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Resum 

L’emissió de gasos amb efecte d'hivernacle (GEH) procedent de l'agricultura depèn de 

la gestió del reg i dels fertilitzants. L'objectiu d'aquesta tesi va ser identificar les 

estratègies menys emissores –d` entre les següents- compatibles amb un rendiment 

òptim: (i) reg continu (CI)/intermitent (II) en un arrossar; (ii) fertilització de fons amb 

gallinassa (CM), purí porcí (PS), urea (U) o sulfat amònic (AS) en un arrossar amb AS 

en cobertora; (iii) incorporació/eliminació del rostoll de panís amb diferents dosis de N 

mineral, i (iv) reg enterrat (SDI)/superficial per degoteig (DI) combinat amb N mineral 

aplicat via fertirrigació amb i sense DMPP en un cultiu súper-intensiu d'olivera.  

El CI minimitza significativament les emissions de l’arrossar alhora que permet atènyer 

el rendiment màxim. L'aplicació de purí porcí a dosis agronòmiques proporciona alts 

rendiments i minimitza els GEH. Considerant les emissions i el rendiment del panís, el 

tractament control va ser la millor opció, independentment de la gestió del rostoll. Pel 

sistema d'olivera súper-intensiva, l'aplicació de DMPP + 50 kg N ha
-1 

+ DI va ser la 

millor opció. 

 

 





 
 

Resumen 

La emisión de gases con efecto invernadero (GEI) procedente de la agricultura depende 

de la gestión del riego y de los fertilizantes. El objetivo de esta tesis fue identificar las 

mejores estrategias -de entre las siguientes- para mitigar los GEI manteniendo un 

rendimiento máximo: (i) riego continuo (CI)/intermitente (II) en un arrozal, (ii) la 

fertilización de fondo con gallinaza (CM) , purín porcino (PS), urea (U) o sulfato 

amónico (AS) en un arrozal con AS en cobertera, (iii) la incorporación/eliminación del 

rastrojo con diferentes dosis de N mineral en el cultivo del maíz, (iv) el riego por goteo 

enterrado (SDI)/superficial (DI) en combinación con N mineral aplicado vía 

fertirrigación con y sin DMPP en un olivar súper-intensivo. 

El CI mitiga significativamente las emisiones del arrozal al tiempo que garantiza el 

rendimiento máximo. La aplicación de purín porcino a dosis agronómicas proporciona 

altos rendimientos y minimiza los GEI. Considerando las emisiones de GEI y el 

rendimiento del maíz, el tratamiento control fue la mejor opción, independientemente de 

la gestión del rastrojo. La aplicación de DMPP + 50 kg N ha
-1

 + DI fue la mejor opción 

para el cultivo súper-intensivo de olivo. 





 
 

Summary 

Greenhouse gases emissions from agriculture depend on irrigation and fertilisation 

management. The objective of this thesis was to identify the less emitting management 

strategies among the following, compatible with a feasible yield: (i) continuous 

(CI)/intermittent irrigation (II) on rice, (ii) background fertilisation with chicken manure 

(CM), pig slurry (PS), urea (U) or ammonium sulphate (AS) and topdressing on rice, 

(iii) stover incorporation/removal with different doses of mineral N and, (iv) subsurface 

(SDI)/surface drip irrigation (DI) in combination with mineral N fertigation with and 

without DMPP on a super-intensive olive tree orchard. 

Continuous irrigation significantly mitigated emissions from paddy fields while 

ensuring the highest yield. Pig slurry application at agronomic doses allowed high 

yields and minimized emissions. Based on emissions and maize yield, the control 

treatment was the best option regardless of stover management. Applying DMPP with 

50 kg N ha
-1

+ drip irrigation (DI) was the best option for the olive tree orchard.  

 





 
 

Extended summary 

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) directly linked to applications of 

nitrogen (N) fertilisers to agricultural soils. Identifying mitigation strategies for these 

emissions based on fertiliser management without incurring in yield penalties is of 

economic and environmental concern. With that aim, this Thesis evaluated: (1) to 

determine the effect of irrigation frequency on GHG and N2 emission from a paddy soil 

at the Ebro Delta (NE Spain); (2) to compare the effect of different doses of urea, 

ammonium sulphate, chicken manure and pig slurry on GHG and N2 emission during 

the seedling period, the rice crop season and the postharvest period under Mediterranean 

conditions from rice; (3) to compare the effect of maize (Zea mays L.) stover 

incorporation/removal with different ammonium nitrate doses, on the emission of GHG 

from a high mineral N soil; (4) to compare the effect of subsurface/surface drip 

irrigation in combination with mineral N fertigation with and without DMPP on the 

GHG emissions from a high density Arbequina olive tree orchard. 

Water management is known to be a key factor on methane (CH4), carbon dioxide 

(CO2), and nitrous oxide (N2O) emissions from paddy soils. A field experiment was 

conducted to study the effect of continuous irrigation (CI) and intermittent irrigation (II) 

on these emissions. Intermittent irrigation of rice paddies significantly stimulated 

(N2O+N2)–N emission, whereas no substantial N2O emission was observed when the 

soil was re-wetted after the dry phase. The cumulative emission of (N2O+N2)–N was 

significantly larger from the II plots (0.73 kg N2O–N ha
-1

 season
-1

) than from the CI 

plots (-1.40 kg N2O–N ha
-1

 season
-1

). Draining prior to harvesting increased N2O 

emissions. Draining and flooding cycles controlled CO2 emission. The cumulative CO2 

emission from II was 8416.35 kg CO2 ha
-1

 season
-1

, significantly larger than that from 

CI (6045.26 kg CO2 ha
-1

 season
-1

). Lower CH4 emission due to water drainage increased 

CO2 emissions. The soil acted as a sink of CH4 for both types of irrigation. Neither 

N2O–N nor CH4 emissions were affected by soil temperature. Global warming potential 

was the highest in II (4738.39 kg CO2 ha
-1

) and the lowest in CI (3463.41 kg CO2 ha
-1

). 

These findings suggest that CI can significantly mitigate the integrative greenhouse 

effect caused by CH4 and N2O from paddy fields while ensuring the highest rice yield.  

Greenhouse gas fluxes from cultivated soil are affected by factors such as temperature, 

water and mineral nitrogen content. Furthermore, agricultural management such as the 

application of organic and inorganic fertilisation affects N2O, CH4 and CO2 emissions 



 
 

although it depends on the type of fertiliser used. In this context, a field experiment was 

realized in order to compared the effect of different fertilisation strategies on N2O, CH4, 

and N2 emissions and on ecosystem respiration (CO2 emission), during the different 

periods of rice cultivation (seedling, rice crop and postharvest period) under 

Mediterranean climate. At Site 1 background treatments were 2 doses of chicken 

manure (CM): 90 and 170 kg NH4
+
-N ha

-1
 (CM-90, CM-170), urea (U, 150 kg N ha

-1
) 

and no-N (control). To all of them 50 kg N ha
-1

 ammonium sulphate (AS) were topdress 

applied. At Site 2, background treatments were 2 doses of pig slurry (PS): 91 and 152 

kg NH4
+
-N ha

-1
 (PS-91, PS-152) and AS at 120 kg NH4

+
-N ha

-1
. Sixty kg NH4

+
-N ha

-1
 

as AS were topdress applied to AS and PS-91. There was an N control too. During 

seedling GWP was ~38-55% of rice crop season for the CM treatments, and (N2O+N2)-

N emission from U was ~11% of the applied N. The postharvest period was a net sink 

for CH
4
, and CO

2
 boosted only from the CM-170 treatment (up to 2 Mg CO2 ha

-1
). 

Global warming potential (GWP) of the rice crop season reached 17 Mg CO2-eq ha
-1

 for 

U, and was 14 for CM-170, and 37 for CM-90. The CM-170 treatment reduced CH4 

emission. The application of PS at agronomic doses (~170 kg N ha
-1

) allowed high 

yields (7.4 Mg ha
-1

), the control of GWP (5.5 to 6.5 Mg CO2-eq ha
-1

), and a 25% 

reduction in greenhouse gas intensity (GHGI) to 0.75 kg CO2-eq kg
-1

 when compared to 

AS (1.02 kg CO2-eq kg
-1

). 

In order to improve the sustainability of the maize production system management 

practices that mitigate greenhouse gases (GHG) emission while keeping yield high are 

required. Application of crop residues is a cost-effective and sustainable alternative to 

increase organic matter contents and the fertility levels in the soil under Mediterranean 

conditions. However, these management practices may induce important changes in the 

N2O emissions from these agroecosystems, with additional impacts on CO2 emissions. 

In this context, a field experiment was realized in order to compared the effect of maize 

stover incorporation or removal along with different mineral N fertiliser doses (0, 200 

and 300 kg N ha
-1

) on the emission of greenhouse gases on a sprinkler irrigated maize 

(Zea mays L.) crop under Mediterranean conditions on a high nitrate-N soil. 

Applying fertiliser tended to increase N2O emissions and stover incorporation did not 

have any clear effect. Nitrification was probably the main process leading to N2O which 

ranged from -0.11 to 0.36% of the applied N, below the IPCC (2007) values. 

Denitrification was limited due to low soil moisture content and limiting readily 



 
 

available carbon. Stover incorporation increased CO2 emission. Nitrogen fertilisation 

tended to reduce CO2 emission but only in 2011. The maize field acted as a net CH4 

sinks (in 2011) and mineral fertiliser application decreased CH4 oxidation by the soil. 

Considering global warming potential, greenhouse gas intensity, as well as N2O 

cumulative emissions and yield, it can be concluded that no fertilisation (control 

treatment) regardless of stover management was the best option combing productivity 

with keeping greenhouse gases emission under control. The application of nitrogen in 

many areas of the Ebro Valley (Spain) is not necessary due to the high N soil content 

(i.e. 200 g NO3-N kg
-1

) until the soil restores a normal mineral N content. This study 

indicates that efforts to mitigate greenhouse gases in this system should be focused in: 

(1) keeping an efficient irrigation with relatively low water filled pore space and (2) 

decreasing the soil mineral N content of the soil. 

Drip irrigation combined with split application of N fertiliser dissolved in the irrigation 

water (i.e. drip fertigation) is commonly considered best management practice for water 

and nutrient efficiency. The emissions of GHGs (i.e. N2O, carbon dioxide (CO2) and 

methane (CH4)) can easily be manipulated by drip fertigation without yield penalties. In 

this study, we tested management options to reduce these emissions in a field 

experiment from olive (Olea europaea L.) orchard. In the olive orchard, drip irrigation 

combined with nitrogen (N) fertigation can save water and improve nutrient efficiency. 

This system allows reducing production costs and increases crop yield. Spanish 

Arbequina is the most suited variety for super intensive olive groves. Moreover its oil 

has excellent sensorial features. 

Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted 

to compare the emissions of N2O, CO2 and methane CH4 associated with the application 

of N fertiliser through fertigation (0 and 50 kg N ha
-1

), and 50 kg N ha
-1

 + nitrification 

inhibitor in a high tree density Arbequina olive orchard.  

Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared 

with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but 

not N2O emissions. Denitrification was the main source of N2O. The N2O losses 

(calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were 

lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 

1.80% of the N applied, from the 50 kg N ha
-1

+drip irrigation treatment which resulted 

in water filled pore space N60%most of the time (high moisture). Nitrogen fertilisation 



 
 

significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation 

strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. 

Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions 

were significantly reduced with respect to the control. The DMPP also inhibited CO2 

emissions and significantly increased CH4 oxidation. Considering global warming 

potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can 

be concluded that applying DMPP with 50 kg N ha
-1

+drip irrigation treatment was the 

best option combining productivity with keeping greenhouse gas emissions under 

control. 
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Chapter 1. General introduction 

1.1. Greenhouse gas emissions from fertilised agricultural systems 

The causal relationship between anthropogenic increases in GHG concentrations and the 

modern problem of global warming is irrefutable (IPCC, 2014). The ability of the 

atmosphere to trap heat is augmented with increased concentrations of carbon dioxide 

(CO2), methane (CH4), and N2O. It has been estimated that agriculture contributes about 

84% and 52% of global antropogenic nitrous oxide (N2O) and methane (CH4) 

emissions, respectively (Smith et al., 2007), while it is only responsible for about 1% of 

carbon dioxide (CO2) emissions (OECD, 2000). 

Rising atmospheric concentrations of the greenhouse gases (CO2, N2O and CH4) have 

caused an increase in radiative forcing of the earth’s atmosphere. Agriculture plays an 

important role in the global flux of these gases. In intensively managed agro 

ecosystems, agricultural practices may offer a way to curb agricultural emission, in turn 

partially mitigating the enhanced greenhouse effect (Gregorich et al., 2005). 

Agricultural soils can constitute either a net source or sink of GHG. The ways in which 

these soils are managed can influence the flux of GHG by changing one or more of the 

following: the soil climate (i.e., temperature and water content), the physical/chemical 

environment of the soil, mineral fertilisers and the amount and chemical composition of 

organic fertilisers applied to soil. Changes in these variables control the rate and extent 

of microbial processes, which in turn control the stabilization of carbon (C) in soil and 

affect the production of greenhouse gas emission (Conrad, 1996). Changes in the soil 

physical environment affect the aeration and diffusion of these gases. 

The production of N2O in soil is a function of nitrification and denitrification mediated 

by soil microbes (Robertson and Groffman, 2007; Freing et al., 2012). Factors that 

regulate N2O production include available carbon, inorganic N, and oxygen, all of 

which are affected by soil water, porosity, and aggregate structure (Robertson and 

Groffman, 2007). Management practices that can influence N2O emissions include 

application of fertiliser N (amount, source, timing and placement) (Roberts, 2007), crop 

selection, tillage, stover management, soil water content and soil temperature (Parkin 

and Kaspar, 2006). 
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Within the soil, CO2 is produced as a result of biological and chemical activities: the 

decomposition (oxidation) of soil organic materials by heterotrophic micro-organisms 

and the respiration of plant roots (Hanson et al., 2000; Mosier et al., 2006; Al-Kaisi et 

al., 2008; Smith et al., 2011). Factors including soil temperature, soil moisture, cropping 

system, and N availability can influence soil microbial activity (Al-Kaisi et al., 2008) 

and thus may impact the process of decomposition of soil organic matter and the 

production of CO2. Application of nitrogenous fertiliser affects CO2 emission (1) 

directly by providing nitrogen to crops and microbes, and (2) indirectly by influencing 

soil pH, which influences microbial activity (Rastogi et al., 2002). 

In soil, CH4 can be produced without being emitted to the atmosphere because soil is 

both a producer (source) and consumer (sink) for atmospheric CH4 (Smith et al., 2011). 

The net balance of its flux depends on two counteracting processes in the soil: 

methanogenesis (production by methanogenic bacteria under anaerobic conditions) and 

methanotrophy (consumption by methanotrophic bacteria mainly under aerobic 

conditions) (LeMer and Roger, 2001). When the balance between methanogenesis and 

methanotrophy is positive, the soil is a net CH4 source, and when the balance is 

negative, the soil is a net sink. Because the aerobic methane-utilizing bacteria 

(methanotrophs) are ubiquitous in soils (LeMer and Roger, 2001), upland soils are 

generally considered as net CH4 sinks (Smith et al., 2000). Fertiliser N applications have 

influences on the atmospheric CH4 uptake by soil (Steudler et al., 1989). 

Irrigation is an important way to ensure water supply for crop production and to adapt 

agriculture to increasing water demand and scarcity due to climate change. On the other 

hand, irrigation itself might affect climate by altering the capacity of soils to act as sinks 

or sources of GHGs, in particular, CO2, N2O and CH4 (Lal, 2004). 

Many technical measures have been proposed already to mitigate GHGs emissions from 

agriculture. Among the strategies proposed to diminish N2O emissions from arable soil, 

the utilization of N-fertilisers together with a nitrification inhibitor is proposed as a 

feasible measure to reduce N2O emissions. The nitrification inhibitor 3,4-

dimethylphirazole phosphate(DMPP) has some advantageous properties, namely high 

efficiency and low risk of translocation, compared to other nitrification inhibitors 

(Zerulla et al., 2001). 
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1.2 Importance of the studied crops 

Rice is arguably one of the most important cereal crops feeding more than half of 

world’s population. Globally, rice fields cover around 153 million hectares comprising 

approximately 11 % of the world’s arable lands (FAOSTAT 2011). Rice fields are 

major sources of CH4 and N2O and can also be source or sink of CO2. According to 

IPPC (2014), rice fields contribute about 30 and 11% of global agricultural CH4 and 

N2O emissions, respectively. Nitrous oxide is produced by the microbial transformation 

of nitrogen (N) in soils and manures and is often boosted where available N exceeds 

plant demands, especially under wet conditions (Smith and Conen, 2004). Production of 

CH4 is derived by decomposition of organic materials in anoxic flooded rice cultures by 

the processes of production, oxidation, and transport (LeMer and Roger, 2001). In rice 

fields, CO2 is emitted mainly from microbial decay (Janzen, 2004) and soil organic 

matter (Smith, 2004). 

In the European Union about 475,000 ha are devoted to rice with a total production of 

3.2 Mt of rice grain (1.8 Mt white rice). Italy is the largest producer, with 52% of the 

total, followed by Spain with 20%. In Spain, more than one third of the total rice 

cultivation, about 110,785 ha rice (MAGRAMA, 2013), is spatially concentrated in the 

Mediterranean eastern part of the country and covers about 3% of the Spanish irrigated 

area. In the Ebro Valley, the development of rice cultivation is related to the special 

climatic and soil characteristics of the area. Soil salinity and/or a water table close to the 

surface do not allow any other crop. 

The irrigation system in rice cultivation is continuous flooding and nowadays, chemical 

fertilisers are the most often used. The autonomous regions of Aragon and Catalonia 

hold about 42% of Spanish pig herd (MAGRAMA, 2013). The use of pig slurry as 

fertiliser is the most common recycling method and it could be a strategic alternative to 

apply it to rice crops. In the Ebro Delta, the poultry sector is also relevant and it 

produces 51,786 t manure year
-1

 (MAGRAMA, 2013). 

The Ebro Valley is one of the most intensive agricultural areas in Spain, where 30% (72 

000 ha) of the irrigated area is dedicated to maize (Villar et al., 2002). The maize stover 

produced in this area ranges from about 14 to 17 t dry matter ha
-1

 year
-1

 (Lloveras et al., 

2012) depending on total maize production. Average crop yields in the area range from 

10 to 15 t maize grain ha
-1

 (14% moisture) under sprinkler irrigation (Cela et al., 2011). 
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Under good agronomical conditions, the most efficient farms can produce up to 20 t ha
-1

 

(Biau et al., 2013). About 50 % of the farmers at the Ebro Valley incorporate crop 

stovers to the soil and the rest allot this by-product to animal consumption or any other 

purposes depending on the price (Biau et al., 2013). Half of the maize-producing lands 

located in the Ebro Valley, are being fertilised using mineral N where the rest receive 

organic fertilisers using mainly pig slurry (Sisquella et al., 2004). High yielding maize 

crops growing in the Spanish agro-systems require water but also a satisfactory input of 

available nitrogen (N) and a long growing season. In general, N is applied at doses of 

over 300 kg N ha
-1

 when fertilising only with mineral N (Sisquella et al., 2004). High 

pre-sowing soil N content is the result of excessive N application (from mineral 

fertilisers) to previous crops, which tends to accumulate in the soil (Berenguer et al., 

2009). 

Fruit tree orchards have a historical and economic importance for Mediterranean 

agriculture, notably in Spain. Fruit tree orchards have the potential to mitigate global 

warming by sequestrating carbon. In addition, cover crops can be established below the 

trees protecting the soil from erosion, contributing to soil carbon sequestration (Aguilera 

et al., 2013). Fruit tree orchards also supply a relevant fraction of the Spanish diet, 

representing nearly 20 % of dietary energy intake according to FAOSTAT (FAO 2014), 

mainly in the form of olive oil. 

The olive tree (Olea europaea L.) is drought-resistant and is usually grown in 

Mediterranean areas with limited water resources and without irrigation, often with very 

low levels of productivity. In Mediterranean areas, where summer rainfall is a limiting 

factor, olive trees respond positively to irrigation, with improved vegetative growth and 

olive production (Rufat et al., 2014). The economic sustainability of olive tree cropping 

in Spain and other countries is linked to the ability to fully mechanize farming 

operations to reduce manpower and to diminish/decrease production costs, while 

maintaining high production standards, in terms of quantity and quality. A new olive 

growing system that could potentially allow further reduction in production costs is the 

super intensive olive grove (super-high-density system). In this system, trees are trained 

to form hedgerows, orchards can be brought into production within only a few years 

after planting and over-the row mechanical harvesters can be used (Tous et al., 2010). 

Therefore, it is essential that the cultivars used in super intensive olive groves have a 

very low vigour and excellent sensorial features of their oil (Tous et al., 2008, 2010). 
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On the basis of worldwide evaluations of olive cultivars, at the present time, three olive 

cultivars are considered to meet these requirements quite well. They are the Spanish 

Arbequina and Arbosana and the Greek Koroneiki. However, considering the vegetative 

and productive aspects it is currently widely accepted that among these cultivars, 

Arbequina is the best one for super intensive olive groves (De La Rosa et al., 2007; 

Tous et al., 2010; Rufat et al., 2014). Consequently, Arbequina is progressively being 

introduced into new environments in all olive-growing countries. However, recent 

trends to high and very high density orchards could lead to an increase on irrigation 

water and nutrient plant requirements. However, in many olive growing areas, irrigation 

is scarce and expensive to apply, with deficit irrigation strategies being required to 

optimize its use. 

1.3. The main factors affecting greenhouse gas emission from soil 

According to Mosquera et al. (2007), “The production and consumption of both N2O 

and CH4 from soils occurs as a result of different microbial processes, which in turn are 

controlled by factors that influence the growth of microorganisms (soil O2 content, soil 

temperature, mineral N content in organic matter and pH). Soil management practices 

(land use, nutrient application via manure and N fertiliser, incorporation of either crops 

or crop residues, tillage, reduction of soil compaction), through their effect on these 

factors, can indirectly influence these fluxes.” 

1.3.1. Effect of fertiliser management on greenhouse gas emission 

Fertiliser management is a critical element for reducing the environmental impacts of 

crop fields. Fertilisers applied to soil are not always efficiently used by the crops 

(Galloway et al., 2003; Cassman et al., 2003). Enhancing the fertiliser use efficiency can 

reduce GHG emissions especially N2O and it can also indirectly minimize CO2 

emissions from manufacturing of nitrogenous fertiliser (Schlesinger, 1999). Practices 

that improve fertiliser use efficiency and decrease GHG emission include the following: 

precise adjustment of application doses according to crop needs (Zou et al., 2005; 

Pittelkow et al., 2013), using nitrification inhibitors or slow release fertilisers (Ghosh et 

al., 2003; Linquist et al., 2012), adjusting application timing and selecting appropriate 

source (Ali et al., 2012), precise placement of fertilisers into the soil (Linquist et al., 

2012), avoiding over applications, or eliminating N applications where possible (Zhang 

et al., 2010). 



6 
 

1.3.1.1. Effect of nitrogen mineral fertiliser, adjusting fertilisation and matching N supply 

with demand on greenhouse gas emissions 

Many types of fertilisers are used in agriculture, but the most common fertilisers are 

ammonium nitrate based fertilisers, nitrate based fertilisers, ammonium based fertilisers 

and urea, and urea based fertilisers. Statistical analyses on the database with 

measurements of N2O emissions (Bouwman, 1996; Stehfest and Bouwman, 2006) 

showed no significant effect of fertiliser type on N2O emission. However, several 

studies in which different mineral fertilisers are compared in one experiment often show 

large differences. In incubation studies, the N2O emission from nitrate based fertiliser is 

much higher than from ammonium based fertiliser under wet conditions (e.g. Pathak 

and Nedwell, 2001). The studies of Clayton et al. (1997), Dobbie and Smith (2003), 

Velthof et al. (1997) and Jones et al. (2005, 2007) also point at much higher N2O 

emissions from nitrate based fertiliser than from fertiliser only containing ammonium, 

especially during wet conditions. In a field experiment by Leick and Engels (2001) the 

N2O emission was slightly higher for the nitrate based fertiliser compared to ammonium 

sulphate. Urea is considered as an ammonium based fertiliser, since hydrolysis of urea 

leads to the formation of ammonium. Urea and ammonium sulphate additions 

potentially affect N2O emissions because they have different nitrification rates and can 

have opposite effects on soil pH (Burger and Venterea, 2011). In a meta-analysis of 

many different crops, Bouwman et al. (2002) reported that urea and ammonium sulphate 

use resulted in similar N2O emissions 

The dose of fertiliser controls GHG emission, and especially N2O increases with 

increased N inputs (Gregorich et al., 2005; Pittelkow et al., 2013). The N2O emissions 

by nitrification and denitrification depend on the soil N content (Akiyama et al., 2000), 

and also on the N-fertiliser applied to the soil (Signor et al., 2013). The use of N-

fertilisers influences directly the amount of ammonium (NH4
+
) or nitrate (NO3

-
) 

available in the soil. The larger the amount of NH4
+
-N in the fertiliser, the larger the 

nitrification (Mosier et al., 2001; Liu et al., 2005). As a consequence, the emission of 

N2O can also increase, because the nitrite (NO2
-
) formed during nitrification can be used 

as electron acceptor, if O2 is limited, and also because denitrification can occur after 

nitrification, when soil conditions are favourable. Emissions of N2O will also be greater 

when NO3
-
 in the soil is high (Zanatta et al., 2010). When NO3

-
 availability decreases, 

N2O emissions also decrease, because denitrification is reduced (Hellebrand et al., 
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2008). On the other hand, N-fertilisation implies a higher plant biomass production, and 

then more crop residues (and carbon -C- sources) would be available in the soil, that 

could increase N2O emissions for a long period, after the N-fertiliser application 

(Hellebrand et al., 2008). 

A generic strategy to reduce N2O emissions is to avoid excessive application of N in 

space and time leading also to less indirect emission of CO2 during N fertiliser 

production. Huang et al. (2005) reported that N2O emission increased linearly with the 

amount of N fertiliser especially at higher doses. Li et al. (2010) found that a reduction 

in N fertiliser dose had no significant effect on CH4 emissions, but that 33% reduction 

in the current average N application dose could result in a 27% decrease in N2O 

emission in a rice field.  

Recent field studies reported that high N doses can roughly decrease net CH4 emissions 

by 30 to 50% from the crop fields (Dong et al., 2011; Yao et al., 2012). Aulakh et al. 

(2001) reported that the increase in the application of N fertiliser decreased CH4 

emission and increased N2O emission compared with a control treatment. Zou et al. 

(2005) also recorded a 75% decrease in CH4 and a 58% increase in N2O, when N 

application was increased from 150 to 400 kg N ha
-1

. Recent meta-analyses indicate that 

CH4 emissions may be N dose dependent, where N addition at low doses tends to 

stimulate CH4 emissions but can potentially mitigate CH4 emissions at high N doses 

(Banger et al., 2012).  

Placement of N fertiliser into the soil near the active root uptake zone may decrease 

surface N emission and enhance plant N use efficiency resulting in less N2O emissions. 

Hussain et al. (2015) pointed out that placing chemical fertiliser in the 6 to10 cm of the 

top soil layer can significantly increase the N use efficiency and decrease N2O 

emissions. Furthermore, splitting N application in different growth stages of the crop 

can also enhance the N use efficiency and reduce N losses. 

Application of N fertiliser to soil would impact decomposition of organic matter only if 

N is limiting in soil (Brady and Weil, 2008) relative to the amount of organic matter to 

be mineralized. The amount of N in previously existing organic matter in soil, which 

typically has a C/N ratio of 10:1, does not limit the occurrence of decomposition 

(Paustian et al., 1992); however, because newly added plant residues may have a high 

C/N ratio (larger than 20), short-term carbon dynamics may be affected by the addition 
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of N fertiliser (Snyder et al., 2009). However, over a long period of time, the 

decomposition rates are likely to balance out. The addition of N fertiliser may just 

enhance the first steps of decomposition of soil organic matter to some extent or when 

there are changes in the way organic residues are applied to soil.  

Previous research has demonstrated inconsistent results of the effect of N fertilisation on 

soil microbial biomass and CO2 emission. Dick (1992) reported that N fertilisation may 

enhance soil microbial activity by increasing plant biomass production and thus 

boosting CO2 emissions. Contrarily to this finding, Ladd et al. (1994) reported that N 

fertilisation can reduce microbial activity and therefore CO2 emissions due to 

decreasing soil pH, depending on the fertiliser reaction. Other studies have also shown 

that soils fertilised with high N doses produce relatively low soil CO2 emissions 

(Wilson and Al-Kaisi, 2008; Ramirez et al., 2010). On the other hand Al-Kaisi et al. 

(2008) and Ni et al. (2012) found no consistent significant effect of N fertilisation on 

soil microbial biomass and soil CO2 emissions in a corn-soybean rotation.  

The effects of N fertilisation on CH4 emissions are complex and sometimes 

contradictory depending on the source, quantity and method of N application (Lindau, 

1994). Although upland soils generally behave as CH4 sinks, some soils can also behave 

as CH4 sources depending on the source of N fertiliser used (LeMer and Roger, 2001). 

Bronson and Mosier (1993) reported higher CH4 consumption in unfertilised dryland 

wheat than in fertilised, irrigated wheat. However, there are also reports that the dose of 

N application did not affect CH4 emissions or oxidation from soils (Amos et al., 2005; 

Mosier et al., 2006).  

Research on the effect of timing of N application on soil CO2 and CH4 emissions in corn 

production found greater emissions of CO2 from soil and greater consumption of CH4 

by soil when N was applied in late spring compared to in early spring (Phillips et al., 

2009). The higher level of inorganic N and higher water filled pore space (WFPS) in 

late spring compared to that in early spring may have contributed to larger soil organic 

matter mineralization and higher rates of microbial respiration which eventually led to 

higher CO2 emissions. Consumption of CH4 by methanotrophic microbes in soil is 

generally inhibited by N fertiliser addition, especially by ammonium based N fertiliser, 

through inhibiting methane monoxygenase enzyme in methanotrophs, the enzyme 

responsible for methane consumption (Dunfield and Knowles, 1995) both in upland and 
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lowland soils (Bodelier and Laanbroek, 2004). However, Phillips et al. (2009) found 

that CH4 consumption was enhanced when N was applied in late spring compared to in 

early spring. Higher soil CH4 consumption with later application may have been related 

to stimulated microbial activity caused by N application at higher soil and air 

temperatures compared to those in early spring (Phillips et al., 2009). 

1.3.1.2. The effect of organic fertilisers application on greenhouse gas emission 

Organic fertilisers contribute to GHG emission directly through the release of CO2, 

CH4, and N2O from C and N compounds present in these amendments, and indirectly 

through their effects on soil properties thereby inducing GHG emission from soil. 

Emission of N2O in manured soils is variable (Lessard, et al., 1998). Most of the 

difference observed between studies is likely due to soil type and climate, as well as the 

type and composition of organic fertiliser when measurements are made in the same 

crop (Lessard, et al., 2000). 

Emission of N2O from soil applied organic fertiliser is controlled by the amount of 

applied N and C. The higher the amount of applied mineral N and easily mineralizable 

N, the higher the risk on N2O emission. Application of total N can be much higher for 

solid (e.g. chicken manure) than for liquid manure, but much of the N in solid manure is 

unavailable (i.e., in organic compounds) in the short term for denitrification (Byrnes et 

al., 1993). With time, the organic N in solid manure would be mineralized and could 

eventually become available for denitrification. The lower N2O emission following 

application of solid manure may result from the uptake of available N by growing 

plants, which precludes a large build-up of mineral N. Furthermore, short measurement 

periods (i.e., one year) following application of solid manure may not fully account for 

the total manure-induced emission of N2O; hence a full accounting of N2O from solid 

manure for a period of several years may be needed to explain the slower release of 

available N (Gregorich et al., 2005). 

The similarity of N2O emission from soils amended with mineral fertiliser (e.g. urea or 

ammonium sulphate) and liquid manure (e.g. pig slurry) agrees with the observation that 

NH4
+
-N constitutes a large fraction (50–70%) of liquid manure N. Liquid manure also 

contains labile soluble organic C that can stimulate N2O production where C availability 

limits denitrification. In soils with low C content, liquid manure has often resulted in 

greater N2O emission than mineral fertiliser (Rochette et al., 2000). The similarity in 
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N2O emission from soils receiving liquid manure and mineral fertiliser suggests that 

available C was probably not limited in soils where mineral N was applied (Gregorich et 

al., 2005). 

A meta-analysis of all studies available in Mediterranean climates shared additional 

insight into organic fertiliser management. Aguilera et al. (2013) found that solid 

organic fertiliser have determined lower N2O emissions than even untreated fields and 

that pig slurries have determined the highest emissions.. Aguilera et al. (2013) 

suggested that these findings reflect comparatively high doses of N mineralization and 

high concentrations of NH4
+
. Switching to solid organic fertiliser could reduce 

emissions by 0.40, 0.56, 0.84, and 0.03 t CO2-eq ha
-1

 yr
-1

 on synthetic, synthetic/organic 

mixtures, liquid organic and untreated fields, respectively (Aguilera et al., 2013). 

Generally, emission of CH4 increases by the addition of organic fertiliser and such an 

increment depends on the quantity and quality of material as well as the timing of its 

application (Denier van der Gon et al., 2002; Naser et al., 2007). 

Organic manure has been widely used in agroecosystems due to their positive roles in 

soil fertility improvement and climate change mitigation via soil carbon sequestration 

(Gong et al., 2012). Previous studies have shown various responses of soil CO2 

emissions to applications of organic amendments (Ghidey and Alberts, 1993; Mapanda 

et al., 2011). The amount of soil CO2 emissions is dependent on many factors, primarily 

the type and level of applied organic amendments (Diacono and Montemurro, 2010), as 

well as the quantity of carbon already in the soil (Six et al., 2002). In fact, soil 

management, plant cover and soil nutrient status can not only alter soil respiration, but 

also change the temperature sensitivity of this process (Paz-Ferreiro et al., 2012). Thus, 

the overall response of soil CO2 emissions to organic amendments is a complex process 

and remains uncertain. 

1.3.1.3. Effect of crop residues management on greenhouse gas emission 

Crop residues may play multiple roles in mediating soil N2O emissions. As an organic 

N fertiliser, they are subject to microbial N mineralization and nitrification, leading to 

N2O production. In general, this function relies on the N content of crop residues (Toma 

and Hatano, 2007; Miller et al., 2008; Frimpong and Baggs, 2010). Crop residues also 

serve as an organic C substrate for microbial growth and therefore stimulate microbial 
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N assimilation (immobilization). This action often triggers a strong competition for 

NH4
+
 between heterotrophic microorganisms and autotrophic nitrifiers (Stark and Hart, 

1997; Shi and Norton, 2000; Burger and Jackson, 2003), resulting in reduced N2O 

production. Furthermore, crop residues can serve as an energy provider for denitrifiers, 

enhancing denitrification, and, accordingly, N2O production under anaerobic conditions. 

Via influences on relative C and N availability, crop residues also affect N2O yield, i.e., 

the ratio of N2O to N2 produced. The N2O yield has been documented to increase with 

increasing soil NO3
-
 availability; N2O production may account for up to nearly 100% of 

the total amount of NO3
-
 reduction (Terry and Tate, 1980; Weier et al., 1993; Miller et 

al., 2008). Besides these direct impacts, crop residues can further modify soil aeration 

by enhancing soil aggregation as well as microbial O2 demand, therefore increasing the 

level of soil microsite anaerobicity. 

The effects of crop residues on soil N2O emissions can also be affected by soil physical 

and chemical properties. For example, soil pH influences on the decay rate of crop 

residues and therefore N availability for nitrification and denitrification. Soil texture and 

structure affect pore size distribution, the movement of water through soil, and therefore 

the soil O2 status for crop residue degradation and N transformation processes. The 

effects of crop residue incorporation on the N2O emissions from soil have been 

extensively investigated both in the laboratory and on the field (Aulakh et al., 2001; Ma 

et al., 2010, Montoya-González et al., 2009; Muhammad et al., 2011; Zou et al., 2005), 

leading to debatable results because of several environmental factors (e.g., soil property, 

crop residue type, climate, and management practices) vary among different studies. 

The incorporation of crop residues can substantially change the availability of soil 

NH4
+
-N and NO3

-
-N, the major factors controlling nitrification and denitrification 

respectively, and therefore soil N2O production. Normally, when their C: N ratios are 

40, crop residues can provide sufficient N to meet the growth and proliferation of soil 

microbial community following crop residue amendment, leading to net N 

mineralization (Vigil and Kissel, 1991).  

This extra N supply may stimulate nitrification and/or denitrification, depending on soil 

aeration conditions and thereby enhancing soil N2O emissions compared with 

unamended controls. In contrast, N in crop residues cannot meet the N requirement of 

microbial growth induced by crop residue C when the C/N ratios of crop residues are 



12 
 

>45 (Vigil and Kissel, 1991). Thus, active microbes will assimilate indigenous soil N 

into their biomass, causing net N immobilization. Obviously, this N depletion can lessen 

nitrification and/or denitrification and hence soil N2O emissions. Heterotrophic 

microbial growth-associated N assimilation following soil amendment of crop residues 

has been considered to be the basis for negative relations between soil N2O emissions 

and C/N ratios of crop residues (Millar and Baggs, 2005; Garcia-Ruiz and Baggs, 2007; 

Frimpong and Baggs, 2010). 

Li et al. (2013a, b) reported that even at C/N ratios of crop residues above 100, N2O 

emissions in crop residue amended soils were significantly larger than the unamended 

controls under aerobic conditions. This suggests that crop residue addition may affect 

abiotic factors other than soil inorganic N. It is possible that active microbial growth 

following crop residue addition consumes sizable O2 in soil pores, causing a shift in 

aeration to more anaerobic conditions. As a result, denitrification may replace 

nitrification and become a major process for N2O production in some soil pores, thereby 

enhancing soil N2O emissions compared with the unamended controls. This 

heterotrophic microbial growth-induced O2 depletion should be positively related to the 

amount of crop residue addition (Millar and Baggs, 2005). 

Furthermore, the magnitude of N2O and CO2 emissions varies with the types, quality or 

chemical composition of the residues added to soils (Curtin et al., 1998; Baggs et al., 

2000). Usually, larger CO2 and N2O emissions were obtained in the soils to which 

residues of high N content and low lignin content had been incorporated (Millar and 

Baggs, 2004). Residue consists of many kinds of organic constituents such as cellulose, 

hemicellulose, lipids, proteins, lignin, etc., and the contribution of each constituent in 

increasing CH4 emission is variable. Methane emission fluxes are very sensitive to the 

mode of straw management into the soil (Millar and Baggs, 2004). 

In paddy soils, rice straw and root residues are the main inputs of crop residues to soils, 

which not only play important roles in nutrient supply and crop yields, but also promote 

C sequestration when organic C inputs from rice residues exceed CO2 emissions (Witt 

et al., 2000; Lu et al., 2003). 

Crop residue removal decreased the emission of all three gases as compared with straw 

incorporation (Baggs et al., 2000). Koga and Tajima (2011) also recorded less CH4 and 

CO2 emissions from residues removed treatments as compared with straw return ones. 
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Nayak et al. (2013) argued that crop residue addition stimulated CH4 emission by 108% 

and inhibited N2O emission by 21% compared to plots fertilised only with chemical 

fertiliser. 

1.3.1.4. Effect of the use of the nitrification inhibitors (DMPP) on greenhouse gas emission 

In order to decrease fertiliser-induced N losses and increase N use efficiency, several 

chemical compounds which depress nitrification (i.e., nitrification inhibitors: NI) have 

been developed. Some practical advantages of the use of NI like DMPP (3,4- 

dimethylpyrazole phosphate) are (i) a significant reduction in the risk of NO3
-
 leaching 

and (ii) a decrease in N2O emissions (Weiske et al., 2001; Majumdar et al., 2002; 

Menéndez et al., 2006, 2009; Cui et al., 2011; Pfab et al., 2012). The application of 

DMPP together with NH4
+
-based fertilisers, cow urine or cattle slurry has demonstrated 

efficient in reducing N2O emission and NO3
-
 leaching while increasing the yield and use 

efficiency of fertiliser N in croplands and grasslands (Weiske et al., 2001; Cui et al., 

2011; Pfab et al., 2012).  

This inhibitor delays the microbial oxidation of ammonium (NH4
+
)
 
to nitrite (NO2

-
) by 

depressing the activity of Nitrosomonas sp. in soil (Weiske et al., 2001; Zerulla et al., 

2001). In addition, the use of a NI would also mitigate the CO2 and CH4 emissions 

(Weiske et al., 2001; Maris et al., 2015). 

The extent to which DMPP inhibits N2O emission and NO3
-
 leaching is primarily 

dependent on factors such as rate, time and method of NI application (Barth et al., 2008; 

Zaman and Nguyen, 2012); field management (irrigation, type, geometry and NH4
+
-

based fertilisers application method, Sanz-Cobena et al., 2012); climate (precipitation 

and temperature, Shepherd et al., 2012); and soil properties (moisture, pH, texture, 

organic carbon and mineral N, Barth et al., 2001; Shepherd et al., 2012). 

Regarding the effect of DMPP on yield, it was demonstrated that the application of 

DMPP is able to increase or at least maintain, the crop yield and quality parameters 

(Rufat et al., 2014) while reducing greenhouse gas emissions under Mediterranean 

conditions (Maris et al., 2015). 
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1.3.2. The main factors affecting greenhouse gas emission from soil 

The addition of water, either by irrigation or rainfall, increases soil moisture content, 

which affects the soil emissions of all three GHGs. Nowadays, about 18% of the 

world’s croplands receives supplementary water through irrigation (Millennium 

Ecosystem Assessment, 2005). There are wide variations between EU Member States 

with regard to water availability, climate and aridity, leading to a heterogeneous 

agricultural water demand. In arid and semi-arid areas of the EU, including much of 

Spain, Portugal, Italy, Greece and southern France, irrigation allows crop production 

where water would otherwise be a limiting factor. In more humid and temperate areas 

including Denmark, the Benelux states, north and central France, Germany, southern 

Sweden, south-eastern UK and eastern Austria, irrigation provides a way of regulating 

the local amount and seasonal availability of water to match agricultural needs. It thus 

reduces the risks to crops which can arise from unexpected climatic events. In the 

Mediterranean regions, water has been used for agricultural purposes and today, 

irrigation is the principal user of water. Irrigation today represents 80% of the total 

water demand in Spain and nearly 90% of actual water consumption. Most of the water 

used for irrigation comes from surface water sources (68%). Another important share of 

water used in agriculture comes from aquifers (28%). Crop types irrigated include a 

wide variety, from permanent crops (olives, citrus) through annual crops (wheat, maize, 

rice) to a large number and area of horticultural crops, including a substantial area of 

glasshouse horticulture in the coastal regions (Magrama, 2014). 

The most popular irrigation systems for crops are: sprinkler irrigation, furrow irrigation, 

continuous flooding (for rice), intermittent flooding, surface drip irrigation and 

subsurface drip irrigation. The water–use efficiency varies between irrigation systems 

and it taken into consideration, among other factors, when determining the best 

irrigation system for a particular field. The choice of irrigation type will then have a 

different influence on soil moisture and the associated GHG emissions.  

The important influence of irrigation on GHG emission can be explained by the fact that 

in Mediterranean agroecosystems this type of management activity is usually applied 

during the dry summer period, which leads to optimal moisture and temperature 

conditions for N2O, CO2 and CH4 production. The typical Mediterranean climate pattern 

includes a very marked drought period during summer and usually has mild 
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temperatures and an erratic distribution of rainfall over the rest of the year; this 

contributes to the existence of several wetting and drying cycles. 

The application of water through irrigation or rainfall causes increases in GHG 

emission. The amount of the emissions depends on the amount of water applied and the 

subsequent soil moisture (Dobbie and Smith, 2001). The N2O emissions from surface 

drip irrigation are up to 70% lower than those observed from furrow irrigation in melon 

crops (Sánchez-Martín et al., 2008). Kallenbach et al. (2010), in California, found N2O 

emissions in the growing season from subsurface drip irrigation to be half of those from 

furrow irrigated tomatoes. Differences between furrow and subsurface irrigation likely 

resulted from the high denitrification rates caused by furrow irrigation. Kallenbach 

(2010) and Kennedy (2012) suggest that subsurface drip irrigation could reduce N2O 

emissions, but complex interactions among multiple crop management factors make it 

difficult to quantify precisely how much of the emission reduction is due to the 

irrigation treatment alone. Future studies should address this limitation and also 

examine the possible N2O reductions from drip irrigation systems (both subsurface and 

surface) if applied in other agro ecosystems. Conversely, CO2 emissions from furrow 

and subsurface drip irrigation were similar with no significant difference (Kallenbach et 

al., 2010). To our knowledge, emission differences between the two types of drip 

irrigation have not yet been assessed.  

Under rainfall or sprinkler irrigation, infiltration is mainly vertical, and water 

distribution is quite homogeneous onto the soil (Mualem and Assouline, 1996). 

Very few studies conducted in Spain have specifically examined the effect of different 

irrigation practices and technologies on GHG emissions (Sánchez-Martín et al., 2008, 

Abalos et al., 2014, Vallejo et al., 2014). In all these studies N2O and CO2 emission 

were affected by the type of irrigation. While, emissions of CH4 were negligible, and no 

significant differences between the irrigation treatments were found. 

1.3.2.1. Effect of irrigation on greenhouse gas emissions from rice paddy soils 

When a rice field is flooded, the soil becomes progressively more anaerobic as the O2 

content and redox potential (Eh) both decline through time. In the absence of O2, 

decomposition of crop residues and other organic materials is facilitated by anaerobic 

bacteria that generate CH4 rather than CO2 (Horwath, 2011). Gaseous CH4 is released to 
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the atmosphere either through the rice plant itself (e.g., transported through 

aerenchyma), direct emission from soil via ebullition, and degassing during drainage. 

Various soil properties such as temperature, texture, chemical content (e.g., C, Fe
3+/2+

, 

NH4
+
), and redox status can also affect CH4 fluxes (Kirk, 2004).  

A recent review of emissions from global rice systems suggests that approximately 89% 

of the systems’ total global warming potential (GWP) is attributed to CH4 of rice fields 

continuously flooded; the remaining 11% comes from N2O (Linquist et al., 2012). 

Practices such as mid-season drainage or flooding period reduction can reduce CH4 

emissions from rice but also promote higher N2O emissions that offset some of the total 

emissions reductions (Hou et al., 2000; Johnson-Beebout et al., 2009). However, most 

studies that consider both CH4 and N2O have found that some form of mid-season 

drainage still yields a net reduction in GHG emissions (Zou et al., 2005; Linquist et al., 

2012). 

Intermittent irrigation involves alternate flooding and aeration (drying) of the soil 

throughout the crop rice. It possess the advantage of ameliorating soil oxidative 

conditions by enhancing root activity, higher soil capacity, and ultimately minimizing 

water inputs that result in anaerobic conditions. It enhances diffusion of oxygen into the 

soils increasing the aerobic area and reducing CH4 production (Linquist et al., 2012). 

Yagi et al. (1996) stated that intermediate drainage can minimize CH4 emission by 44% 

compared with continuous flooding. Adhya et al. (2000) also found a 15% reduction in 

CH4 emissions by intermittent drainage with respect to permanent flooding. Methane 

emissions in intermittent irrigation are generally very low, but N2O emissions from this 

system vary in a broad range (250 g N2O ha
-1

 to 12.4 kg N2O ha
-1

 according to Kumar et 

al., 2000; Aulakh et al., 2001; Maris et al., 2015). The countervailing differences in the 

CH4 and N2O fluxes during wetting and drying cycles must be considered when 

examining how agricultural management might affect overall emissions from rice 

cultivation. 

Intermittent drainage can have a marked effect on soil CO2 emissions, increasing them 

considerably (Miyata et al., 2000; Saito et al., 2005). However, the mechanism of CO2 

exchange between rice paddies and the atmosphere is not fully understood (Miyata et 

al., 2000). Miyata et al. (2000) found a significantly larger net CO2 flux from rice paddy 

soils to atmosphere when the field was drained compared to when it was flooded. These 
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differences in the CO2 flux were mainly due to increased CO2 emissions from the soil 

surface under drained conditions resulting from the removal of the diffusion barrier 

caused by floodwater. The existence of floodwater, anaerobic soil, and changes in the 

micrometeorological environment influence root activity, photosynthesis, and 

respiration of the rice plant (Liu et al. 2013). Therefore, it is necessary to investigate soil 

CO2 evolution from paddy soils to better understand the mechanisms that regulate 

carbon storage and loss in extensively cultivated paddy fields.  

Various water saving irrigation management modes are currently practiced in paddy 

fields in the world, including intermittent irrigation, controlled irrigation, flooding-

midseason drainage frequent water logging with intermittent irrigation, and flooding-

midseason drainage flooding-moist intermittent irrigation but without water logging 

(Belder et al., 2004; Mao, 2002). Water saving irrigation management modes is not 

currently practiced in paddy fields in Spain. In the present thesis, testing the intermittent 

irrigation has proven effective in reducing water input, but has caused yield reduction 

compared with continuous irrigation. Moreover, the global warming potential was the 

highest in intermittent irrigation (4738.39 kg CO2 ha
-1

) and the lowest in continuous 

irrigation (3463.41 kg CO2 ha
-1

) (Maris et al., 2015). These results suggest that the 

application of good practice in paddy fields in Spain: applying a suitable intermittent 

irrigation can result in a good yield. It also implies the saves water and may possibly 

reduce GHG emissions. Avoiding water saturation when rice is not grown and 

shortening the duration of continuous flooding during the rice growing season are 

effective options for mitigating GHG emissions from rice fields. The implications of 

shifting from a permanent flooding to an intermittent irrigation system on rice 

environment and productivity will be assessed through monitoring of water 

consumption, soil salinity, plant x soil x microbial community interactions, GHG 

emission, soil chemistry. In addition, it should be identified the rice cultivars varieties 

that maintain high yield under this system irrigation. 

The wet–dry cycles of water saving irrigation changes the agro-ecosystem, including the 

soil properties, soil water cycle and soil N transfer, transformation and losses (Yang et 

al., 2015). Therefore, further studies on N use efficiency and loss from paddy fields with 

joint application of controlled release N fertiliser and water saving irrigation are 

necessary to identify water and N management practices that can minimize 

environmental pollution while maintaining rice yield. 
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Moreover, the "Climate Smart" Agriculture sourcebook sugests that use the efficiency 

of a Alternate Wetting and Drying rice production system (AWDS) consisting in 

flooding the fields with a water layer 2-5 cm deep and then leaving the water level to 

drop below the soil surface before the fields are reflooded again. It is estimated that, if 

done properly, this system may reduce water input by 15-30% and GHG emission 

reduced by up to 48% without yield penalty. For this reason the present study can be 

considered a large opportunity to understand how the intermittent irrigation affects 

greenhouse gases emission from a paddy soil under Mediterranean conditions. Under 

these condition the present study can be included or considered in the context of a 

“Climate Smart Agriculture”, which relates production increase in future agriculture to 

both adaptation to climate change  and mitigation of greenhouse gas emissions. 

1.3.3.2. Effect of soil moisture on greenhouse gas emissions from soil 

Alternating wetting and drying cycles that permit nitrification to progress, and water 

filled pore space WFPS above about 60% but below saturation, are conditions for the 

largest potential for N2O emissions (Granli and Bøckman, 1994). The magnitude of N 

loss is controlled by the interaction of soil moisture and N availability, principally NO3
−
 

availability (McSwiney and Robertson, 2005). Proper irrigation practices to improve 

water use efficiency, and to avoid moisture excesses associated with reductions in air-

filled pore space, may help minimize the potential for N2O emissions.  

Maximum CO2 emission from soils has been found at intermediate soil moisture 

contents when WFPS is between 20 and 60%, and vary depending on crop type and 

location (Schaufler et al., 2010). In both very wet and very dry soils, soil respiration is 

restricted which limits CO2 emissions (Smith et al., 2003). Wetting of a dry soil tends to 

increase CO2 emissions due to the fact that there are increases in the respiration rate 

(Orchard and Cook, 1983). The relationship between CO2 emissions and soil moisture 

also depends on the type of crop. For instance, Lee et al. (2009) observed that the CO2 

fluxes increased with increases in soil moisture for soils planted with maize but not 

sunflower or chickpea, due to differences in management practices. Similarly Gillam et 

al. (2008) found that denitrification was primarily controlled by soil O2 supply, WFPS 

and C availability, and the N2O/(N2O+N2) ratio was generally high where there was 

abundant moisture, but not saturated conditions. 
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Methane uptake, in cultivated soils, shows a strong negative correlation with increasing 

soil moisture, which is likely due to the decreasing aeration in the soil (Lessard et al., 

1994; Flessa et al., 1995). Emissions of CH4 are most noted under waterlogged 

conditions (Smith et al., 2003). The contradicting effects of soil moisture and 

temperature on the simultaneous production and oxidation of CH4 could counteract each 

other (Schaufler et al., 2010). 
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Chapter 2. Objectives 

The main hypothesis of this study is that the use of different types of fertiliser (organic 

or mineral) and irrigation systems have a significant impact on greenhouse gases (N2O, 

CO2 and CH4) and there is wide scope to reduce the amount of N2O, CO2 and CH4 

emitted, controlling direct and indirect factors associated with N fertilization and 

irrigation. Therefore, the broad objective of this thesis is: “To evaluate how nitrogen 

and irrigation management practices influence on greenhouse gas (CO2, CH4 and N2O) 

and N2 emissions from rice and irrigated maize and super-intensive olive trees” 

The specific objectives of this thesis are: 

(1) To determine the effect of irrigation frequency (continuous irrigation and 

intermittent irrigation) on the emission of greenhouse gases (CH4, CO2, N2O), and N2 

from a paddy soil at the Ebro Delta (NE Spain); 

(2) To compare the effect of urea, ammonium sulphate, chicken manure and pig slurry 

applied at different doses on the emission of N2O, N2, CH4 and the ecosystem 

respiration (CO2) during the seedling period, the rice crop season and the postharvest 

period under Mediterranean conditions in a rice field; 

(3) To compare the effect of two contrasting maize (Zea mays L.) stover management 

practices (incorporation or removal) combined with different ammonium nitrate 

fertiliser doses, on the emission of greenhouse gases (N2O, CH4 and CO2) in a soil with 

a high mineral N (200 g N kg
-1

 on average) content.  

(4) To compare the effect of applying two different irrigation strategies (subsurface drip 

irrigation (SDI) and, surface drip irrigation (DI)) in combination with mineral N applied 

via fertigation with and without DMPP on the GHG emissions from a high density 

Arbequina olive tree orchard. 

This document consists of four independent chapters presented in the format of a 

journal article. For this reason, some parts, such as the material and methods section, 

may contain a certain degree of repetition. 

Some of the chapters have already been accepted for publication in scientific journals, 

while others are currently under revision. 
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Chapter 3. Material and methods 

3.1. Localisation of the experimental sites  

 The effect of irrigation frequency on the greenhouse gases (GHG) emission was 

studied at the Institute for Food and Agricultural Research and Technology 

(IRTA), in its Amposta station, Catalonia, Spain. (Fig 3.2.1). 

 Effect of organic and mineral fertilisers on greenhouse gases emission from 

Mediterranean rice paddy soils: the experiment was carried out at two rice 

paddies located at two different sites in the Mediterranean Ebro Valley (NE 

Spain), representative of the agricultural practices in the Valley. Site 1 is located 

at the Institute for Food and Agricultural Research and Technology (IRTA), at 

its Amposta station in the Ebro River Delta. Site 2 is located at Villanueva de 

Sigena (Fig 3.2.1). 

 Effect of stover management and nitrogen fertilization on greenhouse gases 

emission from irrigated maize in a high nitrate-N soil was carried out at a maize 

field (Zea mays L.) located at Almacellas (NE Spain) (Fig 3.2.1). 

 Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous 

oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) 

orchard: was carried out at a commercial high tree density (1010 trees ha
−1

) 

adult olive tree plantation (O. europaea L. cv. Arbequina) located at Torres de 

Segre (Lleida, Catalonia, Spain) (Fig 3.2.1). 

 

Fig 3.2.1 Localisation of the experimental sites 
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3.2. Gas sampling and analysis 

The N2O, N2O+N2, CO2 and CH4 emissions were always sampled weekly using the 

closed chamber method and the gas samples were quantified by means of the 

photoacoustic technique (Innova 1412 Photoacoustic Multigas Monitor; Fig. 3.2.1). The 

closed chamber method and the acetylene (C2H2) inhibition method were applied in the 

field for rice and in the laboratory for the super-intensive olive tree orchard.  

 

Fig. 3.2.1 Photoacoustic analyser (Innova 1412 Photoacoustic Multigas Monitor) 

On the rice and maize crops the N2O, N2O+N2, CO2 and CH4 emissions were sampled 

weekly directly in the field using the cylindrical static chamber. For sampling on the 

waterlogged rice crop cylindrical (20 cm diameter and 60 cm high) static chambers 

were made of polyvinyl chloride (PVC) coated with an epoxy resin and was inserted 18 

cm into the soil. While, on the maize crop the cylindrical static chambers were only 19 

cm diameter and 22 cm high, and were inserted only 5 cm into the soil (Fig. 3.2.2 a and 

b).  



39 
 

 

Fig. 3.2.2 Views of the gas sampling chambers used on maize (a) and on rice (b) 

This cylinders were closed with a vented screwed lid with a three-way key. Air samples 

from inside the chamber were taken in duplicate immediately after closing the chamber, 

and 20 and 40 min later. Samples were taken through a Teflon® tube connected to the 

three-way key and into 100 ml plastic syringes adapted with a valve (Fig. 3.2.3).  

 

Fig. 3.2.3 Taking samples of air inside the closed chamber 

Before sampling, air within the chamber was mixed by filling and emptying the syringe 

six times before withdrawing the sample. After taking the gas sample the syringes were 

closed by the valve. After 40 min of sampling the three-way keys were left open until 

the sampling with acetylene.  

The acetylene (C2H2) inhibition method (Balderson et al. 1976; Yoshinari and Knowles, 

1976) was used to inhibit the last step of denitrification (N2O to N2) and it was applied 
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only on the rice crop. Ten percent (v/v) of the air enclosed in the chamber was replaced 

by C2H2 (Fig. 3.3.3).  

 

Fig. 3.3.3 Ten percent (v/v) of the air enclosed in the chamber was replaced by C2H2 

After C2H2 was allowed to diffuse into the soil for 20 min, samples were taken as 

described in the previous paragraph. After 40 min of sampling the three-way keys were 

left open until the following sampling and the chambers were removed from the field 

and cleaned properly with water. 

The syringes were transported to the laboratory and the concentrations of N2O, CO2 and 

CH4 in the sampled air were analyzed using the photoacoustic technique (Innova 1312 

Photoacoustic Multigas Monitor) (Fig. 3.3.4).  

 

Fig. 3.3.4 Analysing the samples of N2O, CO2, CH4 and N2O+N2 using the 

photoacoustic technique 

The N2O, CO2 and CH4 emission fluxes were determined from the linear increase of gas 

concentration at each sampling time (0, 20 and 40 min) during the time of chamber 

closure. The cumulative emission throughout the study period was calculated by 

C2H2
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integrating the emission curve through time. During N2O, CO2 and CH4 emission 

monitoring, soil temperature at a depth of 5 cm was determined by means of a 

thermometer. 

In the super-intensive olive tree orchard undisturbed soil cores, which were 15 cm 

long and 7 cm in diameter, were taken weekly, using PVC tubes. The soil cores were 

placed on a lid immediately after withdrawing them from the soil. This lid was kept on 

place until the samples were weighted to gravimetrically determine their water content 

(Fig. 3.3.5).  

 

Fig. 3.3.5 The PVC tubes used to take undisturbed soil cores from the super-intensive 

olive tree orchard  

The undisturbed soil cores were taken from the wet topsoil of the bulb generated by the 

irrigation system and immediately brought to the laboratory (Fig. 3.3.6).  

 

Fig. 3.3.6 The undisturbed soil cores were taken from the wet bulb 
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The total time spent every sampling day to withdraw the soil cores was about 1 h. The 

samples were immediately taken to the laboratory (inside an insulated closed cage) 

which was only 15 min drive away from the field. This procedure began one week 

before the start of irrigation and continued until irrigation finished. Nitrous oxide, CO2 

and CH4 fluxes were measured in the laboratory using the closed chamber method. 

Each soil core collected in the PVC cylinder was placed in a glass jar (1.5 L) with an 

air-tight glass lid. Each of these lids was equipped with a three-way key which was 

directly connected to a photoacoustic analyser via a Teflon
®
 tube (Fig. 3.3.7). 

 

Fig. 3.3.7 The glass jars (1.5 L) with air-tight glass lids, containing the undisturbed soil 

cores collected in the PVC cylinders (a) and the connection between the glass jars and 

the photoacoustic analyser (Innova 1412 Photoacoustic Multigas Monitor) via Teflon® 

tubing (b) 

The glass jars were hermetically closed for 40 minutes during which the photoacoustic 

analyser withdrew and analyzed gas samples at times 0, 20 and 40 minutes after closing. 

The glass jars lids’ were left open to allow the inside and outside gases concentrations 

and pressures to equilibrate before proceeding with the acetylene inhibition method. 

The acetylene (C2H2) inhibition method (Balderston et al., 1976; Yoshinari et al., 1976) 

was used to inhibit the last step of denitrification (N2O reduction to N2). Ten percent 

(v/v) of the air enclosed in the chamber was then replaced by C2H2. This replacement 

inhibited the reduction of N2O to N2 (Federova et al., 1973). After the C2H2 had been 

allowed to diffuse for 20 min, the gas inside the jars was analysed for N2O as described 

in the previous paragraph. Forty min after sampling, the glass jars were emptied and left 

open. 
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Surface soil temperature (at a depth of 10 cm) was recorded always during sampling in 

the field. The photoacoustic analyser refers the gases concentration to 20ºC and 1 atm; 

the concentration was corrected to be referred to the actual field temperature and 

atmospheric pressure of each sampling day. Sampling was done at the time of the day 

when soil temperature was about the average soil temperature of the day in order to 

minimize over or underestimation of the emission caused by daily soil temperature 

fluctuation.  

A value for molecular nitrogen emission was obtained by substracting N2O emissions 

without acetylene from N2O emissions with acetylene (Ryden et al., 1979).  

3.3. Soil moisture and soil temperature 

After the gas analysis, the soil samples were dried at 105ºC to a constant weight in order 

to gravimetrically determine moisture content. Water-filled pore space (WFPS) was 

then calculated by dividing the volumetric water content by the total soil porosity. Total 

soil porosity was determined by measuring the bulk density of the soil according to the 

following relationship: soil porosity = (1 - soil bulk density)/PD), with PD representing 

the particle density, which for this soil texture was assumed to be 2.65 g cm
−3

 (Porta et 

al., 2008). 

Actual rainfall and temperature data were obtained from the closest meteorological 

station to each experimental site (Meteorological Service of Catalonia and of Aragon 

http://www.ruralcat.net/web/guest/agrometeo.estacions and 

www.aragon.es/Clima_Datos_climatologicos  
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Abstract 

Soil fertilisation affects greenhouse gas emissions. The objective of this study was to 

compare the effect of different fertilisation strategies on N2O, CH4, and N2 emissions 

and on ecosystem respiration (CO2 emission), during the different periods of rice 

cultivation (seedling, rice crop and postharvest period) under Mediterranean climate. 

Emissions were quantified weekly by the photoacoustic technique at two sites. At Site 1 

background treatments were 2 doses of chicken manure (CM): 90 and 170 kg NH4
+
-N 

ha
-1

 (CM-90, CM-170), urea (U, 150 kg N ha
-1

) and no-N (control). To all of them 50 

kg N ha
-1

 ammonium sulphate (AS) were topdress applied. At Site 2, background 

treatments were 2 doses of pig slurry (PS): 91 and 152 kg NH4
+
-N ha

-1
 (PS-91, PS-152) 

and ammonium sulphate (AS) at 120 kg NH4
+
-N ha

-1
and no-N. Sixty kg NH4

+
-N ha

-1
 as 

AS were topdress applied to AS and PS-91. There was an N control too. During 

seedling GWP was ~38-55% of rice crop season for the CM treatments, and (N2O+N2)-

N emission from U was ~11% of the applied N. The postharvest period was a net sink 

for CH4, and CO2 boosted only from the CM-170 treatment (up to 2 Mg CO2 ha
-1

). 

Global warming potential (GWP) of the rice crop season reached 17 Mg CO2-eq ha
-1

 for 

U, and was 14 for CM-170, and 37 for CM-90. The CM-170 treatment reduced CH4 

emission. The application of PS at agronomic doses (~170 kg N ha
-1

) allowed high 

yields (7.4 Mg ha
-1

), the control of GWP (5.5 to 6.5 Mg CO2-eq ha
-1

), and a 25% 

mailto:stefania@macs.udl.cat
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reduction in greenhouse gas intensity (GHGI) to 0.75 kg CO2-eq kg
-1

 when compared to 

AS (1.02 kg CO2-eq kg
-1

).  

Keywords: pig slurry, chicken manure, urea, ammonium sulphate, seedling period 

1. Introduction 

Globally, agriculture accounts for 60%, 50% and 1.1% of total anthropogenic N2O, CH4 

and CO2 emissions, respectively (Liu et al., 2012). Greenhouse gas (GHG) fluxes from 

cultivated soil are affected by factors such as temperature, water and mineral nitrogen 

content (Zou et al., 2005). Emissions are also related to soil microbial activity (Conrad, 

1996). Furthermore, agricultural management such as the application of organic and 

inorganic fertilisation affects N2O, CH4 and CO2 emissions (Gogoi and Baruah, 2012) 

although it depends on the type of fertiliser used. Urea and ammonium sulphate account 

for about 90% of the total N fertiliser applied to rice cultivation in the world (Food and 

Agriculture Organization, 2011). 

In most circumstances, paddy soils are a net source of N2O to the atmosphere, as 

reported in both instantaneous and annual estimates (Brumme et al., 1999; Groffman et 

al., 2000). However, periods of N2O consumption have been reported in many field 

studies (Chapuis-Lardy et al., 2007; Van Groenigen et al., 2015). Nitrous oxide is 

consumed in several reactions of nitrification (Wrage et al., 2004), and in suboxic 

conditions, N2O entering the soil is consumed by denitrification, producing N2. Owing 

to microbial transformations in soils, the gross production of N2O in soils is larger than 

its net emission, and in some periods there may be a net flux into the soil from the 

atmosphere (Brumme et al., 1999). 

The GHG emission from rice (Oryza sativa L.) and the subsequent global warming 

potential (GWP, 3757 kg CO2-eq ha
-1

 season
-1

) is roughly four fold that from wheat 

(Triticum aestivum L.; 662 kg CO2-eq ha
-1

 season
-1

) or maize (Zea mays L.; 1399 kg 

CO2-eq ha
-1 

season
-1

) (Linquist et al., 2012). Flooded rice emits both N2O and CH4 due 

to the negative soil redox potential and different bacterial communities (Kógel-Knabner 

et al., 2010; Arends et al., 2014). Anaerobiosis favours the activity of methanogens 

which in the presence of organic matter substantially contribute to CH4 emission (Banik 

et al., 1996). Fertilisation management, mainly the type of N fertilisers, is a key point 

for N losses to the atmosphere and GHG emissions from paddy fields (Gogoi and 
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Baruah, 2012; Maris et al., 2015). Urea is prone to large gaseous losses, particularly by 

ammonia volatilization (Mikkelsen et al., 1978) and denitrification to N2O and N2, 

though reports on N2O emission are contradictory (Lindau et al., 1991; Zou et al., 

2005), possibly due to the influence of location and management practices (Zhao et al., 

2011). Ammonium based fertilisation can influence CH4 emissions (Cai et al., 2007). 

Recent rice field studies suggest that high NH4
+
-N concentration may stimulate 

methanotrophic activity and CH4 oxidation, thereby reducing CH4 emissions (Bodelier 

and Laanbroek, 2004; Banger et al., 2012) by roughly 30 to 50% (Xie et al., 2010; Yao 

et al., 2012). It has been stated that when fertilising with ammonium sulphate the 

competition of sulphate-reducing bacteria for hydrogen reduces CH4 emission. Nitrogen 

fertilisation may also increase CH4 emissions due to increased rice biomass which can 

facilitate gas transport through rice plants (Singh et al., 1999), as well as enhance 

carbon substrate availability for methanogens (Lu et al., 2000; Schimel, 2000). Lindau 

et al. (1991) found that urea addition increased CH4 emissions by approximately 40 to 

75% compared to control.  

Although chemical N is the main source of N in rice crops (Food and Agriculture 

Organization, 2011), organic fertilisers are of interest in areas with large animal herds. 

The addition of fresh organic fertiliser with readily available C enhances CH4 emission 

(Zou et al., 2005; Sass, 2007).  

According to Hou et al. (2000) efforts to reduce the overall GWP of rice should focus 

on reducing CH4 emissions. However, both CH4 and N2O need to be considered, as 

many strategies that reduce CH4 emissions tend to increase N2O emissions and vice-

versa (Cai et al., 1998; Ma et al., 2007; Zou et al., 2005). Many studies have failed to 

account for the combined effects of management practices on both gases (Linquist et al., 

2012). 

Fertilisation also enhances CO2 flux (Xiao et al., 2005; Bhattacharyya et al., 2012). The 

effect of organic fertilisers and mineral fertiliser on soil CO2 flux is due to the 

decomposition processes that transform plant-derived carbon (C) to soil organic matter 

and CO2 (Franzluebbers et al., 1995). Soil CO2 emission is increasingly important as it 

integrates all the components of soil CO2 production, including rhizosphere respiration 

and soil microbial respiration (Iqbal et al., 2009), one of the primary fluxes of C 

between soil and atmosphere. 
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Field measurements of GHG emissions are typically limited to the rice crop season. 

Some authors have pointed out the need to quantify annual rather than seasonal 

emissions (Fitzgerald et al., 2000; Liang et al., 2007) because of the importance of 

emissions during fallow periods. Furthermore, according to some Chinese studies (Ma 

et al., 2012) the rice seedling period (SP) had a GWP (of N2O and CH4) equivalent to 

the GWP of the entire rice crop, though there are few such studies (Ma et al., 2013). The 

cumulative N2O emission of the rice SP ranged from 0.24 to 0.62 kg N2O-N ha
-1

 and, 

that of CH4 from 21.8 to 162.2 kg CH4 ha
-1

 in Chinese systems (Liu et al., 2012, Ma et 

al., 2013). In China the rice seedlings are generally grown in nursery patches for 30-40 

days before they are transplanted on to paddy fields, while in Mediterranean areas rice 

is mainly sown on site. Other substantial technological differences in rice cropping 

systems relative to the Chinese ones, including the dose and type of fertiliser applied, 

make it worth studying GHG emissions from Mediterranean rice systems as this 

information is very scarce or lacking. Greenhouse gas emission estimates should reflect 

the specific conditions of the different countries and the agricultural practices involved 

(IPCC, 2007). 

Rice (Oryza sativa L.), a very important food in many parts of the world, is a semi-

aquatic species and is mostly grown under flooded low-land conditions in paddies: 

floodable fields in which the rice seedlings are sown or planted out and grown until 

harvest. In the European Union about 475,000 ha are devoted to rice with a total 

production of 3.2 Mt of rice grain (1.8 Mt white rice). Italy is the largest producer, with 

52% of the total, followed by Spain with 20%. In Spain, more than one third of the total 

rice cultivation, about 110,785 ha rice (MAGRAMA, 2013), is spatially concentrated in 

the Mediterranean eastern part of the country and covers about 3% of the Spanish 

irrigated area. In the Ebro Valley, the development of rice cultivation is related to the 

special climatic and soil characteristics of the area. Soil salinity and/or a watertable 

close to the surface do not allow any other crop. This is also the case in some other 

Mediterranean areas such as Valencia (Spain) or the Camargue (France) regions.  

In Spain, from mid-October to the end of February, uncultivated rice fields are kept dry. 

However, if avoiding the rise of salts by capillarity on saline soils is necessary and 

water availability during those months is not limiting, fields are kept flooded. Sodic and 

low permeability soils drain very slowly remaining flooded after harvest. Another 

reason for winter flooding at the Ebro Delta Natural Park is the existence of agro-
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environmental subsidies for waterfowl. After the winter rains, when the remaining straw 

is slightly decomposed, water is drained from the field and the straw is incorporated into 

the soil between November and January or somewhat later. In inland areas this can be 

delayed until April. Once this primary work is done, the soil is dried; windy days favour 

the dry up process. From mid-March to the first week of May, land is prepared for 

sowing: levelled and fertilised, mainly with N, phosphorous (P) and potassium (K). 

Sowing density ranges from 160 to 200 kg seed ha
-1

. On site (rice is not transplanted) 

mechanical sowing takes place from April 15th to May 15th. The seed may be 

previously soaked in water for 12 to 36 h and dried for 24 h. A water layer of 3 to 5 cm 

is kept of the field after sowing. Later on it is increased to 10 to 15 cm. Flooding is 

constant throughout the rice cycle (with water running in and out the fields at all times), 

except for the time when some agricultural practices (fertiliser side-dressing, pesticide 

treatments) require a drain. In early September water is drained and rice can be 

harvested up to middle October. 

The irrigation system in rice cultivation is continuous flooding and nowadays, chemical 

fertilisers are the most often used. The autonomous regions of Aragon and Catalonia 

hold about 42% of the Spanish pig herd (MAGRAMA, 2013). The use of pig slurry 

(PS) as fertiliser is the most common recycling method and it could be a strategic 

alternative to apply it to rice crops. In the Ebro Delta, the poultry sector is also relevant 

and it produces 51,786 t manure year
-1

 (MAGRAMA, 2013). The objective of this study 

was to compare the effect of organic N fertilisers (pig slurry and chicken manure) with 

urea and ammonium sulphate on the emission of N2O, CH4, N2O+N2 and the ecosystem 

respiration (CO2) from the rice paddy soil. The emission of N2O, CH4, N2O+N2 and the 

ecosystem respiration (CO2) has been studied for the entire rice crop and for the 

postharvest (fallow) period as well as for the seedling period (separately from the entire 

rice crop period). 

Two contrasted sites in the Ebro valley were studied, with different organic fertilisers 

available (CM or PS) and with different mineral N applied at sowing time (urea or 

ammonium sulphate). Both management strategies (with mineral or organic fertilisers) 

were designed to include a similar background applied NH4
+
-N dose (in the range from 

90 to 170 kg NH4
+
-N ha

-1
) but to differ widely in the organic-C application (CM had a 

high C/N ratio and PS a low one).  



66 
 

2. Materials and methods 

2.1. Site description and experimental design 

The experiment was carried out at two rice paddies located at two different sites in the 

Mediterranean Ebro Valley (NE Spain), representative of the agricultural practices in 

the Valley. Site 1 is located at the Institute for Food and Agricultural Research and 

Technology (IRTA), at its Amposta station (coordinates: 40°42′30″N, 00°37′56″W, 

altitude: 3 m a.s.l.) in the Ebro River Delta. Site 2 is located at Villanueva de Sigena 

(coordinates: 41°45′32″N, 0°2′18″W, altitude: 297 m a.s.l.). The main soil properties 

and climatic characteristics of these sites are summarized in Table 1. Site 1 was sampled 

in 2011 and 2012. Site 2 was sampled in 2012 (Table 2). Rainfall and air temperature 

during the sampling period (Figs. 1a, 1b) were obtained from the meteorological 

stations located at the experimental sites (Meteorological Service of Catalonia: 

http://www.ruralcat.net/web/guest/agrometeo.estacions and of Aragon: 

http://eportal.magrama.gob.es/websiar/Inicio.aspx). Additionally, soil temperature (10 

cm depth) was measured when soil samples were taken.  

In both sites, during the seedling period (the first 35 days after sowing) a water layer of 

3 to 5 cm was kept on the field and of 10 cm from the end of the seedling period to 

harvest. Water was continuously flowing in and out the plots at both sites. The dates of 

the main field labours and of the sampling periods are detailed in Table 2.  

At Site 1, rice (Oryza sativa L.), cultivar Gleva was sown directly on site in 2011 and 

2012 at a density of 182 kg ha
-1

. The background treatments were (Table 3): urea (U) 

150 kg N ha
-1

 and 2 different doses of chicken manure (CM) containing 90 (CM-90), 

and 170 kg NH4
+
-N ha

-1
 (CM-170). The dose of organic-N applied each year with the 

CM is shown on Table 3. The main properties of the applied CM are shown on Table 4. 

In both years, the topdressing fertilisation was applied as ammonium sulphate (AS) at a 

dose of 50 kg N ha
-1

 except to the control (Table 3). The control treatment was not 

sampled in 2011. The fertiliser treatments were randomly distributed in three blocks 

(replicates). The blocks were distributed in the direction of the waterflow. The area of 

each individual plot was 20.25 m
2
 (4.5 m * 4.5 m). Sampling began in May 2011 and 

finished in January 2013, including both the rice crop season and the postharvest period 

of 2012 and partly that of 2013 (Table 2).  

http://www.ruralcat.net/web/guest/agrometeo.estacions
http://eportal.magrama.gob.es/websiar/Inicio.aspx
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At Site 2, rice (Oryza sativa L.) cultivar Guadiamar was sown directly on site in 2012 at 

a density of 150 kg ha
-1

. The background treatments were (Table 3) ammonium sulphate 

(AS) at a dose of 120 kg NH4
+
-N ha

-1
, 2 doses of pig slurry (PS) equivalent to 91 (PS-

91), and 152 kg NH4
+
-N ha

-1
 (PS-152) plus a control (no nitrogen applied). Topdressing 

at a dose of 60 kg NH4
+
-N ha

-1
 was applied only to the AS and PS-91 treatments. The 

main properties of the applied PS are shown on Table 4. The fertilisation treatments 

were randomly distributed in four blocks (replicates). The area of each individual plot 

was 36 m
2
 (6 m * 6 m) for PS-91 and PS-152 and 18 m

2
 (3 m * 6 m) for AS and the 

control treatments. The water was moving from one block to the following one. Sowing 

was earlier on the coast (Site 1) with respect to inland (Site 2) (Table 2) as this favours 

yield (Casanova et al., 2000). In both sites, weeds and pests were controlled in 

accordance to local conventional practice. 

2.2. Gas sampling and quantification 

Gas samples were collected weekly using the closed chamber method throughout the 

rice crop season, at both sites. The cylindrical (20 cm diameter and 60 cm high) static 

chambers were made of polyvinyl chloride (PVC) coated with an epoxy resin. They 

were inserted 18 cm into the soil. This cylinder was closed with a vented screwed lid 

with a three-way key. Air samples from inside the chamber were taken in duplicate 

immediately after closing the chamber, and 20 and 40 min later. Samples were taken 

through a Teflon


 tube connected to the three-way key and into 100 ml plastic syringes, 

adapted with a valve. Air inside the chamber was mixed by filling and emptying the 

syringe six times before withdrawing the sample. After taking the air sample the 

syringes were closed by the valve. After the last sampling (40 min from closing the 

chamber) the three-way keys were left open until sampling with acetylene.  

The acetylene (C2H2) inhibition method (Balderston et al., 1976; Yoshinari et al., 1977) 

was used to inhibit the last step of denitrification (N2O reduction to N2). Ten percent 

(v/v) of the air enclosed in the chamber was replaced by C2H2. After that, C2H2 was 

allowed to diffuse for 20 min, and samples were taken as described above. After 40 min 

of sampling the chambers were left open. The syringes were transported to the 

laboratory and the concentrations of N2O, CH4 and CO2 in the sampled air were 

quantified using the photoacoustic technique (Innova 1412 Photoacoustic Multigas 

Monitor). 
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Surface soil temperature was always recorded during sampling. The photoacoustic 

analyser refers the gases concentration to 20ºC and 1 atm; the concentration was 

corrected to be referred to the actual field temperature and atmospheric pressure of each 

sampling day. Sampling was done at the time of the day when soil temperature was 

about the average soil temperature of the day in order to minimize over or 

underestimation of the emission caused by daily soil temperature variation.  

Since the chambers were not transparent, it can be assumed that the CO2 flux was the 

ecosystem respiration including plant autotrophic respiration. Since the plants were 

inside the closed chambers it was assumed that the stomata were closed in the darkness. 

2.3. Calculations and statistical analysis 

Gas samples were collected weekly using the closed chamber method throughout the 

rice crop season, at both sites. The cylindrical (20 cm diameter and 60 cm high) static 

chambers were made of polyvinyl chloride (PVC) coated with an epoxy resin. They 

were inserted 18 cm into the soil. This cylinder was closed with a vented screwed lid 

with a three-way key. Air samples from inside the chamber were taken in duplicate 

immediately after closing the chamber, and 20 and 40 min later. Samples were taken 

through a Teflon


 tube connected to the three-way key and into 100 ml plastic syringes, 

adapted with a valve. Air inside the chamber was mixed by filling and emptying the 

syringe six times before withdrawing the sample. After taking the air sample the 

syringes were closed by the valve. After the last sampling (40 min from closing the 

chamber) the three-way keys were left open until sampling with acetylene.  

The acetylene (C2H2) inhibition method (Balderston et al., 1976; Yoshinari et al., 1977) 

was used to inhibit the last step of denitrification (N2O reduction to N2). Ten percent 

(v/v) of the air enclosed in the chamber was replaced by C2H2. After that, C2H2 was 

allowed to diffuse for 20 min, and samples were taken as described above. After 40 min 

of sampling the chambers were left open. The syringes were transported to the 

laboratory and the concentrations of N2O, CH4 and CO2 in the sampled air were 

quantified using the photoacoustic technique (Innova 1412 Photoacoustic Multigas 

Monitor). 

Surface soil temperature was always recorded during sampling. The photoacoustic 

analyser refers the gases concentration to 20ºC and 1 atm; the concentration was 



69 
 

corrected to be referred to the actual field temperature and atmospheric pressure of each 

sampling day. Sampling was done at the time of the day when soil temperature was 

about the average soil temperature of the day in order to minimize over or 

underestimation of the emission caused by daily soil temperature variation.  

Since the chambers were not transparent, it can be assumed that the CO2 flux was the 

ecosystem respiration including plant autotrophic respiration. Since the plants were 

inside the closed chambers it was assumed that the stomata were closed in the darkness. 

2.4. Global warming potential (GWP) and greenhouse gas intensity (GHGI) 

Global warming potential (GWP) is an index defined as the cumulative radiative forcing 

between the present and some chosen later time ‘‘horizon’’ caused by a unit mass of gas 

emitted now. In GWP estimation, CO2 is typically taken as the reference gas, and an 

increase or reduction in emission of CH4 and N2O is converted into ‘‘CO2-equivalents’’ 

through their GWPs. Therefore, in the present study, the global warming potential 

(GWP) of N2O and CH4 emissions was calculated in units of CO2 equivalents (CO2-eq.) 

over a 100-year horizon (Forest et al., 2007). A radiative forcing potential relative to 

CO2 of 298 was used for N2O and of 25 for CH4 (Forest et al., 2007). Although soil CO2 

fluxes also represent a source of GHG emissions, on a global scale, they are largely 

offset by high rates of net primary productivity and atmospheric CO2 fixation by crop 

plants, and are therefore estimated to contribute <1% to the GWP of agriculture (Smith 

et al., 2008; Linquist et al., 2012). Therefore, CO2 as a contributor to GWP was not 

included in this analysis. The GWP of N2O and CH4 emissions were calculated using 

the following equation (IPCC, 2007): GWP (kg CO2-eq ha
-1

) = cumulative N2O 

emission * 298 + cumulative CH4 emission * 25. 

At physiological maturity rice ears were harvested (1 to 4 m
2
) and grain humidity was 

determined after drying it to a constant weight at 65°C in order to calculate the rice 

yield adjusted to 14% grain moisture content. 

The greenhouse gas intensity (GHGI) was calculated as follows: GHGI (kg CO2-eq kg
-1

 

grain yield) = GWP kg
-1

 grain yield. 
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3. Results 

All fertilisation treatments resulted in high and similar yields (7 to 10 Mg ha
-1

). The 

exception was the yield of AS-top-11 and that of CM-170-12 which were half of the 

maximum one attained each year (Table 5). 

3.1. Nitrous oxide and molecular nitrogen emission of the rice crop season 

At Site 1, as shown in Figs. 2a and 2b, all treatments had a similar pattern of N2O 

emission during the rice crop season. The N2O fluxes ranged from -370 (in 2011) to 318 

g N2O-N ha
-1

 d
-1

 (in 2012) and some high peaks occurred after AS was topdress applied 

(day 42 of sampling in 2011 and day 70 of sampling in 2012). The average of the 

measured N2O fluxes was: -15, -9, 2 and 5 g N2O-N ha
-1

 d
-1

 for AS-top-11, U-11, CM-

170-11 and CM-90-11. In 2012, they were 2 g N2O-N ha
-1

 d
-1

 from control and ranged 

from 9 to 11 g N2O-N ha
-1

 d
-1

 for the rest of treatments.  

The N2O emission factor (EF) ranged from 0.83 to 7.3% of the applied N and was 

maximum for AS-top-12 and it was 2% for the CM-90-12 and U-12 treatments (Site 1; 

Table 5).  

In 2011, the average of the measured N2O+N2 fluxes ranged from 51 (AS-top-11) to 59 

g (N2O+N2)-N ha
-1

 d
-1

 (CM-90-11). These records indicate that in 2011, and for the rice 

crop season, N2O-N losses for the CM treatments, and N2O+N2 losses for the U 

treatment were underestimated. During the first 20 days of sampling, the soil acted as a 

sink for N2O+N2 for all treatments (Fig. 3a) until the topdress application of AS (day 42 

of sampling). In 2012, the daily fluxes of N2O+N2 exhibited less fluctuation (Fig. 3b) 

than in 2011 and included some peaks, mainly for U during the first 35 days of 

sampling. The cumulative N2O–N/(N2O+N2)–N ratio was between 0.04 to 0.58 (Table 

5). 

In 2011, the daily N2O and N2O+N2 fluxes observed in all the treatments were 

correlated with soil temperature and air mean temperature. The highest fluxes of N2O 

were generally observed when the air temperature ranged between 22 and 24ºC (soil 

temperature ranged between 23 and 25ºC). In 2012 no correlation was observed (Table 

6). 
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At Site 2, high fluxes of N2O were observed after background fertilisation with the high 

dose of PS and with AS, but they were lower (than the control) from the low PS dose 

(Fig. 4a). Nevertheless, the average of the N2O fluxes during the rice crop season was 

close to 2 g N2O-N ha
-1

 d
-1

 for all treatments, and the cumulative N2O emissions did not 

differ among treatments (Table 5).  

The EF was negligible for AS-12 and PS treatments (Site 2). Overall, the cumulative 

N2O-N emission during the rice crop season ranged from 0.6% (CM-170-11) to 11.3% 

(AS-top-12) of the applied N. 

The N2O+N2 flux the day after fertilisation was up to between 10 to 18 times higher for 

PS-152-12 than for the other treatments (Fig. 4b). However, the average of the sampled 

fluxes of N2O+N2 during the rice crop season was kept between 8 to 11 g (N2O+N2)-N 

ha
-1

 d
-1

.  

The N losses as N2O+N2 (Table 5) ranged from 1.1% (CM-170-12) to 79.6% (AS-top-

11) of N applied. The cumulative N2O–N/(N2O+N2)–N ratio was between 0.16 and 0.25 

(Table 5).  

3.2. Methane emission of the rice crop season 

At Site 1, the average of the daily CH4 fluxes in the two years varied from -7.19 to 

24.62 kg CH4 ha
-1

 d
-1

. In 2011, the emission fluxes were lower than in 2012. The fluxes 

of CH4 from the CM-90-12 treatment showed very clear peaks during the seedling stage 

(days 14 and 19 of sampling), during the reproductive phase (days 77 and 91 of 

sampling) and during the ripening phase (day 120 of sampling) (Fig. 5b). The 

cumulative CH4 emission was increased by U and CM fertilisers (Table 5). In 2012, a 

negative and significant correlation between the daily CH4 flux and the redox potential 

(Eh) was found (Table 6). Soil Eh during the rice crop season ranged from -445 to -109 

mV (Fig. 5d).  

At Site 2, the average of the daily CH4 fluxes was between 0.2 and 0.3 kg CH4 ha
-1 

d
-1

 

and no difference in cumulative CH4 between treatments was found (Table 5). The daily 

CH4 flux was maximum when air temperature was approximately 24°C and soil 

temperature ranged between 23 and 25°C. Soil temperature, air mean temperature and 

CH4 flux were positively correlated (Table 6).  
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3.3. Carbon dioxide flux (ecosystem respiration) of the rice crop season 

At Site 1, in 2011, the fluxes of CO2 reached a maximum during the reproductive stage 

of rice (days 45 to 80 of sampling), and then declined until the final drainage (Fig 6a). 

The average of the daily CO2 fluxes differed among treatments and varied from 12 to 19 

kg CO2 ha
-1

 d
-1

 as the total N dose increased. In 2012, the daily flux of CO2 increased 

gradually during the seedling period (SP) and reached a maximum during the ripening 

phase (days 100 to 120 of sampling), while the lowest occurred at the end of the 

vegetative phase (Fig. 6b). The average of the daily flux of CO2 increased from 6 up to 

16 kg CO2 ha
-1

 d
-1

 as N dose increased. Differences in the cumulative CO2 respiration 

were only recorded in 2012 (Table 5), being larger in CM-170-12 than in the U-12 and 

C-12 treatments. In both years, the daily CO2 flux was positively correlated with soil 

temperature and air mean temperature (Table 6).  

At Site 2, in 2012, the average of the daily fluxes of CO2 respiration ranged from 7 to 

10 kg CO2 ha
-1

 d
-1

; without differences between treatments in the cumulative CO2 

ecosystem respiration (Table 5). The daily respiration flux of CO2 markedly increased 

during the reproductive phase (days 35 to 70 of sampling) and the ripening phase (days 

70 to 100 of sampling; Fig. 6c). A significant and positive correlation between soil 

temperature, air mean temperature and daily CO2 flux was found (Table 6).  

In both sites and years, the daily CO2 respiration flux was maximum at air temperatures 

ranging between 21 and 26°C which corresponded to soil temperatures ranging between 

22 and 27°C.  

3.4. Global warming potential (GWP) and greenhouse gas intensity (GHGI) of the rice crop 

season 

The contribution of CH4 to total GWP was always much larger than that of N2O 

throughout the rice crop season. At Site 1, the maximum GWP was calculated for U-12 

(17 Mg CO2-eq ha
-1

) and CM where it ranged from 14 (CM-170-12) to 37 (CM-90-12) 

Mg CO2-eq ha
-1

. At Site 1, the GWP was negative for the AS-top-11, U-11 and C-12 

treatments (Table 5). At Site 2, the maximum GWP reached only 6 to 8 Mg CO2-eq ha
-1

 

from the AS-12, PS-91-12 and PS-151-12 treatments (Table 5). A negative GWP value 

indicates that the soil acted as a net sink for GWP, which is similar to soil C 

sequestration. In contrast, a positive GWP value indicates that the soil acted as a net 

source for GWP. 
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The highest GHGI (~ 5 kg CO2-eq kg
-1

)
 
were calculated for Site 1 and they were 

associated, in 2012, with CM treatments (Table 5).  

3.5. Greenhouse gas emissions during the postharvest period 

In both years, at Site 1, during the postharvest (fallow) period no notable N2O emission 

was observed (Figs. 2a and b). In 2012, high N2O+N2 fluxes were recorded (Fig. 3b) 

which ranged from 6 to 24 kg (N2O+N2)-N ha
-1

, which represent half of the emission of 

the rice crop season. Urea always recorded the highest emissions, which were double 

than those from the CM treatments (Table 7). In both years, the CH4 flux dropped 

rapidly, within a few days, after the final drainage before harvest (Figs. 5a and 5b). The 

cumulative CH4 fluxes were negative, from -416 to -23 kg CH4 ha
-1

 (Figs. 5a and 5b), 

without differences between treatments (Table 7). Soil Eh during the postharvest period 

ranged from -109 to +112 mV (Fig. 5d). The ecosystem respiration (CO2 flux) ranged 

from -13 (in 2011) to 2001 kg CO2 ha
-1

 (in 2012), which is lower than from the rice 

crop season. The highest values were recorded in the CM-170-12 treatment (Table 7). 

3.6. Greenhouse gas emissions during the seedling period 

At Site 1, the cumulative N2O emission during the rice seedling period was significantly 

affected by the fertilisation treatment (Table 8). It was significantly larger (roughly four 

times) from CM (~3 kg N2O-N ha
-1

) than from U, while U did not differ from the 

control. The opposite was observed for the cumulative N2O+N2 emission (Table 8), 

where for U it accounted for 53% (~17 kg (N2O+N2)-N ha
-1

) of the emission during the 

rice crop season while in the rest of treatments it did not surpass 10% (<2 kg (N2O+N2)-

N ha
-1

). Nitrogenous gas emission ((N2O+N2)-N) was dominated by N2 in the U 

treatment and in the control, while in CM treatments it only appeared as N2O. 

Application of CM significantly increased CH4 emission, although it decreased as the 

dose of CM increased (Table 8). It ranged from -19 kg CH4 ha
-1 

for U to 418 kg CH4 ha
-

1
 for CM-90-12. For manures, it accounted between 38% (CM-90-12) and 55% of the 

total CH4 emission during the rice crop season (Table 8).  

The GWP did not differ between the control and U (where GWP was negligible) 

treatments, but it was significantly higher for CM which ranged from 5.5 (CM-170-12) 

up to 11.5 Mg kg CO2-eq ha
-1

 (CM-90-12). The cumulative ecosystem respiration (CO2 

flux) tended to increase with the CM dose, being higher for the CM-170 treatment (2.4 

Mg CO2-eq ha
-1

) than for the U treatments and the control (~460 kg CO2 ha
-1

). The 
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cumulative CO2 emission accounted for 12% and up to 16% of that recorded for the rice 

crop season for the treatments with CM and for just 5 and 6% for the control and U rice 

crop season emission, respectively (Table 8). 

At Site 2, fertilisation treatments only affected the cumulative N2O emission (Table 8). 

The PS-152 treatment (0.9 kg N2O-N ha
-1

) was the only one with an emission higher 

than the control (0.4 kg N2O-N ha
-1

). The cumulative N2O+N2 emissions (~1-2 kg 

(N2O+N2)-N ha
-1

) accounted for 8 (AS) to 26% (PS-152) of the cumulative emission for 

the rice crop season. The GWP varied from 987 (PS-91) to 1996 kg CO2-eq ha
-1

 (AS-12 

in Site 2; Table 8). The ecosystem respiration (~114-197 kg CO2 ha
-1

) was less than 3% 

of that of the rice crop season (Table 8). 

4. Discussion  

4.1. Nitrous oxide and molecular nitrogen emission during the rice crop season 

Both nitrification and denitrification are known to occur in tandem in flooded rice soil 

(DeDatta, 1995; Kyaw and Toyota, 2007) since flooded soils have an aerobic surface 

layer and a subsurface anaerobic layer. In the present study, some oxygen exchange 

existed as water was running into and out the plots continuously. For this reason it may 

be hypothesized that N2O emission was due to other processes than denitrification.  

It was expected that there might be an increase of N2O emission from the fertilised 

treatments with respect to the control as has been reported for different fertilisers 

(organic and mineral) in previous studies (Williams et al., 1998; Del Prado et al., 2010; 

Bergstermann et al., 2011), but the increment was observed only in the CM treatments 

and at high PS dose, though not significantly. The low soil organic matter content in the 

present study (~2%) could have been a limiting factor for denitrification in the control 

and mineral treatments, and with the addition of PS due to its low organic matter 

content (Table 3). This constraint was also pointed out by Teira-Esmatges et al. (1998) 

and Menéndez et al. (2008). Vallejo et al. (2005) reported that Mediterranean 

agricultural soils often have organic contents below 2%, which is a limiting factor for 

denitrifying activity. However, an important increase in N2O emission (relative to the 

control) occurred in the present study from CM-90-11 and -12. In addition, the 

cumulative N2O-N emission from CM-90-12 was twice that from CM-90-11, mainly 

because more than 5 times more organic-N had been applied in 2012 (Table 3), 
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although some N may have been immobilized (Pathak et al., 2002). When applying CM 

containing a high amount of organic-N the processes taking place were mineralization 

in the first place, followed by nitrification and most probably denitrification (due to 

waterlogged conditions) though not complete (i.e. not to N2; Table 5).  

In 2012, the cumulative N2O+N2 emissions from the U treatments were higher than 

from the CM treatments (Table 5) since U may have facilitated the start of 

denitrification during the rice crop season. There was no difference in the emission from 

AS and from the control, in agreement with what Menéndez et al. (2008) also found. 

The soil acted as a net sink of N2O during the first days of sampling and during the 

postharvest period, in both years. Negative fluxes of N2O (i.e. soil acted as a sink) have 

previously been documented under various edaphoclimatic conditions for different 

crops (Teira-Esmatges et al., 1998; Chapuis-Lardy et al., 2007; Cardenas et al., 2010; 

Abalos et al. 2012; Van Groenigen et al., 2015). However, the origin of net negative 

N2O fluxes is often unclear (e.g. Donoso et al., 1993; Goldberg and Gebauer, 2009). 

Past experiments have linked negative fluxes to soil properties such as moisture content, 

temperature, pH, oxygen and available nitrogen (Heincke and Kaupenjohann, 1999; 

Khalil et al., 2002). However, the influence of these factors seems to vary between 

experiments and no clear set of conditions that would favour negative fluxes from 

different soil types has been established yet (Chapuis-Lardy et al., 2007). Based on 

recent evidence from the literature the following possible pathways for N2O 

consumption (negative fluxes of N2O) have been identified (Van Groenigen et al. 2015): 

(1) first, in addition to the “typical” nitrous oxide reductase (nosZ I) that reduces N2O 

during denitrification, (2) second, a microbial nondenitrifier, “atypical” N2O reductase 

(nosZ II) which play a significant role in N2O consumption in soil was identified; (3) 

third, some bacteria that perform dissimilatory nitrate reduction to ammonia (DNRA) 

are capable of N2O reduction to N2 as they carry a nos gene encoding for N2O reductase 

(N2OR) (Simon et al., 2004); (4) fourth, direct assimilatory N2O fixation via nitrogenase 

(Vieten et al., 2008; Ishii et al., 2011; Farías et al., 2013) or (5) fifth, indirect N2O 

fixation via a combination of N2O reduction and N2 fixation can account for N2O 

consumption. 

The background N2O emission has become one of the most sensitive factors for 

developing an inventory of agricultural N2O emissions (Yan et al., 2003; Akiyama et 
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al., 2005). In the present study, background emission of N2O was only noticeable in 

2012 (Table 5) where it achieved 1.95 kg N2O-N ha
-1

, which is higher than the 

background emissions from paddy fields in literature (0.2-1.38 kg N2O-N ha
-1

, average: 

0.79 kg N2O-N ha
-1

; Zou et al., 2007, 2009) and it is most likely to be a consequence of 

mineralization of previously incorporated rice straw (Gu et al., 2007).  

The cumulative N2O emission from the fertilised treatments ranged from 1.9 to 10 kg 

N2O-N ha
-1

 (Table 5), which is somewhat higher than the range reported by Akiyama et 

al. (2005) based on 113 measurements from 17 continuously flooded sites worldwide 

(1.0 to 6.2 kg N2O-N ha
-1

).  

The N2O emission factor (EF) of the applied N was negligible for AS and PS, but for 

the other treatments it was higher (up to 7.3%) than the IPCC (2007) reference (i.e. 1% 

regardless of the N source, location, climate and soil type). 

The cumulative N2O+N2 emission during the rice crop season ranged from 1.1 to 79.6% 

of the applied N. The highest relative N losses were found for the treatments with AS-

top-11 and -12 at a dose of 50 kg N ha
-1

 (Table 5). In general, the readily available 

NH4
+
-N topdress applied increased N2O and N2O+N2 emissions (Figs. 2 and 3) as 

Pathak et al. (2002) and Zou et al. (2005) also found. Topdressing fertilisers are often 

recommended to improve N use efficiency; however, if they do not improve N use 

efficiency they can result in high N2O fluxes (Linquist et al. 2003). Zou et al. (2005), 

Pathak et al. (2002) and Linquist et al. (2003) found that the N2O emission increased by 

3, 43 and more than 60% when mineral fertiliser was topdress applied as compared to 

the control. Other studies (Lindau et al., 1991; Buresh et al., 1993; Phongpan and 

Mosier, 2003; Nishida et al., 2004, Bandyopadhyay and Sarkar, 2005) also shown high 

losses from the applied N, report emissions between 5 to as high as 73% of the applied 

N as N2O+N2 over the rice crop season independently of the type (mineral or organic) 

of fertiliser. Also, the field denitrification losses can amount to 60–70 kg N ha
-1

 year
-1

 

on poorly drained soils (Van Cleemput 1998). 

The N2O-N/(N2O+N2)-N ratio is an indicator of the extent to which denitrification 

proceeds to N2. The low N2O-N/(N2O+N2)-N ratios obtained (0.1 to 0.58; Table 5) were 

due to the strong anaerobic conditions created by continuous flooding (10 cm water 

layer) which promoted N2O reduction to N2 (Xu et al., 2004) and probably limited N2O 

upward diffusion (Yan et al., 2000) further favouring N2O reduction to N2. 
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Since the loss of N due to denitrification was higher than by nitrification during the rice 

crop season, denitrification losses must be taken into account in these rice systems in 

order to obtain an accurate assessment of the N balance (Hofman and Van Cleemput, 

2001).  

4.2. Methane emission during the rice crop season 

The cumulative CH4 emissions in the present study (ranging from 98 to 1346 kg CH4 

ha
-1

; Table 5) is well in agreement with the review of Minami (1995) and Yan et al. 

(2009), who found that the seasonal CH4 emissions ranged from 48 to 1830 kg CH4 ha
-1

 

for paddy fields around the world.  

Urea and AS tended to increase CH4 emission (decreased its oxidation) and seemed to 

be affected by the dose of fertiliser (Table 5). These results are consistent with the 

results of Lindau et al. (1991). In contrast, Cai et al. (1998) found that CH4 emission 

decreased with urea application, while Wang et al. (1993) reported no change in 

emission with urea application.  

Furthermore, the high dose of CM did not result in a further increase in CH4 emission 

and there was even a tendency to reduce CH4 emission. The reason for this is unclear; it 

may be due to the formation of phytotoxic substrates in the soil at high organic-C 

contents (Schütz et al., 1989; Kludze and DeLaune, 1995) which also inhibit plant 

development (Schütz et al., 1989). The same effect was observed by Khalil et al. (1998), 

who attributed it to a saturation effect for the production and release of CH4, so 

increments in fertiliser doses did not further increase CH4 emissions. In the present 

study, this phenomenon was more evident in 2012 where more organic-N and C were 

applied, although the emitted CH4-C as percentage of the applied organic-C was almost 

the same in both years. This finding suggests that at the tested CM doses, the applied 

organic-C is not limiting CH4 emission. In mass, the cumulative CH4 emission was 

inversely proportional to the CM dose and in both years significantly higher than from 

the U and control treatments (Table 5).The higher soil NH4
+
 concentents for the CM-

170 than for the CM-90 treatments (both years), resulted in the stimulation of 

methanotrophic activity and CH4 oxidation as Bodelier and Laanbroek (2004) and Noll 

et al. (2007) also described. 
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When applying PS the emitted CH4-C was much higher than the applied organic-C and 

almost the same for both doses. Therefore, CH4 must have consumed some soil-C 

(about 1% of the soil organic-C of the 18 cm top soil layer) as the previous crop remains 

had been thoroughly removed. 

In 2012, the high CH4 emissions were negatively correlated with the Eh (Figs. 5b and d; 

Table 6) as already reported in previous studies (Cai et al., 1997; Yu et al., 2004). As 

reported by Minami (1995) and Wang et al. (1993) CH4 emission began to increase as 

the soil Eh decreased, and decreased rapidly after the drainage as soil Eh increased. 

Methane usually forms only after the soil Eh has been lowered to sufficiently negative 

values, typically less than -100 mV (Masscheleyn et al., 1993).  

4.3. Carbon dioxide flux (ecosystem respiration) during the rice crop season  

Application of N fertiliser increases plant biomass production stimulates soil biological 

activity, and consequently, CO2 emission (Dick, 1992; Wilson and Al-Kaisi, 2008; Iqbal 

et al., 2009). By contrast, DeForesta et al. (2004) indicated that reduced extracellular 

enzyme activities and fungal populations resulting from N fertiliser application, 

decreased soil CO2 emissions. Almaraz et al. (2009) did not observe any significant 

effect of mineral fertiliser application on cumulative CO2 emissions. 

In this study, the cumulative ecosystem respiration tended to increase with increasing 

doses of organic-C (Table 5). The highest CM-170-12 dose tripled the emissions of the 

control. Although the amount of organic-C applied was higher in 2012 than in 2011, the 

emitted CO2-C as percentage of the applied organic-C was lower in 2012, indicating 

that these high organic-C doses probably caused a “saturation” effect on 

methanogeness. In mass, the recorded respiration was proportional to the CM dose, but 

not significant difference between treatments was found (Table 5). 

In both years, after the final drainage, a large peak of CO2 was observed in all the 

treatments (Figs. 6a and b). One possible reason for this may be that the 10 cm water 

layer prevented oxygen diffusion into the saturated soil, resulting in limited aerobic 

respiration activity in the soil (Chimner and Cooper, 2003).  

When applying PS the emitted CO2-C was also much larger than the applied organic-C, 

leading to almost the same cumulative mass of CO2 for both PS doses. The application 

of organic-C promotes a priming effect on carbon oxidation (Singh et al., 2008), 
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resulting into higher CO2 emission which continues with the oxidation of native soil 

organic-C.  

Research on the dose of organic fertiliser to be applied to specific soils is lacking and 

further work is needed to quantify the effect of long term applications of mineral and 

organic fertilisers on CO2 emissions.  

4.4. Greenhouse gas emissions during the postharvest period 

In 2011, after harvest, the field was non-flooded (drained and dried) most of the time, 

and rainfall was lower than in 2012 (Fig. 1a). In 2011, after the winter rains, when the 

remaining straw was slightly decomposed, water was drained from the field and the 

straw was incorporated into soil during February or March. From mid-March to the first 

half of April, land was prepared for sowing (levelled and fertilised). Unlike this pattern, 

in 2012, the field was drained for harvest on the 12
th

 September and flooded again on 

the 28
th

 September until the 29
th

 November when it was drained until the end of the last 

sampling (3
rd

 January 2013), meaning that the soil was flooded during two of the three 

months of the postharvest period due to rainfall (Fig. 1a) and irrigation. 

In both years, the cumulative N2O emissions were very low or negative and did not 

differ among treatments (Table 7). Several other studies have also found negative N2O 

fluxes from field measurements during the postharvest period, which could be 

associated with the reduction of N2O to N2 (Lardy et al., 2007).  

In both years, the measured cumulative N2O+N2 emissions were high, equivalent to half 

of the N2O+N2 emitted during the rice crop season, despite in 2012 only half of the 

postharvest period was sampled. The measured cumulative N2O+N2 emission ranged 

from 6.29 to 23.72 kg (N2O+N2)-N ha
-1

 (Table 7). A possible explanation for this result 

can be that in 2012 the inundation lasted for enough time for denitrification to take 

place or the soil conditions were more favourable for denitrification as Blackmer et al. 

(1982) also described. Soil moisture during the rice crop season (continuous flooding) 

could result in a subsequent accumulation of organic-C and nitrate in winter, favouring 

denitrification (Byrnes et al., 1993). Also, the measured cumulative N2O+N2 emission 

was stimulated by U (Table 7). These results are in line with those of Bronson et al. 

(1998), who also found that during the postharvest period more N2 than N2O was 

produced. In both years, the mineral N remaining in the soil after harvest (September) 
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was very low in all N fertilisation treatments (Figs. 7a and b). Therefore, must have 

been nitrification during the postharvest period.  

In both years, CH4 fluxes decreased and remained low or even negative after harvest, 

with the cumulative emission being negative (Table 7), in agreement with Wang et al. 

(1998). The absence of plant-mediated transport, lower temperatures than those of the 

rice crop season, and the absence of a sufficiently reducing environment (Table 7) can 

explain this fact. The paddy soil during the postharvest period became aerobic with 

higher Eh (Fig, 5d), which inhibited the growth of methanogenic bacteria and CH4 

production (Jiao et al., 2006). In the present study this happened after the final drainage 

(day 131 of sampling) when Eh increased from -207 to 122 mV (Fig. 5d). From day 131 

of sampling onwards, the soil acted as a net sink of CH4, due to the aerobic condition of 

the soil (Fig. 5b). Methanogenic bacteria populations can build up after the soil is 

flooded during land preparation, but there would be a delay until the methanogens 

recover in population and their activity to the high levels that are found in continuously 

flooded soil (Pavlostathis and Giraldo, 1991). 

It is considered that CO2 emission comes mostly from organic (soil organic matter, litter 

and dead roots) decomposition and root respiration (Bowden et al., 1993). In both years, 

the cumulative ecosystem respiration during the postharvest period ranged from -13 to 

2001 kg CO2 ha
-1

 which was 87 to 98% lower than the respiration corded during the rice 

crop season (Tables 5 and 7). Therefore, the postharvest period was not an important 

source of CO2 with the exception of CM-170-12 to which high doses of C had been 

applied. 

4.5. Greenhouse gas emissions during the seedling period 

4.5.1. Nitrous oxide and molecular nitrogen emission during the seedling period 

The paddy soils were a small source of N2O during the rice seedling period (SP; <0.85 

kg N2O-N ha
-1

) when applying mineral fertiliser (U and AS) or PS (< 0.9 kg N2O-N ha
-

1
), in line with the emissions obtained from Chinese rice paddies (e.g. Liu et al., 2012), 

but they were much higher when CM was applied (3-4 kg N2O-N ha
-1

; Table 8) due to 

the large amount of organic-C applied and to the weak initial anaerobic conditions 

(Fig.5d). Emissions were enhanced in the days following organic fertilisation which is 

in accordance with other authors (Chadwick et al., 2000; Rochette et al., 2004; Vallejo 
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et al., 2006), and tended to increase with the dose of NH4
+
 from the PS and AS 

treatments (in the order: PS-91, AS, PS-152). As Vallejo et al. (2006) explained, 

although the amount of N2O coming from nitrification is generally small, it can be large 

when NH4
+
-N is applied, as in pig slurry where it is the main form of N. The cumulative 

N2O emissions from CM and from the PS-152 treatment were significantly larger 

relative to control, but they accounted for only 0.21 to 1.12% of the applied N (Table 8). 

When using U, 11% of the applied N was emitted, probably because U facilitates the 

onset of denitrification (Sampanpanish, 2012). The N2 emission from the CM treatments 

was negligible (Table 8) because the initial conditions in the SP were not anaerobic 

enough to allow reduction to N2 (Fig.5d). Also, some N immobilization could exist 

since the amount of C applied with CM was high (4588 kg C ha
-1

 were applied in CM-

90, and 8663 kg C ha
-1

 in CM-170).  

The PS application did not increase (N2O+N2) emission (Table 8). The low 

denitrification from PS (0.70-1.12% of the applied N was lost as (N2O+N2)-N during 

the SP) may be due to the low soil organic-C content, limiting denitrification. 

The increase in CM dose tended to decrease N2O and N2O+N2 emissions, while the 

increase in PS dose tended to increase them (Table 8). It is documented that N2O 

emissions were closely associated with the C/N ratio of the incorporated organic 

materials (Ma et al., 2009), a high C/N ratio (e.g. chicken manure) often decreases N2O 

emission, while N2O emission is generally facilitated by organic material with low C/N 

ratio (e.g. pig slurry) (Zou et al., 2005; Ma et al., 2009). 

In addition, other measurements could be applied to improve fertiliser N use efficiency 

in paddy fields, especially during the seedling period. For example, deep placement of 

urea, applying slow-release and controlled release N fertiliser would be effective in 

minimize N losses. Also, nitrification or urease inhibitors could have effect on 

improving nitrogen use efficiency (Sun et al. 2015). 

4.5.2. Methane emission during the seedling period  

In both sites, the cumulative CH4 emissions during the SP were about half the 

cumulative CH4 emissions during the rice crop season. This differs from other records, 

as in China, Ma et al. (2012) found that the emission during the SP was the same as that 

during the rice crop season, probably because of the intensive nursery patch system. 
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Urea has been described as an inhibitor of CH4 emission (Schütz et al., 1989). Methane 

emissions were only increased in CM treatments. Obviously, organic fertiliser provided 

methanogenic substrates, and could promote CH4 production during the rice SP period 

(Liu et al., 2012). 

When applying CM (high organic-C and at agronomic NH4
+
-N doses), the cumulative 

CH4-C emission was 7% of the applied organic-C for CM-90-12 and 2% of it for CM-

170-12. When applying PS (relatively low organic-C and agronomic NH4
+
-N doses), 

CH4-C emission was about 230% of the applied C and the percentage did not increase 

with the PS dose. Therefore, CH4 formation must have consumed some soil-C as the 

previous crop remains had been thoroughly removed. 

4.5.3. Carbon dioxide flux (ecosystem respiration) during the seedling period 

In both sites, no significant effect of U, AS or PS application on the cumulative 

ecosystem respiration was found (Table 8). When applying PS, the CO2-C emission was 

428% of the applied organic-C for PS-91, and 242% for PS-152; in mass it was the 

same from both treatments indicating that the main C source was the soil organic 

matter. 

When applying CM, the cumulative CO2-C emission was 7.5% of the applied organic-C 

for both CM doses; twice (CM-90) or five times (CM-170) that from the control. This is 

in concordance with the results of Hossain and Puteh (2013) who found that the 

application of chicken manure increased the cumulative CO2 emission by 121% 

compared to control as also stated for manures by Moore and Dalva (1993). 

4.6. Global warming potential (GWP) and greenhouse gas intensity (GHGI) 

4.6.1. Global warming potential and greenhouse gas intensity during the rice crop season 

The global warming potentials (GWP) of the present study (Table 5) are in the same 

range as those found by Ma et al. (2013) and Wang et al. (2013). One key aspect here is 

that PS did not increase the GWP with respect to the control as AS did, while 

maintaining high yields (Table 5).  

The soil acted as a net sink of CH4 and N2O for AS-top-11, U-11 and the control (2012) 

resulting in a negative GWP during the rice crop season (Table 5). Negative GWP 

values suggest that the C sequestration exceeded the CO2-eq emission (Table 5). 
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Overall, the GWPs were high for the treatments with CM, since CM application 

increased CH4 and N2O emission (Table 5). Previously published field measurements of 

CH4 and N2O emissions from rice systems with different types of organic fertilisers 

applied also demonstrated that this practice increases the GWP (Ma et al., 2013; Wang 

et al., 2013).  

The yields obtained indicate that the different fertilisation options are feasible with the 

exception of AS-top-11 and CM-170-12 which were affected by different agronomic 

constraints. In AS-top-11 there was a lack of available N (N losses reached 80% of the 

applied N). In the CM-170-12 treatment plants were damaged by a very serious attack 

of the fungus Pyricularia oryzae, which reveals excessive N fertilisation (Yanni and 

Sehly, 1991). 

As a consequence, the GHGI relating GWP to grain yield was significantly higher for 

the CM treatments than for the mineral fertiliser and control treatments (Table 5). 

Overall, high N fertiliser doses are not recommended here for rice production. In the 

future, the N use efficiency in intensively managed rice crops should be improved. 

The GHGI ranged from -1.57 to 5.18 kg CO2-eq kg
-1

 grain yield (Table 5). A negative 

GHGI (consequence of the negative GWP) indicates equilibrium among yield, carbon 

sequestration into the soil and GHG emission (Mosier et al., 2006, IPCC, 2013). 

With the exception in of the CM-90-12 (5.18 kg CO2-eq kg
-1

 grain yield) and CM-170-

12 (4.63 kg CO2-eq kg
-1

 grain yield) treatments (Table 5), the rest of the GHGI of the 

present study (ranged from -1.57 to 1.97 kg CO2-eq kg
-1

 grain yield) are lower than 

those reported by Qin et al. (2010) and Shang et al. (2011) under continuous flooding 

conditions (2.06 to 3.22 kg CO2-eq kg
-1

 grain yield).  

In order to achieve the goals of high yield and low GWP over the long-term it an 

optimum dose of N fertiliser and a proper amount of organic matter should be applied 

especially when organic fertilisers are used.  

4.6.2. Global warming potential during the seedling period 

In the present study, the average GWP of GHG emission during the rice SP was as high 

as in the study of Linquist et al. (2015) during the rice crop season when urea was the N 

fertiliser. However, in Site 1 the U application remarkably decreased the GWP since 
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N2O and CH4 emissions were significantly low (Table 8). In Site 2, PS applied at 

agronomic doses (~170 kg N ha
-1

) kept the GWP to a minimum. Overall, the GWP was 

high for the treatments with CM as they significantly increased CH4 and N2O emission 

(Table 8). To achieve the goal of GHG reduction during the rice SP, the negative impact 

of organic fertiliser (e.g., CM in this study) should be considered. 

4.7. Influence of temperature on greenhouse gas emissions 

A significant correlation between soil temperature, mean air temperature and daily N2O 

fluxes was found: negative in Site 1 in 2011 and positive in 2012 and Site 2 (2012) 

(Table 6). A positive correlation agrees with those of Livesley et al. (2008) and Scheer 

et al. (2008) who observed that high N2O emissions coincide with high air and soil 

temperatures. Thus, the differences between years can be explained by the higher 

temperatures in 2012 than in 2011 (Fig.1) and because in 2012 measurements started 

when the soil was not yet anaerobic (Table 6). Many studies found significant effects of 

temperature on N2O emissions (Conrad et al., 1983; Skiba and Smith, 2000). 

Temperature directly affects the activity of bacteria and controls biological oxygen 

consumption and this may also affect the emission of N2O (Lesschen et al., 2011). 

A significative positive correlation between soil temperature, mean air temperature and 

daily CH4 flux was found in Site 2 (Table 6), despite some previous studies showing 

that the effect of temperature on CH4 emissions was not consistent (Dijkstra et al., 

2012). However, Huang et al. (2001), Kögel-Knabner et al. (2010) and Das and Adhya 

(2012) indicated that under permanent flooding, the seasonal variation of CH4 emission 

from rice was mainly attributable to soil temperature and mean air temperature. The 

variability of the temperature response from one location to another and the interactions 

of temperature with other factors that affect CH4 emissions are still not well understood 

(Schaufler et al., 2010) and this may explain the lack of correlation in Site 1. 

Although CO2 fluxes were not considered in the GHG evaluation, soil CO2 flux has 

been described as influenced by temperature (Keller et al., 2004). A significant 

correlation between soil temperature, mean air temperature and daily respiration (in 

both years and both sites) was found too (Table 6). Soil temperature significantly 

influences respiration fluxes by inducing the acceleration of soil organic carbon 

decomposition, root respiration, and microbe respiration.
 
Song et al. (2003) also found 
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evidence of the influence of temperature on CO2 emission both in the field and in 

laboratory experiments. 

5. Conclusions 

Under the tested Mediterranean conditions, the background application of U and AS, 

with an AS topdress led to the maximum rice yields (8-10 Mg ha
-1

). Background 

fertilisation with organic fertilisers (CM or PS) at 90 kg NH4
+
-N ha

-1
 led to similar 

yields than the mineral fertilisers treatments.  

During the rice SP, mineral fertilisers such as AS (120 kg N ha
-1

) and the application of 

PS at an agronomic dose (91 kg NH4
+
-N ha

-1
) did not increase GHG emissions relative 

to control. Overall during this period the chicken manure (high C/N ratio) applied at 

similar NH4
+
- N doses to PS, increased N2O, N2O+N2 and CH4 emissions with respect 

to the control, which was not the case when applying PS (low C/N ratio). Thus, the 

introduction of PS could be an interesting fertiliser, keeping GHG emissions under 

control and ensuring feasible yields. However, CM did, increasing both emissions (CH4 

and N2O) to an equivalent of 11 Mg CO2-eq ha
-1

 (CM-90) as well as ecosystem 

respiration to 2 Mg CO2 ha
-1

 (CM-170).  

Nitrogen mineral fertiliser such as AS and U had no effect on cumulative N2O emission 

during the rice crop, while increasing the dose of CM (high C/N fertiliser) the 

cumulative N2O and N2O+N2 emissions tended to decrease. Denitrification was the 

dominant process in N2O and N2O+N2 emissions, and must be taken into account to 

obtain an accurate assessment of the N balance. Chicken manure significantly increased 

CH4 emission.  

The postharvest period was a significant source of (N2O+N2)-N for the U treatment and 

acted as sink of CH4 for all the treatments. The ecosystem respiration increased with 

high soil C application to soil (CM-170).  

The GWP during the SP was low for AS and organic fertilisers with low C/N ratio (PS). 

During the rice crop season, application of CM tends to increase GWP, although not 

significantly different between chicken manure treatments and urea treatment was 

observed. Maximum GWP values were observed in 2012 at CM-90 dose (37 Mg CO2-
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eq ha
-1

) and tend to be halved at higher dose (CM-170), probably due to some microbial 

toxicity of the applied ammonium. 

The results of the present study suggest the need to reconsider if a 1% EF for N2O 

emissions (as suggested by IPCC in the 2007 guidelines) is universally applicable, or if 

different standards should be considered depending on the management practices. 
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Table 1. Main soil properties of the rice paddy soils at Site 1 and Site 2. Annual 

averages of precipitation and air temperature†
 

Site Site 1 Site 2 

USDA textural class of the cultivated horizon 
silty clay loam silty loam 

Organic matter (% d.m., Walkley-Black) 2.21 1.01 

Calcium carbonate eq. (% d.m.; potenciometry) 37 29 

Kjeldahl N (% d.m., volumetric titration) 0.15 0.08 

NH4
+
-N (mg/kg d.m., UV-VIS spectrophotometry) 6.0 6.6 

NO3
-
-N (mg/kg d.m.; colorimetry) 3.0 6.7 

P (mg/kg d.m.; Olsen; UV-VIS spectrophotometry) 44 6 

K (mg/kg d.m.; ammonium acetate extract; ICP-OES 

spectrophotometry) 
158 81 

Na (mg/kg d.m.; ammonium acetate extract; ICP-OES 

spectrophotometry) 
248 27 

C/N 9.1 - 

pH (1:2.5 water extract) 8.1 8.5 

Electrical conductivity of the saturated soil-paste extract 

(ECe) (dS m
-1

) 
4.61 0.77 

Precipitation (mm) 550 350 

Temperature (°C) 17.0 14.6 

†
Meteorological Service of Catalonia and Aragon, http://www.ruralcat.net/web/guest/agrometeo.estacions 

 

http://www.ruralcat.net/web/guest/agrometeo.estacions
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Table 2. Timing of the field main labours and gas sampling per year and site 

Site Year 

Background 

fertilisation 

(dd/mm/yy) 

Flooding 

(dd/mm/yy) 

Sowing 

(dd/mm/yy) 

Start of 

sampling 

(dd/mm/yy) 

Topdress 

fertilisation 

(dd/mm/yy) 

Drainage 

(dd/mm/yy) 

Harvest 

(dd/mm/yy) 

Rice crop 

season 

(days) 

End of 

sampling 

(dd/mm/yy) 

Postharvest 

sampling 

period (days) 

Site 1 
2011 14/04/11 26/04/11 27/04/11 27/05/11 07/07/11 05/09/11 15/09/11 111 12/04/12 210 

2012 18/04/12 24/04/12 25/04/12 26/04/12 04/07/12 04/09/12 13/09/12 141 03/01/13 111 

Site 2 2012 15/05/12 16/05/12 16/05/12 23/05/12 05/07/12 11/09/12 17/10/12 152 23/10/12 - 

 

 

Table 3. Fertilisation treatments applied annually at each site 

Site Year Treatments 

Background Topdress 
kg organic-

C ha
-1

 
kg NH4

+
-N ha

-1
 kg organic-N ha

-1
 

kg NH4
+
-N ha

-1
 

(as AS) 

1 2011 

AS-top-11 0 - 50 - 

U-11 150 - 50 - 

CM-90-11 90 (9.5 t CM ha
-1

) 82 50 746 

CM-170-11 170 (19.1 t CM ha
-1

) 167 50 1500 

1 2012 

Control-12 0 - 0 - 

AS-top-12 0 - 50 - 

U-12 150 - 50 - 

CM-90-12 90 (15.2 t CM ha
-1

) 424 50 4588 

CM-170-12 170 (28.7 t CM ha
-1

) 800 50 8663 

2 2012 

Control 0 - 0 - 

AS-12 120 - 60 - 

PS-91-12 91 (30 t PS ha
-1

) 37 60 12 

PS-152-12 152 (51 t PS ha
-1

) 62 0 22 

AS: ammonium sulphate; U: urea; CM: chicken manure; PS: pig slurry 
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Table 4. Main properties of the applied chicken manure and pig slurry 

 

Chicken manure  Pig slurry 

Year 2011 2012 2012 

pH 8.5 6.9 - 

Dry matter (%) 29.2 77.2 3.74 

Organic matter (%, d.m.) 59.7 78.2 60.59 

Organic N (%, d.m.)  2.99 3.61 3.31 

NH4
+
-N

 
(%, d.m.) 3.10 0.76 7.49 

Organic C (%, f.m.) 17.78 46.22 1.14 

C/N 10 13.70 2.85 

f.m.: fresh matter basis; d.m.: dry matter basis 
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Table 5. Average cumulative emission of N2O-N, (N2O+N2)-N, CH4, and ecosystem respiration (CO2) over the entire rice crop. Percentage 

that the N2O-N and the (N2O+N2)-N emission represent of the applied N and emission factor (EF). The ratio between the N2O-N and 

(N2O+N2)-N emission is shown too. Global warming potential (GWP) of each treatment, rice yield and, greenhouse gas intensity (GHGI) 

per site and year 

a Yield was adjusted to 14% of water content; C: control; AS: ammonium sulphate; U: urea; CM: chicken manure; PS: pig slurry; *: significant at the 0.05 probability level. ns: not significant; Within columns, means 

followed by the same letter are not significantly different according to Tuckey’s test (α=0.05). 

Treatments: Site 1: C: Control: no N applied; AS-top-11 and -12: ammonium sulphate (AS) at 50 kg NH4
+-N ha-1 (applied topdress); U-11 and -12: urea at 150 kg N ha-1 (applied background) + AS at 50 kg NH4

+-N ha-1 

(applied topdress); CM: chicken manure, numbers behind indicate the applied rate as kg NH4
+-N ha-1 (CM-90-12: 90 kg NH4

+-N ha-1 and CM-170-12: 170 kg NH4
+-N ha-1 was applied background) + AS at 50 kg NH4

+-N ha-1 

(applied topdress); Site 2: C: Control: no N applied; AS: ammonium sulphate at 120 kg NH4
+-N ha-1 (applied background)+ AS at 50 kg NH4

+-N ha-1 (applied topdress) ; PS: pig slurry, numbers behind indicate the applied 

rate as kg NH4
+-N ha-1 : PS-91-12: 91 kg NH4

+-N ha-1 (applied background) + 50 kg NH4
+-N ha-1 (applied topdress);  and PS-152-12: 152 kg NH4

+-N ha-1 (applied background).  

Site 
Treatment 

-year 

Cumulative 

N2O-N 

(kg ha
-1

) 

Cumulative 

(N2O+N2)-N 

(kg ha
-1

) 
applied N %

N-ON2  EF (%) 
applied N %

N-)NO(N 22 
 

N-)NO(N

N-ON 

22

2

  

Cumulative 

CH4 

(kg ha
-1

) 

GWP 

(kg CO2-eq 

ha
-1

) 

Yield
a 

(kg ha
-1

) 

GHGI 

(kg CO2-eq 

 kg
-1

 yield) 

Cumulative 

CO2 

(kg ha
-1

) 

1 

AS-top-11 -11.91b 39.81 - - 79.62 - -222b -9114c 5187b -1.57b 9316 

U-11 -3.13ab 40.86 - - 20.43 - -125b -4077b 9990a -0.41b 10304 

CM-90-11 4.76a 43.46 3.61 - 32.92 0.11 181a 5965a 7547ab 0.79a 10975 

CM-170-11 1.38ab 33.49 0.63 - 15.43 0.04 98a 2876a 8096a 0.35a 13412 

Significance * ns - - - - * * * * ns 

1 

C-12 1.95b 19.69 - - - 0.10 -130c -2684c 7518a -0.36c 5504b 

AS-top-12 5.63ab 23.72 11.26 7.3 47.44 0.24 292b 8980b 8482a 1.06b 8627ab 

U-12 5.74ab 31.32 2.87 1.87 15.66 0.18 632ab 17513ab 8859a 1.97b 8187b 

CM-90-12 10.05a 18.88 2.12 1.71 2.12 0.53 1346a 36660a 7068a 5.18a 10638ab 

CM-170-12 9.31ab 16.08 1.09 0.86 1.10 0.58 465ab 14333ab 3092b 4.63a 15366a 

Significance * ns - - - - * * * * * 

2 

C-12 1.93 7.82 - - - 0.25 126 3609b 3715b 0.97ab 6798 

AS-12 1.72 10.88 0.96 -0.11 6.04 0.16 319 8475a 8287a 1.02a 10099 

PS-91-12 1.73 9.08 1.35 -0.14 6.87 0.19 203 5580ab 7385ab 0.75b 8275 

PS-152-12 2.10 9.17 0.98 0.08 4.22 0.23 283 6577ab 7364ab 0.89ab 8470 

Significance ns ns - - - - ns * * * ns 
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Table 6. Spearman rank correlation coefficients between soil temperature, air mean temperature, redox potential (Eh), and N2O-N, 

(N2O+N2)-N, CO2 and CH4 

Variables 

N2O-N (N2O+N2)-N CO2 CH4 

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 

2011 2012 2012 2011 2012 2012 2011 2012 2012 2011 2012 2012 

Soil T -0.153* 0.030 0.197* 0.251* 0.043 -0.027 0.178* 0.341* 0.303* 0.091 0.079 0.269* 

Air mean T -0.138* 0.031 0.191* 0.341* 0.079 -0.046 0.189* 0.454* 0.313* 0.093 0.101 0.328* 

Eh - -0.049 - - -0.004 - - -0.015 - - -0.171* - 
Eh: redox potential; *: significant at the 0.05 probability level 

 

Table 7. Cumulative emissions of N2O-N, (N2O+N2)-N, CH4, CO2 and global warming potential (GWP) from each treatment, at both sites 

during the rice seedling period (SP) of 2012. Nitrogen losses are related to the applied total N. Also, N, CH4, and CO2 emissions are related 

to the cumulative emissions during the rice crop season (RC). The ratio between the N2O-N and (N2O+N2)-N emission during the SP is 

shown too 

Site Treatments 

Cumulative 

N2O-N 

(kg ha
-1

) 

Cumulative 

(N2O+N2)-N 

(kg ha
-1

) 
applied N %

 N-)NO(N 22   
RC22

22

 N-)NO(N

 N-)NO(N 



  

(%) 

Cumulative 

CH4 

(kg ha
-1

) 
RC4

4

 CH

CH 

(%) 

Cumulative 

CO2 

(kg ha
-1

) 
RC2

2

 CO

CO 

 
(%) 

 

GWP 

(kg CO2-eq) 

Site 1 

C-12 0.15 b 0.87 b - 4.40 0.01 c 0.003 458 b 5.3 44 c 

U-12 0.81 b 16.64 a 11.00 53.12 -19.07 c - 465 b 6.0 -236 c 

CM-90-12 3.71 a 3.21 b 1.80 9.50 417.81 a 37.61 1281 ab 12.0 11497 a 

CM-170-12 2.85 a 2.67 b 0.27 5.78 187.35 b 54.66 2397 a 16.0 5532 b 

 Significance * * - - * - * - * 

Site 2 

C-12 0.43 b 1.01 - 12.24 56.83 44.56 177 2.6 1544 

AS-12 0.52 ab 0.89 0.74 8.08 73.65 23.07 114 1.1 1996 

PS-91-12 0.25 b 0.84 0.70 9.57 36.49 17.82 190 2.3 986 

PS-152-12 0.87 a 1.91 1.12 25.95 65.04 22.91 197 2.3 1885 

 Significance * ns - - ns - ns - ns 
RC: the rice crop season was, at site 1, from 26/04/2012 to 12/09/2012, and at site 2 from 23/05/2012 to 23/10/2012. C: control; AS: ammonium sulphate; U: urea; CM: chicken manure; PS: pig slurry; *: 

significant at the 0.05 probability level. ns: not significant; Within columns, means followed by the same letter are not significantly different according to Tuckey’s test (α=0.05). 

Treatments: Site 1: C: Control: no N applied; U: urea at 150 kg N ha-1 (applied background); CM: chicken manure, numbers behind indicate the applied rate as kg NH4
+-N ha-1 (CM-90-12: 90 kg NH4

+-N ha-1 
and  

CM-170-12: 170 kg NH4
+-N ha-1 was applied background); Site 2: C: Control: no N applied; AS: ammonium sulphate at 120 kg NH4

+-N ha-1 (applied background); PS: pig slurry, numbers behind indicate the 

applied rate as kg NH4
+-N ha-1 (PS-91-12: 91 kg NH4

+-N ha-1 and PS-152-12: 152 kg NH4
+-N ha-1 was applied background). 
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Table 8. Average cumulative emission of N2O-N, (N2O+N2)-N, and CH4 and the 

ecosystem respiration (CO2) during the postharvest period at Site 1 in years 2011 and 

2012 

Year Treatments 

Cumulative 

N2O-N 

(kg ha
-1

) 

Cumulative 

(N2O+N2)-N 

(kg ha
-1

) 

Cumulative 

CH4 

(kg ha
-1

) 

Cumulative 

CO2 

(kg ha
-1

) 

2011 

(210 days) 

AS-top -0.06 17.84ab -97.95 492.72a 

U 1.25 24.06a -67.48 680.42a 

CM-90 0.87 10.56b -23.25 -13.14b 

CM-170 0.26 10.67b -52.21 842.07a 

Significance ns * ns * 

2012 

(111 days) 

C -3.53 6.29b -335.99 92.09b 

AS-top -3.33 9.44b -416.50 433.08b 

U -1.35 23.72a -197.98 360.99b 

CM-90 -1.93 9.13b -399.11 501.96b 

CM-170 -2.61 18.72ab -152.59 2000.63a 

Significance ns * ns * 

AS: ammonium sulphate; U: urea; CM: chicken manure; ns: not significant; *: significant at the 0.05 probability 

level. Within column means followed by the same letter are not significantly different according to the Tuckey’s test 

(α=0.05).  
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Fig. 1. Evolution of the actual precipitation, air temperature and soil temperature during 

the rice cropping seasons of 2011 and 2012 at Site 1 (a), and during 2012 at Site 2 (b) 
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Fig. 2. Evolution of the sampled daily fluxes of N2O-N from Site 1 during the rice crop 

season of 2011 (a) and 2012 (b) 
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Fig. 3. Evolution of the sampled daily fluxes of (N2O+N2)-N from Site 1 during the rice 

crop season of 2011 (a) and 2012 (b) 
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Fig. 4. Evolution of the sampled daily fluxes of N2O-N (a) and (N2O+N2)-N (b) from 

Site 2 during the rice crop season of 2012. 
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Fig. 5. Evolution of the sampled daily fluxes of CH4 at Site 1 in 2011 (a), CH4 at Site 1 in 2012 (b), CH4 at Site 2 in 2012 (c), and redox 

potential (Eh) evolution at Site 1 in 2012 (d)
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Fig. 6. Evolution of the sampled daily fluxes of CO2 at Site 1 in 2011 (a), CO2 at Site 1 

in 2012 (b), and CO2 at Site 2 during 2012 (c)  
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Fig. 7. Evolution of soil (a) NO3

-
-N content and (b) NH4

+
-N content during the 

postharvest period at Site 1 in 2012 in 2011 and 2012 
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Abstract 

In order to improve the sustainability of the maize production system management 

practices that mitigate greenhouse gases (GHG) emission while keeping yield high are 

required. This study compared the effect of maize stover incorporation or removal along 

with different mineral N fertiliser doses (0, 200 and 300 kg N ha
-1

) on the emission of 

greenhouse gases on a sprinkler irrigated maize (Zea mays L.) crop in the Ebro Valley. 

Nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions were 

sampled weekly using a semi-static closed chamber and quantified with the 

photoacoustic technique during two years under Mediterranean conditions on a high 

nitrate-N soil. Applying fertiliser tended to increase N2O emissions and stover 

incorporation did not have any clear effect. Nitrification was probably the main process 

leading to N2O which ranged from -0.11 to 0.36% of the applied N, below the IPCC 

(2007) values. Denitrification was limited due to low soil moisture content and limiting 

readily available carbon. Stover incorporation increased CO2 emission. Nitrogen 

fertilisation tended to reduce CO2 emission but only in 2011. The maize field acted as a 

net CH4 sinks (in 2011) and mineral fertiliser application decreased CH4 oxidation by 

the soil. Considering global warming potential, greenhouse gas intensity, as well as N2O 

cumulative emissions and yield, it can be concluded that no fertilisation (control 

treatment) regardless of stover management was the best option combing productivity 

with keeping greenhouse gases emission under control. The application of nitrogen in 

mailto:stefania@macs.udl.cat
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many areas of the Ebro Valley (Spain) is not necessary due to the high N soil content 

(i.e. 200 g NO3-N kg
-1

) until the soil restores a normal mineral N content. 

Keywords: nitrous oxide, carbon dioxide, methane, nitrification, WFPS 

1. Introduction 

Agricultural production practices play an important role in the global fluxes of methane 

(CH4), nitrous oxide (N2O) and carbon dioxide (CO2). These greenhouse gases (GHG) 

contribute each 6.5%, 5.5% and 0.1% to the total anthropogenic greenhouse gas 

emissions, respectively (Sänger et al., 2011). The production or consumption of these 

gases is mainly due to biological processes which are strongly affected by natural 

conditions and agricultural management (Snyder et al., 2009).  

Soils commonly produce N2O during both nitrification and denitrification processes 

(Bremner, 1997), with the possibility of both processes to coexist within the same soil 

aggregate due to microsite variability (Kremen et al., 2005). In addition, N2O can also 

be formed in soils by nitrifier-denitrification, chemodenitrification, and co-

denitrification (Wrage et al., 2001, 2005). Therefore the magnitude of fluxes between 

soil and atmosphere depends largely on soil temperature, soil water content, oxigen (O2) 

availability, nitrogen (N) availability (nitrate and ammonium), and organic carbon (C) 

availability (Davison, 1991; Farquharson and Baldock, 2008; Seungdo and Bruce, 

2008). In addition, the above regulators are strongly influenced by weather, vegetation, 

soil properties (bulk density, organic matter, pH and clay content), and soil management 

(Firestone and Davidson, 1989; Dobbie and Smith, 2003; Seungdo and Bruce, 2008). 

Nitrous oxide emission often indicates an inefficient use of nitrogen (N) in agricultural 

soils (Bouwman et al., 2002). 

Although soils are usually considered as net sources of atmospheric N2O, they can also 

act as sinks, at least temporarily (Ryden, 1981; Minami, 1997; van Groenigen et al., 

2015). Consumption of N2O is enzymatically and energetically feasible van Groenigen 

et al., 2015). The sink strength depends on the potential for N2O reduction to N2, the 

ease of N2O diffusion within the soil profile and its dissolution in soil water (Chapuis-

Lardy et al., 2007).  Rosenkranz et al. (2006) found that N2O consumption occurred not 

only at relatively high soil moisture content (from 25 to 80% WFPS), but also at 

relatively low soil moisture content (from 15 to 25% WFPS). Soil was even found to be 
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an N2O sink under very dry and oxic soil conditions (Donoso et al., 1993; Flechard et 

al., 2005; Goldberg and Gebauer, 2009a,b). One of the reasons may be that atmospheric 

N2O diffuses into the soil when the N2O concentration in the soil profile is low (Clough 

et al., 2005; Heincke and Kaupenjohann, 1999). Another reason for N2O consumption 

under dry conditions may be aerobic denitrification by heterotrophic nitrifiers 

(Robertson et al., 1989) or nitrifier denitrification by autotrophic ammonia oxidizers 

(Wrage et al., 2001). Most scientists assume that aerobic denitrification is the main 

process for N2O consumption in dry soil with relatively high O2 concentrations 

(Bateman and Baggs, 2005; Chapuis-Lardy et al., 2007; Morley and Baggs, 2010). 

However, there is still a lack of experimental evidence to support this assumption. 

An environment is a source of CH4 when its production (methanogenic Archaea) 

exceeds its consumption (methanotrophic bacteria) and it leads to CH4 emission. If the 

opposite happens, the environment is a CH4 sink (Le Mer and Roger, 2001). In general, 

aerobic conditions do not favor CH4 production because CH4 is usually formed in soils 

by the microbial breakdown of organic compounds in strictly anaerobic conditions 

(Smith et al., 2003). Methane is eliminated from the soils by microbial oxidation (Le 

Mer and Roger, 2001). Although arable soil has been identified as one of the main CO2 

sources in agro-ecosystems due to inappropriate management practices, it can also serve 

as a net sink for atmospheric CO2 through appropriate agricultural management 

(Paustian et al., 1997; Forest et al., 2007; Patiño-Zúñiga et al., 2009). 

Crop stover’s incorporation is an important resource of carbon (C) and N, as well as 

other nutrients (Kumar and Goh 1999), improving soil fertility and increasing soil 

organic C (Singh et al., 2008). Crop stover incorporation also influences denitrification 

rate, abundance of denitrifiers, and N2O emission from soil (Henderson et al., 2010). It 

may have effects on soil moisture, temperature, dissolved organic carbon (DOC) 

content, inorganic N concentration,  microbial activity, and redox potential (Kumar and 

Goh, 1999), thus regulating N2O release from soil. The C/N ratio of the incorporated 

stover into soil is an important determinant not only of the magnitude of inorganic N 

dynamics but also for N2O emissions (Millar and Baggs, 2004; Toma and Hatano, 

2007). Nitrous oxide production has been found to be high following the incorporation 

of crop residues with low C/N ratio rather than that of high C/N ratio ones (Baggs et al., 

2000, Huang et al., 2004) due to mineralization promotion, resulting in high NH4
+
 

availability for nitrification and organic C release to allow denitrification in the presence 
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of NO3
-
 (Baggs et al., 2000). In contrast, addition of high C/N ratio residues might 

decrease the available N for nitrification and denitrification due to microbial N 

immobilization, thereby lowering N2O production at least in the short term. Results 

from the few available empirical studies show that the crop stover removal impacts on 

soil GHG emission, however, are inconsistent. According to Johanson and Barbour 

(2010) maize stover removal did not alter soil CO2 nor N2O emissions compared to 

stover retained treatments. In other studies, removing crop stover decreased soil N2O 

emissions (Singh et al. 2008). Baggs et al. (2003) and Abalos et al. (2012) reported a 

stimulation of N2O emission when incorporating crop stover to soil.  

In Spain, more than 99 000 ha are devoted to intensive maize produced under irrigation 

(Ministerio de Agricultura Pesca y Alimentación, 2014). The Ebro Valley is one of the 

most intensive agricultural areas in Spain, where 30% (72 000 ha) of the irrigated area is 

dedicated to maize (Villar et al., 2002). The maize stover production in this area ranges 

from about 14 to 17 t dry matter ha
-1

 year
-1

 (Lloveras et al., 2012). Average crop yields 

in the area range from 10 to 15 t maize grain ha
-1

 (14% moisture) under sprinkler 

irrigation (Cela et al., 2011). Under good agronomical conditions, the most efficient 

farms can produce up to 20 t ha
-1

 (Biau et al., 2013). About 50% of the farmers at the 

Ebro Valley incorporate crop stover to the soil and the rest allot this by-product to 

animal consumption or any other purposes depending on the price (Biau et al., 2013). 

Half of the maize-producing land located in the Ebro Valley, is being fertilised using 

mineral N where the rest receives organic fertilisers mainly pig slurry (Sisquella et al., 

2004). High yielding maize growing in the Spanish agro-systems requires water but also 

adequate input of available nitrogen (N) and a long growing season. It is common 

practice to apply alone N mineral at above 300 kg N ha
-1

 (Sisquella et al., 2004). High 

pre-sowing soil N content is the result of excessive N application to previous crops, 

which can accumulate in the soil (Berenguer et al., 2009). Meaning that successive 

crops can not efficiently utilize the residual nitrate available in the soil profile and often 

led to substantial accumulation of residual nitrate in the soil profile (Ju et al., 2009; Wan 

et al., 2009). Nitrate can leach into deeper soil layers after high irrigation rates or heavy 

rainfall, this can result in pollution of shallow groundwater (Ju et al., 2003; Ju et al., 

2007). Thus, nitrate accumulation and leaching may be an important pathway for N 

fertiliser losses in the cropping systems. It is well documented by Wan et al. (2009) that 

the persistence of much nitrate available in the soil profile can determine low 
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denitrification rates due to insufficient readily available C and by low soil moisture 

limitation. Moreover, the high organic matter mineralization detected in the Ebro Valley 

(Badia, 2000) also contributes to high pre-planting soil N contents (Cela et al., 2007). 

Villar et al. (2002) quantified an excess of N in the system which was sufficient to 

produce above 11 to 12 t ha
-1

 of maize yield without N fertilisation.  

It has been well documented that the application of mineral fertilisers does not only 

increase the N2O but also the CO2 and CH4 emissions (Ruser et al., 2001, 2006; Scheer 

et al., 2008). However, few studies exist on GHG emission from maize crop soils with a 

high mineral N content (200 g N kg
-1

 on average) under Mediterranean conditions. The 

objective of this study was to compare the effect of two different maize stover 

management (incorporation or removal) combined with different doses of mineral N 

fertiliser on the emission of greenhouse gases (N2O, CH4 and CO2) in a high mineral N 

(200 g N kg
-1

 on average) maize (Zea mays L.) system under Mediterranean conditions. 

2. Materials and methods 

2.1. Site and soil characteristics 

The study was carried out at a maize field (Zea mays L.) located at Almacellas (NE 

Spain, 41º43’N, 0º26’E) under sprinkler irrigation during 2011 and 2012. The location 

is characterized by a semiarid climate, with an average annual temperature of 14.8°C 

and an average (last 10 years) annual rainfall of 350 mm, with summer being the driest 

and hottest season of the year (rainfall below 13 mm and temperature sometimes above 

30°C). The average relative (last 10 years) humidity is 65% and the average wind speed 

is 1.45 m s
-1

. Rainfall and air temperature during the sampling period (Figs. 1a, 1b) 

were obtained from the Almacelles meteorological station. Additionally, soil 

temperature (10 cm depth) was measured while soil samples were taken.  

The soil is well drained without salinity problems and classified according to the USDA 

soil taxonomy system (Soil Survey Staff, 1992), as a Gypsic Haploxerept. Some 

physico-chemical properties of the top layer were: 3.47% organic matter content; pHH2O 

8.4; a bulk density of 1.4 g cm
-3

; a sand content of 28%; silt of 42%; clay of 30%; 122 

mg P (Olsen) kg
-1

; and 420 mg K (NH4
+

  Ac) kg
-1

. Soil nitrate content (NO3
-
-N) was 

determined before sowing and fertilising (initial NO3
-
-N) and after harvesting (residual 

NO3
-
-N; Table 1).  
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The soil ammonium content (NH4
+
-N) was considered negligible (Villar et al., 2002; 

Berenguer et al., 2009; Biau et al., 2013) and was only measured at the onset of the 

experiment in 2010 (0-30 cm depth). This NH4
+
-N content was 16 kg ha

-1
 (Biau et al., 

2013). The N mineralization potential in the soil was determined by method used by 

Bosch et al., (2009). 

2.2. Experimental design, treatments and crop management 

The experimental plots were established and arranged in a completely randomized split-

plot design with three N doses under two crop stover managements in three blocks 

(replicates). The elemental plot dimensions were 18 by 17 m. The applied crop stover 

management treatments were: i) stover removal (-R) from the field after harvesting each 

year and, ii) stover incorporation (+R) with conventional tillage (with disk ploughing) to 

a depth of 25-30 cm. The applied N treatments were (1) N0: no N application; (2) N200: 

200 kg N ha
-1

 year
-1

 and (3) N300: 300 kg N ha
-1

 year
-1

. As previously mentioned, these 

two treatments were applied with both (-R and +R) crop stover treatments (Table 2). 

The N fertiliser (ammonium nitrate [AN]; 33.5% N) was applied in two side dressing 

using a small drop-type hand driven fertiliser spreader; 50% at growth stage V3–V4 and 

50% at V5–V6 (Table 2). Each year prior to sowing all plots were fertilised with 

phosphorus (P) (150 kg P2O5 ha
-1

 year
-1

) and potassium (K) (250 kg K2O ha
-1

 year
-1

) 

(Table 3) to avoid deficits of these nutrients. 

In both years, maize (Zea mays L.,) was sown in early April (Table 3) at a rate of 80,000 

seeds ha
-1

 with 75 cm spacing between rows. Plots were sprinkler-irrigated with 

approximately 700 to 1000 mm of water (nitrate-free) per year during the maize 

growing period. Irrigation began in the first days of April and lasted until mid-

September, every 7 to 12 d depending on the weather condition and crop development. 

The field was treated with 3.3 L ha
-1

 of pre-emergence herbicide Trophy (Acetochlor 

40% + Dichlormid 6%) and 1 L ha
-1

 of the post-emergence herbicide Fluoxypyr 20% 

(to control Abutilon theophrasti M.) plus 1.5 L ha
-1

 of Nicosulfuron to control Sorghum 

halepense L. Maize was harvested in the second week of September of each year. Grain 

moisture was determined using 300 g sample of each plot and the grain yield was 

adjusted to 14% moisture (GAC II, Dickey-John, Auburn, IL, USA).  
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The whole maize plant biomass except the grain (maize stover) was either incorporated 

into or removed from the soil using commercial machinery.  

2.3 .Gas sampling and quantification  

Gas samples were collected weekly using the closed chamber method throughout the 

maize crop season, in 2011 and 2012. Three replicates were taken in 2011 and 4 in 

2012. The cylindrical (19 cm diameter and 22 cm high) static chambers were made of 

polyvinyl chloride (PVC) coated with an epoxy resin. They were inserted 5 cm into the 

soil. This cylinder has a vented screw lid with a three-way key. Air samples from inside 

the chamber were taken in duplicate immediately after closing the chamber, and 20 and 

40 min later. Samples were taken through a Teflon


 tube connected to the three-way 

key and into 100 ml plastic syringes, adapted with a valve. Air inside the chamber was 

mixed by filling and emptying the syringe six times before withdrawing the sample. 

After taking the air sample the syringes were closed by the valve. After the last 

sampling (40 min from closing the chamber) the three-way keys were left open. The 

syringes were transported to the laboratory and the concentrations of N2O, CH4 and CO2 

in the sampled air were quantified using the photoacoustic technique (Innova 1412 

Photoacoustic Multigas Monitor). 

Surface soil temperature was recorded during sampling. The photoacoustic analyser 

refers the gases concentration to 20ºC and 1 atm; the concentration was corrected to be 

referred to the actual field temperature and atmospheric pressure of each sampling day. 

Sampling was done at the time of the day when soil temperature was about the average 

soil temperature of the day in order to minimize over or underestimation of the emission 

caused by daily soil temperature variation.  

2.4. Soil moisture and soil temperature 

After the gas analysis, the soil samples were dried at 105ºC to a constant weight to 

gravimetrically determine moisture content. Water-filled pore space (WFPS) was then 

calculated by dividing the volumetric water content by the total soil porosity. Total soil 

porosity was calculated by measuring the bulk density of the soil according to the 

following relationship: soil porosity = 1 – (soil bulk density/PD), with PD representing 

the particle density, which for this soil texture was assumed to be 2.65 g cm
−3

 (Porta et 

al., 2008). 
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Soil temperature (at a depth of 10 cm) was also measured while the gas samples were 

taken. 

2.5. Calculations and statistical analysis 

The daily N2O, CO2 and CH4 emission was determined from the linear increase of gas 

concentration at each sampling time and replicate during chamber closure. The average 

of 3 replicates in 2011 and 4 in 2012 was calculated every sampling day. The 

cumulative emission throughout the study period was calculated by integrating the 

emission curve through time. The direct N2O emission factor (EF) was calculated 

according to the IPCC (2001) as the difference between the N2O emitted from fertilised 

soil and that from the control divided by the N applied as fertiliser.  

The normal distribution of the flux data (N2O, CO2 and CH4) was verified using the 

Shapiro-Wilk test. When necessary, in order to fulfil the assumption of normality, data 

were log transformed prior to analysis. Cumulative emission of N2O, CO2 and CH4 was 

examined using data from all plots with an ANOVA model (JMP version 10, SAS 

Institute, USA) that included terms for maize stover (R), fertiliser treatment (N), and 

interactions (R x N). Significant differences among treatment’s means were further 

examined by the Tukey’s multiple range test at the 0.05 probability level. Multivariate 

correlation analysis was used to analyse the relationship between GHG emission and the 

measured conditions (i.e. soil temperature, air mean temperature and WFPS). The 

correlations were assessed using the non-parametric Spearman rank coefficient (ρ). A p 

value of 0.05 was used as the threshold for statistical significance. 

2.6. Global warming potential (GWP) and greenhouse gas intensity (GHGI) calculation 

Global warming potential (GWP) is an index defined as the cumulative radiative forcing 

between the present and some chosen later time ‘‘horizon’’ caused by a unit mass of gas 

emitted now. In GWP estimation, CO2 is typically taken as the reference gas, and an 

emission or an inmission of CH4 and N2O is converted into ‘‘CO2-equivalents’’. In the 

present study, the global warming potential (GWP) of N2O and CH4 emission was 

calculated in units of CO2 equivalents (CO2-eq) over a 100-year horizon (Forest et al., 

2007). A radiative forcing potential relative to CO2 of 298 was used for N2O and 25 for 

CH4 (Forest et al., 2007). Although soil CO2 fluxes also represent a source of GHG 

emission, on a global scale, they are largely offset by high rates of net primary 

productivity and atmospheric CO2 fixation by crop plants, and are therefore estimated to 
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contribute <1% to the GWP of agriculture (Smith et al., 2008; Abalos et al., 2012; 

Linquist et al., 2012). Therefore, CO2 as a contributor to GWP was not included in this 

analysis. The GWP of N2O and CH4 emission were calculated using the following 

equation (IPCC, 2007): GWP (kg CO2-eq ha
-1

) = cumulative N2O emission * 298 + 

cumulative CH4 emission * 25. 

The greenhouse gas intensity (GHGI) was calculated as follows: GHGI (kg CO2-eq kg
-1

 

grain yield) = GWP/kg grain yield. 

3. Results  

3.1. Environmental conditions and water filled pore space 

The measured average daily soil temperature ranged from 19.5 to 30.1°C and 7.8 to 

28.8°C during 2011 and 2012 respectively (Fig. 1a). In 2011, the average air 

temperature during the sampling period was 22.1°C (ranging from 14.8 to 28.1°C) and 

in 2012 was 20.1°C (ranging from 8.4 to 29.3°C) (Fig. 1a). In 2011, the average soil 

temperature was 4.5°C higher than in 2012, the average air temperature was 2°C higher 

than in 2012, and the total rainfall during the sampling period was 3 times lower than in 

2012. Therefore, an influence of soil temperature, average air temperature and the total 

rainfall during the sampling period on the WFPS was expected.  

In 2011, during the crop maize season, the WFPS ranged from 12 to 42%, while in 

2012, the WFPS ranged from 17 to 54% (Fig. 1b and d). In 2011, the total rainfall 

during the sampling period was 63 mm, while in 2012 was 198 mm (Fig. 1c). 

In 2011 the average annual relative humidity was 65% and the average annual wind 

speed was 1.25 m s
-1

, while in 2012, the average annual relative humidity was 61% and 

the average annual wind speed was 2.10 m s
-1

 (Almacelles Station; Meteorological 

Service of Catalonia, http://www.meteo.cat/observacions/xema). 

3.2. Nitrous oxide emission 

In 2011, the measured fluxes of N2O were large between days 11 and 40 after the start 

of sampling for all the +R treatments. This period coincided with a sharp increase in 

WFPS (11 d after sampling started; Fig. 1b) and with the second side dress fertilisation 

(35 d after sampling started; Table 3). From day 99 of sampling until harvest (119 d 

after sampling started) emission peaks were observed in all the treatments (Fig. 2a and 

http://www.meteo.cat/observacions/xema
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b) coinciding with a period of relatively higher WFPS (ranging from 35 to 42%; Fig. 

1b). The N2O fluxes from the +R treatments were higher than from the -R treatments, 

with the highest peaks measured for N300 (+R) (70.9 kg N2O-N ha
-1

 d
−1

; Fig. 2a). For 

the -R treatments, the highest N2O emission fluxes were measured at the end of the crop 

(Fig. 2b). 

In 2012, the measured fluxes of N2O were the largest the first 55 days after sampling 

started; with higher N2O fluxes from the +R treatments. In this period, large fluxes 

coincided with the first side dress fertilisation (day 20 after sampling started) and the 

second side dress fertilisation (day 53 after sampling started; Table 3). From day 56 

until harvest the average fluxes of N2O remained low for all the treatments (Fig. 2c and 

d).  

The average of the measured daily N2O fluxes per treatment ranged between -9.77 and 

107.28 g N2O-N ha
-1

 d
-1

 in 2011 and between -4.14 and 106.87 in 2012, indicating that 

both years the soil acted both as a source and as a sink of N2O. 

In both years, the cumulative N2O emission tended to increase with the dose of mineral 

N fertiliser applied (Table 4). The cumulative N2O emission was significantly 

influenced by stover management in 2011, but not in 2012 (Table 4). In 2011, a larger 

cumulative emission (1.83 kg N2O-N ha
−1

) during the maize crop season from the N300 

(+R) than from the other treatments was registered. In 2012, the largest cumulative 

emission was measured for the N300 (-R) treatment (2.41 kg N2O-N ha
−1

; Table 5), 

although this increase was not significant (p >0.05). The year had a significant effect on 

N2O emission (Table 5). 

In both years, the N2O emission factor (EF) ranged from -0.11 to 0.36% of the applied 

N (Table 5).  

The measured daily N2O fluxes in all the treatments were correlated with soil 

temperature, average air temperature and WFPS in 2011, and only with soil temperature 

and average air temperature in 2012 (Table 6). 

3.3. Carbon dioxide flux (ecosystem respiration) 

The CO2 fluxes were generally high between day 57 and 71 after sampling started in 

2011 (Fig. 3a and b). In 2012, the fluxes of CO2 were the highest for days 50 and 119 
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after sampling started (Fig. 3c and d). In both years, +R and -R treatments showed the 

highest CO2 fluxes (Fig. 3). 

In both years, the cumulative CO2 emission was significantly lower from the -R than 

from the +R treatments (Table 4). Cumulative CO2 emission was larger in 2012 than in 

2011 (Table 4). 

In both years, there were significant correlations between CO2 emission and soil 

temperature and average air temperature (Table 6). 

3.4. Methane emission 

In 2012, the fluxes of CH4 were mostly positive (Fig. 4c and d), while in 2011 the soil 

acted as a sink for CH4 throughout the sampling period (Fig 4a and b). The maximum 

measured emission flux was 891.31g CH4 ha
-1

 d
-1

 from N0 (-R) in 2012, while the 

maximum oxidation flux was -7097.31 g CH4 ha
-1

 d
-1

 from N300 (+R) in 2011. In 2011, 

the cumulative CH4 oxidation significantly decreased when increasing the N dose. On 

the contrary, in 2012 the cumulative CH4 emission decreased when increasing the N 

dose (Table 4). In both years, the cumulative CH4 emission (or methane oxidation) 

tended to decrease with the dose of fertiliser (Table 4).  

In both years, the daily CH4 fluxes observed in all the treatments were correlated with 

soil temperature and average air temperature (Table 6). 

3.5. Global warming potential (GWP) and greenhouse gas intensity (GHGI) 

In both years, the global warming potential (GWP) calculated with the N2O and CH4 

emission ranged from -3420.45 to 1579.48 kg CO2-eq ha
-1

 for the sampling period 

(Table 5). In 2011 the maize field acted as a net sink of CH4 for most treatments (except 

for N300 (-R)) and this, in turn, reduced the overall GWP (Table 5). In 2012, the N200 

(-R) treatment showed the highest GWP, although not statistically different (p >0.05) 

from the other treatments (Table 5). 

The greenhouse gas intensity (GHGI) was negative for all the treatments except for 

N300 (-R) during 2011 (Table 5). While, in 2012 the GHGI was low for all the 

treatments (Table 5). 
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4. Discussion 

4.1. Nitrous oxide emission 

In both years, high peaks of N2O were observed after rain or irrigation, when WFPS 

ranged between 35 and 40%. Bateman and Baggs (2005) reported that nitrification was 

the main process producing N2O when WFPS is between 35 and 60%. Values around 40 

to 60% are considered as the optimal conditions for nitrifiers because the diffusion of 

neither substrates nor oxygen (O2) is restricted (Paul and Clark, 1996). Similarly Liu et 

al. (2006) and Perdomo et al. (2009) report large N2O fluxes after rain or irrigation. It 

must be kept in mind that the amount of water applied with irrigation was the same (850 

mm on average) in both years. Since during the sampling period the total rainfall was 

higher (more frequent rainfalls and of higher intensity) in 2012 than in 2011 this 

explains the higher WFPS in 2012 (Fig. 1b and d) though never above 54% (Fig. 1b and 

d). Therefore it may be speculated that the N2O emission from this soil at 35 to 55% 

WFPS was dominated by nitrification, since at <60% WFPS nitrification becomes more 

important than denitrification as other authors also described (Lin et al., 2010; Jahangir 

et al., 2011; Laville et al., 2011). Similar results were found under conditions similar to 

those of the present study, with a minimum threshold for denitrification recorded at 

WFPS >55% (Zou et al., 2006). Also, Linn and Doran (1984) and Abbasi and Adams 

(2000) measured a significant N2O production by nitrification in soils up to 60% WFPS. 

The high correlation found between N2O emission and WFPS in both years, also may 

indicate the predominance of nitrification (Table 6). The influence of soil moisture on 

N2O emission is more prominent after rewetting of an extremely dry soil (Jorgensen et 

al., 1998) which may explain the sharp increase in the N2O flux during the first days of 

sampling in 2012 since nearly 25 mm fell when the soil was very dry (WFPS <25%, 

Fig. 1b and 1d). In 2011, during the same period, the fluxes of N2O from all the 

treatments were lower (Fig. 2a) or almost nonexistent (Fig. 2b). This might be explained 

by the less frequent rainfall and of lower intensity (not surpassing 13 mm) (Fig. 1c). 

Probably, the N2O production at 20% WFPS (or below 20% WFPS) was limited by 

substrate diffusion and water availability for microbial activity, as Stark and Firestone 

(1995) already mentioned. This limitation did not occur from 35% WFPS on, at which 

N2O emission attributed to nitrification became evident. By means of an empirical 

model, Lu et al. (2006) found that precipitation was the key factor stimulating N2O 

emission from agricultural soils. The results of the present study provide further 
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evidence that WFPS is a key factor determining N2O emission under Mediterranean 

conditions. 

High fluxes of N2O were also observed after side dressing with ammonium nitrate 

which stimulates nitrifier’s activity. Studies conducted during the past decade show that 

hydrolysis and nitrification of applied NH4-based N fertilisers synchronize mostly 

within the two weeks following  application to maize (e.g. Liu et al., 2003), and this 

indicates that nitrification is the main process leading to N2O emission from the soil (Ju 

et al., 2004; Wan et al., 2009). 

The average of the measured daily N2O fluxes per treatment ranged between -9.77 and 

107.28 g N2O-N ha
-1

 d
-1

 in 2011 and between -4.14 and 106.87 in 2012, indicating that 

soil acted as a small source of N2O. Negative fluxes of N2O (i.e. soil acted as a sink) 

have previously been documented in agricultural systems and under various 

edaphoclimatic conditions (Teira-Esmatges et al., 1998; Chapuis-Lardy et al., 2007; 

Cardenas et al., 2010; Abalos et al. 2012). Net negative N2O fluxes have been found in 

a range of conditions,  but not always connected to low N and low O2 (Wagner- Riddle 

et al., 1997; Khalil et al., 2002). The rate of N2O consumption (reduction to N2 plus 

absorption by water) primarily depends on soil properties, such as the availability of 

mineral N (substrate for nitrification and denitrification), soil oxygen and water content, 

soil temperature, pH and redox conditions, and the availability of labile organic C and N 

(Stevens et al., 1998; Glatzel and Stahr, 2001; Wzodarczyk et al., 2005; Mathieu et al., 

2006). The diverse conditions stimulating N2O consumption, including the enigma of 

uptake in dry soil, hint at various processes responsible for the uptake. 

Based on recent evidence from the literature the following possible pathways for N2O 

consumption (negative fluxes of N2O) have been identified (Van Groenigen et al. 2015): 

(1) first, in addition to the “typical” nitrous oxide reductase (nosZ I) that reduces N2O 

during denitrification, (2) second, a microbial nondenitrifier, “atypical” N2O reductase 

(nosZ II) which play a significant role in N2O consumption in soil was identified; (3) 

third, some bacteria that perform dissimilatory nitrate reduction to ammonia (DNRA) 

are capable of N2O reduction to N2 as they carry a nos gene encoding for N2O reductase 

(N2OR) (Simon et al., 2004; Van Groenigen et al. 2015); (4) fourth, direct assimilatory 

N2O fixation via nitrogenase (Vieten et al., 2008; Ishii et al., 2011; Farías et al., 2013) 
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or (5) fifth, indirect N2O fixation via a combination of N2O reduction and N2 fixation 

can account for N2O consumption, 

Denitrification is usually the main source of N2O emission in soils with high water 

content (>70% WFPS), while nitrification increases linearly with increasing the water 

content in soil up to a maximum of 60% WFPS and decreases thereafter (Bagg and 

Bateman, 2005).  

Another condition to stimulate denitrification in soil with a high mineral N content is 

the existence of a readily available C source (Ju et al., 2011). In the present study 

additional C substrate in the form of maize stover was supplied which was not readily 

decomposable and probably was not available for N2O production through 

denitrification. In the present study denitrification was likely to be limited not only by 

low soil moisture content but also by lack of a readily decomposable C source. Over the 

last twenty years or more large amounts of nitrate have been found to accumulate at 

different depths in soil profiles (Ju et al., 2004, 2006 ; Zhao et al., 2006), and these can 

remain roughly constant for several years (Zhao et al., 2006). The source of this nitrate 

is the very large surplus of N applied in conventional fertiliser regimes in the long term 

and the high capacity of the soils to nitrify ammonium based fertilisers (Ju et al., 2009; 

Wan et al., 2009). These authors attributed the persistence of this nitrate to low 

denitrification rates due to low availability of readily decomposable C and to limitation 

by low soil moisture. 

In this study as in other previous assays (Zhang et al. 2004; Wang et al. 2009) 

increasing doses of mineral N fertiliser led to increasing N2O emission, though not 

significantly different neither in 2011 nor in 2012 (Table 4). These results could be 

explained by the high initial mineral N content in the soil profile due to the previous 

management (Biau et al., 2013).  

In both years, the high residual N (Table 1) indicates a high N mineralization potential 

in this fertile soil, which was estimated to be approximately 150 kg N ha ha
-1

. This is in 

agreement with Sio et al. (1990), who estimated the N mineralization potential to be 120 

kg N ha
-1

. This high N mineralization potential should be considered when setting a N 

fertiliser recommendation in the area. 
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Application of stover is a cost-effective and sustainable alternative to improve the 

organic matter content of soils (Abalo et al., 2012). However, as pointed out in this 

study, this management practice may have induced changes in the extent to which 

mineralization or immobilization has taken place. In general, stover incorporation has 

been described to affect soil N content, soluble organic carbon content, and microbial 

activity; and therefore regulate the soil N2O emission in a complex manner (Miller et 

al., 2008). In this study, stover incorporation in 2011 significantly increased the 

cumulative N2O emission (Table 4). In 2012; the lowest N2O emission was registered 

for the +R treatments (Table 4). These results might be due to the fact that in 2012 a 

higher amount of stover (37 Mg ha
-1

 on average) with a higher C/N ratio (C/N=63) than 

in 2011 was incorporated (C/N=46). Moreover, the Nini was 38% higher on average in 

2011 than in 2012 (Table 1). In 2011 stover incorporation, may have resulted in a more 

rapid mineralization, N release and, hence, increased N availability (Baggs et al., 2000; 

Verschot et al., 2006) for nitrification and denitrification and, consequently, enhanced 

N2O emission (Table 1 and 5). On the contrary, in 2012, a net N immobilization may 

have occurred. In the conditions of this study, the threshold for the predominance of N 

immobilization above mineralization might be above a stover C/N ratio of 46. This 

speculation could be verified if data on mineral N evolution were available or if a 

laboratory based mineralization experiment had been performed. Previous authors (e.g. 

Heal et al., 1997; Myers et al., 1994) stated that the residue C/N threshold above which 

net N immobilization occurs is 20–25. Cayuela et al. (2009) found that wheat straw 

(C/N = 198) and cotton cardigans (C/N = 30.5) led to a rapid immobilization of N. 

Abalos et al. (2013) found that maize stover (C/N = 127) incorporation led to an 

immobilization of N under Mediterranean conditions. Similarly, Hadas et al., (2004) 

described that sorghum stover (C/N = 72) and maize stover (C/N = 32) resulted in N 

immobilization. 

Emission factors (EF) express the direct N2O emissions as a percentage of the applied N 

fertiliser (Cardenas et al., 2010). In the present study, N2O emission factors (EF) ranged 

from -0.11 to 0.36% of the applied N (Table 5), lower than the default IPCC values 

(2007 i.e. 1% regardless of the N source, location, climate and soil type). The EF% of 

this study was also below those reported by Abalos et al. (2012) in maize under 

Mediterranean climate. A negative EF was found for the N300 (-R) treatment in 2011 

and for the N200 (+R) treatment in 2012, implying that the cumulative N2O emission 
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from these treatments was smaller than from the control, which was also encountered by 

Toma et al. (2007) and Maris et al. (2015). The relative low N2O EF in these 

Mediterranean soils with a high organic matter content (3.47%) and high mineral N 

content (200 g N kg
-1

 on average) could likely be explained by the low availability of 

readily available C and the WFPS not being high enough to stimulate N2O production 

by denitrification during the sampling period. 

In the present study, it was clearly observed that the year had a significant effect on N2O 

emission (Table 5).This is attributed to the differences in soil temperature, the average 

air temperature and WFPS between the two years. The average soil temperature in 2011 

(27.5°C) was 4.5°C higher than in 2012, the average air temperature in 2011 (22.1°C) 

was 2°C higher than in 2012 and, the WFPS was between 12% and 42% in 2011 and 

somewhat higher, between 17% and 54%, in 2012. 

A significant correlation between soil temperature, average air temperature and daily 

N2O fluxes was found (in both years; Table 6). Many researchers reported significant 

effects of temperature on N2O emissions (Conrad et al., 1983; Skiba and Smith, 2000). 

Temperature directly affects the activity of nitrifying and denitrifying bacteria. 

Generally N2O fluxes increase with rising temperature (Granli and Bøckman 1994; 

Smith 1997), but this relationship is not straightforward, as many different processes are 

involved. Temperature increase stimulates microbial respiration, i.e. O2 consumption, 

the volume of the anaerobic fraction of the soil increases, enhancing denitrification 

activity (Lesschen et al., 2011; Parkin and Tiedje 1984; Smith 1997). Nevertheless, 

Castaldi (2000) found that only at high rates of O2 consumption (58 mg O2 g
–1

 h
–1

), 

which occurred at about 34°C, did the production of N2 outweigh that of total N2O. 

Since in the present study (in both years) the soil temperature did not rise above 30°C it 

can be confirmed that nitrification was the dominant source of N2O.  

4.2. Carbon dioxide emission (ecosystem respiration)  

On Table 4 one can see the contradictory results obtained among the two years when 

applying different doses of mineral fertiliser on CO2 emission. In 2011, the cumulative 

CO2 emission decreased with increasing N doses (by 5% in the N200, and by 31% in 

the N300; Table 4), while in 2012, increasing N doses lead to increasing cumulative 

CO2 emission. One possible explanation for these results might be the very high mineral 

N content in the soil in 2011 (approximately 38% higher than in 2012) which in 
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combination with mineral N application could inhibit CO2 emission. Fogg (1988), 

DeForest et al. (2004), and Burton et al. (2004) suggested a decrease in extracellular 

enzyme activity when the application of N increases. These studies did not cite any 

specific mechanism for this decrease, so the process is relatively unclear. Fogg (1988), 

DeForest et al. (2004) and Burton et al. (2004) also found that CO2 emissions from the 

soil were reduced by 15 to 41% when applying N compared to control. 

In the present study, stover management significantly increased the cumulative CO2 

emissions (Table 4), which were the double in 2012 than in 2011. Incorporation of 

maize stover may have increased the organic C content of the soil leading to larger CO2 

emission. Also, increasing the organic C content in the soil increases microbial activity 

which may have favored N immobilization in 2012. The C/N ratio of maize stover is 

high so application of ammonium nitrate must have stimulated its decomposition 

contributing to larger CO2 emissions from the +R treatments. On the other hand, stover 

removal led to significantly lower CO2 emission. Maize stover served as a C substrate 

for soil microorganisms so removing it reduced CO2 emission. 

Temperature is an important factor that influences soil CO2 flux (Keller et al., 2004). A 

significant correlation between soil temperature, average air temperature and daily CO2 

flux (in both years) was found (Table 6). It has often been reported that temperature is 

the factor that is best correlated with CO2 emission (Almaraz et al., 2009). Increasing 

soil temperature generally stimulates microbial processes related with the production of 

CO2 and N2O (Kirschbaum, 1995). In addition, increasing soil temperature may 

increase gas diffusivity (Smith et al., 2003). Data from previous studies (Chan and 

Parkin, 2001; Venterea et al., 2005) support the direct impact of soil temperature on the 

GHG transport. 

4.3. Methane emission 

In 2011, the soil acted as a net CH4 sink, while in 2012 the soil acted as a net source of 

CH4. In 2011, the cumulative CH4 oxidation was high when WFPS was low (from 12 to 

42%). The magnitude of CH4 oxidation by soils is largely controlled by the diffusion of 

atmospheric CH4 into the soil (Koschorreck and Conrad, 1993), which in turn is 

strongly influenced by soil moisture (Shrestha et al., 2004). This is in agreement with 

the studies by Guo and Zhou (2007) and Wang et al. (2012). A higher WFPS in 2012 

than in 2011 (Figs. 1b and d) may have been responsible for the soil acting as a source 
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of CH4 (Table 4). High soil moisture can limit O2 diffusion from atmosphere and to the 

soil, causing a reduction in CH4 oxidation (Wang et al., 2012). 

In both years it was clear that an increase in total applied N decreased CH4 oxidation, 

though this was significant only in 2011 (Table 4). It has been shown that the 

application of N fertiliser inhibits CH4 oxidation in soil (Kravchenko et al., 2002; Jassal 

et al., 2011), and several studies noted that non amended soils act as a CH4 sink (Flessa 

and Beese, 2000).  

In 2012 a positive correlation between soil temperature, average air temperature and 

daily CH4 flux was found. However, in 2012 the correlation was negative (Table 6). 

This unexpected difference in the sign of the correlation among years can be explained 

by two counteracting processes which occur simultaneously: methane production and 

methane oxidation. Dunfield et al. (1993) reported that CH4 oxidation and production 

fluxes show a significant dependence on temperature in the range of 20 to 35°C whith 

no obvious response at lower temperatures (0–15°C). In the present study, the measured 

average daily soil temperature ranged from 19.5 to 30.1°C and 7.8 to 28.8°C during 

2011 and 2012 respectively (Fig. 1a). While, in 2011 the average air temperature during 

the sampling period was 22.1°C (ranging from 14.8 to 28.1°C) and in 2012 was 20.1°C 

(ranging from 8.4 to 29.3°C) (Fig. 1a). 

4.5. Global warming potential (GWP) and greenhouse gas intensity (GHGI) 

Discovering the main sources of net GWP in specific cropping systems is very useful 

for mitigating GHG emissions in the future. In 2011, the negative CH4 emission (Table 

5) resulted in negative GWP values. In 2012 all the treatments had a positive GWP 

ranging from 1141.10 to 1579.48 kg CO2 ha
-1

. A negative GWP indicates that the soil 

acted as a net sink for GWP, which is similar to soil C sequestration. In contrast, a 

positive net GWP value indicates that the soil acted as a net source for GHG. 

By definition, the GHGI of each treatment depends on the net GWP and the grain yield. 

The GHGI ranged from -0.24 to 0.11 kg CO2-eq kg
-1

 grain yield (Table 6). In 2012, the 

GHGI was higher for the -R treatments than for the +R (Table 5). In 2011, the GHGI 

was negative for all the treatments except for N300 (-R) (Table 5). A negative GHGI (as 

the consequence of the negative GWP) indicates an equilibrium among yield, carbon 

sequestration into the soil and GHG emissions (Mosier et al., 2005; IPCC, 2013). 
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In both years, the grain yield did not increase with increasing N fertiliser doses (Table 

5). This was likely due to the high application of N to soil as well as to the high initial 

mineral N content (200 g N kg
-1

 on average) (Biau et al., 2013). Numerous studies have 

also shown that above a certain N application dose there is no yield response, but that 

the residual nitrate increases sharply (e.g. Porter et al., 1996, Bhogal et al., 2000). 

Overall, high doses of N fertiliser are not recommended here for maize production. 

Alternating maize with another N demanding crop without fertiliser application until the 

soil mineral N content becomes normal could be a strategy to reduce the GWP of the 

system. 

In the present study denitrification must have been less important than nitrification for 

N2O emission. This indicates that an efficient irrigation was applied, preventing 

favorable conditions for denitrification. Increasing soil WFPS would most probably 

determine high emissions by denitrification.  

Efforts to mitigate greenhouse gases emission in this system should, therefore, be 

focused on: (1) keeping an efficient irrigation with relatively low WFPS and, (2) 

decreasing the soil mineral N content of the soil. 

5. Conclusions 

The present study showed that nitrification was the main process of N2O production in 

this highly intensive cropping system. Denitrification was probably limited by low soil 

moisture and lack of a readily available C source. The losses of N2O (calculated as 

emission factor) ranged from -0.11 to 0.36% of the applied N, lower than the IPCC 

(2007) reference. Although, the N2O emission was low, creating favorable conditions 

for denitrification could determine high emissions. 

Crop stover management produced contradictory effects on N2O emission 

(mineralization and immobilization of mineral N in soil) due to the C/N ratio of stovers 

incorporated. Stover incorporation increased CO2 emission. The high grain yield and the 

fact that all the treatments except N 300 (-R) acted as net CH4 sink in 2011 explain the 

low or negligible GWP and GHGI obtained for the fertilised treatments. Considering the 

“Climate Smart Agriculture” objective of maintaining a high yield in future together 

with mitigating of greenhouse gases emission, the management of the studied high 
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nitrate-N content system should be focused on: (1) keeping an efficient irrigation with 

relatively low WFPS and, (2) decreasing the soil mineral N content of the soil. 
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Table 1 Soil mineral N (mg kg
-1

) before sowing and fertilising (Nini), residual nitrogen after harvest (Nresi) (depth 0-30 cm), incorporated 

stover (Mg ha
-1

) and stover N content per treatment 

Treatments 

mg N kg
-1

 Incorporated stover  Stover N content  

2010 2011 2012 Mg stover ha
-1

 g N kg
-1

 stover 

N ini N resi N ini N resi N ini N resi 2010 2011 2010 2011 

N0 (+R) 
 

63.0 127.0 58.0 86.0 47.0 29.4 27.6 11.8 9 

N200 (+R) 
 

226.0 228.0 273.0 159.0 237.0 26.2 41.7 12.8 9.9 

N300 (+R) 
 

225.0 334.0 375.0 254.0 269.0 30.7 41.3 12.5 9.7 

 
98.1 171.3 229.6 235.3 166.3 184.3 28.7 36.8 12.3 9.5 

N0 (-R) 
 

117.0 138 116 151.0 93.0 - - - - 

N200 (-R) 
 

199.0 314 230 185.0 250.0 - - - - 

N300 (-R) 
 

269.0 354 328 220.0 175.0 - - - - 

  
195.0 268.6 224.6 185.3 172.6 - - - - 

+R: stover incorporation; -R: stover removal. Treatments: N0(+R): no N applied and stover incorporation; N200(+R): 200 kg N ha-1 applied (ammonium nitrate) and stover incorporation; N300(+R): 300 kg N 
ha-1 applied (ammonium nitrate) and stover incorporation; N0(-R): no N applied and stover removal; N200(-R): 200 kg N ha-1 applied (ammonium nitrate) and stover removal; N300(-R): 300 kg N ha-1 applied 

(ammonium nitrate) and stover removal. 

 
 

Table 2 Fertilisation applied to each treatment 

Treatment 

First sidedress 

fertilisation (AN 33.5% N) 

Second sidedress 

fertilisation (AN 33.5% N) 

kg N ha
-1

 kg N ha
-1

 

N0 (-R) 0 0 

N200 (-R) 100 100 

N300 (-R) 150 150 

N0 (+R) 0 0 

N200 (+R) 100 100 

N300 (+R) 150 150 
+R: stover incorporation; -R: stover removal. Treatments: N0(+R): no N applied and stover incorporation; N200(+R): 200 kg N ha-1 applied (ammonium nitrate ) and stover incorporation; N300(+R): 300 kg N 

ha-1 applied (ammonium nitrate) and stover incorporation; N0(-R): no N applied and stover removal; N200(-R): 200 kg N ha-1 applied (ammonium nitrate) and stover removal; N300(-R): 300 kg N ha-1 applied 
(ammonium nitrate (AN) 33.5% N) and stover removal. 



134 
 

Table 3 Timing of field labours and gas sampling per year and Site 

Year 
Stover incorporation/ 

removal) (dd/mm/yy) 

Sowing 

(dd/mm/yy) 

Start of 

sampling 

(dd/mm/yy) 

First  

side dress 

fertilisation 

(dd/mm/yy) 

Second side 

dress 

fertilisation 

(dd/mm/yy) 

End of 

sampling 

(dd/mm/yy) 

Harvest 

(dd/mm/yy) 

Duration of the 

sampling 

period 

2011 19/11/10 06/04/11 16/05/11 20/05/11 22/06/11 12/09/11 29/09/11 176 

2012 24/11/11 03/04/12 27/04/12 17/05/12 20/06/12 03/10/12 02/10/12 182 

 

 

Table 4 Cumulative emission of N2O-N, CO2 and CH4 during the maize crop seasons of 2011 and 2012 
Cumulative emissions (kg ha

-1
) 

N2O-N CO2 CH4 

Crop residue 2011 2012 2011 2012 2011 2012 

-R 0.99b 2.14a 1590.78b 4811.18 b -97.12a 32.03a 

+R 1.56a 1.91a 2862.51a 5518.12 a -109.62a 28.61a 

Fertiliser 
      

N 0 1.22a 1.77a 2539.08a 4942.31a -141.47b 34.51a 

N 200 1.27a 1.98a 2406.45a 5048.17a -88.15ab 31.46a 

N 300 1.32a 2.24a 1734.40a 5503.48a -80.49a 24.98a 

Residue (R) * n.s. * * n.s. n.s. 

Fertiliser (F) n.s. n.s. n.s. n.s. * n.s. 

R x F n.s. n.s. n.s. n.s. n.s. n.s. 

Year * * * 

Within columns, means followed by the same letter are not significantly different according to Tuckey’s test (p=0.05); * Significant at the 0.05 probability level; ns: 

not significant. 



135 
 

Table 5 Cumulative N2O-N, CO2 and CH4 emissions, emission factor (EF), global warming potential (GWP), maize yield and greenhouse 

gas intensity (GHGI) per treatment and year 
a:
 data published in Biau et al. (2013) 

 

 

Table 6. Spearman rank correlation coefficients between soil temperature, main air temperature with N2O-N, CO2 and CH4 cumulative 

emissions per year. Significant correlations are denoted by an asterisk (p<0.05) 

 
N2O CO2 CH4 

Variables 2011 2012 2011 2012 2011 2012 

soil T 0.12* -0.12* 0.45* 0.27* -0.26* 0.28* 

mean air T 0.18* -0.16* 0.13* 0.37* -0.13* 0.33* 

WFPS 0.14* 0.11* 0.03 0.22 0.01 0.02 
WFPS: water filled pore space; Eh: redox potencial 

 

 

 

 

 

 

 

 

Treatments 

Cumulative 

N2O-N 

(kg ha
-1

) 

Cumulative 

CO2 

(kg ha
-1

) 

Cumulative 

CH4 

(kg ha
-1

) 

EF 

(%) 

GWP 

(kg CO2-eq ha
-1

) 

Yield
a
 

(kg ha
-1

) 

GHGI 

(kg CO2-eq 

kg
-1

 yield) 

 
2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 

N0 (-R) 1.05a 1.70a 1465.12a 4368.55a -144.79b 32.04a 
  

-3306.85b 1292.30a 18300 16700 -0.19b 0.08ab 

N200 (-R) 1.10a 2.32a 1422.97a 4776.38a -149.93b 36.36a 0.03 0.31 -3420.45b 1579.48a 18800 14100 -0.24b 0.11a 

N300 (-R) 0.83a 2.41a 1884.25a 5288.62a 3.34a 27.70a -0.11 0.36 330.84a 1388.99a 18800 14100 0.02a 0.09ab 

N0 (+R) 1.41a 1.85a 3613.04a 5516.07a -138.16b 36.96a 
  

-3033.82b 1458.65a 13900 16606 -0.18b 0.08ab 

N200 (+R) 1.45a 1.65a 3389.93a 5319.96a -26.37a 26.57a 0.02 -0.10 -227.15ab 1141.10a 18600 16400 -0.01ab 0.06b 

N300 (+R) 1.83a 2.08a 1584.54b 5718.34a -42.01a 22.28a 0.21 0.12 -504.91ab 1158.12a 18600 17100 -0.03ab 0.06b 
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Fig. 1. Evolution of air and soil temperatures (a), and of precipitation (b) during the maize cropping seasons of 2011 and 2012, as well as of 

the soil water filled pore space (WFPS, %) in 2011 (c) and in 2012 (d)  
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Fig. 2. Measured flux of N2O-N with crop residue incorporation during the sampling period of 2011 (a), with crop residue removed during 

the sampling period of 2011 (b), with crop residue incorporation during the sampling period of 2012 (c) and, with crop residue removed 

during the sampling period of 2012 (d) 
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Fig. 3. Measured flux of CO2 with crop residue incorporation during the sampling period of 2011 (a), with crop residue removed during the 

sampling period of 2011 (b), with crop residue incorporation during the sampling period of 2012 (c), and with crop residue removed during 

the sampling period of 2012 (d)
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Fig. 4. Measured flux of CH4 with crop residue incorporation during the sampling period of 2011 (a), with crop residue removed during the 

sampling period of 2011 (b), with crop residue incorporation during the sampling period of 2012 (c), and with crop residue removed during the 

sampling period of 2012 (d)
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Chapter 8. General discussion 

Agriculture is responsible for a large share of the emitted greenhouse gases (GHG). 

Agricultural soils in semiarid Mediterranean areas are characterized by low organic 

matter contents and low fertility. In the last few decades the doses of N fertiliser 

application have tremendously increased because the application of mineral fertilisers is 

relatively cheap and it is an easy and fast way to increase crop yields.  

However, this management practice induces drastic changes in the soil environment 

which are associated with the availability of nutrients for plants but also for soil 

microorganisms. However, there exists a lack of knowledge about how the different 

types of nitrogen fertiliser (mineral and organic), different irrigation strategies and crop 

residues management affect GHG emissions (N2O, CO2 and CH4). Emission factors 

(EF) from more northern countries are used to estimate the agriculture-based emission 

of nitrogenous gases of environmental concern from Mediterranean conditions. There 

was no alternative if an estimation of N2O emissions had to be made, but the use of EF 

from other countries is questionable because the soil characteristics, the weather 

conditions and the management practices in the area under study differ notably from 

those at more northern latitudes. 

The aim to propose effective mitigation strategies for GHGs motivated the performance 

of a series of experiments on three important and agronomically different crops (rice, 

maize and olive trees) of the Ebro Valley, with the objectives of gathering data on these 

emissions and of gaining insight on the factors and processes influencing them while 

keeping yield as profitable as possible. 

8.1. Fertiliser effects on greenhouse gases emission 

Mineral and organic fertilisers are well-known drivers of N2O emissions which 

determine the relative importance of the different soil processes involved in these 

emissions. In this thesis, the application of different doses of mineral N (Chapters 5 and 

6) had no significant effect on N2O and N2O+N2 emissions, although, high N2O and 

N2O+N2 emissions were obtained by increasing the dose of mineral N to the maize and 

olive tree crops (Chapters 5 and 6). This result is in line with those of Bouwman (1996) 

and Halvorson et al. (2008).  
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Urea application induced the highest N2O+N2 emission (Chapter 4). In both studied 

years, the N2O+N2 emission induced by urea application was in the same range as that 

obtained from chicken manure (CM) application to flooded rice.Urea applied to rice 

may have indirectly and locally affected soil reaction (Serrano-Silva et al., 2011), 

facilitating the onset of denitrification (Sampanpanish, 2012). Pathak et al. (2002) also 

observed high peaks of N2O after urea application. When applying CM (also to rice) 

containing a high amount of organic-N the processes taking place were mineralization 

in the first place, followed by nitrification and most probably denitrification (due to 

waterlogged conditions) though not complete (not to N2); all these processes were 

slower than when applying mineral fertiliser. Not always an increased C availability 

generates higher N2O+N2 fluxes, as shown by others in studies where organic versus 

mineral fertilisation have been compared.  

Also in Chapter 4 it is shown that no differences were found between ammonium 

sulphate or pig slurry application at the same dose on the average N2O and N2O+N2 

daily fluxes, when applied to a paddy soil. This result was due to the fact that pig slurry 

displays a similar behaviour to that of mineral fertilisers (ammonium sulphate in this 

case). It is known that pig slurry tends to show a similar behaviour to mineral fertilisers 

due to its low organic-C content and high NH4
+
 (Sánchez-Martín et al., 2010), which 

can be rapidly nitrified in well aerated soils. Some studies have suggested, however, 

that liquid manure can activate the denitrifying soil microbial community due to the 

readily oxidizable C and sufficient mineralizable N they provide (Johnson et al., 2007).   

Chicken manure application tended to decrease N2O and N2O+N2 emissions, while pig 

slurry tended to increase them, though the differences were not significant (Chapter 4). 

It is documented that N2O emissions are closely associated with the C/N ratio of the 

incorporated organic materials (Ma et al., 2010) in the following way: high C/N 

materials (e.g. chicken manure) often decrease N2O emission, while N2O emission is 

generally facilitated by low C/N ratio organic materials (e.g. pig slurry) (Zou et al., 

2005, Ma et al., 2009). 

Generally, incorporation of N into the soil or fertigation minimizes N emissions 

(Chapter 6), while application of N-fertiliser into floodwater (Chapter 4) can 

significantly increase N losses as Linquist et al. (2012) reported too. This can be clearly 

seen in this thesis when comparing the emission from the olive tree fertigated treatment 



169 
 

with the paddy soil. The olive tree orchard was fertilised with a N-32 solution (16% 

urea, 8% ammonium, and 8% nitrate) in the first year and a N-20 solution (10% 

ammonium and 10% nitrate) in the second year (2012) at a dose of 50 kg N ha
-1

, and the 

N2O+N2 losses ranged from 0.57 to 1.80% of the applied N (Chapter 6). Applying the 

same dose of N as ammonium sulphate-topdressing to rice lead to much higher N2O+N2 

emissions ranging from 47.44 to 79.44% of the applied N (Chapter 4).  

Also, in Chapter 5 and 8 a good indication of the extent of the denitrification processes 

in the soil is provided by the N2O-N/(N2+N2)-N ratio. A decrease of this ratio implies a 

decrease in N2O and/or an increase in N2 emissions. In more reducing conditions (less 

O2), nitrous oxide reductase could act more effectively in the use of N2O as an electron 

acceptor, completing the process of denitrification (Wever et al., 2002). 

Given that the soil C and N cycles are closely related, fertiliser application had a 

significant role on the emission of other GHGs such as CO2 and CH4. In Chapters 5 and 

6, contradictory results were obtained during field studies with maize and olive trees 

when applying different doses of mineral N fertiliser on CO2 emission. Fogg (1988), 

DeForest et al. (2004), and Burton et al. (2004) suggested a decrease in extracellular 

enzyme activity when the dose of N increases causing a CO2 emission decrease. 

Conversely, it is known that microbial activity is often stimulated by the application of 

N fertiliser (Mendoza et al., 2006) and therefore CO2 emission too. Moreover, N 

fertilisation stimulated plant growth and also the root respiration rate.  

The type of N fertiliser used (organic; i.e. chicken manure (CM)) had a significant effect 

on CO2 emission. The highest CO2 emission was obtained always from the treatments 

with chicken manure (Chapter 4). The cumulative CO2 emission increased with the dose 

of applied organic-C. In 2012, the high dose (CM-170) tripled the emissions from the 

control. On the contrary, when fertilising with ammonium sulphate or pig slurry no 

difference on CO2 emission was observed (Chapter 4). Research on the dose of organic 

fertiliser to be applied to specific soils is lacking. Further work is needed to quantify the 

effect of long term applications of mineral and organic fertilisers on CO2 emissions, 

especially in rice fields. 

Mineral fertilisers as urea and ammonium sulphate (Chapter 4), N-32 solution (16% 

urea, 8% ammonium, and 8% nitrate) (Chapter 5) and ammonium nitrate (Chapter 6) 

tended to increase CH4 emission (decreased its oxidation) and this seemed to be affected 
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by the dose in the case of urea and ammonium nitrate. The partial inhibition of CH4 

uptake by well-drained soils in response to N application may be explained by two 

mechanisms: competitive inhibition of CH4 monooxigenase (MMO) (Dunfield and 

Knowles, 1995) and toxic inhibition by hydroxylamine and nitrite produced via NH4
+
 

oxidation (Schnell and King, 1994). The application of NH4
+
 to the soil has a higher 

inhibition effect than NO3
-
 on CH4 oxidation (Steudler et al., 1989). 

In Chapter 4, the highest dose of CM reduced CH4 emissions. The reason for this is 

unclear; it may be due to the formation of phytotoxic substances in the soil at high 

organic-C contents (Schütz et al., 1989, Kludze and DeLaune, 1995) which also inhibit 

plant development, or to the appearance of a saturation effect for the production and 

release of CH4. So increments in fertiliser doses did not further increase CH4 emissions. 

Probably after applying CM, the soil NH4
+
 concentration was higher for the CM-170-11 

and CM-170-12 treatments than for the CM-90-11 and CM-90-12 ones, which resulted 

in the stimulation of metanotrophic activity and CH4 oxidation as Bodelier and 

Laanbroek (2004) and Noll et al. (2008) also described. 

The results of this thesis about how N fertilisers affect CH4 emission are contradictory 

(Chapters 5 and 6), even within the same ecosystem. Maybe the types of fertiliser 

(mineral and organic) applied have produced changes on the CH4 oxidizing bacterial 

community (this has not been studied in this thesis) (Bodelier and Laanbroek, 2004). 

Schimel and Gulledge (1998) suggested that many of these discrepancies regarding 

fertiliser effects on CH4 emission may be explained assuming that not all community 

members are affected in the same way, making CH4 oxidizing bacteria diversity an 

explanatory variable in methane dynamics. The nature of the effect (i.e., stimulation or 

inhibition) obviously depends on the community composition and hence on the 

biodiversity of the CH4 oxidizing bacteria present (Bodelier and Laanbroek, 2004). This 

may be what happened in this study. With respect to the effects of N fertilisers on CH4 

consumption, also no generalizations can be made (Bodelier and Laanbroek, 2004). 

Nitrogenous fertilisation has different effects on CH4 oxidation (inhibition and 

stimulation, both long-term and short-term) of which the mechanisms are far from clear 

(Bodelier and Steenbergh, 2014). 

As in the case of CO2 emissions, when ammonium sulphate and pig slurry were applied 

no difference was observed between fertiliser types in CH4 emission (Chapter 4). 
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Therefore, in the Mediterranean studied crops, the impact of ammonium sulphate and 

pig slurry application on GHG emissions were minimal. In this context the question is: 

should ammonium sulphate and pig slurry be recommended in Mediterranean 

agroecosystems? Although this thesis results point in this direction, several confounding 

variables must be analysed before general recommendations can be made. 

Environmental controls, such as rainfall and temperature, and management factors such 

as irrigation, tillage and N fertiliser placement play key roles in determining the 

proportion of N2O emitted due to nitrification and denitrification, and therefore best 

fertiliser practices depend on these variables too. 

8. 2. Effect of crop stover management on greenhouse gases emission 

The incorporation of crop residues as an amendment has significant roles in improving 

physical and chemical soil properties that are essential in protecting soil and a 

sustainable alternative to improve the organic matter content of semiarid Mediterranean 

soils. Generally, it is accepted that incorporating larger amounts of crop residues in the 

soil will increase mineralization, thus promoting CO2 and N2O production. 

However, as demonstrated in Chapter 6, this management practice may increase GHG 

emissions. In the first year, the incorporation of crop residues increased N2O emissions, 

while, in the second year, N2O emissions were reduced in the same plots. This different 

result has been attributed to net mineralization in the first year and to net 

immobilization in the second year, due to the higher amount of stover and to the higher 

C/N ratio of the stover incorporated in the second year. In both years, the CO2 emissions 

were affected by stover incorporation leading to an increase in CO2 emission since 

maize stover served as a C substrate for soil microorganisms. 

8.3. Nitrification inhibitor (3,4-dimethylpyrazol phosphate (DMPP)) effect 

on greenhouse gases emission 

The 3,4-dimethylpyrazol phosphate (DMPP) nitrification inhibitor was developed as a 

means to reduce N fertiliser leach ate and increasing N use efficiency and yields in 

some cropping systems. Indeed, in Chapter 6 yield increase has been confirmed in the 

studied olive tree crop. An interesting finding of this thesis was that DMPP can also be 

used to reduce N2O+N2, CO2 and CH4 emissions. In the first year, applying DMPP 

reduced the cumulative N2O and N2O+N2 emissions by 5% and 6%, respectively, 

compared with the same treatment without DMPP. In the second year, the soil acted as a 
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net sink for N2O for the N50+DMPP treatment and the N2O+N2 emissions were 35% 

lower for the N50+DMPP treatment than for the N50 treatment. This was explained by 

the nitrification inhibition by DMPP which lead to a reduction in the products and by-

products of nitrification and denitrification, including N2O. 

Applying DMPP mitigated CO2 emissions. This might have been due to the nitrification 

inhibitor affecting carbon mineralization. Methane oxidation was significantly larger 

when DMPP was applied. Unfortunately this result is not conclusive, as there are few 

results in the literature on the effect of DMPP on CH4 emissions and these are 

contradictory.  

8.4. Irrigation effects on greenhouse gases emission 

8.4.1. Irrigation effects or water filled pore space effects on greenhouse gases emission from 

and olive tree orchard and a maize field  

Sustainability requires the preservation of water in all countries, especially in arid and 

semi-arid areas. Good agricultural practices have emerged in these areas from the need 

to provide exactly the right amount of water for each crop, avoiding, as much as 

possible, over-watering, which is also associated with environmental problems such as 

leaching. 

Drip irrigation is designed to increase water-use efficiency, reduce salinization, to 

improve nutrient efficiency and maintain, or even increase, crop yields (Tilman et al., 

2002). Drip irrigation has also been proposed as a way to reduce N2O emissions. 

To date, there is a lack of data on GHG emissions from surface drip irrigation (DI) and 

from deficit irrigation systems, such as subsurface drip irrigation (SDI) from fertigated 

high tree density olive crops under Mediterranean climatic conditions. Subsurface drip 

irrigation could potentially mitigate GHG emissions (compared to DI) by delivering 

water directly to tree roots. 

Water is one of the key factors controlling biologically produced trace gas emissions. 

According to the model proposed by Davison et al. (1991), denitrification is the 

dominant process when the soil is at WFPS >65%, while for WFPS <65% it is 

nitrification. The results of Chapter 4, 6 and 7 of this thesis do confirm this. 
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In Chapter 6 (in the olive orchard) it was shown that SDI markedly reduced N2O and 

N2O+N2 emissions compared with DI. The reduced water supply to the SDI treatment 

affected water filled pore space (WFPS), which was lower than for DI. Denitrification 

was the main source of N2O, when the WFPS >60% most of the time (high moisture). 

The largest N2O production by denitrification occurred at between 60 to 80% WFPS, 

which was considered the threshold for denitrification in those conditions. It has also 

been clearly demonstrated that SDI reduced N2O (by 69.69% in 2011 and by 94.47% in 

2012) and N2O+N2 (by 55.74% in 2011 and by 17.70% in 2012) emission compared 

with DI for the type and dose of N fertiliser applied at this site. Adequate management 

of drip-fertigation, contributing to the attainment of water and food security (Tilman et 

al., 2002), may provide an opportunity for climate change mitigation. 

In Chapter 5 (maize crop) it was shown that the highest N2O emission occurred also 

when soil WFPS was >55%. In this case, it can suggest that nitrification had a 

determinant role on these emissions.  

In Chapter 3 (on rice), under wet conditions (near-saturation) produced by continuous 

irrigation (CI) or intermittent irrigation (II) (WFPS between 73 and 93%) the main N2O 

emission was produced by denitrification  

In Chapter 5 and 6 the irrigation systems (WFPS) had not a significant effect on CO2 

emissions, nor on CH4 emission. 

The predicted effect of climate change in the semiarid and arid areas is influenced by its 

erratic rainfall. This effect is predicted for Mediterranean areas, especially for Spain, by 

the most of the climate simulation models. 

The need to save water in arid and semiarid regions has led to the development of new 

irrigation systems for agricultural crops. The choice of the best irrigation system should 

take into account the effect of each irrigation practice on the GHG emissions. 

8.4.2. Irrigation effects on greenhouse gases emission from a paddy soil 

Methane and N2O emissions from rice fields are very sensitive to water management 

and are often affected in opposite ways. The amount of water present in the soil pores 

dictates the emission mechanism of the gases. Water management is one of the most 

important factors that affect CH4, CO2, and N2O emission from paddy fields. The 
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influence of water management on CH4 and N2O emission from paddy fields under 

continuous flooding and intermittent irrigation has been well documented in the climatic 

conditions of China, Japan, and India but not in the Mediterranean climate, especially in 

the Ebro Delta (Spain). Wet and dry seasons also have an important role because very 

intense pulses occur with the first rainfall following the dry season. Countries with this 

kind of climate have a different pattern of GHG emission to other climates. Climatic 

conditions, therefore, play an important role in gas emissions. Indeed, in Chapter 3 the 

effect of continuous irrigation (CI) and intermittent irrigation (II) on GHG during a rice 

crop season was confirmed.  

In chapter 3, the II led to higher CO2 emissions than CI. This indicated that draining and 

flooding cycles play vital roles in controlling CO2 emissions in paddy soils. Lower CH4 

emissions due to water drainage (II) may increase CO2 and N2O+N2 emission. 

An interesting finding of this thesis was that the soil acted as a sink of CH4 for both 

types of irrigation probably due to the use of ammonium sulphate fertiliser, soil salinity 

(4.65 dS m
-1

) and to a high sulphate (SO4
2-

) content in irrigation water (about 150 ppm 

SO4
2-

, Casanova 1998). 

The irrigation water applied during the rice growing season was 2330 mm for II, 59.2% 

less than to CI. However, the application of II decreased rice yield by 34.3% compared 

to CI. 

Continuous irrigation (CI) can significantly mitigate the GWP caused by CH4 and N2O 

from paddy fields while ensuring the highest rice yield. 

8.5. Best management practices for nitrogen fertilisation 

Best management practices should be based in maximizing crop productivity and 

minimizing N2O emissions. In this sense, yield-scaled N2O emissions are an effective 

tool in order to propose good management practices associated with N fertilisation. The 

following best management practices stem from this thesis: 

- Use of nitrification inhibitors. In Chapter 7, it was identified that DMPP had a high 

potential to mitigate GHG emission. Its use can therefore be recommended when N 

fertiliser is applied for irrigated systems when irrigation is applied efficiently according 

to crop requirements. 
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- Use of drip-fertigation. This technique to supply irrigation water and fertilisers can be 

recommended as shown in Chapter 7. Although, environmental information regarding 

this technique is still scarce.  

- Residue management. Application of crop residues is a cost-effective and 

sustainable alternative to improve the organic matter content of semiarid Mediterranean 

soils. However, as demonstrated in Chapter 6, these management practices may increase 

trace gas emissions from already N-rich soils. Based on mineralization rates, 

incorporation of residues should be made in such a way that the release of nutrients 

from the residue occur after N fertiliser applications. 

1. Although, it has been seen that in our soil it is preferable to apply organic fertiliser 

with low C/N ratio (e.g. pig slurry) rather than organic fertiliser with high C/N ratio 

(e.g. chicken manure) or minerals fertiliser, if the latter are used properly, they can be 

equally beneficial. According to the results of Chapter 5 and 6 the N application dose 

was another very important factor. 

In this way, Chapter 7 has shown that drip irrigation reduced water use, as well as 

decreased gas emissions. For these reasons, the drip irrigation system is especially 

recommended. 

2. One of the strategies to mitigate emissions is the use of nitrification inhibitors. The 

use of a nitrification inhibitor e.g. DMPP could be very useful for irrigated crops and 

could also become a very effective strategy for reducing emissions in dryland crops 

provided the application timing is carefully controlled. 
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Chapter 9. General conclusions 
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Chapter 9. General conclusions 

According to the discussion of the results, one can come to the following conclusions: 

1. Intermittent irrigation (II) significantly increased N2O+N2 and CO2 emissions 

compared to continuous irrigation (CI) from paddy soils. Lower CH4 emissions due to 

water drainage (II) increase CO2 and N2O+N2 emission. The soil acted as a CH4 sink for 

both types of irrigation probably due to soil salinity and to high sulphate content in 

irrigation water. Continuous irrigation can significantly mitigate the integrative 

greenhouse effect caused by CH4 and N2O from paddy soil while ensuring the highest 

rice yield. 

2. The application of chicken manure (CM; high C/N ratio) to the rice paddy increased 

N2O, N2O+N2, CO2 and CH4 emission during the rice crop season and also during the 

seedling period. Urea increased N2O+N2 emissions. The rice postharvest period was a 

significant source of N2O+N2, it acted as an important sink of CH4 and was not an 

important source of CO2. 

3. Similar yields to those from mineral fertiliser can be obtained when background 

fertilisation is done with animal manure (CM or pig slurry –PS-) applied at adjusted N 

rates. The application of PS (low C/N ratio) at agronomic doses allowed high yields, the 

control of the global warming potential (GWP), and a reduction in greenhouse gas 

intensity (GHGI) when compared to AS. The introduction of organic fertilisers in paddy 

fields is a promising option. 

4. Stover incorporation to maize increased CO2 and N2O (only one year) emissions. 

Different doses of ammonium nitrate (AN) didn’t affect greenhouse gases (GHG) 

emission, probably because the soil mineral N content was already high. The soil acted 

as a net CH4 sink (in 2011) and AN decreased CH4 oxidation. Considering the global 

warming potential (GWP) and yield, the control treatment regardless of stover 

incorporation or removal was the best option. The N2O emission was low thanks to the 

low water filled pore space (WFPS) contents. Therefore, the efforts to mitigate 

greenhouse gases emission in this system should be focused on: (1) keeping an efficient 

irrigation with relatively low WFPS (as it is already done nowadays) and (2) decreasing 

the soil mineral N content of the soil. 
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5. On the olive tree orchard, the largest N2O production by denitrification occurred at 

between 60 and 80% WFPS, the threshold for denitrification. The orchard acted as a net 

CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the 

cumulative GHG emission was significantly reduced with respect to the control. 

Considering GWP, and oil production, applying DMPP with 50 kg N ha
-1

+surface drip 

irrigation was the best option. 

6. Selection of the correct irrigation system is extremely important from an 

environmental point of view. Surface drip-irrigation combined with split application of 

nitrogen fertiliser dissolved in the irrigation water (i.e. drip-fertigation) is considered an 

efficient strategy for water and nutrient application during crop production. The present 

study showed that the appropriate management of drip irrigation and fertigation may 

provide an opportunity to mitigate climate change in a Mediterranean olive orchard 

without yield penalties. 

7. Finally, consistently with the “Climate Smart Agriculture” FAO’s integrative 

approach, it can be concluded that on the studied intensive crops the proper 

management of irrigation and the application of N in form of pig slurry or mineral 

fertiliser (alone or together with the DMPP nitrification inhibitor, in certain conditions) 

at agronomic doses can be effective to control GHG emissions and increase crop 

productivity at farm scale in the semi-arid Mediterranean area. 
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Chapter 10.Further research 

Thanks to the results and conclusions of this thesis, new questions have been posed, 

pointing the way towards future challenges: 

1. The study undertaken in paddy soil made it clear how flooding and drainage affect 

the exchanges of N2O+N2, CO2 and CH4 from rice paddies in the short term. Future 

studies could investigate the long term effect of an intermittent drainage practice on the 

exchange of these gases from rice paddies. 

2. It would be interesting to quantify the effect of the C/N ratio of organic fertilisers and 

in particular of pig slurry and chicken manure on greenhouse gases emission. Is the C/N 

ratio the most important factor or the dose of organic fertiliser applied is more 

important? Research on the dose of organic fertiliser to be applied to specific soils from 

rice field in Mediterranean conditions is lacking. Moreover, further work is needed to 

quantify the effect of long term applications of mineral and organic fertilisers on GHG 

emissions. 

3. It has been studied how irrigation systems affect emissions. A proposal for the future 

is to evaluate surface drip irrigation and the subsurface drip irrigation (SDI) in 

combination with different types and doses of fertilisers that would not jeopardize either 

the environmental quality or the productivity of the studied area. Nevertheless, more 

years of data would be beneficial to strengthen the conclusion that SDI with fertigation 

is effective in reducing GHG emissions compared to DI. 

4. Given that use of the nitrification inhibitor (DMPP) represents an additional cost for 

farmers, understanding the best management practices to maximize their effectiveness is 

paramount to allow comparison with other cost-effective practices that increase crop 

productivity and nitrogen use efficiency. 

5. The residual effect of nitrification inhibitors should be evaluated in longer 

experiments (>2 years); studies are also needed to evaluate the effect of inhibitors on 

non-target microbiological processes; the physiological effect of these inhibitors on 

plants requires further study. Upcoming studies should clearly report information on 

other potential factors that can affect the inhibitor’s effectiveness such as soil 

temperature, organic matter content, cation exchange capacity and wind velocity. 
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6. Many operational factors with regard to drip-fertigation systems can be manipulated 

affecting the overall effect of these systems on GHG emissions. For subsurface systems, 

the depth and distance from the irrigation line with respect to the tree may be a key 

factor affecting both crop yields and emissions. Also, the distance between emitters as 

well as their nominal discharge may affect the wet bulb and thus the GHG fluxes. 

7. Further studies should be conducted for a mechanistic understanding of the potential 

effects of different management practices and identify exactly the main regulatory 

factors for GHGs emissions from soils with very high mineral N (NO3
-
-N) content. 

8. The incorporation of stover to soil did not have a clear effect on N2O emission during 

the maize crop season. Long-term field experiments are therefore needed to increase our 

understanding of the effect of stover incorporation on gaseous N losses. Taking into 

account the possible long-term soil carbon sequestration, which has both agricultural 

and climate change mitigation aspects, caution must be exercised establishing general 

recommendations for farmers based on the incorporation of maize residues. Integral life 

cycle analysis would be needed for a full assessment of whether or not is the 

incorporation of crop residues to soil beneficial. 
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