [MP95, DM97, MN99, GN03a] can be used
to get the CRF corresponding to each camera. The curves help to transform pixel values into radiance
for each image and the matching process is executed in radiance space images. This avoids one stereo
matching step and prevents errors introduced by disparity estimation and image warping.

2.6.3.2 Offline CRF recovery methods

Bonnard et al. [BLV+12] propose a methodology to create content that combines depth and HDR video
for auto-stereoscopic displays. Instead of varying the exposure times, they use neutral density filters to
capture different exposures. A camera with eight synchronized objectives and three pairs of 0.3, 0.6 and
0.9 filters plus two non filtered views provide eight views with four different exposures of the scene stored
in 10-bit RAW files. They use a geometry-based approach to recover depth information from epipolar
geometry. Depth maps drive the pixel match procedure.

Batz et al. [BRG+14] present a work-flow for disparity estimation divided in the following steps:

• Cost initialization consists in evaluating the cost function, Zero Normalized Cross Correlation
(ZNCC) in this case, for all values within a disparity search range.
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The matching is performed on the luminance channel of radiance space image using patches of
9x9 pixels. The result of searching for disparities is the Disparity Space Image (DSI), a matrix of
m×n×d+1 for an images of m×n pixels with d+1 being the disparity search range.

• Cost aggregation smooth the DSI and find the final disparity of each pixel in the image. They use an
improved version of the cross-based aggregation method described by Mei et al. [MSZ+11]. This step
is performed not in the luminance channel like in the previous step but in the actual RGB images.

• Image warping is in charge of actually shifting all pixels according to their disparities. Dealing with
occluded areas between the images is the main challenge in this step. The authors propose to do
the warping in the original LDR images which adds a new challenge: dealing with under and over
exposed areas. A backward image warping is chosen to implicitly ignore the saturation problems.
The algorithm produces a new warped image with the appearance of the reference one by using the
target image and the corresponding disparity map. Bilinear interpolation is used to retrieve values
at subpixel precision.

Selmanovic et al. [SDBRC14] propose to generate Stereo HDR video from a pair of HDR and LDR
videos, using an HDR camera [CBB+09] and a traditional digital camera (Canon 1Ds Mark II) in stereo
configuration. This paper is an extension to video of a previous one [SDBRC13] focused only on stereo
HDR images. In this case, one HDR view needs to be reconstructed from two different sources.

Their method proposes three different approaches to generate the HDR:

1. Stereo correspondence is computed to recover the disparity map between the HDR and the LDR
images. The disparity map allows to transfer the HDR values to the LDR image. The sum of absolute
differences (SAD) is used as a matching cost function. Both images are transformed to Lab color
space which is perceptually more accurate than RGB.

The selection of the best disparity value for each pixel is based on winner takes all (WTA) technique.
The lower SAD value is selected in each case. An image warping step based on Fehn’s work [Feh04]
is used to generate a new HDR image corresponding to the LDR view. The SAD stereo matcher can
be implemented to run in real time but the resulting disparity maps could be noisy and not accurate.
The over and under exposed pixels may end up in a wrong position. In large areas of the same color
and hence same SAD cost, the disparity will be constant. Occlusions, reflective or specular objects
may cause some artifacts.

2. Expansion operator could be used to produce an HDR image from the LDR view. Detailed state-of-
the-art reports on LDR expansion were previously published [BDA+09, HS11]. However, in this
case, we need the expanded HDR to remain coherent with the original LDR. Inverse tone mappers
are not suitable because the resulting HDR image may be different from the acquired one, producing
results not possible to fuse through a common binocular vision.

They propose an expansion operator based on a mapping between the HDR and the LDR image
using the first one as reference. A reconstruction function maps LDR to HDR values (equation 2.10)
based on an HDR histogram with 256 bins putting the same number of HDR values in each bin as
there are in the LDR histogram.

RF = 1
Card(Ωc)

M(c)+Card(Ωc)∑
i=M(c)

Chdr(i)(2.10)
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In equation 2.10, Ωc = { j = i..N : cldr( j)= c}, c = 0..255 is the index if a bin Ωc, Card(·) returns the
number of elements in the bin, N is the number of pixels in the image, cldr( j) are the intensity
values for the pixel j, M(c)=∑c

0 Card(Ωc) is the number of pixels in the previous bin and chdr are
the intensities of all HDR pixels sorted ascending. RF is used to calculate the look-up table (LUT)
and afterward expansion can be performed directly assigning the corresponding HDR value to each
LDR pixel.

The expansion runs in real time, is not view dependent, and avoids stereo matching. The main
limitation is again on saturated regions.

3. Hybrid method combines the two previous ones. Two HDR images are generated using the previous
approaches (Stereo Matching and Expansion Operator). Pixels in well exposed regions are expanded
using the first method (expansion operator) while matches for pixels in under- or over-exposed
regions are found using SAD stereo matching adding a correction step. A mask of under and over
saturated regions is created using a threshold for pixels over 250 or below 5. The areas out of the
mask are filled in with the expansion operator while the under or over exposed regions are filled
in with an adapted version of the SAD stereo matching to recover more accurate values in over or
under exposed regions.

Instead of having the same disparity over the whole under or over exposed region, this variant
interpolates disparities from well exposed edges. Edges are detected using a fast morphological edge
detection technique described by Lee [LHS87]. Even though, some small artifacts may still be produced by
the SAD stereo matching in such areas.

Orozco et al. [OMLA15] presented a method to generate multiscopic HDR images from LDR multi-
exposure images. They adapted a patch match approach [SKY+12] to find matches between stereo images
using epipolar geometry constrains. This method reduces the search space in the matching process and
includes an improvement of the incoherence problem described for the patch-match algorithm. Each image
in the set of multi-exposed images is used as a reference, looking for matches in all the remaining images.
These accurate matches allow to synthesize images corresponding to each view which are merged into one
HDR per view that can be used in auto-stereoscopic displays.

2.7 Summary

This chapter introduced the main concepts related to high dynamic range imaging. It provided definitions
of many underlying concepts including light, color, digital and HDR imaging. Methods of capturing HDR
content (e.g. the multiple exposure technique) and details in each step of the HDR acquisition pipeline.
Finally, an analysis of existing stereo HDR acquisition techniques was covered.
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3
RECOVERING HDR FOR MOVING OBJECTS

3.1 Introduction

This chapter presents a technique to deal with dynamic objects in HDR reconstruction by gathering
HDR information of dynamic objects from a set of differently exposed LDR images [OMLV12]. The
input images are assumed to be globally aligned. Our goal is to reach the maximum HDR coverage

in the image as permitted by the input LDR images. No objects are removed from the image and pixels in
the areas affected by movement are registered and merged in HDR values.

Once regions in movement are identified, each dynamic object is registered to a reference image. We
increase the dynamic range by combining registered pixels, allowing HDR values even in areas affected by
movement. The best results are achieved in scenes where the dynamic objects as well as their movement
in the image sequence are roughly rigid. It means objects that don’t change their shape considerably
during the sequence (cars, motorbikes, planes) and that their motion trajectory can be approximated by
translations.

3.2 Recovering HDR for Moving Objects

One common approach to solve local misalignment is either to exclude dynamic objects from the HDR
image or to replace such areas with content from one exposure only. Excluding content from the image
makes it incoherent with the original scene and replacing the content with only one exposure might reduce
the dynamic range in such areas comparing to the rest of the scene.

The aim of this work is to provide HDR values even for areas in movement. The input sequence
are LDR images acquired at different exposure times, with the same aperture value and from the same
viewpoint or globally registered. We assume misalignment to be local, well-defined areas of the image
rather than the full image. In other words, we assume that images are perfectly aligned except for moving
objects.
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We propose a novel approach based on a framework of three steps to detect the affected areas, register
them and combine the content into a coherent HDR image, as shown in Figure 3.1. In each step, an
analysis and comparison of previous works helps to chose the appropriate solution.

1. Ghost detection: Four of the most used methods for ghost detection were implemented and
compared achieving different degrees of success, as discussed in section 3.2.1. The result of this step
is a mask where clusters of pixels affected by movement are identified (red box of Figure 3.1).

2. Registration: The second step is registering regions affected by movement to a reference image
(green square of Figure 3.1). We implemented and compared four similarity measures for image
registration. An image pyramid is implemented to speed up the registration process. This step is
described in section 3.2.2.

3. HDR composition: Finally, both the registered areas and the rest of the image are merged into
an HDR image (blue square in Figure 3.1). Pixels from dynamic areas are carefully combined after
registration excluding possible outliers. Ghosting areas are replaced with the obtained HDR values
(section 3.2.3).

Figure 3.1: Framework to achieve HDR image in dynamic scenes acquired from static cameras.

3.2.1 Ghost mask generation

This section is focused on detecting areas affected by movement. Like shown in Figure 3.2, moving objects
may appear in different parts of the image for each image in the sequence. It is important not only to
register the moving objects but to tackle occluded areas behind them.

We implemented and compared four well-known methods already presented in the previous chapter.
Since they attempt to identify regions that if merged produce ghosting artifacts, they are often known as
ghost detection methods. Depending on the method used, ghost detection can be performed either in the
LDR images or once they are transformed to radiance space. The objective is to identify pixels that change
unpredictably along the sequence (Figure 3.2).

3.2.1.1 Median Threshold Bitmap (MTB)

Ward [War03] found that the median intensity value is nearly insensitive to exposure variations, specially
for image with a rather bimodal brightness distribution. He used the median intensity value of a gray
representation of images to build MTB from each image in the sequence.
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Figure 3.2: Ghost mask generation.

Pece and Kautz [PK10] proposed to use the MTB to detect clusters of pixels affected by movement in a
sequence using simple binary operations. If there is no movement in the scene, pixels in the same position
are expected to have the same value in all binary bitmaps. The difference between MTB images indicates
pixels changes along the sequence. The difference between all bitmaps can be calculated using logical XOR
or the following expression:

(3.1)
N∑

i=1
Mi(x, y) ∉ 0, N

Where Mi corresponds to the MTB of each image in a sequence of N exposures. Summing all the bitmap
values along the sequence and selecting pixels that are neither 0 or N.

The result is a bitmap containing pixels that are not constant through the sequence either because
movement or false positives. False positives are pixels that change their value along the sequence but does
not represent any object movement, they are mainly consequence of noise. Morphological operations of
erosion and dilation help to eliminate such noise.

Figure 3.3 shows in the first row a sequence example of five LDR images. The images were acquired
from a tripod and show a car moving with a static background. The corresponding bitmaps are shown in
the second row. Figure 3.3(a) shows the sum of all bitmaps according to equation 3.1, in color appears
pixels that are neither 0 or 5. Such pixels are stored in a binary mask which represent the movement in
the sequence (Figure 3.3(b)).

There are cases where this method fails to detect movement. When colors from the dynamic object
and the background are both at the same side of the median threshold, this method fails. The example in
Figure 3.3 shows clearly that the car glasses are not detected as movement due to their similarity with the
background, neither parts of the car that overlaps the white bars are detected.

3.2.1.2 Variance-based methods

Variance of pixels along the sequence of LDR images may be an indicator to detect areas affected by
movement [JLW08]. The variance of pixel intensities V I(i, j) over the input LDR images is calculated
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(a) Sum of MTBs (b) Bitmap Movement Difference
(BMD)

(c) Pixels detected as movement

Figure 3.3: Bitmap Movement Difference for ghost detection.

using Equation 3.2.

(3.2) V I(i, j)=

N∑
n=0

w(In(i, j))In(i, j)2/
N∑

n=0
w(In(i, j))

(
N∑

n=0
w(In(i, j))In(i, j))2/(

N∑
n=0

w(In(i, j)))2

The variance could be influenced by saturation and noise. A weighting function w is used to minimize the
influence of under- and over-exposed values. We use the hat function proposed by Khan et al. [KAR06]
which is the same used in the final HDR composition.

High variance values are selected from the V I applying a threshold to obtain a binary image of
dynamic pixels. Some high variant pixels remain in the binary image that corresponds to noise or very
small movements. Morphological erosion and dilation are used to refine the final mask from noisy areas.

Pece [PK10] found that variance can fail in brightness peaks regions such as highlights, shining
objects or direct sun light. The success of using variance in ghost detection also depends on the relation
between colors of the dynamic object and the background. If the color of the dynamic object is similar to
the background the method fails.

The results can be improved if images are transformed to radiance space instead of using LDR images.
It requires a pre-calibration of the CRF using a static sequence of images. Notice the difference in the
results in the second and third rows of Figure 3.4. Second row corresponds to the results using the original
LDR sequence while the third row shows the results using the radiance instead of the original RGB values.
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(a) Variance Image - LDR (b) High variant pixels - LDR (c) Movement detected - LDR

(d) Variance Image - Rad (e) High variant pixels - Rad (f) Movement detected - Rad

Figure 3.4: Variance of a sequence in ghost detection. The first row shows the LDR images, the
second row the result of using the variance over the original LDR sequence and the third row
shows the variance applied over the images in radiance space.

3.2.1.3 CRF-based pixels prediction

Usually, multiple exposure sequences are ordered increasingly by their exposure times, from darker to
brighter. Sidibe et al. [SPS09] proposed a simple approach based on the fact that the CRF is monotonically
increasing. Pixels from consecutive images must be related by the same relation as their exposure times.
In a sequence of N exposures ∀n ∈ [1...N], for the exposure times ∆tn <∆tn +1, we can assume that the
following relation is valid for any pixel in (i, j):

(3.3) I(i, j),n ≤ I(i, j),n′

Pixels breaking this relation might be considered as movement. This method not only detects movements
but also the unexpected variation of a pixel color. Gallo et al. [GGC+09] improve this result assuming a
linear relation y= x+ ln(EV ) between images and using a threshold to select pixels far from this line.

Figure 3.5 shows this technique applied on a sequence ordered increasingly by the exposure time. The
second row shows pixels that does not follow an increasing order between consecutive images. Figure 3.5(a)
shows the interception of the partial differences and Figure 3.5(b) shows the pixels marked as movement
in the sequence.
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(a) Interception of partial differences (b) Movement detected

Figure 3.5: Pixels breaking exposure order [SPS09].

The relation in equation 3.3 is necessary but not enough to guarantee motion detection. The example in
the sequence from Figure 3.5 shows a clear example when this relation is not enough. The last displacement
of the car is not detected because it is white, which means that pixels are brighter than in the previous
image so the equation 3.3 is satisfied. This method is not effective to detect complete movement of an
object with more intensity than the background.

Gallo et al. [GGC+09] assumed a linear relation between the images and used a threshold to select
pixels in movement but problems persist because this assumption is rarely true. Grossberg and Nayar
[GN03a] proposed a method to get the intensity mapping function (IMF) τ. The IMF is derived from the
relation between the images based on comparing the cumulative histograms of consecutive exposures
instead of comparing the pixel values, as described in equation 3.4.

(3.4) I2 = τ(I1)= g−1(kg(I1))

where k expresses the relation between radiance in both images. Given the histogram of one image, the
histogram of the second is necessary and sufficient to determine the intensity mapping function. The
area of the image with intensities in the range [0, I] is given by a function H(I). Being h the continuous
histogram, this can be expressed like:

H(I)=
I∫

0

h(u)du
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(a) Green channel of I1 (b) Green channel of I2

(c) Pixels out of prediction (d) Movement detected

(e) Cumulative histogram H1 (f) Cumulative histogram H2 (g) Image Mapping Function

Figure 3.6: Cumulative histograms and IMF computation

This represents the cumulative histogram of the image (Figure 3.6(e) and 3.6(f)). Assuming ideal conditions,
each intensity in I2 maps to an intensity in I1 defined by I1 = τ(I2) then the set of pixels in one image with
intensity less than I1 must be the same that pixels in the other with intensity less than I2, these sets must
also have equal area H1(τ(I2))= H2(I2). Finding τ is possible using only the cumulative histograms from
the two images. Histograms must be normalized and linear interpolation is used to invert the cumulative
histogram.

Equation 3.2.1.3 replaces I1 = u and calculates τ from the cumulative histograms H1 and H2.

τ(u)= H2
−1(H1(u))

The main contribution of this method is to show that the IMF can be determined without alignment
because small scene movement does not change the histogram significantly. This makes it valid also for
scene with large moving objects as long as histograms remain approximately constant in the sequence.
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(a) IMF ghost masks combined (b) Detected movement

Figure 3.7: Ghost map detected using IMF.

The masks calculated for consecutive image pairs are combined with a logical XOR in a final ghosting
mask for the sequence that contains pixels affected by movement. Figure 3.7 shows five LDR images of a
scene of people walking over a bridge, trees in the background are also moving because of the wind.

3.2.2 Image Registration

Image registration is an intense research field in computer graphics, vision and image processing. Regis-
tration is the process of matching two or more images of the same scene taken under different conditions
(sensor, time, viewpoint or optical settings). During registration, one image is taken as reference and the
rest (target images) are transformed until a match is found [ZFS05]. Surveys classifying and analyzing
several techniques were presented previously [Bro92, MV98, ZF03, WPA09]. Registration techniques are
traditionally used in remote sensing, medical imaging, cartography or computer vision. Most registration
methods can be classified in two main groups:

• Feature-based methods: use salient structures (borders, lines or points) spread all over the image,
recognizable in both images and invariable in time. Some of these methods were used for alignment
in HDR reconstruction. However, dynamic objects in a sequence may not be well defined due to
large exposure times and movement. Details in one exposure may not be visible in the rest because
of over or under exposure.

• Intensity-based methods: attempt to match images without any explicit features detection, matching
directly pixels intensities. A similarity measure (cost function) is defined between the source and
the target and transformations are applied until the similarity measure reaches a maximum or
minimum according to the function selected.

This work compares the results of intensity based registration using four similarity measures. The area
of movement in the sequence is detected in the ghost detection step described in section 3.2.1. Figure 3.8
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Figure 3.8: Defining target images from the ghost mask.

shows that the ghost mask can be cropped to focus only in regions of interest. The sub-images containing
the movement detected can still be reduced. The partial ghost mask between pairs of them are smaller
than the whole affected area. Differences between consecutive images are calculated generating partial
ghost masks and sub-images are cropped according to the partial masks as shown in the last row of Figure
3.8.

All target images will be registered over the reference image. Registration is a highly time consuming
task, the use of a pyramid of images helps to speed it up. In each level images are sampled down by a factor
of two, as shown in Figure 3.9. Using the images from the last level, the target images are translated,
rotated and scaled iteratively over the whole reference image evaluating the similarity measure in each
iteration. Once the best match for the lowest level of the pyramid is found, we proceed with the higher
level. Then we check only for transformations in an offset around the match point obtained in the previous
step. The size of the offset depends on the size of target images but usually a vicinity of 10 percent of the
dimensions of the image around the previous matching position gives good result images.

The following sections introduce the different similarity measures we implemented. The results of
each of using them are presented in the section 3.3.2.

3.2.2.1 Sum of Squared Difference (SSD)

SSD is the simplest and the most intuitive way of measuring similarity [Anu70, SMA78, RS84]. The
minimum value of SSD corresponds to the transformation T that better match the images In and In′ .

(3.5) SSD =
N∑

n=1
(In −T(In′ ))2

However, there are some problems using SSD for HDR registration because it is not invariant to changes
in lighting conditions across the image sequence [Lew95].
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3.2.2.2 Normalized Cross Correlation (NCC)

NCC assumes that corresponding intensities in the images have a linear relationship [CHH04]. This
metric is used in images taken with the same device at different times [RR08]. We implemented it using
an approach presented by Lewis [Lew95]. The best matching corresponds to the transformation that
maximizes the NCC value.

(3.6) NCC =

N∑
n=1

In ·T(In′ )√
N∑

n=1
I2

n ·
N∑

n=1
T(In′ )2

3.2.2.3 Mutual Information (MI)

MI is a measure of statistical dependence between two random variables or the amount of information
that one variable contains about the other [RR08]. The Mutual Information can be defined like:

(3.7) MI(In, In′ )= H(In)−H(In′ |In)= H(In)+H(In′ )−H(In, In′ )

Being H the Shannon[Sha48] entropy. For an image the entropy is calculated from the intensity histogram
where N is the number of bins and pi the value of each bin:

(3.8) H =−
N∑

i=1
pi log(pi)

Since Viola et al. [VW95], several papers were presented mainly for multimodal image registration either
minimizing joint entropy or maximizing mutual information [MFS14]. Most of them use a pyramidal
approach to speed up the registration process [ZFS05]. We use Normalized Mutual Information (NMI) as
similarity measure:

(3.9) NMI(In, In′ )= H(In)+H(In′ )
H(In, In′ )

Figure 3.9: Image pyramid registration.
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3.2.2.4 Median Threshold Bitmap (MTB)

It is the same MTB principle used for ghost detection in the previous section. It was adapted by Grosch
[Gro06] to allow finding the correct transformation for registration once the transformation that minimizes
bitmap differences is found. Despite this is not a popular measure for image registration, it has been used
repeatedly in HDR.

3.2.3 HDR composition

This section shows how to proceed once the areas affected by movement are detected and registered
over the reference image. The ghost mask classifies pixels in static or dynamic. The static pixels can be
composed in an HDR image E using a weighted average [MP95, DM97, MN99] defined in Equation 3.10.
The equation represents a weighted average of the radiance of the N images In in the sequence. The
radiance is calculated using the inverse of the CRF ( f −1) and the exposure time ∆t and we use the
weighting function of Equation 3.11 proposed by Khan et al. [KAR06].

(3.10) E(i, j)=
∑N

n=1 w(In(i, j))( f −1(In(i, j))
∆tn

)∑N
n=1 w(In(i, j))

(3.11) w(In)= 1− (2 · In

255
−1)12

Pece and Kautz [PK10] suggested to replace all pixels in the ghost mask by the best exposed LDR. The
ghost mask contains pixels from dynamic objects all over the sequence, but usually movement does not
affect more than two or three consecutive images. Gallo et al. [GGC+09] calculated partial ghost mask for
each pair of consecutive images. This ensures that only pixels from dynamic objects are excluded in each
LDR image. However, under or over exposed regions might remain untreated in the result.

We can fill these regions with HDR values recovered for dynamic regions after registration. Even after
registration it is important to prevent artifacts produced by small misalignment. In the HDR composition
we only consider pixels that are correctly aligned. We calculate the difference between aligned images and
the reference and discard the pixels that doesn’t match.

3.3 Results and discussion

This section analyses and compares the results of the ghost detection and registration steps and the results
of the proposed framework for full HDR recovery. All images for the test described were captured using
a tripod and the auto bracketing function of a NIKON D200 camera. All parameters except the shutter
speed were kept constant during the capture. Results vary depending on the ghost detection technique
used since it determines the accuracy of the mask that represent dynamic content, the similarity measure
used for registration and the thresholds used in each case.

3.3.1 Ghost Detection

Figures 3.11 and 3.10 show five LDR images from two different scenes and the ghost detection results
obtained using the four implemented methods (see section 3.3.1). The set of images were carefully selected
to show the weakness of each method.
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(a) MTB [PK10] (b) VI [JLW08]

(c) CRF [SPS09] (d) IMF Threshold

Figure 3.10: (Top) Set of input LDR images. (a-d) Results of ghost detection using the different
methods presented in section 3.3.1. Note that IMF provides the best results.

The MTB method is fast and easy to implement. It is accurate for scenes with a rather bimodal
brightness distribution. However, it fails if the dynamic object and the background are both smaller or
bigger than the median value of intensities. In Figure 3.10(a) only pixels from non overlapping regions of
clothes are detected, the same in Figure 3.11(a), where only the front glass is detected because the rest is
very similar to the background.

The success of using variance in ghost detection also depends on the relation between colors of the
dynamic object and the background. Variance method may fail in areas where the brightness is too high
(highlights, shining objects, direct sun light) or when the movement is too slow that produces overlapping
[PK10]. If the color of the dynamic object is similar to the background, the method fails [JLW08]. Figures
3.10(b) and 3.11(b) show an example where the variance method fails because dynamic pixels are very
similar to the background. The threshold value is also an issue to take into account since the results
directly depend on it.
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(a) MTB [PK10] (b) VI [JLW08]

(c) CRF [SPS09] (d) IMF Threshold

Figure 3.11: Another example of ghost detection. (Top) Set of input LDR images. (a-d) Results of
ghost detection using the different methods presented in section 3.3.1. In this case IMF is also
the method with best results.
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The CRF-based method proposed by Sidibe [SPS09] is very simple and does not depend on threshold
values. It is based on the assumption that pixel intensities increase through the sequence, which is not
always true in dynamic scenes. Any situation that breaks such assumption is detected as movement, like
when the black car is moving in front of a dark background in Figure 3.11(c).

The most robust method in our tests was the one based on the IMF. Getting the IMF allows to predict
values between pairs of images and to compare predicted values with the actual ones. The results of this
method are the best in all tested cases. Nevertheless, the appropriate selection of the threshold value is
crucial for the success of this method.

3.3.2 Image Registration

The ghost mask obtained in the previous step defines the area that we need to register. The results of
image registration highly depend on the ghost detection step. The target images are selected from the
bounding box of pixels affected by movement, like shown in Figure 3.3. If the ghost detection is not correct,
bounding boxes do not correspond to dynamic objects and the registration step may fail too. The goal of the
registration algorithm is to find the transformation that match the target image into the reference one. To
find the matching we iterate over the search space in order to minimize (or maximize, depending in the
similarity measure) the error between the target and the reference images.

Figures 3.12 and 3.13 shows an example of registration of two images from a sequence and the results
obtained with the four implemented measures presented in section 3.2.2.

(a) Reference (b) Target

(c) SSD (d) MTB

(e) NCC (f) MI

Figure 3.12: Results of the registration of the reference sub-image (a) to the target sub-image (b).
NCC is the method that achieves best results.

The original implementation was updated including translations and scaling. Evaluating the similarity
measure for each possible translation is the most time consuming step of our method. We implemented
CUDA kernels within our application in Matlab to perform this step.

Even when SSD finds a correct matching in some cases, it requires very specific conditions to work
properly. It is not appropriate for registering images with very different exposures. The distance between
images is affected by over- and under-exposed values.
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(a) Reference (b) Target

(c) SSD (d) MBD (e) NCC (f) MI

Figure 3.13: Results of the registration of the reference sub-image (a) to the target sub-image (b).
Note how NCC gets the best registration.

Our results showed that the MTB method is suitable for most cases. Its implementation is very simple
and it is the fastest of the tested methods. However, similarly to variance for ghost detection, it fails if the
background and the object have similar colors.

MI is a statistical measure and it is not affected by intensity changes. Most of results obtained using it
are satisfactory but directly depend on the entropy of images which can be perturbed by over- or under-
saturated pixels and the size of the moving objects. It is also the slowest method among the implemented
ones.

We obtained the best relation cost/performance when using NCC. It is insensitive to intensity changes
which makes it a strong measure for images with different exposures.

3.3.3 HDR composition

Most previous work deal with dynamic areas in two different ways: (1) dynamic areas are removed from
the final HDR image, reconstructing only the background [KAR06, PH08, GSL08, Mar09, SPS09, SL12]

or (2) replaced by LDR content from the best exposure [Gro06, JLW08, GGC+09, SPS09, PK10, HLL+11,
ADGM13]. The first approach is not coherent with the original scene because some content is missing in
the HDR image. Replacing areas with LDR content may introduce over or under saturated areas in the
dynamic areas of the resulting HDR image.

Algorithms using optical flow [KUWS03, ST04, MG10, ZBW11] aim to register the movement by
tracking some feature points in the sequence. They are robust for slow movement (that introduces small
displacements of pixels throw the sequence) but it can fails otherwise, the selection of features that could
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be tracked through a multiexposed sequence is also a problem to concern about.

Other approaches propose to match patches centered in every pixel of the image [SKY+12, HGP12].
Such cases are robust when the reference image does not contains big under or over exposed areas but it
can introduce artifacts in such areas otherwise.

(a) LDR sequence

(b) Replacing ghosting with LDR (c) Patch-Based [SKY+12] (d) Our method (Fig. 3.1)

(e) Replacing ghosting with LDR (f) Patch-Based [SKY+12] (g) Our method (Fig. 3.1)

Figure 3.14: HDR reconstruction of the sequence (a). (b)-(d) are the result of HDR reconstruction
using the first image as reference.(e)-(g) are the result of HDR reconstruction using the third
image as reference.

Our results are consistent in terms of the dynamic range recovered in the final HDR image and it
preserve all the content from the original scene. Some artifact may persist after the registration because we
only check for translation, rotation and scaling in the image plane. Other transformations like perspective
or rotations in the objects space could be frequent and our method can not deal with them. To avoid such
artifacts we check which of the registered pixels actually match to the reference image. We calculate the
error between the registered image and the reference and exclude pixels with error bigger than a given
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threshold (5 percent for most of our tests).

(a) LDR sequence

(b) Replacing ghosting with LDR (c) Patch-Based [SKY+12] (d) Our method (Fig. 3.1)

(e) Replacing ghosting with LDR (f) Patch-Based [SKY+12] (g) Our method (Fig.3.1)

Figure 3.15: HDR reconstruction of the sequence (a). (b)-(d) are the result of HDR reconstruction
using the third image as reference.(e)-(g) are the result of HDR reconstruction using the last
image as reference.

Figure 3.14 helps to compare our solution to those that replace dynamic areas with content from the
LDR reference only and a patch based approach. We conveniently selected as a reference the firs image
(results (b) to (d)) in the sequence because it contains very under saturated values both in the mountains
of the background and inside the car and the image in the middle of the sequence (results (e) to (g)). All
images where tone mapped using the default tonemapper of Photomatix 4.2.1 3. Replacing ghosting with
the reference image introduces under saturated values in image (b) because pixels inside the car are under

3http://www.hdrsoft.com
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saturated in the reference image.
The patch based method highly depends on the reference, since the matching takes place at patch level

and includes a random component it may get wrong matching if the reference is under or over saturated
like both inside the car or the background mountains. On the other hand when selecting the best exposure
as reference, this method shows very accurate results. For some applications it is very important to get
the same HDR values through the sequence independently of the reference image and this is not possible
using most of the previous approaches.

In Figure 3.15 we compare our results obtained between our method and other two state of the art
methods selecting the best exposure and the most saturated exposure of the sequence. Similarly to the
previous sequence we can notice that our method is less sensitive to the reference choice. This is an
important advantage if we want to apply this method to HDR video using different exposure sequences.

3.4 Summary

This chapter presented a method for HDR images generation of dynamic scenes. Our method detects areas
affected by movement, matches them in a reference image and recovers HDR values from such areas in a
sequence of LDR images. Promising results were obtained for scenes where dynamic objects were roughly
rigid.

We implemented some state-of-the-art algorithms according to descriptions given by their authors.
The selected algorithms were developed in Matlab using CUDA kernels. Regarding the ghost detection,
we implemented four approaches obtaining different degrees of success. Even when all implemented
techniques produce good results for some kind of scenes, the best results are most of the time obtained
using a threshold over differences of pixels predicted with the IMF and the actual values. It is a very
important step since all the process relies on its results. Any improvement of this step will have a positive
impact on the reconstructed HDR scene.
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4
MULTISCOPIC HDR IMAGE SEQUENCE GENERATION

(a) Non aligned (b) Bätz et al. [BRG+14] (c) Our Result

Figure 4.1: Set of LDR multiview images from the IIS Jumble data-set, courtesy of Bätz [BRG+14].
The top row shows five views with different exposure values. The bottom row shows HDR images
obtained without alignment (a), using Bätz’s method (b), and using our proposed patch-match
method (c).

4.1 Introduction

H igh Dynamic Range content generation has been recently moving from the 2D to 3D imaging
domain introducing a series of open problems that need to be solved. 3D images are displayed
in two main ways: either from two views for monoscopic displays with glasses or from multiple

views for auto-stereoscopic displays. Most of current auto-stereoscopic displays accept from five to nine
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different views [LLR13]. To our knowledge, HDR auto-stereoscopic displays do not exist yet. However,
HDR images are device independent and that means that they store values from the scene they represent
independently of the device that will project them. Actually, HDR images existed long before the first HDR
prototype appeared. Similarly to displaying tone-mapped HDR images on LDR displays, it is possible to
feed LDR auto-stereoscopic displays with tone-mapped HDRs, one per each view required by the display.

Some of the techniques used to acquire HDR images from multiple LDR exposures have been recently
extended for multiscopic images [TKS06, LC09, SMW10, BRR11, BLV+12, OMLA13, OMLA14, BRG+14,
SDBRC14]. However, most of these solutions suffer from a common limitation: they rely on accurate dense
stereo matching between images which is not robust in case of brightness difference between exposures
[BVNL14].

This chapter presents a solution to combine sets of multiscopic LDR images into HDR content using
image correspondences based on the Patch Match algorithm [BSFG09]. This algorithm was recently used
by Sen et al. [SKY+12] to build HDR images preventing from significant ghosting effects. Furukawa and
Ponce [FP10] noticed the importance of improving the coherence of neighboring patches, an issue tackled
in this chapter. Their results were promising for multi-exposure sequences where the reference image is
moderately under exposed or saturated but it fails when the reference image has large under exposed or
saturated areas.

The method described in this chapter improves Barnes et al. [BSFG09] approach for multiscopic
image sequences (Figure 4.2). It also reduces the search space in the matching process and improves the
incoherence of the matches in the original algorithm. Each image in the set of multi-exposed images is
used as a reference; we look for matches in all the remaining images. Accurate matches allow to synthesize
a set of HDR images, one for each view used for HDR merging.

The main contributions of this chapter can be summarized as follows:

• We provide an efficient solution to multiscopic HDR image generation.

• Traditional stereo matching produces several artifacts when directly applied on images with
different exposures. We introduce the use of an improved version of patch-match to solve these
drawbacks.

• Patch-match algorithm was adapted to take advantage of the epipolar geometry reducing its
computational costs while improving its matching coherence drawbacks.

4.2 Patch-based multiscopic HDR Generation

The input for multiscopic HDR is a sequence of LDR images (formed of RAW or 8-bit RGB data) as shown
in the first row of Figure 4.1. Each image is acquired from a different viewpoint, usually from a rig of
cameras in a stereo distribution or multi-view cameras (see Figure 4.3). If the input images are in a 8-bit
format, an inverse CRF needs to be recovered for each camera involved in the acquisition. This calibration
step is performed only once, using a static set of images for each camera. The inverse of the CRFs is used to
transform the input into radiance space. The remaining steps are performed using radiance space values
instead of RGB pixels.

An overview of our framework is shown in Figure 4.2. The first step is to recover the correspondences
between the n images of the set. We propose to use a nearest neighbor search algorithm (see section 4.2.1)
instead of a traditional stereo matching approach. Each image acts like a reference for the matching
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Figure 4.2: Proposed framework for multiscopic HDR Generation. It is composed by three
main steps: (1) radiance space conversion, (2) patch match correspondences search and (3) HDR
generation.

process. The output of this step is n-1 warped images for each exposure. Afterward, the warped images
are combined into an output HDR image for each view (see section 4.2.2).

Figure 4.3: The Octo-cam, multi-view camera prototype.

4.2.1 Nearest Neighbor Search

For a pair of images Ir and Is, we compute a Nearest Neighbor Field (NNF) from Ir to Is using an improved
version of the method presented by Barnes et al. [BSFG09]. NNF is defined over patches around every
pixel coordinate in image Ir for a cost function D between two patches of images Ir and Is. Given a patch
coordinate r ∈ Ir and its corresponding nearest neighbor s ∈ Is, NNF(r) = s. The values of NNF for all
coordinates are stored in an array with the same dimensions as Ir.

We start initializing the NNFs using random transformation values within a maximal disparity range
on the same epipolar line. Consequently the NNF is improved by minimizing D until convergence or a
maximum number of iterations is reached. Two candidate sets are used in the search phase as suggested
by [BSFG09]:

1. Propagation uses the known adjacent nearest neighbor patches to improve NNF. It quickly converges
but it may fall in a local minimum.

2. Random search introduces a second set of random candidates that are used to avoid local minimums.
For each patch centered in pixel v0, the candidates ui are sampled at an exponentially decreasing
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distance vi previously defined by Barnes et al. :

(4.1) ui = v0 +wαiRi

where Ri is a uniform random value in the interval [-1,1], w is the maximum value for disparity
search and α is a fixed ratio (1/2 is suggested).

Taking advantage of the epipolar geometry both search accuracy and computational performance
are improved. Geometrically calibrated images allow to reduce the search space from 2D to 1D domain,
consequently reducing the search domain. The random search of matches only operates in the range of
maximum disparity in the same epipolar line (1D domain), avoiding to search in 2D space. This reduces
significantly the number of samples to find a valid match.

(a) Coherency (b) Completeness

Figure 4.4: Patches from the reference image (Left) look for their NN in the source image (Right).
Even when destination patches are similar in terms of color, matches may be wrong because of
geometric coherency problems. Images from the ’Octocam’ dataset courtesy of [BLV+12]

However, the the original NNFs approach [BSFG09] used in the patch match algorithm has two main
disadvantages, the lack of completeness and coherency. This problems are illustrated in Figure 4.4 and the
produced artifact in Figure 4.5. The lack of coherency refers to the fact that two neighbor pixels in the
reference image, may match two separated pixels in the source image like in Figure 4.4(a). Completeness
issues refer to more than one pixel in the reference image matching the same correspondence in the source
image, like shown in Figure 4.4(b).

To overcome this drawback we propose a new distance cost function D by incorporating a coherence
term to penalize matches that are not coherent with the transformation of their neighbors. Both Barnes et
al. [BSFG09] and Sen et al. [SKY+12] use the Sum of Squared Differences (SSD) described in equation 4.3
where T represents the transformation between patches of N pixels in images Ir and Is. We propose to
penalize matches with transformations that differ significantly form it neighbors by adding the coherence
term C defined in equation 4.4. The variable dc represents the Euclidean distance to the closest neighbor’s
match and Maxdisp is the maximum disparity value. This new cost function forces pixels to preserve
coherent transformations with their neighbors.

(4.2) D = SSD(r, s)/C(r, s)

(4.3) SSD =
N∑

n=1
(Ir −T(Is))2

(4.4) C(r, s)= 1−dc(r, s)/Maxdisp
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(a) Src Image

(b) Ref Image

(c) PM NNF

(d) Ours NNF

(e) PM synthesized

(f) Ours synthesized

(g) Details in (e)

(h) Details in (f)

Figure 4.5: Matching results using original Patch Match [BSFG09] (Up) and our version (Down)
for two iterations using 7x7 patches. Images in the ’Art’ dataset courtesy of [Mid06].

Figures 4.5(d) and 4.5(f) correspond to the results including the improvements presented in this section.
Figures 4.5(c) and 4.5(d) show a color representation of the NNFs using HSV color space. The magnitude of
the transformation vector is visualized in the saturation channel and the angle in the hue channel. Areas
represented with the same color in the NNF color representation mean similar transformation. Objects in
the same depth may have similar transformation. Notice that the original Patch Match [BSFG09] finds
very different transformations for neighboring pixels of the same objects and produces artifacts in the
synthesized image.

4.2.2 Image alignment and HDR Generation

The nearest neighbor search step finds correspondences among all the different views. The matches are
stored in a set of n2 −n NNFs. This information allows to generate n−1 images with different exposures
realigned on each view. The set of aligned multiple exposures per view feeds the HDR generation algorithm
to produce a HDR image for every view (see Figure 4.6).

Despite the improvements in the cost function presented in the previous section, NNF may not
be coherent in occluded or saturated areas. However, even in such cases a match to a similar color is
found between each pair of images Ir; Is. This makes possible to synthesize images for each exposure
corresponding to each view.

Direct warping from the NNFs is an option, but it may generate visible artifacts as shown in Figure 4.7.
We use Bidirectional Similarity Measure (BDSM) (Equation 4.5), proposed by Simakov et al. [SCSI08] and
used by Barnes et al. [BSFG09], which measures similarity between pairs of images. The warped images
are generated as an average of the patches that contribute to a certain pixel. It is defined in equation
4.5 for every patch Q ⊂ Ir and P ⊂ Is, and a number N of patches in each image respectively. It consists
of two terms: coherence that ensures that the output is geometrically coherent with the reference and
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Figure 4.6: The nearest neighbor search step generates n2 −n NNFs. This is used to generate
n−1 aligned images per view, using Bidirectional Similarity. HDR images are generated using
input from each view and the corresponding aligned images.

completeness that ensures that the output image maximizes the amount of information from the source
image:

(4.5) d(Ir, Is)=

dcompleteness︷ ︸︸ ︷
1

NIr

∑
Q⊂Ir

min
P⊂Is

D(Q,P)+

dcoherence︷ ︸︸ ︷
1

NIs

∑
P⊂Is

min
Q⊂Ir

D(P,Q)

This improves the results by using bidirectional NNFs (Ir → Is and backward, Ir ← Is). It is more accurate
to generate images using only two iterations of nearest neighbour search and bidirectional similarity than
four iterations of neighbour search and direct warping. Table 4.1 shows some values of Mean Squared Error
(MSE) and Peak Signal-to-Noise Ratio (PSNR) of images warped like the ones in Figure 4.7 comparing to
the reference LDR image. The values in the table corresponds to the average MSE and PSNR calculated
per each channel of the images in L*a*b* color space, using equations 4.6 and 4.7 respectively.

(4.6) MSE(I, I ′)= 1
N

N∑
1=0

(I(i)− I ′(i))2

(4.7) PSNR(I, I ′)= 10log10(
MAX2

MSE(I, I ′)
)
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(a) Direct warping

(b) Details in (a)

(c) Using BDSM

(d) Details in (c)

Figure 4.7: Images 4.7(a) and 4.7(c) are both synthesized from the pair in Figure 4.5. Image
4.7(a) was directly warped using values only from the NNF of Figure 4.5(c), which corresponds
to matching 4.5(a) to 4.5(b). Image 4.7(c) was warped using the BDSM of Equation 4.5 which
implies both NNFs of Figures 4.5(c) and 4.5(d). Notice the artifacts on the edges and the sharp
changes on (a) and (b).

Table 4.1:

Iterations
Direct Warp Bidirectional
MSE PSNR MSE PSNR

1 2.42199 41.8613 2.17003 42.3734
2 2.40966 41.8764 2.17195 42.3762
4 2.4137 41.8728 2.16708 42.3846

Since the matching is totally independent for pairs of images, it was implemented in parallel. Each
image matches the remaining other views. This produces n-1 NNFs for each view. The NNFs are in fact
the two components of the BDSM of equation 4.5. The new image is the result of accumulating pixel colors
of each overlapping neighbor patch and averaging them.

(4.8) E(i, j)=
∑N

n=1 w(In(i, j))( f −1(In(i, j))
∆tn

)∑N
n=1 w(In(i, j))

(4.9) w(In)= 1− (2
In

255
−1)12
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The HDR images (one HDR per view) are generated using a standard weighted average [MP95, DM97,
MN99] as defined in Equation 4.8 and the weighting function of Equation 4.9 proposed by Khan et al.
[KAR06] where In represents each image in the sequence, w corresponds to the weight, f is the CRF, ∆tn

is the exposure time for the I th image of the sequence.

4.3 Results and discussion

(a) Src Image

(b) PM NNF

(c) PM synthesized

(d) Details in (e)

(e) Ref Image

(f) Ours NNF

(g) Ours synthesized

(h) Details in (f)

Figure 4.8: Comparison between original Patch Match and our method (2 iterations, 7x7 patch
size). Images 4.8(b) and 4.8(f) show the improvement on the coherence of the NNF using our
method. Images courtesy of [SDBRC14].
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Five data-sets were selected in order to demonstrate the robustness of our results. For the set ’Octo-
cam’ all the objectives capture the scene at the same time and synchronized shutter speed. For the rest of
data-sets the scenes are static. This avoids the ghosting problem due to dynamic objects in the scene. In all
figures of this section we use the different LDR exposures for display purposes only, the actual matching is
performed in radiance space.

The ’Octo-cam’ data-set are eight RAW images with 10-bit of color depth per channel. They were
acquired simultaneously using the Octo-cam [PcPD+10] with a resolution of 748x422 pixels. The Octo-cam
is a multi-view camera prototype composed by eight objectives horizontally disposed. All images are taken
at the same shutter speed (40 ms) but we use three pairs of neutral density filters that reduce the exposure
dividing by 2, 4 and 8 respectively. The exposure times for the input sequence are equivalent to 5, 10, 20
and 40 ms respectively [BLV+12]. The objectives are synchronized so all images corresponds to the same
time instant.

The sets ’Aloe’, ’Art’ and ’Dwarves’ are from the Middlebury web site [Mid06]. We selected images that
were acquired under fixed illumination conditions with shutter speed values of 125, 500 and 2000 ms for
’Aloe’and ’Art’ and values of 250, 1000 and 4000 ms for ’Dwarves’. They have a resolution of 1390 x 1110
pixels and were taken from three different views. Even if we have only 3 different exposures we can use
the seven available views by alternating the exposures like shown in Figure 4.11.

(a) Reference

(b) Source

(c) 1 iteration ours

(d) 1 iteration PM

(e) 2 iteration ours

(f) 2 iteration PM

(g) 10 iteration ours

(h) 10 iteration PM

Figure 4.9: Two images from the ’Dwarves’ set of LDR multi-view images from Middlebury
[Mid06]. Our method with only two iterations achieve very accurate matches. Notice that the
original patch match requires more iterations to achieve good results in fine details of the image.
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The last two data-sets were acquired from two of the state-of-the-art papers. Bätz et al. [BRG+14]
shared their image data set (IIS Jumble) at a resolution of 2560x1920 pixels. We selected five different
views from their images. They where acquired at shutter speeds of 5, 30, 61, 122 and 280 ms respectively.
Pairs of HDR images like the one in Figure 4.8, both acquired from a scene and synthetic examples come
from Selmanovic et al. [SDBRC14]. For 8-bit LDR data sets, the CRF is recovered using a set of multiple
exposure of a static scene. All LDR images are also transformed to radiance space for fair comparison with
other algorithms.

Figure 4.8 shows a pair of images linearized from HDR images courtesy of Selmanovic et al. [SDBRC14]
and the comparison between the original PM from Barnes et al. [BSFG09] and our method including the
coherence term and epipolar constrains. The images in Figures 4.8(b) and 4.8(f) represent the NNF. They
are encoded into an image in HSV color space. Magnitude of the transformation vector is visualized in the
saturation channel and the angle in the hue channel. Notice that our results represent more homogeneous
transformations, represented in gray color. Images in Figure 4.8(c) and 4.8(g) are synthesized result images
for the Ref image obtained using pixels only from the Src image. The results correspond to the same
number of iterations (2 in this case). Our implementation converges faster producing accurate results in
less iterations than the original method.

All the matching and synthesizing processes are performed in radiance space. They were converted to
LDR using the corresponding exposure times and the CRF for display purposes only. The use of an image
synthesis method like the BDSM instead of traditional stereo matching allows us to synthesize values also
for occluded areas.

(a) Lower exposure LDR

(b) Details in (b)

(c) Tone-mapped HDR

(d) Details in (c)

Figure 4.10: Details of the generated HDR image corresponding to a dark exposure. Notice that
under-exposed areas, traditionally difficult to recover, are successfully generated without visible
noise or misaligned artifacts. IIS Jumble data-set courtesy of [BRG+14].
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Figure 4.9 shows the NNFs and the images synthesized for different iterations of both our method and
the original patch match. Our method converges faster and produce more coherent results than [BSFG09].
In occluded areas the matches may not be accurate in terms of geometry due to the lack of information.
Even in such cases, the result is accurate in terms of color. After several tests, only two iterations of our
method were enough to get good results while five iterations were recommended for previous approaches.

Figure 4.10 shows one example of the generated HDR corresponding to the lowest exposure LDR view
in the IIS Jumble data-set. It is the result of merging all synthesized images obtained with the first view
as reference. The darker image is also the one that contains more noisy and under-exposed areas. HDR
values were recovered even for such areas and no visible artifacts appears. On the contrary, the problem of
recovering HDR values for saturated areas in the reference image remains unsolved. When the dynamic
range differences are extreme the algorithm does not provide accurate results. Future work must provide
new techniques because the lack of information inside saturated areas does not allow patches to find good
matches.

The inverse CRFs for the LDR images were calculated from a set of aligned multi-exposed images
using the software RASCAL, provided by Mitsunaga and Nayar [MN99]. Figure 4.11 shows the result of
our method for a whole set of LDR multi-view and differently exposed images. All obtained images are
accurate in terms of contours, no visible artifacts comparing to the LDR were obtained.

Figure 4.12 shows the result of the proposed method in a scene with important lighting variations.
The presence of the light spot introduces extreme lighting differences between the different exposures.
For bigger exposures the light glows from the spot and saturate pixels not only inside the spot but also
around it. There is not information in saturated areas and the matching algorithm does not find good
correspondences. The dynamic range is then compromised in such areas and they remain saturated.

Figure 4.11: Up: ’Aloe’ set of LDR multi-view images from Middlebury web page [Mid06]. Down:
the resulting tone mapped HDR taking each LDR as reference respectively. Notice the coherence
between the tone mapped HDR images.

Two of the dataset used in the tests provide aligned multiple exposures for each view, which allows
to generate ground truth HDR images per view. Figure 4.13 shows the results of comparing some of our
results to ground truth images using the HDR-VDP-2 metric proposed by Mantiuk et al. [MKRH11]. This
metric provides some values to describe how similar two HDR images are.

The quality correlate Q is 100 for the best quality and gets lower for lower quality. Q can be negative
in case of very large differences. The images at the right of each pairs in figure 4.13 are the probability
of detection map. It shows where and how likely a difference will be noticed. However, It does not show
what this difference is. Images at the left on each pair show the contrast-normalized per-pixel difference
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Figure 4.12: Up: Set of LDR multi-view images acquired using the Octo-cam [PcPD+10]. Down:
the resulting tone mapped HDR taking each LDR as reference respectively. Despite the important
exposure differences of the LDR sequence, coherent HDR results are obtained. However, highly
saturated areas might remain saturated in the resulting HDR. Images courtesy of [BVNL14].

weighted by the probability of detection. The resulting images do not show probabilities. However, they
better correspond to the perceived differences.

(a) Q = 64.7686 (b) Q = 65.8598 (c) Q = 62.7004

(d) Q = 72.3828 (e) Q = 74.7925 (f) Q = 65.8817

(g) Q = 52.3245 (h) Q = 37.7078 (i) Q = 29.4814

Figure 4.13: . HDR-VDP-2 Comparison between ground truth HDR images and our results.
Each pair corresponds to the probability of detection (left) and the contrast-normalized per-pixel
difference (right) of low, medium and high exposures corresponding to different views. The first
row corresponds to the three first views of the ’Aloe’ data set (Figure 4.11). The second row to the
’Art’ data set (Figure 4.5) and the third row to the IIS Jumble dataset (Figure 4.10) HDR-VDP-2
Comparison. Images courtesy of Middlebury [Mid06] and [BRG+14] respectively.

The results illustrate that in general, no difference are perceived. Except in areas that appear totally
saturated in the reference image, like the head of the sculpture in the ’Art’ data set or the lamp in the IIS
Jumble. In such cases visible artifact appears because the matching step fails to find valid correspondences.

Our method is faster than some previous solutions. [SKY+12] mention that their method takes less
than 3 minutes for a sequence of 7 images of 1350x900 pixels. The combination of a reduced search space
and the coherence term effectively implies a reduction of the processing time. On a Intel Core i7-2620M
2,70 GHz with 8 GB of memory, our method takes less than 2 minutes (103 ± 10 seconds) for the Aloe data
set with a resolution of 1282x1110 pixels.
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4.4 Summary

This chapter presented a framework for auto-stereoscopic 3D HDR content creation that combines sets of
multiscopic LDR images into HDR content using image dense correspondences.

Our novel approach extends the well known Patch Match algorithm, introducing an improved random
search function that takes advantage of the epipolar geometry. Also a coherence term is used for improving
the matching process.

These modifications allow to extend the original approach to work for HDR stereo matching, while
improving its computational performances. We have presented a series of experimental results showing
the robustness of our approach, in the matching process, when compared with the original approach and
its qualitative results.
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(a) [SKY+12], ref. middle

(b) [SKY+12], ref. high

(c) [HGPS13], ref. middle

(d) [HGPS13], ref. high

(e) Our method, ref. middle

(f) Our method, ref. high

Figure 5.1: This figure presents results of different state-of-the-art methods using two reference
images, the middle exposure (top row) and the highest exposure (bottom row). Images in (a)
and (b) correspond to results of Sen et al. [SKY+12], notice the artifacts of (b) in areas that are
saturated in the reference image. Images in (c) and (d) are results of using [Hu et al. 2013],
HDR information is not recovered areas saturated in the reference. (e) and (f) show results of
the in-HDR-painting method presented in this chapter. Plausible HDR images are produced
independently of the selected reference, including highly saturated areas. Source images courtesy
of Sen et al. [SKY+12]
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5.1 Introduction

F inding per pixel dense correspondences in differently exposed sequences is slow and is prone to
produce artifacts due to mismatches. This chapter presents a technique called In-HDR-Painting
that reconstructs HDR images by replacing only the under/over exposed areas in a reference

image with correctly exposed pixels from the appropriate source images in the LDR sequence. After
detecting under/over exposed areas, this method finds correspondence matches for correctly exposed pixels
in the contour of such areas. The correspondence for pixels in under/over exposed regions is determined
by interpolating the correspondences of pixels in the contour. Bright pixels in over exposed areas are
replaced with properly exposed pixels from a source image with lower exposure than the reference, and
the other way around for under exposed areas. Unlike previous approaches, this algorithm can handle
large under/over exposed regions.

The key contributions of this chapter can be summarized as follows:

• The problem of HDR reconstruction is tackled for the first time, using the concept of inpainting,
where an adaptive interpolation process is used to fill-in the under/over exposed areas.

• This is a reference-independent solution that automatically recovers HDR values for under or over
exposed areas in dynamic scenes independently of the selected reference image.

• Our algorithm can generate HDR images from a sequence of multiple exposure LDR images with
both camera and scene motion without producing ghosting effects.

5.2 Image inpainting previous work

The concept of digital inpainting has been largely studied [IP97, BSCB00, CS01, Har01, OBMsC01, CPT04,
KSD+14]. Inpainting refers to algorithms designed to reconstruct images by filling regions where the
data is lost or corrupted. It is based on the similar concept of artist inpainting used to modify an existing
image in an undetectable way. Inpainting is useful in various applications such as restoring damaged
areas of the input image, as well as removing unwanted objects. Despite the fact that researchers have
adopted different names to describe the same problem [KCS02], we can identify it as a typical interpolation
problem where the information is inferred into the region of interest based on the information available in
the neighboring regions. A detailed survey on inpainting approaches was presented by Bertalmío et al.
[BSCB00].

Partial Differential Equations (PDE’s) are used by Chan and Shen [CS01] because it automatizes the
interpolation process, has the advantages to be free from object segmentation or edge detection, and do
not impose any topological constraints [KCS02]. However, this technique fails often when the region to be
inpainted is large. This is due to the fact that the information available in the input image is not enough
to recover the original content. To solve this problem, the missing information can be extracted from other
images of the same scene taken from different points of view [KCS02].

Harrison [Har01] introduced a procedure for synthesizing an image with the same texture as a given
input image by successively adding pixels selected from the input image. Pixels are chosen by searching
the input image for patches that closely match pixels already present in the output image. Oliveira et
al.[OBMsC01] presented a simple inpainting algorithm that was two to three orders of magnitude faster
than the state-of-the-art method, but only valid to reconstruct small missing and damaged portions of
images.
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Criminisi et al.[CPT04] presented an algorithm for removing large objects from digital images. Their
method combines texture synthesis and inpainting in a best-first algorithm in which the confidence in
the synthesized pixel values is propagated. The algorithm consists of three steps that are repeated until
the whole target region is filled. First, a priority value is calculated for pixels on the contour of the target
region. The area around the pixel with the highest priority is the first to be filled. In the second step, the
target area is filled with patches that looks alike to the one centered in the pixel with higher priority. The
third step recalculates all priorities of pixel on the contour.

Kalantari et al.[KSD+14] used patch-based synthesis to replace given areas in the image. Instead of
fixed patch sizes, they use content-adaptive masks. The method propose two alternatives, user manual
annotation of the boundary edges inside the hole or training of a learning model to preserve details inside
the areas to be filled.

5.3 In-HDR-painting Algorithm

The input of in-HDR-painting is a sequence of LDR images taken at different exposure times, it includes
dynamic scenes acquired from a moving camera. The proposed algorithm recovers an HDR image corre-
sponding to a reference image of the LDR sequence and replaces the under/over-exposed pixels with valid
information from the other LDR images of the sequence. This solution is independent on the choice of the
reference image and potentially recovers the HDR content even in large over/under-exposed areas.

Figure 5.2: Diagram explaining the in-HDR-painting framework step-by-step. Marking step is in
charge of identifying the under/over-exposed (target) areas in the reference LDR image. Contours
of the target areas contains properly exposed pixel for the search of match correspondences
between the contours and a source image in the LDR sequence (Matching step). Finally the
pixels information found in the matching step is used to replace under/over exposed pixels in the
reference through an inpainting interpolation process.

The framework is depicted in Figure 5.2 and has three main steps:

1. The LDR sequence is converted to the CIE L∗a∗b∗ color space. The L channel is used to mark the
under-over-exposed areas (target areas) (section 5.3.1).

2. The images are transformed to radiance space before finding matches between pixels in the contour
of target areas and a source image in the LDR sequence (section 5.3.2).

3. The information to replace the target areas with valid information is inferred through an inpainting
approach (section 5.3.3).
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5.3.1 Marking Step

An HDR image corresponds to a radiance map that approximately represents the light values registered
by the camera sensor. Recovering radiance values from only one exposure is possible except for under/over
exposed pixels. In such cases, information from other exposures is required. Combining a sequence of
different exposures with a weighted average is the predominant approach. This method proposes to recover
radiance values for the pixels that are properly exposed and replace the under/over exposed with valid
information from other exposures. The first step is to identify and mark these target regions containing
under/over exposed pixels.

The previous work to merge multiple exposures included weighting functions to determine the
contribution of pixels to the HDR image and exclude the under/over saturated ones from the HDR merging.
Figure 5.3 shows some weight functions and the result of weighting two differently exposed images. The
right-most column shows the graphic representation of the weight function (in black) and the inverse CRF
(in red). The two first columns show weight in gray scale images. The weight is a value in the range [0,1]
where 0 (black) means that a pixel is totally under or over exposed and hence is not good to recover HDR
values and 1 (white) shows pixels that are well exposed.

Figure 5.3(c) shows the triangular hat function suggested by Debevec and Malik [ DM97]. Using this
function only pixels with the medium value get the maximum weight. Mitsunaga and Nayar [MN99]
(Figure 5.3(d)) proposed a function that favors pixes where the signal-to-noise ratio (SNR) and response to
radiance are high. In this case pixels saturated get the highest weight. Reinhard et al.[RWD+10] proposed
to multiply this function with a broad hat function like shown in Figure 5.3(e) to avoid maximum weights
to saturated pixels.

We use the hat function presented by Khan et al.[KAR06] defined with the equation 5.1 (Figure 5.3(e)).
We weight the luminance L∗ channel normalized to the range [0,1] of the image in CIE L∗a∗b∗ color
space. The two masks identifying the over-exposed target areasM+(equation 5.2), and the under-exposed
target areas M−(equation 5.3) respectively are obtained using a threshold value over the w(L∗).

(5.1) w(L∗)= 1− (2 ·L∗−1)12

(5.2) M+ = w(L∗)< T ∩L∗ < 0.5

(5.3) M− = w(L∗)< T ∩L∗ > 0.5

Figure 5.4 shows an example of the results of the target identification step. The weight map w(L∗)
shown in Figure 5.4(b) represents the identified under and over-exposed areas. In this case, the fireplace
and the window respectively, that are classified identified in two different masks M− Figure 5.4(c) and M+

Figure 5.4(e) using equations 5.2 and 5.3.

However, target areas do not represent defined clusters of pixels. Camera sensors often generate noise
mainly in the underexposed areas, making the marking step not fully reliable in detecting these target
areas. To prevent this issue we impose a constraint for the target areas to be solid regions representing
cluster of pixels. We apply a morphological closing and opening operations to remove small holes and
isolated pixels consequence of noise. It consists in combining erosion and dilation of the target areas with
a structural element, i.e., a 5×5 squared kernel. Results are shown in Figures 5.4(d) and 5.4(f).
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(a) Low exposure (b) High exposure

(c) Debevec [DM97]

(d) Mitsunaga and Nayar [MN99]

(e) Product between d) and f) [RWD+10]

(f) Khan et al. [KAR06]

Figure 5.3: Results of using different weighting functions on two different exposures a) and b).
The column at the right shows the weighting function (black curve) and the inverse CRF (red
curve) for a Nikon D200 camera used to acquired the images.
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(a) Reference (b) Weight w(L*) (c) Mask M− (d) M− filtered (e) Mask M+ (f) M+ filtered

Figure 5.4: Reference image (a) its associated weights (b) and the corresponding masks M− and
M+ before (c), (e) and after the morphological operations (d), (f)

5.3.2 Matching Step

Once the under/over-exposed areas are identified, the next step is to find the content to replace under/over
exposed pixels in the target areas with valid information, while preserving intact edges and details.
Finding matches for pixels inside the target areas is nearly impossible, those areas are close to either black
or white values and corresponds to properly exposed areas in other exposures. This is why previous works
fail in large under and over exposed areas. Our approach instead, aims to interpolate correspondences for
them by matching the contours of the target areas and interpolating the results for pixels inside.

Patches centered in the border of the target area are partially under/over exposed (Figure 5.5(e))
which might difficult the matching process. We find an external contour (Figure 5.5(d)) to guarantee
that all pixels in the patch are properly exposed (Figure 5.5(f)). The external contour is calculated with
a morphological dilation over the masks, using a squared kernel of size equal to half of the patch size
+1. Detecting the contour line is easy on binary images, the contour is isolated using the gradient of the
dilated mask. This step is essential because having under/over exposed pixels in a contour patch would
reduce the amount of valid information for the Nearest Neighbor Search (NNS) and the possibilities of
finding reliable matches.

For each squared patch of pixels centered on this contour, we use a patch-based NNS to find matches
on the appropriated LDR source [BSGF10]. NNS technique finds matches by minimizing a cost function
(the Sum of Squared Distance in this case) between patches of two images. It has been found a reliable
strategy for matching in previous methods to match different exposures [SKY+12, HGPS13, OMLA15]. In
order to be more accurate we impose the constraint that a contour patch does not cover any under/over
exposed pixel.

Problems with the geometrical coherence of the NNS search were discussed already [ OMLA15]. The
matches are found based on the color information of patches, but no geometrical constraints are considered
in the search. In low textured areas where homogeneous patches looks all the same, mismatches may
appear and adjacent pixels in static regions of the reference image may find different transformations
(see Figure 5.6(b)). However, the probability that several matches find the same transformation is much
lower than that of any individual match to be wrong [ HSGL11]. We define the consistency of a match as
the variance of the transformations obtained for each pixel inside the patch (Figure 5.6(c)).

We use only the best matches of the contour for calculating the correspondences of pixels inside the
target areas. Two criteria define which matches are more reliable:
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(a) Reference (b) Mask M+ and contour

(c) Zoom in a) (d) Zoom in b) (e) Red patch (f) Green patch

Figure 5.5: Reference image (a) and the corresponding M+ mask with the dilated contour in
white (b). (d) and (e) are zooms over (a) and (b) respectively. Patches centered in the contour of
target areas (red square), like the one shown in (e), contain many pixels with saturated values.
Dilating the contour increases the number of valid pixels inside the patch, like the example
shown in (f). Having well defined patches augment the possibilities of finding reliable matches.

1. the SSD error between a patch and its nearest neighbor obtained during the NNS step.

2. the consistency of the transformations corresponding to every pixel inside the patch.

The reliability R (equation 5.6) of a patch Pr is defined as the product between the SSD(Pr,Ps) being
Pr a patch in the reference image and its nearest neighbor in the source image Ps and the consistency
(variance of the distances between the predicted coherent matches and the actual ones). The euclidean
distance d between a predicted match mp for a pixel pi with transformation Ti inside a patch which
center has a transformation Tc and the actual match ma, is calculated using equation 5.4. The variance
(σ2) of such distances (Figure 5.6(c)) is calculated using equation 5.5.

(5.4) d(mp,ma)=
√

(pi +Ti)− (pi +Tc)2 )
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(a) Consistent match (b) Inconsistent match (c) Consistency of matches

Figure 5.6: NNS match overlapping patches based on color information. If patches are part
of an static object pixels, all pixels inside it should have similar transformations (a). But it is
possible that pixels in patches from a static regions find different transformations which are not
geometrically coherent (b). Figure in (c) shows in green the predicted position if all pixels have
the same transformation as the center of the patch. The consistency of matches inside a patch is
measured as the variance over the distances between the predicted matches for coherent matches
and the actual ones (red arrows) is used to measure a patch coherency. In coherent matches this
value must be equal to zero.

(5.5) σ2
d = 1

N

N∑
n=1

(di − d̄)2

(5.6) R(Pr)= SSD(Pr,Ps)∗ (1+σ2
d)

5.3.3 Inpanting from Multiple LDR Sources

Most inpainting methods sample the surroundings of the target area and use it as source of information
to complete the missing pixels [BSCB00]. The information is propagated generally by growing from the
contours to the interior using constraints to preserve edges and details. Previous methods fail though
in the case of large under/over-exposed areas because there is not enough reliable information in the
reference image to complete the target area.

In multiple exposure sequences, the information to replace under/over exposed areas could be available
in the other LDR images. This method uses pixels properly exposed from low exposures to replace saturated
regions in the reference image and the opposite for under exposed areas. The challenge is to ’paste’ this
information in the target areas, while respecting details like edges in the reference image.

Matching pixels is subject to local transformations that may approximate complex transformations
in the scene. We propose to calculate the values inside the target areas as the linear interpolation of the
matches in the contour. We use linear interpolation and weight the contribution of each match in the
contour based on their reliability value as computed in equation 5.6 and the distance to the contour. Only
the most reliable patches act like control points Ci in our interpolation scheme. We select the best points
(the best 10% worked properly in our experiments) and normalize their reliability value (normalized
reliabilities are denoted by R̂i), these points act like control points for the interpolation process.

(5.7) ci = (1− R̂i)/
√

p2
t −C2

i
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(a) Interpolating all matches (b) Interpolating best matches

(c) All matches (d) Best matches

(e) Zoom in a) (f) Zoom in b)

Figure 5.7: Nearest Neighbor Search minimizes the SSD between patches, which consider
only color information and any geometric information. More than one patch may match the
same destination in the source image and mismatches may appear in low textured areas. The
inpainting interpolation using wrong matches produces artifacts in the results (a). We select the
best matches according to our consistency criteria to produce accurate inpainting results (b).

(5.8) ĉi = ci∑
ci

(5.9) Tt = ĉ1T1 + ĉ2T2 + ...+ ĉiTi

For every pixel pt in the target area we find a transformation Tt (equation 5.9) that matches a pixel in
the source image by linearly interpolating the transformations Ti of the control points Cn. The coefficients
that determine the contribution of the transformations of each Cn are calculated taking into account the
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normalized reliability value and the distance from pt to each control point. This helps to reinforce the
contribution of good matches reducing the influence of possible outliers (see Figure 5.8).

5.4 Results and Discussion

The algorithm was implemented in C++ using OpenCV [Ope15], and it was tested on a large set of
images including images from state-of-the-art papers. These images were acquired under different lighting
conditions such as indoor and outdoor environments, and all of them corresponds to dynamic scenes i.e.
either due to camera movement or movement of objects.

We have tested our algorithm using both 8-bits and RAW formats, without using any pre-alignment
technique. In all cases, we have selected the reference with large under/over exposed regions to prove that
our method is independent of the reference. The HDR results shown in this section are tonemapped using
Photomatix version 4.2.1 [htt15].

Results were generated using the following parameters. For the marking step, the threshold T was
chosen as 0.9. As discussed in section 5.3.1 this value, as verified in the experimental algorithm design,
produces reliable results for all the cases shown in this section. The patch size used for the matching step
has an important role on the results. Small patches may be very difficult to match, while bigger patches
are time consuming. We have used an automatic trade-off, in all these experiments, where the patch size
is assigned proportionally to the image size. In these experiments, the results are generated using a patch
size equal to 1.5% of the image’s smallest dimension, but never smaller than 7×7 pixels. Once the contour
matches are calculated, we select only the best 10% of matches for the inpainting step.

Figure 5.9 shows an example on how the reconstruction result fails when the size of the patch is
too small (3×3 pixels in this example). This is due to two main reasons: (1) small patches have limited
information which increases the probability of finding false positive matches and (2) noise and/or limited
accuracy in the CRF estimation may lead to wrong matches.

To evaluate the quality of our approach, we compared our results with the following state-of-the-art
methods Sen et al [SKY+12], Hu et al [HGPS13], Granados et al [GKTT13] and Zimmer et al. [ZBW11].

Figure 5.8: Diagram of the interpolation scheme. A selection of the best matches of pixels in the
contour of the target areas (Cn) is used to interpolate the transformation Tt for every pixel pt in
the target area by interpolating the transformations Tn of the best matches in the contour.
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(a) (b)

Figure 5.9: Example of the reconstructed HDR image using different sizes of patches: (a) 3×3
pixels and (b) 9×9 pixels.

5.4.1 Quality Evaluation

We started evaluating our method showing a result where the reference image was chosen as the highest
exposed image (Figure5.10 right side). In this case, the reference image presents large over-exposed areas
(bumper), and the LDR sequence presents moderate movements of the roster. The reconstructed HDR
image, shows well reconstructed HDR values even in the areas with limited information (over-exposed)
and with dynamic movements.

Figures 5.11 and 5.13 show the reconstructed HDR image from a LDR sequence of 5 images taken at
different exposure times. Here the HDR reconstructed image is compared with two of the state-of-the-art
methods, Sen et al [SKY+12] and Hu et al [HGPS13], used in this evaluation.

In Figure 5.11, the over-exposed image, in the LDR sequence, is taken as reference. In the lower row of
Figure 5.11 is shown a zoomed area where artifacts and/or lost of details are visible for both state-of-the-art
methods. In particular Hu et al’s [HGPS13] clearly looses details in the window area, while Sen et al’s
[SKY+12] introduces visible artifacts.

The second row of Figure 5.13 shows for each method the reconstructed HDR images taking as
reference the two extreme exposed images in the LDR sequence. In two zoomed areas, artifacts and/or lost
of details are visible for both state-of-the-art methods. In particular Hu et al’s [HGPS13] clearly looses
details in the sky for low exposures, while introducing artifacts for higher exposures. Sen et al’s [SKY+12]
looses details in the sky area for higher exposures, and details in the lower exposure in the area of the
houses as highlighted in the zoom area. In comparison to the state-of-the-art methods, our algorithm
produces reliable HDR reconstructed images for all the cases (lower and highest exposures). Details are
well preserved in both zoomed areas and the results are free of artifacts.

Figures 5.12 and 5.14 show the results obtained with Zimmer et al [ZBW11], using as reference the
middle exposure image of the LDR sequence. Band artifacts are visible on both HDR reconstructed images
(Figure 5.12 in the window area and Figure 5.14 on the left hand side).

Figure 5.15 shows a stress case. A child moves his head in front of a window (large over-exposed area).
We compare here our results with Granados et al’s approach [GKTT13]. Again our approach performs
better overall. The reconstruction with Granados et al’s method has actually deformed the face of the child
and the window content misses details. Our reconstruction recovered the HDR information both for the
window and the child’s face. However, inpainting edges are visible around the child’s head outlining a
limitation of our approach. This occurs because of the combination of movement and a large over-exposed
area.

73



CHAPTER 5. IN-HDR-PAINTING

(a)

(b)

Figure 5.10: LDR sequence with three images taken at shutter speeds of (left) 1/5000, (center)
1/1000 and (right) at 1/180 and with aperture of f /5.6. The scene was captured with a moving
camera and while the rooster was running. The HDR reconstructed image in b) was obtained
using the over-exposed LDR image at the right in a). Notice that all details in the car are
successfully recovered

5.4.2 Computational Performances

Unlike state-of-the-art methods, the computational performances of our method depends on the size of the
target areas. For bigger target areas more pixels in the contour need to find a nearest neighbor. Larger
contours imply that more control points are selected and more coefficients are needed to interpolate the
position of a bigger number of pixels to replace the target areas. We have taken the computational costs
for reconstructing the HDR image using the high and middle exposures taken as references.

Table 5.1 shows a comparison of the computational times for the largest exposure in each set. In this
case only over exposed areas are replaced since there is no better exposure for dark areas in the sequence
than the reference itself.

The resolutions of the images used in Table 5.1 are 1296×1936 for the "Rooster by Car" and the
"Windows" images, and 1350×900 for the "Piano Man" image. All tests were executed on a Dell laptop
with an Intel(R) Core(TM) i7-2620M 2.70 GHz processor and 8 GB of memory. All algorithms were run
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(a)

(b) Sen et al [SKY+12] (c) Hu et al [HGPS13] (d) Ours

Figure 5.11: Comparison with state-of-the-art methods. The used LDR sequence a), is composed
of 5 LDR images taken respectively, starting from the left to the right, at shutter speeds of 1/640s,
1/320s, 1/160s, 1/80s, and 1/40s, with an aperture size of f /3.5.
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(a)

(b) Zimmer et al[ZBW11] (c) Ours

Figure 5.12: The reconstructed HDR image is obtained using the middle exposure image. From
the left to the right, the acquisition shutter speeds correspond respectively to 1/60, 1/13, 1/3 and
with aperture size of f /5.6.

Sen Hu Ours
Mid High Mid High Mid High

Rooster by Car 618 588 819 793 243 76
Windows 503 577 979 936 254 99

Piano Man 439 576 578 430 347 122

Table 5.1: Run time comparison, in seconds, with state-of-the-art methods taking as reference
both the middle exposure and the highest exposure of the set.

using their original code version. Our method outperforms significantly Sen et al [SKY+12], which is faster
than Hu et al [HGPS13]. In particular, our method outperform state-of-the-art methods in about an order
of magnitude.

5.4.3 Discussion

The tests show that our method’s success relies on the results of the matching step. Mismatches can be
produced that may reduce the performances of our selection process. Low textured areas in the contours
of the target areas is one of them, when all patches in the contour are similar is unlikely to find proper
matches. When replacing dark areas acquired with very short exposures, the contours may be extremely
noisy which also represents a challenge for the matching step. One solution to this issue, is to pre-filtering
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(a)

(b) Sen et al [SKY+12]

(c) Hu et al [HGPS13]

(d) Ours

Figure 5.13: Comparison with state-of-the-art methods. The used LDR sequence (first row), is
composed of 3 LDR images taken respectively, starting from the left to the right, at shutter speeds
of 1/250, 1/80 and 1/30, and with an aperture size of f /8. The HDR reconstructed images are
obatined using as reference the two images with the two extreme exposures (lower and highest).
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(a)

(b) Zimmer et al.[ZBW11]

Figure 5.14: Continuation of the figure 5.13. Results from Zimmer et al.[ZBW11] are only
available for the middle exposure.

the noise of the lower exposed images in the LDR sequence.

5.5 Summary

In this chapter we presented a new fully automatic approach to reconstruct HDR images from a sequence
of LDR images taken at different exposure times. There is no restriction on the LDR sequence: images can
be misaligned, scene content can be dynamic, and areas under or over exposed can be large. This is an
innovative approach when compared to previous approaches because HDR images can be computed using
any LDR image as reference. The algorithm has three step. First, target areas where HDR information is
missing and its contours are detected. Second, we find matches for the contours in images better exposed.
Third, the target areas are filled by interpolating the transformation of control points in the contours.
We compared our approach to the state-of-the-art approaches evaluated as the best performing ones. We
showed that our solution outperforms them both in the results’ quality and the computation times.
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(a)

(b) Granados et al. [GKTT13] (c) Ours

Figure 5.15: The reconstructed HDR image is obtained using as reference the best exposure
image. In this case is the image in the middle of the LDR sequence. For Granados et al. method
this is done automatically. From the left to the right, the acquisition exposure values correspond
respectively to −4,0,4.
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6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In the previous chapters, a detailed overview of the state-of-the-art techniques was presented re-
garding multiple exposure HDR acquisition. Three different techniques for HDR alignment and
deghosting were proposed: one for images of dynamic scenes acquired from static cameras, the second

focused on multiple-exposure mutli-stereo HDR acquisition for auto-stereoscopic displays, and a third one
substitutes the global registration approach by an image inpainting based technique for registration and
merging of multiple exposure sequence of images for HDR reconstruction.

6.1.1 Dynamic scenes from static cameras

Our method includes detection of areas affected by movement, matching of such areas in a reference image,
and recovery of HDR values using the computed matches and the LDR image sequence. Robust results
were obtained for scenes where dynamic objects were mainly rigid. We implemented some of the most used
algorithms according to the descriptions given by their authors. The selected algorithms were developed in
Matlab and a GUI was implemented for supporting the tests. The algorithms were tested using several
sets of images from various type of scenes.

Regarding ghost detection, we implemented four approaches for which we assessed their degrees
of success. These methods provided acceptable results in general. However, we have noticed that the
introduction of a thresholding step on the difference between the predicted pixels with the IMF and the
actual values helps to improves the final results. This evaluation finding was very important since the
entire process relies on its results.

We applied registration techniques to the HDR reconstruction problem. When the clusters of pixels
affected by movement in the ghost mask are closed and well-defined areas, the selection of the target
images works properly. The registration step produces the best results when using MI or NCC as cost
function, being the latter faster to compute. After the registration step, HDR values are recovered for
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areas affected by movement and inserted in the HDR image providing better representation for dynamic
areas.

6.1.2 Mutliscopic HDR

This thesis presented a framework for auto-stereoscopic 3D HDR content creation that combines sets
of multiscopic LDR images into HDR content using image dense correspondences. Image dense corre-
spondences methods used for 2D domain have not be used before for 3D HDR content creation without
introducing visible artifacts.

Our novel approach extends the well known Patch Match algorithm, introducing an improved random
search function that takes advantage of the epipolar geometry. Also a coherence term is used for improving
the matching process. These modifications allow to extend the original approach to work for HDR stereo
matching, while improving its computational performances.

We have presented a series of experimental results showing the robustness of our approach, in the
matching process, when compared with the original approach and its qualitative results.

6.1.3 In-HDR-painting

The third contribution method of this thesis presented a new fully automatic approach to reconstruct HDR
images from a sequence of LDR images taken at different exposure times. Previously imposed restriction
on the LDR sequence are reduced: images can be misaligned, scene content can be dynamic, and areas
under or over exposed can be large.

The originality of this approach, when compared to state-of-the-art approaches is that the HDR
reconstruction quality is not affected by the choice of the reference image in the multi-exposures sequence
of LDR images. We have developed a three steps algorithm, first we detect target areas where HDR
information is missing. Second, a search step is used to identify the best match between the target areas
and the most informative LDR images in the multi-exposures sequence. Finally, the information in the
matched area, is used to reconstruct the HDR values using an image inpainting approach.

We compared our approach to the state-of-the-art approaches, showing that our results are of compa-
rable quality when the HDR areas that need to be reconstructed are characterized by small under/over-
exposed areas in the corresponding LDR multi-exposures sequence. However, our results are outperforming
the stat-of-the-art methods when the under/over-exposed areas are large.
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6.2 Future Work

This section discusses new possible exploration directions in future research for each of the main contribu-
tions. There are several open problems linked to the techniques studied in this thesis. Dense correspon-
dences for images with different exposures remains unsolved. 2D/3D HDR video using non HDR cameras
requires solving the correspondences between consecutive frames. Some of the hardware prototypes on
presented so far, acquires multiple exposures of the same scene and requires embedded software to do
the HDR merging on real time. There are also open possibilities in applications to environments with
extremely high dynamic range, like in spatial imaging, medical applications, or industrial welding.

The following subsections present possible improvements to evolve the techniques presented in this
thesis and to make them more robust.

6.2.1 Dynamic scenes from static cameras

It was the first proposed and some recent methods might outperform it for general cases where both the
camera and the scene are dynamic. Even though, an updated GPU implementation might provide a fast
tool for HDR generation from dynamic scenes acquired from fixed camera.

An important improvement should be conducted on the registration step. The obtained results are
good mostly for roughly rigid dynamic objects. For deformable objects this process might fail. This can be
addressed directly with an adaptation of our proposed method, by subdividing the dynamic objects and
approximate its deformation by matching small patches.

Some artifacts may still be introduced during the merging step. Neighbor areas resulting of combining
a different amount of LDR images may contain visible borders due to inaccuracies in the CRF. To avoid
such problems, the blending technique presented by Gallo et al. [GGC+09] could be considered.

6.2.2 Mutliscopic HDR

In-HDR-inpainting could be adapted to the stereo particularities. The epipolar geometry might help to
constrain the search to provide better matches for contours and the interpolation might be guided by an
homography obtained from the best matches of the contours.

6.2.3 In-HDR-painting

This method provides promising results to the HDR reconstruction from multiples LDR sequence. However,
the proposed solution could be improved to be more robust in several aspects. A soft transition between
areas is desired when the under/over exposed areas are not defined regions. When the saturation occurs
gradually from properly exposed areas to saturated ones, a threshold over a weighted image might
introduce visible artifacts between the original image and the replaced regions.

The interpolation step needs to evolve towards a more robust solution that includes the details of the
surrounding areas instead of only the best matches in the contour.
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6.3 Contributions

This sections provide a precise list of the publications related to this PhD thesis work:

• Full high-dynamic range images for dynamic scenes. Raissel Ramirez Orozco, Ignacio Martin,
Celine Loscos and Pere-Pau Vasquez. Proceedings of the SPIE 8436, Optics, Photonics, and Digital
Technologies for Multimedia Applications II. doi:10.1117/12.922825. Brussels, Belguim. June 2012.
[OMLV12] (Honored with the Best Student Paper Award)

• Patch-based registration for auto-stereoscopic hdr content creation. Raissel Ramirez Orozco,
Ignacio Martin, Celine Loscos and Alessandro Artusi. In HDRi2013 - First International Conference
and SME Workshop on HDR imaging. Porto, Portugal. April 2013.[OMLA13]

• Génération de séquences d’images multivues hdr: vers la vidéo hdr. Raissel Ramirez
Orozco, Ignacio Martin, Celine Loscos and Alessandro Artusi. In 27es journèes de l’Association
française d’informatique graphique et du chapitre français d’Eurographics. Reims, France. Novem-
ber 2014. [OMLA14]

• Multiscopic HDR image sequence generation. Raissel Ramirez Orozco, Ignacio Martin, Celine
Loscos, and Alessandro Artusi. In Journal of WSCG, 23rd International Conference in Central
Europe on Computer Graphics,Visualization and Computer Vision. 23(2):111-120. Plzen, Czech
Republic. June 2015.[OMLA15]

• Chapter 4. Multi-view HDR video sequence generation. Raissel Ramirez Orozco, Ignacio
Martin, Celine Loscos and Alessandro Artusi. High Dynamic Range Video: Acquisition, Display and
Applications. Book chapter edited by Frèdèric Dufaux, Patrick Le Callet, Rafal Mantiuk and Marta
Mrak. Elsevier Science. March 2016. (to appear in [OMLA16])

• In-HDR-inpainting. Raissel Ramirez Orozco, Ignacio Martin, Celine Loscos, and Alessandro
Artusi. (To be submitted in a journal.)
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