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ABSTRACT 

The consumption of milk and dairy products is included as an 

important element in a healthy and balanced diet. Human milk is the most 

appropriate choice for newborns and provides all the energy and nutrients 

needed to ensure proper growth and development. The pattern of the 

exclusive breastfeeding during the first six months of life is very important 

to provide the newborn with some immunomodulatory factors and bioactive 

compounds that are naturally found in human milk and, therefore, it is 

recommended that breastfeeding continue one or even two years over the 

course of the introduction of some complementary foods. 

Therefore, breastfeeding pattern is critically important for infant 

health in the early stage of life where it has been demonstrated that breast-

fed infants suffer fewer gastrointestinal disorders and respiratory 

contaminations rather than formula-fed infants. It is scientifically accepted 

that control of these changes earlier by the nutritional factors may decrease 

or prevent the extension of these diseases to the adult life.  

Moreover, researchers, health and breastfeeding organizations are 

trying to discover the precise substances in human milk that seem to supply 

physiological benefits beyond its normal nutritional value which contribute 

in delay, treatment or prevent some diseases. Thus, these functional 

ingredients hold a great promise for future trends in human nutrition. 

Additionally, the relationship between milk consumption and human health 

requires a deeper understanding to uncover the protective role of some 

bioactive compounds which naturally present in human milk.  

These functional ingredients of human milk, particularly human milk 

oligosaccharides (HMOs), participate in the promotion of the growth and 

activity of beneficial bacteria such as Bifidobacteria and Lactobacilli. 

HMOs are characterized by its diversity and distinct structure. Although 

many attempts have been carried out to supplement the infant formulas with 

different prebiotics and non-digestible oligosaccharides, it could not obtain 

a similar structure and diversity of that of HMOs. Additionally, the presence 

of several proteins such as immunoglobulin (IgG), lysozyme, casein, 
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lactoferrin (Lf), haptocorrin and α-lactalbumin, may improve the defense of 

breast-fed infants against infection where they are relatively resistant in the 

gastrointestinal tract. It was found that Lf is characterized by it’s largely 

ability to remain in intact form and be only partially cleaved by 

gastrointestinal enzymes resulting many bioactive peptides which are 

positively correlated with the promotion of infant health. Other functional 

activities were discovered for human Lf including: antibacterial, anti-

inflammatory, immunomodulatory activities, and recently, anti-cancer 

activity.  

Infant formulas, as milk substitute, play an indispensable role 

especially after 4-6 months of infant life where human milk is no longer 

sufficient to meet all necessary nutritional requirements. Although infant 

formulas should be similar to mature human milk in terms of its 

macronutrients and micronutrients, normally it do not have the functional 

ingredients that are found in human milk, nor do they have the same protein 

composition and the diversity of oligosaccharides as human milk. So it is 

critically important adding these ingredients to infant formulas. This 

evolution of infant formulas manufacturing allow to exert more 

functionalities in a large group of infants who cannot feed human milk as a 

primary source and for several physiological as well as social reasons.  

For mimicking the structure of human milk, GOS (as prebiotic) and 

recombinant human Lf (rhLf) are strongly added to infant formulas to obtain 

similar functionalities for what human milk has.  

Thus, the present study is aimed to explore the functionality of rhLf, 

rhLf hydrolysate and GOS whether alone or added in infant formulas. The 

present study is divided into four experiments:  

 1
th 

experiment was to in vitro evaluate of the role of Lf and/or GOS on 

iron bioavailability as expressed as ferritin formation by Caco-2 cells  

 2
nd

 experiment was to in vitro evaluate of the preventive effect of rhLf 

and rhLf hydrolysate on LPS-induced inflammation using co-culture 

gut inflammation model 
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 3
rd

 experiment aimed to assess the prebiotic activity of Lf and/or GOS 

using batch culture fermentation system. 

 4
rd

 experiment aimed to in vitro evaluate of rhLf stability and the 

identification of the generated bioactive peptides as well as 

determination of long chain fatty acids (LCFAs) profiles before and 

after in vitro simulated gastrointestinal digestion 

The obtained findings of the first study on the role of rhLf and/or 

GOS on Fe bioavailability measured as ferritin formation in Caco-2 model 

revealed that the addition of rhLf and/or GOS to infant formulas resulted in 

improvement of iron solubility percentage which in turn may promote iron 

bioavailability by using the formed ferritin by Caco-2 cells as criteria. It was 

found that the solely addition of GOS or rhLf improved the iron solubility 

percentage but non-significant differences were observed between these 

groups as compared with control group (without any added ingredient). It 

was also observed that the higher solubility percentage of iron was resulted 

by a combination of 0.15% rhLf + 10 % GOS (96.13%) followed by 0.15% 

rhLf + 5% GOS (94.13%), then 0.10% rhLf + 10% GOS (90.01%) and these 

obtained values significantly differed (P<0.05) as compared with the other 

treatments.  

Regarding with iron bioavailability which was measured by the 

ferritin levels formed by Caco-2 cells after its exposure to the conditioned 

digests, the findings showed that the highest value of ferritin was found to 

the formula which contains 0.15 % rhLf + 5% GOS (45.83) followed by 

which contains 0.20 % rhLf + 5 % GOS (45.61), 0.20 % rhLf + 3.3 % GOS 

(43.50), 0.20 % rhLf + 10 % GOS (43.37). These data significantly differed 

respecting with the rest of treatments. Although ferritin expression is 

translationally regulated by intracellular iron concentration and its formation 

by intestinal cells occurs in response to Fe that has been taken up, the 

presented findings showed that iron solubility is not considered the only 

determinant factor of ferritin formation by the cultures. Thus, it is possible 

that another mechanism may participate in ferritin formation rather than 

mineral solubility. In this manner, many published studies revealed that 

divalent metal transporter 1 (DMT1) plays a key role in iron bioavailability. 
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The findings of the second study on the effect of rhLf and rhLf 

hydrolysate on LPS-induced inflammation demonstrated a preventive effect 

of rhLf and rhLf hydrolysate. This preventive effect of rhLf and rhLf 

hydrolysate occurred in a dose-dependent manner and rhLf hydrolysate was 

more effective than rhLf in prevent the LPS-induced disruption of the cell 

monolayer leading to decrease the cell permeability and reverse the barrier 

dysfunction. Findings demonstrated that 2 mg/mL of rhLf hydrolysate 

caused the major inhibition in TEER, IL-8 and ROS production by the 

inflamed cells. At the same time, nitric oxide (NO) production by the 

inflamed cultures did not change after treatment with rhLf or rhLf 

hydrolysate. It has been demonstrated that rhLf and rhLf hydrolysate can 

modulate the inflammatory response and oxidative stress in intestinal cells 

exposed to bacterial endotoxins such as LPS, thus rhLf and rhLf hydrolysate 

is considered a prominent factors for delay and treatment of the 

inflammation process. Many previous findings reported that rhLf and rhLf 

hydrolysate can exert its anti-inflammatory activity through its ability to 

modulate the production of the inflammatory cytokines as well as via TNF-

α inhibition and cytokines modulation. Our findings proposed the 

importance of rhLf and rhLf hydrolysate where play a critical role in the 

inflammation treatment and the later findings related with the role of rhLf 

hydrolysate might start several ideas related with the ability to incorporate it 

as a new additive in infant formulas to improve its functionality to be close 

or near to what human milk has.  

Respecting with the third study, the prebiotic activity of rhLf and/or 

GOS showed that rhLf and/or GOS increased the production of acetic acid 

and total short chain fatty acids (SCFAs) but no significant changes were 

observed and, as previously reported, acetic acid was the major fermentation 

end product. Propionic acid was moderately increased while butyric acid 

was moderately decreased after 24 h of incubation with the tested 

ingredients. The low level of butyric acid is related with the low numbers of 

the butyrate-producing bacterial groups found in human feces such as 

Clostridium, Enterobacteriaceae and Faecalibacterium prausnitzii 
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(Fpra655). Thus, rhLf and/or GOS are being able to inhibit the growth and 

activity of some pathogenic bacteria.  

Respecting with the minor SCFAs (isobutyric, isovaleric, n-valeric, 

isocaproic, n-caproic and heptanoic acids), high variability was reported in 

its concentration among the different treatments as compared with control 

group and also among the time of incubation (at 10 and 24 h) with the 

exception of isobutyric acid which found to be increased at 24 h in all 

treatment as well as control group. The differences between the flora 

patterns predominant in the three fecal inoculums may participate in this 

variability of minor SCFAs concentration.  

In the batch culture fermentation system, which was used in this 

study, pH is one of the most important factors which influences on the 

growth and/or activity of intestinal microflora, particularly Bifidobacteria 

and Lactobacilli and subsequence on the produced SCFAs. The obtained pH 

values in the present study decreased with the time of fermentation. This 

decrease in the values of pH is able to induce changes in the gut flora 

pattern and prevents overgrowth by pH-sensitive pathogenic bacteria like 

Enterobacteriacae and Clostridia. Therefore, several benefits were obtained 

by using rhLf and GOS related with its functionality as bifidogenic factors.  

Regarding with the fourth study on rhLf stability against in vitro 

simulated digestion, it was found that rhLf is more stable than human Lf. 

rhLf treated with pepsin or trypsin seems to be completely degraded and 

only some small bands were observed by SDS-PAGE analysis. Previous 

results reported that pectin and soluble soy polysaccharides improved Lf 

stability and, in the same sense, the present results proposed that the 

presence of GOS may protect rhLf from the digestive enzymes leading to 

increase its stability against in vitro digestion. Therefore, several studies are 

needed to discover this hidden character of some prebiotics. In general, Lf 

stability may be affected by several factors which must be taken into 

account such as pH, the used enzymes, maturity of the digestive system, the 

incubation period and the presence of some material such as phospholipid or 

prebiotics. The use of HPLC technique for determination of the 

chromatographic analysis of rhLf-derived peptides confirmed the obtained 
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results of SDS-PAGE analysis where it was found a similar peptidic pattern 

for rhLf hydrolyzed by trypsin and pepsin. Trypsin has a higher ability to 

generate fragments detectable by this method than pepsin. It seems that 

pepsin had the ability to cleavage the protein at various sites of amino acids 

but trypsin cleaved rhLf at two positions which are arginine (R) and lysine 

(K). These rhLf-derived peptides might possess many functional activities 

as the intact protein or even are more active. Respecting with the effect of in 

vitro digestion on long chain fatty acids (LCFAs) profile, the most 

prominent finding which reflects the importance of breastfeeding pattern 

rather than bottle feeding pattern concerning with its positive role in 

supporting the visual and cognitive development in newborns and infants 

where most of free fatty acids in human milk increased as affected by in 

vitro digestion as compared with infant formula fatty acids which 

disappeared after in vitro digestion.   

Overall, the results obtained from this study highlight and confirm 

the functional activities of rhLf, rhLf hydrolysate and GOS whether as 

infant formulas additives or alone. Likewise, through the presented findings 

it was demonstrated that these functional ingredients may be behave as 

human milk ingredients in the improvement of iron bioavailability, prevent 

LPS-induced intestinal inflammation and decrease the growth and/or the 

activity of pathogenic bacteria. As well as, it was found that rhLf is more 

stable than hLf and more bioactive peptides were generated by trypsin as 

compared with pepsin. However, similar peptidic pattern was observed for 

rhLf whether treated with pepsin or trypsin. In vitro digestion might 

increase LCFAs released in human milk rather than infant formula. The 

presented findings has a great importance at industrial level, these results 

may open a more specific field of research with the food industry to 

improve the formulation of infant formulas in order to obtain a better 

metabolism and development in infants. Taken together, supplementation of 

infant formulas with rhLf, rhLf hydrolysate and GOS may participate in 

improvement its functionality which reflects on the bottle-fed infant’s 

health.  
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RESUMEN 

El consumo de leche y lácteos se incluye como elemento importante 

en una dieta sana y equilibrada. La leche humana es la elección más 

adecuada para los recién nacidos y proporciona toda la energía y nutrientes 

necesarios para garantizar un adecuado crecimiento y desarrollo. El patrón 

de la lactancia materna exclusiva durante los primeros seis meses de vida es 

muy importante para proporcionar los recién nacidos con algunos factores 

inmunomoduladores y compuestos bioactivos que se encuentran 

naturalmente en la leche materna y, por tanto, se recomienda que la 

lactancia materna se prolongue uno o incluso dos años a lo largo de la 

introducción de algunos alimentos complementarios. 

Se ha demostrado que los recién nacidos que toman leche materna 

sufren menos trastornos gastrointestinales y respiratorios que los bebés 

alimentados con fórmulas infantiles. Está científicamente aceptado que el 

control que unos adecuados patrones nutricionales durante los primeros 

meses de vida del niño pueden disminuir o prevenir la extensión de ciertas 

enfermedades en la vida adulta. 

Además, los investigadores y las organizaciones de la salud están 

tratando de descubrir qué componentes de la leche humana son los que, de 

un modo específico, suministran beneficios fisiológicos más allá de su valor 

nutricional normal y que contribuyen en la demora, al tratamiento o a 

prevenir algunas enfermedades. Así, la investigación en estos ingredientes 

funcionales es realmente clave para diseñar las futuras tendencias en la 

nutrición humana en las primeras etapas de la vida.  

Los ingredientes funcionales de la leche materna, particularmente los 

oligosacáridos (HMOs), participan en la promoción del crecimiento y la 

actividad de las bacterias beneficiosas del intestino como Bifidobacterias y 

Lactobacilos. Las HMO se caracterizan por su diversidad y distinta 

estructura y a pesar de que la industria alimentaria adiciona prebióticos y 

oligosacáridos no digeribles en las diferentes fórmulas para bebés que 

elabora no se ha podido conseguir, por el momento, una estructura similar a 

la presente en la leche humana. Además, la presencia de distintas proteínas 
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como inmunoglobulinas (IgG), lisozima, caseína, lactoferrina (Lf), 

haptocorrina y α-lactoalbúmina, puede mejorar la defensa de los lactantes 

contra infecciones que son relativamente resistentes en el tracto 

gastrointestinal. En este sentido, la Lf se caracteriza por permanecer, gran 

parte de ella, en forma intacta tras la digestión gastrointestinal y sólo es 

parcialmente hidrolizada a péptidos bioactivos que se correlacionan 

positivamente con la promoción de la salud. Otras actividades funcionales 

que son atribuidas a la Lf humana son: antibacteriana, anti-inflamatoria, 

actividad inmunomoduladora, y recientemente, actividad anti-tumoral. 

Las fórmulas infantiles desempeñan un papel indispensable sobre 

todo después de 4 a 6 meses de vida de un recién nacido ya que la leche 

materna ya no es suficiente para satisfacer todas las necesidades 

nutricionales a esta edad. Aunque las fórmulas infantiles deben ser similares 

a la leche materna madura en términos de sus macronutrientes y 

micronutrientes, por lo general no tienen, ni cualitativa ni cuantitativamente, 

los ingredientes funcionales que se encuentran en la leche humana, ni tienen 

la misma composición de proteínas y la diversidad de oligosacáridos de la 

leche materna. Por lo tanto, es muy importante agregar estos ingredientes de 

las fórmulas infantiles. La evolución en la composición las fórmulas 

infantiles con mejoras en sus procesos de fabricación permiten ejercer más 

efectos positivos en un grupo grande de los recién nacidos que no pueden 

ser alimentados con leche materna como fuente primaria por distintas 

causas.  

Por lo tanto, el objetivo del presente estudio ha sido evaluar la 

funcionalidad de lactoferrina humana recombinante (rhLf), Lf hidrolizada 

(LfH) y GOS en las fórmulas infantiles. 

A este fin, el estudio se dividió en cuatro experimentos: 

 1
er

 experimento, para evaluar in vitro la función de rhLf y/o GOS en la 

biodisponibilidad de hierro expresado como ferritina formada por las 

células Caco-2 

 2
nd

 experimento, para evaluar in vitro del efecto antiinflamatorio de 

rhLf y el hidrolizado de rhLf en inflamación inducida por LPS 

mediante co-cultivo celular de un modelo intestinal 
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 3
rd

 experimento, encaminado a evaluar la actividad prebiótica de rhLf 

y/o GOS mediante fermentación de los ingredientes en muestras de 

heces de lactantes.  

 4
rd

 experimento, evaluar in vitro de la estabilidad de rhLf y el perfil de 

los ácidos grasos de cadena larga (LCFAs) antes y después de la 

digestión gastrointestinal simulada in vitro, así como la identificación 

de los péptidos bioactivos generados. 

Los resultados del primer estudio sobre el papel de la rhLf y/o GOS 

sobre la  biodisponibilidad del Fe a través de la formación de ferritina en las 

células Caco-2 reveló que la adición de rhLf y/o GOS a las fórmulas 

infantiles mejora el porcentaje de la solubilidad del hierro que, a su vez, 

puede promover la biodisponibilidad del hierro mediante la formación de 

ferritina por la línea celular Caco-2. Se observó que la adición, de manera 

individual, de la rhLf o GOS mejora el porcentaje de la solubilidad del 

hierro, pero no se observaron diferencias significativas entre estos grupos en 

comparación con el grupo control. También se observó que el mayor 

porcentaje de hierro soluble se obtuvo a partir de los ensayos con una 

combinación de 0.15 % rhLf + 10 % GOS (96.13 %), seguido por 0.15 % 

rhLf + 5% GOS (94.13 %) y de 0.10 % rhLf + 10% GOS (90.01 %) y estos 

valores obtenidos difieren significativamente (P<0.05) en comparación con 

el resto tratamientos. 

En cuanto a biodisponibilidad del hierro medido en función de los 

niveles de ferritina sintetizados por las células Caco-2 después de su 

exposición a los digeridos previamente acondicionados, los hallazgos 

mostraron que el mayor valor de ferritina se encontró en las células 

expuestas a la fórmula que contiene 0.15 % + rhLf 5% GOS (45.83), 

seguida por que contiene 0.20 % rhLf + 5 % GOS (45.61), 0.20 % rhLf + 

3.3 % GOS (43.50), 0.20 % rhLf + 10 % GOS (43.37). Estos datos difieren 

significativamente con el resto de los tratamientos. Aunque la expresión de 

ferritina se forma translacional regulada por la concentración del hierro 

intracelular y su formación por las células intestinales se produce en 

respuesta a Fe que ha sido captado, los resultados de este trabajo 

demostraron que la solubilidad del hierro no es el único factor determinante 
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de la formación de ferritina por las células. Por lo tanto, es posible que otro 

mecanismo pueda participar en la formación de ferritina en las células 

intestinales. De esta manera, muchos estudios publicados han revelado que 

transportadores de metales divalentes (como DMT1) desempeñan un papel 

clave en biodisponibilidad de hierro. 

Los resultados del segundo estudio sobre los efectos de la 

lactoferrina intacta e hidrolizada sobre la inflamación inducida por LPS 

bacteriano demostraron un efecto protector de rhLf y el hidrolizado de rhLf. 

el hidrolizado de rhLf fue más capaz que rhLf en proteger frente la rotura de 

la monocapa celular inducida por LPS y que conduce a disminuir la 

permeabilidad celular y a una disfunción de la barrera. Los resultados 

demostraron que 2 mg/mL del hidrolizado de rhLf causó una gran 

disminución en los parámetros de inflamación inducida por la LPS (TEER, 

y la producción de IL-8 y de ROS por células inflamadas). Al mismo 

tiempo, la producción del óxido nítrico (NO) por las células inflamadas no 

cambió después del tratamiento con rhLf o el hidrolizado de rhLf. Se ha 

demostrado que rhLf y el hidrolizado de rhLf puede modular la respuesta 

inflamatoria y el estrés oxidativo en las células intestinales expuestas a las 

endotoxinas bacterianas como LPS, por lo tanto, rhLf y el hidrolizado de 

rhLf son considerados un importante y destacado factor para el tratamiento 

del proceso inflamatorio. Muchos de los hallazgos encontrados dicen que 

rhLf y el hidrolizado de rhLf puede ejercer su actividad anti-inflamatoria a 

través de su capacidad de modular la producción de las citoquinas 

inflamatorias, así como mediante el TNF-α y nuestros resultados apuntan en 

el mismo sentido. Nuestros hallazgos confirman la importancia de rhLf y el 

hidrolizado de rhLf en ejercer un papel crítico en el tratamiento de 

inflamación; y los datos relacionados con el papel del hidrolizado de rhLf 

por lo que su consideración para ser incluida como ingrediente de las 

fórmulas infantiles es elevada, tiene solidez y debe ser tenida en cuenta. 

Respecto al tercer estudio sobre la actividad prebiótica de rhLf y/o 

GOS), se encontró que rhLf y/o GOS aumentaron la producción del ácido 

acético y los ácidos grasos de cadena corta (SCFAs), pero no sin poder 

destacar cambios importantes. El ácido propiónico fue moderadamente 
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aumentado, mientras que ácido butírico disminuiyó después de 24 horas de 

incubación con los ingredientes ensayados en el presente estudio. Los bajos 

niveles del ácido butírico pueden estar relacionados con un bajo número de 

los grupos bacterianos productores del ácido butírico que se encuentran en 

las heces humanas, como el Clostridium, Enterobacterias y 

Faecalibacterium prausnitzii (Fpra655).  Por lo tanto, rhLf y/o el GOS 

pueden estar inhibiendo el crecimiento y la actividad de algunas de estas 

bacterias patógenas. 

Respecto a la menor producción de SCFAs (isobutírico, isovalérico, 

n-valérico, isocaproico, caproico y n-heptanoico), se observó una gran 

variabilidad en sus concentraciones en los diferentes tratamientos, en 

comparación con el grupo control y también para los distintos tiempos de 

incubación (a las 10 y 24 h), con la excepción del ácido isobutírico que se 

observó en concentraciones más elevadas a las 24 h, en todos los 

tratamientos, así como en el grupo control. Las diferencias entre la flora 

predominante en las heces fecales de los distintos donantes es, 

probablemente, la responsable de esta variabilidad en la concentración de 

SCFAs. 

El pH es uno de los factores más importantes que influyen al 

crecimiento y/o la actividad de la microflora intestinal, especialmente sobre 

las Bifidobacterias y Lactobacilos y la producción de SCFAs. Los valores 

de pH obtenidos en el presente estudio disminuyeron durante el tiempo de 

fermentación. Este pH es capaz de modular los cambios de flora intestinal y 

evitar el sobrecrecimiento de bacterias patógenas sensibles al pH como 

Enterobacteriacae y Clostridium. Por lo tanto, varios beneficios se 

obtuvieron utilizando rhLf y GOS relacionados con su función como 

factores bifidogénicos. 

En cuanto al cuarto estudio, que trata de la estabilidad de la rhLf 

frente a la digestión simulada in vitro, se encontró que rhLf es más estable 

que la Lf humana. rhLf tratados con pepsina y tripsina son completamente 

degradados y sólo algunas pequeñas bandas fueron observados por SDS-

PAGE. Resultados de otros autores indican que la pectina y polisacáridos 

solubles de soja mejoran la estabilidad de rhLf, y en el mismo sentido, los 
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resultados obtenidos podrían indicar que la presencia de GOS puede 

proteger la rhLf de las enzimas digestivas contribuyendo a aumentar su 

estabilidad contra la digestión in vitro. En general, la estabilidad de la Lf 

puede verse afectada por varios factores tales como el pH, las enzimas 

utilizadas, la madurez del sistema digestivo, el período de incubación y la 

presencia de fosfolípidos o prebióticos. Por lo tanto, más estudios son 

necesarios para descubrir nuevas propiedades de algunos prebióticos. 

El uso de la técnica de HPLC para la determinación y análisis 

cromatográfico de Lf-péptidos derivados confirmó los resultados obtenidos 

en el análisis de SDS-PAGE observándose un perfil peptídico similar para 

rhLf hidrolizada por tripsina y pepsina. La tripsina tiene una mayor 

capacidad de generar fragmentos detectables mediante este método que la 

pepsina. Parece ser que la pepsina tiene capacidad de desdoblamiento de la 

proteína en diferentes lugares de aminoácidos pero la tripsina escinde la 

rhLf en dos posiciones que son la arginina (R) y lisina (K).  Estos péptidos 

derivados podrían tener muchas actividades funcionales, como la proteína 

intacta, o incluso son más activas. 

Respecto  al efecto de la digestión in vitro sobre el perfil de los 

ácidos grasos de cadena larga (LCFAs), se refleja la importancia de la 

lactancia materna en lugar de patrón de alimentación con fórmula infantil 

por su papel positivo en el desarrollo visual y el desarrollo cognitivo en los 

niños y en los recién nacidos donde la mayoría de los ácidos grasos libres en 

la leche humana aumenta no son afectados por la digestión in vitro en 

comparación con los ácidos grasos de las formulas infantiles que 

desaparecieron tras la digestión in vitro. 

En general, los resultados obtenidos en este estudio ponen de relieve 

y confirman las actividades funcionales de rhLf, el hidrolizado de rhLf y 

GOS como aditivos alimentarios a las fórmulas infantiles, de modo conjunto 

o individual. Del mismo modo, a través de la presentación de los resultados 

se demostró que estos ingredientes funcionales se pueden comportar como 

ingredientes de la leche materna para, entre otros efectos más cococidos, 

mejorar la biodisponibilidad del hierro, evitar inflamación intestinal 

inducida por LPS y disminuir el crecimiento y/o la actividad de las bacterias 
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patógenas. Tal y como se ha demostrado, rhLf es más estable que Lf 

humana y muchos péptidos bioactivos son generados por la tripsina en 

comparación con la pepsina. Sin embargo, un similar patrón peptídico se 

observó para rhLf tratada con pepsina o con tripsina. La digestión in vitro 

podría aumentar LCFAs liberados en la leche materna al compararlo con 

fórmula infantil. 

Los resultados de esta tesis tienen una gran relevancia al nivel 

industrial y pueden abrir un campo de colaboración con la industria de la 

alimentación para mejorar la formulación de las fórmulas infantiles con el 

fin de obtener un mejor metabolismo y desarrollo de los bebés. 

Consideradas en su conjunto, la administración de rhLf, el hidrolizado de 

rhLf y GOS a las fórmulas infantiles puede contribuir a mejorar la 

funcionalidad de las mismas en comparación a los niños alimentados con las 

formulas infantiles convencionales. 
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Chapter 1 

General Introduction 

1.1. Overview  

It has been broadly acknowledged that breastfeeding is the best food 

for newborn during the initial six months of life. Mother's milk gives all the 

nutritive components to ordinary development and for the digestive states of 

newborn children notwithstanding build the full of feeling relationship of 

the mother towards the baby. It additionally contains various defensive and 

immunoregulatory factors that may have a valuable impact on the 

advancement of the newborn child's resistant framework. Breastfed babies 

endure less gastrointestinal and respiratory contaminations, this is 

particularly highlighted in the lower financial gatherings of creating nations 

(Cesar et al., 1999), and there is expanding confirmation of a comparable 

defensive impact of breastfeeding in created nations (Raisler et al., 1999). 

Subsequently human milk is viewed as the first and the best decision for the 

baby (Alles et al., 2004).  

The bioactive compounds of breast milk are a large group of 

different kinds of molecules (proteins, peptides, carbohydrates, ....) that are 

naturally present in human milk which are added to infant formulas for 

achieving the functional effects that occur in children fed with breastfeeding 

(Dorca, 2008) and the interest in the presence of these bioactive substances 

in human milk is reinforced by its almost total absence in infant formulas 

(Gómez-Gallego et al., 2009).  

Human lactoferrin (hLf) is one of the most important components of 

human milk proteins constituting about 10-15%. This protein has many 

positive effects on infant health where promotes the absorption of iron, has 

antimicrobial, antiviral and anti-inflammatory activities, is growth and 

proliferation factor of the intestinal mucosa, and favors the incorporation of 

thymidine into DNA (the latter being an independent effect of iron) (Baró et 

al., 2001), being also immunomodulatory and anticarcinogenic (Korhonen et 

al., 1998). 

Other compounds of human milk are Human Milk Oligosaccharides 

(HMOs) which have been recognized as a new class of potent bioactive 
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molecules (Wu et al., 2011). HMOs are the third most abundant component 

of human milk (Kunz et al. 2000), and also provides functional capacity 

including prebiotic activity, anti-adhesive and immunomodulators. Various 

strategies have been used to mimic the structural complexity of HMOs 

(Hamosh, 1996; Oddy, 2002).  

However, breastfeeding is not generally conceivable, attractive or 

adequate, and is therefore necessary to create infant formulas attempting to 

replace breastfeeding giving the necessary nutrients for optimal growth and 

development of infants. In these cases, infant formulas play an 

indispensable role in infant nutrition (Alles et al., 2004).  

The creation of infant formula has developed alongside the 

knowledge of breast milk composition. Nowadays, companies and research 

centers is devoted to prepare these formulas focusing their efforts on 

enhancing the quality of infant formulas, not only adapting the 

concentration of macronutrients and micronutrients but also the composition 

of bioactive compounds to make it similar to human milk (Dorca, 2008).  

Regarding with infant formulas evolution and how to produce a 

suitable nutritional substitute for infant and newborns, European Food 

Safety Authority (EFSA, 2012) recently accepted and approved bovine 

lactoferrin (bLf) as a new food ingredient. Thus, various types of infant 

formulas containing Lf are available in the market of many countries such 

as Japan and Spain (Mulder et al., 2008). Since bLf is truly diverse in 

several perspectives when compared with hLf (Kawakami and Lönnerdal, 

1991), there is significant interest in replacing the use of bLF with hLF in 

products for human utilization (Conesa et al., 2010). In this way various 

attempts have been made to produce recombinant human lactoferrin (rhLF) 

from rice (Nandi et al., 2002; Rachmawati et al., 2005). Currently, 

supplementation of infant formula with rhLf represents an attractive 

application (Suzuki et al., 2003).  

With the aim to mimic human milk, also prebiotic formulations, 

which are now added to commercial infant formula, are mixtures of 

galactooligosaccharides (GOS), fructooligosaccharides (FOS), inulin and 

polydextrose. These sugars are provided in roughly the same concentration 

as in human milk, but do not mimic the diversity and complexity of sugar 
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side chains exhibited in human milk (Sherman et al., 2009). In spite of the 

tremendous advancement in infant formula industry, human milk is still 

viewed as the best source of infant nutrition (Leung & Sauve, 2005; 

American Academy of Pediatrics, AAP, 2012). Many studies needed to 

assess the functionality of the bioactive components of human milk 

especially lactoferrin (Lf) and oligosaccharides whether alone or added to 

infant formulas. 

1.2. Infant feeding 

1.2.1. The breastfeeding pattern 

Good nutrition is essential for the development and improvement 

that happens during an infant’s first year of life. When developing infants 

are fed the appropriate types and amounts of foods, their health is promoted 

(United States Department of Agriculture, USDA, 2009). In such manner 

and as per AAP (2012), the breastfeeding is viewed as the favored decision 

of feeding for all infants and the exclusive breastfeeding for about the initial 

6 months is key for an adequate health, followed by continued breastfeeding 

with introducing of some complementary foods when breast milk alone is 

no more adequate to meet the nutritional necessities of infants. 

Consequently, it has been suggested that breastfeeding ought to be 

proceeded until one or even two years old (WHO, 2001).  

So breastfeeding is without a doubt the best type of feeding for 

newborns and young infants and its advantage go far beyond nutritional and 

anti-infective benefits (Mathew, 2004). In this respect, various studies have 

shown that the breastfeeding at the first months of life can decrease 

worldwide mortality diarrhea, respiratory illness, and other infectious 

disease by up to 55% (Chantry et al., 2006), and this is principally because 

the human milk components that are viewed as major contributors to 

decrease morbidity rates in breastfed infants (Newburg, 2000a). One of 

these major active components is Lf which has numerous healthy effects on 

the newborns such as the antimicrobial effects which add to the protective 

factor of breast milk (Story & Parish, 2008; Gifford et al., 2005; Jackson & 

Nazar, 2006). 

Additionally, human milk contains vital and multiple immunological 

and anti-infective agents (Chirico et al., 2008). They include, among many 
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others, proteins with antimicrobial components such as secretory 

immunoglobulin A (IgA), lysozyme, and Lf; the last one has immune-

modulating properties in addition to its well-known anti-infective properties. 

Oligosaccharides in human milk inhibit bacterial adhesion, further 

protecting against pathogens. Nucleotides and cytokines of human milk, 

also assist with T-cell maturation and immune system modulation, 

evidenced by, e.g., the more robust immune response that breastfed infants 

exhibit after vaccination. Human milk also promotes healthful 

gastrointestinal microbiota (Zivkovic et al., 2011), and can actively 

stimulate development of the newborn’s host defenses to provide continued 

mucosal protection after breastfeeding. Several components of human milk 

such as growth factors, interleukin-10 (IL-10) and also Lf can reduce the 

inflammatory response to stimuli in the newborn intestine (Petit, 2008; 

Walker, 2010). Lf as a functional human milk ingredient has been 

demonstrated to increase the resistance of newborns to infections and also 

has many biological activities that are essential for an adequate health of 

infants. Recently, Lf has taken more attention in regarding with some 

healthy activities like its role in the improvement of bone health, cancer 

prevention and its role as transcription factor. Lf is also able to enter a cell 

and to activate the transcription of specific DNA sequences and this Lf-

DNA interaction is reported to be responsible for antiviral activity 

(Adlerova et al, 2008). 

The benefits of breastfeeding have been well-documented which 

provides optimal nutrition and prevents common childhood diseases 

(Abiona et al., 2006). The importance of breastfeeding is not only providing 

essential nutrients to infants, but it has many health benefits for both 

children and their mothers (Kramer & Kakuma, 2002). Breastfeeding helps 

to build up a safe and full of feeling relationship between the mother and her 

infant and offers numerous other positive advantages. Based on the above-

mentioned, breastfeeding should be actively promoted and supported as the 

most desirable method of infant feeding. 

It is scientifically accepted that the feeding pattern can influence the 

composition of gut flora which differs between breast-fed infant and 

formula-fed infants with a higher proportion of Bifidobacteria species in 
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breast-fed infants (Harmsen et al., 2000; Alles et al., 2004; Iacono et al., 

2005; Granier  et al., 2013). Another difference was observed between the 

two types of feeding which is the higher absorption of iron from human 

milk as compared with feeding on cow milk or infant formula (Jovani et al., 

2001) and this might partly explained by the higher concentration of Lf in 

human milk than bovine milk (Vorland, 1999). Likewise, the discovery of 

Lf receptors in the enterocytes of various species and its high affinity for Lf 

support this hypothesis. These Lf receptors show species and molecular 

specificities depending of the animal species and this would explain the high 

bioavailability of iron from human milk, as only hLf releases iron to the 

enterocyte by this mechanism (Gonzalez-Chavez et al., 2009). 

1.2.2. The bottle-feeding pattern 

1.2.2.1. Infant formulas: concepts and types 

Although breast milk is the optimal source of nutrition for infant, 

infant formula and milk substitutes are considered as an appropriate 

alternative for infants nutrition at the first year of life when breast milk is 

not available, or the mother cannot breastfeed her baby (Alles et al., 2004), 

or newborns cannot be breastfed or cannot receive human milk (WHO, 

1986). 

In general, the design of infant formula is based on the composition 

of human milk and the current trend in infant formulas manufacturing is 

looking to provide not only nutritional compounds but also similar 

functional effects than human milk. The final aim of infant formula 

development is not necessarily to mimic the composition of human milk in 

every respect, but to achieve physiological effects as in breast fed infants 

(Gómez-Gallego et al., 2009). 

In the European legislation, Commission directive 2006/141/EC of 

22 of December 2006 on infant formulas and follow-on formulas and 

amending the directive of 1999/21/EC, are called “infant formulas or 

formula 1” and defined it as "foodstuff intended for special nutritional use 

during the first months of life and satisfying by themselves the nutritional 

requirements of this category of persons", whereas "follow-on formula or 

formula 2 ” means "foodstuffs intended for special nutritional use by 
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infants aged over four-six months and young children and constituting the 

principal liquid element in a progressively diversified diet of this category 

of persons" (European Commission, 2003). Table 1.1 shows the basic 

composition of infant formulas 1. 

1.2.2.2. The design and current trends of infant formulas composition  

Infant formula manufacturers are continuously looking for 

modifications on composition in an attempt to simulate human milk in 

function. Nowadays, is normal that infant formulas contain some of the 

functional ingredients of human milk such as prebiotic, probiotic bacteria, 

polyunsaturated fatty acids, Lf and nucleotides (Joeckel & Phillips, 2009). 

Infant milk formula is subjected to strict regulations for composition and 

hygiene (Koletzko et al., 2005). Nowadays, Lf (Wakabayashi et al., 2006) 

and GOS (Motil, 2000; Gopal & Gill 2000) are commonly added to infant 

formulas. The most important compounds added to infant formulas are: 

Prebiotic and probiotic 

Prebiotics are defined as ¨non-digestible substances in food, such as 

oligosaccharides, which can stimulate growth and activity of beneficial 

bacteria in the gastrointestinal tract, they are not digested by human 

gastrointestinal enzymes, hence, can enter the colon intact serving as 

fermentable substrates for the colonic microbiota (Gibson & Roberfroid, 

1995) preferably Bifidobacteria (Roberfroid, 2000). Human milk contains 

more than one hundred different oligosaccharides structures, comprising a 

total concentration of 15-23 g/L in colostrum and 8-12 g/L in transitional 

and mature milk, that together with the other milk components are the major 

source of prebiotic effect (Kunz et al., 2000; Euler et al., 2005). 

They are also considered an important growth-promoting bifidus 

factor (Kunz et al., 2000). Thus, the prebiotic oligosaccharides play a role 

in enhancement of the growth and activity of probiotic bacteria and this 

named “the bifidogenic effect” (Gibson & Roberfroid, 1995) which 

considered one of the most important biological indicators of the 

resemblance of infant formulas to human milk (Martinov et al., 2011). 
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Table 1.1. The basic components of infant formulas. 

NS = not specified, According to Koletzko et al. (2005). 

 

 

Components Units Minimum Maximum 

Energy Kcal/100ml 60 70 

Protein    

      Cows’ milk protein g/100 Kcal 1.8 3 

      Soy protein isolates g/100 Kcal 2.25 3 

      Hydrolyzed cows’ milk protein g/100 Kcal 1.8 3 

Lipids    

      Total fat g/100 Kcal 4.4 6.0 

      Linoleic acid g/100 Kcal 0.3 1.2 

      -Linoleic acid g/100 Kcal 50 NS 

      Ratio linoleic/a-linolenic acids    

      Lauric + myristic acids % of fat NS 20 

      Trans fatty acids % of fat NS 3 

      Erucic acid % of fat NS 1 

Carbohydrates    

      Total  Carbohydrates g/100 Kcal 9.0 14.0 

Vitamins    

     A µg RE/100 Kcal 60 180 

     D3 µg /100 Kcal 1 2.5 

     E mg a-TE/100 Kcal 0.5 5 

     K µg /100 Kcal 4 25 

     Thiamin µg /100 Kcal 60 300 

     Riboflavin µg /100 Kcal 80 400 

     Niacin µg /100 Kcal 300 1500 

     B6 µg /100 Kcal 35 175 

     B12 µg /100 Kcal 0.1 0.5 

     Pantothenic acid µg /100 Kcal 400 2000 

     Folic acid µg /100 Kcal 10 50 

     C µg /100 Kcal 10 30 

     Biotin µg /100 Kcal 1.5 7.5 

Mineral and trace elements    

      Iron (formula based on cows’ milk protein                                                                   

and protein hydrolysate) 

mg /100 Kcal 0.3 1.3 

      Iron (formula based on soy protein isolate) mg /100 Kcal 0.45 2.0 

     Calcium mg /100 Kcal 50 140 

     Phosphorus (formula based on cows’ milk 

protein and protein hydrolysate) 

mg /100 Kcal 25 90 

     Phosphorus (formula based on soy protein   

isolate) 

mg /100 Kcal 30 100 

     Ratio calcium/phosphorus mg/mg 1:1 2:1 

     Magnesium mg /100 Kcal 5 15 

     Sodium mg /100 Kcal 20 60 

     Chloride mg /100 Kcal 50 160 

     Potassium mg /100 Kcal 60 160 

     Manganese µg /100 Kcal 1 100 

     Fluor µg /100 Kcal NS 100 

     Iodine µg /100 Kcal 10 50 

     Selenium µg /100 Kcal 1 9 

     Cupper µg /100 Kcal 35 100 

     Zinc mg /100 Kcal 0.5 1.5 

Other substances    

     Choline mg /100 Kcal 7 50 

     Myo-inositol mg /100 Kcal 4 40 

     L-carnitine mg /100 Kcal 1.2 NS 

     Taurine mg /100 Kcal NS 12 
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As mentioned above that HMOs may serve as substrates for colonic 

fermentation, it has been shown that HMOs induce an increase in the 

number of Bifidobacteria of colonic flora in breast-fed infants, 

accompanied with a significant reduction in the number of potentially 

pathogenic bacteria (Kunz et al., 2000). Complex oligosaccharides have the 

ability of inhibiting the binding of pathogens to cell surfaces because they 

act as competitive receptors on the host cell surface, thereby preventing 

adhesion of a number of bacterial and viral pathogens (European 

Commission, 2003). Thus there are many differences in the fecal 

microbiota between breast-fed infants and formula-fed infants. Harmsen et 

al. (2000) used a new molecular identification and detection method to 

compare the fecal flora of breast-fed and formula-fed infants and it was 

reported that Bifidobacteria are dominant in breast-fed infants, while the 

amounts of Bifidobacteria and Bacteriodes spp. are similar in the feces of 

formula-fed infants. In this regards, Solis et al. (2010) reported that the 

microbiota of formula-fed infants is more diverse and contains substantial 

quantities of Bacteriodes, Enterobaceriaceae and Clostridium species. 

FOS and GOS may be voluntarily added to infant formula (< 0.8 

g/100 mL) in a ratio of 90% GOS: 10% FOS. The Food and Agricultural 

Organization (FAO) of the United Nations supports the supplementation of 

formula with prebiotics in infants aged five months and older, as these 

infants will have a mature immune system and intestinal colonization 

(Ackerberg et al, 2012). 

Probiotics are ¨live microbial components that beneficially affect 

the host by improving its intestinal microbial balance¨. Bifidobacteria are 

predominant in infants fed formulas supplemented with Bifidobacteria and 

was similar to that found for breast-fed infants as compared with the control. 

Thus probiotic bacteria are promising component and have been used 

successfully in infant formulas production (Alles et al., 2004). In general, 

the aim of adding probiotics and prebiotics to preterm infant formula is to 

improve growth, development and decrease infections by promoting an 

intestinal microbiota resembling that of breast-fed infants (Underwood et 

al., 2009). 
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Nucleotides 

Nucleotides are ¨nitrogenous compounds which play and their 

metabolites derivatives a key role in numerous biochemical and 

physiological processes, such as energy transfer processes, they are 

precursors for nucleic acid synthesis (DNA and RNA), and they are key to 

the synthesis of carbohydrates, lipids and proteins¨. Human milk contains, 

in free form, ribonucleotides and ribonucleosides, which account for 2-5% 

of non-protein nitrogen in human milk, may contribute to excellent use of 

the protein by breast-fed infants (Baró et al., 2001). In addition, human 

milk contains significant amounts of related compounds: nucleosides, 

purine and pyrimidine bases, nucleic acids and products derived from them 

(such as uridine diphosphate galactose) (Gil & Uauy, 1995). 

The concentration of free nucleotides in human milk is higher than 

in bovine milk. Because bovine milk is most often used to formulate infant 

milk formulas, most milk formulas are supplemented with nucleotides to 

increase the concentration to a level that is similar to the concentration 

found in human milk (Pickering et al., 1998). 

Recently, legislation allows the addition to infant formulas and 

follow-on formula, nucleotides in quantities of: 1.5 mg adenosin-5-

phosphate/100 kcal, 2.5 cytosine-5-phosphate/100 kcal, 0.5 kcal guanosina-

5-phosphate/100 mg, 1.75 mg Uridine-5-phosphate/100 kcal, 1 mg inosin-

5-phosphate/100 Kcal, until a total concentration of 5mg/100 kcal, which is 

similar to the amounts of free ribonucleotides in milk (4-6 mg/100 kcal) 

(European Commission, 2003). Also in this context, Koletzko et al. (2005) 

reported that ESPGHAN supports the optional addition of nucleotides in 

amounts not to exceed 5 mg/100 Kcal as adverse effects have been seen 

with higher concentrations. 

The supplementation of infant formulas with the dietary nucleotides 

will results in increased the growth of probiotic bacteria in the intestinal 

tract with a reduction of the pathogenic bacteria population due to the 

competitive exclusion. It was reported by Gil et al. (1986) that babies fed 

nucleotide-supplemented infant formula have increased ‘friendly’ 

Bifidobacteria counts in feces compared to infants fed standard formula 

milk, but counts were still lower than found in breast-fed babies. Infant 
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studies also suggest those receiving nucleotide supplemented formula have 

an improved antibody response following immunization (Schaller et al., 

2004). 

Polyunsaturated fatty acids 

In the last two decades, special attention has been paid to the 

composition and physiological function of the lipid fraction in human milk. 

Human milk fat is the major source of energy for the breast-fed infants, 

contributing some 40-55% of the total energy intake. Human milk fat 

contains essential nutrients which are lipid soluble vitamins and 

polyunsaturated fatty acids (PUFAs), including linoleic acid of the n-6 

series (C18:2 n-6) and α-linolenic acid of the n-3 series (C18:3 n-3). 

Omega-3 and omega-6 fatty acids are essential fatty acids and are an 

important component of human milk with a significant role in the overall 

growth and development of infant (Ganapathy, 2009). The components of 

human milk that may partly explain the observed differences are the 

polyunsaturated fatty acids (PUFAs): docosahexaenoic acid (C22-6, n-3; 

DHA) and arachidonic acid (C20-4, n-6; AA). DHA and AA are derived 

mainly from their precursors, α-linolenic acid (ALA, an omega-3 fatty acid) 

and linoleic acid (LA, an omega-6 fatty acid), respectively (Innis, 2008). 

Concentrations of PUFAs in human milk are relatively stable during 

the first year of life: DHA is equivalent to 0.5% in colostrum and 0.25% in 

mature milk, which is equivalent to 7 to 8 mg/dL; AA is equivalent to 1% 

in colostrum and 0.5% in mature milk, which is equivalent to 14 - 15 

mg/dL (Martinez, 1992). It is well established that breastfeeding pattern is 

associated with a better neurological, cognitive and behavioral outcome 

than formula feeding pattern (De Jong et al., 2010), and the prolongation of 

breastfeeding period was associated with a better cognitive outcome at six 

years (Kramer et al., 2008), suggesting that the composition of human milk 

plays a key role in the positive association between breastfeeding and 

cognitive development. 

Nowadays, it is generally accepted that infants should receive at 

least 0.3% of both DHA and AA in infant feeding (Koletzko et al., 2008), 

even though higher DHA levels in formulas have been suggested to special 

group such as preterm infants (Makrides et al., 2009). 
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1.3. The nutritional needs during infancy 

The quantity and quality of nutrient supply during early life 

modulates the differentiation of tissues and organs and has short- and long-

term consequences for health (Koletzko, 2008). Table 1.2 shows the 

average of nutrient intakes in breast-fed infants and non-breast-fed infants 

from 6-12 months of age.  

The importance of introducing complementary foods and infant 

formulas after breastfeeding is to cover all the required nutritional needs 

and to prevent the deficiency of any nutrient. For example, infants with 

high requirements of specific nutrients such as iron may benefit from the 

introduction of nutrient sources other than human milk prior to the age of 6 

months (ESPGHAN, 2002).  

 Fats are the main source of energy for infants, and PUFAs especially 

long-chain polyunsaturated fatty acids (LCPUFAs) are essential for normal 

growth, development and for maturation of numerous organ systems, most 

importantly the brain and eye (Mena & Uauy, 2008). Human milk contains 

varying amounts of LA, ALA, DHA, AA, and other LCPUFAs depending 

on maternal intake (Koletzko et al., 2008). For infants from birth to six 

months of age, the adequate intake for total fat is 31 g per day, 4.4 g per day 

for n-6 polyunsaturated fats and 0.5 g per day for n-3 polyunsaturated fats. 

For infants aged seven to 12 months, the adequate intake for total fat is 30 g 

per day, 4.6 g per day for n-6 polyunsaturated fats and 0.5 g per day for n-3 

polyunsaturated fats (Ministry of Health of New Zealand, 2008). 

Also protein is an essential component of the diet required for infant 

growth. Unlike fat and carbohydrate sources, most protein is used for 

growth and not for energy generation. Exclusive breastfeeding meets the 

protein and amino acid requirements during the first 4–6 months of life. 

During the second 6 months of life, solid foods contribute a significant 

amount of protein to the infant diet (Michaelsen et al., 2000). 

The adequate intake of protein for infants from birth to six months of 

age is 10 g per day, and for infants aged seven to 12 months it is 14 g per 

day (National Health and Medical Research Council, NHMRC, 2006).  The 

recommended dietary intake for toddlers aged one to two years is 14 g per 
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Table 1.2. Average of nutrient intakes in breastfed infants and non-

breastfed infants from the 6th to the 12th month of age. 

 

 

Nutrient 

Breastfed infants Non-breastfed infants 

6 

months 

of age 

9 

months of 

age 

12 

months 

of age 

6 

months 

of age 

9 

months 

of age 

12 

months of 

age 

Energy, 

macronutrients and 

dietary fiber 

Energy (KJ) 

Protein (g) 

Carbohydrate 

Dietary fibers (g) 

Fat (g) 

 

 

 

3564 

17 

- 

5 

27 

 

 

 

5364 

41 

- 

10 

39 

 

 

 

6142 

50 

- 

15 

48 

 

 

 

5294 

41 

- 

6 

25 

 

 

 

6411 

45 

- 

14 

34 

 

 

 

7641 

61 

- 

17 

55 

Minerals 

Ca (mg) 

Zn (mg) 

Fe (mg) 

Mg (mg) 

Si (µg) 

Sodium (mg) 

 

672 

2.2 

11 

56 

11 

310 

 

1209 

3.5 

32 

125 

16 

1396 

 

977 

6 

16 

216 

25 

1600 

 

672 

3 

21 

128 

5 

8744 

 

1209 

4.1 

21 

209 

11 

1888 

 

977 

6.7 

12 

230 

26 

2315 

Fat-soluble vitamins 

Vitamin A (µg RE) 

Vitamin D (µg) 

Vitamin E (mg ─TE) 

Vitamin K (µg) 

 

1290 

10 

2 

- 

 

1731 

19 

4 

- 

 

1701 

7 

4 

- 

 

943 

9 

3 

- 

 

1858 

10 

4 

- 

 

1168 

4 

3 

- 

Water-soluble 

vitamins 

Thiamin (mg) 

Riboflavin (mg) 

Niacin (mg NE) 

Vitamin B6 (mg) 

Vitamin B12 (µg) 

Folate (µg) 

Pantothenic acid 

(mg) 

Biotin (µg) 

Vitamin C (mg) 

Choline (mg) 

 

 

- 

- 

4 

- 

- 

47 

- 

5 

85 

- 

 

 

- 

- 

9 

- 

- 

103 

- 

14 

132 

- 

 

 

- 

- 

16 

- 

- 

154 

- 

23 

162 

- 

 

 

- 

- 

6 

- 

- 

78 

- 

9 

75 

- 

 

 

- 

- 

9 

- 

- 

106 

- 

16 

214 

- 

 

 

- 

- 

19 

- 

- 

178 

- 

30 

131 

- 

Adapted from Simons (1999). Note: - = not measured.  
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day, or 1.08 g per kilogram body weight (Ministry of Health of New 

Zealand, 2008). 

Carbohydrates can be classified to digestible and non-digestible 

carbohydrates and is important to remark that human milk contains both of 

them. Digestible carbohydrates are one of the main sources of dietary 

energy in infancy and childhood and are essential for growth and 

development (Stephen et al., 2012). The main digestible carbohydrate in 

mature breast milk is lactose which provides about 40% of the energy 

content (Koletzko et al., 2005), in addition to a large variety of 

oligosaccharides in concentrations of approximately 5–10 g/L (Kunz et al., 

2000). 

Non-digestible carbohydrates such as FOS, GOS, inulin, soy 

polysaccharide, resistant starch, and gums are added to dietary products, 

enteral formulas and human milk substitutes consumed by infants (Aggett et 

al., 2003), considering that the adequate intake of carbohydrates for infants 

from birth to six months of age is 60 g per day; and 95 g per day for infants 

aged seven to 12 months (Ministry of Health of New Zealand, 2008). 

Although the minerals and trace elements are very important and 

play a pivotal role in infant health. The needs and role of iron for infants in 

the early stage of life are only discussed in this section. Healthy term infants 

are normally born with plenty of iron where they need a relatively high iron 

intake because they are growing very rapidly. But after 6 months of age, 

iron content of human milk is not sufficient to meet many infants’ 

requirements, thus requirement for dietary iron increases to an estimated 

0.78 mg/day due to the stepwise depletion of endogenous stores and rapid 

growth (Institute of Medicine, IOM, 2000). In this regard, where iron-

fortified complementary foods are not widely and regularly consumed by 

young children, infants should routinely receive iron supplements in the first 

year of life. Where the prevalence of anemia in young children (6–24 

months) is 40% or more, supplementation should continue through the 

second year of life (Stoltzfus & Dreyfuss, 1998). 

The recommended dietary intake (RDI) for iron for an infant 7 to 12 

months old is 11 mg per day. The recommended daily intake for toddlers 

aged one to three years is 9 mg per day. Absorption is about 18 percent from 
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a mixed western diet including animal foods and about 10 percent from a 

vegetarian diet; so vegetarian infants need higher intakes (NHMRC, 2006). 

 

1.4. Iron as nutrient 

1.4.1. The physiological importance and the presence of iron in diet, 

human  and cow milk 

Iron is a pivotal and essential trace element for the maintenance of 

the human health due to its obligate role in a number of the physiological 

processes (Sharp & Srai, 2007). However, in excess, iron is potentially toxic 

to cells due to its ability to catalyse the production of reactive oxygen 

species (ROS) (Steele et al., 2004). Excessive iron accumulation leads to the 

damage of liver, heart, pancreas and other organs. Beside systemic disorders 

of iron homeostasis, local mismanagement of iron plays a role in several 

disorders (Stankowski et al., 2012). 

Dietary iron is present in two different forms: non-heme iron (found 

in cereals, vegetables, pulses, beans, fruits as simple iron oxides or complex 

iron chelates) and heme iron (mainly found in meat and meat products). 

Non-heme iron is predominant in all diets forming some 90-95% (Darshan 

& Anderson, 2007) and is found as Fe
2+

 bound to insoluble proteins, 

phytates, oxalates, phosphates and carbonates, and as ferritin (Scientific 

Advisory Committee on Nutrition, 2010), While heme-iron forms 5-10% of 

total daily iron intake. However, the heme-iron is the most bioavailable 

source of iron (20-30%) while the non-heme iron has a low bioavailability 

amounting of 1-10% of the dietary load (Hallberg et al., 1989). 

In human milk, iron content is low 0.2-0.4 mg/L (Domellof et al., 

2002) and is mainly bound to Lf (20-45%; Chierici & Vigi, 1994); while in 

cow milk it is mainly bound to casein (24 %) (Renner et al., 1989), which 

correlates well with the finding of Makino and Nishimura (1992), which 

reported that 95% of hLf is in the monoferric and/or apo-lactoferrin form. 
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1.4.2. Absorption of iron 

1.4.2.1. Uptake of iron into enterocytes 

Iron absorption occurs mainly in duodenum and upper jejunum, 

although small amounts may also be absorbed from stomach, ileum and 

colon (Anderson & Vulpe, 2002). At the cellular level, iron is absorbed 

through the differentiated epithelial cells (enterocytes) of the mid to upper 

villus. Iron is provided to the body in various forms through the diet, but is 

primarily absorbed as either inorganic (non-heme) iron or as heme iron 

(Lönnerdal, 2010).  

The first step is termed mucosal uptake, and iron uptake is defined 

by Merit et al. (2003) as ¨the transport of dietary iron across the apical 

membrane of the enterocytes into the intestinal mucosa¨. There are at least 

two separate mechanisms for the uptake of heme and non-heme iron into the 

enterocytes (Scientific Advisory Committee on Nutrition, 2010). The 

passage of iron through the enterocyte into the circulation is depicted in Fig. 

1.1.  

In the case of the absorption of non-heme iron from the intestinal 

lumen to the enterocytes, Fe
3+

 (ferric iron) is first reduced to Fe
2+

 (ferrous 

iron), most likely by duodenal cytochrome b (Dcytb), making it available 

for transport across the brush border membrane by divalent metal 

transporter1 (DMT1) into the cytoplasm (Steele et al., 2004). 

On the other hand, the absorption of heme iron across the apical 

membrane occurs more efficiently but the mechanism is still unclear (Steele 

et al., 2004; West and Oates, 2008; Le Blanc et al., 2012). The passage of 

heme iron across the apical membrane is facilitated by intestinal heme 

transporter named heme carrier protein 1 (HCP1) (Dunn et al., 2006). 

Latunde-Dada et al. (2006) claimed that a heme receptor was identified in 

piglets and human. Likewise, Dunn et al. (2007) stipulated that a receptor 

for HCP1 is present in a large concentration in the duodenum. Once heme 

iron has been taken up by the enterocyte, the heme molecule is degraded by 

heme oxygenase to release ferrous iron as clarified by Dunn et al. (2007). 

Inside the enterocyte, heme and non-heme iron enter a common transit pool, 

where iron may be chelated by low molecular weight compounds or bound 

to a protein ligand such as ferritin (Steele et al., 2004). 
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Fig. 1.1. Schematic of intestinal iron absorption (adapted from Rizvi 

and Schoen, 2011).  

 

1.4.2.2. Export of iron from enterocytes to blood circulation 

The second stage of iron absorption is termed basolateral or serosal 

transfer, where iron is transported from the enterocytes into the intestinal 

capillaries across the basolateral membrane, most likely via the iron 

transporter iron regulated protein 1 (IREG-1 or ferroportin 1) (Steele et al., 

2004). The ferrous iron delivered for the basolateral membrane of the 

intestine is exported by ferroprotein, a metal protein transporter 1, to the 

plasma. The ferrous iron is oxidized to ferric iron by ferroxidase hephaestin 

(Dunn et al., 2007). The role of hephaestin in association with ferroprotein 

to oxidize ferrous iron is important before it is exported and bound to 

transferrin (Mackenzie & Garrick, 2005). 

1.4.2.3. Transport of iron  

Transferrin (Tf) is the major protein that binds and delivers iron to 

tissues. Each Tf molecule can transport 2 ferrous iron molecules (Hirose, 

2000). Conformation of the binding site is suitable with ferric iron in a 

delicate manner (Harris, 1986). Transferrin binds to one of the transferrin 

receptor (TfR) on cell membrane; TfR1 or TfR2 (Casey at al., 1988). TfR1 

is expressed in all tissues except mature erythrocytes while TfR2 is 

primarily expressed in the liver (Kawabata et al., 1999). Although protein 
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structures of TfR1 and TfR2 have a high degree of homology, their 

functions and regulation are not the same. Expression of TfR1 is tightly 

regulated by cellular iron levels through HFE (hereditary human 

hemochromathosis protein) protein. However, cellular iron levels have no 

effect on the regulation of TfR2. TfR2 senses the body iron status by 

sensing the transferrin saturation and regulates hepcidin expression properly 

(Fleming et al., 2002).  

Once Fe
3+

-Tf complex binds to its receptor at the cell surface, the Tf-

TfR1 complex is internalized in clathrin-coated pits that form endocytic 

vesicles. Inside the cells, the internalized complex in the endosome is 

acidified by a vacuolar H
+
-ATPase (V-ATPase) that lowers the luminal pH 

to about 5.5. This acidification process induces conformational changes in 

Tf-TfR1 complex with consequent release of iron (Sipe & Murphy, 1991) 

which transports around the body to various tissues (Ohgami et al., 2005). 

The main part of the iron carried by Tf is used by the formation of 

hemoglobin (Hoppe, 2008). 

1.5. Dietary factors affecting iron bioavailability 

Iron chemical state is one of the most important factors that affect on 

its absorption. In this context, in inorganic food compounds, iron is 

normally in the oxidized form (Anderson, 2002), but absorption requires 

reduction to Fe
2+

, for iron enters in the mucous cell as a reduced free iron 

that is more easily absorbed than ferric ion (Sgarbieri, 1987). Also Conrad 

(1970) reported that iron physical and chemical form affects its absorption 

that used radioactive markers and concluded that hemoglobinic iron is more 

efficiently absorbed than inorganic iron. Also Anderson (2002) reported that 

iron has a greater availability when present in the form of iron sulfate than 

in salts such as sulfite, bisulfate, phosphate, carbonate, bicarbonate among 

others. Thus it is notable that iron chemical form has an important effect on 

its absorption and availability. 

There are many differences in absorption of iron in food where foods 

contain many dietary factors affecting on iron absorption and 

bioavailability. The iron absorption enhancement agents are vitamins 

(especially vitamin C or ascorbic acid) and organic acids, meat and fish, 

meanwhile different compounds (mainly of vegetable origin) such as phytic 
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acid, soy protein, polyphenols, and calcium are considered as inhibitors of 

iron absorption. There are also some functional components present in 

different foods that are considered as iron absorption enhancement agents 

like Lf and GOS which will be discussed in the section 1.9. 

1.6. Absorption and bioavailability: definition and applied methods 

An adequate bioavailability is dependent on an optimal digestion and 

solubility, an optimal transport over the mucosal layer into the circulation, 

and finally an optimal incorporation into the target organs. Although to 

assess iron bioavailability all these steps, should be related any of these 

steps can be used as an isolated measure to estimate bioavailability (Hoppe, 

2008). Bioavailability is dependent on digestion, release from the food 

matrix, absorption by intestinal cells, and transport to body cells (Etcheverry 

et al., 2012). The concept of bioavailability as applied to nutrients is 

critically important for understanding nutrient metabolism, homeostasis and 

ultimately requirements (Krebs, 2001). While utilization is the process of 

transport, cellular assimilation and conversion to biologically active form(s) 

(Jackson, 1997). 

Throughout the years, in vitro screening methods have been 

developed and refined for determination of nutrient bioaccessibility and 

bioavailability from foods. These are plentiful number of techniques 

developed to assess iron absorption and bioavailability that can provide 

useful information, especially when one considers the vast number of 

factors that can affect nutrient absorption. There are a several of them can 

be combined creating a vast number of methods with varying accuracy 

when it comes to accomplish results relevant in humans. Generally, the 

principally in vitro methods for measuring iron absorption and/or 

bioavailability are: solubility, dialyzability and the Caco-2 models for 

bioavailability (Etcheverry et al., 2012). 

These in vitro methods are useful to provide knowledge on possible 

interactions between nutrients and/or food components, the effects of 

luminal factors (including pH and enzymes), food preparation and 

processing practices, nature of the food matrix…etc., on either 

micronutrient absorbability (a component of bioavailability) or on the 

potential for a nutrient to be absorbed (i.e., bioaccessibility). In vitro 
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methods are less expensive, faster, and offer better controls of experimental 

variables than human or animal studies (Sandberg, 2005). However, in vitro 

studies cannot be substituted for in vivo studies, and should be therefore 

regarded as a screening, ranking, or categorizing tool (Etcheverry et al., 

2012).  

Because the in vitro digestion methods (solubility and dialyzability) 

has various limitations, these methods have been improved by the 

incorporation of a human colon carcinoma cell line (Caco-2) which provides 

many functional and morphological properties of mature human enterocytes 

(Ekmekcioglu, 2002). So this system is able to mimic and estimates the 

uptake and/or transport of mineral elements, and has been used to assess 

iron uptake from infant formulas (Jovaní et al., 2004). In this regard, 

combining in vitro digestion with uptake in Caco-2 cells is a step forward 

since it predicts both availability and uptake into the enterocyte and at times 

also the absorption (Fairweather-Tait et al., 2005). Cell culture has been 

used extensively as an in vitro method to assess human iron bioavailability 

(Pinto et al., 1983). This cell model has been used in a wide variety of 

nutritional studies, particularly in the study of mechanisms (Han et al. 

1995), regulation of iron absorption (Tapia & Nuñez, 1999) and iron 

bioavailability studies (Glahn et al., 1998). The application of a Caco-2 cell 

model appears to be promising as a physiological means of measuring 

mucosal cell iron uptake (Au & Reddy, 2000).  

1.7. The nutritional state and prevalence of iron deficiency anemia 

among the Egyptian infants 

Anemia is defined as a state in which the level of hemoglobin or 

hematocrit is below that which is expected, taking in account both age and 

sex (Stoltzfus & Dreyfuss, 1998). Although anemia is the most prevalent 

public health problem with serious consequences for national development, 

it is ignored in most developing countries (World Bank, 1996; Bashir, 

2013). In this regard, the World Bank reported that almost one third of the 

world population is believed to be anemic and the WHO estimates the 

number of anemic people worldwide to be about two billions (Stoltzfus, 

2001a, b). 

Tapia,%20V.%20&%20Nuñez,%20M.%20T.%20(1999).%20Transferrin%20stimulates%20iron%20absorption,%20exocytosis%20and%20secretion%20in%20cultured%20intestinal%20cells.%20Am.%20J.%20Physiol.,%20276:%20C1085-C1090.
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Iron deficiency is the main cause of anemia and it is generally 

assumed that 50% of the cases of anemia are due to iron deficiency (WHO, 

2001). In general, iron deficiency occurs when insufficient iron is absorbed 

to meet the body’s needs. This may be due to inadequate iron intake, poor 

iron absorption, increased iron need or chronic blood loss, and is well 

known that prolonged iron deficiency leads to iron deficiency anemia (IDA) 

(Bashir, 2013). Although the most common cause of nutritional anemia is 

iron deficiency (WHO, 2002), other possible causes include deficiencies of 

vitamins B-6, B-12, A, and C, folic acid, and riboflavin (Fishman et al., 

2000). These micronutrients are known to affect the synthesis of 

hemoglobin either directly or indirectly by affecting the absorption and/or 

mobilization of iron (Dreyfuss et al., 2000). Therefore, IDA is a major 

problem in developing countries especially Egypt (Soliman et al., 2010) and 

considered to be one of the most contributing factors to the global burden of 

disease (WHO, 2002). 

The causes of nutrition problems in Egypt are a function of many 

factors: most households are food insecure because of low income, high 

food prices and low local agricultural production, in addition to poor dietary 

practices due to lack of awareness, and inadequate health service provision 

capacities. There are also the problems of environmental pollution and food 

safety challenges due to lack of enforcement of existing laws. There is an 

overarching health system challenge that derives from uncoordinated and 

disjointed planning of nutrition activities; often leading to sub-optimal use 

of resources and impact on nutrition status (Zawilla, 2013). 

Moreover, in the developing countries, the rate of exclusive 

breastfeeding and complementary feeding is far from optimum, ranging 

between 30-50%. In Egypt, the rate of exclusive breastfeeding is 79 % for 

infants under two months of age. This figure drops to 30 % for infants who 

are 4-5 months of age (El-Zanaty & Way, 2004). At first glance Egypt 

appears to be doing fairly well and above the range of the rate of exclusively 

breastfeeding amongst developing countries. However, the observed drop 

after three months, demonstrates that Egypt is far from optimum. Thus, 

there is an urgent need to improve breastfeeding practice i.e. increase the 

duration of exclusive breastfeeding to ensure universal coverage of this 
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practice (The Egyptian Ministry of Health and Population, MOHP, & 

UNISEF, 2012).  

Also poor eating habits play a major role in the development of IDA 

which is an important indicator of poor health status (World Bank, 1994). 

Likewise, the Egyptian rural community has special dietary patterns depend 

on their culture as drinking tea immediately after meal. In addition, the 

composition of the typical Egyptian diet consumed daily can inhibit the 

absorption of iron where it contains low iron-level foods, tea, coffee and a 

certain type of fiber (Tatala & Svanberg, 1998; Emam et al., 2005). 

Although the iron deficient intake is one of the major causes of IDA 

(Aspuru et al., 2011), the poverty and ignorance still primary causal factors 

of IDA (Odunayo & Oyewole, 2006) especially in the developing counties 

such as Egypt. 

It is worthy to note that the nutritional anemia is the most common 

type of anemia in Egypt and it is mostly caused by iron deficiency or 

insufficient intake of folate or vitamin B-12 where the deficiency of these 

essential nutrients in children may be due to factors such as reduced 

absorption during meals (e.g. due to tannin and phytate in unleavened bread 

(Verster & van der Pols, 1995). Therefore, the prevalence of IDA is 

relatively high especially in the rural areas (Emam et al., 2005), and almost 

25-27% of the Egyptian infants and young children aged 6-59 months have 

IDA (El-Beshlawy et al., 2000; Al-Buhairan & Oluboyede, 2001). The 

anemia was mild in many cases, however, 11% of children had a moderate 

level of anemia; and a small proportion (less than 1%) were classified as 

having severe anemia. Children under age of two years were more likely to 

be anemic than older children. Rural children were more likely to be anemic 

than urban children (33 and 24%, respectively), and children in rural Upper 

Egypt and the Frontier Governorates had the highest anemia levels (38%) 

(El-Zanaty & Way, 2004). Thus and according to WHO criteria, IDA is 

considered to be a moderate public health problem in Egypt (FAO & 

Egyptian National Nutrition Institute, NNI, 2003). 

El-Sayed et al. (1999) studied the prevalence of anemia in the Upper 

Egypt area (Minia, Assiut and Sohag cities) and reported that anemia was 

very highly prevalent among all Egyptian pre-schoolers (69%). Minia City 
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showed the highest trend in prevalence of anemia, followed by Sohag city 

and then Assiut city. The prevalence of anemia was slightly higher in most 

rural sites and was higher among girls (70%) than boys (68%). The highest 

prevalence was seen in the second year of life. Severe anemia was observed 

among 5.5% of pre-school children. Breastfeeding pattern, economic status, 

parasitic load and the anemia state of mothers were all significantly 

associated with the risk of anemia. Also the prevalence of anemia in 

children is considered to be a major problem in Qena city as elsewhere in 

Egypt (Moussa, 1990), but population based data, especially on children, are 

limited (Ibrahim et al., 1999). Although indicators of child health have 

improved, the current rates for malnutrition in children are still unacceptably 

high, especially in rural Upper Egypt (WHO, 2006).  

In recognition of its nutritional challenges, Egypt has developed a 

10-year Food and Nutrition Policy and Strategy (2007 – 2017). In 2010, 

UNICEF Egypt Country Office, together with MOHP, commissioned this 

Landscape Analysis. This was timely to complement Egypt’s National Food 

and Nutrition Policy and Strategy, which had been in existence for four 

years. Egypt is the first country in the Middle East and North African region 

to conduct this landscape analysis (MOHP & UNISEF, 2012). 

The landscape analysis demonstrates that there are many views on 

nutrition actions by different public and private stakeholders in Egypt. 

These actions include, amongst others, development of policies and national 

nutrition programs such as food fortification, food subsidies and other social 

assistance, and feeding programs including school and health facility 

nutrition kitchens; providing technical advice to national and sub-national 

levels (by UN agencies); developing an innovative community-based 

nutrition programs in rural and poor settings; supporting baby-friendly 

facilities; interventions that target pregnant women, infants and children; 

research, monitoring and evaluation and information dissemination 

activities; targeted programs for street kids and homeless people in urban 

settings; child labour and women initiatives; and various training on 

nutrition. Noteworthy is that none of these activities is operating at scale to 

meet the current needs in terms of addressing underlying food insecurity 

issues, there are interventions to improve quality of subsidized food 
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commodities, support for improved agricultural production, and improved 

management of water and sanitation services. Once again, these 

interventions remain inadequate (MOHP & UNISEF, 2012). 

Clearly major health benefits could be achieved by choosing 

appropriate and cost effective strategies that successfully alleviate 

micronutrient deficiencies in developing countries. Strategies include 

supplementation to those at risk, food based strategies involving 

fortification of foods and dietary diversification, and public health actions to 

reduce infections and promote good health. The food supplementation refers 

to the addition of a nutritious food to a simple diet (Thompson, 2007).  

The WHO is revising global guidelines for controlling IDA. 

Implementation of anemia control programs in developing countries 

requires careful baseline epidemiologic evaluation, selection of appropriate 

interventions that suit the population, and ongoing monitoring to ensure 

safety and effectiveness. Fortified bread nationwide in Egypt is a goal to 

compact anemia from 2012. The annual cost of fortifying bread would be 

US$10.3 million, and the government will supply special mixing machinery 

to bakeries. The government is also subsidizing folic acid for pregnant 

women to ensure mothers get the necessary vitamins. Supplementing 

children after the first year of age with fortified cow’s milk and with iron 

supplements is also important to prevent anemia (Zawilla, 2013). In 

addition, fortification of infant and follow-up milk-based formula remains a 

valuable method for delivering iron to infant and young children that use a 

significant proportion to reduce the incidence of iron deficiency anemia 

(Ramakrishnan, 2001). 

1.8. The common strategies for prevention of iron deficiency and IDA 

The prevention and control of IDA is one of the key strategies of the 

health maintaining which will contribute to reduction of maternal and child 

mortality and improve health outcomes for population as a whole (Gupta et 

al., 2013).The three main strategies (Fig. 1.2) that can be implemented to 

overcome micronutrient malnutrition IDA are dietary diversification, food 

fortification with iron and supplementation (Huma et al., 2007). Food-based 

strategies, which include dietary diversification and fortification appears in  
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Fig. 1.2. Different strategies to prevent and control IDA and anemia 

(WHO, 2001). 

 

 

the most sustainable approaches to increase the iron and other 

micronutrients status of a population (FAO/ILSI, 1997). 

Dietary diversification is encouraging the consumption of 

micronutrient rich foods-dark green leafy vegetables, lentils and vitamin C 

rich fruits which may be available but are underutilized by the iron deficient 

population (Gupta et al., 2013). Dietary modifications for reducing IDA 

involve increased intake of iron rich food (Graham et al., 1992) or 

consumption of ascorbic acid rich fruits and vegetables that enhance non-

heme iron absorption (Monsen, 1988). Likewise, people with poor iron 

status should avoid drinking tea with meals as it is likely to inhibit non-

heme iron absorption (Nelson & Poulter, 2004). 

Techniques such as soaking, germination, and fermentation promote 

enzymatic hydrolysis of phytic acid in whole grain cereals and legumes by 

enhancing the activity of endogenous phytase enzyme (Frontela et al., 

2009). Even use of non-enzymatic methods such as thermal processing, 

soaking, and milling for reducing phytic acid content in plant-based staples 

also have been successfully used (Liang  et al., 2008; Schlemmer et al., 

2009). 

Another approach to overcome the IDA is through supplementation 

of individuals or communities at risk. This approach would be implemented 
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for the treatment of individuals with anemia or in situations where at-risk 

communities of infants and young children do not have ready access to 

targeted iron-fortified foods (Andres, 1999).  

Also foods fortification is an effective public health intervention 

strategy and it is useful to increase the intake of specific nutrient(s) that have 

been identified as inadequate in the food (Clydesdale, 1991). Food 

fortification strategy means the addition of one or more essential nutrients to 

food for the purpose of preventing or correcting a demonstrated deficiency 

of one or more nutrients in the population or specific population groups 

(FAO/WHO, 1999). The first step in a fortification program is the selection 

of a food that can function as a vehicle for the micronutrient. This food 

vehicle must be an integral component of the diet of the general population 

(Arroyave & Dary, 1996). In regard of the vehicle foods, there are two types 

of fortifications strategies:  

1- The fortification of staple foods, such as flour is likely to increase 

iron intake and  

2- The fortification of specific foods, such as infant formula, infant 

cereals and most breakfast cereals, is suitable to infants and children who 

have a limited capacity to eat large quantities of food. Targeted fortification 

(e.g., the fortification of foods typically eaten by infants and children) 

provides an excellent source of iron (USDA, 2001). The efficacy of iron 

fortification strategy in the improvement of iron status depends on many 

factors such as the selected vehicle, the iron compound, and the iron status 

of the target population group (Hansen et al., 2005). Thus, iron fortification 

of food is considered a very suitable long-term strategy when selected iron 

fortificant and food vehicle is safe, acceptable, and consumed by the target 

population (Huma et al., 2007). 

Nowadays in Egypt, controlling micronutrient deficiencies, 

especially IDA, has been one of the priorities for the Government of Egypt 

(MOPH/National Nutrition Institute, NNI, 2006).  

Iron/folic acid fortification program for wheat flour (82% extraction) 

used for Baladi bread consumed by Egyptians started for gradual 

implementation since 2008, as a long-term strategy for prevention and 

control of IDA (Tawfik et al., 2014). Moreover, the Government of Egypt’s 
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National Food and Nutrition Strategy (2007–2017) report recommended that 

a nationwide fortification effort must be done to reduce anemia among 

Egyptian women and children (World Food Program/Cairo Demographic 

Centre, 2010). 

This National Fortification Program (NFP) was based on a pilot 

Baladi bread fortification project conducted in 2004 and 2005 at El Fayum 

governorate by NNI representing the MOHP and aimed to participate in 

reducing micronutrient deficiencies, especially IDA, among the Egyptian 

populations, especially vulnerable groups (Flour Fortification Initiative 

Egypt, 2012). In this NFP, Baladi bread was chosen as a vehicle for iron and 

folic acid fortification because it is the staple food consumed by a majority 

of the poor Egyptian population and low-income groups (World Food 

Program/Cairo Demographic Centre, 2010). The subsidized 82% extraction 

wheat flour was fortified with iron at 30 ppm in the form of ferrous sulfate 

and folic acid at 1.5 ppm. Ferrous sulfate fortificant was chosen on the basis 

of previous experience in the pilot project that was implemented in one 

governorate (Elhakim et al., 2012).  

Clear evidence of the reduction of iron deficiency among the 

Egyptian population through the consumption of wheat flour fortified with 

iron and folic acid is not yet available and is pending the outcome of an end-

line survey (Elhakim et al., 2012). Regarding with the used fortificant, 

WHO issued new recommendations to use sodium 

ethylenediaminetetraacetate (NaFeEDTA) in addition to, or instead of, 

ferrous sulfate for fortification of high-extraction flour such as that used to 

make Baladi bread. The Egyptian government decided to maintain the same 

fortificant (ferrous sulfate) and to judge by the outcome of the end-line 

survey whether and how to proceed in the next 5 years. Depending on the 

outcome, the government may decide to extend the use of ferrous sulfate for 

another 5 years, use NaFeEDTA instead, or use a mix of the two (Elhakim 

et al., 2012).  

In addition, the Egyptian Government acknowledges that a single 

intervention, such as food fortification, will not resolve the problem of iron 

deficiency. It is scientifically accepted that the best results will be achieved 

through a multiple intervention strategy like the one currently being 
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conducted by the Egyptian Government that includes iron supplementation 

and treatment and prevention of parasitic infestations, as well as activities 

that are not traditionally micronutrient interventions, such as breastfeeding 

promotion, family planning, sanitation, and health education 

(WHO/UNICEF, 2004). 

According to Elhakim et al. (2012), a comprehensive 

communications plan, incorporating an advocacy program and a consumer 

education campaign, is being conducted. It disseminates messages including 

the following: 

 Malnutrition hinders the future of our children and the development 

of our country; 

 Nutritional deficiencies are a form of “hidden hunger” that affects 

our body and health without our knowing; 

 Eating healthy can be done on a low budget, through a combination 

of fortified foods (including Baladi bread) and natural, low-cost 

foods. 

1.9. Human milk Lf and oligosaccharides as multifunctional ingredients 

for infant formulas 

1.9.1.  Human milk Lf  

1.9.1.1. Lf structure and properties  

It is well-known that Lf is a glycoprotein with high affinity to bind 

iron and is secreted in several species, such as human (Baró et al., 2001). It 

is the second most abundant protein in human milk and belongs to the 

transferrin family constituting 10-15 % and acting as a first line defense 

agent against infections in the body (Conneely, 2001). It is found at the 

highest levels (7 g /L) in human colostrum (Rodriguez et al., 2005) and at a 

lower level (1-2 g/L) in mature human milk (Nuijens et al., 1996), 

meanwhile the amount of Lf is lower in bovine colostrum and mature milk 

to about 1-2 and 0.01-0.1 g/L, respectively, and generally its content varies 

depending on the species (Wakabayashi et al., 2006; Nuijens et al., 1996). 

Structurally, bLF is 77 kDa glycoprotein and consists of a single 

polypeptide chain of about 700 amino acids. Meanwhile, hLf is a 

glycoprotein with a molecular weight of about 80 kDa and is a polypeptide 

chain that contains of 703 amino acids distributed as follows: from amino 
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acid 1 to 332 (lobe N) and from 344 to 703 (lobe C) with a three-turn 

connecting helix (residues 333-343) and that is sensitive to proteolytic 

attack. Each lobe contains an iron-binding site (Fe
3+

) with a high affinity, 

and a glycan. N and C lobes have very similar conformations but show 

slight differences in their affinity for iron (Kaim & Schwederski, 1994). The 

sequence homology between hLf and bLF is about 70% and the 3 D 

structure of both is very similar but not identical (Steijns et al., 2000). Fig. 

1.3. showed the structure of human Lf.   

Lf was originally found to be a stable protein (Kuwata et al., 2001) 

and is only partly digested in newborn alimentary tract and may be absorbed 

as intact Lf from the infant gut (Chatterton et al., 2004; Artym & Zimecki, 

2005). The incomplete development of the digestive system of infants who 

lesser than 6 months lead to its presence in infant feces where it exhibits as a 

small percentage (1-6%) of holo-Lf (Britton & Koldovsky, 1987). On the 

other hand, in the adults where the gastrointestinal tract reach to the 

maturity status, a decrease in the gastric pH values and an increase in 

enzymatic secretion are observed thereby enhancing proteolysis (Davidson 

& Lönnerdal, 1987). The stability of Lf against proteolytic enzymes will be 

discussed in detail in a next chapter (chapter 5). 

 

Fig. 1.3. Protein structure of human lactoferrin (van Veen, 2008). 

 

 

http://jn.nutrition.org/content/131/8/2121.long#ref-13
http://jn.nutrition.org/content/131/8/2121.long#ref-13
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Some of the functional roles exhibited by Lf are iron-dependent, 

meanwhile there are others reported to be non-dependent of iron (Farnaud & 

Evans, 2003). The iron-related functions are caused by the competition for 

iron ions between the protein and receptors of bacterial membranes.  

Although the function roles of Lf that are non-dependent with iron 

binding properties are known to depend mainly on the structural region of 

amino acid residues 20-37 of the protein, the specific mechanisms still 

remain unclear (Farnaud & Evans, 2003; Babina et al., 2004).  

As previously well-documented that there a quite difference in 

various aspects between bLf and hLf especially respecting with its lack 

recognition by Lf receptors which present at surfaces of the intestinal 

enterocytes of infant intestine and the need to replace the use of bLF with 

hLF in products for human utilization (Conesa et al., 2010) together with the 

limited availability of human milk and purified hLf (van Veen, 2008), 

several attempts have been made to produce rhLf (Conesa et al., 2010).  

However, some differences between hLf and rhLf were reported such as 

rhLf has lower carbohydrate content than that of hLf (Nandi et al., 2002) 

and rhLf from rice has the typical glycans of vegetables (Fujiyama et a., 

2004) while hLf has the typical glycan of mammals (Spick et al., 1982). 

However, biochemical and biophysical analyses indicated that rhLF is 

similar to native hLF where rhLF has the same isoelectric point, iron 

binding capacity, pH stability, thermal stability, and antimicrobial activity 

as hLf (Huang et al., 2008).  

Some of the functional activities of Lf related with the aim of this 

thesis were discussed as following:  

1.9.1.2. Functional roles of Lf and its mode of action 

1.9.1.2.1 Lf as iron-binding protein 

Lf plays a key role in iron homeostasis in the newborn (Sacrino, 

2007). Moreover, higher concentration of Lf in human milk than bovine 

milk raised the hypothesis that it might promote iron absorption in breast-

fed infants compared with formulas-fed infants (Vorland, 1999). Likewise, 

the discovery of Lf receptors in the enterocytes of various species and its 

high affinity for Lf support this hypothesis. These Lf receptors show species 
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and molecular specificities depending on the animal species and this would 

explain the high bioavailability of iron from human milk, as only hLf 

releases iron to the enterocyte by this mechanism (Gonzalez-Chavez et al., 

2009).  

It is well-known that Lf has a higher ability to bound iron and retains 

this metal over a wide pH range and it starts to release the metal below pH 4 

and at pH 2 the release of iron is complete allowing to the formation of the 

apo-form of Lf  while hLf is somewhat more resistant with release below 

pH 3 (Stowell et al., 1991; Steijns et al., 2000). Lf can bind many cations 

and iron is considered the main cation bound by Lf (Lönnerdal & Iyer, 

1995). According to the degree of Lf saturation with iron, three forms of Lf 

exist: apo-Lf (iron free), monoferric form (one ferric iron), and holo-Lf 

(binds two Fe
3+

 ions) (Jameson et al., 1998). The apo-Lf molecule tends to 

be in an open conformation, whereas the holo-Lf molecule is well-known by 

its closed conformation (Kurokawa et al, 1999; Sharma et al., 1999). In this 

sense, many researchers reported that holo-Lf form is more stable than apo-

Lf form against proteolysis (Gonzalez-Chavez et al., 2009, Baró et al., 

2001). So Lf ability to bind iron is playing a central role in its stability 

against the enzymatic proteolysis. 

Lf-iron complex is taken up by the enterocyte, probably by 

endocytosis, and then release its iron at intracellular level through Lf 

degradation (Sanchez et al., 1992). Iron seems to be released within the cell 

where it is quickly complexed by another protein, probably ferritin, and then 

apo-Lf form comes back again to mucosa surface to start a new transport 

process (Sigel & Sigel, 1998). In iron absorption process enhanced by Lf, Lf 

receptors of epithelial cells play a central role in uptake Lf through clathrin-

mediated endocytosis (Jiang et al., 2011).  

However, the administration of non-human origin Lf involved 

different pathways of iron absorption with different efficiency compared 

with Lf of human origin (Jovaní et al., 2001). Although it is technically 

feasible to add bLf to infant formulas, bLf does not bind consistently to hLf 

receptors and has not been shown to increase iron absorption. Moreover, the 

efficacy and safety of adding hLf to infant formulas has not been adequately 

evaluated (Ben, 2008). 
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In this regard, there are controversial data respecting the effect of 

different sources of Lf on iron absorption whether in rats (Fairweather-Tait 

et al., 1986), mice (Ward et al., 2003), infants (Jovaní et al., 2001), or in 

piglets (Svoboda et al., 2005). Some of these data confirmed that the use of 

Lf from different sources could not be the best foods-enrichment way for 

improving iron absorption in humans (Ward et al., 2003). 

1.9.1.2.2 Lf as antibacterial agent 

Lf has strong antimicrobial activity against wide spectrum of 

microorganisms such as bacteria, fungi, yeasts and viruses (Drago, 2006). 

The antibacterial activity of Lf in vitro and in vivo has been documented in 

the past, for Gram-negative bacteria and Gram-positive bacteria and some 

acid-alcohol resistant bacteria (Garcia-Montoya et al., 2012). Initially it was 

considered that an iron-binding property is the major mechanism for its 

antibacterial action. Now it is well-known that iron-independent 

mechanisms are also responsible for the antibacterial action of Lf such as 

direct interaction with bacteria leading to membrane destabilization, 

modulation of bacteria motility, aggregation or endocytosis into host cells, 

inhibition of adherence and biofilm formation (Harvard & Hancock, 2009). 

In another words, the antibacterial activity of Lf is mostly due to two 

mechanisms. The first is the iron chelation which makes the nutrient 

unavailable for using by the microorganism thereby creating a bacteriostatic 

effect. The other mechanism is the direct interaction between Lf (the 

positive amino acids) and the bacterial surfaces (anionic molecules) causing 

cell breakdown (bactericidal effect) (Gonzalez-Chavez et al., 2009).  

However, there are some bacteria in response to iron-limited media 

has the ability to produce and secrete low molecular weight high affinity 

chelators, which named siderfores (Yu & Schryvers, 2002). These 

compounds have a higher affinity for iron chelation than Lf, and then the 

iron-siderfores complex is taken up into bacteria by siderfores-specific 

receptors (Farnaud & Evans, 2003). Also other bacteria can produce specific 

Lf receptors that can stimulate iron removal from the protein (Yu & 

Schryvers, 2002). 

Lf also exerts its antimicrobial action not just in the form of the 

intact molecule but the monoferric lobes and active peptides of Lf also have 
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a role in the host defense against microbial disease (Lizzi et al., 2009). 

These functional peptides are produced from Lf by the action of proteolytic 

enzymes that are present in the gastrointestinal tract (Sinha et al., 2013).  

Lactoferricin, multifunctional cationic peptides, is one of these 

peptides that are generated by the enzymatic treatment of Lf and has a 

greater antibacterial activity than the native Lf. There are two forms of 

lactoferricin: human and bovine lactoferricin. Lactoferricin B consists of 25 

amino acids while lactoferricin H is a 47-amino acid peptide. Lactoferricin 

B is more effective as antibacterial agent than the other peptide. The 

antibacterial activity of this peptide was attributed to its action of releasing 

lipopolysaccharide from bacterial strains and, hence, disruption of 

cytoplasmic membrane permeability after cell binding (Kang et al., 1996), 

and both lactoferricin (B and H) are derived from the N-terminal region of 

the N-lobe (Bellamy et al., 1992a). 

Although Lf has antibacterial activity for a wide spectrum of 

microorganisms, it is considered a growth promoter for other organisms and 

acts as a bifidogenic factor for the growth of bifidobacteria (Kim et al., 

2005). This later effect is named as “prebiotic activity of Lf”. According to 

Coppa et al. (2006) hLf supports the predominance of beneficial bacteria 

which require low concentrations of iron for growth, such as Lactobacillus 

and Bifidobacteria of the infant intestinal microflora. Although this 

mechanism of action is not fully understood, many studies suggest that the 

growth stimulatory activity of Lf may be related to the presence of Lf-

binding proteins on the surface of the bacterial membrane (Kim et al., 

2004). 

1.9.1.2.3 Lf as immunomodulatory and anti-inflammatory agent 

There is a growing awareness of the interaction between the food 

bioactive constituents and the immune system (Calder and Fritsche, 2006). 

Lf, among these bioactive constituents, is a well-known natural immune 

modulator (Teraguchi et al., 2004) and may be considered a marker for 

inflammation due to the fact that its level is increasing during inflammation 

(Legrand et al., 2008). A variety of properties including anti-inflammatory 

(Conneely, 2001), and immunomodulatory agent (Brock, 2002) have been 

described so far for Lf.  
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The immunomodulatory activity is one of the very important 

activities of Lf and this effect was reported on the immune system both in 

vivo and in vitro (Brock, 2002), thus Lf is considered a key element in the 

host defense system (Legrand et al., 2005) and might strengthen the immune 

response (Teraguchi et al., 2004) as well as mediate anti-inflammatory 

reactions (Zhong et al., 2003). 

Although the cellular and molecular mechanisms accounting for the 

immunomodulatory effects of Lf are far from being fully elucidated, both in 

vitro and in vivo studies suggest the existence of multiple mechanisms that 

include modulation of cytokine/chemokine production, regulation of ROS 

production, and of immune cell recruitment. It is now clear that at least 

some of the Lf biological activities do not merely depend on its iron-binding 

capacity, but may arise from its interaction with a variety of molecules. In 

this respect, the capacity of Lf to influence either negatively or positively 

cytokine production relies, at least in part, on its ability to bind and 

sequester both lipopolysaccharides (LPS) and its receptor CD14, as well as 

CpG bacterial DNA, thus preventing the downstream activation of pro-

inflammatory pathways, septic shock and tissue damage (Britigan et al., 

2001). The membrane glycoprotein CD14 (molecular mass of 55 kDa), is 

the main receptor for LPS and is expressed predominantly on the surface of 

monocytes and macrophages (Jiang et al., 2011). However, Lf can also 

favor the activation, differentiation, and proliferation of immune cells and 

this promoting activity has been related to a direct effect of Lf on immune 

cells through the recognition of specific Lf binding sites (Legrand et al., 

2006). Beside its direct effects in host defense on bacteria, fungus and 

parasites, it were reported possible roles in the modulation of the immune 

response and it activates the innate and acquired immunities. These effects 

may resulted by the association between Lf’s positive charge and the 

negatively charged molecules on the surface of various cells of the immune 

system (Baker & Baker, 2005). 

In general, the anti-inflammatory effects of Lf have been shown by 

the inhibition of pro-inflammatory cytokine production (Kruzel et al., 2002) 

and the up regulation of anti-inflammatory cytokines (Togawa et al., 2002). 

On the other hand, Lf may enhance directly or indirectly the immune 
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response (in vitro and in vivo) by regulating the proliferation, differentiation 

and activation of both T and B cells (Zimecki et al., 1995).  

Particularly, Lf has the potency to enhance the expression of various 

types of cytokines in intestinal mucosa such as IL-18, IFN-γ, IL-12, 

interferons (IFNs) and IL-7 and these cytokines has a role in activation of 

immune cells (Yang et al., 2009). As well as both in vitro and in vivo studies 

suggest that the effect of Lf involves an inhibition of production of several 

cytokines, named pro-inflammatory cytokines, including tumor necrosis 

factor-α (TNF-α) and IL-1β that are key mediators of the inflammatory 

response leading to death from toxic shock (Thompson et al., 1990; 

Machnicki et al., 1993). Also it was reported that Lf has the capacity to 

inhibit the production of LPS-induced pro-inflammatory cytokines such as 

TNF-α, IL-6, and IL-1 in in vitro studies (Håversenet al., 2002). Conneely 

(2001) reported that the anti-inflammatory activity of Lf has two 

mechanisms through its ability in inhibition of binding of LPS to 

inflammatory cells, as well as through interaction with epithelial cells at 

local sites of inflammation to inhibit inflammatory cytokine production. 

Cytokines are defined as soluble factors which are mostly generated by 

immune cells and in turn play crucial roles in the differentiation, maturation, 

and activation of various immune cells (Su et al., 2012). 

The identification of receptors for Lf on the surface of myeloblasts 

(Birgens et al., 1983), monocytes (Van Snick & Masson, 1976), 

macrophages (Mazurier et al., 1989), and lymphocytes (Cumberbatch et al., 

2000), in addition to epithelial cells involved in local production of TNF-α 

(Iyer & Lönnerdal, 1993), suggests that Lf may have a direct effect on 

regulation of cytokine production by these cells via receptor mediated 

signaling pathways (Conneely, 2001). However, the molecular mechanisms 

that Lf mediates its anti-inflammatory effects are not well-known (Inubushi 

et al., 2012).   

Bovine Lf supplements have the ability to support the immune 

system and influence immune cell activity (Mulder et al., 2008). The 

exogenous Lf has the ability to transport as intact form from the intestine to 

the blood circulation through the enterocytes by endocytosis and this it was 

reported in vitro (Fischer et al., 2007) and in vivo (Hutchens et al., 1991) 
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studies. The intact Lf form can stimulate intestine-associated immune 

functions and thereby enhance the immunocompetence during the postnatal 

period (Kuhara et al., 2006).  

It worthy to note that lactoferricin has shown to contain the 

bactericidal domain (this due to the specific amino acid sequence that 

contains, resiudes 18-40 of hLf) (Bellamy et al., 1992b) and has cytokine-

inhibiting activity of the protein, thus has a high affinity-binding site to LPS 

(Elass-Rochard et al., 1995). 

Finally, it is known that using of naturally occurring ingredient and 

food bioactive components such as carotenoids, flavonoids, phenolic 

compounds, fiber and oligosaccharides have many therapeutic effects and 

recently Lf is considered a prominent active protein (Aly et al., 2013).  

Given the emerging knowledge of the biological importance of hLf 

in infant nutrition, EFSA (2012), regarded the notion of Lf supplementation 

as worthy of consideration. However, clinical studies will be essential to 

demonstrate the efficacy and safety of such addition. With this background, 

it should be considered that Lf has enough beneficial properties on human 

health to can be considered as a functional ingredient if it is added to some 

foods such as infant formulas (Aly et al., 2013).  

1.9.1.3. Lf as a functional component in infant formulas 

Nutritional efficacy and safety are not the only challenge of the 

infant nutrition research and the infant formula development. When infants 

are bottle-fed should intake a food with similar properties to mother´s milk 

for its optimal growth and development (Alles et al., 2004). This fact, far to 

be easy to achieve, requires a deep knowledge of human milk properties and 

to identify which are the responsible compounds of the beneficial effects on 

the health of infant’s breastfed (Aly et al., 2013). 

Attempts are in progress to supplement infant formulas with 

protective and trophic factors so far unique only to human milk. The final 

aim is not necessarily to mimic the composition of human milk in every 

respect, but to achieve physiological effects as in breast-fed infants (Gómez-

Gallego et al., 2009). Since human milk contains a considerable amount of 

Lf, special attention is paid to its functional role. Many of those functions 

are directly related to its ability to bind iron, which influence on iron 
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absorption, and its bacteriostatic and antioxidant activities. Based on this, 

the addition of Lf to infant formulas seems to be reasonable; nevertheless, 

the supplementation of infant formulas should be discussed intensively 

because there has to be a scientifically proven advantage for the infant to get 

this protein by daily formula (Sawatzki, 1997). Recently, EFSA (2012) 

accepted and approved bLf as a new food ingredient. Nowadays, there are 

many infant formulas supplemented with Lf available in the market (Mulder 

et al., 2008). From results obtained by different authors, it can be concluded 

that the addition of Lf, usually bovine, to infant formulas, does not affect 

iron absorption. However, given its ability to bind iron, its use in infant 

formulas could be useful for protecting the gut of infants against infections 

from microbial-requiring iron, its ability to reduce interelemental 

interactions and especially to protect infant formulas supplemented with 

iron and ascorbic acid against free radical formation. 

The proposed concentration of bLF is 100 mg/100 mL for infant 

formulas. It was reported that the estimated intake of bLf for infants with an 

age of 0 - 6 months is approximately 200 mg per kg bodyweight and 1.2 g 

bLF per day assuming that the mean intake is 1.2 litres of infant formula per 

day. While the mean estimated intake of bLF by infants of 8 - 10 months of 

age would amount to 1.9 g per day (EFSA, 2012).  

In this context, Raiten et al. (1998) and Wakabayashi et al. (2006) 

reported that it is possible to enrich infant formulas with bLf or rhLf. The 

application of rhLf to infant formulas represents an attractive issue (Suzuki 

et al., 2003). 

In this regard, it must be taken into account that the enrichment of 

infant formulas with hLf would probably lead to an improvement in their 

amino acidic profile making it more similar to that of human milk (Jovaní et 

al., 2001). 

EFSA (2012) considered that bLf is an essential protein constituent 

of cow milk and is considered a novel food ingredient. Bovine Lf is present 

in the novel food ingredient mostly as non-denatured protein. It must be 

noted that Lf is a normal constituent of human milk, and that the intended 

consumption of bLf is within the levels of hLf consumed in breast milk by 

infants; hLf is also non-denatured.  
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Currently, bLf is added as a supplement to several products in Japan, 

including infant formula and yoghurt (Wakabayashi et al., 2006). Similarly, 

infant formulas enriched with bLf are also available in other countries, 

including Indonesia, South Korea and Spain (Conesa et al., 2010).  

1.9.2.  Human milk oligosaccharides (HMOs)  

Traditionally, oligosaccharides are defined as polymers of 

monosaccharides with degrees of polymerization (DP) between 2 and 10 (3 

and 10 according to the IUB-IUPAC nomenclature) but DPs up to 20–25 are 

often assimilated with them. Prebiotic oligosaccharides are non-cariogenic, 

non-digestible (NDO) and low caloric compounds which stimulate the 

growth and development of gastrointestinal microflora described as 

probiotic bacteria. It is claimed that these bacteria belonging to 

Bifidobacteria and Lactobacilli have several health-promoting effects (Zopf 

& Roth, 1996; Rastall et al., 2005). 

HMOs are considered the third most abundant component of human 

milk (Kunz et al., 2000), and also provides functional activities (Hamosh, 

1996; Oddy, 2002).  

1.9.2.1. HMOs structure, composition and variation 

The composition and content of milk oligosaccharides, as well as 

other milk components, differs among mammalian species and also during 

the course of lactation and HMOs are characterized by an enormous 

structural diversity (Chaturvedi et al., 2001). In this regard, it was reported 

that HMOs content and composition of breast milk has many variations 

between different women and also depending on the stage of lactation. The 

total amount of HMOs is highest in colostrum and decreases through 

transitional to mature milk. Colostrum, the thick, yellowish fluid secreted by 

the mammary gland a few days before and after parturition, contains as 

much as 20-25 g/L HMO (Gabrielli et al., 2011), while HMOs 

concentrations decline to 5-20 g/L of mature human milk (Bao et al., 2007; 

Gabrielli et al., 2011), which still exceeds the concentration of total milk 

protein. On the other hand, the concentration of oligosaccharides in milk of 

the most relevant domestic mammals is smaller by a factor of 10 to 100 

(Boehm & Stahl, 2003). Moreover, inter- and intrapersonal variations in 
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HMO synthesis determine the composition and relative abundance of 

individual HMOs in given milk sample (Bode & Jantscher-Krenn, 2012).  

HMO-like structures are also found as components of glycolipids 

and glycoproteins (Newburg, 1999). So there are approximately 200 known 

compositions incorporating ≥3 carbohydrate monomers via 13 possible 

glycosidic linkages (Kunz et al., 2000; Niñonuevo et al., 2006), and each 

one has a structurally unique and structure often determines biological 

function (Bode & Jantscher-Krenn, 2012).  

1.9.2.2. Physiological function of HMOs in infants 

HMOs are believed to have many roles in a developing infant in 

addition to putative prebiotic functions. HMOs may possess anti-adhesive 

effects that reduce the binding of pathogenic bacteria to colonocytes (Lane 

et al., 2010). HMOs have modulating effects on immunologic processes at 

the level of gut-associated lymphoid tissue (Guarner, 2009) and may also 

decrease intestinal permeability in preterm infants in a dose-related manner 

in the first postnatal month (Taylor et al., 2009). Others have suggested that 

HMOs are an important source of N-acetyl-neuraminic acid (NeuAc; sialic 

acid), an essential monosaccharide during the period of neonate brain 

development and myelination (Wang et al., 2001). Also HMOs are thought 

to be the main contributors to the predominance of Bifidobacterium species 

in the infant gut (Schell et al., 2002). Thus there is a broad consensus that 

breast-fed infants grow and develop differently than infants with artificial 

feeding (Davis, 2001). Consequently, some physiological functions HMOs 

in infant related with this thesis are outlined as following: 

1.9.2.2.1. HMOs as prebiotics 

One of the suggested hypotheses regarding the bioactive function of 

HMOs is its role as “prebiotic” (Kunz & Rudloff, 1993). Most of HMOs are 

indigestible due to lack of luminal enzymes able to cleave most glycosidic 

linkages in the gastrointestinal tract (Engfer et al., 2000; Gnoth et al., 2000). 

However, bacteria in the colon express glycosidases and metabolize HMOs 

(Sela & Mills, 2010) leading to stimulate the growth of the “beneficial” 

bacteria including Bifidobacteria, genus generally predominant in the 

intestinal microbiota of the breast-fed infants (Favier et al., 2003).  
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It was reported that the neonatal gastrointestinal tract undergoes 

pronounced structural and functional changes in response to feeding 

(Donovan, 2006). Thus, it was noted that there are different in the 

composition of the microbiota between breast-fed infants and formula-fed 

infants with a higher proportion of Bifidobacteria species in breast-fed 

infants (Yoshioka et al., 1983).  

This bifidogenic effect is likely attributed to both the protein and 

carbohydrate components in human milk. For example, growth of 

Bifidobacteria is promoted by Lf both in vitro (Rahman et al., 2009) and in 

vivo (Roberts et al., 1992). In addition, peptides produced by in vitro 

proteolytic digestion of Lf and secretory component are bifidogenic (Liepke 

et al., 2002). However, Coppa et al. (2006) reported that among all of the 

components, such as proteins, lactose, and nucleotides, HMOs is the only 

component that has been demonstrated to play a significant role in 

stimulation of the growth of specific bacteria. Also, most recent studies have 

focused on HMO as the primary bifidogenic components of human milk 

(Sela & Mills, 2010). Also the ability of selected Bifidobacteria to consume 

prebiotic oligosaccharides from human milk is likely an essential trait 

enabling these genera to be one of the most abundant colonizers of the 

breast-fed infant gut (LoCascio et al., 2007, 2009). 

Thus the complex array of sugars present in HMOs have evolved to 

provide the newborn infant with a rich source of nutrient and also serve as 

substrate for specific microbes promoting the growth of selected enteric 

bacteria (Zivkovic et al., 2011), particularly Bifidobacteria and selected 

lactic acid-producing bacteria, that are present in high abundance in the gut 

microbiota of the exclusively breast-fed infant (Koropatkin et al., 2012).  

1.9.2.2.2. HMOs as immunomoduladors 

HMOs may affect the infant’s immune system indirectly by its 

modulating role on the infant’s microbiota composition or intestinal 

epithelial cell response (Rudloff et al., 2011; Gnoth et al., 2001). HMOs also 

act as receptor analogs to inhibit the adhesion of pathogens on the epithelial 

surface and this evidence is seen as a passive defense of the host (Boehm & 

Stahl, 2003; Barthelson et al., 1998). 
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Presently, results from in vitro studies suggest that HMOs can also 

directly modulate immune responses. HMOs may either act locally on cells 

of the mucosa-associated lymphoid tissues or on a systemic level (Rudloff et 

al., 2011). Because HMOs are resistant to digestion, they can pass the 

intestinal wall in small amounts and reach the systemic circulation (~1% of 

intake) (Rudloff et al., 2011; Eiwegger et al., 2004; Coppa et al., 2001) and 

can be detected in the urine of breast-fed infants (Coppa et al., 2001).  

In an in vitro study, human white blood cells -which separated from 

cord blood- were incubated with fractions of neutral and acidic HMOs, 

which were separated from pooled human milk (Finke et al., 2002; Geisser 

et al., 2005). It was found that acidic HMOs led to a decrease of activated or 

regulatory T cells (Eiwegger et al., 2004).  

1.9.2.3. Alternative sources of HMOs-like prebiotic in infant formula 

HMOs are structurally very complex and have a huge diversity 

(Boehm & Stahl, 2003; Bode, 2006); thus, identical structures are not 

available for use in infant formulas (Boehm et al., 2003). So, several 

researchers suggested supplementing infant formula with oligosaccharides 

similar to those found in human milk (Motil, 2000). Given that human milk 

is obviously not amenable to large-scale production, there is an urgent 

demand for alternative, yet functionally comparable, oligosaccharide 

sources from which to obtain sufficient amounts to perform clinical studies 

and examine the potential for use in infant nutrition (Gopal & Gill, 2000).  

In this context, various strategies have been used to mimic the 

structural complexity of HMOs; much simpler structures, including FOS 

and GOS, so far have been used in dietary products (Boehm & Moro, 2008). 

Bovine milk, and in particular colostrum, is also considered a source of 

simple as well as complex oligosaccharides that resemble HMOs (Tao et al., 

2008, 2009; Barile et al., 2010). 
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1.10. Objectives of thesis  

Given the great importance of human milk, which due to the large 

number of functional components that are positively correlated with infant's 

health, many studies have been carried out to identify these beneficial 

effects in breast-fed infants. Based on these studies and evidences, mature 

human milk is the reference. Therefore, infant formulas, as human milk 

substitute, should resemble that composition. Consequently, it is necessary 

to include some ingredients to infant formulas and thus it may be able to 

exert its functionalities in a large group of infants who cannot feed human 

milk as a primary source and for several physiological as well as social 

reasons. In view of this and to examine this concept, lactoferrin and GOS, as 

components of human milk, were selected to explore its health benefits 

using batch culture fermentation, Caco-2 model, western blotting and co-

culture inflammation gut system.  

The following points were investigated: 

1. In vitro assessment of the bioavailability of iron from infant formulas 

supplemented with different concentrations of rhLf and/or GOS, using 

the amount of ferritin synthesized as criteria 

2. In vitro evaluation of the anti-inflammatory effect of different 

concentrations of rhLf and rhLf hydrolysate 

3. In vitro evaluation of the prebiotic activity of rhLf and/or GOS 

4. In vitro evaluation of the effect of simulated gastrointestinal digestion 

on the added rhLf fractionation and long chain fatty acids (LCFAs) 

profile 
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Chapter 2 

The role of rhLf and GOS on Fe bioavailability: 

 Formation of ferritin by Caco-2 cell model 

 

2.1. Introduction 

Recently, it is accepted that feeding during childhood is among the 

most important factors affecting immediate or short-term growth and body 

composition and function. Moreover, feeding at this critical period of life 

has many long term effects on different physiological and metabolic 

processes that may play a key role in reducing the incidence of different 

diseases (Gómez-Gallego et al., 2009).  

Part of the functional components of human milk are an 

overabundance of complex oligosaccharides that cannot be digested by 

human but are fermented by the human gut microflora, and proteins with 

antibacterial activity such as Lf (Yeung et al., 2005; González-Chávez et al., 

2009) and these ingredients have a role in enhancement the absorption of Fe 

(Scholz-Ahrens et al., 2001; Legrand et al., 2008).  

Therefore, the current trend for infant formulas production is that 

containing the functional ingredients of human milk such as Lf and GOS 

(Alles et al., 2004). HMOs are one of the functional ingredients among 

many others of human milk (Niers et al., 2007). GOS has a wide spectrum 

of functionalities, among them the facilitation of mineral absorption (Kaur 

& Gupta, 2002).  

2.2. Aims of this chapter 

This study aimed to explore the functional activity of infant formulas 

supplemented with different concentrations of rhLf and/or GOS on Fe 

absorption throughout the determination of the synthesized ferritin by Caco-

2 cell line exposed to samples after in vitro simulated digestion.  
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2.3. Materials and methods 

2.3.1. Infant formula  

 First infant formula (FIF) was provided by Hero Baby Co. (Alcantarilla, 

Murcia, Spain). This formula was used as a base for create various formulas 

by supplementation with different concentrations of rhLf (0.10, 0.15 or 0.20 

g/100 mL of reconstituted infant formula) and/or different concentrations of 

GOS (3.3, 5 or 10 g/100 mL of reconstituted infant formula). Thus Lf 

content so obtained was similar to that of mature human milk ranging from 

1 to 2 g/L (Nuijens et al., 1996). For the infant formula reconstitution, 100 

mL of deionized water were mixed with 15 g of powder according to the 

manufacturer’s instructions. The basic composition of the sample is reported 

in Table 2.1.  

2.3.2. Materials and reagents 

 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), H7006 

(100 g) (Sigma Chemical Co., St. Louis, MO, USA). 

 D (+)-Glucose monohydrate (Merck, Darmstadt, Germany). 

 Di-Methylsulfoxide (DMSO) (Sigma Chemical Co., St. Louis, MO, 

USA).  

 Enzymes and bile salts were purchased from Sigma Chemical Co. 

(Sigma Chemical Co., St. Louis, MO, USA): Pepsin (Porcine: cat. No. P-

7000), Pancreatin (Porcine: cat. no. B-8756) and bile salt (Porcine: cat. 

no. P-1750).  

 Fetal bovine serum (Sigma Chemical Co., St. Louis, MO, USA) 

 Glutamine (Sigma Chemical Co., St. Louis, MO, USA). 

 Mixture of protease/phosphatase inhibitor cocktail and EDTA 

solution (100X) (Thermo Scientific, cat. no. 78440, USA) 

 MEM (Minimum Essential Medium, Gibco, Life Technologies, UK). 

 Mixture of antibiotics ″penicilin-estreptomicin״ (Sigma Chemical Co., 

St. Louis, MO, USA). 

 Non-essential amino acid solution (Sigma Chemical Co., St. Louis, 

MO, USA). 
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Table 2.1. The nutritional composition of the infant formula (control) 

for 100 g dry weight and for 100 mL reconstituted formula. 

  For 100 g formula 

(dry weight) 

For 100 mL 

reconstituted formula 

Energy value KJ/Kcal 2184/522 285/68 

Nutrients    

Proteins G 10.2 1.3 

  Caseins G 5.1 0.7 

  Whey protein G 5.1 0.7 

Carbohydrates G 55.2 7.2 

Lipids G 29.0 3.8 

  Linoleic acid Mg 4510.0 586.3 

  Alpha-linolenic acid Mg 430.0 55.9 

  Ratio  10.5 10.5 

Minerals    

  Sodium Mg 130.0 16.9 

  Potassium Mg 497.0 64.6 

  Colure Mg 366.0 47.6 

  Calcium Mg 392.0 51.0 

  Phosphor Mg 220.0 28.6 

  Relation Ca/P  1.8 1.8 

  Magnesium Mg 42.0 5.5 

  Fe Mg 6.3 0.8 

  Zinc Mg 4.2 0.5 

  Cupper µg 314.0 40.8 

  Iodine µg 78.0 10.1 

  Selenium µg 7.0 0.9 

Vitamins    

  A µg 523.0 68.0 

  D µg 7.8 1.0 

  E Mg 7.8 1.0 

  K µg 52.0 6.8 

  C Mg 52.0 6.8 

  B1 µg 523.0 68 

  B2 µg 785.0 102.0 

  Niacin Mg 785.0 0.7 

  B6 µg 78.0 10.1 

  Folic acid µg 2.1 0.3 

  Biotin µg 16.0 2.1 

  Pantothenic acid µg 2353.0 305.9 

Others    

  L-Carnitine    

  Taurine Mg 7.8 1.0 

  Inositol Mg 42.0 5.5 

  Colin Mg 26.1 3.4 
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 Recombinant human lactoferrin (rhLf).  Expressed in rice, Fe 

saturated, >90% (SDS-PAGE)], purchased from Sigma Chemical 

Co. (cat. no. L1294, St. Louis, MO, USA). 

 RIPA (Radio-Immunoprecipitation Assay) lysis buffer was 

purchased from Sigma Co. USA (cat. no. R0278). RIPA buffer 

enables efficient cell lysis and protein solubilization while avoiding 

protein degradation and interference with the proteins' 

immunoreactivity and biological activity. RIPA buffer also results in 

low background in immunoprecipitation and molecular pull-down 

assays. Sigma's RIPA buffer formulated as follows: 150 mM NaCl, 

1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 

and 50 mM Tris, pH 8.0.  

 Tripan blue, CI 23850 (Merck, Darmstadt, Germany). 

 Tripsin-EDTA solution (0, 25 mg/mL) (Sigma St Louis, MO, 

USA). 

 Vivinal GOS syrup (dry matter 75 % of which GOS 59 %, lactose 

21 %, glucose 19 % and galactose 1 %) was provided by Hero Baby 

Co. (Alcantarilla, Murcia, Spain).  

2.3.3. Cleaning of laboratory materials (glassware, tubes, 

porcelain)  

Glassware, bottles, tubes and porcelain used throughout the in vitro 

digestion experiment and throughout the determination of mineral were 

immersed at least for 24 hours in 10% nitric acid to eliminate any traces of 

minerals that may be trapped in the material, and then rinsed three times 

thoroughly with distilled-deionized water before use. 

2.3.4. Preparation of working enzymes solutions 

Pepsin solution was prepared by dissolving 1.6 g of pepsin in 10 ml 

of 0.1 M HCl while the pancreatic-bile extract solution was prepared by 

dissolving 0.2 g of pancreatin and 1.25 g of bile extract in 50 ml of 0.1 M 

NaHCO3. It is important to be taking into account that working enzyme 

solutions were prepared immediately before use and Milli-Q distilled-

deionized water (Millipore Ibérica S.A., Barcelona, Spain) was used 

throughout the experiments. 
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2.4.  In vitro digestion of infant formulas 

The different infant formulas reconstituted with deionized distilled 

water according to the manufacturer instructions and they were exposed to 

in vitro simulated gastrointestinal digestion using in vitro method described 

by Miller et al. (1981) and modified by (Bosscher et al., 2001; Jovaní et al., 

2001) to decrease the amount of used enzymes where it found that the 

gastrointestinal tract of newborns and infants is not completely mature. The 

method consisted of two phases: gastric and intestinal. Prior to the gastric 

stage, the pH of 4.5 g of each infant formula homogenized with 30 mL of 

deionized-distilled water was lowered to pH 4 with 6 mol/L HCl. Then, 

freshly prepared pepsin solution to provide 0.02 g of pepsin/g of sample was 

added, and then incubated in a shaking water bath at 37ºC and 120 

strokes/min for 2 h to allow pepsin digestion. The pepsin digest was then 

placed in ice bath for 10 min to inactivate the pepsin enzyme. For intestinal 

digestion, the pH of the gastric digests was raised to 5.0 by dropwise 

addition of NaHCO3 1 mol/L. Then, a freshly prepared pancreatin-bile 

extract solution to provide 0.005 g of pancreatin and 0.03 g of bile salts/g of 

sample was added, and incubation was continued for 2 h at the same 

conditions. To stop intestinal digestion, the sample was kept for 10 min in 

an ice bath. Then, the gastrointestinal digests were centrifuged at 3500 x g 

for 1 h at 4 ºC and the supernatants were kept at -20ºC until analysis. 

2.4.1.  Determination of Fe content in samples and their digests 

Fe concentration in samples (before digestion) and in the soluble 

fractions of digests was determined from the ashes obtained after 

incineration of commercial slurries in muffle furnace at 525 °C for 32 h. 

These ashes were dissolved by adding 2 mL of 65% HNO3 and 5 mL of 

37% HCl to the porcelain crucibles, gently stirring with the application of 

heating until completely evaporation. Then, the concentration of Fe of the 

supernatant was measured by atomic absorption spectrophotometer (Perkin-

Elmer, Norwalk, USA). The Fe solubility % was calculated according to 

Pyanert et al. (2006): 

Solubility % = (soluble Fe (mg/100g)/total Fe (mg/100g) × 100 
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2.4.2.  Caco-2 cell management, growth and viability  

All tests performed for this work were carried out in the tissue 

culture laboratory of SACE (Servicio de Apoyo a las Ciencias 

Experimentales de la Universidad de Murcia). Experiments were run on 

laminar flow in vertical direction type II cabins, where we obtained sterile 

conditions for handling cell line. Prior to starting work with Caco-2 cell 

line, the cabin was ready about 15 minutes before to get a sterile working 

environment, lighting light lamp UV, and turning it off about 15 minutes 

before, leaving only the fan hood to remove contaminants introduced 

material work and the work area. Cabin surface was cleaned with 70% 

alcohol. Only the necessary material should be introduced to the cabin 

immediately. Generally, it must be take all the precautions to prevent all 

using materials away from any contaminants and follow all instructions to 

protect yourself and get satisfactory results before and after work. 

Caco-2 cell line was obtained from the European Collection of Cell 

Culture (ECACC; number 86010202, Salisbury, UK) and used in assays at 

passages 15-25. Caco-2 cells are adherent cells with epithelial morphology 

with the feature that when they reach the confluence stop proliferating, they 

differentiate spontaneously developing monolayers of polarized cells in 

which the edge stresses brush own intestinal mucosa.  

MEM with red phenol was used through this experiment and changed 

on alternate days and cells were incubated at 37 °C, at a partial pressure of 

5% CO2 and a relative humidity of 95%. The culture was maintained until 

80% confluence and then subcultured. To detach the cells from the flask 

was used trypsin-EDTA solution (0.25%), the enzyme acts digesting 

adherence proteins that are dependent on calcium and magnesium that is 

where it intervenes EDTA sequestering free divalent cations in the joints 

involved. Viability assessed by trypan blue staining became demonstrate 

those cells with ruptured membranes and therefore were dead. This test was 

performed each time the subculture is conducted, before freezing and after 

thawing to determine the cells viability %. In all cases, cell viability was 

over 85%. The Caco-2 cell line was maintained in 75 cm
2
 flasks until 

reaching 70- 80% confluence where was the time to performs subculture. To 
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know the changes of cell growth, the culture was observed at 2, 4, 8 and 20
th

 

day post seeding using a phase contrast microscope (Fig. 2.1). The cell line 

used in this study showed to be free of mycoplasma in tests carried out (Fig. 

2.2).  

Fig. 2.1. Image of Caco-2 cell line in different days post-seeding by 

contrast microscope observation of the test phases. A) 2 

days crop, B) 4 days of culture, C) 8 days of culture, D) 20 days 

post-seeding. 

Fig. 2.2. Image of Caco-2 cell line presented the absence of 

mycoplasma in the cultured Caco-2 cell line. A) image using 

phase contrast microscope and B) image using the 

fluorescence microscope.  
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The contamination of cell cultures with mycoplasmas can induce 

cytogenetic effects, decreased effects on nutrient concentrations; alter the 

cellular morphology, modulation of the immune response and even 

disruption of cellular metabolism (Rivera et al., 2011).  

Respecting with Lf toxicity on Caco-2 cell line, Yecta et al. (2010) 

reported that none of the Lf concentrations tested (zero. 0.001. 0.005. 0.01. 

0.05. 0.1. 0.5. 1.0. 5.0 and 10 mg/mL) were cytotoxic to Caco-2 cells, as 

compared to untreated control cells. Thus, the different concentrations of 

rhLf used in this study were not toxic for Caco-2 cells. 

2.5. Fe bioavailability in vitro by Caco-2 cell line model (Ferritin 

synthesis) 

Caco-2 cell culture model is used as a good tool for determination of 

mineral bioavailability in vitro especially Fe. In this study it was assessed 

the effect of the supplementation of infant formula with rhLf in three 

concentrations (0.10, 0.15, 0.20%) and/or GOS also in three concentrations 

(3.3, 5, 10%) on Fe bioavailability. To perform these assays, cells were 

seeded into flasks of 25 cm
2
. The seeding was 50 000 cells/cm

2
, where they 

were kept for up to their differentiation (21 days), the medium was changed 

in alternate days.  

2.5.1. Conditioning of the soluble fraction for addition to cell monolayer 

In this assay, the different soluble fractions of infant formulas 

obtained by in vitro digestion were used. Prior to addition of the soluble 

fractions to the cell monolayer, glucose (5 mmol/L final concentration), 

HEPES (50 mmol/L final concentration) were added to make the soluble 

fractions similar to the culture media, and finally, the pH was adjusted to be 

between 7.1-7.2 by using 0.5 mol/L NaOH (Crison pH-meter, EEC), and 

finally water was added to adjust the osmolarity to 310 ± 10 mOsm/kg 

(Vapor pressure osmometer 5520, Wescor, USA) according to Ekmekcioglu 

(2002).  

The conditioned soluble fraction was combined with an equal 

volume of basal growth medium (Fe depleted-MEM). After removing the 

old media from flasks and washing cell monolayers three times with suitable 

volumes of PBS (37ºC), an appropriate volume of the conditioned solution, 
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previously sterilized by 0.22 µm filter, was allowed to remain on the top of 

cell monolayer for 2 h at 37°C in 5% CO2 with 95% relative humidity. After 

2 h of incubation, cells were washed and a new media were added. At the 

same conditions, the cultures were incubated for an additional 22 h. 

It is very important to note that at the day of experiment  

cells were maintained in culture medium deficient in Fe. For this it was 

demineralized the fetal bovine serum to eliminate a high amount of its Fe 

following the procedure described by Alvarez-Hernández et al. (1991). Fifty 

milliliters (50 mL) of serum fetal bovine demineralized by stirring with 15g 

of Chelex-100 (Na form) for 2 h at pH 4.5. Subsequently, pH value was 

increased to 7.4 with NaOH, allowed to stand overnight and the mixture was 

filtered through paper filter (Whatman 1 or 2). The filtrate was sterilized by 

a membrane filter of 0.22 µm pore diameter.  

2.5.2.  Ferritin extraction and measurement 

For ferritin extraction from cell cultures, cell monolayers were 

washed three times with PBS (37ºC) to remove non-specifically bound 

mineral and residual medium and detached with trypsin-EDTA solution. 

Cells were collected with 1 mL of deionized water at 4 ºC and homogenized 

at 17000 rpm for 3 min at 4 °C (Polytron PT 2000, Kinematica AG). 50 

microlitre aliquots of the sonicated Caco-2 monolayer were used in ferritin 

determination (AssayMax human ferritin ELISA kit, Catalog No. EF2003-1, 

Assaypro LLC, USA), where ferritin acts as the main intracellular store of 

cytosolic Fe (Glahn et al., 1998).  

This assay was operated according to human ferritin ELISA kit 

instructions and it employs a quantitative sandwich enzyme immunoassay 

technique, which measures ferritin in less than 4 hours. A polyclonal 

antibody specific for ferritin has been pre-coated onto a 96-well microplate 

with removable strips. Ferritin in standards and samples is sandwiched by 

the immobilized antibody and biotinylated polyclonal antibody specific for 

ferritin, which is recognized by a streptavidin-peroxidase conjugate. All 

unbound materials were then washed away and a peroxidase enzyme 

substrate is added. The color development is stopped and the intensity of the 

color is measured by reading the absorbance on a microplate reader 



Functionality of lactoferrin and GOS in infant formulas                                          Chapter 2 

68  

 

(Fluostar Omega, BMG Labtech, USA) at a wavelength of 450 nm 

immediately.  

2.5.3. Extraction and quantification of cell proteins 

The Bradford protein assay is a simple and accurate procedure for 

determining the concentration of protein in solution and it is based on the 

classic method of Bradford (1976). The Bradford assay is a protein 

determination method that involves the binding of Coomassie Brilliant Blue 

G-250 dye to proteins. When the dye binds to protein, it is converted to a 

stable unprotonated blue form that can be measured easily at 595 nm using a 

microplate reader (Fluostar Omega, BMG Labtech, USA). The quick start 

Bradford protein assay is a compatible method with some reagents such as 

acetone (10%), acetonitrile (10%), PBS, DMSO (5%), MEM, HEPES (0.1 

M), and methanol (10%). To determine the total protein concentration 

present in a sample of a line pattern is used bovine serum albumin (BSA) as 

a protein standard. 

For the extraction of protein from cells, RIPA was used, and a 

mixture of protease/phosphatase inhibitor cocktail and EDTA solution 

which protects proteins from degradation by endogenous proteases, 

phosphatases and metalloprotease released during protein extraction and 

purification. Briefly, the medium was removed by centrifugation at 450 x g 

for 5 min and cells were washed 2 times with cold PBS. Then, the mixture 

of RIPA lysis buffer, Halt protease/phosphatase inhibitor cocktail and 

EDTA solution were added to the cell pellet, and mix or vortex briefly to 

resuspend the cells completely. Incubation on ice or in a refrigerator (2–8 

°C) for 5 min. Vortex briefly to resuspend and lyse residual cells. The lysate 

can either be used immediately or quick frozen in liquid nitrogen or stored 

at -70 °C for future use. 

2.6. Statistical analysis 

Results were expressed as mean ± SD of three experiments. After 

testing for normality and equal variances, the mean solubility percentages of 

Fe from different infant formulas were compared by one-way analysis of 

variance (ANOVA) including the Duncan Multiple Range Test in the data 
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treatment to determine significant differences among means (P<0.05). A 

Pearson correlation analysis was performed to investigate the possible 

correlation between mineral solubility (%) and ferritin formation by Caco-2 

cells. Values of P<0.05 were considered significant. All statistical analyses 

were performed with the Statistical Package for the Social Sciences (version 

14.0; SPSS). 

2.7. Results and Discussion 

Fe bioavailability of some infant formulas supplemented with some 

functional ingredients of human milk such as rhLf and/or GOS was 

determined. These formulas were in vitro digested, the obtained soluble 

fractions were conditioned and added to the cell monolayers and finally the 

ferritin content was determined espectrophotometrically by ELISA method. 

Ferritin acts as the main intracellular store of cytosolic Fe, thus it was used 

as indirect indicator of Fe absorption. In this regard, Glahn et al. (1998) 

reported that the use of intracellular ferritin formation as an indicator of Fe 

uptake by Caco-2 cells gives a highly sensitive and accurate measure of the 

availability of Fe from foods, and eliminates the need for extrinsic or 

intrinsic labeling of food Fe in availability assays.  

Total Fe content (mg/100 g dry weight of formula) and Fe solubility 

% are shown in Table 2.2. Findings indicated that control formula (without 

any added ingredient) had the low concentration of total Fe. The total Fe 

content of control formula was slightly lower than the data provided by the 

manufacturer (∼6.3 mg/100 g dry weight). As well as formulas 

supplemented with 3.3, 5 or 10% GOS had the same content of Fe. The 

results revealed that there is a positive linear correlation between formula Fe 

content and the increasing rhLf added where e.g. Fe content was 6.86, 7.04 

and 7.36 (mg/100 g powder) for the formulas contain 0.10, 0.15 or 0.20 % 

rhLf, respectively. Findings showed that all treatments had a Fe solubility % 

higher than control formula. Respecting with infant formulas supplemented 

with GOS (3.3, 5 or 10%), it was found that formula with 3.3 % GOS had 

the highest value of Fe solubility percentage (78.65%) followed by formula  
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Table 2.2. Total Fe content (mg/100 g dry weight) and Fe solubility (%). 

Values are mean ± SD of three independent experiments. Means of the same 
column with different superscripts are statistically different (P<0.05). Abbreviations: 
rhLf: recombinant human lactoferrin, GOS: galactooligosaccharides. 

 

 

 

 

 

Treatment Total Fe Fe solubility (%) 

Control 6.23 ± 0.20 66.37 ± 1.77 
c
 

3.3 % GOS 6.23 ± 0.20 78.65 ± 8.30 
abc

 

5 % GOS 6.23 ± 0.20 77.69 ± 4.11 
abc

 

10 % GOS 6.23 ± 0.20 76.48 ± 7.68 
bc

 

0.10 % rhLf 6.86 ± 0.29 83.35 ± 8.79 
abc

 

0.10 % rhLf + 3.3 % GOS 6.86 ± 0.29 82.78 ± 5.35 
abc

 

0.10 % rhLf + 5 % GOS 6.86 ± 0.29 84.41 ± 1.54 
abc

 

0.10 % rhLf + 10 % GOS 6.86 ± 0.29 90.01 ± 3.51 
ab

 

0.15 % rhLf 7.04 ± 0.10 84.97 ± 2.72 
abc

 

0.15 % rhLf + 3.3 % GOS 7.04 ± 0.10 88.94 ± 11.53 
ab

 

0.15 % rhLf + 5 % GOS 7.04 ± 0.10 94.13 ± 2.95 
ab

 

0.15 % rhLf + 10 % GOS 7.04 ± 0.10 96.13 ± 5.74 
a
 

0.20 % rhLf 7.36 ± 0.29 80.56 ± 3.66 
abc

 

0.20 % rhLf + 3.3 % GOS 7.36 ± 0.29 78.27 ± 0.84 
abc

 

0.20 % rhLf + 5 % GOS 7.36 ± 0.29 79.69 ± 3.20 
abc

 

0.20 % rhLf + 10 % GOS 7.36 ± 0.29 80.71 ± 0.82 
abc
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contains 5% GOS (77.69%), then 10% GOS (76.48%); however, the 

differences between these values were very low and not differ significantly 

(P<0.05) (Table 2.2).  

These experimental data agreed with a study reported that 

supplemental inulin promotes Fe absorption in piglets (Yasuda et al., 2006) 

as well as agreed with previous findings from animal studies (Lopez et al., 

2000; Santos et al., 2010). Furthermore, Scholz-Ahrens et al. (2001) 

reported that prebiotics such as oligofructose, inulin, glucooligosaccharide, 

and GOS promoted Fe, Ca and Mg absorption and retention. Results 

obtained were in line with findings obtained by Christides and Sharp (2013) 

who reported that sugars had a positive effect on non-heme Fe absorption in 

Caco-2 cell line. However, they appear to conflict with findings of a study 

on non-anemic humans indicating that non heme-Fe absorption does not 

enhanced by using the indigestible prebiotics (Van den Heuvel et al., 1998).  

Regarding with formulas contain rhLf, findings revealed that all 

these formulas offered high values of Fe solubility % as compared with that 

of formulas supplemented with different concentrations of GOS or control 

formula (Table 2.2). The data revealed that a combination of 0.15% rhLf + 

10 % GOS has provided the major positive effect on Fe solubility % 

(96.13%) followed by 0.15% rhLf + 5% GOS (94.13%), then 0.10% rhLf + 

10% GOS (90.01%) and these obtained values significantly differed 

(P<0.05) as compared with all treatments.  

The high percentage of Fe solubility obtained (ranging from 66.37 to 

96.13%) was in a good agreement with those reported by Perales et al. 

(2007) who found even a higher range of Fe solubility (31.9-99.1%). The 

formulas composition and the type of potent promotor of Fe absorption (Lf 

vs ascorbic acid) in both experiments may explained the slightly difference 

in Fe solubility percentage. Interestingly, Perales et al. (2007) reported the 

difficulty of comparing their results with others due to differences in 

methodology, amount of enzyme, pH and time incubation in gastric 

digestion and intestinal and even variations in speed centrifugation in the 

case of solubility. In this sense, Bosscher et al. (2001b) conducted a study 
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on conditions similar to ours and concluded that the mineral availability 

varies pH used in the gastric and intestinal digestion and incubation time.  

These findings suggested that rhLf and GOS have an Fe absorption 

increasing property and they are in line with those found by Kawakami et al. 

(1993) that demonstrated that intact Lf could solubilizing up to a 70-fold 

molar equivalent of Fe under neutral conditions in the intestine, which is 

much higher than the Fe-binding property of Lf. It seems likely that the 

excess Fe was electrostatically associated with Lf. In this sense, Lf may be 

useful as a natural solubilizer of Fe for food products and it was suggested 

that Lf, orally administered, could solubilize ferric Fe in the intestine. 

Interestingly, under neutral conditions, pepsin-digested Lf retained its 

capability to solubilize dietary Fe. This finding proposed that restricted 

breakdown of Lf accounted for intestinal Fe solubility (Ushida et al., 2006). 

Also the addition of Fe-Lf complex to complementary foods may stimulate 

the Fe status (Lönnerdal & Bryant, 2006).  

Likewise, Fe absorption positively influenced by the presence of 

inulin and FOS (Yeung et al., 2005) and this be partly explained by the 

colonic bacterial fermentation of these substances (Scholz-Ahrens et al., 

2007) which participate in a lowering of the luminal pH which in turn may 

enhance mineral solubility (Yeung et al., 2005). In the same manner, 

Kamasakaa et al. (1997) demonstrated that oligosaccharides could solubilize 

Fe in the intestine. Thus the Fe absorption is improved by the presence of Lf 

and oligosaccharides (Jovaní et al., 2003; Etcheverry et al., 2004; Uchida et 

al., 2006).  

Furthermore, some bioactive peptides produced during in vitro 

digestion process could improve the Fe bioavailability through its high 

chelating characteristics for Fe. This effect on Fe bioavailability was 

demonstrated for synthetic β-casein (Bæch et al., 2003; Argyri et al., 2007) 

and soy protein hydrolysate (Lv et al., 2014) as well as for certain amino 

acids (Swain et al., 2002). These compounds may bind Fe, forming soluble 

complexes and thus improving its bioavailability (Glahn et al., 1997; 

Storcksdieck et al., 2007; Lv et al., 2014). Some published studies, using 
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Caco-2 model, revealed that milk peptides increased Fe dialyzability and Fe 

uptake (Argyri et al., 2007; 2009). Recently, it was reported that the 

chelating peptides have received more attention because it facilitate the 

conversion of ferric Fe to ferrous which enters to the enterocytes through its 

DMT1 receptors. Moreover, enterocytes may uptake the Fe-peptides 

complexes through a specific peptides transporter located on the surface of 

the brush border membrane and subsequently improve Fe bioavailability 

(Torres-Fuentes et al., 2012). 

Ferritin levels formed by Caco-2 cells exposed to soluble fractions of 

formulas are shown in Table 2.3. As stated above, the increase of ferritin 

formation in cells is an indicator that Fe has entered the cell because the 

intracellular ferritin formation increased in response to Fe that has been 

entered to the cells (Reymond et al., 1996, 1998; Cook et al., 2003; Laparra 

et al.; 2008). Therefore, the intracellular ferritin formation was used as an 

indicator of Fe bioavailability. Fe uptake into intracellular medium was 

expressed as a ratio of ferritin and cell protein (ng ferritin/mg cell protein), 

because the factors that promote multiplication of a cell such as Lf were 

involved in whey (Schottstedt et al., 2005). The highest value of ferritin was 

detected in the infant formula with 0.15 % rhLf + 5% GOS (45.83) followed 

by the one that contained 0.20 % rhLf + 5 % GOS (45.61), 0.20 % rhLf + 

3.3 % GOS (43.50), 0.20 % rhLf + 10 % GOS (43.37). These findings were 

significantly (P<0.05) differed respecting with control and other treatments. 

It is interesting to mention that addition of both of rhLf and GOS caused a 

5-7.5-fold increase in ferritin concentration quantified in these cultures. In 

the present study, Caco-2 ferritin levels ranging from 6.13 to 45.83 ng 

ferritin/mg cell protein were obtained, the lowest value corresponding to the 

formulas without any added ingredient and the highest to formulas 

containing 0.15 % rhLf + 5% GOS. The low ferritin levels obtained in our 

study, when compared to those reported by Etcheverry et al. (2004), can be 

mainly explained by the differences in the formula composition. There were 

also differences in the applied methodology to measure ferritin (ELISA 

versus immunoradiometric).   
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Table 2.3. Ferritin level of Caco-2 cell exposed to different digests of 

infant formulas. 

Treatment 
Fe added to the 

monolayer (µg) 

Ferritin/cell protein 

(ng/mg) 

Control 16.10 ± 0.84 6.13 ± 1.40 
f
 

3.3 % GOS 20.18 ± 2.15 12.18 ± 1.57 
def

 

5 % GOS 20.51 ± 0.03 11.45 ± 0.60
 ef

 

10 % GOS 19.30 ± 2.93 12.11 ± 1.37 
def

 

0.10 % rhLf 21.13 ± 0.73 20.51 ± 3.84 
cde

 

0.10 % rhLf + 3.3 % GOS 19.26 ± 1.75 24.32 ± 2.86 
cde

 

0.10 % rhLf + 5 % GOS 18.43 ± 0.57 20.95 ± 0.22 
cde

 

0.10 % rhLf + 10 % GOS 19.12 ± 0.86 32.11 ± 10.21 
bc

 

0.15 % rhLf 24.73 ± 0.21 24.94 ± 1.89 
cd

 

0.15 % rhLf + 3.3 % GOS 25.45 ± 3.22 33.81 ± 5.61 
abc

 

0.15 % rhLf + 5 % GOS 26.88 ± 0.79 45.83 ± 8.91 
a
 

0.15 % rhLf + 10 % GOS 26.88 ± 1.52 31.97 ± 3.12 
bc

 

0.20 % rhLf 25.70 ± 1.28 31.74 ± 3.59 
bc

 

0.20 % rhLf + 3.3 % GOS 27.67 ± 0.3 43.50 ± 4.77 
ab

 

0.20 % rhLf + 5 % GOS 27.09 ± 1.00 45.61 ± 6.76 
a
 

0.2 % rhLf + 10 % GOS 26.83 ± 0.20 43.37 ± 7.45 
ab

 

Values are mean ± SD of three independent experiments. Means of the same 
column with different superscripts are statistically different (P<0.05). Abbreviations: 
rhLf: recombinant human lactoferrin, GOS: galactooligosaccharides.  
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These low levels of ferritin obtained in the presented study are in 

line with those obtained by Viadel et al. (2007) who used the same 

technique to measure ferritin level (ELISA method). However, the ferritin 

level of our study still lower and this may be explained by the differences in 

the formula composition. 

The obtained results revealed that addition of GOS and/or rhLf to the 

infant formulas enhanced the ferritin formation as compared to control 

formula. It is important to mention that ferritin formation in cultures 

exposed to formulas containing different concentration of GOS did not 

correspond to the higher Fe solubility % and this it was be supported by the 

findings of Laparra et al. (2008) study, which indicated that 

supplementation with inulin led to a 2-fold increase in dialyzable Fe and cell 

Fe content, without differences in ferritin concentration evaluated in the 

cultures. Although ferritin expression is translationally regulated by 

intracellular Fe concentration (Pantopoulos, 2004; Rouault, 2006) and its 

formation by intestinal cells occurs in response to Fe that has been taken up 

(Laparra et al., 2008), the presented findings showed that Fe solubility is not 

considered the only determinant factor of ferritin formation by the cultures. 

Thus, it is possible that another mechanism may participate in ferritin 

formation rather than mineral solubility. In this sense, Laparra et al. (2008) 

proposed that Fe solubility is needed to be absorbed; however, not all 

soluble forms of Fe are available to Caco-2 cells as concluded from ferritin 

formation values quantified. In this regard, Zhu et al. (2006) reported that 

DMT1 may facilitate the Fe uptake via a proton-coupled mechanism. 

Although the mineral solubility is not the only factor which affect on 

ferritin formation, the increase in ferritin formation observed could be due 

to the effect of rhLf and GOS on Fe solubilization occurred during in vitro 

digestion. In this sense, in vivo study (Chierici et al., 1992) has noted an 

increase in serum ferritin of infants fed formula supplemented with bLf as 

compared with non-supplemented formula. Likewise, an increase in ferritin 

formation was observed by Caco-2 in the presence of casein 

phosphopeptides, bioactive peptides derived from milk casein by proteolytic 
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digestion (Yeung et al., 2002; Argyri et al., 2007). Moreover, Etcheverry et 

al. (2004) reported that a low molecular-weight factor in human and bovine 

milk whey, named Lf, enhanced Fe bioavailability by Caco-2 cells. 

Similarly, it was proposed that prebiotics, e.g. inulin, FOS and GOS, had an 

enhancing activity on the absorption of Fe (Yeung et al., 2005). 

Furthermore, Lf plays an effective role in Fe homeostasis in newborns 

(Sacrino, 2007) and this suggestion was supported by the higher content of 

Lf in human milk than bovine milk (Vorland, 1999).  

Despite the many and various studies have carried out to identify the 

different functionalities of Lf, particularly which by promote the Fe 

absorption, the role of Lf in intestinal Fe absorption is still controversial and 

it is not fully understood the mechanism by which this protein may 

participate in that process (Uchida et al., 2006).  

For evaluating the interactions might be occurred between Fe 

solubility and the formation of ferritin by the different cultures, Pearson 

Correlation Test was performed where significant differences were noted. In 

this sense, the presented findings are in a good agreement with those 

reported by Zhu et al. (2006) where a positive linear correlation between Fe 

bioavailability (expressed as ferritin level) and its intestinal solubility was 

observed; thus, mineral solubility can be used to establish trends in the 

bioavailability or relative bioavailability of Fe, because the chance for Fe 

uptake increases with a higher solubility. Fe bioavailability can be affected 

by the matrix composition of the samples and the presence of Fe enhancers 

or inhibitors. Components of milk (casein and Lf) or fruit juices components 

(ascorbic, citric and malic acids) and the Fe salt used for enrichment could 

explain differences among samples (Perales et al., 2007).  

In conclusion, the supplementation of infant formulas with both rhLf 

and GOS could promote the Fe solubility almost 1.5 times, which may turn 

into an improvement of Fe (bio)-availability (expressed as ferritin formation 

by the cultures) 5-7.5 fold increase.  
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Chapter 3 

The effect of rhLf and rhLf hydrolysate on LPS-

induced inflammation 

3.1.  Introduction 

One of the most important factors in inducing the intestinal 

inflammation is the bacterial infection (O’Byrne et al., 2000; O’Byrne and 

Dalgleish, 2001). Pathogens produce some enterotoxins such as 

lipopolysaccharides (LPS) whose increase the cellular permeability, 

dysregulate the mucosal immune system and decrease the barrier function, 

resulting in generation of an inflammatory response (Wells et al. 1996; 

Robertson & Sandler 2001; McGuckin et al. 2009). Although inflammatory 

response is self-balanced (Gorczyniski & Stanley, 1999) and helps to restore 

homeostasis at the infected sites (Fiocchi, 2003), excessive and uncontrolled 

inflammatory changes often lead to chronic diseases (Davidge et al., 2001; 

Fiorucci et al., 2004). At the inflamed sites, large proportion of chemokines 

(IL-8) and pro-inflammatory cytokines (TNF-α and IL-1β), are secreted by 

the epithelial cells and macrophages (Arai et al., 1999). As well as the 

overproduction of ROS (reactive oxygen species) at the inflammation sites 

stimulates high oxidative stress (Zhang, 2010), which promotes IL-8 

production in Caco-2 cells (Yamamoto et al., 2003), and other mediators of 

inflammation associated with immune dysregulation (Conner & Grisham, 

1996). The levels of these mediators amplify the inflammatory response 

being destructive and contributing to clinical symptoms (Romier et al., 

2008).  

Given the undesirable side effects of anti-inflammatory and anti-

oxidant drugs currently used (Waldner & Neurath, 2009; Chakrabarti et al., 

2014); there is a growing interest for the using of the dietary nutrients to 

modulate the inflammatory process, or at least relieve its symptoms 

(Romier-Crouzet et al., 2009; Sergent et al., 2010). Due to its 

multifunctional properties as antibacterial, anti-inflammatory and 

immunomodulatory, Lf and its hydrolysate are thought to be able to 
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suppress or decrease the development of inflammation (Håversen, et al., 

2002). This hypothesis was supported by the confirmation of its endotoxin-

neutralizing capacity (Zhang et al., 1999) and its preventive effects on 

infection and inflammation (Lönnerdal, 2009). Also Lf is markedly 

increased in the nidus of inflammation (Roseanu & Brock, 2006, Legrand et 

al., 2008) and at infection sites (Actor et al., 2009, Ahmad et al. 2011) 

showing that it plays a central role in the inflammation treatment.  

Thus the addition of Lf to infant formulas or other food types or even 

Lf-orally administration may plays a prominent role in inflammation 

treatment. Many studies are needed to explore Lf functionality regarding 

with its ability to reduce or modify the inflammation process in intestinal 

models and to discover the molecular mechanisms by which participate in 

diseases treatment and prevention. 

3.2.  Aims of this chapter 

The present study aimed to explore the anti-inflammatory effect of 

different concentrations of rhLf and rhLf hydrolysate (1, 1.5 or 2 mg/mL) in 

vitro by using an in vitro gut inflammation model. 

3.3. Materials and methods 

3.3.1.  Chemicals: 

 Lipopolysaccharides (LPS) from E.coli 0127:B8 were purchased from 

Sigma Chemical Co. (Sigma, St. Louis, MO, USA). LPS was diluted in 

sterile phosphate buffer solution (PBS) to give 3 mg/ml. 

 Recombinant human lactoferrin (rhLf). Expressed in rice, Fe 

saturated, >90% (SDS-PAGE)], was purchase from Sigma Chemical 

Co. (cat. no. L1294, St. Louis, MO, USA). Three different solutions of 

rhLf and rhLf hydrolysate (1, 1.5 and 2 mg/mL) were prepared.  

 Vivinal GOS syrup (dry matter 75 % of which GOS 59 %, lactose 21 

%, glucose 19 % and galactose 1 %) was provided by Hero Baby Co. 

(Alcantarilla, Murcia, Spain).  

3.3.2. Proteolytic digestion of rhLf 

rhLf was hydrolyzed using pepsin according to the method of Bellamy 

et al. (1992). Briefly, rhLf was dissolved in distilled water at a concentration 
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of 5% (w/v) and the pH was adjusted to 3.0 by addition of 1 M HCl. Pepsin 

was added to a final concentration of 3% (w/w of substrate) and hydrolysis 

was performed at 37°C for 4 h. The reaction was stopped by heating at 80°C 

for 15 min. The solution was then cooled until 20ºC and adjusted to pH 7.00 

by dropwise addition of 1 M NaOH. Then, the solution was centrifuged at 4 

ºC for 15 min at 17000 x g. The pellet was discarded and the supernatant 

was kept for using in the inflammation study. 

3.3.3. Caco-2 and RAW 264.7 cell lines and culture conditions 

The human colon adenocarcinoma Caco-2 cell line was obtained 

from the European Collection of Cell Cultures (ECACC; number 86010202, 

Salisbury, UK) and used in assays at passages 29-35. Murine macrophage 

RAW 264.7 cell line was obtained from the European Collection of Cell 

Cultures (ECACC; number TIB-71, Salisbury, UK) and used in assays at 

passages 5-10. These two cell lines were cultured in Dulbecco's Modified 

Eagle's Medium (DMEM, Gibco BRL Life Technologies, Paisley, 

Scotland), supplemented with 10% (v/v) fetal bovine serum (heat 

inactivated 60 °C, 45 min), 100 µg/mL streptomycin and 100 U/mL 

penicillin, 4.5 % glutamine, 1% Pyruvate at 37 °C in a 5% CO2 humidified 

atmosphere (Cell culture CO2 incubator, Thermo Scientific, USA).   

For anti-inflammatory assay, Caco-2 cells were seeded onto 6 

Transwell-insert plates (polycarbonate membrane chamber inserts: 24 mm 

diameter, 0.4 μm pore size; Transwell, Costar Corp.) at a density of 4 × 10
5
 

cells/insert
 
and allowed to grow until the monolayer formation for 14 day. 

The medium was changed every 2 day. One day before the experiment, Raw 

264.7 cells were seeded at the bottom of 6-well plates at density of 8 × 10
5
 

cells/well and allowed to grow in the same growth media as well as Caco-2 

cells. 

3.3.4.  Intestinal epithelium/immune co-culture model (Caco-2/RAW  

264.7 cells) 

An intestinal epithelium/immune co-culture model (Caco-2/RAW 

264.7) (Tanoue et al., 2008) was established to imitate inflammation events 

in the gastrointestinal tract. This model system allowed co-cultivation of 

Caco-2 cells (in the apical compartment) and murine RAW 264.7 cells (in 



Functionality of lactoferrin and GOS in infant formulas                                          Chapter 3 

84  

 

the basolateral compartment) in separate compartments of a Transwell 

culture (the Transwell system including an 24 mm insert with a 0.4 µm pore 

polycarbonate membrane, and a companion 6-well plate tissue culture 

treated sterile, polystyrene plates, Corning, NY, USA) to simulate intestinal 

inflammation-associated events and to study the potential anti-inflammatory 

activity of rhLf and rhLf hydrolysate. For studying the anti-inflammatory 

activity of rhLf and rhLf hydrolysate; 1 mL of rhLf or rhLf hydrolysate 

solution (1, 1.5 or 2 mg/mL) was applied at the apical side for 5 h at two 

days before the experimental day as well as the day of experiment.  

At the day of experiment and after replacing the old media, the 

Transwell insert Caco-2 cells had been cultured were translated into 

multiple plate wells preloaded with RAW 264.7 cells as shown in Fig. 3.1. 

30 µl of LPS solution (3 mg/mL) was added to the basolateral side in this 

model, thus, the tested concentration is 50 µg/mL. After an additional 

incubation of 5 h with LPS solution, the integrity of the monolayer was 

assessed by measuring the transepithelial electrical resistance (TEER) 

according to the method of Okada et al. (2000), then the culture 

supernatants from the basolateral side and the apical side were collected and 

stored at -80 ºC for cytokines determination by flow cytometry and NO 

determination by ELISA kit. Then Transwell insert where Caco-2 cell 

monolayer grow was translated a new 6-well plate, the monolayer was 

cleaned by PBS and then picked up by 1 mL of PBS and scraper in an 

eppendorf which was centrifuged at 1000 rpm at 6 min at ambient 

temperature. 

Finally, the cell pellet was stored at -80 ºC for the detection of ROS 

by flow cytometry. Along the experiment, it was used negative control 

(where LPS solution and the anti-inflammatory agent were not added) as 

well as positive control (where LPS solution was added while the anti-

inflammatory agent was not added). The pro-/anti-inflammatory cytokines 

such as: IL-8, IL-1B, IL-10, IL-6, IL-12p70 and TNF-α were measured 

using flow cytometry by using BD Cytometric Bead Array (CBA) Human 

Inflammatory Cytokines Kit (BD Biosciences, USA). 
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Fig. 3.1. Co-culture system constructed with Caco-2 cells and RAW 

264.7 cells. Transwell inserts on which Caco-2 cells had been 

cultured were inserted into 6-well plate containing RAW 264.7 

cells. To imitate the gut inflammation, LPS was added to the 

basolateral compartment of this co-culture system (Tanoue et al., 

2008). 

 

3.3.5. TEER measurement 

TEER is an indicator of cell confluence, monolayer integrity and the 

formation of tight junctions between cells (Lu et al., 1996; Guillén Gómez, 

2006) which serve as barriers to paracellular diffusion. TEER value reflects 

the tightness of the junctions between epithelial cells and is expressed the 

integrity of the Caco-2 monolayer (Hidalgo et al., 1989).  

In the presented study, TEER value was determined immediately 

after LPS application (before incubation, time = 0 h) and after incubation 

(time = 5 h) and the units in which the obtained values is expressed as 

Ω.cm
2
. TEER value was measured by using Millicell-ERS instrument 

(Millipore, Eschborn, Germany). 

3.3.6.  Cytokine detection (Flow Cytometry) 

The culture supernatants collected from the basolateral side and the 

apical side and stored at -80 ºC were thawed at 4 ºC. These samples did not 

expose to any type of dilution. The cytokines were determined according to 

the manufacturer’s protocol (BD Cytometric Bead Array (CBA) Human 

Inflammatory Cytokines Kit, BD Biosciences, USA).  

To perform the assay:  

1. Vortex the mixed Capture Beads and add 50 µL to all assay tubes.  
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2. Add 50 µL of the Human Inflammatory Cytokine Standard dilutions to 

the control tubes.  

3. Add 50 µL of each unknown sample to the appropriately labeled sample 

tubes.  

4. Incubate the assay tubes for 1.5 hours at room temperature, protected 

from light. Note: If you have not yet performed cytometer setup, you 

may wish to do so during this incubation, or during the incubation in step 

8.  

5. Add 1 mL of Wash Buffer to each assay tube and centrifuge at 200g for 5 

minutes.  

6. Carefully and consistently aspirate and discard the supernatant, leaving 

approximately 100 µL of liquid in each assay tube.  

7. Add 50 µL of the Human Inflammatory Cytokine PE Detection Reagent 

to all assay tubes. Gently agitate the tubes to resuspend the pellet.  

8. Incubate the assay tubes for 1.5 hours at room temperature, protected 

from light.  

9. Add 1 mL of Wash Buffer to each assay tube and centrifuge at 200g for 5 

minutes. 

10. Carefully aspirate and discard the supernatant from each assay tube.  

11. Add 300 µL of Wash Buffer to each assay tube to resuspend the bead 

pellet. Then acquire the standards from the lowest to the highest 

concentration, followed by the test samples. 

3.3.7.  Nitric oxide determination 

Nitric oxide (NO), which was present in the culture medium as 

nitrite and nitrate, was assayed using the colorimetric NO assay (Thermo 

Scientific, Rockford, IL, USA) according to the manufacturer’s protocol. 

 Total NO contributed by nitrate and nitrite was measured as nitrite 

from a nitrite standard curve provided with the kit, after converting all 

nitrate to nitrite. Briefly, the nitrate present in the supernatant was 

enzymatically transformed into nitrite by nitrate reductase, and the total 

nitrite concentration was measured photometrically at 530 nm using the 

Griess reagent (solution of sulfanilamide in 2 M HCl and N-(1-napthyl) 

ethylenediamine dihydrochloride in 2 M HCl). Results were expressed in 
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relative terms to the positive control (Caco-2 cells co-cultured with LPS-

stimulated RAW 264.7 in the absence of rhLf or rhLf hydrolysate). The 

experiments were performed three times, with each individual treatment 

being run in triplicate. 

3.3.8.  Intracellular accumulation of ROS  

The intracellular accumulation of ROS in the Caco-2 cells was 

measured using the oxidant-sensitive fluorescent probe, DCFH-DA. DCFH 

converted from DCFHDA deacetylase within the cells was oxidized by a 

variety of intracellular ROS to DCF, a highly fluorescent compound. After 

incubation with the samples (3 h), the monolayers were washed twice with 

PBS. The cells were then harvested and stained with 12.5 l M of DCFH-DA 

for 20 min in darkness at room temperature. A FACSort flow cytometer (BD 

Biosciences, San Jose, CA, USA) was used to analyze the intracellular ROS 

production and measure the fluorescent intensities of DCFH-DA (λ ex = 488 

nm and λ em = 530 nm). Approximately 10 000 counts were made for each 

sample. 

3.4. Statistical analysis 

Results were expressed as mean ± SD of three replicates. After 

testing for normality and equal variances, the mean from three experiments 

were compared by analysis of variance (ANOVA) including the Duncan 

Multiple Range Test in the data treatment to determine significant 

differences among means (P<0.05). Values of P<0.05 were considered 

significant. All statistical analyses were performed with the Statistical 

Package for the Social Sciences (version 14.0; SPSS). 

3.5.  Results and Discussion 

Many physiological effects for whey proteins have been identified 

including anti-oxidant and anti-inflammatory activities (Kano et al., 2002; 

Kimber et al., 2002; Ward et al., 2002; Beaulieu et al., 2007; Piccolomini et 

al., 2012). In particular, Lf exerts anti-inflammatory properties in animal 

models (Shimizu et al., 2006), in vitro (Håversen et al., 2002; Hirotani et al., 

2008) and humans (Conneely, 2001). Under inflammatory conditions, it is 

well-known that the intestinal mucosa, in inflammatory bowel disease (IBD) 

patients, produced various pro-inflammatory cytokines (MacDermot et al., 
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1999) such as IL-8 (Strufy et al., 2005) and TNF-α (Zareie et al., 2001), and 

then the newly secreted TNF-α could reduce the monolayer integrity leading 

to barrier dysfunction and finally increased the monolayer permeability 

(Sunaert et al., 2002) which reflected in reduction of TEER values 

(Dongmei et al., 2006). A shown in Fig. 3.2, TEER value of Caco-2 cells 

stimulated with LPS (positive control) highly (P<0.05) decreased (from 

599.33 to 366.33 Ohm × cm
2
) at 5 h. This result indicated that LPS led to 

the disruption of the monolayer of Caco-2 cells. Similar trends were 

reported in other in vitro gut inflammation models (Satsu et al., 2006; 

Tanoue et al., 2008) and in IBD patients (Suenaert et al., 2002). The present 

findings revealed that rhLf and rhLf hydrolysate prevented the permeability 

of the monolayers exposed to LPS and therefore LPS-induced barrier 

dysfunction was reduced or prevented and this effect was correlated with 

TEER values which kept higher than 500 Ω.cm
2
 in the inflamed Caco-2 

cells. Similar results proposed that Lf is able to protect the intestinal mucosa 

and improve the barrier function of intestinal cells (Hirotani et al., 2008).  

Fig. 3.2. TEER values of Caco-2 monolayers measured at 0 and 5 h of 

incubation with LPS with/without rhLf or rhLf hydrolysate. The 

results are expressed as Ohm (resistance) × cm
2
 (surface area of the 

monolayer) vs. Time (min). Negative control corresponded to Caco-2 

cells incubated with DMEM alone. Positive control corresponded to Caco-

2 cells stimulated with 50 µg/mL LPS. Abbreviations: TEER: 

Transepithelial Electric Resistance, rhLf: recombinant human lactoferrin. 

Values are mean ± SD of three independent experiments. 
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In Fig. 3.3, IL-8 secreted in the co-culture system constructed with the 

Caco-2 cells and the RAW 264.7 cells is shown. IL-8 is the major cytokine 

measured in Caco-2 with respect the inflammatory response (Van De Walle 

et al., 2010). Our findings indicated that IL-8 production was minimal at 5 h 

for control cultures (3.61 ± 0.32 pg/mL) but was markedly increased in the 

apical compartment of LPS-treated cultures (75.37 ± 3.24 pg/mL). As can 

be seen in Fig. 3.3, a lower IL-8 production (P<0.05) was observed in the 

inflamed cultures treated with rhLf and rhLf hydrolysate and this effect of 

both rhLf and rhLf hydrolysate was almost dose-dependent. rhLf 

hydrolysate was more effective in reducing IL-8 production. IL-8 

production was highly inhibited (P<0.05) by using 2 mg/mL rhLf 

hydrolysate and these cultures had the lowest value of IL-8 (10.9 ± 3.87 

pg/mL) and it is worthy to mention that there is no significant difference 

(P<0.05) between this value as compared with that of non-inflamed 

cultures. 

The obtained results confirmed previous findings reported that rhLf 

(Florian et al., 2012) and native hLf (Håversen et al., 2002; Mattsby-Baltzer 

et al., 1996) are able to decrease the secretion of LPS-induced IL-8. The 

mechanism proposed for this anti-inflammatory effect of Lf may involves 

the interference of Lf with nuclear factor (NF)-B activation (Håversen et al., 

2002) or reducing the production of TNF-α (Choe & Lee, 1999). Likewise, 

the anti-inflammatory effect of Lf could partly explained by its ability to 

bind with LPS (van der Velden et al., 2008). Therefore, high Lf 

concentrations lead to decrease free LPS (Ward et al., 2002). Moreover, it 

blocks the binding of LPS with its protein receptors (Drago-Serrano et al., 

2012). Thus, Lf ultimately modulates LPS-induced inflammation (van der 

Velden et al., 2008; Puddu et al., 2010; Latorre et al., 2010; Legrand and 

Mazurier, 2010).  

As well as, it well-known that stimulated macrophages able to 

produce NO (Stuehr & Marletta, 1985, 1987). NO concentration (µM) of the 

cultures shown in Table 3.1. There is no clear trend of NO production by the 

different cultures treated with rhLf or rhLf hydrolysate.  
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Fig. 3.3. Effect of rhLf and rhLf hydrolysate on IL-8 produced by Caco-

2 cells. Negative control corresponded to Caco-2 cells incubated with 

DMEM alone. Positive control corresponded to Caco-2 cells stimulated 

with 50 µg/mL LPS. Abbreviations: IL-8: interleukin-8, rhLf: recombinant 

human lactoferrin. Values are mean ± SD of three independent 

experiments. Means with different superscripts are statistically different 

(P<0.05). 

 

Non-significant differences (P<0.05) were observed for NO 

production between all treated cultures as compared with negative or 

positive control cultures. Interestingly, although the cultures incubated with 

1 mg/mL rhLf hydrolysate showed an inhibitory effect on IL-8 secretion 

after 5 h, high amount of NO (23.28 ± 7.17) secreted by these cultures as 

compared to the positive control samples. These findings confirmed 

previous findings found by Choe and Lee (1999) showing that Lf has no 

effect on NO production showing that the inhibitory role of Lf does not 

interfere the other functions of stimulated macrophages, at least NO 

production. This finding leads us to conclude that rhLf function does not 

occur through the interference of the macrophage activation, but possible 

through the TNF-α-specific regulatory mechanism such as transcriptional 

regulation of TNF-α. Likewise, the measurement of the intracellular 

accumulation of ROS by FACS flow cytometry is of interest where it was 

thought that ROS produced in the injured cells via the penetration of 
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neutrophils and macrophages may stimulate the inflammation process (Naik 

& Dixit, 2011).  

Fig. 3.4 showed the percentage of ROS produced by Caco-2 cells. 

These findings revealed that non-inflamed cultures had the minimal value of 

ROS (1.17 ± 0.06%) while the LPS-treated cultures highly produced ROS 

(77.80 ± 4.36%). The Caco-2 cells stimulated with LPS had reduced 

(P<0.05) ROS concentrations when treated with rhLf or rhLf hydrolysate 

and it was found that 2 mg/mL rhLf hydrolysate is the more effective dose 

in reducing ROS production. This inhibitory effect on ROS production was 

more effective for rhLf hydrolysate than rhLf and these findings are in a 

good agreement with previously reported findings showing that hLf and 

rhLf has the ability to reduce the secretion of ROS (Mulder et al., 2008; 

Kruzel et al., 2010) and this effect was in a dose-dependent manner 

(Tsubota et al., 2008 Kruzel et al., 2007, 2013). 

 

Table 3.1. Effect of rhLf and rhLf hydrolysate on NO secretion in Caco-
2 monolayers.  

Negative control corresponded to Caco-2 cells incubated with DMEM alone. Positive 

control corresponded to Caco-2 cells stimulated with 50 µg/mL LPS. Abbreviations: NO: 

nitric oxide, rhLf: recombinant human lactoferrin. Values are mean ± SD of three 

independent experiments. Means with different superscripts are statistically different 

(P<0.05). 

 
 
 
 

Treatment       NO content (µM) 

Negative control 13.85 ± 5.56
 ab

 

Positive control 14.27 ± 3.89
 ab

 

1 mg/mL rhLf 14.77 ± 4.57
 ab

 

1.5 mg/mL rhLf 13.51 ± 5.11
 ab

 

2 mg/mL rhLf 11.42 ± 2.08
 b
 

1 mg/mL rhLf hydrolysate 23.28 ± 6.17
 a
 

1.5 mg/mL rhLf hydrolysate 14.45 ± 8.53
 ab

 

2 mg/mL rhLf hydrolysate 12.48 ± 2.94
 b
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Fig. 3.4. Effect of rhLf and rhLf hydrolysate on ROS production in 

Caco-2 monolayers. Negative control corresponded to Caco-2 

cells incubated with DMEM alone. Positive control corresponded to 
Caco-2 cells stimulated with 50 µg/mL LPS. Abbreviations: ROS: 
reactive oxygen species, rhLf: recombinant human lactoferrin. Values 
are mean ± SD of three independent experiments. Means with 
different superscripts are statistically different (P<0.05). 

 

 

 

In this sense, Kruzel et al. (2007) reported that the intracellular ROS 

levels decreased up to 50% in the cultures treated with 32 µg/mL of Lf. 

Moreover, ROS production decreased to the minimal levels, which reported 

for non-inflamed cultures, in the presence of higher concentrations of Lf. 

The obtained findings revealed that ROS production by the cultures treated 

with 2 mg/mL of rhLf hydrolysate decreased up to 71.5% (~3.5 fold 

decrease). The failure in reducing of ROS production may induce oxidative 

stress (Kruzel et al., 2013) which promotes the pro-inflammatory cytokine 

IL-8 production by caco-2 cells (Yamamoto et al., 2003).  

It could be concluded that rhLf and rhLf hydrolysate exert its anti-

inflammatory activity through its ability to bind LPS and subsequently 

modulate cytokine production, e.g. the reducing of IL-8 production. The 

mechanism of Lf’s action is also largely dependent on its ability to influence 

early responses, including the modulation of intracellular ROS production 

(Kruzel et al., 2007).   
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Chapter 4 

The prebiotic activity of rhLf and GOS. Batch culture 

fermentation study 

4.1. Introduction  

 In the recent decades, the growing awareness of consumption of food 

products containing some functional ingredients beyond to the nutritional 

components due to its positive impact on consumer health. In this context, 

the more demanded functional ingredients by consumers are those positively 

affecting the intestinal flora (Saarela et al., 2002). Among these ingredients: 

human milk oligosaccharides (HMOs) and human lactoferrin (hLf) that are 

considered as prebiotics with an interesting effect on the growth of intestinal 

microbiota, especially Bifidobacteria and Lactobacilli (Kim et al., 2004; 

Boehm et al. 2005; Rahmarn et al., 2006; MacFarlane et al., 2008).  

 Many previously published studies confirmed that the presence of 

these ingredients in human milk may influences the composition of the gut 

microbiota leading to an increase on the Bifidobacteria proportion of breast-

fed infants as compared to those fed on infant formulas (Harmsen et al., 

2000; Alles et al., 2004; Iacono et al., 2005; Granier et al., 2013). Thus, the 

addition of these functional ingredients to infant formulas is considered an 

adequate and recent trend to produce milk substitute in order to highly 

resemble the human milk composition (Alles et al., 2004). Since Lf has been 

added as a new bioactive component in infant formulas (IFSA, 2012), many 

formulas containing Lf are commercialized in the markets (Wakabayashi et 

al., 2006; Mulder et al., 2008).   

 HMOs are resistant to digestion and reach the colon in a high 

proportion, where they prevent the attachment of enteropathogens and serve 

as prebiotics protecting the breast-fed infant against infections and diarrhea 

by different mechanisms. HMOs stimulate the growth of Bifidobacteria and 

Lactobacilli, thus decreasing the fecal pH and reducing the presence of 

pathogens (Boehm et al. 2005). However, many in vitro, in vivo and 
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preclinical studies are needed to discover the functionality of human milk 

components especially Lf and HMOs in the gut of infants.    

4.2. Aims of this chapter 

 The present study aimed to evaluate the role of rhLf and GOS on the 

profile of short chain fatty acids (SCFAs) and the evolution of infant fecal 

bacteria using batch culture fermentation. 

4.3. Materials and methods 

4.3.1. Chemicals: 

 Recombinant human lactoferrin (rhLf).  Expressed in rice, Fe 

saturated, >90% (SDS-PAGE)], purchased from Sigma Chemical 

Co. (cat. no. L1294, St. Louis, MO, USA).  

 Vivinal GOS syrup (dry matter 75 % of which GOS 59 %, lactose 

21 %, glucose 19 % and galactose 1 %) was provided by Hero Baby 

Co. (Alcantarilla, Murcia, Spain).  

4.3.2.  Proteolytic digestion of rhLf  

It was used the same method described in section 3.3.2. 

4.3.3.  Preparation of the fecal inoculum 

Fecal samples were obtained from three healthy babies (aged 2-4 

months) without any known metabolic or gastrointestinal disorders and were 

not taken antibiotics before fecal sample donation. Fresh fecal samples were 

immediately placed in anaerobic jars and transported to the laboratory 

within 2 h of collection. Fecal samples available at each time were diluted 

(1:10, w: v) with phosphate buffer (PBS composition was as following: 8 

g/L NaCl, 0.2g/L KCl, 1.15 g/L Na2HPO4, 0.2g/L KH2PO4, pH 7.3) and 

homogenized in a stomacher for 2 min at normal speed. Subsequently, the 

fecal homogenates of each donor (10 mL) were added to 90 mL of the 

Minimal Basal medium (MBM) and allowed to stabilize by being kept for 4 

h at 37 ºC under anaerobic conditions. 
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4.3.4.  In vitro batch culture fermentations 

Three independent small scale fecal batch cultures, each of them 

corresponding to samples from three different babies. Briefly, the medium 

Minimal Basal Medium (MBM) contained the following ingredients (g/L): 

peptone water (2); yeast extract (2); NaCl (0.1); K2HPO
4
 (0.04); KH2PO

4
 

(0.04); MgSO4.7H2O (0.01); CaCl2.6H2O (0.01); NaHCO3 (2); L-Cysteine 

(0.5); bile salts (0.5); Tween 80 (2 ml); 4 ml of 0.025% (w/v) Resazurin 

solution. All ingredients were reconstituted with bidistilled water. The 

medium was adjusted to pH 7.0 by using 1 mol/L HCl and was autoclaved 

at 121 ºC for 15 min. After autoclaving, 10 µL of vitamin K1 and 1 mL of 

hemin solution (50 mg/mL) per liter were added, and the two later solutions 

were filter sterilized (0.20 µm pore size). First of all, 1% (w/v) lactose was 

added to the media before autoclaving because it is the main sugar in milk. 

The fecal slurry and autoclaved MBM were prepared at the same day and 

maintained overnight under conditions of anaerobiosis at 37 °C, before use. 

For each batch, MBM was distributed into different glass vessels (5 

mL per vessel) along with 5, 7.5 or 10 mg of rhLf or mixture of 1% GOS 

and 5, 7.5 or 10 mg rhLf. 1 % GOS was used as positive control. Likewise, 

one additional tube was kept without adding any substrate and it was used as 

a negative control.  

The next day, ingredients assayed (rhLf and GOS) (at the different 

concentrations) were added to each vessel just prior to the inoculation with 

the fecal slurry (50 µL of the fecal slurry was added to each vessel). The 

different treatments were incubated at 37 ºC in anaerobic conditions that 

were maintained throughout the batch culture experiments. Batch culture 

study was run for 24 h, which is the typical incubation time for batch system 

when simulating the large intestine of monogastrics. Samples were taken at 

0, 10 and 24 h of incubation and pH was measured at each time. In the 

different points of sampling, approximately 1.5 mL of each tube were taken 

and put into sterile vials, then centrifuged at 12000 x g for 15 min. The 

pellet was immediately freezed at -80 ºC, and subsequently used for analysis 

of bacterial populations by Q-PCR while the supernatant was filtered 
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through 0.2 µm filter, then freezed at -80ºC for SCFAs analysis by gas 

chromatography (GC).  

The different treatments used in this study are the following:  

1. Negative control (without 

substrate) + Fecal slurry 

2. Positive control  

(1 % GOS) 
3. 0.10 % rhLf 

4. 0.15 % rhLf 5. 0.20 % rhLf 
6. 0.1 % rhLf + 1 

% GOS 

7. 0.15 % rhLf + 1% GOS 8. 0.20 % rhLf + 1 % GOS 

 

4.3.5.  Short chain fatty acids (SCFAs) analysis by GC 

SCFAs analysis in fecal cultures, was determined by GC according 

to Mateo-Anson et al. (2011) and Salazar et al. (2008). For SCFAs analysis, 

1.5 mL of batch culture fermentation sample was centrifuged at 12000 rpm 

for 10 min at room temperature. 100 µL of supernatant was added to 650 µL 

of a mixture of formic acid (20%), methanol and 2-ethyl butyric acid 

(previously prepared internal standard, 2 mg/mL in methanol) at a ratio of 

1:4.5:1 (v/v/v). Then mixtures were exposed to ultrasonic sound for 5 min. 

After centrifugation at 12000 rpm for 10 min, supernatants were filtered 

through a 13 mm (diameter), 0.22 µm (pore size) polytetrafluoroethylene 

(PTFE) filter into a GC vial and the cap applied. 2 µL of samples were 

injected into GC (GC system Agilent 7890A) equipped with a flame-

ionization detector and a Nukol TM column (30 × 0.25 mm × 0.25 µm, 

Supelco, USA). More details about the chromatographic conditions of the 

applied analytical method are described in Table 4.1. 

The different organic acids were identified according to the retention 

times, and the concentrations were calculated by using calibration curve for 

each fatty acid.  

The chromatographic data were processed using the software ALS 

Controller Utility of Agilent Technologies. Fig. 4.1 showed the 

chromatogram of the different SCFAs analyzed using the multi-standard 

solution of 10 mM concentration. 
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Table 4.1. Chromatographic conditions for SCFAs analysis by GC.  

Instrumental parameters Conditions 

Elution method Pressure injection constant 

Flow 
Helium 25 ml/min (elution gas) 

Air 400 ml/min 

Hydrogen 30 ml/min 

Injection method Splitless 

Injection volume 2 µL 

Oven temperature 80 ºC 

Temperature ramp 
80 ºC/5 min 

5 ºC/min to 185 ºC 

Injector temperature 22 ºC 

Detector temperature 220 ºC 

Injector pressure 58.99 kPa 

 

 

Fig. 4.1. The chromatogram of the different SCFAs analyzed using the 
multi-standard solution of 10 mM concentration.  
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Two calibration curves were prepared, one with different 

concentrations of a volatile acids standard mix (initial concentration 10 mM, 

Supelco, USA) which considered as an internal standard and other with 

acetic acid in order to increase its concentration respect the concentration of 

the first one (Table 4.2).  

 

 
Table 4.2. The different standard of fatty acids used for doing the 

calibration curve. 
 

 
St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 

Multi-standard 10 mM 5 mM 2 mM 1 mM 0.5 mM 0.25 mM 

Acetic acid 200 mM 100 mM 50 mM 10 mM 5 mM 2  mM 

 

 

4.3.6.  Measurement of pH 

pH of batch culture samples was measured immediately after taking 

the aliquots to analyze the SCFAs and Q-PCR. This measurement was done 

in triplicate directly by using the pH-meter (Crison, Barcelona, Spain) in the 

tubes in which the bacterial growth occurred. 

4.4. Statistical analysis 

Results were expressed as mean ± SD of three experiments (three 

donors). After testing for normality and equal variances, the mean of the 

major and minor SCFAs from three experiments were compared by Two-

way analysis of  variance (ANOVA) including the Duncan Multiple Range 

Test in the data treatment to determine significant differences among means 

(P<0.05). A Pearson Correlation Analysis was performed to investigate the 

possible correlation between pH variation and SCFAs concentration using 

the batch culture fermentation system. Values of P<0.05 were considered 

significant. All statistical analyses were performed with the Statistical 

Package for the Social Sciences (version 14.0; SPSS). 
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4.5. Results and Discussion 

The findings obtained in this study regarding SCFAs production by 

the fecal bacterial population are presented in Table 4.3 for the major 

SCFAs (acetic, propionic, butyric acids) and in Fig. 4.2 for the minor 

SCFAs (isobutyric, isovaleric, n-valeric, isocaproic, n-caproic and heptanoic 

acids). 

These SCFAs are organic acids with 1 - 6 carbon atoms and are one 

of the main anions that resulted by the bacterial fermentation of 

polysaccharides, oligosaccharides, proteins, peptides and glycoprotein 

precursor in the colon (Cummings & Macfarlane, 1991). Now it is accepted 

that SCFAs production has beneficial effects on human health including: the 

enhancement of water transport, sodium absorption and bicarbonate 

excretion. Furthermore, SCFAs functionality has expanded to include their 

role as nutrients for the colonic epithelium, as modulators of colonic and 

intracellular pH, and other functions related with Fe transport, and as 

regulators of proliferation, differentiation, and gene expression (Hijova & 

Chmelarova, 2007). Also the accumulation of SCFAs is related with the pH 

decrease, which influences indirectly on the colonic microflora pattern, and 

indirectly increases the minerals absorption such as calcium and iron 

(Jenkins et al., 1987; Bougle et al., 2002), as well as lowering the 

bioavailability of the toxic amines and thus protecting from the carcinogenic 

progress (Puccio et al., 2007).  

 As can be seen in Table 4.3, the total SCFAs levels increased after 

24 h of incubation of fecal microbiota with the tested ingredients. The 

highest values of total SCFAs were detected after fermentation in the 

presence of 0.10 % rhLf + 1% GOS followed by 0.15% rhLf + 1% GOS as 

compared with control group (without any ingredient added). The obtained 

findings revealed, as unexpected, that total SCFAs in the presence of 1% 

GOS showed the lowest value after 24 h as compared with control group. 

Non-significant differences (P<0.05) were observed between total SCFAs in 

all treatments. Among the various detected SCFAs, acetic acid was the most 

abundant, followed by similar amounts of both propionic acid and butyric 
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acid. After 24 h of fermentation, an elevated production of acetic acid was 

reported and its higher value was found for 0.10 % rhLf + 1 % GOS 

followed by 0.15 % rhLf + 1 % GOS as compared with control group. 

Unexpectedly, in the presence of 1% GOS, the acetic acid production was 

the lowest compared with control after 24 h. It is worthy to note that the 

highest acetic acid value after 10 h was reported in presence of 1 % GOS as 

compared with all treatments with exception of control sample. However, 

non-significant (P<0.05) changes in the acetic acid production by the tested 

ingredients was observed at the different points of sampling and this may be 

resulted by the high differences between acetic acid produced by the three 

donors. 

Similar results in line with the present findings were found by Miller 

and Wolin (1996) revealed that acetic acid was the major product of the 

bifidobacteria pathway following fermentation of glucose purified from 

cabbage by human fecal suspensions. Also Velazquez et al. (2000) found 

that the incubation with glucose gave rise to more acetic acid but less 

propionic and butyric acid production than other fermentable substrates. In 

this sense, Rycroft et al. (2001) found that acetic acid and total SCFAs were 

highly produced by lactulose and GOS fermentation as compared with other 

oligosaccharides after short-term incubations. Likewise, Macfarlane et al. 

(2008) reported that the colonic fermentation of GOS induced the 

production of acetic acid, which correlated positively with the increase of 

Bifidobacteria populations, as acetate formation is consistent with 

Bifidobacteria and Lactobacilli metabolism. Similar results have been 

reported showing that the increasing production of acetic acid was directly 

associated with the increasing in Bifidobacteria counts (Cardelle-Cobas et 

al., 2009). Many published studies remarkably reported that prebiotics are 

the main responsible for the marked increasing in the counts of 

Bifidobacteria, Lactobacilli and subsequently the higher production of 

acetic acid and total SCFAs (Ben et al., 2004; Knol et al., 2005; Cai et al., 

2008), and these changes may be responsible for promoting the defense 

functions of the host and thereby protecting the host from severe infection 

(Fukuda et al., 2011, 2012). 
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In the case of propionic acid, the findings revealed a moderately 

increasing of its level for all the tested ingredients after 24 h of 

fermentation. After 10 h of fermentation, in the group of samples containing 

0.20 % rhLf showed the lowest value as compared with the rest of 

treatments. While after 24 h, the highest value of propionic acid was found 

in the presence of 0.10 % rhLf + 1 % GOS followed by 0.15 % rhLf + 1 % 

GOS while the lowest value was observed in the presence of 1 % GOS 

respecting with control group. The results revealed that there are non-

significant (P<0.05) differences between the values of propionic acid among 

the different treatments. It was previously reported that propionate may 

form soluble complex with iron, thereby maintaining the solubility of iron in 

the lumen of the colon, as well as facilitating the transfer across endosome 

membranes of the enterocytes (Bougle et al., 2002). 

The contrary occurred for butyric acid, which decrease moderately 

after 24 h of fermentation as compared to its content at zero time of 

incubation. The highest value of butyric acid was observed at 24 h in the 

presence of 0.20 % rhLf + 1 % GOS followed by control sample but it is not 

significantly (P<0.05) differed with the values of different treatments. 

Finally, it was observed a small variability between the other groups in their 

content of butyric acid whether at 10 h or 24 h. The low concentration of 

butyric acid could be related with the decrease of Clostridium and 

Enterobacteriaceae numbers; the major butyrate-producing bacterial groups 

found in human feces (Barcenilla et al., 2000) as well as related with the 

decrease of Faecalibacterium prausnitzii (Fpra655) populations determined 

by Fluorescence In Situ Hybridization (FISH) as reported in a recently study 

(Rodriguez-Colinas et al., 2013). Furthermore, butyric acid production was 

not observed in these mostly acidic cultures when pH values of fecal 

cultures fall below 6.0 as indicated to occur by Walker et al. (2005). 

Likewise, many studies revealed that acetic acid is produced at higher levels 

than propionic and butyric acids (Velazquez et al., 2000; Bruck et al., 2003; 

Delgado et al., 2006; Al-Tamimi et al., 2006). By contrast, Rossi et al. 

(2005) revealed that SCFAs production in fecal fermentation highly affected 

by the presence of FOS and inulin. Acetic and lactic acids were the major 
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fermentation end products in the presence of FOS while inulin fermentation 

gave rise butyric acid level. Thus, in view of the previous reported data we 

can report that the type of dietary components, its composition, 

polymerization degree and intestinal flora pattern of infants and the age of 

the infant may greatly influence on the produced SCFAs.  

Interestingly, as a consequence of SCFAs production pattern 

mentioned above, the acetic acid/propionic acid ratio highly increased at 10 

h of fermentation then this ratio decreased moderately or highly depending 

on the added compound where this ratio of control group achieved the 

highest value at 10 h while was the lowest value at 24 h. Our findings 

reported that negative control and positive control led to a significant 

changes (P<0.05) in the acetic/propionic acid ratio. Respecting with this, 

Delzenne & Kok (2001) reported that the decrease in acetic acid/propionic 

acid ratio has been suggested to be a possible marker of the hypolipidemic 

effect of prebiotics (as noted by the inhibition of cholesterol and fatty acids 

biosynthesis in liver, which finally results in a decrease in lipid levels in 

blood). Remarkably, the highest decrease on this ratio observed in the 

present study was for the 0.15 % rhLf group.  

It is well-established that the feeding pattern of infant has an effect 

on the predominant microflora (type, composition and activity) in the infant 

gastrointestinal tract and subsequently the gut microflora of infants who 

received human milk have been reported to differ from infants on standard 

infant formula (Iacono et al., 2005; Granier et al., 2013). This difference 

may partly explained by the presence of HMOs. Several mechanisms can 

explain these effects, such as the selective fermentation and growth of 

Lactobacillus and Bifidobacteria species and the subsequent production of 

SCFAs (Cummings, 1984; Roberfroid, 1993). Many published studies have 

shown that acetic acid was the main fermentation end-product in infants that 

received human milk while propionic and butyric acids were the 

predominance metabolites in the gut of bottle-fed infants (Edwards & 

Parret, 2002; Vasallo, 2010). Various studies confirmed that beneficial 

effect of prebiotics added to infant formulas which strongly influenced 

SCFAs pattern providing a fecal SCFAs profile that is close to that of 
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breastfed infants, with high level of acetate and lower level of propionate 

and butyrate (Knol et al., 2005; Boehm & Moro, 2008).  

In short, SCFA (acetate, propionate or butyrate) are the main end 

products results by microbial fermentation of these indigestible 

oligosaccharides and they are well-known to possess beneficial effects on 

the host (Cummings, 1981; Topping & Clifton, 2001; Macfarlane & 

Macfarlane, 2003). Enhanced SCFAs production and increased delivery of 

these compounds in the distal colon, especially butyrate, may have a role in 

preventing colon cancer and other intestinal disorders (Wong et al. 2006). 

Respecting with the effect of these products of prebiotics fermentation 

related with Fe absorption, it has been proposed that these acids enhanced 

mineral absorption by decreasing the pH of colon contents (Coudray et al., 

1997). This decrease in pH will presumably promote the release of iron 

bound to proteins, thereby increasing its bioavailability (Cook et al., 1964). 

Another possible mechanism, these short-chain fatty acids may stimulate the 

proliferation of epithelial cells, thereby increasing absorptive surface area in 

the colon. Likewise, prebiotics or products of their fermentation may create 

an environment in the colon that promotes the reduction of Fe
3+

 to Fe
2+

 

(Yeung et al., 2005); and prebiotics or products of their fermentation may 

stimulate the expression of iron regulatory genes, thereby increasing iron 

absorption such as calbindin-D9K which positively affect Ca absorption 

(Ohta et al., 1998a) and DMT1 (Gunshin et al., 1997; Zoller et al., 2001), 

hemochromatosis protein (HFE) (Zhou et al., 1998), duodenal cytochrome b 

(Dcytb) (McKie et al., 2001), and ferroprotein-1 (Frazer et al., 2001) which 

positively influenced Fe absorption. 

Respecting with the minor SCFAs, Fig. 4.2 showed the 

concentration of isobutyric, isovaleric, n-valeric, isocaproic, n-caproic and 

heptanoic acids. It was found great variability in the concentration of these 

SCFAs among the different treatments as compared with control group and 

also among the time of incubation (at 10 and 24 h). The differences between 

the flora patterns predominant in the three fecal inoculums may participate 

in this variability of SCFAs concentration. 
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In the case of isobutyric acid, the highest value at 24 h was found in 

presence of 0.10 % rhLf + 1 % GOS (0.09 ± 0.06) followed by 0.10 % rhLf 

(0.08 ± 0.02). Non-significant (P<0.05) difference was noted between the 

values of isobutyric acid among the different treatments whether at 10 or 24 

h of fermentation. For isovaleric acid, 1 % GOS gave rise the concentration 

of this SCFA for the highest value (0.37 ± 0.04 ) at 10 h of incubation while 

at 24 h, the presence of 0.10 % rhLf + 1 % GOS had the highest values 

(0.39 ± 0.08) which significantly (P<0.05) differed as compared with all 

treatments. Addition of 0.20 % rhLf led to a significant (P<0.05) decrease in 

isovaleric content at 24 h (0.09 ± 0.01). The obtained findings indicated that 

1 % GOS had the highest concentration of valeric acid at 10 h (0.23 ± 0.07), 

as well as the findings indicated that high variability was found whether by 

moderately increasing or decreasing for valeric acid. Non-significant 

differences (P<0.05) were reported for the effect of the tested ingredients on 

the production of valeric acid.  

Isocaproic acid has significantly been increased and the highest 

obtained value (0.40 ± 0.09) was in presence of 0.15 % rhLf at 10 h but its 

content decreased after 24 h (0.24 ± 0.03). The maximum values of caproic 

acid obtained at 10 h were for the groups containing 0.20 % rhLf + 1 % 

GOS then 0.10 % rhLf + 1 % GOS (1.13 ± 0.18 and 1.02 ± 0.12, 

respectively) while for heptanoic acid, the maximum value at 10 h was for 

0.20 % rhLf group (0.82 ± 0.19).  

In view of the obtained findings (Fig. 4.2), it worth noting that there 

was no clear trend related with the effect of rhLf and/or GOS on the 

production of minor SCFAs in fecal cultures fermentation with the 

exception of isobutyric acid which found to be increased at 24 h in all 

treatment as well as control group.  

One of the most important factors in this topic is the pH which 

influences on the growth and/or activity of intestinal microflora, particularly 

Bifidobacteria and Lactobacilli and subsequence on the produced SCFAs. 

More recently, Peso-Echarri (2012) indicated that decreasing of pH means 

an increase in acidity due to an increased production of SCFAs by the fecal 
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microbiota and reported a negative significant relationship between the pH 

and acetic acid or total SCFAs in all sampling points.  

Respecting with the pH variation of our study (Fig. 4.3), pH values 

decreased with the time of fermentation. At 10 h of incubation, we obtained 

the lowest value of pH in presence of 1 % GOS which similar to the value 

of control group whereas 0.10 % rhLf followed by 0.20 % rhLf had the 

maximum values of pH. The values of pH continued to decrease at 24 h of 

fermentation and the lowest value of pH was for control and 1 % GOS 

groups while the major value was obtained for 0.15 % rhLf group. Recently, 

the drop in pH from the ileum to the cecum due to the higher SCFAs 

concentrations has two effects. First, both in vitro and animal studies 

showed that lower pH values change gut microbiota composition and 

secondly, it prevents overgrowth by pH-sensitive pathogenic bacteria like 

Enterobacteriacae and clostridia (Duncan et al., 2009). 
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Fig. 4.2. Minor short chain fatty acids concentration produced at 10 

and 24 h of incubation with rhLf and/or GOS in batch culture 

fermentation vessels.  
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Fig. 4.3. pH variation at 10 and 24 h of incubation with rhLf and/or 

GOS in batch culture fermentation vessels. 
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Chapter 5 

Effect of in vitro gastrointestinal digestion on the 

profile of rhLf and long chain fatty acids in human 

milk as compared with different infant formulas 

5.1. Introduction  

Lactoferrin (Lf) is the second most abundant human milk protein 

component (Gonzalez-Chavez et al., 2009) constituting about 10-15% (Baró 

et al., 2001) and belongs to the transferrin family (Xavier et al., 2010). Since 

Lf has many functional effects (e.g. enhancement of iron absorption, anti-

inflammatory and antibacterial effect,… etc) (Pan et al., 2007; Zimecki et 

al., 2007; Lӧnnerdal, 2009; Zimecki et al., 2009) and is acting as first line 

defense agent against infections in the body (Iigo et al., 2009), it is accepted 

as functional ingredient by EFSA in infant formulas (EFSA, 2012) and are 

now marketed in many countries (Mulder et al., 2008, Wakabayashi et al., 

2006).  

One of the most important characteristics of Lf, which defines its 

effects, is its resistance to different conditions along the gastrointestinal 

digestion process, where it is slightly degraded and the produced bioactive 

peptides have many functional effects (Bellamy et al., 1992). In view of 

this, now the research in this topic is focused on the Lf degradation and its 

bioactive peptides released during the gastrointestinal digestion (GID) 

process.  

There is very limited in vivo information whether Lf is digested in 

the stomach or in the intestine (Britton & Koldovsky, 1989), since most of 

studies about Lf stability or degradation have been tested with in vitro 

digestion models using pure proteolytic enzymes (Yao et al., 2013, 2014). 

Moreover, there are few studies about the resistance of Lf during the in vitro 

simulated GID of human milk or infant formulas containing this protein. In 

general, stability of Lf added to infant formulas exposed to in vitro digestion 

is not fully understood. Thus, there was an increasing interest in improving 

Lf stability in foods by using some dietary components. Regarding with this, 
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Lf was more stable by using pectin (Bengoechea et al., 2011) and soluble 

soy polysaccharides in the aqueous solution (Ueno et al., 2012). In this 

sense, the presence of indigestible prebiotics, e.g. GOS, which are well-

known to be quite resistant to different environments and enzymatic 

digestions along the digestive tract (Hernandez-Hernandez et al., 2012), in 

infant formulas may protect Lf against the proteolytic enzymes activity 

leading to higher degree of stability.  

To reinforce the functionality of infant formulas, the addition of long 

chain fatty acids (LCFAs), such as docosahexaenoic acid (DHA) and 

arachidonic acid (ARA), to infant formulas is well reported, where it have a 

positive role in supporting the visual and cognitive development in 

newborns and infants. Recently, the use of LCFAs as a novel food additive 

in infant formulas has been supported by many scientific agencies such as 

FDA, EFSA, FAO, WHO (International Formula Council, IFC, 2010). 

However, there is no scientific literature about the stability of these fatty 

acids along the gastrointestinal tract or its availability at intestinal level.  

5.2. The aims of this chapter 

The present study aimed to investigate the effect of in vitro 

simulated gastrointestinal digestion (consisted in two phases: gastric and 

intestinal) on the profile of rhLf and LCFAs of human milk as compared to 

different infant formulas containing various concentrations of rhLf (0.1 or 

0.15%) and/or GOS (3.3, 5 or 10%). 

5.3. Materials and methods 

5.3.1. Infant formulas and chemicals: 

 First infant formula (FIF): was provided by Hero Co. (Murcia, 

Alcantarilla, Spain), and experimentally supplemented with different 

concentrations of rhLf (0.1 and 0.15%) and/or different concentrations of 

GOS (3.3, 5 and 10%) and those were used in SDS-PAGE analysis and 

western blotting and LCFAs determination. To compare these infant 

formulas with human milk, samples from three Egyptian mothers were 

used.  
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 Recombinant human Lf (rhLf) [(expressed in rice, iron saturated, 

>90% (SDS-PAGE)], as well as enzymes used in this work (pepsin, 

trypsin and bile salts, from porcine gastric mucosa), were purchased from 

Sigma Chemical Co. (St. Louis, MO, USA).  

 Vivinal GOS syrup (dry matter 75 % of which GOS 59 %, lactose 21 %, 

glucose 19 % and galactose 1 %) was provided by Hero Baby Co. 

(Alcantarilla, Murcia, Spain).  

5.3.2. In vitro digestion model of infant formulas 

It was used the same method described in the above section 2.4.   

5.3.3. Proteolytic digestion of rhLf  

It was used the same method described in section 3.3.2. The obtained 

supernatant was retained for analysis by SDS-PAGE and western blotting 

(rhLf semi-quantification) and used for studying rhLf fractionation by 

HPLC-Mass (see section 5.3.5). 

5.3.4. SDS-PAGE analysis and western blotting 

Western blotting is often used for semi-quantification of protein 

levels of samples. In this study, it was used for semi-quantification of rhLf 

in some infant formulas and human milk (before and after in vitro 

digestion), as well as pepsin- or trypsin-treated rhLf. Samples of different 

digests were separated by electrophoresis (Bio-Rad, California, USA) on 12 

% SDS-PAGE. After loading standard (5 µL/lane) and samples (5µl of milk 

or infant formula previously mixed with Lammeli Buffer 4X and heated 

during 5 min at 95ºC), electrophoresis was started with 90 V for 20 min, 

which is considered enough time until samples run the stacking gel and go 

into resolving gel. Then the voltage was increased to 180 and the 

electrophoresis was run for additional 60 min (until the end of resolving 

gel). After gel electrophoresis, the transfer phase was carried out using 

BioRad Trans-blot turbo (Bio-Rad, USA) and appropriate transfer buffer 

according manufacturer instructions (the roller was used to remove any air 

trapped between the blotting layers). 

Thus proteins transferred electrophoretically to a nitrocellulose 

membrane (0.2 μm of pore). Then the membrane was blocked with blocking 

solution (2% BSA/TBST) for 1 h at least, followed by overnight incubation 

at 4º C with rabbit polyclonal human lactoferrin antibody diluted in block 
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solution (1:200) (Santa Cruz Biotechnology, USA. Ref. sc-25622). The next 

day and after three times 10 min washes shaking at room temperature with 

Tris-Buffered Saline and Tween 20 (TBST), the membranes were incubated 

with block solution for 25 min followed by incubation the membranes with 

horseradish peroxidase (HRP)-conjugated secondary antibody diluted in 

block solution (goat anti-rabbit IgG, 1:10000) (Santa Cruz Biotechnology, 

USA. Ref. sc-2030). The membrane was washed as previously and protein 

bands were detected using ECL prime and ImageQuant LAS500 (GE 

Healthcare Europe, Germany) according manufacturer instructions. The 

optical densities of proteins were analyzed with software ImageQuant TL 

(GE Healthcare, Amersham Biosciences, Germany).  

5.3.5. Chromatographic separation of rhLf-derived peptides by HPLC-

MS   

The separation and analysis of the protein digests of the samples 

were also performed with a HPLC-MS system consisting of an Agilent 1100 

Series HPLC (Agilent Technologies, Santa Clara, CA, USA) equipped with 

a μ-wellplate autosampler and a capillary pump, and connected to an 

Agilent Ion Trap XCT Plus Mass Spectrometer (Agilent Technologies, 

Santa Clara, CA, USA) using an electrospray (ESI) interface.   

Samples (40 µl) were injected at a flow rate of 10 µl/min onto a 

Waters BEH C18 HPLC column (5 µm, 150  0.5 mm) for peptide 

separation and analysis, which was thermostatted at 40C. After the 

injection, the column was washed for 10 min with buffer A 

(water/acetonitrile/formic acid, 94.9:5:0.1) and the digested peptides were 

eluted using a linear gradient 0-80% B (buffer B: water/acetonitrile/formic 

acid, 10:89.9:0.1) for 150 min. The column was coupled online to an 

Agilent Ion Trap XCT Plus Mass spectrometer using an electrospray 

interface. UV/Vis detector was used, specifically, the absorbance at 210/280 

nm was measured. 

The Mass spectrometer was operated in the positive mode. The 

nebulizer gas pressure was set to 15 psi, whereas the drying gas was set to a 

flow of 5 l/min at a temperature of 350 C. The capillary spray voltage was 

3500 V, whereas the scan speed was set to 8100 (m/z)/sec from 200-2200 

https://en.wikipedia.org/wiki/Tris-Buffered_Saline
https://en.wikipedia.org/wiki/Tween_20
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m/z, with a target mass of 1000 m/z, and 3 spectra averaging. Smart ion 

target was set to 150.000, whilst the maximum accumulation time was 20 

ms. MS/MS data were collected in an automated data-dependent mode 

(AutoMSn mode). The three most intense ions were sequentially fragmented 

using helium collision-induced dissociation (CID) with an isolation width of 

2 and relative collision energy of 35%.  

Data processing was performed with DataAnalysis program for 

LC/MSD Trap Version 3.3 (Bruker Daltonik, GmbH, Germany) and 

Spectrum Mill MS Proteomics Workbench (Rev A.03.02.060B, Agilent 

Technologies, Santa Clara, CA, USA). 

Briefly, raw data were extracted under default conditions as follows: 

unmodified cysteines; sequence tag length >1; [MH] +100–8000 m/z; 

maximum charge +6; minimum signal-to-noise (S/N) 25; finding 12C 

signals. The MS/MS search against the sequence of human Lactoferrin from 

NCBInr database with the following criteria: identity search mode; digestion 

with pepsin or trypsin with 5 maximum missed; peptide charge +1, +2, +3; 

monoisotopic masses; peptide precursor mass tolerance 2.5 Da; product ion 

mass tolerance 0.7 amu; ESI ion trap instrument; and minimum matched 

peak intensity 50%.  

5.3.6. LCFAs profile of digested samples  

Total lipid in infant formulas and human milk (both, before and after 

digestion) was extracted according to the method of Bligh & Dyer (1959) 

with minor modifications. A 60 µL of sample was taken in a 15-ml screw-

top culture tube with Teflon cap and mixed with water to a total volume of 1 

mL; then 2.5 mL of methanol and 1.25 mL of chloroform were added in the 

same tube and vortexed. The contents of the culture tube were kept at room 

temperature for 60 min with vortexing every 10 min. After 1 h, 1.25 mL of 

chloroform, 1.15 of water and 100 µL of 3 M HCl were added (to ensure the 

pH of the extract was acidic), vortexed and centrifuged at 1200 x g at room 

temperature. The chloroform layer (bottom phase), containing lipid, was 

removed using 2 Pasteur pipettes, one inserted into the other. The methanol-

water phase was extracted with an additional 1.25 mL of chloroform and 

both chloroform phases were combined, dried over anhydrous Na2SO4, 
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filtered, and then transferred into a 4-mL vial. Chloroform was removed 

from the vial under a stream of N2, and 3 drops of benzene were added and 

vortexed. The lipid content in the vial was methylated by adding 200 µL of 

NaOCH3 (0.5 M solution in methanol, Cruz-Hernandez et al., 2004 and 

Muller et al., 2005). The vials were kept at room temperature for 24 min. 

Then, 1 mL of 1 N methanolic sulphuric acid (2.8 mL of 96% sulphuric acid 

in 100 mL methanol) was added. After vortexing, the vials were heated at 

50º C for 15 min and cooled at -20º C for 3 min. Then, 1 mL of water and 1 

mL hexane were added, vortexed, and centrifuged at 1200 x g for 3 min at 

room temperature. The upper portion (hexane layer) containing FA methyl 

ester (FAME) was transferred into an specific vial for GC analysis. 

FAME analysis was performed using an Agilent 7890A GC 

equipped with a HP-88 112-8867 column (60 m x 0.25 mm x 0.20 µm), 

flame-ionization detector (FID) and automatic injector. Peaks were routinely 

identified by comparison of retention times with FAME standards.   

5.4. Results and discussion 

This study was designed to examine the effect of the in vitro 

simulated gastrointestinal digestion on rhLf degradation added to infant 

formulas as compared to Lf of human milk. The first step of the 

gastrointestinal digestion of food proteins is the gastric phase (low pH and 

pepsin treatment), followed by stomach emptying and further digestion 

simulating the upper part of duodenum by pancreatic and brush border 

enzymes (pancreatin and bile salts), the later named intestinal digestion 

phase (Inglingstad et al., 2010). 

Animal origin-purified commercial enzymes (consist mainly of 

pepsin, trypsin or chymotrypsin, and pancreatin) are used in the simulation 

of infant gastrointestinal digestion process (David-Birm et al., 2013, Liu et 

al., 2013); however, the information about the degradation of Lf by various 

commercial enzymes is controversial (Gonzalez-Chavez et al., 2009, Baldi 

et al., 2005). In the presented study, it was used an in vitro digestion model 

employing freshly prepared pepsin solution (the gastric phase) followed by 

the intestinal phase (freshly pancreatin-bile extracts solution). 
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Several factors must be taken into account when considering the 

variability of results about Lf degradation. Among these factors: gastric pH, 

age of the consumer (maturity of the digestive system), the transit time in 

the stomach (incubation time in in vitro model) and enzyme treatments are 

the most important ones (Kalantzi et al., 2006). Therefore, this topic is very 

controversial and the obtained data vary depending on the conditions used. 

rhLf stability in digested samples 

Degradation patterns of pepsin- or trypsin-treated rhLf were checked 

by Western blot (Fig. 5.1) and also SDS-PAGE pattern stained with 

Coomassie blue, Fig. (5.2). Pepsin- or trypsin-treated rhLf showed 

completely degradation and very small peptides were observed, whereas in 

the untreated rhLf solution only one large band was observed, 

corresponding to the intact protein. Regarding with human milk, a main 

band of 80 kDa (corresponding to Lf) and many small peptides bands were 

observed, whereas after gastrointestinal digestion, Lf from human milk was 

highly degraded, only remaining around 7.3% of undigested protein and 

some small peptides bands of lower molecular weight (Fig. 5.3). These 

obtained findings revealed that Lf of human milk was highly sensitive to 

degradation during in vitro digestion and might be partially explained by the 

possibility of proteolysis occurred after samples collection and during 

samples transport and storing (Fig. 5.3) which human milk samples were 

frozen at -18ºC after collection in Egypt, then were transported to Spain and 

then stores at -80ºC. It is known that freezing could cause protein 

denaturation (Chang et al., 1996; Cao et al., 2003).  

In the same manner, Rollo et al. (2014) showed that long-term 

freezing significantly reduces Lf concentrations of human milk as well as 

some of its biological activities could be influenced. Likewise, Lf 

concentration in human milk significantly decreased over time. 
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Fig. 5.1. Western Blot of rhLf-untreated and treated with pepsin or 

trypsin.  

 

Fig. 5.2. SDS-PAGE pattern of rhLf stained with Coomassie blue. Line 

1: Standard; line 2: untreated rhLf; line 3: pepsin-treated rhLf; line 4: 

trypsin-treated rhLf. Abbreviation: rhLf: recombinant human lactoferrin 

 

 



Functionality of lactoferrin and GOS in infant formulas                                    Chapter 5 

126  

 

Fig. 5.3. Western Blot of digested human milk.  

 

 

In the case of infant formulas, as it is shown in Table 5.1, rhLf was 

poorly digested, but the stability depends on the amount of rhLf added. 

When the infant formula was enriched with 0.10% of this protein, ~40.9% 

of whole protein after gastrointestinal digestion process was found in intact 

form, whereas in 0.15% enriched formula, the undigested protein level was 

higher preserving 59 % of the initial rhLf (Fig. 5.4. a, b). As it has been 

mentioned in the introduction, GOS seems to protect rhLf from the 

enzymatic treatment along the gastrointestinal tract. In the presented study, 

both infant formulas (supplemented with 0.10 and 0.15% of rhLf) were 

enriched with three different amounts of this prebiotic substance. As 

indicated in Table 5.1, infant formula supplemented with 0.10% of rhLf + 

3.3% of GOS, showed that ~65.5% of this antimicrobial protein was intact 

after the digestion process, while 45% and 63% is still in intact form in 

formulas supplemented with 5 and 10% GOS, respectively (Fig. 5.4. c and 

d). 

 



Functionality of lactoferrin and GOS in infant formulas                                    Chapter 5 

127  

 

Fig. 5.4. Western Blot of digested infant formulas. Formulas without 

adding GOS (A); with 3.3% of GOS (B); 5% GOS (C) and 10% GOS 

(D). 

 

Table 5.1. Recombinant human lactoferrin (rhLf) intact percentage 

after gastrointestinal digestion. 

Treatment      Intact rhLf (%) 

0.10 % rhLf 40.9 ± 0.35 

0.10% rhLf + 3.3 % GOS 65.5 ± 2.3 

0.10% rhLf  + 5 % GOS 45 ± 1.5 

0.10% rhLf  + 10 % GOS 63 ± 5.8 

0.15% rhLf 59 ± 1.6 

0.15% rhLf  + 3.3% GOS 48 ± 1.9 

0.15% rhLf  + 5 % GOS 76 ± 4.1 

0.15% rhLf  + 10 % GOS 44 ± 7.4 

Human milk 7.3 ± 1.8 

rhLf 
Pepsin-treated 0.20 

Trypsin-treated 0.15 
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In the digested infant formulas enriched with 0.15% rhLf, an 

opposite effect was observed. The results revealed that there is a high level 

of undigested rhLf (59%) while in enriched formula with 3.3, 5 or 10% 

GOS, the level of intact rhLf found after being digested was 48%, 76% and 

44%, respectively (Fig. 5.4. c and d). 

The presented results showed that in 0.10% rhLf enriched formulas; 

the addition of 3.3% and 10% of GOS was more effective preserving rhLf 

from proteolysis and subsequently increase its stability than using 5% rhLf. 

Meanwhile in the case of the digested formulas enriched with 0.15% rhLf, it 

was found that using 5% GOS was more effective in increasing the stability 

of rhLf against the digestion process. 

Overall, in infant formulas the greatest stability of rhLf was observed 

in samples containing 0.15% rhLf + 5% GOS while the greatest degradation 

was observed in those containing 0.10% rhLf and no GOS. Regarding 

human milk, we found very low level of this protein after digestion process. 

However, the lowest amount was found in pepsin- or trypsin-treated rhLf, 

where it was degraded completely. The presented findings showed that rhLf 

added to infant formulas seemed to be highly resistant and major proportion 

were detected as intact protein in digested samples after 4 h of the simulated 

gastrointestinal digestion, while most of small peptides generated were not 

detected (Fig. 5.3, 5.4 a, b, c and d). As well as the findings indicated that 

the presence of GOS in infant formulas supplemented with rhLf could raise 

its stability against simulated digestion. Depending on the amount of rhLf 

added to infant formulas (0.10 or 0.15%), the presence of GOS can increase, 

decrease or remain at similar concentration of this protein after digestion. 

The most stable rhLf was found in infant formulas supplemented with 0.15 

% of rhLf + 5 % of GOS (Table 5.1 and Fig. 5.4 c), and all these data 

suggest that the protective effect of GOS to rhLf degradation during 

gastrointestinal digestion may be dose-dependent and requires future 

research to be confirmed. In this sense, it was found that pectin 

(Bengoechea et al., 2011) and soluble soy polysaccharides (Ueno et al., 

2012) would enhance Lf stability. rhLf ability to remain stable under the 

digestion conditions is extremely important, since intact rhLf could be 

available to be transferred across the intestinal epithelium (Tomita et al., 
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2009), playing its effective roles as iron transporter and immune modulator. 

On the other hand, various studies inform that the partial digestion of Lf 

may be beneficial for the host, since some biologically active peptides 

named lactoferricin and others generated fragments play their roles, such as 

antibacterial, anti-oxidant, anti-inflammatory and immunomodulatory 

activities, more effectively than intact protein (Bellamy et al., 1992b, 

Yamauchi et al., 1993). Thus, the partial degradation of Lf may play a dual 

role; where Lf as intact protein plays many beneficial roles, and after its 

partial degradation derived peptides that retains the activities of the native 

protein, being in many cases even more active.  

Another factor that affects Lf stability is pH, even if its variation is 

slow or fast (Furlund et al., 2013). At pH above 4.0, Lf is a resistant protein 

as reported Troost et al. (2001), indicating that the Lf conformation is 

different to native one and pepsin is not fully active (Roberts, 2006, 

Sreedhara et al., 2010), what could reduce or delay protein digestion 

(Furlund et al., 2013). While at very low pH values (1.5-2.5), Lf releases its 

linked iron (Mazurier & Spik, 1980), thus Lf becomes more susceptible to 

degradation (Brock et al., 1976, Brines & Brock, 1983). These findings are 

in accordance with the results obtained in the present work, where pH must 

be adjusted at 4 before the addition of pepsin solution (starting point of 

gastric phase) and at 5 before the addition of pancreatin-bile extract solution 

(starting point of the intestinal phase). Therefore, the data showed in this 

study revealed that rhLf was highly resistant at high intestinal pH and the 

highest degradation of the protein occurred in the gastric phase when pH 

decreased below 4.0. The presented findings are in a good agreement with 

that reported by Britton & Koldovsky (1987); Kuwata et al. (2001) who 

confirmed that Lf is not degraded in the stomach of infants because they 

have a low pepsin secretion and its pH values is usually around 4, being it a 

value too high for significant pepsin activity. Moreover, in infants the 

secretion of pancreatic enzymes is minor, limiting the proteolytic activity in 

the small intestine. It was previously reported that the oral administration of 

liposomal bLf has enhanced its resistance to gastric digestion and was able 

to achieve the gut and deliver the protein to all tissues via the circulation 

(Yamano et al., 2010). By contrast, in adults, most of the orally ingested 
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proteins are degraded by digestive enzymes, such as pepsin or trypsin. In 

this regard, Kuwata et al. (1998; 2001) reported that the presence of Lf in 

the stomach of the adults confirm that major proportion of Lf is degraded in 

this part of the gastrointestinal tract. In view of this, in early stages of life, 

as newborns and infants, the digestive system is not fully developed 

(Bosscher et al., 2001, Jovani et al., 2001) and it is thought that Lf remains 

undigested preserving its bioactivity. On the other hand, in adults the 

digestive system is completely mature, so proteins are completely digested 

in the upper gastrointestinal tract (Brock, 2012). 

These findings are in line with previous reports on in vitro digestion 

(Eriksen et al., 2010) and also are well correlated with the findings of 

Chatterton et al. (2004) that indicated that many milk proteins, particularly 

bLF, remain stable to degradation when milk is ingested by neonates. In the 

same context, studies simulating adult conditions (gastric pH was adjusted 

to 2.5 before the addition of human gastric juice) showed that bLf was 

completely digested (Furlund et al., 2013). However, it also was reported 

that in vivo intragastric Lf digestion occurs at a pH higher than 4, suggesting 

a difference between the results of in vitro and in vivo experiments (Troost 

et al., 2001). One of these differences is the presence of phospholipids in the 

gastrointestinal tract (in vivo studies) which probably affect to the milk 

protein digestion while they are absent in in vitro digestion models using 

simple commercial enzymes (Macierzanka et al., 2009).  

The role of glycosylation in protecting the protein from protease 

digestion allowing its continued bioactivity is well-known. Thereby, the loss 

of the glycan part could make hLf more degradable by digestive enzymes, 

generating small peptides such as lactoferricin (Bellamy et al., 1992a, b, 

Wei et al., 2007). However, contrary to these works, other researches 

highlight the presence of intact whey protein in human jejunum after milk 

ingestion (Mahé et al., 1991). In this regard, Lf was highly resistant and 60–

80% was detected as intact protein, suggesting the stability of this protein 

under the adult stomach conditions (Troost et al., 2001). In neonates, hLf is 

only partially digested and may be absorbed in intact form in gut 

(Chatterton et al., 2004). In contrast, other researcher reported that bLf is 
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totally degraded in the upper gastrointestinal tract (Kuwata et al., 1998, Yao 

et al., 2014). 

It is also worthy of note that along the digestive system of human 

(infants and adults), the protein-linked glycans are not degraded, since the 

specialized enzymes required are absent partially or totally in the upper 

gastrointestinal tract, mainly in infants where the digestion system is not 

completely developed. However, these enzymes are abundantly produced by 

colonic bacteria leading to the most degradation of glycoproteins. The 

differences in bacterial populations and species may alter degradation of 

glycoproteins and therefore its functionality (Dallas et al., 2011). Stability of 

Lf treated with trypsin and trypsin-like enzymes is well-known and it is 

related to the iron saturation (Iyer & Lönnerdal, 1993). Hence, the level of 

Lf saturation and subsequently, the iron binding, stabilizes bLf and holo-Lf 

molecules (Troost et al., 2002). In this regard, holo-Lf was more resistant to 

degradation than apo-Lf when were incubated with proteolytic enzymes 

(Brines & Brock, 1983). In our study, rhLf was iron saturated and our 

findings indicated that rhLf was more stable to degradation and more intact 

rhLf was remained after 4 h of in vitro digestion. Similar results were 

obtained by Spik et al. (1982) who showed that a minor degradation of Lf in 

vivo in the entire digestive tract of newborns, as well as similar results were 

obtained by ex vivo of gastric juice in preterm infants although some 

degradation was found in the later study (Britton & Koldovsky, 1982). In 

the same direction, patterns of SDS-PAGE revealed that free iron-rhLf was 

totally degraded in human by in vivo studies during stomach and small 

intestine phases. Therefore, the free iron-rhLf may be more susceptible to be 

digested than Lf of animal origin (Troost et al., 2002). These results may 

partially explain the higher degradation of Lf from human milk than infant 

formula, since a major proportion (~90%) of human milk Lf is in the form 

of apo-Lf (Lönnerdal, 2010), and is partially iron saturated (5-8%) (Yen et 

al., 2011), thus hLf is being more sensitive to gastrointestinal enzymes. 

Chromatographic separation of rhLf-derived peptides  

The trypsin or pepsin digested rhLf was run in SDS-PAGE 

observing that protein was completely degraded into small peptides with 

low and very low molecular weights. In the case of trypsin, much more 
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peptides were generated, all of them with lower size than in pepsin 

treatment. The effect of proteolytic enzymes (pepsin or trypsin) on the 

integrity of rhLf and the generated peptides was determined by HPLC-MS. 

The data indicated, as expected after SDS-PAGE, that rhLf treated with 

pepsin or trypsin was completely degraded and many small peptides were 

produced. A mass spectrum of the major peak of the UV-chromatogram is 

shown in Fig. (5.5, 5.6). The findings revealed that an increase in peptides 

content was observed after hydrolysis of rhLf by trypsin over pepsin (Table 

5.2). However, a similar peptidic pattern was obtained for rhLf hydrolyzed 

with pepsin and trypsin. As seen in Fig. 5.5; 5.6 and Table 5.2, a total of 10 

and 14 chromatographic peaks were considered for peptide identification by 

MS/MS analysis of pepsin-or trypsin-treated rhLf, respectively. Trypsin has 

a higher ability to generate fragments detectable by this method than pepsin. 

It appears from these findings that pepsin had the ability to cleavage the 

protein at various sites of amino acids but trypsin cleaved rhLf at two 

positions, which are arginine (R) and lysine (K). Rastogi et al. (2014) found 

that hydrolysis of bLf by trypsin produced three major functional molecules 

of sizes approximately 21 kDa, 38 kDa and 45 kDa with producing minor 

molecular peptides with a low molecular weight, below 14 kDa. Also, in all 

the three sites the residues usually attacked by trypsin are arginine and 

lysine. Likewise, Legrand et al. (1986) demonstrated that the moderate 

treatment of Lf with trypsin led to producing two iron-binding Lf fragments 

of 30 kDa and 50 kDa. In our experiment, the rhLf-derived peptides have 

molecular weight ranged between ~ 8-15 kDa. Many published studies 

reported the efficacy of Lf-derived peptides produced by pepsin or trypsin 

treatment. Among these well-known activities, antimicrobial activity 

(Roşeanu et al., 2010; Rastogi et al., 2014), anti-inflammatory capacity 

(Andrä et al., 2005) and angiotensin converting enzyme-inhibitory activity 

(Lee et al., 2006; Hernandez-Ledesma et al., 2007). Therefore, many in vitro 

and in vivo studies are required to clarify these activities of Lf-derived 

peptides. Although the functional role of intact Lf is well-documented, the 

hydrolyzed functional fragments of Lf continue to function in a similar and 

sometimes more potent manner (Rastogi et al., 2014). 
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Fig. 5.5. Fractionation of rhLf-derived peptides by pepsin. 

Fig. 5.6. Fractionation of rhLf-derived peptides by trypsin. 
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Table 5.2. HPLC-MS analysis of peptide separation of pepsin- or 

trypsin-treated rhLf. Retention time (RT, min), m/z, and 

rhLf-derived peptides sequence. 

 

Sample Peak RT m/z Peptide sequence 

P
ep

si
n

-t
re

a
te

d
 r

h
L

f 

1 15.29 1306.53 (R)LKQVLLHQQAK(F) 

2 24.73 1501.24 (G)LLFNQTGSCKFDE(Y) 

3 29.69 1548.82 (A)IAENRADAVTLDGGF(I) 

4 41.53 1306.75 
(L)LCLDGKRKPVTEARSCHLAMAPNHAVVSR

MDKVER(L) 

5 46.48 1144.22 (R)IDSGLYLGSGY(F) 

6 60.81 802.30 (L)YLGSGYFTAIQNLR(-) 

7 61.43 501.81 (L)YLGSGYFTAIQNLR(-) 

8 61.52 886.111 (A)IAENRADAVTLDGGFIYEAGLAPYK(L) 

9 63.15 1537.07 (K)FQLFGSPSGQKDLL(F) 

10 66.73 801.81 
(A)FRCLAENAGDVAFVKDVTVLQNTDGNNMR

HG(L) 

T
ry

p
si

n
-t

re
a
te

d
 r

h
L

f 

1 15.44 533.81 (K)LRPVAAEVYGTER(Q) 

2 15.47 1460.11 (K)QVLLHQQAK(F) 

3 19.15 1018.4 (R)DGAGDVAFIR(E) 

4 19.81 1239.17 (R)SDTSLTWNSVK(G) 

5 24.56 1195.62 (K)FQLFGSPSGQK(D) 

6 24.80 1150.43 (R)THYYAVAVVK(K) 

7 43.49 802.58 (-)MKLVFLVLLFLGALGLCLAGRR(R) 

8 45.40 1390.36 (K)GGSFQLNELQGLK(S) 

9 48.84 1536.85 (K)YLGPQYVAGITNLK(K) 

10 52.78 773.06 (R)DSPTQCIQAIAENR(A) 

11 62.12 1129.67 (K)EDAIWNLLR(Q) 

12 63.17 1129.87 (K)EDAIWNLLR(Q) 

13 73.74 1045.72 (R)IDSGLYLGSGYFTAIQNLR(K) 

14 152.19 1036.87 (R)ADAVTLDGGFIYEAGLAPYK(L) 
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Release of fatty acids by in vitro digestion 

It was studied the effect of in vitro gastrointestinal digestion on the 

profile or the evolution of polyunsaturated fatty acids in different infant 

formulas as compared with human milk. Fatty acids compositions are shown 

in Table 5.3.  

The obtained findings revealed that in vitro digestion led to an 

increase in the contents of lauric, myristic, myristoleic, palmitoleic, elaidic, 

oleic and linoleic acids in the digested human milk samples. The data also 

showed that oleic acid increased after digestion from 710 to 761 (µg/mL) 

while the content of gamma-linolenic acid and eicosapentanoic acid in 

digested human milk has been decreased. Although the effect of in vitro 

digestion on profile of fatty acids content of the mature human milk, this 

effect was slightly whether in the case of the increasing or decreasing. 

Unlike, in first infant formulas (suitable for newborns and up to 6 

months) it was oberved that the content of lauric and myristoleic acids 

decreased with in vitro gastrointestinal digestion (103.6 and 4.23 µg/ml) in 

comparison with their undigested formulas (355.79 and 600.09 µg/ml). 

Some fatty acids of infant formulas were detected only before digestion 

(palmitoleic, α-linolenic acid and gamma-linolenic acid). On the other hand, 

myristic, oleic and eicosapentanoic acids were not detected whether before 

or after in vitro digestion. In the presented study, it was detected a similar 

trend (data not shown) of the effect of in vitro digestion on the fatty acids 

profile with other formulas marketed in Egypt (e.g. Isomil 2, NAN 2 and 

Aptamil 2). All fatty acids were not significantly (P<0.05) different, in all 

samples. These findings reflect the importance of the breastfeeding pattern 

rather than the bottle-feeding pattern respecting with its positive role in 

supporting the visual and cognitive development in newborns and infants. 

As far as we know, this is the first study exploring the effect of in vitro 

digestion on the fat fractionation in infant formulas compared to mature 

human milk. Thus, many difficulties we faced for interpreting this topic. 

Hur et al. (2009) reported that the amount of free fatty acids dramatically 

increased after in vitro digestion in beef patty samples. 
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Table 5.3. Relative changes of LCFAs content in different infant 

formulas as affected by in vitro gastrointestinal digestion. 

 

LCFAs (µg/ml) 

FIF Human milk 

Not digested Digested Not digested Digested 

C12:0 Lauric acid 355,79 103.96 411,47 ± 52,65 493,09 ± 5.96 

C14:0 Myristic acid ND ND 109,95 ± 7.80 123.97 ± 13.61 

C14:1 
Myristoleic 

acid 
600,09 4.23 42.59 ±7.46 52.84 ± 2.07 

C16:1 
Palmitoleic 

acid 
50,16 ND 785.98 ± 16.68 805.97 ± 84.41 

C18:1 
Cis-9-Oleic 

acid 
ND ND 710.15 ± 76.54 761.47 ± 27.82 

C18:2n

-6 

Linoleic acid 

(Cis-9, 12-

……) 

7,30 ND 65.46 ± 8.51 100.09 ± 34.14 

C18:3n

-6 

ɤ-Linolenic 

acid       ɤ-

LA 

663,76 ND 2024.70 ± 446.01 1872.31 ± 661.29 

C20:5n

-3 

Cis-5, 8, 11, 

14, 17-

Eicosapentan

oic 

ND ND 24.52 ± 2.52 18.92 ± 1.36 

LCFAs: long chain fatty acids.  
FIF: First Infant formula. 
ND: not detected. 

 

 

Based on the results of the current research it seems that the in vitro 

digestion stimulates the lipid digestion of FIF and almost no free fatty acids 

were not detected. The lack of free fatty acids in the digested FIF could be 

due to the vegetable fats which may be more susceptible to be digested in 

vitro. On the other hand, it has been identified the increase of free fatty 

acids content after the digestion of human milk, partially due to the capacity 

of enzymes to release digestest the structure of mature human milk. It is 

well-documented that there is a difference between the lipid fraction of 

human milk and infant formulas, including lipid composition, structure, 

digestion and ultimately absorption, which may partially explain the 

different effect of in vitro digestion on fatty acids release in both human 

milk and infant formulas. Generally, dietary fat digestion in the 

gastrointestinal tract into fatty acids is essential to be absorbed by the 

epithelial cells. Fat digestion occurs in the stomach by gastric lipase 
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producing diacylglycerol and free fatty acids (Thomsom et al., 1989), and 

continues in the gut by pancreatic lipase (Small, 1991; Carriere et al., 1993). 

However, at birth the ability of lipid digestion is incomplete but rapidly 

develops the capacity to digest fat, but during the first months of life quickly 

develops to normal levels (Manson et al., 1999). As mentioned above, this is 

the first study to evaluate the in vitro digestion of human milk and infant 

formula respecting with its effect on fatty acids profile and many studies 

may be required for discover this unknown-effect. 

It could be concluded that rhLf is a highly stable protein against the 

simulated in vitro digestion. Prebiotics might protect rhLf form the digestive 

enzymes and this hidden property needs more investigation to be confirmed. 

The obtained results confirmed the importance of breast-feeding pattern 

related with the released LCFAs and its role in the visual and cognitive 

development. 

Overall, the obtained findings revealed various functionalities for 

rhLf and its hydrolysate and GOS which play a prominent role in the 

development of newborn and infants health. 
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Chapter 6 

Conclusions and future work/Conclusiones y trabajo 

del futuro 

1. Beside heme and non heme specific transporters for the absorption of 

iron in duodenal cells, it has been proved that rhLf has a specific site for 

the absorption of ferrous and ferric forms of iron. The obtained results of 

the study carried out using Caco-2 cell model confirmed the importance 

of the supplementation of infant formulas with rhLf and GOS where it 

led to increase ferritin formed by the cell cultures. The results confirmed 

that solubility is not the only factor correlated with improvement of iron 

bioavailability, therefore it is useful investigate the role of some genes 

related with iron bioavailability such as DMT1.  

1. Además de los transportadores específicos de hierro hemo y no-hemo 

para la absorción de hierro en las células duodenales, se ha demostrado 

que rhLf tiene un sitio específico para la absorción de formas ferrosos y 

férricos de hierro. Los resultados obtenidos del estudio llevado a cabo 

con células Caco-2 modelo confirmó la importancia de la suplementación 

de las fórmulas infantiles con rhLf y GOS que llevó a aumentar ferritina 

formada por los cultivos celulares. Los resultados confirmaron que la 

solubilidad no es el único factor correlacionado con la mejora de la 

biodisponibilidad del hierro, por lo tanto, es útil investigar el papel de 

algunos genes relacionados con la biodisponibilidad del hierro como 

DMT1.  

2. rhLf and rhLf hydrolysate exert their anti-inflammatory activity through 

its ability to bind LPS and subsequently modulate cytokine production. 

The mechanism of Lf’s action is also largely dependent on its ability to 

influence early responses, including the modulation of intracellular ROS 

production. Between rhLf and rhLf hydrolysate, rhLf hydrolysate is more 

effective and is considered a prominent therapeutic agent, which must to 

be taken into account during infant formulas design. 
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2. rhLf y su hidrolizado ejercen su actividad anti- inflamatoria a través de 

su capacidad para unirse a LPS y posteriormente modular la producción 

de citoquinas. El mecanismo de acción de Lf también depende en gran 

medida de su capacidad para influir en las respuestas tempranas, 

incluyendo la modulación de la producción de ROS intracelular. La 

actividad anti-inflamatoria de rhLf y del hidrolizado de rhLf, esta última 

se ha mostrado más eficaz y es considerado como un destacado agente 

terapéutico que se debe tener en cuenta durante el diseño de las fórmulas 

infantiles. 

3. The results of study carried out using batch culture fermentation system 

proposed that rhLf and/or GOS influenced the fermentation end products 

such as SCFAs. This fermentation process lead to a decreasing of the 

pathogenic bacteria and complementary an increase of the bifidogenic 

ones. 

3. Los resultados del estudio llevado a cabo con cultivos por lotes 

utilizando como sistema de fermentación ha mostrado que tanto la rhLf 

y/o GOS influyen en la obtención de productos finales de fermentación 

como los ácidos grasos de cadena corta, Este proceso fermentativo 

además lleva a la disminución de bacterias patógenas y de forma 

complementaria el incremento de las bifidogénicas. 

4. The obtained results confirmed that rhLf is more stable than human Lf 

and thus it is considered a prominent factor for infant formulas 

supplementation. Although many studies are needed to discover this 

characteristic, the results proposed a role for GOS in protect rhLf against 

the digestive enzymes. Likewise, the results confirmed the importance of 

the breastfeeding pattern concerning with the released free fatty acids by 

digestion.  

4. Los resultados obtenidos confirmaron que rhLf es más estable que Lf 

humana, por lo que se considera un factor importante para la 

suplementación de fórmulas infantiles. Aunque se necesitan estudios 

complementarios para descubrir y detectar esta característica, los 
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resultados propuestos un papel de GOS a proteger rhLf contra las 

enzimas digestivas. Del mismo modo, los resultados obtenidos confirman 

la importancia de la lactancia materna relacionada a los ácidos grasos 

liberados por la digestión. 

5. Overall, the obtained findings confirm and support the urgently need to 

supplementation with rhLf and/or GOS of infant formulas. The results 

demonstrated the importance of the rhLf hydrolysate as a new additive 

and may be in the near future new formulas contain the hydrolysate of 

rhLf will be seen in the markets.      

5. En conjunto, los resultados obtenidos confirman y apoyan la urgente 

necesidad de suplementación con rhLf y/o GOS de las fórmulas 

infantiles. Los resultados demostraron la importancia del hidrolizado de 

rhLf como un nuevo aditivo y puede ser en un futuro próximo nuevas 

fórmulas contienen el hidrolizado de rhLf será visto en los mercados. 
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