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Abstract

Given the complexity and heterogeneity of cancer, the

development of new high-throughput wide-genome technologies

has open new possibilities for its study. Several projects around the

globe are exploiting these technologies for generating

unprecedented amount of data for cancer genomes. Its analysis,

integration and exploration are still a key challenge in the field. In

this dissertation, we first present Gitools, a tool for accessing

databases in biology, analysing high-throughput data, and

visualising multi-dimensional results with interactive heatmaps.

Then, we show IntOGen, the methodology employed for collection

and organization of the data, the methods used for its analysis, and

how the results and analysis were made available to other

researchers. Finally, we compare several methods for impact

prediction of non-synonymous mutations, showing that new tools

specifically designed for cancer outperform those traditionally used

for general diseases, and also the need for using other sources of

information for better prediction of cancer mutations.
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Resum

Davant de la complexitat i heterogeneitat del cancer, el

desenvolupament de noves tecnologies per l'estudi de genomes,

ha obert noves posibilitats. Diversos projectes al voltant del mon les

fan servir per generar quantitats de dades de genomes de cancer

mai vistes abans. En aquest treball, primer presentem Gitools, una

eina que permet obtenir dades de bases de dades en biologia,

analitzar dades genomiques, i visualitzar els resultats

multidimensionals mitjançant mapes de calor interactius. Després

mostrem IntOGen, les metodologies per obtenir i organitzar les

dades, els metodes per el seu analisi, i com es van possar a

disposició d'altres investigadors. Finalment, comparem diversos

metods de predicció de l'impacte de les mutacions no sinonimes,

que ens mostra com nou metods desenvolupats per cancer

funcionen millor que els utilitzats tradicionalment per enfermetats

generals, aixis com la necesitat de recorrer a altres fonts

d'informació per tenir millor prediccions per mutacions de cancer.
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PART I: INTRODUCTION
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INTRODUCTION

Cancer is a very common and complex disease that affects both

sexes worldwide. According to WHO’s cancer fact sheet, 8.2 million

people died in 2012, which comprises around one in eight deaths

worldwide. Its understanding is of vital importance to be able to

develop new and improved treatments that target its origins as

specifically as possible.

There are several ways to address this complex topic, in this

dissertation I will focus on the disease at the molecular level and

the use of computational methodologies to enhance our

understanding of this complex disease.

The genome

The genome of an organism represents the genetic material that

determines its observable characteristics or traits (known as

phenotype). Examples of such traits are the organism's

morphology, development, biochemical or physiological properties,

or behaviour. The molecule that carries this information is know as

DNA and it is located in the nucleus of every cell. It encodes its

information by chaining simpler units called nucleotides to form a

sequence. A nucleotide is a molecule composed of a phosphate, a

sugar, and a base, and depending on the base, there are four

nucleotides available: Adenine (A), Guanine (G), Cytosine (C), or

Thymine (T) (see Figure 1).
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Figure 1: The structure of a nucleotide.

The DNA is composed of two of such sequences of nucleotides

(strands) connected by hydrogen bonds in a conformation known

as the double-helix (see Figure 2). 'A' bases, pair only with 'T'

bases, and 'C' bases, pair only with 'G' bases (see Figure 3).

Some parts of the DNA sequence, known as genes, hold the

information necessary to produce proteins, some other parts

contain regulation information, and some others just structure. The

parts of the DNA that encode for proteins are also known as

coding regions of the genome, and the rest it is known as non-

coding regions.
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Figure 2: The double-helix of the DNA

Figure 3: The base pairing of the DNA

The Central Dogma of Biology deals with how the information is

transferred between different molecules and in what possible

directions. In a simplified way, it distinguishes between DNA

replication, when the information on one DNA molecule is

replicated into a new DNA molecule, DNA transcription, when the
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information in a sequence of the DNA is transcribed into another

molecule known as RNA, and translation, where the information in

a specific type of RNA known as messenger RNA (mRNA) is

translated into a sequence of amino-acids forming a protein.

DNA replication

As commented, it is the process by which a new copy of the DNA is

generated, and it usually takes place during the cells division. The

complex group of proteins involved in this process (i.e. the helicase,

DNA polymerases or ligases) is known as replisome and perform

the replica from one parent DNA strand into a complementary

daughter strand in 3' to 5' direction.

This process is really complex, and accurate, to the point of

including mechanisms to repair possible introduced mistakes,  but

as with many other processes in life, it can fail and introduce

changes to the replica. Sometimes the changes are neutral and

doesn't change the information encoded in the sequence, but

when it does, and affects the encoding of proteins, the regulation

of transcription, the mechanisms for repairing mistakes, or affects

the structure, it can lead to diseases. Cancer is a particular case of

diseases in which the accumulation of such changes lead to

uncontrolled grow of the cells containing the mutated DNA. But

this small margin for failures, can also be seen as the door for the

evolution of organisms.

DNA transcription into RNA

Like DNA, RNA is a molecule that chains together a sequence of
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ribonucleotides (like a nucleotide but with a different kind of

sugar). Each ribonucleotide can have one of the mentioned bases

for the DNA with one exception,  instead of Thymine (T) it uses a

Uracil (U), which can also pair with the Adenine (A). Unlike DNA,

RNA is single-stranded, but it can form many secondary structures

by folding over itself and forming loops stabilized by hydrogen

bonds between complementary bases (see Figure 4). Such

secondary structure is critical for many of its functions. There are

several types of RNA with different functions, transfer RNA (tRNA),

ribosomal RNA (rRNA), or messenger RNA (mRNA) are some of

them.

DNA transcription is the process of transferring genetic information

from a portion of DNA into a new assembled single-stranded RNA

molecule. In some cases, the final product is the RNA molecule

itself, however, in many other cases, when the final product is a

protein, the RNA, known as messenger (mRNA) is an intermediary

that will be translated into a protein later.

The transcription can be divided in initiation, elongation, and

termination. During the initiation an enzyme called RNA

polymerase attaches to the DNA template at a specialized sequence

called a promoter, usually with the intervention of other co-factors

related to the regulation of the gene expression. During the

elongation, the RNA polymerase keep reading from the DNA

template and adding new complementary ribonucleotides to the

growing RNA. Finally, the transcription terminates when the RNA

polymerase reaches a terminal sequence and the transcript is

released.
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Figure 4: The primary and secondary structure of RNA.
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mRNA translation into a protein

Proteins are composed of amino-acids in a sequence determined by

such of the mRNA nucleotides. How the sequence of nucleotides is

translated into a sequence of amino-acids is determined by the

Genetic Code (see Figure 5). A Codon is a sequence of three

nucleotides that encode for an amino-acid following the Genetic

Code. With a sequence of three nucleotides with four possible

bases more than 20 combinations exist, which allows for higher

redundancy (several combinations map to the same amino-acid)

and special instructions (such as the stop codon that marks the end

of the translation).

Figure 5: The genetic code that determines which amino-acid 
correspond to each RNA codon.

After the mRNA is transcribed it follows a series of maturation

steps before the translation can start, such as the removal of the
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introns (interleaved fragments that doesn't encode for the

sequence of amino-acids), or the transport of the matured mRNA

to the cytoplasm in the case of eukaryotes where the protein

assembly takes place. The translation starts by the binding of a

ribosome (usually to the initial AUG codon), that will keep reading

mRNA codons and binding tRNAs porting the specific amino-acid.

Finally the translation terminates when a stop codon is reached.

The polypeptide chain will keep folding while the translation takes

place, and will follow a series of processing steps before the final

protein product is ready to start its function.

The cancer genome

Cancer can also be seen as a group of diseases which common trait

is the abnormal proliferation of cells that can even invade other

tissues out of the originating one and metastasise other organs.

Nowadays cancer is considered to be an evolutionary process

where cell populations suffering from several alterations in their

genetic material over time, are naturally selected according to their

capability to proliferate in their micro-environment.

We need to distinguish between somatic mutations, which

represent alterations acquired through the lineage of cell divisions

from the progenitor fertilized egg (see Figure 6), from germline

mutations, which are acquired from parents.

The catalogue of somatic mutations is diverse, including

substitutions of single bases, insertions or deletions of small or
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large fragments of DNA, rearrangements where parts of the DNA

are moved across the genome, and copy number variations where

several copies of a fragment or gene can appear, or the other way

completely disappear (see Figure 7).

Figure 6: Somatic mutations acquired and selected over time and the 
processes that contribute.

Reproduced from (Stratton et al., 2009).

Figure 7: Representation of different types of somatic mutations in a 
cancer genome.

Reproduced from (Stratton, Campbell, & Futreal, 2009).
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Another source of alterations in the DNA are virus such as human

papilloma virus or hepatitis B, which insert their DNA into the

human one. Somatic mutations applies also, not to the cell DNA,

but to the thousands of small mitochondrial genomes present in

the cell.

When talking about alterations, not only the DNA can be affected,

nor it is the only responsible for the origination of cancer, but we

also need to talk about the epigenome, which modifications

through changes in the methylation status of the histones that

sustain the DNA, lead to changes in chromatin structure and gene

expression.

Somatic mutations can be classified, according to the

consequences for the development of cancer, in driver or

passenger. Driver mutations confer growth advantage and have

been positively selected during the evolution of the cancer, and

passenger mutations doesn't confer growth advantage but were

present in the cancer cell when it acquired one of its drivers. In

order to identify which are the genes involved in cancer, it is key to

be able to distinguish between driver and passenger mutations.

Systematic study of cancer genomes

Since the completion of the human genome sequence around

2 0 0 1 (Lander et al., 2001; Venter et al., 2001), several

technologies emerged for the exploration of the genome at a large

scale. Starting by micro-arrays, referred to as high-throughput

technology because of the ability to explore different levels of
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genetic information with higher resolution, accuracy and reduced

cost. And later the development of second generation of massive

parallel sequencing technologies which during the recent years

have been replacing micro-arrays in several cases given its fast

development, progressive reduction in cost and increase in

resolution.

DNA micro-arrays

DNA micro-arrays consists on a surface containing many short

complementary DNA fragments attached to it. The different small

DNA sequences conform the probes of the micro-array, and

usually, but not necessarily, correspond with small sections of

genes. The core principle of micro-arrays is the hybridization

between two DNA strands by forming hydrogen bonds between

complementary nucleotide base pairs. The target DNA fragments

under study can be labeled with fluorescent molecules that can be

later detected by a scanner. The intensity of the signal in each spot

is related to the amount of hybridized DNA.

Micro-arrays can be used to measure changes in gene expression,

to detect single nucleotide polymorphisms (SNPs), or to genotype

different regions of the genome. There are multiple applications

such as gene expression profiling, comparative genomic

hybridization, chromatin immunoprecipitation (ChIP), or SNP

detection. Of relevance for this work are comparative genome

hybridization and expression profiling.

Comparative Genome Hybridization (CGH) is a technique that
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allows to find unbalanced chromosomal abnormalities such as gain

and loss of genetic material in the whole genome by comparing a

normal sample with a tumour one which are differentially labeled

with fluorescence and competitively hybridized to metaphase

chromosomes. The intensity of the fluorescence signal can be

plotted across each chromosome and show the Copy Number

Variations (CNV). Figure 8 shows a diagram of how CGH is done

using micro-array technology. Compared to CGH, which is limited

to alterations of approximately 5 to 10 Megabases, array based

CGH (aCGH) increase resolution up to 100 kilobases (de Ravel,

Devriendt, Fryns, & Vermeesch, 2007).

Based on the same principles, micro-arrays can also be used for

gene expression profiling. The mRNA is converted into cDNA and

labeled with different fluorescent colour for the normal and cancer

samples. Then, the two cDNAs are hybridized into the same micro-

array. As a result of the scanning, probes will show different

colours proportional to the amount of mRNA with complementary

sequence present in the samples analysed (see Figure 9).
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Figure 8: Diagram of the microarray-based comparative genomic 
hybridization (aCGH) process.

Reproduced from (Theisen, 2008)

Figure 9: Scanned micro-array for gene expression, where normal sample 
was labeled with orange-red (Cy5) and tumour sample with green (Cy3).

Modified from (DeRisi et al., 1996)

Raw results from the device needs to be preprocessed to deal with

systematic differences between genes or arrays (normalization), for

example modifying the raw intensity values in order to compensate
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for the different dye efficiency in two channel microarray

experiments using Cy3 (green) and Cy5 (red), and background

corrected to adjust for non-specific hybridization, for example

hybridization of fragments that doesn't match perfectly with the

probe. After preprocessing, relative gene expression between the

normal and tumour samples is quantified by calculating the ratio

between the intensities emitted by each label in the spots

corresponding to each gene. Usually the ratios are transformed by

calculating the base 2 logarithm of the quotient between the

tumour intensity respect to the normal one, as it is easier to map

log2 ratios to fold changes than with raw ratios, and improves the

characteristics of the data distribution and allows the use of

classical parametric statistics for analysis (Tarca, Romero, &

Draghici, 2006). The resulting datasets can be used for further

analysis, such as the hierarchical clustering depicted in Figure 10.

Figure 10: Hierarchical clustering of a gene expression dataset.
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Next generation DNA sequencing

DNA sequencing consists on determining the sequence of

nucleotides in a DNA strand, and the first technology to became

mainstream was known as Sanger sequencing, as it was initially

developed by Frederick Sanger in 1977, and later refined with the

use of capillary electrophoresis by Applied Biosystems. Those first

generation sequencing technologies were key for the completion

of the Human Genome Project in 2001, which stimulated the

development of next generation sequencing technologies (NGS) (L.

Liu et al., 2012). The main aspects of NGS are their ability to

sequence a massive amount of fragments in parallel, high-

throughput, and reduced cost (see Figure 11), to the point of being

really close to the $1000 cost objective per whole genome

sequencing stablished by the US government programme (Check

Hayden, 2014; Hayden, 2014).

Inside NGS we need to distinguish between second and third

generation technologies. The second generation started in 2005

when the 454 sequencer was developed by Life Sciences (Roche),

based on detecting the release of a pyrophosphate each time a

new nucleotide is attached to the sequence, this principle was

referred as sequencing by synthesis (SBS). Other technologies

appeared soon from other companies, such as SOLID, depending

on the sequential ligation of oligonucleotide probes, and Solexa

(purchased by Illumina), adopting the SBS principle but based on

bridge enzymatic amplification instead of requiring PCR

amplification as is the case with the other technologies.
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Figure 11: Evolution of the cost for sequencing a human genome.

In the first few years after the end of the Human Genome Project, the 
cost of Genome Sequencing roughly followed Moor's law, which predicts
exponential declines in computing costs. After 2007, sequencing costs 
dropped precipitously.

Second generation technologies continue improving their read

lengths and accuracy over time, but a third generation of

technologies has been in development during the recent years.

Most of them are based on the principle of single DNA molecule

sequencing. Some examples are SMBT from Pacific Biosciences,

which implements a fluorescence detection system that directly

detects each nucleotide previously phosphor-linked with distinct

colors as they are synthesized without the need of amplification, or

Oxford nanopore sequencing, that relies on the conversion of the

electrical signal of the nucleotides as they pass through a

nanopore. A distinct approach is the used by Ion Torrent
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semiconductor sequencing, based on the release of hydrogen ions

as a byproduct of nucleotide chain elongation and the detection of

pH changes by an ion sensor during DNA synthesis.

Several applications for NGS exist depending on the input material

from cancer samples (see Figure 12): whole-genome (WGS),

whole-exome (WES) or whole-transcriptome sequencing (Tuna &

Amos, 2013). WGS allows to identify the full range of somatic

genome alterations, providing information on all 6 billion bases

compared to the 5 million variants available with micro-arrays. To

distinguish somatic mutations from inherited changes in cancer,

matched normal samples have to be used, and has to be compared

to the reference genome. WES is a cost-effective, high coverage

approach to detecting mutations in known coding genes across the

entire genome, and a very good diagnostic tool to detect known

mutations or discover new ones in large sample cohorts in the

cancer genome. The shortcoming is that, unlike WGS, it can not

detect structural and non-coding variants, which have high

susceptibility to be associated to cancer according to genome-wide

studies (Manolio et al., 2009). Finally, transcriptome sequencing

can be used for different kind of studies involving RNA material

(requiring cDNA synthesis), some examples are characterization of

transcripts in a given tissue and/or condition, and study of gene

transcription and RNA processing during tumorigenesis. It is not

limited to known genes and can be used to detect novel

transcripts, alternative splice forms, and non human transcripts

(microbiomes).
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Figure 12: Next generation sequencing platforms and procedures.

Reproduced from (Loman et al., 2012).
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Integration of experimental data

Integration of experimental data involves collecting and analysing

data from several sources and/or platforms. Such external data may

be generated by different researchers, using different technological

platforms, at different points in time, which makes the data very

heterogenous. To be able to perform integrative analysis over the

whole set of data, it has to be normalized, annotated, and

organized conveniently. But Biology knowledge is really complex,

and to make easier for researchers to find and integrate

information, we need of formal ways to name, define and

interrelate the entities that exist for the domains of study. This is

where ontologies play an important role in representing this

knowledge by defining concepts and their relationships (Bard &

Rhee, 2004). Currently there are several ontologies widely used,

one of them is the Gene Ontology (GO) (Ashburner, Ball, Blake,

Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig, Harris, et

al., 2000), which aims at formalizing the knowledge about

biological processes, molecular functions, and cell components.

One important feature of this project is that GO terms are linked

with gene products from many experimental organisms, so the

users can explore the available knowledge for a given protein, or

the other way around, from a given concept (i.e the cell cycle) it is

possible to derive the proteins that are involved. Another project of

relevance for this field is the Sequence Ontology (SO) (Eilbeck et

al., 2005), which goal is to standardise the terms and relations to

describe genomic annotations (see Figure 13 for an example),

facilitating data exchange and comparative analysis of sequence
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annotations. Both, GO and SO, are part of the Open Biomedical

Ontologies (OBO) project (Smith et al., 2007).

Finishing with examples of important projects that aim at

formalizing the knowledge in the context of genomics and cancer,

we need to mention the International Classification of Diseases for

Oncology (ICD-O) (“WHO | International Classification of Diseases

for Oncology, 3rd Edition (ICD-O-3),” n.d.), which classifies cancer

diseases according to two axes that describe the tumour: the

topography, which describes the anatomical site of origin (or organ

system) of the tumour, and the morphology, which describes the

cell type (or histology) of the tumour, together with the behaviour

(malignant or benign). Ontologies also exist to model the design

and organization of experiments and their results, some examples

are the MAGE-OM (Spellman et al., 2002) focused on micro-array

based experiments, and FUGE (Jones et al., 2007) focused on

functional genomics.

Nowadays there are many biological databases with genomic data,

one of the major initiatives is the NCBI's GenBank (Benson et al.,

2013), that contains raw genomic sequences submitted by parties

around the world to the extent of containing hundred of billions of

nucleotides and keep growing exponentially. Similar initiatives exist

from the EMBL in Europe (http://www.ebi.ac.uk/) and the DDBJ in

Japan (http://www.ddbj.nig.ac.jp/), all three coordinated under the

International Nucleotide Sequence Database Collaboration (INSDC)

(http://www.insdc.org/). But because of the grow of those

databases, it is very easy to find incomplete or inaccurate records as

well as redundant information (Lathe, W., Williams, J., Mangan, M.
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& Karolchik, 2008). RefSeq (Pruitt et al., 2014) was born to provide

a scientist-curated non-redundant set of biological sequences.

Given the open structure and wide scope of those databases, more

specific, richer in contents, and more structured databases exist,

being the UCSC Genome Browser (Sanborn et al., 2011) and the

EBI's Ensembl (Flicek et al., 2014) database some of the most

successful ones. They also offer advanced search interfaces, the

Table Browser (Karolchik et al., 2004) for the UCSC Genome

browser and Biomart (Smedley et al., 2015) for Ensembl, that can

be used for performing complex queries and download

information for further downstream analysis and predictions.

Moreover, the Biomart portal, is not only used for Ensembl data,

but for many other biological databases federated by different

institutions across the globe.

Figure 13: Example of the Sequence Ontology for the gene_variant term.

The Sequence Ontology term representing a gene variant (in red) and its 
relations to other terms (black for more generic terms, and white for the 
more specific ones). Extracted from MISO, the Sequencing Ontology web 
browser.
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There are also specific databases or repositories for experimental

data generated with high-throughput technologies. Two well

known sources are ArrayExpress (Parkinson et al., 2007) and Gene

Expression Omnibus (GEO) (Edgar, Domrachev, & Lash, 2002).

ArrayExpress is a database for functional genomics data that

consists of two parts, the Repository, supporting MIAME compliant

(Brazma et al., 2001) micro-array data or MINSEQE compliant

sequencing data (raw sequencing data is submitted to the

European Nucleotide Archive (Cochrane et al., 2009)), and the

Data Warehouse, with expression profiles selected from the

repository and consistently re-annotated. GEO is a repository for

high-throughput gene expression data and genomic hybridization

experiments, not intended at replacing in-house databases but to

complement them by acting as a central distribution hub.

Thanks to the recent advances in sequencing and computer

technologies it is possible to sequence and analyse whole genomes

and explore their alterations comprehensively. Two large scale

projects, the International Cancer Genome Consortium (ICGC)

(ICGC, 2010) as an international consortium, and The Cancer

Genome Atlas (TCGA) (Omberg et al., 2013) supported by US

National Institutes of Health, have been analysing cancer genomes

for some years and making the data available through their

respective data portals. Both include protein expression, copy

number variation, somatic mutations, mRNA expression, DNA

methylation, miRNA, and clinical data for several types of cancer.

TCGA began in 2006 focused in three projects, glioblastoma

multiforme, serous cystadenocarcinoma of the ovary, and lung
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squamous carcinoma, but has expanded during the later years

covering other types of cancer. ICGC was born in 2007 with the

following goals: to coordinate the generation of comprehensive

catalogues of genomic abnormalities in tumours in 50 different

cancer types and/or subtypes that are of clinical and societal

importance across the globe, to ensure high quality, to make the

data available to the entire research community as rapidly as

possible, to coordinate research efforts among participants, and to

support the dissemination of knowledge and standards to facilitate

data sharing and integration.

Before those large initiatives existed, The Catalog Of Somatic

Mutations In Cancer (COSMIC) (S. A. Forbes et al., 2009) was the

largest public resource for information on somatically acquired

mutations in human cancer, with data gathered from two sources:

publications in the scientific literature for genes present in the

Cancer Gene Census (CGC) (Futreal et al., 2004), and the genome-

wide screens from the Cancer Genome Project (CGP) at the Sanger

Institute in UK.

Computational cancer genomics

The biology of the genome is very complex, and trying to address

this complexity directly would be unfeasible. Science use models to

narrow the scope of study, focus on a specific part of the reality, so

we can quantify and understand better our observations. Statistics

provide us with tools for collecting these observations

appropriately, and analysing them so we can explain and interpret

the modelled reality quantitatively. But even when simplifying the
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reality, often we need to handle massive amounts of observations

or data, and perform millions of computations in a reasonable

period of time to build those models, which wouldn't be possible

without the existence of computers. The main focus of Computer

Science is the study of these computers (hardware and

infrastructures) and their use for complex processes (algorithms

and data structures). Software encodes those methodologies and

processes in a way that computers can understand and execute,

and Software Engineering is the discipline that cares about the

systematic application of scientific and technological knowledge,

methods, and experience to its design, implementation, testing,

and documentation (“ISO/IEC/IEEE 24765:2010(E),” 2010).

Computational genomics focuses on understanding the human

genome, and the principles of how DNA controls the biology of

species at the molecular level by merging the knowledge and

methodologies from several disciplines such as Biology, Statistics,

Computer Science, and Software Engineering, and has become

one of the most important means to biological discovery, specially

given the increase in availability of massive biological datasets.

Identification of cancer drivers

One of the main challenges for computational cancer genomics is

the identification of the genes that drive the tumorigenesis, as it

would help to understand the mechanisms for the tumour

formation and evolution, as well as open new paths for novel

therapeutical solutions. Thanks to the advances in high-throughput

technologies we have the tools to view which are the mutations
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present in the tumour cells, which can range from tens to

thousands. But the difficulty comes from the need to distinguish

the few of these mutations that are drivers, and thus conferring the

selective grow advantage, from the ones that are sporadic

passengers, most likely because of the genomic instability.

The first approach towards that aim, is to identify the functional

impact of the cancer mutations. First, for each of the mutations,

we need to identify the protein that overlaps with the mutated

genomic region, and how affects to its sequence of amino-acids, so

we can assess its consequences. Two well known tools for this

identification are the Variant Effect Predictor (VEP) (McLaren et al.,

2010), and snpEff (Cingolani et al., 2012). Given the redundancy

of the genetic code, some mutations doesn't affect to the

translation of the affected codon, and thus the sequence of amino-

acids remains the same as for the reference protein. This is a

synonymous variant, and represents the milder of the possible

impacts to a protein's function. The opposite side is represented by

the mutations that either truncate the translation of the protein by

introducing a stop codon, or introduces changes to the frame that

determines the triplets that will form the codons to be translated.

These variants will most probably result in an inactivation of the

protein and/or its function. Non-synonymous variants, represent

those mutations that affect the translated amino-acid by just

changing the corresponding codon, and are the main subject of a

series of tools designed to predict their impact to the protein's

function (see Table 1).

More advanced approaches are based on the identification of
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genes that exhibit signals of positive selection across a cohort of

tumour samples (see Figure 14).

Some methods such as MuSic (Dees et al., 2012) and MutSigCV

(Lawrence et al., 2013), are based on the recurrence of the

mutations and identify genes that are mutated more frequently

than the expected from the background mutation rate. Those

methods have the shortcoming of having difficulties to identify

driver genes mutated at a very low frequency. A method called

OncodriveFM (Gonzalez-Perez & Lopez-Bigas, 2012) is based on

identifying the bias towards the accumulation of functional

mutations by testing the significance of the high rate non-silent

mutations compared to the silent ones. Its advantage is the

independence from the background mutation rate, but the

selection of the method to assess if a mutation is functional or not

can affect completely its performance. And OncodriveCLUST

(Tamborero, Gonzalez-Perez, & Lopez-Bigas, 2013) is a method

that exploits the fact that, whereas inactivating mutations are

usually distributed along the sequence of the protein, mutations

leading to gain of function tend to accumulate at particular

residues or domains. Finally, ActiveDriver (Reimand, Wagih, &

Bader, 2013) is a method based on the over-representation of

mutations in specific functional residues, such as phosphorylation

sites.

28



Figure 14: Signals of positive selection used to identify driver genes.
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Method Description

SIFT Builds a MSA of similar proteins according to a database

defined by the user and calculates normalized

probabilities for all possible substitutions at all positions

of the alignment. Based on these probabilities, SIFT

classifies observed substitutions as likely neutral or

deleterious.

PolyPhen 2 Naïve Bayes classifier trained from two data sets that

contain both deleterious and neutral amino acid changes.

Eight sequence-based and three structure-based

predictive features, most of them involving comparison of

a given property of the wild-type amino acid and its

mutated counterpart are the properties used to build the

classifier.

Mutation

Assessor

A prediction of the functional impact of nsSNVs is based

on the assessment of evolutionary conservation of amino

acid residues. It exploits the evolutionary conservation in

protein subfamilies, which are determined by clustering

MSAs of homologous sequences on the background of

conservation of overall function.

Condel Condel (Consensus deleteriousness score) is an approach

to combine the functional impact scores of nsSNVs. It

uses values extracted from the complementary

cumulative distributions of the scores produced by

individual tools on a dataset of deleterious and neutral

nsSNVs as weights to combine them.
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Method Description

FATHMM Predicts the functional effects of cancer somatic

mutations combining sequence conservation with hidden

Markov models representing the alignment of

homologous sequences and conserved protein domains

with cancer “pathogenicity weights” representing the

tolerance of the corresponding model to cancer

mutations.

CHASM A random forest classifier is trained on a curated set of

driver mutations derived from COSMIC and randomly

simulated passenger mutations. It uses eighty-six diverse

features (available at SNVBox database), including

physio-chemical properties of amino acid residues, scores

derived from MSAs of protein or DNA, region-based

amino acid sequence composition, predicted properties

of local protein structure and annotations from the

UniProtKB feature tables.

transFIC transFIC (for transformed functional impact scores for

cancer) takes the Functional Impact Score produced by

any method aimed at evaluating the impact of a mutation

on the functionality of a protein and transforms it, taking

into account the baseline tolerance of similar proteins to

functional impacting variants. The transformation can be

interpreted as an adjustment for the impact of the

somatic variant on cell operation.

Table 1: Functional impact predictors for non-synonymous 

variants.

31





OBJECTIVES

1. Let b io logis ts without advanced knowledge in

bioinformatics, access to specialized databases in biology, to

analyse data generated by high-throughput technologies

and to visualise the results according to the nature and

dimensions of this kind of data.

2. Integrate and analyse genomic data to improve the

understanding of the processes and alterations that make

cells to become cancerous, opening new fronts for possible

cancer treatments in the future.

◦ Develop a series/system of analytical processes for

integrating high-throughput oncogenomics data for the

identification of genes or groups of genes involved in

cancer

◦ Apply these techniques to oncogenic data available in

the literature and from international consortia, and

make the results available for browsing by the wider

scientific community

◦ Make these processes available to the wider scientific

community so that other researchers can use them for

their own analyses and compare their results to those

described above
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3. Develop a benchmarking system and propose a series of

datasets for comparing the performance of functional

impact assessment algorithms, dr iver mutations

identification tools and general purpose substitution scores

in the context of cancer variation data.
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PART II: RESULTS
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1. GITOOLS
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2. INTOGEN

There are two IntOGen projects I contributed to, IntOGen Arrays

(Gundem et al., 2010) and IntOGen Mutations (Gonzalez-Perez et

al., 2013). My main contribution to the IntOGen projects and

papers is related to the management of genomic data, its analysis,

and making the results available for internal and external

researchers. The management of data involves assistance for the

curation of the data gathered from several heterogeneous sources,

and putting the tools and processes in place so it can be annotated

and properly organized in a homogeneous way for the analysis

phase. The analysis involves many interrelated steps that require

coordination and flexible configuration to adapt the execution to

different needs while performing the research. Furthermore, given

the amount of data that has to be analysed, it is very important to

allow the distribution of the work across several processors or even

machines. Once the results are ready from the analysis, they have

to be available to the researches, both to internal and external

organizations, which requires extra care on how it is organized and

exposed.

In the case of the IntOGen Mutations project there was also the

requirement to allow external researchers to analyse their own data

using the same methodology we were using, which required to set

up an interface to submit data, monitor the progress, organize the

results by user and facilitate its visualization.

Following there are the details about the analysis workflows that I
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developed for each of the IntOGen projects.

2.1. IntOGen Arrays

a) Organization of the data

The data required for this analysis was generated by several

independent researchers around the world, and collected from

several sources, so it required some pre-processing and

homogenization. I developed a simple data model to organize and

annotate it based on the core concepts of other existing models

such as MAGE-OM (Spellman et al., 2002) and FUGE (Jones et al.,

2007).

Figure 15: Data model for IntOGen Arrays source data
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The main sources for the data are:

• GEO (Edgar et al., 2002): For transcriptomic alterations.
• ArrayExpress (Parkinson et al., 2007): For transcriptomic

alterations.
• Progenetix (Baudis & Cleary, 2001): For copy number

alterations.
• The Cancer Genome Atlas (Omberg et al., 2013): For

transcriptomic and copy number alterations.
• COSMIC (Simon A Forbes et al., 2010): For mutations

The selection of experiments was based on the data to be public,

the experiments to compare normal and cancer tissues, and having

at least 20 samples. The collected data was manually curated from

the publications or the descriptions available in the source and

annotated using internally developed ontologies, the Gene

Ontology (GO) (Ashburner, Ball, Blake, Botstein, Butler, Cherry,

Davis, Dolinski, Dwight, Eppig, & others, 2000) and the

International Classification of Diseases for Oncology (ICD-O) (“WHO

| International Classification of Diseases for Oncology, 3rd Edition

(ICD-O-3),” n.d.). In total there were more than 800 studies, 25000

samples and 150 different tumour types.

b) Workflow organization

The workflow can be divide into these main parts or sub-

workflows:

• Retrieval of external data

• Transcriptomic alterations

• Copy number alterations
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• Biomart database generation

• Web browser data generation

The source code can be found here https://github.com/chris-

zen/phd-thesis/blob/master/chapter2/intogen-arrays.

Figure 16: Workflow for IntOGen Arrays

The first step consists in retrieving data annotations from external

databases required for the analysis – mainly from Biomart (Smedley

et al., 2009). Then the transcriptomic and the copy number

alterations processes can start. Finally the results are saved into a

database required to expose the data through the Biomart portal,

and the database for the web portal of IntOGen.

Following there are more details about the transcriptomic and copy

number alterations workflows.

48

https://github.com/chris-zen/phd-thesis/blob/master/chapter2/intogen-arrays
https://github.com/chris-zen/phd-thesis/blob/master/chapter2/intogen-arrays


c) Transcriptomic alterations

The first step consists on loading

the studies that will be analysed,

and then classify each of the

samples expression data into

normal or cancer, annotated by

study and tumour type. The

normal samples are pooled by

study and tumour type, and then

the expression data for the cancer

samples with absolute intensities

are converted into log2 ratios by

c o m p a r i n g t h e m t o t h e

corresponding normal pool. The

samples data already in log2 ratio

are just passed through to the

next step.

Next, the log2 ratio samples

datasets are grouped by study and tumour type and joined into

matrices. Before determining whether a probe is over or under-

expressed we need to determine a cutoff threshold for the log2

ratios, but instead of using a constant value for all the matrices we

calculate them dynamically for each matrix.

The next step converts the expression matrices into binary matrices

for under and over-expression and the Oncodrive method is
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applied in order to see which probes are expressed less or more

than expected by chance. Until this point all the matrices contained

expression data for micro-array probes using GeneBank identifiers,

but the following steps will require to have information at the level

of genes, so the data is mapped into genes.

The enrichment analysis is also performed to determine biological

modules (GO terms and pathways) that are expressed less and

more than expected by chance.

The last steps consist in classifying and combining by tumour type

the results of the analysis for genes and modules.

d) Copy Number Alterations

The first step consists on loading

the studies that will be analysed,

and then classify each of the

samples copy number data by study

and tumour type. Then the probe

identifiers are mapped into gene

identifiers and the samples data

joined into binary matrices by study

and tumour type. There will be

independent matrices for gain and

loss. Next, the Oncodrive analysis is

performed. The enrichment analysis

is also performed to determine
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biological modules (GO terms and pathways) that are loss or gain

more than expected by chance.

The last steps consist in classifying and combining by tumour type

the results of the analysis for genes and modules.

e) Biomart

Figure 19: BioMart interface for IntOGen Arrays

With the aim of making the analysis results easily available to as

much researchers as possible I developed a Biomart portal and a

web service. The Biomart portal is suitable for researchers to query

for data very easily through a web user interface, while the web

service is suitable for accessing the data programmatically from

several programming languages and tools. Gitools is an example of

a tool that can access this data for further analysis using the web

service.
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2.2. IntOGen Mutations

a) Workflow organization

Before starting to describe the workflow in detail it is necessary to

explain some general concepts. The workflow is designed to

process a set of data projects in the same execution. Each data

project represents a set of variants found in a cohort of tumours of

the same cancer type with the same experimental conditions. Each

data project can have annotations (the source of the data, the

authors or institution, the publication, and the cancer type are

some examples), and can be configured for some parameters

independently of the other projects (for example to define different

thresholds or expression filters depending on the characteristics of

the tumour tissue).

The workflow can be divided into these main parts or sub-

workflows:

• Variants processing

• Functional impact assessment

• Variant recurrences

• Identification of drivers

• Combination of project results

• Generation of results

The source code is open source and can be found at

https://bitbucket.org/intogen/mutations-analysis
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Figure 20: Workflow for IntOGen Mutations
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b) Variants processing

The first part, which can be executed concurrently for each project,

involves reading the information available for each data project

(annotations and configuration), parsing the variant files provided

by each project and mapping the coordinates that are based on the

NCBI36 (hg18) genome assembly into the GRCh37 (hg19). The

variant files can be in any of the following formats: simple

tabulated text, MAF or VCF.

c) Functional impact assessment

To assess the impact of variants on the function of the proteins we

use several methods. First we need to know which effect is having

this variant on the gene products. Whether it is synonymous,

missense, a frameshift or a stop codon to name some examples, is

assesed by the tool Variant Effect Predictor (VEP) (McLaren et al.,

2010). The consequence terms are given using the Sequence

Ontology (SO) (Eilbeck et al., 2005).
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Figure 21: Variants processing workflow

Figure 22: Functional impact assessment workflow

In the case of missense variants we collect the functional impact

scores given by SIFT, Polyphen2 and MutationAssessor predicting

methods and transform them using the TransFIC method which

compares the original score to the distribution of scores of SNVs

observed in the germline of human populations in genes that are

similar to the one bearing the mutation. It allows to classify variants

into one of four categories: None (it does not affect protein

sequence), Low, Medium or High. For other effects we predefine
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the impact and the scores accordingly using a simple decision tree.

For example, stop codons and frameshifts are considered High

impacting while synonymous variants are None. The impact is

assessed for each of the individual transcripts affected by the

variant, as well as for the gene. To increase the parallelization of

the execution the variants are split into partitions of fixed size

(determined by the configuration parameter vep_partition_size),

and finally everything is merged again by project before calculating

the impact per gene.

d) Variant recurrences

This sub-flow is responsible for counting how many samples are

affected by each variant, each gene and each pathway for each

project. It also calculates the proportion that these frequencies

represent respect to the total number of samples analysed in the

project. The recurrences are implemented as a single task that can

be calculated in parallel for each project.

e) Identification of drivers

Identification of drivers relies on two methods developed in our

group: OncodriveFM and OncodriveCLUST. 
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OncodriveFM

It is based on the assumption

th a t c an c e r d r i v e r g en e s

accumulate highly functional

mutations, as those are the ones

that alter the function of the

encoded protein, conferring a

selective advantage to the cell.

OncodriveFM computes a metric

called FM-bias, which measures

t h e b i a s t o w a r d s t h e

accumulation of functional mutations. Genes with a high FM-bias

are candidate drivers. The same approach is also applied for

pathways.

This method requires to perform many randomizations and so is

computationally expensive. I have implemented it in a way that

allows to split the whole analysis in smaller parts that can be

executed independently in different computers (coarse grain) using

multiple processors for each part (fine grain).

For each project three matrices are generated with genes in rows

and samples in columns. The cells of each matrix will contain one

of the three TransFIC scores obtained in previous steps for each of

the prediction methods (SIFT, PolyPhen2 and MutationAssessor).

Each matrix is computed and the results combined to get a unique

result per project and gene. The input matrices will only contain

57

Figure 23: OncodriveFM workflow



genes which are affected by synonymous, missense, stop or

frameshift variants and will constitute the background of the null

distribution. But only the genes that pass a predefined filter of

allowed genes based on the expression patterns of this gene in a

given tissue and the genes being affected in at least 20 samples

will be analysed and will get results from the method.

The results consists on a p-value and a q-value (the p-value

corrected for multiple testing using Benjamini & Hochberg FDR) per

gene and project.

OncodriveCLUST

This method is based on the assumption that if mutations appear

clustered in a certain location of the gene is because it may confer

a selective advantage to the cell. The input consists on two lists,

one with the genes and samples affected by synonymous variants

(used to compute the background distribution) and one with the

genes and samples affected by non synonymous, stop, codon or

splice junction variants. The analysis gives as a result per gene and

project a z-score, a p-value and a q-value (the p-value corrected for

multiple testing using Benjamini & Hochberg FDR).

Figure 24: OncodriveCLUST workflow
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f) Combination of project results

Up to this point all the calculations have been done for each

project independently. This sub-workflow is responsible for

combining the results generated for all the projects according to

some criteria of combination. Basically it groups the projects by a

set of annotations and then combines the results of recurrences

and driver identification. Currently two criteria are used, one simply

combines all the projects and the other combines the projects per

cancer site. In the case of the recurrences the frequencies are just

aggregated and the proportions recalculated for variants, genes

and pathways. In the case of driver identification the gene’s p-

values are combined with Fisher’s method and the pathways’ z-

scores with Stouffer method from which we get a p-value. The

combined p-values are also corrected for multiple testing with

Benjamini & Hochberg FDR.

Figure 25: Combination of projects results workflow

g) Generation of results

The following files are generated for the results of the analysis:
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project.tsv

This file contains information about the project analysed. Basically

contains the following fixed fields:

• PROJECT_ID: The project identifier.

• ASSEMBLY: The genome assembly.

• SAMPLES_TOTAL: The total number of samples analysed.

There will be also columns representing project annotations in case

they were specified.

consequences.tsv

This file contains information about the transcripts affected by the

input mutations. It contains mainly the Variant Effect Predictor

results and TransFIC calculations.

• PROJECT_ID: The project identifier.

• CHR: The mutation’s chromosome.

• STRAND: The mutations’s strand.

• START: The mutation’s start position.

• ALLELE: The mutation’s affected nucleotides. The reference

and changed sequences are separated by a slash ‘/’.

• TRANSCRIPT_ID: The Ensembl identifier of the transcript

affected by the mutation.

• CT: The list of Sequence Ontology terms describing the

consequence of the mutation.

• GENE_ID: The Ensembl identifier of the gene coded by the

transcript.
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• SYMBOL: The HUGO symbol of the gene.

• UNIPROT_ID: The Uniprot identifier of the protein.

• PROTEIN_ID: The Ensembl identifier of the protein.

• PROTEIN_POS: The position of the mutation in protein

coordinates.

• AA_CHANGE: The aminoacids change separated by a slash

‘/’.

• SIFT_SCORE: SIFT score of the mutation as obtained from

VEP (mutations whose consequence types are not prone to

affect the sequence of the protein product have empty

values).

• SIFT_TRANSFIC: The transformed score of SIFT calculated

with TransFIC.

• SIFT_TRANSFIC_CLASS: Classification of this mutation based

on the SIFT TransFIC and its separation of highly-recurrent

and non-recurrent somatic mutations in COSMIC.

• PPH2_SCORE: Polyphen2 score of the mutation as obtained

from VEP (mutations whose consequence types are not

prone to affect the sequence of the protein product have

empty values).

• PPH2_TRANSFIC: The transformed score of Polyphen2

calculated with TransFIC.

• PPH2_TRANSFIC_CLASS: Classification of this mutation

based on the Polyphen2 TransFIC and its separation of

highly-recurrent and non-recurrent somatic mutations in

COSMIC.

• MA_SCORE: Mutation assessor score of the mutation as

obtained from the Mutation assessor database (mutations
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whose consequence types are not prone to affect the

sequence of the protein product have empty values).

• MA_TRANSFIC: The transformed score of MA calculated

with TransFIC.

• MA_TRANSFIC_CLASS: Classification of this mutation based

on the MA TransFIC and its separation of highly-recurrent

and non-recurrent somatic mutations in COSMIC.

• IMPACT: assessment of the functional impact of the

mutation on the transcript. The possible values that can take

are: (4) mutation that doesn’t affect the protein sequence,

(3) non-synonymous mutation with low MA TransFIC, (2)

non-synonymous mutation with medium MA TransFIC, (1)

non-synonymous mutations with high MA TransFIC, stop

mutation or frameshift causing indel.

• IMPACT_CLASS: Classification label for the impact: (4) none,

(3) low, (2) medium, (1) high.

variant_genes.tsv

This file contains information about the mutations affecting genes.

• PROJECT_ID: The project identifier.

• CHR: The mutation’s chromosome.

• STRAND: The mutations’s strand.

• START: The mutation’s start position.

• ALLELE: The mutation’s affected nucleotides. The reference

and changed sequences are separated by a slash ‘/’.

• GENE_ID: The Ensembl identifier of the gene coded by the

transcript.
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• SYMBOL: The HUGO symbol of the gene.

• VAR_IMPACT: assessment of the functional impact of the

mutation on the on the gene. The possible values that can

take are: (4) mutation that doesn’t affect the protein

sequence, (3) non-synonymous mutation with low MA

TransFIC, (2) non-synonymous mutation with medium MA

TransFIC, (1) non-synonymous mutations with high MA

TransFIC, stop mutation or frameshift causing indel.

• VAR_IMPACT_CLASS: Classification label for the impact: (4)

none, (3) low, (2) medium, (1) high.

• SAMPLE_FREQ: Number of samples where this mutation

has been found.

• SAMPLE_PROP: Proportion of samples presenting this

mutation among the total number of samples.

• SAMPLE_TOTAL: The total number of samples analysed.

• CODING_REGION: Whether the mutation affects to the

coding region of the gene. It will take value 1 when at least

one transcript have any of the following consequence

terms: missense_variant, stop_gained, stop_lost,

f r a m e s h i f t _ v a r i a n t , s y n o n y m o u s _ v a r i a n t ,

sp l i c e _d ono r_ v a r i an t , s p l i c e_ a c c ep to r_ v a r i a n t ,

splice_region_variant. And 0 otherwise.

• XREFS: The comma separated list of external references.

When the mutation is known and have an identifier in an

external source (such as dbSNP or COSMIC).

variant_samples.tsv

This file contains information about the sample identifiers
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associated with each mutation.

• PROJECT_ID: The project identifier.

• CHR: The mutation’s chromosome.

• STRAND: The mutations’s strand.

• START: The mutation’s start position.

• ALLELE: The mutation’s affected nucleotides. The reference

and changed sequences are separated by a slash ‘/’.

• SAMPLES: The comma separated list of samples where this

mutation has been found.

genes.tsv

This file contains information for genes.

• PROJECT_ID: The project identifier.

• GENE_ID: The Ensembl identifier of the gene coded by the

transcript.

• SYMBOL: The HUGO symbol of the gene.

• FM_PVALUE: P-value obtained from the OncodriveFM

analysis. Genes with small P-values have a greater likelihood

of being drivers.

• FM_QVALUE: The OncodriveFM P-value corrected by FDR.

• SAMPLE_FREQ: Number of samples where this gene has

been found mutated.

• SAMPLE_PROP: Proportion of samples having this gene

mutated among the total number of samples.

• SAMPLE_TOTAL: The total number of samples analysed.

• CLUST_ZSCORE: Z-score obtained from OncodriveCLUST

analysis.
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• CLUST_PVALUE: P-value obtained from OncodriveCLUST

analysis.

• CLUST_QVALUE: The OncodriveCLUST P-value corrected by

FDR.

• CLUST_COORDS: T he c oor d i na t e s ob ta ine d f ro m

OncodriveCLUST analysis.

• XREFS: The comma separated list of external references for

the overlapping mutations. When the mutation is known

and have an identifier in an external source (such as dbSNP

or COSMIC).

pathways.tsv

This file contains information for pathways.

• PROJECT_ID: The project identifier.

• PATHWAY_ID: The pathway identifier.

• GENE_COUNT: Number of genes known to be associated

with this pathway.

• FM_ZSCORE: Z-score obtained from the OncodriveFM

analysis.

• FM_PVALUE: P-value obtained from the OncodriveFM

analysis. Pathways with small P-values have a greater

likelihood of being drivers.

• FM_QVALUE: The OncodriveFM P-value corrected by FDR.

• SAMPLE_FREQ: Number of samples where this gene has

been found mutated.

• SAMPLE_PROP: Proportion of samples having this gene

mutated among the total number of samples.
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• SAMPLE_TOTAL: The total number of samples analysed.

fimpact.gitools.tdm

This file contains the functional impact matrix for samples and

genes. It is in a format that can be opened with Gitools.

h) Quality control

The workflow measures several metrics related to the quality of the

results:

Variants processing

Number of mutations by stage: Shows the number of mutations

that pass or are discarded through the different stages in which are

involved (reading from the source, parsing, translation from hg18

to hg19 if it is necessary, and variant effect predictor). It is

represented with a bar plot and a table for each of the sources

involved in the analysis.

Drivers identification with OncodriveFM

Number of genes by stage: How many genes pass or are discarded

in each of the stages. There are a number of genes that has been

affected by the variants (source) that are selected depending on

the consequence terms obtained from the Variant Effect Predictor

(selected), then the selected genes are filtered using some

predefined filters depending on the tissue (filter) and finally only
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those affecting to a minimum of samples will be analysed with

OncodriveFM (threshold).

Number of samples by stage: How many samples are represented

by the genes that pass or are discarded through the previously

commented stages. This and the previous indicators are

represented by both a bar plot and a table.

Number of samples per gene: This is represented with a plot where

each element in the x-axis is a gene and the y-axis represents the

number of samples having a variant that affects this genes. The

genes are sorted from higher to lower number of samples.

Number of significant p-values for different thresholds: This is a

plot showing how many genes would have a significant p-value for

different p-value thresholds.

Drivers identification with OncodriveCLUST

Number of genes by stage: How many genes pass or are discarded

in each of the stages. There are a number of genes that has been

affected by the variants (source) that are selected depending on

the consequence terms obtained from the Variant Effect Predictor

into synonymous (syn) and non synonymous (selected), then the

selected genes are filtered using some predefined filters depending

on the tissue (filter) and finally only those affecting to a minimum

of samples will be analysed with OncodriveCLUST (threshold).

Number of samples by stage: How many samples are represented
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by the genes that pass or are discarded through the previously

commented stages. This and the previous indicators are

represented by both a bar plot and a table.

Number of samples per gene: This is represented with a plot where

each element in the x-axis is a gene and the y-axis represents the

number of samples having a variant that affects this genes. The

genes are sorted from higher to lower number of samples.

Number of significant p-values for different thresholds: This is a

plot showing how many genes would have a significant p-value for

different p-value thresholds.
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Figure 26: Quality control metrics visualization
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i) Web site

The workflow can be run as a standalone command line

a p p l i c a t i o n , o r u s i n g t h e w e b s i t e a t

http://www.intogen.org/analysis. Using the web site is the

recommended procedure for people not familiarized with unix and

terminals. A part from the resulting files, it generates a web portal

to browse the results in the context of the IntOGen site data.

Figure 27: Screenshot of the IntOGen Mutations Analysis web site
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This paper was used for Gunes' dissertation. I contributed to the

collection and organization of the data, developed and

performed its analysis, and reviewed the paper methods.
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This paper was used for Gunes' dissertation. I designed and

developed the Biomart interface and its integration with

IntOGen data, and contributed to, and reviewed the paper.
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I organized the data, developed the analysis pipelines, the web

portal for the analysis, and contributed for analysing the

mutations data.
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3. BENCHMARK OF IMPACT PREDICTION

TOOLS

3.1. Introduction

Tumorigenesis is often described as a darwinian evolutionary

process, where cells with genetic or epigenetic somatic alterations

conferring favourable capabilities proliferate faster than their

neighbours (Bignell et al., 2010; Greenman et al., 2007).

Nevertheless, as an added consequence of malignization,

chromosomal instability favours the acquisition of somatic

alterations that are neutral to cancer cells. At the time of tumour

sequencing, dozens to thousands of somatic alterations are

frequently uncovered, thus posing the problem to distinguish

between the drivers that contribute to the cancer phenotype and

the passengers. Identifying driver alterations in a patient's tumour

is essential to understand tumorigenesis and to devise therapeutic

strategies. Driver mutations may be relevant both as targets, like in

the case of mutant oncoproteins which may be inhibited by small

molecules, and as potential determinants of resistance to therapy

(Rubio-Perez et al., 2015).

Several bioinformatics tools have been developed in recent years

that aid to identify potentially driver missense variants. Some of

them are designed to assess the functional impact of non-

synonymous variants, others, specifically aim to recognize potential

driver mutations and could then, in principle, be used to detect
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potential driver non-synonymous variants ab initio (Carter et al.,

2009). 

Benchmarking the performance of these tools is a difficult task, due

to the lack of precise datasets of driver and passenger mutations.

Gonzalez-Perez et al (Gonzalez-Perez, Deu-Pons, & Lopez-Bigas,

2012) introduced the concept of proxy datasets enriched for driver

and passenger mutations to assess the performance of tools aimed

at identifying missense cancer mutations. The usage of multiple

proxy datasets is intended to detect trends of the performance of

methods in the task of identifying likely driver mutations, rather

than a meticulous assessment of their precision.

Here, following that rationale, I assembled several proxy datasets

composed of somatic missense mutations obtained from both

episodic gene sequencing and systematic whole exome or whole

genome sequencing studies. I used them to benchmark the

performance of several functional impact assessment algorithms,

driver mutations identification tools and general purpose

conservation scores.

As a result of this work I ended up with a database of pre-

calculated scores for the whole proteome (FannsDB), an updated

Condel tool (González-Pérez & López-Bigas, 2011), and a

methodology framework for benchmarking.
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3.2. Methodology

All the steps required to collect data, create the database, prepare

the proxy datasets and evaluate the performance of the tools were

implemented using Python and IPython Notebooks, and the source

code versioned with git, so all this work can be reviewed and

reproduced in the future.

a) Prediction tools

The selected tools can be divided by categories as:

• Functional impact assessment algorithms: SIFT (Ng &

Henikoff, 2003), PolyPhen2 (Adzhubei et al., 2010),

MutationTaster (Schwarz, Cooper, Schuelke, & Seelow,

2014), and FATHMM for inherited disease (Shihab et al.,

2013).

• Driver mutations identification tools: Mutation Assessor

(Reva, Antipin, & Sander, 2011), FATHMM for cancer

(Shihab et al., 2013), CHASM (Carter, Samayoa, Hruban,

& Karchin, 2010), and InCa (Supek & Vlahovicek, 2004).

• General purpose conservation scores: GERP RS (Cooper

et al., 2005), PhyloP (Pollard, Hubisz, Rosenbloom, &

Siepel, 2010), and C-Score (Kircher et al., 2014).

I also used tools that combine or transform some of the previous

ones to improve the performance of the predictions:

• Combination scores: Condel (González-Pérez & López-
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Bigas, 2011)

• Transformation scores: TransFIC (Gonzalez-Perez et al.,

2012)

Most tools ' scores (S IFT, PolyPhen2, Mutat ionTaster ,

MutationAssessor, SIFT, PolyPhen2, MutationTaster, GERP RS,

PhyloP, and FATHMM for inherited disease) were obtained from

the dbNSFP database (X. Liu, Jian, & Boerwinkle, 2011), and the

others (CADD, CHASM and InCa) by using the original tool.

b) Predictors' scores database

Having to calculate the scores independently for each tool

whenever they are needed is not scalable at a genome wide level,

so I used pre-calculated scores for most of them for all the

proteome (SIFT, PolyPhen2, MutationTaster, FATHMM, Mutation

Assessor, GERP RS, PhyloP, C-Score), and some others only for the

SNVs in the following proxy datasets (mainly CHASM and InCa due

to time constrains), and store the results in a MongoDB database

with a total of 241 millions of records, where each record

represents a possible proteome variant with all the scores. A record

looks something like:

{

    "_id" : ObjectId("5306541e830434415357dcb7"),

    "g" : {

        "c" : "9",

        "s" : 32473058,

        "r" : "T",

        "a" : "A",

        "d" : "-",

        "t" : "ENST00000379868"
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    },

    "p" : {

        "n" : "ENSP00000369197"

        "p" : 440,

        "r" : "L",

        "a" : "F",

    },

    "s" : {

        "CONDEL" : 0.5258461337047758,

        "FATHMM" : 0.4,

        "MA" : 3.78,

        "PPH2" : 0.907,

        "SIFT" : 0

    }

}

Where:

• g: contains genome coordinates

◦ c: chromosome

◦ d: strand

◦ s: start position

◦ r: nucleotide in the reference genome

◦ a: nucleotide for the alternative change

◦ t: Ensembl transcript ID

• p: protein coordinates

◦ n: Ensembl protein ID

◦ p: protein amino-acid position

◦ r: amino-acid in the reference proteins

◦ a: amino-acid fro the alternative change

• s: predictors scores, where the key is the predictor ID and

the value the score.
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Given that MongoDB stores the key names together with the

values and that there are millions of records I decided to use those

short key names to save disk space (in the order of giga-bytes).

I created indices for querying scores by both genome and protein

coordinates which, after a long process of creating the database,

allowed fast queries.

The IPython Notebooks can be viewed at:
• Creation of the predictors scores database (cluster) 

• Creation of the predictors scores database (workstation)

c) Condel scores

In the framework of this project I updated Condel scores using the

previous database. The update consisted in using an updated

Ensembl database, and changing which primary predictors were

integrated, the last version of Mutation Assessor which was already

used in the previous version,    and FATHMM which was not used in

the previous version. SIFT and PolyPhen2 which were used in the

previous version were removed for the new one.

The IPython Notebook can be viewed at: Calculation of Condel

scores

d) Proxy datasets

Several datasets were created, each one containing a list of protein

mutations extracted from a certain project under certain criteria.
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The IPython Notebook can be viewed at: Generation of   proxy

datasets

HumVar Polymorphisms

I basically took the HumVar training datasets used for Polyphen 2,

one for neutral mutations (humvar-n) and other for deleterious

ones (humvar-d).

IntOGen Mutations

After executing the IntOGen mutations pipeline for 48 projects and

merging all the missense variants, a total of 489234 SNVs were

identified and used for generating new datasets according to

different criteria:

• wg-<n>, where <n> in {1, 2, 3, 4}, are datasets containing all

SNVs occurring at least 1, 2, 3 or 4 times respectively.

• wg-CGC a n d wg-noCGC contain SNVs according to

whether the genes in the Cancer Gene Census (CGC) are

affected or not (respectively).

• wg-TD and wg-noTD contain SNVs according to whether

the list of genes proposed in (Tamborero, Gonzalez-Perez,

Perez-Llamas, et al., 2013) are affected or not (respectively).

• wg-PD and wg-noPD contain SNVs according to whether

the list of genes proposed in (Rubio-Perez et al., 2015) are

affected or not (respectively).

• wg-CD and wg-noCD contain SNVs according to whether

the list of genes identified as drivers in Chasm are affected
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or not (respectively).

• wg-TD-noCGC, wg-PD-noCGC, wg-noTD-noPD-noCGC,

wg-*-noCD are variants of the previous ones excluding

different sets of genes.

• wg-ov-* are datasets specific for the TCGA ovary project.

COSMIC

I generated also some datasets from COSMIC v68, both for

individual gene (prefixed cm-) and wide screen studies (prefixed

cw-).

• {cm,cw}-<n>, where <n> in {1, 2, 3, 4}, are datasets

containing all SNVs occurring at least 1, 2, 3 or 4 times

respectively.

• {cm,cw}-CGC and {cm,cw}-noCGC contain SNVs according

to whether the genes in the Cancer Gene Census (CGC) are

affected or not (respectively).

• {cm,cw}-CGC-{D,R}-<n> contain SNVs according to whether

the genes in the Cancer Gene Census (CGC) are dominant

(D) or recessive (R) with at least n occurrences (for n in {1,

2})..

• {cm,cw}-TD and {cm,cw}-noTD contain SNVs according to

whether the list of genes proposed in (Tamborero et al.,

2013) are affected or not (respectively).

• {cm,cw}-PD and {cm,cw}-noPD contain SNVs according to

whether the list of genes proposed in (Rubio-Perez et al.,

2015) are affected or not (respectively).

• {cm,cw}-CD and {cm,cw}-noCD contain SNVs according to
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whether the list of genes identified as drivers in Chasm are

affected or not (respectively).

• {cm,cw}-TD-noCGC, {cm,cw}-PD-noCGC, {cm,cw}-noTD-

noPD-noCGC, {cm,cw}-*-noCD are variants of the previous

ones excluding different sets of genes.

• {cm,cw}-<n>-<gene> are datasets specific for a given gene

where gene in {TP53, EGFR, CTNNB1, PTEN, PIK3CA} with

at least n occurrences where n in {1, 2}.

e) Performance evaluation

Using the database for prediction scores generated previously, the

scores for the SNVs in the generated proxy datasets were retrieved.

Then the testing datasets comparing expected driver SNVs (positive

cases) versus expected non driver SNVs (neutral cases) were

generated, and used to calculate the following performance

metrics (see Figure 28) using the scikit-learn (Pedregosa et al.,

2011) Python library:

• True Positives, False Positives, True Negatives, False

Negatives

• Sensitivity / Recall (TPR)

• Specificity (SPC)

• Precision (PPV)

• Accuracy (ACC)

• Matthews Correlation Coefficient (MCC)

• ROC curve and Area under the curve (AUC)
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Figure 28: Example of performance metrics calculated for each 
predictor and its representation in plots.

One of the major problems with the testing datasets (specially with

wide genome studies) is that they are quite unbalanced, having

many more cases for the neutral ones. Some examples extracted

from the notebook shows clearly the problem:

wg-2__wg-1    POS: [  18831]  NEG: [ 469692]

wg-3__wg-1    POS: [   2743]  NEG: [ 469692]

wg-4__wg-1    POS: [    967]  NEG: [ 469692]

The unbalancing affects many of the performance metrics and the

problem needs to be addressed. I used under-sampling with

randomization, where I generate several random sub-datasets of

the size of the positive cases, calculate the performance metrics for

each one, and aggregate the results by using the mean. Moreover,

the main metric used to compare performance between different

predictors was the MCC, as it is not biased by unbalanced datasets

(Thusberg, Olatubosun, & Vihinen, 2011) (see Figure 29 for an

example of the comparisons).
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The IPython Notebook can be viewed at: Evaluation of

performance

3.3. Results

FannsDB

We have created a database integrating several pre-calculated

predictors' scores for all possible non-synonymous SNVs in the

whole proteome (called FannsDB). The database was used to

update the Condel scores (see Figure 30), using different predictors

than the previous version (Mutation Assessor and FATHMM) and a

newer version of the Ensembl database (feb-2012). We also

created a new web portal for the database, to allow other

researchers to perform queries and retrieve, not only the updated

Condel scores, but also SIFT, PolyPhen2, Mutation Assessor and

F A T H M M s c o r e s . T h e w e b c a n b e a c c e s s e d a t

http://bg.upf.edu/fannsdb/
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Figure 30: ROC curve for Condel compared to the other predictors.

The legend shows the Area Under the Curve (AUC) for each tool.

Benchmarking

One first pattern that emerged from the MCC assessment on all

proxy datasets assembled from the collections of somatic

mutations, is that tools specifically designed to detect driver

mutations perform better than tools aimed at assessing the

functional impact of variants and conservation scores (see Figure

31). For example, for the testing dataset cm3-noCD/cm1, while

functional impact tools score a maximum MCC of 0.41 and the

conservation tools 0.20, drivers tools score between 0.59 and 0.78.

This is no surprise, because drivers tools incorporate information

specific to somatic mutations involved in cancer, either in the form
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of weighted scores or training features.

All tools and scores perform better separating proxy datasets

containing episodic somatic mutations detected in gene panels in

COSMIC, as opposed to proxy datasets composed of systematically

registered mutations in whole genome/exome sequencing studies

in IntOGen (see Figure 32). For instance, the maximum MCC for

drivers tools drops from 0.68 in the testing dataset cm-CGC-

noCD/cm-noCGC, to 0.28 in dataset wg-CGC-noCD/wg-noCGC.

The decline is from 0.24 to 0.05 for functional impact tools, and

from 0.15 to 0.13 for score tools. This bias raises a concern,

because real case studies probably resemble more the latter type of

proxy dataset.

INCA produces the highest MCCs among the three tested drivers

tools in a sustained manner across most proxy datasets.

Nevertheless, the number of mutations it can actually score

(coverage) is very low, because the tool only evaluates mutations

occurring in proteins with a solved 3D structure.
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Figure 31: Comparison of MCCs for COSMIC manual curated mutations 
based on recurrences.

Figure 32: Comparison of MCCs between COSMIC datasets for mutations
from gene panels and IntOGen mutations from whole genome/exome 
studies.
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3.4. Discussion

Although tools originally designed to assess the functional impact

of missense mutations are frequently employed by cancer genomics

projects with the aim of detecting driver mutations, our results

show that tools specifically designed to fulfil this purpose actually

preform better. This trend is sustained across all the analysed proxy

datasets, suggesting that researchers should prefer specific drivers

tools in the attempt to detect driver mutations in tumour samples.

Nevertheless it is important to point out that the performance of

these three tools decrease in proxy datasets composed of

mutations from whole genome/exome tumour sequencing

compared to mutations extracted from COSMIC. Two of these tools

probably exhibit some kind of overfitting towards catalogs of

known driver mutations, either from the features they are trained

on (CHASM) or from the weights the scores they implement

contain (FATHMMC). These biases probably explain the

a fo r eme nt ioned dec rea se i n a cc u ra cy . The ge ner a l

recommendation for identifying driver mutations across cohorts of

tumour samples is to employ in combination to these tools other

sources of information, such as catalogs of known driver genes, or

the accurate annotation of the functional consequence of

mutations.
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PART III: DISCUSSION

AND CONCLUSION
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DISCUSSION

Gitools

At the time of writing Gitools, we found ourselves with the need to

represent and explore genomic datasets in a very intuitive way,

being able to contextualize the data within the knowledge

obtained from other biological databases such as Biomart, and

needing to perform simple but powerful analysis on it.

Furthermore, we envisioned that if all of these features were put in

a single graphical application, not only us, but also other

collaborators without advanced knowledge in bioinformatics, and

without having to use more advanced tools such as R or other

programming languages, could benefit from it. The relevance of

this work became evident not only by the number of citations to

the paper (currently 61 according to ResearchGate.com) or visits to

its web page (500 sessions per month on July 2011, more than

1000 on July 2015), but specially, for its relevance for the

development of other projects of vital importance for our research

such as IntOGen Arrays (Gundem et al., 2010). Many projects in

bioinformatics loose support just after its main contributor finishes

its PhD and stops working on it, but in the case of Gitools its

development continued beyond my last contributed version, thanks

to the efforts of Michael Schroeder and Jordi Deu-Pons, who did a

great job adding new methods for analysis, new visualization

features, preparing ready-to-explore datasets from TCGA data,

integrating it with the IGV (Thorvaldsdóttir, Robinson, & Mesirov,

2012), as well as optimizing its management of memory and thus
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its capabilities to work with bigger data.

Nowadays technologies for visualization and application

development are moving from desktop platforms to web and

mobile ones, and this is how I see the future development for this

tool and any other one of these characteristics. As a precedent to

this move, some intent to have the rich interactivity of heatmaps

with web technologies has successfully been done by Michael

Schroeder with jHeatmap (Deu-Pons, Schroeder, & Lopez-Bigas,

2014).

A downside of this project is that, as it keep expanding on usability

and visualization features, its development goes beyond the scope

of the research done in the group and require people that can

focus exclusively in the software engineering side, and UX/web

design and technologies. One way to overcome these limitations is

to open its development to allow for external collaboration and

contributions, which we already did by creating a repository in

Github (https://github.com/gitools/gitools).

IntOGen

Integrate experimental data from several sources has not been an

easy task, specially when it required manual curation and

preprocessing of data that had to be coordinated among several

interdisciplinary researchers. Even when, after several iterations, I

was able to develop a simple model for managing experiments in

IntOGen Arrays (based on more complete and complex ones such

as MAGE and FUGE), our efforts to use and develop the
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appropriate ontologies, and develop and document the processes

and conventions, the coordination of individuals to ensure a

common criteria and standard for annotations, and the

communication between the team members with diverse

backgrounds and mental models, was really a challenge

(definitively the way a biologist understands models and reasons

about information is different from the way an engineer does). The

result, a part from several months of delay for the third release of

IntOGen Arrays, was a great experience for all of us who really

understood how important is to keep things as simple as possible,

as well as to narrow the scope for the short to medium term needs

as much as possible. I wish I knew all what I know now about agile

development in software engineering, which I think could also be

applied, and of great value, for research projects.

The previous learning was successful in the development of the

data model for IntOGen Mutations, which was really simple and

easy to understand, and only with a bit of care to normalize the

experimental data, it didn't become an obstacle to our research. As

a result the analysis pipeline became a very valuable tool for

deriving other research results (Rubio-Perez et al., 2015;

Tamborero, Gonzalez-Perez, Perez-Llamas, et al., 2013), and used

by other researchers around the globe through the web portal.

Aside from the challenges from managing the experimental data,

the work related to the integration of several bioinformatic tools,

and the analysis of the data, deserve some attention too. A

computational workflow, also referred to as pipeline, defines the

steps that need to be followed for a certain analysis of a minimum
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complexity, as well as which are the tools and parameters that have

to be used. At the time of working on the first version of the

IntOGen Arrays analysis workflow, I just used makefiles to glue the

steps together, but the source become obscure rapidly and difficult

to understand, as well as difficult to reproduce. By then, too low

level distributed computing technologies such as MPI existed, as

well as some advanced workflow management systems, such as

Kepler (Altintas et al., n.d.), or, Taverna (Oinn et al., 2004) in its

beginnings. But neither of them fitted all the requirements I was

expecting, and inspired by the so called big data technologies

emerging at that time, Hadoop (https://hadoop.apache.org/), I

decided to start the development of my own system using the

P y t h o n p r o g r a m m i n g l a n g u a g e c a l l e d W o k

(https://github.com/bbglab/wok). As a result, I was able to perform

complex analysis for IntOGen in both multi-core computers and

High Performant Computing (HPC) clusters with Sun Grid Engine

( n o w O p e n G r i d S c h e d u l e r a t

http://gridscheduler.sourceforge.net/) o r S L U R M

(https://computing.llnl.gov/linux/slurm/). Furthermore, even some

of my colleges without the knowledge to work with such HPC

systems, were able to develop and use, their own workflows with

Wok.

Nevertheless, I would completely discourage anyone else from

doing the same I did with Wok, basically reinventing the wheel for

distributed data management and analysis. Given the fast pace for

new technologies, methods, and computational solutions to come

and improve current solutions, even when I understand the
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benefits of using common workflow languages and platforms for

integrating diverse scientific tools and promote reproducibility

( C W L a t https://github.com/common-workflow-

language/common-workflow-language, W D L a t

https://github.com/broadinstitute/wdl), I am not sure that the

amount of effort required to successfully implement them, prove its

performance, and promote its adoption, will be worth enough

compared to the more agile alternative of just learn and use

existing tools and computational technologies, proven to be

successful by companies that deal with very big amounts of data

every day (i.e. Google, Yahoo, or Facebook). An example of what I

see as a good move for bioinformatics nowadays is the ADAM

project (Massie et al., 2013) developed by the AMPLab at Berkeley,

and based on Spark, a trending technology for big data and

machine learning processing, supported and contributed by

hundred of engineers around the world. For an interesting view

about computation technologies for science, and some of the

concerns, the following paper and correspondences are worth the

reading (Schadt, Linderman, Sorenson, Lee, & Nolan, 2010, 2011;

Trelles, Prins, Snir, & Jansen, 2011). My view is that cloud and on-

premises resources will co-exist for a while, or eventually become

hybrid. I see that distributed systems, governed by cluster managers

such as Mesos (Hindman et al., 2011) or Google Borg (Verma et

al., 2015), and composed of hybrid CPU-GPU computers for

dealing with both high IO throughput and HPC, will become the

norm to work with massive data, and not that massive if their

learning curve of adoption is not that hard as it is for traditional

HPC computing. By the way, there will be several challenges for
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their adoption in science: (1) Updating the financial institutions

rules to consider cloud computing as a fungible resource and

encourage collaboration and sharing of resources among different

researchers and institutions, (2) Consider computer science and

software engineering people a first class citizen in research groups,

even if they don't produce papers, to lower the barrier for the

adoption of those new technologies by other researchers and

promote technological innovation.

Benchmarking of functional impact predictors

One side product of this work is FannsDB, a database integrating

functional impact scores for all possible punctual variants of the

whole proteome for several prediction tools. Thanks to it, I was

able to reduce the overhead of calculating the scores each time I

generated a new dataset or performed a new test (which

happened quite frequently during the development of the

benchmarking framework). Furthermore, many different datasets

contained common SNVs that would require re-calculating them

each time. Its generation required some time, and the final size was

significative, a total of 241 million records and hundred of

gigabytes of disk space, but once created with the adequate

indices and distributed across the nodes of a cluster, querying for

prediction scores was a matter of milliseconds. Integrating several

prediction scores in a single database is not a novel approach,

dbNSFP (X. Liu et al., 2011; X. Liu, Jian, & Boerwinkle, 2013) is a

file-based database integrating several scores together with

annotations, and I was using it for getting most of the scores. The

reasons I needed to derive a new database is because: (1) I needed
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to query the database in different ways (for example, by protein

coordinates) with more flexibility and performance, thus the data

and the annotations needed to be organized differently, (2) I

needed to generate new scores calculated from the existing ones,

as was the case for Condel and transFIC scores. Even if extracting

and digesting its data was not trivial and required some care to

map its annotations to Ensembl vocabularies for genes, transcripts

and proteins according to my needs, it showed to be a very

valuable resource and saved me a lot of time of getting each of the

predictors scores individually.

FannsDB is not only a database, but also a public web application

(http://bg.upf.edu/fannsdb/) that allows to make queries from lists

of either genomic or protein coordinates for a subset of the

available predictors. It was developed mainly to update the

previous Condel version, which was outdated and having

performance problems. Its initial intention was to serve updated

scores for both projects Condel and transFIC, but due to lack of

time, transFIC was not made public. One possible future work

would be to include an update for transFIC, and expand on the

available predictors for querying.

The results from the benchmarking are not revealing and show

some obvious results such as it is better to use tools specifically

designed for cancer instead of functional impact or conservation

based tools. Some of the difficulties to interpret the results where

related to the need to deal with the overfitting of tools, to either,

catalogs of mutations commonly used by different tools for the

purpose of comparison (such as HumVar), or to known drivers used
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for their training. When identifying driver mutations across cohorts

of tumour samples it is recommended to combine the results of the

prediction tools with other sources of information.

Reproducibility and Open Science

I s tar ted to use IPython Notebook (now Jupyter at

http://ipython.org/) for the benchmarking, and rapidly became

aware of how much useful is this tool for research. It allows to

organize the workflow as if it was a history, where each command

and its results live together in a cell, and the cells are organized like

in a document, with headers and rich formatted explanations.

There are other ways to organize the work, for example I was

previously keeping, together with the source code, “readme” files in

Markdown format (http://daringfireball.net/projects/markdown/),

but using IPython Notebooks represented a step further. It allowed

me to remember and understand all the work that I was doing

more that one year before thanks to have it well organized in

notebooks, as well as publish it.

With no doubt, reproducibility and open science are required

features for research, and together with best practices for software

development in science, should be taken seriously by any PhD

candidate or researcher. Publishing the source code is an example,

it allows for other researchers to understand and review better your

work, as well as reproduce your results. Every one works under

pressure and need the results as fast as possible. The

consequences, specially when the best practices have not been

converted and internalized as habits, derive in not having perfect
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code, documentation and so on and so forth (Baxter, Day, Fetrow,

& Reisinger, 2006; Merali, 2010), but it is understandable, and at

the end of the day, what really matters and make the difference is

whether it is publicly available or not (Barnes, 2010; Nature, 2014).

I have published the source code related to my work, the

notebooks for the benchmarking, and this dissertation in a public

repository, so other researchers interested in my work can re-view

it:

https://github.com/chris-zen/phd-thesis
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CONCLUSION

• We have created Gitools, a tool that allows accessing to

specialized databases in biology, to analyse data

generated by high-throughput technologies, and to

visualise multi-dimensional results with interactive

heatmaps.

• The analysis workflows for IntOGen integrate public

bioinformatic tools (such as Variant Effect Predictor), and

specifically designed tools (such as Oncodrive,

OncodriveFM and OncodriveCLUST), for the identification

of alterations that drive tumorigenesis.

• We have integrated cancer data from several public

repositories and large scale projects, and performed

integrative analysis with IntOGen, revealing lists of genes

that most likely drive tumorigenesis.

• IntOGen analysis results are accessible to other

researchers through its web portal, a Biomart web

service, and Gitools.

• We have developed FannsDB, a database integrating

impact prediction scores for all possible non-synonymous

SNVs of the whole proteome for several tools, and

published a web portal for allowing other researchers to

make queries.
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• The benchmark of several prediction tools, using FannsDB

and proxy datasets, shows that tools specifically designed

for cancer, perform better than general ones, and does

not show a clear recommended tool over the others,

suggesting the need to combine them with other sources

of information.
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