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Outline

The real voyage of discovery

consists not in seeking new lands

but seeing with new eyes

MARCEL PROUST

Since ancient times, from the beginning of humankind, human beings have shown a
great curiosity and attraction for what they saw when looking up. For one reason or another,
the quest for explanations of mystical nature (maybe justifications) for what surrounded
human life as well as its destiny was searched outside the Earth. This mystical interest
encouraged the observation of the night sky which, in time, together with other social and
philosophical changes, lead to a rational interpretation of what they observed and, hence
the formulation of the first cosmogonical models and then cosmological models.

Precisely, the legacy of these first sky observers, has been the curiosity for the ex-
traterrestial space in search of answers to many different questions. Some of these questions
formulated by several scientists, were the seeds for a new discipline sowed in the field of
physics science: Cosmic Ray Physics.

Since the beginning of XX century, when Cosmic Ray Physics was born, this
discipline has walk a long way along which some relevant discoveries have been made, such
as the discovery of positrons, pions and muons among other particles. Actually, the most
powerful accelerators in nature are not built by human beings on Earth, on the contrary,
one has to find them in astrophysical objects such as stars, pulsars, quasars, etc..., so these
objects are the best candidates if one wants to seek evidences for the existence of some exotic
new particles which are predicted in different theories (grand unified theories, string theories,
quantum gravity theories, etc...). Nowadays, Cosmic Ray Physics consist on a discipline
with a great tradition allowing to gather several different topics of astrophysics and physics
such as nuclear physics, cosmology and elementary particle physics. As a result Cosmic
Ray Physics has become a very attractive subject which offers an opportunity to work on
several topics such as the nucleosynthesis of cosmic rays (studying the astrophysical sites and
conditions in which the nucleosynthesis processes can occur, as well as their caracterisation
as a nuclear process), the injection process, the acceleration mechanisms, the propagation
process and the detection of cosmic rays near the Earth.

During the 80’s, a set of experiences on board of satellites were planned and carried
out with the aim of studying the hadronic component of cosmic rays, specifically ultra heavy
ions with charge higher than Iron. The present work is, therefore, linked to one of such
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experiences; the UHCRE (Ultra Heavy Cosmic Ray Experiment). Several stacks of sheets
of solid state nuclear track detectors used in the UHCRE have been analysed and measured
by our group, recognizing a total of 205 tracks as originated by ultra heavy cosmic ray ions.
The identification of cosmic ray ions recorded in UHCRE has been the first motivation of
this work, so the first half of the present thesis deals with this problem.

The abundance of ultra heavy cosmic rays with Z & 65 given in this work rep-
resents a statistically significant sample of such nuclei which is comparable to the total
of data accumulated in all former experiments. This fact, has stimulated us to make the
following question: Which is the source composition that, after propagation through the
Galaxy, better reproduces our UHCRE measured abundances? To answer this question, it
has been necessary to take a propagation model and then solve the corresponding transport
equations. This task constitutes the second half of this work.

Therefore, the present Ph. D. thesis is divided into two parts: Chapters 1 and 2
cover the identification problem of the ions recorded in the UHCRE and, on the other hand,
chapters 3 and 4 deal with the propagation process of the abundances of such ions back to
their sources using the Leaky Box model.

I have decided to write this thesis in four independent chapters, in which all chap-
ters follow a scheme of a scientific article, so each chapter has its own introduction, results,
conclusions and references, as can be seen in the table of contents. There are two reasons for
what I have adopted this arrangement rather than a classical design: firstly, the fact that
a chapter is independent of each other allows to attack the document at any chapter and
proceed to its reading without worrying about having read the previous chapters (actually,
this is obvious for the first chapter, as happens with all thesis); and in second place, the
article structure of each chapter makes its comprehension easier, as a significant amount of
the scientific literature consists on papers written according this scheme. So, I have found
worthwhile to use this organisation in each chapter in order to help for a quick localisation
of what one is interested for.

The arrangement of the thesis goes as follows:

In chapter one, an identification method, known as Reduced Etch Rate Fractional
Gradient (RERFG) is presented and a detailed study of its range of applicability is per-
formed. The determination of the abundances of ultra heavy cosmic ray with Z & 65 seen
by the UHCRE is carried out using this method, because its conditions of applicability are
fulfilled by the UHCRE experiment.

In the second chapter, an alternative track formation model based on a modifi-
cation of the Restricted Energy Loss model is taken into consideration by introducing in
the energy loss expression the close collisions corrections appearing in the corrected Bethe-
Bloch formula, modulated by a new parameter. Then, the model is included in the charge
assignation procedure, and a study taking the UHCRE measurements allows to establish
relationships between the parameters involved in the identification process. Finally, an
estimation of these parameters is made using experimental data from accelerator.
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In chapter three, the transport equation for the Leaky Box Model (LBM) is deduced
from the general transfer equation which describes the variation of the chemical composition
of cosmic rays during their travel through the Galaxy. Detailed expressions of all parameters
that take part in the propagation equations are provided, and the source abundances inferred
from the UHCRE results are estimated solving the transport equations, corresponding to
all elements with charge 65 < Z < 92, with a numerical method that has to be understood
as a first approximation to the problem.

In the last chapter, the Leaky Box Model transport equations are numerically
solved using theWeighted Slab Technique, obtaining an excellent agreement with analytical
solutions. A study of the response of the LBM is presented when different expressions
of the required propagation parameters, such as the spallation cross sections, the path
length distribution functions or the type of source composition. By optimizing the χ2

statistical parameter between experimental and calculated abundances, it has been possible
to determine which combination of all available expressions of the propagation parameters
better reproduces the experimental abunadances of UHCRE.

Finally, the main conclusions of the present work are enumerated and can be found
at the end of this document.
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1. Identification and measurement
of abundances of Ultra Heavy
Cosmic Ray Nuclei detected by the
UHCRE experiment

Physical concepts are free creations of the human mind,

and are not, however it may seem,

uniquely determined by the outside world.

ALBERT EINSTEIN

1.1. Introduction

1.1.1. History of Cosmic Ray research

The most relevant discoveries and experiments, which have been realized through
the history in cosmic ray research are summerised in figure 1.1. A more detailed explanation
of such events is developed in this section.

The precedents

The story begins about 1900 when the ionisation and electrical conduction of gases
was under study. Many important new discoveries had been made in the preceding years. In
1897 Thomson succeeded in showing that cathodic rays had an electronic nature. Natural
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Figure 1.1. Main events in cosmic ray research chonologically displayed. Each tick points
to the year, the event and its protagonists.
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radioactivity had been discovered by Bequerel in 1896 and it was soon shown that the
radiation consisted of three types of particles, the α, β and γ radiation.

The way in which the amount of ionisation was measured was by noting the rate
at which a gold leaf electroscope lost its charge. Simultaneously, in 1900, Wilson, Geitel
and Elster found that electroscopes kept discharging even if they were situated in the dark
well away from the sources of natural radioactivity. This unknown radiation was called dark
current.

At this point the question was, which is the origin of such dark current? It was
thought that the bulk of the ionisation observed arose from γ rays emitted by radioactive
elements present in the Earth. In 1910, Wulf (who was the responsible of the best elec-
trometers used) found out that the ionisation fell from 6.0 ions/s·cm3 to 3.5 ions/s·cm3
as he ascended the Eiffel Tower (330 m). Consequently, this result seemed to confirm the
previous hypothesis but γ rays should be halved in 80m of air.

The balloon age

The real breakthrough came in 1912 and 1913 when first V. Hess in Vienna and
then Kolhörster in Berlin made manned balloon ascents in open balloons, carrying their
detection instruments to altitudes of 5 km and eventually 9 km. They discovered that
the intensity of the radiation effect on their detectors drastically increased with altitude so
conclude that the radiation was originated at, or outside of the upper atmosphere. Since
the radiation persisted day and night, it was also concluded that the sun was not the direct
source.

In the twenties, A. Millikan, who coined the name “COSMIC RAYS” for the
mysterious radiation, showed that the atmosphere behaved as a mass of absorbing material,
and consequently was not the producer of primary cosmic rays. He observed that the
radiation was absorbed in water to the same degree as in an equivalent weight of air. He
also confirmed, with improved measurements, the dependence of ionisation with altitude as
can be seen in figure 1.2.

The hypothesis for the so-called cosmic rays was that they consisted on γ rays
with a bit more penetrating power than that observed in natural radioactivity and the
extra ionisation was caused by elastic scattering with atomic electrons. Nevertheless, Clay,
in 1927, found that the intensity of cosmic rays is smaller near the Earth’s equator than
towards the polar regions. This was interpreted as a deflection due to the geomagnetic field,
so, in consequence, it was concluded that radiation consisted of charged particles.

By the late part of this decade, new research techniques were being used. For
instance, the Geiger-Müller detector, which enabled individual cosmic rays to be detected,
was invented in 1929. Skobeltzya used cloud chambers to study cosmic rays. On the other
hand, Bothe & Kolhörster used two Geiger-Müller counters, one above the other, and found
that simultaneous discharges of both detectors occurred very frequently. Using multiple
counters and absorbers they conclude that charged particles of cosmic rays were very fast
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Figure 1.2. The observations of Millikan and Cameron with electrometers. ML & A mark
the lake surfaces [Hil72].

or energetic.

In the 1930’s, large electromagnets were being used in conjunction with cloud
chambers and Geiger-Müller counters. From the curvature of the tracks it was immediately
apparent that many of the particles had energies of ∼ 109 − 1010 eV and many were so
energetic that no appreciable deflection took place. Anderson in 1932, and Blackett &
Occhialini in 1933 showed that in the cosmic radiation existed positively charged particles
very similar to electrons and this proved to be the discovery of positrons. Simultaneously,
an east-west asymmetry in the intensity of cosmic rays was observed at various altitudes
by Johson and Alvarez & Compton. This fact led to the conclusion that practically all
primary cosmic rays are positively charged. As this asymmetry increased with altitude, it
seemed to suggest that these particles could be protons. That hypothesis was supported by
measurements supplied by Bowen and Pfotzer in 1936, who found out that charged particles
of cosmic rays are heavier than the electron. Schramm in 1941 confirmed, using counters
telescopes with absorbers, that particles impinging upon the atmosphere (called primary
radiation or primary cosmic rays) consist mainly in protons.

Evidence for particles closely resembling the mesons predicted by Yukawa were
found in the late 1930’s and measurements of the amount of ionisation led to estimates of
their mass about 200 times the electron mass.

In the forties, nuclear emulsions, scintillator counters, sophisticated electronics
and high altitude balloons were incorporated into cosmic ray research. A big advantage of
nuclear emulsions is that being much denser than the gas in a cloud chamber, there is a
much higher probability of observing interactions in the emulsions. In 1947 π- mesons and
µ-mesons were discovered using these nuclear emulsions.

The late 1940s and early 1950s were a particularly exciting epoch in cosmic ray
physics since cosmic rays provided a readily available source of very high energy particles
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so that many new types of particles were discovered. Among them: κ+, κ−, κ0,Λ,Σ+,Ξ−.
In the 1950s, accelerators took over the detailed investigation of elementary particles under
more carefully controlled conditions.

Also in the late of the decade of 40s, Freier and collaborators made several high
altitude balloon experiments using nuclear emulsions. Their results showed that protons
of primary cosmic radiation were accompanied by nuclei of elements from Helium to Iron
(z 6 28). This discovery opened the possibility of studying, at first hand, a sample of
matter from elsewhere in our Galaxy.

Flescher et al. analysed tracks of nuclei in meteorite crystals which were exposed
to primary cosmic radiation for long periods of time, discovering that these tracks were
originated from arriving nuclei heavier than iron (z > 28), the so-called Ultra Heavy Cosmic
Rays (UHCR).

In order to work with statistically significant samples of ultra heavy nuclei of the
primary cosmic radiation, nuclear track plastic detectors and nuclear emulsions of high area
had to be developed due to the low arrival flux of such particles which its composition were
studied, since then, employing detectors characterised by their low area and short time of
exposition. Fowler et al. set up in balloons this kind of passive detectors and made some
high altitude ascents, obtaining nuclear tracks originated by UHCR nuclei with atomic
number up to Uranium (Z = 92). In consequence, charge spectrum was extended from Iron
through the rest of the periodic table of elements up to Uranium.

The satellite age

The decade of the 1970s saw the design and development of several experiments
which were mounted on board of satellites and had the aim of studying the composition
and energy spectra of the arriving UH nuclei which belong to the primary cosmic radiation
with an improved quality of the data obtained.

The first of such experiments was the Skylab [Pri75], [Shi78] which was launched
for the first time in 1973 and the following year for second time. The aim of the Skylab
experiment was to measure the charge and energy spectra of UHCR with Z > 60. For such
purpose, Lexan track recording plastic sheets displayed in stacks were used. The Skylab
spacecraft was exposed for 253 days in a circular orbit at an average altitude of 430 km. A
total of 104 tracks originated by UHCR nuclei with Z > 65 were observed. The analysis of
the data obtained showed a median charge resolution of 3.1%. Charge spectra obtained in
the Skylab experiment is illustrated in figure 1.3.

In 1979, two new experiments were launched into the Earth orbit, one of them was
the Bristol cosmic ray detector on the Ariel VI satellite, and the other one was the High
Energy Astronomy Observatory (HEAO-3). In both experiments, electronic detectors with
low value of the area-solid-angle factor but with a good charge resolution ( ∼ 0.3 to 0.5
charge units) were employed.

The Ariel VI satellite [Fow85], [Fow87] was launched by NASA on 3rd June 1979
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Figure 1.3. Final charge spectrum for Skylab detector. Data are grouped into bins of two
charges.

into near circular 625 km orbit. The last data from Ariel VI were received in February
1982, but spacecraft problems restricted data collection to only 427 of the days in orbit,
corresponding to 352 complete days at 100% efficiency. The detector was designed to
measure the composition of UHCR with Z > 34 and consisted basically on a spherical
aluminium vessel containing a gas scintillation mixture and a thin spherical shell viewed
by photomultipliers. A plastic scintillator was also used as an anticoincidence detector in
order to characterize particle tracks through the detector. Figure 1.4 illustrates the charge
spectra for the highest charges (Z > 70) plotted from results of the Ariel VI experiment.

The detector designed for the Heavy Nuclei Experiment (HNE) flown on the
HEAO-3 spacecraft [Bin82], [Sto87], [Bin89] consisted of ionisation chambers, multi-wire
ionisation hodoscopes and a Cerenkov detector. The threshold of the detector together
with the orbit characteristics ensured that at least 80% of the observed nuclei with Z > 70
had energies over 1 GeV/nucleon. HEAO-3 was launched on 20th September 1979 into
a 500 km orbit and operated for 580 days until 30th May 1981. The charge resolution
achieved with this instrument was 0,6 e (e is the electron charge taken as the charge unit).
A total of 62 nuclei were detected in the charge region 70 6 Z 6 86 [Fix83], [Bin85], which
is enlarged up to 300 nuclei when the charge region is extended to 50 6 Z 6 86. Figure 1.5
shows the charge spectrum obtained from measurements of the HEAO-3 experiment.

The last experiment was the Ultra Heavy Cosmic Ray Experiment (UHCRE) which
was deployed into Earth orbit in 1984 aboard Long Duration Exposure Facility (LDEF).
Due to the loss of the space shuttle Challenger, the LDEF remained in Earth orbit until
early 1990 and was retrieved successfully by a second shuttle mission after approximately 69
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Figure 1.4. Distribution of accepted data for determination of Z > 70 abundances. Dotted
inserts show the two abundance peaks for the Pt (Z = 78) and Pb (Z = 82) obtained
deconvolving the observed data.

Figure 1.5. Observed charge spectrum from HEAO-3 measurements analysis.
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months in space. The extended duration of the LDEF mission resulted in the collection of
approximately 10 times the previous world sample of UH nuclei with Z > 65, in consequence
the most statistically relevant sample of such ions has been obtained in the UHCRE.

At present the next generation of experiments aboard satellites are being designed
in order to study the highest charge region with high resolution measurements. The pur-
pose of TREK experiment is to measure the isotopic and the elemental composition of the
galactic cosmic rays [Wes95]. The Cosmic Ray Isotope Spectrometer (CRIS) instrument
is aimed to measure the isotopic abundances of the galactic cosmic rays with charge com-
prised between 3 and 30 and energy per nucleon between 50 and 500 MeV/n [Ros97]. The
Trans-Iron Galactic Element Recorder (TIGER) experiment has been designed to measure
the elemental abundances of UH cosmic rays with charge 26 ≤ Z ≤ 92 [Bin95], [Spo00].
Cherenkov counters used in TIGER experiment will also be included in the UH module of
the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCES) [Bin97]
which has as a main goal to extend its detection range to other particles among UH cosmic
ray nuclei [Isb97].

1.1.2. Properties of Primary Cosmic Radiation

Composition and energy spectrum are the two main features of the arriving cosmic
rays at the top of the atmosphere, the so-called Primary Cosmic Rays (PCR) which are
free from any secondary cosmic rays produced in our own atmosphere. In this section those
aspects that are relevant for the UHCRE experiment are introduced.

Energy spectrum of cosmic rays

The energy spectrum of PCR extends over 14 orders of magnitude and can be
divided into four characteristic regions:

i) The first region corresponds to energies below ∼ 1 − 2 GeV/n. Solar
modulation processes, which are due to the effect of solar wind on particles travelling near
the Sun, are important at these energies. The 11 year solar circle during which the number
of sunspots and also the general solar activity oscillates, allows to give evidence for solar
modulation. Figure 1.6 shows clearly the correlation (rather anticorrelation) between the
intensity of neutrons measured by the Mount Washington neutron monitor and the relative
sunspot number, which accounts for the solar activity [She85].

Furthermore, the shape of the spectrum of Hydrogen and Helium nuclei in PCR,
as a function of phase of the solar cycle is illustrated in figure 1.7. In each set of spectra,
the top curve shows the measurements at the time of the minimum sunspot number and
the bottom curve at sunspot maximum [Web74].

ii) The second energy region extends from ∼ 1−2 GeV/n up to ∼ 106 GeV/n.
The spectrum of Hydrogen, which is the most abundant nuclei of PCR, at these energies
(see figure 1.8) can be described quite well by a differential power law in energy of the form
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Figure 1.6. The correlation between the relative sun-spot number and the intensity of
measured neutrons.

Figure 1.7. The differencial energy spectra of Hydrogen and Helium nuclei in the cosmic
rays as a function of phase of the Solar cycle. In each set of spectra, the top and the bottom
curve correspond to sunspot minimum and maximum respectively.
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Figure 1.8. The differential energy spectrum for cosmic ray protons following a differential
power law.

[Wef88]:

N(E)dE = k ·E−2.7dE

The spectrum of other heavier elements shows the same behaviour than that of
hydrogen, as can be seen schematically in figure 1.9 [Sil90].

iii)The next energy region corresponds to energies between 106 GeV/n and
1010 GeV/n. In order to study the energy spectrum in this region, the Earth’s atmosphere
is utilized as a target and products produced in the resulting extensive air shower are
measured. When a very high energy single cosmic ray penetrates the top of the atmosphere
a shower of secondary cosmic rays is developed, such events are called Extensive Air Showers
(EAS). In figure 1.10 [Boo97] the modified flux of PCR is plotted in terms of the total energy
in PeV units, it is clearly inferred from this figure a break in the power law spectrum around
∼ 4 PeV (4 · 106 GeV) which is known as the ”knee”.

The origin of the knee remains as an open question, known as the so-called ”knee
problem”, so that many different models have been proposed which can be divided into two
distinct classes [Erl01]: astrophysical and interaction models. Interaction models assume
that the primary energy spectrum has no sharp change and the observed steeping of EAS
size spectra is due to the sudden change of the nature of the interactions between the high
energy particles of PCR and the atmosphere. Astrophysical models attribute the change
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Figure 1.9. The energy spectrum of several elements (H, He, C and Fe) measured at the
Earth.

Figure 1.10. The absolute fluxes of cosmic rays obtained from EAS measurements. Note
that the fluxes are multiplied by a factor of E2.75. Each PCR spectrum curve shows a
maximum corresponding to the knee where a sudden steeping is ocurred.
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Figure 1.11. The CR all-particles spectrum observed by different experiments above 1011eV .
The differential flux in units of events per area, time, energy, and solid angle has been
multiplied with E3 to project out the steeply falling behaviour.

in the energy spectrum of the observed EAS to the change in the energy spectrum of
PCR while travelling from source to Earth’s atmosphere. As this kind of models are the
more developed, they might be also subdivided into source models, which assume that the
breaking in the spectrum takes place in the source region or is caused by the acceleration
mechanisms, and the propagation models considering that the propagation process from
source to the observer is the responsible of such breaking.

iv) The highest energy region corresponds to energies above 1010 GeV/n. Cos-
mic Ray spectrum at these ultra high energies showed in figure 1.11 is well approximated
by broken power laws ∝ E−γ . Cosmic rays with this energy are usually attributed to an
extragalactic origin. Nevertheless the main problem is to find out the astrophysical scenar-
ios leading to cosmic ray acceleration up to such ultra high energies. Several acceleration
processes have been proposed in literature [Ber97], [Ost00], [Sig01].

Composition of Cosmic Rays

Primary Cosmic Rays include all kind of particles from outer space that reach the
top of the atmosphere, which can be classified into four groups [Wef88]:

i) Electrically charged particles: Both positive and negative. This include
electrons, positrons and the nuclei of the elements of the periodic table from Hydrogen,
which is the most abundant up to the actinides group (with Z ∼ 92). Figure 1.12 shows the
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Figure 1.12. Relative abundances of the elements. Solid line connects even-Z elements and
dashed line connects odd-Z elements.

relative abundance of these nuclei belonging to the PCR [Isr83], solid line connects even-Z
elements and dashed line connects odd-Z elements showing, clearly, the so-called odd-even
effect which is a consequence of the different nuclear stability for even-Z nuclei and odd-Z
nuclei. The other main feature of PCR nuclei shown in figure 1.12 is the relative abundance
between Iron and Hydrogen with a value ' 10−6, and between Uranium and Iron with a
value ' 10−6 (so that it arrives 1 nuclei of Uranium per one billion of Hydrogen nuclei).
Thus, the low abundance of the heaviest nuclei in PCR has to be taken into account in
order to collect a statistically significative sample of such nuclei.

ii) Electrically neutral particles. This include neutrons, neutrinos, neutral
mesons and hyperon, and, possibly yet undetected particles such as the magnetic monopole
which is predicted by Grand Unified Theories, or even the photino predicted by Supersy-
metric Theories.

iii) Electromagnetic quanta. Here, only photons with any energy of the elec-
tromagnetic spectrum are included. These photons are the basis of astronomical research.
At ground level, only photons with energy smaller than the optical and ultraviolet ones can
be observed, so, high energy photons (mainly X-rays and γ-rays) have to be studied near
the top of the atmosphere by means of balloons, rockets or artificial satellites.

iv) Dust particles. There is wide variety of materials constituents of the dust
which is generally assumed to be well coupled to the cosmic gas. Some of these are volatiles

13



in the form of frozen ices, the rest are relatively non-volatile or refractory. However even
the refractories have varying degrees of volatility. The major refractory components which
have been observed may be characterized as silicates and organics [Gre91]. Cosmic dust
has been studied on high flying aircraft, balloons and space missions.

1.2. The UHCRE experiment

The Ultra Heavy Cosmic Ray Experiment (UHCRE) has been the largest array
of cosmic ray particle detectors ever flown in space [Tho87], [Tho91], [Tho92], [Osu88],
[Osu92]. It comprised 192 Solid State Nuclear Track Detectors (SSNTD) stacks, housed in
48 pressurized vessels (at 1 atm. of dry air) mounted in 16 experimental trays on board the
NASA Long Duration Exposure Facility (LDEF), this experimental set up is illustrated in
figure 1.13 and figure 1.14 shows the final appearence of one UHCRE tray once mounted.
The UHCRE was designed by the Cosmic Ray Group of the Dublin Institute for Advanced
Studies in collaboration with the ESTEC of the European Space Agency (ESA). Figure 1.15
consist on a picture of the LDEF satellite, containing all the experiments on board on 86
experimental trays, before to be launched. The LDEF was launched into Earth orbit, at
height of approximately 450 km and an inclination of 28.5◦ with respect to the equatorial
plane, in April 1984 by the NASA Space Shuttle Challenger and retrieved in January 1990
at height of approximately 325 km by the Space Shuttle Columbia. In figure 1.16 the
LDEF satellite is in a stabilized terrestrial orbit, the trays corresponding to the UHCRE
can also be distinguished Each UHCRE stack was (20 × 26) cm2 in size and contained
mainly Lexan polycarbonate plates (∼ 250 µm thick each) interleaved with several lead
plates (∼ 500 µm thick) used as absorbers. Nevertheless, some stacks did not contain lead
plates and included some CR-39 (pure, DOP and DIOP) plates. The Lexan equivalent
thickness of all UHCRE was comprised between ∼ 4 g/cm2 and ∼ 6 g/cm2 with an average
value of 4.7 g/cm2. The thermal design of the UHCRE was aimed at maintaining the
temperature of the detectors below 30◦C and ensuring as narrow a band as possible between
maximum and minimum values. This was successfully achieved by the use of silvered Teflon
thermal blankets and by thermally decoupling the detector vessels from the LDEF frame.
Temperatures were measured at selected locations on the LDEF structure during the first
490 days of history of the UHCRE stacks. The results of this analysis show that the detector
stacks were maintained below 0◦C throughout the mission. The maximum detector stack
thermal gradient was 0.15◦C per stack.

The geomagnetic cutoff of the LDEF orbit ensured that no ion with energy below ∼
3 GeV/n was present in this orbit. On the other hand, the Lexan registration threshold was
such that only ions with Z > 65 of the energies involved in the LDEF orbit were recorded.
Consequently, the much more abundant iron, C-N-O and proton cosmic ray components
could not be registered by the UHCRE detectors.

The main purpose of the UHCRE was to determine the elemental abundances
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Figure 1.13. Experimental set up of the presurized cilinders of each of the 16 trays of the
UHCRE. Every cilinder contains 4 stacks of SSNTD’s.

Figure 1.14. Final aspect of a tray of the UHCRE experince once mounted and before to
be boarded on LDEF.

15



Figure 1.15. Picture of the LDEF satellite with the 76 trays containig all experimets, before
to be launched in terrestrial orbit by means of the Challenger spacial shuttle.

Figure 1.16. LDEF satellite once deployed in space and stabilized on a terrestrial orbit.
Several UHCRE trays can also be seen.
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of ions with Z > 65 present in cosmic rays. Over 2500 UH ions with charge over 65
have been recorded in the UHCRE after its approximate six-year exposure in space. This
number represented about 10 times the total number of such ions ever recorded in all
former experiments, mainly Ariel-VI and HEAO-3 and would include the first statistically
significant sample of actinides [Tho93, RM96],[Osu95a, RM96]. A total of 205 tracks have
been located, measured, and positively identified as originating from cosmic ray ions with Z
> 65 in the 10 detector stacks analyzed by our group in Universitat Autònoma de Barcelona.
The number of events recorded in this sample alone is similar to the world UH sample
collected in all former experiments [Dom95].

1.3. Measurement and analysis of the UHCRE.

When an incident ion penetrates a stack of plastic detector plates, it generates
a latent track due to the damage done to the structure of the plastic material along its
trajectory. Latent tracks in the plastic detector of the UHCRE were made visible under an
ordinary microscope chemically etching the plates.

The knowledge of the processes involved in latent track registration and its vi-
sualization through etching is essential in order to perform a correct identification of the
registered particles and to establish the uncertainty associated to this procedure. The main
purpose of the present work is to analyse various methods of charge assignment for particles
recorded in Solid State Nuclear Track Detectors (SSNTD). The results of this analysis may
be used to ascertain the possibility of separating the peaks due to r and s processes in UH
cosmic ray registration experiments where SSNTDs were used, such as the UHCRE.

1.3.1. Identification of charged particles

Stopping power and track formation

The registration of ions using SSNTDs is based on its passage through several
stacked plates of dielectric track detectors. Several metal plates (lead, iron, aluminium,...)
may be interleaved in the stack in order to increase the stopping power. The specific energy
loss -dEdx (energy loss per unit of path length) of a charged particle in a given absorber due to
electronic collisions is described by the Bethe-Bloch equation [Fan63], [Ahl82] and depends,
mainly, of the detector composition and density and of the incident particle charge and
energy. According to the Restricted Energy Loss (REL) track formation model [Ben68],
[Ben69], the latent track formation is due only to the energy deposited by the distant
collisions of the incident particle with the absorber electrons. Distant collisions are defined
as those originating recoil electrons with low energy (ω), smaller than a fixed value (ω0) that
depends on the absorber, that deposit their energy in the neighbourhood of the path followed
by the incident particle. The value of the energy ω0 that separates distant from close
collisions is such that for close collisions the absorber atomic electrons may be considered
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as free particles, whereas for distant collisions the incident particle may be treated as a
point charge. In practice, ω0 is obtained from the best fit to experimental data.

The Bethe-Bloch formula used in our calculations, which is known as the uncor-
rected Bethe-Bloch formula, can be written as follows:
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where dξ = ρdx, being ρ the density of the absorber and x the path length of teh incident
ion, Z1 is the charge of the incident particle, Z2 is the charge of teh absorber atoms,
β = v/c is the velocity of the incident particle (v) in units of the velocity of light (c =
2.99792458 × 108ms−1), mec

2 is the electron rest mass (0.51099906MeV), I0 is the mean
ionisation potential of the absorber. ψ(1)−Reψ(1 + iν) is the quantic Bloch correction.

According to the model described, the energy transferred from the incident charged
particle to the absorber electrons is split into two parts
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where the first term corresponds to distant collisions and contributes to latent track forma-
tion, and the second one is the close collisions term, not contributing to track formation.
The Bethe-Bloch equation 1.1 may be written in a form that the terms of equation 1.2 are
easily identified as
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Description of the ion identification procedures

The latent track, which consists on a sub-microscopic damage of the detector
chemical structure in a very small region around the incident particle path, starts at the
entrance point of the ion in the stack and ends either at the point where the ion stops inside
the stack or at the point where it escapes from the stack. This sub-microscopic damage is
visible only under very powerful electron microscopes. A chemical etching of the detector is
performed in order to make the latent track visible under an ordinary optical microscope.
The etching process of the detector plates leads to the formation of two typically cone-
shaped etch pits in each plate traversed by the incident particle, one on each side of the
plate (entrance cone and exit cone). The geometry of these cones is due to the combination
of two etching processes: the chemical dissolution along the particle track at a linear rate
vt, and the general attack on the etched surface and on the interior surface of the etched
track at a rate vb [Fle75], [Dur87]. The position of these cones in the plates allows to
reconstruct the path of each incident ion through the stack. A quantity xi may be defined
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as the distance from the entrance point of a given ion in the stack to the center of the i-th
cone of its track. Geometric measurements of the cones allow to determine the track etch
rate vt,i and bulk etch rate vb,i for each of them, and therefore to calculate the reduced etch
rate Si =

vt,i
vb,i
. This quantity Si accounts of the detector response at a given point and is

the magnitude that gives the value of signal strength. Hence, a given track originated by
an incident ion is characterised by set of (xi, Si) points.

The information contained in this set of points can be used to identify every
recorded particle and to calculate the associated charge uncertainty, assuming a relationship
between the reduced etch rate S and RELω0 . Several expressions for this relationship has
been developed in former works, but it has been found that the most appropiate function
which fits S with RELω0 has a potential form [Fle75], [Seq76], [Fer81], [Luc82] and [Vid84]
:

S = g (RELω0)
h (1.4)

where g and h are constant parameters that must be obtained from calibration. This
relationship is not necessarily valid over all possible energies of an incident ion of a given
charge, but it is accomplished, at least, for any given small energy interval. In other words,
the values obtained of g and h for a given charge may depend on the energy of the ion.

When a given particle penetrates a SSNTD’s stack, three different behaviours are
possible depending on the charge and energy of the incident particle and on the stack
thickness. There is at least one identification method available for each of them:

i) Particles which come to rest in the stack. The particle energy and the stack
thickness are such that all energy is transferred to the detector, so the particle comes to
rest in it. In this case, the range of a particle R is calculated as the distance between its
entry point in the stack and its stopping point. The residual range Ri at a given cone,
defined as the distance from the centre of this cone to the ion stopping point, is calculated
as Ri = R − xi. The corresponding Si value is obtained from geometric measurements. A
method based in the S-R relationship can be used to identify such ions [Ben68], [Fle75] &
[Dur87] from the experimental (Si, Ri) set obtained for each recorded track.

ii) Particles which traverse the stack without loosing any significant amount
of energy. The particle energy remains almost constant along its trajectory, therefore the
reduced etch rate corresponding to all cones in a given track should be equal, and an a
method based on the average S value (S̄), which may be assigned to each track, can be
applied to identify such ions [Dom95], [Dom96].

iii) Particles which traverse the stack, loosing a measurable amount of energy.
This amount of energy lost is precisely the parameter which allows to identify the charge
and energy of the incident particle. In this case, a method based on the reduced etch rate
fractional gradient (RERFG), already proposed in [Fow77a], [Fow77b], can be employed for
identification.

Consequently, a different identification method must be applied for each of the

19



situations described above. As we are dealing only with non-stopping ions in the present
work, only situations (ii) and (iii) are relevant.

If the particle registration conditions allow to assume that the reduced etch rate
S remains constant along the particle path in the detector (situation (ii)), every complete
single track originated by one ion in the detector stack can be characterised by an average
S value (S̄) instead of a set of (xi, Si) points, as the reduced etch rate does not display
significant variations with the penetration distance x. If it is assumed that the restricted
energy loss (RELω0) is the physical magnitude responsible of latent track formation, RELω0

is proportional to Z2

β2
, being Z the incident particle charge and β its velocity. Considering

the relationship given in 1.4 and taking into account that β remains almost constant, S̄ is
strictly proportional to Z2h, and therefore it is possible to obtain the charge distribution
of the particles recorded from the distribution of average values, S̄, of the reduced etch
rate. The relationship between Z and S̄ must be obtained from calibration. The main
inconvenient of this method for charge assignation is that the charge scale is not linear with
S̄, so that it may not be straightforward to determine the charge uncertainty for a given
uncertainty of S̄, which, on the other hand, may also depend on the energy of the recorded
particle. Moreover, a single measured parameter as the averaged reduced etch rate, S̄,
cannot provide information about two independent characteristics (charge and incidence
energy) of the incident particle, so that it is necessary to make assumptions about one of
them for determining the other one (i.e. it is necessary to have some knowledge of the
energy of the incident ions in order to identify their charge).

Some of the drawbacks which arise from the above charge identification method
may be overcome if one considers that there is a small gradient of specific energy loss along
the incident particle path and, consequently, a small gradient of reduced etch rate (situation
(iii)). The fractional gradient of reduced etch rate is defined as

G ≡ 1

S

dS

dx
(1.5)

According to this method [Fow77a], [Fow77b], each track is characterised by a single
(Seff , Geff ) couple, which is calculated from the measured set of points (xi, Si) using

Geff =
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¯̄̄̄
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i=1

h
2(S2n+1−i−Si)wi
(S2n+1−i+Si)∆xi
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where wi is a weight function proportional to (∆xi)
2, and

Seff =
n

nP
i=1

Si+S2n+1−i
2SiS2n+1−i

(1.7)

In these expressions, it has been considered that each recorded ion passes across n plates
of the SSNTD stack and, therefore, generates 2n cones (two cones per plate).
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1.3.2. Application of the identification method based on the reduced etch
rate fractional gradient (RERFG).

Charge assignment

In order to assign a charge to any given ion recorded in an experiment, each of the
(Seff , Geff ) points obtained using expressions 1.6 and 1.7 from the experimental geometric
measurements in one given track should be compared to the SZ(G) curves, generated in the
G−S plane, for every different charge Z within the range of interest for the experiment per-
formed. Obviously, determining which of the generated curves is closer to one (Seff , Geff )

point allows to assign a value Z of charge to this point and, therefore, to the ion which has
originated the track studied.

In practice, given expressions 1.3, 1.4 and 1.5, the SZ(G) curves are more conve-
niently calculated in parametric form, using the kinetic energy per nucleon (ε) of the incident
ion as the parameter on which both S and G depend. In fact, from equation 1.4, and taking
into account equation 1.3, if the charge Z (and mass) of the incoming ion is fixed, the
reduced etch rate S depends only on the velocity β of the incident ion, and therefore on its
kinetic energy per nucleon ε (SZ(ε)). Similarly, as inferred from equation 1.5, the fractional
gradient of reduced etch rate G also depends on this kinetic energy (GZ(ε)). Consequently,
GZ(ε), and SZ(ε) may be calculated for every fixed charge using ε as a parameter, and the
corresponding SZ(G) curve can be plotted.

SZ(ε) is directly calculated using equations 1.4 and 1.3, whereas equation 1.5 has
been conveniently transformed by means of the chain rule of derivation and, taking into
account equation 1.4, in order to facilitate the calculation of the values of reduced etch rate
fractional gradient GZ(ε) for a given charge:

G ≡ 1

S

dS

dx
= −
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¶
·
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dE

¶
·
µ
−dE
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¶
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In this equation, the first term
³

h
RELω0

´
is calculated analytically from equation 1.3 for a

given value of the ion kinetic energy E = Aε (A is the mass number of the ion considered);

the second term
µ
d(RELω0)

dE

¶
is in practice evaluated by numerical derivation of equation

1.3 at a given value of energy E; and the third term
¡−dE

dx

¢
is determined from the Bethe-

Bloch energy-loss equation at a given E. The GZ(ε) curve is generated by varying the
values of energy per nucleon ε at which all these terms are evaluated. In summary, both
GZ(ε), and SZ(ε) may be calculated for every fixed charge using ε as a parameter, and the
corresponding SZ(G) curve can be plotted in the G− S plane.

In all this process, the values of the parameters g and h which characterize the
detector response are needed in order to generate these SZ(G) curves. These values should
be obtained from calibration of the SSNTD detectors in accelerators to ions belonging to
the same charge and energy region than those recorded in the experiment being analysed.
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Figure 1.17. Sz(G) curves corresponding to several ions (Z = 72, 82 and 92) for an incident
energy range of 0.1 MeV/n up to 5000 MeV/n. The three separated regions in which the
applicability of the RERFG method is discussed are also illustrated.

Range of applicability

In order to obtain information about the range of validity of the RERFG method
a study of the behaviour of the SZ(G) curves for a wide interval of kinetic energy per
nucleon ε has been performed, as ε is the parameter which has been used for generating
the SZ(G) curves. For carrying out this study, incident ion charges in the Ultra Heavy
region (65 < Z < 92) have been considered. The SZ(G) curve for each of these charges has
been generated by varying the incident ion energy per nucleon ε from 5000 MeV/n down to
about 0.1 MeV/n, in order to reproduce the slowing down of a typical ion recorded in the
UHCRE detectors. The values of the g and h parameters have been obtained from adequate
calibration (see section 1.3.3.). Ranges of 5000 MeV/n ions in the studied charge region
lie between 50 to 75 cm in polycarbonate detectors, such as those used in the UHCRE.
Figure 1.17 shows the SZ(G) curves for Z = 72, Z = 82 and Z = 92 (other charges are not
displayed for clarity, but the behaviour of the corresponding curves is easily inferred from
the figure). For a more detailed study, we have divided the graphs in figure 1.17 into three
regions, according to the three different behaviours displayed by the energy deposition of
the incoming ion. In addition, figure 1.18 displays an amplification of region 3, which at
the same time includes a further amplification of the higher energy end.

Generally speaking and at first sight, the most prominent (and weird) feature of
figure 1.17 is that G and S are not uniquely related for a given charge (there is not a one to
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Figure 1.18. SZ(G) curves corresponding to the same ions than figure 1.17 showing the
details of region 3, with a zoom in of the higher energy tail.

one correspondence between G and S). A further complication appears in region 2, where
the curves corresponding to different charges cross each other, so that we cannot assign a
unique charge value to a given point on the G − S plane. Nevertheless, a closer analysis
of figure 1.17, allows to extract valuable information from the graphs. The REL curves
as a function of ε for Z = 72, Z = 82 and Z = 92 are plotted in figure 1.19, including an
amplification near the stopping point of the incident ion, for clarifying the behaviour in the
above regions, which are numbered from low to high energy of the incident ion. These curves
are related to the well known Bragg curves, which plot the stopping power as a function of
the penetration distance. Figure 1.19 and figure 1.17 are, in fact, closely related: one can
convert from figure 1.19 to figure 1.17 for any given (fixed) charge by taking into account
that S is directly related to REL by means of equation 1.4, whereas G is related to the
slope of the REL curve at the given value of ε.

The main features of each of the three regions in which the SZ(G) curves has been
divided are:

Region 1. For low energies of the incident ion REL increases dramatically with
energy until a maximum is reached, related to the Bragg peak. This region includes the

largest negative G values in figure 1.17, as inferred from the term
µ
d(RELω0)

dE

¶
of equation

1.8. It must be emphasised that although this region is very large in the G-S plane, it
corresponds to a very small interval of energies (from 0.1 to 1 MeV/n) of the incoming
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Figure 1.19. Bragg curves for several ions (with charge, Z = 72, 82 and 92) with an incident
energy of 0.1MeV/n up to 5000MeV/n. A zoom of the Bragg curves for the lowest energy
region is also plotted in order to evidence the so-called Bargg peak

particle, when it almost completely stops inside the absorber. In terms of ion ranges in the
absorber, this region represents approximately the last 20 to 30 mm of the incoming ions
total range (a fraction of about 10−5).

Region 2. REL decreases with increasing energy, so that in this region the
slope of the dE

dx curve is negative and, therefore, G is positive and attains its maximum
value. Each curve cross all others in this zone, implying that there are points in the G-S
plane common to, at least, two charges. The reason for this behaviour is that, for every
given pair of charges, there is a unique value of REL where their corresponding dE

dx (ε) curves
display exactly the same slope. This region corresponds to an energy interval ranging from
about 1 MeV/n to approximately 50 MeV/n for the considered charges, which is equivalent
to the last millimeter of the incident ion range (still a fraction of only 10−3 of its total
range).

Region 3. In this zone, REL is almost flat (independent of the ion incident
energy), so that the slope of the dE

dx (ε) curve corresponding to any of the considered charges
is very close to zero and, therefore, the associated G values are also close to zero. In this
region, the minimum of ionisation is reached, so that for very high energies (above several
GeV/n) there is a slight increase of REL with energy, and consequently the associated G
values are again negative, but small in absolute value. Although this region is the smallest
one in the G-S plane, the energy interval covered is the widest one, as in principle any
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energy above 50 MeV/n is included on it. Figure 1.17 displays energies up to 5000 MeV/n,
but no relevant change of behaviour is expected for higher energies. In terms of range, this
region covers the whole path of any ion of the studied charge interval with the exception of
approximately its last millimeter.

From observation of figure 1.17, and taking into account the above comments for
each region, it is obvious that the RERFG method is not applicable at all in region 2 for
ion identification purposes. In consequence, the method, in principle, might be applied for
identifying ions which energy, while slowing down in a given absorber, falls entirely either
in region 1 or in region 3. Note that RERFG cannot be applied for identifying high energy
(above 50 MeV/n) incoming ions which come into rest inside the detector as, while moving
along their path and decreasing their kinetic energy, this energy would fall sooner or later
in the interval corresponding to region 2. In addition, in practice, for applying RERFG to
identify ions having their energy entirely in region 1 (smaller than 1 MeV/n), it would be
necessary to perform several measurements of track geometry along a path smaller than ∼20
µm. This practice is not feasible in a real experiment as plate thickness in SSNTD’s stacks
are typically of the order of 100 µm. This leaves out region 3 as the only one where the
RERFG method is fully applicable. Consequently, this method is convenient for identifying
ions that do not reach an energy below about 50 MeV/n in any point along their path inside
the absorber and, consequently, that do not halt in it.

The identification of the ions recorded in the UHCRE is a good example where
the RERFG method is applicable. In fact, given the thickness of the plastic detector stacks
utilised (∼ 4-6 g/cm2) and the incidence energy of the cosmic ray ions (over ~3 GeV/n), the
recorded ions do not come to rest while traversing the detector stacks, thus the conditions
of region 3 are completely fulfilled.

Sources of uncertainty

In order to determine the uncertainty on charge introduced by the application of
the RERFG identification method, two main sources of uncertainty have to be taken into
account. On one hand, the experimental uncertainty which arise from the propagation of
the instrumental uncertainty of the track geometric measurements. On the other hand,
a ”theoretical” uncertainty in the SZ(G) curves, due to the fact that each of such curves
is determined, in essence, from the Bethe-Bloch equation which remains as an ”open”
expression for the energy loss per unit of length in the sense that its applicability to heavy
nuclei with energies above 3 GeV/n is not well known, so that new corrections are still
added. For such reason, this ”theoretical” uncertainty becomes complex to evaluate and it
is not considered in this work.

From the instrumental uncertainty of the geometric measurements, the uncertainty
of the reduced etch rate σSi is calculated. So that each value of Si is accompanied by its
corresponding σSi . The values of Si±σSi and xi±σxi are used to evaluate the uncertainty
of Seff and Geff (respectively σSeff and σGeff

) by means of the uncertainty propagation

25



formula applied to the expressions 1.7 and 1.6 which are adequately modified in order to
easily perform the partial derivatives. Each recorded nuclei is characterized by Seff , Geff

which is situated in the S-G plane. An ellipse taking the σSeff and σGeff
values for the

respective vertical and horizontal semi-axis is drawn around the experimental Seff , Geff

point. Finally, charge uncertainty, σZ , is estimated taking into account that it is lineally
proportional to the vertical semi-axis value, σSeff , and considering that the value of σZ = 1
corresponds to the vertical shift at the Seff , Geff point between the two successive SZ(G)
curves where this point (Seff , Geff ) lies between.

1.3.3. Application to the ions recorded in the UHCRE

After the LDEF recovery from Earth’s orbit in 1990, the UHCRE was disassembled
in the ESA ESTEC. The SSNTD stacks from the UHCRE were sent to the Dublin Institute
for Advanced Studies, where they were dismounted and their polycarbonate plates taken
apart and etched. Our group (Grup de Física de les Radiacions, GFR) performed some of
the scanning for locating events and geometry measurements of etched tracks. A total of
over 2500 tracks originated by UHCR ions have been recorded in the UHCRE, [Osu95a],
[Bea95], [Osu95b] & [Osu95c], of which 205 have been located, measured and positively
identified as originated by UHCR nuclei with energies over 3 GeV/n by the GFR [Dom95].

It is known that some environmental parameters can affect track registration. In
particular, the track response of a SSNTD is known to decrease with increasing registration
temperature (the so-called Registration Temperature Effect or RTE) for strongly ionizing
particles and seems to increase with temperature for weakly ionizing particles [Tho86].
Pressure and/or oxygen concentration at the moment of track registration can also affect
the polycarbonate detector response (the so-called Latent Track Intensification effect, LTI,
see [Dom86], [Dom90] and references therein for details). The successful control of both
the pressurized gas environment and the temperature through out the mission has led to
justified optimism concerning the high quantity of the UHCRE cosmic ray data and the
possibility of good charge resolution [Dom90], [Osu95b].

Given the charge and energy of the recorded ions, and as the thickness of the
UHCRE stacks (∼ 4 to 6 g/cm2) is much smaller than their range in the detectors, none of
such ions come to rest inside the detector. Consequently, residual ranges of such ions cannot
be measured and the method based on the R-S relationship is not suitable for identification
of ions recorded in UHCRE. In this case, it may be considered as a first approximation that
the velocity β of a given ion does not vary substantially while passing through the detector.
Therefore, the specific energy loss of the recorded ions should remain almost constant along
their path. Geometry measurements of the etched-cone pits have been made using a Nikon
stereo-microscope, with eyepieces of 10× or 15× and a long-working distance (1 mm) dry
×100 objective, and with digitized x -, y-, and z - axis measurement outputs connected to a
computer. Results obtained from measurements of UHCRE tracks confirm that variations
of S along a given track are very small (the bulk etch rate have been performed in about
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Figure 1.20. A reduced etch rate (S) versus path length (x in g/cm2) plot of an ultra heavy
cosmic ray nucleus recorded in a plastic detector stack of the UHCRE measured in our
group.

40 points for each located track, so that each track is characterised by about 40 Si values)
[Kea95], and therefore, in a first approximation, it is correct to represent one track by
its corresponding average S value. In consequence, the method based on the averaged S
value, described above, can be used. Results using this identification method were presented
elsewhere [Font94], [Dom95] & [Dom96].

Although the method described above provides good first approximation results,
they may be improved applying the RERFG identification method. In fact, this method is
fully applicable in this case as the incident particle transfers a small amount of its kinetic
energy to the absorber, which leads to a measurable variation of the incident particle kinetic
energy, and therefore dS

dx 6= 0, as can be seen in figure 1.20 where the reduced etch rate (S)
versus path length (x) is plotted for one UHCR nuclei recorded in UHCRE. So that the
conditions of region 3 from figure 1.17 are fully fulfilled.

Bulk nuclei recorded in the UHCRE survive after passage through all plates of the
stack, so (Si, xi) measured values of its track could be pretty well fitted by a linear function
as can be seen in figure 1.20, but not all recorded nuclei follow this behaviour. Some nuclei
has been found broken along its path through the stack due to a collision with an atomic
nuclei of the traversed material. Probably the fragmentation of the penetrating nuclei would
take place in the lead plate of the stack instead of the plastic plate as the cross section for
a nucleus-nucleus reaction is, as a first approximation, proportional to A

2
3 (where A is the

mass number of the target nucleus). Figure 1.21 shows a fragmented track of a recorded
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Figure 1.21. Fragmented track of a nuclei recorded in UHCRE. Dotted lines show the mean
values of each set of data.

nuclei, the two sets of experimental data are clearly apart, the higher S value corresponds
to the penetrating nuclei whereas the lower S value corresponds to the product nuclei.

In order to complete the application of the RERFG identification method it is
necessary to know beforehand the values of the parameters g and h that characterise the
detector response (equation (4)). Calibration in accelerator of detectors having the same
characteristics than those used in the experiment is the usual procedure that allows to
determine these values [Kea95]. The values for these parameters g = 8.02 and h = 2.457

were obtained from a calibration based on exposures of SSNTD’s plates at the Berkeley
Bevalac heavy ion accelerator to U and Au ions of approximately 1 GeV/n [Dom88], [Dom86]
& [Bai91]. Figure 1.22 shows the (Seff , Geff ) points obtained for the 205 UHCRE tracks
measured by our group, together with some of the most representative SZ(G) curves in
the studied charge region determined from the above accelerator calibration. Once these
values are known, the identification process is carried out as described above. Two relevant
features are found:

a) All ions recorded in the UHCRE detectors have charge comprised between 65
and 92 (65 < Z < 92).

b) The accumulation of the experimental points around the curves corresponding
to two distinct charges, namely Z = 73 and Z = 78.

It is known that UH nuclei (65 < Z < 92) can be synthesised in the Universe only
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Figure 1.22. Experimental (Seff , Geff ) points, in semilogarithmic scale, corresponding to
the 205 UHCRE events measured by our group. Also plotted are the SZ(G) curves for some
charges (Z=65, 73, 78, 87 and 92) calculated using the g and h parameters obtained directly
from accelerator calibration.

by neutron capture processes. It is possible to distinguish between rapid neutron capture, r -
process, and slow neutron capture, s-process, when comparing the time scale of the process
with the half-life for β-decay of the newly formed nuclei. As a consequence of these processes
two abundance peaks, one corresponding to the Platinum group (Z = 78), synthesised
mainly by the r -process, and the other one to the Lead group (Z = 82), synthesised mainly
by the s-process, are present in the UH charge region [Tho87], [Dom87a]. The existence
of these two peaks has been experimentally confirmed by previous experiments, such as
HEAO-3 and Ariel VI (see references given for such experiments in subsection 1.1.1.). From
experimental data presented in figure 1.22 we can conclude that our charge scale is shifted
with respect the theoretical predictions by about 4 or 5 charge units.

This discrepancy between our results and the theoretical predictions is explained
if the g and h parameters are energy-dependent. The energy of the ions used in the Bevalac
accelerator for calibration is about 1 GeV/n, corresponding to β ' 0.87, whereas the energy
of ions recorded in the UHCRE are over 3 GeV/n (β over 0.95). It is seen in figure 1.23 that
the calibration region and the cloud of UHCRE experimental points are clearly apart from
each other, so that probably the values of the parameters obtained from calibration may
not be suitable for our case. As no accelerator calibration at UH ions of the appropriate
energies of detectors similar to those used on the UHCRE was available, we had to calibrate
on the basis of the theoretically predicted position of the abundance peaks in the UH region
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(Z = 78 and Z = 82). By doing so, new values of the g and h parameters have been
obtained that should allow to correctly apply the RERFG method of identification to the
ions recorded in the UHCRE. The newly calculated values of the parameters are g = 5.807
and h = 2.466 [Font94]. The difference between these new values and the old ones is
almost completely due to the multiplicative g parameter and not to the exponent h. As the
reduced etch rate fractional gradient G depends only on the value of h for a given ε (see
equation 1.8), the fact of re-calibrating has only effect on the values of signal strength S,
changing the relative separation of the SZ(G) curves. The dotted curves in figure 1.23 are
the G - S curves corresponding to several UH charges obtained directly from accelerator
calibration, strictly valid only in the calibration region in the figure. Conversely, the solid
curves are generated taking into account the g and h parameter values calculated from the
peak calibration. Such values are valid only in the region of the cloud of experimental
points. For any other region in the G - S plane the SZ(G) curve should fall between the
dotted and solid curves corresponding to the desired charge, and the corresponding values
of g and h would be comprised between the ’old’ and ’new’ values of the parameters. This
is a clear indication of the fact that the response of the detectors, characterised by the g
and h parameters, depends on the incident particle energy and, of course, the most correct
procedure to characterise this response is calibration at the adequate energies. Nevertheless,
an approximation of the g and h values at any energy may be calculated by appropriate
interpolation.

The study of the intrinsic charge uncertainty introduced by the RERFG identi-
fication method as described in section 1.3.2. has led a value of σZ ' 0.1 e. This result
represents a very low contribution to the expected charge uncertainty for the nuclei recorded
in the UHCRE which is estimated to fall in the interval 1.5 − 2 e, as already predicted in
former works [Dom90]. Figure 1.24 shows the ellipse, generated from the uncertainties σSeff
and σGeff

, which is centered in the Seff , Geff point characterizing a chosen track. The two
closest SZ(G) curves to the experimental point (Seff , Geff ) are also plotted in the figure.
Results obataines for other tracks display the same behaviour.

1.4. Abundances of Ultra Heavy Cosmic Ray Nuclei recorded
in UHCRE

The abundance histogram of the ions recorded in the UHCRE is obtained using
the ’new’ g and h values and applying the RERFG method. This histogram is displayed
in figure 1.25 .Also shown in this figure is a gaussian fit of the peaks observed which are
in agreement with the predicted ones in this charge region (i.e. the Platinum and Lead
abundance peak). The Platinum peak has an area larger than the Lead one, thus indicating
an overabundance of the r -synthesised material with respect to the s-synthesised material
that reaches the Earth’s neighbourhood. In order to derive the appropriate astrophysical
implications from this result, it is necessary to determine the cosmic ray source abundances
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Figure 1.23. Sz(G) curves corresponding to several UH charges using the ’old’ values of the
g and h parameters obtained from Bavalac accelerator calibration (dotted curves) as well as
the ’new’ values of these two parameters obtained from our calibration (solid curves). The
calibration region with accelerator and the cloud of experimental points are also displayed.

by means of a suitable model of cosmic ray propagation in the Galaxy. On the other hand,
although the statistics available for the highest charges is low, a less abundant peak appears
for 78 6 Z 6 92, which is certainly disconnected from the Platinum and Lead peaks. This
could be the so-called ’actinide peak’, which is the third peak predicted in the UH charge
region, according to the neutron capture processes of nucleosynthesis. Results coming from
the UHCRE detectors analysed by other groups would provide enough events in this region
of highest charges in order to confirm statistically the existence of the actinide peak. It has
been observed that no significant variation appears in comparison with the charge histogram
obtained applying the approximation of β constant [Dom96]. The results are compatible
with charge uncertainty comprised between ∼ 1.5 and 2 charge units, as already predicted
in former works [Dom90].

Binns [Bin88] defines two abundance ratios in the Z > 65 region:

R1 =
Actinide abundance (87 ≤ Z ≤ 100)

Lead+ Platinum group abundances (74 ≤ Z ≤ 86)

R2 =
Lead group abundance (81 ≤ Z ≤ 86)

Platinum group abundance (74 ≤ Z ≤ 80)
In addition, Klarmann et al [Kla85] defines a third abundance ratio in the same

charge region:
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Figure 1.24. Uncertainty ellipse constructed with the values of σSeff and σGeff
drawn

around the experimental Seff , Geff ponts which is located in the center of the ellipse. The
”theoretical” S82(G) and S83(G) curves are also plotted.

R3 =
Abundance of elements with (70 ≤ Z ≤ 73)

Lead+ Platinum group abundances (74 ≤ Z ≤ 86)
Table 1.1 shows the results obtained for R1, R2 and R3 from our data measured

in the UHCRE stacks compared to those obtained by other authors in other experiments.
Our results are compatible with those obtained by combining the Ariel VI and the HEAO
3 results (the other experiments that were able to separate the Lead and Platinum groups).
Comparing values of R1, R2 and R3 in table 1.1 with those corresponding to Solar System
abundances proposed by different authors (see table 1.2), the overabundance of r -process
synthesized material in the Z > 65 region is confirmed, as already stated by other authors
[Sch72], [Bin82], [Bin85], [Bin89], [Fix83], [Gil85], [Mar85], [Sto87]. Our value of R3 however
is extremely low compared to those obtained by other authors, but this could be explained
by the registration threshold of our detector, that led to a low-registration efficiency for
incident ions in the charge range 70 ≤ Z ≤ 73.

1.5. Discussion and conclusions

This chapter has been focused on the study of the Reduced Etch Rate Fractional
Gradient (RERFG) identification method and its application to the nuclei recorded in
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Figure 1.25. Charge histogram corresponding to the 205 UHCR events with Z > 65 studied
in this work obtained using the method based on the reduced etch rate fractional gradient,
the corresponding gaussian fit is also displayed.

UHCRE experience. From the results obtained in this work we may conclude that, in
order to identify UH charged particles recorded in plastic track detectors, the RERFG
method is fully applicable only for incident ions of kinetic energy over 50 MeV/n which do
not come to rest in the detector, the so called region 3 in figure 1.17. In terms of range, this
region covers the whole path of any ion of the studied charge interval with the exception of
approximately its last millimeter. This method is fully applicable to UH nuclei recorded in
the UHCRE, and the results of charge identification of the recorded nuclei are in agreement
both with the theoretical predictions [Tho87], [Dom87a] and with previous results from
other experiments [Shi78], [Bin89] & [Fow87].

Nevertheless, several problems arise in practice when the RERFG method is ap-
plied. Probably, the most important of them is the fact that the detector response is only
characterised through a model (REL model) that was first developed for incident ions of
smaller charges and energies than those we are dealing with. There is clear indications that
the parameters on which the detector response depends (g and h) are energy and may be
charge dependent, evidencing either the limitations of the track formation model itself or
the non-ideal behaviour of the detector. Certainly, the fact of calibrating from accelerator
data has allowed us to evidence the non-validity of accelerator calibration in a different en-
ergy region (the region of experimental points), thus showing that the g and h parameters

33



Table 1.1. Abundance ratios R1, R2 and R3 calculated from several experiments by different
authors, including our UHCRE results.

Ariel VI HEAO-3 Combined Ariel + HEAO-3 UHCRE

R1 0.04 0.010 0.024 0.016
R2 0.35 0.25 - 0.32
R3 0.16 0.27 - 0.074

Table 1.2. Coefficients R1, R2 and R3 calculated from several Solar System abundances,
including an r -process source one.

SS [Cam82] SS [And82] SS [And89] r-source [Bin85]
R1 0.011 0.006 0.006 0.013
R2 0.816 0.936 1.026 0.596
R3 0.065 0.068 0.067 0.060

display a ”local” behaviour. These parameters should depend, on the ideal case, only on
the detector characteristics. In this work, the model has been applied ’locally’, as values of
g and h have been calculated for the energies of the ions involved, and is valid only for these
energies. For any different range of energies, different values of the parameters must be
determined, as it has been done in this work when a ’new’ calibration has been performed
in order to reproduce the correct charge scale. In the case that a ’global ’ (as opposed to
’local ’) treatment of the detector response is to be carried out, it would be necessary to
determine the dependence of g and h with energy, either by analytical calculation of g(ε)
and h(ε), if possible at all, or by adequate interpolation between known values. If this was
the case, expression 1.8 should be conveniently modified, as it has been developed assuming
that g and h are constant.

On the other hand, the identification method is based on the track formation model
and, therefore, on the energy deposited by the incident charged particle in the detector,
ruled by the Bethe-Bloch equation. The incident particle charge and energy values for
which the Bethe-Bloch equation is applicable [Fan63], are limited [Nor63], so that several
corrections, in addition to the shell correction and the density effect correction already taken
into account in the ’uncorrected’ formula, should be introduced if UH ions of high energies,
such as those recorded in the UHCRE, are considered [Osu88]. The effect of the quantic
Bloch, the relativistic Bloch, the Mott, and the Leung corrections should be considered,
as other corrections which only contribute to stopping power for low or very low velocities
of the incident particle may be neglected for high energies. The last correction introduced
in the stopping power (Bethe-Bloch) formula [Lin96] appears when nuclear size effects are
taken into account. Consequently, this correction has an important contribution for high
energies and high atomic numbers of the penetrating particles [Dat96]. All these corrections
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may be included in a ’corrected’ Bethe-Bloch equation.
A charge histogram of the abundances near the Earth’s neighborhood of UH cosmic

ray ions with Z > 65 recorded in the UHCRE has been obtained using a charge identification
method based on the fractional gradient of the reduced etch rate together with the REL
criteria as a latent track formation model. The energy dependence of the parameters g and
h has forced us to refuse the calibration made in the Berkeley Bevalac accelerator at an
energy . 1 GeV/n, because the energies of the ions recorded in the UHCRE detectors are
& 3 GeV/n. In our case a calibration based on the knowledge of predicted peaks have been
applied.

The UH cosmic ray composition seen by the UHCRE detectors shows the existence
of two separate abundance peaks. The Platinum group peak consisting of rapid neutron
capture process synthesized elements which is the most abundant, and secondly the Lead
group peak which is composed of slow neutron capture process built up elements. Both
peaks are also present in the Solar System abundances but with a different ratio. This
behavior is reproduced when the measured composition from other experiments (mainly,
Ariel VI and HEAO 3) is compared to the Solar System one. These differences between
the Solar System abundances and the measured ones, can be justified if the production of
secondary elements by nuclear interaction (mainly spallation) with the interstellar medium
Hydrogen through the propagation process is considered.

The study of the charge uncertainty introduced intrinsically because of the appli-
cation of the RERFG method to the nuclei detected by the SSNTD’s used in the UHCRE
has revealed that this identification method is not the main source of uncertainty; σZ ' 0.1
e whereas the charge resolution for the UHCRE detectors is estimated to be ' 1.5 − 2e.
Thus, in order to justify the expected charge resolution, all other uncertainty sources have to
be taken into account, as uncertainty introduced by the Bethe-Bloch equation, the influence
of the RTE and the LTI effects.
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2. Study of Ultra Heavy Nuclei
Latent Track Formation model in
Solid State Nuclear Track
Detectors

Nature uses as little

as possible of anything

JOHANNES KEPLER

2.1. Introduction

The interest of our research group has been concentrated for several years mainly
on passive track detectors and, in particular, on plastic track detectors which are called
Solid State Nuclear Track Detectors (SSNTD). For instance, this kind of detectors have
been used in the Ultra Heavy Cosmic Ray Experiment (UHCRE) in order to collect a
statistically significant sample of arriving nuclei of Z > 65 and energy over ∼ 3 GeV/n
which belong to the primary cosmic radiation, arriving to near the Earth neighbourhood.

The knowledge of the physical process of energy deposition by the incident particles
in the track detectors and of the relationship between the response of the detector and
this energy deposition is essential in order to attain precise and reliable results in the
work developed. In particular, it is of great importance to fully characterise the particle
registration process that takes place into the detector when the charge of unknown ions is
intended to be identified.

41



In summary, the main steps involved in ion registration in tracks detectors and
the physical magnitudes related to them are:

• The Stopping Power (dEdx ) of a charged particle in a given absorber is related to the
incident particle characteristics, and specifically to its charge Z and energy E, as well
as the absorber characteristics.

• A Track Formation Model tells which fraction of dE
dx contributes to the formation of

latent tracks in the absorber material. This fraction of the stopping power is the
physical quantity characterising the model.

• An Identification Method relates, by means of a more or less complex procedure,
the physical quantity characterising the track formation model to the recorded signal
strength S and allows, finally, to determine the charge and energy of the incident ion.

The main goal of the present chapter is to put forward a new track formation
model based on a modification of the known Restricted Energy Loss (REL) model which
has been applied to identify the nuclei recorded in the SSNTD employed in the UHCRE
experience (see chapter 1). The parameters associated to the REL track formation model
are energy dependent, as discussed and concluded in the previous chapter. The aim of the
proposed track formation model is to study the energetic dependence of such parameters
and, thus, make them depend only on the detector characteristics, in the case of eliminating
such energetic dependence.

2.2. Interaction of fast heavy ions with matter

A fast heavy charged particle penetrating into matter loses energy predominantly
by collisions with the absorber electrons. In this context, a heavy particle is a particle with
rest mass much bigger than the electron one. The energy loss of such particles is charac-
terised by the magnitude called stopping power, which accounts for the energy deposited
in the absorber per unit length dE

dx . The stopping power depends on several characteristics
of the incident particles (such as their charge and energy) and of the absorber (such as its
density, mean atomic number and ionisation potential), and is usually calculated following
the Bethe-Bloch formula. In some way, the stopping power is the ”identity card” of a given
particle that enters into a given absorber, in the sense that is the only information that
the incident particle can provide. Hereinafter, we will only deal with the particular case
of incident heavy charged particles being fully stripped ions, as it is the case of the heavy
hadronic component of cosmic rays arriving near the Earth.

The sub-microscopic damage, known as latent track, produced by a fast heavy
particle travelling inside a SSNTD is due to the process of energy deposition. Therefore,
the latent track damage intensity should be related in some way to the stopping power dE

dx .
A track formation model proposes which fraction of the energy deposited in the absorber
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is responsible of the latent track formation. Unfortunately, latent tracks are not directly
measurable in an easy way, so that it is necessary to perform some etching process (chemi-
cal or electrochemical) to make them visible under optical devices, obtaining the so-called
etched track. The signal recorded in SSNTDs is usually defined as a function of measur-
able geometric parameters from the etched track and is characterised by a variable called
signal strength (S). With such a definition, there should be a (more or less complicated)
relationship between signal recorded and latent track damage intensity. This relationship,
together with a suitable procedure for relating the signal strength S to the characteristics
of the incident ion, configure the so called identification method, as the registered signal
strength S carries information about the charge and energy of the recorded ion. Moreover,
S may depend not only on the particle and absorber characteristics, but also on the etching
process needed in order to visualise the latent track and on other environmental parameters,
such as the registration temperature or the oxygen concentration among others as stated in
numerous former works [Pri86], [Ada86], [Tho86], [Tho87], [Dom87a], [Dom87b], [Osu87],
[Dra87], [Pri87] and [Dom90].

Difficulties arise in practice as none of the three steps quoted above (i.e. the
stopping power, the track formation model and the identification method) is fully well
known. In some cases: i) the stopping power expression given by the Bethe-Bloch formula
is not fully applicable in the energy range of the studied incident particles, as it is the case
of fast heavy ions loosing energy in solid absorbers; ii) track formation models are not
completely understood; and iii) it is difficult to parametrise the variations of S induced
by the effects of the etching process on the latent track. These difficulties are normally
overcome by means of detector calibration in accelerators to ions of known charges and
incidence energies. Calibration allows to assign a relationship between the registered ion
charge Z and kinetic energy E and the recorded signal strength S.

2.2.1. The Stopping Power

Energy losses of charged heavy particles are commonly calculated by means of
the Bethe-Bloch formula [Fan63], [Nor63] (hereinafter, uncorrected Bethe-Bloch formula).
In particular, the uncorrected formula is not applicable to fast ions with Z > 30 due to
assumptions and approximations utilized in its mathematical deduction [Ahl80]. In ad-
dition, this equation is only strictly valid for rarefied gas absorbers. Several corrections
have been introduced in the uncorrected Bethe-Bloch equation in order to extend its range
of applicability to a wider range of ion charges and energies as well as absorbers [Ahl80],
[Ahl78], [Ahl82], [Ste82], [Gei82], [Leu89], [Bic92] and [Lin96], thus obtaining a corrected
Bethe-Bloch formula.
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The uncorrected Bethe-Bloch equation

It is well known that fast heavy particles passing through matter lose energy
predominantly by ionisation and excitation of the absorber atoms. Elastic nuclear collisions
(i.e. nuclear stopping power) are only relevant in the case of calculating the energy loss of an
incident heavy charged particle with an extremely low energy (β < 1

137) [Fan63], so that they
may be neglected when faster heavy charged particles are considered. Other contributions
to the energy loss, such as radiative corrections and spin effects, appear only for heavy
charged particles of extremely high velocity. This study is limited to non-ultrarelativistic
ions for which radiative and internal structure corrections may be neglected.

In order to quantify the energy loss of a charged heavy particle, the stopping power
denoted by −dE

dx , is defined as the average energy lost by the particle in the absorber per
unit of path length. Alternatively, the stopping power may be written in units of mass
thickness ξ = ρx, where ρ is the absorber density, so that −dE

dξ = −
³
1
ρ

´ ¡
dE
dx

¢
. In order

to obtain an expression for the stopping power, several theoretical treatments have been
performed, leading to different solutions. All these solutions have a common term (universal
term) and a dimensionless multiplier, L, called stopping number. The general expression
for the stopping power may be written as:

−dE
dξ

=
4πNAe

4

me

Z21Z2
v2

1

A
L (2.1)

where NA is the Avogadro number, e is the electron electric charge, me is the rest mass of
the electron, Z1 is the electric charge of the incident particle in units of the electron charge,
v is its velocity, Z2 is the atomic number of the absorber, and A is its atomic mass.

Different authors have proposed expressions for the solution to the stopping power
equation using different approaches to the theoretical problem. In 1913 and 1915, N. Bohr
suggested the following expression for the stopping number [Boh13], [Boh15] applying a
classical treatment:

L = ln
1.123mev

3

Z1e2 hωi − ln
¡
1− β2

¢− β2

2
(2.2)

where hωi is the geometric mean cyclic frequency of the orbital electrons of the absorber.
In the decade of 30’s H. Bethe, found a different expression for L [Bet30], [Bet32] after
performing a quantic treatment of the problem:

L = ln
2mev

2

I
− ln ¡1− β2

¢− β2 (2.3)

being I the mean excitation energy of the atomic electrons. Afterwards, F. Bloch in 1933
introduced a correction to the former expressions for this term [Blo33] using a combination
of classic and quantic treatment:

L = ln
2mev

2

I
+ ψ(1)−Reψ (1 + iν)− 1

2
ln
¡
1− β2

¢− β2

2
(2.4)
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where ψ(1)−Reψ (1 + iv) is the Bloch correction, with ψ the logarithmic derivative of the
Euler Γ function, ψ (z) ≡ d[lnΓ(z)]

dz , and ν = Z1α
β being α = 1

137 the structure constant of
the electromagnetic coupling. Finally, N. Bohr in 1948 toke up again this question and
announced a new expression for the stopping number [Boh48], when combining the classical
characteristics of equation 2.2 with the quantic ones of equation 2.3:

L =
1

2

(X
s

ln
³
η2s [κ]

−2
´
+
X

η2s
s

·
κ
ηs

¸−1)
(2.5)

with ηs =
2v
us
, being us the orbital velocity of the s-th electron of the absorber, and κ = 2Z1v0

v

where v0 = e2

~ (~ is the Planck constant).
All these solutions have been evaluated using different classic and quantic treat-

ments and separating the contribution of the close collisions and of the distant collisions
to the stopping power. Close and distant collisions may be distinguished, depending on the
calculation method, by means of their impact parameter or by the amount of momentum
transfer.

As the relativistic extension in the Bohr formula (2.2) and also in the Bloch formula
(2.4) is miscalculated because of an incorrect treatment of the close collisions [Ahl80], the
Bloch solution to the stopping power, equation 2.4, is combined with the Bethe relativistic
extension, in equation 2.3 in order to obtain the known Bethe-Bloch formula for stopping
power:

−dE
dξ

=
4πNAe

4

mec2
Z21Z2

β2
1

A

·
ln

µ
2mec

2

I

β2

1− β2

¶
− β2 + ψ(1)−Reψ (1 + iν)

¸
(2.6)

Hereinafter equation 2.6 will be quoted as the uncorrected Bethe-Bloch formula.

The corrected Bethe-Bloch equation

It is necessary to make several simplifying assumptions and approximations (which
can be found summarised in [Ahl80]) in order to deduce the uncorrected Bethe-Bloch for-
mula. For this reason, any calculation carried out using this formula is only approximate.
The region of applicability of this formula, with respect to the velocity and the charge of the
incident particle as well as the absorber characteristics, is restricted by the validity of the
approximations adopted. Various correction terms appear in the Bethe-Bloch formula when
different approximations are left to be considered which may be classified into two groups,
depending on their contribution to the stopping power for fast heavy charged particles.

i) Relevant corrections. These corrections are due to the non-validity of one or
several of the following approximations: considering the absorber as a cold diluted gas,
considering the finite nuclear size of the incident particle, neglecting the internal structure
and the spin of the projectile, neglecting Bremmstrahlung and other radiative phenomena,
treating close collisions in the first Born approximation, and the limiting conditions γ ¿
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Mion
me

. Corrections of this group are the density effect (D), the Nuclear Size correction
(∆NS), the Mott correction (M) and the relativistic Bloch correction (CR).

ii) Negligible corrections. Corrections of this group are due to the non-validity
of one or several of the following approximations: considering the projectile velocity much
higher than the absorber atomic electrons characteristic velocity, taking into account the
projectile charge constant, assuming the dipole approximation for the description of the
collisions, and neglecting the relativistic motion of the inner electrons of high Z absorber
atoms. The related corrections are: the inner shell correction (S), the effective charge of
the incident particle (Zeff ) including the gas-solid effect, the low velocity correction (F ),
and the Leung correction (∆R).

The corrected Bethe-Bloch formula which includes the above corrections, allows
to extend the range of applicability of the uncorrected formula 2.6, and may be written
as:

− dE

dξ
=

4πNAe
4

mec2
Z2eff

β2
Zm

A

"
ln

µ
2mec

2

Im

β2

1− β2

¶
(2.7)

−β2 +B − S −D +M + CR −∆R +∆NS

#
· F

were the corrections introduced are described in table 2.1 ,and

Zm, is the mean atomic number of the absorber.
Im, is the adjusted ionisation potential of the absorber. Its value may be

calculated semiempirically [Ste82], or using the Bragg rule taking into account
the chemical structure of the given element in the compound [Ahl80], [Zie88].

Zeff , is the incident particle effective charge in units of the electron charge,

given by the semiempirical relation [Bar63], [Pie68], Zeff = Z1

³
1− exp

h
−130β/Z2/31

i´
,

which does not depend on the absorber. The validity of this relation is limited
by the gas-solid effect [Gei82], [Bim92], which makes the effective charge depen-
dent on the absorber characteristics. According to this effect which is relevant
only when the incident ion is not fully stripped [Her91], the effective charge is
slightly underestimated for slow ions in dense absorbers if the above expression
is used.

B = ψ(1) − Reψ (1 + iν) is the quantic Bloch correction which already ap-
pears in equation 2.6 and is also described in table 2.1.

Strictly speaking, expression 2.7 should, in addition, be multiplied by an extra
factor, which sometimes is referred to as Ultrarelativistic correction, and which accounts
for the energy loss by bremmstrahlung and not by collisions.

A computer program has been developed for the analytical calculation of the stop-
ping power for any incident fast heavy ion in any dielectric absorber, using the Bethe-Bloch
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Table 2.1. Description of the corrections introduced in the uncorrected Bethe-Bloch formula
in order to extend its applicability to a wider charge and energy range of the incident heavy
charged particles and to a larger number of absorbers.

Correction Due to ReferencesNotes
B Quantic Bloch

correction
Close collisions [Blo33] Quantic correction, not valid in the rel-

ativistic limit.
CR Relativistic

Bloch correc-
tion

Close collisions [Ahl82] Introduced to make B valid in the rel-
ativisitic limit. θ0 and λ are param-
eters that should be obtained from a
semiempirical fit.

S Inner shell cor-
rection

Close & dis-
tant collisions

[Bic92] The correction takes into account that
the absorber electrons have finite veloc-
ities.

D Density effect Distant colli-
sions

[Ste82] Takes into account the polarisation of
the absorber by the incident particle.
Appears only for β < 0.85.

M Mott correc-
tion

Close collisions [Ahl78]
[Ahl80]

Appears when the Mott cross section
is consideren instaed of the Rutherford
cross section.

∆R Leung correc-
tion

Close collisions [Leu89] Takes into account the relativistic mo-
tion of the inner shell electrons of high
Z2 absorbers.

∆NS Nuclear size
correction

Close collisions [Lin96] Takes into account the finite nuclear
size of the incident fast heavy charged
particle. Its effect should be relevant
when γA1/3 u 160.

F Low velocity
correction

Close & dis-
tant collisions
(each of them
contributes
half of the
correction)

[Ahl80] This correction, toghether with the
Mott correction, accounts the Barkas
effect. It has been suggested [Wad86]
that considering this correction with
the Zeff expression is questionable, as
both corrections seem to account for
the same physical process.
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equation with corrections. It must be emphasised that an analytical calculation has been
performed, rather than a semiempirical one or a Monte Carlo transport of particles, as we
are interested on the study of the contribution to the stopping power of each term of the
corrected Bethe-Bloch equation in order to select those corrections which are relevant for
track formation in SSNTD’s of ions with charge and energy similar to those recorded in
UHCRE.

2.2.2. The Track Formation Model

The Bethe-Bloch formula (in both versions, i.e. uncorrected and corrected) allows
to calculate the energy loss per unit of path length of an incident heavy charged particle
passing through matter, and in particular through SSNTD. A track formation model de-
cides which fraction of the deposited energy inside the SSNTD is invested in damaging the
chemical structures of the traversed plastic detector. This damage of submicroscopic size,
called Latent Track, becomes visible when an etching process is performed to the SSNTD,
and hence geometric measurements can be made using an ordinary optical microscope. Ac-
tually, a latent track is only formed when the transferred energy per unit of path length
exceeds a registration threshold, which depends on the detector characteristics on ideal case.
Several track formation models have been developed such as:

The Total Energy Loss model [Fle64]. According to this model all energy deposited
by the penetrating particle in the plastic detector exceeding the registration threshold is
responsible of the latent track formation. The model fails due to it predicts registration
thresholds which depend on the matter characteristics and also on the charge of the recorded
particle.

The Ion Spike mechanism [Fle65]. This model assumes that, along the path of the
incident particle, a displacement of the detector electrons is experienced and consequently a
cylinder region with positive charge is produced. Net displacements on the plastic detector,
which are caused by the electrostatic repulsion between the charged cylinder and the ions
of the matter, are responsible of the latent track formation.

The Primary Ionisation model [Fle67]. According to this model, which is a modi-
fication of the ion spike mechanism, the formation of the latent track is determined by the
number of the ions produced per unit of path length along the particle trajectory which is
characterized by means of the magnitude dJ

dx , instead of the stopping power, which excludes
the ionisation originated by secondary particles.

The Restricted Energy Loss model (REL) [Ben68], [Ben69]. According to the REL
track formation model, the latent track formation is due only to the energy deposited by the
distant collisions of the incident particle with the absorber electrons. Distant collisions are
defined as those with large impact parameter, originating recoil electrons with low energy
(ω), smaller than a fixed value (ω0) that depends on the absorber, and which deposit their
energy in the neighbourhood of the incident particle path. In the derivation of the corrected
Bethe-Bloch equation (equation 2.7), the contributions of close (those originating recoils
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with ω > ω0) and of distant collisions are treated separately and subsequently combined to
obtain the expression giving the total energy loss of a given ion. This expression is finally
independent on ω0. But, if we are interested on calculating the Restricted Energy Loss (as
opposed to total energy loss), the energy transferred from the incident charged particle to
the absorber electrons is separated in two parts

−dE
dξ

= −
µ
dE

dξ

¶
ω<ω0

−
µ
dE

dξ

¶
ω>ω0

(2.8)

where the first term corresponds to distant collisions and contributes to latent track forma-
tion, and the second one is the close collisions term, not contributing to track formation in
the REL model. The corrected Bethe-Bloch equation may be written in a form such that
it is straightforward to obtain the term of equation 2.8 which gives the distant collisions
contribution. For such purpose, the ω0 parameter has to be inserted in the logarithm term
inside the bracket of equation 2.7 and, in consequence, a 1

2 factor accompanying this term
should be introduced.
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and, consequently, the other term that gives the close collisions contribution to the corrected
Bethe-Bloch formula is
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Equation 2.9 is, by definition, the restricted energy loss RELω0 of the considered
charged particle in the given absorber. Due to the difficulties of calculating theoretically
ω0, its value for an specific absorber is in practice obtained from the best fit to experimental
data. It must be stated here that the 1

2 factor which appears in the β2 term, are due to
the fact that one half of such term (see equation 2.7) is originated by the contribution of
close collisions, whereas the other half originates from distant collisions contributions.

In former works done in our group as well as in chapter 1, the REL track formation
model based on the corrected Bethe-Bloch equation has been applied in order to identify
the charge of ultra heavy ions belonging to the primary cosmic radiation which have been
recorded in SSNTD’s near the Earth surface [Dom95], [Dom96].

In order to evidence the energy dependence of RELω0 , this magnitude has been
plotted versus the energy per nucleon (ε) in figure 2.1 for a given charge. Restricted energy
loss (in MeV·cm2/g units) has been calculated by means of equation 2.9 for energies ranging
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Figure 2.1. REL as a function of the incident ion energy for Z = 78. The calculation of
REL is based on the corrected Bethe-Bloch formula given in equation 2.9.

from 103MeV/n up to 1.5·103MeV/n. As figure 2.1 shows, RELω0remains almost constant
for energies above ≈ 3 · 103 MeV/n. The behaviour for other ion charges is similar to that
illustrated in figure 2.1.

2.2.3. The Identification method

Charge identification is based on the relationship between the signal recorded in
the detector, characterized by the reduced etch rate (S), and RELω0 which has a potential
form

S = g (RELω0)
h (2.11)

where g and h are parameters which must be determined through calibration of the de-
tector. Equation 2.11 is the most appropriate function fitting the reduced etch rate with
the restricted energy loss among other proposed empirical functions which depend on the
detector used, the kind of recorded particles and the energy range in which the identification
is carried on [Seq76], [Fer81], [Lüc82] and [Vid84].

Although the approximation of β constant can be assumed in order to identify
the charge of the recorded ions [Dom95],[Dom96], if it is considered that the ions resulting
in the recorded tracks lose a small but measurable amount of energy inside the stack, an
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identification method based on the fractional gradient of the reduced etch rate (RERFG)
may be applied [Fow77a], [Fow77b], as has been described in chapter 1. According to the
RERFG method, G is defined as

G =
1

S

dS

dx
(2.12)

where S is the reduced etch rate and x is the path length. According to this method, each
recorded track is characterised by a single (Seff ,Geff ) couple, which is calculated from the
measured set of points (xi, Si) using expressions 2.13 and 2.14.

Seff =
n

nP
i=1

Si+S2n+1−i
2SiS2n+1−i

(2.13)
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¯̄̄̄
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h
2(S2n+1−i−Si)wi
(S2n+1−i+Si)∆xi

i
nP
i=1

wi

¯̄̄̄
¯̄̄̄ (2.14)

A charge value may be assigned to every (Seff ,Geff ) couple, and hence to every
recorded track, by knowing which SZ(G) curve is the closest to the considered (Seff , Geff )
point. The SZ(G) curve is determined varying the energy in equations 2.11 and 2.12 for
each given charge, thus the knowledge of the proper values of the parameters g and h, which
characterize the detector response, is needed in order to identify the charge and energy of
a recorded ion.

On an ideal case, the parameters value should be obtained from calibration in
accelerator. In particular, for the SSNTD’s used in the Ultra Heavy Cosmic Ray Experiment
(UHCRE), which was able to detect nuclei with Z > 65 and energies above 3 GeV/n,
our group performed some calibration work at the Berkeley Bevalac accelerator with ion
beams of an energy . 1GeV/n. Consequently, g and h should be corrected to extrapolate
the detector response above & 3 GeV/n. A second calibration is required in order to
determine the correct value of g and h parameters, this calibration has been performed from
the knowledge of the most prominent ion peaks belonging to the charge region considered
corresponding to Platinum (Z = 78) and Lead (Z = 82) peak (see section 3.3 of chapter 1
for a detailed description) . It is also very important to take into account the dependence
on energy of the parameters g and h for a proper charge identification.

It should be emphasised the variation of RELω0 with the energy of the incident
charged particle (depicted in figure 2.1), because it may be responsible for the energy
dependence of the parameters g and h. This feature, has suggested that the REL track
formation model may not be fully applicable, thus a modification of such model is proposed
in order to avoid this “local” behavior of the g and h parameters. In the modified REL
model a contribution of the close collisions to the amount of energy loss responsible of the
latent track formation is taken into account. The close collisions contribution could be
relevant but should be small instead of strictly zero as considered in the REL model.
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2.3. The modified Restricted Energy Loss track formation
model

According to the REL track formation model only distant collisions contribute to
the process of latent track formation. This fact is mathematically reflected in equation
2.9, which is the analytical expression of the fraction of stopping power contributing to
track formation if the corrected Bethe-Bloch formula is employed. Probably all corrections
described above (see table 2.1) would influence the fraction of stopping power contributing
to track formation, and therefore to the analytical expression of REL. One should quantify
which part of these corrections contribute to track formation or, in other words, find out,
if possible at all, which part of the corrections is due to distant collisions and which one is
due to close collisions. It must be emphasised that close and distant collisions are extreme
approximations of the way in which collisions are treated in the mathematical formalism, so
that there is no practical way to separate their contributions, and therefore in most cases it
is impossible to distinguish their influence in the analytical expressions of the corrections.
One possibility of dealing with this problem might be to introduce a new parameter to
be determined semiempirically in the track formation model, taking into account which
fraction of the close collision correction terms in the corrected Bethe-Bloch formula (2.7)
contribute to the formation of the latent track and consequently to the modification of
the REL expression (2.9). This ”modified” model of track formation should lead, ideally,
to a relationship between signal strength or detector response and the quantity REL not
depending on the charge and energy of the incident particle or, in other words, to ”universal”
values of the g and h parameters which appear in this relationship.

2.3.1. The contribution of close collisions

At this point, one should find out which, if any, of the terms added for correcting
the energy loss expression contribute to track formation. This may not be an easy job,
since although it seems clear that only those terms related to distant collision contributions
are relevant, one must remember that the separation between close and distant collisions is
somehow artificial and there is not a clear boundary among them. On the other hand, some
terms may display contributions from both kinds of collisions, which might not be possible
to separate.

As a first approximation, the Bloch and relativistic Bloch corrections, together
with the Mott, the Leung and the Nuclear Size corrections are due to close collision con-
tributions, so they should not contribute to REL and, therefore, to track formation. The
density correction, due to distant collisions, and the inner shell correction and the low ve-
locity correction, due to both close and distant collisions, may contribute to some extent
to REL. In any case, the contribution of the inner shell correction and that of the Leung
correction are not considered in our work because it can be shown that, for swift heavy
ions losing energy in an absorber such as plastic track detectors, it is negligible except,
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Figure 2.2. The Leung correction as a function of energy for a Pb ion (Z = 82) penetrating
a plastic detector.

may be, in a very small region of the track of the incident ion, when it almost completely
stops, as the velocity of the ion is comparable to that of the atomic electrons. Figure 2.2
shows the very small contribution of the Leung term for energies from 1 GeV/n up to 15
GeV/n corresponding to a Pb ion traversing a SSNTD. On the other hand, the low velocity
correction is not taken into consideration as we have made the approach of dealing with
the effective charge of the incident ion, which accounts for the same physical process. Fi-
nally, it is assumed that energy deposition by bremmstrahlung does not contribute to track
formation, thus the ultrarelativistic correction is not included.

It does not seem realistic to consider that the contribution to REL of the processes
involving close collisions is exactly zero. If it were so, that would mean that no energy
deposited by the recoil electrons, which are expelled far away from the incident particle
path, is left in the track neighbourhood, thus implying that this expelled electron has
somehow ”jumped away” over this neighbourhood and has started to deposit energy once
far apart from the track. To take this circumstance into consideration, it is assumed that
all distant collision processes contribute fully to track formation and, therefore, to REL. It
is also considered that the relevant close collision terms (i.e. the Mott, Bloch, relativistic
Bloch and nuclear size corrections) may contribute partially to REL. A modified REL
track formation model (hereinafter MREL) is proposed in which close and distant collisions
contribute to the latent track formation. In order to quantify the partial contribution of
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Table 2.2. Values of the factor γA1/3 for three different isotopes belonging to the UHCRE’s
charge region, with two different energy values also characteristic to nuclei recorded in
UHCRE.

Pt78195 Pb82208 U92238
3 GeV/n 24.5 25.0 26.2
5 GeV/n 36.9 37.7 39.5

close collisions a parameter (κ), ranging from 0 to 1, which multiplies the contribution of all
close collision terms to the MREL, is defined. The expression of MREL giving the fraction
of the energy deposited in the detector by the penetrating particle that contributes to the
track formation, is written as:

MRELκ ≡ −
µ
dE

dξ

¶
ω<ω0

− κ ·
µ
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¶
ω>ω0

(2.15)

where the first term
³
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´
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, which accounts for the distant collisions contribution, is

actually RELω0 defined in equation 2.9.
In order to obtain an expression which allows to calculate the MRELκ quantity,

.equation 2.15 can be developed using equations 2.9 and 2.10,
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For the limit value of κ = 0 the classic REL expression (equation 2.9) is recovered,

whereas for the opposite value κ = 1, equation 2.16 equals the corrected Bethe-Bloch
formula (equation 2.7).

When ultra heavy nuclei with charge and energy similar to those detected in the
UHCRE experience (i.e. Z & 65 and ε ' 3 − 5 GeV/n) are considered, the nuclear size
correction, ∆NS, can be removed from equation 2.16 as its validity condition γA1/3 u 160
[Dat96] is not achieved for such particles (see table 2.2 with the values of γA1/3 factor
for three different isotopes of the UHCRE’s charge region and energies of 3 GeV/n and 5
GeV/n).

The Bloch correction, B, has been evaluated using the series [Abr72]:

B ≡ ψ(1)−Reψ(1 + iv) = −v2
∞X
n=1

n−1
¡
n2 + v2

¢−1
(2.17)

The expressions employed to calculate the density effect, D, are given in [Ste82],
[Ste71] and [Ste81] which are obtained from a semiempirical fit to experimental data. The
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Mott correction, M , is calculated by means of the expression given in [Ahl78], [Ahl80],
which fails at low energies of the incident particle as it does not vanish when β → 0. In
order to overcome this failure, the correction has been assumed to be constant and equal to
its estimated uncertainty given by (Zeffα)

9 /6β9, when the correction achieve values very
similar to the uncertainty ones, following the criteria given in [Wad83]. The relativistic
Bloch correction, CR, calculation is performed using the expressions provided by [Ahl82].
For this calculation, the semiempirical fit of two parameters is required; the dispersion angle
θ0 which allows to separate the close collisions into those where the transverse momentum is
negligible and those where it is not, and the impact parameter, λ, which allows to distinguish
between close and distant collisions. The values of the relativistic Bloch correction does not
depend strongly on the λ value, nevertheless it is quite sensitive to the value of θ0. The
values of θ0 = 0.1 and λ = 1 have been taken as a first approach, as suggested in [Ahl82]
when it is assumed that an impact parameter equal to the Bohr radius differentiates the
close collisions to the distant ones (see [Mom94] for the expressions of each correction).

In order to evidence the contribution of the close collision corrections to the
MRELκ, several figures are displayed. In figures 2.3, 2.4 and 2.5 the Bloch correction
(B), the Mott correction (M) and the quantic Bloch correction (CR) for a given nuclei of
Z = 80 are plotted as a function of energy for several values of the close collision con-
tribution parameter, κ. The behaviour of such curves for other nuclei are similar to that
shown in these figures. On the other hand, figures 2.6, 2.7 and 2.8 illustrate the energetic
dependence of the Bloch correction (B), the Mott correction (M) and the quantic Bloch
correction (CR) at a fixed value of the parameter κ = 0.2 for different ions (Z = 70, 80 &
90). Curves for other values of the κ parameter offer similar behaviour to that for κ = 0.2.
According to figures 2.6 and 2.8 it is inferred that the higher the considered charge is the
much relevant the contributions of both Bloch corrections, B and CR, to the MRELκ are,
contrarily to what happens with the contribution of the Mott correction, M . as shown in
figure 2.7.

Figure 2.9 shows, as an example, theMRELκ graphs obtained as a function of the
incident ion energy for different κ values and for a given ion charge (in this case, Z = 78).
The behaviour for other ion charges is similar. In this figure, one can see clearly that, as
expected, MRELκ increases when the close collisions contribution increases. In addition,
the minimum of ionisation shifts to lower energies when κ increases, and the gradient of
MRELκ for energies above this minimum is more prominent also when κ increases. Taking
into consideration that no ion with energy below 3 GeV/n is recorded in the UHCRE, one
can see that, if κ = 0.0, MRELκ remains nearly constant as the incident ion slows down,
increasing slightly when its energy is close to 3 GeV/n. As κ increases, one finds that
as the incident ion slows down to 3 GeV/n, its MRELκ decreases, so that the recorded
signal strength decreases according to equation 2.11. This situation is opposite to that
normally assumed for slowing down ions when no close collision corrections to the Bethe-
Bloch formula, nor to the modified REL, are taken into account. This analysis puts into
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Figure 2.3. The Bloch correction term as a funtion of energy of a Z = 80 ion mudulated by
several values of the close collisions contribution parameter, κ.

evidence that the knowledge of the restricted energy loss mechanism, and that of the close
collisions contribution, is the key for the correct assignment of charge to the incident ion.

2.3.2. Study of the behaviour of the MREL model parameters

In order to evaluate the effect of using the modified restricted energy loss (MREL)
track formation model instead of the classic REL one, the MREL model together with the
reduced etch rate fractional gradient method (RERFG), as charge identification process, is
applied to nuclei recorded in the UHCRE experience. Mathematically speaking, this charge
assignation process is translated into determining the SZ(G) curves from equations 2.11 and
2.12 replacing the RELω0 term by the new MRELκ term which, in turn, can be calculated
with equation 2.16. Therefore, equation 2.11 is updated and may be written as

S = g (MRELκ)
h = g

"µ
dE

dξ

¶
ω<ω0

+ κ

µ
dE

dξ

¶
ω>ω0

#h
(2.18)

According to this equation 2.18, the new parameter introduced in the MREL
model, κ, takes part in the determination of the SZ(G) curves. As this parameter can
vary freely in the range from 0 to 1, it does not exist a unique SZ(G) curve for a fixed ion
charge, given the values of the parameters g and h. At this point, an appropriate calibration
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Figure 2.4. The Mott correction term as a funtion of energy of a Z = 80 ion mudulated by
several values of the close collisions contribution parameter, κ.

should be required in order to determine the correct value of the parameter κ and, hence,
to proceed with the identification process as described in section 2.3.

The abundance peaks in the charge region, where the nuclei seen by the plastic
detectors of the UHCRE belong, are those corresponding to the Platinum (Z = 78) and
the Lead (Z = 82) dominant elements. In order to evaluate the effect that the close
collisions contribution parameter, κ, could have on the parameters of the identification
method, a procedure (hereinafter parameter procedure) based on the reproduction of the Pt-
Pb abundance peaks has been developed and applied. It must be stated that this parameter
procedure does not consist on a calibration because the κ parameter is not determined
although g and h parameters are for a given fixed κ value.

The first step of this parameter procedure consists on fixing a value for the close
collisions contribution parameter, κ (in this case the chosen values are κ = 0.0, 0.1, 0.2,
0.4, 0.6, 0.8 and 1.0). Next, the values of the parameters g and h are randomly generated
instead of determining their value by means of a peak calibration in the way that in section
3.3 of chapter 1 has been done. Values of the parameter h are chosen randomly from the
interval (2,4) whereas the g parameter takes values randomly from the interval (1,10). A
total of 1500 couples of g and h values are generated for each fixed value of κ.

With each set of values of the parameters κ, g and h, the charge identification
method based on the RERFG (as described in subsection 2.2.3.) is performed for a set of
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Figure 2.5. The relativistic Bloch correction term as a funtion of energy of a Z = 80 ion
mudulated by several values of the close collisions contribution parameter, κ.

measurements obtained from the UHCRE, and, hence, a charge histogram is obtained. In
order to accept a given set of parameters, two different criteria are applied. The first of
such criteria establish that a set of parameters values is correct if the charge histogram
obtained from them reproduces the dominant Pt peak in its right position with a tolerance
of one charge unit (i.e. Z = 78± 1). The g and h parameter values filtered under the first
criterion are subject to a second criterion which establishes that the selected final values
of such parameters are those with which its corresponding charge histogram reproduce,
by means of a gaussian fit, the Pt and Pb abundance peak centered at Z = 78 ± 1 and
Z = 82± 1, respectively. So that, if for a given set of parameters values the two prominent
peaks are not located in their right position, that set is refused. In figures 2.10 and 2.11
all couples of g and h parameters are plotted in the g − h plane for two different κ values
(κ = 0.0 and κ = 0.2). In both figures, selected and refused values according to the second
criterion are distinguished.

A surprising feature inferred from both figures 2.10 and 2.11, is that the accepted
values of the parameters g and h do not mix with the refused values of such parameters.
So that, the set of all selected points in the g − h plane fall into a well defined domain
which is not contaminated by the remaining points refused, as can be seen in figures 2.10
and 2.11. The corresponding plots for the rest of κ values also elucidate a domain for the
selected values of g and h. The mean value of the g and h values which are contained in a
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Figure 2.6. The Bloch correction term as a funtion of energy for three diferent ions with
Z = 70, Z = 80 and Z = 90, fixing the close collisions contribution parameter κ = 0.2.

certain domain are calculated in order to characterise such domain. Consequently, for each
initially considered value of the close collision contribution parameter, κ, the associated
g and h mean value is determined. All this laborious process of parameter selection is
synthesised in table 2.3 in which the mean value of g and h parameters obtained for each κ
value assumed.

As it can be appreciated from data of table 2.3 , there seems to be a certain
correlation between the κ parameter and the mean values of g and h parameters. Two new
figures are plotted in order to evidence such correlation. In figure 2.12 the different mean
values of the parameter g are plotted versus the corresponding κ value, and in figure 2.13 the
h mean values are plotted versus κ. In both figures the best fit to the data is also included.
A linear fit is effectuated between κ and gmean parameter values, and regression coefficient
of r2 = 0.99614 is obtained. On the other hand, hmean and κ data are better fitted with a
parabolic function as confirmed by the calculated regression coefficient (r2 = 0.99931). This
result clearly confirms that g and h parameters are not independent of the κ parameter,
furthermore, when a larger contribution of the close collisions is considered to take part in
the track formation (corresponding to larger values of κ parameter), then, the values of the
parameters g and h required to perform a right identification decrease.
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Figure 2.7. The Mott correction term as a funtion of energy for three diferent ions with
Z = 70, Z = 80 and Z = 90, fixing the close collisions contribution parameter κ = 0.2.

Figure 2.8. The relativistic Bloch correction term as a funtion of energy for three diferent
ions with Z = 70, Z = 80 and Z = 90, fixing the close collisions contribution parameter
κ = 0.2.
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Figure 2.9. The modified REL as a function of the incident ion energy for the indicated
values of the close collision contribution parameter κ, and for Z = 78. The behaviour for
other ion charges is similar. The minimum of ionisation shifts to lower energies when κ
increases.

Figure 2.10. Values of the parameters g & h randomly generated for a fixed κ = 0.0 in the
g-h plane. (+) are the points that reproduce only the Pt dominant peak. (¨) are those that
reproduce both Pt and Pb peaks.
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Figure 2.11. Values of the parameters g & h randomly generated for a fixed κ = 0.2 in the
g-h plane. (+) are the points that reproduce only the Pt dominant peak. (¨) are those that
reproduce both Pt and Pb peaks.

Table 2.3. The mean values of the g and h parameters corresponding to an assumed k value.

κ value g mean value h mean value
0.0 5.79 2.44
0.1 5.11 2.43
0.2 4.84 2.41
0.4 4.09 2.34
0.6 3.48 2.27
0.8 2.77 2.18
1.0 2.19 2.10
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Figure 2.12. g mean values plotted versus κ values. The data are very well fitted by a linear
function, which is also included in the figure, with a regresion coeficient value of 0.99614.

Figure 2.13. h mean values plotted versus κ values. The data are very well fitted by a
parabolic function, which is also included in the figure, with a regresion coeficient value of
0.99931.
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Table 2.4. Position and full width at half height of the gaissian peaks fitted to the charge
histogram for the 205 ultra heavy events recorded in UHCRE for the values of κ indicated.

κ value 0.0 0.1 0.2 0.4 0.6 0.8
Peak 1 Centre 77.54 78.49 77.49 78.48 76.12 76.14

Width 5.33 5.88 5.57 6.65 6.68 6.48

Peak 2 Centre 82.6 83.62 83.21 84.63 83.12 83.19
Width 1.18 1.46 1.23 0.84 1.52 1.72

2.4. Estimation of the Close Collision Contribution parame-
ter of the Modified REL model

As discussed in previous section, the ”calibration” procedure applied has not yield
a final unique value for the close collision contribution parameter, so that this parameter
remains undetermined, although a certain dependence on it has been found for the other
two parameters involved on the identification method used in this work. In order to study
the range of applicability of the proposed MREL model as a function of the κ parameter, the
205 Ultra Heavy Cosmic Rays recorded in the UHCRE can be used as well as the Bevalac
accelerator exposure results.

2.4.1. Estimation with the UHCRE results

In order to check the validity of each set of parameters values (κ, g and h) appearing
in table 2.3, the charge identification process based of the RERFG method (as described in
section 2.2.3.) is performed again taking the measurements results for the 205 ultra heavy
events recorded in the UHCRE experience. The charge histogram obtained for each different
set of parameter values are illustrated in figures 2.14, 2.15, 2.16, 2.17, 2.18 and 2.19 in which
the two gaussian peaks used to fit the data, as well as its convolution curve, are also plotted
evidencing the existence of two abundance peaks which should correspond to the Pb and
Pt peaks. Table 2.4 shows the position and the full width at half height of the gaussian
peaks fitted.

Comparing the position of the peaks fitted by gaussian peaks in the different
histograms with the predicted abundances peaks in this charge region, it might be assessed
that the contribution of the close collisions, if existing, should be small. In fact, for those
values of κ equal to or larger than 0.4 the overall aspect of the charge spectrum, in particular,
the position and the width of both peaks, seems not to be realistic. Thus, this result
establishes a limit value for the close collision contribution parameter.
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Figure 2.14. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.0 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.

Figure 2.15. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.1 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.
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Figure 2.16. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.2 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.

Figure 2.17. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.4 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.
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Figure 2.18. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.6 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.

Figure 2.19. Charge histogram obtained for the 205 UHCRE events, when the value of
κ = 0.8 is considered to perform the ”calibration” procedure. Best fit with two gaussian
peaks and its convolution are plotted.
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2.4.2. Estimation with the accelerator data

Several stacks of plastic detectors have been exposed to relativistic ultra heavy
ions at the heavy ion accelerator in Berkeley, Bevalac. A part of these stacks were used
to study the response of SSNTD of different kind to relativistic ultra heavy ions as well
as the environmental effects that could alter this response. The remaining stacks, which
were mounted on board of the Long Duration Exposure Facility (LDEF) satellite as a part
of the UHCRE experience, were exposed in the Bevalac accelerator before the LDEF was
launched to the Earth orbit and after its retrieval in order to study the stability of the
detector response and also to perform the calibration of them. The analysis of all these
stacks has been carried on by our group at the Universitat Autònoma de Barcelona.

In this work, only the stack named as LP, which is build by plates of Lexan
polycarbonate, is employed to perform the MREL track formation model. The LP stack
were exposed to Uranium ions with an initial kinetic energy of 919 MeV/n and to Gold ions
with an energy of 990 MeV/n. A total of 8 tracks originated by the U ions, and 8 tracks
corresponding to the Au incident ions have been located and measured.

In order to perform our calibration, an (Seff ,Geff ) point, which characterises the
considered track, is calculated using equations 2.13 and 2.14 for each measured track. On
the other hand, taking different values of the close collisions contribution parameter, κ, a
set of SZ(G) curves for a given charge, are generated using equations 2.18 and 2.12. In our
case, a total of 8 curves corresponding to the values of κ = 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8,
and 1.0 are obtained for each fixed charge value of Z = 79 (Au) and Z = 92 (U). Figure
2.20 and figure 2.21 show the set of SZ(G) curves corresponding to Au ions and U ions,
respectively, the (Seff , Geff ) points for each measured track are also plotted. The mean
value of (Seff , Geff ) and its standard deviation taken as error bar which characterises the
cloud of experimental points are also included in both figures.

The estimated value of the κ parameter provided by the calibration process is
obtained from knowing which SZ(G) curve contains the (Seff , Geff ) mean value, as each of
such curves is labelled by its corresponding κ value. In the case that the (Seff , Geff ) mean
value would not be contained in any of the plotted curves, a linear interpolation is performed,
and taking into account the error bars an estimated uncertainty of κ is determined. An
estimated value of κ = 0.26± 0.06 is obtained from the calibration with Au ions (see figure
2.20), whereas a value of κ = 0.36± 0.06 is obtained from the calibration with U ions (see
figure 2.21). These two results are compatible if the associated uncertainties are taken into
account. In addition, these values are both in agreement with the limit value of κ = 0.4

found in the previous subsection 2.4.1..

2.5. Discussion and conclusions

In this chapter, a modified track formation model based on the known REL one
has been proposed with the aim to improve the identification process of ultra heavy ions
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Figure 2.20. Several SZ(G) curves for Gold (Z = 79) obtained for different values of the
κ parameter. Experimental (Seff , Geff ) points calculated from accelerator results are also
plotted.

Figure 2.21. Several SZ(G) curves for Uranium (Z = 92) obtained for different values of
the κ parameter. Experimental (Seff ,Geff ) points calculated from accelerator results are
also plotted.
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as those arriving at the Earth atmosphere belonging to primary cosmic radiation which
are detected using solid state nuclear tracks detectors. The motivation for the modified
restricted energy loss model is found from several features arisen when the REL model is
applied:

i) The identification process is supported by the determination of the values
of the g and h parameters by means of an adequate calibration. It has been
found that both parameters are energy dependent, and hence, the identification
process based on the RERFG method reveals a ”local” behaviour.
ii) The REL model only takes the contribution of the distant collisions to the

formation of the latent track, consequently, the RELω0 quantity do not shows
any variation for an energy above ∼ 3 GeV/n and for any given charge.
iii) The terms in the corrected Bethe-Bloch equation, which respond to the

contribution of the close collisions such as the Bloch correction, the Mott cor-
rection and the quantic Bloch correction, exhibit a dependence with the energy.
iv) Close and distant collisions are extreme approximations of the way in

which collisions are treated in the mathematical formalism, actually, the ω0
parameter takes care of distinguishing between both collisions, so that there is
no practical way to separate their contributions.

If the close collisions are considered to take part to the latent track formation
process, the price that has to be paid is the introduction of a new parameter accounting for
which fraction of these collisions contribution is involved to the track formation. With this
parameter, κ, the track formation model acquires a more physical significance as it seems to
be more realistic that close collisions (actually, a fraction of them) also contribute together
with distant collisions to the process of latent track formation. In order to study the MREL
model, data from the Bevalac accelerator exposures to relativistic heavy ions are used as
well as results of the recorded ions in the UHCRE experience.

In this second case, a parameter procedure is performed which consists on randomly
generate values of g and h for a fixed κ value, and only select those values that properly
reproduce the Pt and Pb peak. The agreement between the mean value of g = 5.79 and
h = 2.44 corresponding to κ = 0.0 and those obtained in chapter 1 by means of a real peak
calibration when the REL track formation model is applied (g = 5.899, h = 2.466), may
confirm the validity of the ”calibration” procedure used in this work.

A dependence of g and h on κ has been found as illustrated in figures 2.12 and 2.13
which can be respectively very well fitted by a linear and a parabolic function. The most
relevant feature is that these fitting functions are both decreasing functions. Thus, when a
higher contribution to the track formation of the close collisions is assumed (increasing the
κ value), the model, somehow responds decreasing the values of g and h as if some kind of
equilibrium would be required to achieve. This behaviour seems to suggest that it doesn’t
matter where the contribution to the energy loss, which is responsible to the track formation,
comes from, nevertheless a fraction of the total energy loss (without distinguishing between
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close and distant collisions) would be the relevant magnitude to latent track formation.
Mathematically this could be written as

S = η

µ
dE

dx

¶
(2.19)

being S the reduced etch rate,
¡
dE
dx

¢
the stopping power which can be calculated using

the corrected Bethe-Bloch formula given in equation 2.7, and η the unique parameter of
the model which could be determined by means of a simple calibration based on dominant
abundance peak or on accelerator relativistic ions exposures, instead of the three parameters
(κ, g, h) required in the MREL model. The η parameter dependence on the charge and
energy is needed in order to properly perform the charge assignation procedure in which,
equation 2.19 plays the same role as equation 2.11 or 2.18 in the case of using the REL or the
MREL track formation model, respectively. In order to find, if it exists, these dependences
of the parameter η, calibration to ions with different charge and energy would be required.

The study of the MREL model realized with exposures to Au and U ions in the
Bevalac accelerator has provided a value of κ = 0.26±0.06 and κ = 0.36±0.06, respectively.
Both results are in agreement with the limit value of κ . 0.4 obtained by means of the
application of this model to the UHCRE results. So, it has been possible to determine
values for κ parameter with which the ultra heavy cosmic rays recorded in UHCRE with an
energy over ∼ 3 GeV/n are identified correctly, as well as the Au and U ions from accelerator
with an energy of ∼ 1 GeV/n. A certain dependence of the κ parameter with the charge
considered may be concluded due to the difference between the values of this parameter
when the study is performed taken the Au ions (Z = 79) or the U ions (Z = 92). As the
energies of the Bevalac accelerator ions with which we have worked on are very similar (919
MeV/n for U and 990 MeV/n for Au), an energy dependence of this parameter cannot be
concluded. Thus, new exposures to Au or U ions at different energies to those involved in
this work would be required in order to confirm this dependence with the energy.

In order to improve charge assignment, one possibility for future work is to consider
individually the contribution of each of the close collision terms to the MREL and, hence
to track formation. In consequence, the close collision contribution parameter κ is splitted
into several new parameters, κi, each of them accounting for the fraction of the considered
close collision term which takes part in the track formation process. The introduction of
such parameters could allow to remove any energy dependence of them and consequently,
the identification method would acquire an ”universal” behaviour.
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