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3.1. PROTEIN CRYSTALLISATION

The Hampton Research Crystal Screens 1 and 2 and our in-house Factorial solutions

were used for the initial crystallisation trials. Purified protein (6 mg ml-1 in 2 mM

Tris/HCl pH 8.0) was mixed and equilibrated against 500 _l reservoir in a sitting drop

vapour diffusion setup with a ratio 2:1 (3 _l protein:1.5 _l crystallisation solution).

Several conditions at 293 K resulted in crystals with well-defined morphologies. The best

diffracting crystals of PNP synthase were obtained from one condition of our in-house

factorial solutions, which consisted in 10% PEG 6000 and 2 M NaCl. .The crystals

belong to the orthorombic space group C2221 with unit cell parameters a = 132.5 Å, b =

155.1 Å, and c = 130.1 Å. However, the main problem was to reproduce these crystals.

This problem could be overcome by the use of the microseeding technique (see 1.2.1.1.),

which yielded reproducible crystals of PNP synthase of suitable size and suitable quality.

3.2. STRUCTURE SOLUTION

The high resolution crystal structure of PNP synthase was solved at 2.0 Å by using the

SIR method with anomalous scattering. Due to the presence of twelve well-occupied

mercury binding sites, only one derivative (EMTS, also known as thiomersal) was

enough to solve the phase problem and to calculate an interpretable electron density map

of the protein. The monomer is folding as a (β/α)8 barrel or TIM barrel. Such a fold

represents a compact domain consisting of a central barrel of 8 β-strands, which is

surrounded by 8 α-helices. In PNP synthase, 3 extra helices to the basic barrel



PNP Synthase from E. coli                                                                              RESULTS AND DISCUSSION

100

architecture mediate the intersubunit contacts to the PNP synthase octamer. At the C-

terminal end of the barrel, loops between a β-strand and its subsequent α-helix are much

longer than those at the N-terminal end, and they built up the active site. One of these C-

terminal loops, loop 4, was shown to be highly flexible and very important for the

function of the enzyme.

The octamer can be described as a tetramer of active dimers. The monomers within a

dimer are symmetrically related by a 2-fold axis, such that their barrels are approximately

perpendicularly arranged to each other (Fig. 12). We believe that the active unit of the

PNP synthase is the dimer because it exists a sharing in the active site between partner

monomers. Arg20 protrudes to the active site of the neighboring monomer, where it is

directly involved in the binding of substrates and products.

Further structural information was obtained with the solution of five enzyme-complex

structures in the presence of substrates, substrate analogues, and products. These new

models comprised a so-called enzyme-substrate complex, ES (DXP and GAP as an

analogue of AAP); an enzyme-product complex, EP (PNP and Pi); an enzyme-substrate

analogue complex, EA (GAP); and two enzyme-inorganic phosphate complexes, EPi1 (2

FIGURE 12. Scheme of the octamer. Here it
is shown how the different oligomeric
building blocks are assembled. The upper
ring of tetramers is coloured from yellow to
red and the correspondent partners in the
lower ring are coloured in grey. The
monomers within the active dimers (AE, BF,
CG, DH) are almost perpendicular to each
other. The 422 symmetry is indicated.
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Pi) and EPi2 (1 Pi). All structures, the native and the various complexes, are of high

stereochemical quality. Ramachandran plots (Fig. 13) confirm that the protein backbone

torsion angles are almost entirely falling in the allowed regions.

3.3. THE ACTIVE SITE

Although catalysing a remarkable variety of reactions, a common feature among all

TIM barrel enzymes is the location of the active site. Its environment is provided by the

loops at the C-terminal end of the β barrel core. In PNP synthase, this cavity is big

enough to accommodate the substrates, AAP and DXP, the different intermediates of the

reaction, and the products, PNP and Pi.

FIGURE 13. Ramachandran plots. The refined structures from the uncomplexed enzyme (left) and the ES
complex (right) were choose as an example to show the reliability of the structure.
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However, in order to obtain insight into the molecule mechanisms of catalysis, it is

absolutely necessary to characterise the crystal structure of complexes with substrates

and/or products (Fig. 14). The first solved structure of a PNP synthase complex

corresponds to the enzyme-product complex, which was achieved by incubating native

crystals in a solution containing PNP and Pi. The EP complex allowed an initial

characterisation of the reaction mechanism and provided insight into the dynamic action

of the enzyme. Further complementary information was obtained with the ES, EA, EPi1

and EPi2 complexes.

Many residues take part in the binding of substrates, intermediates of the reaction, and

products. All ligands are mainly anchored at the active site through their phosphate

groups, which occupy almost identical positions in different complexes. Therefore, it was

possible to define a P1 (AAP/GAP, PNP) and a P2 (DXP, Pi) phosphate binding site. The

main chain amides of residues Gly194, Gly215, and His216 and the side chain of Arg20*

make hydrogen bonds to a phosphate bound at the P1 site. As commonly seen in

phosphate binding enzymes, the P1 site is further enhanced by interaction with the

macrodipole of an helix, in PNP synthase helix 8a. At the P2 site, a phosphate is fixed by

strong hydrogen bonds from Arg20*, Asp11, His12, Arg47, and His52, and, when loop 4

is closed, also Thr102 and Thr103. A hydrogen bond network constructed by the side

chains of Asn9, His45, Glu72, and Glu153 provide further anchoring of DXP, AAP/GAP,

and PNP. The open-closed transition provides the right environment within the active site

for the reaction to take place. With the shielding from solvent, the stabilisation of reaction

intermediates and the prevention of side reactions are more effective.
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3.4. CONFORMATIONAL CHANGES UPON COMPLEXATION

The conformational changes upon formation of the different enzyme complexes are

mainly reduced to the reorientation of some active site residues and rearrangements of the

flexible loop 4. In the free enzyme, loop 4 is folded away, permitting substrate entry to

the active site. Once the products are formed, loop 4 flips away and PNP and Pi can be

FIGURE 14. The active site residues.
Following table 2 (2.2. and 2.3), the
interatomic distances are indicated in Å.
Residues follow a colour code: red for
acidics residues, dark blue for basic
residues and light blue for histidines.
The substrates and products are in green.
(a) ES complex, where the active site is
closed by loop 4. (b) EP complex in its
closed state. (c) EP complex in its open
state. Notice that Pi has already left the
active site.

b

a

c
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released (Fig. 15). With the information obtained from the different complex structures

we know that the occupation of the two P1 and P2 phosphate binding sites is not

sufficient to trigger active site closure. Only specific interactions with both substrates will

promote this transition, which can be understood as a zipper that should start at the N-

terminal end of loop 4. When DXP occupies the P2 site, Arg47 reorients to hydrogen

bond its phosphate group and at the same time to interact with the Glu100 side chain,

which in turn fix Glu96, the N-terminal hinge residue of loop 4. After the backbone of

loop 4 starts to flip, the side chain of Arg51 also reorients and helps to fix several

residues of the loop. At the C-terminal hinge of loop 4, the main chain of Glu104

interacts with His193. In the EP closed form it can be seen that the bond between Glu104

and His193 is already broken, being the starting step for opening from the C-terminal

end. Interestingly, His193 is an outlier in the closed forms, indicating a predisposition to

change its conformation. In these complexes the backbone between residues 191-193

undergo a peptide flip, which might be the force to trigger the closed-open transition.

FIGURE 15. Open-closed transition of PNP synthase. Stereoview of residues involved in the conversion
from open (green, uncomplexed enzyme; magenta, open EP complex) to closed (gray, EP complex; yellow,
closed EP complex) conformation. The C_ trace of loop 4 is indicated, as well as the bound ligands.
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3.5. MECHANISTIC FEATURES AND MODE OF ACTION

At this stage, it is possible to illustrate the catalytic cycle of PNP synthase with the

different enzyme complexes. Thus, E + S ↔ ES1 ↔ ES2 ↔ EP1 ↔ EP2 ↔ E + P

correspond to the uncomplexed enzyme, the EA complex, the ES complex, and the closed

and the open EP complex, respectively (Fig. 16).

Native Substrates

IntermediateProducts

FIGURE 16. The catalytic cycle of PNP synthase. In the uncomplexed structure, loop 4 remains open,
waiting for the substrates to enter the active site. Once the substrates are bound, loop 4 closes the active
site establishing the right chemical environment for the reaction to take place. The different reaction
transformations will occur while the loop is closed and, when the reaction comes to its end, loop 4 will be
opened to allow the new molecules to left the active site. The relevant active site residues are coloured in
yellow, Arg20*, coming for the neighbouring monomer, is in orange, and substrates, intermediates, and
products are in cyan. Notice that loop 4 follows a colour code: green for the open and red for the closed
form.
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The PNP synthase acts as a two-state enzyme: in the open state the substrates can enter

and be accommodated in the active site, and the products can be released; in the closed

state the reaction takes place. Among the different amino acids that line the active site,

Glu72 is the central acid-base catalyst. In its privileged position, it can approach each of

the atoms, in substrates and intermediates, where the chemistry of the reaction occurs.

Most probably, the complicated reaction is catalysed by a proton/charge-relay system that

is formed by residues His45, Glu72, and Glu153 and water 1.

One feature of PNP synthase that represents a unique property among the TIM barrel

proteins is the existence of a water channel that runs through the center of the β barrel. In

this way, waters formed during the reaction can leave the active site. As the entrance is

closed by loop 4, waters are released backdoors, at the N-terminal part of the β barrel.

Therefore, instead of the hydrophobic character of the core in the TIM barrel structures, a

hydrophilic core is observed in PNP synthase.

3.6. BIOLOGICAL RELEVANCE

Vitamin B6 is an essential component of the human diet. The recommended daily

intake for adults is ca. 2 mg that go up to 10-20 mg daily in cases of dietary deficiencies.

People with vitamin B6 deficiencies can suffer from neuronal disorders (neuritis),

dermatitis and impaired aminoacid metabolism. Otherwise, a deficiency of vitamin B6

alone is uncommon and usually the deficit occur in association with other vitamins of the

B-complex.
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Because coenzymatic function depends on the phosphate group for optimal binding to

apoenzyme, the phosphorilated vitaminic form is needed. As coenzyme PLP, vitamin B6,

functions in numerous reactions involving the metabolism of macronutrients. Especially

many PLP-dependent enzymes are involved in aminoacid transformations.

We believe that if vitamin B6 has such a relevance in the life of human beings, it is

also of vitally importance for bacteria. However, some bacteria are capable of

synthesising PNP, which can be afterwards converted to PLP by a simple oxidation step.

Thus, PNP synthase is the key enzyme in the bacterial de novo biosynthesis of vitamin

B6. Between this restricted number of bacteria we can distinguish some well-known

pathogens like Neisseria Gongonorrhoeae, Neisseria meningitidis, Salmonella

typhimurium, Salmonella typhi , Vibrio cholerae , Yersinia pestis, and Brucella melitensis.

With the amount of structural and mechanistic information presented in this work it

should be enough to rationally design inhibitors in the way for the development of new

antibiotics.
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Before the use of X-rays, the obtaining of protein crystals was simply a proof of

sample purity. Nowadays, crystallisation of proteins is a tool on the way of three-

dimensional structure characterisation. The procedure is not as trivial as it might appear

and additionally, not all the proteins are easy candidates to be crystallised. Some proteic

complexes have to be divided into their subunits or smaller assemblies of them due to

their huge size. There are proteins with highly flexible parts as loops and N or C terminus

that can result in a not possible crystallisation without stabilisation or cleavage of those

mobile components. However, to crystallise a protein is a good starting point but many

other problems can arise before and after calculating the first electron density. Finding a

solution of the phase problem can be many times a problem itself, as well as the

acquirement of good quality data. Furthermore, the structural characterisation of enzyme

complexes, i.e., with substrates, products, and/or inhibitors, may provide a huge amount

of complementary information about specific interactions within the active site. However,

conformational changes may occur upon complex formation thereby destroying the

crystal order.

The results presented here represent a first starting point to better understand the

complicated mechanism of PNP synthase, which can be regarded as the initial step to

investigate the complete de novo biosynthetic pathway of vitamin B6 and its vitamers.

The given structural information should be used for further studies of functionality and

biological implications. Nowadays, the increase in bacterial resistance against antibiotics

is becoming a real problem. Therefore, it is necessary to find new targets to develop

highly specific antibacterial drugs and we present PNP synthase as a possible one.

Interestingly, a considerable number of bacteria containing the pdx machinery are
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significant pathogens. As an example, we can distinguish among them the responsible for

cholera (V. cholerae), typhoid fever (S. typhi), salmonellosis (S. typhimurium), meningitis

(N. meningitidis), gonorrhea (N. gonorrhoeae), pest (Y. pestis), and brucellosis (B.

melitensis). We believe that those bacteria can not live without vitamin B6 and therefore

we present PNP synthase as a novel drug target.
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7.1. ABBREVIATIONS

Å: Ångstrøm; 1Å = 10–10 m

AAP: aminoacetone 3-phosphate

AS: ammonium sulfate

ASU: asymmetric unit

ATP: adenosine 5’-triphosphate

Da, kDa: Dalton, kilo Dalton; 1Da = 1g mol-1

DXP: 1-deoxy-D-xylulose-5-phosphate

E4P: erythrose 4’-phosphate

EA: enzyme-substrate analogue

EMTS: ethyl mercury thiosalicylate

EP: enzyme-product

ES: enzyme-substrate

FMN: flavin mononucleotide

GAP: glyceroaldehyde-3-phosphate

HPHKB: 3-hydroxy-4-phosphohydroxy-α-ketobutyrate

IGPS: indolglycerolphosphate synthase

IPTG: isoprpyl-β-D-thiogalactopyranoside

LB/Amp: Luria broth supplemented with ampicillin

MAD: Multiple-wavelength Anomalous Dispersion

MIR: Multiple Isomorphous Replacement

MPD: 2-methyl-2,4-pentanediol
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NAD: nicotinamide adenine dinucleotide

NCS: noncrystallographic symmetry

4PE: 4-phosphoerythronate

4PHT: 4-(phosphohydroxy)-L-threonine

Pi: inorganic phosphate

PL: pyridoxal

PLP: pyridoxal 5’-phosphate

PM: pyridoxamine

PMP: pyridoxamine 5’-phosphate

PN: pyridoxine

PNP: pyridoxine 5’-phosphate

r.m.s.: root mean square

SIR: Single Isomorphous Replacement

SIRAS: Single Isomorphous Replacement with Anomalous Scattering

SOR1: singulet oxygen resistance 1
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7.2. CODE FOR AMINOACIDS

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V
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7.3. INDEX OF FIGURES AND TABLES
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7.3.2. Figures and Tables in the publications

Crystallization and preliminary x-ray crystallographic analysis of PdxJ, the

pyridoxine 5’-phosphate synthesizing enzyme.

Figure 1. Class I and class II crystals of the PdxJ enzyme 32

Figure 2. Stereographic projection of the self-rotation function in spherical

polar angles 38

Figure 3. Native molecular mass estimation of PdxJ as performed by gel

filtration 38

Table 1. Crystal characteristics 33

Table 2. Data collection statistics 36
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Figure 4. Open-closed transition of PNP synthase 55

Figure 5. Mechanistic features of PNP synthase 59

Figure 6. Structural comparison 62

Table 1. Data collection and refinement statistics 46

Table 2. Interatomic distances between PNP synthase and bound ligands 54
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substrate binding and catalysis.

Figure 1. Refined complex structures of PNP synthase 76

Figure 2. Binding in the active site of PNP synthase 79

Figure 4. Open-closed transition 85

Figure 5. Proposed mechanism for PNP synthase 87
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