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resultat d’un ajut inestimable. Agraeixo amb molt de gust a l’Alex Pomarol, en Xavi Montes,
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Chapter 1

Introduction

The Standard Model (SM) of elementary particle physics describes the microcosmos with great

precision at energies up to the electroweak (EW) scale. Several theoretical issues question the

validity of this model for energies higher than this scale. One of the most intriguing puzzles

is the hierarchy problem. In perturbation theory, the quantum corrections to the Higgs mass

are sensitive to the cutoff scale, believed to be of order of the Planck or the grand unification

scale. For the Higgs mass to remains of EW size at the quantum level, a fine tuning of the

parameters is required. This renders the theory quite unnatural. Thus, first of all, it has to be

said that the hierarchy problem does not concern the consistency but the naturality of the SM.

Several approaches, including supersymmetry or technicolor, have been proposed since long ago

to overcome this problem.

The Brane World (BW) scenario [1] suggests a new framework where this problem can

be successfully solved. In the BW picture, the spacetime has extra dimensions but matter is

confined on a four dimensional surface called brane. In contrast, gravity propagates through the

whole bulk space.

The relevance of the Brane World scenario to phenomenology was first realized by Arkani-

Hamed, Dimopoulos and Dvali (ADD) [1]. The key observation is that current experimental

bounds on the size of extra dimensions accessible only to gravity allow for a bulk size of a

fraction of a millimeter. Such a large extra space can account for the observed weakness of

gravity with the fundamental cutoff of the theory M around a few TeV, hence the hierarchy

problem disappears.

Randall and Sundrum (RS) [2] proposed a simple brane model in five dimensions where the

16 orders of magnitude separating the Planck and the electroweak scales are due not to the large

bulk size but to its curved Anti-de Sitter (AdS) geometry.

As in KK theories, the size of the bulk is described by a four dimensional field known as

the radion. In models of both ADD or RS type, the EW/Planck hierarchy (the hierarchy) is

determined by the size of the bulk, i.e. , by the radion vacuum expectation value (vev). On

the other hand, since the radion is one of the components of the higher dimensional metric, it

is a massless field at tree level. In order to avoid long range scalar interactions the ’predicted’

radion must acquire a large enough mass [1, 3, 4]. Thus, in the BW scenario, the hierarchy

problem is equivalent to the problem of stabilizing the radion at a suitable vev and with a large

enough mass. This is why sometimes, the stabilization of the radion is also called ’hierarchy

stabilization’. An overview of the stabilization mechanisms proposed so far in the literature, is

1



2 Introduction

given in Sections 2.3 and 3.4.

In the context of RS type models, perhaps the most popular is the proposal made by Gold-

berger and Wise (GW) [5]. It introduces a classical bulk field with appropriate boundary con-

ditions, and stabilizes the radion generating a large hierarchy without fine tuning.

Weinberg and Candelas [6] showed that the Casimir effect can stabilize extra dimensions in

Kaluza Klein models. In the RS model, the possibility that quantum effects stabilize a large

hierarchy was first considered in [7]. The outcome was that generic bulk fields may stabilize

the interbrane distance, but a large hierarchy is not naturally obtained, i.e. fine tuning of the

parameters is needed (and thus the hierarchy problem would be replaced by another fine tuning

problem). However, the Casimir force due to a bulk gauge field naturally stabilizes the hierarchy

[8], generating a sizable radion mass.

The aim of this thesis is to find out whether the Casimir energy can stabilize a large hierarchy

in more general brane models. Specifically, we concentrate on three types of models. The first

is a generalization of the RS model with a scalar field in the bulk. This gives rise to solutions

similar to the RS but with a non-exponential warp factor. This kind of models arise e.g. , in

compactifications to 5D of higher dimensional models such as the Hořava Witten theory [9, 10].

Aside from the radion, another scalar appears in the four dimensional effective theory (arising

from the bulk scalar). Together with the radion, these light degrees of freedom are generically

called moduli. The EW/Planck hierarchy depends on both moduli and a mechanism to stabilize

them is required in order to avoid unobserved long range scalar interactions.

The second case deals with models in more than 5 dimensions with topologyM4×Σ×S1/Z2,
where Σ is some compact ’internal’ space and M4 is the four dimensional Minkowski space. We

shall first consider the case when both M4 and Σ are warped. In this case, the hierarchy

originates by a combination of ADD and RS mechanisms. We propose a scenario where the 16

orders of magnitude separating the Planck and EW scales are easily obtained from such models,

and the hierarchy is naturally stabilized by the Casimir force.

In the last example, we consider higher dimensional models with the same topology but with

non-warped internal space, so that the space is in fact the direct product AdS5 × Σ. We shall

see that this case is very similar to the RS model.

We advance that, depending on the field content and the boundary conditions, the quantum

effects stbilize the moduli in all these examples, and the hierarchy can be naturally generated

in some of them.

Plan of the thesis

Chapters 2 and 3 contain introductory material. Chapter 2 presents some of the main features

of ADD-type brane models, and a brief description of KK theories in Section 2.1. The RS

model is discussed in Chapter 3, with special emphasis on the radion. Chapter 4 concerns the

techniques used to evaluate the Casimir energy, with emphasis on the spacetimes with warped

extra dimensions.

Presentation of original work begins in Section 4.4, based on [15]. The procedure to compute

the effective potential using dimensional and zeta function regularization are discussed, and their

equivalence is proven. Chapter 5 reviews the one loop effective potential induced by bulk fields

in the RS model [7, 11, 12, 13, 14, 8].
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Chapter 6 is based on [15] and deals with the 5D generalization of the RS model with a scalar

in the bulk. Chapter 7 builds on [16] and is devoted to the case when the non compact M4 and

the compact Σ factors share the same warp factor. Chapter 8 is based on [17] and contains the

case when only the M4 factor is warped. At the end of each Chapter, a summary of the main

ideas is included.

Conventions and notation

In this thesis we consider spacetimes topologies of the formM4×S1/Z2,M4×Σ andM×S1/Z2×
Σ. In Chapters 7 and 8, D1 and D2 indicate the dimensions of the Minkowski and internal space

Σ respectively, and the total dimension of the space is D ≡ D1 + D2 + 1. The coordinates

xµ with µ, ν · · · = 0, 1, 2, 3 span the Minkowski factor. The internal space Σ is covered by the

coordinates X i. We call the proper and conformal coordinates along the S1/Z2 orbifold y and

z respectively. We refer collectively the D1+D2+1 as xM · · · = {xµ, y,Xi}; the coordinates on

the D1 +D2 branes as xA · · · = {xµ, Xi} and the 5D bulk coordinates by xα = {xµ, y}.
Throughout this thesis the metric signature is (−+++ · · · ). Higher dimensional quantities

and tensors are labeled with some upper/lower index indicating the dimension when necessary.

In the text, we use ”nD” to mean ”n dimensional”. A hat ˆ is reserved for the 4D metric

corresponding to the Einstein frame. We define the Riemann tensor as Rabcd = +Γabc,d − · · · is
the Riemann tensor, Rbc = Rabac is the Ricci tensor and R = Rabgab is the curvature scalar.

The extrinsic curvature is given by Kµν ≡ (1/2)∂ygµν , where gµν(y) is the induced metric on

y-constant hypersurfaces, and K = Kµν gµν .
We denote the four dimensional Planck mass by mP ≡ (16πGN )

−1/2 ' 1.7 1015TeV, the

fundamental cutoff by M , the size of the orbifold (interbrane distance) by d and of Σ by R.

The quantities related to the brane with positive (negative) tension are labeled with a + (−)
super/subscript. In all the models, the ratio of the electroweak scale mEW ' 246GeV '
(1/4)TeV to the Planck mass mP is referred to as the hierarchy. It is denoted by h and its

’observed’ value is h ≡ (mEW /mP ) ∼ 10−16.
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Chapter 2

The Brane World scenario

Building on earlier ideas [18, 19, 20], Arkani-Hamed, Dimopoulos and Dvali proposed [1] a

scenario where space has a number of extra dimensions accessible to gravity but matter is

confined on a surface called ’brane’ [1], as shown in Figure 2.1. Localization of matter is

a common and well known phenomenon occurring in field theoretical models with topological

defects [21, 22, 23, 19, 24] (see [25] for a recent review). In the context of string theory, the branes

are the extended objects on which open strings can end/begin. The open string excitations

correspond to matter and gauge bosons. Thus, in string theory the localization on the branes

is automatic.

This is known as the ’Brane World (BW)’ scenario, and it provides a large variety of new

mechanisms to obtain phenomenologically interesting features, ranging from chiral fermions,

fermion mass hierarchies, low scale baryogenesis, supersymmetry breaking as well as inflation

and even alternatives to inflation or to compactification. Moreover, it gives a new opportunity

to address long standing puzzles of particle physics such as the cosmological constant problem

or the hierarchy problem. The latter is the main focus of attention in this thesis.

g µν

g ab

PSfrag replacements

BraneBulk
Matter: χ

Figure 2.1: In the BW picture, gravity can propagate through the bulk, whereas matter fields χ are confined

on the brane.

Weakness of gravity and the hierarchy problem

The hierarchy problem of particle physics consists on the quadratic sensitivity with the cutoff

scaleM in the quantum corrections to the mass of ’fundamental’ scalar field. The SM Higgs field

is such a scalar and plays crucial role in the Standard Model, since its vev determines the mass

5



6 The Brane World scenario

of all the particles. The SM is believed to be valid up to the grand unification or the quantum

gravity scales, of order 1016TeV in any case. To keep the Higgs mass well below the cutoff scale

involves a fine tuning of the parameters in the theory order by order in perturbation theory.

Technically this is not inconsistent, but renders the theory unnatural. Proposed solutions include

technicolor and supersymmetry (SUSY), though current precision electroweak measurements

clearly disfavor a large class of technicolor models.

Independently of the instability of the scalar masses under quantum corrections (which is

ultimately model dependent and moreover no ’fundamental’ scalar has been observed yet), there

is another issue closely related to this and to the unification gravity with the gauge interactions.

The point is that e.g. the electrostatic repulsion between two protons is 1040 times stronger than

their gravitational attraction. It is surprising that Nature has chosen such a large hierarchy in

the strength of these (so far) fundamental interactions. Of course, this is does not invalidate

the SM as a theory of strong and electroweak interactions. Rather, it reinforces our expectation

that the SM is an effective theory, that very accurately describes nature up to 100GeV. Beyond

this scale, we expect new physics which solve some of the puzzles in the SM, and hopefully can

lead to a unification of gravity with the other interactions.

In the standard picture, the weakness of gravity and the instability of the Higgs mass are

linked to one another. The small strength of gravity can be traced back to a very large quantum

gravity scale (the scale at which gravity becomes strongand hence quantum corrections are

not negligible), mP ¿ mEW . The coupling constant of gravity is given by 1/mP , and all

gravitational effects at available energies E are suppressed by factors (E/mP ) ¿ 1. Thus a

large cutoff entails large quantum corrections and severe fine-tunings.

From this, it is clear that a resolution of the hierarchy problem can be accomplished by one

of the following possibilities.

• Protecting the scalar mass under quantum corrections, that is, canceling the quadratic

sensitivity of the scalar mass to the cutoff. This can be done by introducing some symmetry

and is what e.g. supersymmetry does.

• Eliminating (fundamental) scalars from the spectrum. This is essentially the idea behind

Technicolor [26, 27]. Unfortunately, it doesn’t seem that a realistic model of technicolor

can be built [28]. 1

• Lowering down the fundamental cutoff. This can be realized in brane models with a large

bulk volume [1]. Models with a warped bulk [2] generate redshift effects such that the

effective cutoff is lowered as well.

The ADD mechanism explains these two issues as follows. Whereas gauge interactions are

confined to a four dimensional brane, gravity can propagate along a higher dimensional ’bulk’

space. As shown below, the strength of gravity decays faster ∼ 1/r2+n up to the compactification

scale R. For larger distances the behaviour is four dimensional, but in order for the two regimes

to match the strength is suppressed by a power of the ratio of the fundamental scale 1/M to the

compactification radius R. Current limits on extra dimensions accessible only to gravity allow

1Also, some brane models can eliminate the necessity of a Higgs field using symmetry breaking effects based

on the topology of the extra dimensions [29, 30, 31, 32, 33, 34, 35, 36].
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for a submillimetric bulk size R . mm, which is enormous compared to any fundamental scale.

Thus, in this picture gravity is weak because it is diluted in the large bulk space.

As a consequence, the fundamental scale M can be lowered down to a few TeV (for n ≥ 2).2

With a cutoff less one order of magnitude larger than the EW scale, no significant fine tuning

has to be done when computing the quantum corrections to the Higgs mass and the model does

not suffer from naturality problems.

The RS model consists of a slice of 5D anti-de Sitter AdS space bounded by two branes.

Due to the nontrivial geometry of AdS, the energy scales of objects localized on one brane are

exponentially redshifted respect to the other. Two extremely separated scales are generated

with an interbrane distance comparable to the curvature radius and all the 5D mass scales of

the same order, mP . The large scale is the Planck scale mP and the derived one the electroweak,

∼ TeV. Gravity is localized on one brane and the EW sector on the other. Since the overlap is

small, gravity appears weak. On the other hand, the Higgs does not acquire large corrections

because in the complete 5D theory, all the masses are of order the cutoff mP .
3

2.1 Extra dimensions

The history of extra dimensions in physics is long and intricate. Before the advent of general

relativity, G. Nordström [40] attempted to unify gravity and electromagnetism enlarging the

space dimension. In contrast with the usual KK theory, he assumed a theory with pure elec-

tromagnetism in five dimensions. Then the fifth component of the vector potential could be

identified with the gravitational (scalar) potential. After the great success of Maxwell’s theory

to unify electrostatics, magnetism and optics in the XIX century, certainly the most natural

thing was to expect that gravity was another ’form’ of electrodynamics.

In 1921, the mathematician T. Kaluza made his famous proposal in the context of Einstein’s

theory of gravity [41]. Not much significance was given to the fifth dimension, though, until the

work of O. Klein [42]. His is the suggestion that the extra dimension might be compact and

small.

The generalization to non Abelian gauge theories [43, 44] had to wait until Yang Mills theories

were developed and gained interest after the advent of the electroweak unification. Supergravity

and the description of ’spontaneous compactification’ boosted KK theories in the 1970’s and

1980’s. An intriguing coincidence between two independent results from supergravity and group

theory raised the hope on KK theories during some time. On one hand, it was shown that

supersymmetric theories with fields of spin 2 at most were possible in 11 dimensions or less only.

On the other hand, Witten found [45] that the minimum dimension of a compact space with

isometry group equal to the Standard Model gauge group SU(3)× SU(2)×U(1) is seven. This

pointed toward 11D supergravity, a theory with a very constrained field content. Again Witten

argued that no 4D chiral fermions can be obtained compactifying such a theory on a smooth

2This means that in these models, string or M theoretic effects are observable at energies available at the

colliders that will operate in the near future.
3In the AdS/CFT correspondence [37, 38, 39], the dual CFT interpretation is that the EW scale is the infrared

scale at which the strongly coupled CFT is spontaneously broken. All degrees of freedom at the TeV including

the Higgs boson correspond to composite fields, like hadrons in QCD. Hence, such a Higgs is described by a

scalar up to an effective cutoff of order TeV.
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manifold. This finally put the KK idea in a hard position to meet the observed phenomenology.

Extra dimensions have been considered until now for several reasons. For instance, super-

string theories have to be formulated in more than four dimensions in order to be consistent.

Recent developments in string theory [46] have brought attention to non-perturbative objects

(analogous to the solitons in field theory) known as branes. The inclusion of non-perturbative

effects has revealed a web of dualities among them. The known five different string theories

together with 11 dimensional supergravity compactified on S1/Z2 are believed to constitute

limiting cases of a more fundamental theory referred to as M theory.

The last twist in this history was the realization [1] that models with branes and large extra

dimensions were shown to account for long standing problems in particle physics, such as the

hierarchy problem. A common feature in ADD and RS brane models is that they can lead to new

physics at a scales as low as some TeV. In light of these testable predictions, the KK scenario

with compactification scale of order a TeV has received attention for phenomenological reasons

[18, 47]. In this Chapter, we present the main features of KK theories (with no branes yet).

This Section is based on some of the abundant reviews on the topic of KK theories available

in the literatire [48, 49, 25, 50, 51].

Kaluza Klein theories

Before describing how the addition of extra dimensions can lead to a unification of gravity

with the other gauge interactions, I shall present the generic effective theories that can be con-

structed in four dimensions. Consider the simplest example of one flat compact extra dimension,

parametrized by the coordinate 0 ≤ y ≤ 2πR, so that the spacetime is M4 × S1. The action of

a massless scalar Φ(xµ, y) field is

S =
1

2

∫
d5x Φ(x, y)¤5Φ(x, y), (2.1)

where ¤5 is the 5D D’Alembertian, and Φ obeys periodic boundary conditions Φ(x, y+2πR) =

Φ(x, y). This suggests to Fourier decompose Φ as

Φ(x, y) =
+∞∑

n=−∞

Φ(n)(x)einy/R. (2.2)

Inserting this decomposition into the action and integrating y explicitly, one obtains

S =
1

2

∫
d4x

+∞∑

n=−∞

Φ(n)(x)
(
¤4 −m2

n

)
Φ(n)(x), (2.3)

with mn = n/R. This action describes an infinite set of four dimensional fields Φ(n)(x) with

increasing masses, referred to as the KK tower. When the five dimensional field Φ(x, y) is

massless, there is one massless mode in the tower, Φ(0)(x). The mass of the remaining modes is

given by the compactification scale, ∼ 1/R. If the size R of the extra dimension is sufficiently

small, the energy carried by these modes is very large and thus very difficult to excite. Therefore,

it is expected that at energies below 1/R, the higher dimensional theory is effectively well

described by the zero mode only.
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Now we address Kaluza’s [41] original proposal. In modern parlance, the proposal is that

pure Einstein gravity in five dimensions, on the background spacetime M4 × S1 contains four

dimensional Einstein gravity and electromagnetism. To see this, we begin with the action for

pure 5D Einstein gravity

S =M3

∫
d5x
√
g R, (2.4)

where M is the 5D Planck mass and we note that M4×S1 is indeed a solution of 5D Einstein’s

equations. The components of the 5D metric gαβ(x, y) should be now Fourier (or KK) decom-

posed and inserted back into (2.4). For the low energy effective theory, the massive modes are

not relevant. So introducing xµ dependence only in gαβ suffices.

The key issue is to identify that the action (2.4) is invariant under 5D general coordi-

nate transformations, parametrized by 5 functions ξα(x, y). For the effective theory, only

x−dependence is relevant, and we expect that the four ξµ(x) parametrize 4D general coor-

dinate transformations among the xµ. So, ξ5(x) can play the role of the parameter of gauge

transformations, which are identified as local (x dependent) translations of the extra dimension

x5 = y. This suggests making the following ansatz for the metric (the ’Kaluza Klein ansatz’)

ds2 = e−2ϕ/3
(
ĝµνdx

µdxν + e2ϕ(dy +Aµdx
µ)2
)
, (2.5)

where g, A and ϕ depend on xµ. With this choice of the conformal factor, the metric ĝµν
corresponds to the 4D Einstein frame. Inserting this ansatz into (2.4) and integrating over

x5,one obtains

Seff = m2
P

∫
d4x
√
ĝ

(
R̂ − 1

4
e2ϕF̂ 2 − 2

3
(∂̂ϕ)2

)
, (2.6)

wherem2
P = 2πRM3 is the 4D Planck mass, Fµν = ∂µAν−∂νAµ and the hat in the two last terms

indicate that the indexes are raised/lowered with ĝµν . The appearance of the electromagnetic

Lagrangian is what has fascinated physicists over the years, and is usually called ’the Kaluza

Klein miracle’.

Along with the electromagnetic term, we have a scalar zero mode ϕ, ultimately related to

g55 which parametrizes the physical radius of the circle S1. This is a generic feature of KK

theories. In more general compactifications of the form M4 × Σ, the parameters describing the

geometry of the internal manifold Σ, enter the 4D effective theory as scalars. Here we shall call

them generically moduli. In KK theories, the modulus parameterizing the size of the extra space

is also known as dilaton or the breathing mode.

We shall note that in the 4D theory (2.4), the scalar, vector and tensor fields are massless.

As pointed out above, there are gauge symmetries that prevent both Aµ and ĝµν to be massive.

However, this is not the case for the modulus ϕ. We see from (2.4) [48] that it is a Goldstone

boson associated to the global symmetry

ϕ→ ϕ+ c (2.7)

Aµ → e−cAµ. (2.8)

It can be seen that when massive modes in the KK tower are included, this symmetry is destroyed

[48]. Hence, ϕ is a pseudo-goldstone boson, and we expect that quantum effects may give it a

mass.
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To close this introduction to KK theories, we briefly comment on the phenomenological

success of KK theories. First, we note that in 5D all massive KK modes have spin 2. It can be

seen that a Higgs mechanism occurs by which the tensor ’eats’ the vector and the scalar, adding

up to the 5 polarizations of a massive spin 2 field.4 The gravi-electromagnetic (or graviphoton)

field Aµ couples to the graviton KK modes (as well as other higher dimensional fields) with a

charge proportional to their mass qn = mn/mP . In this way, Klein obtained the remarkable

result of charge quantization [52]. If one identifies the fundamental unit of charge q = 1/(mPR)

with the electron charge, then the compactification scale 1/R has to be somewhat larger than

the Planck mass mP , way beyond the range of any current or foreseeable accelerator. This

corresponds to a size of the extra dimensions as tiny as R ∼ 10−33 cm, which agrees with our

everyday experience of (effectively) living in four spacetime dimensions.

In order to construct a realistic model, one has to include matter in the picture. In principle,

zero modes of a higher dimensional fermion field are expected to build ordinary matter. Hence

the first nontrivial requirement is that the Dirac operator on Σ has at least one zero mode. But it

is easy to see that the charge under Aµ carried by its n-th KK mode is qn ∼ n/(mPR) = mn/mP .

So, only heavy modes are charged.

This can be avoided including higher dimensional extra space Σ. In this case, one can have

a 4D effective Yang-Mills (YM) theory, with a ’gauge’ group given by the isometry group of Σ

[43, 53, 44, 54, 55, 56, 57]. In practice, the most usually considered manifolds are coset spaces

Σ = G/H, with H a subgroup of G. When a non abelian YM theory is obtained, massless

fermions can be obtained with a nonzero charge.

Another major obstacle is the chirality of fermion representations in the Standard Model,

first discussed by Witten [45]. The difference between the number of fermion zero modes of the

Dirac operator with left and right chiralities is given by the index of the Dirac operator. This

is often (though not always) zero, hence the resulting 4D theory is non-chiral.

One way to achieve a left-right asymmetry in 4D is to couple the higher dimensional fermions

to a stable non-trivial background with a Yang-Mills flux on Σ (like a magnetic monopole) as was

proposed by Randjbar-Daemi, Salam and Strathdee [58, 59]. The price to pay is to introduce

gauge bosons in the higher dimensional picture, which contradicts the original KK spirit of

obtaining all the interactions out of gravity only.

Another way to achieve a left-right asymmetry, used in the Randall Sundrum and Hořava

Witten type models is to compactify on an orbifold. This kind of space is not everywhere smooth

(it is not a manifold), hence the theorems on the absence of chiral fermions can be evaded.

2.2 The ADD mechanism: large extra dimensions

The ADD mechanism is a generic feature of brane models with large extra dimensions. To

illustrate it we shall not stick to any specific model. Instead, we just assume that the space is

of the form M4 × Σ, with Σ a smooth compact n dimensional manifold of radius R, and a four

dimensional brane (a 3-brane) is located of the bulk.

By Gauss’ law in 4+n dimensions below the compactification radius r ¿ R, the Newtonian

4In 5D all the KK modes are of spin 2, but in higher dimensions, KK tower of vector and scalars appear as

well.
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potential between two particles of masses m1 and m2

VN (r) = −G(4+n)m1m2

r1+n
,

where G(4+n) is the 4 + n dimensional Newton’s constant. So, VN (r) decreases faster than the

4D interactions localized on the brane ∼ 1/r. For larger distances r À R, the behaviour is

VN (r) ∼ −
G(4+n)

Vn

m1m2

r
= −GN

m1m2

r
,

where Vn ∝ Rn is the volume of Σ and we have identified the effective 4D Newton’s constant as

GN ∼
G(4+n)

Vn
.

In this picture, it is readily understood that a large bulk volume Vn renders 4D gravity very

weak. One of the key observations made in [1] is that observational bounds for the size of extra

dimensions change dramatically if matter can propagate along them or not. In old KK theories

with extra dimensions accessible to matter, their size is constrained to be at least R . 1/TeV,

since no signature has been observed in accelerators. If only gravity can probe them the bounds

come from short distance deviations of Newton’s law and are much milder R . 0.1mm [60, 61].

Such large sizes can easily account for an extremely suppressed gravity.

In terms of the 4+n dimensional Planck massM and the usual Planck massm2
P ≡ 1/16πGN ,

we have

m2
P ∼ VnM2+n ∼ (MR)nM2. (2.9)

This explicitly shows that the bulk size has to be large compared to the fundamental cutoff

length 1/M . Then, the ADD mechanism trades the hierarchy between strengths of gravity and

gauge interactions by a new hierarchy.However, a geometric interpretation of the Planck/EW

hierarchy sets a new chance to understand this puzzle, and as we shall see in Section 2.3, a

number of mechanisms have been proposed in order to stabilize R at a large value.

On the other hand, Eq. (2.9) also suggests a solution to the problem of the quantum

instability of scalar masses. Since even macroscopic values of R are not ruled out, there is the

hope that the fundamental cutoff is very low, of a few TeV. In such a case, the sensitivity to

the cutoff is not a problem because it is quite close to the EW scale. If we choose M ∼ TeV, we

can read from Eq. (2.9) what is the necessary value of the size R of the bulk in order to obtain

the large effective 4D Planck mass mP ' 1016TeV,

R ∼ 1032/n−16 mm. (2.10)

Thus, with only one extra dimension its size would be astronomical, which is clearly ruled out.

However, for n ≥ 2 the necessary sizes range from submillimetric to ≥ 1/TeV. The case with

largest extra dimensions ∼ mm is for only two of them. In this case, deviations from Newton’s

law would be expected at this scale. We shall see in next Section that a cutoffM as low as 1TeV

is in fact ruled out in this case by astronomical bounds. For larger number of extra dimensions,

the smallness of R makes the search for deviations of Newton’s law to seem hopeless.
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2.3 ADD phenomenology

In this Section we discuss some of the phenomenological consequences of the BW scenario,

concentrating on the simple case with flat and large extra dimensions. Many BW scenarios have

generalized a bit the picture and allowed fields other than the graviton to propagate in the bulk.

For instance in models inspired in string theory, the graviton multiplet contains more fields. For

illustrative purposes, we restrict to the graviton.

Light KK gravitons

As shown in Section 2.1, higher dimensional fields are effectively described as a tower of 4D fields

with increasing masses. Consider for instance a simple BW scenario where the extra dimensions

form a flat n−torus T n. We split the metric into the background and its gravitational fluctuations

gµν = ηµν + hµν(x, y). From the 4D viewpoint, a collection of massive ’gravitons’ h
(qi)
µν appear.

Here, qi are n integers labeling the momentum that each graviton mode carries along the extra

dimension.

Their coupling to matter confined to the brane is full metric,5

∫
d4x Tµν hµν(x, 0) =

∫
d4x

∑

qi

Tµν h(qi)µν , (2.11)

where T µν is the energy momentum of matter on the brane Thus, all the modes couple to

ordinary matter with the same, i.e., gravitational strength 1/mP .

Their 4D masses are given by m2
(qi)

= (q21 + q22 + · · ·+ q2n)/R
2 and generically are very small

in the BW scenario. For n = 2, the first excitations weigh ∼ mm−1 ∼ meV. Hence, even

though the KK gravitons are very weakly coupled, they are also very light and they might

have observable effects. In turn, this allows to obtain observational constraints on the cutoff

scale M in the BW scenario. There are a number of different physical phenomena constraining

the allowed values for M , ranging from collider and laboratory experiments to astrophysics

and cosmology [3] (for reviews on this topic, see [25, 65, 66, 67, 68, 69, 70]). In some cases,

the most stringent bounds are obtained for particular values of n. For illustrative purposes,

here we present only the most stringent bounds arising for low dimensionalities, coming from

astrophysics [3, 25, 65, 66, 67]. We address the reader to the broad literature on this subject for

more details [62, 63, 71, 72, 73, 74, 75, 76, 77, 78, 79].

Let us first consider a simple process where KK gravitons could leave some signature. For

instance,

e+ e− → γ + h(qi) (2.12)

or e+ e− → Z + h(qi), as shown in Fig. 2.2. Since each KK graviton h(qi) couples very weakly

to matter, no signal is left other than missing energy for an observer on the brane. We can

5It is interesting to note [3] that the 4D scalar and vector components of the metric, hij and hiµ, do not

couple directly to matter [3] (see [62, 63] for a more detailed discussion). This is true when we neglect the brane

fluctuations or branons, which we briefly present below. Also, this interaction violates conservation of momentum

in the transverse direction [3]. This is due to the presence of the brane, breaking translational invariance along

the bulk. If the brane is rigid, one can interpret that it absorbs as much momentum as necessary. It can be

shown that if we allow the brane to fluctuate, emission/absorption of a graviton into the bulk is accompanied by

a transfer of momentum to the branon [64]. This can be viewed as a local deformation of the brane shape.
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estimate the cross section for such a process with one individual KK graviton as

σ
(
e+ e− → γ +KKgraviton

)
=

α

m2
P

.

Thus the total cross section for having certain missing (center of mass) energy E carried off the

brane by KK gravitons is the sum of the cross sections to emit any KK graviton with mass less

than E,

σ
(
e+ e− → γ +missing E

)
=

α

m2
P

N(E), (2.13)

where N(E) is the number of KK modes with mass below E. Since the mass splittings are given

by ∆m ∼ 1/R, there are E/∆m = ER KK modes for each orthogonal direction transverse to

the brane. Thus

N(E) = (ER)n = m2
P

En

Mn+2
,

where we used Eq. (2.9). We see that this large multiplicity (a consequence of the large volume)

cancels the suppressing factor m−2P in (2.13), to finally obtain

σ
(
e+ e− → γ +missing E

)
=

α

E2

(
E

M

)n+2
, (2.14)

which is comparable to a typical electromagnetic process at energies close to M .

PSfrag replacements

e+

e−

γ

h(qi)

Figure 2.2:

Missing energy events in collider experiments give a lower bound for the cutoff between 1

and 2 TeV depending on the dimensionality of the bulk [3, 67]. LHC and e+ e− colliders at 1

TeV will be sensitive to a fundamental scale M up to several TeV, depending on n [25, 66, 67].

As mentioned above, the most stringent bounds on M arise in astrophysics, and specifically

from star cooling via reactions such as (2.12). In the BW scenario, stars can cool by emitting

KK gravitons into the bulk, e.g. through γγ → 2h(qi), e+e− → 2h(qi) or eγ → eh(qi). From

Eq. (2.14), we see that if the cutoff M is too low, the stars cool too fast. Moreover, the lowest

bound on M comes from supernovae. Specifically, for SN1987A we can use the observed flux of
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neutrinos that reached the earth. The bounds depend on the supernova temperature ∼ 30MeV,

and are comprised in the ranges [80]6

M ≥ 9− 60 TeV for n = 2,

M ≥ 0.6− 3.8 TeV for n = 3.

To conclude this discussion, we mention a recent paper [82, 81], where an even stronger

bound is claimed to arise from neutron stars for low dimensionality of the bulk. The point is

that KK gravitons around them decay into photons, electrons, positrons, and neutrinos. When

these hit the neutron star they heat it. Bounds on neutron star heating then imply [82, 81]

M ≥ 700 TeV for n = 2,

M ≥ 25 TeV for n = 3.

This leads to a major problem of the ADD mechanism with only two extra dimensions. In this

case, the smallest values that observations allowed for M imply that there is a ’small’ hierarchy

∼ 102–103 between the cutoffM and the EW scale ∼ 300GeV. It is interesting that the deviation

in the Newton’s law within the ADD scenario for n = 2 will be tested in the near future.

We shall emphasize that the model with n = 2 makes a very definite, namely the change from

the 1/r2 to the 1/r4 regimes in the short distance Newton’s law. If the planned experiments

[60, 61] do not find this transition in the nm–µm regime, the BW scenario with 2 flat extra

dimensions will be ruled out.

Branons

In the BW scenario, the branes are supposed to be dynamical objects irrespective of their origin.

The idea is that they might arise as topological defects in field theoretic models or as solitonic

vacuum solutions in string theory. In both cases, they are described by their own dynamical

degrees of freedom unless some symmetry of the underlying theory forbids it. In practice, this

means that for any background with branes present, in general we should allow them to fluctuate,

as illustrated in Figure 2.3.

The thin wall approximation7 is a valid description of the extended objects for long distances,

i.e. wavelengths large compared to the thickness 1/M . In this approximation, if the four

dimensional brane moves along a 4 + n dimensional bulk space of the form M4 ×Σ, its position

is fully described by a set of n functions Y i(xµ) determining the location of the brane in the

bulk at every 4D spacetime point xµ, as shown in Figure 2.3. Thus, the fluctuations of the brane

position are described by n 4D scalar fields Y i(x).

In the context of the BW scenario, they are known as branons and were first discussed in

[84], and further studies were carried on in [3, 85, 64, 86, 87, 88]. In the thin wall approximation,

6Note we have defined the fundamental cutoff scale M such that higher dimensional curvature term is∫
Mn+2R(4+n). So,

1

16πGN
'
(
1.721018GeV

)2
= VnM

n+2.

With this definition, the bounds on M can be obtained from those obtained in [81] rescaling their M̄4+n by a

factor 2−1/(n+2).
7For a nice introduction to topological defects and their cosmological implications see [83]
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Figure 2.3:

the Nambu Goto action is a good approximation to describe the dynamics of the brane and is

of the form

Sbrane = SNG + Smatt = −τ
∫
d4x
√
gind +

∫
d4x
√
gind Lmatt(χ, gind), (2.15)

where gind is the induced metric on the brane, τ is its tension and we also included the Lagrangian

of generic matter fields χ on the brane. If the bulk metric is flat,

ds2ind =
[
ηµν + δij∂µY

i∂νY
j
]
dxµdxν ≡ gindµν dxµdxν ,

and the NG action reads

SNG = −τ
∫
d4x

(
1 +

1

2
δijη

µν∂µY
i∂νY

j +O(∂Y )4
)
. (2.16)

The branons Y i are the Goldstone bosons associated to the spontaneous breaking of translation

symmetry in the bulk by the brane and are described in general by a non linear σ model with

coupling constant given by the tension of the brane τ . It is clear from (2.15) that in order for

their kinetic term to be positive the tension has to be positive as well. In models where the

branes sit at the fixed points of an orbifold, the brane are not free to fluctuate and no branons

appear [89].

In fact any explicit breaking of translation invariance (e.g. due to the backreaction of the

brane on the bulk metric) renders this an approximate symmetry and the branons pseudo-

goldstone bosons, with some nonzero mass.

Since the branons appear in the induced metric on the brane, their coupling to matter is of

the form ∂µY ∂YνT
µν for a flat bulk. So, their contribution to any cross section involving matter
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is suppressed by E4/τ . In models with large extra dimensions, the tension of the brane is of

order TeV4, which gives a stronger coupling than the KK gravitons. In contrast with the KK

gravitons, branons do not have a large multiplicity (they have no KK tower). This makes the

most stringent bounds on their mass and coupling to come from collider experiments. Roughly,

one obtains mY & 100GeV and τ & (120GeV)4. Due to their suppressed coupling to matter, it

has recently been claimed [90] that they are natural candidates to Dark Matter within the BW

scenario.

Radion stabilization

In the BW scenario, the modulus that parametrizes the size of the bulk can be identified with

the 4D scalar field present in the Kaluza-Klein ansatz (2.5). It is generally called the radion and

here will be denoted as ϕ. In the literature it is also called graviscalar or dilaton, though the

latter is usually reserved to the spin 0 state present in the spectrum of fundamental strings.

Let us develop the conditions that an efficient stabilization mechanism has to accomplish in

order for the hierarchy problem to be completely solved within models of ADD type.

First of all, the ADD mechanism relies on the assumption that the bulk volume is large

compared to the fundamental scale, 〈R〉 À 1/M . With no further justification, this is an

interchange of one hierarchy (EW vs. Planck scales) by another (bulk size R vs. fundamental

scale or equivalently the brane thickness 1/M). In terms of the 4D effective theory, this means

that the radion vev is large.

Second, we note that the radion is part of the higher dimensional metric. As such, it is a

massless degree of freedom at tree level in the effective theory.8 This would introduce unwanted

scalar interactions unless the radion couples weakly to matter. Matter couples to gravity through

the induced metric on the brane as gµνindTµν . From Eq. (2.5), one of the terms is

∫
d4x

1

mP
ϕ Tµµ , (2.17)

with ϕ canonically normalized. Thus, the radion couples with gravitational strength. Current

lower bounds on the mass for scalars gravitationally coupled to matter come from short distance

deviations from Newton’s law and demand a millimetric mass mϕ & 1/mm. 9

Thus, a complete solution to the hierarchy problem requires some mechanism that explains

two things. First, why the radion is stabilized at such a large vev 〈R〉 À 1/M . Second, what

gives it a mass of order 1/mm ∼ meV.

This may be a quite non-trivial task. From Eq. (2.5), the physical radius of the extra dimen-

sions R is related to the canonical radion field ϕ as R ∝ eϕ/mP . If the stabilizing potential V (R)

establishes a competition between two different powers of the radius R (and with a minimum

for R large), the resulting radion mass is given by

m2
ϕ ≡ ∂2ϕV (ϕ) =

(
R

mP

)2
∂2RV (R) .

8As noted in Section 2.1, in contrast with the metric spin-2 and spin-1 zero modes, there is no gauge symmetry

in the 4D effective theory that protects the radion from getting a mass. Thus, the masslessness at tree level is

expected to be an spurious effect. However, the radion mass is still expected to be small.
9It can be seen that cosmological and astrophysical bounds are milder [4].
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This can be too small if the potential does not contain large enough powers [3, 91, 4]10, and the

radion still may lead to observable effects.

Let us describe some of the mechanisms that have been proposed in the literature so far.

In [4], several mechanisms are discussed. The attitude is to find different effects that induce

an attraction between the branes at long distances (stability under expansion) and repulsion

at short scales (stability under collapse). For instance, a positive cosmological constant in the

bulk Λ generates a potential that scales with the volume of the bulk ΛRn in the 4D theory

and prevents the bulk from expanding [4]. On the other hand, a bulk curvature term scales as

−Mn−2Rn−2 and a number Nb of branes with tensions τ contribute a constant term. Combining

these three contributions

V (R) ∼ ΛRn −M4(MR)n−2 +Nbτ,

and it is easily verified that a minimum with zero potential (effective 4D cosmological constant),

V |min = V ′|min = 0 occurs at R ∼ N
1/(n−2)
b /M . This is large if the number of branes is large,

Nb ∼ 1010 − 1020 and n > 2 [4]. Such large numbers can be obtained dynamically in a model

where the branes carry some conserved charge. The idea in this mechanism is that the bulk size

is not set by the interbrane distance but by the size of the brane lattice. This has been called

the ’large brane number scenario’, or the ’brane lattice crystallization’.

It was shown in [6] that the Casimir forces arising in higher dimensional spaces might stabilize

R. The possibility that such a stabilization occurs at large values of R was also considered in

[4]. The same kind of arguments as in the previous paragraph suggest that in a simple scenario

with either a large or small Nb, the Casimir forces cannot account for large values of the radius.

Another mechanism arises in topologically nontrivial theories [92, 91, 4, 85]. Assume for

instance, that there exists a U(1) gauge field in the bulk. Then, it can take monopole-type

configurations, with a quantized monopole number k that is topologically conserved. This

prevents the bulk from collapse. Thus, the 4D effective action for such a configuration displays

a repulsive potential. As before, for large enough ’monopole’ number k, the radion can be

stabilized at large values. In some situations with n = 6 and M ∼ 10TeV [4], the required

number of monopoles is of order 1.

A mechanism to stabilize the bulk size when codimension 2 branes are present is described

in [94]. Such kind of branes behave as strings in 4D, so generate deficit angles τi/2M
4. A set of

codimension 2 branes whose deficit angles add up to 2π define a compact bulk. It is easy to show

that if it equals 4π, static solutions to Einstein’s equations exist with a flat bulk [95, 96]. The

required fine tuning of the brane tensions corresponds to usual tuning of the 4D cosmological

constant. It turns out that a classical bulk scalar field in this background ’interacts’ with the

branes generating a logarithmic potential for the radius, and an exponentially large minimum

is naturally achieved. This model requires supersymmetry in the bulk in order to suppress, for

instance, the effects of a cosmological constant.

A slight variation of the ADD mechanism [97] consists in considering compact hyperbolic

manifolds as the internal space. The volume of these spaces depends exponentially on their

10To illustrate that this intuition does not always apply, in [3], a toy model is presented where due to nonpertur-

bative effects a scalar field in a super Yang-Mills (SYM) SU(N)× SU(N) can obtain arbitrary vev’s completely

uncorrelated with the curvature of the potential at the minima.
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linear size, but the eigenvalues of the Laplacian are set by the curvature scale. Thus, a large

volume can be easily obtained with a linear size close to the fundamental cutoff M with the key

difference that the KK modes are heavy (∼M). This automatically passes all cosmological and

astrophysical tests.

The radion stabilization in these models is considered in [98], where it is shown that any

form of higher dimensionial matter that stabilizes this kind of extra dimensions must violate

the null energy condition. Thus, the vacuum energy (the Casimir effect) is a good candidate to

stabilize these manifolds.

Another mechanism to obtain exponentially large bulk sizes naturally due to the self in-

teraction of a bulk scalar field has been discussed in [99]. In this model, the radion mass is

very small, m ∼ 10−33 eV. The authors argue that such a small mass is not a problem since

cosmological evolution drives the coupling of the radion to matter to small enough values so

that observational tests are passed. On the other hand, this light radion is considered to play a

role in quintessence models [100].

2.4 Summary

We can summarize the main features of the BW scenario in the following points. First, the ADD

mechanism to solve the hierarchy problem is viable with two or more extra dimensions n ≥ 2.

In other words, the branes must be of codimension11 larger than 1. The reason is that ADD

mechanism is a large volume effect. With only one extra dimension, it has to be of astronomical

size, which is clearly ruled out. This conclusion is subject to the assumption that the bulk is

flat. We shall see in Chapter 7 that the ADD mechanism can account for a large hierarchy with

codimension 1 branes if the extra dimensions are warped.

The main distinctive signature of ADD phenomenology is the appearance of very light KK

gravitons, with large multiplicities (a large number of them at available energies) and gravita-

tional 1/mP coupling to matter. This makes the most stringent bounds to come from astro-

physics.

In order to completely solve the hierarchy problem in this scenario, the stabilization mecha-

nism must explain (in a natural way) why the bulk size is large 〈R〉 À 1/M and how a (relatively

small) mass mϕ & meV is generated for the radion.

11The codimension is the difference between the bulk and brane dimensions.



Chapter 3

The Randall Sundrum model

The Randall Sundrum (RS) model [2] consists of a simple realization of the BW scenario in five

dimensions with two branes of codimension one. Specifically, consider five dimensional Einstein

Hilbert action plus brane tension terms,

SRS =

∫
d5x
√−g

(
M3R− Λ

)
(3.1)

+

∫
d4x
√−g+

(
L+ − τ+

)
+

∫
d4x
√−g−

(
L− − τ−

)
.

where g±µν(x) are the metrics induced by the bulk metric gαβ(x, y) at the brane positions y = y±.

The tensions of each brane are τ±, and L± are the Lagrangians of matter localized on them.

The warped metric1

ds2 = a2(y)ηµνdx
µdxν + dy2. (3.2)

with a(y)e−k|y| is a solution of the Einstein’s equations following from (3.1) as long as

Λ = −12M3k2. (3.3)

The Israel matching conditions2 are satisfied if

τ+ = −τ− = 12M3k. (3.4)

Thus, we obtain a solution if Λ < 0 and we tune the parameters in the action (3.1) Λ and τ±,

according to

τ2± = −12M3Λ.

Due to the presence of the (gravitating) branes, the extra dimension can be rendered compact

assuming that it has an S1/Z2 orbifold topology, as in the Hořava Witten theory [9, 10]. As

illustrated in Fig. 3.1, an S1/Z2 orbifold is a circle with a mirror symmetric points y ↔ −y
identified. There are two (antipodal) points which are their own mirror images, and are called

1The conformal factor e−2k|y| in front of the Minkowski factor is known as the warp factor. Metrics of this form

do not describe direct products of spaces, as illustrated by the metric of the unit sphere, ds2 = dθ2 + sin2 θdφ2.
2Upon integrating Einstein’s equations in a neighborhood of the branes, one obtains the Israel matching

conditions, [K ν
µ ]−δ ν

µ [K ρ
ρ ] = −(1/2M3)S ν

µ , where K ν
µ is the extrinsic curvature, [K ν

µ ] ≡ K ν
µ (y0+ε)−K ν

µ (y0−ε)
(with ε→ 0) is its discontinuity across the brane, and S ν

µ is the energy momentum tensor generated by the brane.

19
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fixed points. Hence, this orbifold can be viewed as a segment. In the RS model, the branes sit

at the orbifold fixed points, corresponding to y = 0 and y = d in our coordinate −d ≤ y ≤ d.

As mentioned above, the identification of points at each side of the branes effectively prevent it

to fluctuate. So, we can interpret that these branes are very rigid, namely their brane tension

→∞ [4].
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Figure 3.1:

Note that the interbrane distance d is an integration constant of the solution. Thus, it

corresponds to a flat direction of the potential, i.e. to a massless scalar in the 4D effective

theory. This ’light’ degree of freedom is the same that we found in Chapter 2 and is called the

radion. We discuss it in more detail in Section 3.3.

The line element (3.2) corresponds to a slice of 5D anti de Sitter space AdS5 (cut along

flat 4D sections and with a thickness d), which we denote by |AdS5| (see Fig. 3.2). Due to

the homogeneity of AdS, we can take y+ = 0 with no loss of generality, the only physically

meaningful quantity is the interbrane distance |y+ − y−| = d.

3.1 The RS mechanism: redshift effect

In this Section, we describe how the RS model solves the hierarchy problem. The first issue

is to find the 4D effective gravity arising from this 5D theory. To do this, we shall proceed

as in Section 2.1 and introduce an appropriate KK ansatz that accounts for the low energy

fluctuations of the 5D metric. In the RS case, the presence of the branes spoils the symmetry

of the extra dimension under translations. Then, as seen in Section 2.1, this (gauge) symmetry

is not present in the 4D theory and accordingly there is no massless graviphoton mode gyµ.

Another reason for the absence of the graviphoton is the orbifold condition. If Z2 (or mirror)

symmetric points y and −y are identified, all the bulk fields must be either even (Φ(−y) = Φ(y))

or odd (Φ(−y) = −Φ(y)) under Z2
3. The {µν} components must be even in order that they

contains a zero mode, the 4D graviton. Then gyµ must be odd, which means that no zero mode

arises.

Thus we only need to take into account the tensor and scalar fluctuations of gαβ . Let us

3this condition can be relaxed. See e.g. [101, 102].
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Figure 3.2: Matter is located on the negative tension brane. The same comoving distance ∆xµ represents a

physical distance a∆xµ (∆xµ) on the negative (positive) tension brane .

concentrate now on the tensor perturbations. We can always parametrize gαβ as

ds2 = a2(y) g̃µν(x) dx
µdxν + dy2, (3.5)

where g̃µν depends on the xµ only. The Ricci scalar corresponding to this ansatz isR = a−2(y) R̃,
where R̃ is computed with g̃µν . Inserting (3.5) into (3.1) and integrating the explicit dependence

on y, we obtain

S
(4)

RS
= m2

P

∫
d4x
√
g̃ R̃, (3.6)

where we have identified

m2
P =M3

∫ d

−d
dy a2(y) =

M3

k

(
1− a2

)
, (3.7)

and we have introduced

a ≡ a(y−) = e−kd.

In contrast with KK theories and the ADDmechanism, the actual value of the 4D effective Planck

mass mP depends very marginally on d, which means that the RS mechanism is not based on

a large volume effect. On the other hand, Since we do not want to introduce large numbers in
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the model, we assume that the curvature scale of the background (1/k is the curvature radius

of AdS) is somewhat below but of the order of the fundamental scale k .M (i.e. , Λ .M). In

conclusion, both scales are of order mP ∼ 1016TeV.

The key point for the RS model to account for the Planck/EW hierarchy is to assume that

ordinary (EW) matter is located on the negative tension brane , at y = d. Its action corresponds

to the piece of (3.1) with

Smatt ≡
∫
d4x
√
g−L− (χ−, g−) ,

where we have made explicit that the Lagrangian for matter depends on the induced metric on

the brane. So, matter couples universally to the metric (recall that a ≡ e−kd)

g−µν = a2g̃µν .

Consider for instance a massive scalar field χ−

Smatt = −
1

2

∫
d4x
√
g−
(
gµν− ∂µχ−∂νχ− +m2χ2−

)
. (3.8)

Let us write now this action in the 4D Einstein frame defined by g̃µν (see Eq. (3.6)). In terms

of the rescaled fields χ ≡ aχ− (with canonical kinetic terms),

Smatt = −
1

2

∫
d4x
√
g̃
(
g̃µν∂µχ∂νχ+ a2m2χ2

)
. (3.9)

Thus, the 4D physical mass of this field is exponentially smaller than in the 5D theory. This

is a completely general result. Any energy scale E in the 5D theory localized on the negative

tension brane corresponds to a 4D physical scale aE = e−kdE. This is due to the warp factor

in (3.2), hence a purely geometrical redshift phenomenon.

It is now clear how to solve the hierarchy problem. We only need to locate the EW sector

on the negative tension brane , with physical 5D masses of order the cutoff M . From the 5D

theory the sensitivity of the scalar masses with the cutoff is not a problem since it is of the same

order as the masses themselves. From the 4D effective theory, these masses appear as ∼ aM .

So the ratio of the EW to the Planck scales is precisely given by

aM

mP
∼ a, (3.10)

where we have used (3.7). Such an enormous redshift can be accomplished with

kd ∼ 37, (3.11)

which is certainly not a very large number. This means that the required interbrane distance d

is also of order M . In contrast with the ADD mechanism where two or more dimensions in the

bulk are needed, the RS mechanism is viable with one extra dimension.

As in ADD, a full solution of the hierarchy problem requires some mechanism that naturally

fixes the interbrane distance to the required value. This is discussed in Sections 3.3 and 3.4.

Before entering into that, in the next Section we present the KK structure of the RS model,

showing a sharp contrast with KK theories or models with large extra dimensions.
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3.2 Bulk fields in |AdS|
In order to present the KK spectrum arising in the RS model we shall first consider the simpler

case of a generic bulk scalar field. Then, we show how the graviton and gauge boson in the bulk

can be recovered as some special cases of such scalar.

Considering fields other than the graviton propagating in the bulk is a slight generalization

of the BW picture (see for instance [103, 104, 105]) that has several motivations. In many BW

scenarios like the RS model, the size of the extra dimensions are not large, TeV−1 ≤ R ≤ m−1P .

This opens up the phenomenologically acceptable possibility of matter fields propagating in the

bulk.

Before entering into details of the KK decomposition, it will be technically convenient for

later use to describe the RS background solution in an arbitrary number D of dimensions (i.e. ,

|AdSD|) using the conformal coordinate z. This is defined so that the metric takes the form

ds2D = gDαβdx
αdxβ = a2(z)

[
ηµνdx

µdxν + dz2
]
, (3.12)

where µ, ν, · · · = 0, 1, . . . , D − 1. Up to an additive constant, z = eky/k, and the conformal

coordinate corresponding of the branes are

z+ =
1

k
and z− =

1

ak
.

In this coordinate he warp factor takes the form (in the bulk)

a(z) =
1

kz
. (3.13)

We can write the D dimensional D’Alembertian as

¤D =
1
√
gD
∂α

(√
gD g

αβ
D
∂β

)
=

1

a(z)2
[
∂zz

D−2∂zz
2−D +¤0

]
(3.14)

where ¤0 is the D − 1 dimensional flat D’Alembertian.

Scalar field

Consider a massive scalar field Φ in AdSD [103, 12] with a non minimal coupling to the curvature

ξ. Its equation of motion in the bulk is

[
−¤D +m2 + ξRD

]
Φ = 0. (3.15)

Scalar fields can obey two types of boundary conditions, depending on whether Φ is even

Φ(−y) = Φ(y) or odd Φ(−y) = −Φ(y).4 In the last case, Φ must vanish on the branes,

Φ(0) = Φ(d) = 0, i.e. the field satisfies Dirichlet boundary conditions. If Φ is even, it need

not vanish on the branes and whether the derivatives vanish or not depend on the coupling that

the field has on the brane. For example, a boundary mass term

1

2

∫
dD−1x

√
g±m±Φ

2

4Odd and even fields are also known as twisted and untwisted respectively.
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induces δ function terms in the equation of motion , and give rise to Neumann5 type boundary

conditions of the form (
∂y −

1

2
m±

)
Φ
∣∣∣
±
= 0.

Here |± means that it should be evaluated at y = y±±ε, with ε→ 0. We note that a non minimal

coupling to the curvature also generates ’mass terms’ on the branes, since the appearance of |y|
in the warp factor (3.2) induces δ function terms. This can be taken into account by adding

±4(D − 1)ξ to brane masses m±. In the following, we assume that the brane mass parameters

differ only in sign, m+ = −m− ≡ mb.

The Ricci scalar of AdSD is a constant given by

RD = −D(D − 1)k2, (3.16)

so that a non minimal coupling to curvature (with ξ > 0) is equivalent to a negative (mass)2.

Using last equation, (3.14) and (3.14), Eq. (3.15) can be written as
[
−zD−2∂zz2−D∂z −¤0 +

((m
k

)2
− ξD(D − 1)

)
1

z2

]
Φ = 0. (3.17)

We can now decompose the bulk field in D − 1 plane-wave modes as

Φ(y, x) =
∑

n

eik
(n)
µ xµfn(z). (3.18)

For each mode, ¤0 gives a factor

−ηµνk(n)µ k
(n)

ν ≡ m2
n,

which we identify as its physical KK mass. Then, we are left with the following eigenvalue

problem [
∂zz

D−2∂zz
2−D −

((m
k

)2
− ξD(D − 1)

)
1

z2

]
Φ = m2

nΦ, (3.19)

that fixes the KK mode ’wave functions’ fn(z) and masses mn when we specify the boundary

conditions for Φ.

Aside from a possible zero mode, which will be discussed below, the solutions to this equation

are

fn(z) = ε(z)(kz)(D−1)/2 [AnJν (mnz) +BnYν (mnz)] , (3.20)

where An and Bn are constants, ε(z) = 1 for even Φ and

ε(z) =
|y|
y

=

{
−1 for z > 1/k

1 for z < 1/k ,
(3.21)

for odd Φ. The index ν is given by

ν2 =
m2

k2
−D(D − 1)ξ +

(D − 1)2

4
. (3.22)

The boundary conditions determine the KK masses mn implicitly as the zeros of

Fν (mnz−) = 0 , (3.23)

5also known as Robin in the literature.



3.2 Bulk fields in |AdS| 25

where

Fν(z) =

{
Yν(az)Jν(z)− Jν(az)Yν(z) for Φ odd ,

yν(az)jν(z)− jν(az)yν(z) for Φ even ,
(3.24)

and in the even case the combinations of Bessel functions arising are

jν(z) = zJν−1(z) + εJν(z) ,

yν(z) = zYν−1(z) + εYν(z) , (3.25)

with

ε =
D − 1

2
− ν − mb

2
− 2(D − 1)ξ. (3.26)

Gauge field

The equation of motion for a gauge field Aα(x
µ, z) are ∇αFαβ = 0, where Fαβ = ∂αAβ − ∂βAα.

In |AdS5|, and using the ’physical’ gauge

A5 = ∂µA
µ = 0

(where the equations decouple), these equations reduce to [105]

(
z∂zz

−1∂z +¤0

)
Aµ = 0. (3.27)

Assuming that Aµ are even and that Aα has no brane mass terms mb = 0, the solutions to these

equation are of the form (3.18, 3.20), taking ξ = 1/8 and m2 = −k2/2. Thus, we obtain ν = 1

and ε = 0 for a 5D gauge field.

This is readily understood since the equation of motion can also be written in this gauge as

(
¤5 δ

ν
µ −Rνµ

)
Aν = 0, (3.28)

where Rνµ is the 5D Ricci tensor, with boundary conditions ∂zAµ|± = 0.

Since the Ricci tensor in the bulk is constant and proportional to the metric Rνµ = 4k2δνµ, the

components of Aµ satisfy the Klein-Gordon equation (¤5−m2− ξR)Aµ = 0. The mass term is

needed because the relation between the bulk part and the δ function terms for the Ricci tensor

and for the Ricci scalar are different. The precise values of m and ξ that reproduce (3.28) are

the ones given above.

It is clear from (3.27) that the 5D gauge field has a massless mode (¤0 = 0) satisfying the

Neumann boundary conditions. This corresponds to the 4D photon, the massless mode in the

KK decomposition.

The graviton

Our background has maximally symmetric foliations orthogonal to the y direction, and just

like in the case of cosmological Friedmann-Robertson-Walker models, each graviton polarization

contributes as a massless minimally coupled scalar field. The correspondence is straightforward

at the classical level. At the quantum level, it can also be shown to hold, although this is not so

straightforward to prove because careful gauge-fixing of the gravitational sector must be done.
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In short, the correspondence is as follows [7]. Perturbations of the gravitational field are

described by splitting the full metric into the background solution gαβ (3.2) plus perturbations

around it, hαβ . In the Randall-Sundrum gauge h55 = hµ5 = 0, we can express the metric

fluctuations as

hµν(x, z) =
5∑

i=1

a2(z)h(i)µν(x, z), (3.29)

where the polarization tensors h(i) satisfy ∂µh
(i)
µν = h

(i)µ
µ = 0. The quadratic reduced action for

one particular polarization becomes

−
∫
dDx
√
g h(i)¤h(i) + (boundary term), (3.30)

where ¤ is the usual covariant scalar Laplacian associated with the 5D background metric g

(3.2).

Thus in the physical gauge, metric perturbations are equivalently described by scalar fields

with appropriate boundary conditions at the branes. These are determined from Israel’s junction

conditions plus the requirement that the metric components hµν are even. So, they reduce to

the standard Neumann boundary conditions

∂zh
(i) = 0, (3.31)

at z = z±.

This means that we can effectively take into account the gravitons as massless minimally

coupled scalar fields with no brane mass terms. In particular we obtain ν = 2 and ε = 0.

Thus, the KK tower has masses given by

mn = akxn,

where xn are the roots of F2(x) defined in (3.24) with ε = 0 and in the even case. This leads to

the first sharply distinguished feature in the phenomenology of the RS model. In contrast with

ADD or KK theories, the KK modes (of order TeV) are much lighter than he compactification

scale, 1/d ∼ k ∼ mP .

Another remarkable feature of the RS model arises in the coupling of the graviton KK modes

h(n) with SM fields. Decomposing the metric perturbation as in (3.18),

hµν(x, z) =
∑

n

fn(z)h
(n)
µν (x),

with fn defined in (3.20). It is easy to verify that in the limit of large hierarchy a ¿ 1, the

coefficients in (3.20) satisfy Bn ¿ An, and An ' a
√
k/J2(xn) ∼ a

√
k for low n. The interaction

with matter occurs through the induced metric on the negative tension brane , [106]

−
∫
d4x
√
g−

1

M3/2
hµν(x, z−)T

(−)
µν = −

∫
d4x

{
1

mP
hµν(0)Tµν +

∞∑

n=1

1

ΛKK
hµν(n)Tµν

}
(3.32)

with

ΛKK = amP ∼ TeV.
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In (3.32), we have used that under a conformal transformation g−µν = a2g̃µν , the energy momen-

tum tensor transforms as T
(−)µ
ν = a−4 Tµν [107]. We have specialized to five dimensions, used

that fn(z−) ∼
√
k/a and (3.7).

From (3.32), we see that whereas the 4D graviton couples to matter with the ordinary

gravitational strength, the coupling of the graviton KK modes is of TeV strength. Consequently,

each of these modes are individually detectable in colliders at energies of order TeV.

We can trace back this property to the form of the KK wave functions fn(z), highly peaked

on the negative tension brane . This is a generic feature of the RS model. The KK modes of

any bulk field are peaked on the negative tension brane , so all their couplings to matter are

of TeV size. The same happens with their masses. As we have seen above, these are of order

〈a〉kTeV. The reason is that these effective 4D masses result from integrating over the orbifold.

Since the mode functions fn(z) are exponentially suppressed near z = z+, these modes behave

as particles localized on the negative tension brane . So, the same redshift effect described in

Section 3.1 is expected to operate [103].

This has a further interpretation in terms of the AdS/CFT correspondence. Whereas the

fields localized on the positive tension brane correspond to the fundamental degrees of freedom

in the CFT , relevant at the UV cutoff scale mP , the KK modes are dual to the CFT resonances

occurring at the IR scale, and thus have O(TeV) parameters [37, 38, 39].

On the other hand, with TeV masses and couplings for any bulk field, the RS scenario was

soon seen to allow for SM fields propagating in the bulk [103, 104, 105].

3.3 The radion

In this Section we take into account the fluctuations of the interbrane distance, described by

a 4D scalar field usually called the radion. As mentioned above, due to the Z2 parity of the

orbifold, there is no massless graviphoton in the RS model.

Classical effective action

A useful way to take into account the fluctuations of the radius consists in the moduli approxi-

mation approach. This consists in identifying the free parameters (the interbrane distance d) of

our background solution and promote them to 4D fields. The reason is that if they are not fixed

by the equation of motion , they correspond to a flat direction of the potential. Such a degree

of freedom is light and thus relevant for the low energy effective theory.

In our case, we shall rewrite the RS metric in a form where d appears explicitly. What we

can do is to define an angular coordinate y = rcθ, so that

d = πrc

and the unperturbed RS metric is ds2 = e−2krc|θ|ηµνdx
µdxν + r2cdθ

2. Now we promote rc to a

4D field r(x) (so that 〈r〉 = rc). Then the perturbed RS metric is

ds2 = e−2kr(x)|θ|g̃µν(x)dx
µdxν + r2(x)dθ2. (3.33)

Here, g̃µν is a fluctuation about Minkowski space and is the physical graviton of the 4D effective

theory (and is the massless mode in the Kaluza-Klein decomposition of gµν).
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We can insert this ansatz back to the RS action (3.1), and integrating the explicit θ depen-

dence, the 4D effective action is given by

S
(4)

RS
= m2

P

∫
d4x
√
g̃
{(

1− a2
)
R̃− 6(∂̃a)2

}
, (3.34)

where we have set mP =M3/k (cf. Eq. (3.7)), we take a = e−kπr, and ∂̃ means that the indexes

are to be raised with g̃µν . In terms of the canonical radion field

ϕ = fa, with f =
√

12M3/k =
√
12mP

this action takes the form

S
(4)

RS
=

∫
d4x
√
g̃

{
m2
P

(
1− (ϕ/f)2

)
R̃− 1

2
(∂̃ϕ)2

}
. (3.35)

The 4D Einstein frame gµν , is defined so that the graviton kinetic term is of the form
√
gR,

with R the Ricci scalar computed with gµν . Then, gµν = (1− a2)g̃µν , and for the values of the

radion that solve the hierarchy 〈a〉 ¿ 1, the frame g̃ coincides with the Einstein frame with a

good accuracy, and f '
√
12mP .

PSfrag replacements
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Figure 3.3: In contrast with the ’branon’ fluctuations discussed in Sec. 2.3, in the RS model the brane positions

do not fluctuate. The effect of perturbing the radion is to modify the interbrane distance at each point xµ by

changing the size of the orbifold S1/Z2.

As we shall see, Eq. (3.34) implies that the radion is coupled to matter with EW rather

than gravitational strength. This is in sharp contrast with respect to ADD type brane models.

We note that in order to obtain the classical effective action for the radion, the moduli

approximation [2, 103, 108] is not the only possibility. The equations of motion and couplings to

matter can be obtained in the covariant approach [109, 110], with essentially equivalent results.
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As pointed out in [110], the ansatz (3.33) does not solve the linearized Einstein’s equations

around the RS solution. Using the covariant approach, the ’KK ansatz’ that solves the linearized

equations was found in [110]. However, the two approaches lead to the same results when the

hierarchy is large [111].

Coupling to matter

Let us now describe how the radion ϕ couples to matter localized on the negative tension brane .

This is coupled to 5D gravity (and hence to ϕ) through the induced metrics on the brane,

Smatt =

∫
d4x
√
g−L−

(
χ−, g

−
µν

)
,

where

g−µν = a2 g̃µν .

Expanding Smatt around the radion vev a = 〈a〉+ δa, the term linear in the radion is

Smatt−rad = −
∫
d4x
√
g−

δa

a
gµν− T−µν ≡ −

∫
d4x
√
g̃
δϕ

ϕ
g̃µνTµν (3.36)

where the energy momentum tensor is defined as usual,

T−µν(χ−, g
−) = − 2

√
g−

δ

δgµν−
S−matt[χ−, g−].

With this definition, the combination T̃µµ = g̃µνTµν is the trace of the physical energy momentum

tensor in the Einstein frame. We conclude that the canonical radion ϕ couples to matter on

the negative tension brane with 〈ϕ〉 ∼ TeV suppressed strength. This is in sharp contrast with

ADD, where the radion is coupled with gravitationally suppressed strength.

Rewriting Eq. (3.36) as

−
∫
d4x
√
g̃ γ

1

v
δϕ T̃µµ (3.37)

we see that this coupling is very similar to that of the SM neutral Higgs boson [112, 108, 113, 114],

with a correction factor given by the ratio of the Higgs and radion vevs,

γ ≡ v

〈ϕ〉 . (3.38)

Thus, a stabilization mechanism is required that gives it a mass much larger than ∼ 1/mm [112].

Specifically, the limits on the Higgs mass from collider physics tell us that the radion mass must

be at least of order GeV.

This derivation of the radion coupling, based on the moduli approximation (see (3.33)), does

not provide the correct result for the coupling to matter on the positive tension brane . The

reason is that the ansatz (3.33) assumes that the radion vev 〈ϕ〉 is constant along the extra

dimension. The more accurate treatment of [110] shows that the radion wave function is peaked

near the negative tension brane , and the coupling to matter on the positive tension brane is in

fact Planckian [109, 108, 110].

Some immediate consequence of the coupling (3.37) is that the radion copules most strongly

to h0 and the weak gauge bosons. In contrast with the Higgs, it couples to gluons and photons

directly through the trace anomaly. Thus, gluon fusion is the most important production channel

in hadronic collisions, followed by ZZ and WW fusion [113, 131, 70].
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Radion-Higgs mixing

As first noted in [113, 142], a non minimal coupling of the Standard Model Higgs fields to the

curvature is allowed by covariance. This is of the form

S mixing = −
∫
d4x
√
g− ξR− H†−H− (3.39)

where g−µν = a2 g̃µν is the induced metric on the negative tension brane and R− is its (intrinsic)

curvature, computed with g−, i.e.

R− = a−2
(
R̃+ 6a−1¤̃a

)
.

In order to see the effect of this term, we expand it to quadratic order in the fields, taking

ϕ = 〈ϕ〉+ δϕ with 〈ϕ〉 = 〈a〉f and the rescaled Higgs field

H =
1√
2

(
v + h0

0

)
,

where v = 246GeV is the Higgs’ vev. This provides a Higgs-radion mixing term. Adding it to

the kinetic terms for the radion (3.35) and the Higgs, one obtains in the (approximate) Einstein

frame [115, 142, 113]

S kinetic = −
1

2

∫
d4x
√
g̃

{
(
1 + 6γ2ξ

)
ϕ¤̃ϕ+m2

ϕϕ
2 + h0

(
¤̃+m2

h

)
h0 + 6ξγϕ¤̃h0

}
, (3.40)

where we have introduced γ = v/〈ϕ〉, and m2
h = 2λv2 and m2

ϕ are the Higgs and radion masses

before mixing.

The physical states diagonalizing the kinetic energy are combinations of ϕ and h0. The

resulting physical masses following from diagonalizing the mass matrix depend on γ and the

’mixing’ parameter ξ. Such a mixing affects other observables and for generic values of ξ the

properties of the SM Higgs are substaintially modified [116, 117, 131, 70].

According to [116], the situation where the eigenmasses are close to degenerate is disfavored

unless ξ or γ are small. For example, with mh = 115GeV and ξγ = 0.2, either mϕ > 234GeV or

mϕ < 56GeV, with the latter being possibly disfavored by direct searches.

The phenomenology of the RS model when matter fields are placed on the negative tension

brane is completely determined by the following parameters

ξ, 〈ϕ〉, k

mP
, mϕ and mh.

From these parameters, we can write the coupling of matter to the KK gravitons as ΛKK =

〈ϕ〉/
√
12, and the KK masses as mn = (xn/

√
12)(k/mP )〈ϕ〉, where xn is the nth zero of the

Bessel functions (3.24). For the graviton or a gauge field x1 ' 3.83 or 2.45 respectively. Thus

the first expected KK resonance (if any) would correspond to a gauge field. The radion coupling

is Λϕ = 〈ϕ〉 and, as argued below, is expected to be lighter than the gauge KK resonances (in

models that do not significantly distort the RS geometry).
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Bounds on radion mass and couplings

The Randall Sundrum radion is massless at tree level. Generically, any mechanism that gives

it a mass mϕ without significantly distorting the RS geometry is expected to leads to small

mϕ, since in the limit of vanishing backreaction, one has to recover mϕ = 0. Thus, it was soon

claimed [5] that this is the lightest expected excitation in the RS model. As such, it would

provide the first direct signal of such a scenario.

In generalized models where the geometry is not |AdS| such as in [89], the radion is stabilized

at tree level, and mϕ can be of the same order as the KK excitations.

As with the KK modes of bulk fields, the most stringent bounds on radion mass and couplings

arise from ccollider physics. The literature on radion phenomenology in the RS model is already

quite vast, see for instance [142, 113, 115, 118, 119, 114, 120, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130], and [131, 70] for recent reports. The lower bounds on the radion mass from

experimental considerations can be inferred from the bounds on the Higgs mass & 100GeV.

Since the radion coupling to matter is somewhat suppressed, smaller values are not ruled out.

However, a precise statement is very model dependent.

The analysis of [115] from LEP limits on scalar particles with ZZ couplings indicates that

a scenario with both Higgs and radion light is impossible. Rather, it is claimed that precision

EW data naturally satisfied with both masses modest, . 200GeV.

As mentioned above, a further complication in this analysis is introduced by a possible non

minimal coupling of the Higgs ξR|H|2, giving rise to radion-Higgs mixing. The authors of [115]

find that when ξ = 0, a ’slight’ preference in the RS model with ϕ substantially lighter than h.

If mϕ < 2mh (e.g. 60 and 120 GeV) then the h → ϕϕ decay channel is open for ξ 6= 0 and it

can be dominant, depending on the value of ξ. If the radion is heavy enough, then the decay

ϕ→ hh is dominant.

Two distinct situations arise depending on the bulk field content. If gauge fields are present

in the bulk, their KK excitations also contribute to the Z mass, and this constrains 〈ϕ〉 to be

few TeV. If only gravity can probe the bulk, values close to 1 TeVare allowed. As we show

below, the precise value of the radion mass in the RS model depends on the actual value of 〈ϕ〉
and the curvature scale k. The precise form is given by Eq. (3.49) for the Goldberger and Wise

mechanism, and (5.16) for the stabilization by Casimir energy. In both cases, the radion mass

increases with 〈ϕ〉.

3.4 Stabilization mechanisms

As shown in the previous Section, in the absence of a mechanism that gives it a mass, the radion

gives rise to a universal long range attractive force about 32 orders of magnitude stronger than

gravity. More specifically, the effective 4D gravity experienced by observers on the negative

tension brane was found [109] to be a Brans-Dicke (BD) gravity with a small BD parameter

ωBD ' −3/2 if the hierarchy is large, a ¿ 1. This is clearly inconsistent with observations,

which demand ωBD & 3000 if the scalar is massless. Thus, some mechanism must operate that

gives it a mass. From current bounds on the Higgs mass & 100GeV and the observation that

the radion couplings are similar to those of a Higgs boson, suppressed by a factor γ (see Eq.

(3.38)), one concludes that mϕ should also lie in the 100GeV range [103].
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From another point of view, in the cosmology of RS models, an unusual dependence of the

Hubble constant with the matter energy density H2 ∝ ρ2(4) was soon revealed [132, 133, 134].

This abnormal behavior may persist at late times if the extra dimension is static only because

of a fine-tuned cancellation between positive and negative energy densities on the branes [134].

As shown in [135], a natural resolution to this problem can be obtained with the stabilization of

the extra dimension. As a bonus, this removes the need for an unphysical correlation between

energy densities on different branes. It was further shown that such a stabilization mechanism

requires a non-zero pressure along the bulk direction Tyy 6= 0 [108, 136, 137, 138, 139].

Generically, to accomplish a stabilization of moduli is a quite nontrivial task because it must

be compatible with the large hierarchy. This is intuitively clear, since this requires to find an

effective potential Veff (a) with a minimum at a very small value for the hierarchy, a. It is easy

that one has to fine-tune the parameters a lot in order for this to happen, unless the form of

the potential is somehow special. Even in this case, it is not at all clear that one can succeed in

generating a large enough radion mass2 ∼ ∂2aVeff .
To develop some intuition on the origin of the effective potential V (a)eff , we shall discuss

the most simple effects in the RS model, a detuning (or finite renormalization) δτ± of the brane

tensions with respect to the values for the solution (3.4). In the RS model, a renormalization of

the cosmological constant has the same effects as a detuning of the brane tensions, since

∫
d5x
√
gδΛ =

∫
d4x

δΛ

2k

(
1− a4

)
=
∑

±

∫
d4x
√
g± δτ± , with δτ± = ∓δΛ/2k.

From the 4D theory, a detuning of the positive tension brane δτ+ only shifts the effective

cosmological constant by this value. However, a shift in δτ− generates a potential for the radion

of the form

δτ− a
4 = δτ− e

−4kd.

This is repulsive for δτ− > 0 and attractive for δτ− < 0. Thus, values of τ± other than (3.4)

generate either a non vanishing 4D cosmological constant, or a monotonic potential for the

radion. As expected, both effects render the configuration unstable.

In the following, we describe a number of effects that induce some dynamics for the radion.

In most cases, the resulting potential is monotonic and by itself would destabilize the model.

However, we can always consider a brane tension renormalization in order to compensate for

it. When the competition between both effects leads to a minimum of the potential, the radion

stabilization is achieved. Then, a mechanism is natural if the brane tension renormalizations

required in order to obtain the minimum of the potential at a realistic value, a = 10−16, are of

the order of the fundamental scale M .

Before describing the 1 loop effective potential (or equivalently the Casimir energy) in the

RS, we shall overview some other mechanisms to stabilze the hierarchy available in the literature.

The Goldberger and Wise mechanism

Perhaps the most popular mechanism to stabilize naturally the radion is the proposal by Gold-

berger and Wise (GW) [5, 112]. They introduce a bulk scalar field Φ of mass m2, with (m2/k2)
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somewhat small6. They also consider large potentials on the positive and negative tension branes

that energetically force Φ = Φ+ on the positive tension brane and Φ = Φ− on the negative ten-

sion brane with Φ+ 6= Φ−. The bulk kinetic energy and potential of Φ depend differently on

the radion. This generates a potential for a with two competing terms. The radion sits at the

value where the sum of gradient and potential energies is minimized. This mechanism is perhaps

somewhat ad hoc, but it has the virtue that a large hierarchy and an acceptable radion mass

can be achieved without fine tuning.

In more detail (here we follow [39], where the holographic interpretation of this mechanism

is discussed), the bulk scalar equation of motion is (neglecting the back-reaction of Φ on the

metric)

(¤2 −m2)Φ = 0⇒ Φ′′ − 3

z
Φ′ − m2

z2
Φ = 0. (3.41)

A trial solution of the form

Φ(z) ∼ (kz)p , (3.42)

gives a solution as long as p satisfies

p(p− 4)− (m/k)2 = 0. (3.43)

The most general solution for Φ in the bulk is then of the form

Φ(z) = A+ (kz)p+ +A− (kz)p− , (3.44)

where A± are constants fixed by the boundary conditions Φ(z = 1/k) = Φ+ and Φ(z = 1/ak) =

Φ−. When m2 is small and z− is large (recall z− = 1/(ak)) , we can approximate p+ =

4 +m2/4k2 , p− = −m2/4k2 and

A+ ' a4
(
Φ− − Φ+a

−m2/4k2
)
, A− ' Φ+. (3.45)

The energy stored in the Φ field

V (a) =

∫ 1/ak

1/k
dz

1

(kz)5
(
z2Φ′2 +m2Φ2

)
(3.46)

is easily computed. The leading terms for m/k and a small is

V (a) = kΦ2
+

m2

4k2
+

4k

a4
A2
++O

(
a4
m2

4k2

)
= kΦ2

+

m2

4k2
+4kΦ2

−a
4

(
1− Φ+

Φ−
a−m

2/4k2
)2

+ . . . (3.47)

This potential has a minimum when a = 0 (non compact bulk) and when

a =

(
Φ−
Φ+

)4k2/m2
. (3.48)

Thus, an exponential hierarchy can be generated without fine tuning of Φ±.

The constant term in (3.47) is a contribution to the 4D cosmological constant, which can be

set to zero by appropriately detuning the positive tension τ+. A straightforward computation

leads to the radion mass from the potential (3.47),

m2
ϕ =

1

f2
∂2aV (a) ' 1

2

kΦ2
+

f2

(m
k

)4
a2 , (3.49)
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Figure 3.4: The Goldberger and Wise mechanism assumes a bulk scalar Φ with a small bulk mass and brane

potentials such that the vev of Φ on the branes Φ± are different. Then, Φ develops a nontrivial profile Φ(z), and

the energy stored in this configuration (3.47) is minimized when the interbrane distance is given by (3.48).

which is in the MeV to GeV range for reasonable choices of the parameters.

This mechanism has been extended to a generic potential for the bulk scalar in a background

close to AdS, [141, 142] in order to take into account the backreaction of Φ on the metric. One

of the conclusions was that in the limit of small backreaction, the normalization of the radion

kinetic term induced by the bulk field Φ is small. This is is reassuring because it implies that

the strong coupling of the radion to matter is a robust prediction of the RS model.

In particular, in [89] a generalization of the GW mechanism with explicit brane potentials

and an exact solution of the gravity-bulk scalar that takes into account the backreaction is given.

It is explicitly shown that with generic bulk and brane potentials, only one fine tuning (corre-

sponding to matching the 4D cosmological constant) is necessary, and the radion is stabilized.

For geometries close to AdS(small backreaction) the hierarchy is easily generated. However, it

can also arise for bulk spaces that strongly deviate from AdS.

In [39, 38], the GW mechanism was given an interpretation in terms of the AdS/CFT

correspondence and it was claimed in that the GW mechanism is quite generic from the CFT

point of view. The idea in AdS/CFT is that tree level effects in AdScorrespond to the leading 1

loop effects at large N in the (strongly coupled, large N) CFT . The GW mechanism is due to a

classical bulk field. In the 4D CFT dual, this corresponds to the running of coupling constants

from the UV (Plank) to the IR (weak) scales.7 We shall also mention that this mechanism has

been extended to higher form fields in [143]. Other studies concerning the GW mechanism can

6Classical stabilization forces due to non-trivial background configurations of a scalar field along an extra

dimension were first discussed by Gell-Mann and Zwiebach [140].
7In passing, we point out that since the Casimir force is a 1 loop effect in the 5D AdS theory, this corresponds

to a next-to-leading order effect in the CFT dual interpretation. Indeed [8], the Casimir energy is reproduced as

the ’1-loop’ effective potential from the CFT bound states, with 1-loop corrected masses. These correction arises

from the mixing with the zero mode.
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be found in the literature [144, 145].

Other proposals

In [146, 147], a supersymmetric extension of the RS model with two pure (super) Yang–Mills

sectors, one in the bulk and the other localized on the positive tension brane brane are considered.

Gaugino condensation both in both STM sectors generates a potential that can naturally fix

the radius and the hierarchy at a sufficiently large value, and the obtained radion mass can be

large. The presence of unbroken supersymmetry up to the compactification scale is fundamental

in this model in order that quantum effects do not spoil such an exponentially small potential.

A static solution to Einstein’s equations is described in [148] where the branes carry matter

density and pressure in addition to tension. As in the RS model, the pressures and energy

densities on each brane have to be fine tuned in order to obtain the static solution. The difference

is that in [148], the radion is fixed. The energy densities on the branes determine the radion

stability and the precise value in such a way that a large hierarchy can only be obtained at the

price of fine tuning them.

A dynamical cosmological mechanism was presented in the context of M theory [149]. The

5D effective theory of the Hořava Witten model is a scalar-tensor with some bulk and brane

potentials related by supersymmetry [9, 10, 149]. This scenario is very similar to the RS model

and is discussed in detail in Chapter 6. One of the main differences is that the 5D scalar

introduces another light 4D scalar, and the effective 4D gravity is a ’bi-scalar-tensor’ model.

The authors of [149] consider the cosmological evolution of the interbrane distance and the bulk

scalar field for different matter contents on each branes. There exist attractor solutions which

drive the moduli fields toward values consistent with observations. This is similar to the attractor

mechanism present in Brans-Dicke theories [150, 151, 152] where the cosmological evolution of

the scalar drives them toward values where general relativity is recovered. The efficiency of this

attractor mechanism depends on the matter content on each branes. However, from the 5D

point of view, such attractors correspond to the motion of the negative tension brane toward a

bulk singularity. The 4D description is expected to loose its validity in this regime.

Other recent developments on the effects of the radion mode in the cosmology of the RS

model can be found in [154, 155, 156, 157, 158, 159, 160, 161, 162, 163].

Stabilization by Casimir effect

Though they are not the only possibility, potentials involving logarithms are one such type of

’special’ potentials that can have a minimum at exponentially small (or large) values. On the

other hand, logarithms usually appear from quantum effects. This is one of the main reasons

to expect that the 1 loop effective potential might naturally stabilize the hierarchy. A more

quantitative argument is as follows.

We have seen that the KK masses depend on the hierarchy mn(a) (as in any KK theory they,

they depend on the size of the extra dimension). Consider the contribution from one single KK

mode. From the 4D point of view, this reduces to the Coleman Weinberg potential induced by

a field with mass mn(a),

V
(n)
eff (a) ∼ m4

n(a) ln
(
mn(a)/µ

)
. (3.50)
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This clearly shows that ln a may well arise in the effective potential from bulk fields. It is

equally clear that this is not all the truth, since the sum over n of (3.50) is badly divergent.

This only means that the regulator that has been used to derive (3.50) must be withdrawn after

performing the sum over n. This would be unimportant if it weren’t for the outcome of the final

result. As we shall see below, it turns out that when summing over the whole KK tower, the

logarithms sometimes disappear. Guessing whether they are present or not is quite involved,

and we believe that it is worth studying.

In this thesis, we will investigate whether quantum effects provide an efficient mechanism

to stabilize the hierarchy in warped brane models. In Chapter 4, we describe the methods to

compute the 1-loop effective potential, or equivalently the Casimir energy. In Chapter 5, we

review the 1-loop effective potential induced by bulk fields in the RS model [7, 11, 12, 13, 8].

In Chapter 6, a generalization of the RS that relaxes the exponential behaviour of the warped

factor is examined. Chapters 7 and 8 deal with higher dimensional warped brane models with

codimension 1 branes and a S1/Z2 orbifold bulk. As we shall see, in both cases a large hierarchy

can be stabilized naturally.

3.5 Summary

Upon solving Einstein’s equations, and taking into account the gravitational field induced by

the branes in the BW scenario, non-trivial warp factors naturally arise. This has important

phenomenological and theoretical implications. A redshift effect can account for the large hier-

archy of scales between different branes without the need to introduce large extra dimensions.

The phenomenology is quite distinct from the scenario of large radius compactification.

The KK masses are of order a TeV, and couple with TeVsuppressed (rather than Planck-

suppressed) strength. This renders graviton KK excitations individually detectable in high

energy accelerators at energies ∼ TeV. Since there is only one extra dimension and is not large,

no severe bounds on the size of the fundamental scale arise from cosmology or astrophysics, the

most stringent ones coming from collider physics.

A massless radion would render the effective 4D gravity of Brans-Dicke with unacceptable

Brans-Dicke parameter. The coupling strength of the radion to matter is of TeV size [112], so

its phenomenology is close to the Higgs boson. In particular, current bounds for EW scalars

apply to the radion, hence its mass must lie on the GeV range.

In the RS scenario, the actual value of the hierarchy is given by the redshift factormW /mP =

a = e−kd. Thus, the hierarchy problem is solved as long as some (natural) stabilization mech-

anism fixes the interbrane distance d somewhat larger than the fundamental scale 〈d〉 ∼ 37/k

and generates a radion mass & GeV.

Several mechanisms have been proposed in the literature to stabilize a large hierarchy without

introducing any fine tuning. In Chapter 5, the Casimir energy arising in the RS model is

reviewed. As we shall see, the contribution from a gauge field in the bulk can naturally stabilize

the hierarchy and give the radion a sizable mass.
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Quantum effects

4.1 Casimir force

Up to date, very few macroscopic manifestations of quantum physics have been described.Among

them there are superconductivity, superfluidity, the quantum Hall effect and the Casimir effect

[182],1 one of the most remarkable successes of Quantum Field Theory (QFT). It originates from

the ’half quanta’ of the harmonic oscillator, first introduced as long ago as in Planck’s times.

In QFT, the fields are an infinite set of oscillators labeled by some quantum numbers k. The

nth excitation of a single oscillator k corresponds to a state with n field quanta and energy

E
(k)
n = ~w(n+ 1/2). Thus, the state with no real quanta has a nonzero energy

E
(k)
0 =

~wk
2
,

which results in a infinite total energy for the ’vacuum’ E Cas = (~/2)
∑

k wk. In canonical

quantization, one takes advantage of the ambiguity in the operator ordering in the definition

of the Hamiltonian and imposes the ’normal ordering’ prescription, which effectively sets the

energy of this state to zero. This can be done because (in the absence of gravity) the energy

can be physically defined up to an additive constant and only energy differences are relevant.

This leads to the Casimir effect, namely the dependence of the vacuum energy on the bound-

ary conditions for the field. Casimir [182] computed the (regulated) vacuum energy of the elec-

tromagnetic field with two perfectly conducting parallel plates a distance d apart and subtracted

the Minkowski contribution (with infinitely distant plates). The famous resulting attractive force

is

F (d) =
π2

240

~c
d4
A,

where A is the area of the plates. Remarkably, the electron charge e does not appear in this

expression, which means that this is not an effect of coupling the electromagnetic field to the

material plates (which are assumed to be neutral). Rather, they attract each other due to

the shift in the electromagnetic vacuum energy that they induce by changing the boundary

conditions. This effect was verified experimentally quite soon [186], though precise experimental

checks have awaited until recently [187].

1See e.g. [183, 184] for reviews on this topic, and [185] for a resource letter.

37
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The term ’Casimir effect’ is applied in the literature to a number of other long-range inter-

actions, such as those between atoms and molecules (Van der Vaals), an atom and a surface (or

Casimir-Polder) which initially [188] motivated Casimir’s work. Here, we will use this term to

refer to the force induced by the nontrivial boundary conditions.

The Lifshitz theory [189] constitutes an alternative formulation of this effect that does not

rely on the quantization of the electromagnetic field. Rather, the Casimir force is obtained

from considerations of the charge fluctuations within the material bodies and Van der Vaals

interactions. Both points of view are complementary descriptions of the same phenomenon

[185].

It is clear that the Casimir effect is not exclusive of the electromagnetic field, but occurs for

any quantum field that propagates in the ’bulk’. On the other hand, the analogy between the

parallel plates configuration and brane models of the RS type is straightforward. Thus, Casimir

forces are expected to arise from the graviton, in the minimal models where other fields are

confined to the branes.

In order to show more explicitly that this a purely quantum effect, we shall illustrate the

connection between Casimir energy with the 1-loop effective potential Veff with a simple example.

Let us consider a scalar field with mass m in D dimensional Minkowski space. The quantum

numbers labeling the mode frequencies are the momentum k, and

wk =
√
m2 + k2. (4.1)

Thus, using dimensional regularization D = 4− 2ε, the Casimir energy density is

ECas

vD−1
=

~
2
µ4−D

∫
dD−1k

(2π)D−1

√
m2 + k2 = − µ4

2(4π)D/2
Γ

(
−D

2

)
(m/µ)D (4.2)

where µ is introduced for dimensional reasons and vD−1 is the volume of space. In Eq. (4.2),

use has been made of

F (α, β, y) =

∫ ∞

0
dx

xβ

(x2 + y2)α
=

Γ
(
β+1
2

)
Γ
(
2α−β−1

2

)

2Γ (α)
yβ+1−2α. (4.3)

As we show in Section 4.3, for such a scalar field, the 1-loop effective potential is, in dimen-

sional regularization

Veff =
~
2
µD−4

∫
dDk

(2π)D
ln

(
kµkµ +m2

µ2

)
=

µD−4

(4π)DΓ (D/2)

∫ ∞

0
dkkD−1 ln

(
k2 +m2

µ2

)
,

where kµ is the off shell ’four’ momentum, and we have restored the ~ factors, see Eq. (4.19).

The last integral is divergent for any ’regularized’ dimension D. However, it can be defined from

the formula (4.3), as

− lim
α→0

∂αF (α,D − 1,m/µ) = −1

2
Γ

(
D

2

)
Γ

(
−D

2

)
(m/µ)D ,

where we have used that D is not an integer. Thus, we conclude that both quantities are trivially

related,

Veff =
ECas

vD−1
.
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In the limit D → 4, (4.2) is divergent

Veff = − 1

4(4π)2
1

ε
m4
{
1− 2ε ln (m/µ) +O(ε2)

}
, (4.4)

where we redefined µ. The divergent part can be absorbed in the cosmological constant, and

the renormalized potential is, in D = 4,

V ren
eff =

1

2(4π)2
m4 ln (m/µ) , (4.5)

the well known Coleman-Weinberg result.

In a curved spacetime, the Casimir energy and the effective potential may not coincide in

general. However, in a wide class of spacetimes they do up to a finite term proportional to local

operators [190] that can always be absorbed in a redefinition of the renormalization scale.

Another concept closely related to the Casimir energy is the vacuum expectation value of

the energy momentum tensor, 〈Tµν〉 = 〈0|Tµν |0〉, which leads to a further equivalent ’definition’

of the Casimir energy, of the form
∫
〈T00〉. It can be shown that if all the interactions are turned

off, then this coincides with ECas [183].

In the above paragraphs, we have identified the Casimir energy with the quantum effective

potential. The Casimir energy is indeed expected to be a function of the radion ϕ since it

depends on the boundary conditions, hence on the interbrane distance. Note that the Casimir

energy arises from free fields propagating in the bulk Φ(x, y). Here, freemeans that self couplings

of Φ are neglected, but of course Φ couples to the background geometry.

Let us describe how can a dependence on the radion ϕ arise from the effective potential

generated by the bulk field Φ(x, y) in the simple 5D KK theory. In the 4D effective theory,

Φ(x, y) is decomposed as a KK tower

Φ(x, y) =
∑

n

Φ(n)(x) e
iny/R,

where R(ϕ) is the compactification radius. The 5D kinetic term for Φ reads

∫
d5x Φ¤(5)Φ =

∫
d4x

∑

n

{
Φ(n)¤(4)Φ(n) −

(
n

R(ϕ)

)2
Φ2
(n)

}
.

The second term in the rhs gives the vertex for the interaction of the radion with each KK

mode Φ(n), illustrated in Fig. 4.1. Thus, the effective potential induced by the bulk field Φ

corresponds to the total contribution taking into account loops of all the KK modes.

In the 4D picture, the KK modes Φ(n) are heavy, hence their corresponding degrees of

freedom are difficult to excite. Thus, they can be explicitly integrated out, and the effective

potential encodes the all the effects that they produce in low energy dynamics.

Moduli stabilization

The use of Casimir effect to stabilize the size of the extra dimensions is not a new idea. Unwin

first noted the existence of nontrivial Casimir forces in models with extra dimensions, though no

explicit computation was given [164]. In the original Kaluza Klein theory M4 × S1, Appelquist
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Figure 4.1: The radion ϕ couples to the KK modes through their massesmn = n/R(ϕ). Expanding this function
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The effective potential from the bulk field is the sum over the KK tower of V
(n)

eff
.

and Chodos [165] performed the first quantitative computations. On purely dimensional grounds,

the potential has to behave as V ∼ C/R4, and the constant C > 0. This results in an ’attractive’

potential, which drives the size of the circle R toward values where the computation is expected

to fail, i.e. R ∼ 1/mP . The gravitational contribution to the Casimir energy is quite involved

in general. It is currently believed that gravity alone cannot generate a stabilizing potential at

1-loop for factorizable odd dimensional spacetimes of the form M4× Sn (see [49] and references

therein).

Weinberg and Candelas [6] considered the same class of spaces where the internal dimensions

form one-parameter manifold. Using symmetry arguments, the expectation value of the energy

momentum tensor 〈TMN 〉 from (free) massless fields has to be proportional to the metric. This

allows to obtain the full form of 〈TMN 〉 from the effective potential, which can be computed

from the KK spectrum. Then, Einstein’s equations with 〈TMN 〉 as a source are equivalent to

imposing that Veff has a minimum at zero. The effective potential consists of three competing

terms: the Casimir energy, (a renormalization of) the cosmological constant, and the curvature

terms from Sn. They found that depending on the ratio of fermion to bosonic degrees of freedom

(and for a large number of them), stable solutions with R of Planckian size arise. This indicates

that 1-loop self consistent stabilization of the radius due to matter fields is possible.

In the context of the BW scenario, some computations of the effective potential have been

performed. The consequences of a TeV sized flat orbifold for the electroweak and supersymmetry

breaking were considered in [166, 167].

Also in flat S1/Z2 and T
2/Zk orbifolds, [168] computed the Casimir energy.The contributions

from a bulk field with mass m together with that from a massless one can stabilize naturally

the radius at ∼ 1/m. In the 5D orbifold, kinetic terms localized at the fixed points shift the

KK mass spectrum. The resulting effective potential can be evaluated, and can have minima

for values of the radion somewhat larger than the fundamental length 1/M .

As we show in detail in Chapter 5, the Casimir energy due to bulk fields can stabilize the

radion in the RS model [7, 11, 12, 13, 8]. Furthermore, bulk gauge fields (or its supersymmetric
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partners) can stabilize a large hierarchy without fine tuning.

4.2 Conformally trivial case

Before describing the procedure to evaluate the 1-loop effective potential in general, we shall

concentrate on the case of conformally coupled fields. This case is much simpler because the RS

model is conformally flat and the problem is ’conformally trivial’. This allows for a complete

determination of Veff and of the expectation value of the energy momentum tensor 〈Tαβ〉.
The argument goes as follows [7]. In flat space 〈Tαβ〉 is traceless for conformally invariant

fields. Moreover, because of the symmetries of our background, it must have the form [107]

〈T zz〉flat = (D − 1)ρ0(z), 〈T µν〉flat = −ρ0(z) δµν .

By the conservation of energy-momentum, ρ0 must be a constant, given by

ρ0 =
V0
2L

= −(−1)F A

2LD
,

where F = 0, 1 for bosons and fermions respectively. Here V0 ∝ 1/LD−1 is the potential in the

flat case, and we have introduced [7]

A ≡ − (−1)(D−1)/2
(4π)(D−1)/2((D − 1)/2)!

πD−1ζ ′R(1−D) > 0.

Now, let us consider the curved space case. Since the bulk dimension is odd, there is no anomaly

[107] and the energy momentum tensor is traceless in the curved case too. This tensor is related

to the flat space one by (see e.g. [107])

〈Tαβ〉g = a−D〈Tαβ〉flat.

Hence, the energy density is given by

ρ = a−Dρ0. (4.6)

This simple scaling with a(z) allows one to obtain 1 loop self consistent warped solutions.

This contribution is a source for curvature that can be added to the Tαβ in Einstein’s equations.

The resulting solution takes into account the backreaction on the geometry of the vacuum energy

(4.6).

The (yy) component of Einstein’s equations gives

(
a′

a

)2
=

1

3M3

(
ρ0
a5
− 1

4
Λ

)
(4.7)

and the Israel matching conditions,

(
a′

a

)

±

= ∓ 1

12M3
τ±. (4.8)

Here, a prime denotes differentiation with respect to y.
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Equation (4.7) controls the shape of the warp factor, subject to the (boundary) conditions

that the slope at z± is set by the brane tensions τ±. From (4.7), we can determine the value of

the hierarchy (the ratio of warp factors) in terms of Λ and τ±, as

a =
a(z−)

a(z+)
=

(
τ2+ + 12M3Λ

τ2− + 12M3Λ

)1/5
. (4.9)

Thus, the brane tensions need to be fine tuned in order to obtain a large hierarchy, and in

the absence of other input this is not a natural mechanism. Furthermore, using the techniques

developed in [137], it is easy to see that the radion mass is small.

The solution to (4.7,4.8) with Λ = 0 was found in [7]. It exists for a fermionic contribution

(ρ > 0), and is of the form a(z) ∝ (y − y0)2/5. The generalization to Λ 6= 0 was considered in

[14, 169, 170, 139, 137]. For Λ < 0, one finds (see Fig. 4.2)

a(y) ∝ cosh2/5
(
5

2
k(y − y0)

)
, or

a(y) ∝ sinh2/5
(
5

2
k(y − y0)

)
, (4.10)

where y is the proper distance and k2 = −Λ/(12M3). The sinh (cosh) arises for a fermion

(boson) dominated vacuum energy ρ. For Λ > 0, the hyperbolic functions are replaced by

trigonometric ones [139].

This opens up (for the cosh) the interesting possibility to have a solution with two positive

tension branes, or even with a single brane. These models are more likely to admit a field

theoretic realization than the models with negative tension branes, since topological defects

arising in field theory always have positive energy densities [89]. With two positive tension

branes the hierarchy problem would be solved with a large ratio of warp factors. With only one,

a large volume is necessary. As in the non compact RS model with one brane, this is controlled

by the curvature radius. Unfortunately, for such solutions, the Casimir energy is attractive. In

order to compensate for it, we have to add a positive correction to the negative tension brane,

which acts as a repulsive potential for the radion, a(y−)
4 ∼ e−4kd. The combination of both

effects has a maximum and we conclude that this solution is unstable [139]. Furthermore, from

(4.9) it is clear that this case requires a fine tuning of the brane tensions in order to obtain

a ∼ 10−16. These models cannot be stabilized by a bulk scalar interaction of the GW type

[145, 139].

The efficiency of the Casimir force to stabilize brane models has been investigated in several

generalizations of the RS model, to include de Sitter branes [171, 172, 173, 174, 175, 176, 177],

This case can be of relevance for the bulk inflaton model [178]. The 1-loop corrections to the

radion kinetic terms due to bulk fields was computed in [179], finding that they vanish for

conformally coupled fields. In [180], the Casimir effect due to conformally coupled bulk scalar

fields on conformally flat warped brane-world geometries is investigated. For discussions of the

possible relevance of quantum effects in cosmological brane-world scenarios and [181].
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Figure 4.2: The 1 loop self-consistent warp factors a(y) (4.10). From left to right, we represent the sinh solution

[14] (a singularity after the negative tension brane is not shown), the cosh solution [169] with non-tuned (positive)

tensions (generating a low hierarchy), and with fine tuned (positive) tensions. Below, the solution with a single

brane. One of the branes has vanishing tension and sits at the minimum of a(y) [136].

4.3 The effective potential Veff

In this Section we present the path integral method to evaluate the 1 loop effective potential for

the radion Veff [ϕ] due to a generic, non-conformal bulk scalar field Φ(xµ, y) [191].

The effective action Seff is defined in Euclidean time (t = −itE) as the path integral

e−Seff ≡
∫
DΦ e−{S+S

(Φ)}, (4.11)

where S is the action for the model under consideration and S(Φ) is a quadratic action of the

form

S(Φ) =
1

2

∫
d5x
√
g Φ P Φ,

with a generic operator

P ≡ (¤g −m2 − ξ R). (4.12)

The long wavelength fluctuations around the background spacetime can be taken into account

considering an appropriate KK ansatz for the metric, such as (2.5) or (3.33) in the KK and the

RS models respectively. This is equivalent to a zero mode truncation in the KK expansion for

the metric. Upon substitution of these ansätze into the corresponding action S, we obtain the

classical action for the perturbed background, given by Eqs. (2.6) and (3.35) in the KK and

RS models. Note that, these include only a kinetic term for the radion. This is to be expected,
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since the radion is a modulus of the corresponding background solutions. Since its vev is is not

fixed, it must correspond to a massless degree of freedom.

The analogous KK ansätze for the models discussed in Chapters 6 and 7 are discussed around

(6.10) and (7.9). The classical action for the moduli Sb corresponds to (6.19) and (7.12). The

KK ansatz for the model discussed in Chapter 8 follows the lines of the RS model.

Thus, we identify Seff as an action functional for the radion (or moduli) fields,

e−Seff [ϕ] = e−Sb[ϕ]
∫
DΦ e−S

(Φ)
. (4.13)

where Sb is a classical and purely kinetic term. We shall see below that the path integral over

Φ can be formally done, since it is quadratic in Φ. Before doing this, we have to be a bit more

specific about the path integral measure.

A Quantum Field Theory (QFT) is defined not just by the classical Lagrangian, but also

by the measure of functional integration, DΦ. The latter is usually prescribed by demanding

certain symmetries or invariances. For instance, for scalar fields in curved space, invariance

under diffeomorphisms is an obvious requirement. If gravity is the only background field, then

this requirement uniquely defines DΦ. We argue in Section 6.2 that whenever there is a scalar

field in the background with nontrivial profile, then the functional measure is not unique, since

it can be defined to be covariant with respect to any conformal frame. However, the different

possible choices are related by the addition or renormalization of local operators in the action.

In Sec. 4.4, we describe the behaviour of DΦ under conformal transformations. In Section 6.2,

we apply these results to quantify the effects of the ambiguity in choosing DΦ. Now, we assume

that the metric is the only nontrivial field in the background, so that DΦ is uniquely defined.

A ’volume’ measure DΦ in field space F can be found from a metric Gxy on F , through the

relation [15]:

DΦ =
√
G
∏

x

dΦx. (4.14)

Here, the spacetime coordinates x and x′ are considered as continuous labels for the coordinates

Φx ≡ Φ(x) of the infinite dimensional space F , and G is the determinant of Gxx′ . To specify

Gxx′ , we note that a natural definition of a scalar product in the space of field variations δΦ can

be given in terms of the spacetime measure dµ(x), through the relation

〈δΦ1, δΦ2〉µ ≡
∫ ∫

dµ(x)dµ(x′) Gxx′ δΦ
x
1 δΦ

x′

2 ≡
∫
dµ(x)δΦ1(x)δΦ2(x).

We denote field variations by δΦ just to emphasize that we are referring to elements of the

tangent space. More precisely, δΦ = δΦxex, where ex = ∂/∂Φx is the coordinate basis of the

tangent space at the point p which corresponds to the background solution. In a Riemannian

spacetime, the invariant measure is given by

dµ(x) =
√
g(x)d5x, (4.15)

where g is the determinant of gαβ . The implicit definition of Gxx′ given above is just the identity

δµ(x, x
′) with respect to dµ integration,

Gxx′ = δµ(x, x
′) =

δ(n)(x− x′)√
g(x)

. (4.16)
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It is convenient to express the field variations in an orthonormal basis Φn, with 〈Φn,Φm〉 =
δnm, so that δΦ(x) =

∑
n c

nΦn(x). In this basis, the components of the field variation are cn,

and the metric is just the usual delta function (the continuous or the discrete delta function

depending on whether the normalization of Φn is continuous or discrete):

Gnm = δnm.

Substituting in (4.14), we have

DΦ =
∏

n

dcn. (4.17)

Given the form of S(Φ), the eigenbasis of the operator P is particularly convenient. Solving

the eigenvalue problem for P ,

P Φi = −λiΦi

with Φi a complete and orthonormal basis,

∫
d5x
√
g Φ∗iΦj = δij

then, we can expand Φ =
∑

i c
iΦi, with constant complex coefficients ci. Thus, S(Φ) =

1
2

∑
i λi|ci|2 and we see that the ci have dimensions of length. Thus, the dimensionless functional

measure is

DΦ =
∏

i

(
µdci√
2π

)
, (4.18)

with µ an arbitrary energy scale needed to render the measure dimensionless, and the 2π are

conventional.

Now, the integral (4.13) is translated into trivial ci integrals, and one obtains

∫
DΦ e−S

(Φ)
=
∏

i

{∫
µdci√
2π

e−
1
2
λi|c

i|2
}

=
∏

i

(µλ
−1/2
i ), (4.19)

which can be formally identified as
[
detP/µ2

]−1/2
. Since the eigenvalues of P depend on the

radion through the KK masses mn(ϕ), this can be viewed as a potential for the radion

∫
d4x
√
g̃ Veff (ϕ) ≡

1

2
ln
[(
detP/µ2

)
(ϕ)
]
=

1

2

∑

i

ln(λi/µ
2) =

1

2
Tr ln(P/µ2).

Thus, the 1 loop effective potential (energy density) is [15]

Veff (ϕ) ≡
1

2ATr ln

(
P

µ2

)
, (4.20)

with A =
∫
d4x
√
g̃ the comoving area.

With no more specifications, Veff is an ill defined quantity, since such a sum over all the

eigenvalues is divergent. Thus, the evaluation of Veff must be accompanied with a regularization

procedure. There are many ways to do this, but here we present the ζ−function and dimensional

regularization techniques.
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4.4 Regularization of Veff in warped compactifications

The direct evaluation of the determinant of P appearing in Eq. (4.20) turns out to be rather

impractical, due to the complicated form of the implicit equation which defines its eigenvalues.

The kind of geometries considered here are conformally flat2. Specifically, we shall be inter-

ested in metrics of the form

ds2 = a2(z)
[
dz2 + ηµνdx

µdxν
]

with a(z) =

(
z

z0

)β
. (4.21)

The RS model corresponds to β = −1, and in Chapter 6 we consider other values of β.

The eigenvalues of the conformally related operator P0 can be easily obtained and in fact

are simply related to the masses of the KK modes. Thus, we can evaluate log detP by relating

it to log detP0 and computing the latter. The connection between them is not trivial but can

be derived from the properties of the Laplacian operator under conformal transformations. For

completeness, and in order to illustrate practical methods for calculating the effective potential,

we shall consider dimensional regularization and zeta function regularization. Both methods

will lead to identical results.

Conformal transformations

Following [7, 15], we introduce a one-parameter family of metrics gθαβ which interpolate between

a fictitious flat spacetime and the original metric gαβ

gθαβ = Ω2
θ gαβ , (4.22)

where θ parametrizes a path in the space of conformal factors. For definiteness we shall restrict

attention to conformal factors Ωθ(z) of the form

Ωθ(z) =
( z
z0

)β (θ−1)
. (4.23)

With this choice, θ = 0 represents flat space and θ = 1 corresponds to the original metric (4.21).

It is convenient to define the operator Pθ associated with the metric gθαβ by

Ω
(D−2)/2
θ PθΩ

(2−D)/2
θ = Ω−2θ P, (4.24)

where P was introduced in Eq. (4.12). This operator can be written in covariant form as [7, 15]

Pθ = −(¤θ + Eθ),

where

Eθ =

(
D − 2

2

)
¤θ lnΩθ −

(
D − 2

2

)2
gαβθ ∂α lnΩθ ∂b lnΩθ +Ω−2θ E,

and ¤θ is the covariant D’Alembertian corresponding to gθαβ .

The operator P0 ≡ Pθ=0 is the wave operator for the KK modes which one would use in a

four-dimensional description. The Lorentzian equation of motion PΦ = 0 can be written as

P0Φ0 = 0,

2or conformal to a space with flat non compact directions.
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where

P0 = −¤D−1 + M̂2(z). (4.25)

Here ¤D−1 is the flat space D’Alembertian along the branes, and

M̂2 ≡ −∂2z − E0,

is the Schrödinger operator whose eigenvalues are commonly referred to as the KK masses mn:

M̂2(z)Φ0,n(z) = m2
nΦ0,n(z). (4.26)

The interesting feature of (4.25) is that it separates into a four-dimensional part and a z depen-

dent part. A mode of the form Φ0 = eikµx
µ
Φ0,n will solve the equation of motion (4.25) provided

that the dispersion relation

kµk
µ +m2

n = 0,

is satisfied, and hence modes labeled by n behave as four-dimensional massive particles. Tech-

nically, the advantage of working with P0 is that its (Euclidean) eigenvalues λn,k = kµk
µ +m2

n

separate as a sum of a four-dimensional part plus the eigenvalue of the Schrödinger problem in

the fifth direction.

Introducing the conformally transformed field Φθ ≡ Ω
(2−D)/2
θ Φ, the action for the scalar field

can be expressed as

S[Φ] =
1

2

∫
dDx
√
gθ Φθ Pθ Φθ. (4.27)

In terms of gθαβ the field Φθ has a perfectly canonical and covariant kinetic term.

Thus, the same arguments which lead to (4.16) can now be used in order to find the natural

line element in field space associated with the spacetime measure dµθ(x):

dS2θ =

∫ ∫
dµθ(x)dµθ(y)G

θ
xy dΦ

x
θ dΦ

y
θ + ... =

∫
dDx

√
gθ(x) (dΦθ(x))

2 + ...

Here, the ellipsis denote the omitted terms which correspond to variations of other fields in the

theory (in particular, these include the variations of the gravitational field and the dilaton). Let

us compare this line element with the one considered above

dS2 =
∫ ∫

dµ(x)dµ(y)Gxy dΦ
x dΦy + ... =

∫
dDx

√
g(x) (dΦ(x))2 + ...

For field variations where Φ changes but the rest of the fields (metric, dilaton, etc.) are constant,

we have

dS2θ =

∫
dDx Ω2

θ

√
g(x) (dΦ(x))2 6= dS2 (g, φ, ... = const.; dΦx 6= 0), (4.28)

and therefore dS2θ 6= dS2 in general. Of course, the corresponding measures of integration will

also be different. In the basis {Φθn} which is orthonormal with respect dµθ, the field variation

can be expanded as δΦθ(x) =
∑

n c
n
θΦθn, and the new measure takes the form

(DΦ)θ =
∏

n

dcnθ . (4.29)
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Using Φθm = Ω
−D/2
θ Φm, it is straightforward to show that cm =Mm

n c
n
θ , whereM

m
n = 〈Φm,Ω−1θ Φn〉µ

≡ (Ω−1θ )mn . Hence the two measures (4.17) and (4.29) are related by [15]

DΦ = Jθ (DΦ)θ, (4.30)

where the Jacobian is formally given by

Jθ = det(Ω−1θ ) = exp [−Tr lnΩθ] . (4.31)

In the last step we have used the formal definition of the L2 trace:3

Tr[O] =
∑

m

∫
dDx g1/2 Φm(OΦm) =

∑

m

∫
dDx gθ

1/2 Φθm(OΦθm).

The trace is well defined if the diagonal matrix elements of the operator O decay sufficiently

fast at large momenta. Unfortunately, the diagonal matrix elements of lnΩθ do not decay at all

at large m, and so the trace is ill defined unless we introduce a regulator. We will address this

question below, where we will explicitly define what we mean by Jθ.

Perhaps we should add, for the sake of clarity, that the difference between the line elements

dS2 and dS2θ , and consequently the difference between the associated measures, is not due to field

redefinitions. Both objects are different, but since they are defined geometrically, they are both

invariant under field redefinitions (in the same sense that any line element is invariant under

coordinate transformations). Rather, the relation (4.31) expresses the well known conformal

anomaly. The measure is not invariant under conformal transformations because these do not

correspond to a change of coordinates in field space F . They correspond to a change of the

spacetime metric and consequently to a change of the metric on F . This sort of ambiguity does

not arise when we consider scalar fields in flat space. Consider an action with a general kinetic

term of the form:

S =

∫
dDx GAB(φ

C)ηαβ∂αφ
A∂bφ

B + ...

A natural line element in field space can be obtained by “stripping off” the flat metric ηαβ and

replacing the partial derivatives with differentials of the fields:

dS2 =
∫
dDx GAB(φ

C)dφAdφB.

This procedure cannot be transported into a curved space, because in erasing the factor gαβ

from the kinetic term, it makes a difference what exactly we have chosen to call the metric of

spacetime: gαβ or gθαβ (this is, by the way, the reason why the factor of Ω2
θ appears in (4.28)).

Usually, flat space definitions can be generalized to curved space through the principle of general

covariance: objects should be defined geometrically, and they should reduce to their flat space

definition when the spacetime metric is flat. The question is, however, which object should be

considered to play the role of spacetime metric, so that we know when to call it flat. Physically,

3The definition of the trace is robust, in the sense that it is independent on the metric one uses in order to

define the orthonormal basis, as long as the corresponding measures are in the same L2 class. This will be the

case, for instance, if the metrics are related by a conformal factor which is bounded above and below on the

manifold.
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too, one should expect that a preferred spacetime metric should play a role in regularizing and

renormalizing the theory. Suppose that we attempt to regularize with a physical cut-off, so

that all degrees of freedom beyond a certain scale are ignored. In our background (which is

conformally flat) a constant physical cut-off scale corresponds to a different co-moving scales at

different places. The relation between physical and co-moving scale is of course given by the

metric, and therefore it can make a difference which one we use.

The contribution of the field Φ to the renormalized effective potential Vθ per unit co-moving

volume parallel to the branes is given by:

exp
[
−A(Vθ + V div

θ )
]
≡
∫

(DΦ)θ e−S[Φ] = (detPθ)
−1/2, (4.32)

where A is the co-moving volume under consideration and we have used (4.27) and the measure

(4.29) to express the gaussian integral as a determinant. The term V div
θ is a local counterterm

which, in dimensional regularization, needs to be subtracted from the regularized effective poten-

tial (its explicit form will be given in the coming Sections). In zeta function regularization, the

left hand side is already finite, and V div
θ is unnecessary (it corresponds to a finite renormalization

of couplings). Eq. (4.32) can be written as

Vθ ≡
1

2A ln(detPθ)− V div
θ . (4.33)

Eq. (4.30) suggests the notation [15]

Vθ =
1

2A ln(detP )− V div
θ +

1

A ln Jθ. (4.34)

The reader should be aware, however, that the definition of the Jacobian in Eq. (4.31) is only

formal because the trace in the r.h.s. of this equation is ill defined. For that reason, it is not

clear that Eq. (4.34) would hold with the definition (4.31), after substituting determinants

by traces and applying any kind of regularization to the formally divergent traces. To avoid

misinterpretations, in the discussions that follow we shall take Jθ to be defined by Eq. (4.34),

that is [15]

lnJθ ≡
1

2
[ln(detPθ)− ln(detP )] , (4.35)

where the expression in the right hand side is to be calculated in some regularization scheme.

Note that log Jθ is usually called the cocycle function in the literature [192, 173].

The way the θ dependence of Vθ arises is very different in different regularization schemes.

In Eq. (4.34), the determinant of P is independent of θ (we recall that this operator corresponds

to the choice Ωθ = 1). In dimensional regularization, ln Jθ vanishes, but the divergent term V div
θ

which is subtracted from ln(detP ) depends on the choice of physical metric gθαβ . On the other

hand, in zeta function regularization, ln(detP ) is finite and V div does not play a role (in any

case, any finite renormalization does not introduce a dependence in θ). Rather, in this case, the

dependence on θ comes from ln Jθ, which does not vanish in this regularization scheme. In both

cases, the θ dependence of Vθ is the same.
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Dimensional regularization

A naive reduction to flat four-dimensional space suggests that the effective potential can be

obtained as a sum over the KK tower:

V D = µε
∑

n

1

2

∫
dD−1k

(2π)D−1
ln

(
k2 +m2

n(ϕ,D)

µ2

)
. (4.36)

Here D = 4 + 1− ε is the dimension of spacetime, and we have added (−ε) dimensions parallel

to the brane. The renormalized effective potential should then be given by an expression of the

form

V (ϕ) = V D − V div, (4.37)

and the question is what to use for the divergent subtraction V div. Since Eq. (4.36) is similar

to an ordinary effective potential in 4-dimensional flat space4, one might imagine that V can be

obtained from V D just by dropping the pole term, proportional to 1/ε; but this is not true for

warped compactifications

V (ϕ) 6= V D − (pole term).

The point is that the theory is five dimensional and the spacetime is curved, and this fact must

be taken into account in the process of renormalization.

Rather than proceeding heuristically from (4.37), we must take the definition of the effective

potential Eq. (4.33) as our starting point, where it is understood that the formally divergent

trace must be regularized and renormalized. In order to identify the divergent quantity to

be subtracted, we shall use standard heat kernel expansion techniques. Let us introduce the

dimensionally regularized expressions [193]

V D
θ ≡

µε

2ATr ln

(
Pθ(D)

µ2

)
= − µ

ε

2A lim
s→0

∂sζθ(s,D), (4.38)

where

ζθ(s,D) = Tr

[(
Pθ(D)

µ2

)−s]
=

2µ2s

Γ(s)

∫ ∞

0

dξ

ξ
ξ2s Tr

[
e−ξ

2Pθ(D)
]
. (4.39)

It should be noted that the operator Pθ is positive and therefore the integral is well behaved at

large ξ.

As is well known, the regularized potential V D
θ contains a pole divergence in the limit D → 5.

To see that this is the case, one introduces the asymptotic expansion of the trace for small ξ

[194, 195, 196],

Tr
[
f e−ξ

2Pθ(D)
]
∼

∞∑

n=0

ξn−DaDn/2(f, Pθ), (4.40)

where aDn/2 are the so-called generalized Seeley-DeWitt coefficients. In (4.40) we have introduced

the arbitrary smearing function f(x). This is unnecessary for the present discussion, but it will

be useful later on. For n ≤ 5 their explicit form is known for a wide class of covariant operators,

which includes our Pθ. They are finite and can be constructed from local invariants (terms

4It should be mentioned also that each KK contribution in Eq.(4.36) is not just like a flat space contribution,

because in warped compactifications the KK masses mn(ϕ,D) depend on the number of external dimensions

parallel to the brane.
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constructed from the metric, the mass term Eθ and the smearing function f), integrated over

spacetime. For even n, they receive contributions from the bulk and from the branes, whereas

for odd n they are made out of invariants on the boundary branes only.

For definiteness, let us focus on the simplest case of a Dirichlet scalar field, satisfying

Φ(z±) = 0. (4.41)

We can use the results found in [197, 198, 199, 200, 202] to compute the Seeley-DeWitt coeffi-

cients for a Dirichlet field with a bulk operator P = −(¤ + E). The lowest order ones for odd

n are given in Appendix A.

As mentioned above, the integral (4.39) is well behaved for large ξ. For small ξ, the integral

is convergent for 2s > D, as can be seen from the asymptotic expansion (4.40). In the end, we

have to consider the limit s → 0, and so we must keep track of divergences which may arise in

this limit. For this purpose, it is convenient to separate the integral into a small ξ region, with

ξ < Λ, and a large ξ region with ξ > Λ, where Λ is some arbitrary cut-off. Substituting (4.40)

into (4.39), we can explicitly perform the integration in the small ξ region for 2s > D. This

gives [7, 15]

ζ(s,D) ∼ 2
µ2s

Γ(s)

{
∞∑

n=0

Λn−D+2s

n−D + 2s
aDn/2(Pθ) +

∫ ∞

Λ

dξ

ξ
ξ2sTr

[
e−ξ

2Pθ(D)
]}

, (4.42)

where we have used the standard notation

aDn/2(Pθ) = aDn/2(f = 1, Pθ).

Equation (4.42) is known as the Mittag Leffler expansion for the ζ function. This represen-

tation will be discussed in App. C in detail.

The second term in curly brackets in Eq. (4.42) is perfectly finite for all values of s. Ana-

lytically continuing and taking the derivative with respect to s at s = 0, we have

ζ ′(0, D) ∼
∞∑

n=0

2Λn−D

n−D aDn/2(Pθ) + finite, (4.43)

where the last term is just twice the integral in (4.42) evaluated at s = 0. Introducing the

regulator ε = 5−D, the ultraviolet divergent part of V D
θ is thus given by

V div
θ = − 1

εAa
D
5/2(Pθ). (4.44)

The divergence is removed by renormalizing the couplings in front of the invariants which make

up the coefficient aD5/2, and so this infinite term can be dropped. The renormalized effective

potential of our interest is therefore given by

Vθ = lim
D→5

[
V D
θ − V div

θ

]
. (4.45)

To proceed, we need to calculate V D
θ , which in principle requires calculating a trace which

involves the eigenvalues of Pθ, and as mentioned above, these are not related in any simple way

to the KK masses.
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However, it turns out that the dimensionally regularized V D
θ is independent of θ when D is

not an integer. The dependence of V D
θ on θ can be found in the following way. First we note

that

∂θTr
[
e−ξ

2Pθ
]
= Tr

[
2ξ2fθ(x)Ω

−2
θ Pe−ξ

2Pθ
]
= −ξ∂ξTr

[
fθ(x)e

−ξ2Pθ
]
, (4.46)

where we have introduced

fθ ≡ ∂θ lnΩθ,
and the cyclic property of the trace was used. The above relation enables us to find the depen-

dence of V D
θ on the conformal factor:

∂θ lim
s→0

∂sζθ(s,D) = lim
s→0

∂s
2µ2s

Γ(s)

∫ ∞

0
dξξ2s∂ξTr

[
−fθe−ξ

2Pθ
]
. (4.47)

As with the expansion (4.42) we may again introduce the regulator Λ and separate the integral

into a large ξ part with ξ > Λ, which is finite and a small ξ part with ξ < Λ which contains the

divergent ultraviolet behaviour. Assuming that 2s > D and integrating by parts, the resulting

integrals in the small ξ region can be performed explicitly and we have

∂θ lim
s→0

∂sζθ(s,D) ∼ lim
s→0

∂s
4sµ2s

Γ(s)

[
∞∑

n=0

Λn−D+2s

n−D + 2s
aDn/2(fθ, Pθ) + finite

]
. (4.48)

As before, the last term just indicates the integral in the large ξ region. Provided that D is not

an integer, all terms in square brackets remain finite at small s, and so the right hand side of

(4.48) vanishes. Hence, we find that [15]

∂θV
D
θ = 0, (D 6= integer). (4.49)

In other words, the dimensionally regularized determinant of Pθ coincides with the dimensionally

regularized determinant of P0, and we have

V D
θ = V D

0 ≡ V D ≡
∑

n

µε
1

2

∫
dD−1k

(2π)D−1
ln

(
k2 +m2

n(ϕ,D)

µ2

)
, (D 6= integer). (4.50)

As was anticipated, we find that ln Jθ vanishes in the dimensional regularization presented here

in the sense given in (4.35).

Finally, from (4.45) and (4.50), the renormalized effective potential is given by

Vθ(ϕ) = lim
D→5

[
V D − 1

(D − 5)

1

A aD5/2(Pθ)

]
, (4.51)

where the Seeley-DeWitt coefficient aD5/2 is given in (A.7) with f = 1. The above equation

bears the ambiguity in the choice of integration measure in the second term in square brackets.

Different values of θ give different results. If we take gαβ as the preferred metric, then we should

use θ = 1, whereas if we take g
(s)
αβ as the preferred metric, we should use θ = −1/β. As we shall

see in the next subsection, when we set D = 5 the coefficient a5/2(Pθ) is also independent of θ.

Hence, the pole term in the second term in (4.51) is independent of θ, as it should, in order to

cancel the pole in V D. However, the finite part does depend on the choice of θ.

The right hand side of (4.51) is ready for explicit evaluation, which is deferred to the next

Chapters. We shall now turn our attention to the equivalent method of zeta function regular-

ization.
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Zeta function regularization

The method of zeta function regularization exploits the fact that the formal expression for the

effective potential (4.38) is finite if the limit D → 5 is taken before the limit s → 0. This can

be seen from Eq. (4.42), where the term with n = 5 is finite if we set D = 5 before taking

the derivative with respect to s and setting s → 0. Clearly, the change in the order of the

limits simply removes the divergent term V div given in (4.44) and it reproduces the results

obtained by the method of dimensional regularization (up to finite renormalization terms which

are proportional to the geometric invariant aD=55/2 (Pθ)).

In zeta function regularization we define [7, 15]

Vθ ≡ −
1

2A ln(detPθ) ≡ −
1

2A lim
s→0

∂sζθ(s), (4.52)

where ζθ(s) ≡ ζθ(s,D = 5) [see Eq. (4.39)]. As in the case of dimensional regularization, it is

more convenient to calculate V0 than Vθ since the eigenvalues of P0 are related to the spectrum

of KK masses. An important difference with dimensional regularization is that

−2A∂θVθ = ∂θζ
′
θ(0) = 2a5/2(fθ, Pθ) 6= 0,

a result which we already encountered in Ref. [7] (see also [197, 198]). This can be seen from

(4.48). If we set D = 5 from the very beginning, the term with n = 5 in Eq. (4.48) is linear in

s, and its derivative with respect to s does not vanish in the limit s → 0. Here, and in what

follows, we use the notation

an/2 ≡ lim
D→5

aDn/2.

Integrating along the conformal path parameterized by θ, we can relate the effective potential

per unit comoving volume Vθ, with the ”flat space” effective potential V0 as [7, 15]

Vθ = V0 −
1

A

∫ θ

0
dθ′ a5/2(fθ′ , Pθ′). (4.53)

The general expression for a5/2(fθ, Pθ) which applies to our case has been derived by Kirsten

[197, 202]. In Ref. [7] we evaluated the integral in (4.53) for the Randall-Sundrum case, in

order to obtain V1 from V0. Here we shall present an alternative expression for this integral

which does not require the knowledge of a5/2(fθ, Pθ), but only the knowledge of aD5/2(Pθ) for

dimension D = 5− ε. This will also illustrate the relation between the method of zeta function

regularization and the method of dimensional regularization.

The relation between the zeta function representation of the functional determinants for

conformally related operators (4.53) was obtained independently in [7], but it had previously

been derived by Dowker and Apps [192]. In particular, the function

∫ θ

0
dθ′a5/2(fθ′ , Pθ′)

is usually called the cocycle function in the literature.
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Equivalence between ζ function and dimensional regularizations

From the asymptotic expansion of the first and the last terms in Eq. (4.46), we have [201]

∂θa
D
n/2(Pθ) = (D − n)aDn/2(fθ, Pθ). (4.54)

Integrating over θ, we get

(D − 5)

∫ θ

0
aD5/2(fθ′ , Pθ′)dθ

′ = aD5/2(Pθ)− aD5/2(P0). (4.55)

Writing D = 5− ε, we have

Vθ − V0 = −
1

A

∫ θ

0
a5/2(fθ′ , Pθ′)dθ

′ =
1

εA
[
aD5/2(Pθ)− aD5/2(P0)

]
. (4.56)

Note that, from (4.44) and (4.51), the previous equation can also be written as

V D ≡ Vθ + V div
θ = V0 + V div

0 . (4.57)

This equation simply expresses the fact that the dimensionally regularized V D is independent

of the conformal parameter θ, as we had shown in the previous subsection [see e.g. Eq. (4.49)].

From (4.54), with D = n = 5, one finds that the coefficient a5/2(Pθ) is conformally invariant

[201], and therefore

a5/2(Pθ) = a5/2(P0). (4.58)

Substituting this into (4.56), we obtain [15]

∫ θ

0
a5/2(fθ′ , Pθ′)dθ

′ =
d

dD
aD5/2(Pθ)

∣∣∣
D=5
− d

dD
aD5/2(P0)

∣∣∣
D=5

. (4.59)

Thus, the integral in (4.53) can be evaluated in two different ways. One is by using the explicit

expression of a5/2(f, P ) given by Kirsten [197, 202]. The other is by taking the derivative of the

coefficients aD5/2(Pθ), given in (A.7) with f = 1, with respect to the dimension. [Note that the

terms which are linear in derivatives of f , which we have just indicated symbolically in (A.7),

disappear when f is a constant].

4.5 Summary

The Casimir energy, ECas = (1/2)
∑

~w, and the 1 loop effective potential V 1loop
eff induced by

the KK modes of bulk fields are physically equivalent. The evaluation of V 1loop
eff reduces to

the computation of log detP = Tr logP (see Eq. (4.20)), where P is the Laplacian operator

appearing in the field’s action. This is usually performed by finding and summing over the

Laplacian’s eigenvalues.

In a warped spacetime, it is not straightforward to find the eigenvalues of P . For a confor-

mally flat space, detP can be related to the conformally related operator in flat space detP0,

see Eq. (4.53). The relationship involves the so-called cocycle function and can be expressed in

terms of geometric invariants.
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We have shown the precise connection between log detP and log detP0 using both zeta func-

tion and dimensional regularization, and obtained two independent expressions for the cocycle

function (Eq. (4.56)). The equivalence between them stands from the well known properties

under conformal transformations of the Seeley-DeWitt coefficients.

For practical purposes, this provides two procedures to compute Veff . The dimensionally

regularized potential V reg does not depend on the conformal frame. This allows us to choose

the easiest one to compute it, which is the frame with flat metric because the eigenvalues split

into the KK form kµk
µ +m2

n. The renormalized potential is then obtained by subtracting the

divergences proportional to covariant operators in the original frame.

Using zeta function regularization, no divergences have to be subtracted since the regularized

potential is already finite. The potential in the physical frame is related to that in flat space by

the cocycle function.
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Chapter 5

Radion effective Potential in the

Randall Sundrum model

In this Chapter we review the 1-loop effective potential for the radion induced by bulk fields in

the RS model. This was first computed by us in [7] using zeta function regularization for the

graviton and for conformally or minimally coupled scalar fields. It was subsequently computed

using dimensional regularization in [11, 12, 13]. The correct expression for the bulk gauge boson

contribution was obtained in [8], where it was realized that in this case it stabilizes naturally

the hierarchy.

5.1 Generic fields

In dimensional regularization (see Chapter 4), the one loop effective potential can be expressed

as the sum over the contributions of each mode,

V reg
RS =

∑

n

µ2ε
1

2

∫
d4−2εk

(2π)4−2ε
ln

(
k2 +m2

n

µ2

)
= − µ2ε

2(4π)2
Γ(s)

∑

n

′
m−2sn , (5.1)

where we introduced s = −2 + ε and the prime in the sum means that the zero mass mode is

excluded. As usual, µ is a renormalization scale introduced for dimensional reasons. The sum

over the KK masses (defined in (3.23) has been done in [7, 11, 12, 13].

Without going into details, the resulting regularized potential is

V reg
RS = − k4

32π2
(k/µ)−2ε

{
−d4

1

ε

(
1 + a4−2ε

)
+ c1 + a4c2 − 2a4V(a)

}
, (5.2)

where the coefficients c1 and c2 do not depend on a and the coefficient d4 depends on the mass

and non-mininal coupling of Φ, and is defined in Appendix D. In (5.2), for Dirichlet boundary

conditions

V(a) =
∫ ∞

0
t3 ln

(
1− kν(t)iν(at)

kν(at)iν(t)

)
, (5.3)

and for Neumann boundary conditions, we have to replace Iν and Kν with

iν(z) = zIν−1(z) + εIν(z) ,
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kν(z) = −zKν−1(z) + εKν(z) . (5.4)

Equation (5.2) is infinite for ε → 0, but the divergence is proportional to 5D geometrical

terms. Indeed, a renormalization of the brane tension by an amount δτ± result in terms of the

form (in (4− 2ε) + 1 dimensions, and with g̃µν = ηµν)
∫
d4−2εx

{
δτ+ + δτ− a

4−2ε
}
. (5.5)

Thus, the divergence in (5.2) can be absorbed in the brane tensions, and the same happens with

the constants c1,2. We are left with the arbitrary finite part of δτ±, which allows us to write the

renormalized potential as [7]

V RS
eff (a) =

k4

16π2
{
γ+ + γ−a

4 + a4V(a)
}
, (5.6)

where γ± are the finite renormalizations of brane tensions in units of k4. As such, they cannot

be determined from our calculation. They are expected to be of the order 1. One of them will

have to be fine tuned in order to cancel the 4D effective cosmological constant.

In order to illustrate this, we shall specialize this result to a massless conformally coupled

fields in 5D, with m = 0 and ξ = 3/16. In this case, from (5.3) with ν = 1/2 or integrating (4.6)

over z, one can see that the potential has a simple expression

V(a) = 2

∫
a5(z)ρ dz = −(−1)Fk4 Aa4

(1− a)4 , (5.7)

where A ≈ 2.46 · 10−3 and F = 0, 1 for bosons and fermions. Adding the brane tension renor-

malization terms, we find [7]

V RS
eff (a) = −(−1)Fk4

[
γ+ + γ−a

4 +
Aa4

(1− a)4
]
. (5.8)

The renormalization conditions that we shall impose on γ± are on one hand that the radion

a is fixed to the ’observed’ value. In the RS scenario, this means that 〈a〉 = 10−16, in order to

really solve the hierarchy problem. Technically this translates into the existence of a minimum at

that precise value of a. On the other hand, we have to impose that the effective 4D cosmological

constant vanishes, since we have assumed that the 4D slices are Minkowski. In fact, the observed

4D effective cosmological constant is millimetric. Thus, we can summarize the renormalization

conditions as

∂aV
RS
eff |〈a〉 = 0 and V RS

eff (〈a〉) ' 10−122m4
P . (5.9)

From these conditions, the unknown coefficients γ± can be found, and then the mass of the

radion is calculable.

We obtain

γ− = −A(1− 〈a〉)−5, and γ+ = −γ−〈a〉5. (5.10)

The value of the negative tension brane γ− is what determines the hierarchy 〈a〉. In the limit

〈a〉 ¿ 1, this requires

〈a〉 ' 1

5

(γ−
A
− 1
)
,
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which clearly is a large fine tuning of γ−. The positive tension brane γ+ is also fine tuned, but

this is corresponds to the usual fine tuning of the (effective) cosmological constant, about which

the RS model does not say anything.

We can now calculate the mass of the radion field m2
a. For 〈a〉 ¿ 1 we have [7]

m2
ϕ =

d2

dϕ2
V RS
eff ∼ −(−1)F 〈a〉3

k4

m2
P

∼ 〈a〉TeV2 (5.11)

So if we solve the hierarchy problem geometrically with 〈a〉 of order TeV/mpl, then the contri-

bution to the radion (mass)2 (5.11) from a bulk fermion field is positive and of order of some

keV. As discussed in the previous Sections, such a small mass is in conflict with observations.

In the general case, one finds that unless ν = 0 or 1, the function V(a) behaves as a2ν

(for ε 6= 0) or as a2ν−2 (for ε = 0) [8]. It is straightforward to see that as in the case with

conformally coupled fields, the brane tensions need to be fine tuned in order to obtain a ¿ 1.

The contribution to the radion mass in this case is smaller [7],

m2
ϕ ∼ a4

k4

f2
∼ meV2,

far below the observational bounds.

In conclusion, if we consider only generic scalar fields or the graviton in the bulk, we must

accept the existence of another stabilization mechanism.1 In any case, this shows that the

quantum corrections due to bulk scalar are small in the RS model.

The impossibility to obtain an efficient potential in these cases can be traced back to the

absence of logarithms ln a. In this respect, it is worth noting a remarkable coincidence that has

occurred in the computation of V RS
eff (a). The geometrical terms (5.5) contain a divergent part

∝ δτ ++a4δτ− and a finite part ∝ ln a. This is reminiscent of the Coleman-Weinberg potential

discussed in the beginning of this Section. However, in order to cancel the divergent part of

(5.2), the logarithmic term is inevitably canceled also. The only ’hope’ to obtain a logarithmic

dependence is in the nonlocal part V(a). As we shall see in Chapters 6 and 7, this does not

happen in general. Rather, it has to be interpreted as a peculiarity of the RS model due to the

maximal symmetry of the bulk AdS5 space [7].

5.2 Gauge field

The contribution from a 5D gauge field can be obtained from that of a scalar field (5.6) with the

replacements ν → 1 and ε→ 0. We discuss it separately here due to the qualitatively different

behaviour of the potential in this case.

The SUSY partners of the gauge boson in AdS[105, 8] are a (Dirac) fermion field (the gaugino)

with bulk mass m = k/2, and a real scalar with mass m2 = −4k2. The fermion has an index of

the Bessel functions ν = 1, whereas the scalar has ν = 0 and and Dirichlet boundary conditions.

On the other hand, a 5D hypermultiplet with a fermion mass m = k/2 contains a scalar with

1Of course, if 〈a〉 ∼ 1 then the radion mass (5.11) would be very large, but then we must look for a different

solution to the hierarchy problem.



60 Radion effective Potential in the Randall Sundrum model

m2 = −4k2, and ν = 1. By supersymmetry, all these cases contribute the same to V RS
eff , except

for an overall factor taking into account the statistics and the number of degrees of freedom.2

Expanding the expression for V(a) for ν → 1 and ε→ 0, one obtains [8]

Veff ' (−1)F k4

16π

{
γ+ + γ−a

4 − g∗β
a4

ln a

}
, (5.12)

where F = 0 or 1 for the gauge boson or the gaugino (its SUSY counterpart), g∗ is the number

of physical polarizations and

β ≡
∫ ∞

0
dt t3

K1(t)

I1(t)
' −1.005 (5.13)

This potential has an extremum at

ln a ' g∗β/γ−, (5.14)

and gives the radion a mass [8],

m2
ϕ ' (−1)F+1 g∗β

(2π ln a)2
a2k4

f2
. (5.15)

It follows from Eq. (5.14) that an exponentially large hierarchy can be naturally obtained,

i.e. with γ− of order one. This corresponds to a renormalization of the negative tension by an

amount comparable to the cutoff scale (the value in background), which is certainly a natural

value. It is also transparent that the contribution from the gauge boson to the potential has a

maximum at this point. Thus, it is the gaugino that contributes to stabilize the radion. With

another choice of boundary conditions, the situation can be the converse. For example, with

Dirichlet boundary conditions on the negative tension brane and Neumann boundary conditions

on the positive tension brane , the gauge boson induces a positive m2
ϕ [8].

With one bulk gaugino, g∗ = 4, the resulting radion mass is

mϕ '
1

6π ln (〈ϕ〉/f)

(
k

mP

)2
〈ϕ〉, (5.16)

which is about 100 MeV for k/mP = 0.1 and 〈ϕ〉 = 3TeV.

Thus, the potential induced by a bulk gauge field qualitatively differs from that of a generic

scalar or the graviton in that it is much larger and the contribution to the radion mass is around

the phenomenologically acceptable GeV. This has an interpretation in terms of the dual CFT

representation of the RS model [8]. The idea is that the 4D photon propagator is renormalized

by the coupling to the CFT states. This is encoded in the running of the coupling constant

g(µ). At energies of order the resonance masses ak, the effective coupling g(ak) is given by

1

g2(ak)
=

1

g2(k)
+ cN ln (k/(ak)) ' −cN ln (a) ,

in the large N approximation. The dual of the gauge boson KK modes in the RS models are spin

1 resonances in the CFT , at the IR (TeV) scale. The photon can mix with them, giving a mass

2We will not be so interested in the scalars, since these specific values for their masses are unstable under

quantum corrections, and they inevitably involve some fine tuning.
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correction (in large N) of order δm2
KK ∼ Ng2(ak)(ak)2 ' (ka)2/ ln a. Thus, the contribution

from these states to the effective potential is expected to be of the form

m4
KK

ln (mKK/µ) ∼ k4a4
(
1 +

c

ln a

)
,

which is precisely the form obtained in this case, cfr. Eq. (5.12).

In summary, the 1-loop effective potential induced by a generic bulk field is given by Eqns.

(5.6) and (5.3) [7]. The contribution from a bulk gauge field Eq. (5.12) [8] naturally stabilizes

hierarchy and gives the radion a sizable mass.
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Chapter 6

Moduli effective potential in warped

compactifications

In this Chapter we present a 5D scalar tensor model with exponential potentials for the scalar

both in the bulk and on the branes. This kind of models arise in compactifications of higher

dimensional models with the additional extra dimensions forming a Ricci flat space, such as the

Hořava Witten model [9].

These models contain solutions to Einstein’s equations similar to the RS model but with a

power law warp factor a(y) ∝ yq. We will take the parameters of the model such that we can

consider any positive power of the proper distance along the bulk. In the RS model, the warp

factor is exponential a(y) = e−ky and the curvature scale k is Planckian. This makes the large

bulk volume to be really not very large compared to the curvature (or the cutoff) scale d ∼ 37/k.

Models with power law warp factors are interesting in that besides the redshift effect, they can

exploit the large bulk volume effect. As in the RS model, the hierarchy is essentially generated

by the ratio of warp factors on both branes, which gives (mEW /mP ) ∼ (y−/y+)
q, where y± are

the positions of the branes. Associated to both y±, there are moduli fields analogous the radion,

which corresponds to a specific combination of them.

If the Casimir effect can stabilize naturally the moduli at y− ∼ 1/mP and y+ ∼ mm, then

very low powers of q are enough to generate the necessary hierarchy, ∼ 10−16. In such a case,

warp factors not as steep as in the RS model also solve naturally the hierarchy problem. This

represents a nice combination of ADD and RS mechanisms: the hierarchy arises purely from a

redshift effect, but a large interbrane distance is required in order to ’accumulate’ enough redshift

along the bulk (the dilution of gravity along the extra dimension does not play an important role

here). This model also shares with the ADD scenario the feature that the EW/Planck hierarchy

is a power (not an exponential) of the radius.

As we shall see, the Casimir energy from bulk fields (of any spin) can indeed generate

naturally a large interbrane distance. However, if the power q is too small, the generated moduli

massess are too small as well. In fact, one of the moduli fields is quite strongly coupled to matter.

This makes the stabilization of this modulus more difficult, since a large mass is required.

The presence of a bulk scalar with nontrivial profile in these backgrounds raises a technical

issue in the derivation of the effective potential that results in a not uniquely defined path integral

measure. This translates in an ambiguous result in the potential. However, the ambiguity is

63



64 Moduli effective potential in warped compactifications

proportional to a finite local term, which breaks a global symmetry present in the model at tree

level. Thus, this is an anomalous symmetry (closely connected to the conformal anomaly), and

its breaking is interpreted to be responsible for stabilizing the moduli y±. The precise value of

the constant in front of the anomalous term can only be obtained from the underlying theory.

The higher dimensional models considered in Chapter 7 reduce upon compactification to the

model considered here with some specific values of q. In these cases, the path integral measure is

unique, and there is no ambiguity in the result. A complete discussion on this point is deferred

to Chapter 7, since contributions from the additional extra dimensions can play a significant

role.

This Chapter is organized as follows. In Section 6.1 we present the model, its symmetries

and the background solution that we shall study. Also, the properties of the moduli fields and

the dependence of the hierarchy upon them are described. In Section 6.2 the computation of

the effective potential induced by generic bulk fields is described. In Section 6.3, the efficiency

of this potential as a stabilization mechanism for the moduli y± is investigated.

6.1 Scalar-tensor 5D model

The classical background we shall consider in this Chapter is a 5-dimensional spacetime with a

nontrivial background scalar field φ, which we shall refer to as the “dilaton”. The fifth dimension

is compactified on a Z2 orbifold with two branes at the fixed points of the Z2 symmetry. The

action for the background fields is given by

Sb =
1

16πG5

∫
d5x
√
g

(
R− 1

2
(∂φ)2 − Λec φ

)

− σ+

∫
d4x
√
g+ e

c φ/2 − σ−
∫
d4x
√
g− e

c φ/2, (6.1)

where R is the curvature scalar and the fundamental cutoff M is given by the 5D gravitational

coupling constant as 16πG5 = M−3. We have denoted the induced metrics on the positive and

negative tension branes by g+µν and g−µν , respectively. To find a solution to the equations of

motion, we make an ansatz where the 4-dimensional metric is flat,

ds2 = dy2 + a2(y)ηµνdx
µdxν , (6.2)

with a xµ-independent scalar field φ = φ(y). The positive and negative branes are placed at

y = y+ and y−, respectively. Under these assumptions, the equations of motion for (a(y), φ(y))

in the bulk become
(
ȧ

a

)2
=

1

12

(
1

2
φ̇2 − U(φ)

)
,

φ̈+ 4
ȧ

a
φ̇ = U ′(φ), (6.3)

where U(φ) ≡ Λec φ, a dot represents differentiation with respect to y and a prime represents

differentiation with respect to φ.

As shown in [203], there is a solution of Eqs. (6.3) for any value of c given by

φ = −
√

6q ln(y/y0),
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a(y) = (y/y0)
q , (6.4)

where

q =
2

3c2
, y0 =

√
3q(1− 4q)

Λ
. (6.5)

(Constant rescalings of the warp factor are of course allowed, but unless otherwise stated, we

shall take the convention that a(y) = 1 at y = y0.) Assuming y− < y+, the boundary conditions

which follow from Z2-symmetry imposed on both branes are given by

φ̇± = ∓ c
4
σ±e

(c/2)φ± , (6.6)

6
ȧ

a

∣∣∣
±
= ±8πG5σ±e

(c/2)φ± , (6.7)

and they are satisfied if σ± are tuned to

σ± = ± 1

16πG5

√
48qΛ

1− 4q
. (6.8)

In the absence of the branes, the spacetime (6.4) contains a singularity at y = 0. Since we are

considering the range between y− and y+, this singularity is of course innocuous. Our spacetime

consists of two copies of the slice comprised between y− and y+, which are glued together at the

branes. Hence, the 5-th dimension is topologically an S1/Z2 orbifold.
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Figure 6.1: With a power law warp factor a(y) = (y/y0)
q, the space is singular at y = 0. The solution (6.4)

consist of the slice comprised between the positive tension (y = y+) and negative tension (y = y−) branes. Two

copies of this 5D space are glued by the branes and the orbifold Z2 identification is imposed.

For q = 1/6 this solution is precisely the M-theory heterotic brane model of Ref. [10]. On

the other hand, the RS case, where the bulk is AdS and there is no scalar field, can be obtained
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by taking the limit q →∞ and y0 →∞ simultaneously, while its ratio is kept fixed,

` = lim
q→∞

y0
q

=

√
−12
Λ

. (6.9)

Defining y ≡ y0 + y∗, we find that in the limit the warp factor becomes an exponential

lim
q→∞

a = ey
∗/`,

which corresponds to AdS space with curvature radius equal to `.

Moduli fields

For fixed value of the coupling c, the solution given above contains only two physically meaningful

free parameters, which are the locations of the branes y−, and y+. This leads to the existence of

the corresponding moduli, which are massless scalar fields from the 4-dimensional point of view.

In addition to these moduli, the massless sector also contains the graviton zero mode. To account

for it, we generalize our metric ansatz (6.2) by promoting ηµν to an arbitrary four-dimensional

metric:

ds2 = dy2 + a2(y)g̃µν(x)dx
µdxν . (6.10)

It is easy to show that R = a−2R̃ + R(0), where R(0) is the background Ricci scalar in five

dimensions and R̃ is the four-dimensional one. For constant values of the metric and moduli,

we have a solution of the equations of motion whose action vanishes. Hence, only the terms

which depend on derivatives of the metric or derivatives of the moduli will survive after the

five-dimensional integration. This fact can be used in order to simplify the derivation of the

effective action for the moduli, since all terms without any derivatives can be dropped.

In the bulk, all terms will cancel except for the one which is proportional to the four-

dimensional Ricci scalar, R̃. Let us consider the contribution from the branes. The metric

induced on the branes is given by

g±µν = a2±[g̃µν + a−2± ∂µy±∂νy±].

Here, and in what follows, the subindices ± mean that the quantity is evaluated at the perturbed

brane location. The brane tension terms in the action contain the determinant

√−g± = a4±
√
−g̃
[
1 +

1

2a2±
(∂̃y±)

2

]
+ · · · ,

which induces kinetic terms for the moduli. Here, the tilde on the kinetic term indicates that

the derivatives are contracted with the metric g̃. In fact, the five dimensional Ricci tensor R
contains second derivatives of the metric and therefore it is singular on the brane, giving a

finite contribution to the action. To handle this contribution it is simplest to introduce fiducial

boundaries in the neighborhood of the branes, were we add (back to back) pairs of Gibbons-

Hawking boundary terms. These have the form

1

8πG5

∫
d4x
√
g± K±, (6.11)
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where K± is the trace of the extrinsic curvature of the fiducial boundary near each one of the

branes. The action is separated into two parts. The first one is a “bulk” part, consisting of an

integral over two copies of an open set which excludes the branes, (y− + ε) < y < (y+ − ε), plus
terms of the form (6.11) at the boundaries y = y− + ε and y = y+ − ε. Then there is a “brane”

part, which includes an integral of the action over the infinitesimal open sets of thickness ε

around the branes, supplemented with terms of the form (6.11) at the boundaries of these open

sets (these “brane” boundary terms sit back to back with the ones used in order to bound the

“bulk”, and have opposite sign relative to them, since the normal to the fiducial boundary has

opposite sign on each side of the boundary. Thus the total effect of the boundary terms is to

add zero to the action). As is well known, through integration by parts the boundary terms

absorb the second derivatives in the Einstein term R. Hence, the singular contribution from the

gravity kinetic term on the brane disappears, and in the limit ε → 0, the only contribution to

the action from the interval of width 2ε around the branes (together with the added boundary

terms), is from the brane tension term itself, but not from the gravity kinetic term. On the

other hand, the bulk contribution has to be supplemented with the boundary terms (6.11).

The boundary terms can be evaluated as follows. Consider, for instance the hypersurface

which is located at y = y+(x
σ). In terms of the new coordinate ŷ = y − y+(xσ), the brane is at

ŷ = 0, and the metric can be written as

ds2 = N2dŷ2 + g+µν(N
µdŷ + dxµ)(Nνdŷ + dxν), (6.12)

where we have introduced the lapse function N 2 = 1 − g+µνNµNν , and the shift vector Nµ =

g+µνy,ν . Then, the trace of the extrinsic curvature is given by
∫
dx4
√−g+K+ =

∫
dx4
√−g+
2N

[
g+µν∂ŷg

+
µν − 2Nµ

|µ

]

=

∫
dx4
√
g+

2N

[
ȧ

a
g+µν g̃µν −

Nµ∂µN
2

N2

]

≈ 4

∫ (
ȧ

a

)

+

a4+
√
−g̃
[
1 +

3

4a2+
(∂̃y+)

2

]
, (6.13)

where the vertical line means a covariant differentiation with respect to the induced metric g+µν .

We neglected the terms which are higher order in in derivatives of the modulus y+. As mentioned

before, the subindices ± mean that the quantities are evaluated at the actual position of the

brane, and the expression is in fact nonperturbative in the positions y± themselves (although

not in the derivatives).

Substituting the previous expressions into the action (6.1), with the addition of the extrinsic

curvature terms, and using the background equations of motion we find

Sb =

∫
d4x
√
−g̃
[ (

2

∫ y+

y−

dy a2
)

1

16πG5
R̃

+
1

2
σ+e

(c/2)φ+a2+ (∂̃y+)
2 +

1

2
σ−e

(c/2)φ−a2− (∂̃y−)
2

]
. (6.14)

This can be rewritten as

Sb =
1

16πG

∫
d4x
√
−g̃
{
(ψ2+ − ψ2−) R̃+

6q

q + 1/2

[
(∂̃ψ+)

2 − (∂̃ψ−)
2
]}

. (6.15)
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Here we have introduced

ψ± ≡
(
y±
y0

)q+1/2
,

and the four dimensional Newton’s constant G given by

G =

(
q +

1

2

)
G5

y0
. (6.16)

The modulus corresponding to the positive tension brane has a kinetic term with the ”wrong”

sign. However, this does not necessarily signal an instability, because it is written in a Brans-

Dicke frame. One may go to the Einstein frame by a conformal transformation. It is convenient

to introduce the new moduli ψ and ψ through [204]

ψ+ = ψ coshϕ,

ψ− = ψ sinhϕ, (6.17)

and to define the new metric

ĝµν = ψ2g̃µν . (6.18)

It is then straightforward to show that ψ2
√
g̃ R̃ =

√
−ĝ [R̂ + 6 ψ−2 (∂̂ψ)2]. Substituting into

the background action (6.15), we have

Sb =
1

16πG

∫
d4x
√
−ĝ
{
R̂ − 6

1 + 2q

(∂̂ψ)2

ψ2
− 12q

1 + 2q
(∂̂ϕ)2

}
. (6.19)

Therefore, both moduli have positive kinetic terms in the Einstein frame. At the classical level,

the moduli are massless, but as we shall see in the following Sections, a potential term of the

form

δS = −
∫
d4x V (ψ,ϕ) ≡ −

∫
d4x
√
−ĝ V̂ (ψ,ϕ), (6.20)

is generated at one loop, which should be added to (6.19).

In the RS limit q →∞ [see Eq. (6.9)] the kinetic term for the ψ modulus disappears. This

is to be expected, because the bulk is the maximally symmetric AdS space. In this case only

the relative position of the branes y+ − y− is physically meaningful and the other modulus can

be gauged away (see also [177] for a recent discussion of this case).

In the flat space limit q → 0, it is the ϕ modulus that decouples. This is also to be expected

from the expression of the moduli ψ±. For q = 0, the radion modulus has to be identified with

ψ, since ψ2 = ψ2+ − ψ2− ∝ (y+ − y−), the only meaningful distance.

We find the curious property that from q = 0 to q → ∞, the radius modulus transmutes

from ψ to ϕ. In the intermediate cases, we will refer to ϕ as the radion, since this is the modulus

with lightest mass.

Scaling symmetry

Since we are interested in the effective potential for the moduli, it is perhaps pertinent to start

by asking why these fields are massless at the classical level. The reason is that under the global

transformation

gαβ → T 2gαβ , (6.21)
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φ→ φ− (2/c) lnT, (6.22)

the action (6.1) scales by a constant factor

Sb → T 3Sb.

Here gαβ is the metric appearing in the action (6.1). Acting on a solution with one brane, the

transformation simply moves the brane to a different location. Hence, all brane locations are

allowed, from which the masslessness of the moduli follows. However, we should hasten to add

that this is just a global scaling symmetry which need not survive quantum corrections.

It is interesting to observe that by means of a conformal transformation, we may construct

a new metric g
(s)
αβ which is invariant under the scaling symmetry

g
(s)
αβ = ecφgαβ . (6.23)

In terms of this new metric the action takes the form

Sb =
1

16πG5

∫
d5x

√
g(s)e−3cφ/2

(
R(s) − [(1/2)− 3c2](∂(s)φ)2 − Λ

)

− σ+

∫
d4x

√
g
(s)
+ e−3c φ/2 − σ−

∫
d4x

√
g
(s)
− e−3c φ/2. (6.24)

Now, the symmetry is a mere shift in φ. Moreover, with our background solutions for gαβ and

φ, the metric g
(s)
αβ is just AdS, as can be easily shown from (6.23) and (6.4).

Relation to higher dimensional models

For certain discrete values of c, the action (6.24) can be obtained from dimensional reduction of

(5+n) dimensional pure gravity with a cosmological term Λ, where the additional n dimensions

are toroidal [16]. In this case, the factor e−3cφ/2 is the overall scale of the internal n-dimensional

volume, and the value of c is given by c2 = 2/3q, with

q =
3 + n

n
.

It is not surprising, then, that the metric g
(s)
αβ in (6.24) corresponds to the “external” components

of a 5 + n dimensional anti de Sitter space, since the starting point is in fact pure gravity in

(5 + n) dimensions with a negative cosmological term. The calculation of quantum corrections

in this higher dimensional space, and its relation with the calculation of quantum corrections in

the effective 5D theory which we consider in this Chapter, is reported in Sec. 7.5

The hierarchy

As mentioned in the introduction, one of the motivations for studying brane-world scenarios has

been the search for a geometric origin of the hierarchy between the effective Planck scale mp

and the electroweak scale. In the 5D description, all matter fields are assumed to have masses

which are close to the cut-off scale of the theory M ≡ G
−1/3
5 . And yet, with the help of an

exponential warp factor (as in the RS model) it is easy to generate a hierarchy of the order of

mp/m ∼ 1016. Here m is the effective mass of fields which live on the negative tension brane, as
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“seen” in the effective four dimensional description [2]. In this subsection we shall review this

mechanism, including the case of a warp factor with arbitrary power q, since there are some

minor differences with the RS case.

The effective four-dimensional Planck mass is given by

m2
p =

2

1 + 2q
M3y+

[
1−

(
y−
y+

)2q+1]
, (6.25)

where M is the 5-dimensional Planck mass, as can be seen from Eqs. (6.15) and (6.16)], where,

without loss of generality, we have taken y+ = y0. Here, and for the rest of this Section, we shall

follow standard practice and refer all physical quantities to the measurements of clocks and rods

located on the positive tension brane.

Let us now consider the mass scales of fields which live on the branes. We expect these fields

to couple not only to the metric, but also to the background dilaton φ. There are many possible

forms for this coupling, but it seems reasonable to restrict attention to those which respect the

scaling symmetry (6.21-6.22). For a free scalar field Ψ which lives on the negative tension brane,

and whose mass parameter is comparable to the cut-off scale, the action takes the form

SΨ = −1

2

∫ √
g
(s)
− F 2(φ)[g

(s)µν
− ∂µΨ∂νΨ+ αM2Ψ2]. (6.26)

Here we have introduced a fudge factor α to allow for an intrinsic mass which is slightly lower

than the cut-off scale. The function F (φ) can be reabsorbed in a redefinition of Ψ, and thus the

relevant warp which determines the hierarchy between mass scales on the positive and in the

negative tension branes is the one corresponding to the metric g(s). Our field will be perceived

from the point of view of the 4D effective theory as having a mass squared of order

m2 ∼ αM2

(
y−
y+

)2q−2
. (6.27)

Notice that there are two different factors which determine the hierarchy between m and mp.

The first one is the warp factor (y−/y+)
q−1 appearing in Eq. (6.27), which “redshifts” the mass

scales of particles on the negative tension brane (except for q < 1, in which case the particles on

the negative tension brane appear to be heavier than those on the positive tension brane). This

generates the hierarchy in the RS model. The second one is the possibly large volume of the

internal space, which enhances the effective Planck scale with respect to the cut-off scale [see

Eq. (6.25)]. This generates the hierarchy in the ADD model [1] with large extra dimensions.

Considering both effects, the hierarchy h is given by

h2 =
m2

m2
p

∼ α 1 + 2q

2

1

My+

(
y−
y+

)2q−2
.

It is known that without a warp factor, it is not possible to generate the desired hierarchy from

a single extra dimension, since its size would have to be astronomical. An interesting question

is what is the minimum value of the exponent q which would be sufficient in order to generate

a ratio m/mp ∼ 10−16. The best we can do is to take the curvature scale (y+/q) slightly below

the millimeter scale,

(y+/q) . mp(TeV)−2 ∼ mm. (6.28)
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in order to pass the short distance tests on deviations from Newton’s law. On the other hand,

we also need

(y−/q) &M−1, (6.29)

since for smaller values of y− the curvature becomes comparable to the cutoff scale M and the

theory cannot be trusted 1. Substituting in (6.25) we have M 3 & mp(TeV)2 and (y−/y+) &

(mp/TeV)−4/3, which leads to

10−32 ∼ m2

m2
p

& α

(
TeV

mp

) 4(2q−1)
3

. (6.30)

Hence, a warp factor with exponent q ≥ 5/4 may account for the observed hierarchy with a single

extra dimension, but it appears that this cannot be done for lower values of q. 2 In particular,

the Heterotic M-theory model, with q = 1/6, does not seem to allow for such possibility.

Coupling to matter

As mentioned above, matter fields can be coupled to gravity in many different ways because

of the presence of the nontrivial scalar in the bulk. A quadratic action for matter fields Ψ±

localized on the branes3 can always be written in the form

S±matt =

∫
d4x
√
g±F

2(φ±)L±(Ψ±, g±µν), (6.31)

with metrics g±µν = ω2±g
±
µν , and some φ−dependent conformal factors ω±. We will concentrate

on the case when ω± = ω(φ±). As mentioned before, specially interesting is the case when

matter is coupled to gravity preserving the scaling symmetry (6.21,6.22). This corresponds to

g = g(s), or ω(φ) = ecφ/2.

Equation (6.19) displays the decoupled degrees of freedom in the 4D Einstein frame, ĝ, ϕ and

ψ. The moduli variables with canonical kinetic terms are

ψ̂ = 2

√
3

1 + 2q
mP lnψ, and (6.32)

ϕ̂ = 2

√
6q

1 + 2q
mP ϕ, (6.33)

Thus, the couplings of small fluctuation of e.g. the radion modulus δϕ to matter are given by

S±matt−ϕ =

∫
d4x δϕ

δS±matt
δϕ

∣∣∣
ψ,ĝ=const

. (6.34)

1One should also bear in mind that the scaleM might itself be a “derived” quantity, as it happens for instance

with the Planck mass in theories with additional large extra dimensions. In this case, the true cut-off scale may

well be below M . Hence, the lower bound (6.29) on y− should just be considered a necessary condition for the

low energy description not to break down.
2Except, of course, by giving up the assumption that the Lagrangian of matter on the branes should scale in

the same way as the rest of the classical action [see the discussion around Eq. (6.26)]. If we allow any coupling

of φ to the mass term for Φ, then any hierarchy can be easily generated for any value of q.
3Most of the models considered in this thesis assume that ordinary matter is localized on the negative tension

brane . For completeness, in this subsection we investigate the coupling to possible forms of matter on the positive

tension brane as well.
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Bearing in mind that the dependence on the moduli in (6.31) is through ψ± (see Eq. (6.17)),

φ± = −(4/c(2q + 1)) lnψ±, a± = ψ
2q/(2q+1)
± and

g±µν = ω2(ψ±)
a2±
ψ2
ĝµν ,

the total functional derivative is readily evaluated and one finds

S±matt−ϕ = −
∫
d4x

√
ĝ
(tanhϕ)±1

q + 1/2

{
4

c

F ′

F

∣∣∣
±
L̂± +

(
q − 2

c

ω′

ω

∣∣∣
±

)
T̂±
}
δϕ . (6.35)

Here, we have defined √
ĝ T̂± ≡

√
ĝ ĝµν T̂±µν =

√
g± gµν± T±µν ,

and the energy momentum tensor is, as usual

T±µν = − 2
√
g±

δS±matt
δgµν±

Also, we have defined
√
ĝL̂± ≡ √g±F 2(φ±)L±. We note that the coupling to the matter

Lagrangians L± in Eq. (6.35) is due to the presence of the F term in (6.31), which prevents

matter to couple universally to the metric. For simplicity, we shall consider here the case where

F is constant. In the model considered in Chapter 7, the moduli couple in a similar way. There

F is given and is not constant.

Specializing to ω = ecφ/2, the coupling can be written in terms of the canonical radion ϕ̂ as

S±matt−ϕ = −
∫
d4x

√
ĝ

1

Λ±ϕ
T̂± δϕ̂ , (6.36)

with a coupling strength

Λ±ϕ =

√
6q(2q + 1)

q − 1
(tanhϕ)∓1mP . (6.37)

This is a remarkable result. Assuming that y− ∼ 1/M , we can write the hierarchy h in terms of

the radion,

h ∼ (tanhϕ)(q+1/2)/(q−1/2) . (6.38)

Thus, for not very steep warp factors, the radion is very strongly coupled to matter on the

negative tension brane (needless to say, its coupling to matter localized at y = y+ is tremen-

dously suppressed). Numerically, we have Λ−ϕ ∼ 10 eV, 100 MeV and 10GeV for q = 2, q = 5

and q = 10 respectively. Thus, the stabilization mechanism must provide a radion mass much

larger than in the RS model for low q. The divergence in Λϕ for q = 1 and the zero at q = 0

are somewhat surprising, since we expect the ϕ modulus to decouple in the flat space limit,

not for q = 1. This is due to having introduced the conformal factor ω = ecφ/2 in the matter

Lagrangians. With the choice ω = 1, ϕ indeed decouples (recall that tanhϕ ∼ tanh
(
ϕ̂/
√
q
)
in

this limit). We have to add that in any case, such small values of q are not very interesting since

a large enough hierarchy cannot be accommodated.
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Let us derive the coupling to matter of the ψ modulus. As before, a perturbation of this

modulus δψ according to

S±matt−ψ = −
∫
d4x δψ

δS±matt
δψ

∣∣∣
ϕ,ĝ=const

(6.39)

= −
∫
d4x

√
ĝ

1

q + 1/2

{
4

c

F ′

F

∣∣∣
±
L̂± −

(
1

2
+

2

c

ω′

ω

∣∣∣
±

)
T̂±
}
δψ . (6.40)

Taking a constant F and ω = ecφ/2, we obtain an interaction Lagrangian analogous to (6.36)

with coupling strength

Λ±ψ = 4
√

(2q + 1)/3 mP .

Thus, a millimetric mass for ψ is enough to pass all observational bounds.

6.2 Effective potential induced by generic bulk fields

In this Section we resume the framework for computing the contribution to the 1-loop effective

potential from a scalar field Φ propagating in the bulk, described in Section 4.4. We shall

consider a generic mass term, which may include couplings to the curvature of spacetime as well

as couplings to the background dilaton φ. As in the RS model, the contribution from bulk fields

with other spins can be obtained from the result for the scalar upon identifying the suitable

mass and nonminimal coupling. The effective potential for the moduli y± will be defined as

usual in terms of a Gaussian path integral around the background solution. Before presenting

the actual calculation, however, a digression on the choice of the measure of integration will be

useful.

Specification of the functional measure

As mentioned in Section 4.4, the measure of functional integration needs to be specified somehow

in QFT. When there are fields other than gravity with a nontrivial profile (such as the dilaton

φ), then there is a wide class of possible choices, related to each other by dilaton dependent

conformal transformations. All choices within this class are equally good from the point of

view of diffeomorphism invariance. However, at the quantum level they are inequivalent due

to the well known conformal anomaly. Nevertheless, all the possible choices differ in a finite

renormalization of local operator, as we shall see below.

To be definite, let us concentrate in the simple case of a bulk scalar field Φ with canonical

kinetic term. The (Euclidean) action for this field is given by

S[Φ] =
1

2

∫
dDx
√
gΦPΦ , (6.41)

where we have introduced the covariant operator

P = −(¤g + E).

Here ¤g is the D’Alembertian operator associated with the metric gαβ , and E = E[gαβ , φ] is a

generic “mass” term. Typically, this takes the form E = −m2 − ξRg, where m is a constant
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mass, Rg is the curvature scalar and ξ is an arbitrary coupling. Throughout this Section we

shall leave E unspecified.

As we explain in Chapter 4, the volume measure in field space

DΦ =
√
G
∏

x

dΦx. (6.42)

depends on the conformal frame,

Gxy = δµ(x, y) =
δ(n)(x− y)√

g(x)
. (6.43)

It should be clear from the previous discussion that the definition of DΦ is associated with

a natural definition of dµ(x). However, in the problem under consideration in this Chapter, the

choice of dµ is not unique. In our case, there is a nontrivial dilaton field φ, and we can consider

a whole class of spacetime measures of the form

dµθ(x) =
√
gθ d

Dx = ΩDθ (φ)
√
g dDx,

which correspond to conformally related metrics

gθαβ = Ω2
θgαβ ,

as introduced in Section 4.4.

In the presence of a dilaton, the coupling to gravity is not universal and it is not clear which

one of these metrics should be considered more physical.

Since we have a classical scaling symmetry in the gravity and dilaton sector, one could argue

that g
(s)
αβ , which is invariant under scaling (see Section 6.1), is the preferred physical metric.4

However, even in this case the divergent part of the effective potential will not respect the

scaling symmetry, and consequently we need to introduce counterterms with the ”wrong” scaling

behaviour. Hence, in what follows, we shall take the conservative attitude that the measure is

determined in the context of a more fundamental theory (from which our 5-D effective action

is derived), and we shall formally consider on equal footing all choices associated with metrics

in the conformal class of gαβ , including of course g
(s)
αβ . As we shall see, the difference between

these choices amounts to the addition of local terms in the effective potential.

The way the θ dependence of Vθ arises is very different in different regularization schemes.

In Eq. (4.34), the determinant of P is independent of θ (we recall that this operator corresponds

to the choice Ωθ = 1). In dimensional regularization, ln Jθ vanishes, but the divergent term V div
θ

which is subtracted from ln(detP ) depends on the choice of physical metric gθαβ . On the other

hand, in zeta function regularization, ln(detP ) is finite and V div does not play a role (in any

case, any finite renormalization does not introduce a dependence in θ). Rather, in this case, the

dependence on θ comes from ln Jθ, which does not vanish in this regularization scheme. In both

cases, the θ dependence of Vθ is the same.

As we shall see, this dependence can be cast in the form of local operators on the branes,

and therefore the ambiguity in the choice of the integration measure can also be understood as

4Note, in particular, that the overall scaling factor of the action (6.1) under (6.21) and (6.22) depends on the

spacetime dimension, and hence the symmetry itself is different when we change the dimension. By contrast, the

scaling of (6.24) remains the same in any dimension.
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modification of the classical action. It should be noted, however, that the local operators which

result from a shift in θ have different form than the terms arising from the usual shift in the

renormalization constant µ which inevitably crops up in the regularized traces. In the cases we

shall consider, the latter will take the form K4(y±), where K denotes terms which behave like

the extrinsic curvature of the branes at the positions y±. On the other hand, the θ-dependent

terms behave as K4(y±)φ(y±). Since K(y) behaves like the inverse of y whereas φ(y) behaves

logarithmically with y, these terms will give rise to Coleman-Weinberg type potentials for the

moduli.

For definiteness we shall restrict attention to conformal factors Ωθ(φ) which have an expo-

nential dependence on the dilaton:

Ωθ(z) = e(1−θ)φ/3c =
( z
z0

)β (θ−1)
. (6.44)

With this choice, θ = 0 represents flat space and θ = 1 corresponds to the Einstein frame metric

(6.47). For θ = −1/β, the metric gθαβ coincides with the metric g
(s)
αβ introduced in Section 6.1,

which is invariant under the scaling transformation (as mentioned before, this metric corresponds

to a five dimensional AdS space, with curvature radius given by z0).

This allows to identify the θ dependence of the potential. In the sense of (4.35), the difference

between the effective potential computed with path integral measures covariant with respect to

the frames labeled by θ and θ = 1, is

lnJθ =
1

3cA

∫ 1

θ
dθ′ a5/2(φ, Pθ′), (6.45)

where we have used fθ = ∂θ lnΩθ = (1−θ)φ/3c. Clearly, the effect of this factor is just adding to

the classical action local terms expressed solely in terms of φ and the metric, such as
√
g± φ±K4±.

The dependence of these terms is different from the change which results from a rescaling of

the renormalization parameter µ. This corresponds to a shift in the coefficient of local terms

proportional to a5/2(P ).

Explicit evaluation

For simplicity we shall restrict attention to the case of massless fields with arbitrary coupling to

the curvature:

E = −ξRg,
and with Dirichlet boundary conditions. Here we shall use the method of dimensional regular-

ization. Zeta function regularization is discussed in Appendix B.

It is convenient to introduce the conformal coordinate

z ≡
∣∣∣∣
∫

dy

a(y)

∣∣∣∣ =
y0
|1− q|

(
y

y0

)1−q
, (6.46)

so that we may rewrite the metric as

ds2 = a2(z)
(
dz2 + ηµνdx

µdxν
)
, a(z) = (z/z0)

β , (6.47)

where

β =
q

1− q , z0 =
y0
|1− q| . (6.48)
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Here we should mention that the direction of increasing z does not coincide with the direction

of increasing y when q > 1.

The Ricci scalar computed from the metric (6.47) in D dimensions is

R = (D − 1) β (1− (D − 3)β)
1

z2a2(z)
= (D − 1) q (1− (D − 2) q)

1

y2
. (6.49)

Note that this expression reduces to the RS expression Eq. (3.16), with 1/z0 playing the role

of k. Also, for any other value of β, the Ricci scalar does not depend on any scale, showing the

no-scale nature of the models considered. Moreover, the appearence of a singularity at y = 0 is

manifest.

The eigenmodes of the conformally related operator in flat space P0 (4.26) are given by

Φ̂n ≡ z1/2
(
A1Jν(mnz) +A2Yν(mnz)

)
.

The index of the Bessel functions is given by

ν(D) =
1

2

√
1− 4(D − 1)β[(D − 2)β − 2](ξ − ξc(D)), (6.50)

where

ξc(D) =
1

4

D − 2

D − 1
,

is the conformal coupling in dimension D. Imposing the boundary conditions (4.41) on both

branes, we obtain the equation that defines implicitly the discrete spectrum of mn,

F (m̃n) = Jν(m̃nη)Yν(m̃n)− Yν(m̃nη)Jν(m̃n) = 0, (6.51)

where we have defined

m̃n = mnz−, η =
z+
z−
. (6.52)

The zeros of F are all real if ν is real and η is positive. Since η is positive, the reality condition

of ν guarantees that all the KK masses are real. This provides a constraint for the possible

values of ξ depending on q,

ξ ≥ −(1− 4q)2

16q(2− 5q)
, q ≤ 2/5,

ξ ≤ −(1− 4q)2

16q(2− 5q)
, q ≥ 2/5, (6.53)

where we have used D = 5. Note that the values of ξ comprised between the minimal and the

conformal coupling are allowed for any value of q.

In Chapter 4, we concluded that the renormalized expression for the effective potential is

Vθ(ϕ) = lim
D→5

[
V D − 1

(D − 5)

1

A aD5/2(Pθ)

]
. (6.54)

Consider first V D, given in Eq. (4.36). Performing the momentum integrations, we obtain

V D = − 1

2(4π)2
(4πµ2)ε/2

1

z4−ε−

Γ(−2 + ε/2)ζ̃(ε− 4), (6.55)
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Figure 6.2: The shaded region corresponds to the allowed values in the (q –ξ) plane for a Dirichlet massless

scalar field according to Eq. (6.53). Note that the range of ξ comprised between the minimal and the conformal

coupling is allowed for any value of q

where we have defined [7]

ζ̃(s) =
∑

n

m̃−sn =
s

2πi

∫

C
t−1−s lnF (t) dt. (6.56)

This regularized expression for the effective potential is finite when the real part of ε is sufficiently

large. In the last equation we have used that F (t) has only simple zeros which are along the

real axis. The closed contour of integration C runs along the imaginary axis, from t = +i∞ to

t = −i∞, skipping the origin through an infinitesimal path which crosses the positive real axis,

and the contour is closed at infinity also through positive real infinity.

Now the problem reduces to the computation of ζ̃, which can be done in the same way as in

the case discussed in [7]. Skipping the detailed derivation, we simply give the final result:

ζ̃(−4 + ε) = −2d4 (1 + η−4+ε)− 2ε(η a)−2
(
IK + IIa4 + a4V(a)

)
+O(ε2), (6.57)

where

d4 =
1

128
(13− 56ν2 + 16ν4). (6.58)

Here we have introduced

a ≡ z<
z>

=

{
1/η, for q < 1,

η, for q > 1,

to express the result for both q > 1 and q < 1 cases simultaneously, where z> and z< are the

largest and the smallest of z+ and z−, respectively. Note that a < 1.
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Figure 6.3: For q < 1, in conformal coordinate, the singularity sits at z = 0, and the coordinate of the negative

tension brane is smaller than the coordinate for the positive tension one, η = z+/z− > 1. For q > 1, the

singularity is placed at z →∞ and z− > z+, so η < 1.

The constant coefficients IK(ν), II(ν) are calculable in principle, however their actual value

is irrelevant for the present computation (see [15] for an explicit evaluation). Finally, V(a) is

defined by (cfr. Eq. (5.3))

V(a) =
∫ ∞

0
dρ ρ3 ln

(
1− Iν(aρ)

Kν(aρ)

Kν(ρ)

Iν(ρ)

)
. (6.59)

This provides the following expression for V D

V D =
1

(4π)2

[{(1
ε
+

3

4
− γ

2
+

1

2
ln(4πµ2z20)

)
d4 + d′4

}(
1

z4−
+

1

z4+

)
(6.60)

+ d4

(
1

z4−
ln
(z−
z0

)
+

1

z4+
ln
(z+
z0

))
+
IK
z4<

+
II
z4>

+
V(a)
z4>

]
+O(ε), (6.61)

where we have introduced the conventions d4 ≡ d4(D = 5) and d′4 ≡ ∂d4(D)/∂D|D=5, since d4
depends on the dimension through (6.50).

The next step is to subtract the divergent contribution. The Seeley-DeWitt coefficient

aD5/2(Pθ) can be computed from (A.7) for a generic dimension D, so we can expand the second

term in the r.h.s of Eq. (4.51) as

1

(D − 5)

1

Aa
D
5/2(Pθ) =

1

(4π)2

[
1

ε
d4

(
1

z4−
+

1

z4+

)
− βθ d4

(
1

z4−
ln
(z−
z0

)
+

1

z4+
ln
(z+
z0

))
− δ(θ)

(
1

z4−
+

1

z4+

)]
,

(6.62)

where δ(θ) is a constant whose precise value will be unimportant.5

5For θ = 1, we find δ = (−β/3072){432−1936β−900β2+2257β3−1152(2+7(−1+β)β(1+3β))ξ+3072β(−2+
3β)(−2 + 7β)ξ2}.
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The divergent parts of the two terms in Eq. (4.51) cancel, and the finite result for the

effective potential per unit comoving volume is given by

Vθ =
1

(4π)2

[IK
z4<

+
II
z4>

+
V(a)
z4>

]
+
d4(βθ + 1)

(4π)2

[
1

z4+
ln

(
z+
z0

)
+

1

z4−
ln

(
z−
z0

)]
(6.63)

+
d4

(4π)2

[
1

z4+
+

1

z4−

]
ln(µz0).

Here, we have eliminated some terms through redefinition of µ.

As in the case of conformal fields, we must also allow for finite renormalization of the cou-

plings in front of the invariants which make up the coefficient a5/2. These have the general

dependence of the form a4±K4± ∼ z−4± . With these additions, we finally obtain:

Vθ(z+, z−) =
d4(βθ + 1)

(4π)2

[
ln (µ1z+)

z4+
+

ln (µ2z−)

z4−

]
+

1

(4π)2

∫ ∞

0
dxx3 ln

[
1− Iν(xz<)

Iν(xz>)

Kν(xz>)

Kν(xz<)

]
,

(6.64)

where µ1 and µ2 are renormalization constants, and β and d4 are given in equations (6.48) and

(6.58). This is the main result of this Section. In the limit of small separation between the

branes, (1−a)¿ 1, the integral V behaves like (1−a)−4 (see Appendix C), and the logarithmic

terms can be neglected. In this limit, the potential behaves like the one for the conformally

coupled case, given in (5.7):

Vθ(z+, z−) ∼ −
A

|z+ − z−|4
. (6.65)

For a ¿ 1, when the branes are well separated, the integral V behaves like a2ν and becomes

negligible in the limit of small a (except in the special case when ν is very close to 0). In this

case, we have

Vθ(z+, z−) ∼
d4(βθ + 1)

(4π)2

[
ln (µ1z+)

z4+
+

ln (µ2z−)

z4−

]
+O

[(
z<
z>

)2ν]
. (6.66)

Due to the presence of the logarithmic terms, it is in principle possible to adjust the parameters

µ1, µ2 so that there are convenient extrema for the moduli z+ and z−. We shall comment on

this point in the concluding Section.

Application to the Hořava Witten model

Here we shall consider an example of a contribution to the moduli effective potential in the model

of Lukas et al. [10, 9], which may be relevant for the Ekpyrotic universe [204]. As mentioned

above, this corresponds to the case q = 1/6. In principle, the fields in the action for this model

do not have the canonical form, since in addition to the coupling to the metric they have unusual

couplings to the dilaton φ. Nevertheless, they can be studied along the lines of the previous

Sections. For instance, the Heterotic M-theory model of [10, 9] contains a scalar Ψ(xα) in the

universal hypermultiplet whose vev is zero in the background solution, and whose action is given

by

S(Ψ) = −
∫ √

g d5x
1

2
e−φ(∂Ψ)2. (6.67)
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This contains a kinetic term only, but it has a non minimal form. However, changing to a new

variable,

ζ = e−φ/2Ψ,

we rewrite the action (6.67) as

S(Ψ) = −
∫ √−g d5x 1

2

(
∂ζ +

1

2
ζ ∂φ

)2

= −
∫ √−g d5x 1

2

(
∂ζ2 − 1

2

(
¤φ− 1

2
(∂φ)2

)
ζ2
)
+ boundaryterms

= −
∫
a4 d4x dy

1

2
ζ
(
−¤− 5

12

1

y2

)
ζ, (6.68)

where the indices are contracted with the five dimensional gαβ metric, and we have integrated

by parts in the first equality. For the Dirichlet case, the boundary terms ’generated’ are not

relevant since still the field ζ vanishes there. The last equation shows that the potential term

present in terms of ζ mimics a non minimal coupling to the curvature −ξR ζ2. Since the Ricci

scalar for this background is

R =
7

9

1

y2
,

we conclude that the equivalent effective non minimal coupling of ζ is ξ = 15/28. Note that

this point lies in the allowed region of values in the (q –ξ) plane defined by Eq. (6.53), which

corresponds to an index of the Bessel functions ν = 4/5.

Hence, the contribution to the moduli effective potential induced by the field Ψ is given

by (6.64) with ν = 4/5. In this case we have β = 1/5 and d4 = −10179/80000. There are, of

course, many other contributions, corresponding to all bosonic and fermionic degrees of freedom.

It turns out, however, that all bosonic contributions take a form similar to the one of the field

Ψ.If supersymmetry is unbroken, then these contributions are canceled by the contributions

from the fermionic degrees of freedom. But if the degeneracy between bosons and fermions is

broken a la Scherk-Schwartz, for instance, then we expect that the resulting effective potential

will be qualitatively similar to the one given by (6.64). A detailed study of this model is left for

future research.

6.3 Moduli stabilization

In the limit of large interbrane separation, the potential (6.64) assumes a “Coleman-Weinberg”

form for each one of the moduli,

V (y+, y−) ≈
∑

i=±

a4(yi)

{
αK4(yi) ln

[
K(yi)

µi

]
+ δσi

}
. (6.69)

Here, we have expressed the potential in terms of the ”curvature scale”

K(y) =
q

y
,

so that K4(yi) behaves like a generic geometric operator of dimension 4 on the brane [such as the

fourth power of the extrinsic curvature, or any of the operators in the integrand of Eq. (A.7)].
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Working with Ki instead of zi has the advantage of relating directly to physical quantities, and

hence it is easier to control whether we are in the range where the effective theory should be

trusted or not. In particular, we should not allow Ki to be bigger than the cut-off scale of the

theory. The constant α in (6.69) is given by

α =
(1− θ)q − 1

(4π)2
(1− q−1)4

∑
β
(Φ)
4 , (6.70)

where we sum over the contributions from all bulk fields Φ. The numerical coefficients β
(Φ)
4

are given by Eq. (6.58). The value of θ depends on the choice of integration measure in the

path integral which defines the effective potential (see Sections 6.2 and 4.4). If we adopt the

measure associated to the Einstein frame metric gαβ which enters our original action functional

(6.1), then we should take θ = 1. However, this is not the only possible choice, as we have

repeatedly emphasized. The classical action has a scaling symmetry which transforms both gαβ
and the background scalar field φ. Using a conformal transformation which involves the scalar

field, we may construct a new metric g
(s)
αβ which does not transform under scaling. If we adopt

the measure which corresponds to this new metric, then we should take θ = 1− 1/q. With this

particular choice of θ the coefficient α vanishes and the logarithmic terms in (6.69) disappear.

Nevertheless, it is far from clear that this is indeed a preferred choice6 Here we take the attitude

that the parameter θ is unknown, and that it should be fixed by a more fundamental theory of

which (6.1) is just a low energy limit.

The renormalization constants µi in (6.69) can be estimated by looking at the ”renormalized

coefficient” of the geometric terms of dimension 4 on the brane ci(K) = α ln(K/µi). In the

absence of fine-tuning, the ci(K) are expected to be of order one near the cut-off scale K ∼M ,

where M−3 is basically the five-dimensional Newton’s constant. Hence, we expect

µi ∼Me−ci/α, (6.71)

where ci = ci(M) ∼ 1. In (6.69), we have also allowed for finite renormalization of local operators

on each one of the branes. These operators are collectively denoted by δσi. In order to ensure

that the effective potential V does not severely distort the background solution, this correction

to the brane tension must be much smaller than the effective tension of the brane in the classical

background solution. From the Darmois-Israel matching conditions, this effective tension is of

order M3Ki. Hence we require

δσi ¿M3Ki ¿M4. (6.72)

In Section 6.2, we considered contributions to the effective potential from massless bulk fields.

These may have an arbitrary coupling to the curvature scalar of the standard form ξRΦ2, or

certain couplings to the background scalar field, such as the ones occurring in the Heterotic

M-theory model considered in Section 6.2. However, if the model contains massive bulk fields,

6In particular, as mentioned in Section 6.1, for certain values of the model parameters our action can be

obtained by dimensional reduction of a 5+n dimensional Einstein-Hilbert action with a cosmological term. Since

in the higher dimensional theory only gravity is present, there is only one possible choice for the metric and the

issue of the measure does not arise. The analysis of these models is performed in Chapter 7 [16] and indicates

that the logarithmic terms do indeed arise in the limit when the radius of the additional dimensions are much

smaller than the interbrane separation. For this case the relevant value of the parameter is θ = 0.
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of mass m, then we expect terms proportional to m2K2 in the effective potential. Even without

massive bulk fields, we may expect the presence of lower dimensional worldsheet operators of

the form M3K, M2K2 and MK3, due to cubic, quadratic and linear divergences in the effective

theory. Hence, we may expect that δσi has an expansion of the form

δσi(Ki) ∼ Λ4
i + γ1iM

3Ki + γ2iM
2K2

i + γ3iMK3
i + γ4iK

4
i +O(K5

i ), (6.73)

where Ki ¿ M , Λi ¿ M and γ1i ¿ 1 in order to satisfy (6.72). For completeness, the above

expansion includes the term proportional to K4
i . It should be understood that this term is only

present in the particular case θ = 1 − 1/q (corresponding to the scale invariant metric), since

for other values of θ we assume that it is reabsorbed in a redefinition of µi [see Eq. (6.71)].

The local terms may in principle stabilize the moduli at convenient locations. Note that this

effect is due to the warp factor and vanishes in flat space (where the coefficients d4 vanish). The

effect also vanishes accidentally in the RS case, because the curvature scale K(y) is constant.

The position of the minima are determined by ∂yiV = 0. This leads to the conditions

δσi =
α

q
K4
i

[
(1− q) ln

(
Ki

µi

)
+

1

4

]
+Ki

δσ′i
4q
, (6.74)

where the prime on δσi indicates derivative with respect to Ki. Also, we must require that the

minima occur at an acceptable value of the effective cosmological constant. Using the condition

(6.74), we can write the value of the potential at the minimum as

Vmin =
K4
+

4q

∑

i=±

(
Ki

K+

)4(1−q){
4α ln

(
Ki

µi

)
+ α+K−3

i δσ′i

}
. 10−122m4

p. (6.75)

The latter condition will require one fine tuning amongst the parameters in (6.73).

An interesting question is whether the effective potential (6.69) can generate a large hierarchy

and at the same time give sizable masses to the moduli. As discussed in Section 6.1, the hierarchy

is given by

h2 =
m2

m2
p

∼ K+

M

(
K+

K−

)2q−2
, (6.76)

where m ∼ TeV is the mass of the particles which live on the negative tension brane, as

perceived by the observers on the positive tension brane. Consistency with Newton’s law at

short distances requires K+ & (TeV)2/mp ∼ ( mm)−1, and consistency of perturbative analysis

requires K− . M . With these constraints, the observed hierarchy h ∼ exp(−37) can only be

accommodated for q & 5/4. To proceed, we shall distinguish two different cases.

Case a:

This is the generic case, where the coefficients γ1i, γ2i and γ3i in the expansion of δσi(K) are

not too suppressed. In this case, the logarithmic terms in the effective potential are in fact

subdominant, and the minima of the effective potential are determined by 4qδσi ≈ Kiδσ
′
i.

The present discussion applies also to the special case where θ = 1 − 1/q (corresponding

to the measure associated with the scale invariant metric g
(s)
αβ), so that no logarithmic terms

are present in the effective potential. Note that terms of the form γ4iK
4
i and γ1iM

3Ki in the
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expansion of δσi(K) [see (6.73)] cannot be avoided. The first is necessary in order to renormalize

the effective potential, and the second is already present at the tree level, so it just corresponds

to a shift in the existing parameters in the classical action.

Quite generically, this will lead to stabilization of the moduli near (or slightly below) the

cut-off scale Ki = λiM , with λi ∼ 1. Hence we have

h2 ∼ exp[2(q − 1) ln(λ+/λ−)].

Since the logarithm is of order one, an acceptable hierarchy can be generated provided that

q & 10. This is ”close” to the RS limit q → ∞. In this case, mp ∼ M . On the positive tension

brane the parameter Λ+ has to be fine tuned so that the effective cosmological constant is 122

orders of magnitude smaller than the Planck scale. A straightforward calculation shows that

the physical mass eigenvalues for the moduli ψ± in the present case are given by

m2
+ ∼ q−2m−2p K4

+ . m2
p , m2

− ∼ q−1h2m−2p K4
− . h2m2

p.

Thus, the lightest radion has a mass comparable to the TeV scale.

Case b:

This corresponds to the case where almost all of the operators in (6.73) are either extremely sup-

pressed or completely absent, due perhaps to some symmetry. In particular, we shall concentrate

on the possibility that

δσi = γ1iM
3Ki,

since an operator of this form is already present in the classical action (6.1), and it is the only

one in the expansion (6.73) which is allowed by the scaling symmetry. In this case, and assuming

for simplicity that the negative tension brane is near the cut-off scale K− ∼M , we can rewrite

(6.75) as

Vmin ∼
3αK4

+

(4q − 1)

{(
ln (K+/µ+) +

1

3

)
+ h8(q−1)/(2q−1)

(
ln (K−/µ−) +

1

3

)}

Here we are assuming that θ 6= 1 − 1/q (so that α 6= 0), since the alternative case was already

discussed in the previous subsection. For q > 1, the first term dominates and the condition

of a nearly vanishing cosmological constant forces K+ ≈ µ+e
−1/3. A fine-tuning of Λ+ will be

necessary in order to satisfy the condition (6.74) for such value of K+. The hierarchy is given

by

h2 ∼
(µ+
M

)2q−1
∼ exp

[
−(2q − 1)α−1c+

]
,

where µ+ is given by (6.71). Since the effective coupling α can be rather small, a large hi-

erarchy may be obtained even for moderate q & 1. A straightforward calculation shows

that at the minima of the effective potential (6.69) ∂2ψ+V = 12α(1 + 2q)−2a4+K
4
+ψ

−2
+ , and

∂2ψ−V ∼ αq−1a4−K
4
−ψ

−2
− . Hence, we find that the physical masses for the moduli fields ψ+ and

ψ− which appear in (6.15) are given by

m2
+ ∼ αq−2h12/(2q−1) m2

p , m2
− ∼ αq−1h2+4/(2q−1)m2

p.
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Associated with the eigenvaluem+ there is a Brans-Dicke (BD) field with7 BD parameter ωBD =

−3q/(1 + 2q), coupled to matter with Planckian suppression (see Eq. (6.39)). Therefore, we

must require m+ & (mm)−1, which in turn requires q > 2. A stronger constraint on q comes

from the eigenvalue m−, since the corresponding field is coupled to ordinary matter with TeV

strength or even higher. The mass of this field cannot be too far below the TeV, otherwise it

would have been seen in accelerators. This requires q to be rather large q & 10.

6.4 Discussion

We have studied a class of warped brane-world compactifications, with a power law warp factor

of the form a(y) = (y/y0)
q and a dilaton with profile φ ∝ ln(y/y0). Here y is the proper distance

in the extra dimension. In general, there are two different moduli y± corresponding to the

location of the branes. (in the RS limit, q → ∞, a combination of these moduli becomes pure

gauge).

In general, the effective potential induced by massless bulk fields with arbitrary curvature

coupling is given by (6.64). In the limit when the branes are very close to each other, it behaves

like V ∝ a4|y+ − y−|−4, corresponding to the usual Casimir interaction in flat space. Perhaps

more interesting is the moduli dependence due to local operators induced on the branes, which

are the dominant terms in V (y+, y−) when the branes are widely separated. Such operators break

a scaling symmetry of the classical action, which we discussed in Section 6.1, but nevertheless are

needed in order to cancel the divergences in the effective potential. If we denote by K(yi) = q/yi
the extrinsic curvature of the brane at the location y = yi (i = ±), a renormalization of the

brane tension parameters σ± in the classical action (6.1) induces terms proportional to a(yi)
4Ki

in the effective potential. These terms scale like the rest of the classical action under the

global transformation (6.21-6.22). On the other hand, the divergences in the effective potential,

proportional to the coefficient a5/2(P ), require world-sheet counterterms which are proportional

to a(yi)
4K4(yi). These have the wrong scaling behaviour [they simply do not change under

(6.21-6.22)] and hence they act as stabilizers for the moduli.

In addition, there are terms proportional to a(yi)
4K4(yi)φ(yi). The coefficient in front of

the latter terms depends on the choice of the measure in the path integral. Different choices are

possible, which are related amongst each other by dilaton dependent conformal transformations.

Because of the conformal anomaly, different choices are inequivalent, but they are simply related

by the addition of world-sheet operators to the action. These are given by the r.h.s. of (6.45).

Since φ behaves logarithmically, these terms have the form of Coleman-Weinberg type potentials

for the moduli yi, and they can also act as stabilizers for the moduli.

To conclude, we find that worldsheet operators induced on the brane at one loop easily sta-

bilize the moduli in brane-world scenarios with warped compactifications, and give them sizable

masses. If the warp factor is sufficiently steep, q & 10, then this stabilization naturally generates

a large hierarchy, as in the Randall-Sundrum model. In this case, the mass of the lightest modu-

lus is somewhat below the TeV scale. This feature is in common with the Goldberger and Wise

7Here we are considering the situation where the mass of ψ− is much larger than the mass of ψ+, and where

the visible matter is on the negative tension brane. In this case, since y− = const., visible matter is universally

coupled to the metric gµν , and the BD parameter corresponding to ψ+ can be read off from (6.15).
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mechanism [5] for the stabilization of the radion in the RS model. For q . 10, the stabilization

is also possible, but if we also demand that the hierarchy h ∼ 10−16 is generated geometrically,

then the resulting masses for the moduli would be too low.
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Chapter 7

Moduli stabilization in higher

dimensional brane models

The Randall Sundrum model has opened up a very interesting framework for model building

in particle physics, with possible cosmological implications. This scenario, however, is just the

simplest amongst a large class of higher dimensional warped geometries which deserve fuller

exploration. In this connection, one expects that more general internal spaces to contribute

non trivially to the Casimir energy and in this Chapter we shall take a step in this direction.

Our aim is twofold. On one hand, the consideration of more general spacetimes may provide

interesting extensions of the RS mechanism for the geometric origin of the hierarchy. On the

other, quantum effects in such scenarios can be qualitatively different, providing new ways of

stabilizing the radion which do not necessarily rely on the peculiar behaviour of bulk gauge

fields.

Generically, we expect that the behaviour of the effective potential for the ”moduli” should

be qualitatively different once we go beyond the RS scenario. This is indicated (even in five

dimensions) by the models with a scalar field discussed in Chapter 6 [15].

Aside from the non-local Casimir interaction between the branes which we mentioned above,

local terms which are induced by quantum effects may stabilize the moduli when we consider

warped brane worlds where the bulk is different from AdS. In the RS model both the branes and

the bulk space-time are maximally symmetric and thus any possible counter-term amounts to a

renormalization of the brane tensions. However, this is not true in general. An explicit example

is given in the previous Chapter [15], where a class of 5D models with power law warp factors

is considered. In this case, the global symmetry which is responsible for the masslessness of the

moduli at the classical level is anomalous. Thus, the effective potential develops terms which

do not scale appropriately under the global symmetry and which therefore act as stabilizers for

the moduli. Some of the 5 dimensional models considered in Chapter 6 [15] can be obtained by

dimensional reduction of 5 + D2-dimensional models, and in this Chapter we shall focus on a

class of higher dimensional models which includes those.

Specifically, we shall consider spaces with line element given by

ds2(D) = e2σ(y)ηµνdx
µdxν + e2ρ(y)R2γijdX

idXj + dy2 , (7.1)

The coordinates xµ parametrize four dimensional Minkowski space M4 and the coordinates

87
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Xi cover a D2−dimensional compact internal manifold Σ. We locate two D − 1 ≡ (4 +

D2)−dimensional branes at the fixed points of the orbifolded dimension labeled by y. Such

a metric is found as a solution of a Ddimensional system of gravity plus certain ’matter’ fields.

Depending on the field content, different warpings can arise. For instance, Gregory showed in

[205] that a six dimensional global string solution exists for negative cosmological constant, with

σ(y) = −k|y| and ρ(y) = constant. Gherghetta and Shaposhnikov [206] constructed the metric

solution of a six dimensional local string-like defect with σ(y) = ρ(y) = −k|y|. Generalizations

of this models with more extra dimensions with Σ = SD2 were considered in [207, 208] using

bulk scalar fields with a hedgehog configuration.

The authors of [209] include Yang-Mills (YM) fields with appropriately chosen gauge group,

instead. They find a series of solutions classified in terms of the Ricci flatness of the manifold

Σ: when the internal space is Ricci flat (for example a D2−dimensional torus or a Calabi-Yau

space), one obtains warp factors which can generically be expressed as sums of exponentials if

there is no YM flux; in particular, when the bulk cosmological constant is negative, a specially

simple solution with both warp factors equal to the RS one exists (including the case of higher

dimensional AdS space). Turning on some YM flux can relax the condition of the Ricci flatness

of the internal manifold. In this case, they find a solution where along the Minkowski direction

the warp is à la RS, whereas along the curved manifold it is constant. This gives the interesting

combination of a higher dimensional theory which is a hybrid between an ordinary Kaluza-Klein

theory and the RS model. In passing, we note that the phenomenology of such a scenario has

been recently considered in [210, 211].

7.1 Model

We are interested in the quantum effective action arising from a quantized bulk field on the

background space-time specified by the metric (7.1). We consider two branes of codimension

one with the topology of M4 × Σ, where the manifold Σ is taken to be Einstein and compact.

The branes sit at the orbifold fixed points and the Z2 symmetry is imposed on the solutions.

As we have already mentioned in the introduction, such solutions have been obtained in [209]

for Ricci flat internal manifolds. However, as also shown in [207, 208], more general solutions

with Σ = SD2 can be found by introducing additional matter content coming from a scalar field

with a hedgehog configuration. In the following, we show how to obtain such a solution.

The specific space-time that we consider in this Chapter corresponds to the case when the

two warp factors are equal and exponential, σ(y) = ρ(y) = −k|y|. The model consists of an G

invariant non-linear sigma model parametrized by a set of bulk scalar fields φa together with a

standard bulk gravity sector, and two boundary-branes. This is described by the action

S =

∫
dDx

√
g(D)

{
MD−2R(D) − Λ− ∂Mφa†∂Mφa − λ(φa†φa − v2)

}

−
∫
dD−1x

√
g(D−1)+ τ+ −

∫
dD−1x

√
g(D−1)− τ−. (7.2)

Our notation the following. The higher dimensional bulk indices are M,N, . . . and run over

µ, i, y; the (4 +D2) ≡ D − 1 dimensional brane indices are A,B, . . . and run over µ, i; g
(D)
MN is
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the bulk metric and g
(D−1)±
AB are the induced metrics on the branes. Finally, τ± are the brane

tensions, and M is the higher dimensional fundamental Planck mass.

Let us look more closely at the structure of the scalar fields. The equation of motion for the

scalars can be written as usual:

¤φa = −λφa. (7.3)

The role of non-dynamical auxiliary field λ is to impose the constraint

φa†φa − v2 = 0.

Differentiating this constraint twice, we can rewrite Eq. (7.3) as follows:

¤φa = −
(
∂Mφ

b∂Mφb†

v2

)
φa. (7.4)

The previous equation allows hedgehog solutions for φa for suitable choices of the group G.

Moreover, they have a constant profile along the orbifold and satisfy

∆γφ
a = −L2φa, and ∂Mφ

a†∂Mφa = e−2ρ
L2v2

R2
(7.5)

where L is a ’winding number’, and ∆γ is the Laplacian obtained from γij .

The Einstein equations for such hedgehog configurations have been studied in [206, 207, 208],

where solutions of the type (7.1) with σ(y) = ρ(y) = −ky have been found, with

k =
√
−4M2−DΛ/(D − 1)(D − 2), (7.6)

where Λ < 0. In order to obtain the space-time described previously we take two copies of a slice

of this D dimensional space comprised between y+ and y−, corresponding to the brane locations.

The two copies are glued together there. Along with the identification y − y± → 2y± − y, this
gives the topology of an S1/Z2 orbifold in the y direction.

In order for this to be a solution of our model (7.2), the brane tensions have to satisfy

τ± = ±4
√
−(D − 2)MD−2Λ/(D − 1) = ±4(D − 2)MD−2k, (7.7)

as a result of the junction conditions at the branes. Besides (7.6), the Einstein equations in the

bulk relate the hedgehog parameters to the curvature of the internal manifold Σ as

v2 =
2D2C

L2
MD−2. (7.8)

Here, since Σ is homogeneous, the dimensionless constant C is defined through R(γ)
ij = Cγij ,

and R(γ)
ij is the Ricci tensor computed out of γij .

Associated to the sigma model scalars a number of Nambu Goldstone modes will be present.

However, we shall assume that these couple to matter only through gravity, so that their effects

are negligible.
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Moduli

One interesting feature of this ansatz is that the parameter R, describing the volume of Σ, does

not appear in the equations of motion even in the case of a curved internal space. Moreover, the

positions of both branes are free at the classical level. They correspond to flat directions in the

action and thus are the relevant degrees of freedom at low energies. In the moduli approximation,

which we shall follow here, they are promoted to four dimensional scalar fields.

One crucial difference of these solutions with respect to the RS model is that they are

not homogeneous along the orbifold, even in the case when Σ is a torus1. This is due to the

compactness of Σ. In contrast with the RS model, the positions of both branes are physically

meaningful.

However, it is clear that a scaling of R is equivalent to a shift in the positions of the branes

y±. Therefore, they are not independent. Rather, only two moduli are needed. Since we will

use several combinations of the moduli along this Chapter, we summarize them briefly now:

a± ≡ e−ky± , the physical radii of Σ at the branes R± = a±R, the corresponding dimensionless

values r± = a±kR, and a ≡ e−k(y−−y+ ) = a−/a+.

In addition to the moduli, the massless sector also contains the graviton zero mode. To take

it into account, we perturb the background solution (7.1) as follows

ds2 = dy2 + e2σ(y)
[
g̃µν(x)dx

µdxν +R2γijdX
idXj

]
. (7.9)

Substituting this metric back into the action (7.2) we obtain the kinetic term for g̃ coming from

the bulk part (see [15]). The kinetic terms for the moduli y± come from the boundary terms.

A computation analogous to that in [15] gives

S(4) = −m2
P

∫
d4x
√
−g̃
{[
ψ2+ − ψ2−

]
R̃ − 4

D − 2

D − 3

[
(∂̃ψ+)

2 − (∂̃ψ−)
2
]}

, (7.10)

where ψ2± = aD−3± = e−(D−3)ky± , and the effective four dimensional Planck mass is given by

m2
P =

2

D − 3
vΣR

D2MD−2/k , with vΣ =

∫

Σ

√
γdD2X. (7.11)

We note that the moduli ψ± are Brans-Dicke (BD) fields and in the frame defined by g̃µν , the

kinetic term for ψ+ has the wrong sign. Introducing the new variables ψ and ϕ [15, 204],

ψ+ = ψ coshϕ and ψ− = ψ sinhϕ,

the Einstein frame is given by ĝµν = ψ2g̃µν . In this frame the action (7.10) takes the form

S(4) = −m2
P

∫
d4x
√
−ĝ
{
R̂+ 2

D2

D2 + 2
(∂̂ lnψ)2 + 4

D2 + 3

D2 + 2
(∂̂ϕ)2

}
, (7.12)

and now the kinetic terms are both positive definite. Moreover, we note that the modulus ψ

decouples in the limit D2 → 0, as expected, since this case corresponds to the usual RS model,

where only one modulus is present.

1In this case, the solution corresponds to a toroidal compactification of a higher dimensional AdS space.
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We are assuming that the ((D − 1) dimensional) matter fields χ
(D−1)
± are localized on each

brane and so they couple universally to the corresponding induced metrics g
(D−1)±
AB (recall

A,B, · · · = µ, i)

Smatt =
∑

±

∫
dD−1x

√
−g(D−1)± L±

(
χ±(D−1), g

(D−1)±
AB

)

=

∫
d4x

∑

±

√−g± aD2± L±
(
χ±, g±µν

)
. (7.13)

Here, we have kept the Σ−zero modes only, and integrated out the X dependence, the Σ

volume factor has been absorbed by the four dimensional matter fields χ and couplings, and

the four dimensional induced metrics are the (µ, ν) components of the (D− 1) dimensional ones

g±µν = g
(D−1)±
µν .

A repeated use of the chain rule leads to the interaction of the moduli with matter given by

Smod−matt =

∫
d4x

√
−ĝ
{
− D2

D2 + 2

∑

±

[
T̂± − 2L̂±

]
δ lnψ

+
2

D2 + 2

∑

±

a±(D2+2)/2
[
T̂± +D2L̂±

]
δϕ

}
, (7.14)

where T̂± and L̂± are defined according to
√−g± T± =

√
−ĝ T̂±, and

√−g±aD2± L± =
√
−ĝ L̂±.

The coupling of the moduli to the Lagrangian is entirely due to the dimensions along Σ being

warped, and is a generic prediction of models with a nontrivial warp factor for the extra dimen-

sions. In fact, the ’radion’ modulus ϕ is coupled to matter through (T̂ +D2L̂)±, which coincides

with the trace of the D − 1 dimensional energy momentum tensor. Moreover, this shows that

the modulus ψ decouples from matter in the RS limit D2 → 0, as it should.

Defining the canonical fields

ψ̂ = 2

√
D2

D2 + 2
mP δ lnψ, and ϕ̂ = 2

√
2
D2 + 3

D2 + 2
mP δϕ,

we obtain the equations of motion for the moduli

¤̂ψ̂ =
1

2

√
D2

D2 + 2

1

mP

[
T̂+ − 2L̂+ + T̂− − 2L̂−

]
(7.15)

¤̂ϕ̂ = − 1√
2(D2 + 3)(D2 + 2)mP

[
a(D2+2)/2

(
T̂+ +D2L̂+

)
+ a−(D2+2)/2

(
T̂− +D2L̂−

)]
.

As we explain in Sec. 7.2, we are interested in the case of a¿ 1 in order to have a substantial

redshift effect arising from the warp factors. Unless otherwise stated, we shall set 〈a+〉 = 1, so

that, with a good accuracy, a− ' a, ψ ' ψ+ ' 1 and ϕ ' ψ− ¿ 1.

Thus, from (7.15) we can read off the couplings to the two types of matter:2 ψ̂ couples to

the matter at either brane χ±, with a strength ∼ 1/mP . As for ϕ, the coupling to χ− is quite

large, of order a−(D2+2)/2/mP , and to χ+ is even smaller than Planckian, ∼ a(D2+2)/2/mP .

2In the following, we will consider only matter located on the negative tension brane. Here we just consider

other possible forms of matter at y = y+ for the sake of generality.
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Kaluza-Klein Reduction

Before the evaluation of the one-loop effective action, we turn now to the reduction in KK modes

of a bulk scalar field living in the space-time described in the previous Section.

The idea is very simple: by performing a Kaluza-Klein reduction of the higher dimensional

scalar field theory from D (with D = D1 + D2 + 1) down to D1 dimensions, we obtain an

equivalent lower dimensional theory consisting of an infinite number of massive Kaluza-Klein

modes. Specifically, the Kaluza-Klein reduction is performed by expanding the higher dimen-

sional scalar field in terms of a complete and orthogonal set of modes and then integrating out

the dependence on the extra dimensions. The masses turn out to be quantized according to

some eigenvalue problem and depend on the details of the space-time, the nature of the internal

manifold and on the bulk (higher dimensional) scalar field. The one-loop effective action can

then be evaluated by re-summing the contribution of each one of the modes.

Typically in Kaluza-Klein theory the mass eigenvalues are found explicitly and the subse-

quent evaluation of the sum over the modes does not present particular difficulties. However,

in the case of warped space-times the main difference is that the orbifold nature of the extra

dimension complicates the mass eigenvalues, which are expressed in terms of a transcendental

equation and thus cannot be found explicitly.

In the present Section we will carry out the first step of the computation, namely the Kaluza-

Klein reduction of the bulk scalar field. We will consider the most general case of a massive

non-minimally coupled scalar field and assume that Σ, a compact manifold.

The bulk scalar field Φ(X,x, y) obeys the following equation of motion:

[
−¤(D) +m2 + ξR(D)

]
Φ = 0 , (7.16)

where R(D) is the higher dimensional curvature and ¤(D) is the D’Alembertian, both computed

from the metric (7.1).

Using the explicit expression for the metric tensor, we can disentangle, in equation (7.16), the

dependence on the internal manifold from the Minkowskian one. A straightforward calculation

gives:

[
−e−2σ¤ − e−2ρ 1

R2
∆(γ) − e−τ∂yeτ∂y +

+m2 + ξe−2ρ
1

R2
R(γ) − ξF (y)

]
Φ = 0 , (7.17)

where ∆(γ) is the Laplacian related to γij , ¤ is the D1 dimensional flat D’Alembertian, and

F (y) = 2τ ′′(y) + τ ′(y)2 +D1σ
′(y)2 +D2ρ

′(y)2 ,

τ(y) = D1σ(y) +D2ρ(y) . (7.18)

We now expand the field Φ(x,X, y) in terms of a complete set of modes carrying a momentum

along the orbifold and Σ directions labeled by indexes n and l respectively,

Φ(x,X, y) =
∑

l,n

Φl,n(x)Yl(X)fl,n(y). (7.19)
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Here, Yl(X) are the generalized spherical harmonics in Σ i.e. , a complete set of solutions of the

Klein-Gordon equation on Σ:

PΣ Yl(X) ≡ 1

R2

[
−∆(γ) + ξR(γ)

]
Yl(X) = λ2l Yl(X) , (7.20)

with eigenvalues λ2l and degeneracy3 gl. If we now require Φl,n(x) to satisfy the Klein-Gordon

equation on the Minkowskian factor of the space-time M4 with masses m2
l,n,

[
−¤+m2

l,n

]
Φl,n(x) = 0 , (7.21)

we are left with a radial equation for the modes fl,n(y) of the form

e2σ
[
−e−τ∂yeτ∂y +m2 − ξF (y) + λ2l e

−2ρ
]
fl,n = m2

l,nfl,n . (7.22)

This equation is valid for any warp factors σ and ρ, and can be viewed as an eigenvalue problem

for the orbifold modes fl,n and the physical masses ml,n. Both of them depend in general on

the ’internal’ index l. In this Chapter we consider the case of two equal warp factors, with

ρ(y) = σ(y) = −k|y| . (7.23)

With D = D1 +D2 + 1 , we can specialize Eq. (7.22) to this case as

[
−e(3−D)σ∂ye(D−1)σ∂y +m2e2σ − ξF (y)e2σ

]
fl,n = (m2

l,n − λ2l )fl,n. (7.24)

We note that the operator in the l.h.s. does not depend on the internal index l. Accordingly,

in this case neither the modes fl,n nor the combination q2n ≡ m2
l,n − λ2l depend on l. In other

words, the dependence on l and n of the masses is factorized for this geometry,

m2
l,n = q2n + λ2l . (7.25)

Therefore, from now on we shall drop this index in Z. On the other hand, Eq. (7.24) is similar

to the one which arises in the RS model, and the most general solution can still be written in

terms of Bessel functions:

fβn (y) = εβ(y)
[
AβnJν

(qn
k
e−σ

)
+Bβ

nYν

(qn
k
e−σ

)]
(7.26)

where for notational convenience we have defined

εβ(y) = e−
D−1
2
σ(y)

{
y/|y| β = twisted

1 β = untwisted,
(7.27)

and

ν2 =
m2

k2
−D(D − 1)ξ +

(D − 1)2

4
. (7.28)

The index β has been introduced in order to discriminate the two possible cases of Φ being

untwisted (fn(−y) = fn(y)) or twisted (fn(−y) = −fn(y)). Imposing the appropriate boundary

3Although we assume PΣ to be either positive semidefinite or positive definite, the label l = 0 always refers to

the zero eigenvalue, i.e., λ0 = 0, the existence of this eigenvalue being set by g0 being 0 or 1.
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conditions, which can be obtained by integrating equation (7.24) across the orbifold fixed points,

we find that the eigenvalues qn are determined by the transcendental equation:

F βν

( qn
ka

)
= 0 , (7.29)

where

F βν (z) =

{
Yν(az)Jν(z)− Jν(az)Yν(z) β = twisted ,

yν(az)jν(z)− jν(az)yν(z) β = untwisted .
(7.30)

As in the RS model, the combinations of Bessel functions relevant to the untwisted case are

given by

jν(z) =
1

2
(D − 1)(1− 4ξ)Jν(z) + zJ ′ν(z) ,

yν(z) =
1

2
(D − 1)(1− 4ξ)Yν(z) + zY ′ν(z) ,

This completes the Kaluza-Klein reduction of the bulk scalar field.

In the following we will report only on the case of untwisted fields, although the case of

twisted fields can be obtained at ease with simple modifications of our calculation.

7.2 Combining ADD and RS

In this Section we propose a scenario where supersymmetry is broken at a scale ηSUSY not far

below the cutoff scale M , and the hierarchy between the electroweak and the effective Planck

scales is generated by a combination of redshift and large volume effects. Also, we discuss the

range of possible values for the dynamical (the moduli R±) and the fixed scales (the cutoff M

and the SUSY breaking scale ηSUSY).

From Eqs. (7.12) and (7.11), we see that the relation between the four dimensional effective

Planck mass and the higher dimensional one (in the four dimensional effective theory using the

Einstein frame metric ĝµν) is

m2
P ≈ (MR)D2

M

k
M2. (7.31)

We shall assume that the masses of particles (located at y = y−) are somewhat below the cutoff

M . In the four dimensional theory, these masses are redshifted down to ∼ aM . Then, the

EW/Planck hierarchy is given by

h2 ≡ a2M
2

m2
P

∼ a2

(RM)D2
k

M
∼ 10−32. (7.32)

Thus, the EW/Planck hierarchy h is explained in this model due to a combination of redshift

[2] and large volume [1] effects (even though the branes are of codimension 1). The crucial

ingredient in order for the large volume effect to be efficient (aside from having a long orbifold),

is that the additional extra space Σ exponentially grows as one moves away from the negative

tension brane (see Fig. 7.1). In this way, matter is allowed to propagate along a small Σ, of

size R−, whereas gravity is diluted since it propagates through a much larger Σ, of effective size

R+. Since the gauge interactions must not be diluted by an analogous effect, we have to assume
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that the compactification scale on the negative tension brane 1/R− is close to the fundamental

cutoff M .4

Our model solves the hierarchy problem in a fashion very similar to the models considered

in [212, 213], with two concentric branes embedded in a non compact bulk. In this references,

the hierarchy and the positions of the branes are naturally stabilized by a generalization of the

Goldberger and Wise mechanism [5] (see also [214]).

PSfrag replacements

R+ R−

⊗ Matter

Figure 7.1: Matter can propagate along the additional extra space Σ of size R−, but gravity samples a much

bigger space.

Let us now examine the constraints that we have on the moduli and the physical values they

can take. First of all, we are thinking of an inter-brane distance d = |y− − y+| somewhat larger

than the inverse curvature scale 1/k of the bulk, in order to have a substantial redshift factor

a = e−kd. On the other hand, the smallest physical length scale is given by the size of Σ at the

negative tension brane, R−. This cannot be smaller than the fundamental length of the theory

M−1 though, as argued in the previous paragraph, it should be close to it. There is a tighter

technical restriction which we shall use coming from the result for the potential that we obtain

in the next Section, (7.66). This is organized as a power series in r± = kR±, and can be trusted

only when 1/R+ is larger than the curvature scale. The same holds for 1/R−, since it is a factor

a−1 above (recall that the ratio R−/R+ coincides with the redshift factor a). Incidentally, we

remark that this corresponds to the physical situation where the size of the internal manifold Σ

is everywhere smaller than the inter-brane distance ∼ 1/k.5 So, we must assume a separation

between the fundamental cutoff M and the curvature scale k at least of order a. This leads to

the following scenario.

Consider a supersymmetric theory where the SUSY breaking scale is given by ηSUSY.Then,

the bulk cosmological constant Λ ∼ k2MD−2 is expected to be proportional to ηDSUSY, which

4Keeping only the Σ-zero mode in the action for a D − 1 dimensional Yang-Mills field FAB at y = y−

with coupling constant g2
∗(D−1)

∼ M5−D, one obtains

∫
dD−1x

√
g
(D−1)−

1

g2
∗(D−1)

FABFCD g
AC

(D−1)−
gBD
(D−1)−

'
∫
d4x

√
ĝ RD2

−

1

g2
∗(D−1)

FµνFρσ ĝ
µρĝνσ, where we used that g̃µν ' ĝµν . Thus, the four dimensional YM coupling is

identified as g2
∗(4)

= g2
∗(D−1)

/RD2
− ∼ 1/(MR−)

D2 .
5This means that in a certain range of energy the model is effectively 5 dimensional. In Appendix 6.1, we

derive the form of the dimensionally reduced theory down to 5 dimensions.
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leads to

k ∼
(ηSUSY

M

)D/2
M ¿M (7.33)

Even if SUSY is broken not far below the cut-off scale, this may lead to a curvature scale k

many orders of magnitude below M , due to the large exponent in (7.33). If the moduli R±
are stabilized near the values R+ ∼ 1/k and R− ∼ 1/M , then a ∼ k/M and from (7.32), the

hierarchy is given by

h ∼
(
k

M

)(D−2)/2
∼
(ηSUSY

M

)(D2−1)/4
. (7.34)

Note that the required hierarchy is obtained with ηSUSY within one order of magnitude of the

cut-off M for D = 11, and less than 3 orders of magnitude below M for D = 6.

This shows how the problem of the stabilization of a large hierarchy works in this model.

Having introduced a small separation between the SUSY breaking and the cutoff scales, we

obtain a stable very flat warped space-time, k ¿ M . If the potential (7.66) can stabilize the

moduli R± near the values, R+ ∼ 1/k and R− ∼ 1/M , then the effective Planck mass is very

large as compared to the EW scale. Whether or not the effective potential (7.66) can do this

job is addressed in Section 7.4.

Let us discuss the physical scales in the model in some detail. As illustrated in Fig. 7.1, the

branes are of codimension 1, so that matter (residing on the negative tension brane, at y = y−)

can propagate through a physical extra dimensional space of size ∼ R−. The mass scales on

this brane are redshifted by a factor a, thus the mass of the first KK excitations of matter fields

is 1/R. Then, from collider physics, we have to set the compactification scale 1/R & TeV, at

least.

In contrast, gravity propagates through the whole bulk space, and its KK spectrum is analo-

gous to that obtained in Sec. 7.1 for a scalar field. In particular, there are three kinds of modes,

excited along the orbifold only, along Σ only or along both, as (7.25) shows. The masses mΣ

of the first graviton KK modes along Σ are of order 1/R. However, the modes winding along

the orbifold only (the Σ zero mode) have masses given by morb ∼ ak, as in the RS model (the

curvature scale times the redshift factor). In the approximation of everywhere small Σ that we

are considering, kR± ¿ 1, this means that these modes are a factor a lighter than the modes

propagating along Σ.

This allows us to assume the SUSY breaking scale ηSUSY and the cutoff M are such that

k ∼ TeV, obtaining quite small masses for the graviton orbifold KK modesmorb ∼ aTeV. Below,

we show that such a small value does not conflict with observations, since the coupling of these

modes to matter is very suppressed. This is consistent with the assumption made above that

in the higher dimensional theory the masses of matter fields are near the cutoff M , since they

are redshifted to aM ∼ TeV, which compatible with the electroweak scale. Also, since we are

considering the limit of everywhere small internal space kR± . 1, setting k ∼ TeV implies that

the masses of matter KK fields is large enough, 1/R & TeV.

Thus, from the point of view of the 4 dimensional effective theory, KK modes from the

matter fields appear at 1/R ∼ TeV. Since the curvature scale k of the bulk is close to 1/R, this

coincides with the scale where gravity becomes higher dimensional.

In summary, we are lead to consider distribution of scales illustrated in Fig. 7.2. We set the

cutoff M and the SUSY breaking scale ηSUSY .M such that the curvature scale of the bulk is
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k ∼ TeV. We assume that some mechanism can stabilize R− near the fundamental length 1/M

and R+ ∼ 1/k. As a consequence, the masses of the graviton KK modes along the orbifold are

morb ∼ aTeV, and for the modes along Σ are mΣ ∼ TeV. 6

PSfrag replacements

1/R−

E

M & ηSUSY ∼ a−1TeV

mΣ ∼ 1/R

morb ∼ ak ∼ aTeV??

k ∼ TeV

a

Figure 7.2: The mass morb of the first KK excitations along the orbifold is much smaller than the mass mΣ of

the modes excited along the internal manifold. There is essentially the same hierarchy between the fundamental

cutoff M and the scales that determine the solution, k and R.

The curvature of this background varies from ∼M on the positive tension brane, to k . aM

on the negative tension brane. One might argue that supersymmetry is needed in order to

stabilize this other hierarchy of scales, however, supersymmetry is a common ingredient in

theories coming from M−theory, and the aim of this Chapter is to find out whether or not

in such models quantum effects can stabilize the moduli. So, we consider a scenario with

supersymmetry in D dimensions with particles that acquire a mass of order the SUSY breaking

scale ∼ k.
It remains to be seen that, indeed, the graviton KK modes along the orbifold are unobserv-

able, in spite of their relatively small masses morb ∼ ak. We see from Eqs. (7.26,7.27) that the

(unnormalized) wave function of the KK modes grows exponentially as e(D−1)k|y|/2, signaling

that the more warped the extra dimensions are, the more localized on the negative tension brane

these modes are. This implies [210] that the coupling of these graviton KK modes is amplified

with respect to that of the zero mode (∼ 1/mP ) by a factor a−(D−1)/4 = h−(D−1)/2(D−2). Then,

they are much more weakly coupled to matter ∼ 1/(108TeV) than in the RS model (∼ 1/TeV).

Thus, in spite of their relatively small mass, these KK gravitons cannot be seen individually in

accelerators. Moreover, since they are associated with only one off-the-brane dimension, they

do not have as large a multiplicity as in the usual large volume mechanism [1], and so they do

not significantly cool stars. The total rate of emission of any of such gravitons at a given energy

E < TeV can be estimated as the coupling squared times the number of states with masses

6Another interesting possibility consists of setting morb ∼ TeV so that k ∼ a−1TeV and M ∼ a−2TeV. This

could be realized in a scenario with the SUSY breaking scale ηSUSY ∼ 1/R ∼ k and the masses of particles of

order k, from the D dimensional viewpoint. In this scenario, the EW/Planck hierarchy is given by h2 ∼ a2k2/m2
P .

If the moduli are stabilized so that R+ . 1/k and R− & 1/M , then h ∼ (k/M)D, thus needing less separation

between ηSUSY and M in order to explain same hierarchy h. Moreover, one can see that the potential (7.66)

generates masses for the moduli larger than in the scenario presented so far. However, the bulk cosmological

constant Λ would be much larger than ηDSUSY.
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lighter than E [1, 3],

(
1

a(D−1)/4mP

)2 E

morb
∼ h(D−5)/(D−2) E

TeV

1

TeV2 ,

which is very small for the energies available inside stars.

Other similar scenarios that use a mixture of ADD and RS mechanisms to generate the

hierarchy are considered in [215, 213, 212].

7.3 Effective Potential

The one loop effective action Seff can be expressed as the sum over the contributions of each

mode, Sl,neff

Seff =
∑

Sl,neff .

The previous expression can be evaluated in a variety of ways (see for instance [6, 216]). Dimen-

sional regularization of the 4−dimensional Minkowski directions to 4− 2ε leads to the following

expression for the vacuum energy contribution to the effective action

Seff = −
∫
d4−2εx V reg(s) , (7.35)

with

V reg(s) = −1

2
(4π)sµ2εΓ(s)

∑

n,l

′
gl(q

2
n + λ2l )

−s , (7.36)

where the prime in the sum assumes that the zero mass mode is excluded (since it does not

contribute) and s = −2 + ε. The renormalization scale µ is introduced for dimensional reasons.

It is convenient to separate V reg into three contributions7

V reg(s) = VΣ(s) + VRS(s) + V∗(s) , (7.37)

where

VΣ(s) = − µ2ε

2(4π)−s
Γ(s)

∞∑

l=1

glλ
−2s
l , (7.38)

VRS(s) = −g0
µ4

2(4π)−s
(ka/µ)−2sΓ(s)

∞∑

n=1

x−2sn , (7.39)

V∗(s) = − µ4

2(4π)−s
(ka/µ)−2sΓ(s)

∞∑

n,l=1

gl
(
x2n + y2l

)−s
, (7.40)

with xn = qn/ka and yl = λl/ka . Thus, VΣ retains the contributions from the orbifold zero

mode (present only for an untwisted field), VRS is the contribution from the Σ zero mode (which

7Here we define λ0 = 0, so that the existence of such a zero eigenvalue or not is controlled by g0. If g0 6= 0, the

RS contribution comes about explicitly and introduces a divergence which needs to be canceled by a corresponding

contribution coming from V∗. This cancellation provides a non-trivial check of our evaluation. The case of a strictly

positive definite operator, can be obtained by putting g0 to zero.
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coincides with the potential in the RS model), and V∗ includes the contribution from mixed

states. It is clear from Eqs. (7.29) and (7.30) that xn depends on a only. Since λl scales

like 1/R, we can factor out the dependence on this modulus, defining dimensionless eigenvalues

λ̂l = Rλl, that do not depend on R. If Σ is a one-parameter space, then λl cannot depend on

any other shape moduli. However, here we are interested in the dependence on the breathing

mode R only. So, in general, yl = λ̂l/(kaR) depends on the moduli described in Sec. 7.1 through

R−.

The first term in (7.37) VΣ results from the KK excitations along the internal manifold. It

can be expressed in terms of the generalized ζ function associated to the Laplacian PΣ defined

on Σ (see Eq. (7.20)),

ζ(s) ≡ ζ(s|PΣ) =
∞∑

l=1

glλ̂
−2s
l . (7.41)

using the previous rescaling we can recast VΣ as

VΣ(−2 + ε) = − 1

32π2R4
(µR)2ε Γ(−2 + ε)ζ(−2 + ε) , (7.42)

where we redefined the renormalization constant µ. The previous expression can be elegantly

dealt with by using the Mittag-Leffler representation for the ζ function, which proves to be a

very useful tool to handle the pole structure of the ζ function, since the residues at the poles are

determined by geometrical quantities of Σ (See for example [190]). As shown in Appendix C,

ζ(s) =
1

Γ(s)





∞∑

p=0

C̃p
s−D2/2 + p

+ f(s)



 , (7.43)

where C̃p = Cp−g0 δp,D2/2 and Cp are the (integrated) Seeley-DeWitt coefficients of the operator

PΣ on Σ, p runs over the positive half integers and f(s) is an entire function. In fact, the sum

(7.43) runs over half integers, but, since Σ has no internal boundaries, the coefficients Ci/2 are

zero. Relation (7.43) can now be used to regulate VΣ, and a simple calculation gives

VΣ(s = −2 + ε) = − 1

32π2R4
(4πR2µ2)ε

[
Ω−2 + CD2/2+2

1

ε

]
, (7.44)

where Ω−2 is the constant term in the power series of Γ(s)ζ(s) around s = −2 (see Eq. (C.17)).

The term proportional to the RS contribution has been computed in [7, 11, 12, 13]. Without

going into details, we write such term as follows:

VRS = −g0
k4

32π2
(k/µ)−2ε

{
−d4

1

ε

(
1 + a4−2ε

)
+ c1 + a4c2 − 2a4V(a)

}
, (7.45)

where we have introduced (see Eqs. (5.3),6.59)

V(a) =
∫ ∞

0
dzz3 ln

(
1− kν(z)

kν(az)

iν(az)

iν(z)

)
(7.46)

and the coefficients c1 and c2 do not depend on a. Here, the coefficient d4 depends on the mass

and non-mininal coupling of Φ, and is defined through Eqs. (7.56,7.52,7.50).
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Before entering into the discussion of the higher dimensional contribution due to the mixed

KK states V∗, we can foresee now some of the details of the computation. As mentioned above,

the case when Σ is a torus corresponds to a toroidal compactification of a slice of higher dimen-

sional AdS space. Since it is a maximally symmetric space, all the geometric invariants are

constant, and so proportional to the brane tensions. Thus, the only possible divergence that can

appear is of the form
∫
d4x(1+a(D−1)). However, regardless of the dimension of Σ, the contribu-

tion from VRS contains a divergence of the form
∫
d4x(1 + a4). Of course, what happens is that

aside from the higher dimensional divergence, V∗ also contains another divergence that cancels

the RS one. This feature occurs not only when Σ is a torus. Rather, it is completely general.

As we show next and in Appendix C, the divergence of V∗ + VRS proportional to
∫
d4x(1 + a4)

is always controlled by a geometric invariant related to Σ (which trivially vanishes for a torus).

This ensures that if this divergence persists, it is because one can build some operator that

behaves like it in this background.

Let us now turn to the evaluation of V∗. First of all, let us concentrate on the sum

Γ(s)
∞∑

n,l=1

gl
(
x2n + y2l

)−s
. (7.47)

This is not straightforward to compute, however the method developed in [217, 198, 197] allows us

to perform such a calculation. Since, in our case, the evaluation does not present any particular

difficulty, we will be brief and address the reader to the original references for an introduction

to the details of the method.

The residue theorem permits us to express the sum (7.47) as a contour integral and an

appropriate choice of the contour of integration leaves us with

Γ(s)
sin(πs)

π

∑

l

gl

∫ ∞

yl

(x2 − y2l )−s
d

dx
ln [Fν(ix)] dx , (7.48)

which, by changing variable and by using some known properties of the Bessel functions can be

recast as
1

Γ(1− s)
∑

l

gl y
−2s
l

∫ ∞

1
(z2 − 1)−s

d

dz
ln [Pν(ylz)] dz, (7.49)

where

Pν(z) = Fν(iz) =
2

π
[kν(z)iν(az)− kν(az)iν(z)] , (7.50)

and

iν(z) = zI ′ν(z) +
1

2
(D − 1)(1− 4ξ)Iν(z)

kν(z) = zK ′
ν(z) +

1

2
(D − 1)(1− 4ξ)Kν(z).

We can regulate relation (7.49) using the asymptotic expansions for the Bessel functions. The

large z behaviour of iν and kν can be written as

iν(z) =

√
z

2π
ezΘ(i)(z) ,

kν(z) =

√
πz

2
e−zΘ(k)(z) , (7.51)
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where Θ(k)(z) = Θ(i)(−z) is a power series in 1/z beginning with 1. Thus, we can recast the

integrand of Eq. (7.49) in the form

Pν(ylz) = −
√
a

π
ylze

(1−a)ylzΘ(i)(ylz)Θ
(k)(aylz)

[
1− kν(ylz)iν(aylz)

iν(ylz)kν(aylz)

]
. (7.52)

Up to a constant term, lnPν can be split as

ln [Pν(ylz)] = H(1)
l (z) +H(2)

l (z) +H(3)
l (z)

with

H(1)
l (z) = ln z + (1− a)ylz ,

H(2)
l (z) = ln

[
Θ(i)(ylz)Θ

(k)(aylz)
]
,

H(3)
l (z) = ln

[
1− kν(ylz)iν(aylz)

iν(ylz)kν(aylz)

]
. (7.53)

and correspondingly,

V∗(s) = V
(1)
∗ (s) + V

(2)
∗ (s) + V

(3)
∗ (s),

with

V
(α)
∗ = − µ4

2(4π)−s
(ka/µ)−2s

1

Γ(1− s)

∞∑

l=1

gly
−2s
l

∫ ∞

1
(z2−1)−s d

dz
ln
[
H(α)
l (z)

]
dz (α = 1, 2, 3).

(7.54)

The evaluation of V
(1)
∗ (s) is analogous to the one for VΣ(s) and, once more, the Mittag-Leffler

expansion allows to express the result in terms of the heat-kernel coefficients of the operator PΣ
on Σ. We find

V
(1)
∗ (s = −2 + ε) = − 1

32π2R4
(µR)2ε

{ [
1

2
C2+D2/2 +

1

2
√
π
C5/2+D2/2

1− a
kaR

]
1

ε

+
1

2
Ω−2 +

1

2
√
π
Ω−5/2

1− a
kaR

}
(7.55)

The second term V
(2)
∗ (s) can be evaluated8 using the explicit form of Θ(i) and Θ(k):

ln
(
Θ(i)(z)Θ(k)(az)

)
'

∞∑

j=1

(
1 +

(−1)j
aj

)
dj z

−j for zÀ 1, (7.56)

the coefficients dj can be obtained by simply Taylor expanding the logarithm. Using (7.56) and

treating the sum over the eigenvalues yl as in the case of VΣ (see App. (C)), we can write V
(2)
∗

as

V
(2)
∗ (s = −2 + ε) =

1

32π2R4
(µR)2ε (7.57)

∞∑

j=1

dj
Γ(j/2)

{[
C2+D2/2−j/2 − g0δ4,j

] 1
ε
+Ω−2+j/2

}(
(kaR)j + (−kR)j

)
.

8Strictly speaking we are using an asymptotic expansion and therefore the equality sign is not exact. However,

the approximation we are making is reasonable because the integration range vary from 1 to∞ and the argument

of Θ(i) and Θ(k) is large in the region R¿ 1 and aR¿ 1.
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The third term in V
(3)
∗ (s) is finite by construction, and we can put safely s = −2,

V
(3)
∗ (s = −2) = − 1

64π2R4

∞∑

l=1

glλ̂
4
l

∫ ∞

1
(z2 − 1)2

d

dz
H(3)
l (z)dz . (7.58)

Combining the previous results, we obtain the unrenormalized Casimir energy:

V reg = − 1

32π2R4

[
∞∑

j=−1

[
(kR−)

j + (−kR+)
j
]{

γj + (βj − g0d4δ4,j)
1

ε
(µR)2ε

}

+ g0(kR)
4

{
c1 + a4c2 − 2a4V(a)− 1

ε

(
1 + a4−2ε

)
(k/µ)−2ε

}

+ 2
∞∑

l=1

glλ̂
4
l Vl(a,R−)

]
(7.59)

where

βj =





(1/2
√
π)C5/2+D2/2 for j = −1

(3/2) C2+D2/2 for j = 0

−(dj/Γ(j/2))C2−j/2+D2/2 otherwise,

(7.60)

and we understand that the Seeley-DeWitt coefficients Ci are zero if i < 0,

γj =





(1/2
√
π)Ω−5/2 for j = −1

(3/2)Ω−2 for j = 0

−(dj/Γ(j/2))Ωj/2−2 otherwise,

(7.61)

and

Vl(a,R−) =
∫ ∞

1
dz z(z2 − 1) ln

(
1− kν(ylz)

kν(ylaz)

iν(ylaz)

iν(ylz)

)
. (7.62)

Equation (7.59) shows that as we advanced above, the lower dimensional divergence coming

from the RS contribution VRS is always canceled, independently of the structure of the internal

manifold Σ. On the other hand, the contribution from the KK modes along Σ only (lower

dimensional, as well) may give a divergence corresponding to j = 0. This is controlled by the

Seeley-DeWitt coefficient CD2/2+2, and gives 1/2 of the resulting 3/2 factor in β0, the rest coming

from the mixed states in V∗. In particular, if D2 is odd, then there is no such divergence (if Σ

is boundaryless), in accordance with the absence of any operator that behaves as
∫
d4x 1/R4 in

the background, in this case.

To conclude this Section, we briefly comment on the differences appearing when we consider a

twisted bulk field. First, since there is no orbifold zero mode, its contribution VΣ is not present.

One can show that the asymptotic behaviour of the function Pν differs in two powers of the

argument, originating a change of sign in the contribution to β0 and γ0 from V
(1)
∗ . Of course,

the dj coefficients also change, and can be read from [7, 12]. In brief, one needs to change the dj
by the corresponding one, and the 3/2 factor in β0 and γ0 by −1/2. Also, we haven’t included

any brane mass terms or kinetic terms, relevant for the untwisted case only (aside from the ones

arising from the coupling to curvature). In principle, these can be different on each brane. This

changes our result in that we would have different coefficients, d±j , for the r± series.
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Until now, we have computed the unrenormalized Casimir energy (7.59) using dimensional

regularization. This allows us to isolate the divergent terms, of the form

Γdiv =
1

ε

1

32π2
1

R4

∫
d4x

D2+4∑

j=−1

βj(a
j + (−1)j)(kR)j , (7.63)

with βj given by (7.60). A finite number of divergences appear because we have computed the

one loop contribution to the effective potential.

It is well known (see e.g. [197]) that the divergences present in the effective action are given

by the Seeley-DeWitt coefficient CD/2 related to the operator in (7.16) on our D dimensional

background space-time. Since this has boundaries, nonzero boundary terms are present for

any dimension. Moreover, since the extrinsic curvature is constant in the space-time we are

considering, several powers of the intrinsic curvature of the boundaries are present. Finally, it

is easily shown that once any possible bulk term is evaluated on the background solution, it can

be recast as boundary term for this specific solution.9

So, we shall consider boundary term of the form

∑

±

∫
d(D−1)x

√
g(D−1)±RN(D−1)±, (7.64)

where N = 0, 1, 2, . . . and R(D−1)± denotes the (intrinsic) curvature computed from the induced

metrics on the branes g(D−1)±. Using the explicit expression for the metric tensor (7.1), a simple

calculation shows the previous term generates a contribution proportional to RD2−2N coming

from the brane at y+, and a contribution of the form RD2−2Na4+D2−2ε−2N from the other brane.

Then, it is clear that all the divergences in (7.63) can be dealt with operators of the form (7.64).

Specifically, we can take the following expression as the counter-term needed to renormalize the

effective action:

SCTj =
1

32π2ε

∫
dD2Xd4−2εx

{√
g(D−1)+κ

+
j R

(D2+4−j)/2
+ +

√
g(D−1)−κ

−
j R

(D2+4−j)/2
−

}

=
1

32π2ε

∫
d4−2εx

Rj

R4

{
κ+j + κ−j a

j−2ε
}

(7.65)

The index j here runs over the integers comprised between −1 and 4 +D2, and κ
±
j are renor-

malization constants. We recall that, from (7.63) and (7.60), the divergences occur for j even

only if D2 is even, and for j odd when D2 odd.

In the process of subtracting the counter-terms, finite contributions to the vacuum energy

with a logarithmic dependence on the moduli are generated. The renormalized expression can

be written as

V (R±) = −
1

32π2R4

[
∞∑

j=−1

{
(βj − g0 d4 δ4,j)

[
(kR−)

j ln(kR−)
2 + (−kR+)

j ln(kR+)
2
]

+
(
γj − βj ln (k/µ)2

) [
(kR−)

j + (−kR+)
j
]}

+ g0(kR)
4
{
c1 + a4c2 − 2a4V(a)

}
+ 2

∞∑

l=1

glλ̂
4
l Vl(a,R−)

]
(7.66)

9For instance,
∫
dDx

√
g(D)Λ =

∑
±

∫
d(D−1)x

√
g(D−1)± σ±, with σ± = ∓2Λ/(D − 1)k.



104 Moduli stabilization in higher dimensional brane models

A few remarks are now in order. First of all, note that we recast the result in order to isolate

the µ dependent terms. Such terms are not computable from our effective theory, rather they

have to be fixed by imposing a set of renormalization conditions. Secondly, notice that the result

is valid for D2 even as well as for D2 odd, and the heat-kernel coefficients automatically take

this into account.

An important remark concerns the divergence proportional to R4
+ + R4

−. This is the diver-

gence present in the RS contribution [7, 12]. For D2 odd, it is not reproduced by any of the

counter-terms in (7.64). However, this is not a problem because such divergence is canceled by

the corresponding one coming from (7.58) for j = 4.

7.4 Stabilization

The result we have obtained so far (7.66) is a potential V (R±) for the two moduli describing

the background. Using r± ≡ kR±, it can be cast as

V (r±) = −
1

32π2R4
[V+(r+) + V−(r−) + v(r+, r−)] , (7.67)

where v(R, r) contains the ’non-local’ part, and

V±(r±) =
∞∑

j=−1

(∓1)j
{
γjr

j
± + (βj − g0d4δj,4) rj± ln r2± − α±j r

j
±

}
, (7.68)

Here, the coefficients α±j are understood to be finite renormalization constants, and are nonzero

when the corresponding logarithmic term is nonzero. This is dictated by βj being zero or not

(i.e., whether or not such a term is divergent), with the sole exception of j = 4. If d4 = 0

and the Laplacian PΣ (see Eq. (7.20)) has one zero eigenvalue, g0 = 1, the logarithmic terms

corresponding to j = 4 are not associated to any divergence of the effective action, and α±4 = 0.

This situation arises, for example, when Σ is a torus.

Note that the sum goes from −1 to ∞ and we recall that from Eq. (7.60), all the βj with

j > 4 +D2 vanish identically. Thus, the term βjr
j
− appears with j running from −1 to D2 + 4,

and the same holds for the terms with α±j (there are a finite number of divergent terms).

One interesting feature of the effective potential (7.67) in both cases with D2 even and odd

is that the two leading terms in the small r± limit (corresponding to j = −1, 0) do not depend

on the mass m nor the non-minimal coupling constant ξ. This means that if we consider equal

number of fermionic and bosonic degrees of freedom, these terms cancel identically even with

non supersymmetric masses. From now on, we will focus on this case, one motivation being that

the models considered here arise mainly in string theories, and the field content of the effective

theories indeed contain equal number of bosonic and fermionic degrees of freedom. The only

change is that the sum in Eq. (7.68) will begin at j = 1 instead of j = −1. As mentioned

above, the effective potential contains a finite number of renormalization parameters α±j . Their

values are not computable from our effective theory. Rather, we shall fix them by requiring

some renormalization conditions, which determine the values for the moduli as well. Since the

moduli must be stabilized, we demand

∂r+V (r±) = ∂r−V (r±) = 0 , (7.69)
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and in order to match the observed value of the effective four dimensional cosmological constant,

we shall impose

V (r±)|min ' 10−122m4
P . (7.70)

We are interested in the limit when the size of Σ is everywhere smaller than the orbifold size,

r+ . 1 and r− ¿ 1. One can show10 that in this limit the non-local term v(r±) is exponentially

suppressed, and we can approximate the potential by the ’local’ terms V±(r±). Moreover, since

we consider only the positive powers of r± in V±, the potential at the minimum is dominated

by r+. Then, conditions (7.69) and (7.70) reduce to

V ′+(r+) = V ′−(r−) = 0, and R−4V+(r+)|min ' 10−122m4
P . (7.72)

To investigate whether this potential can stabilize the moduli, we consider separately the cases

with flat and curved Σ.

Flat Σ

This case corresponds to a toroidal compactification of a 4+D2+1 dimensional RS model (with

two codimension one branes). In this case, all the divergences have the same form, because all

geometric invariants are constant and thus proportional to the brane tensions. Thus, there will

appear a logarithmic term in the (4 +D2)-th power of r±. As can also be derived from Eqns.

(7.66), (7.60) and (7.61), setting Cj = 0 for all j 6= 0 , and g0 = 1, there is another logarithmic

term corresponding to j = 4.

Thus, the expression for the potential reduces to

V±(r±) ≈
{
∓ γ1r± + γ2r

2
± ∓ γ3r3± +

(
γ4 − d4 ln r2±

)
r4± + . . .

+ (∓1)4+D2β4+D2r4+D2± ln r2± − α±4+D2r
4+D2
± + . . .

}
. (7.73)

To illustrate better how the stabilization mechanism works in these cases, we shall discuss in

more detail the six dimensional example with Σ = S1.

10For instance, consider a the six dimensional example, with Σ = S1. As described in more detail in Subsect.

7.4, the generalized zeta function is related to the Riemann zeta function. In this case the we can easily work out

the asymptotic behaviour of the nonlocal contribution due to the mixed KK states Vl(a,R−) defined in (7.62). If

we keep the first term in the asymptotic expansion of the Bessel functions (7.51)

Vl(a,R−) ∼
∫ ∞

1

dz(z3 − z) ln
(
1− e−2(1−a)ylz

)

= −1

8

1

y4l (1− a)4
{
4 (1− a)2y2l Li3

(
e−2(1−a)yl

)
+ 6 (1− a)yl Li4

(
e−2(1−a)yl

)
+ 3 Li5

(
e−2(1−a)yl

)}
.

Taking only the first term in the series of the poly-logarithms for small arguments Lin(z) ≈ z, recalling that

yl = λ̂l/r− with λ̂l = l, gl = 2 and summing over l = 1, 2, . . . , we find to leading order

∞∑

l=1

glλ̂
4
l Vl(a,R−) ∼ −

1

(1− a)2 r
2
−e
−2(1−a)/r− . (7.71)

Thus, this contribution is safely negligible in the limit of small internal space size r− ¿ 1.
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The Laplacian (7.20) on this flat manifold is PΣ = ∂2X/R
2, and its generalized zeta function

(7.41,C.2) is related to the Riemann zeta function through

ζ(s|∂2θ ) = 2ζR(2s).

The pole structure of ζR(2s) is easily found and one immediately identifies

βj =

{
−4d5/3 for j = 5,

0 otherwise,
(7.74)

and

γj =





−2/945 for j = −1,
3ζ ′R(−4) for j = 0,

4ζ ′R(−2)d2 for j = 2,

−d4 for j = 4,

− 8djζR(j − 4)

(j − 4)(j − 2)
otherwise.

(7.75)

From (7.73), the potential is of the form

V±(r±) ≈
{
∓ γ1r± + γ2r

2
± ∓ γ3r3± +

(
γ4 − d4 ln r2±

)
r4± ∓ β5r5± ln r2± − α±5 r5± + . . .

}
. (7.76)

As we mentioned above, the renormalization constants α±5 arise from a finite renormalization

δτ± of the brane tensions,

δτ±

∫
d5x
√
g(5)± =

2π

R4

∫
d4x δτ±R

5
±,

so that α±5 = 2πδτ±/k
5. The size of δτ± is expected to be set by the SUSY breaking scale

ηSUSY so that α±5 are large in principle. Then, the main contributions to this potential arise

from the fifth and the first powers. The extremum condition for the r− modulus can be well

approximated by

δτ− '
γ1
10π

1

r4−
k5.

Setting the natural value δτ− ∼ η5SUSY, we obtain

r− ∼
(

M

ηSUSY

)1/2 k

M
,

so that indeed R− is stabilized just above the fundamental scale 1/M without fine tuning.

As for r+, we have two conditions for just one variable, δτ+. The idea is to use the renor-

malization constant δτ+ in order to satisfy V+|min ' 0, and then using this value in V ′+ = 0, the

r+ is determined. In order to be consistent, we should obtain r+ . 1. In such a case, we can

foresee from Eq. (7.76) that if α+5 has to compensate for the potential at the minimum, it has

to be of order one. But this means that δτ+ is fine tuned to a value ∼ k5 instead of η5SUSY.

Imposing explicitly these conditions, we obtain

δτ+ ∼
γ1
6π

1

r4+
k5 ∼ k5,
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and

r+ '
4γ1
3γ2
∼ 1.

We can easily check that for a twisted field this ratio is ' 0.6, in agreement with the assumption

we made above. For the untwisted case, this ratio depends on the boundary and bulk masses, so

it can be made small generically. In conclusion, besides the fine tuning needed in order to match

the four dimensional cosmological constant, no tuning is needed for the Planck/EW hierarchy

in this case.

A simple computation gives the mass that this potential induces for the canonical moduli ψ̂

and ϕ̂ of Section 7.1

m2
ψ ' − γ1

24π2
k

R3m2
P

∼ −γ1(hk)2 ∼ (1/mm)2 (7.77)

m2
ϕ ' − γ1

192π2
a−2

k

R3m2
P

∼ −γ1(aTeV)2, (7.78)

where we used 1/R ∼ k ∼ TeV and Eq. (7.34). The mass of ψ̂ is of the order of the inverse

millimeter, which is large enough in order not to cause deviations from Newton’s law at short

distances. Since, as shown in Section 7.1the coupling of ψ̂ to matter is suppressed by a Planckian

factor, its effects in accelerators are negligible as well. On the other hand, the mass for the

modulus ϕ is of 10 KeV size. From (7.15), its coupling to matter is suppressed as 1/(104TeV).

Let us briefly discuss the stabilization when we consider a higher dimensional flat Σ. As

mentioned above, with more flat dimensions, the renormalization constants related to the brane

tensions α±D−1 appear with higher powers of r±. The only change with respect to the case above

is that the condition V ′− = 0 now reads

δτ− ∼
1

rD−2−

kD−1,

and assuming a natural value for δτ− given by ηD−1SUSY, we obtain again r− ∼ (k/M)(M/ηSUSY)
1/2.

Thus, for any dimension D the modulus R− is stabilized without fine tuning near 1/M .

As for the modulus R+, we expect the potential (7.73) to stabilize it near k once the fine

tuning of δτ+ ∼ kD−1 needed for the cosmological constant is performed.

We can compute the masses for the moduli for an arbitrary number of flat internal dimen-

sions. We find that the mass for the ψ is always millimetric, whereas mϕ ∼ aTeV increases with

D2, ranging from 10 KeV for D2 = 1 to 100MeV for D2 = 6. The coupling of ϕ to matter, of

strength (see Eq. (7.15))

1/
(
h−1/(D−2) TeV

)
,

is comprised between ∼ 1/(104TeV) for D2 = 1 and ∼ 1/(100TeV) for large D2. This guarantees

that it hasn’t been produced at colliders, or has any effect in star cooling.

Curved Σ

When Σ is not flat, besides the divergences proportional to brane tensions terms (giving rise

to the power rD−1± in V±), the potential has more divergences. For instance, there can appear

divergences proportional to curvature terms, which give rise to the powers rD−3± . Accordingly,
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terms with fewer powers of r± are due to higher powers of the curvature, and in general the

effective potential takes the form

V±(r±) =
∞∑

j=1

(∓1)j
{
γjr

j
± +

(
βjr

j
± − g0d4δj,4

)
ln r2±

}
−
D−1∑

j=1

α±j r
j
±. (7.79)

As in the previous case for the brane tensions, the size of the renormalization constants

in front of these operators are expected to be of order the cutoff scale M (or ηSUSY). Finite

renormalization terms of boundary operators behave as,

M j

∫
dD−1x

√
g(D−1)±R(D−1−j)/2 =

1

R4

∫
d4x (MR±)

j =
1

R4

∫
d4xα±j r

j
±,

and we conclude that the dimensionless renormalization constants in (7.79) are large, α±j ∼
(M/k)j À 1. Thus, these terms are a series in MR± > 1 rather than in kR± < 1, the dominant

terms being with the highest powers, that is, the brane tension and the curvature terms. As

a first approximation, we can neglect the remaining terms, and minimum condition for R− is

reached naturally for R− ∼ 1/M , which is what we need (see Fig. 7.2).

However, we see that in order to obtain R+ ∼ 1/k, we need to tune the ratio of αD−1 and

αD−3. Besides, the tuning corresponding to the cosmological constant is still needed.

In principle, we could consider the case when the heat kernel coefficient C1(PΣ) is zero,

which can happen for some value of the non-minimal coupling ξ. We see from (7.60) that in

this case there is no divergence in the potential corresponding to the curvature terms.11 Then,

assuming that the next nonzero coefficient is C2, the two powers that dominate the potential

are (MR±)
D−1 and (MR±)

D−5. However, in order to stabilize R+ near 1/k, again we have to

do one fine tuning. We can say that in general, the presence of any other divergence, besides the

brane tension, spoils the efficiency of the potential in stabilizing the moduli at well separated

scales.

We conclude that, for curved Σ the potential can naturally stabilize the moduli but without

a large hierarchy.

7.5 Dimensional reduction and the 5D scalar-tensor model

In Section 7.2, we have argued that there exists a range of energies where the theory is effectively

5 dimensional, as illustrated in Fig. 7.2. In this Section we show the dimensional reduction

procedure from D = 5 + D2 dimensions down to 5 dimensions, which allows contact with the

language of the last Chapter [15]. The reduction from the higher dimensional theory (7.2) to 5

dimensions is performed by the compactification on the internal manifold Σ. This amounts to

keeping only the Σ-zero modes of the fields defined in D dimensions.

Recall that we denote collectively the four dimensional Minkowski coordinates xµ and the

orbifold x5 by xα. For the sake of simplicity, we shall consider only the breathing mode of Σ

in the internal components of the metric. As well, we shall freeze the {α, i} components (the

graviphotons) to zero. Thus, the ansatz for the metric that we shall adopt depends on the

11The same thing cannot happen for the brane tension terms, since the corresponding coefficient is C0(PΣ) = 1

always.
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internal coordinates X i only through the background geometry on Σ, and on xα through the

five dimensional graviton g
(5)
αβ , and a dilaton σ,

ds2 = g
(5)
αβ (x

γ)dxαdxβ +R2e2σ(x
γ)γijdX

idXj . (7.80)

As for the sigma model scalars, we shall also freeze them to their value in the background,

φa = φa(X i).

The action (7.2) corresponding to this ansatz is

S5 = −vΣRD2
[ ∫

d5x
√
g(5)e

D2σ
{
MD−2

(
R(5) −D2(D2 − 1)(∂σ)2(5)

)
+ Λ

}

+

∫
d4x
√
g(5)+e

D2σ τ+ +

∫
d4x
√
g(5)−e

D2σ τ−

]
, (7.81)

where g
(5)±
µν denote the metrics on the branes induced by g

(5)
αβ and we have performed the X

integration. We can rewrite this action in the (5 dimensional) Einstein frame, given by gEαβ =

e2D2σ/3g
(5)
αβ ,

S5 = − M3
5

∫
d5x
√
gE

{
RE +

1

2
(∂φ)2

E
+ Λ5e

cφ

}
(7.82)

−
∫
d4x
√
gE+ τ5+ e

cφ/2 −
∫
d4x
√
gE− τ5− e

cφ/2 (7.83)

where

c2 =
2

3

D2

D2 + 3
,

the canonical scalar field is φ = −(2D2/3c)σ, g
E±
µν are the metrics on the branes induced by

gEαβ , the 5 dimensional Planck mass is given by M 3
5 = vΣR

D2MD−2, Λ5 = M2−DΛ and τ5± =

vΣR
D2τ±.

The action (7.82) coincides with the 5 dimensional scalar-tensor model considered in Chapter

6 [15]. It was found there that this model has a solution with a power-law warp factor of the

form

ds2
E

= a2
E
(z)
(
dz2 + ηµνdx

µdxν
)
,

φ0(z) = −
√

6β(β + 1) ln(z/z0) with aE(z) = (z/z0)
β (7.84)

with β = 2/(3c2 − 2) = −(D2 + 3)/3.12

The brane operators induced by quantum effects on this background are given by positive

powers of the extrinsic curvature scale (see e.g. [15]) KE± = β/z±aE± = βz
−(β+1)
± ,

∫
d4x
√
gE±KnE± =

∫
d4x

(
z±
z0

)(4−n)β 1

zn±
∝
∫
d4x r

4+(4/3)D2−(n/3)D2
± , (7.85)

12In terms of the proper coordinate (in the 5 dimensional Einstein frame) y
E
∝ zβ+1 , a

E
(y

E
) = (y

E
/y0)

q with

q = 2/3c2 = (D2 + 3)/D2.
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where n = 1, 2, 3 . . . , we used that the conformal coordinate z = eky is the same in 5 and in D

dimensions, and a± = 1/kz±. On the other hand, we have seen in Section 7.3 that the operators

generated by the effective potential due to bulk fields in the model (7.2) are of the form

∫
d4x
√
g±RN± ∝

∫
d4xr4+D2−2N± (7.86)

where R± is the intrinsic curvature computed with the induced metrics on each brane, g±µν . Here

N = 0, 1, . . . , [D/2], and [ ] denotes the integer part. Now we can identify that these operators

correspond to a number of powers of the extrinsic curvature operator (7.85) given by

n =
6

D2
N + 1.

We note that all the induced operators can be cast as powers of the extrinsic curvature for

D2 = 1, 2, 3 and 6 only, having in the D2 = 6 case a one-to-one correspondence. For any other

value of D2, there exist higher dimensional local operators that are not simply powers of KE±,

but of some power of eφ in the 5 dimensional effective theory (7.82).

As well, last Chapter [15] raised the question that the path integral measure of a bulk

scalar field in the effective five dimensional theory (7.82) quantized on the warped vacuum

configuration (7.84) is ambiguously defined. The nontrivial profile of the scalar φ permits to

define many different conformal frames, all of them equivalent at the classical level. However,

the path integral measure can be defined covariantly with respect to any of them. It turns out

that the term proportional to
ln z+
z4+

+
ln z−
z4−

in the potential depends on this choice. Several arguments can be given in favor of possible

’preferred’ frames. For instance, with a measure covariant with respect to the 5 dimensional

Einstein frame metric gEαβ , this term is present. But if one chooses covariance with respect to

g
(5)
αβ , there is no such term. However, in the model presented here, there is no ambiguity in the

choice of the measure since in the D dimensional theory there is no scalar with nontrivial profile

along the orbifold. In the computation presented here, the choice of the measure shows up (see

Chapter 6 [15]) when we subtract the divergences Eq. (7.65), covariant precisely with respect to

the higher dimensional Einstein frame metric g
(D)
MN . As a result, when we take into account both

the 5 dimensional modes (the Σ KK zero mode) together with the D dimensional ones (the KK

modes excited along the Σ as well), we have found that there is a remaining contribution of this

form, see Eqns. (7.66,7.60,7.61). Anyhow, it should be noted that these Coleman-Weinberg-like

terms do not play a very relevant role in stabilizing of the moduli.

7.6 Discussion

In this Chapter, we have investigated the role of quantum effects arising from bulk fields in

higher dimensional brane models. Specifically, we have considered a class of warped brane

models whose topology is M4×Σ×S1/Z2, where Σ is a D2 dimensional one-parameter compact

manifold,M4 is the four dimensional Minkowski space and bothM4 and Σ directions are warped

as in the Randall Sundrum model, with two branes of codimension one sitting at the orbifold
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fixed points. Aside from the usual negative cosmological constant, a bulk sigma model scalar

field theory is used as the source of gravity in the cases of a curved internal manifold Σ. We

have identified the relevant moduli fields characterizing the background, and found the classical

action in the moduli approximation (as well as the coupling of the moduli to matter fields sitting

on the branes).

We have computed the contribution to the one-loop effective action from generic bulk scalar

fields at lowest order (i.e. the Casimir energy). The computation, similar to the one for the RS

model, is technically more complex since there are KK modes propagating along Σ, resulting in

a dependence of the Kaluza-Klein masses on the eigenvalues of the Klein-Gordon operator on

Σ. However, for the specific choice of space-time we made, where the warp factors for Σ and for

the Minkowski factor M4 are the same, the physical KK masses split as in the usual factorisable

geometries. Using the Mittag-Leffler expansion for the generalized ζ−function we were able to

express the Casimir energy in terms of heat-kernel coefficients of the internal space Σ, so that

the presence of each divergence is dictated by a certain heat-kernel coefficient. This simplifies

the renormalization of the result. An interesting nontrivial check of our result is the fact that the

RS divergence (which is lower dimensional in this model and which appears as the contribution

of the Σ zero mode) cancels out in the final result, as it should, once all contributions are added.

We renormalized the effective potential by subtracting suitable counter-terms proportional to

a number of boundary or bulk local operators. Since we work in dimensional regularization,

the subtraction is performed in the regularized space, with (4− 2ε) +D2 + 1 dimensions. As a

result, there is a mismatch in the powers of the moduli appearing in the divergent terms, and

a number of logarithmic terms (in the moduli) appear in the renormalized expression for the

effective potential.

As an application, we proposed a scenario where SUSY is broken at a scale just below the

fundamental cutoff M . This makes the curvature scale of the background to be a few orders of

magnitude below M . As a result, a large hierarchy is generated by a combination of redshift

[2] and a large volume effects [1]. The key point for the latter to be efficient (in spite of having

codimension one branes) is that the size of the internal manifold Σ (present in the bulk and on

the brane) grows as one moves away from the TeV brane, where matter lives. Therefore, this

behaves effectively as a brane with a small Σ extra space, attached to which there is a large Σ

space where only gravity propagates.

As for the stabilization, we find that, generically, the potential induced by bulk fields can

generate sizeable masses for the moduli compatible with a large hierarchy with no need of fine

tuning if Σ is flat. If it is curved, the effective potential can naturally stabilize the moduli but

without a large hierarchy.

In the model we have considered, the size of the internal space Σ is everywhere small com-

pared with the size of the orbifold. Therefore, there is a range of energy scales where the model

is effectively five dimensional (this feature is common to the Hořava-Witten model [9, 10]). From

the five-dimensional point of view, the model contains a dilaton field in the bulk, which causes

a power-law warp factor in the Einstein frame, a(y) ∝ yq, where y is the proper distance along

the extra dimension. The power q is related to the number of additional dimensions through

q = (D2 + 3)/D2 [15], which leads to 1 < q ≤ 4. Five dimensional models with power-law

warp factors were investigated in Chapter 6 [15], where it was argued that the counterterms at

the orbifold fixed points can naturally stabilize the moduli corresponding to the positions of the
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branes. However, a large hierarchy isnot expected unless the power is substantially large, q & 10.

This conclusion is consistent with the results of the present Chapter, which correspond to rela-

tively small q. In this case, the large hierarchy can only be stabilized naturally if the internal

space is flat. This case is special because the only possible counterterms are renormalizations of

the higher dimensional brane tensions.

The above arguments suggest that a large hierarchy may be obtained by considering more

general warped models, where a larger power exponent q is obtained after reducing to five

dimensions. In such cases, the stabilization of a hierarchy without fine tuning is expected even

if the internal manifold Σ is curved and all sorts of counterterms are present.



Chapter 8

Quantum self-consistency of AdS× Σ
brane models

Many generalizations of the Randall-Sundrum model fall in the quite general class of higher

dimensional warped solutions studied in [209], where a D−dimensional system of gravity plus

Yang-Mills is considered. The base spacetime is described by the following line element:

ds2 = e2σ(y)ηµνdx
µdxν + e2ρ(y)R2γijdX

idXj + dy2, (8.1)

where the coordinates xµ parametrize D1 dimensional Minkowski space M4, the coordinates

Xi cover a D2−dimensional compact internal manifold Σ of radius R and the coordinate y ∈
[−πr, πr] parametrizes the orbifold. We define D = D1 +D2 + 1 and take D1 = 4.

Depending on the geometry of the internal space, Einstein equations lead to different types

of warp factors σ(y) and ρ(y): when the internal space is a Ricci flat manifold and the Yang-

Mills flux is switched off, the general result for the warp factors is given by a combination of

exponentials. Simpler solutions with

σ(y) = ρ(y) = −k|y|, (8.2)

are found when the bulk cosmological constant is taken to be negative. Additionally, the condi-

tion of Ricci flatness of Σ can be relaxed at the price of introducing some extra bulk matter, like,

for instance, a scalar field with hedgehog configuration [207, 208]. In the above cited papers,

the set-up allows for the presence of one brane only; two brane models can be constructed by

gluing two slices of the previous spacetime and imposing the Z2−identification.
Solutions of the type AdSD1+1 × Σ are, instead, found when the internal space is non Ricci

flat without adding any extra bulk matter. In such case the warp factor along Σ is constant and

we can take

ρ(y) = 0, σ(y) = −k|y|. (8.3)

We note that in such case the requirement of a negative higher dimensional cosmological constant

can be relaxed.

In Chapter 7 [16], we have considered scenarios of the type (6.10), (8.2) and evaluated the

effective potential arising from bulk fields. Here, we extend the previous results to the second

type of spacetimes (6.10), (8.3), illustrated in Fig. 8.

113
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PSfrag replacements

⊗ Matter

R R

In contrast with the previous Chapter, there is only one modulus here, since the radius of Σ

is fixed by Einstein’s equations. From Eq. (8.1), it is clear that this line element corresponds to

the direct product space AdS5×Σ. This model represents a straightforward generalization of the

RS model, where we add some compact space Σ at each point of the RS construction. It might

be expected that upon compactification on Σ, only the the zero mode in the KK decomposition

on Σ is relevant. Thus, for small R, the RS model is recovered. We shall see that this the

case for the effective potential. The contribution from the Σ KK modes is negligible and the

potential has the same form as for in RS model (5.6). Furthermore, the contribution from the

Σ zero mode of the bulk YM gauge fields is exactly the same as in the RS model, hence it can

stabilize a large hierarchy without fine tuning, giving the radion a sizable mass.

8.1 The Model

In this Section we describe the background solution and and discuss the relevant scales of the

problem. As mentioned above, the line element (8.1) with σ(y) = −k|y| corresponds to a bulk

spacetime of the form of the direct product of 5D Anti de Sitter space AdS5 and a compact

manifold Σ, which we will assume to be one-parameter.

Randjbar-Daemi and Shaposhnikov have considered this type of solutions and showed that

they arise from a system of gravity plus Yang-Mills fields [207, 209], with bulk action given by

SBG =

∫
dDx
√
g

{
MD−2R− Λ− 1

4g2∗
FIJFIJ

}
. (8.4)

The equations of motion can be obtained in the standard way, and once the ansatz for the

metric tensor (8.1), (8.3) is used, the following independent equations are obtained:

k2 = − M2−DΛ

D1(D − 2)
+

M2−D

D1(D − 2)

F 2

4g2∗R
4
, (8.5)
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Ω

R2
=
M2−D

D − 2

{
Λ +

2D −D2 − 4

D2

F 2

4g2∗R
4

}
, (8.6)

where we have expressed the curvature RΣ of the internal manifold in terms of its radius R (Ω

is a constant):

RΣ =
D2Ω

R2
,

and
F 2

R4
= gIMgJNFIJFMN .

The previous equations (8.5), (8.6) allow us to determine the radius of the internal manifold and

the Yang-Mills flux in terms of Λ, M and k:

R2 = ΩD2P2 , (8.7)

F 2

4g2∗
= D2

2Ω
2P4(Λ +D1(D − 2)k2MD−2) , (8.8)

where, for notational convenience, we have defined

P−2 = 2M2−DΛ +D1(2D −D2 − 4)(D − 2)k2.

One immediately notice that the radius R of Σ is fixed at classical level at the price of tuning

the Yang-Mills flux according to (8.8). Furthermore, it can be easily shown that R is stable

around this value (see e.g. [218]). In this sense we point out some analogy with the recent works

[219, 220], concerning the direct product of Minkowski space and a 2-sphere. In their case the

radius of the 2-sphere is stabilized by the flux and a relaxing the tuning of such flux would

induce a de Sitter or anti-de Sitter geometry rather than Minkowski. The same is also true in

our case with the additional modification of the warp factor.

Since we are considering two branes embedded in such a spacetime, we have to add to

the action appropriate brane tension terms. It is easy to see that there are no solutions of

the type considered here, if the brane action contains only an isotropic tension term, and the

requirement of conservation of the higher dimensional energy-momentum tensor along with the

junction conditions forces us to introduce such anisotropy1 [222, 223, 221].

The brane energy-momentum tensor is then given by:

T νµ = δ(y) diag
(
τM− δνµ , τΣ−δ

j
i

)
+

+ δ(y − πr) diag
(
τM+ δνµ , τΣ+δ

j
i

)
. (8.9)

The spacetime we are considering can then be constructed by gluing two copies of a slice of

the bulk space and imposing the Z2−identification. The Israel junction conditions fix the brane

tensions to be

τM± =
D1 − 1

D1
τΣ± =

D1 − 1

D1

(
∓4D1kM

D−2
)
. (8.10)

We can now look at the physical scales to see whether such class of models suggests anything

about the gauge hierarchy problem.

1The source for such anisotropy can be due to different contributions to the vacuum energy or also due to a

background three-form field [221].
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By integrating out the extra dimensions we can write a relation between the four- and

higher-dimensional Planck scales

m2
P =

vΣ
D1 − 2

(MR)D2
M

k
MD1−2 . (8.11)

Then, the EW/Planck hierarchy can then be written, for D1 = 4, as

h2 ≡ a2M
2

m2
P

∼ a2

(RM)D2
k

M
∼ 10−32 . (8.12)

We see that, analogously to [16], the hierarchy h is expressed in terms of a and R, however

in the present case it is not possible to use both the redshift and large volume effects as in

our previous work [16]. To see this, we remind that in the case of equal warpings the crucial

ingredient was that the internal manifold was growing exponentially away from the negative

tension brane located at y = y− and this was diluting gravity as in models with large extra

dimension. On the other hand, gauge interactions, confined on the negative tension brane, were

not diluted because the size of Σ at y = y− was of order of the fundamental cut-off.

Here the situation is different as we are considering the direct product AdS×Σ. In such case,

the size, R, of the internal manifold has to be everywhere small, if we require that the extra

Σ−dimensions remain invisible to ordinary matter, confined on the wall. Since R is determined

at classical level, Einstein equations leave us with a first ’consistency’ check on such class of

models if we were going to construct any (pseudo-)realistic scenario.

If we express the cosmological constant by factoring out two powers of the mass,

Λ ∼ λ2MD−2 , (8.13)

relations (8.7), (8.8) can be recast in the following form:

F 2

4g2∗
∼ MD−2

(k2 + λ2)
(8.14)

R2 ∼ 1

k2 + λ2
. (8.15)

Now, a natural assumption is that the bulk cosmological constant is of the same order as the

higher dimensional Planck scale, λ ∼M , and k smaller than M , implying

R ∼M−1 , (8.16)

meaning that the size of the internal manifold is of order of the cut-off and thus satisfying the

requirement of small R. The previous relation also implies that

(kR)2 ∼ k2

λ2 + k2
<< 1 . (8.17)

This last condition will be tacitly used in the subsequent computation of the effective potential.

From the gauge hierarchy point of view, this class of models does not suggest any improve-

ment with respect to the RS model. As one can see from (8.12) and (8.16), the hierarchy is

resolved only through redshift effects. Obviously, one could relax the condition λ ∼M , but this

in turn would interchange the gauge hierarchy problem with the need for an ’ad hoc’ tuning

of the bulk cosmological constant, as we would have to justify a value of λ different from its

natural value M .
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8.2 KK reduction

As we pointed out in our previous Chapter, quantum effects in scenarios with more than one

extra dimension can be qualitatively different from models without internal spaces and can, in

principle, provide new ways of addressing the hierarchy. It then seems reasonable to ask the

same question in relation to the class of models described previously.

Therefore we devote this Section to the computation of the one-loop effective potential arising

from a massive bulk scalar field Φ(x,X, y) coupled non-minimally to the higher dimensional

curvature. We also point out that, as noted in [8, 105], it is possible to relate the effective

potential from a bulk scalar with the one arising from a gauge field, the computation being

virtually the same. It is possible to do so by appropriately fixing the non-minimal coupling and

the bulk mass of the scalar field to (we take D1 = 4)

ξ = 1/8 , (8.18)

m2 = −k2/2 . (8.19)

The field equation for Φ(x,X, y) is given by the Klein-Gordon equation

[
−¤D +m2 + ξR

]
Φ = 0 , (8.20)

where R is the higher dimensional curvature and ¤D the D’Alembertian, both computed from

the metric (8.1), (8.3).

Standard Kaluza-Klein theory tells us that such a higher dimensional field can be expressed

in terms of a complete set of modes, which describe a tower of fields with masses quantized

according to some eigenvalue problem. Such a decomposition is, of course, arbitrary, however a

convenient choice is

Φ(x,X, y) =
∑

l,n

Yl(X)Φl,n(x)fl,n(y) , (8.21)

where again Yl(X) are the Σ spherical harmonics (cf. Eq. (7.20))

PΣYl(X) =
1

R2

[
−∆(γ) + ξR(γ)

]
Yl(X)

=
1

R2
λ̂2l Yl(X) , (8.22)

with eigenvalues λ̂2l (independent of R) and degeneracy gl. If we now require Φl,n(x) to satisfy

the Klein-Gordon equation in Minkowski spacetime, M4, with masses m2
l,n,

[
−¤+m2

l,n

]
Φl,n(x) = 0 , (8.23)

equation (8.20) leaves us with a radial equation for the modes fl,n(y)

Dyfl,n = m2
l,nfl,n , (8.24)

where the differential operator Dy is given by

Dy = e2σ
[
−e−D1σ∂yeD1σ∂y + µ2l − 2D1ξσ

′′
]
, (8.25)
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and

µ2l = m2 +
1

R2
λ̂2l −D1(D1 + 1)k2ξ . (8.26)

The most general solution to (8.24) can be written in terms of Bessel functions and by imposing

the appropriate boundary conditions, we find that the eigenvalues mn are determined by the

transcendental equation:

F βνl

(mn,l

ka

)
= 0 . (8.27)

The function F βνl(z) is given by

F βνl(z) = Y β
νl
(az)Jβνl(z)− J

β
νl
(az)Y β

νl
(z) , (8.28)

where

ν2l =
µ2l
k2

+
D2
1

4
, (8.29)

and

Jβνl(z) = Jνl(z) (8.30)

for twisted field configurations (fn,l(−y) = −fn,l(y)) or

Jβνl(z) = jνl(z) =
1

2
D1(1− 4ξ)Jνl(z) + zJ ′νl(z) , (8.31)

for untwisted ones (fn,l(−y) = fn,l(y)). Analogous expressions are valid also for Y β
νl (z). In the

following we focus on the case of untwisted fields only.

The one loop effective action Seff can be expressed as the sum over the contributions of each

mode [216]:

Seff = −
∫
d4−2εx V (s) , (8.32)

with

V (s) = − µ2ε

2(4π)2
Γ(s)

∑

n,l

′
glm

−2s
n,l , (8.33)

where the prime in the sum assumes that the zero mass mode is excluded and s = −2 + ε. We

are using dimensional regularization and continuing along Minkowski spacetime (4 → 4 − 2ε)

and µ is a renormalization scale introduced for dimensional reasons.

In order to evaluate the sum in (8.33), we find convenient to separate the λ̂0−mode from

the rest of the tower2:

V (s) = VRS(s) + V∗(s) . (8.34)

The first term corresponds to the usual Randall-Sundrum contribution:

VRS(s) = −
(ka)4

2(4π)2
(ka/µ)−2εΓ(s)

∑

n

′
g0x

−2s
n,0 , (8.35)

2This procedure is not essential, however, by performing such spitting, the RS contribution comes about

explicitly. Moreover, the RS divergence has to cancel when the two contributions are summed and this provides

a non-trivial check of the calculation
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with xn,l = mn,l/ka. This term, present only when the eigenvalue λ̂0 = 0, has been evaluated

in [7, 12] and we report the result without further comments:

VRS = −g0
k4

32π2
(k/µ)−2ε

{
−d4

1

ε

(
1 + a4−2ε

)

+c1 + a4c2 − 2a4V(a)
}
, (8.36)

where (see Eqs. (5.3),(6.59))

V(a) =
∫ ∞

0
dzz3 ln

(
1− kν(z)

kν(az)

iν(az)

iν(z)

)
(8.37)

and the coefficients c1 and c2 do not depend on a. The remaining term in (8.34) is given by

V∗(s) = −
(ka)4

2(4π)2
(ka/µ)−2εΓ(s)

∞∑

n,l=1

glx
−2s
n,l , (8.38)

and can be handled in the usual manner by transforming it into a contour integral and by

deforming the contour appropriately, according to a general technique developed in [217, 198]

(See [197] for a comprehensive review). Standard manipulations lead to

V∗(s) = − (ka)4

2(4π)2
(ka/µ)−2ε

Γ(1− s)
∞∑

l=1

gl

∫ ∞

0
dzz−2s

d

dz
lnPνl(z) (8.39)

where

Pνl(z) = Fνl(iz) = iνl(az)kνl(z)− iνl(z)kνl(az) , (8.40)

and

iνl(z) = zI ′νl(z) +
1

2
D1(1− 4ξ)Iνl(z) ,

kνl(z) = zK ′
νl
(z) +

1

2
D1(1− 4ξ)Kνl(z) .

Now we have to analytically continue the previous expression (8.39) to the left of <(s) < 1/2.

A possible way of achieving this is to employ the uniform asymptotic expansion (UAE). This is

because the order of the Bessel function depends explicitly on the eigenvalues λ̂l. In order to

apply the UAE, we rescale the integral (8.39), z → νlz:

V∗(s) = − (ka)4

2(4π)2
(ka/µ)−2ε

Γ(1− s)
∞∑

l=1

gl

∫ ∞

0
d(νlz)(νlz)

−2s d

d(νlz)
lnPνl(νlz) , (8.41)

and to isolate the divergent part, we express the integrand as its large νl portion plus terms

leading to finite contributions.

By using (D.3), (D.4), we can recast (8.41) as the sum of three terms:

V∗(s) = V1 + V2 + V3 , (8.42)
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with

Vj = − (ka)4

2(4π)2
(ka/µ)−2ε

Γ(1− s)

∞∑

l=1

glν
2s
l

∫ ∞

0
dzz−2s

d

dz
lnHj(z) , (8.43)

and

H1(z) = (1 + a2z2)1/4e−νlη(az)(1 + z2)1/4eνlη(z) ,

H2(z) = Σ(I)
νl

(z)Σ(K)
νl

(az) ,

H3(z) = 1− e2νl(η(az)−η(z))Σ
(I)
νl (az)Σ

(K)
νl (z)

Σ
(I)
νl (z)Σ

(K)
νl (az)

,

where η(z) is defined in Appendix D. The first term is straightforward to evaluate and gives

V1 = − (ka)4

8(4π)2
(ka/µ)−2ε

{
Γ(s)ζν(s)(1 + a2s)−

− 1

2
√
π
Γ(s− 1/2)ζν(s− 1/2)(1− a2s)

}
. (8.44)

The second one is slightly more involved to evaluate. The uniform asymptotic expansion (D.10),

(D.11) allows us to write

V2 =
(ka)4

2(4π)2
(ka/µ)−2ε

{
∞∑

n=1

n∑

k=0

(1 + (−1)na2s)

σn,k
Γ(s+ n/2 + k)

Γ(k + n/2)
ζν(s+ n/2)

}
. (8.45)

In order to deal with the sum over the eigenvalues νl, we have defined the following base

ζ−function:

ζν(s) =
∞∑

l=1

glν
−2s
l =

∞∑

l=1

gl

(
λ̂2l

(kR)2
+ ν2

)−s
, (8.46)

where

ν2 =
m2

k2
−D1(1 +D1)ξ +

D2
1

4
.

The last term in (8.42) is the usual non local contribution and, since it is finite by construction,

we can safely put ε = 0:

V3 =
(ka)4

(4π)2

∞∑

l=1

glVl(a) (8.47)

where

Vl(a) =
∫ ∞

0
dzz3 ln

{
1− iνl(az)kνl(z)

iνl(z)kνl(az)

}
. (8.48)
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In order to make the R−dependence in (8.44) and (8.45) explicit, it is convenient to rescale the

above defined ζ−function by expanding the binomial. A simple calculation gives:

ζν(s) =
(kR)2s

Γ(s)

∞∑

q=0

(−1)q
q!

(kRν)2qΓ(s+ q)ζ(s+ q) (8.49)

where

ζ(s) =
∞∑

l=1

glλ̂
−2s
l (8.50)

does not depend on R. The use of (8.49) allows us to express the result in terms of the generalized

ζ−function (8.50) and the additional (Mittag-Leffler) representation for the ζ−function can then

be used to deal with the pole structure of (8.50) and express the residues at the poles in terms

of geometrical quantities [190]. The Mittag-Leffler representation for the ζ−function associated

with the operator PΣ (see, for example, [16]) is

ζ(s) =
1

Γ(s)





∞∑

p=0

C̃p
s−D2/2 + p

+ f(s)



 , (8.51)

where C̃p = Cp − g0δp,D2/2 and the Cp are the heat-kernel coefficients of the operator PΣ, p

runs over the positive half integers and f(s) is an entire function. As in the case of [16], since

the internal space Σ is boundaryless the heat-kernel coefficients of semi-integer order are zero.

Relation (8.51) can now be used to regulate the effective potential and some calculations lead

to

V (s) =
(ka)4

2(4π)2
(ka/µ)−2ε (kR)2s

∞∑

n=−1

∞∑

q=0

(1 + (−1)na2s)
(
1

ε
an,q + bn,q

)
(kR)2q+n

− g0k
4

2(4π)2
(k/µ)−2ε

{
−d4
ε

(
1 + a4−2ε

)
+ c1 + a4c2

}

+
(ka)4

(4π)2

{
g0V(a) +

∞∑

l=1

glVl(a)
}

(8.52)

where the coefficients of the previous expression can be written as

an,q =
(−1)q
q!

ν2qC̃2+D2/2−n/2−qAn (8.53)

where

A−1 =
1

8
√
π
,

A0 = −1

4
,

An =
n∑

k=0

Sn,k , for n > 1

Sn,k =
Γ(k + n/2 + s)

Γ(k + n/2)Γ(n/2 + s)
σn,k (8.54)
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The coefficients bn,q are related to the an,q via the following correspondence

bn,q = an,q(C̃p → Ω−p) ,

where the Ωp represent the finite part in the power series of Γ(s)ζ(s).

A check on the previous result is provided by the cancellation of the (lower dimensional) RS

divergence, given by

g0
k4(1 + a4)

32π2ε
(∆0 +∆2ν

2 +∆4ν
4) , (8.55)

where

∆0 = − 27

128
+

3

8
∆− 1

2
∆2 +

1

2
∆3 − 1

4
∆4

∆2 =
13

16
−∆+

1

2
∆2

∆4 = −1

8

∆ =
1

2
D1(1− 4ξ) . (8.56)

A simple inspection of (8.52) shows that the relevant terms for such a cancellation are the ones

corresponding to the couples (n, q) = (0, 2) , (2, 1) , (4, 0). Such terms can be easily extracted

from (8.52) and the use of the coefficients σn,k (the relevant ones are reported in Appendix D,

(D.12)) shows that the RS divergence is indeed canceled.

The result for the vacuum energy (8.52) is divergent and needs to be renormalized. The

counterterm action can be constructed analogously to the case of two equal warpings [16]:

Sn,q =
1

32π2ε

∑

±

∫
dDx
√
g± κ

(n,q)
± R(4+D2−n−2q)/2

± =

=
1

32π2ε

∫
d4−2εx

(kR)2q+n

R4

{
a4−2ε + (−1)n

}
κ(n,q)

where we have defined (the factor proportional to vΣ has been reabsorbed in the coefficients

κ(n,q))

κ
(n,q)
− = (−1)nκ(n,q)+ = k2q+nκ(n,q) , (8.57)

and it is easy to see that all the divergences can be reabsorbed in counterterms of the previ-

ous type. Once we subtract the counter-terms, we arrive at the following expression for the

renormalized effective potential

V (a) =
(1/R)4

2(4π)2

∞∑

n=−1

∞∑

q=0

[
an,q ln(µR)

2 + bn,q
]
(kR)2q+n

(
a4 + (−1)n

)

− g0k
4

2(4π)2
[
c1 + a4c2 + (1 + a4)d4 ln(k/µ)

2
]

+
(ka)4

(4π)2

[
g0V(a) +

∞∑

l=1

glVl(a)
]
. (8.58)
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8.3 Radion stabilization and quantum self-consistency

In the previous Section we have computed and renormalized the Casimir energy arising from a

massive bulk scalar field non-minimally coupled to the curvature and from a massless bulk gauge

field. So we are now in the position to see whether or not quantum effects provide a reasonable

stabilization mechanism for the class of models of the type AdS×Σ. To this aim, let us consider

the full action S, where we include the contribution Seff arising from a quantized field:

S = SBG + Seff , (8.59)

where we generically write the quantum contribution as

Seff = −
∫
d4x
√
g̃V (a). (8.60)

SBG is the classical background action obtained by using the ansatz for the metric (8.1) (with

ηµν → g̃µν(x)) in (8.4) and by integrating out the extra D2 + 1 dimensions. Now, varying the

full action S with respect to g̃µν(x)
δS

δg̃µν
= 0 , (8.61)

and requiring that the minimum is at g̃µν(x) = ηµν will tell us whether or not the classical

solution is spoiled by quantum effects. On the other side, varying S with respect to the radion

a
δS

δa
= 0 , (8.62)

at g̃µν(x) = ηµν , will tell us whether we can obtain an exponentially small hierarchy, a = e−πkr

(with kr ∼ 12), in which case such solution also solves the hierarchy problem. We want to stress

that one can have solutions that satisfy (8.61) but not (8.62) and therefore are self-consistent

but do not solve the hierarchy problem. A simple calculation shows that (8.61) and (8.62) are

equivalent to

V ′(a) = V (a) = 0 , (8.63)

where the prime denotes derivative with respect to a. Equation (8.63) is exactly the same as

the renormalization conditions that we imposed in the RS model.

Different situations arise depending on the bulk field content. One possibility is to consider

a the gauge field in the bulk only. The gauge fields split into a classical plus a quantum part,

Aµ = ACµ +AQµ , (8.64)

and the quantum contribution comes from AQµ . We shall consider the AdS5 components only,

which have a zero vev and do not couple to the Yang-Mills flux configuration. Alternatively, we

can quantize a bulk scalar field on the classical background (8.4).

We recast the result for the effective potential as follows:

V (a) =
k4

32π2

{
γ+ + a4γ− + VNL(a)

}
(8.65)

where γ+ and γ− do not depend on a. The non-local contribution,

VNL(a) = a4V(a) + a4
∞∑

l=1

glVl(a) , (8.66)
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is slightly more involved to inspect, however, in our case, it is sufficient to see that the con-

tribution coming from the massive Kaluza-Klein modes (involving the sum over l) is highly

suppressed with respect to the (RS) zero-mode term, proportional to V(a). This can be shown

by noticing that the dominant contribution to the integral in Vl(a) comes from the region z . 1.

Expanding the integrand in such region allows one to see that Vl(a) goes like a2νl and a simple

inspection of the sum tells us that the non-local contribution coming from the massive KK states

is proportional to powers of a1/(kR). The non local contribution can then be approximated as

ΓNL(a) ' a4V(a) . (8.67)

Fixing the field content of the theory (or the bulk parameters) will uniquely determine the

function V(a). (Such term has been evaluated for any of ν in [8]). By expanding the integrand

for small a, one finds that for bulk gauge fields

V(a) = β

ln a
, (8.68)

with β being a−independent. Instead, for a bulk scalar, one has to distinguish three possibilities:

when the order of the Bessel functions is ν = 0, this corresponds to taking

ξ =
4m2 +D2

1k
2

4D1(D1 + 1)k2
, (8.69)

when ν = 1 and this corresponds to fixing the values of ξ and m according to (8.18) and (8.19),

and finally, when ν is different from the two previous values3. In the first case, we find

V(a) = β

α+ ln a
, (8.70)

where α and β do not depend on a. The second case, obviously, gives back relation (8.68),

whereas in the third case V(a) is proportional to aN with N ≥ 4.

The previous relations along with the self-consistency condition (8.63) allow us to see in

which cases we obtain a solution to the hierarchy problem with the bonus for the solution to be

self-consistent.

By using the expression for the effective potential (8.65) and (8.68), we find that the solution

to (8.63) for the gauge field in the limit of a¿ 1, is

a ∼ e−β/γ− (8.71)

which shows that there is no need of any fine tuning in order to get an exponentially small a.

For bulk scalar fields, one can easily check that fixing the parameters ξ and m according to

(8.19) or (8.69) provides also a small hierarchy, whereas in the other cases no solution to (8.63)

is found for small values of a.

3Fixing the bulk matter content can also be understood as a sort of tuning, which can be removed only by a

more fundamental theory that leads to the specified field content. Moreover, special values of the mass of bulk

scalars are unstable under quantum corrections unless supersymmetry is present
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8.4 Discussion

In this Chapter, we have investigated the role of quantum effects arising from bulk fields in higher

dimensional brane models. Specifically, we have considered a class of warped brane models whose

topology is AdS5 × Σ, where Σ is a D2 dimensional one-parameter compact manifold and two

branes of codimension one are placed at the orbifold fixed points.

We have seen that such a set-up can be obtained from Einstein-Yang-Mills theory. Contrarily

to the case studied in the previous Chapter [16], where both the radion a and the radius of Σ are

undetermined classically, here the radius of the internal space Σ is stabilized at a size comparable

with the higher dimensional cut-off once the Yang-Mills flux is tuned according to (8.8). This

guarantees that, when matter is placed on the wall, the extra dimensions in the Σ−direction
remain invisible, as it must be. On the other hand, the fact that the size of the internal manifold

is of order 1/M , does not suggest any new way of addressing the hierarchy, which is resolved

only through a redshift effect coming from the AdS direction.

We evaluated the renormalized one-loop effective action at lowest order, namely the Casimir

energy for generic bulk fields. The resulting scalar effective potential can be related to the one

arising from quantized gauge fields with suitable values of the mass and nonmininal coupling

constant.

The computation is similar to the one carried out in Chapter 7[16], with some technical

differences due to the explicit presence of the eigenvalues of the scalar operator on the man-

ifold Σ in the order of the Bessel functions. This can be effectively dealt with by using the

uniform asymptotic expansion of the modes, which turned out slightly more involved than the

corresponding computation in the case of Chapter 7 [16]. On the other hand, the Mittag-Leffler

expansion for the generalized ζ−function allowed us to express the Casimir energy in terms of

heat-kernel coefficients of the internal space Σ as in the case previously considered in Chapter 7

[16]. The same non trivial check of the cancellation of the RS divergence works. Also the renor-

malization is carried out analogously to Chapter 7 [16] by subtracting suitable counter-terms

proportional to a number of boundary or bulk local operators.

Our analysis indicates that the Casimir forces can stabilize the radion without fine tuning

thanks to any KK modes whose index of the Bessel functions is 0 or 1. The latter is obtained

with the zero mode of a bulk gauge field, in analogy with the Randall Sundrum case [8].

For scalar fields, this leads to two extreme situations occur. One possibility is that the

splitting between the modes is small, i.e. kR À 1. If the lowest lying mode (l = 0, 1) has

an index ν < 1, then some KK modes will have νl very close to 1. In this case, irrespective

of the properties of Σ, these modes will generate a large contribution to the potential and

stabilise a large hierarchy. However, the mass of these modes is unstable to quantum effects and

supersymmetry has to be invoked.

The other situation corresponds to well separated KK modes, i.e. kR ¿ 1. In this case,

the index νl of the KK modes is larger than one. Thus, no KK mode will induce a sizable

contribution to the potential, so that only the zero mode can contribute significantly. If Σ is

curved and the scalar field is nonminimally coupled, the contribution from the zero mode is also

small. This can be seen from (8.22), (8.26) and (8.29), which imply that ν > 1 in this case.

This does not happen for the gauge boson, whose zero mode has an index ν = 1, irrespective

of Σ being flat or curved. The difference is that the scalar field couples to the Ricci scalar, whereas
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the gauge boson couples to the Ricci tensor, as in (3.28). Since the space under consideration

is factorisable, the Ricci tensor is box-diagonal and the non-compact components depend on k

but not on R. Thus, the curvature of Σ does not enter the equation of motion of the zero mode

of Aµ. In contrast with the scalar field, the gauge boson zero mode in the AdS × Σ model is

identical to the gauge boson in the RS model. In particular, the Casimir energy that it induces

can stabilize the hierarchy.



Chapter 9

Conclusions

The hierarchy problem of particle physics can be solved in the context of the the Brane World

(BW) scenario in a variety of ways. They all have in common that the ratio of the electroweak

to the Planck scales in the four dimensional effective theory is a function of the size of the

extra dimensions. This is parametrized by the radion field and is massless at tree level. Thus,

a complete solution to the hierarchy problem must include some stabilization mechanism that

fixes the radion to the suitable value and gives it a large enough mass in order to avoid unwanted

scalar interactions.

In this thesis, we explore the possibility that quantum effects provide such a mechanism.

This is particularly appealing, since no other ingredient would be needed to solve the problem.

In particular, we concentrate on the Casimir forces among the branes arising from gravity or

eventually other fields propagating in the bulk.

In ADD scenarios, with flat and large bulk [1], it does not seem easy that the Casimir energy

can stabilize a large Planck/EW hierarchy [4]. For dimensional reasons, one has a balance of

different powers of the radius. Since this has to be much larger than the fundamental scale 1/M ,

large numbers must be introduced at some point and this mechanism is no longer natural.

However, in models with warped extra dimensions this may not be the case. The scaling

of different terms competing in the effective potential strongly depend on the bulk geometry.

For instance, in the Randall Sundrum model [2] a bulk cosmological constant term depends

exponentially on the radius. This opens the possibility that the Casimir energy combined with

such terms generates naturally the hierarchy. This is indeed the case for a bulk gauge field [8],

though not for the graviton or generic scalar fields [7].

We have presented three classes of brane models where the Casimir forces (or the quantum

effects) are responsible for the large Planck/EW hierarchy. The first is presented in Chapter 6

[15] and constitutes a generalization of the RS model where a scalar field is included in the bulk.

Several supergavity models arising as effective theories of string theories include bulk scalars

with exponential potentials. These models admit vacuum configurations where the scale factor

is a power of the proper distance a(y) ∝ yq. For any q, two moduli are found, corresponding to

the brane positions, y±.

In these models, the hierarchy problem is resolved by a redshift effect, as in RS. Since the

warp factor is not so steep, the bulk size has to be large as well. We have obtained the bound
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q ≥ 5/4 in order for the model to generate the hierarchy. The couplings of the moduli to matter

reveal that one of them is very strongly coupled for q . 10. This means that the stabilization

mechanism must generate an almost Planckian mass for this modulus.

We have computed the effective potential due to generic fields in the bulk. This is of the Cole-

man Weinberg form for y± and can stabilize naturally the moduli at exponentially large/small

values. In turn, this means that the Planck/EW hierarchy is naturally generated as well. For

q . 10, the induced moduli masses are not large enough. Thus, the Casimir force induced by

bulk fields (of any spin) is an efficient stabilization mechanism that leads to a full solution of

the hierarchy problem in these models as long as the warp factor is steep enough, q & 10.

The second example is discussed in Chapter 7 [16]. It consists in an extension of the RS

model with a compact internal space that shares the same exponential warp factor with the

non compact dimensions. As in the previous model there are two moduli, corresponding to the

sizes of the internal space at the brane locations, R±. None of them is coupled to matter with

a coupling stronger than electroweak.

In these models, the hierarchy is generated by a combination of redshift [2] and large volume

[1] effects. In a scenario with supersymmetry broken very close to the cutoff ηSUSY . M , the

bulk curvature scale is rather below the cutoff k ¿M . If the moduli R− and R+ are stabilized

close toM and k, then the Planck/EW hierarchy is given by a large power of the ratio ηSUSY /M ,

depending on the spacetime dimension. The 16 orders of magnitude separating the Planck and

the EW scales are obtained from ηSUSY and M separated by less than one order of magnitude

for D = 11 and less than 3 for D = 6.

The Casimir energy induced by generic bulk fields can be computed for a generic compact

space. We have found that it naturally stabilizes the moduli R± to the required values (k and

M resp.) for a flat internal space. A natural stabilization of the hierarchy with curved internal

space seems to require more general combination of the warp factors for the compact an non

compact spaces.

The last example is considered in Chapter 8 [17], and consist of a higher dimensional gen-

eralization of the RS model where the additional internal space is not warped. These models

arise as solutions to the Einstein’s equations with Yang Mills fields in the bulk. These solutions

fix the size of the internal space, so they have only one destabilized modulus at tree level, the

radion. For the model to be phenomenologically acceptable, the volume of the internal space

must be small. Thus, the hierarchy is generated by a redshift effect, as in the RS model.

We have computed the effective potential induced by generic bulk fields for an arbitrary in-

ternal manifold. For the gauge field, the KK modes along the internal space produce a negligible

contribution to the effective potential and the contribution from the zero mode is the same as

in the RS model. Thus, the quantum effects arising from the YM gauge fields present in the

model naturally stabilize the hierarchy.

In conclusion, quite generically, the Casimir effect may stabilize a large hierarchy naturally

in warped brane models. Thus, the hierarchy problem may be solved without the need to intro-

duce other ingredients in these scenarios.
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Models with extra dimensions present attractive ways to solve long standing problems in

particle physics and cosmology. The implications of these models can be tested in the near

future. In particular, the radion is the first detectable signature in a large number of models

with extra dimensions. We believe that further research in this topic will be interesting to reveal

the viability of these theories.
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Appendix A

The Heat Kernel

In Chapter 4 we have seen that the effective potential induced by a bulk field with an action of

the form S(Φ) = (1/2)
∫
ΦP Φ can be expressed in terms of the zeta function associated to the

operator P (see Eqns. (4.39) and (4.38)), as

V D ≡ µε

2ATr ln

(
P(D)

µ2

)
= − µ

ε

2A lim
s→0

∂sζ(s,D), (A.1)

where

ζ(s,D) = Tr

[(
P(D)

µ2

)−s]
. (A.2)

Using a Mellin transform, the zeta function can be related to the so called heat kernel operator

Tr
[
e−ξ

2P(D)
]
(where the Tr is the L2 trace) according to

ζ(s,D) =
2µ2s

Γ(s)

∫ ∞

0

dξ

ξ
ξ2s Tr

[
e−ξ

2P(D)
]
. (A.3)

The heat kernel is a well known object, and for small values of ξ, it admits an asymptotic

expansion

Tr
[
f e−ξ

2P(D)
]
∼

∞∑

n=0

ξn−DaDn/2(f, P ), (A.4)

with coefficients an/2 depending on geometric quantities related to the manifold and the oper-

ator P . These are the so-called Seeley-DeWitt coefficients. For odd n, they have boundary

contributions only. Here, we give the explicit form of the first of these for a Dirichlet field with

a bulk operator P = −(¤+ E).

aD1/2(f, P ) =
−(4π)

(1−D)
2

4

∑

i=±

∫

yi

√
gif(x) d

D−1x, (A.5)

aD3/2(f, P ) =
−(4π)

(1−D)
2

384

∑

i=±

∫

yi

√
gi d

D−1x
{
f

(
96E + 16R− 8Ryy + 7K2 − 10KµνKµν

)

+ O(f;y , f;yy)
}
. (A.6)
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The most relevant for our purposes will be aD5/2:

aD5/2(f, P ) =
−(4π)

(1−D)
2

5760

∑

i=±

∫

yi

√
gi d

D−1x
{
f

(
720E2 − 450KE;y + 360E;yy

+ 15
(
7K2 − 10KµνKµν − 8Ryy + 16R

)
E

+ 20R2 − 48¤R− 17R2
yy − 8RabRab + 8RabcdRabcd

− 20RyyR+ 16RyyR− 10RyyRyy + 12R;yy + 15Ryy;yy
+ 16KµνKνρRµρ + 32KµνKρσRµρνσ −

215

8
KµνKµν Ryy

− 25KµνKµν R−
47

2
KµνKνρRρyµy −

215

16
Ryy K2

+
35

2
RK2 + 14KµνRµν K +

49

4
KµνRµyνy K − 42R;y K

− 65

128
K4 − 141

32
KµνKµν K2 +

17

2
KµνKνρKµρ K

+
777

32
(KµνKµν)2 −

327

8
KµνKνρKρσKµσ

)

+ O(f;y, ..., f;yyyy)
}
. (A.7)

Here the notation is as follows. E is a general scalar function, Rabcd = −Γabc,d + · · · is the

Riemann tensor, Rbc = Rabac is the Ricci tensor and R = Rabgab is the curvature scalar. The

extrinsic curvature is given by Kµν ≡ (1/2)∂ygµν , where gµν(y) is the induced metric on y-

constant hypersurfaces, and K = Kµν gµν . The vector normal to the boundary is ∂y so the

normal components are simply the y components. The a, b, · · · indices run over the extra

coordinate, and over the directions tangential to the branes, µ, ν, · · · . The omitted terms,

represented by O(f;y, ...), are linear combinations of the derivatives of f with coefficients which

depend on Kµν , E and its derivatives.
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Dimensional regularization vs. zeta

function regularization

Zeta function regularization

Let us rederive the main result of Section 6.2 using zeta function regularization. For simplicity,

we shall restrict attention to the case θ = 1. In this case, we have explicitly calculated the

integral (4.56) along the conformal path using both methods described in Section 4.4. This

exercise leads to the result

V = V0 −
1

(4π)2

[
−d4

(
1

z4−
ln(z−/z0)

β +
1

z4+
ln(z+/z0)

β

)
+ α̂

(
1

z4−
+

1

z4+

)]
, (B.1)

where α̂ = (β/3072){144+β
(
784− 1692β+335β2− 192(3β− 14)(3β− 2)ξ

)
}. The zeta function

associated with the operator P0 is given by

ζ0(s) = A
∫

d4k

(2π)4

∑

i

(
k2 +m2

n

µ2

)−s
. (B.2)

Performing the momentum integrals in (B.2), we have

ζ0(s) = A
µ2sz2s−4− Γ(s− 2)

(4π)2Γ(s)
ζ̃(2s− 4), (B.3)

Substituting (B.3) into (4.52), we have

V0(z+, z−) = −
1

2(4π)2z4−

[{
ln(µz−) +

3

4

}
ζ̃(−4) + ζ̃ ′(−4)

]
, (B.4)

and from (6.57) we obtain

V0(z+, z−) =
1

(4π)2

[IK
z4<

+
II
z4>

+
V(τ)
z4>

]
+

d4
(4π)2

[
1

z4+
ln(µz+) +

1

z4−
ln(µz−)

]
. (B.5)

Substituting in (B.1) we recover Eq. (6.64) up to finite renormalization of µ.
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V0 in dimensional regularization

We shall now reproduce the result for V0 by using dimensional regularization. Again, this is a

redundant exercise: the calculation of an effective potential (be it V or V0) will give the same

answer whether it is done in dimensional or in zeta function regularization. Nevertheless, it is

interesting to do it explicitly since this calculation is closest in spirit to the standard flat space

calculations in four dimensions.

Adding up the dimensionally regularized effective potential per comoving 4-volume due to

all KK modes, we have

V reg
0 =

1

2
µε
∑

n

∫
d4−εk

(2π)4−ε
ln

(
k2 +m2

n

µ2

)
. (B.6)

Performing the momentum integration for each mode, we obtain

V reg
0 = − 1

2(4π)2
(4πµ2)ε/2

1

z4−ε−

Γ(−2 + ε/2)
∑

n

m̃4−ε
n , (B.7)

where we used m̃n defined in (6.52). This regularized expression for the effective potential is

finite when the real part of ε is sufficiently large. Performing analytical continuation in ε, the

summation over KK modes
∑

n m̃
4−ε
n can be identified with the zeta function ζ̃(−4 + ε). The

pole part proportional to 1/ε is identified with

V div
0 = −1

ε

1

2(4π)2z4−
ζ̃(−4). (B.8)

Subtracting this divergent part, we get the renormalized expression for the effective potential as

V0 = V reg − V div = − lim
ε→0

1

2(4π)2

[
(4πµ2)ε/2

z4−ε−

(
1

ε
+

3

4
− γ

2

)
ζ̃(−4 + ε)− 1

ε
ζ̃(−4)

]
. (B.9)

Consequently, we find that the dimensional regularization method reproduces the previous result

(B.5).

Here, one remark is in order. In a usual 4-dimensional problem, the divergent part is given

by the Seeley-DeWitt coefficient a2. In the present case, since the background is 4-dimensional

flat space, a2 consists of only one term proportional to m4
n for each KK mode. Subtraction of

this counter term for each mode leads to the expression
∑

nm
4
n lnmn, which is still divergent.

This is not a surprising fact because the problem is essentially 5-dimensional as it is indicated

by the existence of the infinite tower of the KK modes. Usually, this point is bypassed in the

literature by evaluating the divergent sum with the help of the generalized zeta function.

Alternative regularization

In Section 6.2 and 4.4, we were interested in the class of conformally related operators Pθ, and

therefore it was important to do a dimensional extension of the spacetime such that all geometries

labeled by θ would be conformally flat. In other words, we added dimensions ”parallel” to the

brane, whose ”size” was also affected by the warp factor. It should be stressed that this was
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done for computational convenience, since V D is independent of the parameter θ only in this

regularization. Putting aside computational considerations, nothing prevents us to extend the

spacetime in any way we please, and the results should still be the same. To illustrate this point,

let us consider an alternative dimensional extension of our 5-dimensional curved space M to

a simple direct product space given by R−ε ×M. The dimensional regularization is done by

an analytic continuation of the number of added dimensions ε, while the manifold M is kept

unchanged.

Since this is a direct product space, the eigenvalues of the (5−ε)-dimensional D’Alembertian

are given by a simple summation of those in each space,M and R−ε,

λ(5−ε) = k2ω + λ.

Then, the dimensionally regularized effective potential per unit comoving volume is given by

V reg =
1

2
µε
∑

λ

∫
d−εkω
(2π)−ε

ln

(
k2ω + λ

µ2

)
. (B.10)

This quantity is evaluated by introducing the function

Υ(s) =
∑

λ

∫
d−εkω
(2π)−ε

(
k2ω + λ

µ2

)−s
= (1/4π)−ε/2

Γ(s+ ε/2)

Γ(s)
ζ1(s+ ε/2),

where ζ1 is the zeta function defined in (4.39) with θ = 1. Then, using (B.11), we can rewrite

(B.10) as

V reg = − 1

2AΥ′(0) = − 1

2A(1/4π)−ε/2Γ(ε/2)ζ1(ε/2). (B.11)

The above expression contains the object ζ1, which we have encountered in zeta function reg-

ularization. However, it should be noted that now the regularization parameter is not s, the

argument of the function Υ, but the dimension of the product space ε. Therefore, even after we

take the limit s→ 0, V reg still diverges as 1/ε.

The divergent piece in the dimensional regularization in the D dimensional problem is the

Seeley-DeWitt coefficient aD/2. From (4.39) and (4.40), it is easy to relate this divergent piece

with the value of ζ1(0) as
1

V div =
−a5/2(P1)

εA =
−1
εA ζ1(0). (B.12)

Subtracting this divergent piece from (B.11), we obtain the renormalized value

V = V reg − V div = − 1

2A
(
ζ ′1(0)− {ln

(
1/4π

)
+ γ}ζ1(0)

)
, (B.13)

where γ is Euler’s gamma. This coincides with Eq. (4.52) for θ = 1 up to a redefinition of µ

(note that with our conventions, ζ ′1(0) depends on µ.)

1Strictly speaking aD5/2 has to be evaluated in the regularized (5 + ε)-dimensional space. However, since the

added ε dimensions are trivial, it is identical to a5/2(P1).
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Appendix C

The Mittag Leffler expansion

In the present Appendix we prove Eq. (7.43). It is well known that for a strictly positive

definite Laplacian P with eigenvalues λP , the associated zeta function ζ(s|P ) = ∑λ−sP admits

a Mittag-Leffler expansion, of the form

ζ(s|P ) = 1

Γ(s)





∞∑

p=0

Cp(P )

s−D2/2 + p
+ f(s|P )



 (C.1)

where Cp(P ) are the Seeley-DeWitt coefficients related to P , with p ∈ N/2 and the function

f(s|P ) is analytic for all finite s. This is a very useful relation since it neatly shows the pole

structure of the zeta function, in terms of geometrical invariants.

A number of comments are in order before we proceed. The representation (C.1) may appear

to differ from the one introduced in Eq. (4.42). First of all, in this Appendix, we deal with

dimensionless eigenvalues, such as λ̂l apperaing in (7.41) or in (8.22). Thus, there is no need

to introduce an arbitrary renormalization scale µ, as in (4.42). On the other hand, Eq. (4.42)

contains an arbitrary (length) scale Λ. In Eq. (C.1), this is a dimensionless parameter that has

been set to one. The sum in (4.42) runs over non-negative integers, whereas in (C.1) it runs over

non-negative half integers. Both the an/2 and the Cp are Seeley-DeWitt coefficients. We denote

them differently in order to distinguish that they are associated to the full or the internal space

respectively.

We need to generalize equation (C.1) to operators with one zero eigenvalue, g0 = 1. Consider

a positive semidefinite differential operator PΣ with eigenvalues λ2l and assume that there is one

zero eigenvalue. As usual in these cases, one defines the generalized ζ function excluding this

eigenvalue (see Eq. (7.41),(8.50)),

ζ(s) =
∞∑

l=1

λ̂−2sl . (C.2)

Our main task is to express ζ(s) in terms of geometrical quantities in the form

ζ(s) =
1

Γ(s)





∞∑

p=0

C̃p
s−D2/2 + p

+ f(s)



 , (C.3)

with p ∈ N/2, for some C̃p related to the Seeley-DeWitt coefficients of PΣ. First of all, let us
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introduce the regulated zeta function associated to the operator1 PµΣ ≡ PΣ + µ2/R2,

ζµ(s) =
∞∑

l=0

(λ̂2l + µ2)−s. (C.4)

Now it is trivial to express the function ζ(s) in terms of ζµ(s),

ζ(s) = lim
µ→0

(
ζµ(s)− µ−2s

)
, (C.5)

and it is obvious that, understood as this limit, ζ(s) is infrared finite for any s, even though

ζµ(s) is only IR finite for Re(s) ≤ 0. By construction, P µ
Σ is strictly positive definite, so ζµ(s)

admits the expansion

ζµ(s) =
1

Γ(s)





∞∑

p=0

Cp(µ)

s−D2/2 + p
+ g(µ, s)



 , (C.6)

where the function g(µ, s) is analytic and the Seeley-DeWitt coefficients Cp(µ) depend polyno-

mially on µ.

From Eqns.(C.5,C.6) it follows that

ζ(s) =
1

Γ(s)
lim
µ→0





∞∑

p=0

Cp(µ)

s−D2/2 + p
+ g(µ, s)− Γ(s)µ−2s



 . (C.7)

The next step is to isolate the poles from the last term in the previous formula. We do this

expanding Γ(s) as

Γ(s) = Γ(1, s) +
∞∑

p=0

b2p
(s+ 2p)

, (C.8)

where Γ(z, s) is the incomplete gamma function, and the coefficients of the expansion are given

by b2p = (−1)2p/p!. Using (C.8) we have:

Γ(s)µ−2s =
∞∑

p=0

b2p
µ4p

s+ 2p
+

∞∑

p=0

hp(µ, s) + Γ(1, s)µ−2s, (C.9)

where we have defined

hp(µ, s) = b2p
µ−2s − µ4p
s+ 2p

. (C.10)

Eq. (C.9) allows us to write

ζ(s) =
1

Γ(s)
lim
µ→0





∞∑

p=0

C̃p(µ)

s−D2/2 + p
+ f(µ, s)



 , (C.11)

where

f(µ, s) = g(µ, s)−
∞∑

p=0

hp(µ, s)− Γ(1, s)µ−2s, (C.12)

1Note that this mass is fictitious and has nothing to neither with the physical bulk mass m (8.20) nor with

the renormalization scale.
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and the modified coefficients C̃p(µ) are then given by

C̃D2/2+2p(µ) = CD2/2+2p(µ)− b2pµ4p. (C.13)

We note that the only coefficients which are modified are CD2/2, CD2/2+1, CD2/2+2, . . . . Taking

the limit µ→ 0, we obtain the main result of this Appendix

ζ(s) =
1

Γ(s)





∞∑

p=0

C̃p
s−D2/2 + p

+ f(s)



 , (C.14)

with

C̃p ≡ lim
µ→0

C̃p(µ) = Cp(0)− δ2p,D2 , (C.15)

where δp,p′ is the Kronecker delta, the limit of Cp(µ) can be taken because they are polynomials

in µ, and the function f(s) = f(0, s) is analytic and finite by construction, although it can be

explicitly checked from (C.12).

In conclusion, the result (C.14,C.15) implies that for a Laplacian with one zero eigenvalue,

there also exists a Mittag-Leffler-like expansion for the ’primed’ zeta function (C.2,7.41,8.50),

changing only the Seeley-DeWitt coefficient CD2/2 by CD2/2 − 1. That is why we can consider

Eq. (C.6) valid in general (with either g0 = 1 or 0), replacing CD2/2 by CD2/2 − g0.
It is now easy to expand around s = p and a simple calculation gives

Γ(s)ζ(s) |s=p =
C̃D2/2−p

s− p +Ωp +O((s− p)2), (C.16)

with

Ωp ≡
∑

p′ 6=D2/2−p

C̃p′

p+ p′ −D2/2
+ f(p). (C.17)
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Appendix D

Bessel function asymptotics

Asymptotic expansions for large arguments

The asymptotic expansion for large argument z of the Bessel functions Iν and Kν can be written

as

Iν(z) =

√
z

2π
ezΘ(I)(z) ,

Kν(z) =

√
πz

2
e−zΘ(K)(z) , (D.1)

with

Θ(I)(z) '
∞∑

j=0

(−1)jΓ(ν + j + 1/2)

2jj!Γ(ν − j + 1/2)
z−j ,

Θ(I)(z) ' Θ(K)(−z) . (D.2)

Uniform Asymptotic Expansion and computation of the coeffi-

cients σn,k

In the present Appendix, we report the relevant formulas concerning the uniform asymptotic

expansion (UAE) for the altered Bessel functions, iνl(z) and kνl(z), used in the computation of

V2. By using the results reported in [197, 224], we find

iνl(νlz) =
νle

νlη

√
2πνl

(1 + z2)1/4Σ(I)
νl

(z) , (D.3)

kνl(νlz) = −
√
πνl
2
eνlη(1 + z2)1/4Σ(K)

νl
(z) , (D.4)

with

Σ(I)
νl

(z) =
1

2νl
√
1 + z2

D1(1− 4ξ)Σ1 +Σ2 , (D.5)

and

Σ(K)
νl

(z) =
1

2νl
√
1 + z2

D1(1− 4ξ)Σ3 − Σ4 , (D.6)
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where

t =
1√

1 + z2
,

η(z) =
√

1 + z2 + ln

(
z

1 +
√
1 + z2

)
.

The functions ΣI are given by

Σ1 =
∞∑

k=0

uk

νkl
,

Σ2 =
∞∑

k=0

vk

νkl
,

Σ3 =
∞∑

k=0

(−1)k uk
νkl

,

Σ4 =
∞∑

k=0

(−1)k vk
νkl

.

with the coefficients of the previous expansions expressed by the following recursion relations:

uk+1(t) =
1

2
t2(1− t2)u′k(t) +

1

8

∫ t

0
(1− 5x2)uk(x)dx

vk+1(t) = uk+1(t)−
1

2
t(1− t2)uk(t)− t2(1− t2)u′k(t)

with u0(t) = 1. It is possible to expand the previous functions in powers of νl:

Σ(I)
νl

(z) = 1 +
∞∑

j=1

pj(t)

νjl
, (D.7)

Σ(K)
νl

(z) = 1 +
∞∑

j=1

(−1)j pj(t)
νjl

, (D.8)

where

pj(t) =
D1(1− 4ξ)

2
tuj−1 + vj . (D.9)

It is now easy to see that, in order to obtain the coefficients σn,k, we only need to expand the

logarithm of Σ
(I,K)
νl (z):

ln


1 +

∞∑

j=1

pj(t)

νjl


 =

∞∑

n=1

n∑

k=0

σn,k
tn+2k

νnl
. (D.10)

ln


1 +

∞∑

j=1

(−1)j pj(t)
νj


 =

∞∑

n=1

n∑

k=0

(−1)nσn,k
tn+2k

νnl
. (D.11)
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The coefficients σn,k can be obtained by using any symbolic manipulation program. We report

here only the ones needed to cancel the RS divergence:

σ4,0 = − 27

128
+

3

8
∆− 1

2
∆2 +

1

2
∆3 − 1

4
∆4 ,

σ2,1 =
5

8
− 1

2
∆ ,

σ2,0 = − 3

16
+

1

2
∆− 1

2
∆2 , (D.12)

with ∆ given by (8.56).

Asymptotic form of V(a)
The behaviour of V(a) defined in (5.3,6.59) for a¿ 1 is given by

V(a) = − 2

νΓ(ν)2

(a
2

)2ν ∫ ∞

0
dt t2ν+3

Kν(t)

Iν(t)
+O

(
a4 ln a

)
. (D.13)

This corresponds to a large separation between branes. In this limit the integral is generically

negligible compared with the logarithmic terms in (6.64). The special case when ν = 1 or 0 does

not follow this pattern. The precise form of the expansion for small a is explicitly given in [8].

The limit of small separation between branes corresponds to 1 − a ¿ 1. In this limit, the

integral can be approximated by taking the arguments of the Bessel functions to be large. Using

the asymptotic expansion
Iν(aρ)Kν(ρ)

Kν(aρ)Iν(ρ)
∼ e−2(1−a)ρ, (D.14)

we have

V ≈
∫ ∞

0
dρρ3 ln

(
1− e−2(1−a)ρ

)

= − 1

26(1− a)4
∫ ∞

0
dx

x4

ex − 1
= − 3ζ(5)

8(1− a)4 . (D.15)

In the second equality, we performed integration by parts and a change of variable. Here, ζ is

the usual Riemann’s zeta function ζ(5) = 1.03693 · · · . Using the relation

ζ ′(−4) = 3

4π4
ζ(5), (D.16)

and substituting in (6.64), we find that in the limit of small brane separation, the effective

potential reduces to the one we had found in the massless conformally coupled case, given in

equation (5.7):

V (z+, z−) ∼ −
A

|z+ − z−|4
. (D.17)

Equation (D.16) is a particular case of a more general formula

ζ ′(2n) =
(2n)!

22n+1π2n
ζ(2n+ 1),

valid for positive integer n. This can be derived from the perhaps better known relation [225]

ζ(1− z) = 21−zπ−zζ(z)Γ(z) cos(πz/2),

by setting z = 2n+ 1 after differentiation of both sides of the equation with respect to z.
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