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cial va para Òscar, por las divertid́ısimas conversaciones de sobremesa y por ser un

buen amigo cuando en su momento hizo falta.
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Chapter 1

Introduction

1.1 A Brief Historical Introduction

The birth of supersymmetry [1] is related with the birth of string theory in the late

1960’s. It was known that the string (bosonic) action was anomaly free only in 26

spacetime dimensions. Ramond, Neveu and Schwarz proposed to add d fermionic

field doublets to the d original bosonic fields of the string. The result was an action

anomaly free in 10 dimensions and invariant under a symmetry relating fermionic

and bosonic variables.
A few years later Wess and Zumino extended the idea of referring fermions and

bosons to four dimensional quantum field theories constructing the first supersym-

metric action consisting on a multiplet of one Majorana fermion, one complex scalar

and an auxiliary (non-propagating) complex scalar. A bit after they found a super-

symmetric action for a multiplet containing a gauge field.

A few years before, in 1967, Coleman and Mandula had proven, under resonably

general assumptions, that the most general symmetry of the S-matrix of a relativis-

tic quantum theory of fields has a Lie algebra consisting on the Poincaré generators1:

Pµ and Jµν and a finite number of operators commuting with all the Poincaré gen-

erators and furnishing a Lie algebra (or subalgebra) of a compact Lie group. This

seemed to discard the Wess-Zumino model as a good quantum theory of fields since

according to the Coleman-Mandula theorem any S-matrix symmetry mixes fermions

1In theories with only massless particles, in addition to the Poincaré algebra, the theorem allows
the conformal algebra.

5



6 Introduction

with fermions and bosons with bosons, but not fermions with bosons.

Wess and Zumino solved the apparent contradiction pointing out that the Coleman-

Mandula theorem works only with commutation relations between the generators

while the supersymmetry generators satisfy anticommutation relations. In fact,

Gol’fand and Likhtman were those who, in 1971 and independently of Wess and

Zumino, extended the Poincaré algebra to a graded Lie algebra with commutation

and anticommutation relations and demanding invariance under this symmetry they

found a supersymmetric action in four dimensions.

1.2 How many dimensions do we live in?

Along the different attemps to unify fundamental forces (occured from the late of

19th century) the concept of extra dimensions [2] has played an important role:

Once the relativistic invariance of the Maxwell’s theory of electrodynamics was rec-

ognized it became clear (due to Minkowski’s work) that the unification of electricity

and magnetism required space and time unification into a four dimensional contin-

uum “spacetime”.

Gunnar Nordström was the one who proposed, before the appearance of Einstein’s

theory of gravity, a five dimensional Maxwell-like theory together with a 5-conserved

current. He noticed that in the cylindrical case (none of the fields depends on the

fifth dimension) one could identify the fifth component of Maxwell’s vector with a

scalar gravitational potential, and the fifth component of the conserved current with

the trace of the energy-momentum tensor. The rest of the fields and current compo-

nents were indentified with the usual Maxwell vector and electromagnetic current,

respectively. Thus, Nordström found a unification between electromagnetism and

scalar (newtonian) gravity. When relativistic theory of gravity appeared, its uni-

fication with Maxwell’s theory was a question that quickly arose. In 1919, in the

wake of Einstein’s theory of gravity, the mathematician Theodor Kaluza proposed

an Einstein-like theory in five dimensions, more precisely, inM4×S1 , namely, with

the fifth dimension (y) compactified on a circle. In order to avoid bivaluations of the

fields, those must admit a Fourier expansion with respect to the fifth coordinate.

Integrating the action with respect to y Kaluza found an effective 4-d action made
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up of an infinite tower of modes. The zero one consisted on one symmetric 4-tensor

(graviton), one 4-vector (Maxwell vector) and a non propagating sacalar (the so

called: radion), verifying the well-known 4-d equations of Einstein-Maxwell.2

Furthermore, there is no consistent way for building a quantum theory of gravity in

4 dimensions. The candidate to such a theory, the string theory, is consistent in 10

dimensions (with the help of supersymmetry).

1.3 Why supersymmetry

The supersymmetry has a list of nice properties that make it a powerful candidate

to describe some of the physics beyond the Standard Model (SM): supersymmet-

ric lagrangians are not quadratically corrected (the so called non-renormalization

theorem) only logarithmically3, which means that the masses do not receive any

correction [4] (nor infinite neither finite) only wave functions are corrected.

The running of the gauge couplings of the SM do not match exactly at any scale,

nevertheless, taking into account the supersymmetric degrees of freedom all of them

coincide at a scale v 1016 GeV .
Furthermore, local supersymmetry invariance implies local Poincaré invariance, namely,

a theory of gravity, in fact a theory of supergravity [4] though it is not a renormal-

izable theory and it is seen as an effective theory of the string theory.

Obviously, the supersymmetry can not be an exact symmetry since none of the su-

persymmetric partners of the SM particles predicted by the theory have been found

yet. The nature of supersymmetry breaking is still an open question although a

commonly accepted and used mechanism is the so called Scherk-Schwarz mecha-

nism to be described later on.

2The Kaluza action gives undesirable constraints on the fields if one takes into account its
variation with respect to the radion, for this reason Kaluza set it directly to 1. Afterward, Jordan
realized that the action presents, in addition to the general change of coordinate invariance, an
invariance under global scale transformations. On the other hand, a possible solution to the action
is the flat Minkowski spacetime. This solution serves as a natural vacuum which is not invariant
under the global scale transformation and thus the scalar serves as a Goldstone boson acquiring a
vacuum expectation value.

3A supersymmetric theory having a U(1) (local) gauge invariance can present a mass renor-
malization and even a supersymmetry breaking by radiative corrections due to the generation of
a Fayet-Iliopoulos term [3]. Nevertheless, one can avoid that problem by imposing a traceless
generator of the U(1) gauge symmetry.
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In the following chapters we will review the the construction of supersymmetric

theories and the process of supersymmetry breaking.

This thesis consists mainly in the application of supersymmetry from extradi-

mensional models to some phenomenological aspects of Physics beyond the Standard

Model such as ElectroWeak Symmetry Breaking (EWSB) and neutrino masses. Ac-

tually these are the central questions around which the present work gravitates. The

main results of the thesis are summarized in the following:

We propose a supersymmetric model in five dimensions, where the fifth one is a fi-

nite interval (at the scale of TeV), with mass-like boundary terms. Supersymmetry

is broken by the boundary conditions à la Scherk-Schwarz and the EWSB is induced

by radiative corrections with a tiny fine tuning of the parameters.

Within the same class of models we exhaustively investigate the possibility for yield-

ing an ultra light mass for neutrinos by letting the right handed neutrino to propa-

gate in the five dimensional bulk with bulk massM and arbitrary mass-like boundary

terms. We find that in the general case the model yields a sub-eV Majorana mass

for the SM left handed neutrinos. There is, however, a particular bulk-boundary

configuration where a global U(1) symmetry arises and prevents the lepton number

from being violated, yielding thus a Dirac mass connecting left and right handed

neutrinos, whose value is exponentially suppressed by the bulk right handed neutrino
mass.



Chapter 2

Supersymmetric Theories and The
Minimal Supersymmetric
Standard Model (MSSM)

In the previous chapter we mentioned the construction of supersymmetric theories.

In this chapter we will briefly review how to construct them from the supersymmetric

algebra and finally we will present the MSSM as an example of a supersymmetric

theory.

2.1 Construction of a supersymmetric theory

2.1.1 Supersymmetric algebras

Our aim is to construct a relativistic theory of fields respecting supersymmetry and,

possibly, an internal symmetry. According to the Coleman-Mandula theorem [5], the

Lie algebra of the symmetry of our S-matrix must be made up with: The Lorentz-

Poincaré generators Jµν , P µ and a set of generators TA furnishing a Lie algebra of

9
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(MSSM)

a compact Lie group, all of them satisfying [6]:

[P µ , P ν ] = 0 (2.1)

i[Jµν , Jρσ] = ηνρ Jµσ − ηµρ Jνσ − ησµ Jρν + ησν Jρµ (2.2)

i[P µ , Jρσ] = ηµρ P σ − ηµσ P ρ (2.3)

i[Jµν , TA] = 0 (2.4)

i[P µ , TA] = 0 (2.5)

−i[TA , TB] = fABC TC (2.6)

With ηµν the Minkowski flat metric. In addition to (2.1)-(2.6) we have a set of

generators (Qr
α) (supersymmetry generators) verifying anti commutation relations

which together should furnish a graded Lie algebra, that is: We can define a parity

operator P such that we can always classify the generators as even ones (those

satisfying [P,M ] = 0) and odd ones (those satisfying {P,Q} = 0). Then is easy to

see that the next relations do hold:

0 = [P , [even , even]]
0 = {P , [even , odd]}
0 = [P , {odd , odd}]

 (2.7)

Let us write the generalized Jacobi indentities [7]:

0 = [[B1 , B2] , B3] + [[B3 , B1] , B2] + [[B2 , B3] , B1] (2.8)

0 = [[B1 , B2] , F3] + [[F3 , B1] , B2] + [[B2 , F3] , B1] (2.9)

0 = {[B1 , F2] , F3}+ {[F3 , B1] , F2}+ [{F2 , F3} , B1] (2.10)

0 = [{F1 , F2} , F3] + [{F3 , F1} , F2] + [{F2 , F3} , F1] (2.11)

Where we have denoted by B the even generators and F the odd ones. Taking into

account (2.7), the Poincaré algebra and the Jacobi identities one can see that:

[Qr
α , J

µν ] = AµναβQ
r
β (2.12)

With the matrix Aµν verifying:

i[Aµν , Aρσ] = ηνρ Aµσ − ηµρ Aνσ − ησµ Aρν + ησν Aρµ (2.13)
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and thus, furnishing a representation of the Lorentz group or, in other words: α is

a spinor index 1. For that reason, we will briefly summarize the properties of irre-

ducible representations of the Lorentz group in spacetime of arbitrary dimension [8].

Consider the Dirac algebra in a spacetime of dimension d 2

{Γi , Γj} = 2δij (2.14)

with i, j = 1, 2, · · · , d, Γi hermitian matrices and the usual Γ0 is now defined as iΓd.

The dimensionality of the minimal representation of the Lorentz group is, then:

{
2
d
2 for d even

2
d−1

2 for d odd

We will distinguish between even and odd dimensions:

• d even

The minimal representation is reducible because the hermitian operator Γd+1 ≡
Γ0 · · ·Γd−1 commutes with all the generators of the group. So the irreducible

representation of the Lorentz group in d = 2n dimensions has dimensionality

2n−1 obtaining thus the representation in Weyl spinors

• d odd

We can use the Dirac algebra in d− 1 dimensions plus Γd matrix to generate

the Lorentz algebra. Therefore, the minimal representation in odd dimensions

is irreducible.

One can prove that it is always possible to define a matrix (charge conjugation

matrix) satisfying:

CT
± = ±C and ΓTµ = ±C±ΓµC

−1
± (2.15)

Nevertheless, not both signs are possible for all dimensions (for odd dimension only

one of the signs is possible). The charge conjugation matrix allows to define (not in

1Index r cannot mix non trivially under Lorentz transformation unless it lives in the same
representation as α. Otherwise, we would violate the Coleman-Mandula theorem.

2We will consider only one timelike direction.
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all dimensions) a real constraint on spinors: In general we can have Dirac spinors (D)

(without any constraint), Majorana spinors (M), Weyl spinors (W ) (only on even

dimension), Majorana-Weyl spinors (MW ) or Simplectic-Majorana-Weyl spinors 3

(SMW ). All those properties (except the dimensionality of the representation)

depend on the dimension of the spacetime with periodicity d→ d+ 8. The table 2.1

summarizes the different possibilities of spinors. The number in the last column is

the number of real degrees of freedom for the irreducible representation.

In order to have irreducible representations of supersymmetry, the generators Qr

should be spanned in the spinor irreducible representation according to the spacetime

dimension, thus, in four dimensions Qr should be a Majorana spinor (or a complex

Weyl spinor) while in five dimensions Qr is a 4-component Dirac spinor. Note

that N = 1 in five dimensions is equivalent to N = 2 in four dimensions. Due

to the periodicity of the spinor representation there are only 8 different types of

supersymmetric algebras. The reader can find an excellent explanation and a whole

derivation of the algebra structure in reference [1]. We will write the supersymmetric

Table 2.1: Spinors allowed in several dimensions

d spinor allowed real d.o.f.
1 M 1
2 MW 1
3 M 2
4 M 4
5 D 8
6 SMW 8
7 D 16
8 M 16

algebras for the cases concerning us (with vanishing central charges [1]):

3Whenever a consistent Majorana condition λ∗ = C λ is not possible it can be defined a
Symplectic-Majorana condition by doubling the number of degrees of freedom: λ∗i = ΩijC λj with
Ω an antisymmetric matrix satisfying Ω∗Ω = −1 .
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• for d = 4 and N = 2

[Jµν , Qs] = −σµν Qs

{Qr , Q̄s} = 2iδrsσµP
µ

{Qr , Qs} = 0

 (2.16)

• for d = 4 and N = 1

[Jµν , Q] = −σµν Q
{Q , Q̄} = 2iσµP

µ

{Q , Q} = 0

 (2.17)

• d = 5 and N = 1

{Qr , Qs} = −iεrs γMCPM (2.18)

With εij the total antisymmetric tensor, γM = {γµ , iγ5}, C the antisymmetric

charge conjugation matrix and σµ = (1 , ~σ).

Once we have briefly presented the supersymmetric algebra we will deal with the

representations of the supersymmetry.

2.1.2 Supersymmetric theories

In this section we will construct a supersymmetric action for d = 4, N = 1 super-

symmetry and for d = 5, N = 1 supersymmetry. First of all we will ask ourselves

by the field content on each supermultiplet (the irreducible representation of the

superalgebra). We will distinguish massless from massive particles [1, 6] because its

spin structures are very different:

• 4 dimensional N = 1 supermultiplets

– Massless particle states:

For massless particles we must define what is called helicity h = p̂ · ~J

with p̂ the normal 3-momentum vector and ~J the 3-angular momentum.

Each irreducible representation of the homogeneous Lorentz group with

massless particles consists on a single helicity state with eigenvalue λ =
n
2

(for some integer number n). Furthermore, if parity is a conserved
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quantity then for each λ-helicity state, there is a −λ-helicity state because

{P , h} = 0 4. Consider now (2.17) with P µ = E(1, 0, 0, 1)

{Q 1
2
, Q∗1

2
} = 4iE (2.19)

{Q 1
2
, Q 1

2
} = 0 (2.20)

{Q− 1
2
, Q∗− 1

2
} = 0 (2.21)

{Q− 1
2
, Q− 1

2
} = 0 (2.22)

with [J3 , Q± 1
2
] = ∓1

2
Q± 1

2
. This tells us that if we have a state of

maximum helicity λmax then we will have another state of helicity λmax−
1
2
. Of course, we will have helicities ±λmax and ±(λmax − 1

2
) if parity is

conserved. In four dimensions, with N = 1 we have, so, massless on-shell

supermultiplets of the form:

(ψ , φ) for λmax = 1/2 (2.23)

(V µ , ξ) for λmax = 1 (2.24)

Where ψ , ξ are Majorana spinors 5 and V µ , φ are one vector and one

complex scalar, respectively.

– Massive particle states:

For massive particles we can define the spin group (generated by the

three spatial rotations) and now the irreducible representations of the

homogeneous Lorentz group consist on states |j , σ > with j some integer

or half-integer positive number, and σ running with steps of +1 from −j

to j. Since [P , ~J ] = 0, P |j , σ >= η |j , σ > with |η|2 = 1. For any

supermultiplet there is always at least one spin irreducible representation

|j , σ > such that Q± 1
2
|j , σ >= 0 for σ = −j, · · · , j.

4The photon is an example of two helicity states because QED preserves parity. On the other
hand the SM neutrinos have only one helicity because SM do not have parity as a symmetry

5For matter we could use complex Weyl representation but the vector multiplet discribes the
gauge sector which is in the adjoint representation, namely: real representation, and hence we use
Majorana spinors.
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∗ For j = 0 we find a supermultiplet (ψ , φ) where ψ is a complex

Weyl spinor and φ is a complex scalar.

∗ For j = 1/2 we find a vector supermultiplet (Ψ , φ , V µ) where Ψ is

a Dirac fermion, φ is a real scalar and V µ is a (massive) gauge vector.

• 5 dimensional N = 1 supermultiplets

As we saw in the previous section the number of supersymmetric charges in the

irreducible representation of N = 1 in 5 dimensions doubles the corresponding

number of the N = 1 4-dimensional case. So from the 4-d point of view, N = 1

in five dimensions is equivalent to N = 2 in four dimensions. If we proceed

like we did in the case of N = 1 in four dimensions we find, for the massless

case the following on-shell supermultiplets:

(ψ , φi) for matter case (2.25)

(V µ , ξi , Σ , Ω) for the gauge sector (2.26)

where ψ is a Dirac fermion, φi is a doublet under SU(2)R of complex scalars,

V µ is a 4-vector, ξi is an SU(2)R doublet of Symplectic-Majorana spinors 6

and Σ and Ω are real scalars. In the five dimensional multiplet one of the

scalars is the fifth component of the gauge field.

To derive an invariant action we will furnish a representation of the supersymmetry

algebra with the field content above found. Nevertheless, we need auxiliary degrees

of freedom (obviously non physical) if we want the algebra to close. This is because

the supermultiplets do not have the same number of off-shell bosonic and fermionic

degrees of freedom. In other words, we would need the equations of motion.

For the case of N = 1 in four dimensions we have the off-shell supermultiplet

(ψ , φ , F ) (2.27)

With F a complex scalar and we take ψ as a complex Weyl spinor. ψ has dimension

of E
3
2 , φ has dimension of E and F has dimension of E2 7. From (2.17) we see that Q

6See section 3.3.
7Since F is a non propagating degree of freedom the action can not have any derivative of that

field and the simplest way of entering it is quadratically: |F |2.
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has dimension of E
1
2 , therefore, the supersymmetry parameter ε (which is a complex

Weyl spinor valued Grassmann parameter) should have dimension of E−
1
2 . Taking

into account the dimensions of the fields and demanding (2.17) to be satisfied we

find the supersymmetric variations [4]:

δε ψ = i
√

2 σµε̄∂µφ+
√

2 εF

δε φ =
√

2 ε ψ (2.28)

δε F = i
√

2 ε̄σ̄µ∂µψ

with σ̄µ = σ2(σµ)∗σ2. Invariant lagrangians under this transformations are:

L0 = i∂µψ̄σ̄
µψ + φ∗∂2φ+ F ∗F (2.29)

L = L0 +m( AF − 1

2
ψψ + h.c.) (2.30)

For the vector multiplet we find the off-shell supermultiplet is

(ξ , Vµ , D) (2.31)

with D a real auxiliary scalar. If we express ξ in terms of its Weyl components

ξ =

(
λ
λ̄

)

and λ̄ = iσ2λ
∗, the supersymmetric transformations can be written as follows [4]

δε Vµν = iε σ[µ∂ν]λ̄+ iε̄ σ̄[µ∂ν]λ (2.32)

δε λ = σµνεVµν + iεD (2.33)

δε D = ε̄σ̄µ∂µλ− εσµ∂µλ̄ (2.34)

with Vµν = ∂νVν − ∂νVµ and σµν = 1
4
(σµσ̄ν − σν σ̄µ).

A lagrangian invariant under these transformations is:

L = iλσµ∂µλ̄+
1

4
V µνVµν −

1

2
D2 (2.35)
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In four dimensions and N = 1 it is possible to derive systematically the invariant

lagrangian as well as the form of supersymmetry transformations themselves, using

the superfield formalism. For N ≥ 2 and with no central charges, we can use the

R − symmetry of the superalgebra to construct an invariant lagrangian from the

most general invariant one with N = 1. The reader can find exhaustive explanations

in references [4, 1].

Finally, for the case of N = 1 in five dimensions we have the off-shell multiplets [9],

and supersymmetric transformations:

Φ = (φi , ψ , F i)

δξ φ
i = −

√
2εij ξ̄jψ

δξ ψ =
√

2iγM∂Mφ
iεijξj +

√
2F iξi (2.36)

δξ F
i = −

√
2iξ̄γM∂Mψ

for matter multiplet, and

V = (V M , λi , ϕ , Xa)

δξ V
M = iξ̄iγMλi

δξ λ
i = (ΣMNVMN − γMDMϕ)ξi − i(Xaσa)ijξj (2.37)

δξ ϕ = iξ̄iλi

δξ X
a = ξ̄(σa)ijγMDMλ

j − [ϕ , ξ̄(σa)ijλj]

for vector multiplet. Where Xa is a triplet, under SU(2)R, of auxiliary real Lorentz

sacalars, V = gV aT a with T a the generators of the gauge symmetry group and g

the gauge coupling constant, DMf = ∂Mf − i[VM , f ] and ΣMN = 1
4
[γM , γN ]. The

supersymmetric lagrangians are given in the next chapter.

Up to now we have reviewed, from a quite general point of view, the properties of

supersymmetry and the construction of an invariant theory. In the next section we

will briefly present a supersymmetric version of the standard model.
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2.2 Supersymmetric version of the Standard Model

(MSSM)

In the previous chapter we presented some reasons to consider supersymmetry as a

good candidate to be the symmetry of the theory beyond the standard model. Let

us concretize a bit more about what we meant with this. The standard model is a
gauge theory describing electroweak and strong interactions with the local symmetry

group: SU(3)×SU(2)×U(1) and, thus having 12 spin 1 gauge bosons: ga for strong

interactions, W i for weak interactions and Y for the hypercharge [10]. Its spin 1/2

content is 8:

Qi =

(
ui
di

)
= (3, 2, 1/6)

ūi = (3̄, 1,−2/3)

d̄i = (3̄, 1, 1/3) (2.38)

Li =

(
νi
ei

)
= (1, 2,−1/2)

ēi = (1, 1, 1) (2.39)

with i a family index, and its spin 0 content (Higgs particle) is

h =

(
h0

h−

)
= (1, 2,−1/2) (2.40)

the parenthesis gives the representation of (SU(3), SU(2), U(1)) where the corre-

sponding field lies.

In addition to the gauge couplings the standard model has Yukawa couplings between

fermions and the Higgs as well as a potential for Higgs of the form: µ2h†h+λ(h†h)2,

with µ2, λ real parameters. For negative values of µ2 the potential minimizes at

h 6= 0 giving a Vacuum Expectation Value (VEV) to the Higgs breaking, thus,

spontaneously the electroweak symmetry and giving masses to the rest of the parti-

cles including SU(2) × U(1) gauge bosons [11]. The standard model, nevertheless,

8We are considering neither right-handed neutrino multiplets nor neutrino mass Yukawa cou-
plings for they would not affect the conclusions of this work. They could be easily incorporated.
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is an effective theory of a more fundamental one including gravity at higher scales.

The experimental results show the standard model as a good theory at energies

. 100 GeV , so there should be a cutoff of the theory. The problem with the stan-

dard model arises precisely from its renormalization properties. The standard model

is a renormalizable theory which means that all the divergences appearing in per-

turbation theory can be absorbed by the redefinition of the lagrangian parameters

and therefore there is no natural scale that serves as a cutoff of the theory. On the

other hand, the fermion masses are protected by the gauge symmetry to be zero (if

we want left- and right-handed fermions to be differently affected by the symmetry)

but there is no reason to set to zero the scalar masses. And that is the reason

of the quadratic divergences in the correction of µ2 parameter. The regularization

of such divergences depends on the scheme introducing new arbitrary mass scale.

Notice that were the theory not renormalizable we would need a scale under which

the theory is valid and this is a natural cutoff of the theory determining the Fermi

masses of the standard model particles. The problem now is that the masses of the

particles depend on the arbitrary scale introduced by the regularization scheme. In

our search of a more fundamental theory containing the standard model as a low

energy description we can not accept such an arbitrariness. The only known way to

protect scalar masses is supersymmetry. As we have seen before, supersymmetry re-

lates fermions with bosons with the same momentum eigenvalue (in particular: with

the same mass). Therefore, if the fermions are massless due to a gauge symmetry

so will the bosons be. Furthermore, the nonrenormalization theorems assure us the

presence of no quadratic divergences. Let us start, so, with N = 1 supersymmetry

and two Higgs supermultiplets9. The most general superpotential allowed contains

the super-Yukawa terms [1]:

[(DiH
0
1 − UiH−1 )D̄j] , [(EiH

0
1 −NiH

−
1 )Ēj] (2.41)

and

[(DiH
+
2 − UiH0

2 )Ūj] (2.42)

9We must use two Higgs supermultiplets in order to cancel the SU(2)× U(1) anomalies.
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where we have the supermultiplets:

Qi =

(
Ui
Di

)

Li =

(
Ni

Ei

)

H1 =

(
H0

1

H−1

)
and H2 =

(
H+

2

H0
2

)
According to (2.41)-(2.42) a VEV acquired by H0

1 gives masses to down-type quarks

and leptons while a VEV acquired by H0
2 gives masses to up-type quarks. Notice

that two Higgses, therefore, are needed to give masses to all quarks and leptons.

Nevertheless, the superpotential allows terms which violate lepton and baryon num-

ber conservation. In order to avoid this problem one can make use of the so called

R-parity, which is a discrete subgroup of a continuous U(1)R symmetry 10. This

means that the minimal supersymmetric extension of the standard model comes

from N = 2 supersymmetry. The so called Minimal Supersymmetric Standard

Model (MSSM).

We have said nothing about supersymmetry breaking yet and it is obvious from

experimental results that it can not be present at energies of the validity region

of the standard model. One could think that supersymmetry is broken in a way

similar to the breaking of SU(2) × U(1). Nevertheless, there are some rules not

affected by the symmetry breaking (protected by color and electric charge symme-

tries). For instance, the fermions with electric charge −e/3 are: d, s and b, for which:

m2
d +m2

b +m2
s w (5 GeV)2, and if there are no other fermions their supersymmetric

partners should hold a similar relation:
∑

m2 w (5 GeV)2 which is excluded by ex-

perimental data (there is no evidence of scalar matter at energies below 7 GeV). The

breaking of supersymmetry, therefore, must come from higher scales. For instance

it could be performed in extra dimensions (via the VEV acquired by other fields).

For this reason, in the next chapter we will present some breaking mechanisms of

supersymmetry in five dimensions.

10Coming from the SU(2)R symmetry that N = 2 supersymmetry presents.



Chapter 3

Compactification of Extra
Dimensions, Orbifolds and
Supersymmetry Breaking

3.1 Motivation

The motivation for the compactification of the extra dimensions is rather simple: Up

to quite high energies (E ∼ 100 GeV ) we do not detect the presence of more than

four spacetime dimensions in nature. This means that all of the extra dimensions (if

real) must be very small (the smaller distance you want to reach the higher energy

you must spend to). The idea is that the known particles live in our four dimensional

world, while there are very massive particles living in the (4 + d)-dimensional bulk,

and they are so massive that a large amount of energy must be spent in order

to produce them. In addition to this, all the extra dimensions must be space-

like, otherwise we would have closed time-like curves (because extra dimensions are

compactified) and this violates causality [2]. An elegant procedure to “reduce the

size” of the extra dimensions is the compactification [12]. Althogh we have loosely

introduced the notion of compactification as the process of reducing the size of a

space it has a precise meaning in the context of topological spaces. There is a natural

way of compactifying a given (non compact) topological space through the action

of a group. In the following we will briefly describe this method starting by giving

the basic notions on topological spaces and differentiable manifolds.

21
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3.2 Compactification of spaces

Previously, we have given an intuitive notion of compactification as reducing the

size. Nevertheless, this process has a precise definition in the context of topolog-

ical spaces. In the following two sections we will briefly review the basic notions

about topological spaces and differentiable manifolds. The interested reader can

find excellent introductory courses on these topics in Ref. [13, 14, 15].

3.2.1 Topological spaces

The notion of topology on a general space is a generalization of the natural notion of

closeness between points in Rn, derived from the Euclidean metric, where a neighbor-

hood of a given point x0 is defined as the open ballBε(x0) = {x ∈ Rn| |x− x0| < ε, ε > 0}.
For a general set X we define a topology, denoted by T (X), as a collection of subsets

of X verifying the following properties

1. X ∈ T (X).

2. ∅ ∈ T (X) where ∅ denotes the empty set.

3. If {U1, · · · , Uk} is a (finite) collection of elements from T (X) then

U1 ∩ · · · ∩ Uk ∈ T (X).

4. If {Uα} is a collection, with an arbitrary number (perhaps infinite), of elements

from T (X) therefore ∪α Uα ∈ T (X).

Thus the open sets of X are the elements of T (X) while the closed sets are those

whose complementary belongs to T (X). Notice that according to that definition

the whole set as well as the empty set are both open and closed at the same time. A

set (or space) X with a defined topology is called a topological set (or space). One

can define, as a generalization of the corresponding Euclidean notion, the closure of

a set as: if A ⊂ X is a subset of a topological space then the closure of A, denoted

by Ā, is the set of points x ∈ X such that for any open set U 3 x, U ∩A 6= ∅. Then

an alternative definition of a closed set is that any set A is closed if, and only if,

A = Ā.
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It is clear that given a set one can provide many different topologies for it, for

instance, the most naive topology of a given set X is T (X) = {X, ∅} from where

the only open sets are the whole space X and the empty set. At the other extreme,

the finest topology that can be given to X is T (X) = P(X), the set of all possible

partitions (subsets) of X, where every element of X is an open set. As these extreme

cases illustrate, the notion of open set can be totally different from the intuitive open

balls in Rn.

Induced topology

Suppose we have provided the set X with a topology T (X). A subset Y ⊂ X

inherits a topology from X in the following way: V ⊂ Y belongs to T (Y ) if, and

only if, there is U ∈ T (X) such that U ∩ Y = V . It is easy to check that this

definition is indeed a topology but the open sets of Y may not be open sets in X.

For instance, consider in R, with the usual Euclidean topology, the closed unity

interval Y = [0, 1]. Then the open sets of Y are of the from
(ε, δ) 0 ≤ ε, δ ≤ 1
[0, δ) 0 < δ ≤ 1
(ε, 1] 0 ≤ ε < 1

where the last two class of sets are not open in R.

Continuous functions

Let X and Y be two topological spaces and f : X → Y an application between

them. We say that f is a continuous function if f−1(V ) ∈ T (X), ∀V ∈ T (Y ), that

is, the set of points in X whose mapping by f is a given (arbitrary) open set in

Y , form an open set in X. The induced topology defined above makes the natural

inclusion i : Y ↪→ X to be continuous. Nevertheless, the image by a continuous

function of an open set is not necessarily an open set. As an example, consider

the function f : R → R given by f(x) = x2. The image of the open interval

(−1, 1) is [0, 1) which is not open although the function is perfectly continuous.

This is true, however, for any homeomorphism. A function h : X → Y is called

a homeomorphism if it is continuous, 1 to 1 and exhaustive and if, in addition,
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h−1 : Y → X is as well continuous. Notice that in this case the spaces X and Y are

topologically equivalent, since to any open set V ∈ T (Y ) we can assign a unique

open set h−1(V ) ∈ T (X) and vice versa.

Derived topologies

1. The product topology.

Let X and Y be two topological spaces. The topology of their cartesian

product, X × Y , is defined as follows: U ⊂ X × Y , i.e. U = UX × UY , is

an open set if, and only if, the canonical projections ΠX(U) = UX ⊂ X and

ΠY (U) = UY ⊂ Y are open sets in X and Y , respectively. Again this topology

makes the canonical projections to be continuous functions.

2. The quotient topology.

Let X be a topological space and Y ⊂ X. We can define the quotient space

X/Y by the set of equivalence classes defined by the equivalence relation:

x, x′ ∈ X are equivalent if, and only if, x ∈ Y and x′ ∈ Y . The topology on

the quotient space is then defined through the quotient projection

P : X → X/Y
x 7→ [x]

as: U ⊂ X/Y is open if, and only if, there is Ũ ∈ T (X) such that P (Ũ) = U .

As the cases above, with this topology the quotient projection is a continuous
map.

Topological properties of spaces

1. Separability (Hausdorff spaces).

A topological space X is said to be Hausdorff (or separable) if for any pair of

points x, x′ ∈ X there are open sets Ux 3 x, Ux′ 3 x′ such that Ux ∩ Ux′ =

∅. The Hausdroff spaces have topological properties which are close to the

intuitive notion of Euclidean topology in Rn: if X is a Hausdorff space, any

single point x ∈ X is a closed set, if {x1, · · · , xk} ⊂ X is a finite subset then
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each point xi is an isolated point from the rest, as a consequence of this we

have that if A ⊂ X then x ∈ Ā if, and only if, any open set U 3 x contains

an infinite number of points of A.

2. Connectedness.

X is connected if only X itself and ∅ are subsets being open and closed at

the same time. An equivalent definition is: X is connected if it can not be

expressed as the disjoint union of open sets.

3. Arc connectedness.

A topological space, X, is arc connected if for any pair of points x, x′ ∈ X

there is a continuous function c : [0, 1] ⊂ R → X where the closed interval

has the topology induced by R, such that c(0) = x and c(1) = x′. It turns out

that any arc connected space is connected but the reciprocal is not necessarily

true.

4. Compactness.

LetX be a topological space and {Ui}i∈I , where I is a set of indices, a collection

of open sets of X such that ∪i∈I Ui = X. We then say that {Ui}i∈I is an open

covering of X. Let now I ′ ⊂ I, if ∪j∈I′ Uj = X we say that {Uj}j∈I′ is a

subcovering of X.

A topological space X is said to be compact if for any open covering {Ui}i∈I
there is a finite subcovering, that is, if from the set {Ui}i∈I we can take a

finite number, say {U1, · · · , Uk} such that U1 ∪ · · · ∪ Uk = X. For instance

consider the set (0, 1] ∈ R, with the induced topology. An open covering can

be
{(

1
n
, 1
]}

n>0
. Non the less, by taking an arbitrary but finite number out

of the covering, say {Un1 , · · · , Unk} we cover the set (1/nmax, 1] with nmax =

max {n1, · · · , nk}. Thus (0, 1] is not a compact space. In fact, it can be shown

that a subset of Rn (with the usual topology) is compact (according to the

previous definition) if, and only if, it is closed and bounded.

All these properties are preserved by homeomorphisms, that is, if X, Y are two

equivalent topological spaces (i.e. related by a homeomorphism) then X verifies
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some of the above properties if, and only if, Y verifies it/them as well. Moreover, the

image by a continuous function of a connected (arc connected) and/or compact space

is as well connected (arc connected) and/or compact. The separability, however,

is not preserved by continuous functions, in general. Finally, if X and Y are two

topological spaces then X×Y is Hausdorff and/or connected (arc connected) and/or

compact if, and only if, each space holds the same(s) property(ies).

Once the notion of continuity is properly defined on a general space, one can add a

richer structure by requiring smoothness, that is: differentiability, which generalizes

the regular surfaces in R3. These are the so called differentiable manifolds, which

we immediately define. In what follows we will think of Rn as a topological space

provided with the usual Euclidean topology and any subset of Rn will have the

induced topology.

3.2.2 Differentiable manifolds

An intuitive definition of a manifold is a space which locally looks like Rn, although

its global structure can be very different. The sphere in R3, S2, is an example. An

open neighborhood of a given point p ∈ S2 is an open sheet containing that point,

which is homeomorphic to an open ball in R2. However the whole sphere is very

different from R2, actually S2 is a compact space (since it is a closed and bounded

subset of R3) while R2 is not. In fact any regular surface in R3 is an example of a

differentiable manifold since by definition a surface is regular if one can locally and

univocally parameterize it with an open set of R2. A precise definition of a general

manifold is given now:

A differentiable manifold of dimension n consists of:

1. A topological space, M 1.

2. An atlas of M , which is a collection of pairs {(Ui, φi)}i∈I , where {Ui}i∈I is

an open covering of M and φi : Vi ⊂ Rn → Ui ⊂ M is a homeomorphism

between Ui and an open set, Vi, in Rn, such that whenever Ui ∩ Uj 6= ∅ the

1Strictly speaking one should require certain restrictions on the topology of M since we finally
want it to locally look like an open set of Rn
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homeomorphism

φ−1
j ◦ φi : φ−1

i (Ui ∩ Uj) ⊂ Rn → φ−1
j (Ui ∩ Uj) ⊂ Rn ,

is a differentiable function. Each pair (Ui, φi) is called a local chart.

3. An equivalence relation between atlas given by: If {(Ui, φi)}i∈I and {(Vα, ψα)}α∈A
are two atlas ofM we say that they are equivalent if, and only if, {(Ui, Vα, φi, ψα)}i∈I

α∈A

is again an atlas of M . That is the union of the atlas is an atlas.

Notice that the only non trivial requirement in (3) is that whenever Ui∩ Vα 6= ∅ the

homeomorphisms

φ−1
i ◦ ψα : ψ−1

α (Ui ∩ Vα) ⊂ Rn → φ−1
i (Ui ∩ Vα) ⊂ Rn ,

ψ−1
α ◦ φi : φ−1

i (Ui ∩ Vα) ⊂ Rn → ψ−1
α (Ui ∩ Vα) ⊂ Rn ,

are differentiable functions. The rest of requirements for {(Ui, Vα, φi, ψα)}i∈I
α∈A

to be

an atlas are immediately satisfied since each collection is already an atlas.

A differentiable manifold is then a space that locally can be univocally parameterized

by n real coordinates such that this parameterization changes smoothly over the

whole space. For this reason the open set in a local chart is often referred to

as a coordinate neighborhood. In addition, such a neighborhood is topologically

equivalent to Rn. Examples of manifolds are: Rn itself, any smooth surface in R3

like the sphere and the torus.

A very important structure associated to any differentiable manifold is the tangent

bundle, which loosely speaking is the space obtained from the manifold itself by

attaching to each point p ∈M the set of all tangent vectors to the manifold at that

point. For a regular surface S ⊂ R3 it is clear what is the tangent space at each

point p ∈ S, denoted by TpS: it is the set of all vectors in R3 with origin at p and

which are tangent to the surface. The tangent bundle of S, denoted by TS, is then

the set of pairs

TS = ∪p∈S
V ∈TpS

(p, V ) .



28 Compactification of Extra Dimensions, Orbifolds and Supersymmetry Breaking

For a general manifold, however, we could have no ambient space to which refer a

tangent vector. Instead we give a formal definition of tangent vector which depends

on the manifold structure only. First of all we have to specify the notion of differ-

entiable functions defined on the manifold: let M be a differentiable manifold with
an atlas

{Uα, φα : Vα ⊂ Rn → Uα}α∈A ,

and f : M → R be a continuous function. Then f is said to be differentiable if

f ◦ φ−1
α : Vα ⊂ Rn → R is differentiable for any local chart. We denote D(M,R) the

set of real valued differentiable functions defined onM . Let now c : (−ε, ε) ⊂ R→M

a (differentiable) curve in M such that c(0) = p ∈ Uα ⊂M and ε > 0 is small enough

so that c(−ε, ε) ⊂ Uα. We say that c is differentiable if φα ◦ c : (−ε, ε)→ Vα ⊂ Rn is

a differentiable curve. A vector tangent to M at p, Vp, is then defined as an operator

acting on any differentiable function f ∈ D(M,R) such that Vp[f ] = d
dt
f(c(t))t=0.

Let (x1, · · · , xn) ∈ Vα ⊂ Rn be local coordinates of the coordinate neighborhood

Uα ⊂M and (c1(t), · · · , cn(t)) the local expression of c in this system of coordinates

with vk ≡
(

d
dt
ck(t)

)
t=0

. Then, by the chain rule we have

Vp[f ] =
∑
k

vk
∂

∂xk
fp .

Since this is for any differentiable function f we can identify the vector with the

differential operator

Vp ≡
∑
k

vk
(

∂

∂xk

)
p

,

where the subscript indicates the point where the partial derivative is evaluated.

This is a linear operator verifying the Leibniz rule, i.e. Vp[fg] = f Vp[g] + g Vp[f ]. In

addition, for any v = (v1, · · · , vn) ∈ Rn the differentiable curve (v1t, · · · , vnt) has v

as tangent vector. Moreover, for any pair of vectors u, v ∈ Rn and for any pair of

real numbers λ, µ ∈ R the differentiable curve (λu+ µv) t has λu + µv as tangent

vector. Thus the set of tangent vectors to M at p, TpM , has structure of vector

space and it is isomorphic to Rn. The isomorphism is explicitly given by
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Rn −→ TpM(
0, · · · ,

i

1, · · · 0
)

7→
(
∂
∂xi

)
p

Since the coordinates (x1, · · · , xn) are globally defined on the coordinate neighbor-

hood Uα, the partial derivatives ∂/∂xk form a basis globally defined on the whole

tangent space to Uα, TUα.

Suppose that Uα ∩ Uβ = W 6= ∅ with xkα and xkβ being the corresponding local

coordinates, i.e., related by the diffeomorphism xkβ =
(
φ−1
β ◦ φα

)k
(xα). Then if V is

a tangent vector to M at p ∈ W , its expressions in the above local coordinate basis,

V =
∑
k

vkα

(
∂

∂xkα

)
p

=
∑
l

vlβ

(
∂

∂xlβ

)
p

, (3.1)

are related via the Jacobian of the above diffeomorphism as

vkβ =
∑
l

∂

∂xla

(
φ−1
β ◦ φα

)k
vlα .

This shows that the tangent bundle itself has structure of differentiable manifold

with local charts

φ̃α : Vα × Rn −→ TUα ∼= Uα × Rn

(x, v) 7→
(
φα(x),

∑
k v

k
(

∂
∂xk

)
φα(x)

)
However, the global structure of the tangent bundle TM may not be the direct

product M × Rn. This is due to the fact that, unlike the case of Rn, in a general

manifold one has no naturally defined global basis for the tangent vectors. Thus

the components of a vector determine it univocally on a local chart but one has to

specify the change of coordinates with the neighboring charts in order to consistently

describe the vector.

Finally, a vector field, is a map that to each point in M (or in an open subset of M)

assigns a unique tangent vector. A vector field is said to be differentiable if its local

expression in any local chart is a differentiable Rn vector field.
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Once we have a notion of what is a manifold we will describe the process of com-

pactification a given non compact manifold through the action of a group starting

by the definition of the action of a group on a manifold.

3.2.3 Compactification by the action of a group

Let M be a manifold and G a group acting on M in the sense that there is a

differentiable map

Γ: M ×G → M
(p, g) 7→ Γg(p) ∈M

verifying

1. Γe = Id where e ∈ G is the identity element in G and Id is the identity map

in M .

2. ∀g, g′ ∈ G, Γg ◦ Γg′ = Γgg′ .

Thus it makes sense if we simply write Γg(p) = g p.

We will further assume that the action of G on M is properly discontinuous, namely:

∀p ∈M there is an open neighborhood U of p such that g(U)∩U 6= ∅ if, and only if,

g = e, which is to say that the set of points in M which are connected to each other

by a group transformation, known as an orbit of G, is a discrete set in the topology

of M . Notice that the properly discontinuous action implies that any element of G

(except the identity) leaves no invariant point on M , i.e. ∀g 6= e, g p 6= p, ∀p ∈ M .

It is then said that G acts freely on M .

The compactification of M follows from the identification of all the points in an

orbit, that is: p, q ∈ M are identified if, and only if, p = g q for some g ∈ G. The

compactified space is, thus, the set of orbits in M , that is M/G. Recall that M

induces a topology on M/G such that the canonical projection

Π: M → M/G
p 7→ [p]
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is a continuous function. A sufficient condition for M/G to be a compact space is

that there is a compact set C ∈M , such that ∪g∈G g(C) = M . Hence M/G = Π(C)

being the image of a compact space by a continuous function is compact itself.

Furthermore, It can be shown that M/G naturally inherits a structure of differen-

tiable manifold from M such that the above projection is a differentiable function

(more precisely it is a local diffeomorphism, i.e. a smooth 1 to 1 function with

locally smooth inverse [13]). Let us give some examples of what we have stated:

1. The circle S1

Consider in R the action of the group of translations by a multiple of the unity,

that is

gn : R → R
x 7→ x+ n

with n ∈ Z, hence G ∼= Z. The action is, in addition, properly discontinuous.

To see this notice that ∀x ∈ R the open interval Ix = {y ∈ R| |y − x| < 1/2}
verifies gn (Ix) ∩ Ix = ∅, ∀n 6= 0 since

|y + n− x| ≥ | |n| − |y − x| | > |n| − 1/2 > 1/2 , n 6= 0 .

In this case the compact set C can be taken as C = {x ∈ R| |x| ≤ 1/2}, thus

R/Z ∼= S1 is a compact differentiable manifold.

2. The n dimensional torus ×nS1

The case above can be directly generalized to higher dimensions as the action

of ⊕nZ over Rn.

3. A less trivial example: The Klein Bottle

Consider the group, sayGK , of homeomorphisms on R2 generated by τ1 (x, y) =

(x+ 1, y) and τ2 (x, y) = (−x, y + 1), that is: the set of all possible composi-

tions of these elements and their inverses. This group is nor abelian neither

freely generated since τ1τ2τ1 = τ2. However, this identity allows us to express

any element of GK as (τ2)k2 (τ1)k1 with k1, k2 ∈ Z, although this correspon-

dence is not a group homomorphism.
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Consider now the open set

U(a,b) =
{

(x, y) ∈ R2
∣∣ ‖(x− a, y − b)‖ < 1/2

}
,

since (τ2)k2 (τ1)k1 (x, y) =
(
(−1)k2(x+ k1), y + k2

)
we thus have a properly dis-

continuous action. Moreover, C = {(x, y) ∈ R2| ||(x, y)|| ≤ 1/2} is a compact

subset of R2 which covers R2 under the action of GK , therefore R2/GK is a

compact and differentiable manifold (In fact it is homeomorphic to the Klein

Bottle).

The last example serves as an illustration of the compactification procedure, non

the less it is not suitable for a field theory to be defined on it since the Klein

Bottle is a non orientable space and hence non integrable. In the context of a

(special) relativistic (quantum) field theory, which will be defined onM4×Rk,M4

being the 4D Minkowski space, the compactification will concern only the k extra

dimensions. Thus the SO(1, 3 + k) space symmetry group will be spontaneously

broken to SO(1, 3)× SO(k).

It is clear that at the level of a (quantum) field theory we must demand certain

restrictions on the fields to be well defined on the compactification manifold. This

can be done in two different ways:

• The usual compactification (à la Kaluza).

Here we restrict the fields to be invariant under the group action, namely: If

f is a field defined on the manifold M and g : M → M is an element of the

considered group, we require f ◦ g = f . Thus f will be naturally defined on

M/G as f̃([p]) ≡ f(p). Applied to M4 × R → M4 × S1 compactification,

we have that any 5D, ψ(x, y) field has the symmetry ψ(x, y) = ψ(x, y + 2πR)

with R the circle radius. Thus they may be written as a Fourier expansion,

ψ(x, y) =
∑

k ψn(x)ei2kπR.

• A non trivial compactification.

Suppose the action for the field theory is

S =

∫
M

L(f) . (3.2)



3.2 Compactification of spaces 33

In this case we do not restrict the fields themselves but we require them to

transform as a symmetry of (3.2) under the group action. That is, f ◦ g = tg f

where t is some homomorphism of G acting on the space of the fields and

leaving the action of the theory invariant. Over M/G thus we would have a

multivalued field, this problem can be formally avoided by thinking of f as

defining a non trivial fiber bundle on M/G. This kind of compactification was

introduced by Joel Scherk and John Schwarz [16] in 1979 as a mechanism to

break supersymmetry spontaneously by generating masses to some (but not

all) of the fields of the supergravity multiplet. We will describe this symmetry

breaking mechanism at the end of this chapter.

3.2.4 Orbifolds

In the process of compactification we start with a smooth manifold to end up with

another smooth space. Non the less, if the compactified theory has to reproduce

the known low energy physics it has to describe 4D chiral fermions, however, if the

compactification is taken to be ”smooth”, like the cases above, that is not possible.

To illustrate this consider the previous 5D compactification. As it was pointed out

in the previous chapter, the irreducible minimal representation of the Dirac algebra

consists on 4 components Dirac spinors

Ψ =

(
ψ1

ψ̄2

)
, (3.3)

thus, after the compactification (take it trivial, for simplicity) we are left with a

tower of Dirac spinors Ψn, hence no chiral states are present. But with a non

smooth compactification we can be left with a theory describing chiral fermions,

as we will show in a moment. Before that, let us define what is a non smooth

compactification.

Now M will denote a connected (possibly compact) and differentiable manifold while

G will be a group acting non freely on M , leaving invariant a discrete set of points,

say D ⊂ M . Moreover we will assume the action of G on M\D (M minus the set

D) to be properly discontinuous. First notice that this action is itself well defined

since if there were p ∈M \D and g ∈ G such that g p ∈ D, then by definition there
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would be g′ ∈ G, with g′ 6= e, such that g′g p = g p and hence g−1g′g p = p, which is

a contradiction with the fact that p /∈ D since g−1g′g 6= e. By the same argument

G (D) ⊂ D.

Furthermore M \D is open in M and thus it is a differentiable manifold, therefore

by the properly discontinuous action of G, M̃ ≡ (M \D) /G is again a differentiable

manifold. In this way we can see the space M/G as the disjoint union M̃ ∪D̃, where

D̃ ≡ D/G and clearly belongs to the closure of M̃ . Thus the latter discrete set can

be thought of as a set of singular points attached to a smooth space. Nevertheless

this does not necessarily imply that the space M/G is singular itself in the sense

that it has points where the differentiable structure breaks down, as the next two

examples illustrate.

1. M = {z ∈ C| |z| = 1} ∼= S1 and G = {Id, C} ∼= Z2 with Id(z) = z and C(z) =

z∗, ∀z ∈M . Clearly, G has {−1, 1} as invariant points and its action on S1 \
{−1, 1} is properly discontinuous. Actually (S1 \ {−1, 1}) /G ∼= (−1, 1) ⊂
R2, hence S1/G ∼= [−1, 1]. However, an open set in [−1, 1] containing the

point {1} (alternatively {−1}) is of the form (ε, 1] (alternatively [−1, ε)) with

|ε| < 1 which is not homeomorphic to any open interval in R. Thus the

differentiable structure is broken at the fixed points.

2. M = C and G the cyclic group generated by ei2π 1
n n ≥ 2, i.e. G ∼= Zn. The

only invariant point in C under G is the origin and one can easily check that

the action of G on M \ {0} is properly discontinuous. Finally, it turns out

that C/G is the upper half of a cone with deficit angle 2π/n. In contrast to

the previous example the cone admits a global differentiable structure since it

is globally homeomorphic to R2.

At the level of field theories, we demand the fields to transform under the action of

the orbifolding group as a symmetry of the corresponding action. More concretely,

f ◦ g = Tg f , (3.4)

with T some homomorphic image of G in the group of symmetry transformations. If

g0 is the generator of the orbifolding group verifying gn0 = e, therefore τn ≡ T ng0
= 1.
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An interesting consequence gives rise when we consider the action on a fixed point,

say g p0 = p0. In this case f(g p0) = f(p0) = Tgf(p0), thus we have a constrain

on the fields at the fixed points. The operator Tg is called the parity operator.

Applied to M4 × S1/Z2 orbifold and considering 5D Dirac spinors Ψ, we can take

T ≡ γ5, thus on the fixed points we have the constrain Ψ = γ5Ψ, i.e. a well defined

chirality. In what follows we will review the process of supersymmetry breaking by

the Scherk-Schwarz compactification in orbifolds. For simplicity we shall restrict to

a five dimensional case.

3.2.5 Scherk-Schwarz compactification in orbifolds

Our starting point was a smooth manifold M modulated by a discrete group G ,

acting freely on the former (with operators τ and represented in the field space

by operators T ), defining, thus, a compact smooth manifold C = M/G . Now we

introduce a second identification by another discrete group H acting non freely on

C (with operators ζ and represented in the field space with operators Z) defining an

orbifold C/H. We can think of ζh and τg as functions acting on the covering space

M , in this way we are taking G and H as subgroups of a larger discrete group J
acting on M . In general, g · h 6= h · g which means that J 6= G × H (it is not the

direct product). As before, if we want our theory to be defined in the orbifold C/H
the operators R acting on field space and furnishing a representation of J must

leave the action invariant. There are, nevertheless, constraints on the operators T

and Z as we can see by analyzing the simple case of S1/Z2 ≡ [0, πR]:

The freely acting group Z is the translation τ(y) = y + 2πR while the orbifolding

group Z2 is the reflection with respect to the origin ζ(y) = −y . It is easy to see

that ζ · τ · ζ = τ−1 (the group J is the semi direct product between Z and Z2) or

equivalently τ · ζ · τ = ζ and analogous constraints must satisfy the operators T and

Z :

Z · T · Z = T−1 ⇐⇒ T · Z · T = Z (3.5)

and

Z2 = 1 (3.6)
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Equality (3.6) implies that Z is diagonalizable with eigenvalues ±1 . Since T and

Z are global symmetries of the theory we can write

T = ei
~β~λ (3.7)

With λi hermitian and traceless matrices. With this, the constraints (3.5) translates

into:

{~β~λ, Z} = 0 (3.8)

In the special case when [T, Z] = 0 the condition (3.5) reads T 2 = 1 . The operator

T is called the twisting operator while Z is called the parity operator.

3.3 Supersymmetry breaking by Orbifolding

We will analyze the different supersymmetry breaking mechanisms due to the exis-

tence of extra dimensions. In order to simplify the analysis we will consider the case

of a five-dimensional N = 1 supersymmetric theory compactified in M4 × S1/Z2 .

Basically, we will follow the formalism used in [9]

We start with 5-d spacetime with metric ηMN = diag (+1,−1,−1,−1,−1), M = µ, 5

and Dirac matrices γM =
(
γµ, γ 5̇

)
2 with

γµ =

(
0 σµ

σ̄µ 0

)
, γ 5̇ =

(
−i 0

0 i

)
(3.9)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ) . The off-shell vector multiplet consists on

(
AM ,Σ, λ

i, ~X
)a

(3.10)

Where AM is a five dimensional vector, Σ is a real scalar, ~X = (X1, X2, X3) is a

real auxiliary field transforming as a vector in the adjoint representation of SU(2)R

and λi are Symplectic-Majorana spinors transforming as a doublet under SU(2)R .

2The dot is used to distinguish it from the usual γ5 =
(

1 0
0 −1

)
.
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In addition, all the fields carry an index a living in the adjoint representation of a

gauge symmetry group. Symplectic-Majorana spinors3 are defined

λi =

(
λiL

εijλ̄jL

)
, λ̄jL ≡ −iσ2

(
λjL
)∗

(3.11)

where λL are Weyl spinors and εij is the total antisymmetric 2-tensor with the con-

vention ε12 = +1

As we have seen in the previous chapter, the off-shell matter multiplet (hypermul-

tiplet) consists on (
Ai, ψ, F i

)
(3.12)

Where Ai are two complex scalars transforming as a doublet under SU(2)R , ψ is a

Dirac fermion and F i are two auxiliary complex scalars transforming as a doublet

under SU(2)R. The supersymmetric transformations in the vector multiplet are

given by (2.37):

δξA
M = iξ̄iγ

Mλi

δξΣ = iξ̄iλ
i

δξλ
i =

(
γMNFMN − γMDMΣ

)
ξi − i( ~X · ~σ)ijξj

δξX
a = ξ̄i(σ

a)ijγMDMλ
j − i

[
Σ, ξ̄i(σ

a)ijλj
]

(3.13)

where all fields are Lie algebra valued, namely:

V = gVaT a (3.14)

with T a generators of the gauge symmetry group and g the gauge coupling. While

the supersymmetric transformations in the matter multiplet are given by (2.36):

δξA
i = −

√
2εij ξ̄jψ

δξψ = i
√

2γMDMA
iεijξj +

√
2F iξi

δξF
i = −i

√
2ξ̄iγ

MDMψ (3.15)

3In five dimensions there are no dynamical Majorana spinors because the kinetic term ψ̄γM∂Mψ
is a total derivative.
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Both, supersymmetry parameters and supersymmetry generators are Symplectic-

Majorana spinors. This supersymmetry structure is valid in flat 5-d spacetime as well

as toroidal 5-d spacetime (M4 × S1) . In the case of orbifolds,M4×S1/Z2, there are

four dimensional branes at the fixed points (y = 0, y = πR) where supersymmetry

is reduced from N = 2 to N = 1 as we will show bellow. As discussed above, due

to the orbifold group a parity assignment arises on the fields:

φ(x,−y) = Zφφ(x, y) (3.16)

where Zφ = ±1 are the intrinsic parities. Obviously, parities must be assigned such

that they leave the bulk lagrangian invariant. Fields with negative parity must

vanish at fixed points but have non vanishing derivatives ∂5φ which can couple

with fields living in the boundaries, while fields with positive parity are not forced

to vanish at the boundaries. We will separately consider the cases of matter and

vector multiplets.

3.3.1 Vector multiplet

We will consider here the vector multiplet (3.10) and orbifold conditions that do

not break the gauge structure. The parity assignments are chosen to be those in

table 3.1, where we have also included the parities of the supersymmetric parameters.

Table 3.1: Parities of the vector multiplet

Z = +1 Z = −1

AM Aµ A5

Σ Σ

λi λ1
L λ2

L

Xa X3 X1,2

ξi ξ1L ξ2L

Notice that Σ is odd and so it does not couple to the wall, while D5Σ = ∂5Σ is then

even and gauge-covariant on the wall.
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From table 3.1 we can see that ξ1
L is the parameter of the N = 1 supersymmetry

on the wall. The supersymmetric transformations (3.13) reduce on the walls to the

following transformations generated by ξ1
L on the even-parity states:

δξA
µ = iξ1†

L σ̄
µλ1

L − iλ
1†
L σ̄

µξ1
L

δξλ
1
L = γµνFµνξ

1
L − i(X3 − ∂5Σ)ξ1

L

δξX
3 = ξ1†

L σ̄
µDµλ

1
L − iξ

1†
L D5λ̄

2
L + h.c.

δξ∂5Σ = −iξ1†
L D5λ̄

2
L + h.c. (3.17)

From the last two equations in (3.17) we have:

δξ(X
3 − ∂5Σ) = ξ1†

L σ̄
µDµλ

1
L (3.18)

which shows that the N = 1 vector multiplet on the brane in the Wess-Zumino (WZ)

gauge is given by (Aµ, λ1
L, D) where the auxiliary D-field is D = X3 − ∂5Σ [17, 18].

In this way the five dimensional action can be written as

S =

∫
d5x

{
L5 +

∑
i

δ(y − yi)L4i

}
(3.19)

where yi = 0, πR in the present case. The bulk Lagrangian should be the standard

one for a five dimensional super-Yang-Mills theory

L5 = tr

[
−1

2
F 2
MN + (DMΣ)2 + λ̄iγMDMλ+ ~X2 − λ̄[Σ, λ]

]
(3.20)

with tr tAtB = δAB/2. The boundary Lagrangian should have the standard form cor-

responding to a four-dimensional chiral multiplet localized on the brane, (φ, ψL, F )

and coupled to the gauge N = 1 multiplet (Aµ, λ1
L, X

3 − ∂5Σ). The chiral multi-

plet is supposed to transform under the irreducible representation R of the gauge

group and we will call tAR the generators of the gauge group in the corresponding

representation. The brane Lagrangian is then written as

L4 = tr
[
|Dµφ|2 + ψ̄Liσ̄

µDµψL + |F |2
]

− ig
√

2(λ1A
L φ†tARψL + ψ̄Lt

A
Rφλ̄

1
L) + g φ†tARφ(XA

3 − ∂5ΣA) (3.21)
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The Lagrangian involving the auxiliary field XA
3 and the scalar field φ is

∫
d5x

{
1

2
(XA

3 )2 + g δ(y)φ†tARφ(XA
3 − ∂5ΣA)

}
(3.22)

Integrating out the auxiliary fields XA
3 yields the boundary Lagrangian

−g φ†tARφ∂5ΣA − 1

2
g2(φ†tAφ)2δ(0) (3.23)

As we can see the formalism provides singular terms δ(0) on the boundary which

arise naturally from integration of auxiliary fields. These singular terms are required

by supersymmetry and they are necessary for cancellation of divergences in the

supersymmetric limit. These terms can be formally understood as

δ(0) =
1

πR

∞∑
n=−∞

1 (3.24)

Using Eqs. (3.20) and (3.21) we can write the five dimensional Lagrangian for

the ΣA fields as

L5 = −1

2
(∂5ΣA)2 − δ(y)g φ†tARφ∂5ΣA − 1

2
g2
(
φ†tARφ

)2
δ2(y)

= −1

2

[
∂5ΣA + δ(y)gφ†tARφ

]2
(3.25)

We can see that the Lagrangian (3.25) is a perfect square and the corresponding

potential has a minimum at

ΣA = −1

2
gε(y)φ†tARφ (3.26)

where ε(y) is the sign function. We can see that if φ acquires a VEV, also ΣA

acquires one breaking the gauge group. The function ΣA(y) is an odd function and

has jumps at the orbifold fixed points. This behaviour is typical of odd functions in

orbifold backgrounds [19, 20, 21, 22].
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3.3.2 Matter multiplet

Hypermultiplets on the walls can be treated in the same way as we have just done

with vector multiplets. A hypermultiplet is defined by (Ai, ψ, F i), where F i is a

doublet of complex auxiliary fields. A consistent set of assignments which yields

N = 1 supersymmetry on the wall is

Table 3.2: Parities of the hypermultiplet

Z = +1 Z = −1

Ai A1 A2

ψ ψL ψR

F i F 1 F 2

ξi ξ1L ξ2L

Similarly to the vector multiplet case, supersymmetry on the wall is generated

by ξ1
L and it acts on even-parity states as

δξA
1 =

√
2ξ1
LψL

δξψL = i
√

2σµ∂µA
1ξ1∗
L −

√
2∂5A

2ξ1
L +
√

2F 1ξ1
L

δξF
1 = i

√
2ξ1†
L σ̄

µ∂µψL +
√

2ξ1†
L ∂5ψR

δξ∂5A
2 =

√
2ξ1†
L ∂5ψR (3.27)

Putting together the last two equations of (3.27) leads to

δξ(F
1 − ∂5A

2) = i
√

2ξ1†
L σ̄

µ∂µψL (3.28)

which shows that A = (A1, ψL, F
1−∂5A

2) transforms as an off-shell chiral multiplet

on the boundary. Notice that, as it happened with the case of the vector multiplet,

the auxiliary field of a chiral N = 1 multiplet on the brane does contain the ∂5 of

an odd field.
We can now write the coupling of the bulk hypermultiplet to chiral superfields

Φ0 = (φ0, ψ0, F0) localized on the brane through a superpotential W that depends
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on φ0 and the boundary value of the scalar field A1,

W = W (Φ0,A) (3.29)

The five dimensional action can then be written as in Eq. (3.19) with a bulk La-

grangian

L5 = |∂MAi|2 + iψ̄γM∂Mψ + |F i|2 (3.30)

and a brane Lagrangian

L4 = (F 1 − ∂5A
2)
dW

dA1
+ h.c. (3.31)

Integrating out the auxiliary field F 1 yields

F̄ 1 = −δ(y)
dW

dA1
(3.32)

and replacing it into the Lagrangian (3.30) and (3.31) gives an action

S =

∫
d5x

{
|∂MAi|2 + iψ̄γM∂Mψ

− δ(y)

[(
∂5A

2 dW

dA1
+ h.c.

)
+ δ(y)

∣∣∣∣dWdA1

∣∣∣∣2
]}

(3.33)

where we again find a singular coupling δ(0) as required by supersymmetry. Col-

lecting in (3.33) the terms where A2 appears we get a potential

V =

∣∣∣∣∂5A
2 + δ(y)

dW

dA1

∣∣∣∣2 (3.34)

that is a perfect square and is then minimized for

A2 = −1

2
ε(y)

dW

dA1
(3.35)

Then if supersymmetry is spontaneously broken in the brane, i. e. if〈
dW

dA1

〉
6= 0
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then A2 acquires a VEV. This behaviour is reminiscent of a similar one in the

Horava-Witten theory [23, 24, 25] in the presence of a gaugino condensation.

3.4 Supersymmetry breaking by Scherk-Schwarz

compactification

One could think of breaking supersymmetry by a ”super Higgs” effect via some

Goldstone spinor contained in a matter supermultiplet (maximum helicity 1/2).

This method, however, can not be general [26] since for extended supersymmetric

theories with N ≥ 3 there is no supermultiplet with helicity less than 1. As an

alternative, consider an N = 1 five dimensional supersymmetric theory. As shown

in the previous chapter, this corresponds to N = 2 four dimensional supersymmetry

whose filed content consists (for the matter multiplet) in one dirac fermion, Ψ, and

two complex scalars, Φi, transforming as a doublet under the internal SU(2) group

of automorphisms. Now the compactification, M4 × R →M4 × S1, is carried out

at the level of the fields as

Ψ(x, y) = Ψ(x, y + 2πR) , (3.36)

Φi(x, y + 2πR) =
{
ei2πR ~ω·~σ}ij Φj(x, y) , (3.37)

x ∈M4 , y ∈ R ,

with ~σ ∈ su(2), ~ω a constant vector and R the S1 radius. Then by redefining the

fields as

Φi(x, y) ≡
{
eiy ~ω·~σ}ij ϕj(x, y) , (3.38)

with ϕi(x, y + 2πR) = ϕi(x, y) we can spontaneously generate different masses for

scalars and fermions, breaking thus the supersymmetry. This breaking is sponta-

neous since the supersymmetric algebra

{Qi, Qj} = εijγ
MC PM + εijC Z , (3.39)

survives the dimensional reduction promoting P5 to a central charge with respect to

the 4D Lorentz-Poicaré group. In the original work by Scherk and Schwarz the non
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trivial compactification is applied to the N = 1 4D supergravity multiplet to reduce

the theory to N = 2 3D. As it is shown, the fourth component of the gravitino, ψ3,

serves as the Goldstone spinor.

Let us explicitly analyze the effect of Scherk-Schwarz compactification in the cases of

matter and vector multiplets of an N = 1 five dimensional supersymmetric theory.

As before we compactify the theory in the orbifold.

3.4.1 Bulk breaking

In the previous section we saw how compactification in the orbifold breaks half

of the supersymmetry at the branes. Now we will analyze how Scherk-Schwarz

compactification breaks the supersymmetry in the bulk:

Consider the 5-d on-shell (free) lagrangians (3.20) and (3.30)

L5 = tr

[
−1

2
F 2
MN + (DMΣ)2 + λ̄iγMDMλ− λ̄[Σ, λ]

]
(3.40)

L5 = |∂MH i|2 + iψ̄γM∂Mψ (3.41)

With

H =
(
H i, ψ

)
(3.42)

the on-shell matter multiplet and

V =
(
AM ,Σ, λ

i
)

(3.43)

the on-shell vector multiplet. Recall that only H i and λi transform as doublets

under SU(2)R , the rest of the fields are singlets.

The parity assignments are given by:

H(x,−y) = P H(x, y)

ψ(x,−y) = iγ 5̇ψ(x, y)
AM(x,−y) = TMAM(x, y)

λ(x,−y) = Q⊗ iγ 5̇ λ(x, y)

 (3.44)

where P and Q act on SU(2)R indices, γ 5̇ acts on spinor indices and

TM =

{
+1 M = µ
−1 M = 5
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Notice that (3.44) implies constraints at fixed points:


H = P H

ψ = iγ 5̇ψ
AM = TMAM
λ = Q⊗ iγ 5̇ λ

at y =

0, πR that work as boundary conditions. The SS-twists are given by:

H(x, y + 2πR) = ei2π~ω·~σ H(x, y) (3.45)

λ(x, y + 2πR) = ei2π~η·~σ λ(x, y) (3.46)

where ~ω and ~η are two real valued 3-vectors. As we have discussed in section 3.2.5

{P, ~ω · ~σ} = 0 (3.47)

{Q, ~η · ~σ} = 0 (3.48)

Trivial solutions to (3.45) are:

H(x, y) = ei~ω·~σ
y
R φ(x, y) (3.49)

λ(x, y) = ei~η·~σ
y
R ξ(x, y) (3.50)

where φ(x, y) and ξ(x, y) are periodic functions with respect to y. Notice that due

to constraints (3.47) and (3.48) φ and ξ have the same parity transformations that

H and λ , respectively. Therefore, we can expand the fields as

φ(x, y) =
∑

n

(
P+ cos(n y

R
) + P− sin(n y

R
)
)
φn(x)

ξ(x, y) =
∑

n

(
Q̃+ cos(n y

R
) + Q̃− sin(n y

R
)
)
ξn(x)

ψ(x, y) =
∑

n

(
Γ+ cos(n y

R
) + Γ− sin(n y

R
)
)
ψn(x)

AM(x, y) =
∑

n

(
TM+ cos(n y

R
) + TM− sin(n y

R
)
)
A

(n)
M (x)

 (3.51)

Where we have defined

P± = (1± P )/2

Q̃± = (1±Q⊗ γ5)/2
Γ± = (1± γ5)/2
TM± = (1± TM)/2

 (3.52)
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In the case of global SU(2)R symmetry, solutions (3.49) break the symmetry with

the fifth component of their kinetic terms. In the case of local SU(2)R symmetry 4

(in section 3.5 we will see how can this be performed) we have a gauge field ~BM . If

~BM acquires a non-vanishing VEV such that
〈
~B5

〉
= ~ω

R
all non-singlet fields acquire

a mass shift. Consider the actions with the lagrangians (3.40) and (3.41) with the

VEV acquired by the gauge field (we consider SU(2)R doublet fields only)∫ πR

0

dy

∫
d4x (DMφ)†DMφ + iξ̄γMDMξ (3.53)

with DM = ∂M + i ~ω
R
~σ δM5 . If we expand the covariant derivatives and plug (3.51)

in, we find∫
d4x

∑
n

{
∂µφ†n∂µφn −

1

R2
φ†n
(
n2 + ω2 + 2in(P+ − P−)~ω~σ

)
φ

}

+
∑
n

{
iξ̄nγ

µ∂µξn +
1

R
ξ̄n

(
Q̃− − Q̃+ + i~ω~σ

)
γ5ξn

}
(3.54)

While the SU(2)R singlet fields split into a Kaluza-Klein tower of modes with mass

mn =
n

R

SU(2)R doublet fields acquire masses which are the eigenvalues of their correspond-

ing mass matrix breaking, thus, supersymmetry.

The N = 1 supersymmetry of the brane lagrangian (3.21) is broken by radiative

corrections through the coupling with gauginos [27, 28].

3.5 Hosotani breaking mechanism

In this section we will show the equivalence between Hosotani breaking and Scherk-

Schwarz compactification mechanism 5. In the five dimensional formulation of local

4Now the redefinitions (3.49) are absorbed by means of local invariance.
5In five dimensions it is always possible to resolve the Scherk-Schwarz compactification as a

Hosotani breaking. A general discussion of the issue for arbitrary number of dimensions can be
found in [29] .
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supersymmetry the SU(2)R global symmetry is promoted to a local symmetry me-

diated by an auxiliary gauge field [30, 31, 32, 33, 34, 35, 36, 37]. We will use the

formulation of Ref. [30] where two multiplets are necessary to formulate the five

dimensional off-shell supergravity: the minimal supergravity multiplet (40B + 40F )

and the tensor multiplet (8B + 8F ). Their parities are summarized in Tables 3.3

and 3.4. Only graviton, gravitino and graviphoton are physical fields, the rest, in-

cluding those in Table 3.4, are auxiliary fields. The SU(2)R gauge fixing is done by

fixing the compensator field [30]

~Y = eu

 0
1
0

 (3.55)

that breaks SU(2)R → U(1)R = {σ2}. The invariant Lagrangian Lgrav = Lminimal+

Table 3.3: Minimal supergravity multiplet

Field Z = +1 Z = −1

gMN graviton gµν , g55 gµ5

ψM gravitino ψ1
µL, ψ2

5L ψ2
µL, ψ1

5L

BM graviphoton B5 Bµ

~VM SU(2)R-gauge V 3
µ , V 1,2

5 V 3
5 , V 1,2

µ

vMN antisymmetric vµ5 vµν

~t SU(2)R-triplet t1,2 t3

C real scalar C

ζ SU(2)R-doublet ζ1
L ζ2

L

Ltensor contains the term (1−eu)C and then the equation of motion of C yields u = 0.

The relevant terms in Lgrav containing these fields are [30]

Lgrav = − i
2
ψ̄Pγ

PMNDMψN −
1

12
εMNPQRV 2

M∂NBPQR

+ (V 1
5 )2 − 12(t1)2 − 48(t2)2 − 12N t2 −N2 (3.56)
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Table 3.4: Tensor multiplet

Field Z = +1 Z = −1

~Y Y 1,2 Y 3

BMNP Bµνρ Bµν5

N N

ρ ρ1
L ρ2

L

where γPMN is the normalized antisymmetric product of gamma matrices,

DM = DM + iσ2V 2
M (3.57)

and DM is the covariant derivative with respect to local Lorentz transformations.

The field equations for the auxiliary fields yield

V 1
5 = N = t1 = t2 = 0 (3.58)

while the field equation for the 3-form tensor BMNP gives

∂[M V
2
N ] = 0 =⇒ V 2

M = ∂MK =⇒
{
V 2
µ = 0 (odd field)
V 2

5 = constant (even field)
(3.59)

where K is an odd field and the last implication is suggested by the simplest choice

K = y
ω

R
(3.60)

which leads to the background

V 2
5 =

ω

R
(3.61)

and makes the connection between Hosotani and Scherk-Schwarz pictures. Notice

that by allowing the fields to have non trivial twist conditions under compactifica-

tion group we recover the Scherk-Schwarz solutions.

Once we have summarized the basic mechanisms of supersymmetry breaking, we

will aply them in the following chapters in order to obtain some phenomenological

results concerning the Standard Model.



Chapter 4

Supersymmetry in the Orbifold

One of the key points of the Standard Model is the Higgs mechanism of symme-

try breaking [11, 38, 39]. As we saw in section 2.2 it consists on the spontaneous

breaking of a symmetry via the VEV acquired by a (scalar) field, non-singlet under

the symmetry group. This VEV is acquired spontaneously as the configuration that

minimizes the effective action 1 [41]. In the framework of the Standard Model it

is used to break SU(2)L gauge symmetry giving masses to both, the SM matter

particles (quarks and leptons) and the gauge bosons of weak interaction (W± and

Z0). Nevertheless, the nature of the Higgs particle is quite mysterious, since as far

as the Standard Model is concerned, it is the only matter field which is a Lorentz

scalar. Because of that, it is worth investigating supersymmetry breaking to induce

Higgs mechanism; after all, supersymmetry provides the same number of fermionic

and bosonic degrees of freedom, and therefore it has scalar matter fields which could

play the role of the Higgs particle.

In this chapter we will present some approaches to the electroweak symmetry break-

ing from a supersymmetric theory in five dimensions.

1It could happen that a symmetry is not broken at tree level but breaks spontaneously with
quantum contributions à la Coleman-Weinberg [40].

49
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4.1 Approach to the MSSM from supersymmetry

in the orbifold

The starting point is an N = 1 supersymmetric five dimensional theory built up with

on-shell matter and vector multiplets analogous to (3.12) and (3.10), respectively 2:

(VM , λi,Σ) (4.1)

(ψ,Hi)
a (4.2)

With ψ = (ψL, ψR)T , λi =
(
λiL, ε

ij iσ2λ
∗j
L

)T
and ψL , ψR and λL Weyl spinors.

a is an index of an extra SU(2)H group in its fundamental representation. The

vector multiplet is Lie algebra valued as in (3.14) and the two scalar doublets of the

matter multiplet will be associated to the two Higgs doublets of the MSSM. The

whole on-shell lagrangian is given by [42]:

L5 =
1

g2
tr

{
−1

2
F 2
MN + (DMΣ)2 + iλ̄iγ

MDMλ
i − λ̄i[Σ, λi]

}
+ |DMH

a
i |2 + ψ̄a(iγ

MDM − Σ)ψa − (i
√

2Ha†
i λ̄iψ

a + h.c.)

− Ha†
i Σ2Ha

i −
g2

2

(
Ha†
i ~σ

j
iT

AHa
j

)2

+ L4 (4.3)

Where DM = ∂M − iVM is the covariant derivative with respect to the gauge sym-

metry group.

L4 is a brane lagrangian like (3.21) built up with chiral matter and coupled to vector

multiplets as explained in section 3.3.1. In this case the vector multiplet lives in

the adjoint representation of SU(3) × SU(2) × U(1) gauge group while the Higgs

multiplet lives in the fundamental representation.

2We will follow the formalism introduced in [42] (from now on, let us work in units of R (the
radius of compactification), therefore, by y we will understand: yR and any mass m should be
understood as: m

R ).
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The parity assignment is analogous to (3.44)

H(x,−y) = σ3 ⊗ σ3 H(x, y)

ψ(x,−y) = σ3 ⊗ iγ 5̇ψ(x, y)
AM(x,−y) = PMAM(x, y)

λ(x,−y) = σ3 ⊗ iγ 5̇ λ(x, y)

 (4.4)

Where, obviously, each σ acts on either SU(2)R or SU(2)H indices, depending on

the case. The SS twist is chosen to be

H(x, y + 2πn) = ei2πnωσ2 ⊗ ei2πnω̃σ2 H(x, y)
λ(x, y + 2πn) = ei2πnωσ2 λ(x, y)

ψ(x, y) = ei2πnω̃σ2 ψ(x, y)

 (4.5)

Taking into account the redefinitions (3.49) and proceeding like in section 3.4 we

find a 4-d mass lagrangian [42]

M4 =
∑
n6=0

{(
λ

1(n)
L λ

2(n)
L

)( ω n
n ω

) (
λ

1(n)
L

λ
2(n)
L

)

+
(
ψ̄

1(n)
L ψ̄

2(n)
L

) ( n −ω̃
ω̃ n

) (
ψ

1(n)
R

ψ
2(n)
R

)
+ h.c.

− H†


n2 + ω2

− −2inω−
2inω− n2 + ω2

−
n2 + ω2

+ −2nω+

2nω+ n2 + ω2
+

 H


+ ωλ

1(0)
L λ

1(0)
L + ω̃ψ̄

2(0)
L ψ

1(0)
R + h.c.

− ω2
−|H

(0)
0 |2 + ω2

+|H
(0)
3 |2 (4.6)

with H =


H

(n)
0

H
(n)
1

H
(n)
2

H
(n)
3

, ω± = ω̃ ± ω and Ha
i = Hµ(σµ)ai , σµ = (1, ~σ) .

If we diagonalize mass matrices from (4.6) for n 6= 0 , we have:
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• Two Majorana fermions: λ
1(n)
L ± λ2(n)

L , with masses: |n± ω| , respectively,

• Two Dirac fermions: ψ1(n) ± ψ2(n) , with masses: |n± ω̃| , respectively and

• Four scalars: H
(n)
0 ±iH

(n)
2 and H

(n)
1 ±H

(n)
3 with masses: |n±ω−| and |n±ω+| ,

respectively.

While for n = 0 we have

• One Majorana fermion: λ
1(0)
L , with mass: |ω| ,

• One Dirac fermion:

(
ψ

2(0)
L

ψ
1(0)
R

)
, with mass: |ω̃| and

• Two scalars: H
(0)
0 and H

(0)
3 , with masses: |ω−| and |ω+| , respectively.

The rest of the fields are singlets and thus, acquire the usual KK spectrum.

We could have massless scalars if either ω− = 0 or ω+ = 0 is satisfied. Thus, after

SS compactification we could reduce the model to SM with one or two massless

Higgs doublets, but there is a problem that will be clear with the help of the next

particular example:

Consider ω− = 0 and ω+ 6= 0 and compute the self interacting quartic term from

(4.3)

LD = 8g2
∑
A

{(
Re{H†0TAH1}+ Im{H†0TAH2}

)2

+
(
Im{H†3TAH1} −Re{H†0TAH2}

)2
}

(4.7)

All the scalar fields except H
(0)
0 are massive, which means that 〈H〉 = 0 for them,

but as we can see from (4.7) there is no self interacting quartic term for H0
3, in

fact, there is no potential for H
(0)
0 because H1 and H2 are odd fields, and hence

we can not reproduce the Higgs mechanism. Notice that setting ω− = n is totally

3By radiative corrections we could shift the massless Higgs to a tachyon, which is a necessary
condition for the scalar to acquire a VEV if there is a self interacting quartic coupling.
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equivalent to the previous case. It is easy to see from (4.5) that a shift in either

ω or ω̃ by an integer quantity leaves the conditions totally invariant. Radiative

corrections will provide a small quartic coupling that will yield a Higgs mass below

present experimental bounds.

4.2 Supersymmetric bulk mass

A useful technique to localize dynamically the fields on the branes is to introduce a

supersymmetric and odd bulk mass [43, 44]. We will deal with a model containing

one irreducible matter multiplet. Nevertheless, as we will see, it is not appropriate

to describe the MSSM.

Consider the lagrangian (3.30) with an odd bulk mass M

S =

∫
d5x

{
|∂MAi|2 + iψ̄γM∂Mψ + |Gi|2

+ M ψ̄ψ −M ḠiAi −M ĀiGi

}
(4.8)

Where we have defined

Gi = εijF j

Notice that with that redefinition G transfoms under SU(2)R like A . We think of

M as a periodic step function of the fifth coordinate:

M(y) = Mε(y) with ε(y) =

{
1 π > y ≥ 0
−1 −π ≤ y < 0

with periodicity 2π

Then, the supersymmetric variation of (4.8) under the transformations (3.15) gives [44]:

δξS =

∫
d5x

(
−i
√

2M∂5ε(y) ψ̄γ 5̇Aiξi + h.c.
)

(4.9)

where ∂5ε(y) = 2(δ(y)− δ(y − π)). In order to cancel the variation (4.9) we add to

(4.8) ∫
d5x − 2M(δ(y)− δ(y − π))ĀPA (4.10)

with P the parity operator. Now, the whole supersymmetry variation gives:

δξS =

∫
d5x 2

√
2M(δ(y)− δ(y − π))

{
−iψ̄γ 5̇Aiξi − ψ̄ξPA+ h.c.

}
(4.11)
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and taking into account the parity constraints at fixed points: A = PA and −iψ̄γ 5̇ =

ψ̄ at y = 0, π, (4.11) cancels exactly and thus, the on-shell action

S =

∫
d5x

{
|∂MAi|2 + iψ̄γM∂Mψ −M2|Ai|2

+ Mε(y)ψ̄ψ − 2M(δ(y)− δ(y − π))ĀPA
}

(4.12)

is invariant under (3.15). Consider, so, the Hosotani mechanism with parity operator

P = σ3. We can then redefine the fields like in (3.49) with a twist operator T = σ2

obtaining thus:

S =

∫
d5x

{
|∂MAi|2 + iψ̄γM∂Mψ −M2|Ai|2

+ Mε(y)ψ̄ψ − 2Mδ(y)ĀP0A+ 2Mδ(y − π)ĀPπA
}

(4.13)

with P0 = P and Pπ = e−iπωσ2 P eiπωσ2 . Computing the variation of (4.13) we find:

∂M∂MA+M (M + 2δ(y)P0 − 2δ(y − π)Pπ) A = 0 (4.14)

iγM∂Mψ −Mε(y)ψ = 0 (4.15)

Integrating (4.14) around y = 0 and y = π and considering the parity constraints,

we find the following boundary conditions:

(1− Pf ) A|y=yf = 0 (4.16)

(1 + Pf ) (A′ −MA)|y=yf = 0 (4.17)

with f = 0, π, A′ = ∂5A and we have used (1 + Pf ) Pf = 1 + Pf . While for the

fermions the boundary conditions read:

(1− iγ 5̇) ψ|y=0,π = 0 (4.18)

It is convenient, for reasons that will become clear below, to obtain an equation for

ψ′ at the boundaries using the fermionic equation of motion on top of (4.18) :

(1 + iγ 5̇) (ψ′ −Mψ) |y=0,π = 0 (4.19)
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Consider, now, the stability of the boundary conditions under supersymmetry, ob-

viously when ω = 0:

First of all, let us make the following definitions:

A± =
1

2
(1∓ σ3) A (4.20)

ψ± =
1

2
(1∓ iγ 5̇) ψ (4.21)

ξ± =
1

2
(1∓ iγ 5̇σ3) ξ (4.22)

(4.23)

With these definitions, the boundary conditions can be expressed:

A+ = 0 (4.24)

A′− −MA′− = 0 (4.25)

ψ+ = 0 (4.26)

Where we have eliminated the subscript f for simplicity. Consistency of the boundary

conditions with supersymmetry requires:

δξ A+ = 0 (4.27)

δξ A
′
− −Mδξ A

′
− = 0 (4.28)

δξ ψ+ = 0 (4.29)

It is easy to see that supersymmetric variations (3.15) of A± and ψ± are given by:

δξ A± = −
√

2
(
ξ̄±ψ+ + ξ̄∓ψ−

)
(4.30)

δξ ψ± = i
√

2
{
γµ (ξ±∂µA+ + ξ∓∂µA−) + γ 5̇

(
ξ∓A

′
+ + ξ±A

′
−
)}

+
√

2M (ξ∓A+ + ξ±A−) (4.31)

(4.27) implies ξ− = 0. With this constraint (4.28) is satisfied taking into account

(4.19) and, finally, (4.29) is as well satisfied with the necessity of no other constraint.
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The constraint on ξ tells us nothing but the fact that supersymmetry is broken by

the process of orbifolding as we could see in section 3.3.

If we express the solution of the bulk equations of motion as

Ai(x, y) = A(x)φi(y)

ψ(x, y) =

(
χ(x)f(y)
ξ̄(x)g(y)

)

with A(x) and

(
χ(x)
ξ̄(x)

)
solutions of 4-d Klein-Gordon and Dirac equations, re-

spectively, with a mass m each 5-d bulk equation reads:

φ′′ + (m2 −M2)φ = 0 (4.32)

F ′ − i(m σ2 + iM σ3)F = 0 (4.33)

with F =

(
f(y)
g(y)

)
. The solutions of (4.32) and (4.33) are given by:

φ(y) = a cos Ωy + b sin Ωy (4.34)

F (y) = ei(iM σ3+m σ2)y F0 (4.35)

where Ω =
√
m2 −M2. With this prescription (4.18) reads:

(1− σ3) F |y=0,π = 0 (4.36)

By enforcing (4.34) to be consistent with boundary conditions (4.16) and (4.17), we

find out that for Ω 6= 0

a = P+ϕ (4.37)

Ωb = MPa+ P−ϕ (4.38)

and

0 =

{
P−e

iωπσ2

(
P+CΩ +

(
1

Ω
(P− +MPP+)

)
SΩ

)
+ P+e

iωπσ2 [(P− +MPP+)CΩ − ΩP+SΩ]

− MPeiωπσ2

[
P+CΩ +

(
1

Ω
(P− +MPP+)

)
SΩ

]}
ϕ (4.39)
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Where we have defined CΩ (SΩ) = cos Ωπ (sin Ωπ), P± = (1± P )/2 and ϕ ∈ C2. If

we want a non trivial solution the determinant of the matrix in (4.39) must vanish.

After a tedious calculation, that requirement leads to:

sin2 ωπ =
m2

Ω2
sin2 Ωπ (4.40)

For Ω = 0 the consistency relation is given by the limit of (4.39) when Ω → 0 and

thus a relation between M and ω is required. For that reason there is no consistent

solution for that case. Let us, nevertheless, analyze some interesting solutions to

(4.40):

• |M | → 0 In this case Ω ∼ m and (4.40) can be written as sin2 ωπ ' sin2mπ

and therefore m ' ω + n which is the usual orbifold spectrum.

• |M | → ∞ In this case Ω ∼ iM and from (4.40) we find m2 ' M2 sin2 ωπ
sinh2Mπ

which

means that the physical mass is exponentially suppressed. By solving (4.39)

and normalizing the solution we find

φ(y) ∼ O(1)

(
eM(y−π)

− tanωπ (eM(y−π) − e−M(y+π))

)
for M > 0 and

φ(y) ∼ O(1)

(
e−|M |(y+π)

tanωπ (e|M |(y−π) − e−|M |(y+π))

)
for M < 0 . As we can see, component 1 of φ is exponentially localized at

y = π or y = 0 depending on whether M > 0 or M < 0, respectively, while

the component 2 is always exponentially localized at y = π.

For the case of fermions (4.36) tells us:

P−VπP+ Φ = 0 (4.41)

where P± = (1 ± σ3)/2, F0 = P+ Φ ∈ C2 and Vπ = e(Mσ3−imσ2)π. (4.41) is sat-

isfied for Φ 6= 0 for every value of Ω. On the other hand, rank(P−VπP+) ≤ 1
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because rank(P−) = rank(P+) = 1, nevertheless, we want Φ /∈ Ker(P+) but if

rank(P−VπP+) = 1 then Ker(P−VπP+) = Ker(P+) and the solution is trivial. The

condition for non trivial solution is, therefore, P−VπP+ = 0. This condition gives us

the spectrum:

m2
f =

{
n2 +M2 n 6= 0

0 n = 0
(4.42)

which coincides with (4.40) when ω = 0. This fact manifests the compatibility of

the boundary conditions with supersymmetry.

In any case, we are left with no massless Higss, except the limiting case above dis-

cussed. But in that case we have only one scalar degree of freedom localized at

y = 0.

Since localizing dynamically the fields on the branes is equivalent to put mass ma-

trices on fixed points, in the following section we will change the point of view and

develop a theory in the interval instead of orbifold with masses localized on the

branes.



Chapter 5

Supersymmetry in the Interval

5.1 Supersymmetry with boundary terms

Along this chapter we will develop a supersymmetric theory in the interval. First

we will use a component field formalism instead of superfields. For that aim we shall

not use complex hypermultiplets [45], instead we change to a formalism of “real”

hypermultiplets (the formalism used, for instance, in [32]), that is: we make the

hypermultiplets to lie in the fundamental representation of an extra SU(2)H group

and impose a reality contidtion respecting the new symmetry. In this formalism,

the boundary conditions corresponding to odd bulk masses in the orbifold case,

(4.16)-(4.17), are easier to reproduce. Furthermore, within this model we find an

interesting source of supersymmetry breaking (mass boundary terms). In the next

chapter we shall rewrite the model in terms of superfields. We will consider the

hypermultiplet

Hα = (Ψ,Φi, Fi)
α, (5.1)

where i is an SU(2)R index and α is an SU(2)H index. The reality constraint for

the scalar as well as the auxiliary field is:

(Φ̄)iα ≡ (Φα
i )∗ = εijεαβΦβ

j (5.2)

While for the fermion the reality constraint is a symplectic Majorana condition:

Ψ̄α ≡ (Ψα)†γ0 = εαβ(Ψβ)TC , (5.3)

59
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We will consider the total action S = Sbk+Sbd as the sum of a bulk (Sbk = S0
bk+Sm

bk)

and a boundary (Sbd) term, as

S0
bk =

∫
M

(
−1

2
Φ̄ ∂2Φ +

i

2
Ψ̄γM∂MΨ + 2F̄F

)
(5.4)

Sm
bk =

∫
M

(
2iF̄MΦ +

1

2
Ψ̄MΨ

)
(5.5)

Sbd =

∫
∂M

(
1

4
Ψ̄SΨ +

1

4
(Φ̄RΦ)′ +

1

4
Φ̄N(−1 +R)Φ

)
(5.6)

We take M, S and R as hermitian matrices in the SU(2)H and SU(2)R × SU(2)H

indices while N is a real number 1. We choose R = T ⊗S wtih T a hermitian matrix

in SU(2)R because is a natural choice and it makes sense with supersymmetric

transformation laws. The reality of the whole action (5.4)-(5.6) imposes a restriction

on the above matrices [44]:

M† =M, MT = −σ2Mσ2 (5.7)

S† = S, ST = −σ2Sσ2 (5.8)

T † = T, T T = −σ2Tσ2 (5.9)

The solution to these constraints are:

M = M ~p · ~σ, S = ~s · ~σ, T = ~t · ~σ (5.10)

Where ~s, ~p and ~t are real and dimensionless vectors (~p is a unit vector), and M is

a mass parameter. First of all, let us check the supersymmetry invariance of the

action. The supersymmetric variation of (5.4)-(5.6) can be written as [44]:

δεSbk =

∫
∂M

(
−F̄ ε̄(iγ5)Ψ +

1

2
Φ̄ε̄γµ∂µ(iγ5)Ψ +

i

2
Φ̄ε̄Ψ′ − ε̄Φ̄Mγ5Ψ

)
(5.11)

1Of course S, R and N can take different values at the two boundaries. The subindices 0 and
π have been omitted for simplicity.
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δεSbd =

∫
∂M

(
−1

2
ε̄γµ∂µΦ̄SΨ− 1

2
ε̄γ5Φ̄′SΨ

+ε̄F̄ SΨ +
i

2
Φ̄′Rε̄Ψ +

i

2
Φ̄Rε̄Ψ′ +

i

2
NΦ̄(−1 +R)ε̄Ψ

)
(5.12)

Discarding a total 4D derivative we can rewrite the sum of (5.11) and (5.12) as

δεS =

∫
∂M

(
i

2
ε̄Φ̄(1 +R)Ψ′ +

i

2
(Φ̄′ +NΦ̄)(−1 +R)ε̄Ψ

−1

2
ε̄γ5Φ̄M(1 + iγ5S)Ψ− iε̄γ5

(
F̄ − i

2
Φ̄M

)
(1− iγ5S)Ψ

)
(5.13)

Using the BC’s, (5.15), (5.16) and (5.17) the first three terms vanish. Finally we

use the EOM for F

F = − i
2
MΦ, F̄ =

i

2
Φ̄M (5.14)

to deduce that the whole variation is zero.

We can deduce the boundary conditions (BC’s) by aplying the variational method

to the action (5.4)-(5.6) taking into account the boundary terms. The resulting BC’s
are: (

1 + iγ5S
)

Ψ = 0, Ψ̄
(
1− iγ5S

)
= 0 (5.15)

(1 +R) Φ = 0, Φ̄ (1 +R) = 0 (5.16)

(−1 +R) [Φ′ +NΦ] = 0,
[
Φ̄′ +NΦ̄

]
(−1 +R) = 0 (5.17)

The action is supersymmetric upon the use of BC and the equations of motion for

the auxiliary fields, hence the supersymmetric of the action requires the stability

of the boundary conditions. To see this consider a second order supersymmetric

transformation, that is, if Ξ′ = Ξ + δεΞ then take Ξ′′ = Ξ + δηΞ
′ and suppose that

the boundary conditions are not stable, thus if BC[Ξ] = 0 is the functional that

gives the boundary conditions then, in general, BC[Ξ + δεΞ] = BC[δεΞ] 6= 0 and

since the variation of the action under the second supersymmetry transformation is
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∼
∫
∂MBC[Ξ′] it will not cancel. Therefore, proceeding like we did in section 4.2 we

find that the BC’s (5.15)-(5.17) are compatible with supersymmetry if:

T0 = Tπ~p · ~sf =
Nf

M
(5.18)

Let us now find the general spectrum. First of all notice that (5.15)-(5.17) overde-

termine the system unless the 8× 8 matrix

(
0 1 +R

−1 +R N(−1 +R)

)
. (5.19)

has null determinant. This translates into (1 − |~sf |
∣∣~tf ∣∣)4 = 0 which vanishes if

~s and ~t are unit vectors. If we solve the equations of motion imposing the BC’s

(5.15)-(5.17) (similarly as we proceeded in section 4.2) we find the equations for the

mass spectrum of bosons and fermions [44]:

A+A− = 0

with

A± = s2
± −

N0 −Nπ

Ω
tan(Ωπ)−

[
c2
± +

N0Nπ

Ω2

]
tan2(Ωπ) (5.20)

for bosons and

1− c̃− 2 (c0 − cπ)
M

Ω
tan(Ωπ)−

[
1 + c̃+ 2 c0 cπ

M2

Ω2

]
tan2(Ωπ) = 0 (5.21)

for fermions.
Where we have made use of the following definitions:

s± = sin[π(ω ± ω̃)] c± = cos[π(ω ± ω̃)] Ω2 = m2 −M2

and

~s0 ·~sπ = cos(2πω̃) ~t0 ·~tπ = cos(2πω) c̃ = cos(2πω̃) cf ≡ cos(2παf ) = ~p ·~sf
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m being the physical mass. Notice that ω is a Scherk-Schwarz-like parameter2. On

the other hand, it is straightforward to see that if ω = 0 and cf =
Nf
M

(5.20) and

(5.21) are the same expression, confirming thus (5.18). Some interesting particular
cases are:

Nf = M = 0. The bosonic spectrum (5.20) gives mn = n±ω±ω̃ while the fermionic

condition (5.21) yields mn = n± ω̃ which is in agreement with the model studied in

Refs.[27, 42].

For the case ω̃ = 0, c0 = cπ = 1 and Nf = M the bosonic spectrum is given by

sin2(πω) =
Ω2 +M2

Ω2
sin2(Ωπ) (5.22)

while the fermionic spectrum is: m2
n = n2 + M2(1 − δn0) in agreement with the

results found in [46].

Another interesting case appears when ω = ω̃ = 1/2, i.e.,

c0 = −cπ and N0 = Nπ = N 3. The fermionic spectrum (5.21) reduces to:

[1− c0
M

Ω
tan(Ωπ)]2 = 0 (5.23)

While (5.20) reads:

(Ω2 +N2)
tan2(Ωπ)

Ω2
= 0 (5.24)

From (5.23), setting c0 = 0 we find m2
n = M2 +(n+1/2)2. For c0 = 1 there is a light

Dirac fermion when MR � 1: m ' 2Me−πM (which is exponentially localized on

the brane). Notice that the modes n and −n− 1 may be paired to furnish a Dirac

fermion with mass M2 + (n+ 1/2)2 which could prevent the 4−D effective theory

from being anomalous if one would like to identify the zero mode of the hyperscalar

field with the Higgs doublet of the Standard Model 4.

2In agreement with (5.18), ω does not spoil supersymmetry if it takes integer values.
3In that case the supersymmetry is broken by both, SS-like parameter and boundary masses.
4We will consider such situation in section 5.2.
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On the other hand, (5.24) yields the following bosonic spectrum:

m2
n = n2 +M2 n 6= 0

m2
0 = M2 −N2 (5.25)

Notice that if M < N the bosonic spectrum presents a tachyon. The last particular

case we would like to show explicitly is when ω = ω̃ = 1/2, M = 0, N0 = 0 and

Nπ = −N 6= 0. From (5.20)-(5.21) we see that, as before, the Higgsinos are vector-

like and their (Dirac) mass spectrum is given by: mn = n+ 1/2 (n ≥ 0). While the

bosonic spectrum is given by: mn = n (n > 0) and for N > 0 we have a tachyonic

zero mode m2
0 = −m2 with m the solution of the equation:

m tanh(mπ) = N (5.26)

We would like to finish this section by sheding light on the general conditions that

the parameters of our model should satisfy to yield such spectra. First of all notice

that the model we are presenting depends on seven parameters: ω, ω̃, M , Nf and

αf . As we have seen ω acts as a Scherk-Schwarz breaking parameter, ω̃ accounts

for a supersymmetric shift of the mass and the rest of the parameters can break or

preserve supersymmetry depending on whether

Nf

M
− cos(2παf ) = 0

is satisfied or not. These seven parameters are not completely free because the

angles between the vectors ~s0, ~sπ and ~p are subject to triangular inequalities that

lead to the constraint:

(c0 + cπ)2

cos2(πω̃)
+

(c0 − cπ)2

sin2(πω̃)
≤ 4 (5.27)

Which defines an elliptical disk. On the other hand the condition that Nf should

satisfy to allow an exacly massless mode in the bosonic spectrum can be easily read

off from (5.20):

(n0 − τ−1) (nπ + τ−1) = cos2[π(ω ± ω̃)] (1− τ−2) (5.28)
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where nf =
Nf
M

and τ = tanh(Mπ). The hyperbola (5.28) divides the (n0,nπ) plane

into diferent regions depending on whether a tachyonic mass mode is allowed or not.

In figure 5.1 we show two particular cases in which the elliptic disk of allowed values

of (c0,cπ) is plotted as well. Note that for ω = 0 the elliptic disk can not overlap
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Figure 5.1: The hyperbola of massless modes for πMR = 1.5, ω = 0 and ω̃ = 0.15
(left panel) and ω̃ = 0.44 (right panel) in the plane (n0, nπ). The clear region to the
upper left has no tachyonic modes, the darkly shaded (blue) region between to the
two branches has one tachyonic eigenvalue, and the region to the lower right has two
tachyonic modes. The ellipse corresponds to the allowed points in the plane (c0, cπ).
The two dots mark the points where the fermions are massless.

with the shaded region, otherwise the fermionic spectrum will present a tachyon.

Nevertheless, for some values of M and ω̃ there are two points where the ellipse

is tangent the hyperbola (5.28) allowing the fermionic spectrum to have massless

modes (This is the case in the left panel of fig. 5.1). They are given by [44]:

(
c0

cπ

)
= τ−1

(
sin2 πω̃ ± cos πω̃

√
τ 2 − sin2 πω̃

− sin2 πω̃ ± cosπω̃
√
τ 2 − sin2 πω̃

)
(5.29)

and are obviously constrained to

τ 2 ≥ sin2 πω̃ . (5.30)
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The right panel shows a case where hyperfermions do not have massless modes (there

is no intersection between the ellipse and the hyperbola), there the supersymmetric

spectra (nf = cf ) is not massless anymore.

5.2 Induced ElectroWeak symmetry breaking

In this section we will present a realistic model of electroweak symmetry breaking

induced from supersymmetry breaking by boundary terms. The nature of that

breaking will be discussed [44].

Of course, if we want to reproduce EW symmetry breaking we should arrange an

SU(2)× U(1) gauge symmetry group to be broken, but here it is a little objection

with our formalism. We can not introduce the symmetry by hand because the

hypermultiplet can not transform under SU(2) in its fundamental representation

due to the reality constraints (5.2)-(5.3) 5. Instead, we generalize the formalism

introduced at the end of the previous section by doubling the number of fields with

an index of a new SU(2) group which will be labeled in a suggestive manner: SU(2)L.

The reality condition (5.2) is now written as:

Φ̄i
α = εijραβΦβ

j (5.31)

where the tensor ραβ can be written in the form [47]

ρ = diag(ε⊕ ε) = 1⊗ ε or ραβ = δα1β1εα2β2 (5.32)

In particular the reality condition for hyperscalars Φα
i = Φα1, α2

i is given by

Φα1, 2
2 = (Φα1, 1

1 )∗ ≡ Φ̄1
α1, 1, Φα1, 1

2 = −(Φα1, 2
1 )∗ ≡ −Φ̄1

α1, 2
(5.33)

It is now easy to see that the generators of the symmetry group that preserve the

reality constraint must satisfy

ρ TA = −TA∗ρ. (5.34)

5Which is the case of symplectic-Majorana fermions.
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The largest possible symmetry group is thus generated by

{σ2 ⊗ 1, σ1 ⊗ σi, σ3 ⊗ σi, 1⊗ σi} (5.35)

which is the spinor representation of SO(5). As we will see the BC’s will however

break this to a subgroup and so does a nonzero mass term in the bulk. The reality

constraints on boundary matrices S and M now read:

STρ = −ρS MTρ = −ρM (5.36)

We expect the biggest unbroken subgroup if we choose S0 ∝ Sπ ∝M, in fact all such

choices are equivalent and leave an SU(2)×U(1) unbroken subgroup. A convenient

choice is Sf ∝ 1⊗ σ3 which leaves the unbroken generators:

{σ2 ⊗ 1, σ1 ⊗ σ3, σ3 ⊗ σ3, 1⊗ σ3} (5.37)

The formal proof for the mass eigenstates of bosons and fermions is equivalent to the

previous section. As before, the parameters ω, ω̃ and αf do make sense now 6. Let

us follow with the case ω = ω̃ = 1/2 and N0 = M = 0, Nπ = −N . The spectrum

for bosons is (5.26), while the fermionic one is given by mn = n + 1/2 (n ≥ 0).

Solving the boundary conditions for bosons (5.16)-(5.17) we find the eigenstate for

the tachyonic mode (5.26) [44]:(
Φα1, 1

1 (x, y)

Φα1, 2
2 (x, y)

)
= N−1

(
cosh(my)Hα1(x)

cosh(my) [Hα1(x)]∗

)
(5.38)

all other components vanishing. Here H(x) is the 4D physical Higgs field and Φ

fulfills the BC’s with S0 = −Sπ = 1⊗ σ3 and T0 = −Tπ = −σ3,

1

2
(1 +Rf )Φ(x, yf ) = 0, Rf = −σ3 ⊗ 1⊗ σ3 (5.39)

The normalization factor is determined to be

N 2 =
π

2

[
1 +

sinh(2πm)

2πm

]
6We could have chosen M = 1 ⊗ ~p · ~σ and Sf = 1 ⊗ ~sf · ~σ, of course, we would not be left

with the desired unbroken symmetry, but it is explicitly clear that the parameters ω̃ and αf make
sense. The case we are considering is obtained when ω̃,αf ∈ {0, 1/2}.
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Notice that SU(2)L⊗U(1)Y acts on the physical Higgs field H in the standard way,

i.e. by the generators 7 {1
2
σi, 1

2
}. The effective 4D theory is obtained by integrating

over the extra dimension. The mass Lagrangian becomes

Lm = m2|H|2 (5.40)

The self-coupling quartic term comes out from the integration of ~X auxiliary field

form the super-Yang-Mills action (4.3):

LD = −1

8
g2
A

(
Φ̄ ~σR ⊗ TA Φ

)2
. (5.41)

Next we particularize (5.41) to the zero mode Higgs doublet 8 of Eq. (5.38). We get

the Lagrangian 9

LD = −1

8

(
g2

5 + g′ 25

)
|H|4 cosh4(my)

N 4
(5.42)

Putting together Eqs. (5.40) and (5.42), expanding the neutral component of the

Higgs doublet as H0 = h/
√

2 + iχ0 (where h is the normalized Higgs field with

a vacuum expectation value 〈h〉 = v = 246 GeV) and integrating over the fifth

dimension we obtain for the Higgs field the tree-level potential

V = −1

2
m2 h2 +

1

32

(
g2 + g′ 2

)
κ(πmR)h4 (5.43)

where g and g′ are the corresponding 4D gauge couplings 10 and κ(πmR) defined by

κ(x) =
12x2 + 8x sinh(2x) + x sinh(4x)

2 [2x+ sinh(2x)]2
(5.44)

7We normalize the generators to tr{TATB} = 1
2δ
AB .

8We can assume here that non-zero modes with masses controlled by 1/R ' few TeV are much
larger than the weak scale and they have been integrated out.

9For the SU(2)L ⊗ U(1)Y group with 5D gauge couplings g5 and g′5.
104D and 5D gauge couplings g4 and g5 are related to each other as g2

5 = πRg2
4 .
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Fixing the minimum of the potential to the physical value v one finds the tree-level

Higgs mass as a function of the Z-boson mass mZ

m2
H = κ(πmR)m2

Z ,

N2 −M2 =
1

2
m2
H (5.45)

From the electroweak breaking condition (5.45) and the expansion κ(x) = 1 +

4x4/45 + . . . we can see that m ' mH ' mZ and for values of the compactification

radius 1/R ∼ few TeV mπR � 1. In this region the mass eigenvalue of Eq. (5.26)

can be solved analytically as

m2 ' N

πR
, (5.46)

which, along with Eq. (5.45) allows to fix the value of the mass parameter N required

by the electroweak breaking condition to

N ' π

2
m2
ZR (5.47)

The electroweak breaking and the Higgs mass we have presented are both at tree

level. The electroweak breaking condition (5.47) should be modified by radiative

corrections. In particular from those arising from the Yukawa couplings between

Higgs and the localized matter sector. On the other hand, the Higgs mass receives

one-loop corrections controlled by top-quark mass and (logarithmically) by the mass

and mixing angle of the third generation of squarks. Furtheremore, in order to

avoid higher sensitivity of the Higgs mass on the cutoff Λ we should demand the

condition trY = 0 to be fullfilled, otherwise a FI term could be generated [3].

The radiative corrections commented above are model-dependent nevertheless we

postpone its analysis until chapter 7, where they shall be exhaustively studied within

a mildly modified framework. For the moment, however, let us consider the radiative

corrections to the Higgs mass comming from the degrees of freedom propagating in

the bulk within the present model.



70 Supersymmetry in the Interval

5.3 Stability of the Higgs mass

The Scherk-Schwarz supersymmetry breaking is known to be one-loop finite. Never-

theless here we encounter another source of supersymmetry breaking: the boundary

masses Nf . We now want to analyze the stability of the Higgs mass under radiative

corrections in the presence of such breaking. For that purpose let us return to the

toy model described at the beginning of this chapter. Let ω, ω̃, N0, Nπ and M

take values such that supersymmetry is respected (or at most it is broken by SS

parameter only). We will call Mf the departure of Nf from its “supersymmetric”

value. We should solve the equations of motion for the “supersymmetric” values

of the parameters and treat Mf as a perturbation. Therefore we must calculate

one loop diagrams with one or more Mf insertions 11. For simplicity we can take

ω = ω̃ = 1/2 and Nf = M = 0. The spectrum is mn = n and the eigenstates can

be read off from (5.20):

H1 =
1√
2π
H

(0)
1 (x) +

1√
π

∞∑
n=1

cosny H
(n)
1 (x)

H2 =
1√
π

∞∑
n=1

sinny H
(n)
1 (x) (5.48)

where we have defined:

Φ1
1 = H1 , Φ2

1 = H2

Φ2
2 = H̄1 , Φ2

1 = −H̄2

The quartic self-coupling potential is now given by:

VD =
1

8
g2

5(|H1|2 + |H2|2)2 (5.49)

11The zero Mf insertion diagrams might be quadratically divergent due to a generation of a
Fayet-Iliopoulus term [48]. Nevertheless it can be seen as a renormalization of the bulk mass,
clearly separable from the renormalization of the boundary masses. Of course such divergence
could be avoided with a second Higgs which does not interfere in the Electroweak symmetry
breaking.
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Using (5.48) we can write the lagrangian (5.6) as [44]:

Lbd =
1

π

∞∑
m,n=−∞

[M0 − (−1)m+nMπ] H̄
(m)
1 H

(n)
1 ] (5.50)

The renormalization of the boundary masses is given by loops induced by the quar-

tic potential with Mf insertions. The leading contribution comes from the one

Mf insertion diagram and therefore we will concentrate on that kind of loops (see

figure 5.2):

&%
'$×

1
π [M0 − (−1)m+nMπ]

H
(n+k)
1 H̄

(m+k)
1

H̄
(n)
1 H

(m)
1

Figure 5.2: One-loop diagram renormalizing Mf .

The contribution from the diagrams in Fig. 5.2 is proportional to the factor

I =
1

π

[
M0 − (−1)m+nMπ

]
g2J (5.51)

where g = g5/
√
π is the 4D gauge coupling, J is given by the Feynman integral

J =
∞∑

k=−∞

∫
d4p

(2π)4

1

p2 + (k +m)2

1

p2 + (k + n)2

=
∞∑

`=−∞

∫
d4p dz

(2π)4

1

p2 + (z +m)2

1

p2 + (z + n)2
e2iπ`z (5.52)



72 Supersymmetry in the Interval

and we have made use of Poisson resummation.

The propagators in (5.52) have poles in the complex z-plane at locations z =

−n ± ip and z = −m ± ip. In this way for ` 6= 0 the z-integrations contour can

be closed by an infinite semicircle. Picking the residues of the corresponding poles

provides the factor

e−2π|`|p

that makes the integrand in the remaining integral to exponentially converge in the

limit p → ∞ and the corresponding integral to be finite. However for ` = 0 there

appears a linear divergence. In fact one can write

J =

∫
d4p dz

(2π)4

1

p2 + (z +m)2

1

p2 + (z + n)2
+ finite terms

=
1

64π
Λ + finite terms (5.53)

where Λ is the ultraviolet (UV) cutoff. One can interpret the result in (5.53) as a

linear renormalization of the brane mass terms as

Nf = Mf (1 + ∆), ∆ =
g2

64π
ΛR + · · · (5.54)

Notice that to leading order the radiative corrections to the boundary mass terms

∆ are boundary independent. Therefore the condition M0 = Mπ is not spoiled by

the (leading) correction in (5.54).

Now that we have the loop-corrected localized soft masses one can go back to

(5.20) and recalculate the renormalized bosonic spectrum. In fact for the model

under consideration (N0 = Nπ = N) the bosonic zero mode is a tachyon with a

mass [see Eq. (5.24)]

m2
0 = −N2(1 + ∆)2 . (5.55)

As we can see this breaking is soft from the point of view that it does not induce any

cubic counterterm in the 5D theory. However the mass term renormalizes linearly

on the boundary, which induces in turn a linear renormalization in the Higgs mass.

However this sensitivity does not destabilizes the Higgs mass for values of the cutoff

ΛR <∼ 102: in fact considering for simplicity the weak coupling, g2/64π ∼ 2 × 10−3
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and ∆ <∼ 0.2. Finally, in models with a single Higgs the quadratically divergent

FI term is the dominant effect and we would require a lower cutoff (ΛR <∼ 10) to

keep this effect small. In fact the quadratically divergent FI term can be avoided

if we introduce several (e.g. two) Higgs hypermultiplets with charges satisfying the

condition trQ = 0, while the linear divergence can be cancelled if the condition

trQMf = 0 is fulfilled for them.

Finally, let us examine the transmission of supersymmetry breaking to the mat-

ter sector through loop effects. The sensitivity on the UV cutoff crucially depends

on where matter lives.
If it is localized on a brane where supersymmetry breaking occurs we expect to gen-

erate local soft mass terms for squarks, and by simple power counting these must

scale as g2
5Λ2Mf |Q̃|2δ(y−yf ). If matter lives in the bulk a similar dimensional anal-

ysis gives g2
5ΛMf |Q̃|2δ(y − yf ), while if localization of matter and supersymmetry

breaking occur at different branes, no local mass terms are generated and we instead

obtain finite (nonlocal) soft masses which are insensitive to the cutoff. Again on di-

mensional grounds, these effective 4D soft terms scale as g2
5R
−2Mf |Q̃|2. In the latter

case, which we have examined in detail in section 5.2, these are in fact subdominant

to the finite contribution from the SS breaking, g2
5R
−3|Q̃|2, as Mf � R−1 in order

to decouple the Higgs scale from the compactification radius.

5.4 Comparison with the Orbifold approach

In order to compare the previous formalism with the more usual orbifold approach,

and to also shed light on the nature of the previously considered supersymmetry

breaking, we show in this section that the same physical theory can be obtained if

one considers the orbifold S1/Z2. We assign the following parities to the fields

Ψ(−y) = iγ5σ3Ψ(y) , Ψ̄(−y) = −Ψ̄(y)iγ5σ3 , (5.56)

Φ(−y) = σ3 ⊗ σ3Φ(y) , Φ̄(−y) = Φ̄(y)σ3 ⊗ σ3 , (5.57)

F (−y) = −σ3 ⊗ σ3F (y) , F̄ (−y) = −F̄ (y)σ3 ⊗ σ3 . (5.58)
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We also could introduce Scherk-Schwarz twists for the SU(2)R and SU(2)H symme-

tries. However since the presence of an ω̃ 6= 0 parameter amounts to a supersymmet-

ric mass, while the nature and interpretation of a Scherk-Schwarz twist ω 6= 0 has

been widely clarified in the literature [19, 22, 49, 46], we will simplify our disscussion

in this section by assuming ω = ω̃ = 0. Furthermore, we replace the action given in

Eqs. (5.4)–(5.6) by

S0
bk =

∫ (
−1

2
Φ̄ ∂2Φ +

i

2
Ψ̄γM∂MΨ + 2F̄F

)
, (5.59)

Sm
bk =

∫ (
2iF̄MΦ +

1

2
Ψ̄MΨ

)
, (5.60)

Sbd =

∫ (
N0δ(y)−Nπδ(y − π)

)
Φ̄Φ . (5.61)

In order to have well-defined parity for the mass terms, we take the vector ~p defined

in Eq (5.10) to be

p = (p1, p2, ε(y)p3) , (5.62)

where ε(y) is the sign-function. Choosing p1 = p2 = 0 one reproduces the odd mass

terms for hypermultiplets previously considered in the literature [46, 50, 51, 48].

The boundary mass terms involving the Nf parameters are similar to the ones

encountered in Eq. (5.6). In fact the boundary conditions (5.57) require R = −σ3⊗
σ3, so that by using this in Eq. (5.6) we find Eq. (5.61). The additional factor

of 2 comes from the fact that the support of the delta function on the circle is

twice the one on the interval, while the relative sign of the two boundaries reflects

our convention of taking the orientation of the boundary at y = 0 to be negative.

Boundary mass terms –which in the interval give rise to boundary conditions– on

the orbifold generate jumps for the profiles of wave functions across the brane. It is

easy to calculate these jumps for the special kind of mass terms of Eq. (5.61). All

fields are continuous except the ∂5 derivatives of even bosonic fields, which satisfy

(1 + σ3 ⊗ σ3)[Φ′(0+) +N0Φ(0)] = 0 , (5.63)

(1 + σ3 ⊗ σ3)[Φ′(π−) +NπΦ(π)] = 0 . (5.64)



5.4 Comparison with the Orbifold approach 75

Here we write the matrix (1 + σ3 ⊗ σ3) to project on the even fields only. The

spectrum can now be directly inferred from section 5.1. The bosonic one is given by

Eq. (5.20) with ω = ω̃ = 0. For the fermionic one, notice that in order to produce

our orbifold boundary conditions, we have to choose ~s0 = ~sπ = (0, 0,−1) and hence

must use c0 = cπ = −p3 in Eq. (5.21).

Let us next study supersymmetry of this action. The supersymmetry variation

of the bulk action is now given by

δS0
bk = 0 , δSmbk = −2 p3M [δ(y)− δ(y − π)] ε̄Φ̄γ5σ3Ψ , (5.65)

while the boundary piece varies into

δSbd = 2i [N0δ(y)−Nπδ(y − π)] ε̄Φ̄Ψ . (5.66)

Making use of our parity assignments Eq. (5.56) we conclude that for these two

pieces to cancel we must have

n0 = nπ = −p3. (5.67)

To compare with the interval approach, we note again that there c0 = cπ = −p3 and

thus we find that for the action to be supersymmetric, relation (5.18) must hold.

Therefore departure from the supersymmetric relation (5.18) implies supersymmetry

breaking. Notice that the breaking here is explict and can be viewed as coming

from localized soft masses for the even hyperscalars. Splitting the masses Nf into a

supersymmetric and a soft piece, Nf = −p3M +Mf we can write the localized soft

breaking Lagrangian as

Shyper
soft =

∫ (
M0δ(y)−Mπδ(y − π)

)
Φ̄Φ . (5.68)

Supersymmetry breaking produced by the soft mass terms for even scalars in the

action (5.68) bears strong similarities with the usual Scherk-Schwarz supersymmetry

breaking by twisted boundary conditions in the gaugino (and gravitino) sector. In

fact twisted Scherk-Schwarz boundary conditions for the gauginos λi (i = 1, 2) can
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be produced by localized gaugino soft masses with an action [19, 22, 49, 46]

Sgauge
soft =

∫
λ̄ (M0δ(y)−Mπδ(y − π))λ+ h.c. (5.69)

However the nature of supersymmetry breaking by boundary scalar masses is very

different from that of the Scherk-Schwarz supersymmetry breaking (which provides

a supersoft or finite breaking).

The real formalism has been useful to develop a supersymmetric model in the interval

with dynamically obtained boundary terms. However this formalism is not suitable

to incorporate coupling terms. For that reason in the next chapter we will show

the translation of the real formalism into the superfileld one. The later makes the

model closer to what usually appears in the literature and sheds light on the nature

of supersymmetry breaking.



Chapter 6

Superfield approach to real
formalism

As we mentioned previously, the real formalism is suitable to make contact between

an interval approach with boundary matrices and an orbifold model with odd bulk

mass. However it is convenient to translate this formalism into superfield language

where the coupling terms are easily implemented. This is what we will do in this

chapter. The model developed in the previous chapter is defined in a 5D manifold

with boundaries Σ = M4 × I with M4 the 4D Minkowski space and I the interval

[0, πR], R being the compactification radius. The field content of the hypermultiplet

in 5D is (Φi,Ψ, Fi) where Φi are complex scalars and Fi are auxiliary fields and both

transform as doublets of SU(2)R. Ψ is a Dirac fermion. To have a manifest SU(2)R

covariance in the superalgebra it is used the N = 2 5D structure [32]

{Qi , Qj} = εij γMC PM + εijZ C , (6.1)

with a symplectic Majorana (SyM) constrain

Q̄i ≡ Q†iγ
0 = εijQT

j C , (6.2)

where εij is the total antisymmetric tensor and

C = −1⊗ iσ2 =

(
−iσ2 0

0 −iσ2

)
, (6.3)

77
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is the 5D charge conjugation matrix verifying C γM C = −
(
γM
)T

. PM are the

spacetime translation generators and Z is a central charge. Consistency with (6.2)

imposes Z to be hermitian. The supersymmetric transformations on the fields are

given by

δχΦα
i = iχ̄iΨ

α ,

δχΨα = −γMχi∂MΦα
i + 2χiFα

i ,

δχF
α
i = − i

2
χ̄iγ

M∂MΨα ,

(6.4)

with

χ̄i = εijχTj C , (6.5)

a symplectic Majorana spinor. Under these transformations the variation of the ac-

tion (5.4)-(5.5)-(5.6) vanishes upon the use of boundary conditions and the equation

of motion for the auxiliary field. This is expected since the boundary term is on-

shell1 and as it is shown in Ref. [52], the supersymmetry of the on-shell formulation

of the boundary picture requires the boundary conditions to be satisfied. This will

be explicitly shown applied to our case in the next section.

6.1 Superfield description

To recast the action in superfields we will take ~t0 = ~tπ = ~t and Nf = ~p · ~sf M ,

according to what we saw in the previous chapter. For simplicity we will take

~t = ~p = (0, 0, 1). Notice that we can always do so by means of global rotations of

SU(2)R and S(2)H , respectively.

1There is no auxiliary field present although it is a mass term.
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The reality constrains (5.2)-(5.3) can be solved as

Φ =


Φ1

1

Φ1
2

−Φ1∗
2

Φ1∗
1


Ψ1 =

(
ψ1
L

ψ̄1
R

)
(6.6)

Ψ2 =

(
−ψ1

R

ψ̄1
L

)

and, as it is shown at the end of this chapter, the fields can be split into two

chiral multiplets according to

H = Φ +
√

2θψ + Fθ2 , (6.7)

Hc = Φc +
√

2θψc + Fcθ
2 , (6.8)

just redefining them as

(
Φ
Φc

)
≡

(
iΦ1∗

2

−iΦ1
1

)
(

ψ
ψc

)
≡

(
−iψ1

R

−iψ1
L

)
(6.9)(

F
Fc

)
≡

(
−2F 1∗

1 − ∂5Φ∗c
−2F 1

2 + ∂5Φ∗

)
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Therefore, the whole action can be rewritten as2

S =

∫
Σ

[
iψ̄cσ̄

µ∂µψc + iψσµ∂µψ̄ − φ∗c2φc − φ∗2φ+ |Fc|2 + |F |2

+Fc (−∂5 +M)φ+ φc (−∂5 +M)F + ψc (∂5 −M)ψ + h.c.]

+

∫
∂Σ

[
K −

(
1

2
s3ψcψ −

1

4
s+ψcψc +

1

4
s−ψ ψ + h.c.

)
+

1

2
M~p · ~sϕ†(−1 + S)ϕ+

1

2
(ϕ†Sϕ)′

]
(6.10)

where K is a Gibbons-Hawking-like term given by

K =
1

2
∂5

(
|φc|2 + |φ|2

)
+M

(
|φc|2 − |φ|2

)
− 1

2

(
ψcψ + ψ̄cψ̄

)
+ φcF + φ∗cF

∗ ,

s± = s1 ± is2, ~s = (s1, s2, s3) and ϕ =

(
φc
φ

)
. Notice that the bulk term of (6.10)

is already N = 1 invariant without any boundary contribution, which implies that

S ′bd = Sbd +
∫
∂Σ

K has to be so. Let us check it explicitly:

The fermionic component of S ′bd is given by

∫
∂Σ

[
−1

2
(1 + s3)ψcψ +

1

4
s+ψcψc −

1

4
s−ψ ψ + h.c.

]
(6.11)

while for the bosonic sector we have∫
∂Σ

[
1

2
M~p · ~sϕ†(−1 + S)ϕ+

1

2

(
ϕ† (1 + S)ϕ

)′
+Mϕ†σ3ϕ+ φcF + φ∗cF

∗
]

=

∫
∂Σ

{
1

2
ϕ†(−1 + S) [ϕ′ +M~p · ~sϕ] +

1

2
ϕ′† (1 + S)ϕ

+ϕ†ϕ′ +Mϕ†σ3ϕ+ φcF + φ∗cF
∗} . (6.12)

2For simplicity we omit the subscript f .
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Using the boundary conditions

(−1 + S) [ϕ′ +M~p · ~sϕ] = 0 , (1 + S)ϕ = 0

and the equations of motion for the auxiliary fields

F +Mφ∗c + ∂5φ
∗
c = 0 , Fc +Mφ∗ − ∂5φ

∗ = 0 ,

(6.12) reduces to ∫
∂Σ

φ∗F ∗c + φcF (6.13)

then it can be easily checked that

φ∗F ∗c + φcF =
1

2
(1 + s3) (Fcφ+ φcF ) +

1

2
s−φF −

1

2
s+φcFc + h.c.

+
1

2
ϕT iσ2 (1 + S)F +

1

2
F †iσ2 (1 + S∗)ϕ∗ , (6.14)

where F =

(
Fc
F

)
and the last two terms separately cancel due to the boundary

conditions. To see this, notice that

(1 + S)F = (1 + S) iσ2 [ϕ′∗ +Mσ3ϕ
∗] = iσ2 (1− S∗) [ϕ′∗ +Mσ3ϕ

∗]

= iσ2 (1− S∗) [ϕ′∗ +M~p · ~sϕ∗] + iσ2 (1 + S∗)ϕ∗ = 0

where we have used the identity σ2 S σ2 = −S∗.
This is expected since we are working with supersymmetric boundary conditions

and hence they have to be writable in a supersymmetric way.

Thus, as claimed, we can write the whole action in terms of superfields as

S =

∫
Σ

dθ4
[
H̄H + H̄cHc

]
−
∫

Σ

dθ2Hc(∂5 −M)H + h.c.

+

∫
∂Σ

dθ2

[
1 + s3

2
HHc +

s−
4

HH− s+

4
HcHc

]
+ h.c. (6.15)

Recall that we have taken ~p = (0, 0, 1). To have a general mass configuration we

simply undo the SU(2)H rotation. Explicitly, (6.15) can be rewritten in a compact
way as
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S =

∫
Σ

dθ4 H̄H − 1

2

∫
Σ

dθ2
[
HTiσ2H′ −MHTσ1H

]
+ h.c.

− 1

4

∫
∂Σ

dθ2HTiσ2 (1 + S)H + h.c. (6.16)

where H = (Hc, H)T (already SU(2)H covariant3) therefore, an arbitrary SU(2)

rotation leaves the kinetic term invariant while the mass term is brought into the

form

M

(
β α
α −β∗

)
, (6.17)

with α ∈ R. In fact, this is, not only, the most general mass term compatible with

the N = 2 structure (see Chapter 8) but the most general compatible with the 5D

Lorentz invariance. In terms of a 4 component 5D Dirac spinor the most general

mass term can be written as

αΨ̄ Ψ + βΨTC Ψ + β∗Ψ†C Ψ∗ , (6.18)

with C the 5D charge conjugation matrix. One can easily check that (6.18) expressed

in terms of 2 component Weyl spinors yields precisely the mass matrix (6.17).

6.1.1 General boundary term

In this section we will briefly see that the boundary term displayed previously is

indeed on-shell equivalent to the most general boundary term that can be written:

S̃bd =

∫
∂Σ

d2θ [
µ

2
HH +

λ

2
HcHc + νHHc] + h.c. (6.19)

where µ, λ and ν are arbitrary complex numbers. The variation of Sbk + S̃bd yields

the boundary term∫
∂Σ

dθ2 [δHc (λHc + νH) + δH (µH + νHc − Hc)] + h.c.

3ϕ = −i
(

Φ1
1

Φ2
1

)
where the upper indices are those of SU(2)H .
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and hence the boundary conditions are

µH + νHc −Hc = 0 (6.20)

λHc + νH = 0 (6.21)

One easily checks that in order to not overdetermine the system the complex pa-

rameters have to satisfy the relation

µ λ− (ν − 1)ν = 0 , (6.22)

and that (6.20)-(6.21) are invariant under the redefinitions

Hc ↔ H, λ↔ µ, ν ↔ 1− ν . (6.23)

In the special case ν = 0 the boundary conditions reduce to
λ = 0, µH −Hc = 0
or
µ = 0, Hc = 0

(6.24)

while the case ν = 1 is obtained from the previous one by means of the relations

(6.23). In the general case ν /∈ {0, 1}, (6.20)-(6.21) reduce to

zHc +H = 0

with z = λ/ν. This means that we have a lot of redundancy in the parameters ν, µ, λ

since only the complex number z plays a role in solving the boundary conditions.

Actually, by letting z to take any complex value we cover the whole set of boundary

conditions including ν = 0, which corresponds to z → ∞. As a matter of fact, the

parametrization

ν0 =
1

2
(1 + s3) , µ0 =

1

2
s− =

1

2

√
1− s2

3 eiδ , λ0 = −µ∗0 ,

verifies µ0λ0 − (ν0 − 1)ν0 = 1
4

(1− ~s2) = 0 and in addition z =
√

1−s3
1+s3

e−iδ, which

covers the whole complex plane since s3 = 1−|z|2

1+|z|2 is well defined and always less (or

equal) than one, in absolute value, for all |z|.
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6.2 Supersymmetry breaking by boundary terms

As we saw in the previous chapter, the supersymmetry is broken by the boundary

terms whenever ~t0 6= ~tπ or Nf 6= ~p · ~sf M . The misalignment of the R-matrices is

equivalent to have a local R transformation, eiy~ω·~σ, such that Tπ = eiπ~ω·~σ T0 e
−iπ~ω·~σ

which is a Scherk-Schwarz-like breaking [44] and therefore a soft breaking. This

breaking has been widely studied in the literature. A very elegant proposal consists

of breaking the supersymmetry at the supergravity level via the expectation value

acquired by some auxiliary field of the supergravity multiplet [53, 54], which implies

that the breaking pattern should have to be expressable in terms of superfields.

Here we will suggest a breaking mechanism [55] very similar to that in ref. [53] where

the case of a warped extra dimension was considered. We will restrict ourselves to

the case of a flat space M4 × I, where I is the interval [0, π], with the metric

ds2 = ηµνdx
µdxν −R2dy2 , (6.25)

where R is the radion of the compact extra dimension labeled by y, which ranges

fron 0 to π. The supersymmetrization of the radion field is given by

T = R + iB5 + θΨ5
R + θ2FT , (6.26)

where B5 is the fifth component of the graviphoton, Ψ5
R is the fifth component of

the right-handed gravitino and FT is a complex auxiliary field. The supersymmetric

action will be given by

Sbk =

∫
d5x d4θ

T + T̄

2

[
H̄H + H̄cHc

]
−
∫
d5x

[
d2θ (Hc∂5H −M THcH) + h.c.

]
, (6.27)

Sbd =

∫
d4x

[
d2θ

(
µ

2
HH +

λ

2
HcHc + νHHc

)
+ h.c.

]
, (6.28)

Supersymmetry can be spontaneously broken by allowing expectation values for the

auxiliary fields

〈T 〉 = R + 2ω θ2 , (6.29)
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ω being a dimensionless constant. One can easily check that the total action, is

on-shell described by the lagrangian

Lbk = iΨ̄γµ∂µΨ +
1

2
Ψ̄γ5∂5Ψ− 1

2
∂5Ψ̄γ5Ψ

− Φ†2Φ− |D5Φ|2 +
1

2

(
Φ†Φ

)′′ −M2 Φ†Φ +M Ψ̄Ψ , (6.30)

Lbd =
1

2
cfM ϕ†(−1− S)ϕ− 1

2
(ϕ†Sϕ)′

+

{
1

2
s3ψ

1
Rψ

1
L +

1

4
s−ψ

1
Rψ

1
R − s+ψ

1
Lψ

1
L + h.c.

}
, (6.31)

withD5 = ∂5+i ω
R
σ2. Here we have made the change of variables y → Ry. Finally,

by the local (SU(2)R) redefinition: Φ→ e−i ω
R
yσ2 Φ, we can rephrase (6.30)-(6.31) as

Lbk = −1

2
Φ̄∂2Φ +

i

2
Λ̄γM∂MΛ− 1

2
M2Φ̄Φ , (6.32)

Lbd =
1

4
Λ̄SΛ +

1

4
(Φ̄RΦ)′ +

1

4
cfM Φ̄(−1 +R)Φ , (6.33)

where the R matrices are given by

R0 = −σ3 ⊗ S0 , Rπ = −Tπ ⊗ Sπ , (6.34)

Tπ = eiωπσ2 σ3 e
−iωπσ2 .

To study the nature of the breaking due to the departure of nf from cf , in the

language used in the previous chapter, we shall consider the boundary action (6.15)
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plus an effective coupling such that the new boundary term now is given by∫
∂Σ

dθ2

[
1 + s3

2
HHc +

s−
4

HH− s+

4
HcHc

]
+ h.c.

− 1

Λ3

∫
∂Σ

dθ2N̄ N (H̄ H + H̄cHc) , (6.35)

with Λ the scale of the cutoff and Nf localized superfields whose auxiliary fields

acquire VEVs, say Ff , such that
|Ff |2

Λ3 = Nf . The new boundary conditions then

read

1

2
(1− Sf )

(
Hc

H

)
+
N̄N
Λ3

iσ2

(
H̄c

H̄

)
= 0 , (6.36)

in (bosonic) components they read

1

2
(1− Sf )

(
φc
φ

)
= 0 , (6.37)

1

2
(1− Sf )

[
−Mσ1

(
φ̄c
φ̄

)
+ iσ2

(
∂5φ̄c
∂5φ̄

)]
+Nf iσ2

(
φ̄c
φ̄

)
= 0 , (6.38)

where we have already used the on-shell value of the auxiliary fields. Taking the

complex conjugate of the second equation and multiplying on the right by iσ2 and

using iσ2 S
∗
f iσ2 = Sf we find

−1

2
(1 + Sf )

[
Mσ3

(
φc
φ

)
+

(
∂5φc
∂5φ

)]
−Nf

(
φc
φ

)
= 0 , (6.39)

finally, using {Sf , σ3} = 2cf1 and (6.37), we are left with

1

2
(1− Sf )

(
φc
φ

)
= 0 , (6.40)

1

2
(1 + Sf ) [∂5 + cfM +Nf ]

(
φc
φ

)
= 0 , (6.41)

which are the general boundary conditions found in the real formalism. This shows

explicitly that this breaking has a soft nature, result that was pointed out in the
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calculation of the radiative corrections of such term to the Higgs mass coupling.

In the next chapter we will develop a revisited model for ElectroWeak symmetry

breaking from an interval with boundary terms in superfield formalism and the

starting point will a generalization of the action (6.15), non the less, to finish this

transition chapter we will briefly give the splitting of the 5d hypermultiplet into 4d

superfield pieces.

6.3 N=1 splitting

The reality constraint on the supersymmetric parameter (6.5) can be solved as

χ1 =

(
ξ
η̄

)
χ2 =

(
η
−ξ̄

)
(6.42)

and thus for the η-transformations (setting ξ = 0) 4 (6.4) can be written as

δη(−iΦ1
2)∗ = η(−iψ1

R)

δη(−iψ1
R) = −iσµη̄∂µ(−iΦ1

2)∗ + η(−2F 1
1 + i∂5Φ1

1)∗

δη(−2F 1
1 + i∂5Φ1

1)∗ = −iη̄σ̄µ∂µ(−iψ1
R) (6.43)

δη(−iΦ1
1) = η(−iψ1

L)

δη(−iψ1
L) = −iσµη̄∂µ(−iΦ1

1) + η(−2F 1
2 − i∂5Φ1

2)

δη(−2F 1
2 − i∂5Φ1

2) = −iη̄σ̄µ∂µ(−iψ1
L) (6.44)

which correspond to a pair of chiral superfields [4]

H = iΦ1∗
2 +
√

2θ
(
−iψ1

R

)
+
(
−2F 1∗

1 − i∂5Φ1∗
1

)
θ2 , (6.45)

Hc =
(
−iΦ1

1

)
+
√

2θ
(
−iψ1

L

)
+
(
−2F 1

2 − i∂5Φ1
2

)
θ2 , (6.46)

4The SU(2)R invariance of the supersymmetric algebra allows us to choose any unitary rotation
of the symplectic supersymmetric parameters.
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in the superspace representation D̄α̇H = D̄α̇Hc = 0

D̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ . (6.47)



Chapter 7

Electroweak symmetry breaking
from Scherk-Schwarz
supersymmetry breaking.

In chapter 5 it was studied (at tree level) the possibility for iducing the ElectroWeak

symmetry breaking from a model in the interval with boundary terms. In particu-

lar, we found that for a certain boundary configuration the supersymmetry is softly

broken and the lowest mode of the Higgs presents a tachyon at the tree level. This

is a very interesting feature since the one-loop positive radiative corrections to the

Higgs mass coming from the gauge sector could be partially (or even completely)

cancelled by the tree level tachyonic mode and, as a consequence, the negative cor-

rections coming mainly from the top-stop sector (which enter as a two-loop quantum

correction) could trigger the ElectroWeak symmetry breaking non-marginally. This

is to be compared with the the usual scenario, where the positive gauge correction

can not be cancelled by the negative top-stop one and the EkectroWeak symmetry

breaking does not take palce [56].

In this chapter we shall study in detail this possibility within the framework of

Scherk-Schwarz (SS) supersymmetry breaking rather than the soft source intro-

duced in chapter 5, for this we will show how a tree level tachyon can be equally

yielded for the case of SS.

In the next section we will formally present the model.

89
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7.1 Free action

The superfield content will be [55]

Hα,i = (H, H̄c)
α,i , (7.1)

where α is an SU(2)H index and i lives in the fundamental representation of some

gauge group which will be obviated for the moment. The action is given by S =

Sbk + Sm
bk + Sbd where

Sbk =

∫
d5x d4θ

(
H̄H +HcH̄c

)
−
∫
d5x d2θ Hc∂5H + h.c. , (7.2)

Sm
bk =

∫
d5x

[
d2θMνHc 1H1 + ν̃Hc 2H2 + µHc 2H1 + µcHc 1H2 + h.c.

]
, (7.3)

Sbd =

∫
d4x

[
d2θ κHc 1H1 + κ̃Hc 2H2 + λHc 2H1 + λcHc 1H2 + h.c.

]
. (7.4)

The gauge indices have been omited. M is a constant with dimension of mass

and the rest of parameters appearing in (7.3)-(7.4) are, a priori, arbitrary complex

numbers. It is not very difficult to see that if ν , ν̃ ∈ R and µ = µ∗c the bulk action

is invariant under SU(2)R transformations (up to a total derivative). Now (7.3) can

be rephrased as

Sm
bk =

∫
d5x

[
d2θ Hc (M01 +M1~p · ~σ)H + h.c.

]
, (7.5)

where

M0 = M
ν + ν̃

2
M1 = M

√
|µ|2 + (ν − ν̃)2

2
(7.6)

and

~p = (Reµ, Imµ, [ν − ν̃]/2) . (7.7)

By applying the variation principle to the whole action we find the boundary con-

ditions 
κ λc
λ κ̃

κ̃− 1 λc
λ κ− 1

 ·


H1

H2

Hc 2

Hc 1

 = 0 . (7.8)
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We want to extract two independent degrees of freedom out of (7.8) or, in other

words, we want the matrix to have rank 2. This can take place in three different
ways:

• The upper matrix has non vanishing determinant while the lower matrix van-

ishes exactly. This implies κ = κ̃ = 1 and λ = λc = 0. In this case the

boundary conditions read

H = 0 . (7.9)

• The upper matrix is zero while the lower matrix has rank 2. For that case we

need κ = κ̃ = λ = λc = 0 and the boundary conditions are

Hc = 0 . (7.10)

• Both matrices have rank 1. The solution to this is given by

κ̃ = 1− κ , λcλ− κ(1− κ) = 0 , (7.11)

and the boundary conditions become

κH1 + λcH2 = 0 , κHc 2 − λcHc 1 = 0 . (7.12)

Of course, we are interested in the third case since the two formers allow the genera-

tion of a FI term. A simple inspection of (7.12) shows that only the complex number

z = λc/κ does matter for the boundary conditions. In fact, given an arbitrary value

of z the conditions (7.11) are satisfied for

κ =
1

1 + |z|2
, λc = λ∗ =

z

1 + |z|2
, (7.13)

and, thus, the boundary action (7.4) yields the same boundary conditions as the

action

Sbd =

∫
d4x

[
d2θ

1

2
Hc (1 + ~s · ~σ)H + h.c.

]
. (7.14)

With this, (7.12) can be rewritten as

HcQ− = 0 , Q+H = 0 , (7.15)
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where we have defined the projectors

Q± =
1

2
(1± ~s · ~σ) .

The Scherk-Schawarz-like breaking of the supersymmetry will be performed as in

chapter 6, thus, the generalized bulk action including the radion superfield is given

by

Sbk =

∫
d5x d4θ

T + T̄

2

[
H̄H + H̄cHc

]
−
∫
d5x

[
d2θ (Hc∂5H − T Hc [M01 +M1~p · ~σ]H) + h.c.

]
, (7.16)

The breaking of supersymmetry by boundary masses has been used in the litera-

ture to solve the naturalness problem with the µ-term in the MSSM, for instance in

Refs. [57, 54], however, as we saw previously, this type of breaking yields linearly

divergent corrections to the Higgs mass. In addition, as will be shown in a moment,

the Higgs spectrum presents a tachyon at the tree level without the necessity of con-

sidering any other breaking than the Scherk-Schwarz-like. For the sake of simplicity,

then, we will concentrate in the latter type of supersymmetry breaking. The action

is given by

S =

∫
d5x d4θ

T + T̄

2

[
H̄H + H̄cHc

]
−
∫
d5x

[
d2θ (Hc∂5H − THcM~p · ~σ H) + h.c.

]
+

∫
d4x

[
d2θ

1

2
Hc (1 + ~s · ~σ)H + h.c.

]
. (7.17)

The traceless election of the bulk mass in (7.17) deserves a further explanation.

In the presence of a U(1) gauge sector the traceness part of the bulk mass may

be absorbed through a redefinition of the real scalar in the vector supermultiplet

yielding a bulk term of the form MV ′. Through a partial integration it turns

into localized FI terms at the boundaries [51] which suffer from linear divergent
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corrections. Therefore, in order to reduce the UV sensitivity of the theory we have

discard such mass term.

The boundary conditions derived from (7.17) read1

(1 +Rf ) A = 0 , (1−Rf ) [A′ +McfA] = 0 , (7.18)

for the bosonic sector, while for the fermions we have(
1 + γ5Sf

)
Υ = 0 , (7.19)

where Rf are defined as in (6.34), cf = ~p · ~sf , Ω2 = m2 −M2 and m is the physical

mass2. Furthermore, we have defined

A =

(
Φ̄c

Φ

)
, Υ =

(
ψ
ψ̄c

)
. (7.20)

The spectrum predicted by (7.18) is given by the zeros of the equation(
cos Ωπ − c0M

Ω
sin Ωπ

)(
cos Ωπ +

cπM

Ω
sin Ωπ

)
= cos2(ω ± ω̃)π , (7.21)

where cos 2πω̃ = ~s0 · ~sπ. The spectrum for the fermions [44] is given by (7.21) with

ω = 0.
To finish this section we just give the solution to the equations of motion for the

bosonic sector3:

A± =


β± sin Ωy

∓α±
(
cos Ωy − c0M

Ω
sin Ωy

)
α±
(
cos Ωy − c0M

Ω
sin Ωy

)
±β± sin Ωy

 =


g±(y)
∓f±(y)
f±(y)
±g±(y)

 , (7.22)

where through the last equality we have defined the shorthands f(y) and g(y). The

constants α±, β± verify the relation4

α±

(
cos Ωπ − c0M

Ω
sin Ωπ

)
s±(π) + β± sin Ωπ c±(π) = 0 , (7.23)

1Taking into account the local SU(2)R redefinition.
2All the masses are given in units of 1

R and the extra coordinate is given in units of R.
3We have taken ~s0 = (0, 0, 1).
4It is understood that Ω should be replaced by Ω±.
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where s±(π) = sin(ω ± ω̃)π and c±(π) = cos(ω ± ω̃)π. Later on we will indentify

this solution with the two MSSM Higgs doublets which couple to the matter sector

localized on the brane. Before that, let us incorporate the gauge sector to the whole

action.

7.2 Gauge interaction

Consider now an internal symmetry generated by a group G. If we want the sym-

metry to be local we must add a gauge vector supermultiplet which consists of

(
AM , λ

i,Σ, ~X
)
,

where AM is a five-vector, λi are two Majorana spinors which transform as a doublet

under SU(2)R, Σ is a real scalar and ~X are three real auxiliary fields which transform

as a triplet under SU(2)R. All of these fields live in the adjoint representation of G.

We can split the vector supermultiplet in N = 1 superfields as

V = −θσµθ̄ Aµ − iθ̄2θλ1 + iθ2θ̄λ̄1 +
1

2
θ̄2θ2D ,

χ =
1√
2

(Σ + iA5) +
√

2θλ2 + θ2 Fχ ,

where D = X3− ∂5Σ and Fχ = X1 + iX2. Under a (super)gauge transformation the

variation of the superfields are given by

eqV → U−1 eqV U−1† , e−qV → U † e−qV U ,

χ→ U−1

(
χ−
√

2

q
∂5

)
U , χ̄→ U †

(
χ̄+

√
2

q
∂5

)
U−1† ,

and

H → U−1H , Hc → Hc U ,

with U = eqK
a Ta . Here Ka are arbitrary chiral superfields, Ta are the generators of

the gauge group and q is a dimensionless charge. The total action for the matter
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and gauge sectors is given by

S =
1

4g2
5

∫
d5xd2θ T Tr (WαWα) + h.c.

− 2

g2
5

∫
d5xd4θ

1

T + T̄
Tr
[
D5 e

qV D̄5 e
−qV ]

+

∫
d5x d4θ

T + T̄

2

[
H̄eqVH +Hce

−qV H̄c

]
(7.24)

−
∫
d5xd2θ Hc

(
∂5 − T M~p · ~σ − q√

2
χ

)
H + h.c.

+

∫
d4xd2θ

1

2
Hc (1 + ~s · ~σ)H + h.c. ,

where g5 is the gauge coupling in units of 1√
R

and

D5 e
qV =

1

q
∂5 e

qV − 1√
2
χ eqV − 1√

2
eqV χ̄ ,

D̄5 e
−qV =

1

q
∂5 e

−qV +
1√
2
χ̄ e−qV +

1√
2
e−qV χ ,

are the covariant derivatives5 with respect G. For the Abelian case the bulk action

of (7.24) reduces to that in ref. [51], without the radion superfield.

The effect of the Scherk-Schwarz supersymmetry breaking on the gauge sector has

been widely studied in the literature from different approaches [53, 42]. From now

on we will concentrate on the effective action for the lightest mode of the Higgs

field. For that goal we will take into account effective couplings generated by the

integration of the massive modes in the gauge sector. In the next section we will

show explicitly how the integration of Σ induces an effective quartic coulping on the

Higgs field.

5Notice that χ is the connection that makes the derivative ∂5 covariant with respect the gauge
transformations [18, 17].
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7.3 Effective action for hyperscalars

and induced EWSB

In ref. [9] it was shown that the coupling between the gauge sector propagating

in the bulk and the mass sector located at the boundaries induced singular terms

proportional to δ(0). In addition, it was proven that taking into account the effective

couplings generated by the integration of the gauge scalar Σ one gets rid off the

singular terms. In a similar way we will show that the lower mode effective action

for the scalar matter sector is the MSSM. For that, as we will see, we need to

compute the effective couplings induced by the integration of Σ. On the other hand,

the integration of the higher modes in the Kaluza-Klein tower (with masses & 1/R)

makes sense only when we have a light mode (with mass � 1/R). But, as was

shown in [44], the spectrum (7.18) allows massless and very light modes. Actually,

for M →∞ (in practice, M � 1, in units of 1/R) (7.18) has the solution

m2
±

M2
= s2

0 + 4c2
0

[
1−

2c2
±

1 + cπ/c0

]
e−2Mπ|c0| , (7.25)

where c± has been defined in (7.23).

As pointed out above, the effective couplings for the lightest scalar modes will be

given by the integration of the the heavy KK modes. In particular, an effective

quartic self interaction is induced by the integragion of Σ. From (7.24) we extract

the interaction between Σ and the hyperscalars

L(Σ,Φ,Φc) =

∫
dy

[
− 1

2g2
5

Σa2Σa −
1

2g2
5

(∂5Σa)2 − A† (qΣa Ta +M)2A

− g2
5 q

2

2

(
A†~σ T aA

)2
]
, (7.26)
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where ~σ acts on SU(2)R space and A is defined as in (7.18). Admiting Σ to be a

function of the extra coordinate only6, the equations of motion read

∂2
5Σa − 2q g2

5 A
†MT aA− 2q2 g2

5 ΣbA
†T b T aA = 0 . (7.27)

The term liniar in Σ does not yield a quartic coupling in A, instead it induces a very

complicated exponential dependence. The solution neglecting such a term is

Σa(y) = 2qg2
5

∫ y

0

dξ F a(ξ)− y2qg2
5

π

∫ π

0

dξ F a(ξ) , (7.28)

where F a(y) =
∫ y

0
dξ A†MT aA and we have made use of the boundary condi-

tions Σa|0,π = 0. Plugging the soultion in (7.26) we find the effective quartic self-

interaction7

Leff = 2q2g2
5

∫ π

0

[F a(y)]2 − 2

π
q2g2

5

[∫ π

0

F a(y)

]2

− g2
5 q

2

2

∫ π

0

D(y) , (7.29)

where we have defined

D(y) =
(
A†~σ T aA

)2
.

On the other hand, for the mass eigenvalue (7.25), (7.22) can be rephrased as

A±(x, y) = H±(x)
√
Mc0




0
∓1
1
0

 e−Mc0 y −


t±
±∆±
−∆±
±t±

 eMc0 yε2

 , (7.30)

where we have assumed c0 to be positive and we have neglected higher order cor-

rections in ε. In addition, we have defined ∆± = 1 − 2c2±
1+cπ/c0

, t± = tan(ω ± ω̃)π

6The integration of Σ neglecting the 4D kinetic term is equivalent to sum up all the diagrams
with Σ in the propagator for an external 4D momentum, p, such that p� 1/R. This makes sense
since the boundary conditions for Σ derived from (7.24) are Σ|0,π = 0 and therefore, there is no
zero mode.

7We have a similar coupling between the hyperscalars A and the fifth component of the gauge
vector field, A5, nevertheless such an interaction can not produce any effective quartic coupling
since we can always choose a gauge where A5 = 0.
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and ε = e−Mc0π. H±(x) are 4D complex scalars carrying the gauge indices. From

(7.30) and taking into account the definition of A, we can identify the up and down

Higgses of the MSSM as

Hu ≡
1√
2

(H+ +H−) , (7.31)

Hd ≡
1√
2

(
H̄− − H̄+

)
. (7.32)

By doing such identification we are not considering a correction of order ε2 but, for

our purposes, this correction is negligible. For M = M(s0, 0, c0) (7.29) takes the

form

Leff = −q2 g
2
5

2π

(
H̄uT

aHu −HdT
aH̄d

)2
+O(ε2) . (7.33)

The leading order in (8.52) is precisely the quartic self interaction of the MSSM for

q = 1/2.

For the mass matrix we have (in the basis Hu,d)(
µ2 +m2 b

b µ2 +m2

)
, (7.34)

where we have made the definitions

m2 = 8M2c2
0

sin2 πω cos 2πω̃

1 + cπ/c0

ε2 , b = 4M2c2
0

sin 2πω sin 2πω̃

1 + cπ/c0

ε2 ,

with

µ2 = M2s2
0 + 4M2c2

0

(
1− 2

cos2 πω̃

1 + cπ/c0

)
ε2 ,

being the supersymmetric mass. Allowing s0 ∼ ε then c0 ∼ 1 and cπ ∼ cos 2πω̃. In

this case, the tree-level potential for the Hu,d basis then reads

V =m2
u|Hu|2 +m2

d|Hd|2 +m2
3 (HuHd + h.c.)

+ λ
(
H̄uT

aHu −HdT
aH̄d

)2
, (7.35)
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with

m2
u = m2

d = M s2
0 + 4M2 sin2 πω

[
1− tan2 πω̃

]
ε2 , (7.36)

m2
3 = 4M2 sin 2πω tanπω̃ ε2 and λ =

g2
5

8π
. (7.37)

The smallness of s0 can be understood in terms of spontaneous breaking of a global

symmetry by boundary terms. Actually, the geometrical interpretation of the bulk

and boundary masses tells us that for s0 = sπ = 0 all matrices are aligned along the

same axis ~p and hence a U(1) group of rotations around this axis leaves the whole

action invariant being then broken by the misalignment of the boundary matrices.

The zeroth modes of the Higgs feel this breaking at tree level non the less the

breaking at y = π is suppressed by the exponential localization of the Higgs while

the breaking at y = 0 is felt at O(1). A dinamical solution to this naturalness

problem could be the effective coupling of the Higgs with a some (spurion) SM filed,

S(x), localized at y = 0

1

Λ
S(x)H1(x, 0)H2

c (x, 0) , (7.38)

with Λ the 5D cutoff of the theory. If we suppose the U(1) symmetry to be excat

at y = 0 at the cutoff scale and this symmetry is only broken by the VEV acquired

by S(x), 〈S〉, then the µ-term will be proportional to δ = 〈S〉
Λ

being then a small

quantity if the breaking take place at a lower scale.

7.4 ElectroWeak symmetry breaking

In this section we will investigate in some detail the possibility of EWSB [55]. The

conditions for EWSB and stability of the flat |Hu| = ±|Hd| directions

(µ2 +m2
Hu) (µ2 +m2

Hd
) < m4

3

2µ2 +m2
Hu +m2

Hd
> 2|m2

3| (7.39)

are incompatible with the tree-level induced SS supersymmetry breaking where

m2
Hu

= m2
Hd

. In this way EWSB should proceed radiatively and we must incor-

porate radiative corrections to the Higgs potential. As matter is strictly localized



100Electroweak symmetry breaking from Scherk-Schwarz supersymmetry breaking.

and Higgses are quasi-localized, SUSY breaking will predominantly be mediated by

one-loop gaugino loops that provide a (positive) contribution to the squared masses

of squarks, sleptons and Higgses.

In particular the squark masses will be dominated by the contribution from the

gluinos which is given by [42, 27, 28]

∆m2
t̃,b̃

=
2 g2

3

3π4
M2

c f(ω) (7.40)

where Mc = 1
R

and the function f(ω) is defined by

f(ω) ≡
∞∑
k=1

sin(πkω)2

k3
, (7.41)

while electroweak gauginos provide a radiative correction to the slepton and Higgs
masses as

∆(1)m2
Hu = ∆(1)m2

Hd
=

3g2 + g′ 2

8π4
M2

c f(ω) (7.42)

Furthermore there is a sizable two-loop contribution to the Higgs soft mass terms,

as well as to the quartic coupling, coming from top-stop loops with the one-loop

generated squark masses given by 7.40. This contribution can be estimated in the

large logarithm approximation by just plugging the one-loop squark masses in the

one-loop effective potential generated by the top-stop sector [42, 27, 28]. The good-

ness of this approximation has been shown in Ref. [58, 59, 56] where a rigorous

two-loop calculation of the effective potential has been performed. Since in our case

the EWSB will not be marginal (as we will see later) it is enough to consider the

effective potential in the large logarithm approximation, which yields the two-loop

corrections to the Higgs masses

∆(2)m2
Hu =

3y2
t

8π2
∆m2

t̃ log
∆m2

t̃

Q2
, (7.43)

∆(2)m2
Hd

=
3y2

b

8π2
∆m2

b̃
log

∆m2
t̃

Q2
, (7.44)
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where the renormalization scale should be fixed to the scale of SUSY breaking,

i.e. the gaugino mass ωMc [42, 27, 28]. Notice that the corrections from the bottom

sector are also considered, which would only be relevant for large values of tan β.

A word has to be said about the bulk Higgs-Higgsino one-loop contribution to

the soft masses. The reason we did neglect them with respect to the one-loop gauge

contribution (and even the leading two-loop one) above is that they are strongly

suppressed due to their quasi-localization. The leading O(ε) corrections come from

the Higgs-Higgsino loop contribution to the stop mass. They are proportional to

the tree level soft Higgs mass m2
Hu
∼ M2ε2 and hence suppressed as ε2 log ε with

respect to the gluon-gluino contribution of (7.40). We will typically find values of

ε ∼ 10−2 and thus these corrections are really subleading. In principle we could

easily incorporate in our analysis the radiative corrections to m2
3 as calculated in

Ref. [60]. However for most of the part of parameter space we are interested in, this

is only a tiny correction to the tree level value, (7.36), and we will neglect it in our

analysis.

Finally, the leading two-loop corrections to the quartic self coupling of Hu and

Hd in the potential

∆Vquartic = ∆γu|Hu|4 + ∆γu|Hu|4 (7.45)

are given by

∆γu =
3y4

t

16π2
log

∆m2
t̃

+m2
t

m2
t

, (7.46)

∆γd =
3y4

b

16π2
log

∆m2
b̃

+m2
b

m2
b

. (7.47)

where mt and mb are the the top and bottom quark masses respectively.

Electroweak symmetry breaking can now occur in our model in a very peculiar

and interesting way. In fact the tree-level squared soft masses m2
Hu,Hd

given in (7.36)

are suppressed by the factor ε2 and therefore, for values of M ∼ Mc they can be

comparable in size to the one-loop gauge corrections ∆(1)m2
Hu,Hd

given by (7.42).

Furthermore the tree-level masses m2
Hu,Hd

are negative for values of ω̃ > 1/4 and

then there can be a (total or partial) cancellation between the tree-level and one-loop
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contributions to the Higgs masses. Under extreme conditions they can even cancel,

m2
Hu,Hd

+ ∆(1)m2
Hu,Hd

' 0, in which case the negative two-loop corrections ∆(2)m2
Hu

will easily trigger EWSB. On the other hand in the limit of exact localization of the

Higgs fields ε→ 0 the tree-level masses will vanish and the one-loop gauge and two-

loop top-stop corrections have to compete, which will make the EWSB marginal,

as pointed out in Refs. [58, 59, 56]. Similarly for ω̃ ≤ 1/4 the tree level masses

m2
Hu,Hd

are positive definite making the EWSB triggering to be difficult, albeit

not impossible, for instance, by somehow delocalizing the top-stop right handed

(or left-handed) multiplet as it is done in Refs.[58, 59, 56, 60, 61]. These simple

arguments prove that there is a wide region in the space of parameters (ω, ω̃, ε)

where EWSB easily happens without any fine-tuning of these parameters. Of course

EWSB also depends on the Higgsino mass µ and on the compactification scale Mc

(or equivalently on the gluino mass as it happens in the MSSM) and we will be

concerned about the possible fine-tuning in those mass parameters.

It is easy to check that, due to the smallness of the SUSY breaking scale which

will be in the TeV region, as well as the extreme softness of the SS mechanism, the

usual fine-tuning problems of the MSSM can almost entirely be avoided. To see this

consider the Z mass from the minimization conditions of the potential in the limit

1� tan2 β � m2
t/m

2
b

m2
Z

2
= −(µ2 +m2

Hu + ∆(1)m2
Hu + ∆(2)m2

Hu) . (7.48)

As it is intuitively clear, essentially no fine tuning is necessary if we can make

EWSB to work with all terms in (7.48) roughly of electroweak size. Let us quantify

a little further this statement by considering the sensitivy [62] with respect to the

fundamental parameters Mi

∆Mi
=

∣∣∣∣M2
i

m2
Z

∂m2
Z

∂M2
i

∣∣∣∣ (7.49)

where Mi = µ,mHu ,Mc
8 In terms of these fundamental parameters (7.48) can be

8We are defining our fundamental parameters such that the sensitivity on them is really a
measure of fine-tuning in the sense of Ref. [63].
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rewritten as

m2
Z = −2µ2 − 2m2

Hu − κM
2
c (7.50)

where typically κ ∼ 10−3, and the corresponding sensitivity parameters are given

by

∆µ =
2µ2

m2
Z

∆Mc = |κ|M
2
c

m2
Z

∆MHu
= |1 + ∆µ + sign(κ)∆Mc| (7.51)

In Fig. 7.1 we plot the three sensitivity parameters in (7.51) for the model, that

we will present in section 7.5, corresponding to ω = 0.45, ω̃ = 0.35 and M = 1.65Mc.

This model gives a viable spectrum and it is consistent with all electroweak precision

observables for Mc
>∼ 6.5 TeV. As one sees from Fig. 7.1 and Eq. (7.51) the largest

4 5 6 7 8 9 10
0

5

10

15

20

Figure 7.1: The sensitivity parameters in Eq. (7.51) as functions of Mc in TeV for
the case ω = 0.45, ω̃ = 0.35 and M = 1.65Mc. From top to bottom the lines are:
∆mHu

(blue line), ∆Mc (green line) and ∆µ (red line).

sensitivity appears to be with respect to the parameter mHu . In fact for Mc = 6.6

TeV the required amount of fine-tuning is ∼ 10% while for larger values of Mc the

fine-tuning naturally increases quadratically. Thus for instance for Mc = 10 TeV

the fine-tuning is ∼ 4%
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We can now compare this situation with the one in the MSSM. The gluino mass

for a given value of Mc is M3 = ωMc so that in our example, for Mc ∼ 10 TeV we

have M3 ∼ 5 TeV. In the MSSM the Z mass squared is proportional to M2
3 for the

same reason as in our model, but with a much larger coefficient O(1) due to large

logarithms logmZ/mGUT. A gluino of mass a few TeV in the MSSM will require

a (tan β dependent) fine-tuning as large as 0.01%. A careful treatment of the fine

tuning issues related to the gluino mass can be found in Ref. [64, 65].

7.5 Supersymmetric spectra and Dark Matter

We will now calculate the Higgs and superpartner spectra for some specific values

of the parameters. We would like to plot our predictions as functions of Mc with all

other parameters (ω, ω̃,M) fixed. Because of the exponential dependence of the tree

level soft masses it will prove convenient to trade M by ε (which provides a fixed

ratio of M/Mc) when varying over Mc in order to avoid excessively large or small
masses.

The parameters ω and ω̃ give O(1) coefficients in the soft parameters. Their

possible values can be further restricted by demanding that the right-handed slepton

mass mẽR be above the mass of the lightest neutralino, as there are strong constraints

on charged stable particles [66] and we would like the lightest neutralino to be the

lightest supersymmetric particle (LSP) and a Dark Matter candidate. For the nature

of the latter notice that gaugino masses are given by ωMc while Higgsino masses

are essentially controlled by the µ-parameter. We thus expect the neutralino to be

almost pure Higgsino with a mass basically given by µ. On the other hand the right

handed slepton mass is radiatively generated and proportional to g′Mc. The size of

the µ term is determined by the minimization conditions and will increase ∼ Mc

for large Mc (as it has to compensate the negative radiative corrections to m2
Hu

).

However the tree level soft mass terms (7.36) increase for smaller ω̃ which in turn

allows for a smaller µ. The requirement that the neutralino be lighter than the

charged sleptons thus favours the region ω > ω̃.

We then solve the minimization conditions for EWSB which will give us two

predictions, tan β and µ as functions of the only left free parameter, Mc. Then all
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masses will become functions of Mc. In particular in the Higgs sector all masses are

obtained from the effective potential where the one-loop corrections to the quartic

couplings are included. The mass of the SM-like Higgs is then computed with radia-

tive corrections to the quartic couplings considered at the one-loop level. It is well

known that including just the one-loop effective potential overestimates somehow

the Higgs masses and improving the effective potential by an RGE resummation of

leading logarithms provides more realistic results. In this paper we will neverthe-

less be content by evaluating masses in the one-loop approximation. The squark

and slepton masses are dominated by the gaugino loop contribution and hence grow

approximately linearly with Mc. We find [42, 27, 28]

(mq̃L , mũR , md̃R
, m˜̀

L
, mẽR) = (0.110, 0.103, 0.102, 0.042, 0.025)

√
f(ω)Mc (7.52)

where the function f(ω) is given in Eq. (7.41) 9.

On the other hand the gauginos have a mass given by

M1/2 = ωMc , (7.53)

and the Higgsinos, charginos and neutralinos, a mass approximately equal to µ,

mχ̃± ' mχ̃0 ' µ. They are quasi-degenerate in mass and its mass difference can be

given to a very good approximation (for µ < 0) by [67]

∆mχ̃

mW

≡
mχ̃± −mχ̃0

mW

' (0.35 + 0.65 sin 2β)
mW

M1/2

(7.54)

which means that typically e.g. for Mc ∼ 10 TeV, ∆mχ̃ ∼ 1 GeV. The phenomenol-

ogy for Tevatron and e+e− colliders of models where charginos and neutralinos are

quasi-degenerate in mass was worked out in Refs. [68, 69]. The most critical ingre-

dients in the phenomenology of these models are the lifetime and decay modes of

χ̃± which in turn depend almost entirely on ∆mχ̃. Conventional detection of sparti-

cles is difficult since the decay products (χ̃± → χ̃0π±, χ̃0`±ν`, . . . ) are very soft and

alternative signals must be considered [68, 69].

9Numerically f(ω) <∼ 1 for the values of ω we will be interested in.
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We will now consider in detail a typical example that will be solved numerically

and we will plot all the predictions of the model as functions of Mc. We choose

ω = 0.45, ω̃ = 0.35 and M = 1.65Mc as in the previous example of Fig. 7.1 where

the fine-tuning in these models is exemplified. The results are shown in Fig. 7.2. The
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Figure 7.2: Predictions for the case ω = 0.45, ω̃ = 0.35, M = 1.65Mc (as in
Fig. 7.1) as a function of the compactification scale. Upper left panel: tan β. Upper
right panel: the SM-like Higgs mass mh. Lower left panel, from top to bottom
the lines correspond to the masses of: left-handed sleptons m˜̀

L
(green line), heavy

neutral Higgs (with a mass approximately equal to the pseudoscalar mass) mH '
mA (magenta line), right-handed sleptons mẽR and neutralinos mχ0 ' µ (red line).
Lower right panel: the squark masses mq̃. All masses are in TeV.

SM-like Higgs mass easily satisfies the experimental bound mh0 > 114.5 GeV for

Mc > 6.5 TeV. The LSP is the Higgsino-like with mass ∼ µ. Electroweak precision

observables also put lower bounds on Mc (see e.g. Ref. [28]). For the particularly

chosen model the χ2(Mc) distribution has a minimum around Mc ' 10.5 TeV and

one deduces Mc > 4.9 TeV at 95% c.l.

Finally in the considered class of models where the neutralino is the LSP and
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R-parity is conserved the lightest neutralino is the candidate to Cold Dark Matter.

In fact the prediction of Ωχ̃0h2 can be obtained using the DarkSUSY package [70]

and can also be approximated by the expression [71]

Ωχ̃0h2 ' 0.09 (µ/TeV )2 (7.55)

In the particular model of Fig. 7.2 the prediction of Ωχ̃0h2 is given in Fig. 7.3
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Figure 7.3: Ωχ̃0h2 as a function of Mc (in TeV) for the model presented in Fig. 7.2.

Recent WMAP results [72] imply that 0.114 < Ωχ̃0h2 < 0.134. As one can

see from Fig. 7.3 this range in Ωχ̃0h2 points towards the range 10 49 TeV < Mc <

53 TeV. Then for a value of Mc ∼ 50 TeV the density of Dark Matter agrees with

the recent results obtained from WMAP. Notice that for such large values of Mc

the neutralinos are almost Dirac particles. However the non-Diracity is spoiled by

O(mW/M1/2)mW ∼ 300 MeV which is enough to avoid the strong limits on Dirac

fermions that put a lower bound on the non-Diracity around 100 KeV [73, 74].

On the other hand the WMAP range for Mc implies, in the gravitational sector,

gravitino masses m3/2
>∼ 10 TeV (depending on the value of the SS parameter ω)

are such that gravitinos decay early enough to avoid cosmological troubles and thus

solving the longstanding cosmological gravitino problem [75].

10Of course, such large values of Mc require a fine tuning < 1%, see section. 7.4.
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Chapter 8

Neutrino masses from a flat 5D
space

In the previous chapter we presented and developed a model for the electroweak

symmetry breaking defined in the interval. Here we continue with the phenomeno-

logical insight of this proposal. In particular, we wonder whether this model could

predict light mass eigenvalues for standard model neutrinos.

The exponential localization of the Higgs field towards the zero brane induces light

effective Yukawa couplings between the Higgs and the matter localized in (or to-

wards to) the π brane and on the other hand, if we allow the RH neutrinos to

propagate in the bulk, the eigenvalues of the mass are naturally mn & R−1, the in-

vers o the compactifacation radius, therefore, at first glance, it seems to be a chance

for a see-saw-like mechanism. In fact, in the last years a great scientific effort has

been dedicated to this topic [76, 77, 78, 79, 80, 81]. Non the less, before presenting

the model we will briefly review the 4 dimensional (original) see-saw mechanism for

neutrino mass generation.

8.1 4D see-saw mechanism

Standard model neutrinos are fermions with well defined chirality, as a consequence

their mass couplings should be of Majorana type, otherwise the propagator will

mixed the two chiralities, as it is the case of the electron, for example. Thus, the

usual Higgs mechanism for mass generation [82, 83] is not suitable. Instead, the

109



110 Neutrino masses from a flat 5D space

see-saw mechanism [84, 85] proposes the existence of heavy right handed neutrinos

(RH) which couple with the standard model left-handed ones (LH) through Yukawa

couplings. If we call ψR and ψL the RH and LH neutrinos respectively, MR the RH

mass and λ the Yukawa coupling then we have

L = · · ·+MRψ̄RψR + λhψ̄RψL + λh∗ψ̄LψR (8.1)

with h being the Higgs boson. Once it acquires its Vacuum Expectation Value

(VEV), say v, the Lagrangian becomes an effective mass matrix given by

L = · · ·+
(
ψ̄L, ψ̄R

)
·
(

0 λ v
λ v MR

)
·
(
ψL
ψR

)
. (8.2)

If MR � vλ then the eigenstates of the mass matrix are

νL ≡ ψL −
vλ

MR

ψR , with mass mL =
v2λ2

MR

,

νR ≡ ψR +
vλ

MR

ψL , with mass mR = MR ,

thus, if MR is large enough and λ is small enough we obtain an ultra light Majorana

mass. Nevertheless, taking a RH mass MR & 100 GeV to yield a Majorana mass of

the order of meV we need λ ∼ 10−7, which is a severe suppression.

8.2 5D mechanism for generation of neutrino masses

Many authors have used a 5D generalization of the See-Saw mechanism for neu-

trino mass generation with a right handed neutrino propagating in the 5D bulk

and thus with a mass naturally at the TeV scale. However, as Dienes, Dudas and

Gherghetta [77] have shown the effect of the Higher modes in the decomposition of

RH neutrino spectrum yields an effective Majorana mass for the SM left handed

neutrinos which in general spoils the See-Saw mechanism, as we will see below. Non

the less it is still possible to generate ultra light neutrino masses1 in a way to be

1Majorana and Dirac.
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discussed in a moment. By now let us introduce the model. For it we will con-

sider an extension of the electroweak symmetry breaking model presented in the

previous chapter [86], that is: a supersymmetric (N = 1) theory defined in the

interval Σ = M4 × I with a compactification radius R−1 ∼ few TeV. In what fol-

lows we first present the action for the RH neutrinos and then we will apply the

general results to the phenomenology of neutrinos and charged leptons. Let us take

N(c) = φ(c) +
√

2 θψ(c) + θ2F(c) as the content of the RH hypermultiplet. For them

we take the most general supersymmetric action defined in the interval. As we saw

in chapter 6 it is given by:

S =

∫
Σ

d4θ
[
N̄N + N̄cNc

]
−
∫

Σ

d2θ Nc∂5N + h.c.

+

∫
Σ

d2θ

(
aNcN +

b∗

2
N2 − b

2
N2
c

)
+ h.c.

+

∫
∂Σ

d2θ

(
s−
4
N2 − s+

4
N2
c +

1 + s3

2
NNc

)
+ h.c. , (8.3)

where a ∈ R, b ∈ C are constants with dimension of energy and s± = s1 ± is2,

~s = (s1, s2, s3), (8.4)

being a unitary vector. For simplicity we just omitted the subscript indicating the

boundary, although, except explicit mention, we take different parameters at y = 0

and y = π. The variational principle on (8.3) yields the boundary conditions

1

2
(1− ~s · ~σ)

(
φc
φ

)
= 0 ,

1

2
(1 + ~s · ~σ) [∂y + ~p · ~sM ]

(
φc
φ

)
= 0 , (8.5)

1

2
(1− ~s · ~σ)

(
ψc
ψ

)
= 0 , (8.6)

where we have defined the shorthands

~p =
1√

a2 + |b|2
(bR,−bI , a) , M =

√
a2 + |b|2 . (8.7)
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The spectrum allowed by these boundary conditions can be read off from Chap-

ter 5, and it is provided be the zeroes of the function [44, 55]

sin2(πτ)− (c0 − cπ)
M

Ω
tan(πΩR)−

[
cos2(πτ) + c0cπ

M2

Ω2

]
tan2(πΩR) , (8.8)

with cos(2πτ) = ~s0 · ~sπ, cf = ~p · ~sf and Ω2 = m2 − M2, m being the physical

mass. Notice that the spectrum equation depends only on SO(3) invariants related

to the relative configuration of the bulk and boundary matrices. Hence a continuous

group of SU(2) transformations acting on the fields lives the spectrum of the theory

invariant. To see this explicitly let us rewrite (8.3) in a more compact way as

S =

∫
Σ

N̄ N
∣∣
θ̄2θ2 −

1

2
M N Tε ~p · ~σN

∣∣
θ2 −

1

2
N TεN ′

∣∣
θ2 + h.c.

+
1

4

∫
∂Σ

N Tε (1− ~s · ~σ) N
∣∣
θ2 + h.c. , (8.9)

where

N =

(
Nc

N

)
, (8.10)

~σ ∈ su(2) are the Pauli matrices and

ε =

(
0 1
−1 0

)
. (8.11)

Now it is clear that a unitary rotation acting on (Nc, N)T translates into an SO(3)

rotation acting on the vectors defining the matrices, thus the spectrum is left invari-

ant. Geometrically, these (global) unitary transformations change the basis where

the bulk and boundary matrices are expressed but the relations between them re-

main unaltered. Notice that these transformations are not symmetries of the action

since albeit they leave the kinetic term invariant, the bulk and boundary mass matri-

ces transform covariantly. Non the less, the solutions connected by them represent,

indeed, the same physical 4D state. In the next section we shall use this spectrum

invariance to solve the equations of motion.
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8.2.1 Spectrum and wave functions

We first note that the general bulk mass configuration displayed above is not really

suitable to solve the equations of motion for the fermions. For them we have a

mixture of Majorana and Dirac mass term, which add difficulty to the resolution.

In particular, as we shall see in a moment, the usual separable solution taken in the

orbifold case, i.e. Ψ(x, y) =
(
f(y)ψ(x), g(y)ξ̄(x)

)T
, here does not work in general.

However, the set of unitaries

{U(~p)} ∪ {U(p1, p2, 0)} , (8.12)

where

U(~p) =
1

2
√

1− s~p

(
eiδ~p 0
0 e−iδ~p

)(
1− s~p + c~p 1− c~p − s~p
−1 + c~p + s~p 1 + c~p − s~p

)
, (8.13)

with

c~p = p3 , s~p =

√
1− (p3)2 ,

eiδ~p =
1

√
2
[
1− (p3)2]1/4

(√
p1 +

√
1− (p3)2 − i

p2

|p2|

√
−p1 +

√
1− (p3)2

)
,

and U(p1, p2, 0) being the limit of U(~p) when p3 → 0, i.e.

U(p1, p2, 0) =
1√
2

(
eiδp3=0 0

0 e−iδp3=0

)(
1 −1
1 1

)
, (8.14)

brings ~p to (0, 0, 1), i.e., a purely Dirac mass coupling.

In this new basis the equations of motion read(
∂2

5 −2−M2
)
φ = 0 (8.15)(

∂2
5 −2−M2

)
φc = 0 (8.16)

F + φ̄′c +M φ̄c = 0 (8.17)

Fc − φ̄′ +M φ̄ = 0 (8.18)
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i σ̄µ∂µψ − ∂5ψ̄c −M ψ̄c = 0 (8.19)

i σ̄µ∂µψc + ∂5ψ̄ −M ψ̄ = 0 . (8.20)

The spinorial equations can be gather in a single Dirac equation as

(
i γµ∂µ − γ5∂5 −M

)
Ψ = 0 , (8.21)

with Ψ =

(
ψc
ψ̄

)
. For simplicity we consider the case ~s0 = ~sπ = (−s, 0, c) and thus

the boundary conditions read (
1− c s
s 1 + c

)
·
(
φc
φ

)
0,π

= 0 (8.22)

[∂5 +M c]

(
1 + c −s
−s 1− c

)
·
(
φc
φ

)
0,π

= 0 (8.23)

(
1− c s
s 1 + c

)
·
(
ψc
ψ

)
0,π

= 0 (8.24)

hence the spectrum equation reduces to

[
1 + c2M

2

Ω2

]
tan2(πΩR) = 0 , (8.25)

which has the solution

m2
0 = s2M2 , mn =

1

R

√
M2R2 + n2 , n = 1, 2, 3, · · · (8.26)

Wave functions

• Bosonic solution
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There is no subtlety to deal with the bosonic solution. As usual we suppose the

eigenfunctions to verify the 4d klein-Gordon equation 2φn(c)(x, y) = −m2
nφ

n
(c)(x, y),

hence the general solution to the 5d equations of motion will be given by

Φ(x, y) = A(x) cos(Ωy) +B(x) sin(Ωy) , (8.27)

with Φ =

(
φc
φ

)
. The boundary conditions at y = 0 impose the restrictions

A =

(
1 + c− s
1− c− s

)
a(x) ,

B = −Mc

Ω

(
1 + c− s
1− c− s

)
a(x) +

(
−1 + c+ s
1 + c− s

)
b(x) ,

where a(x), b(x) are independent complex functions verifying the above 4d Klein-

Gordon equation. Finally, the boundary conditions at y = π impose

b(x) sin(ΩπR) = 0 , (8.28)

a(x)

[
Ω +

c2M2

Ω

]
sin(ΩπR) = 0 , (8.29)

which have two possible solutions

1. b(x) = 0 and hence Ω2 = (iΩ̃)2 = −c2M2, whose eigenfunction is

Φ0 =

(
1 + c− s
1− c− s

) [
cos(ΩRy)− cM

Ω
sin(ΩRy)

]
ϕ(x) =(

1 + c− s
1− c− s

)
e−McRyϕ(x) , (8.30)

2. ΩR = n ∈ Z+, with eigenstate

Φn =

(
1 + c− s
1− c− s

)
fn(y)ϕn1 (x)

+

(
−1 + c+ s
1 + c− s

)
gn(y)ϕn2 (x) (8.31)

for fn(y) = cos( n
R
y)− McR

n
sin( n

R
y) and gn(y) = sin( n

R
y).
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• Fermionic solution

The formal solution to (8.21) is given by

Ψ =

[
cos(
√
−2−M2 y) + γ5 i γµ∂µ −M√

−2−M2
sin(
√
−2−M2 y)

]
Θ(x) ,

where Θ(x) is the initial value at y = 0 and we will assume it to fulfill the 4d

Klein-Gordon equation 2 Θ +m2Θ = 0. Thus the solution for the m-th mode reads

Ψ =

[
cos(Ωy) + γ5 i γµ∂µ −M

Ω
sin(Ωy)

]
Θ(x) , (8.32)

of course, the initial value will be the solution to the boundary condition, (8.6), at

y = 0, that is:

Θ =

(
(1 + c− s)χ
(1− c− s)χ̄

)
, (8.33)

with χ an arbitrary Weyl spinor. Nevertheless, we are working with a 4d Dirac

spinor satisfying a Dirac equation, namely, there has to be another Weyl spinor2,

say ξ, such that, together with χ, both of them verify the equations

iσµ∂µξ̄ = mχ , i σ̄µ∂µχ = mξ̄ . (8.34)

Plugging (8.34) and (8.33) in (8.32) we obtain

Ψ =

(
(1 + c− s)f−(y)χ
(1− c− s)f+(y) χ̄

)

+ m

(
(1− c− s) ξ
−(1 + c− s) ξ̄

)
sin(Ωy)

Ω
, (8.35)

f±(y) = cos(Ωy)± M

Ω
sin(Ωy) . (8.36)

2This is a straight analogy of the orbifold case, where we have a Dirac spinor in the bulk
although parity assignment projects out one of the components at the boundary such that there
we have a single Weyl (Majorana) spinor.
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Finally, the boundary condition at y = π imposes the vanishing of

sin(ΩπR)

Ω

(
1− c s
s 1 + c

)
·
(
−M(1 + c− s) m(1− c− s)
M(1− c− s) −m(1 + c− s)

)
·
(
χ
ξ

)
,

which is equivalent to

sin(ΩπR)

Ω

(
sM m
sM m

)
·
(
χ
ξ

)
= 0 . (8.37)

Equation (8.37) has two possible solutions:

1. ΩR = n with n = 1, 2, 3, · · ·
In this case we have two independent spinorial degrees of freedom, ξ and χ,

degenerated in mass.

2. ΩR /∈ Z
Now the solution should be

mξ + sMχ = 0 , (8.38)

however, ξ, χ satisfy the equations (8.34) hence if ξ = κχ then

iσµ∂µξ̄ = m
1

κ
ξ = iσµ∂µκχ̄ = mκξ ⇐⇒ κ = 1 . (8.39)

and therefore

m = −sM . (8.40)

Thus we reencounter the spectrum (8.26). The corresponding wave functions turn

out to be

Ψn =

(
(1 + c− s)fn−(y)χn

(1− c− s)fn+(y) χ̄n

)

+
√
n2 +M2R2

(
(1− c− s) ξn
−(1 + c− s) ξ̄n

)
sin( n

R
y)

n
, (8.41)

Ψ0 =

(
(1 + c− s)η
(1− c− s)η̄

)
e−cMy . (8.42)
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Some comments about these solutions are in order now. First of all the degeneracy

of the higher modes is clearly a consequence of the coincidence in the boundary

matrices. To understand this, consider the bosonic solution corresponding the the

eigenvalue m

(
∂2

5 +m2 −M2
)( φc

φ

)
= 0 , (8.43)

(1− S)

(
φc
φ

)
0,π

= 0 , (8.44)

(1 + S) [∂5 + cM ]

(
φc
φ

)
0,π

= 0 , (8.45)

both, the boundary conditions and the bulk equations of motion, are invariant under

the transformation

eiαS , α ∈ R , S = S0 = Sπ . (8.46)

For the sake of simplicity we express the system in the basis were S = σ3. Now

suppose that the multiplicity of every mass eigenvalue out of (8.25) is one, then we

fall in a contradiction, since if (
φc
φ

)
, (8.47)

is the solution corresponding to the eigenvalue m, then(
φc

e−2iαφ

)
, (8.48)

which is a linearly independent C2 vector, i.e., not proportional to the original state,

is a solution to the same equations of motion and boundary conditions, and hence

it shares the same mass eigenvalue. It is clear that in a particular case of the form

(φc, 0) or (0, φ) we have not this contradiction. From the supersymmetric structure

of boundary conditions it follows that the statement is extendible to the fermionic

case. Secondly, notice that the solutions are not, in general, factorizable as f(y)g(x)

which reflexes explicitly why the orbifold-like ansatz mentioned previously is not

suitable. We want to remark in addition that the presence of ξ is not a unitarity
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problem at all. From (8.34) it can be expressed in terms of σ̄µ∂µχ which is in con-

cordance with the uniqueness of the solution to (8.21) given a 4D dependence of χ.

However they can be thought as off-shell independent degrees of freedom.

Finally, it is clear from (8.32) and (8.15)-(8.16) that given a value of Ω the solu-

tion corresponding to −Ω is exactly the same, since there is no degeneracy associ-

ated. Actually the spectrum can be thought as the solution to
√
m2 −M2 = Ω0

(
√
M2 −m2 = Ω̃0) given a solution Ω0 of (8.8). The sign of the root is, of course,

a matter of convention, but one can not choose both of them at the same time.

For instance, by choosing cM to be negative one has that the lowest RH mode

exponentially localizes towards y = π boundary. In fact the sign of Ω (Ω̃) can be

absorbed by the redefinition y → πR−y, which shows that both signs cannot coexist

simultaneously since they do correspond to the same eigenstate.

8.3 Effective action

In this section we develop the effective action for RH neutrinos coupled with SM

matter (the Higgs and the left-handed neutrinos (LH)) and we will obtain the lowest

eigenvalue by solving the characteristic polynomial of the effective mass matrix.

As we will show this can be alternatively done through the effective mass matrix

resulting from the integration of the higher KK modes.

For simplicitywe only consider the action concerning the right handed neutrinos,

the left handed neutrinos and the Higgs. For the latter we will consider the action
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developed in Ref [55]. The 5D action under study is 3

Seff =
1

2

∫
Σ

iψ̄cσ̄
µ∂µψc + iψcσ

µ∂µψ̄c + iψ̄σ̄µ∂µψ + iψσµ∂µψ̄

− 1

2

∫
Σ

ψc (−∂5ψ +Mψ) + ψ (∂5ψc +Mψc) + h.c.

− 1

4

∫
∂Σ

ψ [s−ψ + (s3 − 1)ψc] + ψc [(1 + s3)ψ − s+ψc] + h.c.

+

∫
y=yf0

Yν ψcνLHc + h.c. (8.49)

where νL denotes the LH neutrino, Yν is the 5D Yukawa coupling (with dimension

of inverse energy), yf0 stands for the boundary where νL is localized, i.e. f = 0 or

f = π and Hc is the lowest mode of the Higgs which according to Ref. [55] is given

by Hc '
√

2MH e
−MHy h(x). Now we take ψ and ψc as

ψc =(1 + c− s)e−Mcy η(x)

+
∑
n≥1

[
(1 + c− s)fn−(y)χn(x) +

mn

n
(1− c− s) sin(n y/R) ξn(x)

]

ψ =(1− c− s)e−Mcy η(x)

+
∑
n≥1

[
(1− c− s)fn+(y)χn(x)− mn

n
(1 + c− s) sin(n y/R) ξn(x)

]

whose components satisfy the (free) equations of motion

iσ̄µ∂µη = −sM η̄ , (8.50)

iσ̄µ∂µ

(
χn

ξn

)
=

1

R
mn

(
0 1
1 0

)
·
(
χ̄n

ξ̄n

)
, (8.51)

3The Yukawa interaction terms are strictly localized on the boundaries since they are not
SU(2)R invariant.
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with mn =
√
M2R2 + n2. By integrating over the fifth coordinate one obtains the

following effective 4D action

Seff =

∫
d4x (k0)−2

[
i

2
η̄σ̄µ∂µη +

1

2
s M η2

]
+
∑
n≥1

∫
d4x

[
i

2
Λ̄nknσ̄

µ∂µΛn −
1

2R
mn ΛT

n knσ1Λn

]

+

∫
d4x Yν

√
2MHefh (1 + c− s) ηνLh

+
∑
n≥1

∫
d4x Yν

√
2MHefh(1 + c− s)χnνL h + h.c. , (8.52)

where k0 is the real number

(k0)−2 =
2(1− s)
cM

(
1− e−2cMπR

)
, (8.53)

kn the tower of matrices

kn = 2πR
(mn)2

n2
(1− s)

[
1 + s

MR

mn

σ1

]
, (8.54)

Λn stands for

Λn =

(
χn
ξn

)
,

and

efh = e−MH |yfh−yf0 |. (8.55)

where fh = 0 or fh = π depending on the boundary the Hc zero mode is localized

towards. By redefining the modes as

ψn± =
1

√
2 k

(n)
±

(χn ± ξn) , (8.56)

ζ =
1

k0

η , (8.57)
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with

(k
(n)
± )−2 = 2πR

(mn)2

n2
(1− s)

[
1± sMR

mn

]
, (8.58)

the 4D effective action (8.52) can be rewritten as

Seff =

∫
d4x

[
i

2
ζ̄ σ̄µ∂µζ +

1

2
s M ζ2

]
+
∑
n≥1

∫
d4x

i

2

(
ψ̄n
−σ̄

µ∂µψ
n
− + ψ̄n

+σ̄
µ∂µψ

n
+

)
−
∑
n≥1

∫
d4x

1

2R
mn

[(
ψn

+

)2 −
(
ψn
−
)2
]

+

∫
d4x Y(0)ζνL h

+
∑
n≥1

∫
d4x

[
Y

(n)
− ψn

−νL h + Y
(n)
+ ψn

+νL h
]

+ h.c. , (8.59)

where

Y (0) = Yν (1 + c− s)
√
|cMMH |

1− s
efhefν (8.60)

and

Y
(n)
± =

1√
2
Yν (1 + c− s)

√
|MH | efh k

(n)
± , (8.61)

are the 4D effective Yukawa coupling constants. Here we have defined efν as

efν = e−|cM ||yfν−yfh| , (8.62)

where yfν = 0, πR depending on where the lowest mode of the RH neutrino localizes

towards. Once the Higgs gets its vacuum expectation value, 〈h〉 = v, the Yukawa

couplings turn into Dirac mass terms and we are thus left with an effective mass

matrix connecting LH and RH neutrinos given by

Lm =
1

2
sM ζ2 + Y (0)vζνL −

∑
n≥1

1

2R
mn

[(
ψn+
)2 −

(
ψn−
)2
]

+
∑
n≥1

v
{
Y

(n)
+ ψn+νL + Y

(n)
− ψn−νL

}
. (8.63)
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Notice that RH neutrinos appear in (8.59) as Majorana spinors albeit we started

with Dirac fermions. However if we redefine the fields as

ϕn+ = ψn− + ψn+ , (8.64)

ϕn− = ψn− − ψn+ , (8.65)

we recover the expected Dirac mass spinors due to the degeneracy in mass of the

higher modes.

Now we can find the eigenvalues of the infinite mass matrix (8.63) by computing

its characteristic polynomial [77]

P (λ) = det



−λ m
(0)
D . . . m

(n)
D+ m

(n)
D− . . .

m
(0)
D sM − λ
...

. . .

m
(n)
D+ −mn − λ

m
(n)
D− mn − λ
...

. . .


. (8.66)

where m
(0)
D = vY (0) and m

(n)
D± = vY

(n)
± . The determinant of (8.66) yields

P (λ) = (8.67)[
(λ− sM)

∏
k≥1

(
λ2 −m2

k

)]λ+

(
m

(0)
D

)2

sM − λ
+
∑
l≥1

−
(
m

(l)
D+

)2

ml + λ
+

(
m

(l)
D−

)2

ml − λ




When s 6= 0 the smallest eigenvalue, λL, will not be that vanishing either λ−sM
or λ2 −m2

n. Therefore it should verify the equation

λL +

(
m

(0)
D

)2

sM − λL
+
∑
l≥1


(
m

(l)
D−

)2

ml − λL
−

(
m

(l)
D+

)2

ml + λL

 = 0 . (8.68)

Since m
(n)
D±,m

(0)
D are ∼ vYν/R, and we will assume it to be much smaller than M ,

we can expand the solution in powers of β = vYν
MR

as

λL
M

=
∞∑
`=1

λ2`β
2` . (8.69)
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which makes sense whenever the lowest order is small. Substituting back in (8.68)

we find that at lowest order λL is given by

λL
M

+

(
m

(0)
D

)2

sM2
= −

∑
n≥1

R

Mmn

[(
m

(n)
D−

)2

−
(
m

(n)
D+

)2
]

=− 2(1 + c)sMH (efh)2Rv2Y 2

π

∑
n≥1

n2

(n2 +M2R2)(n2 + c2M2R2)
(8.70)

Finally the series in (8.70) can be computed analytically by means of a Poisson

re-summation giving

λL = −v2Y 2
ν

1 + c

s
MH (efh)2 [2c (efν )

2 + coth(πMR)− c coth(πcMR)
]
. (8.71)

Alternatively this result can be obtained as the diagonalization of the effective

action induced after integrating out the higher KK modes ψn± in (8.63) for momenta

much smaller than their mass (i.e. neglecting their kinetic terms). From (8.63) the

equations of motion for ψn± are given by

ψn± = ∓
Rm

(n)
D±

mn

νL (8.72)

and substituting back in (8.63) we find in matrix form the following effective mass

coupling for νL and ζ ≡ νR

1

2
(νL, νR) ·

(
µ m

(0)
D

m
(0)
D sM

)
·
(
νL
νR

)
, (8.73)

with

µ =
∑
n≥1

R

mn

[(
m

(n)
D+

)2

−
(
m

(n)
D−

)2
]
, (8.74)

Since µ and m
(0)
D are much smaller than M the light and heavy eigenvalues λL,H of

the mass matrix in (8.73) are

λL ' µ−

(
m

(0)
D

)2

sM
, λH ' sM . (8.75)
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where the light eigenvalue λL coincides with that found in Eq. (8.71).

A particularly interesting case is found when s = 0, that is when the boundary

matrices are precisely aligned with the bulk mass matrix. In that case the charac-

teristic polynomial simplifies to

P0(λ) =

[∏
k≥1

(
λ2 −m2

k

)]λ2

1 + 2
∑
l≥1

(
m

(l)
D

)2

m2
l − λ2

− (m(0)
D

)2

 (8.76)

where (
m

(l)
D

)2

= 2β2M2MHR
l2

π(l2 +M2R2)
, (8.77)

Notice that (8.76) is an equation for λ2 which means that both ±λ are solutions and

thus the set of eigenstates of the whole mass matrix are exactly degenerate by pairs

and therefore they can be gathered to yield Dirac fermions. Following the same used

above we find that the lowest eigenvalue is given by

λL± = ±2Yνv efh
√
MHM e−πMyfν , (8.78)

The effective mass matrix for νL, νR will be given in that case by(
0 mD

mD 0

)
. (8.79)

where we have defined mD = 2Yνv efh
√
MMH e−πMyfν . The degeneracy of the

spectrum for s = 0 can be understood in terms of a symmetry which takes place

only within this case. As a matter of fact, s = 0 means that the vectors ~p,~s0, ~sπ

are all aligned along the same direction and hence a U(1) subgroup of unitary

rotations around this direction axis leaves the action invariant. In terms of the
fermion components, these transformations translate into

(η, χn)→ eiα (η, χn) , ξn → e−iα ξn , νL → e−iα νL (8.80)

where α is a real parameter. Notice that this symmetry forbids any Majorana term 4,

in particular for νL, and hence µ must vanish.

4This symmetry plays the role of the lepton number symmetry of the SM.
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8.4 Discussion on neutrino masses

In this section we will apply the previous results to discuss the possibility of getting,

within this kind of models, an (ultralight) neutrino mass in the sub meV range. The

first task will be to set the range of dimensional Yukawa couplings which appear in

the 5D action in the leptonic sector∫
∂Σ

(Yν`HcνLψc + Y`H`LeR) (8.81)

i.e. Yν` , with dimension of length, and Y`, with dimension of square root of length,

where ` = {τ, µ, e}. A naive estimate of wave function renormalization correction

to the Yukawa couplings in the 5D theory sets bounds as

yν` ≡
Yν`
R

<∼
4π

ΛR
, y` ≡

Y`√
R

<∼
4π√
ΛR

(8.82)

so that taking ΛR ∼ 10 we obtain O(1) upper bounds on the dimensionless Yukawa

couplings yν`, `. We can now distinguish three different scenarios:

8.4.1 Dirac mass

We will assume here that all the SM matter is strictly localized on the y = 0 brane

and the zero mode of the Higgs is localized towards it as well, thus efh = 1, and

the zeroth mode of RH neutrino is exponentially localized towards y = πR, i.e.

yfν = πR, with s = 0 as Fig. 1 shows.

As shown in the previous section we obtain a Dirac mass connecting νL and νR,

which is of order

mD
ν`
∼ 2v Yν`

√
MMH εR . (8.83)

with εR = e−MπR. In Fig. 8.2 we show the Dirac mass as a function of MR for

1/R ∼ 5 TeV, yν` ∼ 1 and MHR ∼ 1.6 [55] 5. We can see from Fig. 8.2 that mD
ν`

<∼ 1

5As it is shown there for such value of MHR the spectrum of the Higgs presents a tachyon at
the tree level, which partially cancels the positive one-loop radiative correction to the Higgs mass
due to the gauge coupling and allows the EWSB to take place at the two loop level with a modest
amount of fine tuning.
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y = 0 y = πR

QL, UR, DR

LL, ER

Hc ν
(0)
R

Figure 8.1: Bulk and brane matter distribution for a neutrino Dirac-like mass.

eV for MR >∼ 9 although mD
ν`

decreases exponentially with MR and thus mD
ν`
' 1

meV for MR ' 11. In this scenario there is no wave function suppression for the

charged leptons whose Yukawa couplings should therefore be given by y` ∼ m`/v.

9 9.5 10 10.5 11
MR

-3

-2.5

-2

-1.5

-1

-0.5

0

mDR

Figure 8.2: mD
ν`

as a function of MR for MHR = 1.6 and s = 0.

If s 6= 0 in this scenario the lowest eigenvalue is a Majorana mass given by

mM
ν`
∼ Y 2

ν`
v2MH

[
2ce−2π|cM |R + coth(πMR)− c coth(πcMR)

]
, (8.84)

which in general will be too large, unless a severe, although not extreme, suppression

of the 5D Yukawa constants, yν` ∼ 10−6 which is similar to the electron Yukawa

coupling in this kind of models ye.

Yet another possibility could be to localize the lowest RH mode towards y =

0, corresponding to cM > 0. Considering now MR � 1 the mass eigenvalue
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is proportional to (c + sign(M) + 2e−2π|M |R − 2ce−2πcMR). Then by choosing

c = −sign(M) we could be left with an exponentially suppressed Majorana mass.

However this value of c is not consistent with the initial hypothesis cM > 0. In fact

the smallness of the Majorana eigenmass is achieved with a different localization of

the quark and lepton sector within the SM as we will see in the next section.

8.4.2 Majorana mass

The main obstruction to get a small Majorana mass eigenvalue out of the effective

mass matrix (8.73) for the s 6= 0 case is that the Yukawa couplings of the higher

KK modes are not suppressed if the SM matter is located on the boundary where

the Higgs localizes towards. However by allowing the Standard Model matter to be

split into different branes , for instance quarks localized in the same boundary (quark

brane) where the Higgs localizes towards, while leptons are localized in the opposite

boundary (lepton brane) as Fig. 3 shows, then via efh , the whole tower of effective

Yukawa couplings will be exponentially suppressed by the Higgs localization and so

µ will be.

y = 0 y = πR

QL, UR, DR LL, ER

Hc ν
(0)
R

Figure 8.3: Bulk and brane matter distribution for a neutrino Majorana-like mass.
The νR propagates in the bulk with mass M.

Such a splitting has its justification within the context of intersecting branes in

String theory. Briefly, it consists of different Dp-branes wrapping non trivial ho-

mology cycles which intersect at M4 world volumes. The open strings stretching
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between them reproduce (p + 1)D gauge multiplets and 4D chiral multiplets. Such

Dp-branes intersect (in general) several times, therefore one can replicate 4D chiral

matter. The details of this development takes us far from the aim of the present

work. Non the less the interested reader can find an excellent review in [87] and

references therein.

Now the effective mass matrix is analogous to the previous case except for the

global exponential suppression on the Dirac couplings, namely, µ→ ε2H µ with εH =

e−πMHR. In addition, we will assume the lowest mode of the RH neutrino to localize

towards the leptonic brane, i.e. yfν = 0, corresponding thus to cM < 0. We then

find that the lowest neutrino Majorana eigenmass is given by

mM
ν`

= ε2Hv
2Y 2

ν`
MH

1 + c

s
[2c+ coth(πMR)− c coth(c πMR)] . (8.85)

Notice the almost independence on the RH neutrino bulk mass M albeit its presence

is absolutely necessary to provide the existence of a lowest Majorana eigenmass 6 it

is shielded by the higher RH neutrino modes. In Fig. 8.4 we plot mM
ν`

as a function

of log10 yν` for fixed values of c and MR. From Fig. 8.4 we can see that generically

2.6 2.8 3 3.2 3.4 3.6 3.8 4
z

-2.5

-2

-1.5

-1

-0.5

0

mMR

Figure 8.4: Neutrino Majorana mass, mM
ν`

, as a function of − log10 yν` for c = −1/2,
MHR = 1.6 and MR = 5.

mM
ν`

<∼ 1 eV implies yν`
<∼ 10−3.

6In case of vanishing M we would be left with a lowest Dirac eigenvalue or, at most, with two
almost degenerate Majorana eigenstates.
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The charged leptons, on the other hand, have masses

m` ∼ v y`
√
MHR εH , (8.86)

By fixing in this scenario the Higgs localizing mass to its previous value MHR = 1.6

we predict the correct value of the τ mass [66] by means of the 5D Yulkawa coupling

yτ ' 1 while y` ' m`/mτ for the first two generations (` = e, µ).

An interesting particular case arises here. Given that cM is negative, in the limit

when |cMR| � 1 Eq. (8.85) reads

mM
ν`
∼ Y 2

ν`
v2ε2HMH

1 + c

s

[
3c+ sign(M) + 2sign(M)e−2π|M |R + 2ce−2π|cM |R] .

(8.87)

Considering now the value c = −1
3
sign(M) we find a doubly suppressed Majorana

eigenmass given. For instance for the case M > 0 and c = −1/3 one gets

mM
ν`
∼
√

2

3
Y 2
ν`
v2ε2He−

2
3
πMR . (8.88)

which has a doubly suppressed exponential behaviour both from MH and M . In

that case one can get tiny Majorana neutrino masses from the localization of the

zero mode of νR for O(1) values of the 5D Yukawa couplings yν` . This is shown

in Fig. 8.5 where the Majorana mass mM
ν`

is plotted versus |MR| for yν` = 1 and

c = ±1/3.
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Figure 8.5: Neutrino Majorana mass, mM
ν`

, as a function of |MR| for MHR = 1.6 and
c = 1/3 (upper curve), c = −1/3 (lower curve).
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Conclusions and Outlook

Along this Thesis we have developed a clear line of research based on models

of High Energy Physics in 5 dimensions with the extra dimension defined in the

closed interval (0, πR) with R at the scale of few TeV−1 incorporating global su-

persymmetry whose aim is to be applied to phenomenology of Physics beyond the

SM. In particular we have tried to shed some light on two crucial aspects of the SM

Physics: ElectroWeak Symmetry Breaking and the origin of neutrino masses. To

this aim we worked out a supersymmetric model in a five dimensional space with

boundaries motivated from models defined on the orbifold with odd bulk masses.
As we saw, a geometrical interpretation could be given to supersymmetry breaking

by boundary terms, as a mismatch between bulk and boundary mass matrices in

two different ways. We identified one of them as a Scherk-Schwarz supersymmetry

breaking due to the breaking of the global SU(2)R symmetry and the other was saw

as a soft breaking coming from a possible boundary spurion superfield. While the

Scherk-Schwarz breaking is known to be one-loop finte, we checked explicitly that

the latter breaking pattern induced linearly divergent corrections to the Higgs mass

although its stability is warranted for values of the cut off ΛR . 102. Finally we

used this novel breaking pattern to proposed a model for ElectroWeak Symmetry

Breaking since the Higgs spectrum predicted by the boundary conditions presented

a tachyon at the tree level.

Non the less, the tachyonic mode is still present in the Higgs spectrum with the

Scherk-Schwarz breaking introducing an extra SU(2)H index in the Higgs multi-

plet. Therefore, to reduce the UV sensitivity of the model we further investigated

the ElectroWeak symmetry breaking process within this context. In particular we

exhaustively studied its quantum stability under radiative corrections and we con-

cluded that the tree level tachyon could partially cancel the positive quatum cor-

rections to the Higgs mass coming from the gauge sector and then the EWSB could

be triggered with the negative quantum corrections coming from the top-stop sector

with a mild fine tuning.
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Finally, we continued with the phenomenological insight of this class of models by

investigating the possibility for yielding a light neutrino mass. We developed an

N = 1 supersymmetric action for right handed neutrinos, left handed neutrinos and

the Higgs. We found that using the exponential localization towards one of the

boundaries of the lowest mode of RH neutrino one can yield an ultra light neutrino

Dirac mass while the Higgs exponential localization allows one to get a Majorana

like mass at the meV scale for natural values of the 5D Yukawa coupling constants

∼ 10−3R .
Following the lines of our calculation it should be easy to describe textures of RH

neutrino masses describing the different patterns for LH neutrino masses and mixings

(see e.g. [88]). It should be enough to introduce the corresponding three-by-three

mass matrices and carry on the parallel calculation. In cases where Dirac or Ma-

jorana neutrino masses are controlled by the localizing masses, since they depend

exponentially on the latter a modest change in the corresponding RH mass eigen-

values should be able to describe realistic neutrino spectra. Of course since the RH

neutrino masses are an input in our theory, even if correct spectra do not require

to fine-tune any parameters, we cannot call this a “solution to the neutrino mass

problem” until some more fundamental theory (e.g. string theory) would give us the

correct values for the heavy masses. In fact this was not the aim of our work but a

classification of the different solutions of our 5D theory providing realistic spectra

for neutrino masses and yielding hints for possible future discoveries at LHC.
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