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Abstract

A more sustainable and secure energy supply is required for the forthcoming generations;
where the actual dependence on the fossil fuel reserves should be replaced by self-
sufficiency and use of renewable energy resources. The research presented in this
dissertation relies on linking an alternative source of energy with a promising and high-
efficient technology; presenting a sustainable solution for energy generation both in
economic and environmental terms. The opportunities for sewage biogas energy
valorization via Solid Oxide Fuel Cells in order to improve the energy self-sufficiency of

Waste Water Treatment Plants are assessed in this PhD thesis.

Biogas treatment technologies adapted to the stringent quality requirements of fuel cells are
experimentally validated: biotrickling filters for biogas main desulphurization and
adsorption processes for H,S and siloxanes deep polishing. Furthermore, the occurrence and
fate of organic silicon compounds in sewage treatment is evaluated; and several sampling
methodologies for their accurate and reliable analysis are assessed. Finally, a technical and
economic comparison of Solid Oxide and Molten Carbonate Fuel Cells with conventional
technologies for Combined Heat and Power, such as Internal Combustion Engines and
Micro-Turbines, is conducted in order to define the potential for fuel cell technology
deployment in the sewage sector. The research activities were conducted in Matar6 Waste
Water Treatment Plant (Barcelona, Spain), where a biogas-powered 2.8 kW, fuel cell pilot

plant was designed, constructed and operated in continuous over the long-term.

Keywords
Biogas clean-up; Solid Oxide Fuel Cell; energy valorization; desulphurization, siloxanes
removal; Waste Water Treatment Plant; biogas quality monitoring; Combined Heat and

Power



UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Preface

Conventional sewage treatment is an energy consuming process, or more specifically, an
electricity consuming process. Notwithstanding, energy on Waste Water Treatment Plants is
not only considered in terms of consumption reduction, but also in terms of production of
renewable energy in form of biogas. Today, achieving energy self-sufficiency is limited by
the low electrical efficiencies of conventional biogas-powered Combined Heat and Power
systems; but fuel cell technology is appearing on the scene in the recent years offering both
a higher electrical efficiency and a further reduced environmental impact. Biogas energy
valorization in fuel cells combines a high-efficient technology for electrical generation, i.e.:

fuel cell, with the use of a renewable fuel, i.e.: biogas.

Raw biogas contains a wide range of contaminants, mainly sulfur and organic silicon
compounds (siloxanes), which pose a risk to Solid Oxide Fuel Cell operation; hence biogas
requires a thorough conditioning and cleaning process upstream the fuel cell unit.
Moreover, monitoring of siloxanes levels remained somewhat controversial with
discrepancies on optimal sampling procedure as well as quantification technique; hindering

the design and operation of siloxanes removal technologies.

This work is devoted to studying and validating the whole biogas energy valorization line,
including the biogas treatment system and the fuel cell operation. The integration of low-
cost biological desulphurization and deep polishing physico-chemical adsorption processes
with a Solid Oxide Fuel Cell has been studied in an industrial 2.8 kW, pilot plant installed in
a Waste Water Treatment Plant in Spain, showing that the stringent gas quality
requirements of 0.5 ppm, S and 1 mg Si/Nm’ can be satisfied with over the long-term. The
technical and economic comparison of Solid Oxide and Molten Carbonate Fuel Cell
performance with conventional Internal Combustion Engines and Micro-Turbines has been
also conducted, confirming the relevant role that fuel cells can play on carbon neutral

sewage treatment; particularly in small- and medium-size plants.

Today the final justification for biogas valorization in fuel cell systems needs to be found in
environmental issues as some improvements both in the performance and costs are still
required. Nonetheless, this thesis demonstrates that the economics for this next-generation
technology are expected for the short-term. Further collaborative research between biogas
producers, suppliers of biogas treatment systems and manufacturers of fuel cells is required

in the near future for Solid Oxide Fuel Cell technology deployment in the sewage sector.

iii
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1. Introduction

1.1. Renewable energy and biogas

In 2014, fossil fuels (oil, natural gas and coal) accounted for 86.3% of the worldwide primary
energy consumption, while nuclear, the other non-renewable primary energy source,
reached 4.4% (BP Statistical Review of World Energy, June 2015). The increasing energy
demand resulting from the economic and industrial development in several countries
accelerates the depletion of these resources and thus increases the cost of energy. In
addition, the contribution of fossil fuels to the climate change is well known. As a result of
this, it is necessary to look for alternative energy sources with low environmental footprint
and to develop new technologies for energy production.

The European Union (EU) puts much emphasis on developing means of dealing with both
climate change control and energy market and is committed to transforming Europe into a
high energy-efficient and new low-carbon technologies economy. The EU has set itself a
long-term goal of reducing greenhouse gas emissions by 80 — 95% when compared to 1990
levels by 2050. The Energy Roadmap 2050 explores the transition of the energy system in
ways that would be compatible with this greenhouse gas reductions target while also
increasing competitiveness and security of supply.

Today, biomass currently accounts for 2/3 of renewable energy in Europe and bioenergy will
play a key role in achieving the ambitious targets approved. The European primary biogas
production accounted for 156 TWh,, in 2013 (i.e.: 13.4 Mtoe, million tones oil equivalent);
21% from landfill, 9.4% from sewage and 52% from other biogas sources, such as agriculture
(Eurobserver Biogas Barometer, 2014). This energy resource is expected to increase around
50% by 2020. In terms of number of biogas plants, in 2013 there were more than 14,000
methanisation plants in Europe; with Germany having a leading role with almost 4,000;
most of them on farms for cogeneration. Despite the gaining interest of biomethane in the
recent years, with around 258 facilities in Europe in 2014; electricity production is still the
main biogas energy recovery form regardless if it is produced stand-alone or in Combined
Heat and Power (CHP) units (Eurobserver Biogas Barometer, 2014). However, when the
biogas is used as an energy carrier for stationary application, the cogeneration power yields
are low. Therefore, the EU only produced 52.3 TWh, from biogas in 2013 (33% of the primary
production) converted mainly in internal combustion engines. Self-consumed heat (i.e.:
consumed on the site of the biogas plant) stood for 23.4 TWh, (15%) and heat sold to district
heating networks for 5 TWh, (3%). These numbers suggest that there is a huge potential to
optimize biogas energy recovery in order to use its total technical potential.

1.2. Energy consumption and production in conventional wastewater
treatment

Conventional sewage treatment, as overviewed in Figure 1.1, is an energy consuming
process, or more specifically, an electricity consuming process as large quantities of
electricity are required to run the pumps which move the wastewater and the sludge along
the Waste Water Treatment Plant (WWTP) and the compressors/blowers to supply the air to
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the aeration basin. In fact, sewage treatment can account for about 3 - 5% of the total
electricity consumption in most developed and developing countries (McCarty et a/, 2011).
As a consequence, around 30 - 50% of the total operating costs in a WWTP are associated to
energy consumption (Guo et a/, 2010; Shen et al, 2015; Caporgno et a/2015); hence savings
in energy consumption can significantly cut-off the overall sewage treatment costs. The
average electricity consumption for conventional wastewater treatment is around 0.6 - 1
kWh,/kg COD,, (Plappally and Lienhard, 2012; Elias-Maxil et a/, 2014). This figure varies
significantly from plant to plant depending on the population served, its age, the organic
load and effluent quality achieved, and the installed processes. Energy efficiency measures
are focused on reducing consumption; e.g.: new diffusers with improved oxygen transfer
into the liquid phase (Rosso et a/, 2008); advanced control systems for aeration optimization
based on nutrient sensors (NH,, NO,) (Martin de la Vega et a/, 2013) and other control
strategies (Ostace et a/, 2013); new low-energy processes such as Anammox for nitrogen
treatment in the supernatant or the main line (van Loosdrecht et a/, 2004; Morales et al,
2015), etc.

WWTP 5 Pretreatment 8;2':31';3 l WWTP |
Influent Effluent

L 1 X _

Gas holder M

Biogas treatment

Mixer

Thickener
Dewatered
sludge
A N

— = = Water line

Cosubstrates Anaerobic Sludge line
digestion Biogas line
n Power consumtion
Heat consumtion
Dewatering Power production

sidestream

Figure 1.1. Process flow schematic of a conventional WWTP (sewage, sludge and gas lines)

On the other hand, energy on WWTP is not only considered in terms of demand but also in
terms of production of renewable energy. In this context, anaerobic digestion (AD) is widely
used to treat sewage sludge (Cao and Pawlowski, 2012) because it provides volume and
mass reduction of the input material and also produces biogas suitable for energy
production. The average energy production in a WWTP with conventional AD is around 0.8 -
1.1 kWh,, . /kg COD, (Metcalf and Eddie, 2003; McCarty et a/ 2011; Hao et a/, 2015). Larger
values can be obtained if sludge is subjected to different physical, chemical, thermal,
mechanical or biological pretreatment steps to break down organic matter (Phothilangka,
2008; Cho er al, 2014; Tian et al, 2015) and/or if co-digestion with external organic
substrates is implemented (Edelmann er a/ 2000; Gupta et a/, 2012; Nghiem et a/, 2014).
Alternative processes to produce energy from sludge are pyrolysis, gasification, incineration,
supercritical water oxidation, etc. (Tyagi and Lo, 2013).
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Biogas is used on-site to produce electricity and/or heat in Energy Conversion Systems (ECS)
or flared. In CHP units, electricity is generated with gas engines, micro-gas turbines or duel
fuel diesel engines, while the exhaust heat is recovered in a heat exchanger and utilized. As
for the electrical balance, as it is depicted on Figure 1.2, achieving energy self-sufficiency on
a conventional WWTP is hindered by the low electrical efficiencies of CHP units, i.e.: 30 -
36% (Deublein and Steinhauser; 2008; Yingjian et a/, 2014). Consistently, Silvestre et a/
(2015) estimated that the energy self-sufficiency of 5 conventional WWTPs ranged between
39 - 76%; while Hao ef a/(2015) obtained a 53% carbon-neutrality for an inlet concentration
of 400 mg/L Chemical Oxygen Demand (COD). While energy consumption mainly depends
on the efficient design and operation of the wastewater treatment processes, energy
production strongly depends on the organic matter concentrations in the initial wastewater
and on the efficiency of the cogeneration unit.

Energy Theoretical Actual energy
consumption WWTP energy production production
kWi c C
0.6—1—2‘3 0_8_1.1]‘Wh—1"7 0.25—0.39“4/}—1"
kgCODI‘\f kgCODL\' kgCODL\r

Figure 1.2. General figures of the electrical balance for a conventional WWTP equipped with anaerobic
digestion and conventional CHP

As for the thermal balance, heat production is usually in excess of the needs in a WWTP;
and, because of the location of these facilities, the transport of this heat to other sites can be
economically compromised. The result is a huge loss of heat which causes poor yields of
total energy; which consequently hinders the economic viability of CHP projects in WWTP.
For example, in United States, there are just 270 plants out of the 1,241 WWTP equipped
with AD which produce electricity on-site; while most the remaining plants just use biogas
for digester and/or office building heating (Shen er a/, 2015). On the other hand, in Japan,
only 30 WWTPs out of 1,900 are equipped to valorise all the biogas they produce (Bin
Basrawi et a/, 2012). Although there are technical, economic, social and regulatory barriers
that can explain the low impact of electricity production from biogas in WWTPs, it is clear
that technological improvements and optimization should focus not only on biogas
production but also on biogas energy valorization.

Within this context, fuel cells are new promising technologies which have been developed
in the recent years offering both a higher electrical efficiency, i.e.: 45 - 50% (Edwards et aj,
2008; Papadias ef al, 2012; McPhail ef a/, 2012; Papurello ef a/, 2015), and a further reduced
environmental impact. Biogas energy valorization in fuel cells combines a high-efficient
technology for electrical generation, i.e.: fuel cell, with the use of a renewable fuel, i.e.:
biogas. Generally speaking, biogas-powered fuel cells are a significant cornerstone on
waste-to-energy infrastructure as they simultaneously deal with minimization of waste and
maximization of efficiency. As Figure 1.3 collects, due to their larger electrical efficiencies,
fuel cells can significantly improve the energy balance of conventional WWTP without
significant retrofitting or changes on the currently operated processes. Moreover, they seem
to be particularly interesting for sewage biogas energy recovery as electricity requirements
in WWTP represent the most significant energy consumption.
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Figure 1.3. General figures of the electrical balance for a conventional WWTP equipped with anaerobic
digestion and fuel cell

1.3.  Fuel cells: operating principle and types

Energy transformation in conventional CHP systems requires of several stages. First,
chemical energy in the fuel is transformed into thermal energy (combustion). Afterwards,
thermal energy is transformed into mechanical energy (piston in reciprocating engines;
blades in turbines). Finally, mechanical energy is transformed into electrical energy
(alternator). Overall, the electric efficiency is low; in the range of 25 - 40% as a result of the
irreversibilities (losses) on the different stages. This process is optimized in fuel cells as the
energy transformation pathway is much shorter: chemical energy is directly converted into
electrical energy through electrochemical reactions, hence leading to an improvement on
the electrical efficiency up to 40 - 50%.

There are many types of fuel cells, but they all consist of an anode (negative electrode), a
cathode (positive electrode) and an electrolyte that allows charges to move between the
two sides of the fuel cell. Electrons are drawn from the anode to the cathode through an
external circuit, producing direct current (DC) electricity. A power inverter (DC/AC) may be
required to use the electricity in alternating current (AC) electrical equipment. In addition, a
transformer may be also required depending on the voltage. Fuel cells can be classified
according to their operating temperature; hence the terms high-temperature fuel cell
(HTFC) and low-temperature fuel cell (LTFC) are generally used. The most important fuel
cells types are collected in Table 1.1 (PEMFC = Proton Exchange Membrane Fuel Cell; PAFC =
Phosphoric Acid Fuel Cell; MCFC = Molten Carbonate Fuel Cell; SOFC = Solid Oxide Fuel Cell):

Table 1.1. Fuel cell stack types and their main characteristics

PEMFC PAFC MCFC SOFC
Operating 60 -90 190 - 250 600 - 700 800 - 1000
temperature (LTFC) (LTFC) (HTFC) (HTFC)
(°C)
Anode / Pt/ Pt/ Ni / Cermet (Ni-YSZ) /
Electrolyte / H' conducting Solid matrix Ceramic matrix Ceramic (YSZ:
Cathode membrane (PTFE) (LiAlO,) Yttrium Stabilized
(Nafion) / impregnated impregnated with Zirconia) |
Pt-graphite with H,PO, | a molten salt Semiconductor
Pt-graphite (Na,C0,/K,CO,) | (LSM: Lanthanum
NiO Strontium
Manganite)
Electrical 50 - 60 40 - 45 50 -55 50 - 60
efficiency (%)
Oxidant 0,, air 0,, air 0,, air 0,, air
Accepted fuels H, H, H,, CO (mixture) H,, CO (mixture)

CH, (to a lesser
extent)

CH, (to a lesser
extent)
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1.4. Fuel cleaning requirements for fuel cells

In general, fuel inlet requirements for fuel cells are very stringent. Several compounds are
poisonous and harmful both for low- and high- temperature fuel cells, affecting fuel cell
catalytic processes and stack lifetime, and must be removed from the biogas. Despite several
studies are available (Xu et a/, 2010; Sasaki et a/, 2011; Madi et al, 2015), the precise
damaging effect of each biogas contaminant on the fuel cell is not very well understood; and
manufacturers usually tend to protect themselves by setting very stringent limits. It was
beyond the scope of this work to determine the level of biogas contamination which should
be accepted by fuel cells. The critical aspects for the most important biogas physical and
chemical parameters are explained as follows:

Sulfur: The major constituent of sulfur species in sewage biogas is H,S, although organic
sulfur compounds (i.e.: mercaptanes and organic sulfides) are also sometimes present. As
Figure 1.4 shows, H,S(g) is produced in anaerobic conditions by Sulfate Reducing Bacteria
(SRB) which reduce sulfates present in sewage sludge to sulfide; which is further stripped to
the gas phase. Sulfur contamination causes corrosion to the equipment and poison the fuel
cell anode and reforming catalyst (producing nickel sulfide and also causing the loss of
electrolyte for some particular types of fuel cell), hence fuel cell manufacturers suggest a
limit of 0.5 - 1 ppm, S. In order to meet the stringent S tolerance limits, a deep
desulfurization cleaning has to be carried out.

Anaerobic conditions Reduction
Sulfato-re ducing bactena

Organic s ulfur compounds
\5°¢:'

(liq)
Oxidation (S 0475 ,0,%)
Thicoxydans bactena

Photosynthesis (bacterg Phojbsyrthesis (bactena)

Aerobic condition s

Figure 1.4. Sulfur cycle and relevant processes in anaerobic and aerobic conditions

Siloxanes: Siloxanes are organic silicon compounds (VOSiC) which are produced by the
degradation and/or volatilization of organosilicon materials present in the sludge. Although
their occurrence and fate in wastewater treatment process is not well understood (Mueller
et al, 1995; Dewil ef al, 2006), they are finally transferred to the biogas phase. Despite very
little reliable information exists on the adverse effect of siloxanes in the fuel cells stacks, it is
expected that siloxanes would be transformed into silica within the stack, which would
block catalyst adsorption sites progressively reducing the efficiency of the fuel cell; hence
siloxanes removal is required upstream the fuel cell. In fact, fuel cell developers suggest a
very stringent value of less than 0.5 mg Si/Nm’ in the biogas.
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Halogens: Halogens (represented as X), mainly chloride- and fluoride- derived compounds,
can also be present in the biogas due to volatilization and may cause also negative effect due
to corrosion that lead to a rapid damage of the cells stack. This is usually not an important
issue for sewage biogas since the halogen volatile compounds that have been detected in
sewage biogas samples are relatively rare and low (i.e.: below detection limits, 0.1 mg
X/Nm®). Nevertheless, halogen removal technologies are sometimes required, mainly when
biogas is produced via co-digestion with feedstock having halogens derived compounds or
for landfill biogases. As they were not detected in sewage biogas, they have not been within
the scope of this work.

Other specifications
Although they are not as critical as the previous biogas contaminants, attention should be
paid at the following parameters:

e Oxygen: Oxygen is often present in raw sewage biogas but at levels below 0.5%. It
would damage portions of the fuel cell system, thus a de-oxygenation catalyst is
required for fuels containing oxygen. In fact, biogas reforming catalysts allow this
reaction, but as methane is consumed in this reaction and its lower heating value
lost, the electrical efficiency is reduced.

»  Moisture: Raw sewage biogas is often saturated with water from the digestion
process and, depending on the biogas temperature, it can represent between 2 - 4%.
Note that depending on the gas pipe length and material, outlet temperatures and
the eventual presence of condensate traps, moisture content is below saturation
conditions. Condensates can block the fuel flow and disrupt system instrumentation,
thus they should be prevented. In order to ensure that no liquid water is condensed
from sewage biogas, temperature should be maintained around 10°C above the dew
point.

s Methane/Carbon Dioxide: Full power output can be obtained for CH, concentrations
greater than 60%, as it is the normal case for sewage biogas. For the range 50 - 60%,
fuel cell performance is expected to be lower especially in terms of electrical
efficiency. Little experience is available for fuels more diluted than 50%, but the
power output will start to be negatively affected in a non-linear rate. On the other
hand, variability of the heating value of the fuel by more than +1% may have an
impact on the performance of the fuel cell. Fuel supply variability and low methane
content can be dealt by incorporating a fuel blending system with natural gas, which
makes the fuel more stable, reliable and concentrated.

Table 1.2 compiles the threshold quality specifications for different biogas components on
each type of fuel cell (Kordesch and Simader, 1996; Fuel cell handbook, 2000; Dayton et a/,
2001; Papadias er a/ 2012). Not only intrinsic biogas contaminants as described above but
also components produced during biogas reforming processes (i.e.: H, and CO; see section
1.6) have been included. As shown, the most relevant difference between quality
requirements in high- and low-temperature fuel cells is CO; which is a fuel for the former
and a poison for the latter. Regardless the operational temperature, it must be emphasized
that, for technical and operational reasons, the required degree of biogas purity differs
largely between conventional cogeneration technologies and fuel cells (e.g.: sulfur
requirements in micro-turbines and internal combustion engines can be as high as 10,000
and 1,000 ppm, respectively; Deublein and Steinhauser; 2008). Notwithstanding, gas clean-
up is necessary on principle, as contaminants which are not removed upstream the Energy

10
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Conversion System will be downstream emitted as uncontrolled emissions to the
atmosphere. Therefore, biogas deep purification is not strictly restricted to the type of ECS
used; but also to the air quality requirements. As the removal of contaminants in exhaust
gases is usually less cost-effective (e.g.: larger volumes have to be treated at more diluted
concentrations), the installation of in-depth biogas clean-up systems upstream the fuel cell
guarantees clean emissions to the atmosphere while optimizing its performance over the
long-term.

Table 1.2. Fuel cell specifications (adapted from several sources)

PEMFC PAFC MCFC SOFC
CH, Inert Inert Fuel Fuel
Fuel with Fuel with Reformed internally or Reformed
reformer reformer externally internally or
externally
co, Diluent Diluent Re-circulated Diluent
H, Fuel Fuel Fuel Fuel
co Poison Poison Fuel Fuel
10 ppm, 1%(v/v) atanode  With water -shifted to With water -
make H, shifted to make H,
C,-C; Poison Fuel (with reformer) Fuel - similar to
<0.5%(v/v) Saturated Hydrocarbons MCFC in regards
olefins (CH, included) - to high molecular
12%(v/v) weight
Olefins — 0.2%(v/v) hydrocarbons
Aromatics - 0.5%(v/v)
Cyclics - 0.5%(v/[v)
Oxygen - - Poison Poison
2 - 3%(v/|v) 2 - 3%(v/|v)
Particles - - Poison -
10 ppm,;
<0.1g/1 of particles size
>3um
Sulfur Poison Poison Poison Poison
0.1 ppm, <20 ppm, H,S <10 ppm, H,S in fuel <1 ppm, H,S
<50 ppm H,S+  <1ppm,SO,in oxidant
CosS <0.5 ppm, H,S
<0.1 ppm, H,S
NH, - Poison Inert < 1%(v/v) Fuel < 5,000 ppm,
<0.2%(v[v)
Ammonium
phosphatein
electrolyte
Halogens - Poison Poison Poison
(X) 4 ppm, <1ppm, <1 ppm,
<0.1 ppm,
Alkali - - Poison -
metals 1-10 ppm,
Siloxanes Poison Poison Poison Poison

0,2 mgSi/Nm’

0,5 - 1 mgSi/Nm’

0,5 - 1 mgSi/Nm’

0,5 - 1 mgSi/Nm’

1.5. Biogas treatment technologies
Biogas desulfurization: There are numerous techniques available for H,S removal from gas

streams which can be classified as biological, physical and chemical processes (Abatzoglou
and Boivin, 2009). Biological treatments are cost effective and environmentally friendly
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processes (Shareenfdeen et a/, 2003; Ng et a/2004), commonly used to reduce the emissions
of malodorous gases and other pollutants into the atmosphere (Ramirez-Saenz et a/, 2009)
which have been implemented in the recent years for biogas treatment (Fortuny er a/, 2008;
Mannucci et al, 2012; Fernandez et a/, 2014). Physicochemical processes can be classified as
precipitation (by dosing of ferric salts); physical absorption (high pressure water washing);
reactive absorption (soda, iron or amine washing); adsorption (iron adsorbents, activated
carbon) techniques; and concentration with membranes; and are mostly appropriated for
low H_,S concentrations. Table 1.3 summarizes a qualitative comparative assessment of the
most relevant biogas desulfurization technologies. Comparison is made at 5 levels; where
positive figures mean good technical and economic performance; while negative figures
mean bad performance. On the one hand, the assessed technical indicators include the
sulfur chemistry/corresponding removal mechanism (transfer from gas to liquid, oxidation,
precipitation); applicability for different WWTP sizes (namely Small, Medium and Large);
and H,S removal efficiency. On the other hand, the assessed economic indicators include the
investment cost (CAPEX); and the operating cost (OPEX), which is split by the most relevant
categories (energy, chemicals, and maintenance and manpower)

Siloxanes removal: Several siloxane removal technologies from biogas have been reported
in the literature based on adsorption, absorption, refrigeration/condensation, membrane
separation and biological degradation (Popat and Deshusses, 2008; Accettola et a/, 2008;
Boulinguiez et a/, 2009; Abatzoglou and Boivin, 2009; Matsui ef a/, 2010; Nam et a/, 2013;
Yu et a/, 2013); and some of them have been commercialized at the industrial level. As the
chemical backbone of siloxanes is very stable, chemical reaction of siloxane bonds (Si-0-Si)
is not expected unless strong chemical agents are used (high or low acids); which pose
operational concerns associated with corrosion and safety. Moreover, biological degradation
is limited due to siloxanes high partition coefficient, low water solubility and low
biodegradability. Therefore, siloxane removal at industrial facilities has been mainly
addressed through physical methods; which transfer siloxanes from the biogas phase to
other phases (liquid or solid). Concretely, the most common concept implemented is non-
regenerative adsorption on fixed beds of activated carbon or other inorganic materials (e.g.:
silica gel, metal oxides). Nonetheless, adsorption on a fluidized bed has been also
implemented for siloxane removal. In this system, and differently from temperature swing
adsorption systems (TSA) where regeneration is conducted periodically, part of the
adsorbent material is continuously directed to a desorption unit, where previously adsorbed
siloxanes (and other compounds) are stripped from the exhausted media by a hot gas,
which is later flared. The regenerated adsorbent directed back to the fluidized bed after
cooling. Similarly to desulfurization technologies, Table 1.4 collects a qualitative
comparative assessment of the most relevant siloxanes removal technologies.

12



UNIVERSITAT POLITECNICA

DE CATALUNYA
BARCELONATECH

O

Table 1.3. Technical and economic comparison of different biogas desulfurization technologies

Chapter 1

= Tr — = b -+ =i+
-1+ -+ - -/ + -+ + +
++ [+ - - [+ = ==
++ ++ - + + + +
-+ - -- -/ + -+ v 4
+ + ++ + + ++ ++
v T'W 1 T'W W'S v 1LY
aumue Y (s) (uonnpos  (erpaw uo) (epawr uo)
|
YOs/(s).S (s)S xajdwoo vs m aunysem) paquospe paqiospe
1S IS .
10 (s).S *rOS o4 S (s).S 'sad (s)S/IS™H
uoneIdUuIgII uvondiospe  uondiospe
21Ny uonnjos uonnjos
pue epos SapIxXo uogqied
paxiy unuy uoJj
1N ND 2234 eI PaIeAIDY
uonezunynsap [edidojoig uondiosqge aa1peay uondiospy

T'W

(bry)
paquosqe
SH

uondiosqe
J91em
2inssaxd
ysiy

++

W'S

ses
paienuadu0d
SH

soueiquow

++

++

++

v

(a8pn[s) Sa4

uonednaiy

D

X4dO [el0L X
S
omoduewy 8
Dueuduiey M
Xado &
fowoyy
X440 m
A810u7 m,

S

Xado [

|

Xadv) S

S

SOy S
JeAcway m
ALMM T
joous =

[

[y

S

S

J01ARY2Q S m
<

~

)

§

\

W

** Removal efficiency: ++ (>95%); + (70 - 95%); +/- (50 - 70%); - (30 - 50%), -- (<30%)

13



UNIVERSITAT POLITECNICA
BARCELONATECH

DE CATALUNYA

O

f different siloxanes removal technolog

Chapter 1

1€S

1C comparison o

Table 1.4. Technical and econom

1 -~ — T =y = 1 r — +
-/ + - - v v v - -/ +
++ = = + = = ++ ++
++ - - - + + - +
I+ == == - " + == +
- -+ ++ ++ ++ ++ + -+
v T'W T'W 1 v v 1 v
(1eap 10U .
(1eapd pauing
. wis ieydatu) (uonnjos pazuawAjo] pazuawAjo weans
10U wiseoau) uaSe Surysem) 1aje| pue ~ paquospe ~ paquospe S 110 a1
Sws e $10-010 1 o3 . paqiospe ) - o e
o [ea Sauexo|Is Saurxo[I§ Saupxo[I§ ut pazijiqnjos
Aq papeisaq Sauexo|Is
Aq pafonsaq
(a1mxnu uondiospe  uondiospe  uondiospe (D,0 —0L-) =)
21NN paxy sppe Suons 1024)3) paq $2)1j092 /193 uogied Sunpp :o:«.hon -
ni0X2P2S pazZIpINg| eI|Is PIIRAIDY daaq ’ =
jex1ojorg uondiosqy uondiospy aimyesadwa,

= Xd4dO [e10L

Jomodue iy B

- JdueUIUIR
X440

[enuay)

X440

++

A810u7
X440

- Xd4dVD

SOuaDgR
JeAowdy

% +JdILMM
W's P
sed
paipnuadu0d JOIARY2Q IS
Sauexo|Is

souerlquow

“WWTP size: Small (<100,000PE); Medium (100,000 - 500,000PE); Large (>500,000PE)

** Removal efficiency: ++ (>95%); + (70 - 95%); +/- (50 - 70%); - (30 - 50%); -- (<30%)

14



UNIVERSITAT POLITECNICA

DE CATALUNYA

BARCELONATECH
Chapter 1

1.6. Fuel reforming processes

Fuel cells cannot be directly powered with clean sewage biogas; hence a fuel reforming
stage is necessary upstream the cell to convert biogas into hydrogen. Therefore, the design
and operation of the hydrogen production unit and the corresponding reforming chemistry
has a key significance in the development of biogas-powered fuel cell systems. Since the
main component present in cleaned biogas is CH,, biogas reforming processes are adapted
from technologies for hydrogen production from hydrocarbons. Depending on the reforming
agent used and the cleaned biogas composition, different chemical reactions will occur
within the fuel processor which will impact reformed gas composition: steam methane
reforming (SMR, steam), dry methane reforming (DMR, carbon dioxide), partial oxidation
(POX, air), and autothermal reforming (ATR, combination of air and steam). All these
reactions are carried out at high temperatures (i.e.: 500 — 700°C), thus even if a LTFC is used,
a part of the system will operate at high temperature.

Despite producing a reformed gas with lower H,/CO ratio, DMR seems to be the most
promising alternative for the conversion of biogas since both carbon dioxide and methane
are present on the raw gas. However, as the CO, quantity available is not sufficient to reform
all CH, into H,, steam should be also supplied in any case. As both steam and dry reforming
are endothermic reactions, the fuel processor requires an external heat source, which
reduces the overall efficiency of the system. This problem can be overcome by introducing
air to the reforming reactor to promote the exothermic POX (Xuan ef a/, 2009). However,
this results in lower hydrogen yields and a lower hydrogen partial pressure in the reformed
gas as a consequence of the presence of nitrogen from air; which will reduce the electrical
efficiency of the system (van Herle er a/, 2004a). Overall, the combination of SMR, DMR and
POX (which is called autothermal reforming) allows reducing the reforming reactor size,
softening the operating conditions and obtaining a higher H,/CO ratio. Finally, the
prevention of soot formation should be also taken into account when selecting the biogas
reforming conditions. Carbon deposition can be produced within the reactor as a result of
methane cracking, Boudouard disproportionation and reversed gasification reactions.
Although the pros and cons on the different reforming process have been widely studied
(van Herle, 2004b; Piroonlerkgul et a/, 2008; Farhad et a/ 2010), the selection of the most
suitable reforming agent and operating conditions to integrate the biogas reformer with a
SOFC stack should be further evaluated and optimized.

For LTFC, CO purification process (by Water Gas Shift and CO Preferential Oxidation) should
be also installed downstream the biogas reforming unit as carbon monoxide represents a
poison; while it is a fuel for HTFC. Altogether, as depicted in Figure 1.5, the entire gas
processing chain for LTFC is more extensive and consists of more stages than for HTFC. The
reduced gas processing requirements in HTFC is a direct consequence of their adaptation to
be fuelled by hydrocarbons; hence they are more suitable for biogas applications. Moreover,
this explains, as it will be collected in section 1.7, why they are the most installed
technology today. As a result, this PhD thesis is focused on HTFC.
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Figure 1.5. Biogas fuel processing chemistry and reactions for different types of fuel cells (SOFC: Solid Oxide
Fuel Cell; MCFC: Molten Carbonate Fuel Cell; PAFC: Phosphoric Acid Fuel Cell; PEMFC: Proton Exchange
Membrane Fuel Cell)

1.7. Current full-scale experiences with biogas fuel cells

Several demonstration projects have been conducted in the recent years to demonstrate the
technical feasibility of fuel cells powered with biogas. Indeed, the first prototype references
of MCFC were collected by Baaske and Trogisch as early as 2004. The first full-scale
European biogas-powered MCFC was installed in Aalen WWTP (Germany) in 2005 and had a
nominal power of 250 kW, (Krumbeck ef a/, 2006). On the other hand, further relevant full-
scale MCFC references from Fuel Cell Energy (Danbury, Connecticut, USA) were started in
WWTP in California in the late 2000s: Tulare WWTP (900 kW,_, 2007), Dublin San Ramon
WWTP (600 kW, 2007), San Francisco Southeast WWTP (600 kW, 2008), Rialto WWTP (900
kW, 2008), Eastern Municipal Water District WWTP (750 kW,, 2008), and Turlock WWTP
(1.2 MW, 2008). The growth of biogas-powered MCFC technology, both in number of
references and installed power, has been maintained since 2010 onwards: South Bay WWTP
(1.4 MW, 2011), San Jose-Santa Clara WWTP (1.4 MW, 2012), Ontario WWTP (2.8 MW,,
2012), etc. MCFC technology clearly masters the biogas-powered fuel cell market with at
least 27 on-going references in 2014; accounting for around 23 MW, installed power as it
can be seen in Figure 1.6. PAFC technology also contributes with an important role with 11
references; although most of them were installed before 2010 and the market seems not
pushing for this technology in biogas applications. Significantly behind, the contribution of
biogas-powered PEMFC and SOFC systems is almost negligible; being limited to pilot-scale
references. A general overview of the situation of fuel cells operated with biogas in the
world since the 1990s until 2014 (including the currently decommissioned and planned
projects) can be consulted in Appendix A.
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Figure 1.6. On-going biogas-powered fuel cell references (left) and corresponding installed power (MW,,
right) by fuel cell type as for 2014

As Figure 1.7 shows, the vast majority of references are installed in the USA (especially
California), Japan and Europe (especially Europe). In addition, the most common origin of
the biogas used is sewage biogas, accounting for more than 50% of the number of references
in biogas powered fuel cells. Other relevant sources of biogas which are valorized in fuel
cells are landfill gas and biogas from anaerobic digestion of food waste. It should be noted
that the term “directed biogas” means that the fuel cell works with natural gas from the
grid, but the company purchases the rights about an equivalent amount of purified biogas
introduced into the gas network elsewhere. In that way, the net balance is the same as if the
company had used biogas in its fuel cell.

Fuel cells by country (number) Fuel cells by biogas origin (number)

W Sewage
B USA - California u Landfill
M USA - Others ® Farm
m Japan B Food waste
m Germany M Directed Biogas
N Other M Others
¥ Unknown

Figure 1.7. On-going biogas-powered fuel cell references by country (left) and biogas origin (right) as for
2014

Although SOFC technology appears to be well developed today, as it has been illustrated, its
commercial market is still very limited. Compared to the well-established MCFC technology,
SOFC is a suitable alternative for the application of biogas as a result of the significant
potential for reducing the investment cost through the development of new ceramic
materials (van Herle ef a/, 2004a; Siefert and Litster, 2014). Moreover, its higher operating
temperature (800°C vs 650°C) allows for a higher degree of fuel internal reforming, and
promotes rapid kinetics to produce high quality heat for energy conversion. However, as a
result of its reduced Technology Readiness Level (TRL) compared to MCFC, most of the
efforts have been devoted either to modeling (Lanzini ef a/, 2011; Ni, 2013; Trendewicz and
Braun, 2013) or to lab-scale experiments with synthetic biogas mixtures: Papadam er a/,
2012 (the performance of a mW-scale stack was investigated with CH,:CO, 66:33, 50:50 and
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33:66 at 675 and 875°C without pre-reforming); Guerra et a/, 2013 (a tubular stack was
operated with different CO,-rich biogas mixtures for dry reforming achieving electrical
efficiencies of 43%); Jahn et a/, 2013 (a 0.8 kW, planar stack from Fraunhofer-IKTS was
fueled with biogas at CH,:CO, 50:50 reformed at oxidative dry conditions showing 51%
electrical efficiency); and Papurello ef a/, 2014 (a 3-cell stack was tested with biogas CH,:CO,
60:40 processed by steam reforming reaching similar performance than when operated
with H,).

As it has been said, very scarce examples with real biogas samples powering a SOFC system
at a relevant scale are reported in the literature. For example, Sulzer Hexis (Winterthur,
Switzerland) performed in 2001 a trial with a 1 kW, unit in Lully (Switzerland) with biogas
from food waste anaerobic digestion. In 2008, Accumentrics (Westwood, Massachusetts,
USA) installed two 5 kW, SOFCs on the scope of the BIOSOFC project (LIFEO6
ENV/E/000054); one in a landfill site in Barcelona (Spain) and the other at the
environmental information center GlashusEtt in Stockholm (Sweden). However, not only a
thorough cleaning of the biogas to remove contaminants was required; but also an
upgrading up to more than 80% methane. Haldor Topsoe (Lyngby, Denmark) tested a 20 kW,
SOFC unit with real landfill gas in Vaasa (Finland) in 2010; but the unit was finally
decommissioned and the company is today more focused on electrolyzer technology rather
than fuel cells. More recently, Papurello ef a/(2015) operated a 0.5 kW, pilot scale SOFC unit
with real biogas produced from the digestion of the Organic Fraction of Municipal Solid
Waste (OFMSW).
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2. Objective and Methodology

2.1. Aim and general objective

The general aim of this PhD thesis is to evaluate the technological and economic feasibility
as well as the opportunities for sewage biogas energy valorization via Solid Oxide Fuel Cells
(SOFC) at a pilot scale and to compare its performance versus other Combined Heat and
Power (CHP) technologies. As previously commented in chapter 1, High Temperature Fuel
Cells (HTFC) are the most adapted fuel cell technology for biogas applications; and while
Molten Carbonate Fuel Cell (MCFC) is fully developed and deployed with a significant
number of full-scale references, relevant pilot references with SOFC technology powered
with real biogas are very scarce and limited. Therefore, this work is focused on studying the
prospects and limitations of biogas energy recovery with SOFC systems. Due to their
stringent quality specifications, the whole valorization line, as depicted in Figure 2.1,
including the biogas treatment system and the fuel cell, will be assessed. The effectiveness
and efficiency of treatment technologies to achieve fuel cell stringent quality requirements
as well as fuel cell electrical and thermal performance will be particularly targeted.
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Figure 2.1. Aim of this PhD thesis, addressing both biogas treatment and Solid Oxide Fuel Cell

2.2. Specific objectives

This thesis has been built as an integration of different processes and systems related to
biogas energy recovery; namely desulfurization, siloxanes analysis and removal, fuel cell
performance, and comparison with conventional CHP systems. While some of them have
been addressed through experimental activities; others have focused on summarizing and
analyzing the data generated to achieve the main goal of this work. Therefore, the specific
objectives of this PhD thesis are listed below:
» Assess the performance of biological desulfurization systems operated at extremely
acidic conditions under different H,S loading rates. Assess biological oxidation
selectivity to partial and full oxidation (chapter 3)
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» Understand the occurrence and fate of siloxanes within wastewater treatment
processes, its further presence in sewage biogas and their impact in Energy
Conversion Systems (chapter 4)

» Select the most adequate and reliable biogas sampling methodology to measure
siloxanes and trimethylsilanol concentration in sewage biogas (chapter 5)

« Assess the performance of adsorption materials for sulfur and siloxanes deep
removal. Understand the basics of the adsorption mechanisms involved (chapter 6)

» Select the reforming conditions (steam addition and temperature) to reduce the
risks of carbon formation upstream the fuel cell stack. Assess the electrical and
thermal performance of a Solid Oxide Fuel Cell powered with clean sewage biogas
(chapter 7)

» Conduct a detailed technical and economic assessment of the different alternatives
for on-site cogeneration with sewage biogas; including Internal Combustion
Engines, Micro-Turbines, Molten Carbonate Fuel Cells and Solid Oxide Fuel Cells
(chapter 8)

2.3. Methodology

A combination of activities was conducted in order to accomplish with the main objective
and the specific objectives of this thesis:
« Design, construction and operation of a biogas-powered Solid Oxide Fuel Cell
(SOFC) pilot plant at Matar6 WWTP (Barcelona, Spain)
» Assess several biogas sampling methodologies adapted to siloxanes analysis
« Audit 6 full-scale biogas energy valorization plants installed in WWTP, and conduct
a technical and economic comparison of fuel cells performance with conventional
CHP technologies

2.2.1. SOFC pilot plant description

The Matar6 WWTP depicted in Figure 2.2 collects wastewater from different towns and
villages in the Maresme region (North-East of Barcelona, Spain) and its wastewater
treatment capacity is around 30,000 m’/day. Sewage treatment line consists of pre-
treatment (screens, grit and fats), primary sedimentation in rectangular settling tanks,
biological treatment in plug-flow reactors (anoxic and oxic chambers) and secondary
sedimentation in circular settling tanks. Treated wastewater is discharged into the sea. On
the other hand, the sludge treatment line consists of sludge thickening (primary sludge by
gravity; and secondary sludge in thickening tables with the addition of cationic
polyelectrolyte), anaerobic digestion at mesophilic conditions and sludge dewatering in
centrifuges (also with the addition of cationic polyelectrolyte). Dewatered sludge is used in
agriculture. Biogas production accounts for 190 Nm’/h and the gas line consists of a gas
holder, a dual fuel boiler (oil and biogas) and a flare. Until 2012, digester heating was the
only biogas energy valorization conducted on site; while energy excess was flared. Today,
the vast majority of biogas production is used for district heating and cooling in public
buildings (hospitals, schools, etc.).
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Figure 2.2. Aerial view of Matar6 WWTP, location of the pilot plant

The pilot plant showed in Figure 2.3 treated 10 Nm’/h, representing around 5% of the full-
scale biogas production, and consisted of a biotrickling filter (BTF) followed by a polishing
stage (adsorption on iron containing adsorbent, drying and activated carbon) and the SOFC
unit for on-site electricity and thermal energy production. The selection of the treatment
processes was conducted according to the criteria defined on Tables 1.3 and 1.4. The
different stages of the pilot plant are described as follows.

F
S

Figure 2.3. Sewage biogas powered Solid oxide Fuel Cell pilot plant

Biotrickling filter (BTF)

A biotrickling filter (DMT Environmental Technology, Joure, the Netherlands) showed in
Figure 2.4 was installed as the main desulfurization technology. The detailed P&ID of the
biotrickling filter can be consulted in Appendix B. The process was operated at extremely
acidic conditions to reduce the operating cost. Although most of the previous references on
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biological desulfurization were run at neutral/alkaline conditions to favor H,S dissolution
into the liquid phase (Fortuny er a/, 2011; Fernandez ef a/, 2013; Montebello er a/, 2013),
operation at acidic pH was selected in order to reduce caustic consumption and to obtain a
reduced microbial consortium (avoiding competition with other cultures which may grow
in wastewater).
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Figure 2.4. Biotrickling filter installed for biogas main desulfurization in the biogas-powered SOFC pilot plant

The BTF unit was always operated up-flow, counter-current mode and the scrubbing column
had a square-section of 0.093 m’ and a packed bed height of 1.8 m tightly filled with HD Q-
PAC® (Lantec Products Inc., Agoura Hills, CA, USA) (specific surface area of 433 m’/m’ and an
initial porosity of 88%). A liquid tank of 1.1 m’, equipped with a centrifugal pump (Arbo,
Smilde, the Netherlands), re-circulated the liquid phase over the packing material at a flow
rate of 800 — 1000 L/h (9 - 11 m/h). The tank was also equipped with an electrical heater
and a thermostat (Eriks, Halesowen, UK) to adjust the operating temperature. The operation
pH range was maintained between 1.5 - 2 by automated addition of treated sewage
effluent; which was previously filtered for suspended solids removal. Aerobic conditions in
the system were guaranteed by continuous perpendicular air injection to the gas phase with
a SLL-20 diaphragm air blower (Bibus Ltd, Wooburn Green, UK). Air supply was PID-
controlled with a Visiferm Dissolved Oxygen sensor (Hamilton, Bonaduz, Switzerland) to
ensure an O, content in the treated gas. Air was injected into the gas-phase because liquid-
phase injection can cause significant dilution of the outlet biogas due to the low oxygen
transfer efficiencies of diffusers and ejectors.

Polishing stage

The polishing system illustrated in Figure 2.5 and based on adsorption technologies was
installed downstream the BTF unit as adsorption processes allow the achievement of the
stringent fuel cell requirements regarding sulfur and siloxanes quality (Bagreev et a/, 2005;
Cabrera-Codony et al, 2014). The configuration consisted of (i) iron-containing adsorbent,
(ii) biogas drying with refrigeration and (iii) activated carbon. The detailed P&ID of the
polishing system can be consulted in Appendix C. A lateral channel blower (FPZ, Concorezzo,
Italy) and a back-pressure regulator were respectively installed upstream and downstream
in order to cope with pressure losses through the line and adjusting the pressure to the
requirements of the fuel cell, i.e.: 100 mbar(g).
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Figure 2.5. Biogas deep polishing system for removal of sulfur and siloxanes traces in the biogas-powered
SOFC pilot plant

Iron-containing adsorbent filters: Bi-On-Fe (Bioconservacion, Gava, Spain), a regenerable
pelleted adsorbent (diameter 2 - 4 mm and bed density 840 kg/m®), was used for sulfur
polishing through chemio-sorption, transforming H,S into FeS(s) and elemental sulfur in a
molar relation of 2:1 (Cherosky and Li, 2013). Biogas was not dried before as moist
conditions were recommended to facilitate the reaction. The material can be regenerated
with atmospheric air at ambient temperatures, oxidizing FeS(s) to elemental sulfur, and
rendering again iron for a subsequent adsorption. Each vessel had a volume of 83 L; with a
diameter (D) of 0.4 m and a height (H) of 0.66 m; leading to linear velocities of 1.3 - 2 cm/s.

Biogas drying: A heat exchanger system (with a refrigerator) was installed in order to
reduce biogas relative humidity. The biogas drying unit consisted of two heat exchangers:
biogas first flowed through a gas-gas heat exchanger (thermal exchange surface 0.8 m?),
increasing energy recovery, and afterwards through a gas-liquid heat exchanger (thermal
exchange surface 2 m?) with water-ethylene glycol; which was cooled on atmosphere-
condensing chiller (Cupla Técnica Frigorifica, Castellar del Vallés, Spain).

Activated carbon filters: Bi-On-AC (Bioconservaciéon, Gava, Spain), an extruded activated
carbon (diameter 1.5 - 4 mm, BET surface 1,020 m?/g and bed density 450 kg/m’), was used
to remove siloxanes and the other biogas contaminants (linear and aromatic hydrocarbons)
through physical adsorption due to its meso-porous structure in the range of 2 - 8 nm
(Ortega and Subrenat, 2008). The vessel had a volume of 89 L; with a diameter (D) of 0.45 m
and a height (H) of 0.56 m; leading to linear velocities of 0.9 - 1.5 cm/s.

Solid Oxide Fuel Cell

After the thorough biogas treatment, around 1 Nm’/h directly fuelled the fully integrated
SOFC unit (EBZ Entwicklungs- und Vertriebsgesellschaft Brennstoffzelle mbH, Dresden,
Germany) showed in Figure 2.6 for simultaneous on-site production of electrical and
thermal energy (nominal electrical power 2.8 kW_; thermal power 1 - 2 kW,, and operating
temperature 850°C). The rest of the treated biogas, i.e.: 9 Nm’/h, could not be used for on-
site energy production and was therefore re-injected in the main biogas pipe. The fuel cell
unit mainly consisted of two sub-systems: the electrochemical stack (2 x 1.4 kW,) and the
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thermal integration unit (including the hot water production system). The detailed P&ID of
the Solid Oxide Fuel Cell unit can be consulted in Appendix D.
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Figure 2.6. Solid Oxide Fuel Cell for electrical and thermal power generation in the biogas-powered SOFC
pilot plant

On the one hand, the stack (Staxera, Dresden, Germany) converted the chemical energy
within the fuel into electrical energy and consisted of 2 stacks in parallel each of 60
electrolyte-supported cells (total surface area 255.6 cm®). Cells were made of a porous
nickel-based anode, a p-semi-conductor cathode (LSM: Lithium-Strontium-Manganite) and
a ceramic solid electrolyte (YSZ: Yttrium-Stabilized Zirconia). The generated electricity (DC
at 60A/42V) was dissipated through an electronic charge, as there was no scientific interest
on actually using it (a transformer and DC/AC inverter was used). On the other hand, the
heat integration unit allowed for heating gases to the operating temperature, producing
steam for the internal reforming process and burning stack off-gases to supply the required
heat. It also used the remaining waste heat on the exhaust gases to produce sanitary hot
water at 50°C. It basically consisted of heat exchangers, an evaporator, a reformer and a
porous after-burner. Pieces of equipment were made of Necrofer 2.4633, a high-chromium
content alloy well adapted to high temperature applications, and Microtherm® wool
(Microtherm Group, Hadzor, UK) was used as insulation material.

Biogas on-line monitoring system

The most significant physical parameters (pressure, temperature and flow) were on-line
monitored at different points. Moreover, chemical analysis of biogas major compounds (i.e.:
CH,, CO,, O, and H,S) was also on-line revealed at several points of the pilot plant using the
AwiFLEX® analyzer (Awite Bioenergie GmbH, Langenbach, Germany) equipped with different
sensors (infrared for CH, and CO,, paramagnetic for O, and electrochemical for H,S). Biogas was
first dried through condensation at 5°C with a chiller, cleaned of particles with a filter and
pressure adjusted with pressure regulators. Humidity measurements were also conducted
using a portable Humicap® HM70 probe (Vaisala, Vantaa, Finland).

2.2.2. Assessment of several biogas sampling methodologies adapted to siloxanes analysis
At the beginning of this PhD thesis, the analytical reporting of siloxanes remained
somewhat controversial with discrepancies on optimal sampling procedure as well as
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necessary sample preparation and quantification technique. Although gas chromatography
coupled to mass spectrometry (GC-MS) was most frequently used for these analyses, the
most practical and reliable sampling technique was not clearly identified. Several authors
had used canisters (Niessner and Schweigkofler, 1999), Tedlar® bags (Ajhar et al, 2010),
sorbent tubes (Dewil er a/, 2007; Rasi er a/, 2010) or even on-line measurement techniques
combining GC and Fourier transform infrared spectroscopy (FTIR) (Arnold and Kajolinna,
2010) to analyze siloxanes, but no studies comparing the different sampling techniques
were published.

Three different sampling techniques for the analytical reporting of eight siloxanes and
trymethylsilanol (TMS) were studied: (a) activated coconut charcoal (24-40 mesh)
adsorbent tubes divided into two beds (A 400 mg and B 200 mg) (Sigma Aldrich, San Luis,
USA); (b) 1 L Tedlar® bags with a single polypropylene (PP) septum fitting (SKC, Eighty Four,
USA); and (c) impingers filled in with a non-polar solvent (n-hexane) submerged into an ice-
water bath (two impingers with 20 mL n-hexane; fritted; and connected in series) (SKC,
Eighty Four, USA). The further analysis of siloxanes and TMS was carried out by GC-MS
according to a methodology developed out of the scope of this thesis.

2.2.3. Audits on full-scale biogas energy valorization plants

As collected in Table 2.1, 6 audits on full-scale WWTP with different CHP technologies were
conducted in the USA (2 plants), Germany (1 plant), Italy (1 plant) and Spain (2 plants).
Audits allowed collecting the most relevant technical and economic operational indicators
both from the biogas treatment technologies and the Energy Conversion Systems (ECS)
implemented on-site; in order to assess sewage biogas-powered fuel cells application field.
Data was collected from historical databases from the operators and its quality was
minimum one-year averages.

Table 2.1. Description of the gas trains and Energy Conversion Systems at the audited WWTP

Audit Biogas treatment ECS
USA 1 Scrubber + iron sponge + drying + activated carbon MCFC
USA 2 Drying + activated carbon MT
Germany Drying + activated carbon MCFC
Italy Scrubber + drying + adsorbent materials ICE
Spain 1 Bio-scrubber + drying + activated carbon ICE
Spain 2 Drying ICE
SOFC pilot Iron sponge + drying + activated carbon SOFC

2.4. PhD thesis organization

The following chapters of this thesis cover the specific topics and results obtained in the biogas-
to-energy valorization chain as depicted in Figure 2.7. Specifically; the chapters correspond to
the following articles published in Journals:
» Chapter 3: Biogas biological desulfurization under extremely acidic conditions for
energetic valorization in Solid Oxide Fuel Cells. Chemical Engineering Journal 255
(2014): 677-685
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Chapter 4: Understanding the effects of the origin, occurrence, monitoring, control,
fate and removal of siloxanes on the energetic valorization of sewage biogas — A
review. Renewable and Sustainable Energy Reviews 52 (2015): 366-381

Chapter 5: Analytical methodology for sampling and analyzing eight siloxanes and
trimethylsilanol in biogas from different wastewater treatment plants in Furope.
Analytica Chimica Acta 812 (2014): 83- 91

Chapter 6: Biogas deep clean-up based on adsorption technologies for Solid Oxide
Fuel Cell applications. Chemical Engineering Journal 255 (2014): 593-603

Chapter 7: Fvaluation of a pilot-scale sewage biogas powered 2.8 kWe Solid Oxide
Fuel Cell: Assessment of heat-to-power ratio and influence of oxygen content.
Journal of Power Sources 300 (2015): 325-335

Chapter 8: On-site cogeneration with sewage biogas via high-temperature fuel cells:
Benchmarking against other options based on industrial-scale data. Fuel Processing
Technology http://dx.doi.org/10.1016/j.fuproc.2015.07.006
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Figure 2.7. Organization of this PhD thesis
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9. Conclusions

The world is slowly but conscientiously converging into the acceptance that a more
sustainable and secure energy supply is required for the forthcoming generations, where the
actual dependence on the fossil fuel reserves should be replaced by self-sufficiency and use
of renewable energy resources. Accordingly, policymakers and governments are
progressively implementing measures aimed at reducing primary energy consumption and
increasing resource efficiency. Making this real requires a compromise between
technological, economic and social challenges, which show the necessity for transversal
solutions that should be available. In this PhD thesis, the potential of using sewage biogas
produced in Waste Water Treatment Plants (WWTP) to produce sustainable energy in high
efficient Solid Oxide Fuel Cells (SOFC) has been studied. Although improvements both in the
performance and cost have been highlighted on the different chapters, this work shows that
this next-generation technology is already starting to be available. Over the following pages
the most relevant findings raised in the previous articles, first on biogas treatment and
afterwards on fuel cells, are summarized. Moreover, recommendations and challenges are
also overviewed. As the road ahead is still difficult and arduous, prospects for future work
are finally detailed.

9.1. Key findings on biogas treatment technologies
9.1.1. H,S removal

Main desulfurization

As depicted in chapter 3, biotrickling filters (BTF) operated on the long-term (920 hours)
under extremely acidic conditions (pH 1.5 - 2) achieved removal efficiencies of 72 - 94% at
30°C and loading rates of 170 - 210 g H,S/m’, ,/h; confirming that this process is suitable for
biogas main desulfurization. This loading rate was higher than other BTF experiences for
biogas desulfurization from the literature. The absence of sulfide species on the liquid phase
indicated that under these loading rate conditions, the system was mass-transfer limited;
rather than kinetically.

The extreme conditions (high H,S, low oxygen and low pH) resulted in a strong mono-
culture development inside the BTF; with more than 99% of the bacterial consortium being
AcidithiobacillusThiooxidans, a Sulfur Oxidizing Bacteria (SOB). This illustrates the selective
pressure of the acidic environment on microbial diversity. SOB activity showed ability to
recover when the BTF was subjected to temperature reduction (recovery in 24 hours) and
oxygen-limiting conditions (recovery in 36 hours); showing process reversibility to these
two disturbances.

The key issue at this high loading rate was that desulfurization was oriented to elemental
sulfur formation as a result of a high selectivity (i.e.: 70%) towards partial oxidation. This
caused a progressive increase on the pressure drop in the scrubbing column; which
eventually led to BTF stop and NaOH cleaning; reducing the availability of the system and
increasing the operational costs. Sulfate and total sulfur analyses on the liquid phase
showed a clear correlation for S content; indicating that SO,” was the only S-containing
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specie on the bleed. As no elemental sulfur was flushed from the system, it accumulated
within the packing material, explaining the progressive increase in the pressure drop
observed in the column.

Altogether, it is concluded that the applied loading rate, despite showing high removal
efficiency, overloaded the system, favoring partial oxidation and eventually process
underperformance. Moreover, as a consequence of progressive filter clogging, the available
surface area for the desulfurization reaction was reduced and consequently process kinetics
was also reduced. Therefore, operation at lower loading rates is recommended; which
would not only promote selectivity towards full oxidation but also improve removal
efficiency

H.,S polishing

As described in chapter 6, the iron-containing adsorbent in lead-lag configuration reached
the stringent sulfur requirements of fuel cell systems, showing an overall adsorption
capacity of around 20%(w/w). H,S peaks larger than 0.5 ppm, were observed after the first
bed even before breakthrough; hence two beds in series were required in the long-term
performance. Regenerations with air were conducted at the end of each breakthrough cycle
but its efficiency was limited to 50 - 60%. Therefore, adsorption capacities showed a
progressively decreasing trend: 12% in cycle 1; 6% in cycle 2; and 3% in cycle 3.

The H,S adsorption mechanism was postulated by conducting Scanning Electron Microscopy
(SEM), X-Ray Diffraction (XRD) and a pH leachate test on virgin and saturated samples. As a
result of the presence of oxygen in the biogas (2 - 3%) and moisture (relative humidity 80 -
90%) in the biogas, H,S adsorption mechanism was more oriented to its oxidation to
elemental sulfur and gypsum rather than to crystalline FeS(s) formation. This can explain
the low regeneration efficiencies observed in the iron-containing adsorbent. Acidification
took place during adsorption as the pH was reduced from 9.5 (virgin) to 6.8 (saturated). The
mechanism postulated for H,S removal is described below:
¢ H.S, H,0 (humidity) and O, adsorption on activated carbon surface:
H,S PH,Seq
HZO(g) > HZO(adS)
Oy 2 2 Oy
¢ H,Sdissolution in the water film:
H.S.s + H,0us > HS  + HO',
« Sulfide partial and full oxidation by adsorbed oxygen:
HS»(aq) + [D(adS) > OH-(aq) + SO(S)
HS»(aq) + 4[D(ad5) > H+(aq) + 5042-(aq)
» Calcium sulfate formation:
SO, ,, * CaCO,, + 2H,0,,,,~> CaSO,(H,0), ,,+ CO," .,

ads

9.1.2. Siloxanes removal

Siloxanes occurrence and fate

As described in chapter 4, siloxanes are used in several industrial and domestic applications,
including as antifoaming agents, in automotive care products as coatings, in construction as
sealants, and in cosmetics and personal care products. The vast majority of siloxanes from
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fluid applications are lost either into the atmosphere as a result of their volatility or into the
wastewater system from rinse-off products. It is estimated that 10% of Volatile Methyl
Siloxanes (VMS) enter domestic sewage systems; therefore, WWTP are one of the most
important routes for siloxane introduction into the environment. Total siloxanes
concentrations (linear and cyclic) in the inlet of WWTP are usually below 100 pg/L.

Siloxanes main removal mechanisms in the sewage and sludge processes of a WWTP mainly
include adsorption on the sludge, volatilization/stripping into the atmosphere (especially in
aerated reactors), volatilization into the biogas (in the anaerobic digester) and to a minor
extent biodegradation. However, mass balances do not accurately match; and it is difficult
to conclude on the relevance of each of them. Downstream the sewage and sludge lines,
siloxanes adverse effects in Energy Conversion Systems (ECS) on the short- and long-term
are not yet well-understood. Despite quantitative silica deposition on piston heads, oxygen
sensors, spark plugs and lubrication oils was observed, current studies are not conclusive to
establish scientifically-sound inlet concentration limits.

Siloxanes sampling and analysis

As depicted in chapter 5, Tedlar® bags, which is the preferred sampling method by WWTP
operators as it is easy-to-use and is accepted in most commercial laboratories, proved to
give reliable siloxanes concentrations compared both to impigners (with n-hexane) and
adsorbent tubes (activated coconut charcoal; solvent desorption); regardless showing
higher standard deviation in triplicate analysis. On the other hand, adsorbent tubes allowed
the lowest limit of detection (0.01 mg/m’); hence they are recommended when
quantification at very low concentration levels is required; e.g.: downstream biogas
treatment system. The three sampling methodologies showed that D4 and especially D5 are
the most commonly observed silicon compounds in sewage biogas; with overall siloxanes
concentrations ranging 14 - 18 mg/m’ in mesophilic anaerobic digestion. Presence of linear
siloxanes, other cyclic siloxanes (D3 and D6) and trymethylsilanol was discarded.

Siloxanes polishing

The most widely implemented and efficient siloxanes treatment technology is a preliminary
refrigeration/condensation stage followed by physio-sorption. Adsorbent materials with
high BET surface areas and high and balanced micro- and meso-pore volumes should be
selected. Small micro-pores do not play a role on siloxanes removal. As described in chapter
6, biogas drying increased activated carbon lifetime around 10% as a result of siloxanes
removal through condensation and solubilization in the condensed water stream. Removal
efficiencies of 98 — 100% were observed for siloxanes and linear hydrocarbons; confirming
that activated carbon can achieve the stringent silicon requirements of fuel cells.
Nevertheless, removal efficiency for aromatic hydrocarbons (specifically toluene and p-/m-
xylene) was of 88%.

The siloxanes adsorption capacity of virgin activated carbon was found to be of 2%(w/w);
10-fold smaller than the adsorption capacity observed for H,S in the iron-containing
adsorbent. Despite its lower concentration in raw biogas, cyclic siloxane D4 was the first
compound to breakthrough; probably as a result of a roll-up phenomenon due to the meso-
porous nature of the adsorbent.
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9.2. Key findings on fuel cell technologies

9.2.1. Solid Oxide Fuel Cell performance

As it is shown in chapter 7, Solid Oxide Fuel Cell operation with cleaned sewage biogas is
technically possible over a large period of time, i.e.: 700 hours. A wide range of power-to-
heat ratios, i.e.: 0.5 - 3, was tested, showing that SOFC systems have high flexibility in terms
of heat and power production; which represents an important advantage compared to
conventional CHP technologies. Although the electrical and thermal efficiencies varied
significantly for each power-to-heat level, cogeneration efficiency remained constant at
around 59 - 62% for all the ratios tested.

The thermal demand for sludge heating at mesophilic conditions would be covered at a
heat-to-power ratio of 0.8; and under these conditions the system’s electrical and thermal
efficiencies accounted for 34% and 28% respectively. Although these figures do not
significantly exceed the performance of conventional Combined Heat and Power (CHP)
units, it should be pointed out that stack electrical efficiencies of 45 - 53% were obtained;
which do exceed those of Internal Combustion Engines and Micro-Turbines. These
efficiencies were observed at fuel utilizations of 65 - 75%, which are low enough to satisfy
the thermal demand for fuel reforming and pre-heating with the remaining energy. On the
other hand, the operating conditions for biogas reforming were established at an O/C ratio of
1.3 (through steam addition) and 550°C to avoid carbon formation. Notwithstanding, the
reformer was later operated at an O/C ratio of 2.1 to provide an operational safety margin;
which had a negative impact both on the electrical (lower H, partial pressures in the anode)
and thermal efficiency (larger demand for steam production) of the integrated SOFC unit.
Therefore, a more efficient thermal design to avoid heat losses and operation closer to the
critical O/C ratio can lead to significant performance improvement.

Finally, it should be emphasized that high O,/CH, ratios in the treated biogas reduced the
electrical efficiency up to 2.5 percentage points of the SOFC unit due to partial biogas
consumption in the reformer through the POX reaction before the stack. The biotrickling
filter caused biogas dilution, increasing the oxygen and nitrogen contents in the treated gas.
As a result, bio-scrubbers (or other scrubbing technologies not injecting oxygen in the
biogas) followed by adsorption would be recommended for fuel cell applications.

9.2.2. Technical-economic performance of fuel cell systems

Molten Carbonate Fuel Cell (MCFC) systems are the most efficient cogeneration technology
as concluded in chapter 8, allowing the achievement of an electrical self-sufficiency of 71 -
75% for the 100,000 PE plant (60% larger compared to conventional cogeneration; which was
limited to 40 - 46%). A more moderate improvement of 30% was observed for the 500,000
PE plant; indicating that small and medium-scale WWTP are the most relevant application
field for fuel cells. The electrical self-sufficiency values obtained in this study confirm the
important role that fuel cells can play on carbon neutral sewage treatment on the one hand,;
but on the other that additional measures and technologies should be fostered and
promoted together with efficient biogas energy recovery.

Regardless the plant size, payback periods of MCFC projects were 3 - 4 times larger than
Internal Combustion Engines (ICE); which is still today the most profitable technology for
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sewage biogas energy recovery. The high investment cost and reduced lifetime of fuel cells
are the two most relevant limitations which should be improved before fuel cells can
become a deployable technology in WWTP in the short-term. While SOFC systems have a
comparable technical performance with ICE, the economic profitability is still far away from
industrial deployment (further than MCFC); hence the impact of this technology in sewage
treatment is expected for the medium-term.

Moreover, the study showed that while the biogas pollution level affects the profitability of
cogeneration projects; it did not have a large impact on the energy performance of the
biogas valorization line. On the other hand, plant size affected both the profitability of
cogeneration projects and the energy performance of the biogas valorization line.

Finally, the comparative assessment allowed concluding that today a final justification for
biogas valorization in fuel cell systems will have to be found in environmental issues; which
are difficult to quantify in economic parameters. Once significant breakthrough on the
economy of installing a fuel cell unit and on the performance depreciation profile occur,
both MCFC and SOFC technologies will have a certain potential to promote biogas energy
recovery in WWTP (and other biogas sources) as the economic profitability of the
cogeneration project will be less dependent on the possibilities to sale heat at a reasonable
price. Regarding conventional cogeneration, economic factors (investment and maintenance
costs) and regulations (electricity costs) will be the determining factors for installation.

9.3. Recommendations on biogas treatment configuration coupled to fuel
cells

The results presented in this PhD thesis on biogas treatment confirm that the integration of
biogas treatment and fuel cell technologies is technically possible and the very stringent fuel
cell specifications for a wide range of pollutants can be met. As depicted in Figure 9.1, the
following elements should be considered when designing the biogas treatment:

» (Cascade configuration: a low cost main desulfurization technology for rough H,S
abatement followed by a deep polishing system based on adsorption processes
divides the overall cost (investment and operational over five years) by two
compared to stand-alone adsorption process (480 k€ vs 910 k€ for a 190 Nm’/h
plant); hence improving the economic profitability of biogas fuel cell projects.

»  Main desulfurization.: advanced and conventional caustic scrubbers, differently from
biotrickling filters, do require oxygen injection for H,S removal, which eventually
lead to larger electrical efficiencies of the system; maximizing the advantages of fuel
cells. Therefore, they are recommended for the main desulfurization stage. Due to
the larger investment costs and reduced operational costs of advanced scrubbers,
this technology is recommended for large biogas flows (i.e.: above 65 Nm’/h) in
order to improve the economic profitability. Conventional scrubbers are therefore
suitable for small biogas flows.

« Polishing: adsorption processes are the only system which can reduce the
concentration of H,S and siloxanes to the very low requirements of fuel cells. Due to
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the different properties and concentration levels in sewage biogas of these two
contaminants, the use of two different adsorbent materials is recommended. H,S
polishing is implemented upstream. Nonetheless, the siloxanes polishing stage also
acts as a final redundant protection for H,S, as it will adsorb remaining traces of
sulfur species which may be present periodically after H,S polishing due to
inefficient operation.

» Adsorbent beds in lead-lag configuration. when coupled to fuel cells, detection of
the breakthrough point of adsorption systems needs to balance compliance with
fuel cell quality requirements and increased adsorbent material’s lifetime. In this
context, adsorption beds in series with reversing capability (lead-lag configuration)
allows detecting the breakthrough point based on the entire history of the
adsorption process rather than on a threshold value; which maximizes contaminant
loading on the adsorbent material while guarantees fuel cell limits as any
breakthrough in the upstream bed will be adsorbed in the downstream bed.

e Refrigeration/condensation: biogas drying through a Heat Exchange Network (HEN)
should be accomplished upstream or downstream the adsorbent filters depending
on the moisture requirements of the adsorbent materials. Both for the iron-
containing adsorbents (desulfurization) and for virgin activated carbon (siloxane
removal), upstream location is recommended.

e Biogas compression. pressurizing is necessary to meet pressure requirements of fuel
cell systems. It is carried out after main desulfurization in order to prevent
corrosion; hence lifetime of the gas compression equipment is enhanced.
Compressor should not be installed at the end of the system to have positive
pressures through the entire treatment line. Rotatory positive displacement
machines (roots and screw compressors) are generally used. The installation of
Variable Speed Drivers (VSD) controlled by end-of-pipe pressure sensors is
recommended to guarantee adequate biogas pressure at the fuel cell despite
pressure losses through the treatment line.
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Figure 9.1. Decision tree for the design of the biogas treatment line adapted to fuel cells

9.4. Challenges for fuel cell implementation in WWTP

The results presented in this PhD thesis on fuel cells allowed identifying the most relevant
challenges required for their future full-scale implementation in WWTP. They have been
classified according to 4 major areas: technical/technological performance, economic
performance, EU regulations and practicality (Table 9.1). Biogas producers, biogas treatment
suppliers and fuel cell manufacturers should address together all these issues through
collaborative research, development and innovation.
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9.5. Prospects for future work

Biogas is a highly attractive fuel for SOFC technology and biogas clean-up technologies have
proved to fulfill with the quality specifications set for fuel cell systems. Nevertheless,
additional research is required for market deployment. Collaborative research between
biogas producers, suppliers of biogas treatment systems and manufacturers of fuel cell units
should take place to address the most relevant prospects for future work, as detailed below:

Biotrickling filters

« The optimum H,S loading rate should be determined in order to reduce the required
reactor volume while satisfying high removal efficiency and reduced elemental
sulfur formation. Sulfur mass balances (elemental sulfur, sulfate, tio-sulfate, sulfide)
at different H,S loading rates should be established to contribute to this
optimization.

e More efficient air supply systems (e.g.: venturi jets) to improve the oxygen mass
transfer into the liquid-phase (more oxygen) should be developed to guarantee full
oxidation to sulfates while reducing residual O, content in the treated gas.

» Effective systems/operating conditions for solids flushing from the column should
be established to contribute in mitigating the elemental sulfur accumulation within
the scrubbing column.

H.,S deep polishing

» Regenerative adsorbent materials should be developed to reduce the operational
costs of deep desulfurization in the presence and absence of oxygen. The adsorption
and desorption chemistry of H,S removal with iron-containing materials in the
presence of oxygen should be further understood.

« Additional analytical techniques should be used to precisely determine the H,S
adsorption mechanisms. For example, Fourier Transformed Infrared (FTIR)
Spectroscopy could confirm water adsorption and formation resulting from H,S
oxidation (OH bond vibrations). Thermo-Gravimetric Analysis (TGA) combined with
Differential Scanning Calorimetry (DSC) (or with Temperature Programmed
Desorption) could confirm water peaks (around 100°C), elemental sulfur peaks
(which should be spread around boiling point, 445°C) and sulfates/sulfides (over
800°C).

Siloxanes occurrence and fate

e Accurate siloxanes mass balances at conventional wastewater treatment processes
in the sewage and sludge lines should be conducted to better understand the
involved mechanisms and determine the specific contribution of each mechanism in
the WWTP. This would also allow smarter operation of the treatment processes at
specific conditions to avoid siloxanes-related problems.

« Better understanding of the short- and long-term effects of siloxanes on Energy
Conversion Systems (both on conventional cogeneration systems and on fuel cells) is
required to establish scientifically-sound quality limits.

«  Efforts should be devoted to express siloxanes concentrations in mg Si/Nm’ (or mg
siloxanes/Nm”).
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Siloxanes removal

« Materials with higher percentage of micro-pores or mixtures of several materials
with different pore sizes should be studied to prevent and/or delay the early
breakthrough of D4 or other light siloxane components.

» More selective and regenerative siloxanes removal systems should be developed in
order to reduce the associated operating costs; and even allow silicon recovery and
valorization.

« Advanced on-line siloxane monitoring equipment (e.g.: through FTIR) should be
promoted to improve the control and reliability of biogas treatment trains,
guaranteeing a more stable and safer operation of the energy conversion unit.

Solid Oxide Fuel Cell

» The biogas reforming conditions (O/C, temperature) should be optimized to reduce
the operational risks due to soot formation and improve the electrical and thermal
efficiency of the SOFC unit.

» A more efficient thermal integration of the SOFC unit is required to operate the stack
at large fuel utilizations (i.e.: high electrical efficiency) without compromising
thermal management.

« The exhaust gas emissions in the SOFC unit should be measured at the different
heat-to-power ratios and compared to conventional CHP.
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Appendix A. Worldwide biogas-powered fuel cell references 2014

Appendix A collects a general overview of the situation of fuel cells operated with biogas in
the world, from their beginning in the 1990s till the time of this PhD thesis. The compiled
data was obtained from the following sources:

Fuel Cells 2000 State Fuel Cell and Hydrogen Database: Compilation of all the
installed fuel cells in the USA.

Fuel Cells 2000 Worldwide Fuel Cell Installation Database: Compilation of all the
installed fuel cells all over the world (excluding USA).

Fuel Cells 2000 case studies (2012): Some relevant major projects are detailed,
emphasizing the facts that make fuel cells investment worthwhile.

Fuel Cells 2000 case studies (2013).

CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnoldgicas):
“Utilizacion de biogas en pilas de combustible” (Biogas use in fuel cells) document
(2008).

USA Department of Energy (DoE): Fuel Cells technologies market report, Table 7.
(referred as DoE T7) (2010).

Fuel Cell Today: A reference website on fuel cell technologies.

Manufacturers and costumers websites.

Tables A.1 and A.2 collect the most relevant information on different biogas-powered fuel
cell projects (both on-going and decommissioned). Some fuel cell projects may not be
reflected, since their information may not be available in the consulted databases and

websites.
Table A.1. References of existing fuel cells operated with biogas (2014)
Fuel cell .
Manufacturer Customer Location and From- Reference Biogas
To type
power
FuelCell Inland Empire Cgi}garﬁ?a . 28MW  2012-  FuelCell o
Energy Utilities Agency USA MCFC Ongoing Today
San Jose/Santa San Jose
FuelCell Clara Water Cali fornia' ) 1.4 MW 2012 - DoE T7 Sewage
Energy Pollution Control MCFC Ongoing &
USA
Plant
. Chino,
FuelCell Inland Empire California - 2.8 MW 2012 - FC2000 Sewage
Energy Utilities Agency USA MCFC Ongoing  Database &
San Diego, Sewage
l;unegfell UC San Diego California - zﬁg\CN Ozr?lolir; DoE T7 (directed
gy USA going biogas)
South Bay Water  San Diego, Sewage
l-g;eelfell Reclamation California - 11'& é\g\CN 021?10111]_ DoE T7 (directed
gy Plant (pumping) USA going biogas)
. San Diego
FuelCell Point Loma . > 300 kW 2011 -
Energy WWTP Cal‘lfjosr/;“a - MCFC  Ongoing  DP°ET7 Sewage
Riverside,
el EMWD California- 2300 o 2L - DoE T7 Sewage
Energy USA MCFC Ongoing
Orange
Orange County County, 250 kW 2011-  FC2000
UTC Power Sanitation . . . Sewage
. California - PAFC Ongoing  Database
District USA
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Joint Base Lewis Tacoma
Not known e Washington L2 N AU AL WWTP
Hydrogen - known Ongoing  Database
. . - USA
Fueling Station
Perris Valley Perris
FuelCell Regional Water Valley, 2x300 kW 2011 - FC2000 WWTP
Energy Reclamation California - MCFC Ongoing  Database
Plant USA
Orange
RanchoSanta  County,  2x400kw  2011-  [c2000 NG +
UTC Power . . , . Business .
Margarita California - PAFC Ongoing Biogas
cases 2012
USA
FuelCell Rialto, 3x300kW 2010~  FC2000
Rialto WWTP California - . Sewage
Energy USA MCFC Ongoing  Database
FuelCell L Oxnard,  5.300kw 2009  FC2000 Food
Gills Onions California - .
Energy USA MCFC Ongoing Database waste
Dublin San
FuelCell Ramon Services — Pleasanton, 309y 2008~ Fc2000
Energy District Regional  California - MCEC Ongoing  Database Sewage
Wastewater USA
Treatment Plant
Moreno
FuelCell Valley, 3x250 kW 2008 - FC2000
Energy AN California - MCFC Ongoing  Database SR
USA
. . . . Sewage
FuelCell Riverside Riverside, 1MW 2008 - FC2000  (Industrial
Ener Wastewater California - MCFC Ongoin, Database waste co-
gy Treatment Plant USA going . .
digestion)
Tulare,
HiclCel Tulare WWTP California - I 2008. N SEZIILD Sewage
Energy USA MCFC Ongoing Database
Turlock,
FuelCell Turlock WWTP California - 1200 kw 2008. N FC2000 Sewage
Energy USA MCFC Ongoing Database
FuelCell Alliance Power, Chico,  gyo50kw  2005-  FC2000  Sewage
Ener Sllome Nz St MCFC Ongoin. Database  (brewery)
gy Brewing USA going y
. . . Yamagata 2x100 kW 05/02 - FC2000
Fuji Electric Kajima, NEDO City, Japan PAFC Ongoing Database Sewage
. . 1x250 kW
Not known IMilabille L — Not Ongoing  Thermax N
datacenter Germany ) knwon
known
. . 2009 -
MTU CEC Erc!mger Erding, 300 kW Not FC2000 Sewage
WeilSbrdu Germany MCFC I Database  (brewery)
known
. 2008 -
. Centre of Ptolemaida, 1 kw FC2000 .
el S Environment Greece PEM N Database emd il
known
Klaranlagen Moosburg 250 kW 2008 - FC2000
MTU CFC GmBH Germany MCFC krll\f)(::m Database Sewage
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GlashusEtt 2007 -
Acumentrics environmental Stockholm, 1x5 kW FC2000
. . i Not WWTP
corporation information Sweden SOFC ) Database
known
center
Food
.. 2007 -
MTU CFC T-Systems Minchen, 250 kW Not CIEMAT waste
Germany MCFC L (Energy
known
Crops)
Waste
Management 2006 -
MTU CFC Corporationof  Lcomnbers, 250 kW Not CIEMAT Landfill
.. Germany MCFC
the District of known
Boblingen
FuelCell Ahlen 250kw 299~ Eca000
RWE, MTU-CFC ’ Not Sewage
Energy Germany MCFC Database
known
. 2005 -
FuelCell Marebuni, Tokyo, 250 kW FC2000 Food
Energy Bioenergy Japan MCFC e Database waste
known
. . 2004 -
FuelCell Mitsubishi, Tokyo, 250 kW FC2000 Food
Energy Bioenergy Japan MCFC Not Database waste
known
LA County
Sanitation Palmdale, 2004 -
l;;eelfell Districts, Quinn California - zlglocl;\c/v Not CIEMAT Sewage
gy Power USA known
Caterpillar
. . 2009 -
MTU CEC Erc!mger Erding, 300 kW Not FC2000 Sewage
Weilbrdau Germany MCFC Database (brewery)
known
. 2008 -
. Centre of Ptolemaida, 1 kW FC2000 .
Mroipliesl S Environment Greece PEM N Database seelill
known
Klaranlagen Moosburg 250 kW 2008 - FC2000
MTU CFC GmBH Germany MCFC Not Database Sewage
known
GlashusEtt 2007 -
Acumentrics environmental Stockholm, 1x5 kW FC2000
. . . Not WWTP
corporation information Sweden SOFC L Database
known
center
Food
.. 2007 -
MTU CFC T-Systems Minchen, 250 kW Not CIEMAT waste
Germany MCFC I (Energy
known
crops)
Waste
Management 2006 -
MTU CFC e e 250 Not CIEMAT  Landfill
L Germany MCFC
the District of known
Boblingen
Queens, 2002 -
UTC Power NY Power New York - 2x200 kW Not CIEMAT Sewage
PAFC
USA known
2002 -
Fuel Cell Hamarbv Siostad Stockholm, 10x5 kW Not FC2000 Not
Technologies vl Sweden SOFC CHP ) Database specified
known
06/02 -
Naps Systems, Stockholm, 4 kW FC2000 .
H Power Corp Birka Energy Sweden PEM l(rll\i)c\):/n Database Landfill

139



UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Appendix A
Food
Sulzer Hexis Herr Chabloz Lully, 1kw 2(1)\1001t ) P waste
Switzerland SOFC ) Database  (Agricultu
known
ral)
Staten 200 KW 1997 -
UTC Power NY Power Island, New Not CIEMAT Sewage
PAFC
York - USA known
Yonkers, 1997 -
UTC Power NY Power New York - i Not SEZIILD Sewage
PAFC Database
USA known
Town of Groton,
US EPA, Groton, 200kw 1998 ko000 .
UTC Power . Connecticut Not Landfill
International PAFC Database
- USA known
Fuel Cells
Hokubu Sludge
Toshiba Treatment Yokohama, 1x200 kW Not FC2000 WWTP
Japan PAFC known Database
Center
Topsoe Fuel Vaasa Landfill Vaasa, 1x20 kW Dzeoclo(:n_is FC2000 Landfill
Cell Finland SOFC _sioned Database
FuelCell King County, US Renton, 4x250 kW 2004 - FC2000 Sewage
Energy EPA Washington MCFC 2006 Database &
FuelCell Marubeni Fukuoka, 250 kW 2003 - FC2000 Sewage
Energy Japan MCFC 2005 Database &
Shin-
. 300 kW 2002 - .
[HI Chubu Electric Nagoya, MCEC 2004 CIEMAT Landfill
Japan
FC2000 Food
University of Nitra, 300 kW 2002 - Database waste
MTU CFC Nitra Slovak MCFC 2004 (LIFE (Agricultu
Republic EFFECTIVE /'8
) ral)
Project)
300 kW FC Chart
05/2002 Sewage
MTU CFC Seaborne GmbH Dtk MCF.C - (L2 (Industrial
Germany (Mobile EFFECTIVE
. 11/2002 . Waste)
Unit) Project)
. 03/2003
MTU CFC Linz AG Ah‘;l;'ia kvl\;'g‘fm - Landfill
05/2003
02/2004
MTUCFC  Urbaser, CIEMAT Lo, N N Landfill
Spain kwown Summer
2004
Tomakomai, 250 kW 07/01 - FC2000
Ballard N/A Japan PEM 11/02 Database Sewage
UTC Power Gas, Elektrizitats Cologne, 200 kW 2000 - FC2000 Sewage
und Wasserwerk Germany PAFC 2010 Database &
Koln-
UTC Power Rodenkirchen Germany 200 kW 2000 - CIEMAT Sewage
PAFC 2001
WWTP
2000 - Farm
UTC power Hog farm Guangzhou, 200 K Decomis AL methane +
China PAFC . Database
-sioned LPG
Braintree Electric Massachuset
UTC Power Light ts, Boston - 200 kw 1999 - CIEMAT Landfill
PAFC 2004
Department USA
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Portland, 1999 -
UTC Power City of Portland Oregon - 200 1357 Decomis AL Sewage
PAFC . Database
USA -sioned
1998 -
UTC Power Sapporo Brewery Sapporo, 200 kw Decomis CIEMAT Sewage
Japan PAFC . (brewery)
-sioned
Deer Island Massachuset 200 kW 1997 - FC2000
UTC Power Sewage ts, Boston - PAFC 2002 Database Sewage
Treatment Plant USA
Penrose Sun
Valley, 200 kW 1994 - )
UTC Power US EPA California - PAFC 1996 CIEMAT Landfill
USA
. Calabasas 1990s -
Las Virgenes . S 2x200 kW . FC2000
UTC Power WWTP California - PAFC De.comls Database Sewage
USA -sioned
Table A.2. References of planned fuel cells operated with biogas (2014)
Manufacturer Customer Location Fuel cell From- Reference  Biogas
and power To type
Not known Sonoma County Sonoma 1x1,400 kW Planned FC2000 Kitchen
County, Not known for 2015 Database waste
California -
USA
Ballard Power Humboldt Humboldt 1x175 kW Planned FC2000 Syngas
Systems County County, PEM Database from
California - biomass
USA
FuelCell Dairy farm Sacramento, 1x? kW Planned FC2000 Farm
Energy California - SOFC Database biogas
USA
UTC Power Microsoft Data Cheyenne, 1x300 kW Planned FC2000 WWTP
Center Wyoming - PAFC Database
USA
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