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‘‘How often have rage and pain made you cry? How often has 

exhaustion made you lose your memory, voice, and common 

sense? And how often in this state have you exclaimed, with a 

broad smile on your face, ‘The final stage! Two more hours! 

Go, onward, upward!’  

That pain only exists inside your head. Control it, destroy it, 

eliminate it, and keep on’  

- Kilian Jornet. The skyrunner manifesto. 
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Abstract 

Understanding how receptor-ligand interactions occur is a 

first step towards designing new drugs. The complete reconstruction 

of the binding process in a drug-receptor system provides all the 

physical-chemistry variables for rational design of inhibitors of a 

chosen target, an important step in drug discovery. Although very 

powerful, direct experimental observation of full binding processes 

is very hard to perform. In this thesis, by using high-throughput 

molecular dynamics in the distributed computing project 

GPUGRID.net and analysing the resulting data by Markov state 

models (MSM), we successfully estimated kinetics, 

thermodynamics and binding modes for different molecular 

systems. In the initial works, we focused on estimating the potency 

of inhibitor-protein complexes. In subsequent studies, we described 

more complex pictures of binding, taking into account the receptor 

dynamics or other binding molecules. The results are promising and 

establish the methodology as a very powerful tool in the first stages 

of the drug discovery pipeline. 

Resumen 

Comprender las interacciones entre proteína y ligando es el 

primer paso para diseñar nuevos medicamentos. Llegar a reconstruir 

completamente este proceso de unión proporciona todas las 

variables físico-químicas para una optimización racional, un paso 

muy importante en el descubrimiento de fármacos. Pese a que esto 

ofrece muchas ventajas, todavía es complicado observar estos 

procesos experimentalmente. En esta tesis, utilizando simulaciones 

moleculares de alto rendimiento (HTMD) mediante el proyecto 

distribuido GPUGRID.net y análisis por Markov state models 

(MSM), hemos obtenido datos cinéticos, termodinámicos y modos 

de unión para varios sistemas. En los primeros trabajos nos 

centramos en estimar la afinidad entre complejos inhibidor-proteína. 

En trabajos posteriores, logramos caracterizar completamente rutas 

de unión del ligando teniendo en cuenta los confórmeros de la 

proteína u otros ligandos presentes. Los resultados son 

prometedores y establecen la utilidad de HTMD en las primeras 

fases de descubrimiento de fármacos. 
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Preface 

There has been a fair amount of publications, awards, and 

advances in the field of molecular dynamics (MD) in the last five 

years. Starting from the improvement and design of special-purpose 

machinery, publications in high-impact factor journals and ending 

with the Nobel Prize in Chemistry won in 2013 by Martin Karplus, 

Michael Levitt and Arieh Warshel for developing the method. All of 

them, and this latter in particular, exemplify how pervasive MD has 

become in solving all kinds of chemical problems. 

Also five years ago was published the first quantitative 

reconstruction of a binding process for an enzyme–inhibitor 

system.
1
 The publication was based on a benchmark system, with a

small fragment binding to a rigid protein; however, it set the entire 

basis for an application to a broader scenario and became a 

hallmark study in the field. This thesis has focused with this 

particular matter, the application of this methodology to current 

problems in drug discovery.  

Concretely, we have proved the feasibility of HTMD at three 

different stages of the pipeline. First, in compound screening, by 

means of approximated methods. Second, in hit identification, 

performing an in-silico binding assay of a focused library of 42 

fragments. And finally, in lead optimization, by applying the 

method to current problems encountered in real drug discovery 

projects. Specifically, this last part was performed in conjunction 

with three big pharmaceutical companies, Janssen Pharmaceuticals, 

Boehringer Ingelheim and Pfizer, and turned out in three works that 

will be published in the next couple of months.  

Of course, this does not mean that we consider all the 

problems to have been solved, there are a lot of challenges to 

overcome: the forcefield and parameterization issues, discretization 

methods and the endless problem of sampling. In spite of this, after 

the experience of this thesis, we strongly believe that the methods 

and applications developed have the potential to becoming useful 

tools in drug discovery in the near future. 
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Chapter 1 

INTRODUCTION 

1.1 Protein-ligand interactions 

1.1.1 Theory and context 

Drug action begins with the interaction of a molecule against 

a receptor, triggering a series of events that ultimately promote a 

safe, pharmacological response that corrects a specific pathology. 

The molecular details of the recognition between the two partners 

are the ultimate responsible of the duration and magnitude of the 

drug effect. Designing and improving this recognition requires an 

understanding of the specific interactions and quantitative measures 

of their strength and duration. Therefore, the details of the response 

are fully determined by the thermodynamics, kinetics and receptor‟s 

modulation the drug promotes in the receptor upon the process. 

For the purpose of understanding the drug-receptor complex 

formation from a theoretical point of view, we will consider the 

binding process in a simplistic single-step model in which the 

ligand (L) reversibly binds to a unique pocket on its receptor (R), 

forming a complex (LR) (eq. 1). The rates at which this complex 

forms and dissolves are the so-called on (kon) and off-rates (koff): 

   
 

⇔     ( 1 ) 

     

  
                       ( 2 ) 

The speed at which the complex forms depends on the rate at 

which it is made from association of the reactants (kon[L][R]) and 

the rate at which the complex dissolves (-koff[LR]) (eq. 2). [L], [R] 

and [LR], which represent the molar concentrations of ligand, 

receptor and complex, respectively, do not change once the system 
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is in equilibrium. The equilibrium association constant (Keq) 

measures the extent to which the ligand is bound in the equilibrium 

(eq. 3): 

    
       

          
   ( 3 ) 

Binding affinities are more usually expressed in term of the 

equilibrium dissociation constant (KD), which also has the units of 

concentration: 

   
  

   
    ( 4 ) 

More intuitively, KD is the concentration at which 50% of the 

receptors are occupied at a particular site. The KD is directly related 

the concentration-independent standard Gibbs binding free energy 

(G
0
)
2
 :

           
 

  
      ( 5 ) 

Where R is the ideal gas constant and T is the temperature in 

Kelvin degrees. Fig. 1 presents the one-dimensional projection of 

reaction energy landscape along the reaction coordinate. As 

appreciated, the Gibbs free-energy ΔG only depends on the relative 

stability between free and bound states, initial and end points of the 

reaction coordinate regardless the pathway of binding. 
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Figure 1: Energy profile of a ligand (L) binding to its receptor (R) 

assuming a simple two-state model. The energy difference between unbound (L + 

R) and bound (LR) states is the binding affinity of the process (G
0
). The kinetics

is governed by the energy of the transition state (TS), namely, the association rate 

(kon) depends on the energy difference between unbound and the TS, (ΔGon) and 

the dissociation rate on the ΔGoff. The curve in red represents a reaction 

occurring with the same affinity, but at faster timescales, as would happen under 

the effect of a catalyst. 

When less than zero, G
0 
is an indicative of reaction‟s

spontaneity at conditions of constant temperature and pressure such 

as the case of biological systems. However, affinity does not 

determine the reaction‟s rate. Instead, the kinetics of binding 

depend on the interactions along the binding pathway, and shape the 

energy profile of the binding reaction. This way, stabilization or 

destabilization of the highest point in the energy barrier (the 

transition state, TS) would modify both on and off-rates in the same 

direction without changing the affinity of the complex. Still, there is 

a link between the kinetics and thermodynamics of the reaction in 

equilibrium: 

    
    

   
( 6 ) 

Of course, more realistic reactions do not follow a single-step 

model, but occur instead through more complex mechanisms of 
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binding. Fig. 2 summarizes the three most accepted mechanisms of 

interactions. The first one refers to the single-step model 

represented in Fig. 1, where free and bound receptor conformations 

are similar. In the second process, the so-called induced-fit,
3
 the 

ligand promotes changes in the receptor upon binding, shifting the 

conformation towards one energetically more favourable for the 

complex. The third mechanism corresponds to the conformational 

selection process,
4
 where the receptor presents certain plasticity in 

solution and the ligand binds each conformer to different extents. 

The least populated protein states could actually be those the ligand 

presents highest affinities, thus slowing down the formation of the 

complex. In addition, ligands and receptors are not isolated at 

physiological conditions, and both might be interacting with other 

molecules in the same environment.  

There has been debate for some years on which model 

represents better the ligand-receptor recognition.
5
 The reality is that 

the three mechanisms probably occur to some extent in all binding 

processes. Proteins often present many long-lived conformations in 

solution, to which the ligand exposes different degrees of affinity. 

The proportion of the different states after ligand binding ultimately 

depends on the relative affinity of the ligand against each of the 

conformers, the specific kinetics of each individual binding event 

and its ability to produce an induced-fit towards other states upon 

binding. In the same way, there is a crescent acceptation that this 

complex equilibrium network is not purely a two-body problem, 

because membrane, water molecules, ions, cofactors or other 

specific molecular entities may guide or hamper the binding 

events.
6
 Most of the work presented in this thesis has dealt with this 

particular issues, with the first works assuming small fast molecules 

binding in single-step processes to rigid receptors, and increasingly 

accounting for more realistic processes like protein plasticity, 

cofactor interactions and slower binders. 
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Figure 2: The three common mechanisms of inhibition and their respective 

dissociation rates: single-step or „lock and key‟, induced-fit and conformational 

selection mechanisms. The macroscopic off-rate is related to the microscopic rate 

constants of each of the steps. 
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1.1.2 The drug discovery pipeline 

Developing a new drug takes usually more than 12 years and 

more than $1 billion average costs.
7
 The pipeline shown in Fig. 3

presents the process of drug development following a target-based 

approach. There are two main stages involved in the process: the 

pre-clinical and clinical stages. The first one, in summary, involves 

finding active hit molecules, lead optimization and testing in 

animals. The clinical stage tests the developed compound in humans 

and evaluates its safety and efficacy.  

Figure 3: The drug discovery pipeline: duration and tasks of each phase. 

Despite many drugs enter the clinical phase every year; the 

attrition rate is very high. For instance, up to 95% of the anticancer 

drugs entering the clinical trials are not finally approved.
8
 Given the

costs and failures of the clinical stage it is clear that any novel 

technique that helps to improve the success rate is welcome in the 

pre-clinical stage. This thesis has focused on testing and 

establishing methodology for these initial phases. Before entering 

into the core of the work, next sections will lay the background on 

the theory, context and methodology. 
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1.2 Current experimental methods 

Binding thermodynamics influences the extent to which a 

ligand binds its receptor, but also its selectivity and drug-like 

properties. In a single high-throughput screening (HTS), many hits 

can be obtained presenting similar potencies. Maximizing this 

potency prior to the other preclinical phases, although necessary, is 

not the unique condition to produce a lead compound with the 

appropriate drug-like character, since many of this hits may present 

similar values. The first step of the drug discovery pipeline, not 

only focus on potency maximization, rather on a potency 

optimization. ΔG°, is composed of enthalpic (ΔH) and entropic 

(TΔS) contributions (eq. 5), the first related to the ligand-receptor 

interactions, and the second to the solvation/desolvation process and 

conformational disorder. 

             ( 7 ) 

Most often, the discovered compounds on the first screenings 

present low micromolar affinity, that is to say, values around -

8kcal/mol in ΔG
0
. Fragments are frequently found in the low-

millimolar range. Typically, the aim is designing a compound with 

sub-nanomolar affinity, that is, below -13kcal/mol. Thus, a hit 

molecule must be optimized at least 5kcal/mol during the lead 

optimization phase, and this process can occur through an infinite 

combinations of different enthalpic and entropic contributions. 

Hence, a simultaneous representation of the three state functions –

termed as thermodynamic signature- provides a useful visual 

representation of each of the variables. The thermodynamic 

signature is often measured by isothermal titration calorimetry.  

Isothermal titration calorimetry (ITC) is a quantitative 

technique that provides affinity constant, enthalpy and 

stoichiometry of a reaction. Thus, all thermodynamical parameters 

can be obtained in a single experiment by the use of formulas (5) 

and (7). It works by directly measuring the heat that is released or 

absorbed during the course of a reaction where the ligand is 

gradually titrated into a cell containing the receptor. The advantages 
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of this technique are its ability to provide all thermodynamic 

parameters using modest sample sizes and experiment times. 

While determining binding thermodynamics is crucial in the 

binding process characterization, it is only one side of the coin. The 

process has its dynamic perspective as well; having the ligand off-

rate in some cases more impact in the in-vivo activities that the 

thermodynamics. Thermodynamic measurements are very often 

performed in in-vitro settings, thus conforming what is termed as 

closed-system conditions. Ligand and receptor concentrations stay 

invariant through the course of the experiment and the equilibrium 

is ultimately reached in the long-term.
9

However, in the in-vivo scenario the ligand concentration is 

determined by the time between doses, the interaction with other 

targets or the extracellular diffusion. This setting is termed as an 

open system. Because the drug‟s concentration is in continuous 

variation, sometimes the equilibrium is not reached and 

thermodynamic variables might not be adequate descriptors of the 

in vivo efficacy. In 2006, Robert Copeland defined the term 

residence time as the period of time the ligand is bound to its 

receptor.
9,10

 This study showed how the residence time can

determine temporal selectivity for the target receptor despite other 

targets having more affinity, and following works successfully put 

this theory into practice.
11,12

Mathematically, the residence time is quantified as the 

reciprocal of the (koff): 

   
 

    
( 8 ) 

Characterizing the kinetic binding profile of a ligand of 

interest can be of utmost importance. First, it provides a more 

complete understanding of the ligand action. Second, the 

association and dissociation constants are linked to thermodynamics 

and offer new approaches to tune potency (Fig. 1). And last, 

optimization of a fast or slow binding and unbinding profile could 

be very advantageous depending on each specific case. Fast ligand 
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binding increases the opportunities to capture short-lived receptor 

conformations. And while fast unbinding might confer safety 

advantages in target-mediated toxicity systems, slow unbinding 

ligands lead to long-lasting effects that prolong the therapeutic 

efficacy.  

Increased focus on the kinetics of binding has been supported 

by an improvement of the related instrumentation, frequently 

divided in techniques using a label for fluorescence (radioisotopes 

of fluorescence), label-free techniques (biosensors) and enzymatic 

experiments.  

Radioligand binding is the preferred technique for G-protein 

coupled receptors (GPCRs).
13,14

 There are two main ways to

measure kinetics using radioligand binding: direct radiolabeling of 

the ligand of interest or indirectly by competition experiments.
15

 In

the direct method, the dissociation rates can be determined 

straightforwardly: the receptor is pre-incubated with a known 

concentration of the radioligand and the unbinding is measured in a 

washout phase by blocking the formation of new complexes. The 

binding decay can then be fitted by a non-linear regression analysis. 

The kon is computed by performing association experiments at 

different radioligand concentrations, or by performing a single 

experiment at a concentration when koff is known. Alternatively, the 

binding properties of a set of unlabelled drugs are computed by 

competition displacement by a radioligand of known affinity as was 

proposed by Motulsky and Mahan.
16

 More recently, dual-point

competition assays have also shown being a fast high-throughput 

method.
13

 Although the method permits direct measurement of

rates, radiolabeling is expensive, laborious, time consuming and 

generates radioactive waste.  An alternative to the use of 

radioligands are spectroscopic labels, the so-called fluorescence 

methods, like time resolved fluorescence resonance energy transfer 

(TR-FRET), fluorescence anisotropy and intrinsic fluorescence.
17,18

Label-free surface plasmon resonance (SPR) is a high 

sensitivity method which monitors refractive indexes changes when 

molecules absorb and desorb from a biosensor chip, dependent on 

the surface mass increase.
19

 The receptor is immobilized on the
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solid surface and the drug (analyte) diluted in solution under 

continuous flow while the association is monitored in real-time. The 

method is particularly suitable for globular proteins.
20,21

 The

method needs short development time, little material and is 

parallelizable. However, the immobilization of the receptor could 

affect the binding properties,
22

 it has relatively low throughput and

there are a limited range of rates which can be sensitively 

determined.
6

Enzymatic activity assays can also determine the binding 

kinetics from enzyme activity. This approach has successfully been 

used to measure binding kinetics for many enzymes.
23–27

 Jump

dilution assays provide a format to highlight the dissociation 

kinetics by pre-incubating with high ligand concentration and 

diluting a hundredfold afterwards.
28

On the side of structure and dynamic determination, there are 

the X-ray crystallography and nuclear magnetic resonance (NMR). 

X-ray crystallography allows determining the position of atoms 

within a crystal, by striking a crystal with a beam of X-rays that is 

spread into different directions when it contacts the crystalline 

atoms. From the angles and intensities of the diffracted beam, a 

three-dimensional picture of the density of electrons can be 

produced, and from them, mean atom positions, their chemical 

bonds, disorder and various other information.
29

 X-ray

crystallography can also be used to study dynamics, especially of 

slow timescales. Recently, an application of the Hadamard time-

resolved crystallographic (HATRX) method to the high-resolution 

measurement of processes occurring in the millisecond timescale 

was published.
30

Nuclear magnetic resonance (NMR) spectroscopy is based 

on the property of certain isotopes that absorb and desorb 

electromagnetic radiation. The most commonly used isotopes in 

macromolecules are H
1
, C

13
 or N

15
. NMR is used to determine the

structure and dynamics of many biological molecules. It is used to 

describe populations and exchange rates between protein 

conformers, and it can also be used to ligand binding. Methods for 

detecting protein-ligand interactions fall into two categories: those 
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that monitor NMR signals from the protein, such as chemical shifts 

perturbation studies, and those that monitor the ligand. In the first 

ones, the ligand alters the chemical environment around the binding 

site, which will perturb the chemical shift around it. The ligand-

based experiments (STD, waterLOGSY) do not require isotopic 

labeling but provide a yes-or-no binding answer, with no additional 

structural information. NMR one-dimensional ligand-based is also 

amenable to competition experiments, by performing competition 

assays with known inhibitors.
31

1.3 Molecular dynamics and analysis 

1.2.1 Sampling, forcefield and ligand parameterization 

Molecular dynamics (MD) is a technique that models the 

physical movement of the atoms in a system by following the 

Newton‟s law.  In MD, each atom in the system is treated as a point 

particle with a specific mass that moves following classical forces.
32

As a more specific example of this thesis, we will focus in a ligand-

protein simulation box. The initial coordinates of the receptor can 

be obtained by X-Ray or NMR experiments or either modelled 

through homology modelling.
33

 The ligand coordinates are usually

sketched with any of the many available software.
34,35

 The evolution

of the system occurs through iterations of short time steps (Δt), at 

each of which the Newton‟s law (  ⃗    ⃗ ) is evaluated and

velocities and coordinates updated. The sum of these forces is 

derived from a set of potentials termed as molecular forcefields, 

parameterized to capture the environment of all particles. An 

example of a class I forcefield equation is shown in eq. 9.
36

 Typical

simulation steps are usually less than 5fs,
37

 and therefore millions of

steps must be produced to reach biologically relevant timescales. 

Fig. 4 presents approximate timescales for some biological events 

involving proteins or drugs. While a simulation timestep is of the 

order of 10
-15 

s, the fastest protein motions and ligand binding

events occur in the microsecond timescales and protein folding and 

ligand unbinding usually take milliseconds.  
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Figure 4: Approximate timescales for biological half-lives and protein motions. 

Some of the biological processes inside the cell occur in timescales slower than 

the second (such as cellular turnover or drug serum half-lives). Molecular 

dynamics is currently able to sample processes in the low millisecond processes, 

although intelligent schemes and analysis methods can recover processes 

occurring in the second scale. 

The first MD simulations produced back in 1977 for the 

motions of trypsin in vacuum were just a few picoseconds long,
38

 

but modern simulations (or ensembles of them) are able to reach the 

low-millisecond timescales. Among the reasons of such a dramatic 

increase –surpassing Moore‟s Law
39

- are the algorithm 

improvements, parallelization of codes to run in high-performance 

supercomputers,
40

 designing of specialized hardware
41

 and 

development of intelligent MD protocols.
42

 

Along with an increase in sampling capabilities, the 

forcefields are also continuously being refined and updated. While 

sampling times are the responsible of the precision in the simulation 

outcomes, molecular mechanics forcefields are in charge of the 

accuracy to correctly reproduce the binding events. Most commonly 

used forcefields for ligand-receptor systems are AMBER,
43
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CHARMM
44

 and OPLS,
45

 the first two used throughout this thesis. 

Although their general mathematical description of the forcefield is 

quite similar, they differ in their parameters and the methods to 

obtain those. For a nice description comparing different forcefields 

for a set of protein systems refer to ref. 46. 

Eq. 9 represents a class I potential energy function used in the 

forcefields for biomolecular simulations. 

       

∑   

     

       
   

∑   

      

       
     

∑   

         

                 

∑(
   

   
  

   

  
   

   
 )   

    

    
 

( 9 ) 

The forces acting on each atom in the system arise from 

bonded and non-bonded terms. The first ones, also called internal 

terms, relate to bond, angle and dihedral parts, which are modelled 

using virtual springs and sinusoidal functions, respectively. The 

second term, arise from Van der Waals and Coulombic 

(electrostatic) interactions. Additionally, CHARMM has the Urey-

Bradley term, which parameterizes the 1,3 interactions, and another 

term for impropers. In the latest CHARMM versions, Eq. 9 also 

includes a CMAP term that corrects backbone terms.
47

  

In drug design the forcefields should accurately represent both 

proteins and ligands interacting with them. Both Amber and 
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CHARMM have general purpose forcefields which present a set of 

atom types with defined parameters to which the new molecules are 

mapped by similarity. Amber has the generalized Amber forcefield 

(GAFF)
48

 while CHARMM has developed the general forcefield 

CGenFF.
36

 

GAFF and CGenFF function by a similar approach. The first 

step is the atomtype assignation. Atom types are generic atom 

definitions that encode specific chemical environments. GAFF 

presents 35 basic atomtypes and 22 special ones, while CGenFF has 

more than 150 at the time of writing, coming from a set of diverse 

model compounds which describe a wide spectrum of the chemical 

space, and were firstly parameterized by QM. While the list of 

atomtypes in the CGenFF continues to grow, the number of 

atomtypes in GAFF is fixed. For further explanation on how the 

bonded and non-bonded parameters are obtained after the atom type 

assignment, works in refs. 48 and 49, 50 provide the specific details 

for GAFF and CGenFF, respectively. 

The previous general (organic) forcefields, although permit 

the parameterization of large sets of molecules in seconds,
50

 lack 

the accuracy needed in later stages of the drug discovery pipeline, 

when fewer compounds are tested and their specific binding modes 

and properties need to be reliable, even at the expenses of requiring 

larger times. 
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1.2.2 Thermodynamics, kinetics, and pathway 
reconstruction by molecular dynamics 

We have previously introduced the importance of an accurate 

determination of thermodynamics, kinetics, pathway reconstruction 

and receptor conformational characterization in the context of drug 

design. The computational methods presented in this section go 

from the fastest but less accurate methods to those more accurate 

but expensive. 

In this section, we limit our description to the methods that we 

have used in this thesis. Any comprehensive description of methods 

dealing with reconstructing physical chemistry properties from 

molecular dynamics simulations would be so extensive that it is out 

of scope for an introduction. In particular, we focus on docking, 

linear interaction methods, umbrella sampling, Markov state 

models, high-throughput simulations and adaptive sampling. 

Scoring functions 

 Scoring functions estimate binding affinities as the sum of a 

set of approximated terms -like hydrogen bonding, salt bridges, van 

der Waals interactions and protein conformations- whose 

parameters are fitted to experimental data.
51

 Although very 

approximated, scoring functions are widely used in molecular 

docking in the first stages of the drug discovery pipeline, providing 

high-throughput ranked poses and affinities for protein-ligand 

complexes in a fast manner.
52

 However, although the ligand is 

considered as flexible, the protein counterpart is usually rigid. 

Solvent molecules usually do not take part in the computation.  

Linear interaction energy (LIE) 

The LIE method considers the two endpoints of the reversible 

binding cycle: the free state, where the ligand is solvated in water, 

and the bound state, where the ligand is in complex with its 

receptor. Therefore, the binding energy is estimated as the process 

of transferring the ligand from the water to the protein 



 

 

16 

environment.
53

 LIE predicts the binding free energy of compound-

protein complexes using the following linear approximation: 

        (〈    
   〉  〈    

   〉 )   (〈    
  〉  〈    

  〉 )    (10) 

Where the brackets indicate averages along the simulations 

for the compound surrounding interaction energies (c-s), el stands 

for electrostatic, vdw for nonpolar, b for bound and f for free.  and 

 are the related scaling factors that could vary depending on the 

specific system considered, and  is an additive factor generally 

weighted to fit the experimental binding affinities.  

The polar contribution comes from the linear response 

theory
54

 and the nonpolar term from the linear dependency between 

solvation free and potential energies with the size of the 

compound.
53

 Unlike more elaborated methods such FEP or IT 

where unphysical states must also be simulated, the equation 

reduces the protocol to virtually simulate two states: ligand in water 

and protein surroundings. 

Since the firsts applications of the LIE method in the 90s a 

wealth of works have been published,
55–57

 mostly applied to the 

screening of a low-medium number of compounds. A big part of the 

research has focused on the derivation of the optimal scaling 

factors. Ref. 58 focused a first set of values for the  parameter 

taken from deviations of the linear response theory. Almlof et al 
59

 

proposed a detailed set of values based on FEP calculations, 

allowing for greater flexibility. The values used in this work were 

the basis for those in Publication 3.2. Regarding the nonpolar term, 

 was estimated based on a set of compounds, giving a value of 

0.18.
60

 Finally, the  value is mostly used for the estimation of 

absolute binding energies, and has been related to the 

hydrophobicity of the binding pocket. 

Potential of mean force and umbrella sampling  

Free energies of binding can be computed by simulating the 

process in which the ligand moves from an infinite separation of the 

protein to the binding site through a reaction coordinate, also called 
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collective variable. Collective variables are usually geometric 

parameters that change over the course of the reaction, such as 

angles between three points in the protein, or the one-dimensional 

projection on the z-coordinate of the bulk-pocket distance. The 

forces affecting the course of the reaction are then described as an 

effective potential of mean force (PMF), that is, the free energy 

profile along the reaction coordinate.
61,62

 

Specifically, the PMF, W(z), is defined as the negative 

logarithm of the probability of being at a certain state in this 

reaction coordinate (z): 

                     ( 11 ) 

The PMF is the base for the computation of the pathway-

based free energy calculation methods as the ones previously 

mentioned. All thermodynamical properties can be expressed in 

terms of W(z), and therefore is a key variable in macromolecular 

computational studies. However, PMF calculations would need 

intractable computational times to complete the reaction coordinate: 

along z there might be high barriers taking microsecond or 

millisecond times. This problem has been circumvented using 

biasing protocols.
63,64

 For instance, The Jarzinsky equation and the 

Crooks fluctuation theorem allow to recover the PMF from non-

equilibrium simulations which use pulling forces, termed steered 

molecular simulations (SMD).
65,66

 Other mostly used protocol to 

compute PMFs is the umbrella sampling (US) method. 

In umbrella sampling the ligand is moved by stratification in 

successive steps or windows (z0….zn) along the collective variable. 

At each step, a potential function is applied to the ligand such that it 

stays in the surroundings of zi. Usually, this potential is represented 

by a harmonic function of the form: 

                  
    ( 12 ) 

Successive windows along the z coordinate are needed to 

complete the binding pathway. The weighted histogram analysis 

method (WHAM)
67

 is used to sum up the free energy differences 
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corrected for the potentials. In the case of unbiased one-dimensional 

umbrella sampling methods -as the one performed in publication 

3.4-, the standard free energy can be straightforwardly 

calculated.
68,69

 The choice of the correct collective variables is the

most crucial parameter for obtaining accurate free energy 

estimations and the main drawback of pathway-based methods. An 

incorrect election of the reaction coordinate would lead to poor free 

energy estimates.
63,68,70

High throughput molecular dynamics and Markov 
state modeling 

All previously mentioned techniques, despite being fast 

approaches with reasonable success, modify the system by applying 

forces that might alter the real dynamics to different extents. In the 

most recent years, the advent of new computing infrastructure has 

promoted a wealth of studies making use of unbiased brute force 

simulations. In unbiased MD, ligand and receptor freely move in a 

solvated system. Often many replicas of the same processes are run, 

and these ensembles -which could vary from a few very long 

simulations or ensembles of thousands of short ones- contain all the 

needed information for reconstruction of the binding process. In 

2008, a massively parallel supercomputer (ANTON)
71

 was designed

and built at D. E Shaw Research in New York, able to produce 

millisecond-long simulations.  The ANTON2 chip was released in 

2014 and is currently capable of running microsecond-per-day 

simulations in multi-million atom systems.
41

 MDGRAPE is another

petaflop special-purpose supercomputer devoted to MD 

simulations, currently in its fourth generation.
72

However, this highly specialized computing machinery, 

although have promoted an impressive contribution to the field and 

have settled MD as a well-recognized technique, is economically 

inaccessible to most researchers. Fortunately, graphical processor 

units (GPUs) have also been demonstrated to be very efficient in 

MD. With the introduction of generalized GPU architecture like 

CUDA or OpenCL a GPU workstation is capable now of 
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performing microsecond-length simulations. Still, most biological 

processes we are interested in occur in high-microsecond or 

millisecond timescales (Fig. 3), unaffordable times for a single 

GPU. However, it is possible to run multiple parallel simulations in 

GPU clusters, and posteriorly analyse them with probabilistic 

models. This thesis has mainly focused in the application of this 

methodology, namely, the production of high-throughput molecular 

dynamics (HTMD) ensembles and their posterior analysis with 

Markov state models.  

Nowadays, a single GPU is able to run around 125ns of 

simulation time for a system sized 50000 atoms in a benchmark 

GPU like the GTX980. Assuming the case of a prototypical fast 

fragment binding event as benzamidine binding to trypsin protease -

which occurs with an on mean first passage time of 6.9μs at a 

concentration ~5mM- we would need around 20μs of aggregated 

simulation time to sample a more than an anecdotal binding event 

and obtain enough statistics for the construction of our model. 

Having an in-house cluster of 10 GPUs running uninterruptedly -

currently affordable for many research groups- we could obtain our 

brute-force MD ensemble in about two weeks. 

This specific example was a breakthrough work 5 years ago, 

when using GPUs volunteered from all over the work 

(GPUGRID.net),
73

 it was possible to completely reconstruct this 

binding event.
1
     simulations of    ns each were performed 

leading to     binding events within     MSD of the crystal 

structure. By using a Markov state model (MSM) analysis, the 

simulations reconstructed binding intermediates affinities and 

kinetic estimates that occur at longer timescales, from a 

microsecond ensemble, with remarkable accuracy.
 
A couple of 

years later, the protocol was applied to the binding of 

carboxythiophene to AmpC -lactamase,
74 
by performing   8μs of 

total aggregate time. In this work, it was possible to observe other 

secondary poses in agreement with the X-ray results. More 

interestingly, this study permitted to characterize the role of a loop 

in the vicinities of the pocket during the binding pathway: the loop 

was able to explore both open and closed conformations in absence 

of the ligand, however, the ligand stabilized the open conformer 
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while entering the pocket, and the closed one once inside it. This 

thesis, following the line of these studies, has focused on pushing 

the limits of this methodology for more complicated scenarios, 

outlined in the Objectives section. 

Markov State Models (MSMs) 

MSMs are probabilistic models able to map the ligand binding 

energy landscape and thus provide thermodynamic and kinetic 

estimates.
75

 The construction of a MSM for a ligand binding

process passes roughly through the following phases. First, the data 

is discretized into a lower dimensional space for its posterior 

clustering, usually by means of distance or ligand contact maps 

against the protein or its alpha carbons. This data still presents a 

high dimensionality that can be further projected by the time-lagged 

independent component analysis (TICA).
76

 TICA projects the data

into the slower order parameters and thus separates well metastable 

minima placing clusters in the transition regions. 

Then the data is geometrically clustered using any of the 

available algorithms (k-centers, k-means, regular clustering, etc.) 

and from them then construction of the transition matrices at the 

different lag times. This step allows for the visualization of the 

implied timescales and the subsequent selection of the appropriate 

lag time for the MSM construction, taken at the first point where the 

timescales are convergent to ensure Markovianity while keeping 

enough statistical sampling. The first eigenvector of the transition 

matrix at the chosen lag time, correspond to the global stationary 

distribution of the system, and subsequent eigevectors approximate 

the intrinsic relaxation times of the system. Therefore, the quality of 

the MSM highly depends on the convergence of these timescales, 

and the chosen lag time. At this stage, the model represents the 

dynamics of the system, but it can contain thousands of states that 

need some sort of coarsing before human visualization. Therefore, 

we lump this microstates to the number of macrostates of our choice 
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with the Perron Cluster Cluster Analysis (PCCA), although there 

are many other methods available.
75

 The number of macrostates is 

usually hindered from the number of processes above the largest 

gap in the timescales plot, which provides an appropriate separation 

of the slowest processes in the system. Usually a range between 4 

and 8 macrostates represents fairly all the basins in the ligand 

binding landscape. Refs. 75,77,78 are suggested reading for a 

detailed description and applications of MSM analyses. Fig. 5 

shows a schematic view of the process.
  

Figure 5: Overview of the MSM process. The simulations are geometrically 

discretised into a set of states from which the transition matrices can be built at a 

given lag times. The stationary distribution and slowest relaxation times of the 

processes occurring in the system can be approximated from its eigenvectors. In 

this case, a four-well potential model presents three slowest processes, as the 

three jumps of the kinetic barriers. Figure adapted from ref. 79. 

 

Adaptive ligand sampling 

In all the ligand-binding studies mentioned in this section the 

reconstruction of the MSM was performed out of brute-force 
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simulation ensembles. Intuitively, it implies that the ligand is 

inefficiently spending considerable time in previously sampled 

states, such as the bulk. However, for the construction of MSM, the 

simulations do not need to start from equilibrium, and can actually 

start from interesting states previously sampled in successive 

batches of simulations. This intelligent approach is called adaptive 

sampling, and has recently been used for protein folding
80

 and for

ligand binding,
42,81

 and in some of the publications in this thesis.

Adaptive methods decrease in one order of magnitude the required 

sampling times.
82–85

The theoretical reasons for this decrease in sampling time are 

sketched in Fig. 6. While standard brute-force schemes would need 

tens of millisecond to jump the activation barrier of a slow binding 

ligand (kon ~ 10
4
), finely discretizing the barrier into smaller ones

would exponentially decrease the sampling time, provided a correct 

discretization of the high-dimensionality binding process. 
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Figure 6: Simplified one-dimensional energy profile for a ligand binding process. 

The large kinetic barrier between the two basins can be discretized into 

successive steps.  
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 1.4 Biological systems studied 

1.4.1 Serine proteases 

Between 2 and 4% of the genome encodes proteolytic 

enzymes, a set known as the degradome.
86

 Almost one third of all

proteases are serine proteases,
87

 grouped in 4 clans and 13

families.
88

 In these peptidases, the serine in the catalytic pocket acts

as nucleophile attacking the carbonyl in the peptide backbone 

forming an acyl-enzyme intermediate. The other accompanying 

residues in this catalysis are Asp and His (Fig. 7), which confer the 

catalytic triad.
89

 Four different folds present the same enzymatic

mechanism driven by this triad: trypsin-like, subtilisin-like, prolyl 

oligopeptidases, and ClpP peptidases.
90

 Many serine peptidases

employ a simpler dyad mechanism where Lys or His is paired with 

the catalytic Ser, or a pair of His combined with Ser.
90

 Activation of

serine proteases requires the cleavage of an inactive zymogen 

precursor.
91

 The enzymatic mechanism starts with the oxygen in the

serine attacking the carbonyl in the substrate peptide backbone by 

using histidine as the base. It then forms a tetrahedral intermediate 

termed as oxyanion, creating the positively charged pocket 

oxyanion hole. Collapse of the intermediate gives the acyl 

intermediate that is finally released after the attack of a nucleophilic 

water molecule. 
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Figure 7: Overview of a serine protease (factor Xa). The catalytic triad (Ser-His-

Asp) is shown along with the S1 and S4 subpockets. 

As a consequence of the great diversity of serine proteases in 

structure and function, serine proteases are important targets for 

different diseases, ranging from diabetes to coagulation problems.
92

In nearly all cases serine proteases can be inactivated by blocking 

the nucleophile serine with generic inhibitors as 

diisopropylfluorophosphate and phenylmethanesulfonyl fluoride.
90

In this thesis, three different works have focused on serine 

proteases. Two of them, trypsin and coagulation factor Xa, are Clan 

PA peptidases with a very similar fold. Dipeptidyl peptidase IV is a 

clan SC exopeptidase.
90
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Trypsin 

We used trypsin protease as a receptor for a comparison of the 

ligand-ranking efficiency between the LIE method and molecular 

docking
93

 in Publication 3.2.

The three residues where the catalysis occurs are specifically 

residues His57, Asp102 and Ser195. Trypsin cleaves peptide bonds 

that follow a positively charged aminoacid (Lys or Arg), as these 

residues favourably bind the Asp aminoacid located at the S1 

pocket (Fig. 7). Trypsin, like elastase, acts in the digestive system, 

breaking polypeptides into shorter chains.
94

 Trypsin has been

characterized with many methodologies and trypsin-like serine 

proteases are perhaps the best studied group of enzymes.
90

 It was

one of the first proteins being crystallized by X-ray 

crystallography
95

 and is currently also co-crystallized with many

small inhibitors.
96

 Trypsin has been used as a methodological work

for understanding binding contributions and as a toy model for 

numerous computational works. 

Factor Xa 

We used the optimized MSM protocol for ligand binding 

processes using contact maps,
1,97

 previously applied to single ligand

analysis, for a library of 42 fragments against the serine protease 

factor Xa
98

 in Publication 3.3. The library contained extensive

experimental data annotated and was suitable for testing and 

optimizing the method for larger libraries. 

Factor Xa converts prothrombin to thrombin in the 

coagulation cascade. As such, the protein has been an attractive 

target for the search of bioavailable anticoagulants. Structurally, it 

presents a heavy and a light chain held together by a disulphide 

bond. The protein active site contains four subpockets, located at 

the heavy chain defined from S1 to S4, following the convention for 

proteases and peptide cleavage.
99

 Inhibitors usually only exploit

pockets S1 to S4 (Fig. 8), which display high similarity with related 

proteases. Specifically, the S1 pocket is defined by A190, D189 and 

Q192 and recognizes charged moieties and aryl halogens,
100

 only
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differing from Trypsin‟s S  in A   . (For a nice comparison 

between the pockets in trypsin, factor Xa and thrombin see ref. 101) 

The S4 pocket favours aromatic moieties, and it is also a cation 

recognition pocket.
102

Figure 8: Overview of the factor Xa catalytic pocket. (a) Acidic S1 pocket 

formed by the residues Q192, D189, and A190. (b) Overview of the entire 

catalytic site. (c) The aromatic residues Y99, W147 and F215 form the S4 pocket. 

Dipeptidyl peptidase IV (dppIV) 

We have characterized the binding event of a slow inhibitor of 

dipeptidyl peptidase (dppIV) in Publication 3.6. DppIV modulates 

the activity of specific chemokines, hormones, cytokines and 

neuropeptides by cleaving dipeptides after a penultimate N-terminal 

alanine or proline.
103

 dppIV specifically attenuates incretins GLP-1

and GIP, the reason why its modulation has been used to treat 

diabetes.
104

DppIV is usually found as a dimer, a state likely to be highly 

populated in solution. In fact, it has been shown that the monomer 

has only residual enzymatic activity compared to the dimer, but 

both monomeric and dimeric forms bind with similar affinity to 

adenosine deaminase.
105

 The co-crystal structures of dppIV with

different inhibitors in the catalytic pocket are available
106,107

 and

show an interaction as the one depicted in Fig. 9. Specifically, the 
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inhibitors span through the S1 and S2 sites close the catalytic triad 

(Ser630, Asp708, His740), blocking the peptide cleavage.  

Figure 9: Overview of the catalytic pocket of dppIV. Ligand (BDPX)
107

 is shown 

along with its protein surroundings depicted. The xanthine scaffold of the 

compound stacks against Tyr547 by π-π interactions. The phenyl extends towards 

Val656, in the S1 subsite. The piperazine ring interacts via two hydrogen bonds 

with E205 and E206 in the S2 subsite. Residues His740, Ser630 and Asp708 form 

the catalytic triad. 
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1.4.2 Epidermal growth factor receptor (EGFR) 

The umbrella sampling protocol (section 1.2.2 and ref. 69) 

was applied to understand the binding differences between wild-

type and mutant receptor for endogenous ligand and drug cetuximab 

in Publication 3.1.
108

Epidermal growth factor receptor (EGFR) is one of the four 

members of the Her1-4 family of receptors (ErbB), which are 

involved in multiple cellular processes such as growth, migration, 

differentiation and apoptosis.
109

 Concretely, mutations in the EGFR,

Her1, alter its signalling transduction pathway and can trigger the 

development of a subset of epithelial tumours. EGFR 

overexpression has shown to be highly correlated with tumour 

progression in colorectal cancer.
110

 Different targeting agents have

been developed in the recent years, with the two monoclonal 

antibodies cetuximab and panitumumab presenting the best 

responses.
111,112

 However, the response to the treatment is halted

when secondary resistance occurs, usually between 3 and 12 

months.
113

 In this regard, although the two antibodies bind the same

epitope, a missense mutation S468R in the extracellular domain III 

of EGFR promotes resistance against cetuximab but not for 

panitumumab
114

 (Fig. 10).
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Figure 10: Overview of the the extracellular part of the EGFR receptor (sEGFR) 

and their mutations known to affect cetuximab (Ctx) inhibition. sEGFR is 

composed by four different sub-domains, namely I (red), II (green), III (grey) and 

IV (cyan). The binding of cetuximab prevents the dimerization and the posterior 

cross-phosphorylation in the intracellular part.  
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1.4.3 Myo-Inositol monophosphatase (IMPase) 

IMPase is a homodimeric enzyme that plays a critical role in 

the phosphatydilinositol signalling pathway, hydrolizing myo-

inositol monophosphate (IP)
115

 (Fig. 11). Patients suffering from

bipolar disorder present overactive IMPase levels and thus higher 

inositol concentration than under normal conditions. This 

physiopathology is treated with low concentration of Li
+
 (0.5mM-

1mM) that directly inhibits IMPase and depletes the inositol levels 

in neurons.
116

Figure 11: Scheme showing the dephosphorylating process performed by the 

IMPase dimer. Three Mg
2+ 

ions act as cofactor in each subunit in the course of the 

reaction. IMPase‟s catalytic pocket is a highly polar environment formed by four 

acidic residues and the three metals. 

A highly polar pocket, and a low understanding of IMPase 

mode of action prior to the pre-catalytic complex formation are 

some of the reasons for the failure in finding bioavailable inhibitors. 



32 

More concretely, IMPase‟s catalytic site presents four acidic 

residues in close vicinity which can adopt the binding of three Mg
2+

ions acting as cofactors in the hydrolysis of IP.
117

 The three metals

present affinities in the high micromolar and milimolar range, and 

given the low neuronal concentrations of Mg
2+ 

it is not clear if the

three ions occupy the pocket prior the reaction occurs.
118

 In the

same manner, IP‟s mechanism of binding and its possible 

cooperation with cofactor during binding remains unclear.
119,120

 In

Publication 3.5 we attempted to shed some light into these issues. 

1.4.4 D3 Dopamine receptor (D3R) 

Dopamine receptors are a class of G-protein coupled receptors 

(GPCR) located in the central nervous system (CNS) and are 

specifically activated by the neurotransmitter dopamine. Dopamine 

receptors have been classified into two different subfamilies, D1 

and D2-like, according to their structural similarities.
121

 D1-like

receptors (D1R and D5R) are coupled with stimulatory G-protein α 

subunits (Gs/olf) activating adenyl cyclase whereas the D2-like 

receptors (D2R, D3R, and D4R) couple to inhibitory G-protein α 

subunits (Gi/o), inhibiting adenyl cyclase.
122,123

D3R and D2R receptors share a 78% sequential similarity,
124

being specially conserved the residues of the binding pocket, and 

have therefore settled a major challenge for therapeutic 

selectivity.
125

 Antipsychotic drugs able to block both D2 and D3

receptors are used to treat schizophrenia although have usually been 

considered as intolerable due their side-effects. It was hypothesized 

that designing D3R-binding specific drugs would reduce these side-

effects. After years of major industrial and academic research D3R-

preferential antagonists and partial agonists (e.g. 7-OH-DPAT, 

pramipexole, and rotigotine)
126

 were developed. The antagonist

showed to attenuate drug-seeking behaviour in rodent models and 

act as antidepressant, supporting D3R blockade as a plausible target 

for therapeutic discovery
127–131

 particularly for substance abuse.
132
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These D3R specific compounds are, however, very lipophilic 

and have shown poor bioavailability in clinical trials. Eticlopride is 

a D2R and D3R potent antagonist which has recently crystallized in 

D3R providing invaluable structural insight to better design more 

specific compounds within the D2-like receptors.
133
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Chapter 2 

OBJECTIVES 

The main objective of this thesis was to apply high-

throughput molecular dynamics simulations to drug discovery 

projects. Specifically, we have proved the feasibility of HTMD at 

three different stages of the drug discovery pipeline: in compound 

screening, by means of approximated methods (LIE), in hit 

fragment identification, performing an in-silico binding assay of a 

focused library of fragments, and in lead optimization, 

comprehensively understanding binding pathways for cases of 

single ligand-receptor recognition. This last part was performed in 

conjunction with pharmaceutical companies. 

2.1 Testing the capabilities of the linear 
interaction energy method in drug discovery 
screenings. 

The first steps of the drug discovery pipeline –once the target 

validation is performed- pass through the systematic screening of a 

large number of compounds, from which several hits will be 

identified. This stage of the pipeline must be accurate enough to 

provide very few false positives while providing results in fast 

timescales. Molecular docking is usually the preferred method for 

these purposes. However, it does not account for the receptor 

flexibility or solvent interactions that may be crucial in specific 

binding modes. The LIE method had been extensively tested in the 

past for smaller libraries of compounds providing accurate results. 

With the emergence of computing infrastructures like GPUGRID, 

we wanted to extent the scope of the LIE method to larger libraries 

and test it against molecular docking.  
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In Publication 3.2 we focused on the benchmark case of 

trypsin and 1500 ligands and decays of the DUD database. We 

compared three different scoring functions against the LIE method. 

The results show that although LIE is effective at reranking ligand 

and decoys it does not significantly improve current molecular 

docking software at predicting ranking positions. 

2.2 Establishment of HTMD in-silico binding 
assays for focused libraries of compounds. 

Fragment-based drug discovery has been widely used in drug 

discovery projects since the concept was first designed in the 90s.
134

The approach has generated several drug candidates,
135

 and offers

advantages with regard to the screening of larger compounds: more 

efficient chemical space exploration, high ligand efficiency and 

step-wise growth of the ligands. The identification of fragment hits 

involves the characterization of the small compounds using 

sensitive techniques, although sometimes different assays will 

return different hits.
136,137

High-throughput molecular dynamics in combination with 

Markov state models analysis have made an impact in the 

understanding of ligand-receptor recognition processes since the 

first case was published five years ago.
108

 The approach is able to

simultaneously provide binding poses, kinetics, and 

thermodynamics for the most probably binding mode, but also for 

secondary poses. Posterior examples in literature have focused on 

small set of compounds, very often on just one ligand. We wanted 

to extend the methodology to a larger library of fragments. In 

publication 3.3, we focused on a set of 42 fragments with annotated 

experimental data.  

2.3 Collaboration with pharmaceutical 
companies 

As mentioned, the last five years have witnessed an incredible 

amount of excellent work in ligand binding processes by high-
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throughput molecular dynamics. Both promoted by the use of GPUs 

(we previously mentioned the cases of one or various ligands 

binding to trypsin,
108,138

 beta lactamase,
74

 factor Xa,
98

 and FBP12
81

)

and specialized hardware.
71,139–142

Therefore, the approach is gaining a lot of attention in the 

pharmaceutical sector and will perhaps become a standard method 

in the next couple of years. In these previous works, the 

methodology was applied to monitor the binding of single ligands to 

rigid proteins, but it also has a lot of potential in understanding 

allostery, the dynamics of the receptor or finding new druggable 

pockets. It would certainly complement the techniques used by the 

pharmaceutical industry.  

In this thesis we put into practice the methodology by 

applying to cases of real drug discovery pipelines in enterprises. 

Publications 3.5, 3.6 and 7.2 have been a part of collaborative 

projects with Janssen pharmaceutical, Boehringer Ingelheim and 

Pfizer, respectively.
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Chapter 3 

PUBLICATIONS 

3.1 Computational modeling of an epidermal 
growth factor receptor single-mutation 
resistance to cetuximab in colorectal cancer 
treatment. 

Here, we applied an optimized protocol for binding affinity 

calculations by umbrella sampling to provide a molecular structure-

based explanation for the S468R acquired mutation in EGFR. The 

mutation is known to cause resistance to treatment with cetuximab 

of colorectal cancer. By inspecting the bound structures of 

cetuximab, alternative antibody necitumumab, and three EGFR 

ligands, we determined the putative impact of the mutation in their 

bindings. To confirm the structural analysis, we performed binding 

free energy calculations using one-dimensional potential of mean 

force sampled using umbrella sampling. The method was applied to 

cetuximab and endogenous ligand (EGF) binding wild type and 

S468R mutant variants of EGFR. We predict a loss of affinity for 

cetuximab of at least 1kcal/mol and an increase in affinity for EGF 

of about 1.1kcal/mol. Although in need of experimental validation, 

we can propose a mechanism of inhibition where cetuximab is 

outcompeted by EGF leading to the treatment in this mutant EGFR 

ineffective. This work served as an example of the applicability of 

molecular modeling to rationalize drug usage in the context of 

personalized medicine. 

https://www.ncbi.nlm.nih.gov/pubmed/24219403
https://www.ncbi.nlm.nih.gov/pubmed/24219403
https://www.ncbi.nlm.nih.gov/pubmed/24219403
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Buch I, Ferruz N, De Fabritiis G. Computational modeling of an 
epidermal growth factor receptor single-mutation resistance to 
cetuximab in colorectal cancer treatment. J Chem Inf Model. 2013 
Dec 23;53(12):3123-6. doi:10.1021/ci400456m

http://pubs.acs.org/doi/abs/10.1021/ci400456m
u16319
Rectángulo





40 

3.2 Reranking docking poses using molecular 
simulations and approximate free energy 
methods 

Molecular docking software is commonly used in the first 

stages of the pipeline due to their relative good accuracy with 

reduced computational times. By contrast, the LIE method was 

usually employed in subsequent phases as it is thought to present 

better accuracy at the expenses of being more time-consuming. 

With the advances in distributed infrastructures like GPUGRID, a 

methodology like LIE can be carried out in hundreds of GPUs 

simultaneously, thus being suitable for virtual screening. In this 

work, we wanted to establish a protocol for LIE in large libraries of 

compounds and test its validity against the most used current 

docking methods. We found that LIE is effective in re-ranking 

ligands and compounds but is not significantly better than current 

molecular docking methods. 

https://www.ncbi.nlm.nih.gov/pubmed/24219403
https://www.ncbi.nlm.nih.gov/pubmed/24219403


Lauro G, Ferruz N, Fulle S, Harvey MJ, Finn PW, De Fabritiis G. 
Reranking docking poses using molecular simulations and 
approximate free energy methods. J Chem Inf Model. 2014 Aug 
25;54(8):2185-9. doi: 10.1021/ci500309a

http://pubs.acs.org/doi/abs/10.1021/ci500309a
u16319
Rectángulo
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3.3 Insights from fragment hit binding assays by 
molecular simulations 

The use of large-scale unbiased MD simulations to obtain 

accurate descriptions of binding events has been demonstrated in 

several studies so far. However, the method has been usually 

restricted to studies of less than then ligands and very often only 

one. In this study, we wanted to test the method into the context of 

fragment-hit identification, where focused libraries of 30-50 

compounds are screened by biophysical techniques in the search of 

sub-millimolar starting points. Here, we proved that in-silico 

binding assays (ISBAs) are very powerful for drug discovery, being 

able to recover binding poses, affinities, kinetics and pathways 

simultaneously and in an unsupervised fashion. In this case we used 

a target and library with experimental data in order to test our 

results. The simulations also provide insights into the dynamics of 

the receptor and its kinetic fingerprint.  

https://www.ncbi.nlm.nih.gov/pubmed/26376295
https://www.ncbi.nlm.nih.gov/pubmed/26376295


Ferruz N, Harvey MJ, Mestres J, De Fabritiis G. Insights from 
Fragment Hit Binding Assays by Molecular Simulations. J 
Chem Inf Model. 2015 Oct 26;55(10):2200-5. doi: 10.1021/
acs.jcim.5b00453

Ferruz N, Harvey MJ, Mestres J, De Fabritiis G. Correction to 
Insights from Fragment Hit Binding Assays by Molecular 
Simulations. J Chem Inf Model. 2016 Oct 24;56(10):2123. 
doi:10.102/acs.jcim.6b00557

http://pubs.acs.org/doi/10.1021/acs.jcim.5b00453
u16319
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3.4 Binding kinetics in drug discovery 

In this review we summarize current computational works 

describing methods to obtain kinetic estimates. The current state of 

the art, challenges and the use of adaptive sampling methods is 

discussed. 

Ferruz N, De Fabritiis G. Binding Kinetics in Drug Discovery. Mol 
Inform. 2016 Jul;35(6-7):216-26. doi: 10.1002/minf.201501018

https://www.ncbi.nlm.nih.gov/pubmed/27492236
https://www.ncbi.nlm.nih.gov/pubmed/27492236
http://onlinelibrary.wiley.com/doi/10.1002/minf.201501018/abstract;jsessionid=134E528406B54CF3235AE0E0F0E953F3.f02t02
u16319
Rectángulo
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3.5 Multibody cofactor and substrate molecular 
recognition in the myo-inositol 
monophosphatase enzyme 

In this work we collaborated with Janssen pharmaceuticals 

that wanted to understand the binding mechanism of myo-inositol 

monophosphatase, the target for bipolar disorder. The target, a 

homodimer, contains a very polar pocket and depends upon the 

binding of three Mg
2+

 ions for its activity. Although a lot of

research focused in this target in the last decades, the inhibitors 

discovered in the 1990s were not CNS drug-like and research 

became to a halt. Most inhibitors are highly polar and contain 

substrate-like phosphate of inositol mimics that results in problems 

in cell permeation and brain penetration. In order to look for a new 

series of more bioavailable molecules, we first attempted to 

characterize the IMPase‟s behaviour under the presence and 

absence of substrate. The results are robust and also show how the 

HTMD methodology can be applied for the case of multibody 

binding mechanisms.  

https://www.ncbi.nlm.nih.gov/pubmed/27440438
https://www.ncbi.nlm.nih.gov/pubmed/27440438


Ferruz N, Tresadern G, Pineda-Lucena A, De Fabritiis G. Multibody cofactor 
and substrate molecular recognition in the myo-inositol monophosphatase 
enzyme. Sci Rep. 2016 Jul 21;6:30275. doi: 10.1038/srep30275

http://www.nature.com/articles/srep30275
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3.6 Insights from in-silico binding assays of 
drug-like molecules. 

Ferruz N, De Fabritiis G. In-silico binding assays of drug-like 

molecules. Preprint. 

Once assessed the application of HTMD in fragment libraries 

and multi-body mechanism, we collaborated with another 

pharmaceutical company, Boehringer Ingelheim, in order to test the 

method in more realistic scenarios. 

Concretely, we tested the capabilities of the in-silico binding 

assays when performed to drug-like compounds in larger proteins. 

In order to do so, we were provided with the kinetic data of a 

derivative of the linagliptin drug binding to dipeptidyl peptidase IV, 

a target of diabetes type II. The work shows what is the current 

stage of the methodology, being accurate at predicting poses and 

on-rates, but having limitations when estimating residence times.  

Additionally, we were also able to map the route of binding of 

the ligand, which was hypothesized, to occur via a large opening. 

We show in this work that entrance and exit via the smaller opening 

might also be possible at longer timescales.



49 



50 

Insights from in-silico binding assay of 
drug-like molecules 

 Supporting Information Placeholder

ABSTRACT: Accurate reconstruction 
of ligand binding processes by computational 
means has become a standard practice. 
However, it is usually performed in ideal 
systems with small fragments binding to rigid 
proteins, due to its considerable 
computational requirements.  Here, we have 
recovered binding pathway, rates and poses 
for a drug-like compound binding to a large 
protease by means of high-throughput 
molecular dynamics. 

INTRODUCTION 

The thermodynamics of binding are not 
the only important factor for drug selectivity and 
efficacy, but also the lifetime of the drug-
receptor complex.

1–3
 In this regard, the 

residence time of a drug -defined as the inverse 
of its dissociation rate, i.e off-rate or koff- is 
known to be one of the most important factors 
determining safety and efficacy, and has also 
proven to regulate target selectivity in vivo.

4,5
 

The increased focus on kinetics in drug discovery  
has come also thanks to improvements in the 
related experimental instrumentation, surface 
plasmon resonance (SPR), radio-ligand binding 
and enzymatic assays increasingly becoming 
routine measurements in the pipeline.

6
 

However, despite several works have shown 
links between structural modifications and 
kinetic rates there is not yet a clear 
understanding of how structural changes affect 
the binding rates.

7
 The latter are bounded to the 

height of the energy barriers between meta-
stable states, in which dewetting processes,

7
 

shielded hydrogen bonds
8
 or transient

interactions
9
 might be playing a critical role and 

pass unnoticed in our frequent ‘free-or-bound’ 
view. Thus, being able to characterize binding 
intermediates and the slowest transitions among 
them could help to rationalize a drug 
optimization based on kinetics. 

9–13

With the advent of new computing 
infrastructure,

14,15
 unbiased simulations are 

becoming an affordable technique for observing 
drug-receptor recognitions. In unbiased MD 
simulations, the ligand freely moves in a solvated 
box and is able to identify different receptor 
pockets provided the simulation times are 
sufficient. In this sense, one of the first 
reconstruction of a ligand binding processes were 
already published few years ago.

2,9,16
 In one of

these works, running parallel short simulations in 
GPUs volunteered from all over the world in the 
distributed computing project GPUGRID,

17
 it was

possible to reconstruct a complete binding 
process of a small molecule (benzamidine) to its 
receptor (trypsin). A construction of a Markov 
State Model (MSM)

18,19
 analysis of the 

aggregated 50μs of simulation time, allowed to 
accurately characterize metastable states 
affinities, and transition rates that occur in slower 
timescales.

9
 The work showed the first complete 

reconstruction of a binding process by these 
means and provided an estimate of the 
dissociation rate within two orders of magnitude 
from the experimental value. Some other works 
followed this one, such as the binding of 
carboxythiophene to AmpC ß-lactamase,

20
 where 

secondary X-ray poses were also recovered, or 
the binding of a larger library of 42 fragments 
against factor Xa.

21
 A more recent study

reconstructed the complete ligand binding 
framework for the trypsin-benzamidine case, 
taking also into account the different protein 
conformers in solution and the rates of inter-
conversion among them.

22 
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All aforementioned works most often 
represented toy models of drug binding, with 
fast small molecules probes and rigid globular 
proteins. For instance, benzamidine binds and 
unbinds with an average time of 6.9μs (assuming 
a concentration of 5mM) and 1.7ms to trypsin, 
respectively. Other studies, of course, have 
focused on more realistic scenarios, with drug-
like size molecules binding in slower timescales. 
Two works reported accurate off-rate prediction 
for multi-millisecond residence time ligands,

23,24
 

although were using biasing techniques. In other 
investigations, using microsecond length 
unbiased simulations, Shaw et. al. successfully 
determined the on-rate of slow binding 
ligands,

2,16,25
 although the residence times were 

not provided.  

Here, we attempted to study the 
capabilities and limitations of the state-of-the-
art methodology to reproduce residence time 
for a drug-like compound binding to a larger 
receptor. As a proof of concept, we first tested 
our protocol in this target by validating its 
binding pose and association rate, with 
successful outcomes. Then, we extrapolated the 
methodology to the more challenging case of 
pathway reconstruction and residence time 
estimation. For this test, we selected the serine 
exopeptidase dipeptidyl peptidase IV (dppIV). 
dppIV is a large protease that modulates the 
biological activity of specific chemokines, 
hormones, cytokines and neuropeptides by 
cleaving dipeptides after a penultimate N-
terminal alanine or proline.

26
 dppIV attenuates 

the incretins GLP-1 and GIP
27

 and thus can be 
used in the treatment of diabetes type-II.

28–30
 In 

May 2011, the FDA approved the use of 
linagliptin,

31
 a xanthine derivative developed by 

Boehringer Ingelheim. While optimizing the 
drug, structural analogues were tested using 
different biophysical techniques, among them 
SPR, providing constants of a series of 
compounds.

32
 

The reconstruction of the protein-ligand 
binding process was performed using our high-
throughput molecular dynamics (HTMD) 
software,

33
 which employs Markov state 

modelling for analysis (MSM).
34

 The simulations 

were produced in a fully solvated system with 
the ACEMD

14
 molecular dynamics software on 

the distributed computing project GPUGRID.
15

 
Recently, MSM analyses have been successfully 
used in a wide range of problems, extending 
from to the characterization of protein 

folding,
34,35

 intrinsically disordered proteins,
36

 
and ligand binding.

37,38
 In this last group, MSM 

methods are able to produce quantitative 
estimations of kon, koff and ∆G

0
 for multiple 

binding poses on the protein (see Methods).  

The ligand employed in this study is 
presented in Table 1, along with other two 

structurally similar molecules whose binding 
mode is available in crystal structures.

32,39
  

Table 1: Binding data for the ligands referred 
in this work and their structures. 

 
 
Structures, molecular weight, kinetic and 

thermodynamic data when available are 
presented in Table 1. Compound 1, also known 
as BDPX, was discovered in a high-throughput 
screening campaign after showing low-
micromolar inhibitory activity.

40
 It was the 

starting point for systematic structural 

 
PDB 
code 

R1 X/Y R2 

1 2AJ8 CH2Ph NH/H Me 

2 2RGU CH2CCMe CH2/NH2 a 

3 - CH2Ph CH2/NH2 Me 

 
MW 

(g/mol) 
koff (s

-1) kon 
(M-1 ·s-1) 

KD 

(nM) 

1 355.41 - - 2800 (IC50) 

2 472.54 3.0 · 10-5  1nM (IC50) 

3 368.44 8.0 · 10
-2 6.3 · 10

6 12.71 
82 (IC50) 
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modifications and optimizations, from which 
compound 2, linagliptin, was discovered.

32
 

Compound 3 was present among these 
optimizations, and was characterized by SPR. 
The three compounds contain the same 
xanthine-based scaffold. Compound 1 and 2 and 
their interaction into dppIV catalytic site are 
represented in Fig. 1. The two compounds 
recover the same interactions, with identical 
parts perfectly superimposing. 

Specifically, the xanthine scaffolds are 
placed such that the uracil moiety undergoes π-π 
stacking with Tyr547, thus pushing its sidechain 
from its relaxed position.

41
 The phenyl and 

butynil substituents (R1) are allocated in the 
hydrophobic pocket formed by Val656 and 
Tyr662, also termed S1 subsite following the 
convention for proteases.

42
 Main differences 

between the two compounds attribute to the 
substituent at the C-8 of the xanthine scaffold, 
which occupies the S2 subsite. In compound 1, 
the piperazine needs to adopt an unfavourable 
twist conformation, and its secondary nitrogen 
atom donates two hydrogen bonds to the 
carboxylates E205 and E206. The great 
improvement in affinity in compound 2 comes 
from the replacement of the piperazine with an 
aminopiperidine, which can instead form 3 
hydrogen bonds and adopt a low-energy chair 
conformation.

32
 Both compounds act close to the 

catalytic triad (Ser630, Asp708, His740), and block 
the peptide cleavage. Compound 3, presents 
similarities with the other compounds. The 
xanthine and benzyl group are maintained 
without modifications from compound 1 and 
should capture the same interactions with dppIV 
residues. Conversely, the substituent at the C-8 
position is identical to compound 2 and should 
adopt the favourable chair conformation.  

Regarding the quaternary structure of the 
protein, it is usually found as a dimer or tetramer 
in crystal structures (Fig. S1).

41,43–45
 However, 

both monomeric and dimeric forms are known to 
bind with similar affinity to adenosine 
deaminase.

46
 Each of the monomers contains a β-

propeller and a catalytic centre, which together 
encircle a large cavity. This cavity, can be 
accessed through two openings, more concretely, 

the propeller opening, also present (although 
slightly narrower) in the sequentially related 
prolyl oligopeptidase (POP),

47
 and the relatively 

large side opening. It is been hypothesized for 
long whether the access of substrates and 
products occurs via the propeller or the side 
opening.

39,48–50
 

For the complete characterization of the 
binding event, we focused on compound 3, for 
which full kinetic and thermodynamic data are 

available. After simulation of 487s and analysis 
by MSM (see Methods for details on system 
setup and analysis), we obtained a most 
probable state that overlaps with the crystal 
structure of compound 1, with an RMSD of 3.5Å 
accounting heavy atoms in the xanthine and 
benzyl moieties (Fig. 2). The overall precision for 
this pose is quite good, showing an RMSD of 
2.1Å. Note that no information of the bound 
modes was provided to the simulations in any 
way. Among the main differences with the 
crystal are the angle between the two planes 
formed by the xanthine moieties, and the 
consequent displacement of the benzyl ring from 
the X-ray position. More concretely, the 
xanthine plane bends up to 90 degrees 
compared the X-ray bound reference structure. 
Tyr547, preserving the π-π stacking with the 
xanthine moiety, is accordingly displaced from 
its initial coordinates. Interestingly, the Tyr547 
phenol resembles the conformation of the apo-
enzyme, where it is displaced 70° towards the 
Ser552 sidechain. (Fig. S2).

41,51
 As a consequence 

of the overall displacement, the aminopiperidine 
ring is only able to form the two hydrogen bonds 
with E206 and E205 being around 5Å away from 
Tyr662.  

The MSM model produced quantitative 
on-rate estimation: we obtained a value of the 
order of 10

6 
s

-1
 M

-1
, remarkably close to the 

experimental reference (6.3 · 10
6 

s
-1

 M
-1

). When 
computing the on-rate by binding frequency, we 
observe that one binding trajectory in the set 
completed a binding event within an RMSD of 2Å 
to the crystal structure (see Video S1). Taking 
into account the total simulation time, it 
computes a binding frequency of 2·10

3 
s

-1
, which 

transforms to an on-rate 1·10
6 

s
-1

·M
-1

, in the 
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same line as the MSM estimative. The off-rate, 
however, is several orders of magnitude above 
of the experimental value.

19
 Why this is the case 

it is not clear, but probably due to limitations in 
current MSM analysis, projections and 
discretization used. Video S1 shows the steps the 
one simulation that completed a binding event 
performed before entering the pocket. The route 
of entry of substrates to dppIV has remained an 
answered question for a while. Our analysis 
confirm the substrate enters through the side 
opening, showing the molecule first performing 
some short interactions at the entrance, and 
then fast identifying the catalytic pocket.  

In order to provide off-rate estimations 
and observe other unbinding/binding events 
that could confirm the observed pathway, we 
tried to produce a second multi microsecond-
long simulation ensemble. In this set, taking 
dppIV monomer as the protein coordinates, we 
docked compound 3 into the catalytic pocket, 
using ligand 2’s coordinates in 2RGU

32
 as the 

reference for the alignment. Compound 3’s off-
rate, as presented in Table 1, is 0.08s

-1
. The off-

rate is a zero-order constant independent of the 
concentration, and thus it directly computes a 
residence time of 12.5s. Using a brute-force 
simulation scheme, as the one performed for the 
estimation of binding events would require a 
multi-second simulation trajectory, far beyond 
any MD ensemble simulated to date. For this 
reason, and with the advent of more efficient 
protocols we performed an adaptive sampling 
scheme

52
 focused on the distance between the 

ligand and the pocket’s most characteristic 
residues. Adaptive sampling methods, without 
biasing, attempt to enhance the sampling by 
spawning simulations into successive epochs 
along the binding pathways. This way, 
estimation of off-rates compared to brute force 
sampling can be achieved one or a few orders of 
magnitude faster.

52–54
 A total of 7 epochs and 

108s simulation time were needed until the 
ligand freely diffused in bulk. We then produced 
an MSM analysis as previously done. The MSM 
provided a residence time estimate of the order 
of 10

6
ns (or 0.001s), which compared to the 

experimental value of 12.5, is still 4 orders of 
magnitude faster.  

From the set of 435 simulations, 13 
explored sites with an RMSD of at least 30Å with 
regard to the bound position. Their evolution is 
summarized in Fig. 3. All the simulations come 
from four original simulations in the first epoch 
(1-4). From these four, which ended up in states 
2, 2’ and 2’’, another four were respawned, one 
of them shifting to state 3, in the propeller. 
Twelve simulations were respawned from the 
latter, at different points. In overall, from the 13 
simulations reaching states significantly distinct 
to bound, 11 of them reached bulk through the 
side opening, while two of them partially exited 
through the propeller opening. We then 
searched for a possible complete entrance or 
exit through the propeller opening in the first 
set. To our surprise, we found that 6 out of the 
2000 came into the proximity of the propeller, 
but only one of them performed long 
interactions. This simulation did not perform a 
complete passage through the propeller, staying 
invariantly at the propeller side during its length. 

In conclusion, we have presented an 
example of a ligand-protein system whose 
recognition was characterized by atomistic 
molecular dynamics. Running parallel 200ns-
length simulations in the distributed computer 
project GPUGRID we produced two ensembles 
totalling 0.5ms. Owing to the advances in 
sampling protocols and improvements in the 
analysis by MSM we were able to obtain the 
binding on-rate with remarkable accuracy. The 
most probable pose reproduced the expected 
binding mode as observed in available crystal 
structures from structurally very similar 
compounds, with the main difference being the 
xanthine scaffold twist. Tyr547, which plays a 
critical role in the enzymatic mechanism and 
runs parallel to the xanthine moiety, was found 
in the same conformation as in the apo-dppIV 
form. The aminopiperidine ring adopts the 
expected low-energy chair conformation H-
bonding with E205 and E206 via hydrogen bonds 
although the third bond with Tyr662 is not 
formed. We found the substrate egresses from 
the binding site via the side opening. From the 
thirteen simulations that reached distant states 
from the pocket, 11 simulations transferred to 
bulk. The other two, instead, interacted in the 
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propeller opening and partially exited through it 
from the inner cavity. We identified another 
simulation in which the ligand accesses from 
bulk, but neither performed a complete 
entrance event. In overall, these results suggest 
the route of entry occurs via the side opening as 
anticipated by previous hypothesis, although we 
have observed partial entrances and escapes 
through the propeller opening. We conclude this 
secondary pathway, is indeed a possible route, 
although highly depends on the size of the ligand 
or substrate.  

The estimated residence time, although 
certainly shorter than the experimental -by 4 
orders of magnitude- still the best 
approximation feasible with the current analysis 
and computational techniques. It is very good 
that one hundred microseconds of unbiased 
adaptive sampling managed to unbind a 
compound that is supposed to have a residence 
time of 12.5 seconds. Yet we still fail to produce 
a good approximation of the off-rate even 
having observed several unbinding events. It is 
not clear why this is the case but one possibility 
is a poor projection space, in this case contact 
maps, and a poor clustering over this space. We 
are currently investigating optimal 
dimensionality reduction methods in order to be 
able to tackle drug-like compounds in future. We 
argue that with the fast advance in the proper 
construction of MSM occurring in the recent 
years, overcoming the barrier of the second will 
occur in the near future. Finally, this work 
attempts to push the current computational and 
analysis limits to characterize realistic processes 
in drug discovery projects. 
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FIGU ES 

Figure 1: Overview of the catalytic pocket of dppIV. Compound 1 (BDPX) and 2 (linagliptin) from Table 1 are 
superimposed and their protein surroundings depicted. Both compounds share the same xanthine scaffold, which 

stacks against Tyr547 by π-π interactions. The phenyl and butynil groups in each case extend towards the S1 subsite, 

whereas the piperazine and aminopiperidine occupy the S2 subsite.
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Figure  : Binding pose obtained through MSM analysis in comparison 

with crystal bound pose of Compound   (BDPX) (pdb code  AJ8). The main 

difference between the poses is the overall bending of the simulated pose, around 

   degrees for the planes of the two scaffolds. The aminopiperidine ring is 

expected to form three hydrogen bonds. As consequence of the overall bending 

of the structure it only forms two with E    and E  6. 
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Figure 3: Temporal evolution of the  3 simulations that reached states 

distant away from bound. The trajectories were reconstructed from their parent 

simulations in previous epochs. In all cases except one reconstructed trajectories 

comprised three epochs. The colours indicate the different epochs, and the 

numbers refer to the order they appear in the main text. There are in total are    

steps of    ns. These simulations started from four initial simulations ( - ) that 

finished in states  ,  ‟ and  ‟‟. Their interactions with dppIV are depicted on each 

picture, being states   and  ‟‟ still in contact with the pocket and  ‟‟ at the side 

opening. In the second epoch of simulations, two simulations stayed in their 

states while the other two shifted to others. In the last epochs,   and 6 

simulations were respawned from states   and  ‟‟, while one from state  ‟‟. In 

overall, from the  3 trajectories, the ligand transferred to bulk in    via the side 

opening, while identified and remained at the propeller opening in the other two. 
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Supporting Information  

TEXT 

1. METHODS 

Simulation system setup and simulation parameters 

Input coordinates for DPP-IV monomer were based on the 

pdb code 2RGU, chain A.
1
 The AMBER FF12SB

2,3
 forcefield was 

used to describe all the protein parameters. Compound 2 was 

protonated with the OpenBabel software at pH 7.4
4
 and 

parameterized by the Antechamber 12 tool.
3
 All the complexes were 

explicitly solvated by the LEAP module of the AMBER 12 software 

package in a TIP3P
5
 cubic water box with at least 15 Å distance 

around the complex and then electrically neutralized using Na+ and 

Cl- ions. All the systems always contained one ligand per box 

giving a final concentration of 0.0021 M. Final size systems were 

about 91000 atoms giving cubic boxes of 100 Å per side. 

Each system was minimized and relaxed under NPT 

conditions for 1ns at 1atm and 298K using a time-step of 4 fs, rigid 

bonds, cut-off of 9Å and PME for long range electrostatics. Heavy 

protein and ligand atoms were constrained by a 10 kcal/mol/Å
2
 

spring constant. Production simulations were run using ACEMD
6
 

over GPUGRID
7
 in the NVT ensemble using a Langevin thermostat 

with damping of 0.1 ps
-1

 and hydrogen mass repartitioning scheme 

to achieve timesteps of 4 fs.
8
 For the analysis of the binding 

pathway, more than 2000 brute-force
9
 simulations of 210 ns length 

were performed, giving an aggregate of 487 μs of simulation time. 

All the trajectories started with the ligand placed in different 

positions in solution, conforming an isoenergetic ensemble from 

which the on-rate can also be computed by binding frequency. An 

adaptive sampling method
10

 was run used for the analysis of the off-

rate, for which 7 epochs of 435 trajectories 200 ns length and 209 

trajectories 100ns-length were produced. The sets used for analysis 

were 487 and 108 μs length, respectively. 
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Markov State Model 

A Markov state model (MSM) for each of the systems was 

built from the molecular simulation trajectories. MSMs have been 

successfully used to reconstruct the equilibrium and kinetic 

properties in a large number of molecular systems.
9,11,12

 By 

determining the frequency of transitions between conformational 

states we were able to construct a master equation which describes 

the dynamics between a set of conformational states. Relevant states 

are determined geometrically by clustering the simulation data onto 

a metric space (e.g. contact maps). In this case, a discrete 

description of the process was obtained by means of protein-ligand 

contact maps for the on rate estimation, using all heavy atoms of the 

ligand. Two atoms are in contact if their distance is less than 8 Å. 

The second set used distances between the ligand heavy atoms and 

the protein alpha carbons as the metric. The two analyses were 

performed as follows. First, one of the most important requirements 

for constructing Markov models is to be able to finely discretize the 

slowest order parameters. TICA
13

 (time-lagged independent 

component analysis) is a method that projects the data on the slow 

order parameters, thus producing a very good discretization. After 

projecting the high- dimensionally protein-ligand contact maps onto 

the ten slowest processes found by TICA with a 2 ns lag-time, the 

10-dimensional projected data was clustered using the k-means 

algorithm to produce a Markov model, producing around 3000 

clusters in each case. The master equation is then built as: 

 

  ́    ∑ [                 ]          
 
      (1) 

 

Where Pi(t) is the probability of state i at time t, and kij are the 

transition rates from j to i, and K = (Kij) is the rate matrix with 

elements Kij = kij for i ≠ j and      ∑       . The master equation 

dP/dt = K P has solution with initial condition P(0) given by P(t) = 
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T(t) P(0), where we defined the transition probability matrix Tij(t) = 

(exp[Kt])ij = p(i,t|j,0), i.e. the probability of being in state i at time t, 

given that the system was in state j at time 0. In practical terms, 

pij(  ) is estimated from the simulation trajectories for a given lag 

time    using a maximum likelihood estimator compatible with 

detailed balance.
14

 The eigenvector π with eigenvalue 1 of the 

matrix       corresponds to the stationary, equilibrium probability. 

Higher eigenvectors correspond to exponentially decaying 

relaxation modes for which the relaxation timescale is computed by 

the eigenvalue as    
  

       
, where    is to the largest eigenvalue 

above 1. For long enough lag times    the model will be 

Markovian, however every process faster than    is lost. Therefore 

the shortest lag is chosen for which the relaxation timescales do not 

show a dependence on the lag time    anymore. In our case, we 

chose a lag time of 100ns depending on the fragment as it showed 

the least dependence for the slowest processes the two cases. 

Furthermore, although this fine discretization provides very good 

Markov models, it is needed to reduce the amount of states to obtain 

a humanly interpretable model of the system in question. Therefore, 

the initial ~3000 microstates can be lumped together into  x 

macrostates using kinetic information from the MSM eigenvector 

structure. Mean first passage times and commitor probabilities can 

also be calculated to obtain the relevant kinetics of the system.
15

 

Hence, the produced clusters were then lumped together into 7 

macrostates using the PCCA algorithm, each consisting of a set of 

kinetically similar clusters. Electrostatic plots were performed with 

the PMEPot plugin from VMD.
16,17
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FIGURES 

 Figure S2:  Overall structure of DPP-IV and simulation 

box. (a) DPP-IV crystallizes as a tetramer (pdb  AJ8).
 8
 Each 

monomer presents two openings to a large cavity, the propeller 

opening, and the side opening. Substrates and products are 

hypothesized to enter through the latter. (b) Example of the setting 

for a random simulation box. The receptor was modelled as a 

monomer. Side and propeller openings are shown in the xy and yz 

orientations, respectively. Compound   was always placed at least 

  Å apart from the protein surface in all the starting configurations. 

(Table  , main text). The simulation boxes were     Å per side. 
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Figure S2:  Tyr547 comparison for crystal and simulated 

binding mode. The conformation captured through MSM 

analysis, resembles that of the free enzyme (1NU6)
18

 and 

compound 2 (linagliptin, 2RGU)
1
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Chapter 4 

 

DISCUSSION 

Previous works show the applicability of the methodology in 

different contexts. In this section, we discuss the implications of 

these results and future challenges to overcome. 

4.1 Testing the capabilities of the linear 
interaction energy method in drug discovery 
screenings. 

Scoring functions are widely used in the screening stages of 

the pipeline while the LIE method has usually been postponed to 

later phases, due to its computational requirements. However, with 

the advances in MD-related instrumentation, the simulation time 

required for the screening of a large library is now affordable. In 

publication 3.2 we tested the LIE method as a screening technique 

with ascribed better accuracy. We selected trypsin and a set of 

ligands and decoys from the DUD database,
143

 giving a total of 

1546 compounds, the largest application of the LIE method to date. 

We found in our study, by comparing the LIE method against three 

different molecular docking softwares (AutoDock Vina, Glide and 

GOLD) that its capabilities as a virtual screening tool are moderate. 

Considering the cost of setting up the simulations and running them 

(estimated computational time of 8 days in an in-house 100 GPU-

sized cluster), the method does not provide any particular advantage 

versus known docking methods, which rank compounds with better 

accuracy in shorter times.  

Although the take-home message seems somehow negative, 

the simulations are released to the scientific community and might 

be useful to the development of other methods or the optimization 

of the scaling factors. The results also further settle the docking 
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methods –continuingly improving- as the best alternative for virtual 

screening. Subsequent to this publication, an improvement of the 

LIE method was published that enhances its accuracy and 

efficiency.
144,145

 Although only a small set of systems were 

considered in these studies, perhaps that with these improvements 

and others the LIE method can successfully be applied as a virtual 

screening tool in the near future. Establishing MD-based methods 

like LIE or MM-PBSA/GBSA as a complementary tool in virtual 

screening may confer advantages, particularly when dealing with 

flexible receptors or water-mediated binding modes. 

 

4.2 Establishment of HTMD in-silico binding 
assays for focused libraries of compounds. 

In publication 3.3, we were able to implement and establish 

HTMD for in-silico binding assays (ISBAs) in a library of 

fragments. The method was fully developed and showed to agree 

with experimental results. 12 of 15 crystallographic poses were 

predicted with high accuracy, and affinity estimates in 4 out 6 cases. 

But, rather than in the successful cases, already highlighted in the 

publication, we will focus in the cases in which we failed to predict 

the expected value, or the problems we came across during the 

development of this project, which offer an invaluable input for 

improvement of the method and overview of current challenges.  

Firstly, we will look at the fragments that failed to reproduce 

experimental data: fragments 27, and 36, which did not reproduce 

the affinity, and fragments 19, 35 and 38, which did not recover the 

pose (Fig. 12).  
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Figure 12: Library of fragments used in publication 3.3: fragments 19, 27, 35, 36 

and 38 failed to reproduce expected values and provide the basis for 

improvement. 

Fragment 27 is the largest-sized compound in this library. We 

run 63s of simulation time for it, -the average was 50s- and still 

we might have needed larger simulation times to sample a few 

binding events. For the purpose of understanding, assuming that 

compound size relates to association rates,
142

 and seeing all other 

fragments were in the range 10
7
-10

8 
M

-1
s

-1
 in their kon, we could 

hypothesize this ligand binds with a high 10
6
 on-rate. The ISBA 

experiments were run with a concentration of 3.7mM, and therefore, 

54s of sampling time would be needed if kon=5·10
6
 M

-1
s

-1
. 

Therefore, in our binding set, -which in this case was composed of 

50s of brute-force simulations and 13s of adaptive sampling; we 

perhaps sampled the bound pose too few times. Of course, there 

might be other reasons for the lack in accuracy, but still serves an 

example to take into account for future projects. Estimation of the 

sampling times requirements, although roughly performed, could 

avoid encountering false negatives.  
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We also found another interesting case when looking into 

fragment 36. This compound (chlorotiophene) appears as a moiety 

in the rivaroxaban drug, an oral anticoagulant.
146

 It is part of a new 

generation of bioavailable factor Xa neutral inhibitors, whose 

requirements for affinity are driven by the chlorine-Tyr228 

interaction,
147–150

 instead of the classic basic, poorly bioavailable, 

amidine interaction. The chemical nature of this interaction is the 

halogen bond: a non-covalent interaction which is driven between 

halogen atoms and partially negative molecules.
151

 In the case of 

factor Xa, the interaction is produced between the chlorine and the 

negative -cloud of the tyrosine phenyl ring. Although halogens are 

very electronegative, Cl, Br and I present an anisotropy in their 

charge distribution, with an external region of positive electrostatic 

potential termed sigma-hole. However, the current parameterization 

of the interaction is reduced nowadays to the modelling of a virtual 

massless particle with a point partial charge, with the disadvantage 

of the spatial constraints that small pockets might perform. Current 

implementations present different degrees of automatization, 

ranging from fast general virtual particle introduction to more 

elaborated methods requiring specific optimization.
152–154

 At the 

moment, we are currently working on how to integrate the halogen 

bonding in combination with more accurate parameterization QM 

methods in an automatic fashion. 

The halogen bond is only a particular example of the 

drawbacks of fast parameterization protocols. Concretely, we could 

say that the accurate fast parameterization of chemical entities is the 

current „Achilles‟ heel‟ of the MD focused on drug discovery. 

Previously mentioned in section 1.2.1, both mostly used AMBER 

and CHARMM forcefields offer the general-purpose forcefields 

GAFF and CGenFF, respectively. However, although very fast, 

these forcefields sometimes lack the accuracy required at the stages 

of hit identification or optimization as performed with HTMD. 

During the accomplishment of this work, we found one 

exemplifying case of the fast parameterization problems. When 

automatically parameterizing the set of fragments in Fig. 13, a 

library especially enriched with amidine compounds, we found the 

GAFF atomtype designation was faulty in the nitrogen. Different 

antechamber versions
155

 assigned nh as the atomtype for the 
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simplest case of benzamidine (Fig. 13a), which translated to non-

planarity when in simulation (Fig. 13b). If we manually inserted n2 

or na as the atomtype to keep planarity, the dihedrals did not behave 

as expected from experiments or QM calculations.
156

 We finally 

parameterized this case by combining Gaussian
157

 and 

Antechamber. However, this procedure requires unacceptable levels 

of human intervention.  

 

Figure 13: (a) GAFF Atomtype designation for nitrogen atoms (b) 

Benzamidine‟s hybridization is at the nitrogen atoms when automatically 

parameterized. 

We mentioned two examples of problematic parameterization, 

the lack in accuracy for the concrete amidine case –note that there 

might be others- and the need to properly represent the halogen 

bond interactions –similarly, there are other determinants of ligand-

receptor recognition currently not properly accounted: induced 

electronic polarizability,
158

 changes in protonation states upon 

binding
159

 or the existence of tautomers
160

-. The clear challenge for 

the next years is the implementation of an accurate fast protocol that 

incorporates these interactions while producing robust reliable 

parameterizations in an automated fashion. 

The cases where we failed to reproduce the pose do not have 

so specific attributable reasons. Although, fragment 35 contains also 

more heavy atoms than the average in the set, we are also aware that 

fragments 19, 35 and 38 probably arise from a combination of all 
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the current limitations of the methodology: accuracy of the 

forcefield and parameterization, need for larger sampling times and 

clustering methods used in the MSM production.
161

  

Secondly, when performing the individual ISBAs, we 

observed the flipping of Trp215 towards the S1 site during the 

simulations where fragments performed short-lived interactions in 

the S4 pocket (Fig. 8c). We then simulated apo-factorXa in order to 

see if the conformation was also explored in the free enzyme, 

confirming the Trp215 shifted to other conformations regardless of 

the forcefield and the presence of ligands. By further literature 

search we found that Trp215 acts as the handover between two 

conformations in factor Xa that interconvert in the millisecond 

timescale (Fig. 15). 

 

Figure 14: Different thrombin conformations. The two structures were obtained 

by X-ray crystallography
162

 and their kinetic constants characterized,
162,163

 kr = 45 

± 2 and K-r 70 ± 2 for factor Xa. 

 During these simulations, -and previously in trypsin,
108

 also 

known to present this plasticity- we assumed a single-step process 

in which the protein, although flexible, was basically always the 

active conformer. The reality is that the protein presents also 
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different conformers in solution interconverting at larger scales than 

our ISBAs, but for which the ligands present different affinities. 

Therefore, starting the simulations from one of the conformers 

biases our binding estimates to that single process, although in the 

bigger in vivo picture the ligand might find the receptor in other 

conformations as well. Very recently, and using the trypsin-

benzamidine test case, Noé et. al.
138

 characterized this protease 

conformational plasticity, and the relative affinities of the ligand for 

each of the conformers. It turned out that, for the case of trypsin-

benzamidine (or factor Xa and these set of fragments), the main 

kinetic pathway is the direct binding to the active conformer, since 

it is mostly populated in solution. Therefore, our analyses were 

valid but could have impactful consequences when picking the least 

populated conformer. It is then necessary to perform a 

conformational analysis of the receptor and start the ISBAs from 

different receptor conformers following their equilibrium 

distribution. 

Summarizing, the methodology was successfully established 

and applied into a medium-sized fragment library. With the 

reductions in sampling times provided by the adaptive sampling, the 

method is currently being applied to a library of 700 compounds in 

an unsupervised fashion. In the same way, we have now an 

awareness of the current limitations of the method that we can 

tackle, parameterization automation, more efficient sampling, 

clustering methods and apo-receptor conformational analysis. Some 

others problems, such as the forcefield issue, are out of our scope, 

but continuously under development. We hope that with further 

advances the technique becomes an accurate tool able to provide 

kinetics, poses, and thermodynamics for libraries of a few 

thousands of fragments in the next years. 

 

4.3 Collaboration with pharmaceutical 
companies 
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We have successfully taken the HTMD methodology to the 

real world scenario, by collaborating with three big pharmaceutical 

companies in Publications 3.5, 3.6 and 3.7. 

From the scientific point of view, the accomplishment of this 

works both closed and opened new questions in their fields. Myo-

inositol monophosphatase is a very challenging target for the 

treatment of bipolar disorder and as such a good amount of research 

was centred on understanding the mechanism of binding of 

substrate of cofactors. From one side, the populations of the 

enzyme-cofactor complex in solution in the absence of substrate 

remained unknown. We concluded that the formation of the ternary 

complex is possible, although were not able to characterize its 

population due to the slow timescales. For other side, the concrete 

order of binding had disagreement between studies. We found that 

substrate binding can occur through two different pathways. It 

occurs in the low microsecond timescales to a ternary IMPase. It 

can also occur to a binary IMPase in the millisecond timescale, in 

complex with Mg
2+

 or alone, which quickly rearranges in the pocket 

after substrate binding. The real populations in solution of binary 

and ternary complex will tune the extents in which each of the 

pathways occurs, and it is a question that remains to be answered.  

Dipeptidyl peptidase IV is serine exopeptidase targeted for 

diabetes. It cuts the penultimate aminoacid of polypeptides whose 

route of entry is thought to occur via the (large) side opening. We 

characterized the binding pathway of a drug-like compound and 

found that the exit and entrance through the smaller propeller 

opening might also be possible, and its validation remains to be 

addressed by other techniques. In this work we also concluded that 

the current methodology is able to accurately provide on-rates and 

binding poses, but the characterization of off-rates remains as a 

challenge for next years.  

From the perspective of applying the HTMD in an industrial 

context, we believe that it will be gradually embedded in the assay 

routine. Molecular dynamics is being more and more introduced in 

the drug design industry.
164–166

 Among the reasons, are the crescent 

notion that the receptor dynamics plays a critical role on the binding 
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process and the possibility of computing microsecond ensembles at 

competitive prices. From the experience of these three works, we 

hope many other companies will increasingly integrate HTMD in 

the first steps of their pipelines (Fig. 3) as a complement to other 

established techniques. 
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Chapter 5 

 

CONCLUSIONS 

1. Molecular structure-based analysis coupled to binding free 

energy calculations in the determination of the impact of 

S468R mutation in EGFR in colorectal cancer therapy 

predicts that, resistance to cetuximab can be due to both a 

loss in cetuximab binding affinity and a gain in EGF affinity 

for the receptor. Structural analysis also suggests that 

alternative monoclonal antibody necitumumab might be less 

affected by the mutation. 

 

2. The LIE method is not suitable for high-throughput 

screening purposes when compared to docking methods. 

Although showing satisfactory performance for predicting 

relative binding affinities in large databases of compounds, 

the cost of setting and performing simulations against turns 

unaffordable when compared with docking software. 

 

3. HTMD is a suitable method for hit identification, by 

accurately determining poses, binding kinetics and 

thermodynamics simultaneously. With the awareness of its 

current limitations (forcefield and parameterization issues, 

lack of enough sampling, and conformational plasticity of 

receptors) and its continuous improvements, the method 

may become an accurate virtual screening tool in the near 

future. 

 

4. IMPase is able to form binary and ternary complexes in 

neuronal conditions in the absence of inorganic molecules, 

substrates or inhibitors. The substrate mechanism is a three-

body problem that follows two main pathways of binding: a 

fast, main pathway with myo-inositolphosphate binding to 

ternary IMPase and a slower binding to binary IMPase, in 

complex with Mg
2+

 cofactor or not. 
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5. The route of entry and egress of inhibitors to Dipeptidyl-

peptidase pocket occurs mainly though the side opening, 

although, however, a slower, size-dependent, entry through 

the propeller site is also possible. 

 

6. The estimation of on-rates and characterization of pathways 

of binding for drug-like compounds to large targets is 

currently achievable by HTMD with high accuracy. 

Accurate estimation of slow off-rates remains as a 

challenge. 
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Chapter 6 

 

LIST OF COMMUNICATIONS 

This section lists talks, international stays and posters that I 

carried out during this thesis. Publications were presented in a 

separated section. 

Talks 

 

. HTMD case: Comprehensively understanding inhibition, 

substrate and cofactor binding of myo-inositol 

monophosphatase. Workshop on High Throughput 

Molecular Dynamics, November 7-8
th

 2013, Barcelona, 

Spain. 

. In silico binding assay, II Workshop on High Throughput 

Molecular Dynamics, November 26-27
th

 2015, Barcelona, 

Spain. 

. Introduction to HTMD. Neuroscience department, Pfizer, 

Inc. June 13
th

, 2015, Cambridge, Massachusetts. 

 

International stay 

. Neuroscience department, Pfizer, Inc. May 14
th

 – June 14
th

, 

2015. Cambridge, Massachusetts. 

 

Posters 

. Quantitatively understanding protein-ligand interactions by 

high-throughput molecular simulations.  EFS-EMBO 

research conference. On molecular perspectives on protein-

protein interactions. May 25-30
th

, 2013, Pultusk, Poland. 
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. A novel method for characterization of binding kinetics, 

energetics and poses in fragment based drug design. 

Discovery Chemistry Congress conference. February 18-19
th

 

2014, Barcelona, Spain. 

. Fragment hit identification by molecular simulations. GRIB 

EXPO. The big data challenge. November 10
th

 2014, 

Barcelona, Spain 

. HTMD integrated platform. The first automated simulation 

package. Spanish-Italian Medicinal Chemistry Congress 

(SIMCC-2015). July 12-15
th

, Barcelona, Spain. 
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Chapter 7 

 

APPENDIX: OTHER 
PUBLICATIONS 

This section summarizes a publication in which I contributed 

to a lesser extent than in the previous ones. 

 

Publication 7.1: Emergence of Multiple EGFR 
Extracellular Mutations during Cetuximab 
Treatment in Colorectal Cancer. 

Arena S, Bellosillo B, Siravegna G, Martínez A, Cañadas I, 

Lazzari L, Ferruz N, Russo M, Misale S, González I, Iglesias M, 

Gavilan E, Corti G, Hobor S, Crisafulli G, Salido M, Sánchez J, 

Dalmases A, Bellmunt J, De Fabritiis G, Rovira A, Di Nicolantonio 

F, Albanell J, Bardelli A, Montagut C. Emergence of Multiple 

EGFR Extracellular Mutations during Cetuximab Treatment in 

Colorectal Cancer. Clin Cancer Res. 2015 May 1;21(9):2157-66. 
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Publication 7.2: Potent selective D3 antagonist 
reveals a unique binding mode in GPCR  

Once the methodology was fully validated for drug-liked 

compounds, we applied it to a patented drug binding to the 

Dopamine D3 receptor. We performed this work in collaboration 

with Pfizer, Inc. being able to characterize the concrete binding 

mode of the drug –which pushes residues in helices V and VI not 

previously seen- and conclude the reasons for selectivity. 

Unfortunately, we were not able to obtain permission for full 

disclosure of the data in time for this thesis, so we cannot include 

the manuscript that will be submitted for publications in the next 

months. The abstract is presented below: 

Abstract 

Characterizing the specific route of entry of known drugs to 

G-protein coupled receptors (GPCRs) and the binding mode in 

which they exert their therapeutic action is of inestimable value for 

the drug design process. Concretely, it can be particularly 

interesting when achieving subtype selectivity among high-

sequence homology receptors becomes a challenging task. Here, by 

means large-scale molecular simulations we have captured this 

pharmaceutical process for a patented dopamine D3 receptor 

(D3R)-selective antagonist, whose binding mode remains unknown. 

Our results show a final pose that keeps some of the interactions 

performed by the crystallized antagonist eticlopride in the 

orthostheric site, but expands towards helix V and VI creating a 

novel pocket. Our continuous, detailed description of the binding 

process offers a dynamic rationale for subtype selectivity, and 

reveals a binding mode otherwise hardly to characterize with 

current experimental and computational methods. 
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