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Abstract

Nowadays, thanks to the increase of computers capability to solve huge and complex
problems, and also thanks to the endless effort of the geotechnical community to define
better and more sophisticated constitutive models, the challenge to predict and simulate soil
behavior has been eased. However, due to the increase in that sophistication, the number of
parameters that define the problem has also increased. Moreover, frequently, some of those
parameters do not have a real geotechnical meaning as they just come from mathematical
expressions, which makes them difficult to identify. As a consequence, more effort has to be
placed on parameters identification in order to fully define the problem.

This thesis aims to provide a methodology to facilitate the identification of parameters of soil
constitutive models by backanalysis. The best parameters are defined as those that minimize
an objective function based on the differences between measurements and computed values.
Different optimization techniques have been used in this study, from the most traditional
ones, such as the gradient based methods, to the newest ones, such as adaptive genetic
algorithms and hybrid methods. From this study, several recommendations have been put
forward in order to take the most advantage of each type of optimization technique. Along
with that, an extensive analysis has been carried out to determine the influence on soil
parameters identification of what to measure, where to measure and when to measure in the
context of tunneling. The Finite Element code Plaxis has been used as a tool for the direct
analysis. A FORTRAN code has been developed to automate the entire backanalysis procedure.
The Hardening Soil Model (HSM) has been adopted to simulate the soil behavior. Several soil
parameters of the HSM implemented in Plaxis, such as Esrgf, El¢, ¢ and ¢, have been
identified for different geotechnical scenarios. First, a synthetic tunnel case study has been
used to analyze all the different approaches that have been proposed in this thesis. Then, two
complex real cases of a tunnel construction (Barcelona Metro Line 9) and a large excavation
(Girona High-Speed Railway Station) have been presented to illustrate the potential of the
methodology. Special focus on the influence of construction procedures and instruments error
structure has been placed for the tunnel backanalysis, whereas in the station backanalysis,
more effort has been devoted to the potential of the concept of adaptive design by
backanalysis. Moreover, another real case, involving a less conventional geotechnical problem,
such as Mars surface exploratory rovers, has been also presented to test the backanalysis
methodology and the reliability of the Wong & Reece wheel-terrain model; widely adopted by
the terramechanics community, but nonetheless, still not fully accepted when analyzing
lightweight rovers as the ones that have been used in recent Mars exploratory missions.

Key words: Backanalysis, Parameters Identification, Gradient Based Methods, Adaptive
Genetic Algorithms, Hybrid Methods, Plaxis, Tunnels, Excavations and Mars Surface
Exploratory Rovers.






Resumen

Actualmente, gracias al aumento de la capacidad de los ordenadores para resolver problemas
grandes y complejos, y gracias también al gran esfuerzo de la comunidad geotécnica de definir
mejores y mas sofisticados modelos constitutivos, se ha abordado el reto de predecir y simular
el comportamiento del terreno. Sin embargo, debido al aumento de esa sofisticacién, también
ha aumentado el nimero de pardmetros que definen el problema. Ademas, frecuentemente,
muchos de esos parametros no tienen un sentido geotécnico real dado que vienen
directamente de expresiones puramente matematicas, lo cual dificulta su identificacién. Como
consecuencia, es necesario un mayor esfuerzo en la identificacién de los pardmetros para
poder definir apropiadamente el problema.

Esta tesis pretende proporcionar una metodologia que facilite la identificacién mediante el
anadlisis inverso de los pardmetros de modelos constitutivos del terreno. Los mejores
parametros se definen como aquellos que minimizan una funciéon objetivo basada en la
diferencia entre medidas y valores calculados. Diferentes técnicas de optimizacién han sido
utilizadas en este estudio, desde las mas tradicionales, como los métodos basados en el
gradiente, hasta las mas modernas, como los algoritmos genéticos adaptativos y los métodos
hibridos. De este estudio, se han extraido varias recomendaciones para sacar el mayor
provecho de cada una de las técnicas de optimizacidn. Ademas, se ha llevado a cabo un anlisis
extensivo para determinar la influencia sobre qué medir, donde medir y cudndo medir en el
contexto de la excavacion de un tunel. El cédigo de Elementos Finitos Plaxis ha sido utilizado
como herramienta de calculo del problema directo. El desarrollo de un cddigo FORTRAN ha
sido necesario para automatizar todo el procedimiento de Analisis Inverso. El modelo
constitutivo de Hardening Soil ha sido adoptado para simular el comportamiento del terreno.
Varios parametros del modelo constitutivo de Hardening implementado en Plaxis, como E;gf,
Egif, c vy @, han sido identificados para diferentes escenarios geotécnicos. Primero, se ha
utilizado un caso sintético de un tunel donde se han analizado todas las distintas técnicas que
han sido propuestas en esta tesis. Después, dos casos reales complejos de una construccion de
un tunel (Linea 9 del Metro de Barcelona) y una gran excavacién (Estacion de Girona del Tren
de Alta Velocidad) se han presentado para ilustrar el potencial de la metodologia. Un enfoque
especial en la influencia del procedimiento constructivo y la estructura del error de las
medidas se le ha dado al andlisis inverso del tunel, mientras que en el analisis inverso de la
estacion el esfuerzo se ha centrado mas en el concepto del disefio adaptativo mediante el
analisis inverso. Ademas, otro caso real, algo menos convencional en términos geotécnicos,
como es la exploracién de la superficie de Marte mediante robots, ha sido presentado para
examinar la metodologia y la fiabilidad del modelo de interacciéon suelo-rueda de Wong y
Reece; extensamente adoptado por la comunidad que trabajo en Terramecanica, pero adn no
totalmente aceptada para robots ligeros como los que se han utilizado recientemente en las
misiones de exploracién de Marte.

Palabras clave: Analisis Inverso, ldentificacion de Pardmetros, Métodos basados en el
Gradiente, Algoritmos Genéticos Adaptativos, Métodos Hibridos, Plaxis, Tlineles, Excavaciones
y Robots de Exploracion de la Superficie de Marte.
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Chapter

Introduction

As a consequence of the new challenges that engineers are currently facing, more
sophisticated techniques and powerful tools are required to tackle and solve the problems
associated with those challenges. The widely used geotechnical Finite Element Method (FEM)
is one of the best examples of those sophisticated techniques and powerful tools that have
been used over the past decades to meet those challenges. On the one hand, FEM allows
defining numerical models that closely fit the physical system; complex geometry can be
introduced, sophisticated constitutive models can be used, different stages and processes can
be defined. On the other hand, the more complex the numerical models are, the more
information needs to be introduced, and often that information, such as the parameters that
define the constitutive models, is extremely difficult to obtain.

Simplifying the scenario, where the geometry of the system is supposed to be known and
where the constitutive model that captures better the soil behavior is also known and fixed,
soil parameters remain as the only unknown variable of the problem before being capable of
predicting the soil behavior. Therefore, that is part of the reason why estimating the
parameters properly is crucially important.

Traditionally, soil parameters have been estimated from laboratory testing and in situ tests.
However, in the majority of the cases, sample extraction from the soil environment causes, to
some degree, disturbances on them, and consequently on the parameters too. Moreover,
even though supposing that the sample is not affected by any type of disturbance derived from
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the extraction, the relatively small size of the sample often makes difficult to consider the
sample representative of a geotechnical soil layer, and consequently, its parameters neither.
Those drawbacks are slightly attenuated when performing in situ tests due to: 1) No samples
are extracted from the soil, and 2) The soil volume involved in "in situ" tests is usually bigger
than the standard laboratory test samples, which makes in situ tests more likely to be
representative of a geotechnical soil layer. Nevertheless, the boundary conditions for in situ
tests are highly uncertain while in laboratory tests they are strictly defined and known.

Taking a step forward along the path of parameters estimation, there is a methodology, called
backanalysis (also known as inverse analysis), with a strong potential to identify soil
parameters based on the interaction of a conceptual model and the physical system. The
conceptual model (i.e. numerical model) is evaluated and compared with the physical system
while changing the model's input parameters (soil parameters) until the model matches the
physical system. Usually, the model represents the real problem globally, while the physical
system is represented by a set of measurements, usually extracted from in situ
instrumentation, such as inclinometers, sliding micrometers and piezometers. That makes of
backanalysis a technique capable of addressing the problem of parameters identification
globally. However, if laboratory tests are only used to apply the backanalysis procedure, it has
to be taken into account the loss of global representation derived from the reduction of soil
domain involved in the analysis.

As a result, the current thesis aims to define a methodology to estimate soil parameters from
numerical applications, as well as answering, if possible, some traditional questions related to
backanalysis such as what, where and when to measure in order to estimate reliable soil
parameters.

In order to achieve that, it was necessary to develop a software program (HBCode) capable of
managing and linking all different parts involved in a full backanalysis procedure in an
automatic manner. A novel optimization algorithm (hybrid method) and some improvements
on existing algorithms (adaptive genetic algorithms) have also been defined with that purpose.

Chapter 2 presents the backanalysis framework, where different objective functions, along
with the instrumentation error structure, the optimal layout of measuring points and the
constitutive model, used to simulate the soil behavior, are fully described.

In Chapter 3, the different optimization algorithms used in this thesis are presented in detail,
from local search methods, such as the Gauss-Newton method and the Marquardt method, to
global search techniques such as genetic algorithms, as well as a hybrid method that attempts
to optimize the two different types of techniques (local and global).

The main aspects of the HBCode are described in Chapter 4, where especial attention has been
paid to the management and manipulation of the numerical model files (Plaxis 2D - Version 9).

In Chapter 5, an extensive analysis of the methodology, applied to a synthetic case
representing a shallow tunnel, has been conducted in order to verify the applicability of the
backanalysis methodology presented in this thesis. First, a two parameter identification case

(Esrgf and c) has been studied to evaluate the strengths and weaknesses of all optimization
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algorithms presented in the thesis. Subsequently, an analysis of the in situ instrumentation
layout was also conducted, using two different tunnel scenarios (far from collapse and close to
collapse). Finally, a four parameters identification problem (E;gf, Egif, @ and c) has been

carried out.

The first real case study is presented in Chapter 6, involving the construction of the new
Barcelona Metro Line 9. Obviously, the ultimate goal of a geotechnical backanalysis is to
identify the soil parameters. However, in Chapter 6, the influence of the tunnel construction
procedure, the type of measurements involved in the analysis, and the use or not use of the
instruments error structure have been additionally studied.

In Chapter 7, the large excavation of the Girona High-Speed Railway Station has been chosen
as the second real case study. Apart from identifying the soil parameters and verifying whether
or not the hypotheses used in design were valid, the concept of adaptive design by
backanalysis has been introduced to optimize, if possible, the construction in real time.
Adaptive design by backanalysis refers to the evolution of the design caused by the update of
soil parameters values as construction progresses.

To confirm the applicability and robustness of the backanalysis methodology presented in this
thesis, in Chapter 8, it has been applied to a less conventional geotechnical scenario: Mars
surface exploratory rovers. The backanalysis performed has brought into question the
reliability of the Wong and Reece wheel-terrain model, widely accepted and used by the
terramechanics community.

Finally, in Chapter 9, the conclusions and future research are presented.
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Backanalysis

2.1 Introduction

The use of commercial software based on the Finite Element Method (FEM) has become very
popular in geotechnical engineering. Moreover, those programs continuously incorporate
more sophisticated constitutive models to simulate soil behavior, and consequently, more
parameters are required to define them. Frequently, some parameters, especially in
sophisticated constitutive models, do not have a real geotechnical meaning as they just come
from a mathematical expression, which makes them difficult to identify.

Traditionally, soil parameters have been obtained from laboratory tests. However, in many
cases samples used in laboratory tests do not represent the whole soil profile. In addition to
that, sample extraction itself causes some disturbance and changes of the soil properties that
are difficult to quantify.

As a consequence of that, the use of backanalysis to identify soil parameters has received
significant attention from the geotechnical community. The basis of backanalysis consists in
comparing a set of measurements, extracted from the physical system, with a conceptual
model (i.e. a finite element model). The parameters that best represent the physical system
are those that minimize the difference between measurements and calculations expresses as
an objective function. Usually, the model represents the real problem globally, while the
physical system is represented by a set of measurements, generally extracted from in situ
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instrumentation, such as inclinometers, sliding micrometers and piezometers. That makes
backanalysis a global technique. However, as previously mentioned, if only laboratory tests are
used in the backanalysis procedure, it is necessary to take into account the loss of global
representation due to the reduction of soil domain.

The adoption of backanalysis by the geotechnical community began in the early 80s. Gioda
(1980) and Gioda & Maier (1980) presented one of the first geotechnical backanalysis, where
the identification of rock mass parameters during a tunnel excavation was carried out. The
least squares criterion was used to define the objective function, while a direct method was
applied to minimize it.

In Cividini et al. (1981, 1983) and Cancelli & Cividini (1984), backanalysis applied to earth dam
problems were studied. Subsequently, Gioda (1985) presented some remarks on backanalysis
and characterization problems in geomechanics.

Simultaneously to the trend initiated by Gioda, the known as the Japanese group (formed by
the universities of Kobe, Kyoto and Tokyo) was strongly working on the field of backanalysis
applied to geotechnics. Several backanalyses for tunnel excavations were conducted by
Sakurai (1983), Sakurai & Takeuchi (1983) and Hisatake & Ito (1985), as well as for
consolidation in Arai et al. (1984) and test embankments on soft clay deposits in Arai et al.
(1986).

Later, Ledesma (1987) introduced a full definition of the backanalysis problem based on the
concept of maximum likelihood in order to generalize the objective function and formally
define it from a statistical point of view. Moreover, he defined the structure of the error for
several well-known in situ instruments such as inclinometers and sliding micrometers.

Using the methodology presented in Ledesma (1987), several real cases for tunnels and
excavation were carried out in Gens et al. (1988), Ledesma et al. (1996), Gens et al. (1996) and
Ledesma & Romero (1997).

Calvello (2002) employed the results of conventional drained and undrained triaxial
compression tests performed on clay specimens in order to identify several soil parameters of
four different constitutive models: the Duncan-Chang model, the Modified Cam-clay model,
the Anisotropic Modified Cam-clay model and the Hardening Soil model.

Malécot et al. (2004) applied the backanalysis procedure to identify parameters of the Mohr-
Coulomb constitutive model from the horizontal displacements of a synthetic sheet pile wall.
Two different optimization algorithms were used and subsequently compared; one based on a
gradient method and the other on genetic algorithms. Later, in Levasseur (2007), Levasseur et
al. (2007) and Rechea et al. (2007), a full backanalysis definition using genetic algorithms was
presented. Several cases were studied; from pressuremeter tests to real excavations.
Moreover, in Levasseur (2007) and Levasseur et al. (2009 and 2010) the concept of using a
principal component analysis, as a genetic algorithm post-process, was introduced to better
deal with the non-uniqueness of the problem; a feature strongly associated with the nature of
geomechanics.
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In Finno & Calvello (2005), an inverse analysis of a real supported excavation performed in five
stages was presented. The field observations were obtained from inclinometer data and the
Hardening Soil model was used as the constitutive model to reproduce the soil behavior. The
results indicated that a recalibration of the model at an early construction stage may affect the
predictions throughout construction.

Hashash et al. (2010) discussed the advantages and disadvantages of using genetic algorithms
and self-learning simulations for inverse analysis in a deep urban excavation. The authors
concluded with the general idea that self-learning simulations allows to discover new soil
behavior while genetic algorithms assist engineers to better select the parameters of existing
soil constitutive models.

Finally, in de Santos et al. (2014), a simple synthetic tunnel excavation was used to illustrate
the potential of the hybrid methodology presented in this thesis. For that particular case, a
simple genetic algorithm and the Gauss-Newton method were combined to define the hybrid
method.

From what has been presented above, it can be noted that in the last decade the majority of
the backanalysis effort has been focused on optimization algorithms and their application to
challenging real problems. Indeed, the effort to create more robust and computational
efficient backanalysis procedures is still strongly pursued.

2.2 Performance of the Parameter Identification Process

Like all inverse problems, parameter identification problems are usually ill-posed, which means
that at least one of the following properties given by Jacques Hadamard (Engl et al., 1996) is
violated.

- For all admissible data, a solution exists.
- For all admissible data, the solution is unique.
- The solution depends continuously on the data.

In the following subparts of section 2.2, the properties mentioned above are briefly discussed.
In Xiang et al. (2003), the full discussion is presented in detail.

2.2.1 Existence

The violation of the first property happens when the numerical model fails to describe the
mechanism of the physical problem or the measurements contain very poor data. If a proper
numerical model cannot be found to describe a physical problem, it means the direct problem
has not been solved satisfactory, so the problem of parameter identification is beyond
discussion.

2.2.2 Uniqueness

Physically, satisfying the second property requires that the measurements contain enough
information to determine a unique solution. Mathematically, according to the contraction
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mapping theorem and some hypotheses (Chicone, 1999), the uniqueness of the problem can
be guaranteed. This is a sufficient condition, not a necessary one.

2.2.3 Stability

The discussion of the last property is directly related to the continuity of the objective
function. This is probably the main reason why parameter identification problems are often
unstable. Usually, as pointed out in Engl et al (1996), some kind of regularization will be used
to compensate the loss of continuity.

2.3 Objective Function

Using a model that relates parameters to measurable variables ( x°* = M(p)), and having m

measurements of these variables x]*¢, x7*¢, x1*¢,

.. XM€. the parameters of the model,
D1, P2, D3, - Pn, that better adjust the measurements are the solution of the problem.
Therefore, the objective function can be defined as the function that quantifies the degree of
adjustment between the model and the measurements. There are several ways to define the
objective function. The most extended methods are presented in Eykhoff (1974). In the current
document, only the least-squares method, the Markov or generalized least-squares method,
the maximum likelihood method and the maximum likelihood method with prior information

are presented.
2.3.1 The Least-Squares Method

Even though the least-squares method is one of the simplest objective function types, it is one
of the most extended methods to define the objective function.

The best parameters are those that minimize a function that depends on the square difference
between measured and computed variables.

J =3I (xme — xf)” (2.1)
where m is the number of measurements.
Equation (2.1) can be represented in matrix notation as equation (2.2) shows.
] — [xme _ xcal]T[xme _ xcal] (2_2)
2.3.2 The Markov Method (or the Generalized Least-Squares Method)

The Markov method is a generalization of the least-squares method; where a "weighted"
diagonal matrix (W) is introduced in order to reflect the quality of the measurements.

J = [xme — xcal]TW[xme _ xcal] (2.3)

The error associated with the measuring process is reflected in W, where higher weights are
assigned to more reliable measurements. Usually, the definition of W is directly related to the
standard deviation of the apparatus that has been used to extract the measurements.
However, W can be defined as desired in order to take into account more aspects related to
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the process of extracting the measurements, such as the skills of the technician or any other
specific condition that can alter the reliability of the measure.

2.3.3 The Maximum Likelihood Method

Using the maximum likelihood method, the difference between the measurements and the
model is attributed to the observational procedure (measurements). That discrepancy is
considered as a random variable, and its probability density function must be known. Thanks
to the statistical point of view of the method, the objective function defined by the maximum
likelihood method can be considered as a more general criterion than the ones based on the
least-squares and Markov methods. However, more knowledge of the problem is required to
properly define it.

The solution of the problem is the one that maximized the probability to obtain the field
measurements actually observed, in other words, the best parameters estimation is found by
maximizing the likelihood (L) of an hypothesis (p) given a set of error measurements
(x™€ — x¢4). As shown in Edwards (1972) and Tarantola (1987), the likelihood of a hypothesis
is proportional to the conditional probability of x™¢ given a set of parameters p. Therefore,
the criterion can be expressed as:

L =kP(x™¢/p) (2.4)
where k is a proportionally constant.
Carrera (1988) demonstrated that this formulation has theoretical and conceptual advantages:

- There is no need to define the probability of a hypothesis, which has become a controversial
concept in probability theory.

- The model is not required to reproduce the true system exactly (Baram & Sandell, 1978).

- Prior parameters information can be systematically introduced to the parameter
identification procedure (see section 2.2.4).

Assuming that the error of the measurements follows a normal distribution (Gaussian
distribution), the likelihood can be rewritten as:

P(xme/p) — 1 Iexp [_%(xme _ xcal)T(Cx)—1(xme _ xcal)] (2.5)

VEm)™|Cx

where m is the number of measurements, and C, the measurements covariance matrix, which
represents the structure of the error associated with the measurements.

Maximizing (2.5) is equivalent to minimize the supporting function (2.6):
S = —-2InL (2.6)

Thanks to the monotonous growth of the logarithm function, the use of the function S
appeared to be more appropriate, especially while working with normal distributed functions.
The full expression of equation (2.6) is shown as follows:
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s = (xme — xcal) (€)1 (x™ — x<al) + In|C,| + mIn(2m) — 2Ink (2.7)

On the assumption that the covariance matrix C, is fixed and the last three terms of equation
(2.7) are constant, the objective function using the maximum likelihood method can be finally
defined as:

J = [x™e — xcal]TC;l[xme _ xcal] (2.8)

In equation (2.8) the "weighted" matrix has a clear statistical meaning represented by the
inverted measurements covariance matrix. In the case, where measurements are independent
among them, C;! is a diagonal matrix, and the objective function obtained by the maximum
likelihood method (eq. 2.8) is equivalent to the one obtained by the Markov method (eq. 2.3).
Moreover, if the elements of the diagonal of C;! are also identical, the objective function
obtained by the maximum likelihood method (eq. 2.8) is equivalent to the one obtained by the
least-squares method (eq. 2.2).

2.3.4 The Maximum Likelihood Method with Prior Information

In order to make the objective function more general, prior information (in this case the a
priori parameter values, p°) can be introduced into the problem. Following a statistical
representation of the problem, as shown in the previous section 2.2.3, the new objective
function must incorporate a term representing the error of the prior parameters estimation.
Therefore, equation (2.4) can be rewritten as equation (2.9), where the likelihood is defined as
proportional to the joint probability of the measurements and the prior parameter values.

L= kP(x™/p,p°) = kP(x™/p)P(p°) (2.9)
Both probability functions, P(x™¢/p) and P(p°®) are considered normal or Gaussians.

Therefore:

P(xme/p) = exp [_%(xme _ xcal)T(Cx)_l(xme _ xcal)] (2.10)

1
V(@2m)™|Cy

and

(2.11)

P(p) = — L X0 — V() (0 —
@) mexp[ Lp° - p)"(€3) " @° - p)]

where m is the number of measurements, n the number of parameters, Cg the a priori
parameters covariance matrix, and (p° —p) the vector of differences between prior
information and parameters being estimated.

As presented in section 2.2.3, it is more useful to work with a supporting function S (eq. 2.6),
rather than working with function L (eq. 2.9). Then, using equations (2.10) and (2.11) the new
supporting function is defined as follows:

S =(xme - xcal)T(Cx)‘l(xme —xa) + (p° — p)T(Cg)_l(pO —p) +1In|C,| + In|CD| +
+min(27) + nin(2m) — 2Ink (2.12)

10
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On the assumption that the covariance matrices C, and Cg are fixed and the last three terms
of equation (2.12) are constants, the objective function using the maximum likelihood method
with prior information can be finally defined as:

J = [xme — x4 xme — x4 + [p® — p]TC€Y ' [p® — pl + In|C,| +1n|CY| (2.13)
2.3.5 Objective Function using a Relative Error

The objective functions shown in the previous sections (2.2.1, 2.2.2, 2.2.3 and 2.2.4) are
usually applied to cases where the same kind of measurements are used (i.e. displacements).
However, in cases where different kinds of measurements or large differences among the
magnitude of the measurements are involved, an objective function defined by the concept of
relative error is considered appropriate.

Using the structure of the maximum likelihood method (eq. 2.8), and defining the components
of a* as in equation 2.14, an objective function (eq. 2.15) is properly defined for cases where
different kinds of measurements or large differences among the magnitude of the
measurements are involved.

me_,.cal
af = (%) (2.14)

J = [a*]"C3 Yy [a”] (2.15)

where C;_lwz is the inverse matrix of the square coefficient of variation of the measurements,
which represents the structure of the error associated with the measurements.

2.4 Instrumentation Error Structure

As presented before, C, and C, .,, represent in some way the structure of the error
associated with the measurements. If an instrument performs independent measurements
and its errors have a Gaussian distribution of probability with the same variance (62), then C,
and Cy, ., are diagonal, and they can be represented as in equations (2.16) and (2.17).

C, =0l (2.16)
Cy e = 0°M (2.17)

where I is the identity matrix and M a diagonal matrix (see equation 2.18).

= 0
M={ S 1 ‘ (2.18)
0 xm_ez

However, in some instruments, especially those designed for linewise observations (Kovari &
Amstad, 1983), the errors of the measurements are not independent. For instance, if an

11
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inclinometer device is used to measure horizontal displacements along a borehole, the value
of the displacement i is based on all the previously measured displacements.

In this section, the covariance matrix (C,) and the square coefficient variation matrix (Cy )
for two instruments performing linewise observations (sliding micrometer and inclinometer)
are presented. In order to do that, it was considered useful to express the covariance matrix
and the square coefficient variation matrix for each type of instrument as:

€k = i (Ex) (2.19)
(Cx_CVZ)k = o}, (Ex_cvz)k (2.20)

where 0,? is a scale factor which represents the global variance of the measurements made
using the instrument k, and (E,), and (Ex_cvz)k contains the error structure of the
instrument. Obviously, if the measurements are independent and have the same variance,
(E,)y is the identity matrix, while (Ex_m,z)k is M (see equations (2.16) and (2.17)).

(E,)y has been obtained from Ledesma (1987) and Ledesma et al (1996) and subsequently
adapted to define (Ex_cvz)k for use in the objective function based on the relative error.

2.4.1 Sliding Micrometer

A sliding micrometer consists in a probe that is introduced into a borehole where a tube with
measuring marks is previously installed. The probe measures with high accuracy (Az=
+0.002mm/m) the distance between adjacent measuring marks, before, during and after the
ground experiences deformation.

It is assumed that the line, over the measurements are taken, is divided in p sections of length
l;, and that the sliding micrometer measures the change of length (4,,) between adjacent

measuring marks. Then, the longitudinal displacement of the measuring mark n is:
Uy, =iz 0y, + A (2.21)

where A is an integration constant that allows to transform the measurements from relative
measurements to absolute measurements. Typically, the movement of one of the extremes of
the line of measurement is used to define A.

In order to determine (E,); and (Ex_wz)k, the measurements (4,,) are assumed to be

independent with variance o2 and A being exactly known. The procedure to obtain the error
structure of a sliding micrometer is fully described in Ledesma (1987) and Ledesma et al.
(1996); herein, (E,); and (Ex_c,]z)k are directly presented.

i ifi<j

xm; ifi<j
(EX_C‘UZ)L]' = _] [_f] < l (223)
me?

12
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where:

In equations (2.24) and (2.25) the matrices of the error structure of the measurements,
obtained using a sliding micrometer, are shown.

1 1 1 1
(Ex)sliding micrometer — | 1 2 3 - 3 | (2.24)
[1 2 3 .. nJ
r 1 1 1 1 A
x{nez x{ne2 x;nez xinez
1 2 2 2
x{nez x;ne2 x;nez x;nez
E = 1 2 3 3 2.25
( x—wz)sliding micrometer poo poo =z " Tme? ( )
1 X2 X3 X3
1 2 3 n
_x{”ez x;nez x%"ez x,’}”z_

If the variance of the integration constant A is taken into account, then equations (2.22) and
(2.23) are rewritten as:

i+(”“2") Lifi<]

(E;;i = o (2.26)
T+ i<y
S (”;‘ZA) ifi<j
E =1 " (2.27)
Bl = (52 <

2.4.2 Inclinometer

The inclinometer is used to obtain the horizontal displacements in the ground. It also consists
on a probe that is introduced into a borehole where a tube is previously installed. The probe
measures with high precision the angle with respect to the vertical. The integration of these
angles provides the horizontal displacement. Therefore, the horizontal displacement in point
n, assuming that the line over the measurements are taken is divided in p sections of length [;,
is:

u, =xt,tana;"l; +B (2.28)

n

where B is an integration constant that expresses the horizontal displacement of the initial
point of measurement.

Since a usually takes small values (tan a = «), equation (2.28) can be rewritten as:

13
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uxn = Z?zl a; - li + B (229)

In order to determine (E,), and (Ex_a,z)k, the measurements (;) are assumed to be
independent with variance o2 and B being exactly known. The procedure to obtain the error
structure of an inclinometer is fully described in Ledesma (1987) and Ledesma et al. (1996);
herein, (E,); and (Ex_c,,z)k are directly presented.

L2 ifi<
(Ex)i,,-={ e (2.30)
n=ile fJ<i
i l P .
n=1 ez f IS
(Exco2),, =9 . % _ (2.31)

In equations (2.32) and (2.33) the matrices of the error structure of the measurements,
obtained using an inclinometer, are shown.

2 2 2
ll ll ll
_|1Z2 2+ - 12412
(Ex)inclinometer - 1 1 . 2 . 1 . 2 (2-32)
2 2+2 - Z2+2+-+2]
4 5 5
xi‘nez x‘{ne2 x;ne2
I I
E — me?2 me2 me?2 me2 me?2 2.
( x—wz)inclinometer 1 e S . e %2 (2.33)
12 12 13 12 12 12
_xgnez x{nez x;‘ne2 x71‘ne2 + x;nez + + ;lne2

If the variance of the integration constant B is taken into account, then equations (2.30) and
(2.31) are rewritten as:

TholE+ () ifi<

o2

(Ex)ij=1_; varB (2.34)
n=1le + (7) ifj<i
i 12 varB . pos .
Zh:lx,’(’#—'—(az) ifi<j
(Ex_cvz)i']- = (2-35)

j 12 varB s p o .
n=1xlrcne2+( o2 ) I’f]<l
2.5 Optimal Layout of Measuring Points

A very interesting and important aspect is defining what to measure, where to measure, when
to measure and how many measurements are needed in order to solve the parameters

14
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identification problem. In fact, the quality and the quantity of measurements exert a major
influence on the accuracy of the identified parameters.

The answer to what to measure would be measuring the variables (type of measurement), on
which the system parameters have an obvious impact. Sensitivity analyses are usually carried
out for this purpose (Beck & Woodbury 1998).

In order to answer where to measure, the concept of sensitivity matrix, being defined as the
matrix of the partial derivative of measurements with respect to the unknown parameters, has
been used to locate the best measurement points. The general idea is focused on determine
the most sensitive points of the system (high quality measurements), and used them to extract
the measurements to subsequently use them as inputs to better solve the objective function.
Murakami & Hasegawa (1988) and Shoji et al. (1990) implemented that idea for cases where
just one parameter was intended to be identified. However, this method is difficult to apply
when there is more than one parameter. Haftka et al. (1998) proposed the concept of
maximizing all the sensitivities by finding a single compromise measure, when identifying more
than one parameter. Supposing that all measurements are independent and have the same
associated error defined by o2, the resultant objective function is defined by the least-squares
method. As a consequence, the parameters covariance matrix (Bury, 1975) can be defined as:

C,=0d*(A"TA)1 (2.36)

where o is the variance of the measurements, and A the matrix containing the derivatives of
the computed variables with respect to the parameters, commonly referred as the sensitivity
matrix.

From equation (2.36) it can be realized that highly sensitive measurements (high coefficient
values in A) cause low coefficient values in C,. Low coefficient values in C, indicate high
accuracy in the parameters identified. Using that idea, Haftka et al (1998) defined the single
compromise measure based on the maximization of the determinant of the matrix AT A.

The same approach, as the one already presented to answer the question where to measure,
can be adopted to answer the question when to measure. However, while trying to determine
when to measure or when it is more appropriate to measure, the results of the sensitivities
have to be analyzed in temporal terms rather than in spatial terms. Basically, the idea is to
study the evolution of the sensitivity of the different measurement points over time.

Referring to the quantity, how many measurements are needed, the well-known principle is
that the number of measurements should be at least the same as the number of the
parameters (Cividini et al. 1981; Gioda & Sakurai 1987; Venclik 1994). Otherwise, the
identification process will fail, due to the lack of input information. However, the view of
"more measurements are better" was not confirmed by Cividini et al. (1981) and Venclik
(1994). Nevertheless, Ledesma et al. (1996) found some differences in the reliability of the
solution for a fixed measurement error, represented by the parameters covariance matrix. As
expected, the variance of the parameters identified, were smaller when using a higher number
of measurements.
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2.6 Constitutive Model

The equations that are intended to reproduce the soil behavior are what are known as
constitutive models. Many different constitutive models have been defined to reproduce the
many different types of soils, from the simplest one, using a linear stress-strain relationship, to
the very sophisticated ones, as the Hardening Soil Model (HSM) described in the following
section.

Therefore, because of the complexity in terms of strains and stresses associated with tunnels
and excavations, the sophisticated HSM was considered the most appropriate constitutive
model to tackle them. The well-known and widely used geotechnical commercial software
Plaxis, which among its different constitutive models the HSM is available, was used to
simulate the different geotechnical scenarios studied in this thesis.

2.6.1 The Hardening Soil Model (HSM)

The original HSM was developed by Schanz (1998) and Schanz et al. (1999) on the basis of the
Double Hardening model by Vermeer (1978). The HSM also incorporates ideas by Kondner &
Zelasko (1963), Duncan & Chang (1970), Ohde (1951) or Janbu (1963), and Rowe (1962).

The HSM is an elastoplastic double-yield surface model that uses the Mohr-Coulomb failure
criteria and takes into account the soil dilatancy effect. By using a double-yield surface,
distinction is made between two main types of hardenings, shear hardening and compression
hardening. The shear hardening is mainly used to model irreversible strains due to primary
deviatoric loading, while the compression hardening is mainly used to model irreversible
plastic strains due to compression in oedometer loading and isotropic loading.

Extending the hypoelastic Duncan-Chang model (Duncan & Chang, 1970) to an elastoplastic
formulation, Schanz (1998) proposed a shear hardening yield surface as shown in equation
(2.37).
s__2 a 24 _ .p

f - Eiinter 1_q/qa Eyr )4 (237)
where q = 0; — 03 is defined for triaxial loading, g, is the asymptotic deviatoric stress as
defined in the original Duncan-Chang model (Duncan & Chang, 1970), E,,- is the Young's
modulus for unloading and reloading, and El-i"ter is an auxiliary internal parameter defining the

initial stiffness and yP is an internal material variable for the accumulated plastic deviatoric
strain (eq. 2.38).

yP =l — el — el =268 — D ~ 26P (2.38)

where ¥, €7, €¥ are the plastic principal strains, and €} the plastic volumetric strains due to

primary deviatoric loading.

The meaning of Eii”ter in the full HSM implemented in Plaxis is not as closely related to the
hyperbolic model defined by Kondner & Zelasko (1963), where Ex,, the stiffness modulus
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when mobilizing 50% of the maximum shear strength, can be explicitly related to E;. The
transition from Ego, as used in Kondner & Zelasko (1963), to Eii”t", as used in Plaxis
(Brinkgreve & Broere, 2008), is made because of the existence of a second yield surface. The

interaction between E™¢" and Esy, is fully described in section 2.6.1.2.

In reality, plastic volumetric strains are never precisely equal to zero, but for hard soils plastic
volume changes tend to be small when compared with the axial strain ef. However, by
introducing the soil dilatancy, a non-insignificant plastic volumetric strain is taken into account.
The plastic volumetric strain due to the soil dilatancy follows from the theory described in
Rowe (1962), and it was fully adapted to the HSM by Schanz & Vermeer (1998). The
introduction of the soil dilatancy makes the plastic strains on the shear hardening yield surface
non-associated.

The second yield surface, known as compression hardening yield surface or also namely yield
cap, is basically introduced in order to fully delimit the elastic region. The compression
hardening yield surface mainly accounts for plastic volumetric strains due to compression in
oedometer loading and isotropic loading. However, part of the plastic shear strains of the
model are also contributed by the yield cap. The hardening compression yield surface is
defined as:

~2
fe=L-p?-p)° (2.39)

a

where py, is an internal material variable for effective pre-consolidation stress, p’ is the
effective mean stress, a is the steepness of the yield surface, and § is a special stress measure.

(3+s%n(p _ 1) 0_2, _ (3+s%n(p) O'é (2.40)
3—sin¢@ 3—sin¢@

~ _ 1
q=0,

+

All the details of both yield surfaces, as well as the entire HSM, can be seen in Schanz (1998),
Schanz et al. (1999), Benz (2007) and Brinkgreve & Broere (2008).

Figure 2.1 illustrates the hardening yield surfaces in p’ — § space for triaxial compression
conditions.

«C cotg »

Figure 2.1. Hardening yield surfaces. Shear Hardening yield surface (f°), Compression Hardening yield surface ()
and Mohr-Coulomb failure line represented in p’ — § space for compression triaxial conditions.
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2.6.1.1 Input Parameters of the HSM implemented in Plaxis

One of the advantages of using the HSM over more simple models is not only the hyperbolic
stress-strain relationship, but also the control of stress level dependency. The effect of that
stress dependency is basically represented by the different stiffness moduli.

ref Eref

The reference moduli (E5,” , E, ., and E;if), to the reference pressure (pref), and the stress-

level dependency parameter (m) are the main parameters in charge of defining the stiffness.

- E;gf: Reference secant stiffness in standard drained triaxial test.

_Eref_

veq: Reference tangent stiffness for primary oedometer loading.
- Efjf: Reference unloading / reloading stiffness.

In the following equations (2.41, 2.42 and 2.43), the relationships between the reference
values and the actual values of each stiffness moduli are shown.

ol sinp+ccosp \™
£ =TS (s—) 2.41
50 50 \prefsin p+ccos g ( )
o} "
singp+ccos ¢
Eyoq=ET/[X° (2.42)
oe oed | prefsin p+ccosg
ol sinp+ccosp \™
E_ —fgref (3—) 2.
ur ur \prefsin p+ccos ¢ (243

where c is the effective cohesion, ¢ the effective angle of internal friction, Ké\’c the coefficient
of lateral earth pressure associated with normally consolidated states of stress.

Figure 2.2 illustrates a standard drained triaxial test, where the physical meaning of E5y and
E,, can be visualized, as well as E;.

asymptote

e

failureline

.

. L
axial strain

Figure 2.2. Hyperbolic stress-strain relation in primary loading for standard drained triaxial test.
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Eref

beq €an be observed.

Figure 2.3 illustrates an oedometer test where the definition of

’

lo,
A

ref

pref

[

. L
axial strain

ref

oed

in oedometer test results.

Figure 2.3. Definition of E

Apart from the basic parameters for soil stiffness, already presented, additional parameters
have to be introduced to fully define the HSM. In table 2.1, all the input HSM parameters are

presented.
Parameter Description Units
Basic parameters for soil stiffness
Esrgf Secant stiffness in standard drained triaxial test [kN/mz]
E§§§ Tangent stiffness for primary oedometer loading [kN/m?]
EreT Unloading / Reloading stiffness (by default ELe/ = 3E1) [kN/m’]
m Power for stress-level dependency of stiffness [-]
Failure parameters
c Effective cohesion [kN/m?]
Effective angle of internal friction [deg]
P Angle of dilatancy [deg]
Advanced parameters
Vur Poisson's ratio for unloading-reloading (by default v,,,- = 0.2) [-]
pref Reference stress for stifnesses (by default p™¢/ = 100kN /m?) [kN/m’]
Ké"c Coefficient of lateral earth pressure associated with normally [-]
consolidated states of stress (by default KN¥¢ = 1 — sin @)
R¢ Failure ratio q;/qq (by default Ry = 0.9) [
Otension Tensile strength (by default 6;nsion = 0kN/m?) [kN/m?]
Cincrement Increase of cohesion per unit of depth (by default Cincrement = [kN/m?]
0kN /m3)

Table 2.1. Input parameters of the Hardening Soil Model implemented in Plaxis.

2.6.1.2 Internal Parameters of the HSM implemented in Plaxis

Once the input parameters are defined, the internal parameters (a, K, /K, and Giref‘inter) are
determined by an internal iterative procedure carried out by the program Plaxis itself.
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On the one hand, a and K/K, are the internal parameters controlling the compression

ref_inter .

hardening yield surface definition, namely cap parameters. On the other hand, G; is

related to the shear hardening yield surface.

a is the steepness of the cap, and K, /K, is the ratio between the elastic swelling modulus and
the elastoplastic compression modulus for isotropic compression. K/K, relates the plastic
volumetric strain rate (éE‘C) to the evolution of the isotropic pre-consolidation stress (ﬁ;,) by
equation (2.44).

e ="2 (2.44)

H is defined as:

=—— K 2.45
(Ks/Ko)-1 % (2.45)
and K; as:
— Eur
K, = PTEREI (2.46)
ref_inter . . e . . - .
G; is the internal reference initial shear modulus used to obtained the auxiliary internal

ref_inter .
/- IS

parameter Eii”ter that is needed to define the shear hardening yield surface. G;

firstly converted to Eiref‘mter by using Hooke's law of isotropic elasticity represented by

equation (2.47) and then transformed from its reference form to its global expression by
equation (2.48).

EJT-MET = 21 + vy ) GO (2.47)
pinter _ pref_inter ( a3 sin p+ccos @ )m (2.48)
i i pTef sin p+ccos @ .

The internal iterative procedure that Plaxis carries out in order to define and validate the
internal parameters, with respect the input parameters, is based on performing a triaxial and
an oedometer test. Below, this internal iterative procedure is schematically described.

- Initial Guess

The iterative procedure starts with an initial guess of the internal parameters values (a, K, /K,
and G/teT),

- Triaxial Test Simulation

A simulation of a standard drained triaxial test at o3 = p"¢/ is carried out, where G/ is

modified until E;gf is reproduced. As the stress path of the simulation is known, the problem
can be defined incrementally, and consequently, the total vertical strains can be calculated.

— c€ p_s p_c
81n+1 - €1n+1 + 81n+1 + 81n+1 (249)
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where € s the elastic vertical strain at stress step n + 1, €’=° is the plastic vertical strain
In+1 1n4a
from the shear hardening yield surface at stress step n + 1, and slr‘lil is the plastic vertical

strain from the compression hardening yield surface at stress step n + 1.

e _ 9n+1
<C"1n+1 - Eref (250)
ur
s _ 1 An+1 __9n+1
81n+1 - Ez‘ef_inter 1_qn+1/qa E;if (251)
bc _ .pC -1
Elnir = Svngr tan™" 044 (2.52)

p_c
Un+

yield surface (f2), the compression hardening yield surface (f€) uses an associated flow rule

where 0,4 is the parameter that relates ¢,"  to gl;il . In contrast to the shear hardening

for the definition of the plastic potential (g€), as g¢ = f°.

p_c Applzﬂ p_c
gvn+1 = T + Svn (253)
afe ,
01 = tan™! —afc/aq”“ = tan™! (—(Zq"“/a )) (2.54)
/6pn+1 2Pt

Figure 2.4 illustrates the procedure where G™" is modified until EL¢’ is reproduced taking
into account the vertical strains from the elastic region, the shear hardening yield surface and
the compression hardening yield surface.

|os-05 |
A

.

- . -
axial strain

Figure 2.4. Simulation of a standard drained triaxial test at a5 = p™/, where G:ef‘imer is modified until E;f)f is

obtained. The dashed lines represent the curves q — &4, without taking into account sll"c, while using the not
proper guessed values of Gﬁ"t"; the dotted line represents the curve q — &, without taking into account s'l"c,
while using the proper guessed value of Gf"t". The horizontal lines with diamonds at the ends represent 871”,
and its combination with the curve q — &4 (for the proper value of Gf"""r) matches the actual curve q — &4 (solid

line) defined by Ee/ .
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- Oedometer Test Simulation

A simulation of an oedometer test is then performed. The initial stress conditions are defined
as: g, = p"® and a4 = K)'“p"®. Then, several small vertical stress increments are applied,
while checking the vertical and horizontal strains. If the horizontal strain is not zero, the value

of KNC is changed until the horizontal strain is zero (K. “-""). After that, the oedometer

ref_inter

ved ). Figure 2.5 illustrates the

modulus from the simulated test can be identified (E
simulated oedometer.

o,=pl+ho;

=
o=
=
==
=

5 —> G
= =
= -
) ;
oy — et
— <

A A A A A

Figure 2.5. Simulation of the oedometer carried out during the internal iterative process.

If the values of KY¢-" and E7¢/-"™€" are not close enough to the input values of K¢ and

oed
Eref

Leq» the entire internal iterative procedure is started again by defining a new guessed values

of a, K;/K. and Giref‘mter. However, if the values are close enough, a Newton iteration

process is carried out in order to finally get a full match between Kévc-interand KY¢, and
Eref_inter and Eref

ved veq- Then, the internal iterative procedure is considered completed.

- Limitations

In some cases, it is not possible to match all the input parameters and the final values of «,

NC_inter
Ky -

K;/K. and Giref‘mter. In those cases, Plaxis suggests to the user the values of and

ref_inter
E oed

associated with values of a smaller than the horizontal (@ — 0), values of a higher than the

as input parameters for Kévc and Egjg. In general, the reason of the failure is

vertical (@ —» ), or values of K,/K. < 1, which completely deactivate the compression
hardening yield surface.
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Optimization Algorithms

3.1 Introduction

As indicated in Chapter 2, the backanalysis problem can be reduced to minimize or maximize a
function that compares measurements with calculations. Many optimization methods have
been defined and adapted to specific functions; and thereby the classification of the different
types of methods. In this thesis, three main categories of methods have been used:

1) Gradient Based Methods
2) Direct Methods
3) Hybrid Methods

The gradient based methods are those methods that require the evaluation of the gradient of
the objective function, while the direct methods are those ones that evaluate directly the
objective function without the need of using the gradient of the function. However, the
majority of the direct methods use some sort of criteria to properly and efficiently drive the
optimization procedure. The hybrid methods represent the category of those methods that
combine more than one method. Here, only a limited number of methods representing the
three different categories are presented. The gradient based methods are represented by the
Gauss-Newton method and the Marquardt method; the direct methods are represented by
genetic algorithms (quite often genetic algorithms are included in some subcategories like the
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stochastic or evolutionary ones) and, finally, the hybrid methods are represented by a method
based on the combination of a gradient based method and genetic algorithms.

More comprehensive classifications can be consulted in Eykhoff (1974), Fletcher (1981), Scales
(1986) and Goldberg (1989a).

3.2 Gradient Based Methods
3.2.1 Introduction

As its name points out, the gradient based methods are based on evaluating the gradient of
the objective function. As a consequence, the objective function has to be continuous in the
whole domain.

Traditionally, the gradient based methods have been widely used, especially for smooth
functions with few local minima, and usually with few parameters to be identified. For cases
like non-smooth functions or too many parameters, the gradient based methods can become
quite unstable and their efficiency may rapidly decrease. Moreover, a initial guess of the
parameters (p;, for t = 0) is needed to define a starting point, which in many cases is not
straightforward and, unfortunately, it has an strong impact on the performance of the
optimization process and on the final result.

In general, the gradient based methods can be described as an iterative procedure driven by a
scheme such as:

Pt+1 =P +Ap (3.1)

and

Jes1 <Ji (3.2)

where ] is the value of the objective function, p;, is the new guess of the parameters, and Ap
is the increment of parameters from the previous guess.

Figure 3.1 illustrates the scheme followed by the gradient based methods, for a case where
two parameter are identified (p; and p,).

pzW

Figure 3.1. Gradient based methods scheme. P, is the starting point and P, the value of p; and p, in the
minimum.
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Many different gradient based methods have been defined depending on the procedure
applied to define Ap . In the following two sections (3.2.2 and 3.2.3), the Gauss-Newton
method and the Marquardt method are presented.

3.2.2 Gauss-Newton Method

While using an objective function defined by the maximum likelihood method, the advancing
parameter vector (Ap), using the Gauss-Newton method, is as shown in equation (3.3).

Ap = (ATC;PA)TATCL (xme — xot) (3.3)

where A4 is the matrix that contains the derivatives of the computed variables with respect to

the parameters, commonly referred as the sensitivity matrix, C, is the measurements

me cal

covariance matrix (see section 2.4), x are the measured variables, and x are the

computed variables.

In equation (3.3), the importance of 4 is evident. However, getting 4 is not usually easy. Here,
the forward finite difference scheme has been used to define A.

cal cal
oxfal  xj (pj +ApPFFD -)_xi (v))
(A)i,j _ ~ j (3.4)

dpj Aprrp;

i =1,.., number of measurements
j =1, .., number of parameters

where ApFFDj is a very small increment of the parameter j.

When using an objective function based on the maximum likelihood method using a relative
error (section 2.3.5), Ap is defined as shown in equation (3.5).

Ap = (ATBTC;L,,BA) ATBTC;L,,a* (3.5)

where C, ., is the matrix of the square coefficient of variation of the measurements (see

section 2.4), B is an auxiliary diagonal matrix defined in equation (3.6), and a”* is the vector of

me

the relative difference between x™¢ and x°# (eq. 2.14). The sensitivity matrix (A) used in

equation (3.5) is exactly equal to the one that appears in equation (3.3).

=] =
B)j=y = x (3.6)
i#j-0

i =1,.., number of measurements
j =1,..,number of measurements

If C, and C, ., are changed to a "weighted" diagonal matrix, equations (3.3) and (3.5) are
adapted in the case where the objective function is based on the Markov method.
Subsequently, if this "weighted" diagonal matrix is represented by the identity matrix, (3.3)
and (3.5) correspond to the case where the objective function is based on the Least-Squares
method.
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3.2.3 Marquardt Method

In order to improve the convergence properties of the Gauss-Newton method, especially while
having ill conditioned matrices, Levenberg (1944) and subsequently Marquardt (1963)
introduced some modifications. Those modifications to the Gauss-Newton method are known
as the Marquardt method.

The expression for the advancing vector (Ap) when using an objective function based on the
maximum likelihood method is as follows:

Ap = (ATC*A + puD) AT C L (x™me — xcal) (3.7)

while for the case where using an objective function based on the maximum likelihood method
using a relative error, Ap is obtained from:

Ap = (ATBTC;L,,BA + ul) ' ATBTC;L,,a* (3.8)
where u is the Marquardt parameter (u € [0, )), and I is the identity matrix.

Obviously, the Gauss-Newton method is a particular case of the Marquardt method when
u=0.

From an efficiency point of view, the Gauss-Newton method has a lower computational cost
than the Marquardt method. However, for cases where C, and C, ., are ill conditioned, the
use of the Marquardt method is more appropriate.

The Marquardt method can be geometrically interpreted as figure 3.2 illustrates. If u = 0, the
method goes towards the minimum of a tangent paraboloid of the objective function; while, if
u — oo, the method follows the local gradient direction.

P>

A\

P1

Figure 3.2. Marquardt direction scheme. For u = 0 the method goes towards the minimum of a tangent
paraboloid of the objective function (J), while if 4 — oo the method follows the gradient direction.

Marquardt (1963) proposed a scheme to modify u along the iterative process in order to
optimize the number of iterations (see figure 3.3). First, i is set to an initial value (4 = pp=1).
Then, Ap;, is computed according to equation (3.7) or (3.8) and the value of the objective
function (/i) is compared with the value of the objective function (/) from the possible next
iteration k + 1. The definition of the possible next iteration is mainly controlled by the value of
Uk On the one hand, if Ji.1 < Ji, it means that the iterative process is working properly, the
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value of uy 4 is defined as yxq = U /p, and the iterative process keeps running forward. p is
a Marquardt parameter modifying p. As a consequence, the closer to the minimum is, the
closer the value of p4q is to 0 (p > 1). On the other hand, if J, .1 > Ji, it means that the
iterative process is not working properly, a new value of y; has to be defined as p;, = pp.
Then, the new value of the objective function (J;,,) from the new possible next iteration
k + 1 is evaluated. This last step is repeated as many times as needed to get J;,; < Jk.

END

i

Convergence Criterion <

(¢

J Iteration K+1
k

M —> Ap, —> iy |:> Jeas ) 'E> Wt = /P |:> Uiy APy
+

Iteration K ﬁ

W= pyep M1 = K /p

e B

5 >

[:: Sy S
K= Bp — Ny k1 Tk Iﬂ]
g Convergence Criterion <::| M= p

{

STOP

Figure 3.3. Marquardt iterative scheme.

3.3. Genetic Algorithms
3.3.1. Introduction

Genetic algorithms (GAs) are defined as a search procedure based on the mechanism of
natural evolution where selection and genetics are involved. Any mention of evolution is
strongly linked to Charles Darwin (1859). He introduced the idea of natural selection as the
mechanism whereby small heritable variations in individuals can induce an increase in fitness
(a measure of the adaptation degree of an organism to the environment). What might cause
such variations was something that Darwin could only speculate on, and not until Gregor
Mendel (1865) discovered the basis of genetic inheritance that Darwin's ideas were formally
defined.

The vision of defining an artificial algorithm capable of mimicking the evolutionary process of
nature was initially developed by Holland (1975) and subsequently fully defined by Goldberg
(1989a), one of Holland's pupils at the University of Michigan. From those studies the following
features were identified:

- Evolution occurs on chromosome level.
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- Reproduction is the exact moment when evolution takes place.
- Selection is the process where individuals are chosen for reproduction.
- Good individuals (high fitness) are more likely to be involved in the reproductive process.

- Crossover produces new individuals (offspring) from combining the chromosomes of the
parents (selected individuals).

- Mutation introduces new genetic material into the population.

- All the knowledge needed for producing good individuals is enclosed in the genes of the
chromosomes.

Robustness is the main reason of using genetic algorithm. However, that robustness is often
associated with high computational cost compared to more conventional optimization
procedures. The most distinctive features of genetic algorithms are:

- GAs work with a coding of the parameter set, not the parameters themselves.

- GAs search from a population of points, not from a single point.

- GAs use objective function information, instead of derivatives or other auxiliary knowledge.
- GAs use probabilistic transition rules, instead of deterministic ones.

3.3.2. Basic Genetic Algorithm Foundations

Schematically the structure of a genetic algorithm can be described as shown in figure 3.4;
where: First, an initial population of possible solutions (individuals) is created. Then, the
goodness of the individuals is evaluated (fitness). Subsequently, the operators involved in the
evolutionary process are applied (selection, crossover and mutation). After that, the new
population is created. This sequence is looped until the convergence criterion is reached.

Concepts as initial population, fitness, selection, crossover and mutation are fully defined in
following sections.

Initial Population

Fitness Evaluation |:> Convergence Criterion ::
GA Loop
New Population <:| Operators

Figure 3.4. Schematic genetic algorithms structure.
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The mathematical foundations of genetic algorithms laid on the Schema Theorem, also known
as the Fundamental Theorem of Genetic Algorithms, defined by Goldberg (1989a).

Prior to presenting the Theorem it is required to introduce the concept of schema and the
notion of length and order of a schema.

A schema is a subset of the space A (search space of I-dimensions) in which all chromosomes
share a particular set of defined values.

This can be represented by using the alphabet AU*, where the * symbol is a free bit. In the
binary case (1**1), for example, represents the subset of the 4-dimensional hypercube {0, 1}*
in which both, the first and the last bit takes the value 1. All individuals sharing the schema
(1**1) are represented by the chromosomes {(1001), (1011), (1101), (1111)}.

Schema can thus be thought of in set-theoretic terms, as defining subsets of similar
chromosomes, or geometrically, as defining hyperplanes in [-dimension space.

It is clear that any specified chromosome is an instance of many schemata. In general, if the
string has length [, each chromosome is an instance of |A|" distinct schemata, since at each bit
it can take either a * or its actual value (it's assumed that the full chromosome itself and the all
* string are also schemata). As a consequence, each time the fitness of a given chromosome is
evaluated, Information about the average fitness of each schema of the given chromosome is
being gathered. Using binary alphabet, a population of N individuals could contain N - 2!
schemata. However, in practice there will be considerable overlapping between strings and
not all schemata will be equally represented. In fact, what it is wanted is an unequal
representation where the genetic algorithm focuses its attention on those that are fitter.

The distance between the first and the last defined position on the schema is the length of the
schema (6(schema)). And the number of defined positions is the order of the schema
(o(schema)). Hence the schema (1**1) has length 3 and order 2.

3.3.2.1. Fundamental Theorem of Genetic Algorithms

Supposing that at a given time step t (generation) there are m individuals of a particular
schema H contained within the population A(t); the expected number of individuals of a
particular schema H contained within the population A(t+1) at time step t+1 is:

m(H,t +1) = m(H,t) @ (3.9)

where f(H) is the average fitness of the individuals representing schema H at time t and f the
average fitness of the entire population.

Then, it can be inferred that a particular schema grows as the ratio of the average fitness of
the schema to the average fitness of the population. In other words, schemata with fitness
values above the population average will receive higher number of samples in the next
generation, while schemata with fitness value below the population average will receive a
lower number of samples. It is interesting to observe that this expected behavior is carried out
with every schema H contained in a particular population A in parallel.
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If it's assumed that a particular schema H remains above average an amount cf with ¢ a
constant, equation (3.9) can be rewritten as follows:
m(H, t +1) = m(H, ) “*f—cf) =(1+c¢) -mH,0b) (3.10)

Starting at t=0 and assuming a stationary value of c, the previous equation (3.10) can be
rewritten as:

m(H,t) = m(H,0) - (1 +¢)* (3.11)

Equation (3.11) can be recognized as a geometric progression or the discrete analog of an
exponential form. To some extent it can be stated that the number of good individuals
(individuals with fitness above the average) of a particular schema H increases exponentially in
future generations.

In order to fully define the mechanism of genetic algorithms, it is needed to introduce the
effect of crossover and mutation in equation (3.11), which represents the effect of
reproduction.

If crossover is itself performed by random choice with probability P, at a particular mating, the
survival probability against crossover may be given by the expression (3.12).

RG]

P 21— P 7=

(3.12)

Defining mutation as the random alteration of a single position with probability P,,, and since a
single bit survives with probability (1 - P,), and since each mutation is statistically
independent, a particular schema survives against mutation when each of the o(H) positions
within the schema survives. The expression of mutation survival probability is as followed:

Pps = (1 — B,y)°® (3.13)
For small values of P, (P,,<< 1), expression (3.13) may be approximated by expression (3.14):
P,s =1—0(H) - By, (3.14)

Therefore, if equations (3.9), (3.12) and (3.14) are finally combined, the mechanism of genetic
algorithms are fully defined by equation (3.15), known as the Schema Theorem or the
Fundamental Theorem of Genetic Algorithms.

m(H,t +1) = m(H, ) %”) [1-£ 22 -0 By (3.15)

In conclusion, it can be stated that: high-performance, short-defining-length and low-order
schemata receive at least exponentially increasing number of trials in successive generations.

3.3.3. Simple Genetic Algorithm (SGA)

The structure of a simple genetic algorithm is shown in figure 3.5. All the different elements
involved in a SGA are fully described in the following sections.
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Initial Population

//::> Fitness Evaluation

Convergence Criterion |::> END

=

=

GAP Application )

=

Selection

¢

Crossover

=

Mutation

New Population <://

Penalty Function

=

\—

Figure 3.5. Simple Genetic Algorithm structure.

3.3.3.1 Initial Population

The major questions to consider are firstly the size of the population, and secondly the method
by which the individuals are chosen. The choice of the population size has been approached
from several theoretical points of view, although the underlying idea is always of a trade-off
between efficiency and effectiveness. Intuitively, it would seem that there should be some
"optimal" value for a given string length on the grounds that too small populations would not
allow sufficient room for exploring the search effectively, while too large populations would
penalize the efficiency of the method such as no solution could be expected in a reasonable
computational cost.

Many empirical studies were carried out during the 70's and 80's. The most representative
ones were done by De Jong (1975), Brindle (1981), Grefenstette (1986) and Schaffer et al.
(1989), where a population size between 20 and 100 individuals was found optimal; for the
problems studied in those cases.
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Goldberg (1985) attempted to solve the population size issue by using the idea of schemata.
Unfortunately, from this point of view, it appeared that the population size should increase as
an exponential function of the string length. Some refinements of this work were reported by
Goldberg (1989b), but they do not change the overall conclusions significantly.

A later analysis from a different perspective was done by Goldberg et al. (1992), where it was
found that a linear dependence of population size on string length was adequate. The
population should grow with string length. However, even a linear growth rate would lead to
quite large population in some cases.

Referring to how the initial population has to be chosen, it is nearly always assumed that
initialization should be random. However, individuals chosen in this way do not necessary
cover the search space uniformly, and there may be advantages in terms of covering if more
sophisticated statistical method is used, especially for more complex alphabets than the binary
alphabet. Recent studies have been done for binary alphabet where the concept of diversity
was used to quantify the "quality" of an initial population. In Diaz-Gomez & Hougen (2007a) a
metric approach to measure diversity at a population level was introduced. Some empirical
results of the relationship between initial diversity and GA's performance were presented in
Diaz-Gomez & Hougen (2007b). However, Diaz-Gomez & Hougen (2009) pointed out that there
was not such strong correlation between initial diversity and GA performance, at least for the
standard range of diversity often encountered in binary random initial populations.

3.3.3.2. Fitness Evaluation

The fitness evaluation is the genetic algorithm stage where the goodness of the individuals,
with respect to the environment, is evaluated. The objective function is the function in charge
of defining the fitness of all individuals.

f= (3.16)

1
J
where f is the fitness of an individual and J is the value of the objective function associated to
the individual.

As shown in section 2.3 (Objective Function), different objective functions can be used to
evaluate the goodness of the individuals.

3.3.3.3. Convergence Criterion

The method to terminate the GA procedure is by applying a convergence criterion. Because of
its multi-point evaluation nature (population rather than points), usually, several tolerance
parameters are simultaneously used. The most frequently used tolerance parameters for
genetic algorithms are:

- The maximum number of generations.
- The fitness of the best individual.

- The average fitness of the population.
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- The diversity of the population.
- The number of new individuals for generation.
3.3.3.4. GAP Application

The GAP application controls the fraction of new individuals A(t+1) generated by the
reproductive process (selection + crossover + mutation). The fraction of individuals that skip
the reproductive process are randomly chosen. The main goal of applying a generation GAP is
to avoid premature convergence. An extensive analysis on GAP application and its implications
was done by De Jong (1975), where high values of generation GAP (between 0.8 and 1) were
found suitable (0 < GAP < 1, if GAP = 0 => no new individual is generated by reproduction,
while if GAP = 1 => all new individuals are generated by reproduction) .

3.3.3.5. Selection

Selection is the process of choosing individuals for birth according to their fitness. Many
methods have been studied, especially by Goldberg & Deb (1991), of how to carry out this
selection. The most used selection methods are: the roulette wheel selection (De Jong, 1975)
and the tournament selection (attributed to an unpublished work of Wetzel and subsequently
studied in Brindle, 1981).

The probability of selecting a specific individual at the step time t (generation t) by the
roulette wheel is as follows:

Proutette(t) = (3.17)

gl

where f is the fitness of the specific individual, fthe average fitness of the entire population
at the step time t and N is the population size.

Figure 3.6 illustrates equation (3.17).

Population Fitness Roulette Wheel Selection

Individual 1

Individual 4
Individual 2

Individual 3

—

N=4

=50 Selection Probability

Figure 3.6. Roulette Wheel Selection.

The concept of tournament selection is based on selecting the best individual from a randomly
selected group of individuals (see figure 3.7). The size of this group is known as tournament
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size. The bigger the tournament size is, the higher the selection pressure is. And, the lower the
tournament size is, the lower the selection pressure is. Selection pressure quantifies the
weight given to the fitness during the selection process.

Population Random Selection Tournament Selection

Individual 1 f;=100
Individual 4
Individual 2
Individual 3
N=4 Tournament Size = 2 Best Individual

Figure 3.7. Tournament Selection.

3.3.3.6. Crossover

The crossover stage is where the chromosomes of the parents are combined to create their
offspring. The combination of the parents "DNA" is done by concatenating part of the father
chromosome with part of the mother chromosome. The chromosome portions from each
other are defined by the crossover point. Usually, the crossover point is a random single point,
which specifies the point where the chromosome is going to be cut and subsequently
concatenated. In De Jong & Spears (1992), an exhaustive analysis was carried out in order to
study the effect of applying multi-point crossover. However, it was concluded that single point
crossover was the most suitable manner to cut the parents chromosomes for recombination.

The application of the crossover operator is controlled by the crossover probability P.. Several
empirical studies have been done in order to set a suitable value of P.. However, significant
discrepancies were obtained due to the high problem dependency. De Jong (1975) concluded
that 0.6 was the most suitable value of P, Grefenstette (1986) P.=0.95 and Schaffer et al
(1989) P=0.75-0.95.

The crossover procedure is illustrated in figure 3.8.

Crossover Point

Father ' Offspring 1

l1]of1|1]ofof2| [2|of2]|1]||o]o]1] 1011 |A\ 0\
Mother EX ‘::> :> Offspring 2

Figure 3.8. Crossover Procedure.
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The main role of crossover is searching around good individuals in order to promote potential
high fitness domains (see figure 3.9). This process is known as EXPLOITATION.

Search Space

Low Fitness Individuals

High Fitness Individuals

-

‘:_erFather
\
\

Potential High Fitness Domain

Figure 3.9. Exploitation of Potential High Fitness Domains by Crossover Operator.

3.3.3.7. Mutation

Mutation is the process where bits of a chromosome are randomly replaced by another to
yield a new structure.

The application of mutation is commanded by the mutation probability P,. Several empirical
studies have been done in order to set a suitable value of P;,,. However, similarly to crossover,
significant discrepancies were obtained due to the high problem dependency. De Jong (1975)
concluded that 0.001 was the most suitable value of P,, Grefenstette (1986) P,,=0.01 and
Schaffer et al. (1989) P,,=0.005-0.01.

The mutation process is illustrated in figure 3.10.

( Mutation l

Offspring Mutated Offspring

Figure 3.10. Mutation Procedure.

The main role of mutation is searching for new potential high fitness domains. This process is
known as EXPLORATION.

3.3.3.8. New Population

The new population is constituted by the offspring (from the reproductive process) and the
fraction of individuals not involved in the reproductive process (GAP application). It is assumed
that generation after generation the individuals forming the more evolved populations will
have higher fitness, or at least some of them.
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Frequently, in order to avoid the loss of the best individual, the survival of the best individual is
ensured by preserving it and replacing only the remaining (N - 1) members of the new
population. This is what De Jong (1975) defined as Elitism.

3.3.3.9 Penalty Function

Commonly, there is no guarantee that two feasible parents will provide feasible offspring. The
most obvious solution to the problem of constraints is simply to ignore them (if an infeasible
solution is encountered, it is not allowed to enter the next population). However, this fails to
recognize that the degree of infeasibility does supply some information too. It is common to
find the global minimum on or near a constraint boundary, so that solutions that are slightly
unfeasible my actually help to drive the search procedure to the optimum. This is reflected in
Golver & Laguna (1993).

A frequent way of dealing with candidate solutions that violate the constraints is to generate
potential solutions without considering the constraints and then penalizing them by decreasing
the value of their fitness. In other words, a constrained problem is transformed to an
unconstrained problem by combining a penalty function with the objective function. However,
though the objective function is usually well defined, there is no accepted methodology for
combining it with the penalty function. Davis (1987) studied the advantages and disadvantages
of using high, moderate, or light penalties, and concluded that:

If one incorporates a high penalty into the evolution routine and the domain is one in which
production of an individual violating the constraint is likely, one runs the risk of creating a
genetic algorithm that spends most of its time evaluating illegal individuals. Further, it can
happen that when a legal individual is found, it drives the others out and the population
converges on it without finding better individuals, since the likely paths to other legal
individuals require the production of illegal individuals as intermediate structures, and the
penalties for violating the constraint make it unlikely that such intermediate structure will
reproduce. If one imposes moderate penalties, the system may evolve individuals that violate
the constraint but are rated better than those that do not because of the objective function
can be satisfied better by accepting the moderate constraint penalty than by avoiding it.

Some approaches for using penalty functions in genetic algorithms can be found in Siedlecki &
Skanska (1989), and Richardson et al. (1989).

3.3.3.10 SGA Limitation

After defining in detail the different steps of a simple genetic algorithm and the operators
involved in it, the basic performance of a genetic algorithm can be understood as a process
focused on finding high fitness individuals in high fitness domains (EXPLOITATION) and trying
to find new high fitness individuals in order to define new potential high fitness domains
(EXPLORATION). Therefore, the proper performance of a genetic algorithm is based on the
balance between EXPLOITATION and EXPLORATION. All parameters involved in the algorithm
(population size, selection type, P., P, etc) affect that balance in some way; the main factors
are the probability of crossover (P.) to promote EXPLOITATION and the probability of mutation
(P) to promote EXPLORATION. High values of P. encourage EXPLOITATION, while high values
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of P,, encourage EXPLORATION. Depending on the state of the evolution (generation, diversity
of the population, etc) strong EXPLOITATION may drive the algorithm to a premature
convergence, while if too much effort is focused on EXPLORATION, the computational cost
may become unacceptable to make the algorithm competitive.

Figure 3.11 illustrates the balance between EXPLOITATION and EXPLORATION, as well as its
implications for performance.

Optimal Performance

A
Premature Convergence/)High Computational Cost

EXPLOITATION EXPLORATION

Figure 3.11. Balance between EXPOITATION and EXPLORATION.

Unfortunately, the evolutionary nature of genetic algorithms makes it impossible to define a
suitable fixed proportion of EXPLOITATION and EXPLORATION. In addition, there is the
limitation on parameter changes while using Simple Genetic Algorithm. That makes SGAs less
reliable for complex problems.

3.3.4 Adaptive Genetic Algorithm (AGA)
3.3.4.1 Introduction

As mentioned in the previous section, the proper performance of a genetic algorithm is based
on the balance between EXPLOITATION and EXPLORATION. The fact that no parameter
changes occur suggests a modification of the Simple Genetic Algorithms (fixed parameters) to
some kind of genetic algorithm capable to adapt its parameters while running. In general, the
new genetic algorithm is known as Adaptive Genetic Algorithm. However, many authors often
change slightly the name of the algorithm based on the method of varying the parameters and
the parameters themselves.

Fogarty (1989) experimentally defined a dynamical mutation probability that decreases
exponentially over the number of generations. Even though, the results showed an increase of
performance, the experimental setup was rather specific. Hesser & Manner (1991, 1992)
defined a more general expression for decreasing the mutation probability.

Schaffer & Morishma (1987) studied a crossover mechanism wherein the distribution of
crossover points is adapted based on the parent fitness. In Thierens (2002) and Liu & Feng
(2004) the same approach (based on fitness) was used to adapt the value of the mutation rate.
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The concept of combining the parent fitness with the population diversity to adapt the
crossover and the mutation rate was first introduced in Srinivas & Patnaik (1994). More
recently, many researchers have used the work by Srinivas & Patnaik (1994) and adapted it for
their problems. Zhu (2003) and Hagras et al. (2004) took the concept of diversity to adapt the
crossover and mutation rate to their particular problems. A drawback of the Srinivas and
Patnaik's method is that the population convergence is detected according to a fitness-based
measure. The degree of diversity loss is calculated as fiax — fave, Where fiax is the maximum
fitness value in the population, and f,,. is the average population fitness. Srinivas and Patnaik
hypothesize that the closer f,,, is to fi,ax the more converged the population is. In
multimodal fitness landscapes, however, many different chromosomes can share the same
fitness score, so although an average fitness value may be identical to the best fitness value,
the population may be widely scattered. Mc Ginley et al. (2011) defined a new methodology
based on diversity measures calculated from the genetic diversity rather than the fitness
diversity within a population.

Affenzeller & Wagner (2005) presented an adaptive selection mechanism, where selection
pressure is varied by adjusting the proportion of individuals involved in the reproductive
procedure. In Eiben et al. (2006a, 2006b) and Mc Ginley (2011) the selection pressure is
adapted by changing the tournament size (only applicable when using the tournament
selection method).

3.3.4.2 Adaptive Genetic Algorithm Definition

Based on the ideas shown in Mc Ginley et al. (2011), where crossover, mutation and selection
pressure is adapted, a new Adaptive Genetic Algorithm is presented. The objective of the new
AGA is to create and maintain a diverse population of good individuals capable of adapting to
difficult fitness landscapes.

Two measures of population diversity are employed to make the algorithm adaptable. The first
measure is named Standard Population Diversity (SPD) and it describes a population's solution
space diversity with no regard to the fitness of the individuals. SPD is similar to other diversity
measures described in the literature, like the one described in Zhu (2003). The second measure
is named Healthy Population Diversity (HPD) and it was firstly defined in Mc Ginley et al.
(2011). HPD describes a population's solution space diversity from a fitness perspective.

SPD controls the crossover and mutation rates, while HPD is used to regulate selection
pressure. Crossover employs SPD to divide the population into an EXPLOITATION section and
an EXPLORATION section (see figure 3.11). The relative size of each section is controlled by
SPD. Mutation is applied adaptively with higher probability in the EXPLORATION section to
explore potentially unvisited domains, while low probability is employed in the EXPLOITATION
section of the population.

Selection pressure (tournament size) is adapted according to the value of HPD. Tournament
size is reduced when HPD is low (converged population) permitting lower-fitness outliers to
reproduce and, by that means, protecting innovation. When HPD is high, tournament size is
increased to promote "survival of the fittest".
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3.3.4.2.1 Calculating SPD (SPD;)

Because of the fact that chromosomes may represent more than one parameter, the same
number of SPDs (SPD;) as parameters represented in the chromosome have to be calculated.

If the population consists of N individuals, where their chromosomes are formed by
concatenating strings of bits representing different parameters (see figure 3.12), SPD; can be
defined as follows:

1
SPD; = - ¥iL1 SPD; j (3.18)

where SPD; ; is contribution of the individual i to SPD;. SPD; ; represents the average of the
Euclidean distance between G; j ., and G]a,’c’f Gi jk; is the value of the bit k; (parameter j and

individual i) and ]“,’(’]e is the average of G; ;. Because of using binary alphabet the only

possible values of G; ; x; are 0 or 1, while the value of G]a,'c’f must be a value between 0 and 1. N

represents the number of individuals in the population.

_1yl
SPD;j = l—jZk]:l ||Gi,j,kj - Gfy! (3.19)
l; is the number of bits used to represent parameter j.
1
ey =~ 2i=1Gijk; (3.20)
where:
i=1,..,N
j=1..p
j= 1 _)kl = 1,...,l1
j= 2 _)kz = 1,...,l2
k] = 1, ey l] .
Lj =p-k,=1,..,1
Chromosome
Parameter 1 Parameter 2 Parameter p
Individual2 | 1 [ O [ O [~ 111010 |- 1 1{0]|0 [ 1|1
< Individual2 | 1 [ 1| 0 [ ollol1]1 ] [0 [ — olo| 1/ 1 | i=2
>3
o
£
IndividualIN | 0 | 1 | O |- 11111110/ I — 1110/l 0 | i=n
) K=l K2 K3 Kol K=l K2 K3 Kyl KALK=2 K3 KAl
j=1 j=2 j=3

Figure 3.12. Population and individual structure.
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3.3.4.2.2 Calculating HPD (HPD))

In contrast to SPD, HPD merges both fitness and solution spaces weighting each individual
distance contribution in the solution space according to its score in the fitness space.
Therefore, HPD; can be defined as follows:

HPD; = %Zﬁ\]:lHPDi,j (3.21)

where HPD; ; is the contribution of the individual i to HPD;. HPD; j represents the average of

the "weighted" Euclidean distance between G; ;; and G}ﬁc‘;”e. Gijk; is the value of the bit k;
(parameter j and individual i) and Gﬂ‘;"" is a "weighted" average of Gi,j,kj .Because of using
binary alphabet the only possible values of Gi_j,kj are 0 or 1, while the value of G}";(‘j_"" must be a

value between 0 and 1. N represents the number of individuals in the population.

- A Lj Wave
HPD;; = w; l—jzk]:l ||Gi,j,kj — Gy, (3.22)
w; represents the weighted factor.
_ _log(Fd)

£ log (fmax) (323)

fi is the fitness of the individual i and f,,,,, is the maximum fitness of the population.

ave __ 1

Gj‘j‘;{j =21 @ (Gi,j,kjrwi) (3.24)

If Gi,j,kj = (0 then: ® (Gi,j,kj' Wi) =Ww;
Else if Gi_j,k]. = 1then: ® (Gi,j,kjtwi) =1—-w

3.3.4.2.3 Adaptive Crossover (P, ggaptive)

The mechanism to make adaptable the crossover procedure is controlled by an adaptive
crossover probability (P gdapeive)- It should be noticed that there are as many values of P gagptive
as parameters. The value of P gqqpive is Obtained by the equation (3.25) proposed by Mc Ginley
et al. (2011).

SPD;
Pc_adaptivef = <m ) (Pc_max - Pc_min)) + Pc_min (3-25)

where SPD,,.x = 0.5 for binary alphabet and represents the maximum value of diversity. Using
binary alphabet that means that there is the same number of Q's as 1's represented in the
chromosomes. P, nax is the maximum crossover probability and P, ,;, the minimum (values
defined by the user).

If SPD; - 0.5= Pc_adaptivej = Ft_max
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Else if SPD] - 0= Pc_adaptivej - Pc_min

Increasing the value of P ggaptive Promotes the EXPOITATION section, while decreasing the
value of P ,dqptive promotes the EXPLORATION section.

3.3.4.2.4 Adaptive Mutation (P, adaptive)

The adaptive mutation probability (Pm_adaptive) i defined by combining two mechanisms. One of
them is controlled by SPD (diversity) and the other one by the fitness of the parents.

Equation (3.26), also proposed by Mc Ginley et al. (2011), defines the mutation probability
determined from population diversity (SPD).

PDiversity _ (SPDmax—SPD;j
m_adaptive; SPDymax

) ' Pm_max (3.26)
where Py, max is the maximum applicable mutation probability.

If SPD; —» 0.5 = P2VerSlY 0

m_adaptive j

. Diversity
Else if SPD; = 0= Py qaqprive; = Fnmax

Low diverse populations are forced to explore in order to introduce diversity.

Equation (3.27) defines the mutation probability determined from parent's fitness.

(3.27)

Fitness _ .
Pm_adaptivei - Pm_max (

fmax_fparenti)

fmax—Fmin

where f,4 is the highest fitness of the population, f,,;,, is the lowest fitness of the population
and fparent; is the fitness of the parent of the offspring i. It should be noticed that there are as

Fitness

many values of P, g iaptive;

as individuals involved in the reproductive process.

Finally, the expression that controls the adaptive mutation procedure is shown in equation
(3.28).

Diversity Fitness
Pm,adaptivej +Pm,adaptivei

Pm_adaptivei,j = 2 (3.28)

3.3.4.2.5 Adaptive Selection (Tsie_adaptive)

The mechanism to adapt the selection pressure is defined by the adaptable tournament size
(Tsize_adaptive)- TOUurnament selection involves selecting a number (T;e) of individuals randomly
from the population, with the best individual from this group being selected as a parent (see
section 3.3.3.5). It should be noted that the adaptive selection procedure (in this work) is only
applied when using the tournament selection method. When using the roulette wheel method
of selection, there is no application of any kind of adaptive selection procedure.

Equation (3.29) defines the adaptable tournament size (Mc Ginley et al. 2011).
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%-Zf=1 HPD;
T e =T (3.29)
size_adaptive HPDmax size_max

where p is the number of parameters, HPD,, is set to 0.5 and represents the maximum
diversity of population health. T mqy is the maximum admissible tournament size.

The higher the tournament size is, the lower selection pressure is, while the smaller the
tournament size is, the higher the selection pressure is.

If Tsize aqaptive = Population Size = Selection — Random Selection
Else if Tgize qaaptive > 1 = Selection — Elitism Selection
3.3.4.2.6 Adaptive Genetic Algorithm Structure

The structure of an adaptive genetic algorithm (from the GAP application stage to the new
population stage) is:

1) Application of the adaptive selection operator (adaptive tournament selection). If the
tournament selection method is not chosen as selection method, the selection process will not
be adaptable. Nonetheless, the algorithm can still be adaptive, if in the following stages
(crossover and mutation) the adaptive forms (P; ggaptive AN P _adaptive) are used.

2) EXPLOITATION vs. EXPLORATION. Crossover defines whether EXPLOITATION or
EXPLORATION is going to be applied.

On the one hand, if finally the crossover operator is applied to the chromosome, a low
mutation rate is also applied. This procedure is known as EXPLOITATION section and is when
the search is focused on domains represented by good individuals. On the other hand, if the
crossover operator is not applied, the adaptive mutation rate is applied.

3) Construction of the new population by combining the offspring from both sections
(EXPLOITATION and EXPLORATION).

It should be noticed that the processes of crossover and mutation are applied for each string of
bits representing the different parameters codified in the chromosome.

Figure 3.13 illustrates the structure of an adaptive genetic algorithm.
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Figure 3.13. AGA structure.

3.3.5 Genetic Algorithm Post-Process

As it has been mentioned before, mathematically, according to the contraction mapping
theorem and some hypothesis (Chicone, 1999), the uniqueness of the problem can be
guaranteed (this is a sufficient condition, but not a necessary one). However, due to the nature
of geotechnical problems, the guarantee of having uniqueness is rather difficult or even not
possible. The inherent heterogeneity and complexity of the soil behavior lead to a model of
geotechnical structures that is inevitably both uncertain and simplified; along with the intrinsic
error associated with the different methods of measurements. As a consequence, rather than
having one exact unique solution or focusing on getting the best possible solution (the best
individual), a set of approximated solutions can be identified as the final solution of the
parameter identification problem. A statistical method based on a principal component
analysis (PCA) has been considered as genetic algorithm post-process to evaluate the
representativeness of this set of approximated solutions (Levasseur, 2007; Levasseur et al.,
2009 and 2010).
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3.3.5.1 Principal Component Analysis (PCA)

The PCA is a statistical procedure that uses an orthogonal transformation to convert a set of
solutions (points) of possibly correlated variables into a set of points of linearly uncorrelated
variables called principal components (also known as principal axes). The number of principal
components is less than or equal to the number of original variables. The property of
maximum variation is represented by the first principal component. The successive principal
components are determined with the property that they are orthogonal to the previous
principal component and that they maximize the variance of the points projected onto them.
The representation of principal components in the search space permits to visualize the first-
order orientation of the points and its spread.

Practically, the method is based on calculating the correlation matrix and then obtaining its
eigenvalues and eigenvectors to represent de distribution and correlation of the different
variables (parameters). The correlation matrix is defined by the Pearson product-moment
correlation coefficients, commonly called simply "the correlation coefficients" (eq. 3.30), which
are obtained by dividing the covariance of two variables (p;, p;j) by the product of their

standard deviation (Pearson, 1895).

) _ cov(pipj) _ E[(pi_”l’i)(pf_“pj)]

D'pio'pj D'pio'pj

corr(pi, 1 (3.30)

i =1,..,number of parameters
j =1,..,number of parameters

where gy, and ap; are the standard deviations, u, and Hp;are the expected value of p; and p;,

and E is the expected value operator.
Figure 3.14 illustrates the scheme of a PCA for a case of two variables (parameters).
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Figure 3.14. Scheme of a Principal Component Analysis (PCA).
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3.3.5.2 Post-Process Definition
Frontier Definition

Previous to starting the PCA, the set of points involved in the analysis have to be selected. The
method used to define the frontier between the points accepted for the PCA and the ones that
are not, is based on the expression proposed by Wiggins (1972).

o= (3.31)

J_
m-n
where o represents an average value of the standard deviation of the measurements, J is the
value of the objective function, and m and n are the number of measurements and the
number of parameters respectively.

Then, once ¢ is fully defined, based on the type of instruments used to carry out the
measurements and the global reliability of the measurements, the frontier value (Jrontier) can
be directly obtained by:

Jfrontier = (m—n)-o? (3.32)

The points susceptible to be analyzed for the PCA can be restricted just to the ones
represented in the last generation or they can be expanded to all the individuals involved in
the different generations (from the initial generation to the last generation). The implications
of using more or less individuals from different generations are discussed in Chapter 5.

Principal Component Analysis Application

Once the set of points used for carrying out the PCA is defined, the PCA is performed and then
the eigenvectors and eigenvalues of the correlation matrix are obtained.

Definition of the Solution of the Parameter Identification Problem

After obtaining the eigenvectors and eigenvalues of the correlation matrix, an ellipsoid is
defined in order to create an envelope curve of the solution set. The axes directions of the
ellipsoid correspond to the eigenvectors orientation, whereas the axes sizes are equal to twice
the variance of the associated component.

Thanks to this method; from a discrete set of solutions (points or individuals) identified by
genetic algorithms, a continuous space of solutions is estimated. The space included in the
ellipsoid is a first-order approximation of the set of solutions of the parameter identification
problem.

Figure 3.15 illustrates the different steps presented above.
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Figure 3.15. Genetic Algorithm Post-Process Scheme. Figure (a) represents the last genetic algorithm generation,
where the black points are the individuals not selected for the PCA and the empty ones are the individuals
selected for the PCA. Figure (b) shows the resultant principal components from the PCA, and finally, figure (c)
illustrates the ellipsoid that defines the continuous space of the parameter identification solution.

Verification

Sometimes the ellipsoid does not represent properly the shape of the objective function,
meaning that many solutions enclosed inside the ellipsoid are not satisfying the condition of
having a value of the objective function lower than the frontier value. In those cases, the
solutions represented by this method of post-process cannot be considered satisfactory.

When three or fewer parameters are being identified, the verification of this method is
relatively easy; it just requires to check graphically whether or not the layout of the solutions
are well represented by the ellipsoid (see figure 3.16).

/

V

P P2
PCA Ellipsoid

v
v

P1 P1
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Figure 3.16. Graphical verification of the PCA ellipsoid. Figure (a) illustrates a satisfactory representation of the
solution, while figure (b) illustrates a non-satisfactory case.

However, for cases where more than 3 parameters are involved, the graphical strategy is not
possible. Then, in order to generalize a criterion to verify the representativeness of the
ellipsoid, a novel verification criterion has been defined.

The verification criterion consists in evaluating the objective function at the end of the
principal axes that defined the ellipsoid, and then, compare (eq. 3.33) those values with the
value defined as frontier in the PCA.
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Ver; = (]frontier‘]axisi)z (3.33)

]frontier
i =1,..,ellipsoid dimension (number of principal components) X 2

where Jerontier i the objective function value defined as frontier, and Jqy;s, is the objective

function evaluated at the end of the principal axis i.

Then, the ellipsoid can be considered representative (satisfactory) if and only if all values of
Ver; are lower than a tolerance. The definition of that tolerance will depend on each problem,
so, it must be defined specifically for each case, as for the frontier value.

In the case of obtaining a non-representative ellipsoid, the transformation of some original
variables can turn out in a representative ellipsoid, as shown in Levasseur (2007) and Levasseur
et al. (2010). Defining a stricter frontier can also help to define a representative ellipsoid for
the solution. However, if none of that works, the final solution will be only represented by the
best individual of the population.

3.4 Hybrid Method
3.4.1. Introduction

As mentioned before, there are, on the one hand, gradient based methods that can be seen as
efficient methods, when they have the proper conditions to work well, and, on the other hand
there are the genetic algorithms that present a high robustness, but also a high computational
cost. Then, in order to keep the characteristic robustness of genetic algorithms and the
efficiency of the gradient based methods, a hybrid method that makes the most of both has
been defined.

Yang et al. (1997) introduce this concept of combining genetic algorithms with a local search
method, a linear recursive least-squares, into an on-line identification of continuous time-
delay systems from sampled input-output data. The presence of the unknown time delay
greatly complicates the parameter identification problem, essentially because the parameters
of the model are not linear with respect to the time delay. However, once the time delay is
determined, the model becomes linear for the other parameters. Motivated by this fact, Yang
et al. (1997) proposed a novel hybrid approach where the time delay is firstly determined by
the genetic algorithm, whereas the system parameters are subsequently estimated by the
local search method.

Using the opposite scheme, first local search and then genetic algorithm, Lee & Lee (2002) and
Chen et al. (2002) defined a method based on generating the initial population of genetic
algorithm by applying previously the local search technique, and then reduce the search space
and consequently improving the efficiency of the optimization. Such approach was well suited
for some specific problems, but not for its general application.

Tsai (2002) and Tsai et al. (2003a and 2003b) developed a methodology for parameter
structure identification in groundwater modeling, where a genetic algorithm is allied with a
grid search method and a quasi-Newton algorithm to solve the inverse problem. The genetic
algorithm is first used to search for the near-optimal parameter pattern and values. Next, a
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grid search method and a quasi-Newton algorithm iteratively improve the genetic algorithm
estimation. A similar work was presented by Kasprzyk & Jaskula (2004). In this case the genetic
algorithm was combined with the simplex downhill minimization method in order to identify
six parameters of the model describing overlapping semidefferential voltammetric curves.

Misevicius (2004) developed a type of hybrid method for solving quadratic assignment
problems, where the local search technique is used as one of the operators of the genetic
algorithm for improving each member of the population in each generation, which was found
to give a better performance as far as efficiency is concerned. Related to the work of
Misevicius (2004), Wang & Wu (2004) and Kim et al. (2004) showed that this type of hybrid
algorithm affects the control of the genetic algorithm parameters more than the genetic
algorithm itself. Consequently, finding the global optimum is not assured as usually happens
when using genetic algorithms only.

In this thesis, the method briefly presented in de Santos et al (2014), where a hybrid method
for backanalysis was applied for the first time in the field of geotechnics, has been used and is
described here. The method is based on combining in serial form genetic algorithms with
gradient based methods. The genetic algorithm is used as a first stage to define a smaller
search space, located near the minimum, and the gradient method is used as a second stage to
finally find the minimum in an efficient manner (see figure 3.17). Once the genetic algorithm
analysis is finished, a principal component analysis is carried out in order to obtain an ellipsoid,
which is going to define the new search space used by the gradient method.

Stage 2
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- Method Search ,
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Figure 3.17. Hybrid Method Scheme.

3.4.2 Hybrid Method Definition
3.4.2.1 Stage 1: Global Search
Genetic Algorithm Analysis

As mentioned before, the first stage is where the genetic algorithm is carried out in order to
reduce the search space. Reducing the search space is expected to help the gradient based
method with not getting stuck in local minima. Usually, when using genetic algorithms as a
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part of a hybrid method, the maximum number of generations is reduced with respect to cases
where genetic algorithms work alone. In Chapter 5, it has been noticed that after few
generations, the representativeness of the set of solutions does not increase significantly to
justify the increase on computational cost of generating new generations.

Principal Component Analysis

Once the genetic algorithm is finished the PCA is carried out in order to define the new search
space. The mechanism used in this step is as defined in the previous section (3.3.5). The new
search space is supposed to be close enough to the global minimum and representative
enough to keep local minima out of the new domain. Apart from defining the new search
space, the PCA is used to define the starting point for the gradient based method. The center
of the ellipsoid defined by the PCA is used as the starting point.

3.4.2.2 Stage 2: Local Search

Starting from the center of the ellipsoid, a gradient based method is used with the objective of
improving the genetic algorithm solution. The aim of that combination is achieving a good
solution with a reasonable computational cost.
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Backanalysis Dedicated Code: HBCode

4.1 Introduction

The methodology and the results presented in this thesis have been possible thanks to the use
of a backanalysis code that has automated all the different steps involved in a problem of
parameters identification. The Backanalysis code, named HBCode, which stands for Hybrid
Backanalysis Code, was written in FORTRAN 90 by the author of the thesis and its development
was focused on solving backanalysis problems using the commercial geotechnical software
Plaxis 2D v9.

The wide application of Plaxis by the geotechnical community, and its large number of features
to define and reproduce complex problems, has made Plaxis a powerful tool to solve direct
problems. Consequently, it was considered appropriate to face the complexity of backanalysis
by using Plaxis to define and calculate the numerical models. Because of the use of Plaxis,
HBCode is currently capable to identify any parameter that defines the Hardening Soil model
implemented in Plaxis.

Moreover, most of the objective functions presented in Chapter 2, and all the optimization
algorithms presented in Chapter 3, are implemented in HBCode, as well as the principal
component analysis that is used when applying the hybrid algorithm.

In table 4.1, the main characteristics of HBCode are shown.
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HBCode by C. de Santos

Language Code

Numerical Models

Objective Functions

Type of measurements

Instrumentation error structures

Optimization Algorithms

FORTRAN 90
Plaxis v9

Least-Squares
Markov
Maximum Likelihood

Vertical Displacements
Horizontal Displacements
Water Pressure

Sliding Micrometer

Inclinometer

Extensometer

Surface Vertical Displacement Point
Piezometer

Gradient Based Methods:
Gauss-Newton
Marquardt
Genetic Algorithms:
Simple Genetic Algorithm (SGA)
Adaptive Genetic Algorithm (AGA)
Hybrid Algorithms (+ Principal Component Analysis):
SGA + Gauss-Newton
SGA + Marquardt
AGA + Gauss-Newton
AGA + Marquardt

Table 4.1. HBCode main characteristics.

4.2 HBCode-Plaxis Interaction

In addition to the optimization algorithms and the essential operations needed for a
backanalysis that have been implemented and extensively presented in chapter 2 and chapter
3, only the manner of how the Plaxis files have been manipulated to define, evaluate and

extract the possible new solutions is presented here.

The most representative Plaxis files that have been used to carry out the backanalysis are

schematically presented in figure 4.1.

Plaxis v9 Files

Evaluation

Definition

Figure 4.1. The main Plaxis files manipulated by HBCode.

52

Extraction

Phases
TIXT




A Backanalysis Dedicated Code: HBCode

Definition

Before evaluating any combination of parameters, it is needed to redefine the Plaxis MatFile
(.MAT), which contains all the information related to the soil parameter values, and the Initial
Stress State File (.000), which contains all the information related to the initial stress state, the
Shear Hardening yield surface and the Compression Hardening yield surface.

The scheme followed by the HBCode to redefine the MatFile and the Initial Stress State file is
presented in detail in the following sections (4.2.1 and 4.2.2).

Evaluation

Once the MatFile and the Initial Stress State file are redefined, it is necessary to recalculate the
numerical model. The method used by HBCode to calculate the Plaxis models is based on the
application of a batch file, containing the address of the Plaxis Calculus Module (batchn.exe),
the Plaxis PLX file (.PLX) of the model that has to be calculated, and the sentence calculate (/C).

An example would be as follows:
C:\Program Files (x86)\Plaxis v9\batchn.EXE "Plaxis_Model.PLX" /C
Extraction

Finally, when the model with the new parameter values is calculated, the results are extracted
and the objective function evaluated. Two different strategies have been defined in HBCode to
extract the results depending on the number of measurements used in the analysis in order to
try to optimize the time and the computational cost of the extraction. The fastest way to
extract the results is using the CXX file (.CXX), which contains the results from pre-selected
displacements and stress points. Unfortunately, Plaxis only permits the pre-selection of a
maximum of ten displacement points and ten stress points, which in terms of backanalysis can
represent a too small number of points. The other way to extract the results, which has no
limitation on the number of displacements and stress points is using the general results file,
where the results of all displacements and stress points are stored. Plaxis generates one
general results file for each calculation step; using the number of the calculation step as a file
extension (.StepNum). So, before opening the file the step number of the last step associated
with the Plaxis phase that is going to be compared with the measurements has to be
determined; to do that it has to be read the Phases.txt, which contains the information related
to the number of steps involved in calculating each Plaxis phase. Once the step number is
identified, the general file can be selected and subsequently manipulated. As mentioned
before, the general file contains information of all displacements and stress points, and that
makes the process of extraction extremely time consuming comparing to the other method
(.CXX). Nonetheless, the use of the general file has been considered more useful than the use
of the CXX file, especially when working on complicated problems where having more
measurements makes the difference between solving or not solving the backanalysis problem.
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4.2.1 MatFile Definition (.MAT)

Prior to start introducing the new soil parameter values into the MatFile, it has to be
transformed from binary alphabet to "human" text file (ASCIl). The transformation is
conducted by an executable file (cbin.exe) provided from Plaxis bv. The executable file is
capable to perform the transformation in the two directions: from binary to "human", and
from "human" to binary. Then, after transforming the MatFile into text file, the new soil
parameter values can replace the old values. Then, the MatFile is again transformed to binary

form to finally redefine the internal Hardening Soil Model (HSM) parameters (@, K;/K, and

ref_inter
Gi f-

) that control the coupling of the Shear Hardening vyield surface with the
Compression Hardening yield surface (see section 2.6.1.2). The evaluation of the new internal
HSM parameters has been conducted by an executable file provided from Plaxis bv
(HsCapltr.exe).

4.2.2 Initial Stress State Definition (.000)

Depending on whether K, is one of the parameters to be identified or not, the values of
effective horizontal stresses (o), stored in the initial stress state file (.000), will be recalculated
or not. In the case of identifying K, g, has to be recalculated and stored in the initial stress
state file. The new value of oy is directly obtained by oy, - K.

Independently of whether K|, is involved in the analysis or not, in the majority of cases where

parameters such as Exo’ , E1<), Eve/,

hardening yield surfaces, as the isotropic pre-consolidation stress (pz’,) and the accumulated

¢ and ¢ are varied, two parameters associated with the

plastic deviatoric strain (y?), must be recalculated to properly define the yield surfaces. The
scheme used to calculate pj, and y? that has been implemented in HBCode is the same one
implemented in Plaxis (Brinkgreve & Broere, 2008). The values of p, and y? stored in the initial
stress state file are the highest values obtained from two different scenarios, assuming pre-
consolidation stress and unloading stress.

Stress state from pre-consolidation and unloading stress
1) Pre-consolidation stress
oy =0, = 0, - OCR (4.1)
oy = K¢ - oy (4.2)

where a}’, is the effective vertical stress, oy, is the vertical pre-consolidation stress, 03’,0 is the in
situ effective vertical stress, OCR is Over-Consolidated Ratio, g, is the effective horizontal
stress, and K¢ is the coefficient of lateral earth pressure associated with normally
consolidated state stress.

2) Unloading stress

oy =00 (4.3)
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Ko— (Vur/1 _Vur)
Ky C‘(Vur/ 1

— 2. (OCR - 1) (4.4)

r _ 1, NC,
gy = gy " Ky r—

_Vur)

where K, is the current coefficient of lateral earth pressure, and v, is the Poisson's ratio for
unloading-reloading.

Calculating py,

The value of p,, can be obtained by imposing in equation 2.39 f¢ = 0. Then:

0.5

. . 2
1, (3+sing ;_(3+sing\
o1+ 1)o—— ‘03 o! +ol+a! 2
pé — [( (3 sin ¢ ) (3 51n<p) ) +( 1103 3) (4.5)

a 3

where a is the steepness of the compression hardening yield surface obtained from the
MatFile after executing HsCapltr.exe.

Calculating yP

The value of yP can be obtained by prescribing f$ = 0 in equation 2.37. Then:

1 oj-o5  2(01-03)

y - Eiinter 1_0.’1_0.’3 Eur (4.6)
da
where El-i”ter is an auxiliary internal parameter defining the initial stiffness that is obtained

from the MatFile after executing HsCapltr.exe , E,,- is the unloading-reloading stiffness, and q,
is the asymptotic deviatoric strain originally defined by Duncan & Chang (1970) as:

1-sing

. =Z_;: <(c-cot(p—0'3’;)' 2-sin<.0>/Rf (4.7)

where gy is the ultimate deviatoric stress, and Ry is the ratio between g, and g¢, which should
be less than 1.

Once the new values of p{, and yP are stored in the initial stress state file (.000), the numerical
model is ready to be calculated again.
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Chapter

Application and Validation of the Methodology
(Synthetic Case)

5.1 Introduction

In this chapter the backanalysis methodology has been applied and validated for a synthetic
case represented by a tunnel excavation. All the different optimization methods described in
chapter 3 have been used in order to study the strengths and weaknesses of each method. The
aim of using a synthetic case is because its simplicity helps to focus the study on the
understanding of the behavior of the backanalysis technique rather than on the final
parameter values.

5.2 Synthetic Case
5.2.1 Description

The case study is a symmetric circular tunnel 10 m deep and 10 m in diameter (see figure 5.1).
The model, defined in Plaxis 2D (Version 9), is 80 meters wide and 40 meter high. The
hypothesis of plane strain was adopted. 1476 15-node triangle elements were used to
discretize the geometry of the problem, and consequently 12142 nodes and 17712 stress
points were created (see figure 5.2). The hardening soil model was used as constitutive model.
Only one material was considered to define the stratigraphy of the model. The soil parameters
of the model are shown in table 5.1. In order to simulate the soil-structure interaction, an
interface was defined adjacent to the outer side of the tunnel lining. The tunnel was
considered impervious and water flow through the lining was not allowed.
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Figure 5.2. Plaxis geometric model.
Parameter Description Value
Yunsat Unsaturated specific weight 19 [kN/m’]
Ysat Saturated specific weight 21 [kN/m?]
ky =k, Horizontal and vertical permeability 8.64-10™ [m/day]
E;gf Secant stiffness in standard drained triaxial test 5000 - 37500 [kN/mz]
E;sg Tangent stiffness for primary oedometer loading 0.8-E5r§f [kN/m?]
EreS Unloading / Reloading stiffness (20E1 > En¢/ > 3ELT) 10000 - 200000 [kN/m’]
m Power for stress-level dependency of stiffness 1[-]
c Effective cohesion 0- 50 [kN/m?]
1) Effective angle of internal friction 25 - 35 [deg]
P Angle of dilatancy 0 [deg]
Vur Poisson's ratio for unloading-reloading (by default v,,,, = 0.2) 0.2 [-]
p”f Reference stress for stifnesses 100 [kN/mz]
Ké"c Coefficient of lateral earth pressure associated with normally 0.531 [-]
consolidated states of stress (by default KY¥¢ = 1 — sin @)
Rf Failure ratio q/q, 0.9 [-]
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Otension Tensile strength 0 [kN/mil
Cincrement Increase of cohesion per unit of depth 0 [kN/m’]
Rinter Interface strength factor 0.64 [-]

Table 5.1. Soil parameters.

The parameters of the lining are shown in table 5.2

Parameter Description Value
Material type Constitutive model elastic
EA Axial stiffness 1.25-107 [kN/m]
El Flexural rigidity 2.6042:10° [kKNm*/m]
deq Equivalent thickness 0.50[m]
w Weight 12.5 [kN/m/m]
v Poisson's ratio 0.2 [-]

Table 5.2. Parameters of the tunnel lining.

Three different stage constructions, plus the initial stress generation, were defined to simulate
the tunnel construction.

- Phase 0: Definition of the initial stresses by the Plaxis K, procedure. The material was initially
considered normally consolidated (OCR=1) and the value of K, was defined by the equation of
Jaky (1948).

Ky=1—-sing (5.1)

- Phase 1: Tunnel excavation using the Plaxis method ZMStage to simulate a volume loss close
to 0.8% (2MStage=0.2).

- Phase 2: Tunnel construction activating the lining.

- Phase 3: Dissipation of all the excess of water pressure caused by the tunnel construction
process (consolidation).

5.2.2 Measurements

Twenty points with information on vertical displacements were chosen as in situ
instrumentation data. The locations of these points try to simulate an extensometer, located
along the vertical tunnel axis, an extensometer, 2 meters away from the tunnel side, and
various surface points. Figure 5.1 shows the location of those 20 points used as in situ
instrumentation data.

The measurements used in this study were directly extracted from the last calculation phase
(phase 3) after evaluating the Plaxis model with:

EL¢S =25000 kN/m?
ref _ ref

E') = 0.8EL°

E1¢’ =75000 kN/m?

c=10 kN/m?

p=28°
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Two different set of data were created by defining two levels of data noise. The noise was
randomly created following a normal distribution defined by the mean (u) and the standard
deviation (o). One set of data, named exact data, was defined by y=0 m and =0 m. The other
set of data, named noisy data, was defined by =0 m and 0=0.5-10> m. Table 5.3 contains the
values of the vertical displacements used as measurement points.

Point Exact Data / u=0 m and 6=0 m Noisy Data / =0 m and 6=0.5-10" m
1 -0.020792 m -0.020524 m
2 -0.021996 m -0.021079 m
3 -0.022404 m -0.023533 m
4 -0.022707 m -0.022276 m
5 -0.023304 m -0.023144 m
6 -0.017748 m -0.018401 m
7 -0.018290 m -0.018507 m
8 -0.017949 m -0.017778 m
9 -0.014081 m -0.012292 m
10 0.0000129 m 0.0013976 m
11 0.0053286 m 0.0046537 m
12 0.0047475 m 0.0062650 m
13 0.0033345 m 0.0036972 m
14 -0.012231m -0.012262 m
15 -0.006986 m -0.006629 m
16 -0.003269 m -0.003372 m
17 -0.001233 m -0.001295 m
18 -0.00628 m 0.0001168 m
19 -0.000344 m 0.0003608 m
20 -0.000112 m 0.0005969 m

Table 5.3. In situ measurement data from a direct calculation using Plaxis. The points represent the measurement
points in the model, from top to bottom and from left to right (see figure 5.1).

Figure 5.3 illustrates the values of the vertical displacements shown in table 5.3.
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Figure 5.3. Vertical displacements used as measurements. (a) measurements from point 1 to point 5 (from top to
bottom). (b) measurements from point 6 to point 13 (from top to bottom). (c) measurements from point 14 to
point 20 (from left to right). The solid line represents the exact data and the dashed line represents the noisy
data.

5.2.3 Stress and Strain Overview of the Model

In this section some outputs of the numerical model are presented in order to better
understand the behavior of the particular case study of a shallow tunnel construction. Due to
the fact that a tunnel construction is a combined system where loading and unloading states
occur simultaneously, knowing the stresses with respect to the yield surfaces and the strains
can be very useful in terms of parameter identification.

From figure 5.4 the regime of the stress points can be extracted, and subsequently the
relevance associated to the different stiffness moduli can also be derived. Using the hardening
soil model, six different regimes are possible: Elastic regime, Mohr-Coulomb regime, Tension
cut-off regime, Hardening regime, Cap regime and Cap & Hardening regime. All different
regimes are fully described in the manual of Plaxis (Brinkgreve & Broere, 2008). Simplifying, it

can be pointed out that:
- The elastic behavior is mainly controlled by the unloading-reloading modulus (E,Zif).

- The stress state at failure, described by the Mohr-Coulomb failure criterion, is defined by the
effective strength parameters ¢ and c.

- The tension cut-off is totally controlled by the tensile strength (0tension)-

- The hardening regime, which affects all the stress points located in the shear hardening yield

surface, is mainly controlled by the stiffness parameter E;gf.

- The stress points located in the compression hardening yield surface (cap regime) are mainly

controlled by the stiffness parameter Eg;’;.
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- The regime defined by the intersection of the both hardening yield surfaces is mainly

controlled by E;gf and E;:Z;.

In order to better follow the evolution of the system under a tunnel construction, five stress
points were selected to study their behavior in depth. Figure 5.5 shows the location of those
selected points.

As it was expected (see figure 5.6), due to the unloading phenomenon of a tunnel
construction, the stresses at the point closer to the bottom of the tunnel (point E) have varied
the most with respect to the other points. However, even considering a tunnel construction as
an unloading system, not all points can be considered under unloading conditions. This
phenomenon has some implications with respect to where to measure in terms of what
parameter is wanted to be identified, especially when using the hardening soil model that uses
three different stiffness moduli with dependence to the stress state. Therefore, it must be
taken into account that in sophisticated constitutive models, such as the hardening model that
has many interactions among parameters, it cannot be easy or even possible to fully
distinguish when and how each parameter is affecting the behavior of the model.
Consequently, in order to better define where to measure (the optimal layout of measuring
points), it is highly recommended to proceed with a sensitivity analysis as presented in section
2.5.

B
Ly
B

"?}}‘,‘j;.‘
g,
'\t“?‘
“ e
(d)
Plastic points
[ Mohr-Coulomb paint Tension cut-off point [ Cap &Hardening paoint
H] Cap point E Hardening point

Figure 5.4. Plastic points of the model used to generate the measurements. (a) shows the plastic points from the
calculation phase 0, (b) shows the plastic points from the calculation phase 1, (c) shows the plastic points from
the calculation phase 2 and (d) shows the plastic points from the calculation phase 3.
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Figure 5.5. Location of the selected points.

Observing figures 5.7 and 5.8, it can be noticed that the majority of the strains are shear
strains due to the soil relaxation previous to the installation of the lining. And as expected for
an undrained situation, no volumetric strains occurred until the consolidation phase (phase 3).
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Figure 5.6. Stress paths of the points A, B, C, D and E. The blue-green diamonds represent the Cap & Hardening
regime and the yellow diamonds represent the Elastic regime.
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Figure 5.7. Shear strain paths of the points A, B, C, D and E. The blue-green diamonds represent the Cap &
Hardening regime and the yellow diamonds represents the Elastic regime.
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Figure 5.8. Volumetric strain paths of the points A, B, C, D and E. The blue-green diamonds represent the Cap &
Hardening regime and the yellow diamonds represent the Elastic regime. (-) for compression and (+) for swelling
behavior.
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5.3 Two Parameters Identification Case (ng)f and c)

5.3.1 Introduction

In this section, the identification of the secant stiffness in standard drained triaxial test (Esrgf

and the cohesion (c), for two different measurements scenarios (exact data and noisy data), is

presented. The selection of these two parameters is based on a sensitivity analysis where Esrgf

and ¢ were determined as the parameters more relevant with respect to vertical

displacements. As it is shown in table 5.1, the tangent stiffness for primary oedometer loading
ref

(Egsg) has been directly correlated with E " . The reason for forcing this relationship between

E;gf and Egsg is just to avoid problems derived from the computation of the internal

parameters of the Hardening Soil Model that try to fit simultaneously both yield surfaces (see
section 2.6).

The fact of identifying two parameters has permitted to visualize the actual shape of the
objective function in the search space. 3366 direct problems were solved in order to properly
represent the shape of the objective function. The search space was defined by:

- Minimum value of E;gf = 5000 kN/m?
- Maximum value of E;gf = 37500 kN/m?

- Step size value of Esrgf =500 kN/m?
- Minimum value of ¢ = 0 kN/m?
- Maximum value of ¢ = 50 kN/m?

- Step size value of ¢ = 1 kN/m?

The global minimum is of course located in Esrgf = 25000 kN/m? and ¢ = 10 kN/m?>.

Usually, in real cases or cases where the computational cost is so high, this kind of exhaustive
previous analysis or pre-visualizations of the objective function are not possible or worth it.
However, due to the objective of showing the methodology presented in this thesis, the
visualization of the objective function was considered useful.

The least-squares method (see section 2.3.1) was used to define the objective function applied
in this synthetic case study.

Figure 5.9 shows the shape of the objective function for the case of exact data.
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Figure 5.9. Mapping of the objective function [mZ] for the case of exact data.

Thanks to figure 5.9, the relationship between Esrgf and ¢ can be appreciated, where very
different combinations of E;gf and c have low values of error, as well as the sensitivity of the

objective function with respect to Eggf and ¢, which is represented by the distance between
the isolines. Graphically, an extensive narrow valley encloses the surroundings of the global
minimum, which often increases the difficulty of the parameter identification. In theory, the
easiest problem (for two parameters) would be defined by an objective function represented
by perfect concentric circles, where both parameters would be equally sensitive.
Unfortunately, this scenario rarely occurs.

Figure 5.10 illustrates the effect of adding a certain amount of noise into de measurements
(noisy data case), where the narrow valley shown in figure 5.9 has flattened. That makes the
parameters identification even more difficult, and unfortunately, this situation occurs quite
often in geotechnical problems.
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Figure 5.10. Mapping of the objective function [mZ] for the case of noisy data.

5.3.2 Using the Gauss-Newton Method

The Gauss-Newton method, presented in section 3.2.2, was used to find the parameter values
that best represented the measurements. Because of the high dependency of the solution with
respect to the starting point, while using gradient based methods, three different starting
points were selected.

- Starting Point 1: Ef¢/ = 17500 kN/m? and c¢ = 30 kN/m?
- Starting Point 2: Eggf= 30000 kN/m? and ¢ = 40 kN/m?
- Starting Point 3: E;gf: 7500 kN/m? and ¢ = 5 kN/m?
5.3.2.1 Exact Data Case Results

The following three figures (5.11, 5.12 and 5.13) illustrate the path followed by the iterative
procedure throughout the objective function surface for the case of exact data. For a better
understanding of the optimization method behavior and its stability, the method was
permitted to run freely until reaching a maximum number of iterations (no error tolerance was
imposed). A maximum of ten iterations were considered appropriate to reach the global
optimum from all starting points.
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Figure 5.11. Gauss-Newton path from the starting point 1 - Objective function [m?] (exact data).
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Figure 5.12. Gauss-Newton path from the starting point 2 - Objective function [mz] (exact data).
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Figure 5.13. Gauss-Newton path from the starting point 3 - Objective function [mz] (exact data).

From figure 5.11, 5.12 and 5.13 it can also be observed, especially for the first iterations where
the step size is large, how the method drives the search towards the minimum of the tangent
paraboloid to the objective function.

In figure 5.14, 5.15 and 5.16, the evolution of the algorithm, in terms of objective function and
parameters values, is illustrated.
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Figure 5.14. Evolution of the objective function using the Gauss-Newton method with exact data. The diamonds
represent the starting point 1 case, the squares represent the starting point 2 case and the triangles represent the
starting point 3 case.
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Figure 5.15. Evolution of the E;f,f value using the Gauss-Newton method with exact data. The diamonds
represent the starting point 1 case, the squares represent the starting point 2 case, the triangles represent the
starting point 3 case and the red dashed line represents the actual parameter value.
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Figure 5.16. Evolution of the cohesion value using the Gauss-Newton method with exact data. The diamonds
represent the starting point 1 case, the squares represent the starting point 2 case, the triangles represent the
starting point 3 case and the red dashed line represents the actual parameter value.

For the case study of a shallow tunnel relatively far from collapse, it is pointed out that the
Gauss-Newton method works properly on identifying the secant stiffness in standard drained
triaxial test (E;gf) and the cohesion (c) when using exact data from vertical displacement
measurements. Moreover, even having a narrow banana shape valley surrounding the global
minimum, the optimization algorithm shows itself as a highly stable iterative procedure. This is
reflected in figure 5.14, where in almost each new iteration the value of the objective function
diminishes along the process.
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A summary of the results is shown in table 5.4 where the computational cost is also presented.

Case Initial Values Final Values Computational Cost

Esrgf [kN/m’) ¢ [kN/m’] Esrgf [kN/m’] ¢ [kN/m?] [Plaxis evaluations]
Starting Point 1 17500 30 24995.99 10.00 30
Starting Point 2 30000 40 24996.00 10.00 30
Starting Point 3 7500 5 24996.00 10.00 30

Table 5.4. Results summary using the Gauss-Newton method with exact data. Plaxis evaluations is referred to the
number of direct problems solved by the geotechnical program Plaxis.

The difference between the final values of Esrgf and its actual value (25000 kN/m?) is

associated to a numerical error derived from the computer precision and the HBCode itself.
5.3.2.2 Noisy Data Case Results

In this section the measurements used in the analysis were altered by introducing noise. As
indicated above, the noise was randomly created following a normal distribution defined by
the mean u=0 and the standard deviation =0.5-10" m.

The following three figures (5.17, 5.18 and 5.19) illustrate the path followed by the iterative
procedure throughout the objective function surface for the case of noisy data. Due to the fact
that it was expected a more unstable scenario due to the introduction of noise, the maximum
number of iteration was raised from 10 to 15.
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Figure 5.17. Gauss-Newton path from the starting point 1 - Objective function [mz] (noisy data).
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Figure 5.18. Gauss-Newton path from the starting point 2 - Objective function [m’] (noisy data).

50 | | | | 1 | ! Il | | [l I | ]

45+

40

35

30+

254

Cohesion [kN/m2]

20+

154

O T 1 1} i 1 i 1 1} 1} \- T T
5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500
E50 ref [KN/m2]

Figure 5.19. Gauss-Newton path from the starting point 3 - Objective function [m?] (noisy data).
As expected, close to the minimum the procedure has jumped around it. This behavior is

derived from the difficulties that a gradient based method has to move around relatively flat
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and noisy domains. However, in terms of soil parameter values, the results obtained from the
Gauss-Newton method are still good enough to be considered satisfactory (see figures 5.20
and 5.21).
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Figure 5.20. Evolution of the ng)f value using the Gauss-Newton method with noisy data. The diamonds

represent the starting point 1 case, the squares represent the starting point 2 case, the triangles represent the
starting point 3 case and the red dashed line represents the actual parameter value.
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Figure 5.21. Evolution of the cohesion value using the Gauss-Newton method with noisy data. The diamonds
represent the starting point 1 case, the squares represent the starting point 2 case, the triangles represent the
starting point 3 case and the red dashed line represents the actual parameter value.

In terms of objective function (see figure 5.22), the significant increase in the objective
function value, especially close to the minimum, is a direct consequence of the noise that has
flattened the surroundings of the minimum and has caused that different parameters
combinations have similar values of objective function. This phenomenon, typical in
geotechnical problems, is reflected in the oscillatory behavior of the parameter values
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throughout the iterative procedure (see figures 5.20 and 5.21), while the objective function
value remains constant (see figure 5.22). In these cases, depending on the value of the
objective function defined as solution of the parameter identification problem (objective
function tolerance), taking into account that the accuracy of the measurements and the nature
of the geotechnical problem have to be reflected in some way in the objective function
tolerance, a domain of different possible solutions would be determined as solution of the
problem instead of having a one unique solution.
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Figure 5.22. Evolution of the objective function using the Gauss-Newton method with noisy data. The diamonds
represent the starting point 1 case, the squares represent the starting point 2 case and the triangles represent the
starting point 3 case.

Because of the presence of noise in the measurements, a deviation is associated with the
parameters values obtained from the analysis.

From the diagonal elements of the parameter covariance matrix (C,), the variance of each
parameter can be extracted, and subsequently its standard deviation (Bury, 1975).

The parameter covariance matrix is defined as:
C, = ATc;tAa)—1 (5.2)

where A is the sensitivity matrix and C, is the measurement covariance matrix (see chapter 2).
Assuming the measurements independent, and knowing the standard deviation of each
measurement, the measurement covariance matrix is defined as:

c,=|: : (5.3)

where o is the standard deviation of each measurement and n is the number of
measurements.
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A summary of the results is shown in table 5.5 including the standard deviation of the
parameters identified and the computational cost.

Case Initial Values Final Values Computational Cost

E;gf [kN/m? ¢ [kN/m’] E;Sf [kN/m?] c [kN/m’] [Plaxis evaluations]
Starting Point 1 17500 30 24803.57 £ 1805.4 10.42 +1.47 44
Starting Point 2 30000 40 24830.13 £ 1817.0 10.41+1.47 44
Starting Point 3 7500 5 24813.70 £ 1820.3 10.41+1.47 44

Table 5.5. Results summary using the Gauss-Newton method with noisy data. Plaxis evaluations is referred to the
number of direct problems solved by the geotechnical program Plaxis.

Finally, it can be pointed out that, even with the presence of noise, the Gauss-Newton method

ref
50 )

and the cohesion (c) for a case study of a shallow tunnel relatively far from collapse. The real

works satisfactory on identifying the secant stiffness in standard drained triaxial test (E

values are within the interval of confidence.
5.3.3 Using the Marquardt Method

Due to the fact that the Marquardt method is also a gradient based method, the same three
starting points that were presented in the previous section were used.

- Starting Point 1: Egc/ = 17500 kN/m? and ¢ = 30 kN/m?

. . . pref _ 2 _ 2
- Starting Point 2: E.,” = 30000 kN/m* and ¢ = 40 kN/m
- Starting Point 3: E;gf: 7500 kN/m? and ¢ = 5 kN/m?

When using the Marquardt method, two parameters related to the optimization method must
be initially defined in order to fully define the iterative procedure. Those two parameters are:
the initial value of u (ug), which is in charge of driving the search, and p, which controls the
value of u along the iterative procedure. The full description of the method was presented in
section 3.2.3, as well as the implications caused by different values of uy and p.

Due to the fact that the Marquardt method tends to iterate by smaller steps than the Gauss-
Newton method, the maximum value of iterations was set to 45.

5.3.3.1 Exact Data Case Results

Initially, the values of uy and p were set to 1y=1-107 and p=10, as adopted in Ledesma (1987).
However, as explained later, the right values of yy and p are strongly problem dependent, and
usually, several trials are required in order to find them. A general guideline to find those
suitable values between the extreme cases of u=0 and pu=o0, is to set values with respect to the
size of the result of the multiplication of AT C;'A. Nonetheless, the task of finding the right
values of uy and p is still difficult, and many times that penalize the use of the Marquardt
method.

In the following three figures (5.23, 5.24 and 5.25), the path followed by the algorithm, for the
case of exact data with py=1-107 and p=10, is shown.
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Figure 5.23. Marquardt path from the starting point 1 - Objective function [m?] (exact data with uo=1-10'2 and
p=10).
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Figure 5.24. Marquardt path from the starting point 2 - Objective function [m?] (exact data with uo=1-10’2 and
p=10).

76



Application and Validation of the Methodology (Synthetic Case)

50

45+

Cohesion [kN/m2]
%) N w L4} ] Py
T 3 &

ik
o
|

0 T 7 7 7 T T T T T \ 7 7
5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500

E50_ref [kN/m2]

Figure 5.25. Marquardt path from the starting point 3 - Objective function [m2] (exact data with u0=1-10'2 and
p=10).

Except for the starting point 3, which got stuck in a corner of the narrow valley, with no further
improvement occurring; the Marquardt method has reached the global optimum by following
a path similar to the gradient of the objective function.

In order to reach the global optimum from all starting points and also trying to decrease the
number of iterations, a new value of y, was set to 1y=1-10"", keeping in line with the size of
ATC1A.

With the new value of it was possible to reach the minimum for all starting points and the
number of iterations was substantially reduced to 10.

As expected, decreasing the value of uy has made the algorithm to advance with longer steps,
as well as driving the search closer to the direction defined by the minimum of the tangent
paraboloid of the objective function.

The following three figures (5.26, 5.27 and 5.28) illustrate the path followed by the iterative
procedure throughout the surface of objective function, for the case of exact data with
;10=1-10'12 and p=10, while figures 5.29, 5.30 and 5.31 show in detail the evolution of the
search in terms of the objective function and the parameters values.

From the results presented in this section, it can be pointed out that good results can be
obtained from applying the Marquardt method (for exact data). However, in order to obtain
those good results, a not insignificant effort must be placed into the definition of uy, and
depending on the complexity of the problem, this task can be difficult and time consuming.
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Figure 5.26. Marquardt path from the starting point 1 - Objective function [m?] (exact data with u0=1-10'12 and
p=10).
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Figure 5.27. Marquardt path from the starting point 2 - Objective function [m?] (exact data with uo=1-10‘12 and
p=10).

78



Application and Validation of the Methodology (Synthetic Case)

Cohesion [kN/m2]

0 T T T T T T T T T T T T
5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500

E50_ref [kN/m2]

Figure 5.28. Marquardt path from the starting point 3 - Objective function [mz] (exact data with uo=1-1()'12 and

p=10).
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Figure 5.29. Evolution of the objective function using the Marquardt method with exact data and u0=1-10'12 and
p=10. The diamonds represent the starting point 1 case, the squares represent the starting point 2 case and the

triangles represent the starting point 3 case.
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Figure 5.30. Evolution of the ng)f value using the Marquardt method with exact data and u0=1-10'12 and p=10.

The diamonds represent the starting point 1 case, the squares represent the starting point 2 case, the triangles
represent the starting point 3 case and the red dashed line represents the actual parameter value.
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Figure 5.31. Evolution of the cohesion value using the Marquardt method with exact data and [10=1-10'12 and
p=10. The diamonds represent the starting point 1 case, the squares represent the starting point 2 case, the
triangles represent the starting point 3 case and the red dashed line represents the actual parameter value.

A summary of the results is shown in table 5.6 where the computational cost is also presented.

Case Initial Values Final Values Computational Cost

Egg” [kN/m’] ¢ [kN/m’] ELST [kN/m’] ¢ [kN/m?] [Plaxis evaluations]
Starting Point 1 17500 30 24995.99 10.00 30
Starting Point 2 30000 40 24995.98 10.00 33
Starting Point 3 7500 5 24995.99 10.00 78

Table 5.6. Results summary using the Marquardt method with exact data and uo=1-10'12 and p=10. Plaxis
evaluations is referred to the number of direct problems solved by the geotechnical program Plaxis.
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5.3.3.2 Noisy Data Case Results

As it was appreciated from the previous section, the performance of the Marquardt method is
strongly problem dependent, and the selection of the values of uy and p has a high influence
on the final results. As a consequence, and expecting a more difficult resolution of the
problem, due to the introduction of noise, several values of py and p were used to try to solve
the problem. However, here, only the results obtained from the case of ,uo=1-10'15 and p=10
(the better case) are presented.

Unfortunately, even though all of them were capable to reach the narrow valley surrounding
the minimum, none of them was capable of finally arriving at the global minimum. In fact, for
the starting point 1 and 3, the algorithm passed close to the minimum but was not capable to
reach it.

Figures 5.32, 5.33 and 5.34 show the path followed by the algorithm throughout the surface of
objective function for the case of noisy data with 11,=1-10" and p=10, and illustrate what has
been already mentioned.

To see in more detail the evolution of the algorithm, in terms of objective function and
parameters values, figures 5.35, 5.36 and 5.37 are presented.

It has to be mentioned that if the results are strictly evaluated in terms of geotechnical
representation, as parameters of a soil material, the results are not as bad as they are if they
are evaluated in mathematical terms. It has to be noticed that in reality there is a high
variability on the parameters values to characterize a soil stratum.
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Figure 5.32. Marquardt path from the starting point 1 - Objective function [mz] (noisy data with u0=1-10'15 and
p=10).
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Figure 5.33. Marquardt path from the starting point 2 - Objective function [m?] (noisy data with uo=1-10'15 and
p=10).
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Figure 5.34. Marquardt path from the starting point 3 - Objective function [m?] (noisy data with uo=1-10’15 and
p=10).
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Figure 5.35. Evolution of the objective function using the Marquardt method with noisy data and uo=1-10'15 and
p=10. The diamonds represent the starting point 1 case, the squares represent the starting point 2 case and the
triangles represent the starting point 3 case.
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Figure 5.36. Evolution of the ng,f value using the Marquardt method with noisy data and [40=1-10'15 and p=10.
The rhombuses represent the starting point 1 case, the squares represent the starting point 2 case, the triangles
represent the starting point 3 case and the red dashed line represents the actual parameter value.
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Figure 5.37. Evolution of the cohesion value using the Marquardt method with noisy data and u0=1-10'15 and
p=10. The diamonds represent the starting point 1 case, the squares represent the starting point 2 case, the
triangles represent the starting point 3 case and the red dashed line represents the actual parameter value.

A summary of the results is shown in table 5.7 where the computational cost is also presented
after ten iterations. Actually, more than ten iterations were forced, but no improvement was
obtained. As a consequence, it was decided to define the results just using the first ten
iterations. However, when using the Marquardt method, it has to be taken into account that
for each actual iteration, many internal iterations may be required depending on the evolution
of the error (see section 3.2.3). Therefore, as shown in table 5.7, even defining the same
number of iterations, different computational costs are obtained.

Case Initial Values Final Values Computational Cost

Esrgf [kN/m? ¢ [kN/m?] E;gf [kN/m?] ¢ [kN/m?] [Plaxis evaluations]
Starting Point 1 17500 30 26301.64 + 2089.6 9.09 +1.82 93
Starting Point 2 30000 40 21104.67 £ 1978.6 14.69 + 2.66 120
Starting Point 3 7500 5 22827.13 £ 1133.8 12.34 +1.50 87

Table 5.7. Results summary using the Marquardt method with nosy data and [,t(,=1-10'15 and p=10. Plaxis
evaluations is referred to the number of direct problem solved by the geotechnical program Plaxis.

5.3.4 Using a Simple Genetic Algorithm (SGA)
5.3.4.1 Previous Sensitivity Analysis (Population Size and Selection Pressure)

As mentioned in section 3.3, the key factor of the good performance of genetic algorithms is
based on the balance between exploitation and exploration. Many parameters of the
algorithm can be tuned up in order to reach the desirable balance between exploitation and
exploration. The population size and the selection pressure are some of the parameters that
have a major role on that balance.

Increasing the size of the population has a direct impact on the capability of the algorithm to
keep a high level of individuals' diversity. The importance of having a diverse population is
based on the fact that diverse populations keep the algorithm out of premature convergence,
where the algorithm is incapable of generating enough new individuals to keep evolving the
population until a satisfactory individual is found.
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Another way to keep individuals' diversity is lowering the selection pressure. Lowering the
selection pressure increases the chance of the less fitted individuals to be selected. The
involvement of less fitted individuals on the reproduction spreads the individuals of the next
generation, and subsequently increases the population diversity.

The more common way to increase or decrease the selection pressure is changing the value of
the tournament size when using the tournament selection method (see section 3.3.3.5).
However, for this particular case study, better results were obtained when using the roulette
wheel selection method (see section 3.3.3.5). Therefore, due to the fact that the roulette
wheel method has not an explicit way to modify its selection pressure, because the method is
exclusively based on the fitness of the individuals, a fitness limit was introduce to lower the
selection pressure. The idea is to associate, for those individuals that have the fitness higher
than the fitness limit, a probability of selection equivalent to the fitness limit. As a
consequence, the probability of selecting a specific individual at the step time t (generation t)
by the roulette wheel (eq. 3.17) has been modified to:

f*
Proulettelimited ) = N (5.4)

where f* is the fitness of the specific individual, if the individual fitness is lower than the
fitness limit; or the limit fitness, if the individual fitness is higher than the fitness limit. f_* is the
average fitness of the population, using the fitness limit for the individuals with higher fitness
than the limit, and N is the size of the population.

Regardless the importance of keeping a high diverse population, oversized populations and
low selection pressure, on the other hand, can make the computational cost too high. For this
reason, different population sizes and the application of a fitness limit was studied in terms of
diversity and computational cost before trying to solve the actual problem.

The fitness limit was defined by extracting the value of the objective function (eq. 3.31)
associated with measurements with approximately one millimeter of standard deviation,
which was considered acceptable, and then applying equation 3.16 to finally define the fitness
limit. The numerical value of the fitness limit is 40000 m?, which comes from an objective
function value of 2.5:10° m”.

The results of the sensitivity analysis presented in this section were only carried out by the
case of noisy data, where three different population sizes (51, 101 and 201) were used in
combination with the application and non-application of the fitness limit. The search space
discretization was defined as it is shown in table 5.8.

Parameter Minimum Value  Maximum Value  Step Size Value Total number of individuals in the
search space
ref 2 5000 37500 500
Ego” [kN/m?] 3366
¢ [kN/m?] 0 50 1

Table 5.8. Genetic algorithm search space discretization.

Figure 5.38 shows the evolution of the standard population diversity (SPD) for all
combinations of population size and application and non-application of the fitness limit.
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Figure 5.38. Evolution of the standard population diversity (SPD) using a SGA with noisy data. The light grey bars

ref

represent the SPD of the E; while the dark grey bars represent the SPD of the cohesion.

From the different scenarios (population size and fitness limit) presented in figure 5.38, two

main co

nclusions can be drawn:

1) The application of a fitness limit helps to maintain population's diversity for more
generations.
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2) For this case study, populations bigger than 101 individuals don't cause any significant
increase on terms of population's diversity, independently of the application or not application
of a fitness limit.

In order to study directly the capability of the algorithm to generation new individuals in each
new generation, the evolution of the percentage of new individuals in each generation is
presented in figure 5.39.
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Figure 5.39. Evolution of the percentage of new individuals per generation using a SGA with noisy data.
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Clearly, and especially for the smallest population size (51 individuals), the use of a fitness limit

makes the algorithm more capable of generating new individuals. However, as a consequence,

the computational cost increases. As an example, for the case of 51 individuals, the
computational cost goes from 172 direct evaluations, while using no fitness limit, to 249 direct

evaluations, when using a fitness limit.
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Figure 5.40. Representativeness of the individuals involved in the PCA using a SGA with noisy data (theoretical
PCA ellipse versus calculated PCA ellipse). The solid line represents the theoretical PCA ellipse, the dashed line
represents the calculated PCA ellipse, the black points are the individuals involved in the PCA and the red
rhombus is the individual that represents the solution of the problem.
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Another main aspect related to population size and selection pressure, it is its implication on
the representativeness of the individuals considered satisfactory for the later principal
component analysis (PCA). In figure 5.40, the theoretical PCA ellipse, which is the PCA ellipse
defined by all good individuals represented in the entire space search, is compared with the
PCA ellipses obtained from the genetic algorithm procedures (calculated PCA ellipse).

The use of a fitness limit makes the problem of representativeness from the population size
more independent. All calculated PCA ellipses almost match the theoretical PCA ellipse.
Whereas, for the case where a fitness limit is not used, the problem of representativeness
remains and it is dependent on the population size. This effect is clearly reflected in figure
5.40a where the calculated PCA ellipse does not match the theoretical PCA ellipse.

To illustrate the phenomenon of promoting exploitation or exploration, the two extreme cases
of maximum exploitation and maximum exploration are presented.

The next two figures (5.41 and 5.42) illustrate the case where exploitation was highly
promoted; from an initial population of 51 individuals to 172 evaluated individuals after 25
generations applying a simple genetic algorithm without fitness limit.
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Figure 5.41. Initial population of 51 individuals randomly generated (promoting exploitation).
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Figure 5.42. Total evaluated individuals (172 individuals) after 25 generations applying a simple genetic algorithm
without fitness limit and a population of 51 individuals (promoting exploitation).

On the other hand, in the next two figures (5.43 and 5.44) the promotion of exploration is
illustrated. The highly promoted exploration case is represented by a simple genetic algorithm
with fitness limit and a population size of 201 individuals.

50 L] L] L] L] L]

45 2 @ b - 300 0 0 0 0 0 0010 00 00 0 PR, . lllll

40 L] y yy i L] L] L3 L]

° .
L] . L] L] .o L] .
35
L] : . L] . L] . L] L]

:E 30 L] L] ! i b !
>~ '] '] . .
Z o L ]
= o5 [ BAOEIOE N0 00 00 0 I 0 00 -0 1O 0 0 B U0 B0 O 10 0 0 00 00 Y0
= 25 |- ;
.a L] LN
£ 20 [ e i e i
8 L) ° o o0 . i ¢

15 ] . . .

10 © : &t

. M L3 e ° H ° 3 . . 1
5 . 2
L] s Py L] L] .
0 H [ 1] o0 H
5000 15000 25000 35000
ESDref [kN/mZ]

Figure 5.43. Initial population of 201 individuals randomly generated (promoting exploration).

90



Application and Validation of the Methodology (Synthetic Case)

50 ) . ) ) oo o . .
° oo ) )
:. ... o L] :. L] L] :.. o000 000O0OOS e o b s
45 L] o LA B ] L] L] L] o0 e L] L] L] L] L] L]
40 L ] . - ..:. ..:.. ::. :....: L] L ] L]
35 LN ] L ] L ] o :.:. L3 LN .‘. -. .I.. .:I L] : L] L ] L ]
NE 30 o0 e o o o o o i oo e e el e
> PSS AP - 0 - S - - 0 -0 A -0 2010 AP S S WP ¥
E . oo o -0 @ . e0e 000 . o e Y .
= . ) ° oo se 000 o000 00 00 secoe0ee .
= A R o o - SRED-E-GR AT VTN B NI T RO ST e
. . ° . o o0 * e oo o o0 @
o o0 . . ° oo oo Y oo . o . . oo
(7] . e o0e o000 o0 ) .
] ° . . oo i e i@ oo @ o o ) o
£ 20 . P .
<) . ° ° oo 0000000 @ oe ° )
S fpoetogtidtoeloeiirsit stiitidtatestirederittie
15 .:.I. ... :..I ..:. L] :. Te .:::.:::: ::.::...: ::....... :..
10 prebrsbte e T st et et st et E T
sy BB e el T DB L 0 D B e
0 L] L] L2 L2 B ] L2 BN 2 e e L]
5000 10000 15000 20000 25000 30000 35000
Esoref [kN/mZ]

Figure 5.44. Total evaluated individuals (1096 individuals) after 25 generations applying a simple genetic
algorithm with fitness limit and a population of 201 individuals (promoting exploration).

Based on the results presented in this section, the population size and the application or non-
application of the fitness limit have been defined.

On the one hand, when looking for the best individual, rather than the best set of individuals, a
simple genetic algorithm without a fitness limit and a population size of 101 individuals, was
considered appropriate for trying to find the best individual, keeping a sufficient population's
diversity with a reasonable computational cost. On the other hand, when looking for the best
set of individuals, rather than one unique best individual, a simple genetic algorithm with a
fitness limit and a population of 101 individuals was considered appropriate.

It is really important to mention that these recommendations are only valid for the case study
presented here. Therefore, a new sensitivity analysis would be required for a new problem.
However, in the absence of any sensitivity analysis, it is recommended to use a fitness limit
(low selection pressure) and the biggest possible population, taking into account the
computational cost of the problem.

5.3.4.2 Looking for the best individual

As mentioned before, genetic algorithm can be focused on just finding a good solution,
represented by the best individual of all generations, or defining a solution domain
represented by individuals considered good enough to represent the solution.

In this section, the problem is focused on trying to find the best individual represented in the
search space.
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The main characteristics and parameters needed to fully define the problem of parameters
estimation, presented in this section, are shown in table 5.9.

Optimization Algorithm

Type of algorithm SGA + Elitism
Selection type Roulette Wheel (without fitness limit)
GAP 1
Probability of applying crossover (P.) 0.95
Probability of applying mutation (P,) 0.01
Population size 101
Search Space Discretization
Esrgfmm [kN/m?] 5000
Ege e IN/M] 37500
Eggfstep size [kN/mz] >00
Cmin [kN/m®] 0
Cmax [KN/m?] 50
Cstep size [kN/mZ] 1
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Table 5.9. Main characteristics and parameters of the problem of parameters estimation (SGA / Looking for the
best individual).

5.3.4.2.1 Exact Data Case Results

The results of the soil parameters identification using a simple genetic algorithm, with exact
data, and looking for the best individual, are presented in this section.

In figure 5.45 the initial population, represented altogether with the surface of the objective
function, is shown, whereas in figure 5.46 it is shown the population after 25 generations.

As observed in figure 5.46, after 25 generations the best individual of the population does not
coincide with the actual value of the minimum. The best individual found by the algorithm is

represented by Eggf= 29000 kN/m? and ¢ = 7 kN/m?, while the value of the minimum is E;gf=
25000 kN/m” and ¢ = 10 kN/m?.

Part of the reason of not finding the real best individual is due to the quick loss of individuals'
diversity that has made the algorithm incapable to explore new potential domains. Moreover,
even though a sensitivity analysis was carried out to better define the genetic algorithm
parameters, such as the population size and the selection pressure, the fact of using exact
data, instead of noisy data as it was used in the sensitivity analysis, has pointed out how
different the results can be, just by slightly varying the shape of the objective function (exact
data versus noisy data).

The loss of individuals' diversity is illustrated in figure 5.47 where the evolution of the SPD and
the percentage of new individuals are shown.

92



Application and Validation of the Methodology (Synthetic Case)

Cohesion [kN/m2]

0 T T T T T + T
5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500
E50_ ref [kN/m2]

Figure 5.45. Initial population of 101 individuals randomly generated - Objective function [m?]. The black crosses
represent the individuals (SGA / looking for the best individual / exact data case).
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Figure 5.46. Population after 25 generations (last generation) - Objective function [m?]. The black crosses
represent the individuals of the last generation and the red cross represents the best individual of the generation
(SGA / looking for the best individual / exact data case).
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Figure 5.47. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (SGA / looking for the best individual / exact data).

The evolution, in terms of objective function value is shown in figure 5.48, where there is a
large difference between the best individual and the average value of the general population.

This non-insignificant difference has very likely caused the genetic algorithm to work with a
high selection pressure due to high selection probability associated to the best individual with
respect to the average of the population, and consequently this has also contributed to miss
the actual minimum of the search space.
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Figure 5.48. Evolution of the objective function. The solid line with diamonds represents the value of the best
individual and the dashed line with squares represents the average value of the population (SGA / looking for the
best individual / exact data).

Similarly, figure 5.49 and figure 5.50 illustrate the poor evolution of the best individual, where
in fact, there was only one evolution of the best individual after 25 generations.
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Figure 5.49. Evolution of the ng,f value (SGA / looking for the best individual / exact data).
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Figure 5.50. Evolution of the cohesion value (SGA / looking for the best individual / exact data).

In order to illustrate in more detail what has been already explained, the full evolution of the
population is shown in figure 5.51.
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Figure 5.51. Evolution of the population over 25 generations using a SGA, with exact data, no fitness limit and a
population size of 101 individuals.

As figure 5.51 shows, there has been no substantial exploration capable to drive the algorithm
into the minimum after generation 3. As a result, it can be concluded that in cases where the
objective function presents a steep narrow domain close to the minimum, the need of keeping
a diverse population is vital for the good performance of the algorithm.

A summary of the results is shown in table 5.10 where the computational cost is also
presented.

Case Identified Value Computational Cost
Esrgf [kN/m?] ¢ [kN/m?] [Plaxis evaluations]

SGA
(exact data with no fitness limit
and population size of 101
individuals)

29000 7 219

Table 5.10. Results of the case of simple genetic algorithms, with exact data, no fitness limit and population size
of 101 individuals.
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5.3.4.2.2 Noisy Data Case Results

The results of the soil parameters identification using a simple genetic algorithm, with noisy
data, and looking for the best individual, are presented in this section.

In figure 5.52 the initial population, represented together with the surface of the objective
function, is shown, while figure 5.53 shows the population after 25 generations.

For this case, the best individual after 25 generations is represented by E;gf: 26500 kN/m?

and ¢ = 9 kN/m?, when the actual values are E;§f= 25000 kN/m? and ¢ = 10 kN/m?. However,

due to the introduction of noise and the domain discretization used to defined all possible

solutions, the values of E;gf= 26500 kN/m? and ¢ = 9 kN/m? have associated a smaller error

(objective function) than the one associated with the real minimum, located in Eggf: 25000
kN/m? and ¢ = 10 kN/m?. In fact, from table 5.11, where the value of the best five individuals
of all generations are shown, it can be noticed that the individual associated with the real
minimum is not the individual with the smallest objective function.

Therefore, the concentration of individuals in the last generation, slightly deviated to the right
of the minimum, is not due to misbehavior of the algorithm it is rather a consequence of the
introduction of noise and the domain discretization. Therefore, the algorithm has found the
best possible individual defined in the search space.
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Figure 5.52. Initial population of 101 individuals randomly generated - Objective function [m?]. The black crosses
represent the individuals (SGA / looking for the best individual / noisy data).
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Figure 5.53. Population after 25 generations (last generation) - Objective function [m?]. The black crosses
represent the individuals of the last generation and the red cross represents the best individual of the generation
(SGA / looking for the best individual / noisy data).

Individual E;;f [kN/m?] c [kN/m*] Objective Function [m*]
A 26500 9 1.232:10°
B 27500 8 1.259:10°
C 25000 10 1.260-10°
D 28000 8 1.265-10°
E 29000 7 1.267-10°

Table 5.11. Parameter values and objective function values of the best five individuals of all generations (SGA /
looking for the best individual / noisy data).

In contrast to what happened in the previous case (exact data), where diversity was lost just
after three generations; herein, thanks to the use of a proper sensitive analysis (the sensitive
analysis was carried out with the same type of data (noisy data) as the current analysis), the
population size of 101 individuals and the non-application of the fitness limit, has led the
algorithm to keep a good level of diversity over the generations.

In order to illustrate it, figure 5.54 shows the evolution of the standard population diversity,
where it can be noticed that even after ten generations the value of SPD is still relatively high.
Moreover, it can be also noticed, especially if it is compared with the previous case (exact
data), that the percentage of new individual per generations is higher when using noisy data
rather compared to the exact data case.

As mentioned before, the flattening effect of introducing noise into the data, has indirectly
caused a lowering of the selection pressure that in this case has been beneficial to the analysis.
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Figure 5.54. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (SGA / looking for the best individual / noisy data).

The evolution, in terms of objective function value, is shown in figure 5.55, where the large
difference between the best individual and the general population, presented in the case of
exact data, has been significantly reduced. In some way, the reduction of this difference has
caused a lower selection pressure and subsequently a higher individuals' diversity, leading to a
better performance of the genetic algorithm.
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Figure 5.55. Evolution of the objective function. The solid line with diamonds represents the value of the best
individual and the dashed line with squares represents the average value of the population (SGA / looking for the
best individual / noisy data).

Similarly, and contrary to the previous case, figure 5.56 and figure 5.57 illustrate the good
evolution of the best individual, where the best individual has been improving over the
generations.
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Figure 5.56. Evolution of the E;f,f value (SGA / looking for the best individual / noisy data).
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Figure 5.57. Evolution of the cohesion value (SGA / looking for the best individual / noisy data).

The entire evolution of the population, generation after generation, is shown in figure 5.58,
where in generation 7 it can be noticed that the individual, associated to the real minimum,
was created for the first time. Nevertheless, the algorithm was driven slightly more to the right
of the minimum, due to the introduction of noise that has caused that the best individual, in
terms of fitness, is the one with E§§f= 26500 kN/m? and ¢ = 9 kN/m?, rather than the real one

(L = 25000 kN/m? and ¢ = 10 kN/m?) .
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Figure 5.58. Evolution of the population over 25 generations using a SGA, with noisy data, no fitness limit and a
population size of 101 individuals.

From the results presented herein, it can be stated that, in cases where the presence of noise
flattens the surroundings of the minimum (as it has happen here), the algorithm works with an

implicit lower selection pressure derived from the low variance of the objective function near
the minimum, and that makes the algorithm, for this particular case, more robust.

A summary of the results is shown in table 5.12 where the computational cost is also
presented.

Case Identified Value Computational Cost
Esrgf [kN/m?] ¢ [kN/m?] [Plaxis evaluations]

SGA
(noisy data with no fitness limit
and population size of 101
individuals)

26500 + 561.4 9 +0.015 599

Table 5.12. Results of the case of simple genetic algorithms with noisy data, no fitness limit and population size of
101 individuals.
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5.3.4.3 Looking for the Best Set of Individuals

Rather than looking for the best possible individual, here, a restricted domain defined by a set
of good individuals, which are considered a satisfactory solution of problem, is looked for.
Therefore, the search is focused on finding enough good individuals to be capable to define a
kind of frontier between good and bad individuals. The method to define the restricted
domain is based on a principal component analysis (PCA), which is fully described in section
3.3.5.

Because of that focus on good individuals, the majority of the results here in this section are
presented in terms of satisfactory individuals all along the generations, rather than individuals
per generation that is, all individuals with an objective function value smaller than the frontier
value are kept generation after generation to finally being involved in the PCA. Nonetheless,
the results related to the individuals' diversity are referred to the entire population of good
and bad individuals in each generation.

The frontier value used to separate the good individuals from the bad individuals (satisfactory
or not satisfactory) was set to 2.5-10° m?, which is associated with equation (3.31) to an
average standard deviation of the measurements of approximately 1 mm.

The main characteristics and parameters needed to fully define the problem of parameters
estimation presented in this section are shown in table 5.13.

Optimization Algorithm

Type of algorithm SGA + Elitism
Selection type Roulette Wheel (with fitness limit = frontier value)
GAP 1
Probability of applying crossover (P.) 0.95
Probability of applying mutation (P.,) 0.01
Population size 101
Search Space Discretization
E5t i TKN/m] 5000
Ege) e IN/M] 37500
E;gfstep size [kN/mz] >00
Cmin [kKN/m’] 0
Cmax [KN/m’] 50
Cstep size [kN/mZ] 1
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Figure 5.13. Main characteristics and parameters of the problem of parameters estimation (SGA / Looking for the
best set of individual).

5.3.4.3.1 Exact Data Case Results

The results of the parameters estimation using a simple genetic algorithm, with exact data,
and looking for the best set of individuals, are presented in this section.

Figure 5.59 shows the initial population plotted all together with the objective function
surface, while figure 5.60 shows all the good individuals that have been found after 25
generations and the ellipse defined by the PCA.
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Figure 5.59. Initial population of 101 individuals randomly generated - Objective function [m?]. The black crosses
represent all individuals, while the red ones represent just the good individuals of the initial population (SGA /
looking for the best set of individuals / exact data).
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Figure 5.60. Set of good individuals after 25 generations - Objective function [mz]. The red crosses represent the
good individuals, while the dashed line represents the PCA ellipse (SGA / looking for the best set of individuals /
exact data).
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Part of the good representation of the individuals with respect to the objective function zone,
associated with values of J<2.5:10° m?, is due to the high diverse population that has been
kept along the generations.

The evolution of the standard population diversity (SPD) and the percentage of new individuals
generated in each generation is presented in figure 5.61.
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Figure 5.61. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (SGA / looking for the best set of individuals / exact data).

Unfortunately, even though the good individuals are good enough to be representative to the
domain, defined by J<2.5-10°m, the ellipse obtained from the PCA is not capable of matching
the shape of the objective function. This incapability makes the solution of the problem, in the

space E;gf — ¢, unsatisfactory.

Apart from the visual inspection of the representativeness of the PCA ellipse (looking directly
at figure 5.60), only applicable when no more than three parameters are identified, an
alternative method valid for n-parameters, presented in section 3.3.5.2, is used to illustrate its
applicability as an inspection technique. The basis of this technique is comparing the objective
function at the extreme of the ellipse axes with the objective function value defined as frontier
value. In cases where the extreme of the axes are out of the search space, the point of
intersection between the axes and the boundaries of the search space are used to compare
with the frontier value.

The general idea of this technique is to check numerically that the shape of the objective
function can be captured by an ellipse, or in the case of having more than 2 parameters, by an
ellipsoid of n-dimensions.

Figure 5.62 shows the points that were used to verify the representativeness of the ellipse,
while their numerical values and the frontier value are presented in table 5.14.
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Figure 5.62. Verification points. The red points represent the verification points, the black points are the
individuals involved in the PCA, the dashed line represents the PCA ellipse, and the solid lines represent the
ellipse axes (SGA / looking for the best set of individuals / exact data).

Point EL [N/m?) c [kN/m’] Jaxis [M'] Jprontier [M']
A 5000 49.86 9.51-10" 2.510°
B 17751.48 33.53 2.46-10" 2.5-10°
o 27789.38 4.01 1.66:10™ 2.5-10°
D 13120.52 24.21 421-10° 2.5:10°

Table 5.14. Numerical value to verify the representativeness of the PCA ellipse (SGA / looking for the best set of
individuals / exact data).

Setting the value of the tolerance to 1, and comparing it with the error (eq. 3.32) between
each verification point and the frontier value; just the point D satisfies the tolerance condition.
Consequently, the ellipse is considered as not satisfactory, and the domain defined by the
ellipse is not a proper solution of the problem.

After checking the representativeness of the ellipse and obtaining a negative response, there
are two different methods to proceed in order to get a satisfactory result. The first method is
reducing the ellipse until it matches the objective function, taking into account the standard
deviation of the measurements associated with this reduction. The reduction of the ellipse is
carried out by a new PCA imposing a smaller frontier value. However, in the limit of reduction,
the method reduces the concept of working with a set of good individuals to finding an
individual, changing completely the approach of the problem for which it was designed for
(looking for the best set of individuals).

The other method is based on transforming some original variables, in this case E;gf orc, to
make the ellipse capable to capture the objective function shape.

For this particular case, the representation of the objective function in the space E;gf — c was
transformed into the space 1/E5rgf — ¢ (similar approach was proposed in Levasseur et al.,
2010) The new objective function representation in the space 1/E£gf — ¢, all together with

the new PCA ellipse are presented in figure 5.63.
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Figure 5.63. Representation of the objective function [m?] in the transformed space of 1/E;f)’r —c. The red
crosses represent the good individuals involved in the PCA, while the dashed line represents the PCA ellipse (SGA
/ looking for the best set of individuals / exact data).

Just by looking at figure 5.63, the matched of the PCA ellipse to the objective function shape
can be clearly noticed. Moreover, if the representativeness is numerically checked by the
proposed methodology, it can be corroborated that the new representation of the solution is
actually a satisfactory solution of the problem (see table 5.15).

Point 1/E% [m*/kN] c [kN/m’] Jaxis [m'] Jprontier [M']
A 1.109-10" 50 1.67-10° 2.5-10°
B 2.877-10° 3.74 2.89-10°° 2.5-10°
C 6.844-107 31.66 3.57-10° 2.510”
D 7.836-10° 26.07 3.09-10° 2.510°

Figure 5.15. Numerical value to verify the representativeness of the transformed PCA ellipse (SGA / looking for
the best set of individuals / exact data).

Setting the value of the tolerance to 1, and comparing it with the error (eq. 3.32) between
each verification point and the frontier value; all verification points satisfy the tolerance
condition. Consequently, the ellipse is considered as satisfactory, and the domain defined by
the ellipse is a proper solution of the problem.

Formally, every combination of parameters (individual) that satisfies equation 5.5 is a solution
of the problem.

2 2
=+ < AF? (5.5)

a b_z_
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where x and y are the values of the parameters represented in terms of principal components,
AF is an amplifier factor of the standard deviation, and a and b are the major and minor
principal axes, which are the square root of the eigenvalues of the correlation matrix.

The reason for defining AF is to force the ellipse to enclose an expected specific percentage of
individuals. If AF=1, then 68.2 % of the individuals involved in the PCA are expected to be
enclosed in the ellipse, while if AF=2, the percentage increases to 95.4 %; this relationship is
only valid if the individuals involved in the PCA are normally distributed in the search space.

In table 5.16, the results of the PCA and some relevant information involved in the analysis are

shown.
Description Values
Relevant information involved in the analysis
Computational cost [Plaxis evaluations] 595
Number of individuals involved in the PCA 125
Mean of 1/E¢e [m*/kN] 7.3396-10°
Mean of ¢ [kN/m?] 28.872
Standard deviation of 1/E5rgf [m?/kN] 2.2449-10°
Standard deviation of ¢ [kN/m?] 12.643
AF (amplifier factor of the standard deviation) 2
PCA results

Correlation matrix [ 1 0.9755]

0.9755 1
Eigenvector (associated to the first principal component) [0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 0.7071]
Eigenvalue (associated to the first principal component) 1.9755
Eigenvalue (associated to the second principal component) 0.0245

Table 5.16. PCA results and some relevant information involved in the analysis (SGA / looking for the best set of
individuals / exact data).

Unfortunately, in some cases where the principal axes of the ellipse are too large, the solution
of the optimization problem is not good enough to properly define a solution in terms of
geotechnical values, meaning by that that there are too many diverse combinations of
parameters that satisfy the optimization criteria, so it is not possible to define a representative
geomaterial for all those combinations. In those cases, it would be necessary the introduction
of extra information to finally defined the solution. The extra information, usually called
previous information in the field of backanalysis (Ledesma, 1987 and Gens et al., 1988), is
represented by parameter values obtained from different sources like laboratory tests.

5.3.4.3.2 Noisy Data Case Results

The results of the parameters estimation using a simple genetic algorithm, with noisy data, and
looking for the best set of individuals, are presented in this section.

Figure 5.64 shows the initial population plotted all together with the objective function
surface, while figure 5.65 shows all the good individuals that have been found after 25
generations and the ellipse defined by the PCA.
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Figure 5.64. Initial population of 101 individuals randomly generated - Objective function [m?]. The black crosses
represent all individuals, while the red ones represent just the good individuals of the initial population (SGA /
looking for the best set of individuals / noisy data).
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Figure 5.65. Set of good individuals after 25 generations - Objective function [mZ]. The red crosses represent the

individuals, while the dashed line represents the PCA ellipse (SGA / looking for the best set of individuals / noisy
data).
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In terms of the representativeness of the good individuals with respect to objective function
domain, defined by J<2.5-10” m?, this case of noisy data shows a good representativeness.
Therefore, it can be pointed out that the genetic algorithm has succeeded in capturing the
shape of the objective function. However, as in the case of exact data, even having a good
representativeness of the good individuals, thanks in part to the capability of the algorithm to
keep a high diversity (see figure 5.66), the ellipse obtained from the PCA does not match the
narrow banana shape valley defined by the objective function. Consequently, it was applied

the same transformation on the original variables, from E;gf —cto 1/E;§f — ¢, to try to make
the PCA ellipse more representative.
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Figure 5.66. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (SGA / looking for the best set of individuals / noisy data).

Figure 5.67 shows the new objective function representation in the space 1/E5rgf —c, all
together with the new PCA ellipse.

Thanks to the transformation, the PCA ellipse has become a proper frontier between
individuals considered solution of the problem and the ones that are not; as it can be noticed
in figure 5.67.

In table 5.17, the results of the PCA and some relevant information involved in the analysis are
shown.

Unfortunately, as in the previous case, due to the long length of one of the principal axes of
the PCA ellipse, the results of the optimization problem are not good enough, in terms of
geotechnical parameter values (it is not possible to define a representative soil material having
such high parameters deviation), and it would be necessary to introduce previous information
to finally get a suitable geotechnical solution of the parameters identification problem.
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Figure 5.67. Representation of the objective function [m?] in the transformed space of 1/E;'f)’r —c. The red
crosses represent the good individuals involved in the PCA, while the dashed line represents the PCA ellipse (SGA
/ looking for the best set of individuals / noisy data).

Description Values
Relevant information involved in the analysis
Computational cost [Plaxis evaluations] 722
Number of individuals involved in the PCA 71
Mean of 1/EL¢/ [m’/kN] 5.781-10°
Mean of ¢ [kN/m?] 20.577
Standard deviation of 1/E5rgf [m?/kN] 1.718-10°
Standard deviation of ¢ [kN/m?] 10.242
AF (amplifier factor of the standard deviation) 2
PCA results

Correlation matrix [ 1 0-9927]

0.9927 1
Eigenvector (associated to the first principal component) [0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 0.7071]
Eigenvalue (associated to the first principal component) 1.9927
Eigenvalue (associated to the second principal component) 0.0073

Table 5.17. PCA results and some relevant information involved in the analysis (SGA / looking for the best set of
individuals / noisy data).

5.3.5 Using an Adaptive Genetic Algorithm (AGA)
5.3.5.1 Previous Sensitivity Analysis (Population Size and Selection Pressure)

In this section, the same type of sensitivity analysis that was firstly presented in detail in
section 5.3.4.1, has been used in order to show the effect of changing the population size and
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the selection pressure, in terms of diversity and computational cost, on an adaptive genetic

algorithm.

Figure 5.68 illustrates the evolution of the standard population diversity (SPD) for all different

scenarios of population size and selection pressure (application or non-application of a fitness

limit).
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Figure 5.68. Evolution of the standard population diversity (SPD) using an AGA with noisy data. The light grey bars
represent the SPD of the E;f,f while the dark grey bars represent the SPD of the cohesion.
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Due to the application of an adaptive crossover and mutation probability, the effect on the
SPD with respect to the population size and the selection pressure has been significantly
reduced in comparison to the case when using a simple genetic algorithm. The same happens
with the generation of new individuals along the procedure (see figure 5.69).
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Figure 5.69. Evolution of the percentage of new individuals per generation using an AGA with noisy data.
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As expected, the introduction of a genetic algorithm capable of self adapting the balance
between exploitation and exploration, has made the algorithm less dependent on its internal
parameters, and subsequently more robust. Moreover, comparing the case with highest
exploitation focus (population size = 51 and no fitness limit) and the case with highest
exploration focus (population size = 201 and fitness limit), it can be noticed that even having
strongly different computational cost (351 direct calculations for the exploitation focus and
1210 direct calculations for the exploration focus) the individuals' diversity remains relatively
high and steady in both cases. Therefore, it can be pointed out that when using an adaptive
genetic algorithm, the role of population size and selection pressure, in terms of diversity, is
taken up, to a large extent, by the adaptive nature of the algorithm itself.

However, in terms of representativeness of the individuals involved in the PCA, the application
or non-application of a fitness limit still has some effect, as it can be seen in figure 5.70, where
in the case with no fitness limit and a population size of 51 individuals, the calculated PCA
ellipse does not match the theoretical PCA ellipse, whereas in the case with fitness limit and
the same population size (51 individuals) there is a good match between the calculated and
the theoretical ellipse.
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Figure 5.70. Representativeness of the individuals involved in the PCA using an AGA with noisy data (theoretical
PCA ellipse versus calculated PCA ellipse). The solid line represents the theoretical PCA ellipse, the dashed line
represents the calculated PCA ellipse, the black points are the individuals involved in the PCA and the red
diamond is the individual that represents the solution of the problem.

Thanks to the results presented in this section, some specifications with respect to the
population size and the application or non-application of the fitness limit, can be made.

On the one hand, when looking for the best individual, rather than the best set of individuals,
an adaptive genetic algorithm without a fitness limit and a population size of 51 individuals
was considered appropriate for trying to find this best individual, keeping a sufficient
population's diversity with a reasonable computational cost. On the other hand, when looking
for the best set of individuals, rather than the unique best individual, an adaptive genetic
algorithm with a fitness limit and a population of 51 individuals was considered appropriate.

It is really important to mention that these recommendations are only valid for the case study
presented herein. Therefore, if other problem is going to be solved, a new sensitivity analysis
would be required. However, in the absence of any sensitivity analysis, it is recommended to
use a fitness limit (low selection pressure) and the biggest possible populations, taking into
account the computational cost of the problem.

5.3.5.2 Looking for the Best Individual

As mentioned before, genetic algorithm can be focused on just finding a good solution,
represented by the best individual of all generations, or defining a solution domain, in this case
represented by individuals considered good enough to represent the solution.

In this section, the problem is focused on trying to find the best individual represented in the
search space.

The main characteristics and parameters needed to fully define the problem of parameters
estimation, presented in this section, are shown in table 5.18.

Optimization Algorithm

Type of algorithm AGA + Elitism
Selection type Roulette Wheel (without fitness limit)
GAP 1
Maximum probability of applying crossover (P; max) 0.95
Minimum probability of applying crossover (P; min) 0.50
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Maximum probability of applying mutation (P, max) 0.40
Minimum probability of applying mutation (Pn, min) 0.01
Population size 101
Search Space Discretization
E5t i TKN/m] 5000
Egt) g (KN/MY] 37500
E;gfstep size [kN/mZ] >00
Cmin [kKN/m’] 0
Cmax [KN/m’] 50
Cstep size [kN/mz] 1
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Figure 5.18. Main characteristics and parameters of the problem of parameters estimation (AGA / Looking for the
best individual).

5.3.5.2.1 Exact Data Case Results

The results of the parameters estimation using an adaptive genetic algorithm, with exact data,
and looking for the best individual, are presented in this section.

In figure 5.71, the initial population of 51 individual all together with the objective function is
shown, while figure 5.72 shows the final population after 25 generations.
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Figure 5.71. Initial population of 51 individuals randomly generated - Objective function [mZ]. The black crosses
represent the individuals (AGA / looking for the best individual / exact data).
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Figure 5.72. Population after 25 generations (last generation) - Objective function [mz]. The black crosses
represent the individuals of the last generation and the red cross represents the best individual of the generation
(AGA / looking for the best individual / exact data).

Unfortunately, even using an adaptive genetic algorithm, the best individual found after 25

generations, does not represent the global minimum (E;gf = 25000 kN/m? and ¢ = 10 kN/m?).
As in the other case when using the simple genetic algorithm, the definition of the population
size and the application or non-application of a fitness limit, based on a sensitivity analysis
using noisy data, instead of exact data, as it is the current case, has caused certain premature
convergence. The main reason for this misbehavior of the algorithm is due to the large

deviation of the objective function value between a group of relatively good individuals

(around Esrgf = 27500 kN/m? and ¢ = 8 kN/m?), and the average of the population. That has

caused the algorithm to work with too much selection pressure, and consequently individuals'
diversity has been reduced (see figure 5.73).
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Figure 5.73. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (AGA / looking for the best individual / exact data).
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Figure 5.74 shows the evolution of the objective function of the best individual and the
average of the population.
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Figure 5.74. Evolution of the objective function. The solid line with diamonds represents the value of the best
individual and the dashed line with squares represents the average value of the population (AGA / looking for the
best individual / exact data).

The evolution of the parameters are shown in figure 5.75 and figure 5.76, where it is illustrated
how that relatively good individual, created in the initial population, has remained as the best
individual over all generations; causing no evolution.
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Figure 5.75. Evolution of the E;f)f value (AGA / looking for the best individual / exact data).
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Figure 5.76. Evolution of the cohesion value (AGA / looking for the best individual / exact data).

Apart from that non-evolution of the best individual, the population has been evolving over
the generations, and this evolution is fully illustrated in figure 5.77. Nonetheless, from the very
beginning, the majority of the individuals and their offspring has been forced by themselves to

drive the search in a high exploitation mode.
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Figure 5.77. Evolution of the population over 25 generations using an AGA, with exact data, no fitness limit and a
population size of 51 individuals.

Finally, the parameters associated with the best individual and the computational cost of the
search, are presented in table 5.19, where in terms of geotechnics, the results can be
considered a suitable solution of the problem.

Case Identified Value Computational Cost
Esrgf [kN/m?] ¢ [kN/m?] [Plaxis evaluations]

AGA
(exact data with no fitness limit
and population size of 51
individuals)

26500 9 266

Table 5.19. Results of the case of adaptive genetic algorithms with exact data, no fitness limit and population size
of 51 individuals.

5.3.5.2.2 Noisy Data Case Results

The results of the parameters estimation using an adaptive genetic algorithm, with noisy data,
and looking for the best individual, are presented in this section.

In figure 5.78, the initial population of 51 individual all together with the objective function is
shown, while figure 5.79 shows the final population after 25 generations.

From figure 5.79, it can be seen how the majority of the individuals are concentrated around

the individual Esrgf=26500 kN/m? and ¢=9 kN/m? (red cross), which in fact it is the best
possible individual defined in the entire search space. Moreover, it also can be noted how well
surrounded the best individual is; in part due to the high diversity of the first five generations
(see figure 5.80).

Figure 5.81 shows the evolution of the objective function of the best individual and the
average of the population.

The evolution in terms of parameter values for the best individual are shown in figure 5.82 and
figure 5.83.
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Figure 5.78. Initial population of 51 individuals randomly generated - Objective function [m?]. The black crosses
represent the individuals (AGA / looking for the best individual / noisy data).
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Figure 5.79. Population after 25 generations (last generation) - Objective function [m?]. The black crosses

represent the individuals of the last generation and the red cross represents the best individual of the generation
(AGA / looking for the best individual / noisy data).
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Figure 5.80. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (AGA / looking for the best individual / noisy data).
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Figure 5.81. Evolution of the objective function. The solid line with diamonds represents the value of the best
individual and the dashed line with squares represents the average value of the population (AGA / looking for the
best individual / noisy data).
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Figure 5.83. Evolution of the cohesion value (AGA / looking for the best individual / noisy data).

As mentioned before, even not having a high evolution of the best individual over the
generations, does not strictly mean that the algorithm would have been improperly searching
for the minimum.

From figure 5.84, it can be noticed how powerful the search has been, where initially the
algorithm has been capable to capture the narrow banana shape valley, to later focus on the

surroundings of the best individual defined for the noisy case (Esrgf:26500 kN/m? and ¢=9

kN/m?).
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Figure 5.84. Evolution of the population all along 25 generations using AGA with noisy data, no fitness limit and a
population size of 51 individuals.

Finally, the parameters associated with the best individual, and the computational cost are
presented in table 5.20. The solution obtained can be considered satisfactory.

Case Identified Value Computational Cost
E;gf [kN/mz] c [kN/mZ] [Plaxis evaluations]

AGA
(noisy data with no fitness limit
and population size of 51
individuals)

26500 + 561.4 9+0.015 351

Table 5.20. Results of the case of adaptive genetic algorithms with noisy data, no fitness limit and population size
of 51 individuals.

5.3.5.3 Looking for the Best Set of Individuals

The same procedure that was presented in section 5.3.4.3 has been followed herein to define
the best set of individuals that are solution of the problem.

The main characteristics and parameters needed to fully define the problem are shown in
table 5.21.

Optimization Algorithm

Type of algorithm AGA + Elitism
Selection type Roulette Wheel (with fitness limit = frontier value)
GAP 1
Maximum probability of applying crossover (P¢ max) 0.95
Minimum probability of applying crossover (P;_min) 0.50
Maximum probability of applying mutation (P, max) 0.40
Minimum probability of applying mutation (P, min) 0.01
Population size 51
Search Space Discretization
Esrgfmm [kN/m?] 5000
ESt) g (KN/M] 37500
Eggfstep size [kN/mz] >00
Cmin [KN/m’] 0
Cmax [KN/m’] 50
Cstep size [kN/mZ] 1
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Figure 5.21. Main characteristics and parameters of the problem of parameters estimation (AGA / Looking for the
best set of individuals).
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5.3.5.3.1 Exact Data Case Results

The results of the parameters estimation using an adaptive genetic algorithm, with exact data,
and looking for the best set of individuals, are presented in this section.

Figure 5.85 illustrates the initial population of 51 individuals all together with the objective
function, while in figure 5.86 all good individuals after 25 generations are shown.

Unfortunately, as it has occurred in all cases presented in this chapter, where the search has
been focused on defining the best set of individuals, even the good representation of the
individuals and their high diversity over the generations (see figure 5.87), the ellipse obtained
from the PCA has not been capable to match the objective function shape. Consequently, the
same variable transformation, which was applied in section 5.3.4.3, has been used to make the
PCA ellipse capable to match the objective function (see figure 5.88). However, even the good
match between the transformed PCA ellipse and the objective function shape, the high
deviation of the parameters, enclosed in the ellipse has made difficult to associate the results
to a unique soil material. In cases like this, it would be necessary to introduce previous
information, usually parameter values obtained from different sources like laboratory tests, to
better restrict the individuals that define the solution of the problem.
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Figure 5.85. Initial population of 51 individuals randomly generated - Objective function [m?]. The black crosses
represent all individuals and the red ones represent just the good individuals of the initial population (AGA /
looking for the best set of individuals / exact data).
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Figure 5.86. Set of good individuals after 25 generations - Objective function [m?]. The red crosses represent the
individuals and the dashed line represents the PCA ellipse (AGA / looking for the best set of individuals / exact
data).
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Figure 5.87. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (AGA / looking for the best set of individuals / exact data).

Finally, the most relevant information involved in the analysis, as well as the results from the
PCA, are shown in table 5.22.
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Figure 5.88. Representation of the objective function [m?] in the transformed space of 1/E;gf —c. The red
crosses represent the good individuals involved in the PCA and the dashed line represents the PCA ellipse (AGA /
looking for the best set of individuals / exact data).

Description Values
Relevant information involved in the analysis
Computational cost [Plaxis evaluations] 465
Number of individuals involved in the PCA 89
Mean of 1/EL¢/ [m’/kN] 4.566:10°
Mean of ¢ [kN/m?] 13.359
Standard deviation of 1/E5rgf [m?/kN] 1.794-10°
Standard deviation of ¢ [kN/m?] 10.270
AF (amplifier factor of the standard deviation) 2
PCA results

Correlation matrix [ 1 0.9864]

0.9864 1
Eigenvector (associated to the first principal component) [0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 0.7071]
Eigenvalue (associated to the first principal component) 1.9864
Eigenvalue (associated to the second principal component) 0.0135

Table 5.22. PCA results and some relevant information involved in the analysis (AGA / looking for the best set of
individuals / exact data).

5.3.5.3.2 Noisy Data Case Results

The results of the parameter estimation using an adaptive genetic algorithm, with noisy data,
and looking for the best set of individuals, are presented in this section.

Figure 5.89 illustrates the initial population of 51 individuals all together with the objective
function, while in figure 5.90 the all good individuals after 25 generations are shown.
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Figure 5.89. Initial population of 51 individuals randomly generated - Objective function [m?]. The black crosses
represent all individuals and the red ones represent just the good individuals of the initial population (AGA /
looking for the best set of individuals / noisy data).

50

45-|

40

35

304

254

Cohesion [kN/m2]

204

154

104

0 T T T T T T 1 = I T
5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500
E50_ref [kN/m2]

Figure 5.90. Set of good individuals after 25 generations - Objective function [mz]. The red crosses represent the

individuals and the dashed line represents the PCA ellipse (AGA / looking for the best set of individuals / noisy
data).
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No significant difference has been obtained from using noisy data instead of exact data (while
looking for the best set of individuals). The higher robustness of the adaptive genetic
algorithm, compared to the simple genetic algorithm, has partially reduced the effect of the
introduction of noise, which highly affected the performance on previous analysis, especially in
terms of imposing indirectly a high selection pressure.

Apart from the similar results already presented in figure 5.90, the rest of the results,
presented in figures 5.91 and 5.92, are also very similar to the ones presented in the previous
section. Therefore, it would be also necessary to introduce previous information to better
restrict the individuals that defined the solution of the problem.
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Figure 5.91. (a) evolution of the Standard Population Diversity (SPD), and (b) evolution of the percentage of new
individuals in the population (AGA / looking for the best set of individuals / noisy data).

50

45+

40

354

304

25+

Cohesion [kN/m2]

20+

164

10+

4E005 6E-005 B8E-005 00001 000012 0.00014 0.00016 0.00018  0.0002
1/E50_ ref [m2/kN]

Figure 5.92. Representation of the objective function [m?] in the transformed space of 1/E;f)f —c. The red
crosses represent the good individuals involved in the PCA and the dashed line represents the PCA ellipse (AGA /
looking for the best set of individuals / noisy data).
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Finally, the most relevant information involved in the analysis, as well as the results from the
PCA, are shown in table 5.23.

Description Values
Relevant information involved in the analysis
Computational cost [Plaxis evaluations] 487
Number of individuals involved in the PCA 65
Mean of 1/E-¢ [m?/kN] 5.065-10”
Mean of ¢ [kN/m?] 16.446
Standard deviation of 1/E1¢/ [m?/kN] 1.370-10°
Standard deviation of ¢ [kN/m?] 8.081
AF (amplifier factor of the standard deviation) 2
PCA results

Correlation matrix [ 1 0.9883]

0.9883 1
Eigenvector (associated to the first principal component) [0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 0.7071]
Eigenvalue (associated to the first principal component) 1.9883
Eigenvalue (associated to the second principal component) 0.0116

Table 5.23. PCA results and some relevant information involved in the analysis (AGA / looking for the best set of
individuals / noisy data).

5.3.6 Using a Hybrid Method

Due to the fact that the hybrid method, defined in this thesis, is based on combining in serial
form genetic algorithms with gradient based methods, multiple types of hybrid algorithms can
be defined in terms of what kind of genetic algorithm is used, as well as what gradient based
method is combined with. The final definition will depend on the problem.

Here, because of the extensive analysis that has been carried out using different algorithms
(genetic algorithms and gradient based methods), it was considered appropriate to proceed
with the analysis using the hybrid method, combining the adaptive genetic algorithm and the
Gauss-Newton method (AGA + Gauss-Newton).

Thanks to the previous analysis, where the algorithm was permitted to run 25 consecutive
generations, it was possible to study the point where no significant increase on the
representativity of the PCA ellipse was obtained from letting the algorithm generating more
new generations. Consequently, the switching point, from genetic algorithm to gradient based
method, has been defined using the percentage of new individuals created per generation,
which is strongly related to the representativity of the PCA ellipse and the efficiency of the
algorithm in terms of computational cost. A value of 50% on the generation of new individuals
was considered appropriate. Therefore, the switch from genetic algorithm to gradient based
method occurred after the genetic algorithm is incapable to generate more than 50% of new
individuals. For the stop criteria of the second stage of the algorithm (gradient based method),
a fixed number of iterations was set up (10 iterations for the exact data case and 15 iterations
for the noisy data case).

The main characteristics and parameters needed to fully define the hybrid method are shown
in table 5.24.
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Genetic Algorithm

Optimization Algorithm

Type of algorithm AGA + Elitism
Selection type Roulette Wheel (with fitness limit = frontier value)
GAP 1
Maximum probability of applying crossover (P¢ max) 0.95
Minimum probability of applying crossover (P¢_min) 0.50
Maximum probability of applying mutation (P, max) 0.40
Minimum probability of applying mutation (P, min) 0.01
Population size 51
Stop Criteria (switching point) Less than 50% of new individuals
Search Space Discretization
ESt) i TKN/m] 5000
Eg0) g (KN/MY] 37500
E;gfstep size [kN/mZ] >00
Cmin [kKN/m’] 0
Cmax [KN/m?] 50
Cstep size [kN/mZ] 1
Principal Component Analysis (PCA)

Frontier Value 2.5-10°m’
AF (amplifier factor of the standard deviation) 2
Gradient Based Method
Type of algorithm Gauss-Newton
Stop Criteria fixed number of iterations (exact data => 10 iterations / noisy data => 15 iterations)
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Table 5.24. Main characteristics and parameters of the Hybrid Method.

5.3.6.1 Exact Data Case Results

The results of the parameter estimation using the hybrid method with exact data are
presented in this section.

In figure 5.93, it is presented the evolution of the number of new individuals generated per
generation until reaching the bottom line of 50%.
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Figure 5.93. Evolution of the number of new individuals generated per generation. The red dashed line represents
the percentage used as stop criteria (hybrid method / noisy data).
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For this particular case, three generations were used to create the individuals involved in the
PCA. The full evolution of the population and their good individuals are shown in figure 5.94.
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Figure 5.94. Full evolution of the population and their good individuals. The left column (full population)
represents the evolution of the entire population where there are good and bad individuals. The right column
(accumulated good individuals) represents the accumulated evolution of the good individuals over the
generations. In both columns the black rhombuses represent the individuals while the red one represents the
location of the minimum (hybrid method / exact data).

After three iterations and 114 individuals evaluated, 21 good individuals were generated and
subsequently used in the principal component analysis to reduce and redefine the search
space.

The most relevant information related to the PCA and the values of the eigenvectors and
eigenvalues used to mathematically define the ellipse, are presented in table 5.25.

Description Values

Mean of Eg¢’ [kN/m’] 25690.48

Mean of ¢ [kN/m?] 13.14

Standard deviation of Esrgf [kN/m?] 8347.86

Standard deviation of ¢ [kN/mz] 12.11

Correlation matrix [ 1 —0.9481]
—0.9481 1
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Eigenvector (associated to the first principal component) [-0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 —0.7071]
Eigenvalue (associated to the first principal component) 1.9480
Eigenvalue (associated to the second principal component) 0.0519

Table 5.25. Principal Component Analysis (hybrid method / exact data).

In figure 5.95, the new search space defined by the PCA is graphically represented.
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Figure 5.95. PCA ellipse - Objective function [mz]. The dashed line represents the frontier of the new search space
defined by the PCA and the red crosses represent the good individuals involved in the analysis (hybrid method /
exact data).

As it occurred when using just genetic algorithms, the ellipse does not match the actual shape
of the objective function. However, instead of applying the PCA to finally define a set of
individuals as solution of the problem, in this case, the PCA is just being used to reduce the
search space and defining the starting point for the gradient based method. Consequently, the
mismatch between the PCA ellipse and the objective function shape does not require any
transformation to force the match between them.

The path followed by the gradient based method is shown in figure 5.96, where the starting
point is located in the center of the PCA ellipse.
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Figure 5.96. Gradient based method path starting from the center of the PCA ellipse - Objective function [mz]
(hybrid method / exact data).

In order to visualize in more detail the path followed by the gradient based method, the
evolution in terms of objective function and parameters values are shown in figures 5.97, 5.98
and 5.99.
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Figure 5.97. Evolution of the objective function using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / exact data).
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Figure 5.98. Evolution of the E;f,f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / exact data).
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Figure 5.99. Evolution of the cohesion value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / exact data).

From this particular case, the use of the hybrid method has contributed to reduce the
computational cost, compared with the isolated use of genetic algorithms, and increased the
robustness of the gradient based method by selecting a suitable starting point and reducing
the search space.

A summary of the results is shown in table 5.26.

Stage 1 (AGA + PCA)

Number of generations 3
Computational cost [Plaxis evaluations] 114
Center of the PCA Ellipse EL¢) = 25690.48kN/m” and ¢ = 13.14kN/m’
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Stage 2 (Gradient Based Method)

Number of iterations 10
Computational cost [Plaxis evaluations] 30
Final values EL¢T = 24995.98kN/m’

¢ = 10.00kN/m?

Table 5.26. Results summary using the hybrid method with exact data. Plaxis evaluations is referred to the
number of direct problems solved by the geotechnical program Plaxis.

5.3.6.2 Noisy Data Case Results

The results of the parameter estimation using the hybrid method with noisy data are
presented in this section.

In figure 5.100, it is presented the evolution of the number of new individuals generated per
generation until reaching the bottom line of 50%. As expected, the introduction of noise has
increased the diversity of the population and consequently the potential of the algorithm to
generate more new individuals.
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Figure 5.100. Evolution of the number of new individuals generated per generation. The red dashed line
represents the percentage used as stop criteria (hybrid method / noisy data).

For this particular case, six generations were used to create the good individuals involved in
the PCA. After those six generations, the algorithm evaluated 201 different individuals and a
total of 28 of them were considered good individuals and subsequently used in the PCA.

The full evolution of the population and their good individuals are shown in figure 5.101, while
the most relevant information related to the PCA and the values of the eigenvectors and
eigenvalues used to mathematically define the ellipse, are presented in table 5.27. The
graphical representation of the ellipse is shown in figure 5.102, where its shape does not
matches the objective function shape. However, as previously explained, in the case of using
the genetic algorithm as a part of a hybrid algorithm, the mismatch between the PCA ellipse
and the objective function does not implicate any major problem on the identification
procedure. Consequently, no transformation in the search space representation is required to
force the match.
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Figure 5.101. Full evolution of the population and their good individuals. The left column (full population)
represents the evolution of the entire population where there are good and bad individuals. The right column
(accumulated good individuals) represents the accumulated evolution of the good individuals over the
generations. In both columns the black rhombuses represent the individuals while the red one represents the
location of the minimum (hybrid method / noisy data).

Description Values
Mean of Esrgf [kN/m?] 23553.57
Mean of ¢ [kN/m?] 15.07
Standard deviation of Esrgf [kN/m?] 7971.40
Standard deviation of ¢ [kN/m?] 10.49
Correlation matrix [ 1 —0.9433]
—0.9433 1
Eigenvector (associated to the first principal component) [-0.7071 0.7071]
Eigenvector (associated to the second principal component) [-0.7071 -—0.7071]
Eigenvalue (associated to the first principal component) 1.9433
Eigenvalue (associated to the second principal component) 0.0566

Table 5.27. Principal Component Analysis (hybrid method / noisy data).
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Figure 5.102. PCA ellipse - Objective function [m?]. The dashed line represents the frontier of the new search

space defined by the PCA and the red crosses represent the good individuals involved in the analysis (hybrid
method / noisy data).
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After defining the new search space, the Gauss-Newton method was initiated from the center
of the PCA ellipse until reaching a value relatively close to the global minimum. The path
followed by the algorithm is illustrated in figure 5.103. As in the other cases when using noisy

data, the algorithm has been jumping around the minimum until reaching a value near the
minimum.
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Figure 5.103. Gradient based method path starting from the center of the PCA ellipse - Objective function [m?]
(hybrid method / noisy data).

In order to see clearer the different iterations of the algorithm, the evolution, in terms of

objective function and parameter values, are separately represented in figures 5.104, 5.105
and 5.106.
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Figure 5.104. Evolution of the objective function using the Gauss-Newton method in the second stage of the
hybrid method (hybrid method / noisy data).
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Figure 5.105. Evolution of the E;ﬁf value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data).
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Figure 5.106. Evolution of the cohesion value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data).

As in the case of exact data, the hybrid method applied in a case with noisy data has reduced
the computational cost, with respect to the cases where the genetic algorithm were applied,
and increased the robustness of the gradient based method.

A summary of the results is shown in table 5.28.

Stage 1 (AGA + PCA)

Number of generations 6

Computational cost [Plaxis evaluations] 201

Center of the PCA Ellipse EL¢T = 23553.57kN/m” and ¢ = 15.07kN/m’
Stage 2 (Gradient Based Method)

Number of iterations 15
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Computational cost [Plaxis evaluations] 44
Final values EL¢S = 24813.69+1820.3kN/m’
¢ = 10.41+1.47kN/m’

Table 5.28. Results summary using the hybrid method with noisy data. Plaxis evaluations is referred to the
number of direct problems solved by the geotechnical program Plaxis.

5.3.7 Concluding Remarks from the Two Parameters Identification Case

After identifying the secant stiffness in standard drained triaxial test (E;gf) and the cohesion

(c), using different optimization algorithms; several concluding remarks can be derived. A
summary of global results is presented in table 5.29 to facilitate the comparison among the
different methodologies, and consequently, to make easier the understanding of the
concluding remarks presented here.

Case Type of data E;f)f c Computational Cost
[kN/m?] [kN/mZ] [Plaxis evaluations]
Gauss-Newton
Starting Point 1 Exact 24995.99 10.00 30
Starting Point 2 Exact 24996.00 10.00 30
Starting Point 3 Exact 24996.00 10.00 30
Starting Point 1 Noisy 24803.57 + 1805.4 10.42 +1.47 44
Starting Point 2 Noisy 24830.15+1817.0 10.41+1.47 44
Starting Point 3 Noisy 24813.70 £ 1820.3 10.41+1.47 44
Marquardt
Starting Point 1 Exact 24995.99 10.00 30
Starting Point 2 Exact 24995.98 10.00 33
Starting Point 3 Exact 24995.99 10.00 78
Starting Point 1 Noisy 26301.64 + 2089.6 9.09 £ 1.82 93
Starting Point 2 Noisy 21104.67 £ 1978.6 14.69 + 2.66 120
Starting Point 3 Noisy 22827.13 £1133.8 13.24+1.50 87
Simple Genetic Algorithm
The best individual Exact 29000 7 219
The best individual Noisy 26500 + 561.4 9+ 0.015 599
The best set of individuals Exact See PCA ellipse in section 5.3.4.3.1 595
The best set of individuals Noisy See PCA ellipse in section 5.3.4.3.2 722
Adaptive Genetic Algorithm
The best individual Exact 26500 9 266
The best individual Noisy 26500 + 561.4 9+ 0.015 351
The best set of individuals Exact See PCA ellipse in section 5.3.5.3.1 465
The best set of individuals Noisy See PCA ellipse in section 5.3.5.3.2 487
Hybrid Algorithm
AGA + Gauss-Newton Exact 24995.98 10.00 144
AGA + Gauss-Newton Noisy 24813.69 + 1820.3 10.41+1.47 245

Table 5.29. Global Parameters Identification Results Summary (Two Parameters Identification Case).

For this particular synthetic case of two parameters identification, the best results, in terms of
the balance between parameter values and computational cost, has been obtained from the
Gauss-Newton method. However, it has to be pointed out that using a so really simple case
with just two parameters to be identified, is the most appropriate scenario for the Gauss-
Newton success. Therefore, it is not expected to get so good results when applying the method
to real complex cases with a large number of parameters to be identified.

Having a narrow banana shape valley defining the surroundings of the minimum has made the
Marquardt method face severe difficulties (see section 5.3.3). The restriction of the method to
step forward if the new iteration has associated a higher error than the previous one has
caused serious problems to the algorithm when moving through the narrow valley and finally
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reach the minimum. Moreover, the significant difference in the magnitude between the values
of E;gf and c¢, has made it difficult to find a suitable value of py and p that fits both
parameters. Consequently, worse results were obtained by using the Marquardt method,
which theoretically is an improvement of the Gauss-Newton method.

A good definition of yy and p become fundamental, and they are problem dependent.

When looking for the best individual using simple genetic algorithms, the right choice of the
population size and the selection pressure has a major impact on the performance of the
algorithm, especially if there is a huge difference between the fitness of the good individuals
and the average of the population. This situation usually causes premature convergence due to
a fast loss of diversity. Whereas, when using an adaptive genetic algorithm, the self-adaptive
system of the algorithm enforces to keep a certain level of diversity that facilitates a better
performance, and makes the algorithm less dependent on population size and selection
pressure.

On the other hand, when looking for the best set of individuals rather than the best individual,
it has been noticed that even having a good match between the PCA ellipse and the objective
function (satisfactory result in terms of optimization problem), geotechnically speaking, if the
individuals enclosed in the PCA ellipse are not capable to be defined as a specific soil material,
the final results of the backanalysis cannot be considered satisfactory. In those cases, it would
be necessary the introduction of prior information to redefine and limit the individuals that
represent the final solution.

Finally, when using a hybrid method that combines genetic algorithms with gradient based
methods, it can be point out that a good balance between robustness and efficiency has been
achieved. However, for this simple synthetic case, the hybrid algorithm is still less efficient
than the Gauss-Newton method. Nonetheless, for complex real cases with a large number of
parameters, it is expected that the hybrid algorithm will become more competitive than any
gradient based method.

5.4 Optimal In Situ Instrumentation Layout (Two Parameters Identification Case)

Because of the primary objective of strictly studying the behavior and the performance of the
different optimization algorithms presented in this thesis, it was not considered necessary,
until now, to study the influence of the measurement points that usually are used to define a
standard control section in a tunnel construction scenario. Supposing the tunnel problem as
symmetric, a standard control section is usually defined by a sliding micrometer, located close
to the tunnel crown, an inclinometer, located 2 meters from the side of the tunnel, and several
vertical displacements surface points.

Two different tunnel scenarios were defined to carry out the analysis. The first scenario,
named "Far From Collapse", is exactly the same one that has been used in section 5.3, while
the second scenario, named "Close To Collapse", is geometrically and parametrically equal
than the other scenario (Far From Collapse), with the difference that this new scenario has
been forced to reach a state close to collapse.
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The procedure to force the system to reach a state close to collapse was performed by
imposing a value of ZMStage=0.32, which causes a volume loss around 7% and displacements
of decimeters.

From figure 5.107, the different regimes of the stress points can be seen, and subsequently
compared with figure 5.4, which illustrates the regimes for the case defined as "far from
collapse". Especially interesting is to compare figure 5.107b and figure 5.4b, which correspond
to the construction phase where the majority of displacements occur, and where can be
clearly observed the difference between a stable scenario far from collapse and a near collapse
scenario with a significant domain in Mohr-Coulomb regime.

H(c)“ Sa S . @

Plastic points
[ Mohr-Coulomb paint Tension cut-off point ¥ Cap &Hardening paoint
H] Cap point E Hardening point

Figure 5.107. Plastic points of the scenario Close To Collapse. (a) shows the plastic points from the calculation
phase 0, (b) shows the plastic points from the calculation phase 1, (c) shows the plastic points from the
calculation phase 2 and (d) shows the plastic points from the calculation phase 3.

Before addressing the influence of the instruments separately; a similar analysis to the ones
done by Murakami & Hasegawa (1988) and Shoji et al (1990) has been adapted to the problem
of a tunnel construction of two parameters identification to illustrate the sensitivity of the

vertical and horizontal displacements with respect to Eggf and c in the minimum. It has to be
understood that the results and conclusions presented in this section are completely
illustrative due to the fact that the sensitivity is evaluated at the minimum, which is something
that is not known in practice. Moreover, depending on the values of the parameters, the
results of the sensitivity can be significantly different, and trying to extrapolate the results
from a particular case to the general scenario can be misleading. Nonetheless, using the kind
of results extracted from this type of analysis can be really useful as an initial step to better
define the optimal layout of the instrumentation.
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The derivatives of the vertical and horizontal displacements with respect to E;g’f are illustrated
in figure 5.108.
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Table 5.108. Derivatives of the vertical (Uy) and horizontal (Ux) displacements with respect to E;f)f in the

minimum. The red cross represents the most sensitive point in the domain.

Independently from what kind of measurement the derivatives are defined (Ux or Uy), figure
5.108 points out that in general, the zones where the values of the derivatives are high,
correspond with zones with large displacements. Therefore, it could be thought that: the
higher the displacements are, the more sensitive the measurements are with respect to the
parameter. However, as shown later, this tendency cannot be guaranteed in all the domain.

In terms of the morphology of the distribution of sensitivity, when using horizontal
displacements, apart from the magnitude of the sensitivity, no significant difference exists
between being far or close to collapse. In both scenarios, the most sensitive measurement
point remains located in the same place. However, when using vertical displacements, even
having a similar morphology of the distribution of sensitivity, the most sensitive measurement
point has moved from the center, between the tunnel crown and the surface, to the tunnel
crown. This phenomenon points out that when being far from collapse, the measurements,

located in the middle between the tunnel crown and the surface, are more suitable (higher

quality) than the ones next to the tunnel crown, to identify E;gf; and the opposite occurs

when being close to collapse.

Similar results were obtained with respect to cohesion (see figure 5.109), where no significant
difference was appreciated between the two scenarios; neither morphologically nor in terms
of the most sensitive measurement location.

Theoretically, if the derivatives were constant, which is not true in this case, the type of maps
illustrated in figure 5.108 and figure 5.109, would be directly used to define the optimal layout
of the instrumentation. Therefore, as it has been exposed before, the use of this kind of
analysis can be considered useful to initially define the layout of the instrumentation or as a
simple guideline.
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Table 5.109. Derivatives of the vertical (Uy) and horizontal (Ux) displacements with respect to c in the minimum.
The red cross represents the most sensitive point in the domain.

In order to extrapolate the general guidelines that have been already presented to the field of

in situ instrumentation, the sensitivity and displacements of the measurements of a standard
control section have been studied.

The sensitivity and vertical displacements derived from a sliding micrometer, located above
the tunnel crown (see figure 5.3.a), are illustrated in figure 5.110 and figure 5.111.
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Figure 5.110. Vertical displacement derivative with respect to E;f,f versus vertical displacement derived from a
sliding micrometer located above the tunnel crown. (a) Far From Collapse. (b) Close To Collapse.
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Figure 5.111. Vertical displacement derivative with respect to ¢ versus vertical displacement derived from a
sliding micrometer located above the tunnel crown. (a) Far From Collapse. (b) Close To Collapse.

As mentioned before, it cannot always be generally guaranteed that the higher the
measurement is, the more sensitive it is. From figure 5.110a, it can be observed how the
location of the most sensitive measurement (around 3 meters deep) does not match the
location of the highest vertical displacement (8 meters deep). Nonetheless, as a general rule, it
can be extrapolated that the higher the measurement is, the more sensitive the measurement
is likely to be.

The mismatch between the vertical displacements and the derivatives of the vertical

displacements with respect to E;gf is attributed to the different contributions of each
construction stage towards the sensitivity distribution. As figure 5.112 shows, the distributions
of the sensitivity along the sliding micrometer are completely opposite when comparing the
values obtained from the tunnel excavation stage (phasel) and the consolidation stage (phase
3). Consequently, using the final accumulated displacements to define the derivatives makes
that the most sensitive point is located approximately in the middle of the sliding micrometer.

The opposite sensitivity distribution between phase 1 and phase 3 are consequence of the
initial stress state and the stress path associated with the different constructions phases. Being
selected two different stress points, one close to the tunnel crown and the other 3 meters
deep, it can be illustrated how the initial stress and the stress path are in control of defining
the regime of the stress point, and consequently, what parameters are going to be potentially
involved in (more involvement => more sensitivity).

As figure 5.113 shows, due to the tunnel excavation phase a noticeable decrease on g occurrs;
this placed the stress point into the elastic zone. Then, after phase 2 (tunnel lining
construction), which does not affect too much to the stress state, an increase on p’ occurred
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on the consolidation phase, which depending on the previous stress state can cause the
movement of the compression hardening yield surface, and consequently, making the point

more sensitive with respect E;gf ( in this case study Esrgf is linked to Eg:g by 0.8E5T§f =
ref
Eoed)'
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Figure 5.112. Vertical displacement derivative with respect to E;f)f versus vertical displacement derived from a

sliding micrometer located above the tunnel crown. (a) From tunnel excavation phase. (b) From consolidation
phase.
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Figure 5.113. Stress path of two points located along the sliding micrometer (Far From Collapse). (a) Stress point

located around 3 meters deep. (b) Stress point located 2 meters from the tunnel crown. f*: Shear Hardening yield
surface. f: Compression Hardening yield surface.
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From the other types of in situ instruments (inclinometer and vertical displacement surface
points) the sensitivity distribution matches the displacement profile for both scenarios, far and
close to collapse (see figures 5.114, 5.115, 5.116 and 5.117).

156



Application and Validation of the Methodology (Synthetic Case)

Ux [m]
0 -0,002 -0,004 -0,006 -0,008
0
-5
-10
E
<
-l
Q.
8 -15
20 |’
i AUx/OE50
! - = =Ux
225 !
0,E+00 1,E-07 2,E-07 3,E-07
QUX/QE, " [m3/kN]

Figure 5.114. Vertical displacement derivative with respect to E;
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inclinometer. (a) Far From Collapse. (b) Close To Collapse. The red dashed line represents the tunnel contour.
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Figure 5.115. Vertical displacement derivative with respect to ¢ versus vertical displacement derived from an
inclinometer. (a) Far From Collapse. (b) Close To Collapse. The red dashed line represents the tunnel contour.
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Figure 5.116. Vertical displacement derivative with respect to E;' versus vertical displacement derived from
vertical displacement surface points. (a) Far From Collapse. (b) Close To Collapse.

Distance from the tunnel axis [m] Distance from the tunnel axis [m]
0 10 20 0 10 20
0,E+00 0 0
_ z - -0,05
2 2,E-04 + o
< E - 0,1
o —_
E k04 - 2 - 015 £
3 3 >
; ) r -0,2 =]
5 6,E-04 -+
o - - - -0,25
8,E-04 0,3

dUy/dc = = =Uy 0Uy/dc = = =Uy
(a) (b)

Figure 5.117. Vertical displacement derivative with respect to c versus vertical displacement derived from vertical
displacement surface points. (a) Far From Collapse. (b) Close To Collapse.

Another approach to the problem of optimal instrumentation layout is studying the influence
of the measurements over the objective function. This approach, as it is presented herein, is
only applicable in cases where no more than two parameters are being identified and when it
is feasible for the objective function to be graphically represented. As explained in section
5.3.1, the relationship between parameters and their sensitivity with respect to the
measurements can be partially extrapolated from the morphology of the objective function
shape.

In the following figures (5.118, 5.119, 5.120, 5.121, 5.122, 5.123, 5.124 and 5.125), the
objective functions obtained from the different type of in situ instruments are shown. A total
of 8 different objective function maps have been plotted by combining the two tunnel
scenarios (far from collapse and close to collapse) with the instruments measurements (sliding
micrometer, inclinometer, vertical displacement surface points and a full control section
combining all the instruments).

From those figures, it can be pointed out that for this particular case study the measurements
that provide a more propitious objective function shape for an easier identification of Esrgf
and c are the ones extracted from the inclinometer. The less narrow valley defined by the
inclinometer measurements makes it easier for the gradient based methods to find the

minimum.
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Figure 5.118. Mapping of the objective function [m?] defined by using the measurements of a sliding micrometer
with exact data (Far From Collapse).
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Figure 5.119. Mapping of the objective function [m?] defined by using the measurements of an inclinometer with
exact data (Far From Collapse).
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Figure 5.120. Mapping of the objective function [m?] defined by using the measurements of several

displacement surface points with exact data (Far From Collapse).
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Figure 5.121. Mapping of the objective function [m?] defined by using the measurements of a full control section

with exact data (Far From Collapse).
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Figure 5.122. Mapping of the objective function [m?] defined by using the measurements of a sliding micrometer
with exact data (Close To Collapse).
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Figure 5.123. Mapping of the objective function [m?] defined by using the measurements of an inclinometer with
exact data (Close To Collapse).
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Figure 5.124. Mapping of the objective function [m?] defined by using the measurements of several vertical
displacement surface points with exact data (Close To Collapse).
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Figure 5.125. Mapping of the objective function [m?] defined by using the measurements of a full control section
with exact data (Close To Collapse).
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It can be noticed, as it was expected, that for the case close to collapse the valley of the
minimum is almost parallel to the Esrgf axis, showing that the scenario close to collapse is
more adequate to be used when cohesion has to be identified.

5.5 Four Parameters ldentification Case (ng,f, E;if, @ and c)

5.5.1 Introduction

In this section four parameters, the reference secant stiffness in standard drained triaxial test
(Esrgf), the reference unloading-reloading stiffness (EZif), the effective angle of internal
friction (¢), and the effective cohesion (c), have been identified by applying the hybrid method
presented before. For this particular case, the hybrid algorithm has been defined by combining

an adaptive genetic algorithm (AGA) with the Gauss-Newton method.

The measurements used for the analysis are the ones altered by the introduction of noise
(Noisy Data) that were used in the case of two parameters identification.

Due to the conclusions derived from the section 3.3.8, where it was pointed out the influence
of the stress-strain state, and also because of the introduction of two more parameters into
the analysis, it was considered useful to analyze the soil parameters identification problem
from both scenarios, close and far from collapse.

As a consequence of the significant difference on the magnitude of the measurements
between scenarios, millimeters for the scenario far from collapse and decimeters for the
scenario close to collapse, two different frontier values were defined to limit the selection
pressure and to carry out the PCA. The two frontier values were proportionally defined
between scenarios through their coefficients of variation.

Moreover, due to the increase of the problem complexity, from two parameters to four
parameters, and especially for the case close to collapse, it was needed to use higher values of
AF (amplifier factor of the standard deviation) to define the PCA ellipsoids. The fact of losing
normal distribution requires increasing the value of AF to guarantee that 90% of the PCA
individuals will be enclosed inside the ellipsoid to make it representative of the group of good
individuals found by the genetic algorithm.

From figures 5.126 and 5.127, it can be appreciated what has been already mentioned about
the loss of normal distribution. Using the good individuals obtained by the genetic algorithm
for the case close to collapse (see section 5.4.2.2), the histograms and the "Detrended" normal
Q-Q plot of the variables were plotted to formally confirm that the good individuals do not
follow a normal distribution, which makes more difficult the resolution of the problem. The
IBM SPSS Statistics software was used to obtain the histograms and the "Detrended" normal
Q-Q plots presented in this thesis.

Finally, the main characteristics of the algorithm used to identify E;gf, Ef;f, @ and c, are

shown in table 5.30, which are extrapolated from the results obtained from the exhaustive two
parameter identification case presented in section 5.3.
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Figure 5.126. Histograms of the parameters values extracted from the good individuals involved in the PCA for
the case close to collapse.
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Genetic Algorithm

Optimization Algorithm

Type of algorithm AGA + Elitism
Selection type Roulette Wheel (with fitness limit = frontier value)
GAP 1
Maximum probability of applying crossover (P¢ max) 0.95
Minimum probability of applying crossover (P¢_min) 0.50
Maximum probability of applying mutation (P, max) 0.40
Minimum probability of applying mutation (P, min) 0.01
Population size 1001
Stop Criteria (switching point) Less than 50% of new individuals
Search Space Discretization
B! i (KN/m] 10000
E;'ifmax [kN/m?] 200000
E;-’e;fstep size [kN/mz] >000
Egt i TKN/m] 5000
Egt) g (KN/MY] 37500
E;gfstep size [kN/mZ] 2500
Pmin [deg] 25
Pmax [deg] 35
Pstep size [deg] 0.5
Comin [KN/m?] 0
Cmax [KN/m?] 50
Cstep size [kN/mz] 2.5

Principal Component Analysis (PCA)

Far From Collapse

Frontier Value 2.22:10°m?
AF (amplifier factor of the standard deviation) 2.8
Close To Collapse
Frontier Value 2.77-10°m?
AF (amplifier factor of the standard deviation) 4.1
Gradient Based Method
Type of algorithm Gauss-Newton
Stop Criteria fixed number of iterations (10 iterations)
Objective Function
Type of objective function Least-Squares Method
Measurements
Type of measurement Vertical Displacements (20 measurement points)

Table 5.30. Main characteristics and parameters of the Hybrid Method.

5.5.2 Results

The fact of identifying four parameters has made more difficult the visual study of the genetic
algorithm evolution. However, different representations of the evolution have been defined in
order to keep visual the understanding of the genetic algorithm behavior.

5.5.2.1 Far From Collapse

The results of the parameters estimation using the hybrid method with noisy data in a scenario
far from collapse are presented in this section.

The distribution of the parameters values associated with the individuals of the initial
generation and the last generation is shown in figure 5.128. A total of eight generations were
created by the algorithm until reaching the limit value of 50% of new individuals per
generation. As can be noticed in the figures, the dispersion among the individuals decreases
considerably from the initial generation to the last one, except for the internal friction angle.
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Unfortunately, only the values of Eref seem to converge towards the value associated with

the minimum (Eref

slightly from the minimum (Eref = 25000kN/m? and ¢ = 10kN/m?).
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Figure 5.128. Parameters values associated to the individuals of the initial generation and the last generation.
The gray bars represent the parameter values of the individuals while the red line represents the error associated
to the individual. (hybrid method / noisy data / far from collapse).
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The full evolution of the algorithm, taking into account the limitations associated with working
with four parameters, can be visualized from figure 5.129. As figure 5.128 firstly pointed out,
there is a deviation on the convergence towards the minimum, which from figure 5.129 and
the error associated with the individuals, can be explained by the effect of having different
combinations of parameters with lower error than the one used to generate the
measurements; in part due to the introduction of noise in the measurements, and also
because of the existence of complex relationships among the parameters that defined the
Hardening soil model (see section 2.6). This phenomenon points out the difficulties associated
with the identification of soil parameters while using sophisticated constitutive models.
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Figure 5.129. Full evolution of the parameters associated with the individuals. The size of the bubble is directly
related to the number of individuals that share that specific parameter value. The red dashed line represents the
value associated with the global minimum. (hybrid method / noisy data / far from collapse).

After 8 generations and a total of 5422 individuals evaluated, the principal component analysis
(PCA) was conducted using 167 good individuals. The most relevant information related to the
PCA is presented in table 5.31.
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Description Values

Mean of EZﬁf [kN/m?] 70898.20

Mean of E;gf [kN/m?] 16811.37

Mean of ¢ [deg] 30.29

Mean of ¢ [kN/m?] 20.85

Standard deviation of EL¢ [kN/m?] 9204.91

Standard deviation of Esrgf [kN/m?] 3584.86

Standard deviation of ¢ [deg] 2.81

Standard deviation of ¢ [kN/m?] 6.74

Correlation matrix 1 0.187 —0.058 -—0.235

0.187 1 —0.267 —0.863

—0.058 —0.267 1 —0.095
—0.235 —-0.863 —0.095 1

Eigenvector (associated with the first principal component) [-0.2976 —0.6776 0.1397 0.6578]

Eigenvector (associated with the second principal component) [-0.0233 —0.0802 0.9517 —0.2953]

Eigenvector (associated with the third principal component) [0.9531 -0.2484 0.0532 0.1640]

Eigenvector (associated with the fourth principal component) [0.0483 0.6875 0.2680 0.6731]

Eigenvalue (associated with the first principal component) 1.9758

Eigenvalue (associated with the second principal component) 1.0535

Eigenvalue (associated with the third principal component) 0.9072

Eigenvalue (associated with the fourth principal component) 0.0633

Major principal axis length projected into the space of EL¢/ [kN/m?] 23399.87

Major principal axis length projected into the space of E;gf [kN/m?] 9560.90

Major principal axis length projected into the space of ¢ [deg] 7.69

Major principal axis length projected into the space of ¢ [kN/m?] 17.45

Table 5.31. Principal Component Analysis (Hybrid Algorithm / Noisy Data / Far From Collapse).

Adapting equation 5.5 to four dimensions, it was checked that the global minimum was
enclosed in the new search space defined by the PCA ellipsoid.

The evolution of the algorithm, once the switch from AGA to gradient based method was
applied, is illustrated in figures 5.130, 5.131, 5.132, 5.133 and 5.134.
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Figure 5.130. Evolution of the objective function using the Gauss-Newton method in the second stage of the
hybrid method (hybrid method / noisy data / far from collapse).
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Figure 5.131. Evolution of the E;if value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / far from collapse).
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Figure 5.132. Evolution of the E;f,f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / far from collapse).
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Figure 5.133. Evolution of the ¢ value using the Gauss-Newton method in the second stage of the hybrid method
(hybrid method / noisy data / far from collapse).
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Figure 5.134. Evolution of the cohesion value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / far from collapse).

Even though figures 5.131, 5.132, 5.133 and 5.134 show that the final results do not match the
parameters used to generate the measurements, the value of the error associated with the
solution obtained by the algorithm is lower than the one derived from the actual real soil
parameters values (9.96:10°m? vs. 1.126-10°m?). Therefore, on the one hand, in terms of
optimization, the algorithm has found the solution of the problem, while on the other hand, in
terms of geotechnics, the solution is not fully satisfactory. However, no better results in terms
of parameter values can be obtained without introducing more information into the analysis,
such as parameters previous information extracted from other methodologies (e.g. laboratory
tests, in situ tests, literature ...).

The comparison between the displacement measurements and the results obtained from the
numerical model associated with the parameters obtained from the current backanalysis is
illustrated in figure 5.135. Even though, in terms of parameters values, not all of them are
close to the actual value, the displacements look quite similar.
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Figure 5.135. Measurements vs. Calculations (the black rhombuses represent the measurements while the red
empty squares represent the Plaxis calculations associated with the parameters obtained from the current
backanalysis). (a) Vertical displacements on the surface. (b) Vertical displacements representing a sliding
micrometer located along the vertical tunnel axis. (c) Vertical displacements representing a sliding micrometer
located two meters away from the tunnel side. (hybrid method / noisy data / far from collapse).

A summary of the results is shown in table 5.32.

Stage 1 (AGA + PCA)

Number of generations 8
Computational cost [Plaxis evaluations] 5422
Center of the PCA Ellipse E;ﬁf =70898.20 kN/m?>
ELef =16811.37 kN/m’
¢ =30.29°

¢ =20.85 kN/m’

Stage 2 (Gradient Based Method)

Number of iterations 10
Computational cost [Plaxis evaluations] 49
Final values E;¢ = 65270.20+1031.1 kN/m’

El¢S =20043.22+1816.9 kN/m’
@ =34.3121.06°
c =9.3442.9 kN/m’

Table 5.32. Results summary using the hybrid method with noisy data for a tunnel scenario far from collapse.
Plaxis evaluations is referred to the number of direct problems solved by the geotechnical program Plaxis.

5.5.2.2 Close To Collapse

The results of the parameters estimation using the hybrid method with noisy data in a scenario
close to collapse are presented in this section.

For this particular case, within 5 generations the adaptive genetic algorithm has not been able
to generate more than 50% of new individuals, in part due to the restrictions derived from the
instability of the scenario, where combinations of parameters really close to the solution
makes the tunnel collapse, causing consequently a plunge of the number of individuals.

The evolution of the population from the initial generation to the last one (generation 5) is
shown in figure 5.136. As in other cases, the algorithm seems to converge; however, this
convergence does not match exactly the solution of the problem.
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Figure 5.136. Parameters values associated to the individuals of the initial generation and the last generation.
The gray bars represent the parameter values of the individuals while the red line represents the error associated
to the individual. (hybrid method / noisy data / close to collapse).

In order to visualize the evolution of the algorithm more globally, in figure 5.137 the results of
the adaptive genetic algorithm have also been shown as they were presented in the previous
section (figure 5.129). Unfortunately, it corroborates what figure 5.136 previously showed; the
population does not converge to the global minimum.
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Figure 5.137. Full evolution of the parameters associated with the individuals. The size of the bubble is directly
related to the number of individuals that share that specific parameter value. The red dashed line represents the
value associated with the global minimum. (hybrid method / noisy data / close to collapse).

The most relevant information related to the PCA is presented in table 5.33, which was

obtained after five generations, 4375 Plaxis evaluations and 136 good individuals.

Description Values

Mean of E-/ [kN/m?] 129191.20

Mean of Esrgf [kN/m?] 14595.59

Mean of ¢ [deg] 28.96

Mean of ¢ [kN/m?] 20.49

Standard deviation of Eje/ [kN/m’] 34486.82

Standard deviation of EL¢/ [kN/m’] 4096.30

Standard deviation of ¢ [deg] 2.35

Standard deviation of ¢ [kN/m?] 4.21

Correlation matrix 1 0.155 —-0.180 0.302
0.155 1 —-0.124 —-0.741

—-0.180 —-0.124 1 —-0.377

0.302 -—-0.741 -0.377 1

Eigenvector (associated with the first principal component) [0.2255 —0.5703 —0.2978 0.7315]
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Eigenvector (associated with the second principal component) [-0.6118 —0.5422 0.5763 0.0004]
Eigenvector (associated with the third principal component) [-0.7125 0.0605 —0.6987 —0.0176]
Eigenvector (associated with the fourth principal component) [0.2600 —0.6140 —0.3012 —0.6815]
Eigenvalue (associated with the first principal component) 1.8251

Eigenvalue (associated with the second principal component) 1.3080

Eigenvalue (associated with the third principal component) 0.8171

Eigenvalue (associated with the fourth principal component) 0.0496

Major principal axis length projected into the space of E,:ff [kN/m?] 98869.71

Major principal axis length projected into the space of Esrgf [kN/m?] 12940.97

Major principal axis length projected into the space of ¢ [deg] 6.37

Major principal axis length projected into the space of ¢ [kN/m?] 17.07

Table 5.33. Principal Component Analysis (Hybrid Algorithm / Noisy Data / Close To Collapse).

Adapting equation 5.5 to four dimensions, it was checked that the global minimum was
enclosed in the new search space defined by the PCA ellipsoid.

The evolution of the algorithm, once the switch from AGA to gradient based method was
applied, is illustrated in figures 5.138, 5.139, 5.140, 5.141 and 5.142.
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Figure 5.138. Evolution of the objective function using the Gauss-Newton method in the second stage of the
hybrid method (hybrid method / noisy data / close to collapse).

190000
170000
150000
130000

110000 . //
90000 \ T

70000 [ e T T T L L L

Eurref [kN/mZ]

50000
30000
10000

0 1 2 3 4 5 6 7 8 9 10
Iteration

Figure 5.139. Evolution of the E,r;f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / close to collapse).
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Figure 5.140. Evolution of the E;f)f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / close to collapse).
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Figure 5.141. Evolution of the ¢ value using the Gauss-Newton method in the second stage of the hybrid method

(hybrid method / noisy data / close to collapse).
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Figure 5.142. Evolution of the cohesion value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / close to collapse).
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Contrary to the case far from collapse, where the algorithm converges to a solution that does
not match the global minimum, in terms of parameter values, but it does find an even better
solution in terms of objective function value, the case close to collapse seems to try to
converge to the minimum, in terms of parameters, but with a worse value of the objective
function. In addition, it shows an unstable behavior in terms of objective function and
parameter values (except for cohesion).

In order to tackle this instability of the Gauss-Newton method, the second stage of the hybrid
algorithm was recalculated using the Marquardt method instead of the Gauss-Newton.
However, althogh getting a stable behavior of the objective function, forced by the definition
of the Marquardt method (see figure 5.143), it was not possible to drive the search into the
global minimum (neither in terms of parameter values nor in terms of objective function
value).

After ten iterations using the Marquardt method, the parameters obtained from the analysis
were: Ene/ = 186716 kN/m?, L = 12454 kN/m?, ¢ = 34.15° and ¢ = 20.54 kN/m?, while the

ones associated with the global minimum are: E;$f= 75000 kN/m?, E;§f= 25000 kN/m?, Q=
28% and ¢ = 10 kN/m?. Moreover, the value of the objective function obtained in the analysis
was 2.213-10" m? while the one associated with the global minimum is 1.47-10° m’.
Nonetheless, if the displacements obtained from the calculations are compared with the
measurements, the match between them is quite good (see figure 5.144), which highlights the
difficulty of the parameters identification problem, especially derived from the none-

uniqueness nature of complex geotechnical scenarios.

Another aspect that has been studied in this section is the reasons why the case close to
collapse has exhibited more difficulty than the one far from collapse, when it was expected to
be easier due to its higher sensitivity, as shown in section 5.3.8.
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Figure 5.143. Evolution of the objective function using the Marquardt method in the second stage of the hybrid
method (hybrid method / noisy data / close to collapse).
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Figure 5.144. Measurements vs. Calculations (the black rhombuses represent the measurements while the red
empty squares represent the Plaxis calculations associated with the parameters obtained from the current
backanalysis). (a) Vertical displacements on the surface. (b) Vertical displacements representing a sliding
micrometer located along the vertical tunnel axis. (c) Vertical displacements representing a sliding micrometer
located two meters away from the tunnel side. (hybrid method / noisy data / close to collapse).

The additional difficulty of the case close to collapse is associated with new restricted
boundary conditions derived from the parameters combinations that causes the tunnel to
collapse, which in this case study makes the solution to be closely surrounded by the
boundaries. In fact, if all parameters, except the cohesion, are fixed with the values associated
with the minimum and the value of cohesion is changed as it is defined in the search space
discretization (see table 5.30), it can be appreciated, as shown in figure 5.145, that the solution
of the problem is located close to a boundary.
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Figure 5.145. Objective Function vs. Cohesion. The rest of parameters are fixed with the values associated with
the minimum. The red zone represents the cohesion values that cause the tunnel to collapse. (hybrid method /
noisy data / close to collapse).

Unfortunately, this situation makes more difficult for genetic algorithms and gradient based
methods to find the solution; especially for genetic algorithms, which base the majority of the
search on the fitness of the individuals and their recombination (selection and crossover).
Supposing that two individuals are selected to generate two new offsprings, and none of the
parents are located on the boundary, it is not possible to create a new individual out of the
space defined by the hyperplanes associated with the line connecting both parents, and
consequently no new individuals will be located on the boundary, unless the mutation
operator creates it, which statistically is highly unlikely using the standard values of mutation
probability that are used in most cases.

Therefore, in order to confirm that better results would be obtained in the case close to
collapse due to the higher on the sensitivity of the measurements, a new less restricted
scenario close to collapse was defined. The new scenario, named Relatively Close To Collapse,
was defined by setting the value of ZMStage to 0.305 instead of 0.32 that was used in the
previous case.

The reduction of the value of XMStage, which seems not highly significant, has permitted to
extend the boundaries around the minimum, and consequently, getting the results that were
expected for a case relatively close to collapse.

The difference between both cases (close to collapse vs. relatively close to collapse), in terms
of plastic points evolution, can be illustrated by comparing figures 5.107 and 5.146, especially
if comparing (b), which corresponds to the soil relaxation due to the tunnel excavation, and
where it can be noticed a significant reduction in the number of Mohr-Coulomb plastic points.
However, due to the large displacements that also occurred in the relatively close to collapse
case (larger than a decimeter), it is still reasonable to consider the new case study as a
representative case for a tunnel close to collapse.
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Figure 5.146. Plastic points of the scenario Relatively Close To Collapse. (a) shows the plastic points from the
calculation phase 0, (b) shows the plastic points from the calculation phase 1, (c) shows the plastic points from
the calculation phase 2 and (d) shows the plastic points from the calculation phase 3.

After four generations, 3185 Plaxis evaluations and 125 good individuals involved in the
principal component analysis (PCA), it was defined a new search space containing the global
minimum. The most relevant information related to the PCA is presented in table 5.34.

Description Values

Frontier Value 9.307-10" m’

AF (amplifier factor of the standard deviation) 2.7

Mean of E,:ﬁf [kN/m?] 114320

Mean of Esrgf [kN/m?] 15520

Mean of ¢ [deg] 30.20

Mean of ¢ [kN/m?] 19.72

Standard deviation of Eje/ [kN/m’] 44388.06

Standard deviation of EL¢/ [kN/m’] 6232.2

Standard deviation of ¢ [deg] 3.12

Standard deviation of ¢ [kN/m?] 8.00

Correlation matrix 1 0.186 —0.181 0.333

0.186 1 —0.064 —0.679
—-0.181 —-0.064 1 —0.453
0.333 —0.679 —0.453 1

Eigenvector (associated with the first principal component) [0.2648 —0.4922 —0.4081 0.7218]

Eigenvector (associated with the second principal component) [-0.6280 —0.6323 0.4503 0.0538]

Eigenvector (associated with the third principal component) [-0.6670 0.1374 —0.7285 —0.0734]

Eigenvector (associated with the fourth principal component) [0.300 —0.5821 -0.3160 —0.6860]

Eigenvalue (associated with the first principal component) 1.8422

Eigenvalue (associated with the second principal component) 1.2889

Eigenvalue (associated with the third principal component) 0.8006

Eigenvalue (associated with the fourth principal component) 0.0681

Major principal axis length projected into the space of EL/ [kN/m?] 85448.93
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Major principal axis length projected into the space of Ezo’ [kN/m’] 12080.9
Major principal axis length projected into the space of ¢ [deg] 5.50
Major principal axis length projected into the space of ¢ [kN/m?] 21.16

Table 5.34. Principal Component Analysis (Hybrid Algorithm / Noisy Data / Relatively Close To Collapse).

The evolution of the algorithm, once the switch from genetic algorithm to gradient based
method is performed, is illustrated in figures 5.147, 5.148, 5.149, 5.150 and 5.151. They show

how the gradient based method, in this particular case the Gauss-Newton method, finds a
good solution after few iterations.
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Figure 5.147. Evolution of the objective function using the Gauss-Newton method in the second stage of the
hybrid method (hybrid method / noisy data / relatively close to collapse).
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Figure 5.148. Evolution of the E,r;f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / relatively close to collapse).
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Figure 5.149. Evolution of the E;f)f value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / relatively close to collapse).
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Figure 5.150. Evolution of the ¢ value using the Gauss-Newton method in the second stage of the hybrid method
(hybrid method / noisy data / relatively close to collapse).
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Figure 5.151. Evolution of the cohesion value using the Gauss-Newton method in the second stage of the hybrid
method (hybrid method / noisy data / relatively close to collapse).
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The slight discrepancy between the parameters obtained from the analysis and the ones used
to define the measurements, as it was explained before, is caused by the introduction of noise.
In terms of objective function, the value obtained by the algorithm is lower than the one
derived from the real global minimum (1.028-10° m? vs. 1.306:10° m?). Therefore, the results
obtained from this analysis can be considered as solution of the problem. Moreover, in terms
of displacements, it can be seen in figure 5.152 the excellent match between measurements
and calculations.
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Figure 5.152. Measurements vs. Calculations (the black rhombuses represent the measurements while the red
empty squares represent the Plaxis calculations associated with the parameters obtained from the current
backanalysis). (a) Vertical displacements on the surface. (b) Vertical displacements representing a sliding
micrometer located along the vertical tunnel axis. (c) Vertical displacements representing a sliding micrometer
located two meters away from the tunnel side. (hybrid method / noisy data / relatively close to collapse).

A summary of the results is shown in table 5.35.

Stage 1 (AGA + PCA)

Number of generations 4
Computational cost [Plaxis evaluations] 3185
Center of the PCA Ellipse El¢ = 114320 kN/m?
EL¢S = 15520 kN/m’
¢ =30.20°
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¢ =19.72 kN/m?

Stage 2 (Gradient Based Method)

Number of iterations 10
Computational cost [Plaxis evaluations] 49
Final values El¢ = 70438.38£563.2 kN/m’

ELY = 24580.154567.8 kN/m’
@ =28.6320.32°
¢ =9.12¢0.3 kN/m’

Table 5.35. Results summary using the hybrid method with noisy data for a tunnel scenario relatively close to
collapse. Plaxis evaluations is referred to the number of direct problems solved by the geotechnical program
Plaxis.

5.5.3 Concluding Remarks from the Four Parameters Identification Case

After carrying out an exhaustive backanalysis to identify the reference secant stiffness in
standard drained triaxial test (Esrgf), the reference unloading-reloading stiffness (E;if), the
effective angle of internal friction (¢), and the effective cohesion (c) of a shallow tunnel,

several conclusions can be drawn.

The hybrid algorithm used in this section (AGA + Gauss-Newton) has shown a high robustness
facing the identification of four parameter in two different scenarios (far from collapse and
close to collapse). Even having some problems, as there were in the case close to collapse, the
structure of the algorithm and the information that is stored during the analysis led to
understand why problems occurred, and consequently being capable to take the measures
required to cope with them.

Using sophisticated constitutive models as the Hardening Soil Model implemented in Plaxis,
where many of their parameters are interconnected among them, makes more likely to have
none-uniqueness solutions. In these cases, it is highly recommended the introduction of prior
information into the analysis.

While using synthetic cases, the introduction of noise into the measurements can caused the
drift of the minimum and the appearance of local minima.

Backanalyzing geotechnical problems extremely close to collapse can cause the contraction of
the boundary conditions until forcing the minimum to be located on the boundary, which
increases significantly the challenge of finding the minimum by genetic algorithms and
gradient based methods.

As it has been shown when analyzing the relatively close to collapse case, where the tunnel
collapse does not severely penalize the boundary conditions (solution extremely close to the
boundaries), better results were obtained due to the higher sensitivity of the measurements to
parameter changes.

5.6 Concluding Remarks of the Methodology

After all results and conclusions presented so far in this chapter, it can be pointed out some
general concluding remarks of the geotechnical backanalysis methodology described in this
thesis.
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A flexible, efficient and robust backanalysis methodology has been defined in this thesis, which
can be adapted as required by the specific problem. The adaptive nature of the algorithm is
based on the type of optimization method applied to the problem (Gauss-Newton method,
Marquardt method, Simple Genetic Algorithm, Adaptive Genetic Algorithm and Hybrid
Method).

For simple synthetic cases with few parameters to identify, the Gauss-Newton method has
shown itself as the most balanced algorithm between obtaining correct parameter values and
computational cost. However, it is not expected to get so good results when applying it to real
complex cases with a large number of parameters to identify.

Even though the Marquardt method is an improvement of the Gauss-Newton method, in cases
where large differences in the magnitudes of the parameters values exist, it can be challenging
to find suitable values of uy and p that fit all parameters. Consequently, worse results can be
obtained when using the Marquardt method.

When looking for the best individual using simple genetic algorithms, the right choice of the
population size and the selection pressure has a major impact on the performance of the
algorithm, especially if there is a large difference between the fitness of the good individuals
and the average of the population. This situation usually causes premature convergence due to
the fast loss of diversity. Whereas, when using an adaptive genetic algorithm, the self-adaptive
system of the algorithm enforces to keep a certain level of diversity that facilitates a better
performance, and makes the algorithm less dependent on population size and selection
pressure.

On the other hand, when looking for the best set of individuals rather than the best individual,
it has been noticed that even having a good match between the PCA ellipse and the objective
function (satisfactory result in terms of optimization problem), in geotechnical terms, if the
individuals enclosed in the PCA ellipse are not capable to be defined as a specific soil material,
the final results of the backanalysis cannot be considered satisfactory. In those cases, it would
be necessary the introduction of prior information to redefine and limit the individuals that
represent the final solution.

The hybrid method has shown a significant balance between robustness and efficiency.
However, for the synthetic cases that have been studied in this thesis, the hybrid method is
still less competitive than the simple Gauss-Newton method. Nonetheless, for complex real
problems with a large number of parameters, it is expected that the hybrid method will
become more competitive than any gradient based method.

Finally, in terms of suitable type of optimization algorithm, it is concluded that it does not exist
any specific algorithm that performs always better than the others. The highly problem
dependent nature of backanalysis makes it impossible to define a unique algorithm capable of
overcoming every specific problem. However, what it has been possible to do was to develop a
flexible and robust backanalysis methodology that is potentially expected to be capable to
obtain competitive results in a wide range of geotechnical problems.
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Using sophisticated constitutive models, which may contain complex parameters
interconnections, makes it more likely to have none-unique solutions. The introduction of
parameters prior information seems the most adequate procedure to redefine the problem to
deal with the challenge of none-uniqueness.

Constitutive models that do not have interrelations among parameters are expected to be
more suitable for geotechnical backanalysis.

The more sensitive the measurements are, the more likely it is to obtained satisfactory results.
Even though the general knowledge points out that the higher the measurements are, the
more sensitive they can be, it was shown here that this is not always the case. Nonetheless, as
a general rule, it can be extrapolated that in most cases the higher the measurements are, the
more sensitive they are likely to be.

Backanalyzing geotechnical problems extremely close to collapse can cause the contraction of
the boundary conditions until forcing the minimum to be located on the boundary, which
increases significantly the challenge of finding the minimum by genetic algorithms and
gradient based methods.
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Case Study 1: Barcelona Metro Tunnel (Line 9)

6.1 Introduction

The main goal of a geotechnical backanalysis is to identify the soil parameters that match the
mathematical model predictions with the measurements. However, in addition to that, in this
chapter, the influence of the tunnel construction procedure, the type of measurements
involved in the analysis, and the use or not use of the instruments error structure has been
also studied.

In order to achieve those objectives, a simplified backanalysis (preliminary backanalysis,
section 6.4) was defined to study the influence of different tunnel construction procedures and
different types of measurements. For this preliminary backanalysis, it was considered
appropriate, for the sake of simplicity, to identify just one soil parameter. Subsequently, a
sophisticated backanalysis was defined to effectively identify various soil parameters, and to
study the influence of the instruments error structure on their identification. Nonetheless, in
both backanalyses the same numerical model and measurements were used to analyze a real
tunnel construction.

6.2 Barcelona Metro Tunnel (Line 9)

The new Barcelona metro line 9, temporally on construction stand-by, will be the largest
European metro line with a total of 47.8 km and 52 stations (see figure 6.1). The new line will
connect the two sides of the city, from the Llobregat's river side to the Besos' river side (from
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south to north), and more important, it will finally connect the Barcelona Airport with the city
of Barcelona by metro.

Figure 6.1. Barcelona metro line 9.

In terms of tunnel construction, 90% of the tunnel has been already finished, whereas in terms
of stations construction less work has been completed; with only the north part of the line,
between the stations of Can Zam and Onze de Setembre, under operation (9 stations and 7.8
km of line).

The majority of the excavation of the tunnel has been conducted by three Tunnel Boring
Machines (TBM); a 12 meter diameter Earth Pressure Balance shield (EPB), two 9.4 meter
diameter EPBs, and a 12 meter diameter Mix shield. From figure 6.2, it can be seen the cutting
wheel and the back-up of the 9.4m EPB.

Figure 6.2. 9.4 meters diameter EPB shield used to excavate part of the tunnel of the new Line 9 of the Barcelona
Metro. (a) cutting wheel of the EPB. (b) back-up of the EPB.
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The construction of the metro has faced many challenges related to the complexity of the
geology of Barcelona (see figure 6.3), which includes a variety of soft deltaic deposits
materials, and a huge block of granite that presents different levels of weathering, from intact
rock to an almost soil behavior.

Besos Delta

Llobregat Delta

.

QUATERNARY TERTIARY PALEOZOIC
[ Deltaic Deposits [ Miocene [ Granite
[ Tricicle Formation [ Pliocene I carboniferous

I silurian-Devonian
I Cambrian-Ordovician

Figure 6.3. Longitudinal geological cross-section of the Barcelona Metro L9, and geological map of the Barcelona
area (M. Filba, 2006).

Because of the geotechnical and technical difficulties, associated with the construction of the
tunnel, an extensive manual and automatic control system was implemented to keep track of
movements caused by the tunnel construction. Furthermore, several highly instrumented
cross-sections were placed along the tunnel to fully monitor surface and deep soil
displacements, plus water table variations.

6.3 Analyzed Cross-Section
6.3.1 Introduction

A highly instrumented cross-section was selected to carry out the study presented in this
chapter. The analyzed cross-section, named CP-1V, is located between the future stations of
Mas Blau and St. Cosme (see figure 6.4).

The tunnel in this part of the line was excavated by means of the 9.4m EPB. In order to reduce
the movements induced by the tunnel construction, three different pressures were
systematically applied to the ground: the face pressure, the bentonite pressure, and the
grouting pressure. All of these pressures are usually referred to them as TBM driving
parameters, and they have been extensively studied to determine their actual influence on a
tunnel construction. Some relevant results on that field can be seen in Wongsaroj et al. (2006),
Di Mariano et al. (2009), and Gens et al. (2009).
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Figure 6.4. Location of the Analyzed Cross-Section (between Mas Blau station and St. Cosme station). (Image
extracted from Google Maps).

The geological profile of the CP-VI is defined, from top to bottom, by 1m of man-made fill (Fill),
3m of brown fine silts (Ql1), 11m of gray fine sands with some gravels inclusions (Ql2), 20m of
a gray mixture (QI3) of silty clays with some interlayered sands, sandy silts, clay and silts, and
3m of sandy silts (QI3s). Except for the fill layer, which has a man-made origin, all soil materials
presented in CP-IV were deposited by the Llobregat River during the Quaternary age. The
water table is nearly horizontal and is located 4 meters above sea level (see figure 6.5).

- Fill
Y . *1lm
W bl
Q|1 atega e 1 3m
16
& Ql2 11m
4
.= Tunnel Excavation
4
&
Ql3 20m
Ql3s | 3m

Figure 6.5. Geological profile of the Analyzed Cross-Section CP-IV.

The running tunnel was lined with 8.43m inner diameter pre-cast segment concrete rings. The
rings are formed by segments of 1.5m length and 0.32m thick (6 segments + 1 key per ring).
The tunnel crown in CP-IV is located at 16m depth.
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In figure 6.6, a scheme and a picture of the tunnel lining is shown.

Figure 6.6. Scheme and picture of the tunnel lining of the Barcelona Metro L9 (tunnel excavated by the 9.4m EPB).

6.3.2 In Situ Measurements

The in situ measurements used to carry ou the backanalysis were extracted from the
instrumentation placed on the cross-section CP-IV. Around 20 instruments were installed in
CP-IV: 6 combined surface points (horizontal and vertical displacements), 6 vertical surface
points, 2 inclinometers, 4 sliding micrometers, and 4 piezometers. However, due to the
uncertanties related to the measurement process, it was considerd more apropriate to use
only some of the measurements that have been studied in more depth (Gens et al., 2009, and
Yubero, 2015). In figure 6.7, the location of all the instruments are shown (the ones that were
used and also the ones that were not used in the analysis).

Vertical Points (surface)
0 Combined Points (surface)
57 Inclinometer
. Sliding Micrometer
/. Pressurometer

Figure 6.7. CP-IV instrumentation. Only the instruments with filled symbol labels were used. (Image extracted
from Google Maps).
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Even though the instruments were not located in the same precisely cross-section, the
instruments used for the analysis (4 combined surface points, 2 vertical surface points, 1
inclinometer, and 1 sliding micrometer) were supposed to be located in the same cross-section
(analyzed cross-section, see figure 6.4). Moreover, the problem was considered symmetric.
Therefore, displacements equal to those obtained from the sliding micrometer and the

inclinometer, located in the opposite side to where the combined points were placed, were
assumed to occur on the other side.

Two different set of measurements were used to describe the short term and the long term
behavior. The short term measurements were associated with the movements that had
occurred three days after the excavation with the EPB face about 75m away from the analyzed
cross-section. The rest of the movements were associated with the long term behavior of
excess pore water dissipation (consolidation). A total of 58 measurements for each case (short

and long term) were used to carry out the backanalysis. The measurements are shown in
figure 6.8.
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Figure 6.8. In situ measurements of CP-1V. (a) settlements extracted from the combined and the vertical points.

(b) vertical displacements extracted from the sliding micrometer. (c) horizontal displacements extracted from the
inclinometer.
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6.4 Numerical model

The commercial geotechnical software Plaxis 2D (version 9) was used to build a two-
dimensional numerical model of the cross-section CP-1V. The hypotheses of plane strain and
symmetric behavior were adopted. The model is 100 meters wide and 40 meters high. The rest
of the geometrical aspects, such as the geological layers and the tunnel excavation, are
presented in figure 6.5. 1013 15-node triangle elements were used to discretize the geometry
of the problem; consequently, 8408 nodes and 12156 stress points were generated (see figure
6.9).

Figure 6.9. Numerical model of cross-section CP-IV. The red and purple dots represent the nodes and the stress
points respectively.

The soil parameters used in the study, presented in table 6.1, were directly extracted from
Gens et al. (2009), except the internal friction angle and the stiffness moduli of QI3, which
were considered as the unknowns of the backanalysis problem.

The tunnel dimensions correspond to those of the EPB cutting wheel (9.4m) and it was
considered impervious, not letting the water flow though the lining. In order to simulate the
soil-structure interaction, an interface was defined adjacent to the outer side of the tunnel.
The structural properties of the lining are shown in table 6.2.

Parameter Fill Qll Ql2 Qi3 Ql3s
Constitutive Model M-C Hardening Hardening Hardening Hardening
Soil Type Undrained Undrained Drained Undrained Undrained
Yunsat [KN/m®] 17.5 14.7 17.5 13.8 14.7
Ysat [kN/m’] 17.5 19.5 213 18.8 19
k, [m/day] - 8.6E-4 8.64 8.6E-4 8.6E-4
k,, [m/day] - 8.6E-4 8.64 8.6E-4 8.6E-4
E [kN/m?] 10000 - - - -
E;gf [kN/m?*] - 19300 22500 unknown 14900
E:§£ [kN/m?] - 17000 19200 E;:Z: 0.8E5rgf 14300
E;if [kN/m?] - 57900 67500 unknown 44700
ml[] - 0.9 0.5 0.9 0.6
¢ [kN/m?] 0.1 1 1 1 0.2
@ [deg] 26 29 32 unknown 28
P [deg] 0 0 0 0 0
v [-] 0.3 - - - -

Vor 1] - 0.2 0.2 0.2 0.2
p"el [kN/m’] - 100 100 100 100
K¢ [ - 1—sing 1—sing 1-sing 1—sing
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Ry [ 0.9 0.9 0.9 0.9 0.9
Otension [kN/m’] X 0 0 0 0 0
Cincrement LKN/m*/m] 0 0 0 0 0
Ringer [] 1 0.6 0.6 0.6 0.6

Table 6.1. Soil parameters used to define the numerical model of cross-section CP-IV (Gens et al., 2009). ). ¥ ,nsac:
unsaturated soil weight, 4, saturated soil weight, k, and k,: horizontal and vertical permeability, E: Young's

modulus, E;;f: secant stiffness in standard drained triaxial test, E:i{;: tangent stiffness for primary oedometer

loading, E,r:;f: unloading/reloading stiffness, m: power for stress-level dependency of stiffness, c: effective

cohesion, ¢: effective angle of internal friction, y: angle of dilatancy, v: Poisson's ratio, v,,.: Poisson's ratio for
unloading/reloading, p™/: Reference stress for stiffnesses, K’(}’C: coefficient of lateral earth pressure for normal
consolidation, Ry: Failure ratio, 0 cpsion: Tensile strength, Cincrement: cohesion increment with depth, and Ry,
strength reduction factor for interfaces.

Parameter Description Value
Material type Constitutive model elastic
EA Axial stiffness 1.216-10” [kN/m]
El Flexural rigidity 1.0376-10° [kNm*/m]
degq Equivalent thickness 0.32[m]
w Weight 8 [kN/m/m]
v Poisson's ratio 0.2 []

Table 6.2. Structural properties of the tunnel lining. EA: axial stiffness; El: flexural rigidity; w: weight; v: Poisson's
ratio.

As previously mentioned, different tunnel construction procedures have been studied to
determine the one that better suits the problem. Therefore, the different construction phases
are not presented in this section, due to the fact that each procedure has a different scheme,
and it was not considered as a general intrinsic aspect of the model but rather a specific
manner to define the problem.

6.5 Preliminary Backanalysis: Tunnel Construction Procedures (Plaxis 2D)
6.5.1 Introduction

It is well known that a tunnel excavation by means of an EPB is a three-dimensional problem,
and it should be strictly tackled three-dimensionally. However, even with the increase of
computers capability, the time consumption for carrying out a three-dimensional numerical
analysis nowadays is still too high. That computational cost makes the 3D backanalysis
approach not feasible for a day to day basis. Therefore, in the last three decades, many
methodologies have been presented to extrapolate the three-dimensional approach to a
simpler and less expensive computational cost two-dimensional one.

In Moller (2006) and Moller & Vermeer (2008), a brief review of the aspects of such two-
dimensional approaches is presented, as well as the definition of a new one. Traditionally, the
different approaches have been classified by their nature, which can be based on prescribed
displacements or any type of stress modification around the excavation. The most common
approaches for stress modification are the stress reduction method and the grout pressure
method. Consequently, the classification that nowadays is being generally accepted is
constituted by three different types of methods:

- Prescribed Displacements Methods.

- Stress Reduction Methods.
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- Grout Pressure Methods.

In the following sections (6.5.2, 6.5.3 and 6.5.4), three different tunnel construction
procedures have been chosen to study their influence on the framework of backanalysis. A
modified tunnel lining contraction method has been defined to represent the prescribed
displacements methods. To represent the stress reduction methods, the popular MStage
method (also known as B-Method) has been selected, while the grout pressure method
presented by Méller (2006) has also been adopted to finally consider all types of methods.

Moreover, apart from the strictly tunnel construction procedure analysis, the influence of
using short and long term measurements has been also studied, as well as the type of
instruments used to extract the measurements.

6.5.2 Definition

The preliminary backanalysis has focused on studying the morphology of the objective function
shape. Depending on the tunnel construction procedure and the type of measurements,
different objective functions shapes are obtained. Therefore, by studying their morphology
and the differences among them, it is expected to determine the most suitable tunnel
construction procedure, and the influence of the measurements.

For the sake of simplicity, and especially in terms of graphical representation, it was
considered appropriate to link the three stiffness moduli of QI3, and treat them as a unique

ref _
oed ~

parameter to identify. The Plaxis recommended relationship was used to link them (E
0.8 Esrgf and E£$f=3 . E;gf). Moreover, the contraction, the ZMStage, and the grout pressure
were also considered as parameters to identify. However, for this preliminary backanalysis, the
internal friction angle was not implemented as a parameter to identify; and the value of 27.5°

proposed by Gens et al. (2009), was used.

Therefore, in order to graphically represent the objective function, and subsequently study its
morphology, a few thousands direct problems were evaluated. Specifically, 1300 combinations

of Esrgf (from 5000kN/m?” to 125000kN/m?, in increments of 100kN/m?) and Lining Contraction

(from 0.3 to 0.6, in increments of 0.025), 1100 combinations of ESTgf (from 5000kN/m? to
125000kN/m?, in increments of 100kN/m?) and 2MStage (from 0.05 to 0.3, in increments of

0.025), and 900 combinations of E;gf (from 5000kN/m? to 125000kN/m?, in increments of
100kN/m?) and Grout Pressure (1.5, 1.75, 2, 2.125, 2.25, 2.375, 2.5, 2.75 and 3bars) were
defined for that purpose. The simple Least-Squares method was used to define the objective
function (eq. 2.1).

Due to the parameters values discretization (many more values of Esrgf than tunnel
construction parameters) and the gridding method used to plot the objective function, the
results presented in the following sections (6.5.3, 6.5.4 and 6.5.5) can locally present some
graphical misrepresentation of the objective function shape. Nonetheless, its general
morphology can be considered fully valid.

A sensitivity analysis was carried out to determine the most suited gridding method to better
represent the shape of the objective function. Among the different options that the contouring
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and surface modeling software Surfer 10 offers, the Kriging method seemed to yield the best
results.

6.5.3 The Modified Tunnel Lining Contraction Method

The modified tunnel lining construction method is based on the original contraction method
defined by Vermeer & Brinkgreve (1993), where the ground loss is simulated by a certain
tunnel contraction. As pointed out in Moller (2006), the original contraction method tends to
generate a homogeneous radial displacement distribution towards the center of the tunnel.
The reason of that homogeneous distribution is due to the large stiffness difference between
the lining and the ground. This causes unrealistic ground loss distributions and subsequently
unrealistic results for both surface settlements and deep ground movements too. Therefore,
here, the basic idea of the GAP method, presented by Rowe et al. (1983), has been adopted
and combined with the original approach to overcome the intrinsic limitation of applying an
almost homogeneous prescribed displacements distribution. In the GAP method, the ground
loss is considered in terms of a vertical gap between the tunnel lining and the actual
excavation, assuming that the gap is located at the crown of the lining, thus generating more
realistic ground movement distributions.

The implementation of the modified tunnel lining contraction method on Plaxis is carried out
by means of prescribing some displacements at the bottom of the tunnel and applying a lining
contraction. The objective of prescribing displacements at the bottom of the tunnel is to
restrict the displacements on that part of the tunnel and subsequently to force the lining
contraction to concentrate the displacements on the crown. Both prescribed displacements
and lining contraction are applied in the same calculation phase. The definition of the
magnitude of the prescribed displacements is based on geometrical aspects related to the
excavation and the equipment used to excavate it. For this particular case study, the
prescribed displacements were set to 5mm.

In figure 6.10, the comparison between the original contraction method, described by Vermeer
& Brinkgreve (1993), and the modified tunnel lining construction method defined here is

illustrated.
R e e e T —— g
Resulting Tunnel lining Resulting Tunnel lining
ground loss ez, 7 ground loss _ampie,

2l
Contracted

tunnel lining
Contracted

tunnel lining Restricted

displacements

(a) (b)

Figure 6.10. (a) Original contraction method. (b) Modified tunnel lining contraction method.
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Finally, the full tunnel construction procedure is presented in table 6.3.

Plaxis phase (stage) Description
0 Initial stress generation => Ky method.
1 Tunnel construction by means of the modified tunnel lining contraction => Application of the Plaxis

tunnel contraction while restricting the vertical displacements of some points located on the
bottom of the tunnel lining (5mm). The water inside the tunnel is removed (dry cluster).
2 Consolidation => All excess water pore pressure is dissipated (t=365days)

Table 6.3. Tunnel construction stages defined in the numerical model (Plaxis). Case: Modified Tunnel Lining
Contraction Method.

6.5.3.1 Results

The different objective functions shapes, obtained from using simultaneously all instruments in
full, short, and long term (full term = short term + long term), are illustrated in the following
figures (figure 6.11, 6.12 and 6.13).
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Figure 6.11. Mapping of the objective function [m?] for full term behavior and all instruments measurements
(Modified Tunnel Lining Contraction Method).

As figure 6.11 shows, even having a morphology capable of describing a global minimum, the
large distance between contour lines leads to a wide range of different combinations of Esrgf
and lining contraction that have similar value of objective function. Therefore, no promising
results are expected to obtain while using simultaneously short and long term measurements
from all instruments. However, by studying the difference between the results obtained from
short and long term behavior (figure 6.12 and figure 6.13), a better understanding of what is

happening can be obtained.
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Figure 6.12. Mapping of the objective function [mz] for short term behavior and all instruments measurements
(Modified Tunnel Lining Contraction Method).
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Figure 6.13. Mapping of the objective function [mz] for long term behavior and all instruments measurements
(Modified Tunnel Lining Contraction Method).
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Surprisingly, the results obtained from long term behavior have significantly improved the
morphology of the objective function in terms of delimiting a narrower global minimum and
surroundings, which helps to identify the parameters. A certain improvement was expected
due to the effect of the consolidation, but not as much as it was obtained.

On the other hand, figure 6.12 indicates that the measurements from short term behavior are
little sensitive to soil stiffness. A similar conclusion was presented in Sagaseta (1987) for
incompressible material, where it was stated that the strain field is independent from the soil
stiffness.

Unfortunately, different solutions of the same problem have been obtained when using short,
long, and full term measurements. Assuming that the model was correct, and the
measurements had the same error uncertainties, no differences among solutions should be
expected.

Strictly focusing on the value of the error between measurements and calculations, the use of
long term measurements has provided the better solution of the problem (see table 6.4).

Measurements

Time Instruments Contraction [%] E;f)f [kN/m?] Error [m’]

Full Term All instruments 0.55 58000 8.42-10™
(116 measurements)

Short Term All instruments 0.60 26000 2.97-10"
(58 measurements)

Long Term All instruments 0.475 66000 1.94.10"
(58 measurements)

ref

Table 6.4. Best combinations of tunnel lining contraction and E ', while using the modified tunnel contraction
method.

The same happens If the results are graphically compared in terms of displacements (see
figure 6.14, 6.15 and 6.16).
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Figure 6.14. Comparison between measured and calculated settlements. (a) Best combination of tunnel lining
contraction and E;f]f using full term measurements. (b) Best combination of tunnel lining contraction and E;f)f

using short term measurements. (c) Best combination of tunnel lining contraction and E;f)f using long term
measurements. (Modified Tunnel Lining Contraction Method).
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Figure 6.15. Comparison between measured and calculated vertical displacements (Sliding Micrometer). (a) Best
combination of tunnel lining contraction and E;f,f using full term measurements. (b) Best combination of tunnel
lining contraction and E;f)f using short term measurements. (c) Best combination of tunnel lining contraction and

E;f)f using long term measurements. (Modified Tunnel Lining Contraction Method).
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Figure 6.16. Comparison between measured and calculated horizontal displacements (Inclinometer). (a) Best
combination of tunnel lining contraction and E;f)f using full term measurements. (b) Best combination of tunnel
lining contraction and ng)f using short term measurements. (c) Best combination of tunnel lining contraction and
E;f)f using long term measurements. (Modified Tunnel Lining Contraction Method).

In Appendix A, the objective functions defined by means of each type of instrument are
presented for further analyses.

6.5.4 The ZMStage Method (also known as 8-Method)

Initially, the ZMStage method was intended to be applied when simulating conventional tunnel
constructions, where the stress ground relaxation and the load sharing between lining and
ground are naturally addressed by the method. However, Muir (1975) extended that idea to
shield tunnelling, where nowadays it is quite often used.

The method is based on reducing the initial ground pressure (a,), which is acting on the inside
of the excavation, by 1 - ZMStage, with 0 < ZMStage < 1, and then installing the lining to finally
support the ground (see figure 6.17). Unfortunately, the proper value of the MStage is not
easy to determine, in part, due to the fact that it just not only represents one geotechnical
phenomenon or property, but a combination of several of them suggesting that ZMStage can
be considered as a parameter to identify.

In table 6.5, the different calculation phases defined in Plaxis are presented.
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Figure 6.17. ZMStage tunnel construction procedure scheme. (a) Initial stress state. (b) Ground relaxation. (c)
Tunnel lining installation.

Plaxis phase (stage) Description
0 Initial stress generation => Ky method.
1 Tunnel excavation => Deactivation of the soil inside the excavation, and application of a
YMStage<1. The water inside the tunnel is removed (dry cluster).
2 Tunnel lining installation => Activation of the lining (at the end of the Phase => ZMStage = 1)
3 Consolidation => All excess water pore pressure is dissipated (t=365days)

Table 6.5. Tunnel construction stages defined in the numerical model (Plaxis). Case: ZMStage Method.

6.5.4.1 Results

The different objective functions shapes, obtained from using simultaneously all instruments in
full, short, and long term, are illustrated in the following figures (figure 6.18, 6.19 and 6.20).

At first glance, similar objective function morphologies can be appreciated in figures 6.18, 6.19
and 6.20. However, differences between the locations of the minima can also be observed. The
differences are associated with the measurements uncertainties, especially those derived from
the difficulty of determining the exact moment to extract the short term measurements, and
the impossibility of the numerical model to fully capture the full term behavior.

Strictly focusing on the value of the error between measurements and calculations, the use of
long term measurements has provided the better solution to the problem (see table 6.6).
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Figure 6.18. Mapping of the objective function [mZ] for full term behavior and all instruments measurements
(2MStage Method).
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Figure 6.19. Mapping of the objective function [mZ] for short term behavior and all instruments measurements
(2MStage Method).
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Figure 6.20. Mapping of the objective function [mZ] for long term behavior and all instruments measurements
(2MStage Method).

Time Measuremf:sttsruments IMStage E?;’f [kN/ mz] Error [mZ]

Full Term All instruments 0.200 33000 8.10-10™
(116 measurements)

Short Term All instruments 0.200 25000 3.36-10"
(58 measurements)

Long Term All instruments 0.225 66000 2.64-10"

(58 measurements)

Table 6.6. Best combinations of tunnel lining contraction and E;f,f, while using the ZMStage method.

Unfortunately, even having a relatively good objective function morphology, slightly variations

e

of ZMStage, close to the minimum, causes significant variations of E;Of. For instance, if for

long term measurements the IMStage is set to 0.200, the value of E;gf reduces to
43000kN/m?, with an associated error of 2.69-10“m?, which is almost the same value obtained
while using IMStage=0.225 (see table 6.6). The same happened for short and full term
measurements.

The graphical comparison between measurements and calculations associated with the values
of table 6.6 are sown in figures 6.21, 6.22 and 6.23.
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Figure 6.21. Comparison between measured and calculated settlements. (a) Best combination of IMStage and

ref

E;f,f using full term measurements. (b) Best combination of ZMStage and E,' using short term measurements.

(c) Best combination of ZMStage and E;f,f using long term measurements. (ZMStage Method).
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