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Chapter 1

Introduction

Pluralitas non est ponenda sine necessitate

William of Ockham

Front-edge applications in power electronics require every day more semi-
conductor devices which are capable to offer high performances under ex-
treme conditions, like very high voltages, high temperature or radiation con-
taminated environments.

Macroscopic experimental characterisations have been for many years the
primary tools to understand the properties of materials. In spite of this, there
are many evidences that some properties are intimately related to atomic
scale processes, where the quantum mechanical nature of condensed matter
shows up. However, the nanoscale is difficult to access experimentally and
therefore atomic scale computer modelling of materials has become a field of
growing interest for material design and it is especially appealing for power
electronics.

In the latest decades, Silicon Carbide (SiC) has confirmed to be the most
promising and realistic among the so-called wide band-gap semiconductors,
which represent an attractive alternative to Silicon in a wide range of appli-
cations. Few things about this material are known, from the fundamental
viewpoint and many elementary mechanisms - relevant for device fabrica-
tion - have to be fully understood yet. Until this task will not be accom-
plished, Silicon Carbide will not be a true competitor with respect to Silicon
where long-standing know-how makes every technological step almost totally



controlled. In this sense, computer modelling is a privileged tool to gain
a thorough understanding of those processes that take place at the atomic
scale and that determine many of material properties.

In this work we will address the topic of theoretical characterisation of
impurities in SiC by means of first-principles electronic structure calculations.
Defects in a semiconductor is a primary importance issue, as they are at a
time one of the element on which device design relies on (n-type and p-type
dopants) and one of the main cause of electrical properties degradation (point
defects, charge traps, stacking faults, ...). We will focus extensively on one
hand on defect diffusion, both for what regards dopants (Chapter 6) and
intrinsic defects (Chapter 7). This is a topic of the highest technological
relevance, as the understanding of the atomic scale mechanisms that rule
diffusion and the ability to control them could be turned into advantage from
the viewpoint of optimal device design. On the other hand, we will discuss
in some details the problems related to high-dose doping, dopant clustering
and dopant passivation in the case of n-type impurities (Chapter 8).

We also talk briefly about how theoretical modelling can contribute in a
valuable way to the study of bulk properties of the materials (Chapter 9) and
in particular we will discuss some recently developed techniques to calculate
the free energy of the different phases of a system, in order to evaluate the
conditions of temperature and pressure for phase transitions.



Chapter 2

Silicon Carbide: a wide
band-gap material for
microelectronics

At present there is a considerable effort in the semiconductor industry to
overcome the difficulties and limitations inherent in Si-based devices across
the spectrum of industrial applications. Wide band-gap semiconductors, such
as SiC, GaN and diamond offer the potential to overcome the difficulties of
temperature and high voltage blocking that bedevil Si. SiC is proving to be
the most attractive alternative at medium-term, offering significant advan-
tages at both the high temperature and high voltage limits, whilst having
the benefit of a tractable materials technology. In addition, present advances
in the quality of samples and wafer size are on the brink of turning SiC from
a long standing promise into a realistic material for device production. Its
main advantages, in comparison to Si, are its high thermal conductivity, its
high field breakdown strength, and a high saturation velocity, which make
it ideally suited for high-temperature [1, 2, 3, 4, 5], -power, -frequency and
radiation environments [6, 7, 8]. In this chapter we will outline the main
characteristics of this material, with an emphasis on its crystalline structure
and electronic properties which are ultimately responsible of the high interest
that SiC has as a material for microelectronics.

2.1 Brief history

SiC does not exist in nature under the crystalline form and this contributed
to the delay with which it called attention on its properties. At first, the main
interest mankind saw in SiC consisted in the possibility to replace diamond



with it in a range of cutting and abrasive industrial tools. Shortly after,
attention was moved to its electrical and electronic structure properties and
it was realised that in that class of applications it was no more a second
choice with respect to diamond, but under many aspects was a superior
material. William Shockley, inventor of the bipolar junction transistor in
1947, recognised the potential of SiC, foreseeing the forthcoming success of
this material, as shown in this quotation, dating back to 1959 [9]:

Now the big question is: how is the problem of high temperature
going to be solved? What are the horses to put one’s money on?
[...] One approach is the logical sequence we see here: Ge, Si,
SiC, Cin that sequence]...]

The SiC situation suffers from the very same thing that makes it
so good. The bond is very strong and so all the processes go on
at very high temperature |[...]

Another aspect of the SiC situation is similar to past situations
in the semiconductor field. The lesson is that one should not give
up too soon and one would not always look for gold at the ends of
new rainbows [...]

Nevertheless, for many years the real bottleneck had been the difficulty in
growing good quality substrates. After the first pioneering results achieved
by the Lely method [10], it was only in the late 70’s, with the development
of the physical vapour transport (PVT), also known as the modified-Lely
method [11], that industrial quality mono-crystalline SiC started to be grown
in a reliable and reproducible way. This stresses how the reasons of SiC
success not only lie in its superior mechanical and electrical properties, but
also in the ability of to develop and standardise all those industrial processes
needed by the microelectronics industry aiming for device fabrication. This
consideration, besides the substrate growth, applies also to the availability
of a native oxide. Silicon dioxide - SiO, - has an excellent lattice parameter
match with SiC and its long history of technological treatment, due to its
use in the Si industry, gave a fundamental contribution to development of
SiC industry. Even if the quality of the SiC-SiO, interface and the isolation
property of the oxide layer still deserve a lot of work to be really competitive
with Si, the availability of an industrial quality oxide was determinant to
impulse the starting of device fabrication.

Nevertheless, together with all these physical and electrical considera-
tions, it has to be taken into account that for many aspects the investments
in SiC research and development have been for many years related with the
degree of maturity of Si technology, so only when the exponential rate of
growth of applications where Si could be used without significant problems
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Figure 2.1: Different ways of piling up Si-C bilayers. If A is the first layer and
B is the second layer, there are three possibilities for the third layer: it can
be piled up in A, B or C stacking position, giving rise to different polytypes.

slowed down, the scientific interest in SiC was followed by an analogous in-
dustrial attractiveness.

2.2 Crystalline structure

Silicon carbide has the same structure as bulk silicon or diamond, but its
base is made up of two different types of atoms: one Si and one C. The
atoms are tetrahedrally co-ordinated by means of sp® hybridised bonds in
such a way that every Si is bonded with four first-neighbour C and every
C is bonded with four first-neighbour Si. The first-neighbour bond length
is around 1.89 A (longer than in diamond and shorter than in Si) and the
bond angle is > 109 ° like for all the compounds with the same crystalline
structure.

As we will see below, the multi-species nature, far from being a minor
fact, implies many differences in the analogy with the corresponding one
species compounds, like Si for instance. Not only the general electronic
properties, as expected, but many structural and mechanical features are
markedly different.

2.2.1 Polytypism

SiC has a hexagonal lattice where hexagonal planes of Si are alternated with
hexagonal planes of C. To reproduce the correct periodicity of the base and to
allow the tetrahedral bonding required by the sp® hybridisation, each plane
must be properly shifted with respect to the plane below. The way successive
planes are piled up is not unique, provided some constraints are respected,
as Fig. (2.1) shows. Therefore different stacking sequences lead to different
polytypes. SiC is often said to be polymorphic or to exhibit a one-dimensional

polytypism.



The polytypes can be classified according to three basic crystallographic
categories: cubic (C), hexagonal (H) and rhomboidal (R) for a total of more
than 200 types [12]. Fig. (2.2) illustrates how different ways of piling up
bilayers give rise to cubic or hexagonal polytypes.

CUBIC HEXAGONAL

Side view

Bt

Figure 2.2: Side and top view of Si-C bilayer piling up in cubic and hexagonal
SiC.

Cubic SiC

Cubic SiC has only one possible polytype, often indicated as 3C-SiC or 3-SiC,
and it is the most simple. Provided that each Si-C bilayer can be oriented
into only three possible directions with respect to the lattice while the tetra-
hedral bonding is maintained and denoting them arbitrarily A, B and C [see
Fig. (2.1)], the stacking sequence of cubic SiC is ABCABCABC... giving a
cubic zinc blende structure. 3C-SiC has the smallest band-gap (~ 2.2 eV) and
one of the highest electron mobilities (~ 1000 cm? V! s71). Notwithstand-
ing the fact that 3C-SiC has been successfully grown in research environment,
it is not currently available commercially in bulk form.

Cubic SiC possesses the highest symmetry and therefore it has also the
smallest possible unit cell, made of eight atoms.
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Figure 2.3: Stacking sequence of Si-C bilayer in 3C-SiC.
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Hexagonal and rhomboidal SiC

When the stacking sequence is ABABAB... the symmetry is the purely
hexagonal and the corresponding polytype is indicated as 2H-SiC.
All the other polytypes are a mixture of the cubic (zinc blende) and hexago-

<0001>

TiTC)<11§o>

PODOW>>DOO>

Figure 2.4: Stacking sequence of Si-C bilayer in 4H-SiC.

nal (wurtzite) bonding. 4H-SiC is made up of an equal number of hexagonal
and cubic bonds, while 6H-SiC consists of two thirds of cubic bonds and one
third of hexagonal bonds. It is noteworthy however that, despite the presence
of cubic bonds, the overall symmetry is hexagonal for both these polytypes.
All the hexagonal polytypes are denoted as «-SiC, but only 4H-SiC and
6H-SiC are available in bulk wafer form.



<0001>

ﬁ@ <1120>

PODOXrOm0>

Figure 2.5: Stacking sequence of Si-C bilayer in 6H-SiC.

Property 3C-SiC  4H-SiC 6H-SiC
Band-gap (eV) 2.20 3.26 3.02
Electron mobility [em? V™! s7!] 1000 1000 400
Hole mobility [cm? V' s7!] 40 115 101

Saturation electron velocity [cm s7!] 2.5 107 2.7 10" 2.7 107

Table 2.1: Comparison of some relevant semiconductor proprieties among
some of the most important SiC polytypes.

Among the few hexagonal polytypes here considered, 6H-SiC has the
smaller degree of symmetry [as can be seen by its stacking sequence shown in
Fig. (2.5)] and therefore has the largest unit cell. Polytypes with rhomboidal
symmetry have also been found and 15R-SiC has been grown.

~J

The differences among the polytypes go far deeper than what could be
expected at a first sight. The wave function in each of them is different and
so the band-gap energy, the carrier mobility and the breakdown field are
affected, sometimes considerably, by the polytypism. In Table (2.1) some
relevant parameters are given for the most typical polytypes.

As we have already anticipated, the polymorphism of SiC cannot even
be neglected from the technological point of view and, on the contrary, the
industrial development of SiC processing is profoundly indebted to the ex-
istence of many phases of the material. The most straightforward analogy
with Si or diamond lattice, cubic SiC, is particularly difficult to grow and all
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Property Si  GaAs GaP 3C-SiC Diamond
Band-gap [eV] 1.10 140 230  2.20 5.50
Max. operating temp. [K] 600 760 1250 1200 1400
Melting point [K] 1690 1510 1740 2100  phase change
Physical stability good fair  fair excellent  very good
Electron mobility [em? V™' s7!] 1400 8500 350 1000 2200
Hole mobility [cm? V™! s7}] 600 400 100 40 1600
Breakdown voltage [10°V ecm™'] 0.3 0.4 - 4 10
Thermal conduct. [Wem'K] 1.5 05 0.8 5 20
Dielectric constant 11.8 128 11.1 9.7 5.5

Table 2.2: Comparison of some relevant properties between Si and some of
the most important wide band-gap semiconductors.

cutting-edge devices are nowadays fabricated from 4H or 6H-SiC. This as-
pect is extremely important if we think that industrial tractability has been,
in the end, the dominant reason to establish SiC as the most promising of
wide band-gap semiconductors.

2.3 Electronic properties

One of the most interesting properties of a single-crystal of SiC that makes it
extremely suitable for high temperature applications is its wide energy band-
gap. Depending on the polytype, it can vary from ~ 2.2 eV to ~ 3.3 eV [see
Tab. (2.1)]. The cubic phase, the simplest and most symmetric one which
closely resembles Si, has a band-gap of 2.2 eV, while the two polytypes that
nowadays are most currently used in industrial applications, 4H and 6H-SiC,
two of the many possible hexagonal structures, have a band-gap of 3.26 eV
and 3.02 eV respectively.

The band-gap width of a semiconductor is a crucial magnitude because
it fixes the maximum operating temperature of the material. The maximum
useful operating temperature is reached when the number of intrinsic carri-
ers excited across the band-gap approaches the number of extrinsic carriers,
those purposely added for doping the semiconductor. A wide band-gap, then,
requires higher temperatures to achieve intrinsic conduction. In the case of
SiC, for typical impurity doping levels they can easily approach 1200-1500 K:
more than double than in the case of Si. These considerations of course hold
only provided that the material is chemically stable below that tempera-
ture, i.e. it does not melt or undergo any other kind of phase transition.
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This allows to understand better the outstanding performance of SiC with
respect to its main competitors as wide band-gap semiconductors. GaP and
diamond would have a comparable or even higher (in the case diamond)
operating temperature, but they have a lower chemical stability or they un-
dergo phase change that would make much more critical their employment
in device fabrication. On the contrary, SiC is a very stable ceramic material
up to 2050 K and therefore is a much more suitable candidate for industrial
applications. Moreover, a side effect of a very high operating temperature
is the immediate payoff of an improved reliability when operated at lower
temperatures, which is an important condition in aerospace applications or
in nuclear energy engineering.

A high breakdown field and a high thermal conductivity concur in making
SiC definitely stand out among other wide band-gap semiconductors. A
power device is ideally expected to block high voltages in the blocking mode
and conduct high currents in the conduction mode. The maximum blocking
voltage is roughly proportional to the product of the breakdown field and
the depletion layer thickness W':

Emaww

Vmam =
2

(2.1)

where
1

VN

where N, is the doping dose. SiC has a breakdown field FE,,,,which is ap-
proximately one order of magnitude larger than in Si, therefore it can sustain
the same voltage with a much smaller layer thickness [Eq. (2.1)], allowing to
dope more heavily [Eq. (2.2)] and allowing so a higher operation temperature
(see above). The higher thermal conductivity, on the other side, permits a
more efficient thermal dissipation, which is a typically critical issue in power
devices.

W (2.2)

2.4 Doping

Doping for device fabrication is accomplished by epitaxially controlled doping
and ion implantation. The temperature that would be required for doping
via diffusion would be too high (> 1800 °C) and makes this technique almost
useless. Either Al or B are currently used for p-type doping. Al is preferred
because it has a shallower ionisation level of only 257 meV compared with
300 meV of B, but on the other side B is almost three times lighter, so it
is preferred when ion implantation is the doping technique, because a less
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extended damaged region will be created. N has been the most often used
n-type dopant for quite a long time, due to its high solubility in SiC and an
ionisation level of only 54 meV (in 3C-SiC), but P has been gaining increasing
importance and recently it is chosen as often as N. A peculiar feature of these
two dopants is that it has been shown that they prefer opposite lattice sites
(N is more stable at C site and P at Si site) and this fact seems to open
interesting opportunities to investigate the possible advantages of co-doping.

Epitaxial controlled doping is based on the so-called site-competition epi-
tazy [13] growth of SiC on bulk SiC wafers. The model relies upon N and
C competition for a C site and Al and Si competition for a Si site in the
SiC lattice and the technological process works on adjusting the Si/C gas
flow rate in the growth reactor in order to control the amount of substitu-
tional dopant incorporated in the lattice. Varying the Si and C gas flows,
doses ranging from degenerately doped (> 1 x 10%cm™3) to lightly doped
(1 x 10'*e¢m™2) have been achieved. Epitaxial controlled doping is well de-
veloped when performed on Si-face substrates, but more work is needed to
accomplish the same performance on C-face substrates, especially because
the growth mechanisms have not yet been fully understood. This technique
has also been used with B and P on Si-face substrates. The obvious limit
of such a way of doping is that the grown layer will have the same uniform
doping dose. The concentration could be possibly varied during the process,
but the gradient slope would be limited by the response time of the gas flow
injectors and it would be in any case absolutely unsuitable to create localised,
sharp doped layers with the sub-micronic thickness tolerances required for
pn-junctions. Therefore, the only reliable technique to realise localised and
selective doping in SiC is ion implantation [14, 15, 16, 17].

Ion implantation consists of focusing a highly energetic ion beam on the
substrate. The accelerated ions collide with the host lattice producing cas-
cade displacements, in such a way that they can replace the hottest atoms
at the highly stable lattice sites. In Sec. (2.2) we have noticed that SiC has
a shorter bond length than Si. This does not only imply that the bond is
harder to break, but also that SiC will offer a comparatively smaller intersti-
tial volume to impurities, so that they will be much more stable. Although
both materials are characterised by the same crystalline structure and the
same type of covalent bond, annealing of damaged layers represents a much
more serious problem in SiC. The higher mass density of SiC, for the reasons
just discussed, requires ion energies 50 - 80 % higher than in Si to achieve
comparable depths of implantation.

In contrast with Si, the ion distribution in SiC is scarcely influenced
by the elevated implantation temperatures or extended annealing, due to
the low diffusivity impurities have. Nevertheless, weird dependence of the
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damaged layer characteristics on the implantation temperatures has been
observed. Of course, over a certain dose threshold, the accumulation of
radiation induced point defects degenerates in the formation of an amorphous
layer, with the consequent loss of the high quality electronic properties of the
material. The typical amorphisation energy density at room temperature is
around ~ 2 x 10%'keV cm 3.

2.4.1 Selective doping

In all the main steps of technological processing necessary for device fabri-
cation, SiC suffers of a disadvantage with respect to Si, because of the long
industrial history of this pioneering semiconductor. The point is then being
able to discriminate between those processing steps where Si exhibits a better
tractability just because is a better know material - so the limit we have is
simply that we do not know enough about SiC - and those other steps where
SiC does inherently presents more problems than Si. In the first case a lot of
work is needed, because all the basic knowledge already available for Si must
be gained, but the latter is even more demanding, because it is not just a
matter of filling a gap, but also of solving new problems.

Selective doping is an excellent example of this situation. For sure much
more is known about Si doping, but it is also true that what is known is
enough to let us say that SiC doping ¢s a more difficult process. The ability
to perform a selective doping as accurate as possible is the key for minia-
turisation and high performance devices. In Si, doping may be performed
by means of diffusion or ionic implantation. A quite clear trade-off between
these techniques exists, because the more accurate ion implanted profiles im-
ply an higher density of defects. In SiC, diffusion is not a practicable way
of doping, because the diffusion constants of most of the electrically inter-
esting impurities are much lower than in Si. This is the reason for which
understanding what goes on at the microscopic level is of the highest interest
and this is why we devote to this topic one of the main parts of this work
[Chapter (6) and (7)].

The main critical secondary effect of ion implantation is damaging of
the host lattice structure, deriving from the collision with the incoming,
highly energetic ions. The resulting multiple atomic displacements give rise
to a damaged layer, constituted to a large extent by point defects. Point
defects modify the electrical properties of the crystal, introducing localised
energy levels in the band-gap. Moreover, they can mediate dopant diffusion,
at temperatures where ordinary thermal diffusion would be negligible, thus
contributing to a degradation of the sharp edge of the doped region.

From these considerations it is clear that, if ion implantation is the only
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way to perform selective doping in SiC, the possibility of recovering the lattice
after the implantation is crucial.

In the already quoted speech of Shockley [9] this critical feature of SiC
has been excellently outlined:

The SiC situation suffers from the very same thing that makes it
so good. The bond is very strong and so all the processes go on
at very high temperature |[..]

Then it is the rigidity of the bonds that causes many problems with SiC.

In other words, in SiC is more difficult to create defects, because bonds
are stronger and therefore it is less easy to break them; at the same time,
however, it is more difficult to anneal them out by thermal treatments: the
damaged region will arrange itself in a configuration very far from the perfect
lattice, but somewhat stable and will create again a local network made up
of those strong bonds typical of SiC. Moreover, diffusion constants are very
low for the Si and C atoms too, so this makes harder and harder the chance
for the lattice to recover its original network. The trouble is that selective
doping does require the creation of defects.

In other words, the physical properties of SiC lattice allow only the use
of the doping technique that maximise the damage creates. Moreover, SiC
it is more rigid that Si, making more difficult to recover such a damage.
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Chapter 3

Solving the electronic structure
problem

Since the advent of quantum mechanics, the possibility of solving computa-
tionally the equations that govern the microscopic interaction between elec-
trons and nuclei was noticed, and this woke up the interest of many scientists,
from solid state physicists to quantum chemists. Electrons are ultimately re-
sponsible for the binding of the atoms, and the structure of the electronic
states in space and energy determines the physical and chemical properties
of a material. Consequently, the ability to tackle the electronic structure
calculation of a material would provide an outstanding insight on its more
intimate nature. However, when considering the great complexity of the
equations, it became clear that a solution was possible only for the simplest
systems.

Our capability to solve the equations of quantum mechanics has increased
tremendously in the last few decades, due to the continuous improvement of
computer power together with the development of extremely powerful numer-
ical methods. These advances made it possible to afford the exact solution
of only one-electron systems [18], relevant to quantum chemistry, but the
progress they introduce was too poor for typical solid state systems, where
many atoms are necessary for a satisfactory description of the system. A
breakthrough among methodological advances was represented by Density
Functional Theory (DFT) [19, 20]. Since its first formulation, back in 1964,
DFT encountered a growing interest and is nowadays a standard in compu-
tational materials science, especially in solid state physics. DFT provides a
framework in which to understand the basic physics of many-electron systems
without the complexity of the many-body wave function [21]. This can be
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achieved by means of approximations to the exact theory !, which have nev-
ertheless been thoroughly tested since the development of the theory, giving
us a large body of experience about which are the properties and the systems
that can be accurately described.

The fundamental theory of condensed matter is well established and the
electronic structure problem is very well defined. The interactions are elec-
tromagnetic and the equations are those of relativistic quantum mechanics.
Even if the latter is the more complete solid state theory we have, for a very
wide range of problems, relativistic effects can be neglected without signifi-
cantly losing accuracy. The non-relativistic many-body Hamiltonian can be
written in the following general form:

N N, hZ ) Ne h2 ) 62 Nn Np ZIZ]
H==3 5o7Vi= ) 5-Vi+ 522@ +
=1 < i—1 1=1 g21 MY J
o2 Ne N 1 No N 7
2 1
3.1
- ZZ|TZ_T| QZZIRI—HI (3.1)
i=1 j# J I=1 i=1

where R and M refer respectively to the position and the mass of the nuclei
and r and m to the position and the mass of the electrons. All the properties
of the system can be obtained by the solution of the Schrédinger equation [22]:

HU,(r,R) = E;¥,(r, R) (3.2)

All the particles are coupled through the Coulomb interaction and moreover
each particle statistic - may they be fermions, like the electrons, or either
fermion or bosons like the nuclei - must be respected: the complexity of the
problem is evident and not even a simple system like the He atom can be
solved exactly. Hence the need for approximations.

3.1 Born-Oppenheimer approximation

The first approximation always introduced is the so-called Born-Oppenheimer
approximation [23] or adiabatic approximation. It consists in assuming that
electrons stay always in the same stationary state of the electronic Hamilto-
nian. If electrons move much faster than nuclei, we can assume that they in-
stantaneously adapt to the adiabatically changing nuclear coordinates. This

IDFT provides an ezact treatment if the Exc functional, further on discussed, was
known exactly; the approximation consists in relaying on approximated formulation of
these functionals
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allows the factorisation of the wave function as:
Upo(R,r,t) = O(R, )P, (R, T) (3.3)

so, provided the system is in a stationary state, the electronic states are
solutions of the time independent Schrodinger equation:

he®n (R, ) = €,(R) Py (R, 1) (3.4)

where A, is the electronic Hamiltonian for a particular nuclear configuration:

. Ne h2 o2 Ne Ne Nn N
e Y E L S m oy O
= 1=1 j#i I=1 =1

Once the electronic wave function is known for all the values of the nuclear
positions, the substitution of the wave function in Eq. (3.1) in the Schrédinger
equation for the whole system:

8\1130 (R, T, t)
ot

Although the basic adiabatic approximation retains the quantum descrip-
tion of both the electrons and the nuclei, the observation that the nuclear
mass is rather large, suggests that it may be possible to introduce a further
simplification, consisting in treating the nuclei as classical particles, while
maintaining the quantum description of the electrons. This is particularly
relevant when performing first principle molecular dynamics and one needs
to integrate the atoms’ equation of motion.

= HUpo(R, 1, 1) (3.6)

3.2 Total energy calculation in DFT

The main and most ambitious purpose of any solid state physics computa-
tional model is an estimation as accurate as possible of the total energy of
the system.

By means of the Born-Oppenheimer approximation, we have simplified
the problem and now the question is to solve Eq. (3.1). In this section we
will discuss the basic ideas that represent the core of DF'T, which allows to
do that.

The most fundamental theorem on which DFT relies is that the electron
density n(r) of a bound system of interacting electrons under some external
potential V(r) determines this potential uniquely. An external potential V' (r)
determines the ground state of an electronic density distribution. What DFT
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relies on is that also the inverse is true. So, given an electronic density, there
is a unique external potential V(r) which can have determined it. In other
words, once we know the electronic density of a system, we can deduce ev-
erything: the external potential, then the total energy and the atomic forces.
Given its importance, let us rephrase it once more: since n(r) determines the
external potential V' (r) and the number of electrons N, it supplies the full
Hamiltonian and any physical properties which we can extract from it.
Provided that the ground state energy is uniquely determined by n(r), we
can express this functional dependence as E[n], separating the interaction of
the electrons with the external potential V(r) and the rest of the energy:

E[n] = /V(r)n(r)dr + Fin], (3.7)

where F'[n] is the sum of the kinetic energy of the interacting electrons and
their mutual Coulomb interaction energy:

Fln] = Tln] + Uln] = (o|T + Vee| Vo) (3-8)

Here we come to the second statement of Hohenberg and Kohn. If we now
maintain V(r) fixed in Eq. (3.7) and allow variations of n(r), the value of
n(r) which minimises the right hand side of Eq. (3.7) is the true ground state
electron density of the system for that particular potential, and the enerqgy is
the ground state energy. In other words, if we knew the functional form of F,
we could get to the ground state by simply minimising the energy with respect
to variations of the electron density, subject to the conditions [ n(r)dr = N,
and n(r) >=0 Vr. Kohn and Sham worked further in this direction, trying
to figure out a satisfactory functional form of F' and developed a formulation
of DFT in terms of a self-consistent set of single-electron equations. The
idea of self-consistency is analogous to that of standard Hartree-Fock theory,
although here electronic correlation is included, and we will discuss it briefly
afterwards [see Sec.( 3.2.1)]. Nevertheless, before dwelling on self-consistency,
the most urgent topic was finding out the functional form of F'. At first, Kohn
and Sham took into account the classical Coulomb-type potential created by
the electronic distribution n(r), defining a Hartree potential just like that of
Hartree-Fock theory:

Vi(r) = / ) g (3.9)

[

(the Coulomb potential of the nuclei is included in the external potential).
Similarly, we can define the Hartree energy, as the purely classical energy
deriving the interaction of the electronic density with itself.

Euln] = / Vi (F)n(r)dr = ~ / () g (3.10)

2 |r — ']



SOLVING THE ELECTRONIC STRUCTURE PROBLEM 19

At this point we should define the kinetic energy of the interacting system.
The task is not straightforward, so what was proposed was to calculate the
kinetic energy of a fictitious system of non-interacting electrons with the
same density as the interacting one. Such a system is exactly described by
Hartree-Fock theory and the corresponding many-body wave function is a
Slater determinant made of one-electron states W,;. This kinetic energy is
very easy to calculate, but we must underline that it is not equal to the
kinetic energy of the interacting, real system.

We can rewrite then the energy functional as:

E[n] = /V(r)n(r)dr + Ts[n] + Egln] + Exc|n]. (3.11)

The first three terms are easily calculated, because they are the same ones we
runs into in a normal independent particles problem. FExc[n] contains the
exchange-correlation and the difference in kinetic energy between the real
interacting ensemble of electrons and the fictitious non-interacting one. We
can say that Exc[n] collects somehow the exchange-correlation effects, even
though some authors like to underline its scarcely physical nature, treating it
merely like a mathematical residual. There are two important points here: on
one side, provided we know the exact functional form of Exc[n], we are doing
here an exact treatment of the quantum mechanical problem, except for the
Born-Oppenheimer approximation; on the other side, it has been shown that
it is possible to work out excellent approximations of the exact functional
that perform very well, predicting many important physical properties [we
will come back on this crucial point in Sec. (3.3)].

Taking advantage of the variational nature of the energy functional with
respect to the non-interacting electronic states ¥; and constraining them to
be orthogonal, we obtain the self-consistent Kohn-Sham equations:

- h
RS, (r) = {—2—v2 + Vepr YO (r) = €94(r), (3.12)
m
where Vs is the effective potential, given by:

V;ff(r) :V(T) + VH[TL] + ch[n], (313)

where Vxc[n| is the exchange-correlation potential, defined as the partial

derivative of Ex¢[n| with respect to n(r). It is noteworthy that both the
Hartree potential V; and the exchange-correlation potential Vo are non-
local functionals of the charge density distribution, therefore the total effec-
tive potential V,;; at each point 7 depends on the electronic density in all
points of space.
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3.2.1 Solution of the Kohn-Sham equations

The solution of the Kohn-Sham equations is the core of a DFT problem and
the ability of managing this task efficiently is what makes DFT such a useful
theory. We will not go through it here, but we will spend a few lines in
describing the procedure to solve self-consistently the electronic structure.
The algorithm is well defined: (i) start with an initial guess for the electronic
density n(r); (ii) build the Kohn-Sham Hamiltonian and the overlap matrix of
Eq. (3.2); (iii) solve the one-particle states; (iv) build a new charge density >
from the occupied states, and (v) iterate until self-consistency is achieved,
that is, until the charge density in two successive steps is equal within a
certain tolerance.

The time consuming steps of this procedure are the construction of the KS
Hamiltonian and its solution, from which the one-electron states are obtained.
It is to perform these steps that a variety of methods, from standard direct
diagonalisation to the Car-Parrinello [24] dynamical approach, exist, but the
body of the self-consistency cycle is the same.

3.3 Exchange-correlation functionals

The piece missing in Eq. (3.11) is the functional of the exchange and corre-
lation energy. Unluckily, this functional cannot be known exactly, however,
the success of DFT relies just on the extremely good performance of its ap-
proximation. In this section we will give a brief outline of the most common
flavours of exchange-correlation functionals.

3.3.1 The Local Density Approximation

From the formulation of the self-consistent Kohn-Sham equations it is clear
that everything relies on the ability of including the exchange-correlation
effects of Exc[n]. Kohn and Sham [20] proposed a first approximation which
is remarkably simple and which turned out to work embarrassingly well. It
is the so-called local density approzimation (LDA):

BLDA — / xe[n(F)]n(r)dr (3.14)

where €. is the exchange-correlation energy density of a uniform electron
gas of density n. The good point about this approximation is that in such a

2This can be easily done from the relation: n(r) = Yre |;(r)[2
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case the exchange part is know exactly and it is:

e(n) = —0';‘558 (in a.w) (3.15)

(where r is the radius of a sphere that contains one electron) and the correla-
tion part is know analytically for some limiting cases and can be parametrised
through numerical Monte Carlo simulations at intermediate densities. A
widely used choice is the parametrisation of Perdew and Zunger [25] of the
numerical results of Ceperley and Alder [26]. In other words, the black box we
have nucleated under the name of Exc[n] can be known in this special case.
The LDA approach amounts to assume that at every point, the electronic
density has an exchange-correlation contribution equal to that of a homoge-
neous electron gas with the same density. LDA was expected to work very
well for systems with a quite uniform electronic density, closely resembling
that of an electron gas, however it turned out to work surprisingly well for
most real systems, where those uniformity requirements are seldom met.

LDA provides excellent estimation of geometries and bond angles within
1 -2 %. Tonisation energies, binding and dissociation energies have a typical
accuracy of 10 - 20 % (typically giving overbinding). Where LDA has shown
not to work very well is with weakly bonded systems (where H-bonds or Van
Der Waals interactions are dominating).

Moreover, LDA has a marked tendency to seriously underestimate en-
ergy gaps, when its eigenvalues are interpreted as excitation energies. The
ultimate cause of the gap error lays in the screening of the exchange hole
when the electron is removed. A few gap correction techniques have been
proposed, nevertheless this remains one of the most serious limitation of the
LDA functional.

3.3.2 Generalised Gradient Approximation

The generalised gradient approzimation (GGA) [27] represents a further re-
finement of the LDA functional. The idea is to treat LDA as the first term
of a power series, which can then be further expanded. However, such an
expansion does not converge monotonically and the first order correction
worsens LDA performances. What is therefore implemented is a correction
which sums the series to an infinite order and this purpose is achieved by the

GGA:
EGA = /em[ dr—l—/f ), |V n(r)||n(r)dr (3.16)

where the second term is the correction to the LDA functional.
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The use of GGA improves the energetics of the bonds, which are in general
more accurate. The improvement is particularly drastic in the description
of the H-bonds, even if the same does not happen with the Van Der Waals
interactions. Unfortunately, it leaves almost unsolved the gap-error problem.

3.4 Basis sets

In Sec. (3.2) we have described the principles of DFT and how the Kohn-
Sham equations reduce the many-body problem in terms of a problem of
independent electrons which move in an effective, self-consistent potential.
This approach represents an enormous simplification, because it allows us
to forget about the many-body problem. However, the one-electron problem
still has to be solved and to do this we need to numerically represent the
one-electron wave functions in such a way that they can be manipulated
computationally. This purpose is normally achieved expanding the electronic
states on a basis set.

The basis set functions define a Hilbert space and the expansion that the
eigenstates of the Kohn-Sham equation undergo is:

Ti(r) = Clidyu(r) (3.17)

where NV, is the number of the basis functions. Now the Schrodinger equation
can be re-cast in matrix form:

hKSOZ' = SCiGZ' (318)

h,KS

in terms of the Kohn-Sham Hamiltonian and of the overlap matrix s

{ I = (Pul 5| @,)

S = (2,],) (3.19)

Provided that the quality of the basis set is sufficiently good for the descrip-
tion of the system one wants to study, the problem is reduced from a set of
coupled differential equations, to the diagonalisation of a N, x N, matrix.

3.4.1 Plane waves

The first basis set which was used in the case of solid state physics and which
is still the most popular are plane waves (PW’s) [28]. They are intimately
linked to pseudopotentials [see further on Sec. (3.5)] and they are extremely
familiar to the solid state community for their key role in the Bloch theorem.
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A PW expansion has the form:
U(r) =) Ci(G)e'S” (3.20)

where the sum is over reciprocal lattice vectors. The |G| up to which
the sum is extended represents the cutoff of the expansion. Carried to the
real space, neglecting plane waves beyond a certain cutoff means loosing the
resolution of the wave function for distances below a certain value.

There are many benefits connected with the use of PW’s:

e It is a very systematic basis set and its quality can be systematically
improved by simply adjusting one single parameter (the PW cutoff).

e It treats all points of space on the same way, making therefore no
assumption on the system studied.

e The calculation of the Hamiltonian matrix elements is formally and
computationally very simple.

On the other hand, the main drawbacks are:

e Many PW'’s per electron are needed to describe its orbital accurately,
making PW’s, despite their formal simplicity, an overall computational
inefficient basis set.

e The unlocalised character of plane waves makes them unsuitable to
describe efficiently localised electronic states (which would require an
infinite number of PW’s in the basis).

e [ts use requires periodic boundary conditions.
e It is a a highly inefficient basis set every time extended empty regions

are featured in the system (unavoidable when slabs or clusters need to
be studied) 3.

3The problem with handling slabs consists in the constraint PW have to study periodic
systems. If one needs to describe a system lacking of periodicity in one (like a slab), two
(like a wire) or three (like a molecular cluster) dimensions a trick is normally used. It
consists in using a very large simulation cell in the non-periodic direction, in such a way
that the neighbouring images are not interacting. Hence the need to include a certain
amount of empty space.
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3.4.2 Localised orbitals

The main alternative to PW’s consists in expanding the eigenstate wave func-
tions on a basis set of localised orbitals. The quantum chemistry community
have been using for many years basis sets made up of Gaussian-like orbitals,
while among solid state physicists is becoming quite popular the use of op-
timised atomic orbitals like in the standard LCAO (linear combination of
atomic orbitals) approach.

The advantages of such a basis set are:

Very few atomic orbitals are needed and then the basis set is compu-
tationally highly efficient.

The intrinsic atomic nature of the basis function makes quite easy to
extract chemical information like charge transfer, Mulliken charges,...
However, it should be underlined that such information is not always
reliable.

Localisation ideas make quite straightforward to apply the nearsight-
edness principle [29] to develop order-N algorithms [30, 31], i.e O(N).

No assumption of periodicity must be made and non-periodic systems
can be easily studied.

Handling large amounts of empty volume in the simulation cell is not
especially critical, since the basis set is able to put less orbitals where
they are not needed (in the empty regions).

Like PW’s, localised orbitals basis sets too have some relevant negative as-

pects:

The main inconvenient is the lack of a systematic way to optimise the
basis set, because one must act on a wide range of parameters (number
of orbitals, their extent, their shape,...) to increase its quality.

The basis set is not orthogonal, which induces basis set superposition
errors [32]. More importantly, using a larger number of basis functions
does not guarantee better results.

The calculation of the Hamiltonian matrix elements is formally com-
plicated and in general expensive.
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As we have discussed, PW and LCAO basis sets have their own advan-
tages and drawbacks. Traditionally, PW has been the most typical choice
in solid state physics, while LCAO has been preferred by quantum chemists.
More recently, it seems that such a clear-cut separation is fading away, each
day more. The solid state community, for instance, has relied for many years
on the typical condensed matter approach of PWs, but recently it is moving
more and more toward LCAO basis sets, even though PWs perhaps remain
the most frequent choice. This is the case especially in those applications
that require large supercells, and where, therefore, the efficiency of the basis
set becomes crucial.

3.5 Pseudopotentials

An intrinsic problem connected to first principles electronic structure calcu-
lations is constituted by the representation of the wave functions ®;(r). One
of the difficulties consists in the different behaviour ®;(r) has close to the
atomic cores, where kinetic energies are very high, or in the space between
the atoms, where kinetic energies vary much more slowly.

In many systems, however, there is a clear separation between the core
and valence orbitals. The valence orbitals have the greater spatial extent and
are the main responsibles for chemical bonds, while the core orbitals have
energies far smaller and are confined around the nuclei. In other words, any
perturbation experienced by an atom in condensed matter will induce only
negligible response of the core orbitals. These considerations suggested the
assumption of the so-called frozen core approximation, according to which the
core orbitals are held fixed when total energy is minimised. Implementing the
frozen core approximation has several advantages, as we will discuss briefly,
but two features must be taken into account when freezing the core orbitals.
Firstly, the core orbitals contribution to the Hartree and exchange-correlation
energies felt by the valence orbitals has not be neglected. Secondly, the va-
lence orbitals must remain orthogonal to the core orbitals, otherwise nothing
would prevent them to collapse and become core orbitals themselves.

The potential felt by the valence electrons is due to: (a) the nuclei; (b)
the core electrons; (c¢) the other valence electrons. The sum of the terms (a)
and (b) represents what sometimes is called the true ionic potential. The
pseudopotential method relies on replacing the true ionic potential with an
ionic pseudopotential, constructed in such a way that it leaves the Kohn-
Sham energies of the valence orbitals and the energetics of the whole system
(in terms of relative energy differences) unaffected.

In other words, we want to be able to give an equivalent description of
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the complex nucleus plus core electrons - as felt by the valence electrons - in
such a way that above a certain cutoff radius the difference cannot be noted.
Of course this prevents us form giving any physically reasonable description
of what goes on below that cutoff radius, but as far as we are interested in
a condensed matter system and then in how atoms chemically bind between
each other, this is not a serious limitation.

This method brings along a remarkable improvement in terms of com-
putational efficiency, because we do not need anymore to describe the many
core electrons, modelling them with a unique pseudopotential, equal for all
the atoms of the same species.

In 1982 Bachelet et al. [33] published a list of pseudopotential for all ele-
ments up to Pu, that has found widespread application. Improvements were
introduced with the advent of the separable form of Kleinman-Bylander [34]
and new pseudopotential lists have been proposed.

Of course one of the central issues with a pseudopotential is its portability.
What should be questioned is to what degree the pseudopotential for a certain
element can perform equally well, in different systems or environment. In
other words, can a pseudopotential for H be used to describe the hydrogen
molecule as well as a hydrogen impurity in a Si crystal? To be sure it does,
pseudopotentials must be thoroughly checked and tested before using them.

3.6 A DFT code: SIESTA

Since the formulation of DFT, a number of attempts to code efficient pro-
grams to perform electronic structure calculations have been made and many
have been remarkably successful.

In this section we will outline the main feature (an extended and detailed
description can be found elsewhere [35]) of SIESTA (Spanish Initiative for
Electronic Structure with Thousands of Atoms) [35] the code implementing
DFT [19, 20] that we have used to obtain the results presented throughout
this work. The code has been developed by a group of Spanish physicists
in the late 90’s. It is currently under continuous evolution and it has been
recently efficiently parallelised.

SIESTA uses a basis set of localised atomic orbitals modelled on the clas-
sical linear combination of atomic orbitals (LCAO). Although the atomic
orbitals decay quite rapidly, they have a virtually infinite extent. SIESTA
uses a different approach, confining the atomic orbitals used to build the
basis set inside a finite cutoff radius. The confinement is done taking care
that the norm is conserved and providing a smooth truncation at the cut-
off radius (first two derivatives continuous) The localised basis functions so



SOLVING THE ELECTRONIC STRUCTURE PROBLEM 27

obtained are a modification of the classical LCAO scheme called numerical
atomic orbitals (NAO’s) [36, 37].
The advantages of using such basis functions are essentially two:

e the Hamiltonian matrix will be highly sparse because each atom will
have a limited interaction radius with its neighbours. It can be shown
that this makes the construction of H and S an O(N) operation, where
N is the number of the atoms in the system. This an important prop-
erty because building up the Hamiltonian is a computationally demand-
ing task.

e the smooth truncation of the basis functions allows to take advantage
of the concept of localisation when implementing O(N) [30, 31] algo-
rithms 4.

The confinement of the orbitals is controlled through a parameter indicating
the error committed in energy with the truncation. Besides adjusting the
confinement in an easy way, the value of this parameter indicates at the
same time how far one is from the standard LCAO case.

As mentioned above, SIESTA has the facility of solving the electronic
structure problem in an O(N) fashion. This represents one of the latest
challenges in first-principles calculations, because the possibility to have a
linear scaling algorithm as an alternative to standard O(N?) diagonalisation
would allow to approach much larger systems and to deal with hundreds or
a few thousands of atoms. Although this capability has not been used in
the present work, many results can be found in literature obtained with the
remarkable performances of this SIESTA algorithm.

“During the development of SIESTA, the focus has always been on coding an efficient,
linear-scaling - order-N - DFT program, that is why a NAO basis set was chosen.
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Chapter 4

Simulation techniques

In the previous chapter we have discussed how the total energy of a sys-
tem can be calculated from first-principles, specifically according to density
functional theory (DFT), which is nowadays the state-of-the-art ab initio
approach in theoretical solid state physics and materials science. We have
analysed DFT in detail because most of the calculations presented in this
work were carried out in such a computational framework. However, a wide
class of alternatives exists, and not necessarily from first-principles, like semi-
empirical tight-binding methods or empirical potentials.

In this chapter we will briefly outline some of the most important tech-
niques in materials science simulation (at least those relevant to this work),
which are completely independent of the model used to calculate the total
energy. The only assumption is that we are treating a system governed by
a potential that can be derived, with respect to the position of the particles
and lattice parameters. Such derivatives are the forces acting on each particle
and stresses acting on the cell, as determined by the given potential.

Roughly speaking, there are three classes of simulation techniques: (i) static
calculations, i.e. structural relaxations, (ii) dynamic calculations, i.e. molec-
ular dynamics, and (iii) Monte Carlo simulations. As we have stressed above,
each of these kinds of simulation can be in principle coupled with any compu-
tational model to calculate the total energy. Commonly, DFT calculations
focus on structural relaxations, because dynamics require a comparatively
larger number of evaluation of the energy and forces, in order to achieve sta-
tistical significance or to observe some kind of thermally activated transition.
For these reasons, molecular dynamics is often erroneously associated to the
use of empirical potentials, but as we will discuss in Chapter (6) efficient
first-principles molecular dynamics can be performed as well. Monte Carlo
resembles molecular dynamics in the sense that the effect of a non-zero tem-
perature is also introduced, however the forces are not calculated and the
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atoms are moved generating random configurations and accepting them on
the basis of a probability acceptance rule: if the energy of the randomly
generated configuration is lower than the previous one, the configuration is
accepted; if it is higher, it is accepted with a probability dictated by the ratio
of the Boltzmann factors. In this work no systematic use of Monte Carlo has
been done, therefore we will not describe it (see for example Ref. [39]).

4.1 Structural relaxation

Structural relazation takes advantage of the knowledge of the forces on the
atoms to deduce the equilibrium geometry of a system. The principle is very
simple: (i) the total energy and the forces are calculated and (ii) each atom is
moved along the direction pointed by the resulting force on it. The process is
iterated until the forces are reduced under a tolerance limit. With some more
rigour, we should say that this problem is nothing more than the search for a
minimum in a 3N-dimensional space (where N is the number of atoms). As
can be appreciated in Fig. (4.1), the convergence of the maximum residual
force - being slower - is a more restrictive criterion than than the convergence
of the potential energy.

After defining the numerical problem, one can choose different algorithms
solve it. The most obvious choice is the so-called steepest descent algorithm,
where the atoms simply follow the minimum energy direction, according to
the gradient they experience at each step. The line search is performed
moving along the direction where the gradient decreases more rapidly, so the
positions are updated according to the rule

Ty = Tij—1 — Offl(l'i_l). (41)

This method works well for well-convex 3N-dimensional surfaces, but oth-
erwise can be rather inefficient, as it requires a great many iterations for
functions which have long, narrow valley structures.

The common alternative implemented in all the major simulation codes
used today is the conjugate gradient (CG) algorithm. In the steepest descent
method any new gradient is constrained to be perpendicular to the direction
just traversed. However, what we really want to do is to proceed not down
the new gradient, but rather in a direction that is constructed to be conjugate
to the old gradient and, possibly, to all the previous ones . In other words,

!'We intend to provide here only a qualitative description of the method, without enter-
ing the mathematical details and proving the necessary theorems. However, an extensive
description can be found, for instance, in Numerical Recipes [66].
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Figure 4.1: Convergence of the Kohn-Sham energy and of the maximum
residual force in a structural relaxation (DFT minimisation with CG algo-
rithm of 3C-SiC Si-face surface with an interstitial sub-surface oxygen). The
forces converges more slowly and in a more noisy way than the energy.

conjugate gradient is an algorithm that has a longer memory than the single-
step memory of the steepest descent method. Thus, in conjugate gradient
minimisations the direction of the line search at step ¢ is not only determined
by the condition at steps : — 1, but depend also on previous steps.

An intrinsic problem of minimisation algorithm is that, if they converge,
it cannot be guaranteed that the absolute minimum has been reached. De-
pending on the starting guess for the minimum energy structure, it is possible
to converge to one of the local minima that can in principle exist. There is
no simple solution to this problem, unless starting from a physical sound
geometry.

The fact that structural relaxation methods provide the equilibrium ge-
ometry should not be misunderstood. In some cases, typically in surface
physics, the geometry of the system can be accessed experimentally, for in-
stance by atomic force microscopy and comparison with structures obtained
with a simulation can be of great help. On the other hand, in bulk defect
studies, which is the main object of this work, the relaxed geometry induced
by defect is not directly what we are interested in. However, if we want to in-
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fer on defect stability or, for instance, tracing a diffusion barrier as a defect is
moved throughout the lattice, the energies must be correctly calculated and
they must therefore refer to the corresponding relaxed structures. Obtaining
the equilibrium structure is of capital importance also in bulk studies, not
so much for the geometry itself, but rather for the associated energy and
self-consistent electronic structure.

4.2 Molecular dynamics

In structural relaxation the kinetic energy is not taken into account and what
is obtained as a result of the minimisation process is the zero-temperature
ground state structure or metastable structure if a local minimum is found.
The main idea underlying molecular dynamics (MD) is to explicitly introduce
a non zero-temperature and to observe the dynamic evolution of the sys-
tem. In such conditions, the initial thermal velocities are obtained sampling
them from a Maxwell-Boltzmann distribution corresponding to the simula-
tion temperature and they are summed to the velocities obtained integrating
the forces determined by the potential 2.

If in structural relaxation the forces are parameters of the minimisation
algorithm, here they are used to let the system evolve recreating the condi-
tions of a real experiment. The main steps of a typical MD algorithm are the
following: (i) velocities of the atoms are randomly sampled from a Maxwell-
Boltzmann distribution (this step is done only once, before beginning the
dynamics to obtain the initial velocities); (ii) the potential is calculated and
derived, (iii) Newton’s equation of motion are integrated and the velocities
and the new positions of the atoms are calculated.

In other words, we calculate the velocity of each atom and we let it
move according to the laws of classical mechanics for a fixed time step At.
Usually, the set of particles in an MD is treated as a classical many-body
system, i.e. following the laws of Newton’s classical mechanics. This is a
very good approximation for a wide range of materials and conditions and
it becomes critical only when dealing with the vibrational and rotational
properties of light atoms and molecules (He, Hy), where the quantum effects
are important.

Of course, it is very important to have a good algorithm for integrating
Newton’s equations of motion, numerically stable and possibly fast . One

2The second order differential equation that is integrated is Newton’s second principle
2
of dynamics F' = m%. Velocities and positions can therefore be directly deduced from
it.
3 Actually, the speed is is not a tight requirement, because even when the energy and
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of the simplest and best alternatives to integrate the equations of motion is
the so-called Verlet algorithm [39]. The new position can be estimated from

r(t+ At) ~ 2r(t) —r(t — At) + %At{ (4.2)
where At is the time step of the dynamics, f(t) the force at instant ¢ and m
is the mass.

An important point to be made is that the choice of At must be done
carefully. Larger time steps allow to span longer simulation times with a few
evaluation of energy and forces, however when At is too long problems both
on the numerical and physics side may arise. If the time step is too long,
the configurations and the energies corresponding to two nearby snapshots
of the dynamics will be, in general, very different. However, to conserve
satisfactorily the energy, it has to vary smoothly and therefore At has to be
conveniently small.

Typically, the main applications of MD are related to the extraction of the
average statistical properties of a system. An example could be the estima-
tion of the radial distribution function of a liquid or the diffusion coefficient
of an impurity in a solid. These are cases in which many configurations have
to be explored in the dynamics, thus requiring long simulation times. In such
applications, first-principles molecular dynamics (FPMD) implies a very high
computational load, but nothing prevents its use. However, especially when
observation of very rare events is required, MD is still more commonly used
in conjunction with tight-binding methods or empirical potentials.

A less performance-demanding application of FPMD will be discussed in
Chapter 6. Therein, we will analyse the case of the diffusion of a B impurity
in a solid. The hops that the impurity does from one minimum energy
configuration to the other are not very likely events compared to the time
scale that can be spanned by FPMD. What we have done (once again, all
the details will be given in Chapter 6) was running a FPMD until one of this
hop was observed. In this way, that transition can be characterised not only
by the height of the corresponding barrier, but observed dynamically while
it occurs.

Another interesting feature of MD in general (and particularly of FPMD,
due to the high accuracy of energy and forces evaluation) is that it is the
computational approach that more closely resemble a real experiment. For
this reason, the dynamical simulation can be designed in a such a way that

the forces are calculated on the basis of an empirical potential, the time consumed there is
normally much longer than what it takes to integrate the equations of motion, dominating
the overall run time.
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it is not polarised by the user’s choices. This is very useful when it is dif-
ficult to formulate a prior: hypothesis on the physics of a process, e.g. a
molecule adsorption at a reconstructed surface. Therefore, MD can indicate
which are the relevant structural relaxations to perform. On the other way
around, MD can validate the results of a series of structural relaxations, to
be sure that no important process has been neglected. After elucidating, for
example a diffusion path, observing the mechanism really happen in a MD *
is a strong confirmation that we have not caught the relevant physics. MD
is thus by all means a computational experiment that can be used to vali-
date what was deduced by static calculations or to suggest new ones. The
most serious problem is that in many cases the time scale that should be
spanned is prohibitive for the accurate first-principle approach and to move
to semi-empirical or empirical methods reliable parametrisation are not al-
ways available.

4.2.1 Molecular dynamics in different ensembles

The MD algorithm discussed so far is a scheme to study the time evolution
of a classical many-body system of N particles confined in a volume V' and
isolated from the rest of the universe. In such condition the total energy F
is a constant of motion.

This is the so-called micro-canonical ensemble or simply NVE ensemble.
Its implementation, as we have seen, is relatively straightforward and the
principles underlying it are rather simple, as it is essentially only a matter
of performing classical Newtonian dynamics.

However, most of the experimental conditions do not fit this somewhat
restrictive constraint. In a laboratory, experiments are typically performed
maintaining constant the temperature and fixing the volume of the speci-
men together with the pressure; alternatively, the volume may me left free
to expand or contract and it is the temperature and the pressure that are
fixed. What is certainly difficult to reproduce are the conditions of the micro-
canonical ensemble: constant volume and energy.

For these reasons, a variety of more sophisticated algorithms were de-
veloped to perform simulations where the temperature on one side, and the
volume or the pressure on the other, are conserved, respectively the NVT and
the NPT ensembles. We will not give details on these algorithms, but excel-
lent descriptions can be found elsewhere [38, 39, 40, 95]. The basic ideas of
these algorithms consist in using an extended Hamiltonian, where fictitious
variables are introduced, i.e. a thermostat to conserve the temperature or a

4See Chapter 6
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barostat to conserve the pressure. These variables have their own (fictitious)
mass and take part to the MD like any other particle, but have the duty of
adsorbing or releasing energy, to conserve a specific observable quantity like
pressure or temperature. It is important to note that what is conserved is
the average of these magnitudes. Thus, in a NVT simulation, for instance,
the thermostat will conserve the average temperature, but its instantaneous
value will oscillate around it.
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Chapter 5

Defects and defect diffusion in
semiconductors

5.1 The formation energy

The study of defects in semiconductors is a very wide field, both for the in-
trinsic fundamental questions related to it and for the relevant implications
from the application viewpoint. Defect is a fairly generic denomination when
referred to semiconductors. In fact, it refers really to undesired defects as well
as to dopants; in both cases a defect is a perturbation of the original, perfect
crystalline structure of the host lattice, but in one case they are the random
product of an imperfect technological step which lower the conduction prop-
erties of the material, while in the other they are purposely introduced to
provide the material with special electrical features to be exploited later in
device design.

The perturbation of a perfect, periodic lattice is therefore the common
characteristic of what we will generally refer to as a defect, it being an intrinsic
defect of the crystal or a dopant atom. Many of the properties that are
normally of interest depend on this local perturbation and these aspects can
be fruitfully approached by means of theoretical calculations.

The relaxation of the system, searching the minimum in the phase space,
i.e. the optimum structure, reproduces the equilibrium configuration around
the defect, thus giving an estimation of the extent of the local perturba-
tion. However, the relaxed geometry, which most of the times is difficult to
access experimentally, has itself only a limited interest. What is most inter-
esting is the electronic structure, the projected and total density of states
or the charge density associated to the relaxed geometry, because all the
application relevant properties of the material ultimately depend on them.

37
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All this amount of information comes along with the structure relaxation, as
at every algorithm step the electronic structure of the system is calculated
self-consistently, so it is always available, therefore also when the minimum
energy configuration is reached.

What has been described so far is, in summary, almost everything one
needs to know on the physics of a defect in a semiconductor host. Thus,
given that one is interested, for instance, in a substitutional hydrogen defect
in silicon, the only thing to be done, simplifying slightly, is changing one
silicon atom for a hydrogen, relaxing the system and analysing the resulting
electronic structure. However, most of the times this simplified picture does
not correspond to a realistic situation of interest. To stick to the previous
example, if the physics of a hydrogen defect in silicon is the topic of a study,
first it should be established if the hydrogen atom is likely to substitute at a
silicon site and after that at least it should be elucidated if, doing, it favours
some charge state over others. As it can be seen, the crucial, preliminary
question to address is the stability degree of a defect configuration, both from
an absolute point of view, and comparing it to other possible configurations.
In other words, we should ask what is the amount of energy that has to be
spent (or that is gained) to sustain the creation of a defect.

A useful theoretical tool is represented by the formation energy of a defect,
which can be conveniently defined as:

EF :Egt—anuquq(ue—i—Ev) (51)

where E" is the total energy of the system containing the defect, n; is the
number of atoms belonging to species ¢ and p; its chemical potential; the
index ¢ runs over all the species present in the system. The net charge state
of the system is ¢ and the chemical potential of the electron p, is referred to
the top of the valence band, Ey: in this way pu. varies from 0 - at the top
of the valence band - to E,, - at the bottom of the conduction band -, thus
spanning the whole range of doping conditions.

Northrup and Zhang [41] gave a formulation of Eq. 5.1 for multispecies
compounds that, in its different flavours, has become a standard. Eq. 5.1 in
the case of a SiC lattice with a defect belonging to the generic species X is
simply:

Ep = Ef" — ngipsi — nopie — nxpx + q(pe + Ev) (5.2)

It should be noticed that us; and puc are the chemical potential of Si and
C in SiC. We underline this fact, because the definition of the Si chemical
potential is as delicate in SiC as it is straightforward in its bulk state, i.e.
in bulk Si. The same of course holds for C in SiC or in bulk diamond. The
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latest equation can be rewritten as:

1 1
Ep = EY —5(”&' + ne ) uli — 5(”51' — ne)(psi™™* — pe™* + Ap) +

q  (pe+ Ev) —nx(ux — pg™) (5.3)

The chemical potential of bulk SiC is pZih = p2k + p2* — AHp, where
AHy is the formation heat of SiC. Now Ef is function of the bulk chemical
potential of C and Si and of the parameter Ay that accounts for the difference
between the chemical potentials of C and Si in SiC and in their respective bulk
state. This reformulation has the advantage of being expressed in terms of
well defined quantities (the bulk chemical potentials) and with the parameter

Iucbulk) (5.4)

which is easily associable to the macroscopic stoichiometry conditions of the
material. Ap can vary between —AH[, limit that corresponds to the C-
rich condition, and AHy, for the Si-rich material, condition fixed by the
inequalities pg; < pg;”™* and pe < pc*.

If the chemical potentials of all the species involved are well-defined, this
general relation allows us to estimate quantitatively the energy cost of form-
ing a defect in a given configuration and charge state. However, the chemical
potential of the impurity is a magnitude whose definition is very difficult to
handle, as in principle it depends on which was the phase state of the element
prior to doping and on its ground state. An exhaustive discussion for the
case of H in SiC can be found elsewhere [42].

Luckily, this problem can be obviated on most occasions, provided that
we restrict ourselves to analysing system with the same number of impurities.
This is a quite common case. Referring again to the example given above,
when approaching the study of H in Si, the first thing to do would be studying
different configurations of the H atom, in different charge states. Therefore,
when comparing the relative stabilities of all the systems considered, the
term which is function of the H chemical potential always cancels out. Thus,
although Eq. 5.2 gives an absolute estimation of the formation energy of a
defect, in most of the cases it is used in relative stability comparisons; in
this way relying on the definition of the impurity chemical potential is safely
avoided.

Looking again to Eq. 5.2, it should be noted that there is a linear de-
pendence of Er on the electron chemical potential, i.e. the position of the
Fermi level, whose slope is the system’s net charge. In other words, for a
non-neutral system, the formation energy depends on the doping conditions
of the host material, therefore, changing the value of p., the most stable
charge state of a defect in a given configuration will in general also change.

Ap = (psi — po) — (nsi™* —
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Figure 5.1: Formation energy vs chemical potential of the electron p of a
defect configuration for different charge states.

To conclude this section, we give a detailed example of how the former
considerations are used in practise. Let us consider the prototypical example
of an impurity in SiC [it could B, as in Chapter (6), N or P, as in Chap-
ter (8)] that allows us to briefly refer to it when in the following sections
we will face similar cases. Let us restrict ourselves to the case where only
three configurations are relevant: substitution at Si site and two different
kinds of interstitial position (it does not really matter which ones). We start
considering one of the interstitial configurations in the stoichiometric case
Ap = 0 and we perform a full structural relaxation for each of the relevant
charge states (typically five: +2, +1 and 0). After that we calculate the
formation energy in each of the five cases and we plot it as a function of p,
in Fig (5.1). The plot indicates which is the charge state that the intersti-
tial configuration considered favours for different positions of the Fermi level.
From Fig (5.1) we can conclude, for instance, that for a Fermi level close to
the conduction band edge (n-type doping condition) the impurity, in that
interstitial position, is likely to be found in the —2 charge state, while for a
Fermi level just above the valence band edge (p-type doping condition) that
configuration would favour the +1 state. The procedure is repeated for the
other interstitial position and for the substitutional configuration. Similar
plots are obtained and finally overlapped in the same graph, as shown in
Fig (5.2). Now we know, for a given doping condition of the host material,
which is the most stable configuration of the impurity considered and which
charge state it favours. We remark again that to carry out this study no



DEFECT AND DEFECT DIFFUSION 41

estimation of the chemical potential of the impurity is needed, because in all
the plots discussed it would represents only a constant offset, thus we could
assume it equal to zero (or any other arbitrary value).

So far we have been working in the stoichiometry hypothesis, i.e. Ay =0,
but at this point it might be interesting to study the difference that would
be observed in a Si- or C-rich material. It can be seen from Eq. 5.2 that a
Ap # 0 will affect the value of Er only if the number of Si and C atoms is
different, i.e. ng; # nc. In the simplified study case that we are discussing,
this is the case only for the substitutional configuration. This means that
the plot corresponding to the interstitials configuration will lay unmodified,
but a Si-rich material will result in a formation energy of the substitutional
higher of an amount equal to %Hf; in the same way, it will be %Hf lower
in the case on a C-rich material. As it is illustrated in Fig (5.2) this rather
small shift can change the favoured configuration in determined region of the
plot.

As a final remark, it should be noticed that we have shown how this
kind of thorough analysis can be carried out without a well-defined value of
the impurity chemical potential, ;. At the same time, however, we should
underline how this lack of knowledge prevents us from comparing systems
with different impurity species or number. Thus, nothing can be said about
the relative stability of an interstitial P and an interstitial N, for instance,
unless we know pp and py. In the same way, we cannot directly compare the
stability of one interstitial N with a pair of substitutional N atoms. The first
case illustrated does demand a well-defined value of the chemical potentials,
however in the other case a simplified, but effective analysis can be carried
out most of the time, as we will discuss in the next section.

5.2 The aggregation energy

In the study of defects, an important issue is their tendency to aggregate or
to dissociate, if aggregates form. The aggregation itself recalls the idea of
comparing systems with a different number of impurities, i.e. how a system
with n clustered impurities is favoured over a system with one single impurity.
An intuitive approach to the analysis of the stability of an aggregate is the
following: (i) calculating a supercell with the aggregate of interest formed,
(ii) calculating the same supercell with the impurities in their most stable
isolated arrangement, but spaced far enough from each other such that they
are not interacting, (iii) evaluating the difference between the formation ener-
gies of the two cases. This procedure cannot be adopted in practise, because
even referring to the simple case of a two-impurities aggregate, the super-
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Figure 5.2: Formation energy vs chemical potential of the electron p of three
relevant defect configurations in their most stable charge state.

cell needed to achieve the non-interaction between them would be unusually
large.

This apparent conceptual difficulty is easily overcome introducing the
aggregation energy:

Eqgy = Ep(n-complex) — nEp(isolated impurity) (5.5)

The idea underlying this relation is extremely simple and consists in using
n times the formation energy of the isolated impurity in its most stable
configuration. The obvious benefit of this approach is that the knowledge
of the chemical potential of the impurity, once again, is not needed, as it
cancels out. Moreover, the calculation does not need to be performed in a
huge supercell, because we do not have anymore the problem of dealing with
the issue of non-interacting isolated impurities.

This magnitude is very useful as it defines the reaction heat of the ag-
gregation process, therefore how favoured is the formation of an aggregate
under the conditions of thermal equilibrium. Unfortunately, it does not pro-
vide any information of the kinetics of the process of aggregation, so although
an aggregation could be exothermic, high barriers could prevent it to happen
easily.
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5.3 Diffusion in semiconductors

Semiconductors have been one of the most important technological break-
throughs of 20" century and, due to the increasing importance they have
gained in a wide range of industrial applications, they have been impulsing
both basic experimental research and theoretical modelling.

The necessity of performing feasible simulations, when the first principles
approaches were still too demanding for the computational power available at
the time, greatly encouraged the development of ad hoc empirical potentials
that proved over the years to be extremely reliable if applied to a selected
range of applications.

Modelling a material by an empirical potential brings along a trade off
between accuracy and portability. The need to make an assumption on the
spatial distribution of chemical bonds drastically limits the range of com-
pounds to which good performances of the model can be expected. Many of
the most well-known potentials have been developed for Si, of course, so they
are expected to reproduce quite well ternary compounds like diamond, SiC,
Ge, and it must be considered an outstanding success when a potential, like
Tersoff potential, is able to accurately predict for C, together with diamond
geometry, also the graphite structure. Another limiting issue for empirical
potentials is that when they are flexible enough to span a certain amount
of compounds, they need an accurate parametrisation of the atoms involved
and of their mutual interactions. Such parametrisation can be sometimes
difficult and in general needs a lot of experimental data.

The precision with which empirical potentials have been able to predict
many equilibrium properties of semiconductors (lattice parameters, struc-
tural geometry) soon turned out to be not enough because all the topics
related with the electronic structure of the solid remained uncovered. Then,
as soon as the computational cost of ab initio methods became affordable,
semiconductors became not only a ground to conquer, but also a crucial test
field for DFT and its different functionals.

The size of the system still represents the most limiting factor of DF'T
performances, but the parallelisation of codes and the development of order-
N algorithms highly contributed to make most of the problems approachable
through first principles methods.

A peculiar limit of DFT - which is general, but especially annoying when
the system studied is a semiconductor - is the systematic underestimation of
the energy gap. The band diagram of a perfect semiconductor is reproduced
with an excellent precision all over k space, except for a rigid downward shift
of the conduction bands. The way to correct the gap error is then trivial
in the case of a perfect crystal, because it is enough to make reference to
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its experimental value. This issue becomes much less obvious when localised
states of some kind of defect appear in the gap. A variety of techniques
for gap correction have been developed, but a very wide class of problems -
defect formation energy, transition barriers, relaxation of structures - can be
successfully approached without depending on this point.

In semiconductors, even more than in other crystalline structures, it is
definitely true that it is their defects that make them interesting. The intrin-
sic conduction, consisting of thermal excitation of electrons from the valence
to the conduction band, is normally not achieved because it requires too
high temperatures. In practise, semiconductors are doped and the electrons
or holes of the shallow states induced are responsible of the conduction.

In semiconductors, then, the field of defects study is naturally wider than
in other materials. Defects do not represent anymore only an element of
degradation of the properties of the perfect crystal - like it is in the case of
intrinsic defects or interstitial impurities - since a key feature such as conduc-
tion relies on the modification of the perfect lattice band structure induced
by the presence of defects. Point defects are the defects which we typically
address when we perform DFT calculations, because line defects like disloca-
tions or stacking faults would require too large a cell. This notwithstanding,
still we can address a number of interesting problems just by looking at
point defects, like analysing the effect of dopants or characterising the diffu-
sion path of an interstitial impurity. This makes clear enough why addressing
the characterisation of defects, especially from the point of view of their elec-
tronic structure, may have a tremendous impact on materials technology.

In contrast to Si, which has been studied under the most different sides
and which itself drove the development and testing of new theoretical models,
SiC is a relatively virgin ground from the viewpoint of theoretical studies.
Many processes that are very well know and for which simulations at every
desirable order of accuracy are available in Si, have never been approached
by theoretical modelling in the case of SiC. On one side this reveals a basic
ignorance of the fundamental physics underlying many relevant processes, on
the other it is simply a result of the higher industrial importance of Si, which
made it more attractive in the last 40 years.

Things are now changing and there is a growing interest in theoretical
modelling of SiC. The portability of some popular empirical potentials for Si
has been checked and a few of them (the Tersoff potential and the Stillinger-
Weber potential) are being successfully used with SiC. At the same time,
the evolution of computation algorithms and the growing power of currently
available computers (from massive parallel supercomputers to ordinary desk-
tops) make more accessible tight-binding [43] and first-principles calculations
and the use of empirical potentials remains confined to a narrower, but no
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less important, range of applications, where long simulation times or very
large supercells are required.

A particularly interesting field of application where atomic scale charac-
terisation is strongly needed, is the modelling of diffusion in SiC. In Sec. (2.4)
we have already briefly outlined the technological reasons that make it ex-
tremely interesting to gain a detailed insight into this process. In the next
section we come back to it with some more details, while in Sec. (5.4) we will

comment on how diffusive phenomena are approached computationally and
modelled.

5.3.1 Diffusion in SiC

As mentioned previously, a considerable amount of experimental and the-
oretical work has been devoted to the study of native defects and dopant
diffusion in semiconductors (see the review of Fahey and coworkers [44] and
references therein). Most of this work has focused on the case of Si as host,
and comparatively little effort has been devoted to SiC, in spite of its growing
importance in the semiconductor industry.

In Section (2.4) it was outlined that the main way to perform selective
doping and create pn-junction in SiC is ion implantation. The possibility to
carry out this task by means of diffusive doping would be a great advantage,
because the lattice damage resulting from the implantation process cannot,
in general, be fully recovered by means of thermal annealing. Moreover,
diffusive doping would permit to create deep junctions, whose depths could be
reached only by means of high-energy implantators !. Lateral diffusion, is also
a key parameter for reliable device design, for instance in the case of power
VDMOS. However, notwithstanding recent progresses with this technique,
the aim is almost hopeless for many front-edge technological applications,
because diffusion constants in SiC for most of the dopant impurities are very
low.

The problem is more general. The selective doping of a portion of semi-
conductor material is the tool to design localised pn-junctions on which semi-
conductor device operation is based. Technological advances push continu-
ously toward miniaturisation and the nanoscale limit is getting closer and
closer, so the tolerance on the shape and dimensions of the junctions be-
comes sharper every day. As a consequence of this, an increasing ability in

!Conventional implantators are not able to reach the implantation energies required
to create deep junctions and one must recur to high-energy implantators. In high-energy
implantation, the ions must be previously accelerated, resulting in a much more delicate
and time-consuming process (normally a day must be scheduled for an implantation, while
few minutes are necessary with conventional equipments.
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controlling the profile and the depth of an implanted layer, throughout all the
main steps of the device processing and then during its operation is required.

The aspects for which the impurities diffusion constitutes a challenging
problem and is relevant for device applications are many. On one side we
want to be able to move impurities in order to create a desired doped layer;
then we want to be able to keep them confined there. The opposite applies, of
course, for undesired impurities, like intrinsic defects - namely vacancies and
native interstitials - where we simply want to eliminate them by annealing
them out. This stresses that even if ideally it would be desirable to dope
through diffusion, this does not eliminate at all the crucial role that diffusion
plays in semiconductors, especially for device fabrication.

Whatever technique it is used, we must be able to control the stability of
the doped region shape; at the same time we would like to be able to eliminate
undesired defects by a proper thermal annealing process. This latter aspect
is less relevant when the material is doped by diffusion, because no damaged
region is created; on the other hand however, the skill required to dope by
means of this technique and to control the shape of the doped layer do need
a demanding knowledge of the physics underlying this process. As it can be
seen, then, addressing the diffusion issue has multiple implications.

Throughout this work, we will address impurity diffusion in different
frameworks. However, we will always deal with bulk diffusion, without tak-
ing explicitly into account ezxodiffusion, i.e. diffusion toward the surface. In
such a case, the diffusion process is slightly more complicated and represents
a further step in modelling, as the impurity migration does not occur in a
perfect host crystal, but rather in a highly damaged region.

Understanding which are the mechanisms that at the atomic scale rule
the diffusion is the first step to build a detailed knowledge. This information
is often left out by macroscopic simulations and experimental measurements.
Typically, what can be deduced by means of an appropriate series of calcu-
lations is the minimum energy path (MEP) and the barrier associated to it.
Finding the MEP of a diffusion problem can be a difficult problem, directly
brought along by the minimisation algorithm itself: when it converges a local
minimum has been found, but nothing assures that it is the absolute one.
A few tested methods have been proposed, like the nudged elastic bands
method [45, 46] or the ridge method [47], for searching directly for the MEP.
Whatever the employed method is, the results must be always handled with
care and it must be checked that the resulting MEP is physically plausible
and that it contains no suspect discontinuities.
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5.4 Methods to obtain MEPs

The more general approach to find MEPs for a given impurity in a semi-
conductor system consists in mapping the energy surface it experiences all
around the crystal lattice. From an operative point of view this is done
through a series of structural relaxation calculations, with the impurity con-
strained at a fixed point. The structure around it is fully relaxed, and the
extent and characteristics of the relaxation will be determined just by the
perturbing presence of the impurity. The procedure is repeated many times
in order to provide a 3D mapping of all the volume relevant to the diffusion
process.

The problem is slightly subtler than what it may seem at a first sight. It is
not just a question of moving the impurity in a pre-existent and independent
force field, because such field is directly affected by the perturbation intro-
duced by the presence of the impurity itself. The practical implication this
observation has is that it is not just a matter of sampling the energy of the
system, moving the impurity around, in a relaxed lattice. The relaxation de-
pends on the defect itself and it will be influenced, sometimes heavily, by the
different local configuration of the impurity, so one needs to perform many -
as many as it is considered to be necessary for a satisfactory sampling - full
relaxations, which are in general very expansive from the point of view of
computational resources needed. It is noteworthy that the constraint on the
position of the impurity is needed: the point sampled is not in general a local
minimum and, in absence of a constraint, the relaxation would minimise the
energy moving the impurity to the bottom of a valley of the energy surface;
in this way all the points starting in a convex region around a local minimum
would relax shifting there the impurity, thus preventing us to really sample
the transition states. After noticing that every calculation is actually a full
structure relaxation involving many atoms, it is quite straightforward to re-
alise that the 3D sampling of even a limited portion of material is rather
unpractical: too many heavy calculations would be required. Our alterna-
tive consists in working out a different kind of constraint and relying on some
reasonable assumption about the physical process that is to be investigated.

5.4.1 Omne-atom diffusion process

Let us suppose that we are interested in detailing the MEP and the associ-
ated barrier of an atom diffusing from initial point (A) to an end point (B) in
a given system. This simple picture models satisfactorily all those processes
where it can be supposed that one atom at a time displaces. After defining
a set of equidistant planes perpendicular to the vector AB, we can perform
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a constrained minimisation for each plane, with the impurity constrained to
lie within the plane, as illustrated in Fig. (5.3). In this way the number of
structural relaxations needed decreases considerably without loss of general-
ity. The impurity, in fact, is still free to relax wherever it finds energetically
more convenient along that planes, so the 3D sampling of the region that
could be possibly involved in the diffusion process is preserved.

MEP

Figure 5.3: Constrained relaxation approach for one-atom diffusion processes.

We have already mentioned that the strategy of constrained relaxation
calculations followed here is not guaranteed to converge to a minimum energy
path (MEP) [48]. In particular, it can deviate from the MEP in regions close
to saddle points, especially in the case of highly curved MEPs, resulting in
a discontinuous path. Therefore, as noted above, the physical feasibility and
plausibility of a deduced MEP must always be carefully checked.

Most of the diffusion processes of interest can be reduced to the problem
of the motion of one atom that interacts only weakly with the surrounding
lattice. With weakly we mean that the main effect of the motion of the
impurity throughout the crystal is its local distortion, without requiring more
complex exchange mechanisms [the latter case will be clearer in the discussion
in Sec. (7.2.1)]. The diffusion problem of an impurity can be approached
assuming that it will hop between minimum energy configurations. So, after
identifying them, the above described method can be suitably employed.
More in general, anyway, this procedure can be applied whenever one-atom
diffusion path mus be characterised: when this is the full mechanism as well
as when it is just a single step of a more complex ring mechanism, as will be
discussed below.
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5.4.2 Two-atom coordinated motion

The method we have just discussed, employed with the required care, is
extremely useful to characterise a MEP and the associated barrier height and
profile when the motion of only one atom is involved. Most of the diffusion
events can be satisfactorily modelled with this simple approach. Despite the
high relevance of such processes, there is a number of more complex cases
where possible paths, for which feasibility and features must be checked,
require to consider the concerted motion of two atoms. This can be viewed,
in turn, as a co-ordinated motion of the two atoms or as a dimer rotation.

As we have discussed for the simple one-atom case, the motion of the
impurity perturbs the systems, which relaxes around it. This consideration
allows us to gain more insight on the real trouble we must face if two atoms
are involved. Let us imagine the case of the position exchange of atom (A)
and atom (B). One can think, at first, to move atom (A) toward the position
of atom (B) and to analyse its MEP according to the algorithm described in
Sec. (5.4.1). However, atom (A) and atom (B) must exchange their positions,
so at a certain point atom (B) must leave its original position and start
migrating toward the position of atom (A). It is evident that the energy
surface atom (B) will experience is not independent on the position that
atom (A) has in that moment and the same holds for all the rest of the
exchange process.

initial reference
position

constrained angle

Figure 5.4: Constrained relaxation approach for dimer rotation processes.

To solve this problem we use a simple and powerful approach which ob-
viates many of the mentioned inconveniences. Thinking of the exchange
process as a dimer rotation it is easy to work out a constraint that leaves as
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many degrees of freedom as we want to the system and at the same time al-
lows us to map the total energy of the system all along the rotational space.
Just as in the one-atom motion we were constraining one co-ordinate and
leaving the impurity free to relax in what was left of the 3D space, here [see
Fig. (5.4)] we constrain one angle of the dimer, allowing it to rotate along the
other, to stretch or contract and to rigidly translate. In this scheme varying
« in Fig. (5.4) from zero to m, we map out the two-atom exchange process.
It is noteworthy that in this way we are not forcing the system toward any
preferred directions, the only constraint is that a: goes from zero to m which is
a necessary condition, according to the definition of Fig. (5.4), for the dimer
to rotate.

Just as in the case of the simple one-atom diffusion, the obtained MEP
should be submitted to a careful validation analysis, searching for possible
clues of unphysical or discontinuous diffusion path; in one way this case is
even more critical than the former, simply because the atoms involved are
two instead of one, on the other side the approach presented is possibly the
more general, so if a plausible path is obtained, then it is likely that it is
good candidate to be a true MEP.

5.5 Conclusions

In this chapter we have presented a brief review of the main theoretical tools
that we will use throughout this work to extract quantitative information
from the calculations (formation energy, aggregation energy) or to simulate
special processes (methods to obtain MEPs). In the following chapters we
will refer to the concepts and the definitions discussed in some more details
here.

It is noteworthy that the methodology presented in this chapters are
absolutely independent from the theoretical framework - i.e. DFT - in which
we have carried out most of our calculations and they can be extended to any
total energy calculation method, like tight-binding or empirical potentials.



Chapter 6

Boron diffusion in SiC

According to basic semiconductor theory, the purpose of introducing a dopant
consists in using the localised, shallow level it should introduce when sub-
stituting a lattice atom. The states of the dopant can be easily thermally
activated and participate in the conduction (of electrons or holes, according
to the nature of the dopant). The so-called intrinsic conduction - the direct
excitation of electrons from the valence band and holes from the conduction
band - can be seldom achieved because of the extremely large band-gap of
SiC and the considerably large temperature consequently required.

From a technological point of view, p-type doping is usually obtained
by ionic implantation of Al or B species. B has proved to be an extremely
interesting dopant for obtaining deep junctions in SiC, which are necessary for
power device and MOSFET fabrication. Moreover, B doping results in higher
quality MOS interfaces than are obtained with Al when the latter is used
for semiconductor surface doping. B is the lightest among p-type dopants
suitable for SiC, and this lightness results in comparatively low damage when
the doping is produced with ion implantation, as is most frequently the case.

An issue that must be taken into account in binary compound semicon-
ductors is that a dopant can interact with two different sub-lattices - in the
case of SiC, Si sub-lattice and C sub-lattice - and can then substitute at two
different lattice sites. The two configurations - differing for the substituted
atom and the neighbouring environment - in general give rise to different
local electronic structures, so that the perfect lattice band structure is mod-
ified in a different way. This aspect of B in SiC has been studied by Choyke
et al. [49]. They demonstrated, by means of temperature dependent Hall
effect admittance spectroscopy and deep level transient spectroscopy mea-
surements, that B at a Si site gives a shallow level ~ 300 meV above the
valence band, while a B at a C site is responsible for a quite deeper level ~
600 meV above the valence band.

ol
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This has interesting consequences because, as we will discuss further on,
the C site is energetically more convenient for a B impurity, so substitution
at a C site is more stable than substitution at Si site. Thus the doping level
that can be most easily activated is not the energetically favoured. This
has obviously important consequences from the viewpoint of the activation
efficiency.

In spite of the high interest of B as a p-type dopant, its diffusion features
in SiC are still not well understood, and present some peculiarities, especially
in the presence of an excess of Si. In addition, the diffusion coefficient of B in
SiC is higher than that of all other dopant species (Al, N, P) currently used
in SiC technology. This high diffusivity of B could be turned to advantage
in the optimal design of devices, if it could be better understood.

B in Si has been studied theoretically in numerous occasions, both using
first-principles electronic structure calculations [50, 51, 52, 53, 54] and semi-
empirical tight-binding methods [55, 56]. Nichols et al. [50, 51] performed
an extensive study of B, P and As, considering different configurations of
the substitutional impurities interacting with interstitial Si, concluding that
the diffusion of these dopants is primarily mediated by interstitials. Later,
Zhu and coworkers [52] extended these results for the particular case of B,
considering also the mutual interaction of two impurity atoms, and predicting
that B diffusion activation occurs via a kick-out mechanism, through which a
Si interstitial kicks out a substitutional impurity into the interstitial region,
forcing it to diffuse through a series of hops from one hexagonal interstitial
site to the next via a tetrahedral site. These results have been recently revised
by Sadigh et al. [53] and by Windl et al. [54], who find that a substitutional
B impurity is capable of capturing a Si interstitial, forming a fast diffusing
complex, with no need to invoke a kick-out mechanism, as also confirmed
by the tight-binding molecular dynamics results of Alippi et al. [56]. To our
knowledge, no similar studies have been yet reported for the case of dopant
diffusion in SiC.

6.1 Methodology

All the calculations presented in this chapter have been performed with the
SIESTA code [see Sec. (3.6)], which implements Density Functional The-
ory (DFT) [19, 20] combined with the pseudopotential approximation to
eliminate the core electrons, and uses a basis set consisting of numerical
orbitals centred on the atoms (Numeric Atomic Orbitals, or NAO’s).

We have approached the diffusion of B in SiC from different viewpoints,
focusing each time on a particular aspect of the process. The required ac-
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curacy of the calculation we set up has been adapted from time to time to
their specific purpose.

As we will discuss in more details in Sec. (6.2), firstly we have studied
the energetics of the different configurations: these calculations demand high
accuracy, in order to carefully evaluate the relative degree of stability of the
possible configurations a B impurity may take. This first set of structural
relaxations set up the scene for the following calculations - the search for the
Minimum Energy Path (MEP) as well as for the molecular dynamics - and
therefore they must be as precise as possible, compatible with the computa-
tional loads. After that, we have deduced the MEP and its barrier through a
series of constrained structural relaxations. To do this, we will have to eval-
uate quite many samples along a candidate diffusion path, so even if a high
precision would be desirable, some high accuracy constraints can be relaxed.
Finally, we have performed an extended first principles molecular dynam-
ics. For this analysis, the energy and the forces must be evaluated many
times, so it is compulsory to introduce some simplifications, to maintain the
computational cost at a manageable level.

However some features are common to all the calculations presented, like
pseudopotentials, mesh grid and functional parametrisation. The pseudopo-
tentials employed are norm-conserving, and have been generated according to
the Troullier-Martins [57] scheme, in the Kleinman-Bylander [34] separable
form. For the B species we have used a core radius of 1.80 bohr, while for C
we used 1.25 bohr, and 1.90 bohr for Si. These values assure a good transfer-
ability of the corresponding pseudopotentials. The program requires the use
of a grid to compute some of the contributions to the matrix elements and
total energy (in particular, those related to the exchange-correlation func-
tional) and also for performing the Fourier transforms needed to evaluate
the Hartree potential and energy by solving Poisson’s equation in reciprocal
space. We have used a grid fine enough to represent plane waves with ki-
netic energy up to 90 Ry. All our calculations have been carried out using
the Local Spin Density Approximation (LSDA) with the Ceperley-Alder [26]
functional as parametrised by Perdew and Zunger [25], though for a more
accurate estimation of energy barriers (see below) we have also employed
the Generalised Gradients Approximation (GGA) due to Perdew, Burke and
Ernzerhof [58]. Only in the case of the dynamical simulations and in the trac-
ing out of the B diffusion path was the unpolarised form of the LDA used,
due to the large computational cost involved in such simulations. However,
for an accurate estimation of energy barriers along the B diffusion path, we
used spin polarised calculations.

The calculations described below were performed on 3C zinc-blende SiC
supercells containing 64 atoms, plus the B impurity. A set of four k-points
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generated according to the Monkhorst-Pack [59] scheme was used for the
Brillouin zone sampling. We have performed numerical tests indicating that
this set is sufficient to converge the total energy to within 0.25 meV/atom
in this supercell size. The tests were performed checking the convergence
of the energy difference between two representative configurations of a B
impurity with respect to the number of k-points. They showed quite clearly
the inadequacy of solely using the I' point, so that at least four k-points were
needed.

In order to maintain the computational costs at a manageable level, we
have adapted the quality of the basis set employed to each type of calcula-
tion. For structural relaxation calculations, in which the number of energy
and force evaluations is relatively small, a high quality basis set was used,
consisting of double-( plus polarisation functions for the valence electrons
of all atom types. The maximum extent of these functions was 5.965 A,
determined by an energy shift [35] parameter of 0.025 Ry. We will refer to
this basis as the full basis. For the Molecular Dynamics (MD) simulations,
where the energy and forces need to be evaluated thousands of times, we have
restricted ourselves to a single-( basis, but retaining the polarisation orbital
on both Si and B atoms. Eliminating the polarisation orbital from C atoms
had only a small impact on the total energy, and thus it was not employed
in these calculations. This basis will be referred to as the reduced basis. We
have striven to design the reduced basis in such a way that, though its com-
putational demands are significantly smaller than those of the full basis, it is
still capable of providing good accuracy. We have performed tests indicating
that the energy differences between two given structures as calculated with
the full and reduced basis sets differ by 0.2 eV at most.

Using the highest level of accuracy described above (full basis, 90 Ry inte-
gration grid and four k-points) we have performed calculations on a 64-atom
supercell of 3C-SiC. We obtain an equilibrium lattice parameter of 4.37 A,
and a bulk modulus of 232 GPa, which are in good agreement with pre-
vious DFT calculations using plane-waves [60, 61]. Chang and Cohen [60]
obtained 4.361 A and and 212 GPa for the lattice parameter and bulk mod-
ulus, respectively, using a plane-wave cutoff of 60 Ry, while Wang et al. [61]
obtained 4.36 A and 235 GPa. The experimentally measured values [62] for
these quantities are 4.36 A and 224 GPa, respectively.
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6.2 Results

Recently, Bracht et al. [63] have performed B diffusion experiments in 4H-
and 6H-SiC in which they suppress the transient enhanced diffusion of B
due to the implantation damage by annealing the B implanted samples at
900 °C before subjecting them to thermal treatment at which diffusion does
occur (ca. 1700-1800 °C). The measured depth B concentration profiles were
interpreted by fitting to the solution of a kinetic model which contemplated
either a kick-out mechanism or a vacancy mediated mechanism. An accu-
rate fit to the experimental data was possible only if the kick-out process
was assumed to be the mechanism underlying B diffusion. On the other
hand, a vacancy-assisted mechanism, the other process considered, must be
discarded. In that experimental framework, it was also shown that the tem-
peratures required to activate B diffusion, typical of thermal annealing of
SiC, were sufficiently high not to consider the effect of doping condition of
the material and therefore of the charge state of defect.

In this Chapter, we attempt to provide a microscopic picture of the kick-
out process on one hand, and of the interstitial diffusion of the B atom, once
it has been removed from a lattice site, on the other. In the latest case, we
have generalised the search for the MEP for different doping condition of the
host material and therefore for different charge states of the B atom, because
the interstitial diffusion can also takes place at temperatures at which the
charge state of the B dopant might play a significant role. At first, we analyse
in Section 6.2.1 the energetics and geometry of those interstitial B defects
we are interested in; in this part we restrict our study to the neutral charge
state. A study of the energetics of charged B defects has been previously
presented [64, 65]. In Section 6.2.2 we discuss the diffusion of interstitial B
for different doping condition of the material. Finally, in Section 6.2.3 we
present a dynamical simulation of the kick-out mechanism.

6.2.1 Defect energetics

Firstly we have studied the substitutional configurations that B may assume,
due the the high interest that such positions and their stability have from
the applications viewpoint. In fact, generally speaking, it is when a dopant
is substituting a lattice atom that it is more likely that it provides doping,
shallow states. Coherently with experimental observations, we have found
that substitutional B is highly stable. The substitution at C site - B¢ - is
energetically favoured to the substitution at Si site - Bg; - but both are far
more stable than any other of the configurations we have investigated and
we are to discuss in this section. As we have anticipated in Sec. (6.1), the
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slightly higher stability of B¢ is not the most desirable situation, because it
is Bg; that is providing the doping state that is more easy to activate, being
shallower. The reverse situation would imply a higher dopant activation rate,
because most of the B will be at the lattice site giving the less deep level.

As the main goal of this study is to understand the mechanisms that rule
the diffusion process at the atomic scale, from now on we will focus our atten-
tion on the configuration the impurity takes when it leaves a substitutional
site and in the processes, configuration and complexes that may propitiate
such an event.

In a pure and undistorted 3C-SiC network there are three types of high
symmetry interstitial positions. Firstly, the hexagonal position, equivalent
to that in pure Si or diamond, in which the coordination is 6; strictly speak-
ing, in the case of SiC, the symmetry of this position is not hexagonal, as
of the 6 nearest neighbour lattice atoms 3 are C atoms, while the remaining
3 are Si. As will be discussed below, this site further reduces its symme-
try upon relaxation when an impurity is placed at this position. Secondly,
there are two different positions with tetrahedral symmetry: one with all-Si
first neighbours, and one with all-C. Furthermore, in semiconductor defect
studies it has been found that dumbbell or split-interstitial structures, i.e.
configurations in which a lattice atom and an interstitial share the same
lattice position, are good candidates for low energy structures. Due to the
stoichiometry of the lattice considered in this work, dumbbells need to be
taken into account both at C and Si lattice sites. In particular, we have
generated structures for < 100 > and < 110 > oriented dumbbells. Finally,
to fully understand the interaction of B impurities with the SiC lattice, we
have also considered substitutional B configurations !, both at C and Si
sites, interacting with the displaced atom (as an interstitial) at a neighbour-
ing tetrahedral and hexagonal site. It will be useful at this stage to define
a convention for labelling these different structures. The configuration ob-
tained by placing the B impurity at the centre of a (3C 3Si) hexagon will
be labelled as By (and H will indicate the hexagonal position itself). The
tetrahedral structures with C and Si nearest neighbours will be labelled by
Br, and Brg,, respectively. Dumbbell structures at a C lattice site will be
denoted by Becgos and Begigs, and for those at Si sites the notation will
be the same, changing the sub-index accordingly. Finally, the substitutional
defects will be labelled Bg;-Sip for B at a Si lattice site with the displaced
Si atom at a tetrahedral interstitial site, and Bg;-Sig when the Si atom is at

!'We have already clarified that pure substitutional B is a highly stable configuration;
form now on we will refer as B substitutional to a B substitutional plus the substitute
native atom in a nearby interstitial position, as our purpose is to study the way they
interact.
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Figure 6.1: Hexagonal interstitial position (the six first-neighbours in gold
colour). C atoms in green and Si atoms in cyan.

a hexagonal site; the same notation is used for B at C lattice sites, simply
by changing Si for C. To distinguish between unrelaxed and relaxed defect
structures, a r super-index will be used to denote a relaxed structure; for ex-
ample BY; refers to the structure resulting after the relaxation starting from
a By structure.

We have constructed models of all of these configurations in a 64 atom
3C-SiC supercell, plus a B interstitial, relaxing them using a conjugate
gradients minimisation algorithm [66] until the forces were reduced below
0.04 eV/A. The relaxed energies ? obtained are given in Table (6.1). As can
be seen there, the most stable configuration obtained results from relaxing the
structure with the B impurity at a hexagonal site, namely the B, structure.
This structure is illustrated in Fig. (6.1). Although the starting H structure
has six equidistant first neighbours (three C and three Si, as pointed out
earlier), after the relaxation is completed, the B, structure that results has
the B interstitial slightly displaced from the centre of the hexagon; the three
C atoms get closer to the impurity, while the Si atoms displace away from
it. The distance from the impurity to the set of C atoms in the distorted
hexagon is 1.68 A, while the distance to the Si atoms is 2.00 A. Concerning
the tetrahedral structures, they all lead to local minima, but they lie much

2When comparing neutral systems with the same number of atoms of each species,
comparing the total energies is the same than comparing the formation energies, as can
be seen from Eq. (5.2)
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Defect  Energy (eV)

B, 0.00
B, 0.82
B, 2.20

B 00 0.51

BY 10 0.40

Bisi <00 0.51

Bicio- 0.51

B-Cr, 0.54

By;-Sil, 0.46

Bc-Chy 0.50

By;-Si7; 0.39

Table 6.1: Relative energies of the relaxed defect structures considered in this
work. Energies are given with respect to the most stable structure found,
namely the B, structure, and were obtained using the full basis set and
spin-polarised calculations.

higher in energy. In particular, the By is 2.2 eV higher in energy than the
BY structure, while the Bf, is 0.82 eV above. These are the least stable
structures found in our calculations, and therefore it is unlikely that they
play any significant role in the diffusion of interstitial B impurities in SiC
lattices.

The remaining relaxed structures, both dumbbell and substitutional-interstitial
complexes, are rather similar in energy, lying approximately 0.5 eV above the
BY; structure. Of these, BG; 150, and Bg;-Siy; lie somewhat lower in energy,
at 0.40 and 0.39 eV respectively. In fact, although we have used a different
notation to label dumbbell and substitutional initial structures, the relaxed
configurations are very similar, and it is therefore not surprising that their
energies fall in the same range. This will have consequences for our dynam-
ical studies reported below (see 6.2.3). We note in passing that the relaxed
structures obtained starting from dumbbell configurations, in fact differ some-
what from the starting structures. In the case of the By _ o and Bf o
structures, the C atom of the dumbbell continues being the first neighbour of
the impurity after the relaxation, although there is significant distortion of
the surrounding lattice. For the BY,_ . and BY,_ .. structures, however,
the impurity ends up being closer to the C lattice atoms than to the Si orig-
inally forming the dumbbell. With regard to the orientations, only By _,q.
retains its initial orientation; in all other cases the relaxation is accompanied
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by a slight rotation of the dumbbell axis.

Let us draw attention to the fact that the ordering of configuration ener-
gies we find here is at variance with that found in Si (see Ref. [52]). There,
the most stable structure appears to be substitutional B with a nearby Si
interstitial at a tetrahedral site, i.e. the structure we label Bg;-Siy. It is also
noteworthy that all relaxed structures turned out to have no spin polarisa-
tion.

In this study we have not considered charged configurations of the im-
purity or interstitials, though it is known from other studies that charged
states may be important. The energetics of B in different charge states in
3C-SiC has been described elsewhere [64, 65] and the dependence of the for-
mation energy of defects is given as a function of the chemical potential of
the electron. Despite the relevance that charge state may assume under some
circumstances, in this work we were mainly concerned with diffusion and we
restricted ourselves to neutral defects. Bracht et al. [63] demonstrated that
this is the relevant charge state at temperatures at which the diffusion of B
and the kick-out process [described in Sec. (6.2.3)] is observed.

6.2.2 Boron diffusion path

Neutral B impurity

Since interstitial B is most stable at a H position, it is most natural to
consider diffusion having one such configurations as the starting point. We
shall consider the diffusion path between two B, configurations. In order
to determine the minimum energy path between start and end points, one
could map the potential on a grid covering a certain volume around the
path, performing constrained minimisations with the B atom fixed at each
grid point. This, however, would require a large number of calculations, and
we have adopted a different approach, consisting of the following. Having
chosen initial (A) and end (B) points, we define a set of equidistant planes
perpendicular to the vector AB, and we perform a constrained minimisation
for each plane, with the B atom being constrained to lie within the plane [see
Fig. (5.3)]. We have chosen a path starting at an H site, reaching another H
position, second nearest neighbour of the starting one.

It is well known that the strategy of constrained relaxation calculations
followed here is not guaranteed to converge to a minimum energy path (MEP)[48].
In particular, it can deviate from the MEP in regions close to saddle points,
especially in the case of highly curved MEP’s, resulting in a discontinuous
path. This, however, did not happen in our case, indicating that the strategy
adopted worked well for this system.
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Figure 6.2: Barrier of neutral B diffusion and snapshots of some local config-
urations of the B impurity along the path (labels of the snapshots correspond
to labels in the barrier). C atoms in green and Si atoms in cyan.

In view of the results concerning the defect energetics discussed above,
where it is found that the relaxed structures have no spin polarisation, we
have performed these constrained relaxations using non-spin polarised calcu-
lations. Also, we have used the LDA for these calculations, although in order
to obtain a more accurate estimation of the barrier height, the lowest and
highest energy points resulting from the above calculations have been relaxed
again using the GGA functional due to Perdew, Burke and Ernzerhof [58]
and including spin-polarisation.

Our calculations provide the energy profile along a candidate minimum
energy path, which is illustrated in both panels of Fig. (6.2) with a dashed
line (see also Ref. [67]), together with some configurations of the B atom and
its closest lattice neighbours at specific points of the path.

As can be seen from Fig. (6.2), the energy profile consists of two barriers
of slightly different heights, with a small dip at the cusp. Both barriers
are situated on either side of the central point, which happens to be an H"
position. It is not surprising that the two barriers are different, given the
stoichiometry of the lattice; in either pure Si or diamond they would have
been the same, but here, due to the reduced lattice symmetry, they differ. In
order to understand this difference, let us consider the starting structures (i.e.



BORON DIFFUSION IN SiC 61

previous to the relaxation). At the initial, end and middle configurations, the
B interstitial has six nearest neighbours (3C, 3Si), at a distance of 1.81 A,
while at the remaining starting positions the nearest neighbours fall into
two groups of 3 nearest neighbours and 3 second nearest neighbours. These
intermediate positions can be classified according to the chemical identity
of the three nearest neighbours. We shall label these structures using the
following notation: I;(nSi, (3 — n)C'), which indicates a starting structure
with n.Si nearest neighbours and (3 — n)C' nearest neighbours; the subindex
is required to specify identical structures but with different nearest neighbour
distance. Using this notation, the initial path can be described as:

H — I,(25i,C) — I,(254,C) — 1,(25i,C) — L,(25i,C) —
H — I(S1,2C) — 1,(S1,2C) — I5(S4,2C) — [,(Si,2C) - H  (6.1)

Note that in the first section of the path the relative abundance of Si in the
first shell of neighbours of the B interstitial is higher (2 Si against 1 C), while
in the second section of the path it is C that dominates. This difference turns
out to be crucial for the details of the diffusion barrier profile. Configurations
of type I, are very similar to the unrelaxed hexagonal B interstitial (By),
while structures of type I, present a larger distortion with respect to the
By configuration. Therefore, in I; structures the relative abundance of each
type of chemical species has only a minor effect, and they relax to approxi-
mately the same energy (very similar to that of B%;) and to similar structures,
maintaining the clear-cut separation between 1°* and 2"? nearest neighbours
of the B interstitial. On the other hand, in I, type structures, the relative
abundance of the chemical species in the 1 shell of neighbours plays a more
significant role. I(S%,2C) structures relax by a rather small amount, and
lead to stable IJ structures, having an energy around 0.54 eV above the H”
structure itself. I5(2Si, C') structures, on the other hand, distort significantly
upon relaxation, and lead to slightly higher energy structures, in which the
clear-cut separation between first neighbours and second neighbours breaks
down. Rather, the B interstitial pairs with a C lattice atom, with the two Si
atoms of the shell of nearest neighbours further away.

In order to better characterise the shape and height of the barriers, we
have performed additional constrained relaxations to achieve a finer sampling
in the region of the estimated barrier peaks. The results of these calculations
lead to configurations which correspond to B, oo and BY,; e structures,
slightly lower in energy than their neighbouring points, thus appearing as
small dips at the top of the barriers. Let us emphasise at this point that the
energy profile has been obtained using spin-unpolarised LDA calculations;
nevertheless, in order to estimate the error in the barrier height, we have
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also used spin-polarised GGA calculations at the barriers maxima, and also
for the minima (namely, the B, configuration), calculations which lead to a
barrier height of 0.65 eV, compared to 0.59 eV with LDA. The small change
is entirely due to the different functional, as once again no spin polarisation
is present in the two configurations analysed.

It is interesting to note that, although the starting path has several tetra-
hedral interstitial sites in its vicinity, the system never relaxes to those con-
figurations, as can be understood due to their high energy [see Table (6.1)].
Therefore, the diffusion mechanism often postulated for B in d-Si [52], and
ruled out by the recent work of Windl et al. [54], Sadigh et al. [53] and Alippi
et al. [56]. in which the impurity moves from a hexagonal configuration to
another one move via a tetrahedral site, does not apply to the case of SiC
either.

Charged B impurity

Up to this point, we have neglected the effect of the charge state of the
impurity and we have performed all the calculations for the neutral defect.
This assumption is justified on the basis of the experiments on B diffusion in
4H-SiC performed by Bracht et al. [63] as we have already reported [67] and
discussed in this chapter’s introduction. For this reason we have not carried
out a detailed study of the energetics of charged B impurities, which can be
found elsewhere [64, 65]. However, although the diffusion of the neutral B
impurity is the relevant process in what concerns transient enhanced diffusion
(TED), for the sake of generality we have investigated the effect of the charge
state on the shape and height of the diffusion barrier discussed so far. Our
purpose is indicating qualitatively how the doping condition of the material
affects the barrier. Interstitial B does not need the high temperature typical
of thermal annealing to diffuse, therefore the effect of its charge state should
be taken into account. We have calculated the formation energy of all the
configurations along the diffusion path in different charge states, - namely 2,
+1 and 0 - according to Eq. (5.2). The total energy of the charged system has
been corrected with the Madelung term [68] needed when periodic boundary
conditions are employed.

Given a certain configuration of the B impurity, its most stable charge
state depends on the value of the electron chemical potential ., i.e. the
position of the Fermi level, fixed by the doping condition of the material.
This means that, given a value of u., the different configurations can be
found, in principle, in different charge states. In other words, as the B atom
covers the diffusion path, a charge transfer might take place:

Bt = Bji™ +me” (6.2)
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where m electrons are exchanged with the rest of the system, which can act
as a charge reservoir. We have found out that for p-type doping conditions
almost all the configurations are found in the 2+ state, except the two saddle
points around the C dumbbell, which find their most stable arrangement in
the 14+ charge state. For n-type doping conditions, on the other hand, the
dominant charge state in the neutral, with the relevant exceptions of both
the dumbbells, which are found in the 1— charge state. Of course the interest
in B diffusion exists when B is the p-type impurity selected to dope the
material, so the Fermi level will be fixed by the (shallow) acceptor level of
substitutional B. From this point of view, the low p,. case is the most relevant.
In Fig. (6.3-1) we show the diffusion barrier for the case of p-type doping and
in Fig. (6.3-ii) for n-type doping with a dashed line (p. at the valence band
top and conduction band bottom, respectively). In both cases the neutral B
diffusion barrier has been shown for comparison.

The interstitial diffusion barrier does not change significantly in the case
of n-type doping [see Fig. (6.3-ii)] with respect to the neutral case, previously
analysed. All the saddle points favour the neutral charge state and therefore
the total barrier height does not change. The differences are limited to the
higher stability experienced by the dumbbells, in the 1—, with respect to the
reference B}, configuration. Nonetheless, this fact affects only marginally
the diffusion kinetics [see Fig. (6.3-ii)], as the height of the barrier is fixed by
the saddle points. For p-type doping condition, on the other hand, the most
significant changes are detected just in the saddle points, thus, though the
energy of the dumbbells themselves is not so much higher (and in one of the
two cases is even lower), the nearby saddle points are. As a consequence of
this fact, as can be seen in Fig. (6.3-i), both the barrier mediated by By, .
and the barrier mediated by B, o, are appreciably higher. Contrary to the
saddle points, the stable configurations have comparable energies with the
corresponding configurations in the neutral state and one of them, Bf, .,
is even found to be almost as stable as the reference hexagonal configuration.
The bottleneck is constituted by the barrier around the Bf, . configuration,
and this grows up to 2.65 eV, then approximately 2 eV higher than for
the neutral impurity. To better understand how can the barrier height be
affected by the chemical potential of the electron, i.e. the doping condition
of the material, we have plotted in Fig. (6.4), the dependence on p, of the
formation energy of two representative configurations: the hexagonal and the
dominant saddle point of the diffusion barrier. From that figure it is clear
how the growth of the diffusion barrier in the case p-type material originates
from the increased stability of the B, structure for low values of p.. More
specifically, the hexagonal configuration favours positive charge states in a
much wider range than the saddle point considered, and this fact allows it
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Figure 6.3: Minimum energy profile for the diffusion of a charged B impu-
rity between two equivalent hexagonal sites under (i) p-type and (ii) n-type
doping conditions. In both panels the diffusion barrier of a neutral B atom
of Fig. (6.3) is shown for comparison with a dashed line.

to lower more its energy for low p.. On the other hand, for p, close to the
conduction band edge, both configurations favours the neutral charge state
and their difference is reduced up to approximately 0.6 eV.

The results presented so far concern the interstitial diffusion of a B im-
purity, but nothing has been said yet about the mechanism that activates
such process, and that we are about to discuss in the next section. In doing
so, we will restrict ourselves to the case of the neutral impurity, for the pre-
viously mentioned reasons [63, 67]. It should be pointed out, however, that
for sufficiently low temperatures the doping condition of the material, and
therefore the charge state of the defect, cannot be neglected and the barriers
which are relevant in what concerns interstitial diffusion of B impurities are
those we have discussed in this section.
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Figure 6.4: Formation energy of the hexagonal configuration and of the dom-
inant saddle point in Fig. 6.2 as a function of the chemical potential of the
electron, fie.

6.2.3 Molecular dynamics

The next stage of our study has consisted of an MD simulation of the dy-
namics of B in the SiC lattice. The aim of this study is twofold: firstly, we
would like to test the concept of the kick-out mechanism, which has often
been discussed in the context of B diffusion in d-Si [50, 51], and for which
there is some experimental evidence in SiC [63]; secondly, we would like to
interpret the dynamical behaviour of B as it diffuses through the lattice in
the light of our static calculations of defect energies, structures and diffusion
path barrier.

The equations of motion have been integrated numerically using the Ver-
let [38] algorithm with a time step of 2 fs, which is sufficiently small to
provide good energy conservation. The total length of the run was 10 ps,
and the starting configuration consisted of a B impurity at a Si lattice site,
with the displaced Si atom at a neighbouring tetrahedral interstitial site,
i.e. the Bg;-Si%. configuration. The initial velocities were sampled from the
Maxwell-Boltzmann distribution at a temperature of 1000 K.

In this section’s introduction we have already underlined that the most
interesting configuration from the device operation viewpoint is Bg;, because
this is the position where the impurity gives rise to the most shallow state, so
that en electron of an occupied state in the valence band can be easily excited
thermally, creating a hole. In order to focus our attention on the mechanisms
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Figure 6.5: Displacement of B and the originally interstitial Si from their
respective initial positions.

that may break this configuration, we have started the simulation with a Bg;
and the corresponding native Si in a nearby interstitial position: this con-
figuration had already been suggested by the static relaxations to be a good
candidate to perturb the stability of the isolated Bg;. In other words, the
energetics of the different configuration have indicated that a Si interstitial
could rapidly destabilise a Bg;.

In Fig. (6.5) the distance of the B impurity and the displaced Si atom
from their initial positions are plotted as a function of time. As can be seen
from this figure, as soon as the simulation starts, the B atom is displaced
from the substitutional site by the Si interstitial, which takes the lattice site.
This is a manifestation of the kick-out mechanism. The first stage of the
process consists of the structural relaxation to a configuration close to that
of Bg;-Sir, in which the Si atom has nearly returned to the lattice site, dis-
placing the B atom from it, though it nevertheless remains attached to the
Si atom, in a configuration resembling a dumbbell structure. This stage of
the process occurs within 300 fs (0.3 ps) from the start of the simulation.
During the remaining of the first ps of dynamics, the B atom remains loosely
rotating around the Si atom, which occupies on average its equilibrium lat-
tice site. After this time, the B atom abandons this coupling completely, and
diffuses to a nearby hexagonal interstitial site, adopting, on average, a B},
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Figure 6.6: Snapshots of the dynamics of a substitutional boron impurity,
illustrating the occurrence of the kick-out mechanism. Dark grey atoms are
C atoms, and lighter grey Si atoms. Snapshot (a) corresponds to the starting
configuration, with the B impurity at a Si lattice site, with the displaced Si
atom at a neighbouring T site. In snapshot (b) the Si interstitial pushes
the substitutional impurity out of the lattice site and into the interstitial
region, taking its place. In snapshots (c) and (d) the impurity remains in
close contact with the Si atom that enacted the kick-out, but by snapshot (e)
it has moved away from it. Snapshot (f) illustrates the final configuration,
with the impurity at a hexagonal interstitial site, and the Si atom occupying
its lattice site.

configuration, where it remains for the rest of the simulation. This particular
dynamical trajectory fits with the results obtained from the static calcula-
tions, which clearly indicate that, in the presence of a nearby Si atom, a B
substitutional impurity at a Tyg; site is unstable, and with the observation
that B, is the most stable configuration of a B impurity that we have found.
By monitoring the time evolution of the Kohn-Sham energy, which plays the
role of potential energy in the dynamics, we can confirm that there appears
to be no significant energy barrier to the kick-out process. This can also
be deduced from our earlier observation [see (6.2.1)] that the Bg;-Sir struc-
ture relaxes to a configuration resembling a split interstitial in which the B
atom is displaced from the Si sub-lattice position by the Si interstitial. Our
results are also in agreement with the conclusion derived from the kinetic
simulations and experimental work of Bracht and coworkers [63], which in-
dicate that indeed the kick-out mechanism is the main responsible for the B
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diffusion activation in SiC.

6.3 Conclusions

We have performed both static and dynamical first principles simulations of B
impurities in the 3C-SiC zinc blende lattice. The most stable configuration
we have found for the B impurity is similar to a hexagonal configuration,
but with a lattice distortion which causes the B impurity to have three C
atoms as first neighbours, at a distance of 1.68 A, and three Si atoms as
next nearest neighbours, at 2.01 A. Our subsequent dynamical simulation
also encounters this site, which lends weight to our conclusion that this is
indeed the most stable configuration. Although our calculations have been
performed for 3C-SiC, we expect that our results apply also for other phases
(4H-, 6H-SiC), in view of the structural similarities between these phases.

The energies found for the T sites rule out the conventionally postulated
mechanism for B diffusion in Si in the case of SiC, as they lie well above the
energies of other possible configurations.

We have also obtained by means of constrained relaxation calculations a
minimum energy path for B diffusion through the SiC lattice. The calcula-
tions indicate that the diffusion has an activation energy barrier of 0.65 eV.
This path does not go through the tetrahedral interstitial sites, which are
too high in energy. Due to the lower symmetry of the lattice as compared
to Si or diamond, the path found here has two different barriers, of slightly
different heights, which correspond to a structure close to a split interstitial
with a C atom (higher barrier, ca. 0.65 eV), and a structure similar to a split
interstitial with a Si atom (lower barrier of 0.55 eV). Introducing the effect
of the charge state of the defect we were also able to consider how interstitial
diffusion is affected under different doping conditions, finding that in p-type
material the barrier is appreciably risen up to more than 2.5 eV.

Finally, we have also performed a molecular dynamics simulation illus-
trating how the presence of a nearby Si interstitial can cause a substitutional
B impurity at a Si sub-lattice site to be displaced into the interstitial region,
where it rapidly adopts the hexagonal configuration, while the Si interstitial
moves to occupy the lattice site.



Chapter 7

Vacancy diffusion in SiC

One of the main drawbacks of SiC with respect to Si is that localised dop-
ing, necessary to create pn-junctions, can be achieved essentially only by
means of ion implantation. Notwithstanding recent isolated successes [69],
doping by diffusion, a quite popular technique in Si, cannot be extended to
SiC because the diffusion coefficients of most of the impurities are normally
very low. The obvious problem, especially if deep junctions and therefore
high implantation energies are required, is that the crystal lattice is heavily
damaged [see Fig. (7.1)] and thermal annealing is not always able to recover
it satisfactorily.
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Figure 7.1: Simulation [70] of the vacancies created after an Al implantation
in 4H-SiC at 150 keV with a fluency of 10'* cm 2.

This makes clear enough why understanding the formation of defects and
their kinetics in SiC is of capital importance, and a special emphasis must be
put on intrinsic defects, because, regardless of the implanted species, they will
always be the main result of an imperfect lattice recovery after the annealing.

69
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In this chapter we present a theoretical study, based on first principles
total energy calculations, of the diffusion of the Si and C vacancies (Vs; and
Ve respectively) in 3C-SiC. Our calculations employed Density Functional
Theory (DFT) combined with the pseudopotential approximation and they
are aimed at identifying the mechanisms that are relevant to the migration
of Vs; and Vi, characterising the minimum energy paths (MEP) and finding
the corresponding barriers.

7.1 Methodology

Even though the system studied here is apparently simpler than the one of
Chapter 6, lacking external impurities, the defect it features - the vacancy -
is particularly difficult to handle computationally.

Vacancies and vacancy-related complexes relevant for vacancy diffusion
have been studied in 128-atom 3C-SiC supercells. The larger cell size is dic-
tated by the larger extent of the relaxation induced by a vacancy. Nieminen
and coworkers [71] showed that a 512-atom supercell is required to converge
the formation energy of the vacancy. However, the magnitude of this effect
in SiC is lower than in Si, due to its stronger covalent bond. Moreover, for
the purpose of this work, we limit ourselves to comparing the energies of very
similar configurations and such relative differences have proved to converge
much faster. The calculations have been performed in this case too by means
of the SIESTA code [see Sec. (3.6)].

As we have discussed in some detail in Chapter 3, the size issue is partic-
ularly delicate in electronic structure calculations because, unless an order-N
algorithm is used, the computational time scales with the cube of the number
of atoms. The necessity to double the volume of the supercell, with respect
to the system studied in Chapter 6, implies a strong worsening of the compu-
tational performance of the code and then the need for some simplifications
in the calculations.

We have used the basis to which we referred as full basis in Sec. (6.1),
but we restrict our analyses to a [ point sampling of the Brillouin zone and
no spin polarisation. However, as these factors are thought to be potentially
quite important, we double checked the stable configurations by recalculating
the total energy of stable relaxed configurations using full basis and 4 k-point
according to the Monkhorst-Pack [59] scheme. The pseudopotentials and the
grid as well as the form of LDA are the same to those employed in Sec. (6.1).

Structural relaxations have been performed by means of the conjugated
gradient algorithm and convergence is achieved when the maximum force is
smaller than 0.04 eV/A. Except where noted, all the calculations consist of
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full structural relaxations.

7.2 Results

The energetics of the vacancies has been recently studied for 3C-SiC [72] and
4H-SiC [72, 73]. In the paper by Torpo et al. [73] a detailed analysis of the
structure of the vacancies and of the distortion induced by the Jahn-Teller
effect can also be found. Here we are mainly concerned with diffusion, but
nevertheless the formation energy of the two vacancies is needed. We have
calculated the formation energies according to the relation given in Eq. 5.2 in
the case of perfect stoichiometry and neutral charge state. We have obtained
a formation energy of 3.30 eV for Vi and 7.88 eV for Vs; which are in good
agreement with the results of Mattausch et al. [74]. The calculations have
been checked also including a set of four A-points generated according to
the Monkhorst-Pack scheme [59] for the Brillouin zone sampling. The error
committed restricting the analysis to the I' point is reasonably small for
Vs;, where it is around the 5%, while for Vi it is 20%. In spite of this, as
it is discussed later, the relative energy differences between states that are
relevant to diffusion are much better converged and our conclusions are not
invalidated.

In semiconductors, defect stability is generally influenced (and sometimes
even strongly) by their charge state, so what holds for the neutral state does
not necessarily do for positive or negative net charges. For this reason, after
giving an overview of the possible diffusion mechanisms, firstly we will treat
the case of neutral vacancy diffusion and secondly we will introduce the
charge state of the defects, discussing their stability and if its effect on the
diffusion paths is limited to modify the barriers’ heights or if it acts on their
shapes too.

7.2.1 Diffusion mechanisms

In a mono-species compound the mechanism of vacancy diffusion, at least
in principle, is quite straightforward: a first neighbour of the vacant site can
migrate and recombine with it. In the case of SiC, even for its most ele-
mental polytype, the simplest mechanism is more complicated, because the
atom which is required to recombine with the vacancy is one of its second
neighbours (first neighbours belonging to the complementary species). Nev-
ertheless, the displacement to the vacant site of one of its first neighbours
is still possible and cannot be neglected. Therefore, the diffusion of one of
the second neighbours of the vacant site will produce directly as a net result
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the vacancy migration, while the diffusion of one of its first neighbours will
create an antisite-vacancy pair. This means that we will also have to take
into account that the vacancy diffusion could occur via the formation of such
intermediate complexes. In other words, given that the formation of such
an antisite-vacancy pair occurs, it should be investigated how it can mediate
the vacancy migration process. The way the vacancy diffusion can proceed
through the creation of such an antisite-vacancy pair will be discussed in
more details for the case of the Si vacancy diffusion, in Sec. (7.2.3).

All our calculations consist of full structural relaxations and due to the
high number of configurations analysed, the reciprocal space has been sam-
pled only by the I' point. In order to corroborate that this did not represent
too serious an approximation, we have double checked a few representative
configurations, sampling the Brillouin zone with a set of four k-points [59]
and performing single configuration calculations of the optimised geometries
obtained with the I' point. In this different framework the structures are
not relaxed, but the faster convergence of the total energy with respect to
the forces assures us that we are not committing a large error. The bar-
riers calculated in this way differ [discussed in Sec. (7.2.2) and (7.2.3)] at
most of 0.5 eV from our results, what can be considered an acceptable error,
compared with their magnitudes.

7.2.2 Diffusion of the C vacancy
Neutral C vacancy

In the case of V¢, the formation of the vacancy-antisite pair described above
is not viable. The displacement of a Si to the neighbouring C vacant site
would give rise to a Si vacancy / C antisite pair, i.e. Vs; — Sie, which turned
out to be unstable. Vg; has a formation energy approximately 4.5 eV higher
than Vi, therefore if the system has a recombination channel consisting in
eliminating a Sic antisite and recuperating the Vs;, provided that there is
no barrier, it will follow it, thus reducing its energy. For these reasons, the
Ve can only interact with the C sublattice. Therefore the only way for it to
migrate is when one of the C second neighbours moves and recombines with
it.

We have characterised the diffusion of a C atom to the vacant site by
means of a series of constrained structural relaxations, adopting the strategy
described in Section 6.2.2, calculating the formation energy of each configu-
ration according to Eq. (5.3). The resulting barrier, shown in Fig. (7.2) with
a continuous line, has a height of 4.08 eV and is symmetric, as expected.
The trajectory is rather smooth and suffers only a slight deflection when
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Figure 7.2: Diffusion barrier of V> by means of a second neighbour diffusion
mechanism. Charged vacancy in the case of p- and n-type doping (dashed
and dotted line, respectively) and neutral vacancy (continuous line).

the C atom crosses the first neighbour shell, where it passes close to a Si,
configuration to which corresponds the highest energy along the path.

Charged C vacancy

Like we did for B diffusion, after calculating the barrier for the neutral sys-
tem, we have considered the dependence of the barrier on the charge state of
the vacancy. The results are shown in Fig. (7.2). In p-type doping condition
(dashed line), the system is always found in the +2 charge state and the
diffusion barrier is 1.15 eV higher (5.23 eV instead of 4.08 eV in the neutral
case). No significant changes in the barrier height have been detected for the
n-type doping case (dotted line), where the system is always found in the —2
charge state.

7.2.3 Diffusion of the Si vacancy
Neutral Si vacancy

In contrast to the case of Vi, we have found that a Vg; can combine with one
of its first neighbours, i.e. a C atom, leading to the formation of a Vo — Cg;
pair. This configuration turns out to be stable for all the charge states
analysed, because the energetic cost of creating an antisite is compensated
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Figure 7.3: Diffusion barrier of a neutral Vs;. The second neighbour diffusion
mechanism is represented by the continuous line. The dashed line indicates
the different steps of the mediated diffusion mechanism where both the C
and the Si sublattice take part to the process. (a) isolated Vg;; (b) barrier
peak of the migration of a C first neighbour; (c) consequent formation of a
Ve — Cg; pair; (d) barrier peak of the coordinated position exchange of a Si
atom and the Cg;; (e) a new Vi — Cg; pair is formed; from (e) to (f) and to
(g) recombination of the residual vacancy-antisite pair.

by the much lower formation energy of the Vi, compared to that of the Vs;.
In fact, the Vi — Cg; pair is not only a local minimum, but it is even more
stable than the isolated Vs;. The meta-stability of the Vg; with respect to
the Vo — Cg; pair is a well-known fact in 3C-SiC [75, 72]. We have calculated
the barrier of this transition and found that the displacing C atom has to
face a relatively low barrier of 1.37 eV [as can be seen in Fig. (7.3)], and after
crossing it, can occupy the vacant site, lowering the energy of the system of
around 2.58 eV with respect to the isolated Vs;. This is in qualitative good
agreement with TB calculation performed in 4H-SiC [75]. The energetics of
this transition clearly indicates that it is likely to occur. From the viewpoint
of Vg; diffusion mechanisms, it is a matter of speculating on how the resulting
configuration can possibly evolve to finally produce a Vg; migration, with no
spurious residual defects (antisites, other vacancies,...).

The first possibility that we have considered is a Si migrating and occu-
pying the C vacant site. If this process occurred, a Vg; would appear back in
the system, together with the neighbouring antisite pair Sic — Cg; that could
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eventually recombine. Such a possibility can be readily discarded, because
the first required transition would end up in an unstable configuration. This
is not surprising at all: apart from the presence of a Cg;, it is the same re-
action (Vo = Vs; + Sic) whose feasibility was investigated (and discarded)
in Section 7.2.2. It should be noted that this predicted instability has been
confirmed by the calculations, as, at least in principle, one could also expect
that the additional presence of a Cg; lowered the energy of the Si¢, providing
more space.

The other possibility that we have taken into account is that a Si second
neighbour of the Cg; could exchange its position with it. Provided that this
process occurs, the Vo and the Cg;, could recombine, recovering the Vg;. The
exchange process should be considered, because the resulting configuration
is equivalent by symmetry to the starting one (the only difference is that
the antisite Cg; is at a different Si site) that we already know to be stable.
To characterise this process, we have adopted a constrained minimisation
strategy, where the approach described in Section 6.2.2 has been generalised
to the case of a 3D dimer rotation. Only one of the components of the solid
angle defined by the dimer is constrained, in order to map all the rotational
space spanned in the exchange process. Moreover, the dimer is allowed to
stretch and compress or to rigidly translate [76]. We have obtained a barrier
whose height, referred to the Vo — Cg; configuration, is approximately 7.3 eV.
Further details about the transition structures and the general geometry of
the rotation were given elsewhere [76]. The transition needed to complete the
Vs; migration is Vo — Cg; = Vg;. It does not need to be analysed, because it
is the dual of the Vo — Cg; pair creation described above. The Vg; diffusion
mechanism mediated by the creation of a Vo — Cg; pair that we have just
discussed is sketched in Fig. (7.4) The barrier of the corresponding global
process is illustrated in Fig. (7.3).

After this fairly complex case, where both the C and Si sublattices play a
role in the diffusion process, we have analysed the simpler case in which the
Vs; only interacts with the Si sublattice, in analogy to what we have done
previously with the V. Proceeding like we did in Section 7.2.2, we have
obtained a 3.57 eV symmetric barrier, with a trajectory very similar to what
we have found in the case of Vo (where the diffusing second neighbour was
a C atom). This plain second neighbour migration mechanism is showed in
Fig. (7.5).

As it can be seen in Fig. (7.3) where the two barriers are compared, the
diffusion mechanism that involves only the Si sublattice has a lower barrier.
In spite of this, the Vg; = Vi + Cg; transition is much more likely to occur
and, if it takes place, it will force the diffusion process toward a higher
energy path, where the Cg; — S7 exchange is required. In other words, the
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Figure 7.4: Diffusion of a Vg; by means the intermediate formation of a
Ve — Cg; pair [from (a) to (b)]. This mechanism requires that a Si atom and
the Cg; exchange their position [from (b) to (c)] and that finally the residual
Cgi and the Vi recombine [from (c) to (d)]. Grey atoms are C atoms, and
cyan Si atoms; the vacancy is represented by a small red atom.

formation of the Vo —Cg; pair will decrease the efficiency of the Vg; migration,
preventing it from interacting only with the Si sublattice, mechanism to
which corresponds the lower energy barrier.

It should be also pointed out that, given the appreciable height of the
rotation barrier, another viable mechanism to achieve Vg; migration is that
the process steps back, taking finally the direct and lower diffusion barrier.
Looking at Fig. (7.3), this means avoiding the (¢) — (d) — (e) path and
going through the energetically more convenient path (¢) — (b) — (a) —
(d') — (g). Although this path could be more favoured, it is still energetically
more costly than diffusion through the plain (a) — (d') — (g) path.

Charged Si vacancy

The effect of the charge state has been studied performing full structural
relaxations of all the configurations studied formerly, in the +2, £1,0 charge
state and calculating the corresponding formation energies [see Eq. (5.3)].
Let us first examine the case of p-type doping conditions of the host
material. The barrier that corresponds to the direct migration path, where
only the Si sublattice is involved in the process, does not suffer an important
change with respect to the neutral case and we have found it to be only
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Figure 7.5: A Si second neighbour of the vacant site migrates and recom-
bine with it. Grey atoms are C atoms, and cyan Si atoms; the vacancy is
represented by a small red atom.

slightly higher, i.e. 0.32 eV higher with charge state +1 [dashed line in
Fig. (7.6)] On the other hand, it is very interesting to note what happens
with the mechanism involving both C and Si sublattices, mediated by the
creation of a vacancy-antisite pair. The meta-stability of the isolated Vs;
with respect to the Vo — Cg; pair is strongly accentuated and the low reaction
barrier corresponding to Vs; = Vi — Cg; almost vanishes for VSQ:r = (Vo —
Cg;)?T, charge state in which such configurations are found in these doping
conditions. Moreover, the energy difference between the resulting vacancy-

6.00
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rrrrrrrrrrrr n-type
4.00 T PTpe

2.00

0.00

energy [eV]

-2.00 r ]

-4.00
0 diffusion path 1

Figure 7.6: Diffusion barrier of Vs; by means of a second neighbour diffusion
mechanism. Charged vacancy in the case of p- and n-type doping (dashed
and dotted line, respectively). Neutral vacancy is shown for comparison
(continuous line).
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Figure 7.7: Diffusion barrier of a charged Vs; in the case of p-type doping
(dashed line) when both the C and Si sublattices are involved. The diffusion
barrier of the neutral vacancy is shown for comparison (continuous line). The
vacancy-antisite pair can be much more likely formed and it is appreciably
more stable. The coordinated exchange of the positions of the Si antisite pair
has a higher energy barrier.

antisite pair and the isolated Si vacancy is much larger than how it was in
the neutral case. A direct consequence of this fact is that the barrier for the
rotation process that should follow the creation of (Vo — Cg;)?" grows larger
and amounts to 8.78 eV (this barrier is represented by the dashed line in
Fig. (7.7), where also the barrier corresponding to the neutral charge state
case is shown for comparison).

When we have discussed the neutral system we have proposed the Vg; =
Ve — Cg; as a channel that decreases the efficiency of the energetically more
favoured diffusion path, the one that involves only the Si sublattice. Such a
situation seems more likely here, because the barrier for the vacancy-antisite
pair creation is lower too. In addition, when this transition takes place, the
barrier required for the diffusion process to proceed (the Cg;-Si exchange)
is now 1.42 eV higher, due to the increased stability of the vacancy-antisite
pair. We can therefore conclude that Vg; will be a less mobile defect in p-type
doping conditions.

We move now to discuss the situation of n-type doping conditions, where
we have observed the opposite trend. The possibility that a vacancy-antisite
pair is created, forcing the process to evolve along a higher energy path, is
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Figure 7.8: Diffusion barrier of a charged Vs; in the case of n-type doping
(dotted line) when both the C and Si sublattices are involved. Diffusion
barrier of the neutral vacancy is shown for comparison (continuous line).
The barrier corresponding to the vacancy-antisite pair formation have now a
height comparable to the second neighbour diffusion [see Fig. (7.6)].

still present. However the barrier of V&, = (Vi — Cg;)?~ amounts to 1.89 eV
and the energy gain in forming such a pair is 0.51 eV lower than in the neutral
case. Finally, the rotation barrier is 1.11 eV lower [dotted line in Fig. (7.8)].

The direct migration path has a barrier which was found to be approx-
imately 1.07 eV lower than in the neutral case, 2.50 eV instead of 3.57 eV
[dotted line in Fig. (7.6)]. Such a barrier height is now comparable with the
VSZ[ = (Vo — Cg;)? reaction barrier, therefore, not only the process is more
energetically likely (lower barrier for the direct path), but it is at the same
time less probable for the vacancy-antisite pair formation to act as a parallel
channel. If we also consider that, even when the (Vo — Cg;)?™ pair is formed,
the following barrier is lower, we can conclude that the Vg, is a more mobile
defect in n-type doping conditions.

7.3 Conclusions

We have analysed all the possible mechanisms of Vg; and V- diffusion in cubic
SiC. Ve can diffuse only by means of a direct migration of one of its second
neighbours. On the contrary, for Vg; two mechanisms are possible. We have
shown that even if Vg; encounters the lowest barrier in correspondence of the
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direct path, the first step of the indirect path is highly probable and will
force most of the times the system to evolve through it. In conclusion, even
if the most favourable MEP corresponds to the diffusion of Vg;, its overall
efficiency will be lowered by the parallel, indirect diffusion channel and the
easiest diffusion will correspond to V.

Generalising our study the case of charged defects, we have been able to
find the relevant diffusion barriers for different doping conditions. Vs; has
resulted to be a more mobile defect in n-type material than in the prototypical
neutral case study. On the other hand, in p-type material it was found to
present higher barriers, being therefore less mobile. The same can be said
about Vi, where n-type doping conditions seem to favour the mobility of the
defect.



Chapter 8

N and P high-dose doping

In a growing wide class of device applications, achieving very high dopant
densities is becoming a more and more important issue. As we discussed
briefly in Section 2.3, a high doping dose results in a thinner depletion layer
thicknesses (see Eq. 2.2), allowing miniaturisation of the devices. However,
probably the most important application-driven reasons for which high-dose
doping is extremely interesting is the realisation of high quality ohmic con-
tacts and low resistive sources and drains in FET based devices. In spite
of the interest that high-dose doping has, the solubility limit of the chosen
dopant cannot always be approached without problems. In this chapter we
discuss the effects of n-type high-dose doping in SiC, proposing an explana-
tion of the experimental results based on the local electronic structure of the
dopants and of dopant-complexes.

Nitrogen and phosphorus are the most commonly used n-type dopants
in SiC applications. Since ion implantation is the only technologically viable
way to selectively dope SiC, N has the considerable advantage of a low mass,
which makes it the most typical choice as a donor species. On the other hand,
P has a higher solubility limit in the SiC lattice and, as some experimental
results seem to indicate, a higher electron mobility at high doses with respect
to N.

As we have already recalled at the beginning of Chapter 6, the basic
principles of semiconductor doping rely on the high stability of some impurity
atoms when they substitute at a crystal lattice site and - especially - on their
electronic properties, i.e. the donor or acceptor shallow level they provide. In
a multispecies compound as SiC, then, it should be first of all asked if a given
dopant is significantly most stable when it substitutes at one or the other
of the two sites available, i.e. C or Si. Electron spin resonance experiments
indicate that N is most favourably substituted at a C sub-lattice site [77],
while P is most likely to substitute at a Si sub-lattice site [78]. This fact,

81



82

Implanted dose  Better activated dopant

~3.2x10%cm™3 N
~ 6.2 x 10¥ecm™3 N/P
~ 2.4 x10%cm™3 P

Table 8.1: Results of the Hall effect measurements of Laube and cowork-
ers [81].

together with the observation that N and P donors have similar ionisation
energies [79, 80], suggested that co-doping of SiC with both N and P could
maximise the doping efficiency, resulting in an overall increase in the dopant
activation rate. The idea is that, if the N and P ions favour substitution
of different host crystal species, they should be in principle able to occupy
the lattice sites more efficiently, resulting in a higher average activation rate.
Comparable ionisation energies of No and Pg; are then required in order to
make the shallow levels they introduce indistinguishable.

In spite of the fact that the starting situation seems to be fairly clear,
things turned out not to be so straightforward when the first experimental
verifications were carried out. Laube et al. [81] have reported comparative
Hall effect measurements implanting N and P, and co-implanting the two
together at three different doses. They found that co-implantation did not
provide systematically the higher activation rate, as expected, and rather
its efficiency depended the doping dose. Their results are summarised in
Table 8.1 At the highest dose, implanting P alone provided the most effective
doping, followed by co-implanted N and P and then by N alone. The situation
was reversed at the lowest dose, where the samples implanted with N alone
were more effectively activated. It is only for the intermediate doping doses,
that co-implanting appeared to be a convenient alternative to N or P doping.

The observed behaviour at low doses is most probably due to the fact
that the benefit deriving from implanting a species with a lower mass are
greater than those brought by a higher activation of the dopants. In other
words, when the dopant concentration is far enough from the solubility limit
(which is certainly true in the present case), each N atom has a huge number
of C sites where to substitute. Therefore no advantage can be expected from
implanting a fraction of P, whose purpose would only be to avoid such a
saturation process. On the other hand, P is a heavier atom, thus the overall
damage produced by the implantation would be more extended and difficult
to anneal.

Less intuitive are the results that Laube and coworkers [81] obtained in



N AND P HIGH-DOSE DOPING 83

the high-dose region. It was suggested that a key role could be played by
dopant-complexes whose formation becomes more and more likely as the
total implanted dose grows. On this point, however, no agreement has been
reached and no definitive proofs have been yet produced. For this reason,
we have investigated theoretically, by means of electronic structure DFT
calculations, the possible formation of passivated dopant-complexes

Further studies on N/P co-implantation have been carried out by other
groups [82, 83|, focusing on the benefit of co-doping from the viewpoint of the
annealing of the damaged layer. On the theoretical side, N in SiC has been
studied by means of first principles calculations by different groups [84, 85]; P
related complexes and the deep levels they induce have been analysed by Gali
et al. [86, 87], but a comprehensive study of P stability at different lattice
sites in 3C and 4H-SiC has not yet been carried out. For these reasons the
stability of N and P at the Si and C lattice site is the first issue that we
will approach and only after that we will consider the possible formation of
dopant complexes and the analysis of the corresponding electronic structures.

8.1 Methodology

The electronic structure calculations described in this chapter have been
carried out by means of the SIESTA code. To evaluate the relative stabilities
of the dopants at Si or C sites and their tendency to form aggregates, we
need to employ a high-quality basis set, therefore we have used once again
the full basis that we described in Chapter 6. An accurate representation
of the charge density distribution is also required in order to describe the
interaction between the dopants in the complexes that we will analyse.

The mesh grid and the pseudopotential for Si and C are the same than
those described in Chapter 6 and 7. For N and P species we have used
pseudopotentials with a core radius of 1.25 bohr and 1.85 bohr respectively.
All the calculations were performed within the Local Density Approxima-
tion (LDA) with the parametrisation of Perdew and Zunger [25] of the
Ceperley-Alder [26] functional. All the configurations, both for what con-
cerns isolated dopant and dopant complexes, have been studied in the %2,
+1 and neutral charge states. Spin-polarisation has not been systematically
introduced. In the case of dopant complexes this was done because it is not
strictly necessary, as the total number of electrons in the system is even. For
the isolated substitutional configurations the effect of the spin polarisation
was selectively checked only in the neutral charge state systems. In those
test cases, the Local Spin Density Approximation (LSDA) framework was
adopted.
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The calculations in 3C-SiC were carried out in 64-atom supercells, while
for those in 4H-SiC 96-atom supercells were used. In all the cases a set of
four k-points generated according to the Monkhorst -Pack [59] scheme was
used to sample the Brillouin zone.

8.2 Results and discussion

8.2.1 Isolated N and P dopants

Firstly, we have studied the electronic structure of isolated substitutional N
in SiC, both at the C and Si lattice sites, namely No and Ng;, calculating
the formation energies in the two cases. Our results indicate that N is much
more stable at a C lattice site, along all the range of doping conditions of
the material and both in the case of C-rich, Si-rich and stoichiometric SiC,
as can be seen in Fig. (8.2)-a.

Concerning the ground state geometry, we have found that Ng; exhibits
an unconventional relaxation for a substitutional, which is however well-
known [88] and which is also a peculiar feature of substitutional N in dia-
mond. What occurs is that while the most stable N retains the tetragonal
symmetry, Ng; relaxes to an off-centre position, leading to a three-fold coor-
dination with three C atoms. The off-centre relaxation has a limited impact
with respect to the formation energy of the substitutional, being Ngf s only
~ 0.2 eV more stable than Ns. However, the change in the electronic struc-
ture is much more relevant. As it can be seen in Fig. (8.1)-b, the off-centre
geometry results in a intrinsic self-passivation of the originally shallow level
that would correspond to the unrelaxed Ng.

When the concentration of N dopants is not extremely high, these consid-
erations are not very important, because most of the N atoms will be found
as N¢, as the difference in stability with Ngfif amounts to few tenths of an
eV. As we will discuss further on, the role played by Ng’;f is more important
when a high doping dose might force the formation of N aggregates.

We predict that a N substitutional is most stable by far at a N site, and
the energy difference between the Ng; (in the off-centre geometry) and N¢ is
approximately 6 eV throughout the range of doping conditions. That the N¢
configuration is energetically more favourable is in agreement with experi-
mental observations, but the difference of formation energies for Ng; and Ng
configurations is larger than that obtained in the previous theoretical study
of Miyajima et al. [84]. The origin for this discrepancy may be attributed to
the different approximations used in Ref. [84], although a rigorous analysis is
not possible since details of their calculations were not given. As expected,
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Figure 8.1: Band structure of Ng; (a) in the tetragonal symmetry (b) with
an off-centre geometry. The N donor level that would be shallow in the case
of the symmetric four-fold arrangement, falls down inside the band-gap as a
results of the off-centre relaxation.

the most stable charge state of the dopant at zero temperature depends on
the position of the electron chemical potential p.. When p, is below the
doping level, the charge state is +1, while n-doping conditions lead first to a
neutral state and finally to —1 state.

The case of P deserves closer attention, due to the fact that the experi-
mental situation is far less clear than that of N. In the case of 3C-SiC, the
results of our study indicate that P is most favourably located at a Si sub-
lattice site: Pg;. In both substitutional sites the P atom retains the perfect
lattice symmetry, with no off-centre relaxation of the dopant. The formation
energy difference between Ps and Pg; is significantly smaller than in the case
of N, and its value depends on the which is the most stable charge state of
the dopant, in the different doping condition of the material.

For the +1 state , the energy difference is 0.68 eV. For the neutral state,
the difference is reduced to 0.24 eV. The energy differences between different
dopant configurations of P in 3C-SiC are much smaller than for N, as can
be appreciated in Fig. (8.2) where we have plotted the formation energy of
N¢ and Ng; in panel (a) and that of P and Pg; in panel (b) vs. chemical
potential of the electron. Given the reduced energy difference between the
two substitutional, we have also considered the stability behaviour of P in 4H-
SiC. We have not carried out the same analysis for N, as the energy difference
between the two substitutionals is so large that no significant change can be
reasonably expected. At least not large enough to modify the identity of the
favoured substitutional. Polytypism in SiC affects the long-range periodicity
of the lattice, without modifying the short-range neighbouring environment,
therefore it reflects much more on the bulk properties of the material (band-
gap, melting temperature,...) than on the local electronic structure of a
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Figure 8.2: Formation energy of isolated (a) N and (b) substitutional at C
and Si site in 3C-SiC. It can be seen that N favours substitution at C site,
while P prefers Si site.

defect.

In the 4H polytype there are four inequivalent positions (since both Si and
C can take either cubic or hexagonal lattice sites) where P can substitute.
However, the difference of stability for P substituting a given host species at
a cubic or hexagonal site is only of the order of hundredths of an eV. Once
again, Pg; is more stable than P¢ for all the doping conditions of the host
material, the energy difference varying from 0.55 eV to 0.73 eV, depending
on the value of y.. As in the case of 3C-SiC, at zero temperature P is found
in the +1 (0) charge state for u. below (above) the dopant state.

The results discussed so far have been obtained assuming the condition of
perfect stoichiometry, i.e. Ay = 0. We have also considered the two limiting
cases of Si-rich and C-rich material. In the Si-rich case the substitution of a
dopant at a C site is %H 7 more stable with respect to the stoichiometric case,
where Hy ~ 0.4 eV is the SiC formation heat; in the same way, substitution
at the Si site is %H s less stable, so the overall result is that the difference
in stability between a dopant at a Si site and the same atom at a C site is
lowered by an amount of H;. For C-rich material the opposite is the case, so
the substitution at the Si site is made more stable. These considerations are
not very important for N, where the difference between the formation energy
of Ng; and N¢ is one order of magnitude larger than H;. However, they
become more relevant in the case of P, where Px can even be made slightly
more stable than Pg; in 3C-SiC (but not in 4H-SiC), when conditions of
n-type doping and of Si-rich material hold simultaneously.

In agreement with published experimental results [77, 78], our calculations
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(@)

Figure 8.3: Impurity aggregates (before relaxation) selected to model the
high-dose condition. Cyan balls are Si atoms, green balls are C atoms, and
blue balls represent the dopant atoms. (a) substitutional dimer at nearest
neighbour lattice sites; (b) split interstitial (in this particular case at a C
site); (c) substitutional plus interstitial.

allow us to conclude that, in a SiC lattice, a N atom will substitute most
favourably at a C site, while a P atom will do so at a Si lattice site, although
in the latter case the preference can be reversed in 3C-SiC in the conditions
discussed above.

8.2.2 Aggregates of N dopants

In order to focus our attention on the problems that may arise when the
concentration of N dopants is very high, we have analysed the stability and
the electronic structure of different N aggregates. We have considered the
following cases, illustrated schematically in Fig. (8.3): (a) first neighbour sub-
stitutional, N¢Ng; (b) split interstitial, NY<'%> and (c) substitutional plus
interstitial, NoNg. These complexes are intended to model some typically
interesting situations from the viewpoint of dopant passivation. Assuming
that a N preferably arranges into its most stable configuration, i.e. substi-
tuting at a C site, we have considered the most obvious possibilities for a
further incoming N, thus supposing that it might substitute too at a lattice
site [configuration (a)], it might share the same site with the other dopant,
competing for it [configuration (b)], it might remain confined in an intersti-
tial surrounding position [configuration (c)]. Malhan et al. [89] have used a
similar approach to investigate second-nearest neighbour aggregates.

Firstly, we have calculated the tendency to aggregate, calculating the
aggregation energy of these compounds. This magnitude was introduced in
Chapter 5 and in the present case can be defined as follows:

Eagg - Ecomple:z: - TLE[Nc] (81)
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Complex Eogg
NCNSi 3.74 + A/L
Ny/<190> 3,08 + 2 Ap
Ne+ N; 371+ 1Ap

Table 8.2: Aggregation energies of N complexes in 3C-SiC.

where n is the number of N atoms atoms involved in the complex (so n = 2
in the cases we are considering). Eq. (8.1) expresses the energy gain (or
loss) in gathering n dopants with respect to their most stable configuration,
i.e. No. None of the complexes that we have taken into account exhibits a
spontaneous tendency to aggregation, as can be seen in Table (8.2) where
all the aggregation energy are positive. However, all the aggregates that
we have considered are stable, therefore, if they form as a results of the
non-thermal equilibrium conditions that the material experiences during the
implantation cascade, they must overcome a barrier to dissolve. Although our
simple model cannot provide information about the kinetic of the complexes
formation, we think it is accurate enough to infer on their stability and their
electronic structure.

We have calculated the formation energies of the considered complexes to
find out which one is the most stable under the different conditions of doping
of the material. The results are plotted in Fig. (8.4). For very low values of
[te the substitutional plus interstitial configuration is dominating, but except
for this short interval, the split interstitial aggregate in the neutral charge
state is the most stable. All the complexes, however, fall in a quite narrow
energy range, thus studying all of them is necessary to provide a thorough

1.0
substitutional + interstitial
>
9, substitutional first neighbour
& 00
=
()
c
q) \
split interstitial
-1.0
0 pleV] Egep

Figure 8.4: Formation energies of N aggregates as a function of f..
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Figure 8.5: Band structure of the NoNg; first neighbour substitutional.

picture of the passivation mechanisms.

First neighbour substitutional

This configuration models one of the most typical condition to which high-
dose doping may lead: the efficient occupation of neighbouring lattice sites
[see Fig. (8.3)-a]. We have already discussed that N favours substitution at C
sites, but in the high-dose limit many of the C sites will already be occupied
and there will be a growing probability that substitution at Si sites may also
occur. Although the most stable configuration for a N substitutional at a Si
site is Nf’g’;f , the plain Ng; is also a local minimum. To achieve the off-centre
geometry, the symmetry must be artificially broken to observe a transition
that would spontaneously occur at 7" > 0. In the case of a first neighbour
substitutional dimer, the Ng; relaxes automatically to the off-centre geom-
etry, because, being the N¢ one of its neighbours, the perfect tetragonal
symmetry is already perturbed. The interatomic distance between the two
N in the relaxed geometry is quite large and it amounts to approximately
2.7 A. As we have already discussed in Sec. (8.2.1), the Ng’;f is an intrinsically
passivated configuration [see Fig. (8.1)-b], as its asymmetric geometry leads
to a deep level inside the band-gap. However, in this aggregated configura-
tion it has the significant side effect of passivating also the otherwise shallow
level of the No. The deep Ngf;f state is only half occupied and can therefore
be further populated by the loosely bound electron of N, leading to a full
passivation of the two N dopants, as can be clearly seen in Fig (8.5).
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Split interstitial

The split interstitial configuration is intended to model the competition for
the same site of two N atoms, which ends up sharing it. An isolated N
atom favours substitution at a C site, thus it was natural to study a split
interstitial at a C site too. In such a configuration, the N atoms were found to
relax to an interatomic distance of around 1.5 A. The Ny molecule in vacuum
was calculated, finding a N-to-N length of 1.11 A, therefore the effect of the
crystal host consists mainly in an elongation of the molecule.

energy [eV]

N— |

\

N2C'<100>

Figure 8.6: Band structure of the split interstitial.

The band diagram of this kind of N complex also showed a deep, passi-
vated state inside the band-gap [see Fig (8.6)], however the reduced distance
between the dopants and the resemblance with the N, molecule suggests a
different interaction. What we have here, is an ordinary plain N, molecule,
slightly distorted by the crystal. The increased separation between the two
N will lead to more loosely bound molecule, but the passivated state will
essentially generate from the 7 states of the molecular orbitals.

Substitutional plus interstitial

The last representative configuration that we have taken into account derives
from considering the perturbation effect that a N interstitial may exert on a
nearby substitutional. In the high-dose limit this could be a relatively fre-
quent case, given the rather unlikely occupation of a Si site. The interstitial
N, originally located in a prefect hexagonal position, exhibits an appreciable
outward relaxation, inducing a notable distortion in the surrounding host
lattice. The final N-N distance amounts to 2.57 A.
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The passivation mechanism of this case closely resembles that of the first
neighbour substitutional. The interstitial Ny contribute with a half popu-

lated deep level and therefore passivate the shallow level corresponding to
Ne.

Summarising, all the N-complexes that we have considered self-passivate.
However, the atomic-scale mechanisms that are responsible for the passi-
vation are different in each case, following two patterns: the formation of a
bound molecule or the charge trapping of a deep half-populated level. In this
latest case, the passivating level is due in turn to the off-centre relaxation
and to a N interstitial, depending on the geometry.

8.2.3 Aggregates of P dopants

We have carried out for P dopant-complexes a similar analysis than in the
case of N. The complexes that we have chosen to model the high-dose con-
dition are once again: (a) first neighbour substitutional, Pg;Pc (b) split
interstitial, P5*<'%> and (c) substitutional plus interstitial, Ps;P intersti-
tial and the substitutional plus interstitial. The only difference with respect
with the former case is that the split interstitial is now at a Si site and in the
case of the substitutional plus interstitial configuration the substitutional is
at a Si site. The reason is, of course, that if before we wanted to investigate
the mechanisms that could lead to passivation of the actively doping N,
while here the focus is on Pg;. The aggregation energy, defined with respect
to the reference non-aggregated configuration, is now defined as:

Eagg — Lcomplex — nE[PSz] (82)

Once again, no aggregation seems to spontaneously occur, so the formation of
these complexes must be the result of the non-thermal equilibrium condition
of the material during the implantation.

A notable difference with N, is that in the case of P there is an aggregate,
namely the first neighbour substitutional, which is strongly favoured with
respect to the others. Another feature of P aggregates that is worth noting
is that the substitutional plus interstitial configuration relaxes to a split
interstitial arrangement.

In Fig. (8.7) the formation energy of these two relevant P aggregates
(the first neighbour substitutional and the split interstitial) are shown. The
energy difference is huge all over the electron chemical potential spectrum
and amounts to approximately 3 eV, regardless of the value of u. and Ay,
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Figure 8.7: Formation energies of P aggregates as a function of .

therefore the higher stability of this complex over the others should not be
questioned.

First neighbour substitutional

We have already discussed that isolated P substitutional does not suffer an
off-centre relaxation like Ng; does. This results in a rather symmetric re-
laxation of the P first neighbour substitutional. The band structure of the
system in the presence of this aggregate is illustrated in Fig. (8.9) and it
can be clearly seen that there is no evidence of any passivating effect, as can
be appreciated comparing it with the band structure of the isolated Pg; in
Fig. (8.8). The absence of an intrinsically self-passivated level, as a result of
an off-centre relaxation, is not enough to explain this situation. The fact that
no deep level shows up means also that the two substitutional P rather ig-

energy [eV]

Figure 8.8: Band structure of isolated Pg;.
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Figure 8.9: Band structure of the Pg;P¢ first neighbour substitutional.

nore each other and this is easily understood considering that both P slightly
relaxes outward the perfect lattice sites, ending up with an interatomic P-P
separation of about 2.0 A.

This result has a capital importance from the viewpoint of high-dose dop-
ing. What we can conclude so far is that the P aggregate that is most likely
to form in the high concentration limit, the first neighbour substitutional, is
an active dopant centre and therefore the electron mobility of the material
is not affected by the formation of this kind of complex.

Split interstitial

The geometrical and electronic structure features of this complex are quite
similar to its N homologous. In this case a deep level inside the band-gap
appears as a results of the rather short interatomic P-P distance to which
the relaxation leads.

The fact that the substitutional plus interstitial configuration relaxes to
the split interstitial arrangement has probably to be explained with the larger
size of P with respect to N, what makes more difficult to accommodate in an
interstitial position. Thus, the symmetry breaking induced by the presence
of a Pg; favours the transition to the split interstitial configuration.

However, as we have briefly commented in the former subsection, the pas-
sivated nature of this complex does not worry us significantly, as its relevance
should be by all means marginal, considering the high difference in stability
with the first neighbour substitutional that makes the formation of the split
interstitial rather unlikely.
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8.3 Conclusions

We have shown that in the high-dose limit, when the concentration of dopants
can favour their aggregation during the implantation cascade, self-passivation
mechanisms can take place and significantly affect the achievable activation
rate. This problem seems to be especially serious with N, where all the
complexes that we have investigated exhibit self-passivation, giving rise to
a deep level inside the band-gap. The passivation mechanisms range from
pseudo-molecule bonding formation to the passivation induced by the off-
centre relation of the isolated Pg;, but they all end up with a non-active
doping centre. On the other hand, P seems to be almost immune by this
problem, as the complex that is by far the most stable, and therefore the
most likely to form, does not suffer of self-passivation and is a normal, active
doping centre. The other P aggregates considered do show self-passivation,
but their relevance is definitely marginal, due to the much higher stability of
the first neighbour substitutional.

Therefore, we can conclude that, when approaching the solubility limit
of the dopant or, more in general, for high-dose conditions, P is a more
indicated n-type dopant for SiC than N and we think that this explains the
experimental results of Laube and coworkers [81], according to which N and
P cannot be systematically considered as a valid alternative to implanting N
or P alone. In particular, N and P co-doping and N doping must be avoided
when implanting high-doses.



Chapter 9

Phase coexistence in Si

Throughout this work, we have focused our attention on the study of defects.
As we have remarked in Chapter 5, defects are among the most interesting
features of semiconductors, as long as we consider defects all the pertur-
bation of the ideal periodic crystal lattice, thus including dopants too. In
the analysis of the structural and electronic properties of defects, theoretical
modelling has represented a valuable support for experimental investigation,
either answering or asking relevant questions, but many features of the bulk
material can be approached as well from a simulation perspective.

In the early age of materials simulations, the first challenge of the different
models was an accurate prediction of the bulk properties, such as the lattice
parameter, the bulk modulus or the bond length. Nowadays, such analysis
belongs more to standard model validation than to front edge research. In
spite of this, the field related to phase transitions or, more in general, phase
coexistence, cannot yet be trivially managed and has remained relatively
unexplored for a long time.

The most typical example is estimating the melting temperature of a ma-
terial at a given pressure. The attempt of solving this problem by running an
extended molecular dynamics at constant pressure is doomed to failure. Melt-
ing, like every transition, has an associated free energy barrier [see Fig. (9.1)]
and therefore, a phase transition is a thermally activated process. For these
reasons, super-heating of the solid is required before the melting will be ob-
served. Of course, if the purpose is evaluating the melting temperature, this
is definitely not the most adequate technique. It can be better understood
looking at Fig. (9.1) where we have pictorially represented the situation in
which (a) T' < Tpen, the solid state is more stable, (b) T = Ty, the two
phases are in equilibrium, i.e. we have reached the melting temperature and
finally (¢) T > T)nen, the liquid phase is the more stable. If we try to estimate
Timeir by running a MD starting with the solid phase (Fig. (9.1)-a) and we
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Figure 9.1: (a) T' < Ty,ee: the solid phase is more stable; (b) T' = T,,,¢s: the
solid and the liquid phase are in equilibrium; (¢) T > T,,e;;: the liquid phase
is more stable.

progressively raise the temperature of the simulation, we will not be able to
do it. Even when we actually reached T,,.;;, we still would be in the situation
of Fig. (9.1)-b: the two phases are in equilibrium, but the barrier between
them prevents us to observe the transition in a finite simulation time. If
we continue heating the system, we will progressively make the liquid phase
more and more stable, in effect increasing the probability of transition, like
can be appreciated in Fig. (9.1)-c.

A more accurate and reliable method consists in tracing separately the
free energy of the two phases at a given pressure as a function of the tempera-
ture. The point where the two phases have the same free energy indicates by
definition the temperature of phase coexistence, i.e. melting, at that pressure.
The trouble with free energy is that it is an intrinsically difficult magnitude
to calculate theoretically. As we will discuss in the next sections, free energy
is defined as an integral over the phase space (positions and momenta of all
the particles). This is at variance with energy (both potential and kinetic),
temperature, volume and pressure that can be defined instantaneously and
therefore averaged along a sufficiently long MD.

A well-established method to calculate the free energy of a system at
a given temperature and pressure is the so-called thermodynamic integra-
tion (TI). In the following section we provide a brief description of this tech-
nique, discussing benefits and trade-offs in its use for the estimation of a
material melting temperature or any other phase transition.

The ambitious long term aim of this project is to track a complete phase
diagram of the various phases of SiC: the liquid phase and all the stable solid
phases, i.e. all the different polytypes. Despite this, the method is quite new
and it needs to be extensively tested and checked, therefore we will present
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here our results on silicon, which is a simpler and better defined system, and
for which many reliable empirical potentials are available.

9.1 Thermodynamic integration

The Helmholtz free energy F' is related to the canonical partition function as

F = —kgTlog / e PU®dr + 3NkpT log A(T) (9.1)
14

3
where kg is the Boltzmann constant, T is the temperature, A(T') = (%)

is the thermal de Broglie wavelength and = kBLT The partition function is
Q= [, e ®dr.

Let us assume that the internal energy U is a function of a generic pa-
rameter \. How does the free energy change with a variation of \? Deriving
with respect to A Eq. (9.1) we obtain

OF [ 20 =800 gy 0.9
oN [ e BEdr - (92)

The apparently complicated expression in Eq. (9.2) is nothing more than the
thermal average of 2% Therefore

X
OF oU,
T <a—A> (9:3)
Thus, Eq. (9.3) tells us how a variation of A induces a change in the free
energy. Thermodynamic integration (TI), taking advantage of Eq. (9.3),
evaluates the free energy difference between the physical system of interest
and a convenient reference system. Let us assume that U is built as a mixing
of the potential of a reference system U, and the potential of the physical
system Up:
UN) = (1= NUy + \Up. (9.4)

As can be easily seen from Eq. (9.4), varying A from 0 to 1, the reference
known system A slowly turns into the system of interest B. At the same time,
Eq. (9.4) is a generic relation of the kind U = U(\) assumed in the derivation
of Eq. (9.3), therefore we can generalise the result, obtaining the free energy
difference between the reference system A and the physical system B as:

Fy— Fy = /01 d)\<8[g7§\)\)>A. (9.5)
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A first limitation of this method is that there must be an available refer-
ence system for which the free energy can be tabulated or calculated analyt-
ically. However, as we will discuss further on, this problem can be overcome
in practise due to the existence of appropriate systems that can serve as
references (the Lennard-Jones fluid [90], the 12" power potential [91], the
Einstein solid). The real problem with thermodynamic integration is that
it is scarcely efficient from the point of view of the required computational
load. The switching from the reference system A to the system of interest
B has to be conveniently slow, therefore the parameter A in Eq. (9.4) has to
vary slowly as well and, for each of its selected values, a sufficiently long MD
simulation must be carried out, in order to achieve statistical significance of
the results. If we thus let A vary between 0 to 1 with a step A\ = 0.1 (which
may be a typical choice), 11 MD of, say, 10 ps, have to be performed to obtain
an estimation of the free energy of the system of interest at that temperature
and at that pressure. The process described so far should thus be iterated,
varying the temperature, in order to generate a fine enough sampling along
the T axis, allowing to track the F' = F(T') curve at the pressure of interest.
It should be clear that the cost of such an iterative process makes most of
the attempts to evaluate the free energy of a system along an extended range
of temperatures problematic when first-principles methods are invoked.

A generalisation of TI is constituted by the adiabatic switching (AS) tech-
nique [92]. Like TI, this method also relies on the existence of a reversible
path between the state of interest and a reference system. According to a
theorem formulated back in 1910 by Hertz [93], when the Hamiltonian of a
closed system is changed sufficiently slowly, the entropy of the system does
not change. If the variation of the Hamiltonian is truly adiabatic, the system
can be described at every time step ¢ by a set of parameters N, V and E(t) !.

AS, like TI, exploits the slow variation of a parameter that turns the
physical system of interest into a reference system for which the free energy is
known. However, AS is notably more efficient than TI, because the switching
is carried out within one single simulation.

The Helmholtz free energy as a function a parameter A is defined as

F(\) = UX) — TS(N). (9.6)

According to the Hertz theorem, if A varies sufficiently slow, the process can
be then considered adiabatic and therefore the entropy is conserved along
the transition. The variation of the free energy is thus determined by the

!N number of particles, V volume and E energy.
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variation of the internal energy only. Therefore

L dNOU(N)
AF = [ @222 .
/0 D) (9.7)

Still, if we want to track the free energy dependence over a wide range of
temperatures, we should iterate this process as much as necessary to achieve
a satisfactory sampling of the temperature axis, but one single simulation is
enough to estimate the free energy at a given temperature and pressure.

~J

We have tackled the problem of free energy calculation by means of a
recently proposed method [94], which, given a reliable reference for the free
energy at a temperature and a pressure, allows an estimation of the free
energy all over a wide range of temperatures with one single simulation. The
method will be described in Section 9.2.

At variance with all the results presented in Chapter (6), (7) and (8),
the calculations presented here have not be performed with SIESTA, which is
a pure DF'T code, but rather with the multi-algorithm multi-model package
TROCADERO [95]. This package currently allows to perform different flavours
of MD simulations, like SIESTA, in combination with various models, while
SIESTA is build around a robust DFT core. The models implemented in
TROCADERO range from different tight-binding models [96, 97, 98] to empir-
ical potentials for semiconductors [99, 100] or metals [101, 102], and each of
them can be combined with any of the available MD simulation algorithm.

9.2 Free energy calculation using Reversible
Scaling simulation

The basic ideas underlying the reversible scaling technique [94] are as simple
as highly efficient and provide the free energy over a wide temperature range
without relying over uncontrolled approximations and - especially - with one
single simulation.

Let us consider a system of N particles described by the Hamiltonian

N2
Hy, = - 2];;% + UO(Tla "'7TN)7 (98)

where r; and p; are the position and momentum vector of particle 7, and
Uy is the potential energy function. We assume throughout this section the
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system is in thermal equilibrium at temperature T and confined to volume
V, the equilibrium volume at temperature T for the pressure of interest. The
Helmholtz free energy is given by

U
Fy(T) = —kBTlog/ dr e FBT + 3NkgT log A(T). (9.9)
v

Let us now consider the scaled system described by H;, constructed from
H, by scaling of a factor 0 < A < 1 the potential energy Uy

N2
Hl()\) :Z bi +)\U0(7"1,...,’I“N). (910)
i=1

2m

The free energy of the scaled system is

U
Fi(Ty, ) = —kgTy log/ dr ¢ 5T + 3NkgT,log A(Ty), (9.11)
v
where T' is related to Tj through the relation
Tp
T=—. 9.12
; (912)

Considering now Eq. (9.9), (9.11) and (9.12), it follows that the temperature
dependence of Fy(T) is related to the A dependence of F;(Tj, A) at tempera-
ture Tj:

F(T)  Fi(Ty,\) 3 T,
_ 2 Nkplog 2. 9.13
T T, ' Bl (9-13)

Therefore, the problem of calculating Fy(T) for system Hj is strictly equiv-
alent to the problem of evaluating Fi(7p, A) as a function of A in the scaled
system H;. In other words, the calculation of the free energy of the system
of interest at various temperatures can be transfered to the calculation of the
free energy of the scaled system at various .

A problem of this kind can be approached using the standard adiabatic
switching technique [92, 94] discussed in Section 9.1, which is easily imple-
mented in molecular dynamics or Monte Carlo codes. Let us remark once
more that, by means of one single simulation at 7y of the scaled system
where we vary A, we obtain the free energy all over the range of equiva-
lent temperatures T = %, as spanned by A. The prescriptions of AS, as
we have discussed above, consist in running an MD for a time tg, switching
continuously A from 0 to 1. If the simulated process is ideally adiabatic, the
accumulated free energy difference

AFL(A(), A(0)) = Fy(Ty, A(t)) — Fy(Ty, A(0)) (9.14)
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is equal to the reversible work W (¢) done by the generalised force &L, where
bodA
ARAOAO0) = [ G0 () () =W (015)
0

Combining Eq. (9.12), (9.13) and (9.14), the time dependence of the re-
versible work can be expressed as follows:

FU(T(t)) Fy (T(O)) W(t) 3 T(t)
TR Ty T, 2 keleggy (9.16)

where T'(t) = % and T(0) = %. This what de Koning, Antonelli and
Yip [94] call the reversible scaling approach: each instant ¢ along the AS
simulation of system H;(\) corresponds to the physical system of interest Hy
at a unique temperature 7' = %

In the following Section we will discuss the estimation of the melting
temperature of Si. Therein we will evaluate the dependence of the free energy
on the temperature, both for the solid and the liquid phase, searching for the
intersection point between the two curves. That point will define the phase
coexistence temperature, and therefore the melting, at the pressure at which
the simulations will be carried out.

As we have said in this chapter’s introduction, due to the novelty of the
method employed - the reversible scaling technique - we have restricted our
study to a simple and well-known material as Si. This choice allows us to use
one of the many empirical potentials carefully parametrised for Si, avoiding
thus the need to recur to the computationally more expensive first-principles
techniques.

9.2.1 Computational methods

The potential that we have chosen is the environment-dependent interatomic
potential (EDIP) [100], an empirical potential for Si developed by of Syd-
ney Yip and coworkers, at the Massachusetts Institute of Technology. The
EDIP potential is an evolution of the well-known Stillinger-Weber (SW) [103]
potential and was provided with a higher flexibility in terms of favoured co-
ordination. Thanks to these features, it proved to be especially accurate in
describing different phases of Si, thus it is particularly suited to our purposes.

The transferability of potentials to configurations far from those used to
build the parametrisation is a very delicate issue to which many efforts have
been devoted in the most recent years. The EDIP potential is a rather suc-
cessful attempt to achieve this aim in the case of silicon. The analogous
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of the two-body and three-body terms of the SW potential here are modu-
lated by a factor Z, which takes into account the local environment and the
coordination of each atom. The total energy is given by the functional form:

Z/{:ZZ‘/Z(Tij,Zi)—FZ Z Vz’,(f;'ja"?ikazi); (917)

i jF JjFt kFik>g
where
B P 2 —7
Va(rij, Zs) :AK—) —eﬁzi]e”j_“, (9.18)
rij
Va(Tij, Tik, Zi) = g(ri5) 9(rix) h(cosbiji, Z;). (9.19)

The factor g(r) = e7= is a pair interaction term, while the three-body term
role is played by h(cosb;ji, Z;), which is function of the angle §;;; formed by
one atom and two of its neighbours. However, the distinction between two-
body and three-body terms is only formal, because the EDIP potential is an
intrinsically many-body potential, due to the nature of Z. The environment
dependent term Z is defined as:

Zi =Y f(Fim) (9.20)

m#i
where
1 if r;,, < c,
f(rim) = el—=3 ifc <1y <a, (9.21)
0 if 7 > a.

What Z does is counting the neighbours of each atom in such a way that
atoms closer than ¢ are full neighbours and atoms between ¢ and a will give
a fractional contribution to its coordination.

Although obvious from the equations, let us state explicitly that the major
difference with the DFT computational framework, used throughout this
work, is that here the electronic structure is not considered 2, making the
calculations order of magnitudes computationally lighter.

Empirical potentials are often regarded as low level approximations to
the real problem, but this interpretation is at least unfair. They surely are
not as general as calculations from first-principles, but they are often the
only viable way to approach system sizes that are relevant in experiments.
Moreover, close to the specific conditions for which the parametrisation was
performed, they can provide even more accurate predictions that DFT.

2More rigorously, we should say that it was taken into account when the parametrisation
was carried out.



PHASE COEXISTENCE IN Si 103

In this specific example, the EDIP potential represents an ideal tool for
our purpose: it describes very well different phases of Si (characterised by
different coordination and aggregation) and it allows us to test the novel
method of reversible scaling free energy calculation requiring a limited com-
putational load.

9.3 Results

9.3.1 Reference free energy for the liquid phase

As we have stressed in Section (9.2), the RS method needs a reliable reference
free energy of the system of interest. For the liquid phase of Si, we have used
conventional thermodynamic integration (see above). An adequate reference
system for liquid Si where to start the TI from is the Lennard-Jones fluid.
This system is simply a collection of Si atoms governed by a conventional
Lennard-Jones potential:

vo=s](2) - (2)] o

In our implementation we have tuned the parameter ¢ and o so that the
Lennard-Jones fluid had the same average interatomic distance than that
given by the EDIP potential for liquid Si. This allows the integration between
the two models to be as smooth as possible. The Helmholtz free energy of
the Lennard-Jones fluid is known and is tabulated (see for instance Ref. [90]).
We have decided to perform TI of liquid Si at 2000 K, to obtain the
free energy at that temperature. First we have run a 10 ps MD at constant
temperature and constant pressure (NPT ensemble 3) with the EDIP model,
in order to evaluate the equilibrium volume V%, of liquid Si with that potential
and at that temperature. After that, we have launched an equilibration run
of the system at constant volume V,, and constant energy (NVE ensemble)
with the Lennard-Jones potential. We have obtained in this way a set of
equilibrated coordinates for the Lennard-Jones fluid, even though we have
constricted the system in the equilibrium volume of the EDIP potential.

3In the straighter implementation of a MD algorithm, the energy E and the volume
of the simulation cell V (together with the number of particles N) are conserved. This is
the so-called micro-canonical ensemble or simply NVE ensemble. However, most of the
experimental conditions do not fit this somewhat restrictive constraint, thus a variety of
more sophisticated algorithms were developed to perform simulations where the tempera-
ture on one side, and the volume or the pressure on the other, are conserved, respectively
the NVT and the NPT ensembles. We will not give details on these algorithms, but an
excellent description can be found elsewhere [38, 39]
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We have performed thermodynamic integration at 2000 K, with a step
AX = 0.1. This results in 11 MD at constant volume and constant tem-
perature (NVT ensemble). The total length of each MD was 10 ps with a
time step of 1 fs. Equilibration plays a rather crucial role in these NVT
calculations, that is why we have carefully carried out this task before ap-
proaching the TT MD themselves. However, this should in principle be done
for every different value of A\, because a different \ gives a different mix-
ing between the two potentials involved, generating by all means a different
effective potential in each MD. To reduce the number of calculations re-
quired, we have followed this approach. The coordinates equilibrated for the
Lennard-Jones potential have been used for the TI MD with A = 0. This
is correct, because when A = 0 the effective potential that we are using is
U(N) = A\UEPIP (1 — \)UY = UL/, Instead of running an equilibration
MD for A = 0.1, we have used the last set of coordinates from the A = 0
dynamics. Thus we have proceeded iteratively in this way, using the last set
of coordinates of TT MD with A, as a starting set of coordinates for TT MD
with A,4q. Strictly speaking, we should have carried out a separate equili-
bration run for each A, but we can reasonably assume that the equilibrated
coordinates with A, would not differ significantly from those corresponding
to Apaq-

From Eq. (9.5), we have evaluated AF = FFP!P” — FLJ with the help of
the tabulated value of Fy; [90], obtaining a free energy of -5.50342 eV /atom.
This is the reference value required for the RS simulation of the liquid phase.

9.3.2 Reference free energy for the solid phase

The solid phase reference can be calculated in different ways. The simplest,
probably, is the so-called quasi-harmonic approzimation, consisting in ap-
proximating the system as a collection of harmonic oscillators.

If the temperature is low enough, the approximation provides an accurate
estimation of the free energy of the system, which can thus be calculated via
integration of the the vibrational density of states (VDOS). In Fig. (9.2) we
have plotted the phonon density of states of the Si unit cell obtained with
the EDIP potential. The free energy at a conveniently low temperature can
be obtained summing the energy per atom of the system in its equilibrium

structure to the vibrational contribution of the free energy, which can be
deduced from the calculated VDOS [104] as

hv;

1 _ by
Fy = Z{ihyj(k) + kpT log[l — e 77|} (9.23)
k,j
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Figure 9.2: Vibrational density of states (VDOS) of Si according to the EDIP
potential. We have constructed the constant force matrix by displacing in
turn the two atoms in the unit cell and observing the forces induced on the
atoms of a supercell. The vibrational states have been obtained calculating
the eigenvalues of the dynamical matrix, which is the constant force matrix
transformed to the reciprocal space. The supercell consisted of the unit cell
plus one image along each direction of the lattice vectors, amounting to a
total of 54 atoms (the relatively small size of the supercell is allowed by the
first-neighbour extent of the potential).

where v;(k) are the frequencies of the vibrational modes corresponding to
wave vector k and are obtained by diagonalisation of the dynamical matrix.
The first term is the vibrational zero point energy.

The quasi-harmonic approximation gives a free energy per atom of -4.59972 eV

at 200 K. One might think to deduce the free energy of the solid phase from
Eq. (9.23) in a wider range of temperatures, but the more the temperature
grows, the worse is the approximation provided by considering the crystal
lattice as a collection of harmonic oscillators, so this alternative must be
discarded [see also Fig. (9.3)]. However, as an alternative method, ther-
modynamic integration can still be used, just like in the case of the liquid
system. For this reason, in order to check the reliability of the estimation
of the free energy given by the quasi-harmonic approximation, we have also
calculated it by means of thermodynamic integration.
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In the case of a crystalline solid, a good reference is the Finstein solid.
The Einstein solid is a system in which the atoms occupy the perfect lattice
positions and are bound to them through a spring providing the necessary
elastic force. Like in the case of the liquid, we have chosen a step AX = 0.1 for
the thermodynamic integration and we have followed an analogous strategy
for equilibration, including the optimisation of the equilibrium volume, in
this case simply represented by optimisation of the lattice parameter.

The 11 NVT molecular dynamics have been performed at 200 K to com-
pare with the results obtained with the quasi-harmonic approximation. The
total length of the MD was 10 ps with a time step of 1 fs. We have obtained
a free energy per atom of -4.6038 eV, indicating that the result provided by
the quasi-harmonic approximation was highly accurate. We also did this for
various temperatures, as can be seen in Fig. (9.3), to validate the predictions
of the RS method discussed in the following section.

9.3.3 Reversible scaling simulation of the liquid and of
the solid phase

So far, we have obtained good estimations of the free energy at 200 K of
solid Si and at 2000 K of liquid Si. If we proceeded in the melting point
evaluation in a conventional way, we should repeat the whole process for
both the solid and the liquid phase at different temperatures, providing a
fine enough sampling of the 7" axis which allowed a reliable interpolation of
the data. With the RS technique, we essentially only need to carry out one
MD for the solid phase and one for the liquid phase.

Before doing so, however, we have carefully equilibrated the solid system
at 200 K and the liquid system at 2000 K. Free energy is a very sensible
magnitude, so we should work safely far from any kind of numerical poor
stability. After that, we have performed two NPT MD: one for the solid and
one for the liquid of the scaled system [see Eq. (9.10) and (9.11)].

The A parameter, in our implementation, has been scaled in such a way
that during the required simulation time the temperature 7" [see Eq. (9.12)]
was varying from 200 K to 2000 K for the solid and from 2000 K to 1000 K
for the liquid. As in the case of the solid phase we are spanning a wider
temperature interval, the length of the MD runs were chosen accordingly, in
order to provide an equivalent sample. We ran MD of 18 ps for the solid,
where 1800 K are covered, and 10 ps in the case of the liquid, to track the
free energy along 10 ps.

Our results are shown in Fig. (9.3). We have estimated a melting point of
Siof 1571 K, in excellent agreement with the results obtained by other groups
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Figure 9.3: Free energy vs temperature of liquid (red curve) and solid Si (blue
curve). Black line shows the temperature dependence of the free energy of
solid Si according with the quasi-harmonic approximation, which proved to
be very good up to approximately 750 K. The value at 200 K was used
as a reference for the RS calculation of the solid phase. Diamonds and
triangles show free energy estimation of the liquid and solid phase by means
of thermodynamical integration. The value at 2000 K was used as a reference
for the RS calculation of the liquid phase, while the value at 200 K was used
to double check the estimation of the reference free energy of the solid phase
obtained with the quasi-harmonic approximation.

based on the EDIP potential. Miranda et al. obtained ~ 1582 K with the RS
technique [105] while Keblinski et al. obtained ~ 1550 K with an alternative
MD-based approach [106]. The agreement with the experimental value of
1683 K is also considerbaly good. This powerful method has demonstrated
a very high accuracy in the determination of such a subtle value, like free
energy is. It is especially interesting for its efficiency, as we have frequently
remarked all over this chapter, what makes perfectly reasonable to approach
the phase coexistence problem from first-principles, removing the sometimes
uncomfortable limitation of having to restrict ourselves to systems for which
efficient empirical potentials or tight-binding parametrisation are available.
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9.4 Conclusions and future developments

We have shown that the RS method can provide the free energy of liquid and
solid Si with a high computational efficiency, predicting the melting temper-
ature with a quite impressive accuracy. The immediate next step we will un-
dertake is testing the described approach with a different model. Namely, we
plan to check the melting temperature with a class of various tight-binding
models [96, 97, 98]. This further step will serve to conclude the strictly
methodological part of this project. This part has already been started and
we can preliminarily report that non-orthogonal tight-binding [96] gives a
melting temperature of Si of ~ 1700.3 K, highly improving the accuracy of
the EDIP potential..

The long-term application-oriented objective that we intend to investigate
the phase coexistence in SiC, extracting an as accurate as possible phase
digram. We previously discussed in Section 2.2 the polymorphic nature of
SiC, whose solid state can be found under different polytypes. In that case,
we will track the free energy dependence on temperature of the liquid phase,
like in the case of Si, and in at least three different polytype of the solid
phase: 3C-, 4H- and 6H-SiC. Besides evaluating the melting temperatures of
the three polytypes, we will also investigate the phase coexistence condition
between the three solid phases.

Cubic 3C-SiC is still difficult to grow as to produce industrial quality
material, therefore any insight on the stability condition of this phase, as a
function of temperature and pressure, could in principle have a high impact
on the application viewpoint.



Chapter 10

The nature of Dy and Dy
defects

Throughout this work, we have insisted several times on the fact that simu-
lations should be carried out with the aim of explaining some experimental
evidences or to help designing new relevant experiments. In this chapter we
will present one of these cases, where, although experimental investigations
represent the more prominent results, simulations support them, suggesting
further directions to give to the experiments.

The subject of this chapter are the so-called D; and D;; photolumines-
cence peaks, unidentified defects that bedevil SiC technology in many appli-
cations, as they affect in a systematic way the quality of the ion-implanted
material. After presenting a brief introduction on these interesting defects,
we will discuss some recent results of an unconventional way to perform
depth-resolved photoluminescence measurements, we will analyse the insights
given on the nature of the D; and D;; defects ! and the further experiments
we decided to undertake in an attempt to provide a clearer picture.

A couple of words should be spent as a supplementary introduction to
this chapter.

Due to my past experience with positron annihilation spectroscopy with
polymers [107] I realised that it could be an effective experimental technique
to better understand the nature of the Dy and Dj; defects. The idea goes
back to the International Conference on Silicon Carbide held in Tsukuba
(Japan) in 2001, where the paper of Koshka and Melnychuck, reported in this

In the following sections of this chapter, D; and Dy; defects will be slightly improperly
used for brevity, meaning defects whose signature in PL spectra are the Dy and Drr peaks.
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chapter, was presented. The deep-resolved photoluminescence experiments
that they performed suggested me the idea of carrying out complementary
experiments with a slow positron beam. I proposed the project to the group
at the University of Ghent (Belgium) and we started a collaboration on this
topic.

10.1 The D; and D;; defects in SiC

Photoluminescence (PL) [108] is among the most widely used experimental
techniques for the physical characterisation of semiconductors. It studies the
luminescent radiation emitted from a sample that has been optically excited,
typically with a laser beam.

When taking a PL spectrum of an ion-implanted SiC sample a huge vari-
ety of peaks appear, signatures of the different defects that have been created.
A high-temperature thermal annealing (1500 —1650 °C) is always carried out,
in order to recover as much as possible the host crystal lattice and its effect
is reflected in PL spectrum, where most of the peaks disappear.

However, since the first pioneering experiments of Choyke and Patrick [109,
110], the persistence of two groups of PL lines was noticed. The solid state
community currently refers to them as D; and Dj; peaks and it has not
yet been possible to provide a clear and reliable identification of the defects
responsible for them. What makes the D; and D;; peaks extremely interest-
ing is that (i) they have been reported to persist up to 1700 °C [111, 112];
(ii) they appear as a results of the ion-implantation process, but this hap-
pens regardless of the type of the implanted species, which indicates that they
should be attributed to some intrinsic defect-related complex. In addition, it
should be underlined that D; and D;; defects generate deep levels inside the
band-gap, therefore being tremendously efficient charge traps. Many efforts
have been devoted to their identification, but there is not yet an agreement
on their nature.

It should be sufficiently clear that providing a definitive identification
of these defects would have a high technological impact, as knowing their
structure would probably suggests efficient annealing cycles or passivation
strategies.

Recently, Koshka and Melnychuck [113] carried out a PL investigation
of the D; and Dj; peaks on N-implanted 4H-SiC sample. They performed
depth-resolved PL, combining conventional high quality PL measurements
with a controlled etching technique, which allowed them to selectively access
different depths of the sample. Let us describe their experimental procedure
in some more detail. Firstly, they implanted with N their samples and they
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Figure 10.1: Results of depth-resolved PL [113] (figure reproduced with the
permission of the authors).

performed a PL measurement. The investigated samples were 8-10 pm thick
and they came from 6H-SiC epitaxial layers grown on commercial 6H-SiC
substrate by chemical vapour deposition (CVD) at Mississippi State Univer-
sity. They were double-implanted with N at 600 °C with energies of 137 and
390 keV and doses of 3.3 x 10'2 and 6 x 10*? cm 2. A typical PL spectrum,
where several different peaks showed up, indicates the large amount of de-
fect formation induced by the implantation. After that, they subjected to
thermal annealing the samples at 1550 °C for 30 minutes and they repeated
the PL measurement, observing the well-known persistence of the D; and
D;; peaks. The PL technique itself cannot resolve different depths of the
sample and the resulting spectra accounts for the average properties of the
material. To get valuable information of the depth distribution of the defects
which are the source of the D; and Dj; peaks, they performed a controlled,
high-precision etching of the samples, removing a layer of an approximate
thickness ranging from 1250 A and 2500 A and, after that, they repeated
the PL measurement. Still the resulting spectra will show the average defect
population of the sample, but the defects that were originally located in the
removed layer obviously will not contribute anymore to the spectra. Iter-
ating this procedure for a few times, they were able to track the intensities
of the D; and D;; peaks as a function of the depth. Their main findings
are illustrated in Fig. (10.1), where the normalised intensities of the D; and
D;; PL lines vs. depth are plotted. In the same figure, also the estimated
maximum penetration depth of the implanted N atoms is shown.

What is especially interesting in this figure is that the defects which are
responsible for the D; peak were found well beyond the extent of the im-
planted profile, while the sources of the D;; seem to vanish with it. Thus,
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even when all the implanted layer was removed, a D; PL peak was still clearly
detectable. In other words, this experiment provided an evidence that D; de-
fects penetrate deeper than the implanted profile. At a first sight, this is not
surprising, because, as we have already commented, D; and Dj; are always
detected, whatever was the implanted species, thus it is not very strange
that their depth distribution is not compatible with that of the implanted
species. However, this still constitutes a valuable hint to identify the D; de-
fects, because if they were found that deep, it is likely that they penetrated,
diffusing, during the annealing and therefore they should be complexes with
a reasonably good mobility.

The identification of the D; and Dj; defects has been the subject of
many investigations, theoretical as well as experimental. Although convinc-
ing proofs of it have not been presented so far, there is a general belief that
Dy defects should be due to di-vacancies [110, 114] or, more in general, to
vacancy-related complexes, while D;; peaks should be due to some kind of
C di-interstitial [115].

In Chapter (7) we have discussed the mechanisms underlying vacancy
diffusion in SiC, finding out that the C and the Si vacancy are not highly
mobile defects, as their migration barrier are relatively high. On the other
hand, the depth-resolved PL spectra of Koshka and Melnychuck indicate
that, if the conventional attribution of the D; peaks is correct, then vacancy-
related complexes do diffuse, because they are found far beyond the mean
penetration of the implanted ions. Unfortunately, we are not yet in a position
to discard this possibility on purely theoretical grounds: we have studied
the diffusion of vacancies, but we cannot exclude the formation of some fast
diffusing vacancy-related complex, process to which could correspond, for not
yet understood reasons, a lower barrier. On the other hand, the theoretical
characterisation of vacancy diffusion suggests that it is certainly worth while
further investigating the conventional attribution of the D; defects and its
compatibility with the results of Ref. [113].

10.2 Vacancy-related defect depth distribu-
tion as probed by positron annihilation
spectroscopy

Positron annihilation spectroscopy (PAS) has become one of the most accu-
rate techniques to detect vacancy-related defects in solid state matter. The
basic idea underlying PAS consists in injecting positrons in the sample and
studying the annihilation with their antiparticles, i.e. the electrons. The
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Figure 10.2: Measured S(E) and fitted S;. The simulated N implanted
profile is also shown (continuous line).

study of the annihilation photopeak or of the mean lifetime of the positrons
gives a valuable insight into the microscopic structure of the host material,
providing information on the electronic environment around the annihilation
region. The features of the electron-positron pair annihilation change sig-
nificantly in the free-volume region of the material, what in solids reduces
essentially to vacancies and vacancy-related complexes. On one hand, the
average lifetime of the positron grows in a lower electron density; on the
other hand, the annihilation peak gets sharper due to annihilation with low-
momentum valence electrons, i.e. the positron annihilated in a vacancy.
Therefore, PAS, in all its flavour, has become a privileged non-destructive
experimental technique to detect free volume in materials and, in particular,
vacancies in crystalline solids.

The great progresses made in recent years with slow positron beams [116]
allowed performing depth selective analysis of the electronic and structural
properties of the defects, by injecting monoenergetic positrons in the material
with a well controlled mean implantation depth. Without this facility, PAS
only provides information on the average free-volume of the material, what
is good enough for bulk characterisation, but is certainly not sufficient for
surface and sub-surface studies.

We have decided to perform PAS measurements by means of a slow
positron beam in an attempt to correlate the depth distribution of vacancy-
related defects to the depth distribution of the D; or D;; defects as detected
in Ref. [113].
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Positron annihilation spectroscopy was performed at the slow positron
beam at Ghent University by J. Baerdemaeker, under the direction of Prof.
C. Dauwe. Measurements were taken with ~ 3.5 x 10° counts in the pho-
topeak. The resolution of the detector was 1.17 keV (FWHM) at 514 keV.
Monoenergetic positrons with energy ranging from 100 eV to 29.1 keV were
implanted in the samples, in order to probe layers up to few pum deep.
The momentum of the positron-electron pair prior to annihilation induces
a Doppler broadening in the annihilation photopeak. This effect is charac-
terised by the line-shape parameter S, which is the ratio of the counts in the
central region of the annihilation peak to the total number of counts in the
peak.

We have simulated the N implantation by means of the Monte Carlo code
i25iC [70]. This code, in addition to other benefits in comparison to con-
ventional packages like TRIM, proved to be very reliable in reproducing the
tails of the profile, if any, due to ion channelling. The resulting profile well
compares with what Koshka et al. presented originally [113], presumably
obtained with TRIM 2, and that we have reproduced in Fig. (10.2). The N
distribution exhibits two peaks, one at 235 nm and another at 475 nm, with
a small dip between them. It vanishes rapidly around 600-700 nm and it
is practically extinguished at 750 nm, so that no N impurity is likely to be
present beyond that depth. Unfortunately, the detection limit of SIMS for
N does not allow to experimentally confirm the absence of a N tail beyond
750 nm. Nitrogen, like many other dopants, has a very low diffusion coef-
ficient in SiC, therefore the shape of the implanted profile does not change
significantly after the annealing and the results of our simulation, obtained
for the as-implanted sample, hold equally well also for the annealed sample.

To obtain a depth dependent profile of the lattice damage defects, the
measured value of the line shape parameter S(FE) has to be deconvoluted into
its elementary components. We have done it with the VEPFIT package [117],
the most common code to solve the diffusion equation of the positrons. VEP-
FIT assumes a box-shaped layer structure for the defects, which means that
it fits one value S; of the S parameter for each defect layer i, so that S
varies as a function of depth as a step-like function [see Fig. (10.3)]. In other
words, VEPFIT associates to each layer a characteristic defect structure,
represented by the fitted 5;.

2TRIM is a well-known successful package that was developed and parametrised for ion
implantation in Si. Its extension to SiC does not rely on a new parametrisation for this
material, but it only takes into account the higher density with respect to Si. In other
words, when applied to SiC, what TRIM actually simulates are implantation in a denser
Si. Under some conditions, this rough approximation is sufficiently good, but under some
other - like when ion-channelling plays a prominent role - it is not.
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Figure 10.3: Box-shaped layer structure for the defects assumed by the VEP-
FIT code. In this fictitious example, three defect layers have been fitted, each
one characterised by an S parameter. As a general rule, fits with a growing
number of layers should be tried to be sure that the layer structure is fine
enough to reproduce the variation of the S parameter. In spite of this, in con-
ventionally implanted-semiconductors from one to three layer are sufficient
to obtain a satisfactory fit.

The VEPFIT analysis allows us to compare the extent of the damaged
layer firstly with the implanted species profile, and secondly with the depth
distribution of the D; and D;; PL intensities [113]. The measured parameter
is given by:

S(E) = S,Fy(E) + S.F.(E) + XN: SaiFu(E) + SyFy(E) (10.1)

where S,, Sz, and S, are the S parameters associated with annihilation of
positrons with electrons at the surface, in layers containing a typical defect
structure and in the bulk material respectively; S, is the contribution of
the annihilation of the epithermal positrons. F(F) indicates the fraction of
positrons annihilating in each state. The analysis was carried out assuming
different numbers of defect layers - i.e. N in Eq. (10.1) -, but the most
satisfactory fit was obtained assuming N = 1, i.e. one single damage layer.
The VEPFIT analysis needs the diffusion length L, of the positrons in defect-
free SiC in order to properly resolve the different components of S(E). L
is the average distance that a thermalised positron can diffuse into the bulk
material before annihilating. Usually, for semiconductors this value ranges
between 200 nm and 250 nm (240 nm is the value for Si). In order not to
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Figure 10.4: Depth distribution of D; and Dy normalised PL intensities [113]
and fitted layer thickness of the vacancy-related defects.

L, nm] S; L4 [nm] dy [nm] Sh
200 0520 25+£2 470£20 0.502
250 0520 26+3 430£20 0.502

Table 10.1: Results of the VEPFIT analysis for different values of the defect-
free diffusion length L;. S, is the fitted S parameter, d; is the damaged layer
thickness and L4 the diffusion length that the positrons have in it.

impose too restrictive assumptions on it, we have analysed the results in
both the limiting cases, leaving all the other parameters free. In Table (10.1)
we have summarised the results obtained. The analysis clearly indicates the
existence of one single damaged layer whose thickness ranges from 430 to
470 nm. In Fig. (10.2) we show the extent of the damaged layer in the case
of Ly, = 250 nm, together with the implanted N distribution for comparison.

The value of Sy (the fitted value of the measured S parameter in the
damaged layer) must be normalised to its bulk value in order to allow us to
gain an insight into the nature of the defect structure. One bulk value that
can be used is the one resulting from the fit itself (0.502), however we have
also measured a virgin reference sample obtaining a value of S, for SiC of
0.500 4+ 0.001. Using the fitted value we have a Sy/S, ratio of 1.035, which
grows to 1.04 if we use the Sy, of the reference sample. Though a di-vacancy
in GaAs and in Si has typically such a signature [118], most authors suggest
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that the Vs; Vi di-vacancy in SiC gives rise to a ratio of 1.05 - 1.06 [119]. On
the other hand, mono-vacancies have been recently reported to give rise to
a Sq/Sp ratio of 1.033 - 1.04 [120, 121, 122], in better agreement with our
results.

However, experiments indicate that after a ~ 1550 °C annealing of sam-
ples implanted with a fluency comparable to the one used in this work,
isolated point defects vanish [123], although not all the damage can be
removed [124, 125, 126]. Anwand et al. [125, 126] measured a S;/Sy ra-
tio similar to ours and proposed that it might be due to dislocation loops.
Nonetheless, more experimental work should be carried out to provide further
evidences supporting this possibility.

It must be remembered that the VEPFIT analysis assumes box-shaped
layer structures for the defects, therefore the S; value that we have obtained
for the only damaged layer fitted by the program is an average of the defects
present therein. In other words, we cannot state that all di-vacancies have
been annealed, but at least they are not the dominant type of defect, as
indicated by a too low value of S;/Sj.

Although the identification of the defects in the damage layer is not com-
pletely clear, our main concern in this work was to see if the depth distribu-
tion of the D; and D;; PL intensity was compatible with the extent of the
positron detectable defect layer. In Fig. (10.4) we have illustrated the depth
distribution of the normalised D; and Dy; PL lines [113], together with the
fitted S;/ Sy ratio of the damaged layer detected by slow positron beam mea-
surements. It can be observed that the depth distribution of the D; PL line
is significantly different from the depth distribution of the vacancy-related
complexes, including di-vacancies that are often proposed to be the origin
of the Dy emission. It is possible that not all the di-vacancies have been
annealed and the S, value that we observe in the damaged layer comes from
a mixture of di-vacancies and dislocation loops (or other not yet better iden-
tified defects), but it is clearly demonstrated that vacancy-related defects
(including di-vacancies) are not found deeper than 430-470 nm, in contrast
to the detected behaviour of the D; defects. On the other hand, the D;; line,
that is normally attributed to some kind of di-interstitial, exhibits a depth
distribution that has good correlation with the fitted depth of the vacancy-
defect layer [see Fig. (10.4)]. Consequently, the origin of the D;; defect is not
inconsistent with a vacancy-related complex, which is also a conclusion en-
tailed by Monte Carlo simulations of ion implantation in 6H-SiC [127], that
indicated an accumulation of Si and C interstitials deeper in the material
and an excess of vacancies closer to the surface.
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10.3 Conclusions

Concluding, the comparison between the PL results of Ref. [113] and our
PAS measurements allows us to suggest a less conventional attribution of
the nature of these centres. According to our results, D; defects are not con-
sistent with di-vacancies, due to the absolute lack of correlation between the
relatively deep penetration depth of those centres and the relatively shallow
nature of the layer where positron detectable defects concentrate. On the
other hand, D;; centres has a good correlation with the depth distribution
of the vacancy-related defects, even though it is not enough to propose a
certain attribution. The dominant defects in the damaged layer might be
related to dislocation loops, however a complete annealing of di-vacancies in
that shallow region cannot be ruled out. The Dy lines could be related to
some interstitial complex. Unfortunately, PAS seems not to be sensitive to
this kind of defects, so further investigations are needed to provide a reliable
identification of these centres.

Vacancies and di-vacancies are expected to be scarcely mobile defects, as
we have discussed in Chapter (7) and it is discussed in Ref. [128], therefore
it appears reasonable - as the experimental results presented in this chapter
have shown - that they are not the source of the deep D; PL peaks.
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Conclusions

In this work we have discussed several aspects of defect physics in silicon
carbide. In particular, we have concentrated on some of the most interesting
features that defects in a semiconductor have from the technological view-
point. Certainly defect diffusion is one of these topics and it is where we
have focused on at first in Chapters 6 and 7. As we have discussed in the
corresponding chapters, diffusion is an especially challenging subject and it
is highly relevant for dopants as well as for intrinsic defects. In both cases
there is prominent need to gain the ability of controlling defect distribution,
even though with dopants we want to be able to confine them inside a region,
i.e. the junction, while with intrinsic defects or undesired impurities what
we want is simply to anneal them out.

The activation of dopants in the high-dose regime has been the subject
of the study we have presented in Chapter 8. Dopants are intentionally
introduced in the host crystal to modify its conductive properties, but this
can happen only if they are electrically active.

In chapter 9 we have shown the performances of a brand new method to
calculate the free energy of a system and then to evaluate melting points and
phase coexistence. So far we have restricted to silicon, to thoroughly test
the method. However, our mid-term aim is to study the phase transitions
between different polytypes of silicon carbide.

Finally, chapter 10 has shown how experimental measurements can actu-
ally constitute a virtuous circle, giving crucial feedback to theoretical simu-
lations.

Below we intend to perform a brief review of the most important results
that we have obtained. Our calculations revealed that:

1. Implanted boron diffusion is activated via a kick-out mechanism. Inter-
stitial silicon atoms makes substitutional boron unstable and remove
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it from the lattice site. The silicon interstitial atom thus takes back its
own site and the boron impurity diffuses interstitially with a quite low
barrier of ~ 0.65eV. When the charge state of the impurity is taken
into account, we have found that the interstitial diffusion barrier can
grow up to more than 2.5 ¢V in p-type doping conditions, although
in the high-temperature conditions that induce the kick-out it is the
neutral charge state of the impurity which is relevant.

2. Carbon vacancy diffuses by means of a second-neighbour hopping mech-
anism. On the other hand, silicon vacancy favours the formation of a
carbon vacancy — antisite pair and therefore two migration mechanisms
are possible: the direct path already observed for the carbon vacancy
and a mediated diffusion path. Both vacancies have been found to be
more mobile under n-type doping conditions.

3. High-dose implantation of nitrogen may produce the formation of ag-
gregates that self-passivate. On the other hand, the most stable phos-
phorus complex that can form is still characterised by a shallow level
and is thus still an active dopant. For this reason, high-dose n-type
doping is recommended to be carried out implanting phosphorus rather
than nitrogen.

4. The melting temperature of crystalline silicon has been estimated by
means of the reversible scaling method. A value of 1571.5 K by means
of the EDIP potential and of 1700.3 K by means of non-orthogonal
tight-binding, in very good agreement with the experimental value of
1683 K has been obtained.

5. Positron annihilation spectroscopy measurements has indicated that
the conventional attribution of the D; defects to di-vacancies is not
feasible with the depth-distribution of the corresponding PL signal and
that of the vacancy-related defects.

Silicon carbide is definitely an extremely interesting material for power
electronics applications. However, there are still a considerable amount of
unanswered questions on the atomic scale mechanisms that rule many tech-
nological processes. In this work we have demonstrated that theoretical
modelling is a powerful tool to provide a microscopic picture of the material
and to help improving its quality for industrial applications.
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