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I. INTRODUCTION 

“A bridge incorporates the creativity of the 

visual arts and the discipline of physical science” 

D. P. Billington  

(Robert Maillart’s Bridges. The 

art of Engineering, p100). 

Bridges in urban areas have in recent times acquired a new function. In addition to simply 

providing a physical connection between two points, they are also expected to create a 

landmark, as a symbol of originality, innovation and progress. 

New geometries for bridges have been devised: arches wind, twist and incline; cables are no 

longer mere structural elements but have become part of the game, suggesting ruled surfaces 

which frame the space; and the asymmetry, structurally astounding, finally overcomes the 

structure in the search for the sculpture (Figure 1). 

Spatial arch bridges (SABs) have appeared in response to this social demand, but no compact 

definition and detailed classification have been given. In spite of the significant number of built 

spatial arch bridges, not enough systematic research studies focused on their structural 

behaviour have been developed. 

These new geometries are most often used in the “bridge laboratory”1 of footbridges and present 

a challenge for the accurate structural behaviour understanding. 

The present doctoral thesis focuses on understanding the structural behaviour of SABs and on 

giving design criteria. Its aim is to fill part of the aforementioned research gap in this bridge 

type. 

For a deck curved in plan, the structural solutions most commonly used employ bearings 

underneath the deck- continuous multi-span girders supported on piers-, or above it- stay-cable 

or hanging bridges usually with eccentric anchorages. Suspending or leaning a curved deck on 

an arch is a bridge type developed quite recently, apart from the first examples employed by 

Maillart. Different solutions have been developed. 

The first approach of an engineer is to find the 3D antifunicular form of the arch for a 
certain loading, which works under compression with no bending moments. Such is the 
approach given in the few researches regarding this subject, namely the Ripshorst bridge 
and the in-depth research of Jorquera (2007). Once found the antifunicular form, the behaviour 
of such structures is already clear. 

However, we are facing a bridge type that has a lot to do with a formal approach to 
bridges and urban landscapes, to architectural design and to solutions with geometries 
often fixed in competitions which did not always give the structural attention which 

                                                           
1 I take the liberty of employing this term, which is very often used by my supervisor, Ángel C. Aparicio, 
based on a conference of J.A. Fernández-Ordóñez and S. Tarragó in the ETS Ing. de Caminos  Barcelona 
(UPC) 
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they require. These determinants often allow no room for employing orthodox, 
antifunicular arch shapes of the loading.  

Different solutions have been developed, some are clearly heterodox and others search for the 

structural orthodoxy, namely the Ripshorst bridge and the in-depth research of Jorquera (2007). 

For arches, structural orthodoxy implies finding the antifunicular form of the loading which 

works under compression with no bending moments. Once found, the behaviour of such 

structures is already clear. However, the structural behaviour is not that obvious, when 

considering more heterodox solutions. Hence, this work is devoted to the structural analysis of 

risky solutions and the proposal of design criteria, which without scarifying formal aspects, 

improve the structural behaviour. 

 

Hence, the present work focuses on finding simple design criteria, available for all 
designers and based on deep structural understanding of heterodox solutions of this 
bridge type. 
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Figure 1: Examples of spatial arch bridges 

The document is divided into chapters according to main subject blocks. Each chapter is divided 

into sections according to the different research studies which have been conducted. There is an 

index, objectives, conclusions, future lines of study and  references for each of the main 

research studies. A compilation of the main objectives, conclusions and future lines of study 

references is presented, for the whole document, in Chapters II, VIII and IX, respectively. 

The analysis method is described specifically for each chapter. For all research studies 3D frame 

models have been employed and analysed with SAP2000. For certain analysis SOFISTIK has 

also been employed. 

A bookmark with the main geometry, load cases and parameters definition for Chapter V is also 

provided, to follow the analysis without having to search the definition given in the same 

chapter. 

The methodology, employed for the different research studies developed in the thesis, is given 

at the beginning of each chapter. 
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To avoid confusion with chapters, annexes are numbered starting with “N”. 

In the following lines the content of each chapter is summarised. 

The objectives of this doctoral thesis are presented in Chapter II. 

The state-of-the-art of this bridge type is presented in Chapter III.A and Annex N1. After 

several research studies which are explained, the SAB definition, variables and classification 

have been detailed, broadened and specified further. 

SABs are defined as bridges in which vertical deck loads produce bending moments and shear 

forces not contained in the arch plane due to their geometrical and structural configuration. 

Moreover, the arch itself may not be contained in a plane. 

A wide compilation of examples of this bridge type has been made (Chapter III. A and Annex 

N1) in chronological order according to their construction date, from Maillart’s first concrete 

spatial arch bridges to the latest designs and materials. 

The aspects still to be studied are spotted. 

Most SABs are steel footbridges. Hence the research has been focused on the structural 

behaviour of steel footbridges under self-weight, uniform loads and temperature and not those 

loads associated with road bridges. Although the structural behavior would be the same, some 

of the studied geometries could not be employed for road bridges, because of the loads larger 

value. 

In order to decide which analysis methods and software should be employed for the present 

research, a state-of-the-art of the existing structural analysis software has been conducted in 

Chapter III.B. The advantages of each software for the needs of the present study have been 

evaluated and compared.  

Different benchmarks have been developed to assure the validity of the analysis methods 

employed in the present research. 

An in-depth study of planar and non-planar Inferior Deck Arch Bridges With Imposed 

Curvature (IDABWIC) has been carried out in Chapter IV and Annex N2. In this type of spatial 

arch bridges the arch and the deck centroid lines are both contained in the same vertical cylinder 

(Figure 2). The aim of the study is to propose the most appropriate design for controlling the 

out-of-plane response. 

In order to understand the behaviour of these arches, different frame 3D models have been 

developed and analyzed with commercial software. The arch definition, the deck and arch plan 

curvature, the arch sag and cross-sections rigidity of arch, deck and hangers, as well as arch 

cross-section area and different hanger/deck and hanger/arch connection types, have been 
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studied as variables under both symmetrical and asymmetrical vertical loading. Both flexible 

and rigid hangers have been analysed. 

An analytical formulation for a simplified hanger model has also been developed. This gives an 

intuitive point of view about the behaviour of this type of bridge and how it can be controlled by 

means of the different variables involved: 

 

 

Figure 2: Inferior deck arch bridges with imposed curvature 

 

A thorough study for different geometries of superior deck true SABs under vertical loading and 

temperature variation has been conducted in Chapters V. A and B. 

The research study in Chapter V.A and Annex N3 deals with the structural behaviour of spatial 

arches with superior deck. Their response under vertical loads and temperature increments is 

analysed and different geometrical configurations and boundary conditions at deck abutments 

are studied. 
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Superior deck arch bridges can suffer important temperature variations. If they are curved in 

plan the most efficient boundary conditions for seism or temperature might be different to the 

ones commonly employed for classical arch bridges.  

  

 (a) (b) (c) 

   

 (d) (e) 

Figure 3: Studied bridge geometries. (a) Vertical planar arch bridge with superior straight deck (reference model); 
(b) Vertical planar arch with superior curved deck; (c) Arch and deck with symmetrical curvature in plan; (d) Arch 
and deck with coincident curvature in plan (imposed curvature); (e) Arch curved in plan with superior straight deck 
(both contained in the same plane) 

A priori, we can think that the curvature might diminish the longitudinal deformations and 

forces due to temperature compared to the straight deck geometries. In this case, it will be useful 

to take advantage of the plan curvature and fix the abutments in a similar way to the common 

practice for other bridge typologies in seismic areas. However, this also introduces other 

internal forces on the arch and it cannot be stated beforehand which boundary conditions are the 

most convenient. Therefore, a close study of the behaviour of the different bridge geometries for 

the different boundary conditions is required. 

In order to analyse the behaviour of these arches, different linear frame 3D models have been 

developed and analysed with a commercial software (Figure 3). 

The purpose of our study is to understand the structural behaviour of different geometries of this 

bridge type and to establish the best boundary conditions at abutments in each case. 
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Vertical planar arch bridges with a curved superior deck are spatial arch bridges (SABs) with a 

very characteristic structural behaviour and many interesting structural and aesthetic 

possibilities. This bridge type is studied in Chapter V. B. 

 

Figure 4: Vertical planar arch bridges with a curved superior deck. Parameters studied. 

A thorough parametric analysis has been conducted in order to establish efficient values of 

different parameters for this bridge type according to different criteria (Figure 4). The objective 

is to minimize the total amount of structural materials. It has also been studied whether different 

criteria proposed by the authors are appropriate to satisfy this objective. For such a purpose a 

piece of software has been developed. 

The election of the value of these parameters highly influences the behaviour of this bridge type. 

It is demonstrated in this chapter that the position and connection of some key points of the arch 

and deck is essential in this bridge type in order to control the structural efficiency. 

An appropriate range of values for the different parameters (arch/deck eccentricity, arch rise, 

arch/deck vertical distance, inclination of struts and the cross-section of the different elements) 

is given and it is established which parameters are key to the bridge behaviour. The changes in 

the structural behaviour according to the different parameters are explained. 

In Chapter VI the stability of SABs with a curved deck is studied and compared with that of 

planar vertical arch bridges with a straight deck. 

The basis of stability analysis of arch bridges is presented in Part A of this chapter, including 

several researches and the present codes for buckling and geometrically non-linear analysis. 

For different models of this bridge type a buckling study has been conducted in Part B of this 

chapter. Their behaviour has been compared with a classical planar vertical arch bridge with a 

superior straight deck.  

A parametric analysis has also been developed, comparing the behaviour of the different SAB 

models. The buckling behaviour of this bridge type is completely different to that of a planar 

vertical arch bridge. Buckling takes place in both planes of the arch at the same time (Figure 5). 

This behaviour has been explained. It is difficult to calculate the out-of-plane buckling load for 

arch bridges and it is even more challenging for this bridge type.  
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Literature and code formulations for the buckling load of arch bridges have been compared with 

the numerical results for this bridge type.  

Buckling loads have also been compared to design loads, assessing whether buckling can be 

disregarded as a main problem in this bridge type. 

 

(a) 

 

 (b) 

Figure 5: SAB asymmetrical buckling shape in both planes for g=20m, f=10m, rlm and rtr, employing 
reference cross-sections (a) Plan view (b) Layout 

For different models of this bridge type geometrically non-linear analyses with and without 

imperfections have been conducted in Chapter VI. B.  

The sensibility to imperfections has also been studied, considering the coded imperfections 

based on the behaviour of planar vertical arch bridges. The results of the analysis also show a 

high sensibility to the arch rise and this effect has been explained.  

The geometrical non-linearities have a high influence on the bridge behaviour.  

As already stated, most SABs are footbridges. Therefore, the dynamic behaviour of this bridge 

type is an important aspect to be considered. The dynamic behavior of this type of footbridges 

has been hence also conducted for a SAB example with curved superior deck in Chapter VII. 

The thesis conclusions are drawn specifically for each chapter and finally summarised in 

Chapter VIII. 

Future lines of study are suggested in Chapter IX. 
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II. OBJECTIVES  

The main objectives of the present doctoral thesis, which deals mainly with Spatial Arch Bridges 

(SABs) as pedestrian footbridges are detailed in the following lines. 

In general, the present doctoral thesis focuses on understanding the structural behaviour of SABs 

and on giving design criteria. 

In relation to the different morphologies projected and/or constructed up to the present date, the 

aim of the thesis is to: 

• Define what we understand by spatial arch bridges. 

• Establish the different variables involved. 

• Provide a classification for the different types of SAB. 

• Summarise the present knowledge of this bridge type, giving a brief review about how the 

different examples have emerged. 

• Explain the basic principles of behaviour and point out the research studies which have 

been carried out so far. 

In relation the structural and morphologic bridge type of Inferior Deck Arch Bridges With 

Imposed Curvature (ID-ABWIC), it intends to: 

• Define possible geometries for imposed curvature arch bridges. 

• Study if non-planar geometries can be approximated by equivalent arches contained in an 

inclined plane. 

• Establish which geometrical and mechanical variables influence the structural behaviour of 

these arch bridges. 

• Find out which is the best way to control the arch behaviour, either with rigid arches or a 

rigid hanger-deck system. 

As far as the geometries of SABs with a superior deck concerns, the main objectives of the 

present doctoral thesis are to study: 

• the global structural behaviour of different geometries of spatial arch bridges with 

superior deck under a vertical uniform loading and a temperature increment. The aim is to 

decide which bridge geometries help to improve the structural behaviour of these bridges. 

• the suitability of different boundary conditions for the different bridge geometries under 

the considered loading cases. 
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When considering SABs with a superior curved deck, the objectives are to: 

• understand the changes of the structural behaviour of this bridge type due to changes the 

different parameters (e, f, v, β1, EI, GJ, z, gA) which have been previously described  for 

different deck curvatures (g) (Figure 1) 

• establish a range of the best combination of the studied parameters in order to minimise 

the material employed for different spatial arch bridges 

• study which will be the best indicator in order to minimise material 

• assure whether the minimisation of bending moments is equivalent to the minimisation of 

stresses and if the latter corresponds to minimising the total mass of the bridge 

 

Figure 1: Nomenclature of variables.  

In relation to buckling analysis, the purpose of the study is: 

• to analyse the influence of different parameters (f, β, EI and GJ of arch, struts and 

deck) on the buckling shape and loading of spatial arch bridges with a superior 

curved deck (SABWSCD) with a planar vertical arch with g=0 and g=20m and 

e=16,57m  

• to analyse the buckling behaviour of IDABWIC with g=20m and f=20m and 

different cross-sections 

• to compare the buckling shape and loading of SABs with that of equivalent (ie: 

with the same arch rise (f) and span (L) values) planar vertical arch bridges with a 

straight deck  

• to evaluate the validity of different existing formulations for the determination of 

arch bridge buckling values 

• to evaluate the worst live load distribution for SABs buckling 
                                                           
1 the inclination of the struts in longitudinal view. See chapter V. B 
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Regarding the influence of geometrical non-linearities in the structural behaviour, the objectives 

are to: 

• compare the effects of geometrical non-linearities on planar arch bridges with a straight 

deck and on SABs with a superior curved deck. 

• compare the effects of geometrical non-linearities on SABs with a superior curved deck 

with different f values. 

• evaluate the sensitivity of SABs with a superior curved deck to the values of 

imperfections stated in EC3 

• evaluate whether the design cross-sections obtained from a linear analysis (LA) are still 

valid when considering geometrical non-linearities 

Finally, regarding the dynamic behavior of footbridges of the studied structural type, it is 

pretended: 

• to check the dynamic behavior of the geometry concluded in previous chapters as most 

efficient for SABWSCD with a planar vertical arch under design dynamic loads of one of 

the present codes or guidelines and also the behaviour under the dynamic load case of a 

single pedestrian and of a small group. 

• to compare its dynamic behaviour with that of a planar vertical arch with straight deck 

with an equivalent span and rise. 

Many research studies have already been conducted to develop different methodologies to obtain 

antifunicularity (eg: specifically for SABs: Jorquera, 2007, Todisco, 2014 and Lachauer, 2014). 

Developing a new methodology is hence not the point of interest of the present study. 

The aim of this doctoral thesis is to clarify the structural behavior of SABs, establish design 

criteria and evaluate the importance of geometrical non-linearities and also check their dynamic 

behavior when employed as footbridges. 

Once the main key parameters have been identified and design recommendations have been 

drawn, the most efficient solutions obtained in this thesis could be optimized employing the 

already developed techniques to obtain antifunicularity for a further research or for design. 
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1. INTRODUCTION 

This chapter is a broadened and further detailed version of the paper published in the Bridge Engineering 

Journal of the Institution of Civil Engineering in 2011 by the present author and her supervisors (Sarmiento-

Comesías et al, 2011). 

Bridges in urban areas have in recent times acquired a new function. In addition to simply providing a 

physical connection between two points, they are also expected to create a landmark, as a symbol of 

originality, innovation and progress. 

New geometries for bridges have been devised: arches wind, twist and incline; cables are no longer mere 

structural elements but have become part of the game, suggesting ruled surfaces which frame the space; and 

the asymmetry, structurally astounding, finally overcomes the structure in the search for the sculpture (Figure 

1-1). 

Spatial arch bridges (SAB) have appeared in response to this social demand, but no compact definition and 

detailed classification have been given. The development of these new structural forms has not been 

underpinned by research either. 

All of this is possible due to current technological development. Faster computers enable close to reality 

simulations and highly complicated analysis. New CAD/CAM technologies make buildable shapes that would 

otherwise be impossible to manufacture. These developments have broadened the design possibilities. 

However, the architectural and engineering characteristics must be in harmony in order to optimize the 

possibilities offered by both the new materials, and the drawing, calculation and construction methods. 

However, the development of these new structural forms has not been underpinned by research. Few studies 

have been carried out so far on spatial arch bridges (Jorquera, 2007 and 2009). After six International 

Conferences on Arch Bridges, this bridge type has still not been considered, and only some examples have 

been presented. A deeper study is needed in order to clarify their behaviour and stability, to broaden and 

optimise the design possibilities and to establish design criteria. Before such a study is undertaken, it is 

essential to clearly define this bridge type and revise the state-of-the-art, including both the research studies 

and some of the examples which have been completed. 

In the present chapter Spatial Arch Bridges are defined. The different variables and geometries that create 

such a structural configuration have been studied and classified. 

A compilation of examples of this bridge type has been made in chronological order according to their 

construction date, from Maillart’s first concrete spatial arch bridges to the latest designs and materials. A 

wider compilation of examples is also given in Annex N1 in Table format with the main data of each bridge. 

This chapter is a broadened and further detailed version of the paper published in Special Issue on Arch 

bridge of the Bridge Engineering Journal of the Institution of Civil Engineering by the present author and her 

supervisors. 
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Figure 1-1: Campo de Volantín footbridge in Bilbao (see Annex N1 for further details) 

2. OBJECTIVES 

The objectives of this chapter are to: 

• Define what we understand by spatial arch bridges. 

• Establish the different variables involved. 

• Provide a classification for the different types of SAB. 

• Summarise the present knowledge of this bridge type, giving a brief review about how the 

different examples have emerged. 

• Explain the basic principles of behaviour and point out the research studies which have been 

carried out so far. 

3. DEFINITION 

SABs are defined, for this document and all the papers from this document derived and published, as bridges 

in which vertical deck loads produce bending moments and shear forces not contained in the arch plane due to 

their geometrical and structural configuration. Moreover, the arch itself may not be contained in a plane.  

Under the global concept of “spatial arch bridges” we understand both, bridges supported by arch ribs and by 

shells. 

The previously given definition applies to SABs employing arch ribs. Their definition can be developed 

further: “true spatial arch rib bridges” are those in which vertical deck loads centred on the deck induce 

internal forces not contained in the arch plane, due to their geometrical and structural configuration (Figure 

4-3). The spatial behaviour of the rest of spatial arch bridges is only activated by vertical loads which 

introduce torques also on the deck. From a geometrical standpoint, arch bridges which are longitudinally 

asymmetrical in plan are always true SABs (Figure 4-3 in section 4.2). 

Non-true SABs are those arch bridges which are longitudinally symmetrical in plan (and therefore the arch 

and deck have a symmetrical cross-section) with more than one deck (eg: Figure 4-4c and d in section 4.2), 

more than one arch (inclined non-braced arches such as in the examples shown in Figure 4-4b in section 4.2) 

or more than one family of hangers (Figure 4-4b) or struts (eg: the arch bridge across high-speed road R52 
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near Bratcic (Strasky and Husty, 1997)). The spatial behaviour of non-true SABs is only activated by the 

eccentricity of the vertical loads on the deck or the self-weight of the inclined arches. 

Classical planar vertical arch bridges which have a spatial behaviour under wind loads are not considered 

SABs. Neither are those vertical planar arch bridges with a straight deck and one centred family of vertical 

rigid struts or hangers that introduce horizontal shear forces in the arch under eccentric vertical loads on deck. 

 

Shell arch bridges have a completely different configuration and structural behaviour. In such bridges the 

main bearing element is an arch consisting of a shell with double curvature (Figure 4-5). 

4. SPATIAL ARCH BRIDGE TYPES 

Many variables are involved in the definition of a SAB. As a consequence of this, it is difficult to classify this 

bridge type because several criteria could be used. 

Most SABs are footbridges in which either an aesthetical challenge is pursued or a curved deck is required 

due to accessibility criteria. For short and medium spans, arch bridges may be justified for aesthetical, 

environmental or clearance reasons, as the best alternative, allowing a potential SAB solution. For larger 

spans, under 600m, arches compete with cable-stayed and suspension bridges. 

Most SABs have been built with steel and composite (steel and concrete) sections. The second most employed 

material is structural concrete. In some particular cases other materials have been used. Stainless steel was 

employed in the York Millenium bridge, UK, in 2001 (Firth, 2002), the Celtic Gateway bridge in Holyhead 

Town, UK, in 2005 and the stainless steel-GFRP pedestrian bridge in Sant Fruitós, Spain, in 2009. The 

Leonardo da Vinci bridge in Aas, Norway, was built in 2001 with timber (glulam curved beams) (von Buelow 

et al, 2010). Ultra-high performance concrete has also been used in the case of a research study for shell arch 

bridges (Strasky, 2008 and Terzijski, 2008). 

4.1 Variables definition 

There is a high number of variables that may be combined in many different ways. However, not all the 

combinations are structurally or geometrically possible. In addition, for some possible combinations, no 

bridges have been built yet. 

The different variables can be observed in Figure 4-1 and are defined as follows: 

• Type of arch members: ribs and shells 

• Geometrical shape 

o Number of arches, decks, and sets of hangers (when the deck is beneath the arch) or struts 

(when the deck is over the arch)  

o Number of elements (hangers and/or struts) per set and spacing between them. 

o Arch and deck spans (LA and LD respectively), horizontal arch and deck sags (gA and gD 

respectively), arch rise (fA), geometric shape of the arch. 

o Angular tilt of the arch from the vertical plane (ω) 

o Relative position between the arch and deck: 

� In elevation: it can be determined by the position of the deck in relation to the arch; 

the definition can be based on a relationship between the arch rise fA and the height of 
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the deck measured from the arch springings zD (Figure 4-1c). The bridge can have an 

‘inferior-deck’ (zD=0, i.e. a bridge with a spatial arch over the deck), a ‘superior-

deck’ (zD≥ fA, i.e. a bridge with a spatial arch under the deck) or an ‘intermediate-

deck’ (0<zD< fA, i.e. a bridge with a spatial arch beneath and above the deck). For 

these definitions, inferior, superior, and intermediate only have a geometrical 

meaning, related to the position of the deck in relation to the arch.  

� Plan eccentricity between the arch springings and the deck abutments (e) 

� Horizontal offset between the arch crown and the deck mid-span section (d) 

� Rotation of the arch in plan in relation to the alignment of the deck (θ) 

• Material  

• Support conditions for both the arch and the deck at the abutments 

• Deck-supporting members (hangers and struts): 

o Slope of the deck-supporting members (with or without a network configuration) 

o Distances from either the hanger anchorages or the strut connections to the shear centre of the 

cross-section of the arch (bAy horizontallly and bAz vertically) and the deck (bDy horizontally 

and bDz vertically) 

o Flexural stiffness of the deck-supporting members: rigid (mainly, either steel profiles for 

inferior-deck SAB or steel or concrete members for superior-deck SAB) or flexible (mainly 

stays and cables for inferior-deck SAB) members 

o The prestressing of the deck-supporting members: active (mainly post-tensioned hangers) or 

passive (non pre-stressed) members 

Geometrical variables are a clear way of classifying bridges. Nevertheless, from a structural standpoint, either 

geometrical o mechanical dimensionless ratios are more appropriate: 

• Geometrical ratios: 

o Ratio between the distance from the deck shear centre to the axis joining the deck abutments 

and the span of the deck: (gD± bDy)/LD. Similarly for the arch: (gA±e±bAy)/LA 

o Ratio between the arch depth and width (HA/BA). This coefficient is required due to the 

relevance of the out-of-plane behaviour of the arch 

o The deck/span ratio: HA/LA; HD/LD 

o An appropriate relationship between fA, e, gD and gA might be relevant for defining the spatial 

shape of the arch thrust line (i.e. the anti-funicular shape of the spatial arch) 

• Mechanical ratios: 

o Arch/deck flexural rigidity ratio: (EA·IA)/(ED·ID) 

o Flexural and torsional rigidity ratio (for both the arch and the deck): (E·I)/(G·J) 
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(a) 

 
(b) 

 
(c) 

Figure 4-1: Variables’ nomenclature: a) Vertical arch with curved inferior deck; b) Inclined arch with straight inferior 

deck; (c) Rotated arch with intermediate deck 
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4.2 Classification and examples 

Many types of classification can be made due to the high number of variables. Some variables defined in 4.1 

appear also in classical vertical arches contained in a plane. Therefore, an interesting classification would be 

one that considers the variables intrinsic to SABs. Moreover, the classification criteria may either be 

morphological or structural. Morphological criteria will also lead to a good structural classification and they 

are visually clear. 

A scheme of a possible classification of SABs is shown in Figure 4-2. A set of different levels is considered. 

The levels in the flowchart have been numbered from 1 to 5 in order to avoid repetitions of the same 

information in the different branches.  

Firstly, SABs can be divided into two large groups: 

• Spatial arch ribs (Figure 4-3 and Figure 4-4): arches in which the cross-section of the arch has a 

width/span and depth/span ratios low enough for the arch to be accurately analysed with frame 

elements with 6 degrees of freedom per node. 

• Shell arches (Figure 4-5) arches in which the cross-section of the arch has a width/depth and 

width/span ratios large enough for requiring an analysis with shell elements. The arch is a roof-like 

structure. 

Spatial arch ribs can be classified into longitudinally asymmetrical (Figure 4-3) and symmetrical arches 

(Figure 4-4), which can in turn be sub-classified according to the relative vertical position between the arch 

and the deck (level 1), the deck curvature (level 2) and the number of arches (level 3). Finally, they are 

classified according to the shape of the arch and the deck and their relative position (levels 4 and d, Figure 

5-2). 
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Figure 4-2: Spatial arch ribs classification scheme  

Regarding spatial arch ribs, the following aspects should be clarified: 

• Multi-bridges: these bridges have multiple (at least three) convergent decks, each of which may 
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be supported by, or on, an arch. The only already designed examples are tri-bridges, such as the 

Sanchinarro shopping-mall access bridge by J. J. Arenas in Madrid (J. J. Arenas, 2005) or the project 

of the Hacking Ferry bridge, also called Ribble Way, by Wilkinson Eyre, in Lancashire (Firth and 

Kassabian, 2001). 

• Planar arches: these arches are contained in a vertical or inclined plane. This geometrical 

configuration allows the direct projection of the internal forces into two orthogonal planes, when 

employing arch cross-sections symmetrical on the arch plane. 

• Non-planar arches: these are not contained in a plane. Even if a circular arch cross-section is 

employed, internal forces cannot be projected into two planes because internal forces are coupled. 

• Arch bridges with imposed curvature (ABWIC). In these SABs, the arches are forced to have the 

same curvature in plan as the deck. Therefore, the arch and deck centroid lines are contained in the 

same vertical cylinder. 

• They can have an inferior or superior deck (IDABWIC and SDABWIC). In IDABWIC, the deck 

is located under the arch and supported by vertical hangers which do not restrict the vertical clearance 

(Jorquera 2007). ABWIC can have either planar (inclined arch) or non-planar (Sarmiento-Comesías et 

al, 2010) 

• A very scarce number of this kind of arches. Only a few bridges of this type have been built so 

far (see section 5). 

• Arch bridges longitudinally symmetrical in plan with two or more braced arches do not have a 

spatial behaviour under vertical loads, whereas asymmetrical ones can be braced without losing the 

spatial behaviour that characterises SABs. 

• Longitudinally symmetrical bridges with one arch perpendicular to the deck in plan. This takes 

place in the limit of an asymmetrical bridge with a rotated arch in plan in relation to the deck 

alignment. When it becomes symmetrical, with θ≈90, it should not be considered an arch bridge, but a 

cable-stayed bridge with an arch-shaped pylon. Nevertheless, the arch would behave like a spatial 

arch. 

  
 (a) (b) 
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 (c) (d) 

 
(e) 

   
 (f) (g) 

Figure 4-3: Longitudinally asymmetrical inferior deck spatial arch bridges (see Annex N1 for further details): 

One-arch bridges:  (a) Eccentric vertical planar arch with rigid hangers: Ondarroa Port bridge;  
 (b) Inclined planar eccentric arch with straight deck: La Alameda bridge ;  
 (c) Inclined planar arch with curved deck: Gateshead Millenium bridge (Source: 

Gifford. company responsible for the structure of the bridge. Reproduced by kind 
permission of Nolan Mills);  

 (d) In-plan rotated arch: Hulme arch bridge (Source: Wilkinson Eyre);  
 (e) ID-ABWIC: Galindo bridge.  

Multiple-arch bridges:  (f) displaced arch crown and rotated arches: Nordsternpark bridge (Source: Nicolas 
Janberg 2005. Reproduced by kind permission of Structurae (publisher)) (Source: 
Stefan Polónyi. Reproduced by kind permission of the author);  

 (g) convergent braced arches: Dreiländer bridge (Reproduced by kind permission of 
Hans-Peter Andrä). 
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 (a) (b) 

  
 (c) (d) 

Figure 4-4: Longitudinally symmetrical inferior deck spatial arch bridges (see Annex N1 for further details): 

One-arch bridges:  (a) In-plan rotated arch: Miho Museum bridge (Reproduced by kind permission of 

Massivbau, TU Berlin).;  

 (b) Two decks: Logroño bridge (Reproduced by kind permission of Javier Manterola).  

Multiple-arch bridges:  (c) Two convergent arches: Peraleda bridge (Source: AIA. Reproduced by kind 

permission of Ramón Sánchez de León);  

 (d) divergent arches: James Joyce bridge 

Not all the arch bridges which look like a shell will behave like one structurally. A possible structural division 

is: 

• Bridges in which the arch works like a shell and supports all the bridge loads (the deck can be 

either inferior or superior, Figure 4-5 (a) and (b)). 

• Spatial arch rib bridges additionally loaded with a roof shell. Morphologically they look like 

shell arch bridges but the main loads are resisted by an arch rib. 

• Bridges in which the deck works like an arch shell (Figure 4-5 (c)). 

• Bridges with double-arch systems braced by a prestressed membrane acting like a roof (Figure 

4-5 (e)). This bridge type has not yet been designed but it is a very interesting option. 

Very few shell arch bridges have been built so far (Nicoletti, 1999, DeLucchi, 2010 and Corres et al 2010 and 

2011). Only a small number of projects and studies.  

Structures of a bridge with a roof shell might be misleading, because the roof will support its own weight but 

not the bridge loads. These bridges are obviously not included in this classification type. 
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(a) 

   
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 4-5: Shell spatial arch bridges (see Annex N1 for further details): 

(a) Inferior deck shell arch bridge: Project of pedestrian bridge in StHelier (Reproduced by permission of Jiri 
Strasky) 

(b) Superior deck shell arch bridge and arch used as pathway too: Bridge over Basento river.  

(c) Shell arch acting as pathway: Leamouth (Reproduced by permission of Jiri Strasky). 

(d) Geodesic shell arch: Bridge of Peace (Reproduced by kind permission of Michelle De Lucchi) 

(e) Studies of prestressed membranes (Reproduced by permission of Jiri Strasky) 
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5. BRIEF HISTORICAL REVIEW. EXAMPLES AND EVOLUTION 

Over 100 spatial arch bridges have been designed so far (Sarmiento-Comesías et al, 2009). In the present 

chapter, only some representative examples of the different types, mainly the first and latest ones, are referred 

to. 

The concept of spatiality has appeared in some masonry arch bridges, such as skew arches, succession of 

arches which describe an angle in plan view, and tri-bridges. In all of them, the spatial thrust line is contained 

in the bridge cross-section. Leonardo da Vinci in 1502 had the foresight to design more slender masonry 

spatial arches, as his sketches for the Golden Horn bridge attest. His clear understanding and innovative 

thinking, significantly ahead of his time, led to the design of a true spatial rib arch bridge. His design was 

eventually built in 2001, in Aas, Norway, with timber rather than stone. It is called the Leonardo da Vinci 

bridge (Allied Arts Foundation 2001). However, spatial masonry arch bridges are not included in the 

definition of SABs considered in this document. Interest is focused on bridges built with materials which 

resist bending forces and in which live loads may cause the pressure line to fall out of the cross-section of the 

bridge. 

The first true SABs were deck-stiffened arch concrete bridges designed by Robert Maillart (Billington, 1997), 

a pioneer of this bridge type. The Ziggenbach bridge (Figure 5-1a), was the first to be completed in 1924 in 

the central east side of Wägital lake in Schwyz, Switzerland (Billington, 1997). It comprises a straight-in-plan 

concrete arch bridge and a curved-in-plan superior deck. The demolished Landquart rail bridge also belongs 

to the same bridge type (Billington, 1979). The Bohlbach bridge (1932, Figure 5-1b), with a 14,4 m span, was 

the first one to have an arch with an axis curved in plan (Billington, 1997), whereas the Schwandbach bridge 

(1933, Figure 5-1c) was the first with an imposed curvature. It spans 38 m over the Schwandbach creek in 

Switzerland and consists of a polygonal-profile arch (defined as Stabbogen by Maillart) with a constant 

thickness of 0.2m, connected to the deck only for the central 2.8m of the span (a much lower length than the 

previous and shorter Bohlbach bridge). The arch splays out at the banks to meet the foundations (Billington, 

1979). 

All of these first spatial arch bridges are superior deck-stiffened arch concrete bridges that were designed by 

Robert Maillart (Laffranchi and Marti, 1997), not only pioneer of this bridge typology, but also an engineering 

genius. 

 
 (a) (b) (c) 

Figure 5-1: (a) Ziggenbach bridge (Source: Yoshito Isono 1998. Reproduced by kind permission of Structurae 

(publisher)); (b) Bohlbach Bridge; (c) Schwandwach Bridge. See Annex N1 for further details. 

 

At the same time many different examples of convergent braced symmetrical arches with inferior deck were 

built too. 
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It took over 30 years for the first shell arch bridge to appear. In 1969, Sergio Musmeci built what is believed 

to be the first and only concrete shell arch bridge with a superior deck. It is located in Potenza, Italy, and 

crosses the Basento river (Nicoletti, 1999). 

In 1987 the construction of the Felipe II or Bac de Roda bridge, in Barcelona, Spain, which was designed by 

Santiago Calatrava (Figure 5-2) was completed. It is the first symmetrical double-arch non-true SAB. This 

bridge comprises two non-braced sets of arches, which are themselves asymmetrical braced double arches. 

Calatrava has designed the highest number of SABs since his first true spatial arch bridge design, the Gentil 

Footbridge in 1987. Most of them are inclined eccentric steel arches with either a curved or straight inferior 

deck. Examples are the Devesa footbridge in Ripoll and the Port of Ondarroa bridge (Figure 4-3 (a)), Spain, 

both built in 1989; la Alameda bridge (Figure 4-3 (b)) in Valencia, Spain, built in 1991; the Europe bridge, in 

Orléans, France, built in 2000 (Datry, 2001 and Hoeckman, 2001); the Observatory bridge in Liège, in 

Belgium, built in 2002 (Verlaine et al 2001); the Volantín footbridge (Flaga and Januszkiewicz, 2011); and the 

recent Reggio Emilia inclined and skew arch, in Italy, built in 2006. Inclined eccentric arches with inferior 

deck have also been widely used by other designers (some examples are described by Firth, 2001; Strasky, 

2005 and Arenas, 2005). 

 
Figure 5-2: Bac de Roda bridge (see Annex N1 for further details) 

From the late 1980s, the use of bridges as city landmarks became widespread, and more examples of this 

bridge type are proposed. The search for a new millennium symbol enhanced the aesthetical power of spatial 

arch bridges and generated several examples. 

In the 1990s a new concept was introduced: the arch rotated in plan in relation to the deck alignment. Some 

examples of this type are: Nordsternpark (Figure 4-3 (f)), built in 1996; the TZU footbridge, built in1997; the 

Hulme arch bridge (Figure 4-3 (d)), , built in 1997, which has become a symbol of Manchester (Hussain and 

Wilson, 1999); the Charvaux footbridge, and the impressive multiple-arch Juscelino Kubitschek bridge 

(Almeida et al, 2003), both built in 2002; and the more recent Te Rewa Rewa bridge, in New Plymouth, built 

in 2010. 

In 1998, the construction of the Gateshead Millennium bridge over the Tyne was completed. It is the first and 

only spatial arch movable bridge (Figure 4-3c, Johnson and Curran, 2003, Curran, 2003 and Butterworth et al, 

2003). One year later, the Ripshorst bridge (Figure 5-4) was completed (Schlaich and Moschner, 1999). It has 

a non-planar and anti-funicular arch (i.e. an arch in which the thrust line follows the arch centroid line, and 

therefore the arch works mainly under compression for a certain loading condition). 
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Figure 5-3: Juscelino Kubitschek bridge in Brasilia, over the lake Paranoá, Brazil, 2000-2002. Three arches rotated 

according to a vertical axis. (Reproduced by kind permission of Lukas Kohler). See Annex N1 for further details. 

 

Figure 5-4: Ripshorst bridge (Reproduced by kind permission of Mike Schlaich). See Annex N1 for further details. 

In the same period, the first divergent arches were employed: St James Garden footbridge in London, 1995; 

Butterfly bridge in Bedford, 1998 or Friends bridge in London, 1998. More recent examples include: the 

Churchill way footbridge in Hampshire, 2000-2003; the James Joyce bridge in Dublin, 2003 (Figure 4-4 (e)); 

and the Ponte della Musica in Rome, 2011 (Liaghat et al, 2011). There are fewer examples of asymmetrical 

divergent arches, such as the Celtic Gateway Bridge in Wales, 2003-2005, and the anti-funicular Nanning 

Butterfly tied-arch bridge in Guangxi, 2009 (Cheng et al, 2010). 

Some examples of symmetrical arch bridges with several decks are the bridge over the Guadalentín river in 

Lorca, Spain, 2002 (Manterola et al, 2005) and the Father Bernatek's footbridge over the River Vistula in 

Cracow, Poland, 2010 (Flaga and Januszkiewicz, 2011), both with two decks, and the Logroño bridge (Figure 

4-4b), Spain, 2003, with three decks (Manterola, 2001). 

The structural schemes conceived by Maillart for his deck-stiffened SABs with imposed curvature were not 

subsequently used until Manterola designed the Endarlatsa bridge (Figure 5-5) and the Contreras bridges. 

Manterola contributed to the development of this structural type extrapolating Maillart’s scheme from 

superior- to inferior-deck arch bridges. The bridge over the Galindo River, in Bilbao (Figure 4-3 (e), Spain 
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(Manterola et al, 2009 and 2011), is the first inferior-deck spatial arch bridge with imposed curvature, in 

which the arch has a double hanger system. 

 
Figure 5-5: Endarlatsa bridge (Reproduced by permission of Javier Manterola). See Annex N1 for further details. 

Musmeci’s shell arch superior deck bridge has still not found a successor. Nevertheless, several studies, 

models and designs of shell arch bridges have been developed by Strasky (Figure 4-5 (a), (c) and (d)), 

although they have not been built yet (Starsky and Kalab, 2007, Strasky, 2008 and Strasky et al 2010). 

Matadero and Invernadero footbridges (Figure 5-6) are the first built shell arch bridges with an inferior-deck 

(Corres et al 2010 and 2011). In 2010 the first geodesic shell arch bridge, the bridge of Peace (Figure 4-5 d), 

was built in Tbilisi, Georgia (De Lucchi, 2010). 

 
Figure 5-6: Invernadero footbridge. See Annex N1 for further details. 

A great range of ideas and combinations of variables is still floating in the horizon, to be discovered, designed 

and constructed. 
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6. RECENT STUDIES ON THE STRUCTURAL BEHAVIOUR OF SABS 

There are very few research studies on the behaviour of this bridge type. 

A broad state-of-the-art review has been carried out, including the six international conferences on arch 

bridges held so far (1995, 1998, 2001, 2004, 2007 and 2010). Several papers briefly describe the arch 

behaviour for specific examples but very few tackle SABs as a bridge type. The research studies carried out 

so far are not wide enough to establish design criteria. 

Non-linear behaviour of spatial arch bridges with superior deck and imposed curvature bridges have been 

very briefly studied (Verlaine et al, 2001; Liaghat et al, 2011 and Sarmiento-Comesías et al, 2011a). The effect 

of temperature on these bridges has only been studied for some specific subtypes (for example the Nanning 

bridge by Cheng et al, 2010; and a general research study of SABs with superior decks by Sarmiento-

Comesías et al, 2011b). The recent analysis methods to obtain anti-funicular arches for SABs do not converge 

for some cases (Jorquera, 2007) and several variables still need to be studied. Many other formfinding 

software could be applied, for example employing graphic statics with a computer aided design software 

together with a parametric modelling plug-in and genetic algorithms (Lachauer, 2011). However, this 

approach neglects the material stiffness, the structural deformation, and the potential structural instability 

(buckling). 

Jorquera (2007) conducted the first comprehensive research study of this bridge type, giving a first definition, 

variables and classification. Jorquera’s research included the study of the linear behaviour of vertical planar 

arches with active flexible hangers and an inferior deck SAB with different deck curvatures. He also 

examined the effect of the arch/deck eccentricity in plan for a given curvature. For straight decks, he studied 

the behaviour of the arch when varying its inclination. The effect of hanger eccentricity with respect to the 

shear centre of the deck is also analysed. He coded a program to obtain anti-funicular arches for inferior- and 

superior-deck SABs with pinned hangers. Although Jorquera carried out a wide and interesting study for 

different variables, his research only partly clarifies the behaviour of spatial arch bridges. This research is not 

wide enough to establish design criteria. The effect of temperature on these bridges is not studied; non-

linearity of spatial arch bridges with superior deck and imposed curvature bridges are only briefly studied; the 

antifunicularity program does still not converge for some cases and several variables are still to study. 

Antifunicularity is now a theme in vogue, since new CAD/CAM technologies make buildable shapes that 

would otherwise be impossible to manufacture. There are several other studies employing different theories 

for finding anticunicularity for SABs, namely with static graphics (Lachauer, 2014) and with genetic 

algorithms (Todisco, 2014).  

After several research studies which are explained in the present document, the SAB definition, variables and 

classification have been detailed, broadened and specified further in the present chapter. 

Spatial arch bridges are subjected to important bending moments (as presented by specific case studies: 

Hussain and Wilson, 1999 and Johnson and Curran, 2003) and torsions (as presented by specific case studies: 

Manterola, 2001 and Verlain et al, 2001) and have low axial forces (Jorquera, 2007). 

For vertical or inclined planar arches with a symmetric cross-section in relation to the arch plane, an intuitive 

way of understanding their behaviour is by means of uncoupling in-plane and out-of-plane behaviour. In-

plane it works like an arch: axial forces and in-plan bending moments are coupled. Out-of-plane, it works as a 

so-called balcony-beam, i.e. a fully restrained curved beam with the loads acting perpendicular to the plane 

containing the beam centroid line. For the latter, the torsional moments and out-of-plane bending moments are 
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coupled. Depending on the relevant ratios between different variables, either the arch or the balcony-beam 

behaviour is enhanced. 

When either the arch is not contained in a plane or the cross-section is not symmetrical in relation to the plane 

of the arch, this simple approach is no longer possible. 

It can be intuitively understood that the higher either the arch plan curvature or the angle between the plane 

containing the arch and the hangers/struts, the higher the out-of-plane effects, i.e. the arch behaviour 

diminishes and the balcony-beam behaviour increases. It has been demonstrated that when employing 

mechanisms that increase the horizontal stiffness of the system, the behaviour improves (Laffranchi and 

Marti, 1997, Jorquera, 2007 and 2009, Manterola et al, 2009). 

Nevertheless, even if it is possible to separate the behaviour into two planes, the behaviour is not always 

obvious and predictable, because the relationship between bending and torsional rigidities, the hanger/struts 

connection types and eccentricities, and the support conditions of the arch and deck at the abutments, play a 

fundamental role in the arch behaviour. 

In conclusion, spatial arch bridges not only prove to be architecturally interesting, but also present reasonable 

structural behaviour when employing a geometry that enhances the arch/deck interaction and the adequate 

support conditions for both the deck and the arch at the abutments. Moreover, the deck curvature is 

advantageous in order to diminish the axial forces in the deck caused by temperature increments. 

Considering the few references on the subject, the wide range of variables and the recent popularity of this 

bridge type, it is concluded that further research is necessary. 
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7. CONCLUSIONS 

In this chapter spatial arch bridges have been fully defined and classified, and the variables that define both 

the geometrical and structural configuration have been presented. 

• The spatial arch bridge type has its origins in some of Maillart’s bridges built at the beginning of 

the 19th century, whose rationale was based on functional considerations. Its use has reached its peak 

in the 1990s, becoming increasingly popular in urban areas as a means of creating city landmarks. 

• In spite of the significant number of built spatial arch bridges, not enough systematic research 

studies focused on their structural behaviour have been developed. 

• Existing research studies demonstrate the relevance of the out-of-plane internal forces (i.e. the 

behaviour as balcony-beam) in spatial arch bridges. 

• Many research studies have been conducted to develop different methodologies to obtain 

antifunicularity. 

• Recent researches do not fully clarify the behaviour of spatial arch bridges yet 

• No design criteria recommendations have been given yet. 

• The effects of temperature, non-linearity, buckling and dynamic research studies have not been 

conducted yet. 

• Many lines of research are currently open in this field in order to clarify linear and non-linear 

behaviour, to establish design criteria and to optimize the bridge behaviour. 
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Notation 

α angle between the plane which contains the arch and the vertical hangers 

f arch vertical rise 

gA, gD horizontal sag of the arch and the deck, respectively 

LA, LD  span of the arch and deck, respectively 

IA, ID balcony-beam flexural rigidity of the arch and the deck, respectively 

JA, JD torsional rigidity of arch and deck respectively 

EA, EDelastic moduli of the arch and the deck, respectively 

G shear modulus 

zD height of the deck measured from the arch springings 

d horizontal offset between the arch crown and the deck mid-span section 

e plan eccentricity between the axis of the arch at the springings and the axis of the deck at the abutments 

BA arch width  

HA,HD depth of the arch and the deck, respectively 

θ rotation of the arch in plan in relation to the deck alignment 

ω  angular tilt of the arch from the vertical plane 

bAy, bAz, bDy, bDz horizontal and vertical distances from the hangers anchorages to the shear centre of the cross-

section of the arch and deck, respectively 

 

Acronyms 

IDABWIC Inferior-Deck Arch Bridges with Imposed Curvature 

SAB Spatial Arch Bridge 

SDABWIC Superior-Deck Arch Bridges with Imposed Curvature 
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1. STATE-OF-THE-ART OF ANALYSES METHODS 

The state-of-the-art of analyses methods deals with different aspects. Some are specific for other 

studies and hence can be found in other chapters or annexes: 

• The basis of analysis of approximate formulations for buckling, either coded or purposed 

in research studies, has been detailed and is exposed in chapter VI. A. 

• The advantages and disadvantages of different FE modelling possibilities, with either 

frames or shells, have been considered and summarised in the present chapter (based on 

Sarmiento-Comesías, 2009) 

• A comparison of different commercial software has been conducted in order to choose the 

most adequate one for the present research (summarised in the present chapter and based 

on Sarmiento-Comesías, 2009) 

1.1 FE models 

Either frame or shell elements can be employed in a FE model. Each model type presents 

advantages and disadvantages which can be summarized as follows: 

• Internal forces interpretation is easier when employing a frame model and the analysis is 

quicker. 

• Non-linear material analysis gives good results with frame models when employing fibre 

hinges, in which the cross-section is divided into fibres and the stresses in each of them 

are controlled, the mechanical characteristics of the cross-section are modified as fibres 

plasticize. Softwares applying this analysis control material non-linearities without the 

need of employing shell models. 

• Bending moments, shear forces and torsional moments interaction is not considered for 

obtaining stresses in frame models, whereas in shell models it is considered (eg: Von 

Mises for steel shell elements in SAP2000). 

• Shell models allow obtaining local effects. 

In conclusion, applying the aforementioned advantages and disadvantages to the present study: 

• Spatial arch rib bridges global behaviour is best modelized by employing FE frame 

models. 

• For shell spatial arch bridges it is best to employ shell FE models, since a frame model 

approximation is not good enough. 

• In general, for the objectives of the present study, a frame 3D analysis is the most 

adequate, since it is the global behaviour of SABs what is considered and not the local 

effects. 
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1.2 Software comparison 

A series of softwares have been compared (Sarmiento-Comesías, 2009). This comparison has lead 

to the following conclusions for the present research: 

The most adequate software to conduct a frame model either linear or geometrically and material 

non-linear analysis is SAP2000, since it employs fibre hinges for whatever material of which the 

constitutive equation can be introduced. This method allows for considering the formation of 

plastic hinges and it automatically iterates obtaining the new characteristics based on the fibres 

forming the hinges and obtaining the new internal forces until convergence is reached. SOFISTIK 

and ANSYS do not have this function automatically, a module should be programmed to obtain 

this analysis with plastic hinges. 

However, the opposite happens with FE shell models: SOFISTIK and ANSYS are both adequate 

for non-linear shell analyses, but not SAP2000. SOFISTIK results output offers advantages over 

ANSYS. Moreover it has the possibility to implement precambers and antifunicularity, which 

offers advantages for design and future researches, and it is cheaper. 

For the analysis of FE frame models with linear material but geometrically non-linear analysis 

SOFISTIK offers the advantage in front of SAP2000 of automatically introducing imperfections 

based on the buckling shape, whereas in SAP2000 this must be done by exporting and importing 

excel tables or programming a module. 

Therefore, SAP2000 is concluded to be the best program for non-linear analysis of frame models 

and SOFISTIK for shells. Benchmarks will be developed for geometrically non-linear analyses 

with both software, SAP2000 and SOFISTIK. 

2. BENCHMARKS 

2.1 INTRODUCTION 

With the objective to assure that the software employed for the present research study and the 
analyses methods can be considered valid, a broad state-of-the-art research has been conducted. 
On finding no specific results to approve the intended methodology specific benchmarks for this 
research study have been developed. 

Three different benchmarks have been employed: 

• The arch with the maximal curvature has been modeled with a different number of 
straight frames to measure the error committed by not employing curved frames 
according to the literature error calculation formulas for bending and torsional moments 
(Sawko in Manterola, 1977). This is necessary since SABs have to bear important out-of-
plane forces also for vertical loading. To obtain the buckling error due to the same 
simplification the models have been compared to one with a high number of straight 
frames which can be considered to have a negligible error with curved frames. 

This benchmark is presented in section 2.3 of the present chapter. 

• A cantilever with an eccentric axial load has been analysed with two different softwares 
by means of a buckling analysis and geometrically non-linear analysis and compared with 



55 

 

Euler’s buckling load and Timoschenko’s (1957) analytical formula for the displacements 
in order to obtain the error committed by the FE element model. 

This benchmark is presented in section 2.4 of the present chapter. 

• A series of FE frame models of pinned beam of different lengths submitted to an axial 
load have been analysed with SAP2000 with a GNLA of P-delta+large displacements and 
also introducing material non-linearities. Eurocode 3 coded imperfections have been 
introduced to the beams employing the first mode buckling shape and the critical axial 
load values (Ncr) have been obtained in each case. A unitarian slenderness- Ncr diagram 
has been plotted with the results and compared to the European buckling curves. The 
objective is to assure that coded imperfections are conservative, since no European 
buckling curves exist for arch bridges. 

This benchmark is presented in section 2.5 of the present chapter. 

2.2 MATERIAL CHARACTERISTICS 

The material employed for all the analyses of the benchmarks is steel with the following 
characteristics: 

fy=248,211N/mm2 

fu=399,896N/mm2 

G=76903N/mm2 

For non-linear analyses the stress-strain diagram employed is the following (Figure 2-1): 

 

Figure 2-1: Employed steel stress-strain diagram 

2.3 STRAIGHT FRAME MODEL OF A CURVED STRUCTURE 

Employing straight frames to model curved beams neglects the curvature effects in each of the 

frames. The forces caused by the curvature will be concentrated on the joints between straight 

frames. The curvature effects in the case of SABs are important as in planar vertical arch bridges 

for the behavior in plane (axial forces and bending moments), but further more important for the 
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behavior out-of-plane as a balcony beam. In a curved girder or balcony-beam bending and 

torsional moments are coupled. The interaction between these internal forces is continuous along 

a curved beam. However, when using a model with straight frames the interaction between 

bending and torsional moments only takes place at the vertex of the polygonal line which the 

straight frames describe. The higher the number of frames, ie: lower angle between frames, the 

lower the internal forces deviation (Manterola, 1977). According to Manterola (1977) for bridges 

curved in plan when the angle between the frames is smaller than 2˚ a straight frame model can be 

employed with a negligible error. This is based on Sawko’s method for a reasonable EI/GJ 

relationship. Employing Sawko’s figures (Figure 2-2) and for the described arch cross-section 

values: EI/GJ=1,31 

 

 (a) (b) 

Figure 2-2: Error defined by Sawko depending on the stiffness and the angle between frames (a) 
bending moments error (%) (b) torsional bending moments error (%). Figure obtained from 

Manterola (1977) 

If 68 frames are employed for each the arch and the deck, with the maximal rise f=50m for the 

arch and g=20m for the deck , the bending moments errors for the arch and deck, when compared 

with 200 frames for each the arch and the deck model, are below 5% and 4%, respectively, and 

for torsional bending moments below 0,75 and 0,6%. We consider these errors negligible. Most 

models employ the same arch rise and horizontal sag in plan f=g=20m, hence errors for the 

balcony-beam behaviour are in general below 4% 

To make sure that this is also valid for buckling, a study has been conducted for a parabolic planar 

vertical arch with fixed bearings. The highest curvature value has been employed in the present 

study, corresponding to a f=50 planar arch. Different models have been analysed varying the 

number of frames employed, from 200 (maximal angle between frames 1º, Figure 2-3a), 

considered the reference value supposing a 0 error, and diminishing it to 5 frames (maximal angle 

between frames 39º, Figure 2-3b). For the different models the values obtained for the buckling 

load and for the axial force at the arch springings under a vertical uniform loading on the whole 

arch span or only half its span have been compared. 
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 (a) (b) 

Figure 2-3 Arch frame models (a) 200 frames (b) 5 frames 

It has been proved that, when employing more than 6 elements (maximal angle between frames 

37º) for the arch loaded with a vertical uniform loading on the whole span, the improvement of 

the results for buckling is negligible (the error is below 3%). Even less elements are need to 

obtain a good approximation of the axial forces at the arch springings. When loading the arch 

with a uniform loading on only half its span it is recommendable to employ more than 30 

members (8º), since with this number the error for buckling is already above 3%. 

For all of the analytical studies the deck and arch will be divided into 68 straight frames as 

already stated, which gives an error below 1,2% (see Table 2-1). This fully guarantees the validity 

of the results in spite of not using curved frames. 

Number 
of frames 

qB 
(kN/m) 

qB asym 
loading 
(kN/m) 

Nspringing 
(kN) for 

q=5kN/m 

Nspringing (kN) 
for q=10kN/m 
asym loading 

error qB 
(%) 

error qB asym 
(%) 

error N 
(%) 

error N 
asym (%) 

200 11.698 22.777 400.114 626.467 0 0 0 0 

68 11.696 22.506 399.994 625.883 0.0 1.2 0.0 0.1 

50 11.694 22.360 - 625.548 0.0 1.8 - 0.1 

30 - 21.995 - 624.649 - 3.4 - 0.3 

25 11.680 21.803 399.600 624.300 0.2 4.3 0.1 0.3 

10 11.583 - 398.178 - 1.0 100.0 0.5 - 

6 11.362 18.543 395.770 611.062 2.9 18.6 1.1 2.5 

5 11.206 - 394.223 - 4.2 100.0 1.5 - 

qB is the buckling loading value of a uniform vertical loading on the whole length of the arch for the 1st buckling mode 
qB asym is the buckling loading value of a uniform vertical loading on half the length of the arch for the 1st buckling mode 
Nspringing is the axial force at the arch springing for a vertical uniform loading q 

 

Table 2-1: Axial force (N) and buckling load forces errors for dfferent number of frames arch model, 
considering 200 frames a good enough result with a theoretical error 0 
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2.4 BUCKLING AND NON-GEOMETRICAL ANALYSIS BENCHMARK: 
CANTILEVER WITH AN EXCENTRIC LOAD 

A step loading and geometrically non-linear analysis (GNLA) and an elastic 

buckling analysis have been developed for the 2D frame model shown in 

Figure 2-4 with SAP2000 v14. Various models with different number of FE 

have been analysed. An analysis with SOFISTIK has also been conducted. 

The numerical results for the horizontal displacements at the top node (δ) of 

a column with height L=5m and an eccentricity at the top of e=0,5m have 

been compared with the analytical results according to Timoschenko (1957) 

(Eq 1). 

� =
�∙����	
��


�	
��
        Eq 1 

The errors for the displacements in each loading step and the buckling load 

with respect to the analytical values have been calculated.  

In Table 2-2 the analytical results and the numerical ones obtained for the 

Euler buckling axial load (Nb) with SAP2000 and SOFISTIK employing 25 

elements (15 in height and 10horizontally) and buckling analysis are 

displayed, as well as the error committed employing the FE analysis (named 

“error Buckling” in the table). The error committeed with both softwares is 

negligigle. If this error is added to the one committed by employing straight 

frames to model the arch (section 2.3) the buckling error is still below 3%. 

A summary of the results obtained with SAP2000 for the different cross-

sections described in Table 2-3 is given in Table 2-4. 

Analytical Nb (kN) 4189,5   

Numercial Nb SAP2000 (kN) 4119,0 error Buckling (%) 1,7 

Numercial Nb SOFISTIK (kN) 4161,0 error Buckling (%) 0,7 
Table 2-2: Euler analytical buckling axial load comparison with numerical 

buckling loads obtained with different softwares with buckling analysis 

In Table 2-4 “%Nb” is the percentage of the buckling load (Nb) obtained 

with SAP with which the structure is loaded. For each loading value a 

displacement horizontal value at the top is obtained employing a GNLA 

with the P-delta+large displacements method. The displacement error with 

GNLA is the percentual difference of this value with respect to the 

analytical value obtained with Eq1. The nearer the loads to Nb, the larger 

the displacement error. 

In Figure 2-5 and Figure 2-6 the analytical results and the numerical ones 

obtained with both softwares are compared. 

The error does not depend on the bending stiffness of the cross-section, as 
results of sections from 1 to 3 attest (Table 2-4). The error is not caused by the analytical formula 

 

Figure 2-4: 
Cantilever  FE 
model with an 
excentric load 
frame model. 

Height: 5m, load 
excentricity 0,5m 
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neglecting shear stiffness, since, when neglecting shear stiffness, the displacement error for a 
same load value is larger. 

According to this benchmark, the present study employing 3D frame models with SAP2000 v14 
will consider results to be reliable only for loads under a 50% of the buckling load. 

SOFISTIK gives a larger error (Figure 2-5 and Figure 2-6). 

 
Cross-

section 1 
Cross-

section 2 
Cross-

section 3 

Area (m2) 6,645·10-3 6,645·10-5 6,645·10-5 

Moment of inertia (m4) 2,123·10-4 2,123·10-6 2,123·10-6 

Tosional stiffness (m4) 2,106·10-7 2,106·10-7 2,106·10-7 

Shear area (m2) 3,426·10-3 3,426·10-5 0 

Table 2-3: Frame cross-sections employed for 3 different models 

 
Cross-

section 1 
Cross-

section 2 
Cross-

section 3 
Displacement error with 

GNLA(%) 
%Nb SAP %Nb SAP %Nb SAP 

3% 54 54 47 
5% 59 59 54 
10% 67 67 64 

ERROR 
BUCKLING(%) 1,7 1,7 0,1 

Table 2-4: External loads correspondent to different displacement errors and SAP buckling load 
errors for different cross-section values shown in Table 2-3. The loads are given as a % of the SAP 

buckling load (Nb) 
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Figure 2-5: Axial load-horizontal displacement comparison of the analytical and numerical results 
until the analytical buckling load is reached 

 

Figure 2-6: Axial load-horizontal displacement comparison of the analytical and numerical results 
until the error of the displacements reaches approximately 10% for SAP2000 and approximately 

20% for SOFISTIK. Detail of Figure 2-5.  
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2.5 PINNED BEAM WITH CODED IMPERFECTIONS. NUMERICAL 
FRAME MODEL VALUES COMPARED TO THE EUROPEAN BUCKLING 
CURVES 

2.5.1 Model description and objectives 

There are no equivalent European curves for arch bridges. Therefore, the coded imperfections will 

be employed following the first mode of buckling shape as stated in Eurocode 3 (EC3 Part 1.1, 

chapter 5.3.2). The specific values for arches in EC3 Annex D.3.5 and also EAE 22.3.4 will be 

employed for arches. This imperfection values are expected to be conservative, but it is 

convenient to confirm this with a benchmark for the program SAP2000 v14 which will be 

employed for the present research. 

The frame model shown in Figure 2-7 has been analysed, employing the cross-section shown in 

Table 2-5, for different span lengths (L, Table 2-6). The aim is to compare the European buckling 

curves of the codes with the results obtained numerically introducing the coded eccentricities (EC 

3) and conducting a GNLA with SAP2000 (with the P-delta + large displacements method, which 

has proved to give good results in section 2.4) and also a geometrically and material non-linear 

analysis (G and M NLA) with fibre hinges. 

 

Figure 2-7: Beam FE model with an axial force 

Area (m2) 2,725·10-3 

Moment of inertia (m4) 1,846·10-5 

Tosional stiffness (m4) 4,926·10-8 

Shear area (m2) 1,417·10-3 

Table 2-5: Mechanical characteristics of the cross-section employed for the model shown in Figure 2-7 

L (mm) Slenderness Unitarian slenderness 
e0= maximal 

imperfection value (mm) 

200 2.4 0.027 landa<0,2 

500 6.1 0.068 landa<0,2 

1000 12.2 0.136 landa<0,2 

2000 24.3 0.273 1,24 

4000 48.6 0.545 5,97 

6000 72.9 0.818 11,06 

8000 97.2 1.090 16,96 

10000 121.5 1.363 23,81 

16500 200.5 2.248 50,85 

Table 2-6: Length, slenderness and imperfections for the different analysed models with the geometry 
shown in Figure 2-7 
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2.5.2 Buckling hypothesis 

Local buckling:  

Enough thickness is given to the cross-section in order to avoid local buckling, acoording to the 

EC 3 classification. 

Plate buckling 

Diaphragms and transverse bracings will control the buckling of the compressed plates and 

instabilities caused by shear forces. 

Global buckling 

The aim of the present study is to analyze the global buckling of this bridge type. 

2.5.3 Imperfections values 

A frame model is employed and sectional effects are not modeled. Therefore residual stresses 

cannot be introduced 

Residual stresses might cause the cross-section or a part of it to plasticize and this would lower 

the buckling load. This buckling load reduction is considered by means of an equivalent 

imperfection. 

The imperfections stated in the codes comprise residual stresses, load eccentricities and 

geometrical imperfections.  

Load eccentricities in the arch are caused, for example, by the gaps opened on the arch in order to 

pass gusset plates through. This can be considered in the bridge model. 

Geometrical imperfections will not be larger than the tolerances and could be introduced with the 

buckling shape to be conservative. 

In order to consider residual stress as recommended by the ECCS no 22 a sectional model must be 

developed (Manzanares and Hinojosa, 2011). Since studying cross-sectional behaviour is not our 

aim, we will be working with a 3D frame model as previously stated. Therefore, instead of 

introducing load eccentricities and residual stresses, the coded imperfections will be employed 

following the first mode of buckling shape as stated in EC3 (Part 1.1, chapter 5.3.2) and also in 

EAE 22.3.5. The imperfections for the different slenderness values of the analysed models are 

detailed in Table 2-6. 

2.5.4 Analyses 

A step loading geometrically non-linear analysis with the aforementioned imperfections has been 

conducted. The axial-bending moments at the mid-point have been plotted. The interaction 

diagram has also been plotted. The intersection of both diagrams shows the axial force and 

bending moment for which the first fiber plasticizes. 

A geometrical and material non-linear analysis has also been developed, plotting the axial-

bending moments at the mid-point. In order to do this analysis, two fiber hinges in the Newton 
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integration points of each frame have been employed. 80 fibers have been employed in order to 

accurately define the cross-section. The length of these hinges is half each frame. Frames with a 

large stiffness have been employed and the stiffness values have been given to those hinges. An 

equivalent analysis with only a hinge in the mid-point of each frame and with 160 fibers shows 

that the model is not improved further increasing the number of hinges or of fibers. 

Displacement control has been employed. 

 

2.5.5 Results 

The results of the maximal axial force according to the european buckling curves (EC 3, Part 1.1, 

chapter 6.3.1.2), the plastification of the first fiber and the maximal axial force according to the 

geometrical and material non-linear analysis, have been compared (Figure 2-8). 

 

Figure 2-8: Comparison of the unitarian slenderness-axial forces diagrams of the european buckling 
curves, the plastification of the first fiber and the maximal axial force according to the geometrical 

and material non-linear analysis 

The axial force difference between considering that the structure reaches its ultimate load when 

the first fiber plasticizes or when the maximal axial force forming a completely plasticized hinge1 

is reached is completely negligible (Figure 2-8). Therefore, it is equivalent to do a geometrically 

                                                           
1
 This leads to a mechanism, since the structure is isostatic. 
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non-linear analysis considering the interaction diagram and to consider both geometrical and 

material non-linearities. However, it must be borne in mind, that this model is isostatic. 

Observing the evolution of the stresses in fibers, the cross-section stresses can be plotted as shown 

in Figure 2-9. After reaching the maximal axial load, axial forces will not increase anymore 

because bending moments increase very quickly (Figure 2-9), ie: the structure buckles due to 

important geometric effects, in spite of still being far from the Euler buckling load. 

 

Figure 2-9: Cross-sectional stress (MPa) diagrams for different lengths of the analysed beam and for 
different steps of loading in each case 

  

First fiber plastification.   N=-663.58kN; M=0.896kN·m Intermediate step.   N=-665.40kN; M=0.928kN·m Maximal axial force.   N=-665.52kN; M=0.954kN·m
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L (mm) 
Ncr obtained from 

NLGA (kN) 

Ncr obtained from 
the European 

buckling curves (kN) 

Ncr obtained from 
G and M NLA (kN) 

e1 (%) e2 (%) 

200 644,12 644,12 644,12 0 0 

500 644,12 644,12 644,12 0 0 

1000 644,12 644,12 644,12 0 0 

2000 631,49 633,70 633,83 -0,37 0,0 

4000 574,81 585,93 580,57 -0,99 -0,9 

6000 484,89 505,94 488,57 -0,75 -3,4 

8000 364,15 388,25 366,10 -0,53 -5,7 

10000 262,55 281,23 261,74 0,31 -6,9 

16500 107,24 115,44 107,80 -0,52 -6,6 

e1 is the error committed in the GNLA by neglecting material non-linearities  
e2 is the error of  the results obtained by the G and MNLA model with respect to European buckling 
curves 

Table 2-7: Length, critical axial forces (Ncr) and errors for the different analysed models and 
employed methods 

• Considering the coded eccentricity is conservative, since axial forces are below the 

European buckling curves (Figure 2-8). 

• Employing an eccentricity to model this effect has proved to commit a maximal error of 

7% and minimal of 1% (Table 2-7)2. Developing buckling curves for arches equivalent to 

European curves, requires an accurate analysis in which residual stresses are introduced 

in a FE shell model. However, to obtain these curves is not the objective of the present 

study.  

• Our aim is to understand this bridge type behaviour. Therefore, according to the present 

chapter results, SAP2000 is employed to model the SABs to study with 3D Frame 

models.  

• These structures have a highly statically indeterminate. Hence, considering also material 

non-linearity is expected to give a higher bearing capacity to these structures.  

  

                                                           
2
 The slenderer the beam, the larger the error. 
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3. CONCLUSIONS 

• Employing straight frames with an angle<3º to model a curved balcony-beam (as both the 

arch and the deck are, out-of-plane) gives bending bending moments error below 5% and 

a torsional bending moments below 0,75%. The buckling error is below 1,2%. Therefore, 

employing a straight frame model to model the arches and curved decks of the present 

study is considered valid if the angle between frames below 3º 

• SAP2000 gives good enough buckling results (error<1,7%) and a geometrically non-

linear analysis gives reliable displacements for loads inferior to a 60% of the buckling 

load (error<5%). 

• The coded imperfections, employing the first mode of buckling shape as stated in 

Eurocode 3 (EC3), are conservative in comparison with the European buckling curves. 

Therefore, this is the method which will be employed for the present research study. 
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1. INTRODUCTION  

This chapter is a broadened and further detailed version of the paper published in ASCE Journal of Bridge 

Engineering in 2011 by the present author and her supervisors. 

In the present chapter, arch bridges with imposed curvature (ABWIC) possible geometries and their linear 

structural behaviour are studied. The geometrical stability is addressed in chapter VI. 

As a reminder, the definition of ABWIC already given in chapter III, is detailed in the following lines. 

1.1 Definition 

Arch bridges with imposed curvature (ABWIC) are those in which the arches are forced to have the same 

curvature in plan as the deck (Figure 1-1). Therefore, the arch and deck centroid lines are contained in the 

same vertical cylinder. In inferior deck ABWIC (ID-ABWIC), the deck is located under the arch and 

supported by vertical hangers which do not restrict the vertical clearance (Jorquera 2007; Sarmiento et al 

2010). 

 

Figure 1-1: Nomenclature for the models that have been studied for inferior deck arch bridges with imposed 
curvature 
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1.2 Research procedure and parameters considered 

In order to understand the structural behaviour of these arch bridges, several 3D frame FE models have been 

developed and analyzed (using SAP2000 v14.2), as part of a set of thorough parametric analyses (Figure 1-1, 

model perspective). Several parameters, such as the arch geometrical definition, the deck and arch curvature 

in plan view (measured by means of the horizontal sag (g)), the arch rise (f) (Figure 1-1), the cross-sectional 

area and the rigidities of the arch, have been considered. In addition, bearing in mind the relevance of the 

arch and deck interaction, the cross-sectional rigidities of the deck and the hangers, as well as the link 

connections between these structural members, are essential parameters to be investigated. One of the 

objectives of this study is to identify the set of these parameters for which the arch works mainly under 

compression (i.e. the arch tends to the anti-funicular of the loading). 

For all the analyses presented in this paper, the following dimensions have been employed: span length 

L=100m and arch rise f=20m. Unless otherwise mentioned, the variable g is set equal to 20m. 

The arch-rise span ratio (f/L) has been adopted equal to 1/5, as usual in conventional arch bridges (O’Connor 

1971). The plan curvature effects have been enhanced by making g=f. 

All the arches included in these analyses are made of steel, as are most of the built spatial arch bridges. This 

material has an appropriate performance in this bridge type, since large bending moments occur due to its 

structural configuration (see section 4). The modulus of elasticity (E) considered is equal to 2,0·108 kN/m2. 

The studied arches in each of the studied models are fixed to the deck, which is itself fixed to the abutments. 

The behaviour of this bridge type is studied under vertical uniformly distributed live loads (q=10kN/m on the 

whole deck, except for section 4.3.2). The dead loads and the pretension of the hangers counterbalance each 

other and need not be considered. 
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2. BACKGROUND AND OBJECTIVES 

A considerable number of spatial arch bridges have already been built, but only a few of these have imposed 

curvature (see chapter III and Annex N1). Not much research has been done on spatial bridges so far, and 

even less on ID-ABWIC (Jorquera 2007). Therefore, there are hardly any references available. 

The first spatial arch bridge to be built was Ziggenbach Bridge (1924, Figure 2-1a). It is a planar vertical 

arch with a curved superior deck (Billington 1979, Laffranchi and Marti 1997). The first bridge with an arch 

curved in plan was the Bohlbach Bridge (1932, Figure 2-1b) and the first bridge with imposed curvature was 

the Schwandwach Bridge (1933, Figure 2-1c). All these three bridges are deck-stiffened arch bridges 

designed by Robert Maillart in Switzerland (Billington 1979, Laffranchi and Marti 1997).  

 
 (a) (b) (c) 

Figure 2-1: (a) Ziggenbach bridge (Source: Yoshito Isono 1998. Reproduced by kind permission of Structurae 
(publisher)); (b) Bohlbach Bridge; (c) Schwandwach Bridge (Reproduced by kind permission of the author A. 

Ruiz-Teran) 

Bridge design did not revert to the first Maillart’s arch bridge with imposed curvature until Manterola used 

this typology in the Endarlatsa Bridge and the Contreras Bridge, and reconfigured it with inferior deck (ID-

ABWIC) and a double hanger system in the bridge over the Galindo River in Bilbao (Figure 2-2; Manterola 

et al, 2009, 2011). 

 

Figure 2-2: Bridge over Galindo river in Bilbao 

This bridge type is subjected to large bending moments and torsions and the axial forces are smaller than 

expected. The higher the plan curvature, the stronger this effect. For a given arch vertical rise, the larger the 

curvature in plan, the larger the arch inclination, reducing the arch behaviour and enhancing the ‘balcony-
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curved in plan was the Bohlbach Bridge (1932, Figure 2-1b) and the first bridge with imposed curvature was 

the Schwandwach Bridge (1933, Figure 2-1c). All these three bridges are deck-stiffened arch bridges 

designed by Robert Maillart in Switzerland (Billington 1979, Laffranchi and Marti 1997).  

 
 (a) (b) (c) 

Figure 2-1: (a) Ziggenbach bridge (Source: Yoshito Isono 1998. Reproduced by kind permission of Structurae 
(publisher)); (b) Bohlbach Bridge; (c) Schwandwach Bridge (Reproduced by kind permission of the author A. 

Ruiz-Teran) 

Bridge design did not revert to the first Maillart’s arch bridge with imposed curvature until Manterola used 

this typology in the Endarlatsa Bridge and the Contreras Bridge, and reconfigured it with inferior deck (ID-

ABWIC) and a double hanger system in the bridge over the Galindo River in Bilbao (Figure 2-2; Manterola 

et al, 2009, 2011). 

 

Figure 2-2: Bridge over Galindo river in Bilbao 

This bridge type is subjected to large bending moments and torsions and the axial forces are smaller than 

expected. The higher the plan curvature, the stronger this effect. For a given arch vertical rise, the larger the 

curvature in plan, the larger the arch inclination, reducing the arch behaviour and enhancing the ‘balcony-
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2. BACKGROUND AND OBJECTIVES 
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beam’ behaviour (ie: out of plane behaviour of the arch, equivalent to a curved in plan beam with fixed 

supports loaded perpendicularly). The arch behaviour improves when employing mechanisms that increase 

the horizontal stiffness of the system (Laffranchi and Marti 1997, Jorquera 2007 and 2009, Manterola et al 

2009). Until now, this effect has been justified by the presence of coupled horizontal forces (Jorquera 2007, 

Manterola et al 2009). According to these authors, a horizontal force outwards the plan curve is induced. 

This causes tension stresses that compensate part of the compression, diminishing the axial force in the arch. 

However, the different arch geometrical possibilities and the influence on the structural behaviour of the 

axial, flexural and torsional rigidities of the individual structural members have not been studied yet. In 

addition, both the appearance of these coupled horizontal forces and the bridge behaviour was not 

completely explained. Therefore, a deeper and wider research is required in order to establish efficient 

configurations and appropriate design criteria. 

This paper focuses on ID-ABWIC and intends to: 

• Define possible geometries for imposed curvature arch bridges. 

• Study if non-planar geometries can be approximated by equivalent arches contained in an inclined 

plane. 

• Establish which geometrical and mechanical variables influence the structural behaviour of these 

arch bridges. 

• Find out which is the best way to control the arch behaviour, either with rigid arches or a rigid 

hanger-deck system. 

• Establish whether it is possible to define an anti-funicular configuration. 

Therefore, the main original contributions of the present study with respect to the published literature are the 

following: 

• Spatial arch bridges, using many different geometrical definitions, which have not been studied in 

the literature before, are defined, analyzed and compared. 

• Clear conceptual models employing rigid hangers are theoretically and analytically described. 

• Formulae for a simple analytical model with a single flexible hanger are derived. In addition, 

interesting conclusions have been drawn from the analysis of these formulae. 

• The arch-deck interaction is enhanced by employing rigid hangers. The influence of the rigidities of 

the hangers, the deck and the arch is parametrically studied. The influence in the structural response 

of the connection type between the hangers and both the arch and the deck is also fully investigated 

(annex N2.1), and interesting and useful conclusions are drawn. 
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3. GEOMETRICAL DEFINITION OF INFERIOR-DECK ARCH BRIDGE S WITH 
IMPOSED CURVATURE (ID-ABWIC) 

Depending on how the arch for an ID-ABWIC is defined, it might be contained in a plane or not. 

 
Figure 3-1: Definition of (a) an elliptical planar arch bridge, (b) a parabolic planar arch bridge, (c) a bent 

parabolic arch bridge, (d) a cross vault ribbed arch bridge 

There are different ways of defining these arches, such as: 

• Elliptical planar arch bridges (Figure 3-1a): This planar arch bridge type arises when a vertical 

cylinder containing the deck center line is intersected by a plane. 

• Parabolic planar arch bridges (Figure 3-1b): This planar arch bridge type is obtained by rotating a 

parabolic vertical arch around the axis that joins its springings. The deck center line is obtained by 

projecting the rotated parabola. In such a case the arch would be imposing the plan alignment and not the 

opposite, which is the most usual case. Therefore, we have not included this geometrical case in our 

study, but the elliptical one as representative of a planar arch. 

• Bent parabolic arch bridges (Figure 3-1c): This type of arch bridge arises when a planar and vertical 

parabolic-shaped arch is bent or folded over a vertical cylinder that contains the deck center line. The 

bridge over the Galindo River (J. Manterola et al, 2011) is classified in this category. Using a parabolic-

shape seems quite logical since this is the anti-funicular shape for a uniform distributed loading. 

However, this cannot be so easily stated once the parabola is bent, since the new curve is not planar 

anymore. This is the geometrical definition employed in all the studies presented in this article. 

• Cross vault ribbed arch bridges (Figure 3-1d): This type of bridge arises when a vertical cylinder 

containing the deck is intersected by a horizontal cylinder. The intersection is a non-planar shape unless 

both cylinders have the same diameter and coincident axes. 

• Given a plan alignment for the deck, in a similar way as the example above, a non-planar arch with 

imposed curvature may be obtained by the intersection of a vertical cylinder containing the deck axis and 

a three-dimensional body, such as an ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid, 

cone or torus. 

An initial parametric study (L=100m, f=20m and g varying from 2 to 20m) to determine whether non-planar 

geometries can be approximated by an equivalent one contained in an inclined plane has been performed. 

This study is based on the comparison of the behaviour of the FE frame models of (1) an elliptical planar 

arch bridge, (2) a bent parabolic arch bridge, and (3) a cross vault ribbed arch bridge. The arch has a circular 

hollow section (CHS), with D=1000mm and t=30mm, the deck is a box girder 4000x800mm and t=15mm, 

and the hangers are flexible stay cables (Table 3-1). 

A brief geometrical study of arches is also conducted in Annex N2.1. 
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ARCH 
CHS D=1000mm; 

t=30mm 

DECK 
BOX GIRDER 

4000x800mm; t=15mm 

HANGERS 
Flexible hangers: stay 

cables 

HANGER 
JOINTS 

Pinned 

SYMBOL 

 

Table 3-1: Cross-section values employed for the comparison of the behaviour of different arch geometry 
definitions for superior arch bridges with imposed curvature 

Non-planar arches with imposed curvature can be approximated by planar arches with imposed curvature, 

and identical rises, with differences in internal forces and displacements smaller than 1,75% for uniform 

distributed loading (Figure 3-2). 

 
Figure 3-2: Comparison of internal forces in the arch under uniform loading on the deck for different 

geometrical definition of the arch (a) Axial forces (b) Total bending moments 

Under asymmetrical loading, although the situation of the maximal point varies a bit when the arch is not 
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contained in a plane, this maximal value is the same or with a variation not superior to 2% for internal forces 

and displacements (Figure 3-3).  

 
Figure 3-3: Comparison of internal forces and displacements on the arch under asymmetrical loading on the 
deck for different geometrical definition of the arch (a) Axial forces (b) Total moment (c) Torsion (d) Total 

displacements 

Therefore, non-planar arches with imposed curvature can be approximated with negligible errors by inclined 

planar arches with imposed curvature with the same rise for g/f ≤ 1. The larger the g/f ratio, the larger the 

errors. 

This conclusion is very powerful, allowing us to refer to in-plane and out-of-plane behaviour even for non-

planar arches, when using symmetrical (with respect to the approximated arch plane) cross-sections, ie: loads 

can be projected into two orthogonal axes (one of them contained in the approximated arch plane). 
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4. STRUCTURAL BEHAVIOUR OF IDABWIC 

4.1 Understanding the effect of increasing the horizontal sag 

The structural response of an arch bridge with imposed curvature, L=100m, f=20m, and g varying from 0 to 

10m is compared with a conventional vertical (g=0) arch bridge having identical rise and span length. The 

comparison provides a first appropriate approach to this research. The mechanical properties are identical to 

those in the previous study (Table 3-1). 

The results are displayed in Figure 4-1. 

 
Figure 4-1: Arch internal forces comparison for different deck curvatures (measured as g) (a)Arch axial forces 

(b) Arch total bending moments (c) Arch torsional moments 

For a given vertical rise, the analysis shows that a higher arch plan curvature leads to: 
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• smaller axial forces in the arch (see Figure 4-1(a)) 

• larger total bending moments in the arch (both in-plane and out of plane bending  moments increase) 

(see Figure 4-1(b)) 

• larger in-plane and out of plane shear forces in the arch 

• larger torsional moments in the arch (see Figure 4-1(c)) 

This had been observed also by Jorquera (2007). 

When the plan curvature is increased, the plane of the arch inclines. This causes the described changes in the 

internal forces of the arch, because the ‘arch behaviour’ in the plane of the arch decreases and the ‘balcony-

beam behaviour’ of the arch is enhanced. 

For these same studied cases it has been proved that the buckling critical load is higher when increasing g, 

since the axial forces are lower (chapter VI). 

4.2 General scope 

Conceptual models 

When employing rigid hangers (both in the longitudinal and transverse direction), fixed to both the arch and 

deck, in a first approach, the system may be considered a curved Vierendel truss, as it can be inferred from 

Manterola et al (2009). The larger the stiffness of the hangers, the higher the arch-deck interaction, and the 

higher the axial force in the deck (due to the fact that the abutments are fixed). Therefore, the axial force in 

the deck is a way to measure arch-deck interaction. 

The structural response of this balcony beam under 

a vertical load leads to both bending and torsional 

moments.  The resultant response torque will be 

resisted by the sum of St Venant torsion at both the 

arch and the deck (Figure 4-2, T1 and T2 

respectively) and warping torsion (Figure 4-2, H·f). 

The distribution between the two torsion types 

depends on both the transverse flexural rigidity 

(I3-3) and the torsional rigidity (J1) of the arch, 

and on the transverse flexural rigidity and torsional 

rigidity of the deck (J2).  

Horizontal forces, H, produce tension forces in the 

arch (in addition to the aforementioned compression in the deck), diminishing the axial compression in the 

arch. These H forces increase the out-of-plane forces in the arch too. Therefore, it is of interest to reduce 

them. To do so, we need to decrease the warping torsion. By increasing the torsional stiffness of the deck 

(high J2) and an arch with a low J1 and I3-3, torques will be mainly resisted by the deck’s StVenant torsional 

component. Therefore, H will tend to zero and no tensions will be introduced on the arch. 

On the other hand, employing low J1 and J2 values, leads to T1≈0; T2≈0 and T = H·f. Consequently, the axial 

compression forces in the arch diminish greatly. 

This behaviour can be intuitively deduced, but the real behaviour is too complex to develop a simple 

analytical model. Consequently, we will study these cases with a FE analysis of full bridges. 

 
Figure 4-2: Simplified conceptual model of the 

behaviour of an arch bridge with imposed curvature and 
rigid hangers (equivalent to a Vierendel curved truss 

cross-section) 
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This is analysed in detail in section 4.3.1.1. 

If flexible or pinned hangers are employed, the curved Vierendel truss analogy is no longer possible. The 

system behaves like two balcony beams vertically connected by the hangers. 

A simple analytical model of a single pinned hanger (Figure 4-3 and annex N2.2) of a bridge with an arch 

inclined an angle α with respect to the hanger has been studied. The model has three springs: K1, for the in-

plane stiffness of the inclined arch; K2, for the balcony-beam stiffness of the arch and K3, for the balcony-

beam stiffness of the deck.  

The axial stiffness of the hanger is H H HK EA L= . The model leads to the following equations: 

�� = �1���	 ∙ �1 + 
�
� ����	 + 
�
� ����	 + 
�
�� 
Eq. 1: In-plane force acting on the arch 
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�
� ����	 + 
�
� ����	 + 
�
�� 
Eq. 2: Out-of-plane force acting on the arch 
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Eq. 3: Vertical force acting on the deck 
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Eq. 4: Axial force in the hanger 
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Eq. 5: Vertical deflection of the arch 
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Figure 4-3: (a) Simplified model of a pinned hanger with springs modelling the stiffness of the arch (in its plane 
and out of it) and deck, submitted to a 10kN load   (b) Reactions at arch (c) Reactions at deck and hangers  (d) 

Arch deflection 

Despite the simplicity of this analytical model, the conclusions that can be inferred from these equations are 

very useful, and they have served as a guide when addressing the complex FE models of the full bridge. 

Moreover, they have been confirmed by those complex FE models. The most relevant ones are the following: 

• The reaction to a vertical deck load in the directions associated to K1 and K2 with different stiffness 

(F1 and F2) only depends on the total equivalent stiffness, and is then projected in the different 

directions (Eq. 1 and Eq. 2). 

• If F2 is represented as a function of the balcony beam stiffness of the arch (K2), for given values of α, 

K3, K1 and KH (Figure 4-4), there is a bound for the balcony beam stiffness of the arch (K2) from 

which the contribution to the resistance of the arch (F2) does not increase. From this bound, the 

deflections of the arch (δA) do not decrease either (Figure 4-5). 

• Increasing K2 enhances both the arch (F1) and the balcony beam (F2) mechanisms. Therefore, the 

arch behaviour can be enhanced, but a non-desirable balcony beam behaviour simultaneously occurs. 

On the opposite, if we reduce the balcony beam behaviour in the arch, we are simultaneously losing 

the benefits of the arch mechanism, the deflections increase and the deck balcony beam mechanism 

(F3) is enhanced.  

• Obtaining an antifunicular arch, by modifying the stiffness of the different elements of the system, is 

impossible because F2=0 (no balcony-beam forces in the arch) implies F1=0 (no arch behaviour). 

Therefore, if we want to eliminate the bending moments we need to work with the hanger-arch and 

hanger-deck joint connections or to employ an additional external system (such as the stay cables in 

Galindo Bridge, Figure 2-2) which prevents out-of-plane displacements in the arch. 
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• The loads taken by the arch (F1 and F2, see Eq. 1 and Eq. 2) will increase with increases of K1, K2 or 

KH or with decreases of α or K3, but controlling certain parameters (K3) is more effective than others. 

 
Figure 4-4: Reaction at the superior node (representing the arch on a simplified model of a pinned rigid 

hanger with springs and α=45º) function of the arch balcony beam stiffness (K2). The deck stiffness (K3) and 
the arch planar stiffness (K1) are constant. 

 
Figure 4-5: Total displacements of the superior node (representing the arch on a simplified model of a 

pinned rigid hanger with springs and α=45º) function of the arch balcony beam stiffness (K2). Deck stiffness 
K3 and arch planar stiffness K1 are constant. 

• The non-dimensional term (K3/K1)·cos2α is much smaller than the rest, since the axial stiffness of the 

arch is significantly larger than the balcony beam stiffness of the arch. Therefore, the forces will not 

change significantly with variations of K1, ie: the area of the arch is not a significant variable, 

although a closed area will be advisable because of torsional bending moments. 

However, the higher the hangers’ stiffness (KH) or the balcony beam stiffness of the arch (K2), the 

higher the influence of the axial stiffness of the arch (K1) on the balcony beam forces on the arch.  

The higher the deck stiffness (K3), the axial stiffness of the arch (K1) or the curvature (measured as 

α), the lower the influence of the axial stiffness of the arch (K1) on the balcony beam forces on the 

arch. The K1-F2 relationship is of the type shown on Figure 4-6.  

Given a high enough axial stiffness of the arch, the axial stiffness does not influence the balcony 

beam forces or displacements of the arch. 
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Figure 4-6: K1-F2 relationship 

• It is interesting to employ a very rigid deck and flexible arch and hangers, in order to diminish the 

balcony beam force on the arch (F2). At the same time, this will diminish the arch axial force (F1) too, 

losing the arch behaviour effect (Eq. 4-2). Accordingly, in order to diminish the arch displacements, 

the most efficient way when employing pinned hangers according to this simple analysis is to 

increase the stiffness of the deck. 

• If the force on deck (FD) is very important, it will be interesting to increase the hanger stiffness (KH, 

see Eq. 3 and Eq. 4).  

If we employ very rigid hangers and the curvature in plan is important, the forces taken by the arch 

mainly depend on its balcony beam stiffness and the stiffness of the deck: 

��	 �
� ≫ 
�
� ≫ 
�	 ≫ 45°$ → &'(
')�� = � ∙ ���	�1 + 
�
� ����	��� = � ∙ ���	�1 + 
�
� ����	�*'

+'
,

 

• For very rigid decks, it might be so that: -�� -
�. > 0.	However, in general we can consider the K2-

δ2 relationship to be as shown on Figure 4-7. 

 
Figure 4-7: K2-δ2 relationship 

• The derivative of δ2 with respect to K2 is as follows: 
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Eq. 6: Derivative of δ2 with respect to K2 

The higher the stiffness of the arch (both K1 and K2), the stiffness of the deck (K3) or the stiffness of 

the hangers (KH), the lower the influence of K2 on displacements (Eq. 6). This will be also observed 

in full bridge models with fixed hangers in section 4.3.1.1. 

We can use fictional bearings to model a system which is infinitely stiff in a particular direction (that in 

which the displacements are restrained). This could be caused by either an infinitely large rigidity of the 

hanger-deck system or a second set of stay cables fixing the arch, as mentioned before. If there are bearings, 

the axial force on the arch depends on the component in the arch plane of the transmitted load projected in 

the direction in which the bearing prevents displacements (the studied case shown on Figure 4-8(c) is for the 

horizontal direction). 

 
Figure 4-8: Simplified conceptual model of the behaviour of an imposed curvature bridge with flexible hangers 

for the particular case g=f 

The horizontal reactions on the bearings compensate the curved balcony beam behaviour and increase the 

arch in-plane component. This enhances the arch behaviour, resisting the deck loads mainly as an arch, in 

spite of being inclined. However, axial forces will also increase in comparison with a vertical planar arch. 

In reality, the systems will not be as simple as these three models described here, since (1) the distribution of 

internal forces depends on the arch and deck individual behaviour (2) the hangers have different lengths and 

stiffness along the bridge and therefore transmit different axial forces, and (3) there will be no fixed bearings 

but elastic ones, function of the transverse rigidity of the system, that is different along the bridge (therefore, 

a single k (Figure 4-8) does not exist). 

4.3 Frame FE models of IDABWIC with rigid hangers 

We have done linear parametric analyses with a frame FE model of the whole arch bridge with L=100m; 

f=20m and g=20m. The parameters studied are the rigidities of the deck, the arch and the hangers, and the 

connection types between the hangers and both the arch and the deck.  The arch is fixed to the deck, which is 

itself fixed to the abutments. 

4.3.1 Study of the connections of rigid hangers with the arch and the deck 

The possibilities of the connection between rigid hangers and arch and deck have been studied (Annex N2.1). 

On the following paragraphs the main results of this study are presented.  
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Fixed hangers transmit vertical loads, shear forces and bending moments to arch and deck. The value of the 6 

internal forces they can transmit changes when releasing one of them. 

The change of the bending moments transmitted by the hangers when they are either fixed or released, does 

not transmit axial forces neither to the arch nor the deck. What causes the variation of the axial forces is the 

change of the shear forces in the hanger. 

Positive V3-3 values tension the deck and compress the arch and the opposite happens with V2-2 positive 

values (Figure 4-9). 

Negative transverse shear forces values (V2-2) compensate out-of-plane bending moments (M2-2) and 

positive ones in-plane bending moments (M3-3). 

The most interesting is to diminish out-of-plane bending moments and increase axial forces, to enhance the 

arch behaviour. Therefore, we will be interested in configurations of the hangers’ connections which 

introduce negative V2-2. 

 
Figure 4-9: Positive shear forces in the hangers and their transmission to the arch and the deck 

The definition of the bending moments in arch is the following: 

• M3-3 are in plane bending moments 

• M2-2 are out of plane bending moments 

 
Figure 4-10: Positive bending moments in hangers and their transmission to the arch and the deck 
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According to the axis system in Figure 4-10: 

• A positive M3-3 in a hanger causes a positive torsion in the arch and a negative one in the deck. 

• A positive M2-2 in a hanger causes a positive M3-3 in the arch and a negative one in the deck. 

It is interesting to introduce negative torques in the arch, to reduce in-plane bending moments (M3-3) and 

out-of-plane bending moments (M2-2) at the springings and positive torques to reduce M2-2 and M3-3 at the 

mid-span. According to this, it is favourable for the arch to have positive M3-3 in the hangers at the mid-span 

and negative ones at the springings. 

Longitudinal bending moments transmitted by the hangers produce tension axial forces in the arch and 

compressions in the deck due to the change of shear forces (see Annex N2.1). This effect is particularly 

enhanced at the short extreme hangers, which have a higher stiffness, due to their smaller length. 

When M2-2 is released at both ends of the hangers, V2-2 negative shear forces values increase, especially at 

the extreme stiffer (due to their shorter length) hangers. This increases axial tensions in the deck and 

compressions in the arch. Shear forces transmitted by hangers increase, tensioning the deck and compressing 

the arch. Longitudinal bending and torsions are diminished through the transmission of transverse bending 

moments. 

Therefore, for every model, whatever the mechanical properties of the sections employed for deck and 

hangers, releasing M2-2 gives the maximal axial forces in the arch. However, when analysing the bending 

moments, we can observe that eliminating the longitudinal hanger/deck interaction is not the best solution to 

minimize them. This means that axial forces increase, but not because we are enhancing the antifunicular 

behaviour, but because we are increasing the horizontal rigidity of the system and, therefore, increasing the 

horizontal forces in the arch, which cause a decrease in the balcony beam forces, but lead also to an increase 

in the forces in the arch plane. 

When employing what can be considered a deck with infinite torsional rigidity, the type of behaviour is 

divided into two big groups: M3-3 fixed and M3-3 released at the hanger/deck connection. 

When M3-3 is fixed at the hanger/deck connection, the whole arch is under compression and the deck is 

tensioned. When released, the axial forces diminish and the behaviour at the abutments and springings 

changes completely. The arch is slightly tensioned at the springings. 

As stated, the cases of fixed hangers or M3-3 released at hanger/arch joints give good results for decks with a 

large torsional stiffness. However, these configurations cause tensions when employing a deck with a small 

torsional stiffness. 
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Structural behaviour under a vertical uniform distributed loading applied on the whole deck 

4.3.1.1 Analogy with a curved Vierendel truss 

Six models with very rigid circular hangers and different cross-sections of arch and deck have been defined 

in order to prove the intuitive conceptual model described in section 4.2. The hangers have a fixed 

connection with both the arch and the deck. The values employed for the cross-sections are described in 

Table 4-1. 

Table 4-1: Mechanical properties’ values of the cross-sections employed on the study of the analogy of an 
IDABWIC with a curved Vierendel truss  

The axial forces results in arch and deck (Figure 4-11 and Figure 4-12) prove that H forces (Figure 4-2) are 

highest for the (0.1) model, as it had been theoretically described in section 4.2. Large H values cause 

tensions in the arch (Figure 4-11) and the highest compressions in the deck (Figure 4-12). 

Increasing the balcony-beam flexural stiffness of either the deck or the arch leads to more uniform axial 

forces on both of them (models (0.3) and (0.6)). In these models axial forces in the deck decrease greatly due 

LEGEND 
NUMBER 

ARCH DECK HANGERS HANGER JOINTS SYMBOL 

Model (0.1) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 

 

Model (0.2) 

Arch with large 
torsional stiffness 
A= 0,0914m2 
J= 10m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 

 

Model (0.3) 

Arch with large 
torsional and balcony-
beam flexural stiffness 
A= 0,0914m2 
J= 10m4 
I2= 1m4 
I3= 0,0108m4 

Reference deck 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 

 

Model (0.4) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Deck with large 
torsional stiffness 
A= 0,0914m2 
J= 10m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 

 

Model (0.5) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Deck with large 
torsional and horizontal 
flexural stiffness 
A= 0,0914m2 
J= 10m4 
I2= 1m4 
I3= 0,0108m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 

 

Model (0.6) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Deck with large 
torsional and balcony-
beam flexural stiffness 
A= 0,0914m2 
J= 10m4 
I2= 0,0108m4  
I3= 1m4 

Rigid hangers 
CHS 
800x800mm; t=25mm 
A= 0,0609m2 
J= 9,149·10-3 m4 
I2= 4,575·10-3 m4 
I3= 4,575·10-3 m4 

No releases 
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to the decrease in H forces. Both torsional and balcony-beam flexural stiffness play an important role due to 

the coupling of torsional and balcony-beam bending moments. 

 

Figure 4-11: Arch axial forces comparison for different arch and deck sections in inferior deck arch bridges with 
20m (L/5) rise. The abscissas are the arch length from 0 to LA and the ordinates axial forces (kN) 
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Figure 4-12: Deck axial forces comparison for different arch and deck sections in inferior deck arch bridges with 
20m (L/5) rise. The abscissas are the arch length from 0 to LA 

Minimal torsional moments in the arch (Figure 4-13) are achieved with a deck with both high torsional and 

flexural balcony-beam stiffness (0.6). However, the maximal torsional moments in the deck (Figure 4-14) 
are not achieved for this model but for (0.5) in which only the torsional stiffness is high. Vice-versa for the 

minimal torsional moments in the deck, achieved with model (0.3). 

 
Figure 4-13: Arch torsion comparison for different arch and deck sections in inferior deck arch bridges with 

20m (L/5) rise. The abscissas are the arch length from 0 to LA 
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Figure 4-14: Deck torsion comparison for different arch and deck sections in inferior deck arch bridges with 
20m (L/5) rise. The abscissas are the arch length from 0 to LA 

Local moments caused by the hangers in both arch and deck are minimized by increasing either the balcony-

beam flexural stiffness of the arch or the deck (Figure 4-15 and Figure 4-16, models 0.3 and 0.6). The 

minimal torques achieved for these models imply very high balcony-beam moments (Figure 4-17 and Figure 

4-18, models 0.3 and 0.6). To reduce these moments, the flexural stiffness must be maintained low. On the 

other hand, to maintain the arch in compression the torsional stiffness of either arch or deck must be high 

(models 0.2 and 0.5), paying high torsional costs (Figure 4-13 and Figure 4-14). 
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Figure 4-15: Arch in-plane bending moments comparison for different arch and deck sections in inferior deck 
arch bridges with 20m (L/5) rise. The abscissas are the arch length from 0 to LA 

 

Figure 4-16: Deck horizontal bending moments (in the plane that contains the deck) comparison for different 
arch and deck sections in inferior deck arch bridges with 20m (L/5) rise. The abscissas are the deck length from 0 
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Figure 4-17: Arch balcony-beam bending moments comparison for different arch and deck sections in inferior 
deck arch bridges with 20m (L/5) rise. The abscissas are the arch length from 0 to LA 

 

Figure 4-18: Deck balcony-beam bending moments comparison for different arch and deck sections in inferior 
deck arch bridges with 20m (L/5) rise. The abscissas are the deck length from 0 to LD 
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4.3.1.2 Influence of the out-of-plane flexural rigidity of the arch 

The influence of the out-of plane flexural rigidity of the arch, i.e. the flexural rigidity for the balcony beam 

mechanism (with second moment of area≡I2) on the behaviour of arch bridges with imposed curvature under 

a vertical uniform distributed loading applied on the whole deck (q=10kN/m), has been studied (Figure 4-19 

and Figure 4-20). In this series of models, the hangers have a fixed connection with both the arch and the 

deck. 

The values employed for the cross-sections are described in Table 4-2. 

 

Figure 4-19: Arch axial forces comparison for different arch sections (Table 4-2) in inferior deck arch bridges 
with 20m (L/5) rise.  

When increasing the balcony beam flexural rigidity, the axial forces in the arch increase too and the 

increment is larger at the springings than at mid-span (Figure 4-19). For the set of fixed parameters, there is a 

certain I2 value above which: 

• there is a change in the distribution of the axial forces along the arch. The forces in the springings 

become larger than those at mid-span somewhere in the range of I2=0,1 to 0,5m4 (Figure 4-19). This 

is due to a stronger increase of the axial load in the hangers close to the abutments. 

• the axial forces in the arch hardly vary (for I2  ≥ 3m4, Figure 4-19) 

• the bending moments in the arch hardly vary (for I2≥3m4) 

• the out-of-plane bending moments, i.e. the balcony-beam bending moments, remain steady (for 

I2≥3m4)  

• the arch displacements remain steady (Figure 4-20) (for I2≥3m4). 

Therefore, there is no advantage in increasing I2 beyond I2=3m4. 

To see the influence of the balcony beam rigidity of the arch on the total displacements, they have been 

measured at the arch span center deflection for each model described on Table 4-2 (Figure 4-20). 
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Table 4-2: Mechanical properties’ values of the cross-sections employed on the study of the influence of the arch 
cross-sectional balcony beam flexural rigidity 

 

 
Figure 4-20: Total displacement of the arch at mid-span as a function of the out-of-plane arch stiffness (I2) for 
different models with hanger and deck cross-sections defined in Table 4-2. (1) corresponds to 1.1 in Table 4-2 

and idem for the rest of models. 

LEGEND 
NUMBER 

ARCH DECK HANGERS HANGER JOINTS SYMBOL 

Model (1.1) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
BOX GIRDER 
4000x800mm; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

Rigid hangers 
SHS 
400x400mm; t=20mm 
A= 0,0304m2 
J= 1,097·10-4 m4 
I2= 7,337·10-4 m4 
I3= 7,337·10-4 m4 

No releases 

 

Model (1.2) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid to torsion deck  
BOX GIRDER  
4x0,8m; t=15mm 
A= 0,1431m2 
J= 10m4 
I2= 0,2m4 
I3= 0,02m4 

Rigid hangers 
SHS 
0,4x0,4m; t=20mm 
A= 0,0304m2 
J= 1,097·10-4 m4 
I2= 7,337·10-4 m4 
I3= 7,337·10-4 m4 

No releases 

 

Model (1.3) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
BOX GIRDER  
4x0,8m; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

Rigid hangers 
High transverse 
bending rigidity 
A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

No releases 

 

Model (1.4) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid to bending and 
torsion deck  
 
A= 0,1431m2 
J= 10m4 
I2= 0,2m4 
I3= 0,2m4 

Rigid hangers 
SHS 
0,4x0,4m; t=20mm 
A= 0,0304m2 
J= 1,097·10-4 m4 
I2= 7,337·10-4 m4 
I3= 7,337·10-4 m4 

No releases 

 

Model (1.5) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid to bending and 
torsion deck  
 
A= 0,1431m2 
J= 10m4 
I2= 0,2m4 
I3= 0,2m4 

Rigid hangers 
High transverse 
bending rigidity 
A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

No releases 
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When employing both a large torsional (J) and flexural (I3) rigidities for the deck (Table 4-2, models (1.4) 

and (1.5)), the arch displacements for small values of I2 significantly decrease (Figure 4-20, models (1.4) and 

(1.5)). This happens because, when the arch is very flexible, the only way to reduce the arch displacements is 

by reducing the deck deflections. When only one of these deck rigidities is large (J, model (1.2), Table 4-2), 

the arch deflections for small values of I2 do not decrease significantly (Figure 4-20, model (1.2)) as the 

vertical deflections in the deck are still large, due to the small value of the other deck rigidity (I3, model (1.2), 

Table 4-2). For I2 ≥ 0,25m4 the differences in the arch deflections between models with the same torsional 

rigidity of the deck and different flexural rigidity of the deck are smaller than 3,4%. Furthermore, the value 

of I2 from which the arch displacement remains almost steady is independent of the rest of the parameters 

(Figure 4-20, all models). 

When employing hangers with a large transverse rigidity (Table 4-2, models (1.3) and (1.5)), the arch 

displacements diminish considerably (Figure 4-20, compare (1.1) with (1.3) and (1.4) with (1.5)). 

We can conclude that the out-of-plane flexural rigidity of the arch, i.e. the flexural rigidity for the balcony 

beam mechanism (I2), is the parameter that controls more efficiently the arch deflections. In fact, the arch 

deflections remain steady when I2 ≥ 3m4 (for our f=g=20m and L=100m model), regardless the value of the 

rest of the parameters. For low I2 values, arch deflections can be greatly improved by the hanger-deck system 

stiffness (Figure 4-20, Model 1.5). 

4.3.1.3 Influence of the flexural rigidity of the arch versus the rigidity of the hanger-deck system  

Six different full bridge models (see Table 4-3) have been analyzed in order to determine, whether the 

behaviour can be more efficiently controlled by the rigidity of the arch or the hanger-deck system. In all of 

the models, the following parameters have been employed: f=g=20m, L=100m, arch fixed to deck with 

encasted abutments, deck submitted to a uniform distributed loading of 10kN/m. 

We have borne in mind the previous conclusions drawn in section 4.3.1 and the Annex N2.1. 

• The minimal total bending moment in the arch, when employing a rigid to torsion cross-section, is 

obtained with M3-3 fixed at hanger/deck joints. 

• The maximal total bending moment in the arch corresponds to hangers pinned at both ends. 

The following figures (see from Figure 4-21 to Figure 4-26) demonstrate that to control arch moments and 

torsions, employing a rigid hanger-deck system and an arch with low rigidity is better than increasing the 

rigidity of the arch.  

The models identified in Table 4-3 as (2.1) and (2.2) have hangers with pinned connections to both the deck 

and the arch. Therefore, their behaviour can be directly compared to the analytical model described by Eqs 1 

to 5. All the conclusions drawn from the analytical model about the effects of increasing the stiffness of the 

balcony beam are confirmed by these FE models of the full bridge. 
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LEGEND NUMBER ARCH DECK HANGERS HANGER JOINTS SYMBOL 

Model (2.1) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
BOX GIRDER 
4x0,8m; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Pinned hangers 

 

Model (2.2) 

Rigid arch 
A= 0,25m2 
J= 0,18m4 
I2= 0,06m4 
I3= 3,00m4 

Reference deck 
BOX GIRDER 
4x0,8m; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Pinned hangers 

 

Model (2.3) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference deck 
BOX GIRDER 
4x0,8m; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Hangers fixed at deck and 
transversally pinned at arch 

(M3-3 released at arch)a 

 

Model (2.4) 

Rigid arch 
A= 0,25m2 
J= 0,18m4 
I2= 0,06m4 
I3= 3,00m4 

Reference deck 
BOX GIRDER 
4x0,8m; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Hangers fixed at deck and 
transversally pinned at arch 

(M3-3 released at arch)a 

 

Model (2.5) 

Reference arch 
CHS 
D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Rigid deck  
A= 0,1431m2 
J= 10m4 
I2= 0,2m4 
I3= 0,2m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Hangers fixed at deck and 
transversally pinned at arch 

(M3-3 released at arch)a 

 

Model (2.6) 

Rigid arch 
A= 0,25m2 
J= 0,18m4 
I2= 0,06m4 
I3= 3,00m4 

Rigid deck  
A= 0,1431m2 
J= 10m4 
I2= 0,2m4 
I3= 0,2m4 

A= 0,0304m2 
J= 1,097·10-3m4 
I2= 7,34·10-4m4 
I3= 7,34·m4 

Hangers fixed at deck and 
transversally pinned at arch 

(M3-3 released at arch)a 

.  

a Note: the longitudinal flexural rigidity of the hangers is low, so longitudinally they will tend to be pinned 

too. 

Table 4-3: Definition of the different cross-sections employed on the study of the influence of the flexural rigidity 
of the arch versus the rigidity of the hanger-deck system 
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Figure 4-21: Arch axial forces comparison 

 

Figure 4-22: Arch moments comparison 

 

  
Figure 4-23: Arch torsion moments comparison 

 

Figure 4-24: Arch displacements comparison 

 

  

Figure 4-25: Deck moments comparison Figure 4-26: Deck torsion moments comparison 

Regarding the displacements (Figure 4-24), it is very efficient to increase the flexural stiffness of the arch 

when the flexural stiffness of the deck is small (Figure 4-24, compare model (2.1) with (2.2)), and also to 

increase the flexural stiffness of the deck when the flexural stiffness of the arch is small (Figure 4-24, 

compare (2.3) with (2.5)). This is because the displacements are very sensitive to the only flexural stiffness 

that can control them, as the other one is small. It is also quite efficient to use fixed connections between the 
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hanger and the deck, but only when the flexural stiffness of both, the arch and the deck, are small (Figure 

4-24, compare model (2.1) with (2.3)), because the shear forces in the hangers are the only mechanism to 

control the arch displacements. This mechanism is not efficient when the flexural stiffness of the arch is large, 

since there is more than one mechanism available to control the displacements in the arch (Figure 4-24, 

compare (2.2) with (2.4) and (2.6)). 

Moreover, when the arch displacements are controlled (Figure 4-24, models (2.2), (2.4), (2.5) and (2.6)), the 

arch behaviour is enhanced (Figure 4-21, models (2.2), (2.4), (2.5) and (2.6)). However, when the 

displacements are controlled by means of the flexural stiffness of the arch (Figure 4-24, models (2.2), (2.4), 

and (2.6)), the bending moments in the arch are large (Figure 4-22, models (2.2), (2.4), and (2.6)). This effect 

is enhanced, when the flexural stiffness of the arch is the only parameter that is available to control the 

displacements in the arch (model (2.2) in Figure 4-22 and Figure 4-24). Therefore, the arch displacements 

are best controlled by providing rigidity to the whole system. However, controlling the arch displacements 

while enhancing the arch behaviour, is achieved by providing rigidity only to the hanger-deck system (model 

(2.5), from Figure 4-21 to Figure 4-24). 

It is possible to define a set of parameters (Table 4-3, model (2.5)) for which the arch tends toward the 

antifunicular of the loading, i.e. enhancing the arch axial behaviour (Figure 4-21, model (2.5)) by cancelling 

the balcony-beam behaviour (Figure 4-22 and Figure 4-23, model (2.5)). This behaviour is achieved when 

the hanger has a fixed connection to the deck in the transverse direction, the torsional rigidity of the deck is 

large, and the flexural rigidity of the arch is small. Therefore, opposite to what has been concluded in other 

studies (Jorquera 2007), antifunicular arches do exist for IDABWIC. 

A geometrically non-linear analysis has been conducted in chapter VI. 

The parameters proposed above in order to tend to an antifunicular IDABWIC are exactly the same as those 

that Robert Maillart used for his superior deck curved arch bridges, with a foresight that only a genius could 

have, although he did not prove it through calculations (Billington 1997, Laffranchi and Marti 1997).  
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4.3.1.4 Secondary hanger systems 

The expected optimal configuration 

In Annex N2.1 the forces needed to introduce in this bridge type in order to compensate internal forces are 

described. A solution in terms of the hanger/deck and hanger/arch connections and hanger-deck system 

stiffness is given and summarized in section 4.3.1.3 of the present chapter. However, this could also be 

achieved and more precisely controlled and visualised by employing a secondary hanger system. A scheme 

of such a system is shown in Figure 4-27. The vertical hangers will be in tension and the secondary system 

consists on rigid struts in compression which introduce compensatory torques in the arch. 

  

 (a) (b) 

Figure 4-27: Secondary hanger system to compensate the internal forces in the arch caused by a uniform 
distributed load on the deck. (a) Intitial reasoning: forces perpendicular to the plane of the arch are needed to 

resist the balcony-beam behavior. Eccentricities are introduced to compensate the bending moments. This 
secondary hanger system would work under tension, but geometrically it is not possible, it remains unconnected 

to the system at one end. (b) Strut system working under compression 

On the following figures a comparison of this geometry with g=f=20m and L=100m (model A) and an 

equivalent bridge without the secondary hanger system (model B) is presented (from Figure 4-28 to Figure 
4-31). The cross-sections employed for the arch, deck and vertical hangers in both models are the same ones 

as in Table 3-1. Struts with infinitely rigid cross-sections are employed to model the eccentricity of the 

secondary hanger system with the shear forces center of the arch and deck. The cross-sections employed for 

the secondary hanger system are CHS of 400mm diameter and 20mm of thickness. 

Employing a compensatory hanger system with an adequate distribution: 

• increases the axial forces compressions in the arch, because it increases the in-plane behaviour of the 

arch (Figure 4-28). 

• diminishes the out-of-plane and total bending moments because it controls the out-of-plane 

behaviour of the arch (Figure 4-30). 

• can be also employed to diminish in-plane bending moments in the arch (Figure 4-29). 
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Figure 4-28: Arch axial forces comparison of models A and B with and without secondary hanger system. The 
abscissas are the arch length from 0 to LA 

 

Figure 4-29: Arch in-plane bending moments comparison of models A and B with and without secondary hanger 
system. The abscissas are the arch length from 0 to LA 
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Figure 4-30: Arch out-of-plane bending moments comparison of models A and B with and without secondary 
hanger system. The abscissas are the arch length from 0 to LA 

 

Figure 4-31: Arch torsional moments comparison of models A and B with and without secondary hanger system. 
The abscissas are the arch length from 0 to LA  
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The particular case of the bridge over the Galindo river 

The bridge over the Galindo river in the outskirts of Bilbao, designed by Javier Manterola, employs a 

compensatory cable system at the arch which is anchored in a series of struts connected to the deck (Figure 

4-32). 

 

Figure 4-32: Bridge over Galindo river in Bilbao employing a secondary hanger system 

M3-3 transverse bending moments (Figure 4-10) are released at hanger/arch joints and longitudinal bending 

moments M2-2 are fixed. At hanger/deck joints M3-3 is fixed and M2-2 is released (Figure 4-33). If no 

compensatory cable system was employed, this would cause very low axial forces at both deck and arch, 

especially at arch springings and deck abutments, and high bending and maximal (compared to other joint 

configurations) torsional internal forces (see Annex N2.1). 

 
Figure 4-33: Detail of the hanger joints of the bridge over Galindo river in Bilbao 

The compensatory cables are at the inner side of the curve instead of the outer side as in the previous 

solution. At the extremes they tend to be more horizontal (Figure 4-32) and, therefore, with a higher 
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component perpendicular to the arch approximation plane1 than the central cables. This means that lower 

axial forces will be introduced at extremes than at span center. 

Since it is in the inner part of the curve, these “secondary” hangers work under tension. 

This distribution is adequate to diminish the important bending moments at arch springings, but it will only 

slightly reduce bending at span center and increase the axial force which is already a compression force. It is 

not the distribution which helps to maximize the arch behaviour of the arch. 

The cross-sections employed in the bridge over the Galindo river are detailed in Table 4-4. They have been 

approximated taking as a basis the ones described by Manterola (2011). 

 

ARCH 

A= m2 
J= m4 
I2= m4 
I3= 0,0108m4 

DECK 

Reference deck 
BOX GIRDER 
4000x800mm; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

HANGERS 

Flexible hangers 
Stay cables 
A= 9,8·10-4 m2 
J= 0 m4 
I2= I3= 0 m4 

HANGER 
JOINTS 

M3-3 released at 
hanger/arch connection 

M2- released at 
hanger/deck connection 

SECONDARY 
HANGER 
SYSTEM 

Flexible hangers 
Stay cables 
A= 9,8·10-4 m2 
J= 0 m4 
I2= I3= 0 m4 

Table 4-4: Cross-section values employed for the bridge over the Galindo river 

  

                                                           
1 It is a bent parabolic arch according to the definition which has been developed for the present study in section 3. 
Hence, it is not contained in a plane. However, an approximation plane can be employed as demonstrated in section 3. 
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4.3.2 Structural behaviour under non-symmetrical vertical loading  

For conventional vertical arch bridges (g=0), the maximal arch shear forces, bending moments and 

deflections are significantly higher when the loading is applied on half the deck span (from the abutment to 

the mid-span, q’=10kN/m), than on the whole deck span (q=10kN/m). However, highest axial forces are 

obtained when the whole deck span is fully loaded (q=10kN/m). This behaviour is shown in Figure 19. 

In contrast, for IDABWIC (with a large g/f ratio), the critical load case, for both internal forces and 

displacements, is obtained when the uniform distributed loading is applied on the whole deck span (Figure 

20). 

A vertical uniform distributed loading applied on the exterior half of the deck’s cross-section along the whole 

bridge span (q’’=5kN/m; t’’=5kN·m/m, ie: vertical loading and tipping torque) has also been analyzed, given 

the importance of torsional behaviour in this bridge type. For all the models, the internal forces proved to be 

mainly due to vertical loading.  

All these conclusions are verified both for flexible and rigid hangers (see Table 4-5). Models 3.1 and 3.2 have 

very similar results, as expected. 

 

LEGEND 
NUMBER 

Model (1) Model (2) Model (3) 

ARCH 

Reference arch 
CHS D=1m; 
t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference arch 
CHS D=1m; 
t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

Reference arch 
CHS D=1m; 
t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

DECK 

Reference deck 
BOX GIRDER 
4000x800mm; 
t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

Reference deck 
BOX GIRDER 
4000x800mm; 
t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

Reference deck 
BOX GIRDER 
4000x800mm; 
t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

HANGERS 

Flexible hangers 
Stay cables 
A= 9,8·10-4 m2 
J= 0 m4 
I2= I3= 0 m4 

CHS D=0,4m; 
t=20mm 
A= 0,0239m2 
J= 8,64·10-4 m4 
I2= 4,32·10-4 m4 
I3= 4,32·10-4 m4 

CHS D=0,4m; 
t=20mm 
A= 0,0239m2 
J= 8,64·10-4 m4 
I2= 4,32·10-4 m4 
I3= 4,32·10-4 m4 

HANGER 
JOINTS 

Flexible hangers Pinned hangers Fixed hangers 

SYMBOL 

   

Table 4-5: Cross-section values employed for the study of the worse loading case for vertical planar arch bridges 

(g=0) and IDABWIC with g=20 
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Figure 4-34: Internal forces and deflections along the arch length (LA) of a conventional vertical arch bridge 

(L=100, f=20m and g=0) for the different models defined in Table 4. Comparison between load cases q=10kN on 

the whole deck span and q’=10kN on half the deck span. (a) Axial forces (b) Total bending moments, (c) 

Deflections 
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Figure 4-35: Internal forces and displacements along the arch length (LA) of an IDABWIC (with L=100, f=20m 

and g=20m) for the different models defined in Table 4. Comparison between load cases: q=10kN on the whole 
deck span; q’=10kN on half the deck span and q’’=5kN/m on the exterior half of the deck’s cross-section along 

the whole bridge span. (a) Axial forces (b) Total bending moments (c) Torsional moments (d) Total displacements 

5. CONCLUSIONS 

In the context of the present study, we can conclude: 

• Non-planar arches with imposed curvature can be approximated by inclined planar arches with 

imposed curvature with the same rise, with an error for internal forces inferior to 1,3% for uniform 

distributed loading applied on the whole deck span and to 2% for uniform distributed loading applied 

on half the length of the deck span, in both cases for f/g≤1. 

• There is a value for the out-of-plane arch rigidity for which the distribution of axial forces along the 

arch changes, tending to concentrate either at mid-span or at springings, and also a bound for which 

the internal forces and deflections converge. Increasing the balcony beam rigidity above this bound 

has no advantage at all. 

• Given a vertical rise of the arch, and employing pinned hangers, the higher the plan curvature, the 

lower the axial forces and the higher the moments in the arch. 

• To enhance the arch behaviour in an ID-ABWIC, employing a rigid hanger-deck system (a deck with 

high torsional rigidity and hangers with high transverse flexural rigidity) and an arch with low 

flexural rigidity is more efficient than increasing the rigidity of the arch. This ‘ideal configuration’ is 

the simplest way to make the arch tend toward its anti-funicular form. 

• For ID-ABWIC with a large g/f ratio, the critical live load case is obtained when the uniform 
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distributed loading is applied on the whole deck span, whereas for a conventional vertical arch 

bridge (g=0) the maximal arch shear forces, bending moments and deflections are higher for a 

uniform distributed loading applied on half the deck span. 

• These conclusions are valid for a linear behaviour of ID-ABWIC. 

6. FUTURE LINES OF STUDY 

• In a future research this study could be widened for more for more cross-sections, employing real 

cross-section values to quantify the improvement of increasing the stiffness. 

• A parametrical relationship of the horizontal sag and the torsional and flexural stiffness of arch, 

hangers and deck could be found. 

• The study of second hanger systems could be broadened. A comparison between model C and the 

bridge over the Galindo river would be interesting. In foresight of such a future study the same 

cross-sections as for the bridge over the Galindo have been employed. 
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Notation 

αangle formed by the plane which contains the arch and the vertical hangers 

δ1arch displacement in the arch plane on a simplified hanger with springs model (direction of the model 

spring K1) 

δ2arch displacement perpendicular to the arch plane on a simplified hanger with springs model (direction of 

the model spring K2) 

δAtotal arch displacement on a simplified hanger with springs model 

δDvertical displacement of the deck on a simplified hanger with springs model 

f arch vertical rise 

F1load taken by the arch as inclined arch on a simplified hanger with springs model 

F2load taken by the arch as balcony beam on a simplified hanger with springs model 

F3load taken by the deck on a simplified hanger with springs model 

FHload taken by the hanger on a simplified hanger with springs model 

g  horizontal sag of the arch and deck 

Lspan of the arch bridge (straight line measure between springings) 

LA whole arch length 

LD whole deck length 

K1axial stiffness of the inclined arch on a simplified hanger with springs model 

K2balcony beam stiffness of the arch on a simplified hanger with springs model 

K3vertical stiffness of the deck on a simplified hanger with springs model 

I2 balcony beam rigidity 

u2 balcony beam displacements of the arch 

u3 axial shortage of the arch 

u total displacements of the arch ≡ 5 = 65�� + 5�� 
uC total displacements of the arch span centre 

M2-2out of plane bending moments of the arch (balcony beam bending moments) 

M3-3 in plane bending moments of the arch 

M  total bending moments of the arch 

 

Abreviations 

ID-ABWICinferior-deck arch bridges with imposed curvature 
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1. INTRODUCTION 
This chapter is a broadened and further detailed version of the paper published in IABSE-IASS 

London Symposium in 2011 by the present author and her supervisors (Sarmiento-Comesías et 

al, 2011). 

The main principles of behaviour studied for ID-ABWIC (inferior-deck arch bridges with 

imposed curvature; chapter IV) give a clear idea of how a SD-ABWIC (superior deck ABWIC) 

will behave. However, the imposed curvature idea in relationship with the minimum free height 

for users has lost its sense, since the arch is underneath and implies no determinants for users. 

For superior deck spatial arch bridges (SD-SAB) geometry is completely free as far as the use 

of the structure regards. Moreover, the struts will be necessarily rigid in this bridge type and 

their connection with the arch and deck will be very important for the bridge behaviour and the 

horizontal forces transmitted to the ground. 

Different geometries of spatial arch bridges with superior deck are studied in the present 

chapter. Their response under vertical loads and temperature variations is analysed and different 

geometrical and bearing configurations at deck abutments are studied. 

Extreme values for the curvature of the arch in plan have been adopted. They should not be 

regarded as realistic bridge designs but as theoretical examples, which have the objective to 

draw conclusions of the bridge behavior. This will be useful for the design of SABs within the 

range of the extreme geometries employed in this study. 

The study of the deck’s boundary conditions will prove to be essential. The main objective is to 

determine whether it is advisable to restrain the longitudinal movements or not. A priori, we 

might think that, on the one hand, restraining them will be the most suitable approach to resist 

seism, for instance. On the other hand, for conventional vertical planar arch bridges it is 

common knowledge that free longitudinal movements reduce internal forces due to temperature 

increments.  

These studies have led to interesting conclusions for boundary conditions and have helped to 

gain a deeper understanding of the most adequate geometries for different cases. 

1.1 Objectives 

The main objectives of the present chapter are to study: 

• the global structural behaviour of different geometries of spatial arch bridges with 

superior deck under a vertical uniform loading and a temperature increment. The aim is 

to decide which bridge geometries help to improve the structural behaviour of these 

bridges. 

• the suitability of different boundary conditions for the different bridge geometries under 

the considered loading cases. 
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1.2 Research procedure and values 

In order to understand the behaviour of these arches, different frame 3D models have been 

developed and analyzed, as part of a set of thorough parametric analyses (parameter 

nomenclature in Figure 1-1). A linear analysis of frame 3D FE models for each case study has 

been performed and analysed with SAP2000. 

The different studied bridge geometries are defined in Figure 1-2. The values of the parameters 

(Figure 1-1) which have been employed are the following: a span (L) of a 100m and a vertical 

rise of the arch: f= L/5=20m (usual value for arch bridges contained in a vertical plane (C. 

O’Connor 1971)). 

The deck and arch plan curvature are measured as horizontal sag (gD and gA, respectively). Their 

value is 0 or 20m, as stated for each geometry. 

The material employed is steel with a 2,0·108 kN/m2 modulus of elasticity (E). 

In general, the struts are completely fixed to arch and deck. 

In the figures the whole arch longitude will be named LA and the deck’s one LD, whereas we 

should note that these values are different from the span so-called L. 

On the following figures (Figure 1-2(a) to (e)) the different studied geometries are shown. 

 

Figure 1-1: Variable Nomenclature 
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 (a) (b) (c) 

   

 (d) (e) 

Figure 1-2: Studied bridge geometries. (a) Vertical planar arch bridge with superior straight deck 
(reference model); (b) Vertical planar arch with superior curved deck; (c) Arch and deck with 
symmetrical curvature in plan; (d) Arch and deck with coincident curvature in plan (imposed 

curvature); (e) Arch curved in plan with superior straight deck (both contained in the same plane) 

Those bridge geometries have been studied for different hypothesis of the boundary conditions 

of the deck at its ends. The deck is pinned at abutments (ie: the bending moments at both 

support sections are released), the radial displacements are restrained and tangential longitudinal 

displacements might be free or restrained, as indicated for each case: 

• Longitudinal displacements (ie: tangential to the curve in plan) may be free or 

restrained (f.l.d. or r.l.d.). 

• The twisting rotation may be free or restrained (f.t.r. or r.t.r.). 

In every case study the arch springings are fixed and the struts are fixed to both arch and deck. 

 

The effect of the strut rigidity variation has been studied. The employed sections are displayed 
in Table 1-1: 
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 Model 1 Model 2 Model 3 

ARCH 

 

 
 

DECK 

 

STRUTS 

  

 

 
 

Table 1-1: Cross-sections for different models 

In the study for ID-ABWIC (chapter IV) we have concluded that the maximal axial force on the 
deck is reached for struts with the transverse moment (M2-2) released at arch. The minimal deck 
axial force values correspond to struts pinned at both ends. We can extend this conclusion to the 
strut joints of superior deck spatial arch bridges. 

Fixed strut/deck and strut/arch joints have been employed. The different models are studied for 
both cases with its displacements fixed in all directions and allowing free longitudinal 
movements of the deck at abutments in two load cases: under a vertical uniform load on the 
deck and a temperature variation. 

The arch is defined like a bent parabolic arch bridge (chapter IV). The spatial configuration has 
been considered with no simplifications for the frame model analysis. When analysing the 
results we will refer to in-plane and out-of-plane forces, although the arch is not contained in a 
plane, since, as concluded in chapter IV, non-planar arches can be approximated to inclined 
planar arches. The plane considered for analysing the results of its behaviour is an 
approximation plane given by three points: arch springings and arch span center. 
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1.3 Load cases and internal forces nomenclature 

A linear analysis of frame 3D FE models for each case study has been performed and analysed 

with SAP2000. 

The following loading cases have been studied: 

• A vertical uniform loading on the whole deck span of 10kN/m (Figure 1-3a) 

• A temperature increment of 25ºC on arch, deck and both (Figure 1-3b) 

 

 (a) (b) 

Figure 1-3: Analysed load cases. (a) vertical uniform loading on the whole deck span of 10kN/m (b) 
temperature increment of 25ºC on both, arch and deck 

We will be referring to the bending moments M2-2 and M3-3 and the displacements u1, u2 y u3, 

which, according to the employed local axes, are defined as the following: 

• M2-2: bending moments with vertical axis in the deck and balcony-beam bending 

moments in the arch (ie: out of plane bending moments). 

• M3-3: balcony-beam bending moments in the deck and in-plane bending moments in 

the arch. 

• u1 are the displacements which are tangential to the deck curve in plan, u2, the radial 

ones and u3, the vertical deflections. 

2. STRUCTURAL BEHAVIOUR. ANALYSIS OF RESULTS 

2.1 Structural response. Internal forces 

In this section, figures of some of the diagrams of internal forces for model (c) are shown with 

the values for different deck boundary conditions (from Figure 2-1 to Figure 2-9), as a summary 

of the main results. 

Next, comparative figures of the distribution of axial forces and total bending moments for the 

different bridge geometries and boundary conditions under the vertical uniform loading are 

shown (Figure 2-10 and Figure 2-11). Please refer to section 1.2 or employ the bookmark for 

the deck abutments boundary conditions nomenclature employed in the figures. 

0ºC 25ºC 
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In the annex N3 all the figures of the structural behaviour of the models from (a) to (d) are 

detailed. 

An extensive analysis of the internal forces and the influence of the struts is conducted in annex 

N3. This analysis has helped to understand the behavior of the different bridge geometries 

studied in this chapter. The main conclusions are summarized in section 3. 

 

Figure 2-1: Axial forces (in kN, compressions N<0) of model (c) for different boundary conditions, 
under a vertical deck loading q=10kN/m. The diagram employed to show the values is the r.l.d. and 
f.t.r. case. 

 

 

 

 

 

Figure 2-2: M2-2 bending moments (in kN·m) of model (c) for different boundary conditions of the 
deck abutments, under a vertical deck loading q=10kN/m. The diagram employed to show the 
values is plotted for the restrained longitudinal displacements (r.l.d.) and free twisting rotations 
(f.t.r.) case. 
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Figure 2-3: M2-2 bending moments (in kN·m) of model (c) for different boundary conditions of the 
deck abutments, under a vertical deck loading q=10kN/m. The diagram employed to show the 
values is plotted for the free longitudinal displacements (f.l.d.) and free twisting rotations (f.t.r.) 
case. 

 
 

 

 

 

Figure 2-4: M3-3 bending moments (in kN·m) of model (c) for different boundary conditions of the 
deck abutments, under a vertical deck loading q=10kN/m. The diagram employed to show the 
values is the r.l.d. and f.t.r. case. 
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Figure 2-5: Axial forces (in kN, compressions N<0) of model (a) for different boundary conditions 
of the deck abutments, under a ∆T=25ºC at both arch and deck. The diagram employed to show the 
values is the r.l.d. and f.t.r. case. 

 

 

 

Figure 2-6: Axial forces (in kN, compressions N<0) of model (c) for different boundary conditions 
of the deck abutments, under a ∆T=25ºC at both arch and deck. The diagram employed to show the 
values is the r.l.d. and f.t.r. case. (As a reference value the axial force in the deck ends for model (a) 
with r.l.d. is -8927 kN) 
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Figure 2-7: Arch axial forces comparison (in kN, compressions N<0) for the different models with 
restrained longitudinal displacements at the deck abutments, under a ∆T=25ºC at both arch and 
deck. The abscissas are the arch length from 0 to LA 

 

Figure 2-8: Arch M2-2 bending moments comparison (in kN·m) for the different models with 
restrained longitudinal displacements at the deck abutments, under a ∆T=25ºC at both arch and 
deck. The abscissas are the arch length from 0 to LA 
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Figure 2-9: M2-2 bending moments (in kN·m) of model (c) for different boundary conditions of the 
deck abutments, under a ∆T=25ºC at both arch and deck. The diagram employed to show the 
values is plotted for the restrained longitudinal displacements (r.l.d.) and free twisting rotations 
(f.t.r.) case. 

 

 

Figure 2-10: Comparative diagram of the arch axial forces (in kN, compressions N<0) of the 
different geometries and the different boundary conditions at the deck abutments, under a vertical 
deck loading q=10kN/m. The abscissas are the arch length from 0 to LA 
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Figure 2-11: Comparative diagram of arch total bending moments ( 2 2
22 33M M M= + , in 

kN·m) of the different bridge geometries and the different boundary conditions at the 
deck abutments, under a vertical deck loading q=10kN/m. The abscissas are the arch length 
from 0 to LA 
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Figure 2-12: Comparative diagram of the axial forces (in kN, compressions N<0) of model (a) with 
models (c) and (d)  with r.l.d. at the deck abutments, under a vertical deck loading q=10kN/m. The 
abscissas are the bridge length from 0 to L 
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Considering, on the one hand, the relevance of the arch and deck interaction when employing 

struts fixed to both arch and deck, and, on the other hand, the deck curvature, the structural 

behaviour of the studied bridges is characterized by the following facts: 

• When the deck is curved in plan the axial forces caused by temperature increments 

diminish drastically (from Figure 2-5 to Figure 2-7) with respect to a conventional arch 

bridge with a straight deck. 

• Significant bending moments with vertical axis appear in the deck (Figure 2-2, Figure 

2-3, Figure 2-8 and Figure 2-9) 

• The arch helps the deck to resist the balcony beam components of the forces. 

 

 

2.2 Efficiency of the system 

The quantification of the contribution of the arch with the deck to resist M3-3 bending 

moments, can be formulated as follows (Eqs. 1 to 4): 

DECK

ISOST

M
X

M
=        (Figure 2-13)  (1) 
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Figure 2-13: MDECK definition 
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Table 2-1: System efficiency. Results for the vertical loading (q) 

The coefficient X (Eq 1) relates the sum of the maximal negative and maximal positive bending 

moments in the deck (Eq 2) with the isostatic moment that the same load would generate in a 

simply supported deck with an equivalent span (Eq 3). 

The efficiency of the system is measured by X’ (Eq 4). This value varies for the different bridge 

geometries and boundary conditions of the studied spatial arch bridges (Table 1) from 0,57 

(model (b) with the longitudinal displacements released at the deck abutments (f.l.d.)) to 0,97 

(model (c) with the longitudinal displacements restrained at the deck abutments (r.l.d.)). 

The arch vertical efficiency index (X’) leads to the following conclusions: 

• The highest efficiency is obtained for decks with restrained longitudinal displacements 

at the deck abutments. 

• The bridge geometries with a highest efficiency are (c) and (d). 

  

Model 
q 

kN/m 

LDECK 

m 

M isost 

kN·m 

Mneg 

kN·m 

Mpos 

kN·m 

Msyst 

kN·m 
X X' 

(a) 
r.l.d. 

10 100 12500 -51 61 112 0,009 0,99 

(a) 
f.l.d. 

10 100 12500 -49 59 108 0,009 0,99 

(b) 
r.l.d. 

10 110,4 15221 -3846 1817 5663 0.372 0,63 

(b) 
f.l.d. 

10 110,4 15221 -4522 1963 6485 0,426 0,57 

(c) 
r.l.d. 

10 110,4 15221 0 531 531 0,035 0,97 

(c) 
f.l.d. 

10 110,4 15221 0 2933 2933 0,193 0,81 

(d) 
r.l.d. 

10 110,4 15221 0 636 636 0,042 0,96 

(d) 
f.l.d. 

10 110,4 15221 -2133 1317 3449 0,227 0,77 

(e) 
r.l.d. 

10 100 12500 0 948 948 0,076 0,92 

(e) 
f.l.d. 

10 100 12500 0 947 948 0,076 0,92 
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3. CONCLUSIONS 
From the analyses of the results of the studied cases, the following conclusions can be inferred: 

• The highest total ( 2 2
22 33M M M= + ) and out of plane (M2-2) bending moments in 

L/4 of the arch and in the arch springings under a vertical uniform loading are obtained 

for model (b). M3-3 bending moments are very high too (about fifty times larger than 

for model (a) in the deck and a hundred times in the arch). 

• The highest total and out of plane bending moments in the mid-span of the arch under a 

vertical uniform loading are obtained for model (e). 

• Models (c) and (d) show the best structural behaviour. 

• Models (c) and (d) show a good structural behaviour only if the longitudinal 

displacements of the deck abutments are restrained (from Figure 2-1 to Figure 2-9). 

• Model (b) is highly influenced by two parameters: (1) the arch/deck eccentricity in plan 

view (e) and (2) the vertical distance between the arch crown and the deck mid-span (v). 

A parametrical study of e and v has been done and the results will be commented in the 

following section V. B of the present chapter V. 

• Spatial arch bridges have an improved structural behaviour under temperature 

increments with respect to conventional vertical arch bridges (model (a)) when 

restraining the longitudinal displacements of the deck abutments. Axial forces in the 

deck decrease, e.g.: for model (c) with r.l.d. the axial forces in the deck are nearly a 

hundred times smaller than those for model (a) (Figure 2-6). In exchange, significant 

M2-2 bending moments appear in the deck, but they are resisted by the deck’s width, 

which is its highest dimension. 

• For models with a curved deck (models (b), (c) and (d)), it is convenient to restrain 

longitudinal displacements of the deck abutments under both vertical loadings (Figure 

2-10 and Figure 2-11) and temperature increments. This is a very important difference 

with conventional vertical arch bridges. 

• For models with a straight deck (models (a) and (d)) it is obviously better to release 

longitudinal displacements of the deck abutments under temperature increments. 

• In general, the restriction of the twisting rotations at the support sections on the 

abutments does not have a significant impact on the structural response 

  



CHAPTER V. SECTION A. GEOMETRY AND BEARING CONDITIONS STUDY OF SPATIAL ARCH 
BRIDGES WITH A SUPERIOR DECK 

130 

 

REFERENCES 
BILLINGTON D. P., “The Role of Science in Engineering.” Robert Maillart‘s Bridges. The Art 

of Engineering. Princeton University Press. New Jersey, 1979, pp. 94-105 and 111-112. 

JORQUERA J. J., Study of the Structural Behaviour of Spatial Arch Bridges, PhD Thesis. 

Supervised by Prof. Manterola, Technical University of Madrid (UPM), 2007 (in Spanish). 

JORQUERA J. J., “Structural Behaviour of Spatial Arch Bridges”, Proceedings of the IASS 

Symposium 2009, Evolution and Trends in Design, Analysis and Construction of Shell and 

Spatial Structures (Domingo, A., and Lázaro, C. (Eds)), Valencia, 2009, pp. 2447-2457. 

SARMIENTO-COMESÍAS, M., RUIZ-TERAN, A. AND APARICIO, A. C.. “Superior deck 

spatial arch bridges.” Proceedings of the 35th Inernational. Symposium on Bridge and 

Structural Engineering, jointly organised by IABSE-IASS': ‘Taller, Longer, Lighter', London, 

UK, September 20-23, 2011 

 



131 

 

 

 

 

 

V. B) PARAMETRICAL STUDY OF 

SPATIAL ARCH BRIDGES WITH A 

CURVED SUPERIOR DECK AND A 

PLANAR VERTICAL ARCH 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

132 

 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

133 

 

INDEX 
 

1. INTRODUCTION ............................................................................................................. 137 

1.1 PREVIOUS STUDIES .............................................................................................. 137 

1.2 STUDIED PARAMETERS ....................................................................................... 138 

1.3 TYPES AND SELECTION OF EFFICIENCY CRITERIA ..................................... 139 

1.4 OBJECTIVES ........................................................................................................... 141 

1.5 LOADING CASES AND COMBINATIONS .......................................................... 142 

1.5.1 Loading cases for analysing the structural behaviour ................................. 142 

1.5.2 Loading cases for stresses in ULS and displacements in SLS ..................... 142 

1.5.3 Loading combinations for stresses in ULS and displacements in SLS ....... 142 

1.6 RESEARCH PROCEDURE AND VALUES ........................................................... 143 

2. PARAMETRICAL STUDY OF THE ARCH/DECK ECCENTRICITY IN PLAN VIEW (e) 
AND THE SYSTEM STIFFNESS DISTRIBUTION ............................................................... 146 

2.1 DEFINITION AND EMPLOYED VALUES ........................................................... 146 

2.2 STRUCTURAL RESPONSE UNDER A UNIFORMLY DISTRIBUTED VERTICAL 
LOAD 150 

2.2.1 Structural response of varying e for different g values ................................ 150 

2.2.2 Relationship between the value of e and the out-of-plane shape of the arch155 

2.2.3 Structural response of varying e for different f values ................................ 155 

2.2.4 Relationship between the value of e and the distribution of stiffness in the 
system 159 

2.3 STRESS BEHAVIOUR AND COMPARISON IN ULTIMATE LIMIT STATE.... 162 

2.4 EFFICIENCY CRITERIA ......................................................................................... 165 

2.5 PARAMETER DISCUSSION .................................................................................. 177 

3. VERTICAL DISTANCE BETWEEN THE ARCH CROWN AND THE DECK MID-SPAN 
(v) PARAMETRICAL STUDY ................................................................................................ 179 

3.1 DEFINITION AND EMPLOYED VALUES ........................................................... 179 

3.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) ...... 179 

3.3 STRESS BEHAVIOUR COMPARISON UNDER A UNIFORM LOADING q AND 
DESIGN IN ULTIMATE LIMIT STATE ............................................................................ 184 

3.4 EFFICIENCY CRITERIA ......................................................................................... 187 

3.5 PARAMETER DISCUSSION .................................................................................. 190 

4. ARCH RISE (f) PARAMETRICAL STUDY ................................................................... 190 

4.1 DEFINITION AND EMPLOYED VALUES ........................................................... 190 

4.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) ...... 191 



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

134 

 

4.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE ..................................................................................................202 

4.4 EFFICIENCY CRITERIA .........................................................................................207 

4.5 PARAMETER DISCUSSION ...................................................................................212 

5. INCLINATION OF STRUTS (β) PARAMETRICAL STUDY ........................................213 

5.1 DEFINITION AND EMPLOYED VALUES ............................................................213 

5.1.1 Employed values ...............................................................................................213 

5.1.2 Previous studies ................................................................................................214 

5.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) .......214 

5.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE ..................................................................................................219 

5.4 EFFICIENCY CRITERIA .........................................................................................219 

5.5 PARAMETER DISCUSSION ...................................................................................223 

6. DECK HEIGHT (z) PARAMETRICAL STUDY .............................................................223 

6.1 DEFINITION AND EMPLOYED VALUES ............................................................223 

6.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) .......225 

6.2.1 Arch internal forces (Figure 6-3 to Figure 6-9) .............................................225 

6.2.2 Deck internal forces (Figure 6-10 to Figure 6-20) .........................................226 

6.2.3 Arch displacements (Figure 6-14 to Figure 6-16) ..........................................226 

6.2.4 Deck displacements (Figure 6-17 to Figure 6-18) ..........................................226 

6.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE ..................................................................................................235 

6.3.1 Stresses behaviour under a uniform load q=10kN/m ...................................235 

6.3.2 Critical loading combinations in ULS ............................................................236 

6.4 EFFICIENCY CRITERIA .........................................................................................237 

6.5 PARAMETER DISCUSSION ...................................................................................239 

7. NON-VERTICAL ARCHES. ARCH IN PLAN SAG (gA) PARAMETRICAL STUDY .240 

7.1 DEFINITION AND EMPLOYED VALUES ............................................................240 

7.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) .......241 

7.2.1 Arch internal forces (Figure 7-2 to Figure 7-6) .............................................241 

7.2.2 Deck and struts internal forces (Figure 7-7 to Figure 7-10) .........................241 

7.2.3 Arch displacements (Figure 7-11) ...................................................................241 

7.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE ..................................................................................................247 

7.3.1 Stresses behaviour under a uniform load q=10kN/m ...................................247 

7.3.2 Critical loading combinations in ULS ............................................................247 

7.4 EFFICIENCY CRITERIA .........................................................................................250 



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

135 

 

7.5 PARAMETER DISCUSSION .................................................................................. 252 

8. CONCLUSIONS ............................................................................................................... 253 

8.1 Parameter conclusions ............................................................................................... 253 

8.2 Efficiency criteria conclusions .................................................................................. 255 

8.3 Critical loading combinations conclusions ................................................................ 256 

9. FUTURE LINES OF STUDY ........................................................................................... 257 

REFERENCES .......................................................................................................................... 258 

 



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

136 

 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

137 

 

1. INTRODUCTION 

A summary of the study presented in this chapter is in process of publication in Sarmiento-

Comesías et al (2014) and a summary of the research study of one of the parameters was 

published in Sarmiento-Comesías et al (2013). 

The thesis includes a bookmark which has the objective to help to read the present chapter by 

summarizing the different parameters and efficiency criteria employed in the present research and 

detailed in sections 0 and 1.6. 

1.1 PREVIOUS STUDIES 

According to the previous chapter V.A and the published paper Sarmiento-Comesías et al 

(2011) models with an arch curved in plan show the best structural behaviour to support a 

superior curved deck. However, it is suggested to study the improvement of this bridge type 

for the following reasons: 

• The geometry is intermediate to the models that have shown the best behaviour, since the 

vertical plane is the symmetry plane for opposite sign curvatures arches. This leads to 

think that 

• by studying how it is influenced by arch/deck eccentricity the behaviour could be greatly 

improved. 

• The arch is vertical and planar. This simplifies project geometry and construction. 

Previous studies: 

• Laffranchi and Marti (1997) describe four projects of Robert Maillart which are spatial 

arch bridges with a curved superior deck (SABWCSD) and explain the relation with 

Ritter’s theory of deck-stiffened arch and suspension bridges. Maillart’s concepts are 

extended and equivalent frame bridges are analized. The similarity of a frame bridge to an 

equivalent arch bridge is proved in their study.  

• Jorquera (2007) and Andrade (2010) prove that the structural behaviour of spatial arch 

bridges with a inferior curved deck (SABWCID) are highly dependent on the arch/deck 

eccentricity in plan view (e, Figure 1-1). This high influence has been explained by the 

proximity of the arch to the center of gravity (cg) of the deck (Andrade 2010). Another 

way to explain the efficiency of e is to place the arch so that there are no resulting 

torsional moments due to permanent loads about the intersection line of the planes of arch 

and deck, as Laffranchi and Marti (1997, p1283) suggest in order to choose the e value 

for the case of spatial arch bridges with a superior curved deck (SABWCSD). 

• Jorquera (2007) suggests that increasing the vertical distance between the arch crown and 

the deck will also improve the behaviour of SABWCSD. 

• The rigidity of the hanger-deck system has proved to be a key parameter for inferior-deck 

arch bridges with imposed curvature (IDABWIC) (Sarmiento-Comesías et al, 2011). 

Therefore its influence is measured for different values and combinations of the 
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previously mentioned variables. 

• The inclination of the struts planar vertical arch bridges with an inferior straight deck is 

studied by Bogaert (2010 and 2011). 

• De Zotti et al (2007) compare network, fan and vertical arrangements of hangers for 

inferior straight deck vertical planar arch bridges. They conclude that vertical and fan 

arrangements lead to minimum values of hanger forces, but higher values of arch and and 

lower chord bending moments. 

Values employed in the aforementioned studies: 

• In their studies, Jorquera (2007) and Andrade (2010) conduct a parametrical study of e, 

but only for specific cases with the same deck plan curvature and specific cross-sections 

and hanger distributions of SABWCID. Whereas for SABWCID this parameter is highly 

conditioned by the clearance, in SABWCSD it does not interfere with it. The fact of the 

struts being fixed and the different distribution of the struts’ length and thus the struts’ 

stiffness compared to hangers’, prevent the direct application of previous results of 

SABWCID for SABWCSD. Furthermore, a broader study for different deck plan 

curvatures and cross-sections is required and also an explanation of how the structure 

works and the reasons of the given e values as the most efficient parameters. 

• The indicators employed by Jorquera (2007) for SABWCID aim to obtain antifunicularity 

and are the sum and quadratic sum of out-of-plane and total bending moments in the arch. 

• In Jorquera’s study of e for planar vertical arches with an inferior curved deck with 

pinned hangers, the reduction of out-of-plane bending moments has been considered a 

good indicator of the improvement of the structural behaviour. This can be understood as 

a reduction of the balcony-beam behaviour, enhancing the arch to actually behave like an 

arch. 

• In Bogaert’s 2010 study it is concluded that an optimum arrangement of sloping hangers 

with radial distribution (from the deck central zone and sloping radially to the arch) can 

be found. This is obtained by distributing the hanger nodes in an even manner and 

concentrating the nodes on the lower chord near to the center. This has also a stabilising 

effect for buckling in opposition to vertical hangers (Bogaert, 2010). A triangular 

arrangement of hangers requires less steel than a fan arrangement of hangers concurring 

at a centre above the arch top (Bogaert, 2011), but fan arrangement can be justified for 

aesthetical reasons. 

1.2 STUDIED PARAMETERS 

The high influence of e might also be thought to be highly related to the inclination and length 

of the struts, and thus their stiffness, for superior deck spatial arch bridges with a curved deck 

(SABWCSD) with fixed rigid struts and a planar vertical arch, as the ones concerning us in 

this section. Therefore, other parameters which influence the inclination of the struts are 

worth studying. A parametrical study of such variables has been conducted. These variables 
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are defined as follows (Figure 1-1): 

• the arch/deck eccentricity in plan view (e) (section 2) 

• cross-section rigidity of deck, struts and arch (EID, GJD, EIS, GJS, EIA, GJA) (section 2) 

• the vertical distance between the arch crown and the deck mid-span (v) (section 3) 

• the rise of the arch (f) (section 4) 

• the inclination of the struts in longitudinal view (β) (section 5) 

• deck height (z) (section 6)  

• curvature of the arch in plan measured by its sag (gA) (section 7) 

 

 

Figure 1-1: Nomenclature of variables 

 

1.3 TYPES AND SELECTION OF EFFICIENCY CRITERIA  

The minimisation of the total bending moments is an indicator of the spatial arch tending to 

the antifunicular form of the load. However, it has been observed that a decrease of bending 

moments is often linked to a very high increase of axial forces (Sarmiento-Comesías et al, 

2012). Moreover, tending to the antifunicular of a uniformly distributed loading on the whole 

deck, is a priori no guarantee of an improvement in behaviour under asymmetric loadings on 

half the deck. Furthermore, the considered material for the present study is steel, which has a 

high tension bearing capacity in comparison with other materials and may suffer buckling 

under compression. Not only improving the behaviour of the arch is important, improvement 

should be regarded as minimisation of the material of the bridge system as a whole. 

Layout: Geometry of β variation for  
L=100m, g=f=L/5=20m e=g/1,2=16,67m, v=0 
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Therefore, in the present study it is considered that a design improvement is a minimisation of 

material and one of the aims of the study is to find an indicator as simple and quick to 

calculate as possible, which is equivalent to measure the total material of the bridge. This will 

be useful in order to make preliminary decisions for the initial geometry.  

Firstly, improvements will be measured as a stress reduction of the whole bridge system for 

the stress envelope. However, this cannot be directly assured as a mass reduction, since the 

length of the structure might change with different parameters and, thus, stress reduction 

could mean a mass increase if the length is increased greatly. Therefore, this must be 

controlled and a parameter such as the stress multiplied by the length will be considered. 

In order to be able to make quicker decisions  simpler criteria have been employed, regarding 

simpler loading cases or controlling only one element. The arch is expected to be key to 

control the whole mass of the bridge. Finally, a simple criteria such as the maximal arch 

displacement, which has proved to be key on the structutural behaviour of SABs (Sarmiento-

Comesías et al, 2011 and 2013a) is expected to be a simple and good enough criteria. 

Therefore, in the present study we have compared: 

• the sum of stresses in all the cross-sections of the arch (in all the output stations), 

considering the envelope of the absolute values of the stresses in the arch for the worse 

loading case, considering self-weight, dead loads, temperature variations and/or live loads 

on the whole deck (uniform) or on half the deck span (asymmetrical) (A) 

• the sum of stresses in all the cross-sections of the bridge, considering the envelope of the 

absolute values of the stresses in the arch for the worse loading case, considering self-

weight, dead loads, temperature variations and/or live loads on the whole deck (uniform) 

or on half the deck span (asymmetrical) (B)1 

• the sum of the total bending moments in all the cross-sections of the arch under self-

weight and permanent loads (C) 

• the sum of the stresses in all the cross-sections of the arch under a uniform loading on the 

deck (D) 

• the sum of the stresses in all the cross-sections of the whole bridge under a uniform 

loading on the deck (E) 

• the maximal stress in the arch for the worse loading case, considering self-weight, dead 

loads, temperature variations and/or uniform or asymmetrical live loads on the deck (F) 

• the maximal stress in the arch under a uniform loading on the deck (G) 

• maximal arch displacement under permanent loads (H) 

                                                           
1 It depends on the number pf elements of the model. In the analysed models, it has always been employed 
the same number of elements. 
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• the maximal sum of the absolute values of the stresses in the whole system (arch, deck 

and struts) for the worse loading case, considering self-weight, dead loads, temperature 

variations and/or uniform or asymmetrical live loads on the deck and multiplied by the 

length of the structural elements (both cases 
∑ ��
�
���

�
∙ ∑ 	


�

��  and  

∑ ��∙
�
�
���

�
 have been 

considered, where n is the number of output stations and σi and l i are the stress and length 

of each output station respectively) 

• total mass of the dimensioned bridge (the bridge is dimensioned for a first iteration of the 

linear analysis of the frame model). 

The value of the maximal arch displacement will be also obtained as a control criteria. This 

will give an idea of the influence of second order effects, which is important in order to 

control the validity of the other criteria, since results are obtained with a linear analysis. If the 

the geometry that shows a most efficient behaviour for the total mass indicator also gives the 

lowest displacements, the comparison employing a linear analysis is considered valid. If these 

indicators are not coincident, it means that a non-linear geometrical analysis (NLGA) study 

needs to be conducted in order to establish the most efficient geometry. 

1.4 OBJECTIVES 

The purpose of our study is to: 

• understand the changes of the structural behaviour of this bridge type due to changes the 

different parameters (e, f, v, β, EI, GJ, z, gA) which have been previously described  for 

different deck curvatures (g) (Figure 1-1) 

• establish a range of the best combination of the studied parameters in order to minimise 

the material employed for different spatial arch bridges 

• study which will be the best indicator in order to minimise material 

• assure whether the minimisation of bending moments is equivalent to the minimisation of 

stresses and if the latter corresponds to minimising the total mass of the bridge 

A linear analysis is conducted for the different models. A geometrically non-linear analysis is 

conducted in Chapter VI. C and structural behaviour is compared with the linear analyses. 
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1.5 LOADING CASES AND COMBINATIONS 

1.5.1 Loading cases for analysing the structural behaviour 

The global structural behaviour of all the models under a uniformly distributed load on the 

length of the whole deck of 10kN/m (q) and on half the deck span (q asym) has been studied. 

1.5.2 Loading cases for stresses in ULS and displacements in SLS 

To obtain the different stress values considered, the following loading cases have been 

employed: 

• Self-weight (w), with a steel weght of 76,97kN/m3 

• Permanent load (pl) of 2,5kN/m2. Considering 4m width: pl=10kN/m 

• Live loads (ll ) of 5kN/m2 according to the spanish standards IAP2011 and Eurocode 1. 

Part 2: Traffic loads on bridges. Considering 3m of usage width, employing the rest of 

the width for the railings: ll=15kN/m. Two hypothesis have been considered: 

o A uniform loading on the whole length of the deck (lu, Figure 1-2a) and 

o An asymmetrical loading on half the length of the deck (la, Figure 1-2b) 

o A uniform loading on the central third of the deck (lc) 

• Temperature variation of 25º on arch, struts and deck (∆T) 

1.5.3 Loading combinations for stresses in ULS and displacements in SLS 

The following load cases combinations have been considered for ULS: 

• Combination A1: 1,35·(w+pl)+1,5·lu 

• Combination A2: 1,35·(w+pl)+1,5·la 

• Combination A3: 1,35·(w+pl)+1,5·lc 

• Combination B: 1,35·(w+pl)+1,5·∆T 

• Combination C1: 1,35·(w+pl)+1,5·(0,4·lu+0,6·∆T) 

• Combination C2: 1,35·(w+pl)+1,5·(0,4·la+0,6·∆T) 

• Combination C3: 1,35·(w+pl)+1,5·(0,4·lc+0,6·∆T) 

and the service limit state response: 

• Combination D1: 1,0·(w+pl)+1,0·lu 

• Combination D2: 1,0·(w+pl)+1,0·la 

• Combination E: 1,0·(w+pl)+1,0·∆T 

• Combination F1: 1,0·(w+pl)+1,0·(0,4·lu+0,6·∆T) 

• Combination F2: 1,0·(w+pl)+1,0·(0,4·la+0,6·∆T) 
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 (a) (b) 

Figure 1-2: Loading (a) on the whole length of the deck (lu) and (b) on half the length of the deck 
(la)  

The stresses are obtained for the envelope of the aforementioned ULS combinations employing 
the reference cross-section values specified in section 1.6, Table 1-1. Hence, the stress values are 
very low in some cases. Afterwards they are redesigned for the material resistance. 

1.6 RESEARCH PROCEDURE AND VALUES 

In order to understand the behaviour of these arches, different frame 3D models have been 

developed and analyzed with commercial software, as part of a set of thorough parametric 

analyses (parameters described in section 1.2). A linear analysis has been employed. 

The arch and deck plan curvature are measured as horizontal sag (gA and gD respectively), the 

arch rise is called f , the arch/deck eccentricity in plan view is e , the distance between arch 

and deck at span center is v and the arch and deck spans are LSA and LSD respectively and are 

considered equal (L) in all models (Figure 1-1). 

In all the models a vertical planar arch has been employed (Figure 1-1).  

For all the studies presented, the following dimensions have been employed (Figure 1-1):  

• LSA=LSD=L=100m;  

• g=20m when considered a fixed value and varying from 0 to 20m when expressed so 

specifically 

• e varying from g/2 to g. When considered a fixed value e=g/1,2 

• f=20 when considered a fixed value and varying from L/10=10 to L/2=50m when 

expressed so specifically and 

• v=0 and varying from 0 to 6m when expressed so specifically 

• gA is the sag of the arch in plan view and it is always 0, since it is a planar vertical arch, 

except for the case study of gA 

• z=f except for the case study of z 

The shape of the arch is always a parabola. 16 struts have been employed in all the models. 

The inclination of the struts is determined by the uniform division of the deck and the arch for 

all the models, except those in which the inclination of the struts in longitudinal view (β) is 

studied. 
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The chosen arch rise (f=L/5) is a usual value for arch bridges contained in a vertical plane. 

Usual values range from 0,16*L (C. O’Connor 1971) and 0,25*L. 

Other fixed values for the other parameters of each parametrical study are adopted according 

to the results of the previous parametrical studies. 

The material employed is steel S355 with a 2,0·108 kN/m2 modulus of elasticity (E) and 

resistance fy=355MPa. 

The studied arches in each of the considered models are fixed at the springings. The deck is 

pinned at abutments and tangential longitudinal displacements might be restrained for SABs 

and free for g=0, as recommended in Chapter V.A. The radial displacements are restrained. 

The struts are completely fixed to both, arch and deck. 

In the figures the whole arch length will be named LA and the deck’s one LD, these values are 

different from the span so-called L. 

For stresses and axial forces values>0 are tensions and <0, compressions. 
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 Reference model Stiff strut-deck system (SSDS) Horizontally stiff arch (HZSA) 

 

 

  

Arch plan view 

 

ARCH 

CHS D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

A= 0,2328m2 
J= 0,0722m4 
I2= 0,5603m4 
I3= 0,0365m4 

J calculated according to Kollbrunner 
and Basler (1969) 

DECK 

BOX GIRDER 4000x800mm; 
t=15mm 

A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

BOX GIRDER 7000x800mm; t=15mm 
A= 0,2331m2 
J= 0,1161m4 
I2= 1,1393m4 
I3= 0,0335m4 

BOX GIRDER 4000x800mm; 
t=15mm 

A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

STRUTS 

CHS D=451mm;t=22,6mm 
A= 0,0304m2 
J= 0,0014m4 

I2= 0,0007m4 
I3= 0,0007m4 

CHS D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

CHS D=451mm;t=22,6mm 
A= 0,0304m2 
J= 0,0014m4 

I2= 0,0007m4 
I3= 0,0007m4 

Table 1-1: Cross-sections for different models 

The cross-sections of arch and deck employed for the reference model are a circular hollow 

section (CHS), with D=1000mm and t=30mm, for the arch, a box girder 4000x800mm and 

t=15mm for the deck and CHSs with D=451mm and t=22,6mm for the struts (Table 1-1). These 

have equivalent area and stiffness to the HSSs employed in the previous studies in Chapters IV 
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and V.A. It is better to employ a CHS to avoid the axis orientation invloved in square sections to 

influence the study.  

The cross-sections employed by Jorquera for the arch and deck are equal to the reference ones of 

the present study in order to be able to compare the results. Other cross-sections have also been 

employed to ensure that the most efficient parameters do not depend on the stiffness of the 

elements (Table 1-1). 

For the stiff strut/deck system (SSDS) models, a rigid to torsion deck according to the study for 

IDABWIC (Sarmiento-Comesías et al 2011) has been employed. For the struts a very rigid 

circular cross section has been employed (Table 1-1). 

For the mass calculation each structure has been dimensioned with the stresses corresponding to 

the analysis of the reference model. 

In each case study of the different parameters, the structural behaviour of the different models 

under q has been analysed and compared and the differences have been highlighted and 

explained. In most cases it is also explained what is expected before the structural analysis is 

carried out and why the studied parameter has been chosen. Then it is controlled whether the 

response is the expected one. There are so many variables involved that it is demonstrated that the 

response is not obvious a priori. 

The same has been done for the stresses under the different ULS combinations described in 

section 0. When necessary according the efficiency criteria the envelope of stresses has also been 

obtained and the cross-sections of the different elements have been dimensioned in order to obtain 

the total mass of the bridge criteria. The different efficiency criteria described in 1.3 have been 

obtained for the studied models and compared. This has lead us to determine the most efficient 

parameters and to evaluate the validity of the different criteria which have been employed. 

Therefore, for each case study the following sections are provided: 

• Structural response under a uniform vertical load 

• Stress control and comparison in ultimate limit state 

• Efficiency criteria 

2. PARAMETRICAL STUDY OF THE ARCH/DECK 
ECCENTRICITY IN PLAN VIEW (e) AND THE SYSTEM 
STIFFNESS DISTRIBUTION 

Part of the study presented in this section was published in Sarmiento-Comesías et al (2013). 

2.1 DEFINITION AND EMPLOYED VALUES 

The values for the parametrical study of the e variable have been chosen on the basis of the e/g 

relationship (Figure 1-1). The proportion around which we expect to find good results and around 

which we have chosen the range of values to study is based on the e value obtained as the most 

efficient one in the study of Jorquera (2007) for SABWCID with flexible hangers for L=100 and 

g=10. The value of the most efficient e in Jorquera’s study for antifunicular arches with inferior-
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deck with g=10m and pinned hangers is around 7,35m (Jorquera 2007, p382) and for planar 

vertical arch bridges with inferior-deck with g=10m and pinned hangers 8,32 (Jorquera 2007, 

p159). According to the relationship in which we base our range of values for the present study 

the values obtained by Jorquera are e=g/1,36 and e=g/1,2 respectively. In our case, the in-plane 

bending moments and axial forces will change with e, since the struts are fixed. Results should 

also be different in comparison with SABWCID because the length of the struts changes and, 

therefore, the stiffness. 

The Ripshorst bridge is a SABWSCD with an antifunicular arch and L=76,97m (Schlaich and 

Moschner, 1999). The dimensions we are studying have been approximately measured in the 

published figures. The arch has a double curvature, very low and with opposite sign to the deck 

near its springings and of the same sign as the deck at span center. Ripshorst bridge has a curved 

deck with g approximately g=14,5m. The gA of the arch measured from the span center to its 

springings is gA=1,66m, e measured from abutments to springings is eS=11,28, e measured from 

the abutments to the point where the arch crosses the deck in plan view is e=11,21m=g/1,29. 

Around this value the struts which are employed in this footbridge are stiffer than in the rest of the 

length, since here V struts have been employed, whereas in the rest of length individual struts 

have been employed. This fact remarks the necessity of the structure of a larger stiffness in this 

length and, therefore, the most efficient e should be in the range of values which would intersect 

these stiffened struts. This built example confirms the proportion around which we expect to find 

the most efficient e value (e*) for SABWCSD. However, our study will be with a planar vertical 

arch and different g and f values and different system stiffness distribution in order to lead to 

more general conclusions for this bridge type, since this value could change. Therefore, we have 

chosen a broader range of values. Moreover, it is important to understand why an e value will be 

more efficient than another one and in which cases. 

The efficiency criteria in the present study as well as the studied bridge types (SABWCSD with 

rigid struts) are different than for previous studies, as explained in section 1.  

Parameter influence and values: 

The values employed in the present study are: 

• L=100m; v=0 

• g=5, 10 and 20m 

• e: from 0 to g.  

The proportions employed are e equal to:  0, g/2, g/1,6, g/1,36, g/1,3, g/1,2 and g/1 (Figure 2-1, 

Table 2-1). g/1,1 has also been added in some cases in order to see if a more accurate value was 

needed.  

The study varying e has been conducted with the reference model cross-sections in Table 1-1 for 

the different g values and f=L/5=20m. 

For the reference model cross-sections in Table 1-1 and g=20m, the study of e variation has been 

carried out for each of the following f values: f=10, 15, 20, 25 and 50m. 
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• f varying from L/10 to L/2 

If f increases the arch is expected to work better in plane and horizontal forces at springings 

would decrease, however the behaviour as balcony beam is also expected to increase. Geometrical 

changes in plan due to the e varitation do not affect the longitudinal view of the bridge and 

viceversa, varying f does not affect the plan view. Therefore, geometrically the efficiency of f and 

e values is not expected to be coupled. However, the length and inclination of the hangers changes 

with e and f and hence its stiffness. Therefore, for different f values, it might be more interesting 

obtaining the largest rigidity in a point or another of the arch/deck connection by means of 

changing e. Thus the influence of this parameter must be studied. 

• Stiffness distribution variation: different cross-section values 

For g=20m and both cases, f=20m and f=25m, the study has been conducted for all the cross-

sections in Table 1-1 in order to study the influence of different system stiffness distributions, 

which might lead to different e* values. 

The parametrical study of e for the other g values described in Table 2-1 have been done 

employing the reference values of the cross-sections described in Table 1-1. 

 
(a) 

 
(b) 

 
(c) 

               
 (d) (e) 

Figure 2-1 Variation of e (a) Plan view for g=5. (b) Plan view for g=10. (c) Plan view for g=20.        (d) 
Longitudinal view for g=20. (d) Side view for g=20. 
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g i e=g/i Cgd* D** g i e=g/i Cgd* D** g i e=g/i Cgd* D** 

5 

2,00 2.50 

3,34= 
g/1,50 

3,60-4,15 
g/1,39-g/1,20 10 

2,00 5.00 

6,66= 
g/1,50 

7,17-8,29 
g/1,53-g/1,21 20 

2,00 10.00 

13,22= 
g/1,51 

14,20-16,47 
g/1,41-g/1,21 

1,60 3.13 1,60 6.25 1,60 12.50 

1,36 3.68 1,36 7.35 1,36 14.71 

1,30 3.85 1,30 7.69 1,30 15.38 

1,20 4.17 1,20 8.33 1,20 16.67 

    1,10 18,20 

1,00 5.00 1,00 10.00 1,00 20.00 

*Cg of the deck **Interval of values of e with the same number of struts on each side: from D1 to D2 (see Figure 2-2) 

Table 2-1: Studied values. Relationship between g and e. Measured in meters 

 

 

Figure 2-2: Plan view of a general bridge case study with e=0. Values for Table 2-1 

It is worth highlighting that whatever the value of g the cg of the deck and the maximal e for 

having the same number of struts on both sides of the arch keeps approximately the same 

proportion (Table 2-1). 
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2.2 STRUCTURAL RESPONSE UNDER A UNIFORMLY DISTRIBUTED 
VERTICAL LOAD 

The structural behaviour has been studied for the different g, f and cross-section values described 

above under a uniformly distributed load of 10kN/m on the whole deck and on half the deck (q 

and q asym, respectively) for the described values of e in each case (Table 2-1 and Figure 2-1) 

and their structural response has been compared.  

2.2.1 Structural response of varying e for different g values 

• For g=5 and 10, the most uniform axial forces in the arch (Figure 2-3 (a) and Figure 2-4 

(a)) are obtained for e=g/1,6, not far from the cg of the deck (Table 2-1). However, for 

g=20 most uniform axial forces in the arch are obtained for e=g/1,2 (Figure 2-5 (a)), far 

from the cg of the deck (Table 2-1). Total bending moments in the arch (Figure 2-5 (b)) 

and torsional moments (Figure 2-5 (e)) are also minimal around this value and e=g/1,1.  

• Torsional moments are minimal for e=g/1,2 whatever the value of g (Figure 2-3 (e), 

Figure 2-4 (e) and Figure 2-5 (e)). For g=20, this value also minimises the axial forces 

and the torsional moments of the deck. The total bending moments of the deck are 

minimal for e between g/1,30 and g/1,36 (Figure 2-5). 

• For g=5 and 10 under q or q asym, bending moments do not have clear minimal values, 

but results are in the range of g/1,36≤e≤1,2, approximately in the range in which there is 

the same number of hangers at each side of the arch. 

• For g=5 out-of-plane bending moments in the arch are minimised at springings for 

e=g/1,36, at LA/3 for e=g/1,3 and at the crown for e=g/1,2 (Figure 2-3 (c)).  

• The variation of in-plane bending moments in the whole arch (Figure 2-3 (d)) and of axial 

forces at springings (Figure 2-3 (a)) with e for g=5 is very low. 

• Under qasym, for g=20, e=g/1,1 in comparison with e=g/1,2 works better at the crown of 

the arch and worse at springings, as far as out-of-plane bending moments are concerned. 

• Regarding in-plane bending moments, the lowest ones for g=20m, under qasym, are 

obtained for e=g. 

• Until e=g/1,36 the out-of-plane bending moments in the arch are so important that the 

variation of the in-plane bending moments of the arch will not have a high impact on the 

variation of the total bending moments. However, when out-of-plane and in-plane 

bending moments in the arch are the same order of magnitude, it is interesting to decrease 

both. 
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(a) (b) 

(c) 

  
(d) 

Figure 2-3: Internal forces under q comparison for g=5 and f=20 for the parametrical study of e:  
(a) Arch axial forces; (b) Arch total bending moments; (c) Arch out of plane bending moments (M2-
2); (d) Arch in-plane bending moments (M3-3) The abscissas are the arch length from 0 to LA (or from 
0 to LA/2 in cases a and c, the symmetry dashed line marks LA/2) 

 
(a) (b) 

Figure 2-4: Internal forces under q comparison for g=10 and f=20 for the parametrical study of e: (a) 
Arch axial forces; (b) Arch total bending moments. The abcisses are the arch length from 0 to LA (or 
from 0 to LA/2 in cases a, the symmetry dashed line marks LA/2) 
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(g) 
Figure 2-5: Internal forces under q comparison for g=20 and f=20  for the parametrical study of e, 
employing the reference cross-sectional values shown in Table 1-1: (a) Arch axial forces; (b) Arch 
total bending moments; (c) Arch out of plane bending moments (M2-2); (d) Arch in-plane bending 
moments (M3-3); (e) Arch torsional moments; (f) Deck axial forces; (g) Deck torsional moments. The 
abcisses from (a) to (e) are the arch length from 0 to LA and (f) and (g) are the length of the deck from 0 
to LD 
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• For conventional vertical arch bridges (g=0), the maximal arch shear forces, bending 

moments and deflections are significantly higher when the loading is applied on half the 

deck span (q asym=10kN/m, Figure 1-2) than on the whole deck span (q=10kN/m). 

However, the higher axial forces are obtained when the whole deck span is fully loaded 

(q=10kN/m). It can be observed on the arch stresses that asymmetrical loading is the most 

unfavourable loading for most of the arch cross-sections (Figure 2-6a).  

• On the contrary, for SABs with a superior curved deck, the critical load case, for both 

internal forces and displacements, is obtained when the uniform distributed loading is 

applied on the whole deck span. This had also been observed for other SABs types such 

as inferior-deck arch bridges with imposed curvature (Sarmiento-Comesías et al, 2012). It 

can be observed on the arch stresses that loading on the whole deck-span is the most 

unfavourable loading for most of the arch cross-sections in SABs (Figure 2-6b, c and d). 

 
 (a) (b) 

 
 (c) (d) 

Figure 2-6: Stresses in the arch caused by different loading cases combination when employing the 
reference model cross-sections (Table 1-1). The abscissas are the arch length from 0 to LA, (a) for 
g=e=0 and f=20m e=16,67m; (b) for g=5m, f=20m and e=g/1,2=4,17m; (c) for g=10m, f=20m and 
e=8,33m; (d) for g=20m, f=20m and e=16,67m 
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Axial forces in the deck 

• For all g values, the deck is always completely tensioned for e=0 (Figure 2-3 (f), Figure 

2-4 (f) and Figure 2-5 (f)).  

• As g increases, tensions in the deck increase.  

• A planar vertical arch with a straight deck and g=e=0 transmits compressions to a slightly 

tensioned deck, which is therefore compressed at the span center (Figure 2-7).  

• For a curved deck, whatever the g values, the deck is always completely compressed for 

e=g (Figure 2-3 (f), Figure 2-4 (f) and Figure 2-5 (f)).  

• For g=20, the deck is not under compression until e>g/1,6, whereas for g=5 or 10 the 

deck is already under compression for e=g/1,6. 

• For g=5 or 10, the deck is already completely under compression for e>g/1,3, whereas for 

g=20 the deck is not completely under compression until e≥g/1,1.  

• When e=0 the deck is held back by the arch and is tensioned.  

• When e=g the deck is stopped by the arch and it is compressed.  

• The higher the value of g for e=0, the higher the tensions in the deck, especially at the 

abutments.  

• The difference of the axial forces at span center and springings increases with g. This 

effect is due to the curved shape of the deck and the increase of the distance from the 

arch.  

• For e=g the compressions at the abutments also increase with g. However, at span center 

it is more difficult to transmit the arch horizontal forces which compress the deck as g 

increases. 

  

Figure 2-7- Axial forces in the arch and deck of a planar vertical arch bridge with straight deck 
under q. The abcisses are the arch length from 0 to LA and  the length of the deck from 0 to LD 
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Displacements 

• Largest displacements of the arch and deck take place between LA/5 and 4*LA/15 

respectively. 

• The largest out-of-plane displacements in the arch take place between LA/6 and 2* LA/5 

and in-plane between LA/6 and LA/2.  

• The value of the maximal out-of-plane behaviour is larger in most cases but for e=g/1,2 

the out-of-plane displacement maximal value is equivalent to the in-plane displacement 

maximal value. 

 

 (a) (b) 

Figure 2-8: Displacements under q comparison for g=20 and f=20  for the parametrical study of e, 
employing the reference cross-sectional values shown in Table 1-1: (a) Arch in-plane displacements; 
(b) Arch out-of-plane displacements. The abcisses are the arch length from 0 to LA  

2.2.2 Relationship between the value of e and the out-of-plane shape of the arch 

Regarding the out-of-plane shape of the arch, for low e values it is expected to be more 

convenient to tend to a geometry with the arch and deck with opposite curvature in plan view and 

for high e values, to one with the curvature in plan view in the same direction (section A of the 

present chapter). This is coincident with the results for inferior-deck arch bridges (Jorquera 2007). 

2.2.3 Structural response of varying e for different f values 

The response when studying the effects of the variation of e for different f values (for g=20, f=10, 

15, 20, 25 and 50), is summarized in the following paragraphs. Results are shown for the extreme 

values f=10m and f=50m as examples (Figure 2-9 and Figure 2-10). 

- For low f values, the variation of e has a higher influence on the axial forces in the deck 

(Figure 2-9f compared to Figure 2-10f). 

- Given e=0, when increasing f the differences between the axial forces in the arch 

springings and crown increase (Figure 2-9a and Figure 2-10a). 

- On increasing f, the total bending moments in the arch increase and the value of e 

acquires more influence (Figure 2-9b compared to Figure 2-10b) 
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- On increasing f, the in-plane bending moments in the arch crown increase and in the arch 

springings they decrease. The value of e acquires more relative influence on in-plane 

bending moments in the arch (Figure 2-9d compared to Figure 2-10d) 

- On decreasing f values, the variation of e has a higher influence on the torsional moments 
in the arch (Figure 2-9e compared to Figure 2-10e). 
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(g) 
Figure 2-9: Internal forces under q comparison for g=20 and f=10 for the parametrical study of e, 
employing the reference cross-sectional values shown in Table 1-1: (a) Arch axial forces; (b) Arch 
total bending moments; (c) Arch out of plane bending moments (M2-2); (d) Arch in-plane bending 
moments (M3-3); (e) Arch torsional moments; (f) Deck axial forces; (g) Deck torsional moments. The 
abcisses from (a) to (e) are the arch length from 0 to LA and (f) and (g) are the length of the deck from 0 
to LD 
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(c) 

 
 (d) 

 
(e) 

 
(f) 

      
(g) 

Figure 2-10: Internal forces under q comparison for g=20 and f=50 for the parametrical study of e, 
employing the reference cross-sectional values shown in Table 1-1: (a) Arch axial forces; (b) Arch 
total bending moments; (c) Arch out of plane bending moments (M2-2); (d) Arch in-plane bending 
moments (M3-3); (e) Arch torsional moments; (f) Deck axial forces; (g) Deck torsional moments. The 
abscissas for (a) to (e) are the arch length from 0 to LA and for (f) and (g), the abscissas are the length of 
the deck from 0 to LD 
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2.2.4 Relationship between the value of e and the distribution of stiffness in the 
system 

• When employing a Stiff Strut-Deck System (SSDS): 

• The variation of e has a lower influence in the global behaviour of the arch (Figure 2-5 

compared with Figure 2-11).  

• A SSDS diminishes greatly the axial forces in the crown of the arch  and increases the 

difference between the axial forces in the arch springings and the arch crown (Figure 

2-11a). It also diminishes greatly the total bending moments in the springings of the arch 

(Figure 2-11b). However, axial forces and bending moments in the arch follow the same 

evolution with e whatever the f or cross-sectional values.  

• For g=20 and a SSDS, compressions in the deck start for e=g/2 and the deck is 

completely compressed for e≥g/1,2 (Figure 2-11c), which are a lower values of e than for 

the reference model (Figure 2-5f). 

• When the deck is completely compressed, e has a low influence on the axial forces in the 

arch (Figure 2-11c). 

• The difference between the axial forces in the deck the abutments and span center 

increase for a SSDS (Figure 2-11c) in comparison with the reference model (Figure 2-5f). 
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(a) 

 

(b) 

 

(c) 
Figure 2-11: Internal forces under q comparison for g=20 for the parametrical study of e, employing 
a stiff struts-deck system  (cross-sectional values shown in Table 1-1): (a) Arch axial forces; (b) Arch 
total bending moments; (c) Deck axial. The abscissas of (a) and (b) are the arch length from 0 to LA and 
for (c), the abscissas are the length of the deck from 0 to LD 

-1000.000

-900.000

-800.000

-700.000

-600.000

-500.000

-400.000

-300.000

-200.000

-100.000

0.000

A
xi

a
l F

o
rc

e
 (

k
N

)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

-600.000

-400.000

-200.000

0.000

200.000

400.000

600.000

800.000

A
x

ia
l 

F
o

rc
e

 (
k

N
)

g=20;f=20;e=0_ssds

g=20;f=20;e=10_ssds

g=20;f=20;e=12,5_ssds

g=20;f=20;e=14,7_ssds

g=20;f=20;e=15,38_ssds

g=20;f=20;e=16,67_ssds

g=20;f=20;e=18,2_ssds

g=20;f=20;e=20_ssds

M
 (

k
N

·m
)

g=20;f=20;e=0_ssds

g=20;f=20;e=10_ssds

g=20;f=20;e=12,5_ssds

g=20;f=20;e=14,7_ssds

g=20;f=20;e=15,38_ssds

g=20;f=20;e=16,67_ssds

g=20;f=20;e=18,2_ssds

g=20;f=20;e=20_ssds

A
x

ia
l 

F
o

rc
e

 (
k

N
)

g=20;f=20;e=0_ssds

g=20;f=20;e=10_ssds

g=20;f=20;e=12,5_ssds

g=20;f=20;e=14,7_ssds

g=20;f=20;e=15,38_ssds

g=20;f=20;e=16,67_ssds

g=20;f=20;e=18,2_ssds

g=20;f=20;e=20_ssds

A
x

ia
l 

Fo
rc

e
 (

kN
)



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

161 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 2-12: Internal forces under q comparison for g=20 for the parametrical study of e, employing 
a horizontally stiff arch (cross-sectional values shown in Table 1-1): (a) Arch axial forces; (b) Arch 
total bending moments; (c) Deck axial forces. The abscissas for (a) to (c) are the arch length from 0 to 
LA and for (d), the abscissas are the length of the deck from 0 to LD 

When employing a HoriZontally Stiff Arch (HZSA): 

• The axial forces in the arch become more homogeneous along the arch than for the 

reference model (Figure 2-5a). 

• The variation of e does not influence the axial forces in the arch as much as in the 

reference model, especially at the arch springings (Figure 2-12a).  

• The axial forces in the deck increase greatly (Figure 2-12c) in comparison with the 

reference model (Figure 2-5a). 

• The total bending moments in the arch increase and the punctual influence of the struts is 

lower (Figure 2-12b). 

• The deck axial forces become more homogeneous and the value of e gains influence 
(Figure 2-12c).  
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2.3 STRESS BEHAVIOUR AND COMPARISON IN ULTIMATE LIMIT 
STATE 

In Figure 2-13 the comparison of the arch stresses behavior only under q=10kN/m for different e 

values, for g=20m, f=20m and the reference model cross-sections (Table 1-1) is shown and in 

Figure 2-14, for SSDS (Table 1-1). The main aspects of the results for different models are 

analysed in this section. 

 

Figure 2-13: Arch stresses comparison under q for g=20 and f=20m for the parametrical study of e, 
employing the reference cross-sections (Table 1-1). The abscissas are the arch length from 0 to LA 

 

Figure 2-14: Arch stresses comparison under q for g=20 and f=20m for the parametrical study of e, 
employing a stiff struts-deck system  (cross-sectional values shown in Table 1-1). The abscissas are the 
arch length from 0 to LA  
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• Employing a SSDS lowers the stresses in the arch (Figure 2-13 and Figure 2-14). 

• Whatever the g and f values, stresses in the arch for e≥g/1,36 are lower than for smaller e 

values (Figure 2-13 and Figure 2-14).  

In Figure 2-15 the comparison between different loading cases and combination of the arch 

stresses is represented for the specific case e=16,67m; g=20 and f=20m. The worst loading 

combinations for the different models are commented in the following lines: 

• For g=20m, f=10 to 25m and e=16,67m when employing the reference model cross-

sections (Table 1-1), the worst hypothesis for the arch is combination A1 except at 

springing and LA/4 where A2 is worse, determined by the loading case la (Figure 2-15). 

• The importance of asymmetrical loading for stresses in the arch diminishes when 

increasing the value of f or the stiffness of the strut-deck system.  

• The worst loading cases combination for g=20m, f=50m, e=g/1,2=16,67m for the 

reference model cross-sections and for g=20m, f=20m, e=16,67m for the SSDS model 

(Table 1-1) cross-sections is A1. 

• When the structural behaviour of the arch is not under control (e=0) A1 is the most 

critical loading combination for the arch, ie: lu is the worst live load for arch stresses, 

since the out-of-plane behaviour is predominant over the arch behaviour, whatever the 

cross-section. 

• For the reference model cross-sections (Table 1-1) and e in the range of values g/1,36≤e< 

g/1,2 A2 increases its influence on arch maximal stresses from the springings to LA/4, in 

the rest of the arch length A1 is the worst loading combination.  

• For g/1,2≤e<g stresses caused by A2 are maximal at springings and LA/3 but get closer to 

A1, la loses influence in front of lu. 

• When employing a HZSA for e≥ g/1,6 ,A2 increases its influence on arch maximal 

stresses from the springings to LA/3. 

• When employing a SSDS and e in the range of values g/1,6≤e< g/1,1 A2 and A1 cause 

similar values of stresses at springings. Therefore, we can conclude that it is not necessary 

to consider la whatever the value of e when employing a SSDS. 

• When employing a HZSA and a SSDS (Table 1-1), the influence of temperature variation 

on the arch stresses increases.  

• When employing a HZSA and e in the range of values g/1,36≤e≤ g/1,1, B is the worst 

loading combination at approximately from LA/25 to LA/6 and for e= g/1,1 also at the arch 

crown.  

• For e> g/1,1 the difference of the stresses caused by B, A2 and A1 decreases, but A1 is 

not as predominant as for the reference model or a SSDS. 

• When employing a SSDS and e in the range of values g/2≤e<g/1,1, B is the worst loading 

combination at the arch crown.  
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• For e≥ g/1,1 worst arch stresses at the arch crown are caused again by A1 and at 

springings for g/1,2≤e< g stresses caused by A1, A2 and B are very close. 

• For e= g A1 causes the largest arch stresses in the whole length of the arch. 

 

Figure 2-15: Stresses in the arch caused by different loading cases combination for g=20m, f=20m 
and e=16,67m when employing the reference model cross-sections (Table 1-1). The abscissas are the 

arch length from 0 to LA 

For g=20m, f=20m and e=16,67m, the models with different stiffness distribution have been 

dimensioned. The following cross–sections for S 355 steel have been obtained employing a linear 

analysis: 

• The arches are CHS of 750mm diameter and thickness ranging from 10mm at span center 
to 30mm at springings for the reference model, from 6mm at span center to 22mm at 
springings for the SSDS model and 2 steel tubes for the arch cross-section of dimensions: 
1000x1000mm and 6mm thickness joint by K bracings for the HZSA model. 

• The struts are CHS of 300mm diameter and thickness ranging from 15mm at extremes to 

35mm at span center for the reference model and from 8mm at extremes to 45mm at span 

center for the HZSA model. For the SSDS model, CHS of 750mm diameter were 

employed, with thickness ranging from 6mm at extremes to 12mm at L/3 approximately. 

• The deck is a 4000x700≠10mm steel box girder for the reference model and for the 

HZSA model and 7000x700≠10mm for the SSDS model. It would be enough with 3mm 

to resist the stresses considering a compact cross-section. However, 10mm are considered 

for local bending moments, local instability of compressed plates and durability. 

These design cross-sections are employed in the geometrically non-linear analysis in chapter VI. 
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2.4 EFFICIENCY CRITERIA 

The results of the chosen criteria are shown for the different models which have been studied in 

tables from Table 2-2 to Table 2-11. In these tables the nomenclature already given in section 1.3 

is employed. Please use the bookmark to comfortably interpret the tables, and note whether the 

length is considered or not, since the nomenclature and units of the criteria are modified. The 

following values are specifically employed for the tables in this section: 

• e* is the value of e which minimizes each criteria and is measured in meters. 

• i=% of difference of B (bookmark and section 1.3) from the most efficient e value for B 

(e*) 

A different e* is obtained for each criteria. The results of the efficiency criteria are commented in 

the following lines: 

• For high g values, ie: when spatial behaviour increases, the influence of e is larger (i 

values in Table 2-2, Table 2-4 and Table 2-5).  

• For g=5 the relative difference between stresses when varying e in the range of g/1,36 and 

g values is negligible (i value in Table 2-2). However, for g=20, the value of e has a high 

influence (i value in tables from Table 2-2 to Table 2-5). 

• Whatever the value of g, minimising the value of the sum of the stresses of the whole 

system is equivalent to minimising the sum of stresses in the arch (Table 2-2, Table 2-4 

and Table 2-5). However, for g=20 when employing a stiff strut-deck system, the value of 

e which minimises the value of the sum of the stresses of the whole system and the one 

which minimises the sum of stresses in the arch and the bending moments are different 

(B, A and C respectively in Table 2-6). Nevertheless, the relative differences for e values 

in the range of g/1,36 and g are negligible. Therefore, in order to determine the most 

efficient e value, the criteria referring to minimising the stresses along the arch or in the 

whole bridge can be considered equivalent. 

 Criteria 

Model A B C D E F G H i 

g=5;f=20;e=0 20154 38140 99521 3441 5597 198 35 50 53,2 

g=5;f=20;e=2,5 13992 28521 41985 2267 3145 108 16 21 14,5 

g=5;f=20;e=3,13 12642 26547 30459 1988 2705 94 13 16 6,6 

g=5;f=20;e=3,68 11815 25323 23387 1808 2469 91 12 12 1,7 

g=5;f=20;e=3,85 11692 25108 22128 1780 2441 95 12 11 0,8 

g=5;f=20;e=4,17 11613 24902 21307 1771 2457 101 14 11 0,0 

g=5;f=20;e=5 12211 25619 28011 1960 2806 120 20 14 2,9 

e* e=4,17 e=4,17 e=4,17 e=4,17 e=3,85 e=3,68 e=3,68 e=4,17  

Table 2-2: Efficiency indicators for the case study employing g=5 and f=20 
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Criteria 

Model A B C D E F G H 

e=0 6786157 12842146 33509786 1158468 1884508 66809 11735 16668 

e=2,5 4422557 9014566 13270264 716522 994017 33979 5199 6783 

e=3,13 3947664 8289779 9511342 620696 844677 29277 4209 4913 

e=3,68 3658895 7841646 7242205 559966 764448 28185 3591 3751 

e=3,85 3612591 7757648 6837005 550103 754118 29226 3653 3524 

e=4,17 3576376 7669104 6561994 545451 756536 31258 4311 3268 

e=5 3754652 7877122 8612656 602606 862845 36849 6138 4422 

e* e=4,17 e=4,17 e=4,17 e=4,17 e=3,85 e=3,68 e=3,68 e=4,17 

Table 2-3: Efficiency indicators for the case study employing g=5 and f=20 considering the 
length of the elements of the bridge 

 
Criteria 

Model A B C D E F G H i 

g=10;f=20;e=0 31047 57970 208408 5430 10280 390 70 105 159,7 

g=10;f=20;e=5 18637 31205 86062 3181 4929 151 26 43 39,8 

g=10;f=20;e=6,25 15578 26272 57055 2586 3807 114 20 27 17,7 

g=10;f=20;e=7,35 13482 23068 37610 2167 3054 102 16 17 3,3 

g=10;f=20;e=7,69 13124 22548 34260 2105 2947 106 15 14 1,0 

g=10;f=20;e=8,33 12899 22325 32396 2085 2970 120 19 12 0,0 

g=10;f=20;e=10 14817 25892 49663 2501 3887 184 33 26 16,0 

e* e=8,33 e=8,33 e=8,33 e=8,33 e=7,69 e=7,35 e=7,69 e=8,33  

Table 2-4: Efficiency indicators for the case study employing g=10 and f=20 

 
Criteria 

Models A (MPa) B (MPa) C (kN·m) D (MPa) E (MPa) F (MPa) G (mm) i 

e=0 60977 122328 497072 10636 21620 1123 233 307 

e=10=g/2 34197 57339 225001 6047 10140 325 97 91 

e=12,5=g/1,6 26565 42638 150783 4615 7262 220 60 42 

e=14,7=g/1,36 20751 33170 95021 3487 5156 174 32 10 

e=15,38=g/1,3 19462 31485 82797 3247 4786 173 26 5 

e=16,67=g/1,2 17958 30026 69354 2999 4502 188 19 0 

e=18,2=g/1,1 17919 31323 70866 3043 4801 227 29 4 

e=20=g/1 19754 35904 90248 3463 5865 292 45 20 

e* e=18,2 e=16,67 e=16,67 e=16,67 e=16,67 e=15,38 e=16,67  

Table 2-5: Efficiency indicators for the case study employing g=20 and f=20 
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• For g=5 and g=10 the sum of stresses under a uniform load and the sum of maximal 

stresses in the arch show different most efficient e values, but again the relative 

differences for e values in the range of g/1,36 and g are negligible (Table 2-2 and Table 

2-4). 

• Whatever the value of g, f and the cross-sections employed, the value of e which 

minimises the maximal stress in the arch is lower than the one which minimises the sum 

of stresses in the whole length of the arch (Table 2-2, Table 2-4 and Table 2-5).  

• The value of e which minimizes the sum of the maximal stresses in the whole bridge is 

independent of the stiffness of the strut-deck system or that of the arch and of the value of 

f and is equal to g/1,20 (from Table 2-8 to Table 2-11, Table 2-6 and Table 2-7).  

 
Criteria 

Model A B C D E F G H i 

g=20;f=20;e=0_ssds 46690 79430 413586 5814 10154 910 122 178 242,1 

g=20;f=20;e=10_ssds 26511 40498 165059 3528 5469 300 41 76 74,4 

g=20;f=20;e=12,5_ssds 21824 31581 108454 2879 4145 201 29 49 36,0 

g=20;f=20;e=14,7_ssds 17960 25726 68619 2319 3149 152 21 29 10,8 

g=20;f=20;e=15,38_ssds 16971 24536 59250 2185 2937 150 19 23 5,7 

g=20;f=20;e=16,67_ssds 15559 23216 47511 2043 2746 167 20 17 0,0 

g=20;f=20;e=18,2_ssds 14988 23253 45969 2078 2864 194 27 16 0,2 

g=20;f=20;e=20_ssds 15972 25329 60811 2329 3348 236 34 24 9,1 

e* e=18,2 e=16,67 e=18,2 e=16,67 e=16,67 e=15,38 e=15,38 e=18,2  

Table 2-6: Efficiency criteria for g=20, f=20 and different e values employing the SSDS cross-sections 
defined in Table 1-1 

 
Criteria 

Model A B C D E F G H i 

g=20;f=20;e=0_hzsa 26875 83942 1691104 4536 14927 321 56 46 364,1 

g=20;f=20;e=10_hzsa 15109 36942 757311 2471 6485 138 20 18 104,2 

g=20;f=20;e=12,5_hzsa 12366 27096 514620 1939 4568 106 14 13 49,8 

g=20;f=20;e=14,7_hzsa 10291 20984 302923 1477 3136 82 10 11 16,0 

g=20;f=20;e=15,38_hzsa 9763 19456 243948 1340 2785 76 9 10 7,6 

g=20;f=20;e=16,67_hzsa 8973 18088 162000 1160 2381 74 8 10 0,0 

g=20;f=20;e=18,2_hzsa 8819 18508 150274 1090 2378 83 11 10 2,3 

g=20;f=20;e=20_hzsa 9968 21790 323507 1319 3120 95 14 11 20,5 

e* e=18,2 e=16,67 e=18,2 e=18,2 e=18,2 e=16,67 e=16,67 e=16,67  

Table 2-7: Efficiency criteria for g=20, f=20 and different e values employing the HZSA cross-sections 
defined in Table 1-1 
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In tables Table 2-8 to Table 2-11 the efficiency criteria when varying e for different f values are 

shown. The length of the different struts for the studied e values for f=20m is displayed in Table 

2-12. The main conclusions of the analysis of the results of these tables are the following: 

• For the reference model, the stress indicator is equivalent to the total mass indicator since 

the total length of the structures is lowest for the most efficient e value (Table 2-12). The 

results for the linear elastic analysis will not change with the consideration of geometrical 

non-linearities since displacements are lowest for the most efficient e value (Table 2-2, 

Table 2-4, Table 2-5, Table 2-6, Table 2-7 and from Table 2-8 to Table 2-11). Therefore, 

given a g value e=g/1,20 is always recommendable, whatever the value of g, f and the 

cross-section values.  

• The higher the f value, the higher the importance of choosing an adequate e value (i 

values in Table 2-5 and from Table 2-8 to Table 2-11). Obtaining a higher stiffness in the 

key points g/1,2 becomes more critical because: (i) the struts are longer and hence less 

stiff and (ii) the out-of-plane behaviour of the arch increases at approximately LA/3, 

which is the key point range of values (section 4). 

• For all g and f values and for all cross-sections, the value of e for which the sum of 

maximal total bending moments along the arch is minimal is the same as the one for 

which the sum of maximal stresses along the arch is minimal, ie: e=g/1,20 (Table 2-6).  

For all g and f values and for all cross-sections, the relative differences for e values in the 

range of g/1,3 and g/1,1 are negligible (Table 2-2, Table 2-4, Table 2-5, Table 2-6, Table 

2-7 and from Table 2-8 to Table 2-11). Therefore, employing the antifunicularity criteria 

for fixing an efficient e value for SABWCSD is a valid design procedure. 

 

 
Criteria 

Model A B C D E F G H i 

g=20;f=10;e=0;v=0 57202 128288 401278 9757 22487 1336 239 151 216,0 

g=20;f=10;e=10;v=0 36180 63925 171735 6282 11199 389 66 72 57,5 

g=20;f=10;e=12,5;v=0 30624 50524 115031 5244 8638 288 42 53 24,5 

g=20;f=10;e=14,7;v=0 26491 41948 75572 4431 6798 243 34 42 3,3 

g=20;f=10;e=15,38;v=0 25588 40810 67838 4255 6500 239 33 40 0,5 

g=20;f=10;e=16,67;v=0 24666 40594 61499 4067 6317 244 39 38 0,0 

g=20;f=10;e=18,2;v=0 24866 43041 68809 4145 6765 270 48 41 6,0 

g=20;f=10;e=20;v=0 26913 47643 87079 4582 7800 332 60 48 17,4 

e* e=16,67 e=16,67 e=16,67 e=16,67 e=16,67 e=15,38 e=15,38 e=16,67   

Table 2-8: Efficiency indicators for the case study employing g=20 and f=10 and reference 
cross-section values 
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Criteria 

Model A B C D E F G H i 

g=20;f=15;e=0;v=0 59132 124675 459789 10252 21999 1205 216 192 271,3 

g=20;f=15;e=10;v=0 34515 59234 203578 6078 10442 346 59 82 76,4 

g=20;f=15;e=12,5;v=0 27633 44998 135364 4787 7667 242 39 54 34,0 

g=20;f=15;e=14,7;v=0 22505 35976 85783 3783 5666 197 28 33 7,1 

g=20;f=15;e=15,38;v=0 21401 34563 75513 3573 5319 196 27 28 2,9 

g=20;f=15;e=16,67;v=0 20112 33580 65009 3356 5086 209 34 23 0,0 

g=20;f=15;e=18,2;v=0 20101 35307 68360 3401 5451 246 44 26 5,1 

g=20;f=15;e=20;v=0 22052 40084 88181 3833 6562 311 56 38 19,4 

e* e=18,2 e=16,67 e=16,67 e=16,67 e=16,67 e=15,38 e=15,38 e=16,67   

Table 2-9: Efficiency indicators for the case study employing g=20 and f=15, for reference 
cross-section values 

 
Criteria 

Model A B C D E F G H i 

g=20;e=0;f=25;v=0 157284 209853 1401235 27918 37466 1856 335 70 652,4 

g=20;e=10;f=25;v=0 34235 56196 240291 6044 9937 311 52 113 101,5 

g=20;e=12,5;f=25;v=0 26140 41277 162504 4529 7025 207 37 69 48,0 

g=20;e=14,7;f=25;v=0 19859 31466 102769 3322 4883 160 27 35 12,8 

g=20;e=15,38;f=25;v=0 18422 29650 89100 3059 4485 159 24 26 6,3 

g=20;e=16,67;f=25;v=0 16724 27892 73114 2784 4148 174 28 21 0,0 

g=20;e=18,2;f=25;v=0 16635 28824 72939 2825 4402 213 38 34 3,3 

g=20;e=20;f=25;v=0 18477 33295 91957 3239 5419 276 50 53 19,4 

e* e=18,2 e=16,67 e=18,2 e=16,67 e=16,67 e=15,38 e=15,38 e=16,67 

Table 2-10: Efficiency indicators for the case study employing g=20 and f=25, for reference 
cross-section values 

 
Criteria 

Model A B C D E F G H i 

g=20;f=50;e=0;v=0 66346 115741 588436 11393 20211 942 163 556 370,2 

g=20;f=50;e=10;v=0 35115 53551 282091 5960 9297 280 48 215 117,5 

g=20;f=50;e=12,5;v=0 26205 38719 197912 4321 6451 202 36 129 57,3 

g=20;f=50;e=14,7;v=0 19049 29064 130741 2998 4307 136 24 60 18,1 

g=20;f=50;e=15,38;v=0 17272 26998 113582 2700 3884 135 21 41 9,7 

g=20;f=50;e=16,67;v=0 14962 24616 89478 2367 3486 149 22 34 0,0 

g=20;f=50;e=18,2;v=0 14462 24939 80704 2375 3658 183 31 63 1,3 

g=20;f=50;e=20;v=0 16221 29006 96496 2778 4568 236 41 102 17,8 

e* e=18,2 e=16,67 e=18,2 e=16,67 e=16,67 e=15,38 e=15,38 e=16,67   

Table 2-11: Efficiency indicators for the case study employing g=20 and f=50, for reference 
cross-section values 
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Strut number e=0 e=10 e=12,5 e=14,7 e=16,69 e=18,2 e=20 

1 (nearest to springing) 16.17 
 

16.62 
 

17.64 
 

18.78 
 

19.93 
 

20.92 
 

22.16 
 

2 14.29 
 

11.96 
 

12.61 
 

13.55 
 

14.61 
 

15.56 
 

16.79 
 

3 14.26 
 

8.70 
 

8.66 
 

9.21 
 

10.08 
 

10.96 
 

12.17 
 

4 15.39 
 

7.27 
 

6.17 
 

5.96 
 

6.43 
 

7.16 
 

8.30 
 

5 16.91 
 

7.51 
 

5.51 
 

4.21 
 

3.82 
 

4.19 
 

5.20 
 

6 18.33 
 

8.49 
 

6.11 
 

4.13 
 

2.69 
 

2.21 
 

2.86 
 

7 19.38 
 

9.41 
 

6.93 
 

4.77 
 

2.89 
 

1.58 
 

1.27 
 

8 (nearest to span center) 19.93 
 

9.93 
 

7.43 
 

5.23 
 

3.28 
 

1.76 
 

0.32 
 

 
 

nearest strut to arch deck intersection in plan view, ie: most vertical struts 

 
 

shortest strut of the model 

 
 

strut that is shortest in this model compared to the rest of models 

Table 2-12. Length of struts comparison between models with L=100, g=20 and f=20 

The value of e* concluded as the most efficient is proportional to g and has a constant 
relationship with L and f. This is shown in Figure 2-16 and Figure 2-17: 

• It can be appreciated that the relationship between the intersection point deck/arch in plan 

and of the projection of this point on the arch rise in layout has the same value: 

approximately an 80% of their value, ie: e*/g=0,8 and fintersection/f=0,8 (Figure 2-16). 

• The deck of the studied cases has a circular curvature and the arch a parabolic one. Since 

the aforementioned relationships have the same value, it can be stated that the variation of 

the key points to control their behavior depends on their sag or rise, but hardly depends 

on the shape. 

• The value of e* is independent of the f value, as suspected a priori, because the variation f 

does not affect the plan view geometry of the bridge when employing a planar vertical 

arch, ie: the key points where it is most favourable to increase the stiffness of the system 

do not change with f. Not only do these points have a constant relationship with g (which 

can still be considered constant with L), but also with f (Figure 2-17). 
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Figure 2-16: Relationships of the most efficient e value (e*) with L and f 

 

Figure 2-17: Relationships of the most efficient e with L and f for different f values 

Comparison of the different stiffness distributions 

A comparison of the different stiffness distributions has been done for various criteria and is 

shown in tables from Table 2-13 to Table 2-21. 

For g=20 the following conclusions regarding the stiffness distribution can be drawn:  

• Whatever the e value, employing a SSDS diminishes all the stresses in the arch, deck and 

struts, and also for the total bending moments in the arch (Table 2-13, Table 2-14 and 

Table 2-15), as it was the case for IDABWIC (Sarmiento-Comeías et al 2012). 

• Regarding the stresses in the arch, employing a strut-deck system with a large transverse 

stiffness highly reduces the maximal stress in the arch, and has even more influence when 

considering the stresses along the whole arch (Table 2-13). The influence of employing a 

stiff strut-deck system is lower for values of e between g/1,30 and g/1,20, ie: for those 
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values of e which give lower stresses in the arch, the strut-deck stiffness has a lower 

influence (Table 2-13 and Table 2-15). Nevertheless, the stiffness of the strut-deck system 

has still a high influence. Therefore, whatever the value of e, it is always worth 

controlling the stiffness strut-deck system. 

• However, depending on the stiffness of the strut-deck system it might be worth or not 

adjusting the value of e. When employing the reference cross-sections, it is highly 

convenient to adjust the value of e in order to diminish the stresses along the whole bridge 

length (Table 2-2, Table 2-4, Table 2-5, from Table 2-8 to Table 2-11, Table 2-6 and 

Table 2-7).  

• Employing a HZSA (Table 1-1) diminishes the arch and the total bridge stresses with 
respect to the reference model (Table 2-16 and Table 2-17) or with SSDS model (Table 
2-18 and Table 2-19), especially the stresses in the arch are largely diminished when 
compared with the reference model (Table 2-16). However, the sum of bending moments 
in the arch increases greatly (Table 2-17 and Table 2-19). 

 
Maximal arch 
stress (MPa)* 

Relative difference 
with respect to 

SSDS (%) 

Sum of arch 
stresses (MPa) 

Relative difference 
with respect to 

SSDS (%) 

g=20;f=20;e=0_ssds 910.2 
-23.36 

46690.0 
-30.60 

g=20;f=20;e=0 1122. 9 60976.5 

g=20;f=20;e=10_ssds 299.8 
-8.35 

26510.6 
-28.99 

g=20;f=20;e=10 324.9 34197.1 

g=20;f=20;e=12,5_ssds 201.1 
-9.46 

21823.5 
-21.72 

g=20;f=20;e=12,5 220.2 26564.5 

g=20;f=20;e=14,7_ssds 152.0 
-14.44 

17960.0 
-15.54 

g=20;f=20;e=14,7 174.0 20751.2 

g=20;f=20;e=15,38_ssds 150.0 
-15.47 

16970.6 
-14.68 

g=20;f=20;e=15,38 173.1 19462.4 

g=20;f=20;e=16,67_ssds 167.2 
-12.31 

15559.5 
-15.42 

g=20;f=20;e=16,67 187.8 17958.0 

g=20;f=20;e=18,2_ssds 194. 3 
-16.75 

14987.7 
-19.56 

g=20;f=20;e=18,2 226.8 17919. 5 

g=20;f=20;e=20_ssds 235.9 
-23.63 

15972.2 
-23.67 

g=20;f=20;e=20 291.6 19753.6 

Table 2-13: Arch stresses comparison for the cross-sections of the reference model and SSDS model 
in Table 1-1, for g=20m, f=20m and different e values 
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Maximal 

deck stress 
(MPa)* 

Relative 
difference 

(%) 

Sum of deck 
stresses 
(Mpa) 

Relative 
difference 

(%) 

Maximal 
strut stress 

(MPa)* 

Relative 
difference 

(%) 

Sum of strut 
stresses 
(MPa) 

Relative 
difference 

(%) 

g=20;f=20;e=0_ssds 257.254561 
-55.16 

25545.45569 
-70.27 

365.5994193 
-86.66 

7194.421325 
-148.17 

g=20;f=20;e=0 399.1538378 43497.17547 682.424154 17854.58018 

g=20;f=20;e=10_ssds 101.685032 
-4.29 

10715.06099 
-16.07 

153.7690157 
-179.80 

3272.492246 
-227.10 

g=20;f=20;e=10 106.0514189 12437.31597 430.2468883 10704.36536 

g=20;f=20;e=12,5_ssds 68.7159539 
-10.91 

7257.031534 
-8.10 

114.6038807 
-221.10 

2500.914508 
-229.01 

g=20;f=20;e=12,5 76.214501 7845.006215 367.9891763 8228.286573 

g=20;f=20;e=14,7_ssds 46.39222784 
-28.93 

5731.559054 
-8.05 

82.45936174 
-247.46 

2034.816285 
-205.98 

g=20;f=20;e=14,7 59.81215962 6193.103427 286.5126532 6226.063582 

g=20;f=20;e=15,38_ssds 42.33094027 
-33.52 

5631.886908 
-12.05 

73.57750118 
-246.95 

1933.296465 
-195.44 

g=20;f=20;e=15,38 56.52194114 6310.544533 255.2760451 5711.762286 

g=20;f=20;e=16,67_ssds 41.32020309 
-58.56 

5809.903001 
-21.96 

72.37950884 
-174.41 

1846.260912 
-169.85 

g=20;f=20;e=16,67 65.516318 7085.575567 198.6148466 4982.132218 

g=20;f=20;e=18,2_ssds 47.69462606 
-77.45 

6319.953007 
-35.82 

86.11823289 
-148.38 

1945.323102 
-147.77 

g=20;f=20;e=18,2 84.63339386 8583.820337 213.9047494 4819.90554 

g=20;f=20;e=20_ssds 56.10743357 
-84.86 

7024.152009 
-49.65 

104.3603745 
-152.66 

2332.373063 
-141.74 

g=20;f=20;e=20 103.7177725 10511.75533 263.6731898 5638.290372 

Table 2-14: Deck stresses comparison for the cross-sections of the reference model and SSDS model 
in Table 1-1, for g=20m, f=20m and different e values 

  
Sum of total 

stresses (Mpa) 
Relative difference 

(%) 

Sum of total 
bending moments 
in the arch (kN·m) 

Relative 
difference (%) 

g=20;f=20;e=0_ssds 79430 
-54.01 

413586 
-20.19 

g=20;f=20;e=0 122328 497072 

g=20;f=20;e=10_ssds 40498 
-41.58 

165059 
-36.32 

g=20;f=20;e=10 57339 225001 

g=20;f=20;e=12,5_ssds 31581 
-35.01 

108454 
-39.03 

g=20;f=20;e=12,5 42638 150783 

g=20;f=20;e=14,7_ssds 25726 
-28.94 

68619 
-38.48 

g=20;f=20;e=14,7 33170 95021 

g=20;f=20;e=15,38_ssds 24536 
-28.32 

59250 
-39.74 

g=20;f=20;e=15,38 31485 82797 

g=20;f=20;e=16,67_ssds 23216 
-29.33 

47511 
-45.98 

g=20;f=20;e=16,67 30026 69354 

g=20;f=20;e=18,2_ssds 23253 
-34.71 

45969 
-54.16 

g=20;f=20;e=18,2 31323 70866 

g=20;f=20;e=20_ssds 25329 
-41.75 

60811 
-48.41 

g=20;f=20;e=20 35904 90248 

Table 2-15: Total bridge  stresses comparison for the cross-sections of the reference model and SSDS 
model in Table 1-1, for g=20m, f=20m and different e values 
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Maximal arch 
stress (MPa)* 

Relative difference 
with respect to 

HZSA (%) 

Sum of arch stresses 
(MPa) 

Relative difference 
with respect to 

HZSA (%) 

g=20;f=20;e=0_hzsa 320,5255562 
-250,32 

26875,37847 
-126,89 

g=20;f=20;e=0 1122,865996 60976,53743 

g=20;f=20;e=10_hzsa 137,922457 
-135,56 

15109,30511 
-126,33 

g=20;f=20;e=10 324,8883673 34197,12571 

g=20;f=20;e=12,5_hzsa 106,134813 
-107,45 

12365,54911 
-114,83 

g=20;f=20;e=12,5 220,1730602 26564,50849 

g=20;f=20;e=14,7_hzsa 82,30941764 
-111,35 

10291,48298 
-101,63 

g=20;f=20;e=14,7 173,9573784 20751,2053 

g=20;f=20;e=15,38_hzsa 75,67933824 
-128,76 

9763,311221 
-99,34 

g=20;f=20;e=15,38 173,1245698 19462,41819 

g=20;f=20;e=16,67_hzsa 73,83371797 
-154,38 

8973,49481 
-100,12 

g=20;f=20;e=16,67 187,8189355 17957,98939 

g=20;f=20;e=18,2_hzsa 82,69372649 
-174,26 

8819,097361 
-103,19 

g=20;f=20;e=18,2 226,7923692 17919,49945 

g=20;f=20;e=20_hzsa 95,24298 
-206,17 

9968,458443 
-98,16 

g=20;f=20;e=20 291,6088625 19753,56572 

Table 2-16: Arch stresses comparison for the cross-sections of the reference model and HZSA model 
in Table 1-1, for g=20m, f=20m and different e values 

 
Sum of total 

stresses (Mpa) 

Relative difference 
with respect to 

HZSA (%) 

Sum of total bending 
moments in the arch 

(kN·m) 

Relative difference 
with respect to 

HZSA (%) 

g=20;f=20;e=0_hzsa 83942 
-45,73 

1691104 
70,61 

g=20;f=20;e=0 122328 497072 

g=20;f=20;e=10_hzsa 36942 
-55,21 

757311 
70,29 

g=20;f=20;e=10 57339 225001 

g=20;f=20;e=12,5_hzsa 27096 
-57,36 

514620 
70,70 

g=20;f=20;e=12,5 42638 150783 

g=20;f=20;e=14,7_hzsa 20984 
-58,07 

302923 
68,63 

g=20;f=20;e=14,7 33170 95021 

g=20;f=20;e=15,38_hzsa 19456 
-61,83 

243948 
66,06 

g=20;f=20;e=15,38 31485 82797 

g=20;f=20;e=16,67_hzsa 18088 
-65,99 

162000 
57,19 

g=20;f=20;e=16,67 30026 69354 

g=20;f=20;e=18,2_hzsa 18508 
-69,24 

150274 
52,84 

g=20;f=20;e=18,2 31323 70866 

g=20;f=20;e=20_hzsa 21790 
-64,77 

323507 
72,10 

g=20;f=20;e=20 35904 90248 

Table 2-17: Total bridge  stresses and arch bending moments comparison for the cross-sections of the 
reference model and HZSA model in Table 1-1, for g=20m, f=20m and different e values 
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Maximal arch 
stress (MPa)* 

Relative difference with 
respect to SSDS (%) 

Sum of arch 
stresses (Mpa) 

Relative difference with 
respect to SSDS (%) 

g=20;f=20;e=0_ssds 910,2 
64,8 

46690,0 
42,4 

g=20;f=20;e=0_hzsa 320,5 26875,4 

g=20;f=20;e=10_ssds 299,8 
54,0 

26510,6 
43,0 

g=20;f=20;e=10_hzsa 137,9 15109,3 

g=20;f=20;e=12,5_ssds 201,1 
47,2 

21823,5 
43,3 

g=20;f=20;e=12,5_hzsa 106,1 12365,5 

g=20;f=20;e=14,7_ssds 152,0 
45,9 

17960,0 
42,7 

g=20;f=20;e=14,7_hzsa 82,3 10291,5 

g=20;f=20;e=15,38_ssds 149,9 
49,5 

16970,6 
42,5 

g=20;f=20;e=15,38_hzsa 75,7 9763,3 

g=20;f=20;e=16,67_ssds 167,2 
55,9 

15559,5 
42,3 

g=20;f=20;e=16,67_hzsa 73,8 8973,5 

g=20;f=20;e=18,2_ssds 194,3 
57,4 

14987,7 
41,2 

g=20;f=20;e=18,2_hzsa 82,7 8819,1 

g=20;f=20;e=20_ssds 235,9 
59,6 

15972,2 
37,6 

g=20;f=20;e=20_hzsa 95,2 9968,5 

Table 2-18: Arch stresses comparison for the cross-sections of the SSDS model and HZSA model in 
Table 1-1, for g=20m, f=20m and different e values 

  
Sum of total 

stresses 
(MPa) 

Relative difference 
with respect to 

SSDS (%) 

Sum of total bending 
moments in the arch 

(kN·m) 

Relative difference 
with respect to 

SSDS (%) 

g=20;f=20;e=0_ssds 79429,9 
-5,7 

413585,7 
-308,9 

g=20;f=20;e=0_hzsa 83942,0 1691103,9 

g=20;f=20;e=10_ssds 40498,2 
8,8 

165058,7 
-358,8 

g=20;f=20;e=10_hzsa 36941,7 757310,7 

g=20;f=20;e=12,5_ssds 31581,5 
14,2 

108453,5 
-374,5 

g=20;f=20;e=12,5_hzsa 27095,9 514620,4 

g=20;f=20;e=14,7_ssds 25726,4 
18,4 

68618,9 
-341,5 

g=20;f=20;e=14,7_hzsa 20984,4 302923,4 

g=20;f=20;e=15,38_ssds 24535,7 
20,7 

59249,6 
-311,7 

g=20;f=20;e=15,38_hzsa 19455,6 243948,5 

g=20;f=20;e=16,67_ssds 23215,6 
22,1 

47510,7 
-241,0 

g=20;f=20;e=16,67_hzsa 18088,5 161999,6 

g=20;f=20;e=18,2_ssds 23253,0 
20,4 

45969,2 
-226,9 

g=20;f=20;e=18,2_hzsa 18508,2 150274,1 

g=20;f=20;e=20_ssds 25328,7 
14,0 

60811,0 
-432,0 

g=20;f=20;e=20_hzsa 21790,2 323507,0 

Table 2-19: Total bridge stresses and arch bending moments comparison for the cross-sections of 
SSDS model and HZSA model in Table 1-1, for g=20m, f=20m and different e values 
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In order to judge which stiffness distribution works better, the total mass of the bridge should be 
considered. As expected the antifunicularity criteria relies on the system stiffness distribution and 
to judge its validity or the stress criteria validity it is essential to calculate the mass. The results of 
the mass criteria and the stress criteria calculated in the different ways explained in section 1.3 are 
detailed in Table 2-20 and Table 2-21. The main highlights are commented in the following lines: 

• The reference model is the stiffness distribution which needs the lower mass of steel for 

the total bridge (Table 2-20) when we dimension it according to the stress results of the 

first iteration (section 2.3).  

• The HZSA model requires the same mass for the deck, since the stresses are widely 

resisted in all models but a minimal thickness is required in order to stand local bending 

moments, local instability of compressed plates and durability. A lower mass is needed 

for the struts, but a much larger one for the arch (Table 2-21). 

• The SSDS model requires a slightly lower mass for the arch but much larger mass for the 

struts and deck (Table 2-21).  

• When considering the stiffness distribution of a system, the only valid criteria to choose 
the most efficient distribution is calculating the total mass of the dimensioned system, a 
simpler criteria cannot be adopted. 

Model 
Mass of 

the bridge 
(kg) 

% of mass of 
the bridge 
variation 

with respect 
to the lowest 

one 

Criteria 0: 
Stress 

efficiency 
average of 
the bridge 

Criteria 1: 
Stress efficiency 
average of the 
bridge*total 
length of the 
bridge (m) 

Criteria 2: Sum of the 
stress efficiency in each 
output station*Length 
of each output station 

of the bridge (m) 

g=20;e=16,67;f=20;v=0 130543,5 0,0 0,2 20,9 70,8 

g=20;e=16,67;f=20;v=0 
SSDS 

182550,4 39,8 0,1 16,2 49,7 

g=20;e=16,67;f=20;v=0 
HZSA 

134278,5 2,9 0,1 13,6 46,4 

Minimal Mass (kg) 130543,5 
 

0,1 13,6 46,4 

Table 2-20: Mass and stress cirteria comparison for different system stiffness distribution values 
based on Table 1-1 

Model 
Mass of the 
arch (kg) 

Mass of the 
deck (kg) 

Mass of the 
struts (kg) 

g=20;e=16,67;f=20;v=0 29065,9 81076,6 20401,0 

g=20;e=16,67;f=20;v=0 SSDS 25490,4 133048,7 24011,3 

g=20;e=16,67;f=20;v=0 HZSA 41133,6 81076,6 12068,3 

Minimal Mass (kg) 25490,4 81076,6 12068,3 

Table 2-21: Mass distribution of the different elements of the bridge for different system stiffness 
distribution values based on Table 1-1 
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2.5 PARAMETER DISCUSSION 

Whatever the deck curvature, the value of f, the stiffness of the strut-deck system or that of the 

arch: 

• Results for all the different indicators are low enough in the range of g/1,3≤e≤g/1,1, 

approximately in the range in which there is the same number of hangers at each side of 

the arch. This is not far from the range of values D described in Table 2-1 and Figure 2-2, 

in which there is the same number of struts at both sides of the deck, but the range of the 

most efficient e tends to be nearer to the outside of the deck curvature in plan, ie: nearer 

to the deck span center. 

• Given a g value, in the range g/1,36≤e≤ g/1,2 the internal forces in the whole bridge are 

reasonable.  

• Whatever the value of g, minimising the value of the sum of the stresses of the whole 

system is equivalent to minimising the sum of stresses in the arch.  

• In order to choose the most efficient e value, employing an indicator to minimise the total 

bending moments in the arch under permanent loads is equivalent to minimizing the 

stresses in the bridge for the worst loading case and to minimizing the total material 

employed for the bridge. A simpler indicator such as the maximal arch displacement can 

also be employed. 

• Given a g value, the value e=g/1,2=0,83g is the most efficient value for the 

arch/eccentricity in plan view according to all of the studied efficiency indicators. For this 

value internal torsional moments in the arch and the deck under a uniform deck load are 

also minimal. 

• For high g values, ie: when spatial behaviour increases, the influence of e is larger,  

• The higher the f value, the higher the importance of choosing an adequate e value. 

• Regarding the stresses in the arch, the influence of employing a stiff strut-deck system is 

lower for values of e between g/1,30 and g/1,20. 

• When considering the stiffness distribution of a system, the only valid criteria to choose 
the most efficient distribution is calculating the total mass of the dimensioned system, a 
simpler criterion cannot be adopted. 

 

Proportions of the key point e=g/1,2 with the rest of parameters: 

The value e=g/1,2=0,83g  is equivalent approximately to 1,25 times the distance of the cgd from 

the abutments. It is also the limit value in which there is the same number of struts on both sides 

of the arch, ie: for the 16 struts in the studied model there are 6 short and nearly vertical struts on 

one side of the arch in central area of the span (contained in the inner part of the deck curve), 2 

vertical struts and 4+4 struts on the other side (contained in the outside part of the deck curve) at 

each of the ends of the span. Compared to the other e values it is the one which gives the shortest 

length for the 5ths struts from the springings (Table 2-12), ie: it obtains the stiffest struts at a 

distance of approximately 0,28L of the springings of the arch (Figure 2-1), whatever the g value. 

The relationship with f of the height of this point in the arch is also constant and has a value of 

0,81*f. This is a key point to control the arch behaviour. It increases the stiffness of the struts 
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around this key point, since it decreases their length, and also increases their verticality where 

controlling the out-of-plane behaviour is most critical. It is also significant that for this value, 

maximal in-plane and maximal out-of-plane displacements acquire the same value (section 2.2), 

which means that it is the value that best controls out-of-plane behaviour. 

Comparison with previous studies and evaluation of the results: 

• It can be appreciated that the value obtained for e* for SABWCSD with a planar vertical 

arch is different than for SABWCID with a planar vertical arch with pinned hangers 

according to Jorquera’s study (2007) for g=10m which according to other indicators gave 

a value for which we found the equivalency to e*=g/1,36. 

• The most efficient e for the present study is nearer to the value obtained by Jorquera 

(2007) for SABWCID with an antifunicular arch or the range of values where stiffened 

double struts are employed for the Ripshorster footbridge, which is a SABWCSD with an 

antifunicular arch.  

• SABWCID with a planar vertical arch work better with a larger e value than SABWCSD 

with a planar vertical arch. 

• This difference is due to: 

� The difference of the length of the struts distribution 

� In the study of SABWCID the hangers are pinned and in the present 

study for SABWCSD with a planar vertical arch the struts are fixed. 

o Since hangers are pinned it is more efficient to increase of the longest central 

hangers, for which a larger e value is needed. 

o For fixed struts, it is more efficient to increase their stiffness by reducing their 

length. Longest struts are nearer to the springing. Therefore, a lower e value is 

needed. 

o Antifunicularity allows for obtaining verticality of the struts with a lower e value, 

ie: an antifunicular arch has a lower e* value than a planar vertical one because 

the struts tend to be more vertical. 
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3. VERTICAL DISTANCE BETWEEN THE ARCH CROWN AND 
THE DECK MID-SPAN (v) PARAMETRICAL STUDY 

3.1 DEFINITION AND EMPLOYED VALUES 

The vertical distance between the arch crown and the deck mid-span (v) is a parameter which has 

still not been studied for SABs. The values for the parametrical study of the v variable have been 

chosen in order to increase the verticality of the struts. The studied models have the following 

values: L=100m, g=20m and f=20m. For each of the cases with different e values e=0; 14,7 and 

16,67m, four different values of v have been employed v=0, 2, 4 and 6m. 

 

  

 

Figure 3-1: Geometry of v variation (v=0, 2, 4 and 6m) for L=100m, g=20m, f=20m, e=0 

 

3.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) 

The structural behaviour has been studied only under a uniform load of 10kN/m on the whole 

deck2 (Figure 1-2) for the described model with the different values of v and their structural 

response has been compared. The results are shown in Figure 3-3 and Figure 3-4 and they are 

commented in the following lines: 

• A priori, we would have expected that increasing v improved the structural behaviour of 

this bridge type, since it increased the struts verticality. Struts at the central area of the 

bridge tend to be very horizontal for the chosen e values, so increasing their verticality 

would be expected to be more favourable (Jorquera 2007) in order to decrease the 

bending moments in the struts, increase the axial forces and decrease the out-of-plane 

forces introduced on the arch. The arch would then further help to support the deck and 

deflections would be expected to diminish. 

                                                           
2 Without self-weight or permanent loads 

Layout 

Plan view 



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

180 

 

• For e=0 the struts remain nearly horizontal in spite of increasing v. So, whatever the v 

value, there is a large difference of the arch axial forces at springings and in the rest of the 

arch’s length (Figure 3-2a). 

• However, for e=16,67, the axial forces in the arch are much lower at span center for v=0 

than for other v values which increase the verticality of the struts (Figure 3-3a). The axial 

forces at central struts increase with v as expected (Figure 3-4a).  

• For v=0 central struts do no transmit axial compressions to the arch (Figure 3-4a) but they 

are under large total bending moments (Figure 3-4b). Those introduce bending moments 

and torques on the arch.  

• The lower the v value, the larger the stiffness of the struts, and therefore they are under 

larger bending moments. 

• Torsional moments in the arch decrease with v (Figure 3-3b), so do balcony-beam 

bending moments at approximately L/3, which is logical since these internal forces are 

coupled. However, balcony-beam bending moments increase with v at span center (Figure 

3-3c).  

• Total bending moments decrease at span center (Figure 3-3d), highly influenced by out-

of-plane bending moments.  

• These effects are less important for e=0 (Figure 3-2b, c and d). e is a key parameter, ie: 

most important is to control e. For a good e value, v has a non-negligible influence. 

However for values of e in which the structural behaviour of the bridge is not good, it is 

better to control the behaviour changing e than v. 

• The out-of-plane behaviour of the arch is controlled by the deck, hence the deck tensions 

at the span centre for v=0 (Figure 3-3e). However, for v>0 the struts are more vertical and 

less stiff and the deck does not control the out-of-plane behavior of the arch as efficiently 

as for the case of v=0, with stiffer struts. The center of the span is more sensitive to this 

effect, since the relative variation of the length (and thus the stiffness) of the struts with v 

is greater.  

• This is clearly observed with the horizontal displacements of the arch (Figure 3-3f). 

• The deck vertical (Figure 3-3g) and horizontal displacements are also lower at span center 

for v=0, hence the arch-deck higher interaction due to stiffer hangers.  

• The lowest total displacements for the arch are obtained for v=0, and for v=2 for the deck 

(Table 3-1). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-2: Internal forces comparison for different v values and e=0. (a)Arch axial forces (b) Arch 
out-of-plane bending moments (c) Arch in-plane bending moments (d) Arch total bending moments. 

The abscissas are the arch length from 0 to LA 

 

-1200,000

-1000,000

-800,000

-600,000

-400,000

-200,000

-4000,0

-3000,0

-2000,0

-1000,0

0,0

1000,0

2000,0

M
2

-2
 (

k
N

·m
)

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

M
3

-3
 (

k
N

·m
)

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

4500,0

M
 (

k
N

·m
)

g=20;f=20;e=0;v=0

g=20;f=20;e=0;v=2

g=20;f=20;e=0;v=4

g=20;f=20;e=0;v=6

g=20;f=20;e=0;v=0

g=20;f=20;e=0;v=2

g=20;f=20;e=0;v=4

g=20;f=20;e=0;v=6

g=20;f=20;e=0;v=0

g=20;f=20;e=0;v=2

g=20;f=20;e=0;v=4

g=20;f=20;e=0;v=6

g=20;f=20;e=0;v=0

g=20;f=20;e=0;v=2

g=20;f=20;e=0;v=4

g=20;f=20;e=0;v=6



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

182 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

-900,000

-800,000

-700,000

-600,000

-500,000

-400,000

-300,000

-200,000

-100,000

0,000

A
x

ia
l 

F
o

rc
e

 (
kN

)

-200,0

-150,0

-100,0

-50,0

0,0

50,0

100,0

150,0

200,0

T
o

r
si

o
n

 (
k

N
·m

)

-300,0

-200,0

-100,0

0,0

100,0

200,0

300,0

400,0

500,0

M
2

-2
 (k

N
·m

)

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

500,0

M
 (

kN
·m

)

-80,000

-60,000

-40,000

-20,000

0,000

20,000

40,000

60,000

A
x

ia
l 

F
o

rc
e

 (
k

N
)

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

M
2

-2
 (k

N
·m

)

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

183 

 

 
(g) 

 
Figure 3-3: Structural behaviour comparison for different v values and e=16,67 (a) Arch axial forces 

(b) Arch torsional bending moments (c) Arch out-of-plane bending moments comparison (d) Arch 
total bending moments (e) Deck axial forces (f) Arch horizontal (out-of-plane) displacements (g) Deck 
vertical displacements. The abscissas for (a) to (d) and (f) are the arch length from 0 to LA, for (e) and 

(g) they are the deck length from 0 to LD 

 

 

 

(a) 

 

(b) 

Figure 3-4: Struts internal forces comparison for different v values and e=16,67m (a) Axial forces (b) 
Total bending moments. The abscissas are the output stations of the different struts (at the bottom, 

center and the top of their length) 

 

-10.000

-9.000

-8.000

-7.000

-6.000

-5.000

-4.000

-3.000

-2.000

-1.000

0.000

A
x

ia
l F

o
rc

e
 (

k
N

)

-120.000

-100.000

-80.000

-60.000

-40.000

-20.000

0.000

20.000

A
x

ia
l 

Fo
rc

e
 (

k
N

)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

M
 (

k
N

·m
)

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6

g=20;f=20;e=16,67;v=10

g=20;f=20;e=16,67;v=0

g=20;f=20;e=16,67;v=2

g=20;f=20;e=16,67;v=4

g=20;f=20;e=16,67;v=6



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

184 

 

Model 

Deck vertical 
maximal 

displacement 
under q10 

(mm) 

Deck 
horizontal 
maximal 

displacement 
under q10 

(mm) 

Deck 
maximal 

total 
displacement 

under q10 
(mm) 

Arch vertical 
maximal 

displacement 
under q10 

(mm) 

Arch 
horizontal 
maximal 

displacement 
under q10 

(mm) 

Arch 
maximal total 
displacement 

under q10 
(mm) 

g=20;f=20;e=16,67;v=0 -8.6 -0.6 8.6 -6.6 -6.4 7.1 

g=20;f=20;e=16,67;v=2 -8.4 -0.4 8.4 -6.4 -6.8 7.4 

g=20;f=20;e=16,67;v=4 -9.1 -0.5 9.1 -6.2 8.9 9.0 

g=20;f=20;e=16,67;v=6 -9.4 -0.6 9.4 -6.0 13.3 13.3 

g=20;f=20;e=16,67;v=10 -9.1 -0.7 9.1 -5.7 19.7 19.8 

Minimal values -8.4 for v=2 -0.4 for v=2 8.4 for v=2 -5.7 for v=10 -6.4 for v=0 7.1 for v=0 

Table 3-1: Maximal displacements comparison for different v values and e=16,67 

3.3 STRESS BEHAVIOUR COMPARISON UNDER A UNIFORM LOADING 
q AND DESIGN IN ULTIMATE LIMIT STATE 

The stresses distributions in the struts, deck and arch only under q=10kN/m are shown in Figure 

3-5, Figure 3-6 and Figure 3-7 for the reference cross-sections. 

The stresses distribution under ULS is shown in Figure 3-8 as an example. 

Afterwards, the different elements cross-sections are designed according to the ULS in EC1 Part2.  

The results are explained in the following lines: 

• The higher the v value, the lower the stresses in the struts (Figure 3-5) and the deck 

(Figure 3-6), but higher in the arch at span center (Figure 3-7). 

• The envelope of the stresses has been employed in order to obtain obtain the necessary 

cross-sections. This envelope is given mainly for the A1 hypothesis (with uniform 

loading) and A2 in the arch and struts and A2 and B for the deck 

• Increasing v, increases the influence of la, ie.: the difference between A1 and A2, in the 

cross-sections where A2 is more critical, increases (Figure 3-8 compared to Figure 2-15). 

• The different elements in the bridge have been dimensioned resulting in: 

o Whatever the v value the deck should be a 4000x700≠10mm steel box girder. It 

would be enough with 3mm to resist the stresses considering a compact cross-

section. However, 10mm are considered for local bending moments, local 

instability of compressed plates and durability. 

o The models with v=0, 2, and 4m have been dimensioned. The following cross–

sections for S 355 steel have been obtained employing a linear analysis. 

o The arches are CHS of 750mm diameter and thickness ranging from 30mm at 

springings to 10mm at span center for v=0 and for v=2m, and from 35mm at 

extremes to 15mm at span center for v=4m. 

o The struts are CHS of 300mm diameter and thickness ranging from 15mm at 

extremes to 35mm at span center for v=0, from 15mm at extremes to 30mm at 

L/3 for v=2m and from 20mm at extremes to 45mm at span center for v=4m. 
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Figure 3-5: Struts stresses comparison under q10 for different v values, L=100m, f=20, g=20 and 

e=16,67. The abscissas are the output stations of the different struts (at the bottom, center and the top of 
their length). 

 

Figure 3-6: Deck stresses comparison under q10 for different v values, L=100m, f=20, g=20 and 
e=16,67. The abscissas are the deck length from 0 to LD 
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Figure 3-7: Arch stresses comparison under q10 for different v values, L=100m, f=20,g=20 and 
e=16,67. The abscissas are the arch length from 0 to LA 

 

Figure 3-8: Stresses in the arch caused by different loading cases combination for g=20m, f=20m, 
e=16,67m and v=10m when employing the reference model cross-sections (Table 1-1). The abscissas 

are the arch length from 0 to LA 
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3.4 EFFICIENCY CRITERIA 

The results of the chosen criteria are shown for the different models which have been studied in 

tables from Table 3-2 to Table 3-9. In these tables the nomenclature already given in section 1.3 is 

employed. Please use the bookmark to comfortably interpret the tables, and note whether the 

length is considered or not, since the nomenclature and units of the criteria are modified. The 

following values are specifically employed for the tables in this section: 

• v* is the value of v which minimizes each criteria (m) 

• i=% of difference of B from the most efficient v value for B (v*) 

A different v* is obtained for each criteria. The results of the efficiency criteria are commented in 

the following lines: 

• It is convenient to employ the lowest possible vertical distance between the arch and the 

deck in order to reduce the total material employed for the bridge. 

• Whatever the e value, the maximal displacement under permanent loads is the simplest 

criteria to employ (Table 3-2 and Table 3-4), equivalent to consider the lowest mass of 

the bridge depending on v (Table 3-8), the lowest stresses considering the length of all the 

elements (Table 3-3 and Table 3-5) and the lowest sum of the total bending moments in 

the arch under permanent loads  and arch stresses considering the total length of the 

bridge or not (Table 3-2, Table 3-3 and Table 3-4). This is so because, although the total 

stresses in the deck and struts decrease, the length of the struts increases (Table 3-6 and 

Table 3-7), causing the total mass to be larger (Table 3-8 and Table 3-9). The stresses in 

the arch and its mass increase when increasing v (Table 3-6 Table 3-7 and Table 3-9). 

• The way in which the stress criteria is calculated (Criterias 1 and 2, Table 3-8) is not 

relevant, since they all lead to the same result. 

• If the total length of the bridge is not considered, whatever the value of v, the sum of the 

total stresses of the bridge under q or the maximal arch stress under q are not valid criteria 

(Table 3-2 and Table 3-4). 

• Varying v has a negligible influence for e=0 (i value in Table 3-3), but for an adequate e 

value according to the study in section 2, varying the v value has a larger influence (i 

value Table 3-5 and Table 3-8), as expected from the internal forces in section 3.2. 

• The fact that the displacement criteria gives the same results as the mass criteria confirms 

that a linear analysis is enough in order to determine which v value is the most efficient. 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

188 

 

 Criteria 

Model A B C D E F G H 

v=0 60977 122328 497072 10636 21620 1123 201 233 

v=2 62229 120708 509617 10820 21284 1120 200 285 

v=4 63633 119300 523593 11020 20965 1109 197 344 

v=6 65227 118182 539225 11246 20681 1098 194 413 

v* v=0 v=6 v=0 v=0 v=6 v=6 v=6 v=0 

Table 3-2: Efficiency criteria not considering the length of the elements for g=20m, f=20m, e=0 and v variable 

 
Criteria 

Model A B C D E F G H i 

v=0 29841917 59867467 243266960 5205368 10581038 549531 98441 114029 0 

v=2 31301248 60715898 256337600 5442542 10705662 563258 100581 143442 1 

v=4 33025469 61916715 271744978 5719386 10880976 575642 102362 178676 3 

v=6 35040160 63487218 289671655 6041276 11109957 590037 104419 222049 6 

v* v=0 v=0 v=0 v=0 v=0 v=0 v=0 v=0  

Table 3-3: Efficiency criteria considering the length of the elements for g=20m, f=20m, e=0 and v variable 

 
Criteria 

Model A B C D E F G H 

v=0 17958 30026 69354 2999 4502 188 30 19 

v=2 18718 29750 70415 3071 4347 201 30 20 

v=4 19181 29427 71092 3093 4228 216 29 20 

v=6 19626 28947 72695 3115 4147 229 28 31 

v=10 20161 28101 74316 3105 3955 239 26 47 

v* v=0 v=10 v=0 v=0 v=10 v=0 v=10 v=0 

Table 3-4: Efficiency criteria not considering the length of the elements for g=20m, f=20m, e=16,67m and v 
variable 

 
Criteria 

Model A B C D E F G H i 

g=20;f=20;e=1
6,67;v=0 

6241658 10436032 24105290 1042528 1564703 65280 10502 6753 0 

g=20;f=20;e=1
6,67;v=2 

6945346 11038889 26127478 1139590 1612974 74462 10995 7390 6 

g=20;f=20;e=1
6,67;v=4 

7643374 11726045 28328684 1232663 1684728 86167 11472 8066 12 

v* v=0 v=0 v=0 v=0 v=0 v=0 v=0 v=0 
 

Table 3-5: Efficiency criteria considering the length of the elements for g=20m, f=20m, e=16,67m and v variable  
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Sum of maximal deck 

stresses (MPa) 
Sum of maximal 

arch stresses (MPa) 
Sum of maximal strut 

stresses (MPa) 

g=20;f=20;e=0;v=0 43497.2 60976.5 17854.6 

g=20;f=20;e=0;v=2 41014.2 62229.1 17464.2 

g=20;f=20;e=0;v=4 38709.6 63632.9 16957.5 

g=20;f=20;e=0;v=6 36598.1 65227.4 16356.2 

v* v=6 v=0 v=6 

Table 3-6: Stresses in the different elements comparison for g=20m, f=20m, e=0 and v variable 

 
Sum of maximal 

deck stresses (MPa) 
Sum of maximal arch 

stresses (MPa) 
Sum of maximal 

strut stresses (MPa) 

g=20;f=20;e=16,67;v=0m 7085.6 17958.0 4982.1 

g=20;f=20;e=16,67;v=2m 6635.9 18718.1 4396.4 

g=20;f=20;e=16,67;v=4m 6152.7 19181.3 4092.9 

g=20;f=20;e=16,67;v=6m 5639.5 19626.0 3681.6 

g=20;f=20;e=16,67;v=10m 5025.6 20160.6 2914.9 

v* v=10 v=0 v=10 

Table 3-7: Stresses in the different elements comparison for g=20m, f=20m, e=16,67m and v variable 

Model Mass of the 
bridge (kg) 

% of mass of the 
bridge variation 
with respect to 
the lowest one 

Criteria 1: Stress 
efficiency average 
of the bridge*total 

length of the 
bridge (m) 

Criteria 2: Sum of the 
stress efficiency in each 

output station*Length of 
each output station of 

the bridge (m) 

g=20;e=16,67;f=20;v=0 130543 0.00 20.9 70.8 

g=20;e=16,67;f=20;v=2 135712 3.96 21.3 73.5 

g=20;e=16,67;f=20;v=4 140711 7.79 21.7 77.8 

Minimal Mass (kg) 130543 
 

20.9 70.8 

Table 3-8: Efficiency criteria considering the length and the mass of the elements for g=20m, f=20m, 
e=16,67m and v variable 

Model Mass of the 
arch (kg) 

Mass of the 
deck (kg) 

Mass of the 
struts (kg) 

g=20;e=16,67;f=20;v=0 29065.9 81076.6 20401.0 

g=20;e=16,67;f=20;v=2 31345.6 81076.6 23289.7 

g=20;e=16,67;f=20;v=4 32906.8 81076.6 26727.6 

Minimal Mass (kg) 29065.9 81076.6 20401.0 

Table 3-9: Comparison of the mass of the different elements for g=20m, f=20m, e=16,67m and v variable 
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3.5 PARAMETER DISCUSSION 

• Increasing the verticality of the struts by increasing the vertical distance between the arch 

crown and the deck mid-span (v), decreases the efficiency of the system, since it increase 

the length of the struts and thus decreases their stiffness. 

• For an effcient e value, v has a significant influence in the internal forces, stresses and 

mass of the bridge. However for values of e in which the structural behaviour of the 

bridge is not good, it is better to control the behaviour changing e than v. e is a key 

parameter, ie: most important is to control e. 

• In order to choose the most efficient v value, employing an indicator to minimise the total 

bending moments in the arch under permanent loads is equivalent to minimizing the 

{stresses in the bridge}*{total length of the bridge} under a uniform load and to 

minimizing the total material employed for the bridge (see indicators definition in 

bookmark or section 1.3). A simpler indicator such as the maximal arch displacement can 

also be employed. 

4. ARCH RISE (f) PARAMETRICAL STUDY 

4.1 DEFINITION AND EMPLOYED VALUES 

The rise of the arch (f) is a parameter which has still not been studied for SABs. The values for 

the parametrical study of the f variable will influence on the verticality and length, hence the 

stiffness, of the struts and on the shape of the arch. For planar arch bridges with a superior straight 

deck values from 0,16*L (O’Connor 1971) to 0,25*L are the most usual ones for road bridges, but 

this range of values  need not be the most efficient ones for pedestrian SABs with a curved 

superior deck. It might even change for different values of other parameters. However, we have 

studied the variation of f choosing the previously studied parameters and determined as the most 

efficient. The studied models have the following values: f=L/10=10m; f=L/6,67=15m; 

f=L/5=20m; f=L/4=25m and f=L/2=50m for L=100m, g=20m, e=16,67m and v=0 (Figure 4-1).  

 
Layout 
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Figure 4-1: Geometry of f variation (f=10, 15, 20, 25 and 50m) for L=100m, g=20m, e=L/1,2=16,67m, 
v=0. Measures in meters 

An equivalent study has been conducted for a planar arch with straight deck (L=100m, g=0m, 

e=0m and v=0) in order to compare the results. 

For conventional arch bridges each f value has an antifunicular arch for a given load, so, for this 

case study, the sum of bending moments might not make much sense as an efficiency criteria. 

None the less it is considered interesting to analyse the value. 

4.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) 

The structural behaviour has been studied for only under a uniform load of 10kN/m on the whole 

deck3 (Figure 1-2) for the described model with the different values of f (f=L/10=10m; 

f=L/6,67=15m; f=L/5=20m; f=L/4=25m and f=L/2=50m for L=100m, g=20m, e=g/1,2m=16,67m 

and v=0, Figure 4-1, and f= 10, 20 and 50m for L=100m, g=e =0 and v=0) and their structural 

response has been compared. 

A priori, it is expected that the following values change with f: 

1) the length, hence the stiffness, of the struts. The length increases with f and thus the 

stiffness decreases when employing the same cross-section 

2) the verticality of the struts increases with f, ie: the inclination of the struts in longitudinal 

view (Figure 4-1) decreases with f. In plan view their position does not change, but for 

SABs they also become more vertical since they are longer. 

3) the out-of-plane sag of the arch increases with f 

4) in-plane horizontal forces at abutments and in-plane bending moments are expected to 

decrease with f like it happens in planar arch bridges with a straight superior deck. 

According to 3, it is expected that the out-of-plane behavior increases with f: However, according 

to the increase of out-of-plane verticality with explained in 2, the out-of-plane forces introduced 

by the struts on the arch should decrease, but the axial forces will change due the increase of the 

out-of-plane sag (3) and also because the struts are fixed and their stiffness changes according to 

(1). 

                                                           
3 Without self-weight or permanent loads 

Plan view 
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Due to the high influence of out-of-plane forces in this bridge type (Sarmiento-Comesías et al 

2012) and that stiffer struts are needed for SABs (Sarmiento-Comesías et al 2012), a priori, lower 

values of f are expected to be more favourable for this bridge type. With the v case study (section 

0), it has been observed that the struts verticality is less important than their length. Probably 

lower values than for planar arch bridges with a straight superior deck. 

The results are displayed in figures from Figure 4-2 to Figure 4-19 and the following observations 

should be highlighted: 

• Whatever the f value, the arch and deck total bending and torsional moments at around 

the key points g/1,2 hardly change (Figure 4-16 and Figure 4-17), since they are 

controlled with an efficient e value. 

• Total bending moments in the arch slightly decrease with f at the extremes (Figure 4-8), 

except at the span center (L/3-2L/3). The same happens with in plane bending moments at 

span center (3L/8-5L/8; Figure 4-9), contrary to what was expected and happens for 

planar arch bridges (g=0, Figure 4-4). This is explained by the difference in the evolution 

of axial forces in struts with the variation of f in SABs and planar arch bridges, which is 

explained on the following paragraphs. 

• Out-of-plane bending moments approximately at L/3 increase with f. As previously 

explained out-of-plane bending moments were expected to increase, since the out-of-

plane sag of the arch increases with f. However this effect only takes place in a certain 

length of the arch, where the axial forces in the struts increase (Figure 4-19). 

• When increasing f, struts become longer and more vertical (Figure 4-1), especially the 

ones at the extremes. Therefore, the stiffness of struts at extremes decreases more with the 

increase of f than the stiffness of central struts. Axial forces for different struts become 

more similar, since extreme struts take a lower load (Figure 4-6). For low f values, the 

axial forces in struts are larger for longer struts near to the abutments (1st struts in our 

model) than for those at span center (8th strut in our model). This difference decreases 

with f (Figure 4-6 and Figure 4-19). 

• For SABs with a vertical planar arch and a superior curved deck, the difference with the 

contiguous struts is highly increasing. As f increases the difference between the axial 

forces in extreme and central struts decreases but between the central struts (8th strut in 

our model) and their contiguous struts (5th and 6th in our model), the difference increases. 

For f=50m the axial forces in central struts diminish until they are even tensioned (Figure 

4-19). This happens because for f=50m, the arch and deck displacements at span center 

have opposite sign (upwards and inwards for the arch- Figure 4-12 and Figure 4-13- and 

downwards and outwards for the deck), whereas for lower f values (f<25m) the 

displacements at span center are downwards and outwards for both, arch and deck, and 

the central struts are compressed (Figure 4-19). 

• The deck is tensioned for f>20 for g=20 (Figure 4-15) at span center, whereas the deck is 

always under compression for g=0 (Figure 4-3). For SABs with f<25m at L/3 there is a 
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large variation in the axial forces of the deck. Note that the deck internal forces of g=20m 

and g=0 are not really comparable because longitudinal displacements are free in g=0 and 

they are restrained for g=20m, according to the previous section recommendations. 

• All in all, the initial intuition that smaller f values are more adequate for this type of SABs 

in comparison with conventional planar arch bridges, in terms of the structural response is 

confirmed, on seeing the increase of the arch bending moments. 

• For SABs with a vertical planar arch and a curved superior deck, there are large variations 

of total arch displacements at span center (Figure 4-14), which decrease with f. At L/8, 

they increase with f. The lowest displacements are obtained for f=20m=L/5. For g=0 the 

lowest displacements are obtained for f=50m=L/2  

• For f=10m in-plane displacements are very high (Figure 4-12), but out-of-plane ones are 

controlled (Figure 4-13). The opposite happens with f=50m. 

• For 10m<f<50m in- and out-of-plane arch maximal displacements have approximately the 

same value (Figure 4-12 and Figure 4-13). 

 

Figure 4-2: Arch axial forces comparison for different f values and g=0. The abscissas are the arch 
length from 0 to LA 
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Figure 4-3: Deck axial forces comparison for different f values and g=0. The abscissas are the deck 
length from 0 to LD 

 

 

Figure 4-4: Arch bending moments comparison for different f values and g=0. The abscissas are the 
arch length from 0 to LA 
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Figure 4-5: Deck bending moments comparison for different f values and g=0. The abscissas are the 
deck length from 0 to LD 

 

Figure 4-6: Struts axial forces comparison for different f values and g=0. The abscissas are the output 
stations of the different struts (at the bottom, center and the top of their length). 
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Figure 4-7: Arch axial forces comparison for different f values and g=20. The abscissas are the arch 
length from 0 to LA 

 

Figure 4-8: Arch total bending moments comparison for different f values and g=20. The abscissas 
are the arch length from 0 to LA 
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Figure 4-9: Arch in-plane bending moments comparison for different f values and g=20. The abscissas 
are the arch length from 0 to LA 

 

Figure 4-10: Arch out-of-plane bending moments comparison for different f values and g=20. The 
abscissas are the arch length from 0 to LA 
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Figure 4-11: Arch torsional moments comparison for different f values and g=20. The abscissas are 
the arch length from 0 to LA 

 

Figure 4-12: Arch in-plane displacements comparison for different f values and g=20. The abscissas 
are the arch length from 0 to LA. Ordinates: arch displacements in meters. 
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Figure 4-13: Arch out-of-plane displacements comparison for different f values and g=20. The 
abscissas are the arch length from 0 to LA. Ordinates: arch displacements in meters. 

 

Figure 4-14: Arch total displacements comparison for different f values and g=20. The abscissas are 
the arch length from 0 to LA. Arch displacements in meters. 
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Figure 4-15: Deck axial forces comparison for different f values and g=20. The abscissas are the deck 
length from 0 to LD 

 

Figure 4-16: Deck total bending moments comparison for different f values and g=20. The abscissas 
are the deck length from 0 to LD 
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Figure 4-17: Deck torsional moments comparison for different f values and g=20. The abscissas are 
the deck length from 0 to LD 

 

Figure 4-18: Deck total displacements comparison for different f values and g=20. The abscissas are 
the deck length from 0 to LD.  Displacements in meters. 
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Figure 4-19: Struts axial forces comparison for different f values and g=20. The abscissas are the 
output stations of the different struts (at the bottom, center and the top of their length). 

4.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE 

Firstly, in Figure 4-20  the comparison of the arch stresses only under q=10kN/m for different f 

values, for g=0m and the reference model cross-sections (Table 1-1) is shown. For g=20m and 

e=16,67m, an equivalent comparison is displayed in Figure 4-21. Stresses in the deck are 

displayed in Figure 4-22 and Figure 4-23 and in struts for g=20m and e=16,67m in Figure 4-24. 

Secondly, the different loading combinations described in section 1.5.2 and 1.5.3 have also been 

analysed, obtaining the worst loading cases for the different models. According to these 

determinant loading cases, the cross-sections of the different models have been designed. 

Finally, the main aspects of the results for different models are analysed in this section. 

• For conventional vertical arch bridges (g=0), whatever the f value, the maximal stresses in 

the arch and deck are significantly higher for combination A2, when the loading is 

applied on half the deck span (section 1.5.2). For f=10 and 50m the stresses in the struts 

are also maximal for A2. However, for f=20 the maximal stresses in the central struts take 

place under A1, but in the rest of the struts also for A2. 

• For SABs with a superior curved deck, the critical load case, for stresses in the arch is A2 

for the springing and around L/4 and combination A1 for the rest of the arch. For the 
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aforementioned cross-sections A2 differs only slightly to A1, whereas for g=0 the 

difference was very large. 

• The maximal stresses in the deck are significantly higher for A2, except at span center 

where maximal stresses are obtained for A1. For f≤20m the stresses in the struts are all 

maximal for A2 except the four struts in the span center. Similarly, for f>20m the 

maximal stresses in the two central struts take place under A1, but in the rest of the struts 

also for A2. 

• For g=20m, f=10 to 25m and e=16,67m when employing the reference model cross-

sections (Table 1-1), the worst hypothesis for the arch is A1 except at springing and LA/4 

where A2 is worse, determined by the loading case la (Figure 2-15). 

• The importance of asymmetrical loading for stresses in the arch diminishes when 

increasing the value of f. The worst loading cases combination for g=20m, f=50m, 

e=g/1,2=16,67m for the reference model cross-sections and for g=20m, f=20m, e=16,67m 

for the SSDS model (Table 1-1) cross-sections is A1. 

 

Figure 4-20: Arch stresses comparison only under q for different f values and g=0. The abscissas are 
the arch length from 0 to LA 
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Figure 4-21: Arch stresses comparison only under q for different f values and g=20. The abscissas are 
the arch length from 0 to LA 
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Figure 4-22: Deck stresses comparison only under q for different f values and g=0. The abscissas are 
the deck length from 0 to LD 

 

Figure 4-23: Deck stresses comparison only under q for different f values and g=20. The abscissas are 
the deck length from 0 to LD 
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Figure 4-24: Struts stresses comparison for different f values and g=20. The abscissas are the output 
stations of the different struts (at the bottom, center and the top of their length). 

• As f increases, stresses in the arch under a uniform loading q=10kN/m decrease (Figure 

4-20 and Figure 4-21) and stresses in the deck decrease greatly (Figure 4-22 and Figure 

4-23). Stresses in struts also decrease with f except for central struts (Figure 4-24), as also 

observed for axial forces (Figure 4-19). However, the length of the arch and the struts also 

increase, so more material will be necessary. 

The different elements in the bridge have been dimensioned for the envelope of stresses resulting 

in: 

• Whatever the f value the deck should be a 4000x700≠10mm steel box girder. It would be 

enough with 3mm to resist the stresses considering a compact cross-section. However, 

10mm are considered for local bending moments, local instability of compressed plates 

and durability. 

For g=20, the models with f=10, 15, 20, 25 and 50m have been dimensioned. The following 

cross–sections for S 355 steel have been obtained employing a linear analysis. 

• The arches are CHS of 750mm diameter and thickness ranging from 10mm to 20mm for 

f=50, from 10mm at springings to 25mm at span center for f= 25m, from 10mm at 

springings to 30mm at span center for f=15 and 20m, and from 20mm at extremes to 

40mm at springings for f=10m. 

• The struts are CHS of 300mm diameter and thickness ranging from 15mm at extremes to 

45mm at span center for f=50, from 15mm at extremes to 35mm at span center for f=20 

and 25m, and from 20mm at extremes to 55mm at L/3 approximately for f=15m. For 
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f=10m, CHS of 300mm struts were not possible and CHS of 350mm struts were 

employed, with thickness ranging from 15mm at extremes to 50mm at L/3 approximately. 

For g=0, the models with f=10, 20 and 50m have been dimensioned. The following cross–sections 

for S 355 steel have been obtained employing a linear analysis. 

• The arches are CHS of 750mm diameter and thickness ranging from 10mm to 20mm for 

f=50, from 6mm to 25mm at springings center for f= 20m, and from 8mm to 32mm at 

springings for f=10m. 

• The struts are CHS of 300mm diameter and thickness ranging from 6mm at extremes to 

12mm at span center for f=50, from 5mm to 25mm for f=20, and from 16mm at extremes 

to 50mm at L/3 approximately for f=10m. 

4.4 EFFICIENCY CRITERIA 

The results of the chosen criteria are shown for the different models which have been studied in 

tables from Table 4-1 to Table 4-9. In these tables the nomenclature already given in section 1.3 is 

employed. Please use the bookmark to comfortably interpret the tables, and note whether the 

length is considered or not, since the nomenclature and units of the criteria are modified. The 

following values are specifically employed for the tables in this section: 

• f*  is the value of f which minimizes each criteria (m) 

• i=% of difference of B from the most efficient f value for B (f* ) 

A different f* is obtained for each criteria. The results of the efficiency criteria are commented in 

the following lines: 

• The total mass of the struts for g=20 and f=10 does not seem to correspond to a logical 

evolution with f of the other g=20 models of the f comparison case study (Table 4-7). This 

is due to the fact that a larger diameter had to be employed in comparison with the rest of 

models. The same diameter is needed in order to do a reliable comparison. Therefore, new 

mass values have obtained employing the same diameter for all the models.  

• Values of f between L/6,67-L/4 (15-25m) give a negligible difference of the total mass of 

the bridge (Table 4-2 and Table 4-8), so they can be considered with an equivalent 

efficiency. Employing a vertical rise f>L/4 for the arch is not recommendable. This is 

valid whatever the deck curvature. Planar vertical arch bridges with a superior straight 

deck can use lower f values with a negligible mass increase (Table 4-2). If a larger 

diameter is employed instead of increasing the thickness this is also valid for SABs 

(Table 4-6), since, as proved for other SABs in Chapter IV and also reflected in the 

present study, what needs to be highly increased in SABs is the flexural rigidity of the 

cross-section of the struts. 

• It must be highlighted that the mass of the bridge can be a misleading criteria in order to 

choose the most efficient parameters if it is not correctly employed. In order to employ it 

correctly, the cross-sections of the different elements should be carefully chosen in order 

to minimise the mass of each specific studied model. For each combination of variables 
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different design cross-sections can be obtained. There will be a combination of diameter 

and thickness which gives a minimal mass. Conceptually, can only then be the masses 

compared, regardless of employing or not the same diameters for the different elements. 

However, a certain diameter might be fixed also for aesthetical reasons. In the present 

study we consider a constant diameter as a valid way to compare the efficiency criteria of 

the different models when varying f, in correspondence with the internal forces 

comparison. 

• The maximal displacement under permanent loads is the simplest criteria to employ 

(Table 4-1, Table 4-4 and Table 4-5), equivalent to consider the lowest mass of the bridge 

depending on f, since the total mass for f=20 or 25m is approximately the same (Table 4-2 

and Table 4-6), the lowest maximal stress or the sum of stresses (in the arch or the whole 

bridge and whatever the load) considering the length of all the elements (Table 4-1 and 

Table 4-4). The lowest sum of the total bending moments in the arch under permanent 

loads (Table 4-4 C) cannot be considered a valid criteria for SABs, but, for planar vertical 

arch bridges with a superior straight deck, it is a valid criteria (Table 4-1C). 

• The way in which the stress criteria is calculated (Criterias 0, 1 and 2, Table 4-2 and 

Table 4-6) is not relevant, since they all lead to the same result. 

• The fact that the displacement criteria gives nearly the same results as the mass criteria 

confirms that a linear analysis is enough in order to determine which f value is the most 

efficient. 

 
Criteria 

Model A B C D E F G H 

g=0;f=10;e=0;v=0 4320384 6645456 5563495 667131 951012 53969 5278 10193 

g=0;f=20;e=0;v=0 3583052 5484528 4268285 466714 617553 52463 3268 3080 

g=0;f=50;e=0;v=0 4841903 7922334 15692357 442889 557447 79747 3410 7885 

f*  f=20 f=20 f=20 f=50 f=50 f=20 f=20 f=20 

Table 4-1: Efficiency criteria for the value of f for g=0 considering the length of the elements 
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Criteria 

Model Mass of the 
bridge (kg) 

% of mass of 
the bridge 
variation 

with respect 
to the lowest 

one 

Criteria 0: Stress 
efficiency average of 

the bridge*total 
length of the bridge 

(m) 

Criteria 1: Sum of stress 
efficiency average of the 

element (arch, bridge and 
deck)*length of the element 

(m) 

Criteria 2: Sum of the 
stress efficiency in each 

output station*Length of 
each output station of the 

bridge (m) 

g=0;e=0;f=10;v=0 116767.3 3.3 14573.4 15.5 44.2 

g=0;e=0;f=20;v=0 113001.6 0.0 12027.5 12.0 37.9 

g=0;e=0;f=50;v=0 122862.9 8.7 17373.5 15.0 55.8 

Minimal Value 113001.6 12027.5 12.0 37.9 

f*  f=20 
 

f=20 f=20 f=20 

Table 4-2: Efficiency criteria for the value of f for g=0 considering the length and the mass of the 
elements 

 
Criteria 

Model Mass of the 
arch (kg) 

% of mass of the 
arch variation 

with respect to the 
lowest one 

Mass of the 
struts (kg) 

% of mass of 
the struts 

variation with 
respect to the 

lowest one 

Mass of 
the deck 

(kg) 

Mass of 
the arch 
(kg/m) 

Mass of 
the struts 

(kg/m) 

Mass of 
the deck 
(kg/m) 

g=0;e=0;f=10;v=0 26798.4 24.2 8966.8 0.0 81002.0 261.2 170.9 734.8 

g=0;e=0;f=20;v=0 21569.3 0.0 10430.3 16.3 81002.0 196.4 110.8 734.8 

g=0;e=0;f=50;v=0 26860.9 24.5 15000.0 67.3 81002.0 181.6 63.7 734.8 

Minimal Mass (kg) 21569.3 
 

8966.8 
     

Table 4-3: Mass of the different elements, according to f values for g=0 

 

 
Criteria 

Model A B C D E F G H 

g=20;e=16,67;f=10 7582440 12478661 18904808 1250084 1941837 75088 11914 11631 

g=20;e=16,67;f=15 6548326 10933656 21166890 1092824 1655958 67918 10996 7465 

g=20;e=16,67;f=20 6242197 10436932 24107370 1042618 1564838 65286 10503 6754 

g=20;e=16,67;f=25 6222403 10377686 27203488 1035907 1543181 64893 10315 7671 

g=20;e=16,67;f=50 7675480 12628244 45902020 1214494 1788309 76580 11303 17638 

f*  f=25 f=25 f=10 f=25 f=25 f=25 f=25 f=20 

Table 4-4: Efficiency criteria for the value of f for g=20 considering the length of the elements 
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Criteria 

Model A B C D E F G H 

g=20;e=16,67;f=10 24666 40594 61499 4067 6317 244 39 38 
g=20;e=16,67;f=15 20112 33580 65009 3356 5086 209 34 23 
g=20;e=16,67;f=20 17958 30026 69354 2999 4502 188 30 19 
g=20;e=16,67;f=25 16724 27892 73114 2784 4148 174 28 21 
g=20;e=16,67;f=50 14962 24616 89478 2367 3486 149 22 34 

f*  f=50 f=50 f=10 f=50 f=50 f=50 f=50 f=20 

Table 4-5: Efficiency criteria for the value of f for g=20 not considering the length of the elements 

Model Mass of the 
bridge (kg) 

% of mass of 
the bridge 

variation with 
respect to the 

lowest one 

Criteria 1: Sum of 
stress efficiency 
average of the 

element (arch, bridge 
and deck)*length of 

the element (m) 

Criteria 0: Stress 
efficiency average 
of the bridge*total 
length of the bridge 

(m) 

Criteria 2: Sum of the 
stress efficiency in 

each output 
station*Length of 

each output station of 
the bridge (m) 

g=20;e=16,67;f=10;v=0 133891,4 3.1 77,1 25,8 83,3 

g=20;e=16,67;f=15;v=0 132236,0 1.9 67,6 22,3 73,8 

g=20;e=16,67;f=20;v=0 130543,5 0.6 64,5 20,9 70,8 

g=20;e=16,67;f=25;v=0 129822,7 0.0 64,1 20,5 69,3 

g=20;e=16,67;f=50;v=0 141610,3 9.1 78,0 23,2 81,1 

Minimal value 129822,7  64,1 20,5 69,3 

Minimal value f=25  f=25 f=25 f=25 

Table 4-6: Efficiency criteria considering the length and the mass of the elements 

 

Model Mass of the 
arch (kg) 

% of mass of 
the arch 

variation with 
respect to the 

lowest one 

Mass of the 
struts (kg) 

% of mass of 
the struts 

variation with 
respect to the 

lowest one 

Mass of 
the deck 

(kg) 

Mass of 
the arch 
(kg/lm) 

Mass of 
the struts 
(kg/lm) 

Mass of 
the deck 
(kg/lm) 

g=20;e=16,67;f=10;v=0 33707.7 17.0 19107.1 0.0 81076.6 328.5 202.3 734.8 

g=20;e=16,67;f=15;v=0 29136.9 1.1 22022.6 15.3 81076.6 275.6 200.9 734.8 

g=20;e=16,67;f=20;v=0 29065.9 0.9 20401.0 6.8 81076.6 264.7 160.0 734.8 

g=20;e=16,67;f=25;v=0 28808.2 0.0 19937.9 4.3 81076.6 251.0 135.7 734.8 

g=20;e=16,67;f=50;v=0 34749.1 20.6 25784.6 34.9 81076.6 235.0 101.2 734.8 

Minimal Mass (kg) 28808.2 19107.1 

Table 4-7: Mass of the different elements, according to f values for g=20 
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Model Mass of the 
bridge (kg) 

% of mass of 
the bridge 

variation with 
respect to the 

lowest one 

Criteria 1: Sum of 
stress efficiency 

average of the element 
(arch, bridge and 

deck)*length of the 
element (m) 

Criteria 0: Stress 
efficiency average 

of the 
bridge*total 
length of the 
bridge (m) 

Criteria 2: Sum of the 
stress efficiency in 

each output 
station*Length of 

each output station of 
the bridge (m) 

g=20;e=16,67;f=10;v=0 139293.4 7.3 77,1 25,8 83,3 

g=20;e=16,67;f=15;v=0 132236,0 1.9 67,6 22,3 73,8 

g=20;e=16,67;f=20;v=0 130543,5 0.6 64,5 20,9 70,8 

g=20;e=16,67;f=25;v=0 129822,7 0.0 64,1 20,5 69,3 

g=20;e=16,67;f=50;v=0 141610,3 9.1 78,0 23,2 81,1 

Minimal value 129822,7  64,1 20,5 69,3 

Minimal value f=25  f=25 f=25 f=25 

Table 4-8: Efficiency criteria considering the length and the mass of the elements employing the same 
diameter for all struts 

Model Mass of the 
arch (kg) 

% of mass of 
the arch 

variation with 
respect to the 

lowest one 

Mass of the 
struts (kg) 

% of mass of 
the struts 

variation with 
respect to the 

lowest one 

Mass of 
the deck 

(kg) 

Mass of 
the arch 
(kg/lm) 

Mass of 
the struts 
(kg/lm) 

Mass of 
the deck 
(kg/lm) 

g=20;e=16,67;f=10;v=0 33707.7 17.0 24509.2 22.9 81076.6 328.5 202.3 734.8 

g=20;e=16,67;f=15;v=0 29136.9 1.1 22022.6 10.5 81076.6 275.6 200.9 734.8 

g=20;e=16,67;f=20;v=0 29065.9 0.9 20401.0 2.3 81076.6 264.7 160.0 734.8 

g=20;e=16,67;f=25;v=0 28808.2 0.0 19937.9 0.0 81076.6 251.0 135.7 734.8 

g=20;e=16,67;f=50;v=0 34749.1 20.6 25784.6 29.3 81076.6 235.0 101.2 734.8 

Minimal Mass (kg) 28808.2 
 

19937.9 
     

Table 4-9: Mass of the different elements, according to f values for g=20 employing the same 
diameter for all struts 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

212 

 

4.5 PARAMETER DISCUSSION 

The parameter discussion has been already exposed in the previous sections. In this section the 

main conclusions and explanations are exposed: 

• Displacements give a clear idea of how the behavior of the arch changes with f: for low f 

values the out-of-plane behavior is under control, but not in-plane behavior. Vice versa 

for large f values. 

o For f=10m in-plane displacements are higher, but out-of-plane ones are 

controlled. The opposite happens with f=50m. 

o For 10m<f<50m in- and out-of-plane arch maximal displacements have 

approximately the same value. 

• When increasing f, the length increases, and thus the stiffness decreases, and the out-of-

plane sag of the arch increases, hence increasing the out-of-plane behavior of the arch. 

Moreover, a longer length is related to higher masses. Due to the high influence of out-of-

plane forces in this bridge type and that stiffer struts are needed for SABs, large f values 

are not convenient. 

• However, the verticality of the struts increases with f. Low f values are related to very 

horizontal struts which do not work as efficiently and low f values also have a worse in-

plane behaviour.  

• Therefore, it is logical that the structural behavior of internal forces and stresses and the 

efficiency criteria lead to the following conclusions: 

o The range of adequate values of f for SABs is smaller than for g=0.  
o Efficient values of f for SABs are in the range L/6,67 and L/4. 
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5. INCLINATION OF STRUTS (β) PARAMETRICAL STUDY 

5.1 DEFINITION AND EMPLOYED VALUES 

5.1.1 Employed values 

The reference model employed for the strut distribution is the one obtained from equal divisions 

of arch and deck. This strut distribution is called a radial system of struts in the present study. 

Each strut axis elongation converges below the deck with its symmetrical (Figure 5-1). These are 

taken as the reference orientation, considering β=0 for each strut. A more vertical orientation (β2) 

of the struts and a distribution of struts in which each strut axis elongation converges above the 

deck with its symmetrical (β1, opposite inclination to the original system) have also been studied 

(Figure 5-1). The latter distribution is called a convergent system of struts in the present study. 

For the other parameters the chosen values are the following: L=100m, g=0 and 20m, 

e=L/1,2=16,67m,for each case f=L/5=20m and f=L/4=25m, which are both valid f values 

according to the previous case study (section 4.5). 

 

 
Figure 5-1: Geometry of β variation for L=100m, g=f=L/5=20m e=g/1,2=16,67m, v=0 

We have observed in the previous sections that stresses at the arch springings are higher, due to 

the large axial and out-of-plane bending moments which are maximal also at springings. Total 

arch displacements for a uniformly distributed load are maximal at approximately LA/4. Arch out-

of-plane displacements are maximal at approximately LA/6 and in-plane ones at approximately 

LA/3. Therefore, the struts distribution should help to lower stresses at springings and 

displacements at the aforementioned points. According to this, convergent struts seem the most 

convenient distribution. However, changing the orientation of the struts also means changing their 

length and thus their stiffness. Increasing β increases the length of struts, diminishing their 

stiffness. Therefore, it is not clear a priori what will have more influence, whether to increase the 

stiffness of the struts or the orientation with which the loads are introduced on the arch. 

We must note that for different g values the orientation of the reference struts changes already 

(Figure 5-2). We will be studying the models with 20m. 

Layout 

Plan view 

β=0 
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Figure 5-2: Geometry of g variation  for L=100m, f=L/5=20m e=g/1,2, v=0 

5.1.2 Previous studies 

Several studies have been conducted for planar tied arch bridges (Bogaert, 2010 and 2011, and De 

Zotti et al, 2007).). But the author still does not know any study focused on superior straight deck 

arch bridges nor SABs. 

The inclination of the struts planar vertical arch bridges with an inferior straight deck is studied by 

Bogaert (2010 and 2011). In the 2010 study it is concluded that an optimum arrangement of 

sloping hangers with radial distribution (from the deck central zone and sloping radially to the 

arch) can be found. This is obtained by distributing the hanger nodes in an even manner and 

concentrating the nodes on the lower chord near to the center. This has also a stabilising effect for 

buckling in opposition to vertical hangers (Bogaert, 2010). A triangular arrangement of hangers 

requires less steel than a fan arrangement of hangers concurring at a centre above the arch top 

(Bogaert, 2011), but fan arrangement can be justified for aesthetical reasons.  

De Zotti et al (2007) compare network, fan and vertical arrangements of hangers for inferior 

straight deck vertical planar arch bridges. They conclude that vertical and fan arrangements lead 

to minimum values of hanger forces, but higher values of arch and lower chord bending moments. 

5.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) 

The structural behaviour has been studied for the under a uniform load of 10kN/m only on the 

whole deck (Figure 5-1) for L=100m, g=20m, f=L/5=20m and f=L/4=25m, e=L/1,2=16,67m, v=0, 

with the different values of β and their structural response has been compared. 

A distribution of convergent struts (β1, Figure 5-1) is the most efficient distribution for forces and 

displacements in the arch for SABWCSD, since they give the minimal values (from Figure 5-3 to 

Figure 5-9). 

The effect of the struts’ inclination is most present in the in-plane behaviour of the arch. 

Layout 

Plan view 
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Figure 5-3: Arch axial forces comparison for different β values and g=20m. The abscissas are the arch 
length from 0 to LA 

 

Figure 5-4: Arch total bending moments comparison for different β values and g=20m. The abscissas 
are the arch length from 0 to LA 
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Figure 5-5: Arch out-of-plane bending moments comparison for different β values and g=20m. The 
abscissas are the arch length from 0 to LA 

 

Figure 5-6: Arch in-plane bending moments comparison for different β values and g=20m. The 
abscissas are the arch length from 0 to LA 
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Figure 5-7: Arch torsional bending moments comparison for different β values and g=20m. The 
abscissas are the arch length from 0 to LA 
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Figure 5-8: Arch in-plane displacements comparison for different β values and g=20m. The abscissas 
are the arch length from 0 to LA 

 

Figure 5-9: Arch out-of-plane displacements comparison for different β values and g=20m. The 
abscissas are the arch length from 0 to LA 

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

U
3

 (
m

m
)

g=20;e=16,67;f=25;v=0_convergent struts

g=20;e=16,67;f=25;v=0_radial struts (reference model)

g=20;e=16,67;f=25;v=0_vertical struts

U
2

 (
m

m
)

-8

-6

-4

-2

0

2

4

U
2

 (
m

m
)

g=20;e=16,67;f=25;v=0_convergent struts

g=20;e=16,67;f=25;v=0_radial struts (reference model)

g=20;e=16,67;f=25;v=0_vertical struts

g=20;e=16,67;f=25;v=0_convergent struts

g=20;e=16,67;f=25;v=0_radial struts (reference model)

g=20;e=16,67;f=25;v=0_vertical struts

g=20;e=16,67;f=25;v=0_convergent struts

g=20;e=16,67;f=25;v=0_radial struts (reference model)

g=20;e=16,67;f=25;v=0_vertical struts



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

219 

 

5.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE 

Employing convergent struts also reduces the stresses in the arch, as a result of the previously 

observed reduction of internal forces (Figure 5-10). 

Whatever the value of β, the most unfavourable load combination is the same one as the one 

displayed in Figure 2-15. The combination A1 should be employed to dimension the arch except 

at springing and approximately around LA/3. 

 

Figure 5-10: Arch stresses comparison for different β values and g=20m under q=10kN/m. The 
abscissas are the arch length from 0 to LA 

For g=20m, f=20m and e=16,67m, the models with different β values have been dimensioned. 

The cross–sections for S 355 steel have been obtained employing a linear analysis and are 

displayed in Table 5-1with the values of the maximal thickness. 

 g=20m, f=25m 
 β: Radial struts β: Vertical struts β: Convergent struts 

ARCH 
CHS D=750mm; t=25mm 

A= 0,0569m2 
I= 0,0037m4 

CHS D=750mm; t=25mm 
A= 0,0569m2 
I= 0,0037m4 

CHS D=750mm; t=20mm 
A= 0,0459m2 
I= 0,0031m4 

STRUTS 
CHS D=300mm;t=35mm 

A= 0,0291m2 
I= 0,0003m4 

CHS D=300mm;t=45mm 
A= 0,0456m2 
I= 0,0010m4 

CHS D=300mm;t=35mm 
A= 0,0291m2 
I= 0,0003m4 

Table 5-1: Design cross-section values of the arch and struts for g=20m and f=25m with different β 
values. Note: the values of the thickness are the maximal ones. 

5.4 EFFICIENCY CRITERIA 

The results of the chosen criteria are shown for the different models which have been studied in 

tables from Table 5-2 to Table 5-7. In these tables the nomenclature already given in section 1.3 is 

employed. Please use the bookmark to comfortably interpret the tables, and note whether the 
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length is considered or not, since the nomenclature and units of the criteria are modified. The 

following values are specifically employed for the tables in this section: 

• β*  is the value of β which minimizes each criteria (m) 

• i=% of difference of B from the most efficient β value for B (β* ) 

Given the length values shown in Table 5-5, it is necessary to calculate the total mass values for 

the different models. The design cross-sections obtained in section 5.3 are employed. 

A different β* is obtained for each criteria. The results of the efficiency criteria are commented in 

the following lines: 

It is convenient to employ a convergent distribution of struts (β1, Figure 5-1) in order to reduce 

the total material employed for the bridge, in spite of being the longest ones (Table 5-5).  

The maximal displacement under permanent loads is the simplest criteria to employ, equivalent to 

consider the lowest mass of the bridge depending on β (Table 5-3 and Table 5-7), the lowest 

stresses considering the length of all the elements or not (from Table 5-2 to Table 5-7) and the 

lowest sum of the total bending moments in the arch under permanent loads (Table 5-2, Table 5-3, 

Table 5-4 and Table 5-6). The differences are not negligible (Table 5-3 and Table 5-7). 

The fact that the displacement criteria gives the same results as the mass criteria confirms that a 

linear analysis is enough in order to determine which β value is the most efficient. 

A small β variation leads to an important mass variation. Therefore, β is a key parameter for the 

efficiency of SABWCSD. 

This conclusion for superior deck arch bridges looks aesthetically different than the one for 

inferior straight deck planar vertical arch bridges studied by Bogaert (2010). However, in 

Bogaert’s study the separation of hangers in the deck varied and in our study it is constant. Just as 

we varied the distance between struts in the arch, we could try and change also in the deck and 

make them less uniform maybe concentrating the struts in key points. A future research of struts 

is worth doing since they can influence so much the total mass. 

 
Criteria 

Model 
g=20;e=16,67; 

f=20;v=0 
A B C D E F G H 

radial struts 
(reference 

model) 
17958 30026 69354 2999 4502 188 30 19 

vertical struts 16575 27945 61659 2743 4211 181 29 16 

convergent 
struts 

14679 25540 48932 2425 3937 169 26 15 

Minimal values 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 

Table 5-2:  Efficiency criteria for L=100m, g=20m; e=16,67m;f=20m;v=0 and different β values, not 
considering the length of the elements 
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Model 
g=20;e=16,67; 

f=20;v=0 

Mass of the 
bridge (kg) 

Criteria 1: Stress 
efficiency average of 

the bridge*total length 
of the bridge (m) 

Criteria 2: Sum of the stress 
efficiency in each output 

station*Length of each output 
station of the bridge (m) 

Relative Mass 
Variation (%) in 

comparison with the 
Minimal Mass Model 

radial struts (reference model) 73862,7 20,9 70,8 38,8 

vertical struts 60433,7 16,4 37,6 13,6 

convergent struts 53204,0 15,0 33,9 0,0 

Minimal Mass (kg) 53204.0 
Criteria 1=Criteria 2 if calculated separately for arch deck and struts and then added  

Table 5-3: Efficiency criteria and relative differences for L=100m, g=20m; e=16,67m;f=20m;v=0 and 
different β values, considering the length of the elements 

 
Criteria 

Model 
g=20;e=16,67; 

f=25;v=0 
A B C D E F G H 

radial struts 
(reference 
model)  

16724 27892 73114 2784 4148 174 28 21 

vertical struts 15049 25408 62119 2489 3764 175 27 16 

convergent 
struts 

13414 23328 51370 2213 3551 157 24 13 

Minimal values 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 

Table 5-4:  Efficiency criteria for L=100m, g=20m;e=16,67m;f=25m;v=0 and different β values, not 
considering the length of the elements 
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Model 
g=20;e=16,67; 

f=25;v=0 
Total structure length (m) L struts (m) 

radial struts (reference model) 372,1 147,0 

vertical struts 379,0 153, 9 

convergent struts 393,1 168,0 

Table 5-5: Total length of the structure and the struts for different β values 

 
Criteria 

Model 
g=20;e=16,67; 

f=25;v=0 
A B C D E F G H 

radial struts 
(reference 

model) 
6222402,7 10377685,6 27203488,1 1035906,5 1543181,2 64893,3 10315,3 7670,7 

vertical struts 5702948,3 9628491,1 23540143,7 943273,6 1426239,9 66190,7 10122,5 6161,3 

convergent 
struts  

5273091,5 9170013,7 20193268,3 869854,6 1396016,0 61615,0 9402,9 5264,8 

Minimal values 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 
convergent 

struts 

Table 5-6:  Efficiency criteria for L=100m, g=20m; e=16,67m;f=25m;v=0 and different β values, 
considering the length of the elements 

Model 
g=20;e=16,67; 

f=25;v=0 

Mass of the 
bridge (kg) 

Criteria 1: Stress 
efficiency average 
of the bridge*total 

length of the 
bridge (m) 

Criteria 2: Sum of the 
stress efficiency in each 

output station*Length of 
each output station of the 

bridge (m) 

Relative Mass Variation 
(%) in comparison with 

the Minimal Mass Model 

radial struts 73141,9 20,5 69,3 9,6 

vertical struts 84025,2 26,0 86,7 25,9 

convergent struts 66722,3 17,5 59,1 0,0 

Minimal Mass (kg) 66722,3 
   

Criteria 1=Criteria 2 if calculated separately for arch deck and struts and then added 

Table 5-7:  Efficiency criteria and relative differences for L=100m, g=20m;e=16,67m;f=25m; v=0 and 
different β values, considering the length of the elements 
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5.5 PARAMETER DISCUSSION 

The parameter discussion has been already exposed in the previous sections. In this section the 

main conclusions and explanations are exposed: 

• It is convenient to employ a convergent distribution of struts (β1, Figure 5-1) in order to 

reduce the total material employed for the bridge, in spite of being the longest ones. 

Controlling key points proves to be more efficient than verticality or stiffness small 

variations. 

• A small β variation leads to an important mass variation. Therefore, β is a key parameter 

for the efficiency of SABWCSD. 

 

6. DECK HEIGHT (z) PARAMETRICAL STUDY 

6.1 DEFINITION AND EMPLOYED VALUES 

The conclusions of section 2 drew attention to the key points at a distance of 0,28L of the 

springings of the arch, where it is recommendable to obtain the stiffest struts. This conclusion is 

valid for a superior-deck SAB and close to the one obtained for an inferior-deck SAB specific 

study with other efficiency criteria (Jorquera 2007, for g=10m). Changing the distance from the 

deck to the arch, which changes with the value of z, these points can also be made stiffer. 

Therefore, the present study analyses the effects of z variation for different f values, f=10m and 

f=20m and for g=20m and e=16,67m (most efficient e value according to section 2). 

The studied cases are the following: Superior deck with f=z=10m and 20m, inferior deck with 

f=20m and z=0, middle deck with f=20m and z=16,22m and z=10m (Figure 6-1 and Figure 6-2). 

The value z=16,22m is chosen because it is the point where the arch is fixed to the deck at g/1,2 in 

plan which had been observed as the most efficient to increase the stiffness of the struts at these 

points. 

Models with z=f=10m and z=f=20m are both analysed to be compared with the model with f=20m 

and z=10m. The rest of z values are all considered for f=20m arches. The rest of z values are all 

considered for f=20m arches. 
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 (a) (b) 

 
 (c) (d) 

Figure 6-1: Variation of z (a) Layout. (b) Side view. (c) Plan view (d) Perspective 

 

 (a) (b) 

 
 (c) (d) 
Figure 6-2: Bridge perspectives for different z values: (a) f=z=20m; (b) f=20m, z=16,22m; (c) f=20m, 

z=10m; (d) f=20m, z=0 

z 

z 
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6.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) 

The structural behaviour has been studied under a uniform load of 10kN/m on the whole deck4  

(Figure 1-2) for the described models with the different values of z. Their structural response has 

been compared. Internal forces are shown from Figure 6-3 to Figure 6-16. 

6.2.1 Arch internal forces (Figure 6-3 to Figure 6-9) 

• Models with f=20m employing a superior and inferior deck show similar values of axial 

forces in the arch. The lowest axial forces are obtained when employing a middle deck 

with z=16,22m (Figure 6-3). 

• When employing a superior deck the total bending moments with f=10m in the arch are 

minimal at span center in comparison with the rest of models. This is due to the f value as 

observed in section 4.  

• When employing f=20m at span, center and at 5*LA/24 approximately, the total bending 

moments are minimal for z=16,22m, and for z=10 and 20m, at springings (Figure 6-4). 

• Whatever the f value, when employing a superior deck the out-of-plane bending moments 

in the arch are minimal at span center (Figure 6-5). When employing a middle deck with 

z=10 and inferior deck they increase considerably because the axial forces transmitted by 

the struts increase (Figure 6-6), since they are more vertical (Figure 6-1a) and transmit a 

greater part of the vertical load also with a higher out-of-plane component.  

• At springings, for z=0 (inferior deck), the out-of-plane bending moments decrease to less 

than half their value for the other models (Figure 6-5) because the axial forces transmitted 

by the struts are much lower (Figure 6-6). This is due to the orientation of the struts 

(Figure 6-1a). Moreover, they should be expected to be tensioned but they are 

compressed. In a real model they would be tensioned since we would be prestressing the 

hangers. 

• When employing a superior deck the in-plane bending moments with f=20m in the arch 

are maximal at span center, for f=10 they are maximal at L/4 approximately and when 

employing an inferior deck, at springings (Figure 6-8).  

• In general in-plane bending moments are minimal for z=16,22m. This improved 

behaviour in comparison with the rest of models and the moderate out-of-plane behaviour 

makes this model more efficient than the superior deck in relation to total bending 

moments as previously observed (Figure 6-4), in spite of having much higher out-of-plane 

bending moments. In-plane bending moments improvements is achieved by the increase 

of the struts verticality. 

• Arch torsional moments are minimal when employing an inferior deck (Figure 6-9), 

since, in comparison with the rest of models, hangers have lower axial forces (Figure 6-6) 

and much lower bending moments (Figure 6-7) which hence transmit smaller torsional 

moments to the arch and deck.  

• The same effect occurs with deck torsional moments (Figure 6-12). 

                                                           
4 Without self-weight or permanent loads 
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6.2.2 Deck internal forces (Figure 6-10 to Figure 6-20) 

• Deck axial forces are minimal when employing an inferior deck, since hangers are more 

vertical. The deck is compressed at span center and tensioned at its extremes (Figure 

6-10).  

• Axial forces and total bending moments in the deck are maximal at abutments and span 

center when employing a superior deck instead of a middle deck for the same z value 

(f=z=10 compared to f=20, z=10, Figure 6-10 and Figure 6-11).  

• For a fix f value, varying the value of z causes important changes in the deck axial forces, 

compressions at its center and tensions at L/4 largely increase when employing a middle 

deck (compare z=0; z=16,22m; z=10m and z=20m for f=20m, Figure 6-10), whereas deck 

total bending moments can increase or decrease depending on the z value (Figure 6-11).  

• The solution z=16,22m would be expected to be nearer to z=20m than z=10m, but it is not 

for axial forces and total bending moments. It does follow an expected gradual change for 

torsional moments (Figure 6-12), justified by the decrease of struts internal forces (Figure 

6-6 and Figure 6-7) as explained in the previous section 6.2.1. 

• Deck balcony-beam bending moments are lower when employing a superior deck (Figure 

6-13). 

6.2.3 Arch displacements (Figure 6-14 to Figure 6-16) 

• Employing a superior deck diminishes the out-of-plane displacements of the arch (Figure 

6-14).  

• A superior deck controls better the out-of-plane behaviour at span center, as observed for 

out-of-plane bending moments (section 6.2.1, Figure 6-5). A middle deck controls better 

the arch out-of-plane behaviour at approximately LA/6. Employing an inferior deck 

controls better than a middle deck out-of-plane displacements at span center, due to the 

lower torsional moments (section 6.2.1, Figure 6-9), but much worse than a superior deck. 

However, arch out-of-plane displacements at LA/3 are really high when employing an 

inferior deck (Figure 6-14). 

• Maximal in-plane displacements hardly change with z for the same f value (Figure 6-15). 

At span center they are best controlled by a superior deck, but this bridge type has a 

worse control at LA/3, which is improved when diminishing z. 

• The higher influence of out-of-plane displacements on the total displacements is reflected 

in Figure 6-16. 

6.2.4 Deck displacements (Figure 6-17 to Figure 6-18) 

• Apparently the deck displacements do not follow a trend with z as torsional moments do 
(Figure 6-17 and Figure 6-18). But they follow the same trend as deck bending moments. 
The explanation is in the struts structural behavior (Figure 6-6 and Figure 6-7). It is 
logical that the models employing an inferior or superior deck have the lowest 
displacements at span center (Figure 6-17 and Figure 6-18). Struts supporting the superior 
deck are very short (Figure 6-2a) and therefore very stiff (proportional to EI/Lstrut3, ie: 
the length has a high influence) in spite of being nearly horizontal. When employing an 
inferior deck (Figure 6-2d), struts are long but very vertical and work mainly with axial 
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forces which control the deck displacement (the stiffness is proportional to EA/Lstrut, ie: 
the length is not as important as for bending moments). 

• For a middle deck with f=20m and z=16,22m (Figure 6-2b), both vertical and horizontal 
deck displacements at span center (Figure 6-17 and Figure 6-18) are higher since hangers 
at span center are not vertical enough to have an efficient axial stiffness, but are too long 
to have enough bending moment stiffness to control the displacements (Figure 6-2b). 
With f=20m and z=10m deck vertical displacements (Figure 6-17) and total displacements 
at span center are also high, but horizontal displacements have the lowest values in the 
whole deck (Figure 6-18), because central hangers are more vertical than for z=16,22m 
and vertical axial stiffness increases, whereas horizontal axial stiffness and bending 
stiffness diminish at span center (Figure 6-2c). Extreme struts are shorter (Figure 6-2c), 
so bending stiffness increases at extremes. The same as for deck horizontal displacements 
happens with vertical axis bending moments in the deck, ie: they are minimal for f=20m 
and z=10m. 

 

Figure 6-3: Arch axial forces comparison for different z values when employing the reference model 
cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 
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Figure 6-4: Arch total bending moments comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 

 

 

Figure 6-5: Arch out-of-plane bending moments comparison for different z values when employing 
the reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 
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Figure 6-6: Struts axial forces comparison for different z values when employing the reference model 
cross-sections (Table 1-1).. The abscissas are the output stations of the different struts (at the bottom, 

center and the top of their length). 

 

Figure 6-7: Struts bending moments comparison for different z values when employing the reference 
model cross-sections (Table 1-1).. The abscissas are the output stations of the different struts (at the 
bottom, center and the top of their length). 
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Figure 6-8: Arch in-plane bending moments comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 

 

Figure 6-9: Arch torsional moments comparison for different z values when employing the reference 
model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 
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Figure 6-10: Deck axial forces comparison for different z values when employing the reference model 
cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 

 

Figure 6-11: Deck total bending moments comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 
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Figure 6-12: Deck torsional moments comparison for different z values when employing the reference 
model cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 

 

Figure 6-13: Deck out-of-plane bending moments comparison for different z values when employing 
the reference model cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD  
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Figure 6-14: Arch out-of-plane displacements comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 

 

Figure 6-15: Arch in-plane displacements comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 
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Figure 6-16: Arch total displacements comparison for different z values when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 

 

 

Figure 6-17: Deck vertical displacements for different z values when employing the reference model 
cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 
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Figure 6-18: Deck horizontal displacements for different z values when employing the reference 
model cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 
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Figure 6-19: Arch stresses comparison for different z values under q=10kN/m when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the arch length from 0 to LA 

 

Figure 6-20: Deck stresses comparison for different z values under q=10kN/m when employing the 
reference model cross-sections (Table 1-1).. The abscissas are the deck length from 0 to LD 
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• When employing a middle deck the difference of the arch stresses caused by A1 and A2 

are very low at L/3 and springings, A1 could be considered the most unfavourable load 

case for the whole arch. At springings the difference between these load cases and 

combination C (considering both live loads and temperature variation) is also very low, 

whereas for superior and inferior decks the stresses caused by temperature in the arch are 

much lower. 

 

Figure 6-21: Stresses in the arch caused by different loading cases combination for g=20m, f=20m 
and e=16,67m when employing the reference model cross-sections (Table 1-1). The abscissas are the 
arch length from 0 to LA 
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• If the arch is fixed to the deck at the points g/1,2 in plan where it had been observed that 

it was efficient to increase the stiffness of the struts (section 0) the total stresses in the 

bridge, considering the length or not, decrease (B in Table 6-1 and Table 6-3). 

• Minimal total stresses in the bridge are coincident with the shortest total bridge length in 

comparison with the other models with the same f value (Table 6-2). Therefore, it is 

already possible to assure that the mass criteria will be equivalent to B criteria. 

• Also, the lowest sum of the total bending moments in the arch under permanent loads 

decreases (C criteria in Table 6-1 and Table 6-3). 

• Varying z has non-negligible effects in the sum of total maximal stresses of the bridge (i 

in Table 6-3). 

• The arch maximal displacement,  considering the length of the structure or not, is not 

minimal for this same value, but for the model with a superior deck with f=z=20m (H in 

Table 6-1 and Table 6-3). The fact that the displacement criteria does not  give the same 

results as the stress criteria confirms that a linear analysis is not enough in order to 

determine which z value is the most efficient. Therefore the conclusions of this z 

parametrical study are not definitive. They must still be verified with a non-linear 

analysis. 

 
Criteria 

Model A B C D E F G H 

Superior deck with 
g=20;f=z=10;e=16,67;v=0 

24666 40594 61499 4067 6317 244 39 38 

Superior deck with 
g=20;f=z=20;e=16,67;v=0 

17958 30026 69354 2999 4502 188 30 19 

Inferior deck with 
g=20;f=20;z=0;e=16,67;v=0 

21300 30199 87796 3341 4479 181 27 33 

Middle deck with 
g=20;f=20;z=16,22;e=16,67;v=0 

15660 28240 52776 2685 4531 166 30 23 

Middle deck with 
g=20;f=20;z=10;e=16,67;v=0 

18745 29752 74080 3162 4670 162 29 40 

Minimal values 
Middle 

deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Inferior 
deck  

Middle 
deck with 

z=10 

Inferior 
deck  

Superior 
deck with 
f=z=20 

Table 6-1:  Efficiency criteria for z values, not considering the length of the elements 

 
Total structure length (m) 

Superior deck with g=20;f=z=10;e=16,67;v=0 307,4 

Superior deck with g=20;f=z=20;e=16,67;v=0 347,6 

Inferior deck with g=20;f=20; z=0; e=16,67;v=0 475,7 

Middle deck with g=20;f=20;z=16,22;e=16,67;v=0 327,6 

Middle deck with g=20;f=20;z=10;e=16,67;v=0 358,9 

Minimal values Superior deck f=z=10m 

Minimal values f=20m Middle deck with z=16,22m 

Table 6-2: Total length of the bridges of the analysed models  
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Criteria 

Model A B C D E F G H i 

Superior deck with 
g=20;f=z=10;e=16,67;v=0 

7582440 12478661 18904808 1250084 1941837 75088 11914 11631 35 

Superior deck with 
g=20;f=z=20;e=16,67;v=0 

6242197 10436932 24107370 1042618 1564838 65286 10503 6754 13 

Inferior deck with 
g=20;f=z=20;e=16,67;v=0 

10131808 14364839 41762243 1589316 2130317 86268 13076 15911 55 

Middle deck with 
g=20;f=20;z=16,22;e=16,67;v=0 

5129870 9251227 17288632 879489 1484271 54273 9766 7504 0 

Middle deck with 
g=20;f=20;z=10;e=16,67;v=0 

6728242 10679014 26589666 1134863 1676293 58063 10390 14200 15 

Minimal values 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Middle 
deck with 
z=16,22 

Superior 
deck with 
f=z=20 

 

Table 6-3:  Efficiency criteria for z values, considering the length of the elements 

6.5 PARAMETER DISCUSSION 

The parameter discussion has been already exposed in the previous sections. In this section the 

main conclusions and explanations are exposed: 

• It is convenient to employ an intermediate deck, if the ground is strong enough to bear 

horizontal loads and the intermediate position helps to stiffen the key points around 

0,28L. 

• If this intermediate position cannot be obtained and there are no ground limitations, 

employing a superior deck is more efficient than an inferior one (B in Table 6-1 and 

Table 6-3). 

• The fact that the displacement criteria does not  give the same results as the stress criteria 

confirms that a linear analysis is not enough in order to determine which z value is the 

most efficient. A geometrically non-linear analysis shouls be conducted to prove these 

conclusions.  
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7. NON-VERTICAL ARCHES. ARCH IN PLAN SAG (gA) 
PARAMETRICAL STUDY 

7.1 DEFINITION AND EMPLOYED VALUES 

In the previous case studies a planar vertical arch has been considered. However, a previous study 

(see section V.A) demonstrated that, of different spatial arch bridges with a superior deck, 

imposed curvature arch bridges (gA=g, defined in chapter III.A and Jorquera 2007) or employing 

an arch with opposite curvature of the deck (gA=-g) showed a better structural behaviour when 

compared with a planar vertical arch bridge with e=0. Other studies employ antifunicular arches 

(Schlaich and Moschner, 1999 and Jorquera 2007) which, if mass criteria and bending moments 

criteria coincide (which is proved for the previous case studies), would be the optimal solution. 

For superior deck arch bridges no comparison has been done for different g and e values, neither 

for different arch geometries. Therefore, the present case study is devoted to determine which 

arch shape is nearer to a more efficient solution, a further step of this case study is purposed in 

section 0.  

The values gA=-20m, for which the arch has an opposite curvature to the superior deck, gA=20m, 

which is an SDABWIC and gA=0, which is a SABWCSD with a vertical planar arch bridge like 

the ones employed until now in the present chapter. 

 

 (a) (b) 

 

 (c) (d) 

Figure 7-1: Variation of arch gA (a) Plan view. (b) Longitudinal view. (c) Side view. (d) Perspective 

Deck 

Deck gD=20m 

Arch gA=20m Arch gA=0 

Arch gA=-20m 
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7.2 STRUCTURAL RESPONSE UNDER A UNIFORM VERTICAL LOAD (lu) 

The structural behaviour has been studied under a uniform load of 10kN/m on the whole deck 

(Figure 1-2) for the described models with the different values of gA and their structural response 

has been compared.  

7.2.1 Arch internal forces (Figure 7-2 to Figure 7-6) 

• gA=0 gives the most uniform axial forces, out-of-plane and total bending moments 

distribution in the arch, the lowest axial forces and in-plane, out-of-plane and total 

bending moments in the arch springings, the lowest out-of-plane and total bending 

moments in the arch span center (from Figure 7-2 to Figure 7-5) and the largest torsional 

bending moments (Figure 7-6), whereas  

• gA=g gives the lowest axial forces in the arch span center (Figure 7-2) and  

• gA=-g, the lowest torsional bending moments (Figure 7-6). 

7.2.2 Deck and struts internal forces (Figure 7-7 to Figure 7-10) 

• gA=0 gives the lowest axial forces in the deck and struts (Figure 7-7 and Figure 7-10). It 

also gives the lowest total bending and torsional moments in the deck, since the arch 

transmits more axial forces to the deck when it is curved in plan view (from Figure 7-7 to 

Figure 7-9).  

• As explained in section V.A the deck is tensioned for gA=g and compressed for gA=-g 

(Figure 7-7).  

7.2.3 Arch displacements (Figure 7-11) 

• gA=0 gives the lowest in-plane and out-of-plane and hence total, arch displacements, 

whereas  

• gA=-g, gives the largest in-plane and out-of-plane and hence total, arch displacements 

• this shows that the best way to control the both, in- and out-of-plane behavior of the arch 

is employing a vertical planar bridge with an efficient e value. 
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Figure 7-2: Arch axial forces comparison for different gA values. The abscissas are the arch length 
from 0 to LA 

 

Figure 7-3: Arch total bending moments comparison for different gA values. The abscissas are the 
arch length from 0 to LA 
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Figure 7-4: Arch out-of-plane bending moments comparison for different gA values. The abscissas are 
the arch length from 0 to LA 

 

Figure 7-5: Arch in-plane bending moments comparison for different gA values. The abscissas are the 
arch length from 0 to LA 
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Figure 7-6: Arch torsional moments comparison for different gA values. The abscissas are the arch 
length from 0 to LA 

 

Figure 7-7: Deck axial forces comparison for different gA values. The abscissas are the deck length 
from 0 to LD 
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Figure 7-8: Deck total bending moments comparison for different gA values. The abscissas are the 
deck length from 0 to LD 

 

Figure 7-9: Deck torsional moments comparison for different gA values. The abscissas are the deck 
length from 0 to LD 
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Figure 7-10: Struts axial forces comparison for different gA values. The abscissas are the output 
stations of the different struts (at the bottom, center and the top of their length). 

 

Figure 7-11: Total Arch displacements for different gA values. The abscissas are the arch length from 0 
to LA 
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7.3 STRESS BEHAVIOUR UNDER q AND DESIGN AND COMPARISON IN 
ULTIMATE LIMIT STATE 

7.3.1 Stresses behaviour under a uniform load q=10kN/m  

Stresses in the arch and deck only under a uniform load q can be observed in Figure 7-12 and 

Figure 7-13 for the reference values (Table 1-1): 

• Stresses in the arch at springings and LA/4 are minimal when employing a planar vertical 

arch with e=g/1,2 (Figure 7-12) 

• Stresses in the arch at span center are minimal when employing an arch with gA=-g 

(Figure 7-12), but stresses for this case are maximal at approximately LA/4 

• Stresses in the deck are clearly minimal when employing a planar vertical arch with 

e=g/1,2 (Figure 7-13) 

7.3.2 Critical loading combinations in ULS 

Stresses in the arch and deck for the reference values (Table 1-1) under different combinations of 
loading cases can be observed from Figure 7-14 to Figure 7-16. These are the values employed 
for dimensioning the design cross-sections. 

• For SABs with a superior curved deck and a planar vertical arch at e=g/1,2, the critical 

load case, for stresses in the arch is A2 for the springing and around L/4 and A1 for the 

rest of the arch when employing a superior deck (Figure 7-14), as observed already in the 

previous case studies.  

• When employing an arch curved in plan view the crtital loading case in the arch is A1 in 

all its length (Figure 7-15 and Figure 7-16). 

 

Figure 7-12: Arch stresses comparison for different gA values only under q=10kN/m for the reference 
values (Table 1-1). The abscissas are the arch length from 0 to LA 
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Figure 7-13: Deck stresses comparison for different gA values only under q=10kN/m for the reference 
values (Table 1-1). The abscissas are the deck length from 0 to LD 

 

Figure 7-14: Stresses caused by different loading cases combination for g=20m, f=20m and e=16,67m 
for the reference values (Table 1-1). The abscissas are the arch length from 0 to LA 
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Figure 7-15: Stresses in the arch for different loading combinations for SABs with the arch and deck with 
symmetrical curvature in plan view with e=-20; gA=-g=-20m for the reference values (Table 1-1). The 

abscissas are the arch length from 0 to LA 

0

50

100

150

200

250

300

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

M
a

x
im

a
l 

s
t
r
e

s
s
e

s
 (

N
/

m
m

2
)

DEAD

q10

TEMP

HIPA: COMB  uniform live load

HIPA2: COMB  asym live load

HIPA3: COMB central third live load

HIPB: Comb uniform temp variation

HIPC: COMB live load+temp

HIPC2: COMB asym live load+temp

HIPC3: COMB central live load+temp



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 

250 

 

 

Figure 7-16: Stresses in the arch for different loading combinations for SDABWIC with  e=0; gA=g=20m for the 
reference values (Table 1-1). The abscissas are the arch length from 0 to LA 

7.4 EFFICIENCY CRITERIA 

Results of the different efficiency criteria not considering the length of the elements are displayed 

in Table 7-1 and considering the total length of the bridge (Table 7-2) in Table 7-3. Please use the 

bookmark to comfortably interpret the tables, and note whether the length is considered or not, 

since the nomenclature and units of the criteria are modified. The following values are 

specifically employed for the tables in this section: 

• The expression “minimal value” refers to the bridge configuration which minimizes each 

criteria (m) 

• i=% of difference of B from the most efficient configuration for B  

The results of the efficiency criteria are commented in the following lines: 

• It is convenient to employ a planar vertical arch in order to reduce the total stresses in the 

bridge.  

• The model which presents the shortest length is the one with gA=-g (Table 7-2), the model 

with gA=0 is 7% longer. However, in the previously studied cases it has been 

demonstrated that the criteria sum of total maximal stresses of the bridge*total bridge 

length is always equivalent to the total mass of the bridge criteria. Therefore in the 

present study we will consider this equivalency without proving it for this particular case. 

• The maximal displacement under permanent loads is the simplest criteria to employ, 

equivalent to consider the lowest stresses considering the length of all the elements or not, 

and the lowest sum of the total bending moments in the arch under permanent loads 

(Table 7-1 and Table 7-3).  
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• Varying gA has non-negligible effects in the sum of total maximal stresses of the bridge (i 

in Table 7-3). 

• The fact that the displacement criteria gives the same results as the sum of total maximal 

stresses of the bridge criteria confirms that a linear analysis is enough in order to 

determine which gA value is the most efficient. 

 

 
Criteria 

Model A B C D E F G H 

Planar vertical arch with 
e=16,67; gA=0 

17958 30026 69354 2999 4502 188 30 19 

Arch and deck with 
symmetrical curvature in 

plan view with e=-20; gA=-g 
21794 38565 76166 4299 7370 259 57 41 

Arch with imposed 
curvature; gA=g 

23347 43280 154536 3767 6947 363 57 91 

Minimal values 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Table 7-1:  Efficiency criteria for different gA values, not considering the length of the elements 

 
Total structure length (m) 

Planar vertical arch with 
e=16,67; gA=0 

347.6 

Arch and deck with 
symmetrical curvature in 

plan view with e=-20; gA=-g 
444.1 

Arch with imposed 
curvature; gA=g 

323.8 

Table 7-2: Length of the models with different gA values 

 
Criteria 

Model A B C D E F G H i 

Planar vertical arch with 
e=16,67; gA=0 

6242197 10436932 24107370 1042618 1564838 65286 10503 6754 0 

Arch and deck with 
symmetrical curvature in 

plan view with e=-20; gA=-g 
9678483 17126462 33825062 1908967 3272794 83807 18419 13217 64 

Arch with imposed 
curvature; gA=g 

7560372 14014965 50041791 1219960 2249556 161248 25521 40536 34 

Minimal values 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

Planar 
vertical 

arch with 
e=16,67 

 

Table 7-3:  Efficiency criteria for different gA values, considering the length of the elements 
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7.5 PARAMETER DISCUSSION 

The parameter discussion has been already exposed in the previous sections. In this section the 

main conclusions and explanations are exposed: 

• It is convenient to employ a planar vertical arch in order to reduce the total stresses in the 

bridge and improve both, the in-plane and out-of-plane behavior of the arch.  

• Employing an arch with a large curvature in plan view is only interesting when desired to 

reduced torsional moments in the arch. 

  



V. B) PARAMETRICAL STUDY OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

253 

 

8. CONCLUSIONS 

The most efficient model for spatial arch bridges with a curved superior deck sustained by a 

planar vertical arch is displayed in Figure 8-1. 

The variables are detailed in the previous sections and the bookmark.  

The angle β for the strut distribution is measured taking as reference the model obtained from 

equal divisions of arch and deck (explained in section 5). 

 

 

Figure 8-1: Most efficient model for spatial arch bridges with a curved superior deck 

8.1 Parameter conclusions 

e and β are key parameters for spatial arch bridges with a curved superior deck sustained by a 

planar vertical arch. 

Regarding e, whatever the deck curvature, the value of f , the stiffness of the strut-deck system or 

that of the arch: 

• Results for all the different indicators are low enough in the range of g/1,3≤e≤g/1,1, 

approximately in the range in which there is the same number of hangers at each side of 

the arch. 

• Given a g value, in the range g/1,36≤e≤ g/1,2 the internal forces in the whole bridge are 

reasonable. 

• The value e=g/1,2=0,83g is the most efficient value for the arch/eccentricity in plan view 

according to all of the studied efficiency indicators. For this value internal torsional 

moments in the arch and the deck under a uniform deck load are minimal and the 

maximal in-plane and maximal out-of-plane displacements acquire the same value 

• e=g/1,2=0,83g is at a distance of approximately 0,28L of length and at 0,81*f of height of 

the springings of the arch (Figure 2-1), whatever the g value. It is a key point to control 
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the arch behaviour, since at this point controlling the out-of-plane behaviour is most 

critical. Therefore, it is the most efficient e value because it obtains the stiffest struts at 

this key point.  

• For high g values, ie: when spatial behaviour increases, the influence of e is larger. 

• The higher the f value, the higher the importance of choosing an adequate e value. 

• Regarding the stresses in the arch, the influence of employing a stiff strut-deck system is 

lower for values of e between g/1,30 and g/1,20. 

Regarding v:  

• Depending on the stiffness of the strut-deck system it might be worth or not adjusting the 
value of e. 

• v=0 is the most convenient value, since it stiffens the struts at key points e=g/1,2. 

• Increasing the verticality of the struts by increasing the vertical distance between the arch 

crown and the deck mid-span (v), decreases the efficiency of the system, since it increase 

the length of the struts and thus decreases their stiffness. 

• For an efficient e value, v has a significant influence in the internal forces, stresses and 

mass of the bridge. However, most important is to control e. 

Regarding f  

• Whatever the value of g, values of f between L/6,67-L/4 give a negligible difference of 

the total mass of the bridge, so they can be considered with an equivalent efficiency.  

• Employing a vertical rise f>L/4 for the arch is not recommendable.  

• The range of adequate values of f for SABs is smaller than for g=0. 

Regarding β  

• It is convenient to employ a convergent distribution of struts (ie: a distribution of struts in 

which each strut axis elongation converges above the deck with its symmetrical), in order 

to reduce the total material employed for the bridge, in spite of being the longest ones. 

Controlling key points proves to be more efficient than verticality or stiffness small 

variations. 

• A small β variation leads to an important mass variation. Therefore, β is a key parameter 

for the efficiency of SABWCSD. 

Regarding z: 

• From a structural point of view, it is convenient to employ an intermediate deck crossing 
the arch at 0,28L, if the ground is strong enough to bear horizontal loads. If this 
intermediate deck position cannot be obtained and there are no ground limitations, 
employing a superior deck is more efficient than an inferior one. 

• Employing a middle deck improves the in-plane behaviour of the arch, but not the out-of-
plane behaviour, causing a displacement increase at span center. This behaviour has been 
studied with a linear analysis, but a geometrically non-linear parametrical analysis 
(GNLPA) has not been conducted. The described conclusions should be verified with a 
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GNLPA due to the described large displacements of the model which has shows a stress 
reduction.. 

Regarding gA: 

• If employing an efficient value of e, it is convenient to employ a planar vertical arch 

(gA=0) instead to a curved in plan arch in order to reduce the total stresses in the bridge.  

8.2 Efficiency criteria conclusions 

Regarding the different comparison criteria which have been studied in order to decide the most 

efficient value of the different parameters: 

• It has been demonstrated that, for spatial arch bridges with a curved superior deck, given 

a certain stiffness of the bridge elements, comparing the maximal displacements of the 

arch is always equivalent to comparing the total mass of the bridge. Therefore, for this 

bridge type, reducing the maximal displacement of the arch is equivalent to reducing the 

total mass of the bridge. 

• It is remarkable that for efficient parameters for SABs with a planar vertical arch with a 

superior curved deck, the out-of-plane maximal arch displacements have a similar value 

to in-plane maximal arch displacements. This is a simple and representative enough 

criterion for easily evaluating the efficiency of a model without doing a parametrical 

study. 

• Given an f and cross-section values of the bridge, reducing the total bending moments of 

the arch, ie: tending to its antifunicular under permanent loads, is also a valid criterion to 

reduce the total mass of the bridge. 

• When studying the stiffness of the system, the total mass of the bridge must be compared. 

• It must be noted that the mass of the bridge can be a misleading criteria in order to choose 
the most efficient parameters if it is not correctly employed. Two different procedures can 
be defined to employ this criterion correctly: 

o the cross-sections of the different elements should be carefully chosen in order to 
minimise the mass of each specific studied model. Only then can the masses be 
compared, regardless of employing or not the same diameters for the different 
elements. 

o Fix the diameter (for CHS) or width and depth (for box girders) under an 
aesthetical criterion and only vary the plate thickness when dimensionening the 
cross-sections. 

In order to obtain the most efficient parameter value, a linear analysis is enough in all the 

studied cases, except for the z parameter, where inferior, intermediate and superior deck 

SABs where compared. For this case study a further geometrically non-linear analysis 

should be conducted. 

The geometrically non-linear behavior can be observed in Chapter VI. C. 
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8.3 Critical loading combinations conclusions 

Regarding the critical loading combinations it has been proved for the different parameters and it 

can be clearly appreciated in Figure 8-2 that, in comparison with a planar vertical arch with a 

straight deck (Figure 8-2a), asymmetrical loading in half the deck loses importance for SABs with 

a superior curved deck (Figure 8-2b). 

The higher the importance of the out-of-plane behavior of the arch, the lower the influence of an 

asymmetrical uniform live loading on half the deck span (la, Figure 1-2). 

The worst loading combination in ULS for the most efficient model described in Figure 8-1 is A1 

except at springings and approximately around LA/3, where the worst loading case is A2 (Figure 

8-2b). 

 

 

 (a) (b) 
Figure 8-2: Stresses in the arch caused by different loading cases combination for (a) a vertical planar 
arch with straight deck, with g=0m and f=20m (b) model described in Figure 8-1, with curved 
superior deck g=20m, f=20m, e=16,67m and convergent struts. In both cases the reference model 
cross-sections (Table 1-1) are employed and the abscissas are the arch length from 0 to LA 
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9. FUTURE LINES OF STUDY 
The present chapter can been further researched regarding antifunicularity, cross-sections and 

struts distributions. Several possible lines of study are detailed in the following lines: 

• Stiffness analysis distribution with more cross-sections.  

• Parametrical analysis of the struts distribution concentrating the struts in the area 0,28*L 

of the arch and deck. 

• Conduct a new the parametrical analysis of z employing geometrically non-linear analysis 

• The present case study is devoted to planar vertical arch bridges with a curved deck. A 

study of arch in plan view curvature has been conducted, to determine which arch shape 

is nearer to a more efficient solution (section 7). A next step would be to study the 

optimal e value for each shape, determine the antifunicular solution and compare the mass 

variation of the most efficient solution with the most efficient e in each case in order to 

determine whether finding the antifunicular shape is worth the mass variation it implies. 

However this last step involves developing a software which is not contained in the scope 

of this thesis since it has been developed in previous works, and it is also not necessary 

for the objectives of the present thesis since the present case study is enough to 

understand the structural behaviour and determine easy design criteria. 

• It has been proved that for planar arch bridges the most efficient e value is independent of 

f. The relationship of e* is always approximately an 80% of the value of f and g. If we 

were working with antifunicular arches the plan view and longitudinal view geometries 

would be coupled and we would not be able to do the same statement. For future lines of 

study we recommend first to fix the recommended design criteria for planar vertical 

bridges in the present and find the antifunicular arch. If the differences o the mass of the 

dimensioned bridge are negligible, planar arches can be employed and further researches 

are not necessary. If not, another parametrical study for e would be necessary, finding the 

antifunicular arch for each case, since the most adeuqate e value might change when 

employing antifunicular arches for a specific f value. 

• The arch maximal displacement, not considering the length of the structure or not, is not 

minimal for this same value, but for the model with a superior deck with f=z=20m (H in 

Table 6-1 and Table 6-3). The fact that the displacement criteria does not  give the same 

results as the stress criteria confirms that a linear analysis is not enough in order to 

determine which z value is the most efficient. Therefore this study is not definitively valid 

its validity must still be verified with a non-linear analysis. 
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1. INTRODUCTION 
There are no existent research studies for the buckling of SABs or geometrically non-linear 

analyses including imperfections. Only some papers of buckling calculations for specific SABs 

have been found (Žickis and Cypinas, 2003). Therefore, the state-of-the-art of buckling and 

equivalent imperfections for planar vertical arch bridges with a straight deck is detailed in the 

following lines and specific highlights for the differences expected in SABs are commented. 

2. BUCKLING 
SABs have been explained to be submitted to important bending moments (Chapters IV and V). 

However, lateral torsional buckling due to bending moments is not considered in the present 

research. It is not likely to take place, since closed cross-sections with enough diaphragms to 

avoid distortion are employed. Torsional buckling (caused by compression buckling in-plane of 

the arch with two elements, such as in a double arch, buckling in opposite directions) is also 

disregarded for the same reason. When employing a stiff cross-section formed by two frame 

boxes (Table 1-1 of section 1.6 of Chapter V. B), the frames are considered stiff enough for 

torsional buckling not to take place. 

Plates are considered thick enough to avoid local buckling. 

Therefore, the present state-of-the-art and research study are devoted exclusively to 

compression buckling. 

2.1 Codes 

The loading distribution for which Ncr is given in Eurocode 3 (EC3, 2006) Part 2 Annex D3 is 

not clearly stated, but, according to Figure D.4 in EC3 and to the formulation in Galambos 

(1988), it is for a uniformly distributed vertical load in the whole deck length. 

EC3 Part 2 Annex D3 employs the following formulae to calculate elastic buckling for arches: 

Arch in-plane buckling 

��� = � �
�∙	


�
∙ �
� Eq1 

Ncr is the critical buckling axial force at arch springing 

s is half the length of the arch 

EIy the in-plane flexural stiffness of the arch 

β is the buckling length factor 

Through the factor β the following characteristics of the bridge are considered: 

• Bearing conditions and buckling shape (it must be remarked that there are no 

coefficients in table D4 of Eurocode 3 Part 2 Annex D3 for fixed bridges and symmetric 

buckling. Therefore not all the buckling shapes and arch types are covered). 
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• If the deck behaves as a tension tie and has flexible hangers, it is considered: the 

number of hangers and arch rise related to the bridge length and arch shape 

A factor K is calculated as a criterion to prevent snap-through. 

In the case of SABs with curvature in-plan snap-through should also be verified in the 

horizontal plane. However, a system controlling out-of-plane forces is always necessary and 

snap-through is not expected to take place in SABs. 

Arch out-of-plane buckling 

��� = � �
�∙�


�
∙ �
�  Eq2 

Ncr is the critical buckling axial force at arch springing 

l is the arch span (projection length) 

EIz the out-of-plane flexural stiffness of the arch 

β is the buckling length factor 

Through the factor β the following characteristics of the bridge are considered:  

• The f/L relationship 

• Arch cross-section flexural rigidity (Iz): constant or variable 

• Inferior or superior deck and the load taken by the struts or hangers in relation to the 

total load 

• There is a specific value of β if the arch is circular with a radial loading 

• Arch bracing is considered if there is more than one arch 

The codes do not consider the stiffness of the deck and struts or rigid hangers. It is stated in the 

codes that the out-of-plane buckling factors are for free standing arches. However, in β it is 

considered whether the deck is inferior or superior and the load taken by the struts or hangers in 

relation to the total load as stated above, so the value given by the code is not expected to be 

exactly for a free standing arch loaded itself with the whole load. It seems that the codes might 

not be considering a certain arch-deck interaction, but it is not clearly stated and the results in 

VI. B prove that it is not efficiently considered in some cases. 

It must noted that this formulae are for elastic buckling and this value does not consider residual 

stresses, load eccentricity variations or imperfections. To consider them for other structures 

buckling curves can be employed but there are no buckling curves for arches, non-linear 

analyses should be hence conducted (see section 3). 
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2.2 Research 

Compressive axial forces buckling 

Earliest arch out-of-plane buckling formulae treat the slenderness of the arch as a straight 

column under uniform compression with identical cross-section and with the arch length equal 

to the column length. They consider a free-standing arch, with no influence of the deck and 

hangers/struts. 

Galambos (1988, p578) summarizes in a table the different studies (Austin and Ross, 1976; 

Kollbrunner 1936 and 1942; Timoshenko and Gere, 1961) to determine the critical in-plane 

buckling load of parabolic, antifunicular or circular arches under a uniformly distributed loading 

and with either fixed springings or 2-pinned or 3-pinned arches. Studies for vertical 

asymmetrical uniform loadings from Chang (1973) and Harrison (1982) are also exposed in 

Galambos (1988, pp579,583 and584). Galambos also presents the aforementioned formulae 

employed in the EC3. 

Timoshenko and Gere (1961) conducted studies of arch in-plane and out-of-plane buckling for 

circular arches with radial loading applied directly on the arch, also described in Galambos 

(1988, p594) and Bergmeister et al (2009, p149). 

The arch in-plane buckling is usually controlled by the stiffness of the deck and struts or 

hangers, so formulae for in-plane buckling of free standing arches are not applicable. The out-

of-plane buckling will be influenced by the bearing conditions and the stiffness of the strut-deck 

or hanger-deck system will also have influence in the out-of-plane buckling of the arch, so these 

formulae are incomplete. 

According to Petersen (1980) it is important to consider the buckling for the asymmetrical 

loading. 

The necessity to include material non-linearities and imperfections to obtain an accurate 

representation of of arches was recognized in Japan by the end of the 1970s. Column curves 

were proposed by Sakimoto et al (1990) based on experiments (Spoorenberg et al, 2012). Their 

applicability was limited to arches with square hollow sections and and rise-to-span ratios 

between 0,1 and 0,2 and free-standing arches. Since in these Japanese studies the arch was 

treated as a straight column under uniform compression with identical cross-section and with 

the arch length equal to the column length, the rise-to-span ratio of the arch was considered to 

be of minor importance. However earlier theoretical studies than the described column curves 

already revealed the importance in arch buckling of arch-to-span ratio. Citing Spoorenberg et al 

(2012): “This was recognized by Ppangelis and Trahair who performed experiments on arch 

buckling” (...) “According to Pi and Trahair and Pi and Bradford the arch slenderness was 

defined as the square root of the ratio between the plastic capacity and out-of-plane elastic 

buckling load, taking implicitly into account the geometric properties of the arch”. 

Östlund (1954), Godden (1954) and Shukla and Ojalvo (1971) conducted studies of out-of-plane 

buckling for parabolic arches with loading applied on hangers and struts, also described in 

Galambos (1988, p601) and Bergmeister et al (2009, p150). Another study of arch out-of-plane 
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buckling, which is more recent and complete, but it is specific for open profiles, is Kang and 

Yoo (1994), described in Bergmeister et al (2009). 

There are several studies for braced arches (Galambos, 1988, p601): Tokarz (1971), Östlund 

(1954), Almeida (1970), Kuranishi (1961) and Sakimoto and Namita (1971). 

Bergmeister et al (2009, p153) consider the transverse stiffness of the deck to calculate the out-

of-plane buckling load of planar vertical arches with an inferior straight deck longitudinally 

pinned (Eq3). Horizontal springs are employed to model the stiffness of the deck and a 

coefficient (Eq 3) is calculated to modify the out-of-plane buckling load obtained by the 

Eurocode 3 (Eq 2). 

��� = ���∙������
�� 
 ∙ ����, ��    Eq3 

where: 

����, ��  is defined in Figure 2-1 

�� = �!
�"#�$

 Eq4 

�� = %
� Eq5 

 

Figure 2-1: β values according to Bergmeister et al for Eq3. Figure extracted from Bergmeister et al 
(2009, p153) 

Considering equations from 3 to 5, the EC3 modified equation is: 

���
�&'	)*+,%,-+���, �� = ���∙������

�� 
 ∙ �
�.�

∙ �
��∗

�   Eq6 

where: 

��  is defined in Eurocode 3 Part 2 Annex D3 Table D7 

��∗���, ��  is defined in Figure 2-2 

�� and �� are defined in Eqs 4 and 5, respectively 
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Figure 2-2: 01
∗  values according to Bergmeister et al for Eq3. Figure extracted from Bergmeister et 

al (2009, p153) 

Correia (2006) developed a simplified method to consider imperfections and 2nd order effects to 

calculate the out-of-plane buckling load for bow-string braced double arches. The stiffness of 

the hangers is also considered and the deck is considered “infinitely” stiff. 

For a same load SABs stand lower axial forces than vertical planar arch bridges with a straight 

deck, so compressive axial force buckling is expected to take place for larger load values. 

However, bending moments increase, so buckling might happen for lower loads. It is therefore 

not clear whether elastic buckling critical loads will be higher or lower in comparison with 

equivalent planar arch bridges with a straight with the same span. Elastic buckling of both 

bridge types will be compared. 

For planar vertical arch bridges with an inferior straight deck a useful simplified formulation 

would be the one described by Bergmeister et al (2009) to obtain elastic out-of-plane buckling 

and compared to the elastic buckling results obtained with the buckling analysis of a FE 3D 

frame model. Eq2 (section 2.1) of EC3 is expected to be more conservative since hangers have a 

stabilizing effect. 

For planar vertical arch bridges with a superior straight deck EC3 formulation (Eq 1 and 2 of 

section 2.1) will be employed to obtain the simplified load of critical elastic buckling and 

compared to the elastic buckling results obtained with the buckling analysis of a FE 3D frame 

model. 

According to Petersen (1980, p601) antifunicular arch bridges can already buckle under their 

self-weight. In 3-pinned arches (pinned at springings and with an articulate joint at span center), 

the buckling form is symmetrical for f/L≤0,3, and antimmetrical for larger f/L values. 

Petersen separates the loads into two types: those with a “reliable direction” which mantain their 
direction in spite of the structure deformation and those with a non-reliable direction, which 
change their direction according to the deformation (Petersen, pp603-604). When considering 
the whole system instead of the free-standing arch, it is clear that the loading system of the arch 
changes from having a reliable direction to a non-reliable direction. This means, that not only 
has the hanger or strut deck system an important influence due to its stiffness contribution but 
also in the fact that the direction in which the loads are transmitted to the arch changes 



CHAPTER VI. SECTION A. BASIS OF STABILITY ANALYSIS FOR ARCH BRIDGES 

270 

according to the deck and struts/ hangers own deformation. Hence the hanger/strut and deck 
system can have a stabilizing or destabilizing effect on the arch buckling as shown in for 
inferior and superior deck, respectively (Bergmeister et al, 2009 and Petersen, 1980). 

 

 (a) (b) 

Figure 2-3: Effect of the deck vertical position on arch buckling (a) Inferior deck stabilizing effect. 
(b) Superior deck destabilizing effect. Figures extracted from Bergmeister et al (2009, p150) 

2.3 FE software: elastic buckling 

Only axial forces are considered in a FE software elastic buckling analysis, since the buckling is 
obtained from the autovalues which make the determinant of the following matrix null:  

23 = 4567 + 569: ∙ ;<<3  Eq7 

where: 

567 is the stiffness matrix 

23 is the vector of internal forces 

;<<3 is the vector of displacements 

569 is the geometrical stiffness matrix, which is modified in every iteration when 

geometrically non-linear effects are considered. It modifies the stiffness of the 

structure according to the variation of the position where the axial force is applied: 

569=� ∙ >?   Eq8 

where: 

N is the axial force value 

>? is the geometry matrix 

However, bending moments also contribute to deform the structure and therefore 2nd order 
effects will be due to both, imperfections and flexural bending moments. 
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3. IMPERFECTIONS
ANALYSES 
Euler buckling accounts for the equilibrium bifurcation and it is meant for “perfect structures”. 

It is elastic buckling and does not include geometrically non

neither local cross-sectional imperfections, off

stresses. 

To model these effects, imperfections and residual stresses should be i

imperfection can also model imperfections and residual stresses. A geometrically non

plastic analysis can lead to results which are nearer to reality than elastic buckling. The 

imperfections will highly influence the geometr

3.1 Codes 

The Eurocode 3 (EC3) Part 1.1 chapter 6.3.1.2 displays buckling curves for compressed 

members obtained empirically, including imperfections and residual stresses. The

equivalent buckling curves for arch bridges.

geometrically non-linear analysis when residual stresses are not modeled, 

imperfections in EC3 Part 1.1 chapter 5.3.2

buckling shape as stated in 

conservative. 

Moreover, this part of the code is specific for buildings. Therefore, the

imperfections in arches in EC3 

to imperfections. 

The in-plane imperfections to consider

Annex D.3.5 Table D.8 are shown in 

Table 3-1: Shape and amplitudes 
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IMPERFECTIONS AND GEOMETRICALLY NON

Euler buckling accounts for the equilibrium bifurcation and it is meant for “perfect structures”. 

ng and does not include geometrically non-linear effects, neither plastic, 

sectional imperfections, off-centered loads, global imperfections, nor residual 

imperfections and residual stresses should be introduced. An equivalent 

imperfection can also model imperfections and residual stresses. A geometrically non

plastic analysis can lead to results which are nearer to reality than elastic buckling. The 

imperfections will highly influence the geometrically non-linear elastic-plastic behavior.

Eurocode 3 (EC3) Part 1.1 chapter 6.3.1.2 displays buckling curves for compressed 

members obtained empirically, including imperfections and residual stresses. The

curves for arch bridges. Therefore, in order to do an as accurate as possible 

linear analysis when residual stresses are not modeled, 

in EC3 Part 1.1 chapter 5.3.2 should be employed following the first mode of 

in Eurocode 3. These imperfection values are expected to be 

Moreover, this part of the code is specific for buildings. Therefore, the specific values for 

arches in EC3 Annex D.3.5 are also employed to check the sensitivity of SABs 

to consider for arches, according to the code EAE 22.3.4 and EC3

shown in Table 3-1. 

: Shape and amplitudes for in-plane buckling of arches. Table extracted from 
EC3 Annex D.3.5 

AND GEOMETRICALLY NON-LINEAR 

Euler buckling accounts for the equilibrium bifurcation and it is meant for “perfect structures”. 

linear effects, neither plastic, 

centered loads, global imperfections, nor residual 

ntroduced. An equivalent 

imperfection can also model imperfections and residual stresses. A geometrically non-linear 

plastic analysis can lead to results which are nearer to reality than elastic buckling. The 

plastic behavior. 

Eurocode 3 (EC3) Part 1.1 chapter 6.3.1.2 displays buckling curves for compressed 

members obtained empirically, including imperfections and residual stresses. There are no 

accurate as possible 

linear analysis when residual stresses are not modeled, the coded 

be employed following the first mode of 

imperfection values are expected to be 

specific values for 

heck the sensitivity of SABs 

ccording to the code EAE 22.3.4 and EC3 

 

plane buckling of arches. Table extracted from Table D.8 of 
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The out-of-plane imperfections to consider

EC3 Annex D.3.5 Table D.9 are shown in 

Table 3-2: Shape and amplitudes 

3.2 Research 

Outtier et al (2007) have developed an analytical method to calculate the

plane imperfections of a constructed arch bridge

a detailed analytical model was developed. Comparing the stresses in the model and the ones 

obtained from the strain measurements an equivalent imperfection was calculated and a

to be approximately L/1000, for L the arch span.

calculate the buckling loads 

other bridges examples employing the calculated imperfecti

deformed shape. A curve is plotted with the results and it is compared with the buckling curves 

of EC3 Part 1.1 chapter 6.3.1.2. 

Manzanares et al (2011) also plot such curves but for clamped and hinged arches and employi

a cosine function for the deformed shape out

additional to residual stresses. 

imperfection to residual stresses is not given. Neither is a relation between stresses caused by 

the geometrical imperfection and residual stresses given. 
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imperfections to consider for arches, according to the code EAE 22.3.4 and 

Table D.9 are shown in Table 3-1. 

Shape and amplitudes for out-of-plane buckling of arches. Table extracted from 
D.9 of EC3 Annex D.3.5 
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obtained from the strain measurements an equivalent imperfection was calculated and a
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employing the calculated imperfections out-of-plane 
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Sakimoto and Komatsu (1977, referenced in Manzanares et al, 2011), relating the arch cross-

section shape factor to the proportion qu/qp (where qu is the uniformly distributed vertical 

ultimate load obtained with a series of non-linear elastic–plastic analyses and qp the uniformly 

distributed vertical load that produces yielding by compression in the extremes of the arch when 

a first order study is performed). They obtain similar curves. An interaction surface with the 

parameters qu/qp, L, and the shape form for hinged and clamped arches has been adjusted 

Manzanares et al (2011). It enables the size of the arch to be calculated when considering lateral 

buckling. An analysis of the “L−qu/qp” graph indicates that the results are similar to those 

obtained in EC3 (Part 1.1 chapter 6.3.1.2) for the buckling curves (χ−λy), although in EC3, the α 

imperfection factor influences the results, whilst in Manzanares et al (2011) the results depend 

upon the shape factor. 

According to Manzanares et al, 2011, “the real ultimate lateral strength of the arches is 

calculated and confirms that, previous to the final collapse of the structure, a disproportionate 

increase in the arch centre lateral displacement occurs, which constitutes a clear sign of the 

breakage by lateral buckling”. 

For planar vertical arch bridges with inferior straight deck a useful simplified formulation would 

be the one described by Bergmeister et al (2009) to obtain elastic lateral buckling and it should 

be modified according to the buckling curve a to consider residual stresses, imperfections and 

2nd order effects, according to the results of Outtier et al (2007) and Manzanares (2011). This is 

still expected to be conservative. 

In the present research a benchmark has been developed (chapeter III. B section 2.5), employing 

the program SAP2000 v14 which is used for the present research. It confirms that the coded 

imperfections in EC3 Part 1.1 chapter 5.3.2 are conservative for a straight beam with respect to 

the buckling curves of EC3 Part 1.1 chapter 6.3.1.2 

Since according to Backer et al (2009) buckling curves in EC3 Part 1.1 chapter 6.3.1.2 are also 

conservative for arches, the imperfection coded in EC3 Part 1.1 chapter 5.3.2 is conservative 

when developing an equivalent buckling curve, EC3 Part 1.1 chapter 5.3.2 calculation method 

can be safely used for arch bridges and will be considered valid for SABs in the present 

research. 

Manzanares et al (2011) modeled residual stresses in a FE mode and considered a L/1000 out-

of-plane imperfections value. This means that an equivalent imperfection would be larger than 

L/1000, value obtained by Outtier et al (2007). Since only one example (for the specific case of 

a bow-tie hanging of two braced arches with a triangular hanger distribution) was calculated by 

Outtier et al(2007) and no further equivalent imperfection values calculated to match real 

measured strains have been found in published researches, it will be considered that the minimal 

and maximal  imperfection values to employ in the present research are: 

Min e0={L/1000;e0 from EC3 Part 1.1 chapter 5.3.2; e0 from EC3 Annex D.3.5} 

Max e0={e0 from EC3 Part 1.1 chapter 5.3.2; e0 from EC3 Annex D.3.5} 
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Considering the state-of-the-art of buckling a geometrically non-linear analyses of arch bridges, 

the buckling analyses of spatial arch bridges with a curved superior deck and a planar vertical 

arch have been conducted and a study has been devoted to non-linear analyses of spatial arch 

bridges with a curved superior deck and a planar vertical arch, employing different imperfection 

values. The objective is to evaluate the buckling and geometrical non-linear imeprefections 

sensitivity of this bridge type, in comparison to planar vertical arch bridges and in relation to 

different parameters. 

These two research studies are detailed in the following different sections B and C in the present 

chapter. 

 

3.3 Built examples of imperfection employed values 

There are hardly no published construction imperfection measures as far as the authors know. 

The values of the Dreiländerbrücke spatial arch bridge (Figure 3-1a) have been provided by 

Leonhardt, Andrä und Partner and reach a value of 83mm for vertical displacements at the 

arches crowns, considering assembly in workshop and erection values.  

This was considered negligible for the bridge structural calculations, in which an in-plane 

imperfection value of 300mm was employed1. However, the 300mm include the equivalent 

imperfection of residual stresses. If 83mm are considered as constructive imperfections out of 

300mm, the off-centered loads and residual stresses have a value of (300-83)=217mm, which is 

very large according to usual experience. Therefore, the coded imperfections can be considered 

conservative. However, the usual comparison which is carried out in the construction control of 

“measured imperfection value”<”imperfection value employed for calculation” is not always 

reliable. This control procedure needs to be coded.  

The Dreiländerbrücke consists of a double vertical steel arch and an inclined steel arch braced to 

the latter. The arches have 229,4m span (L) and a 20m rise (f), which is equal to L/11,5. The 

middle deck hangs from the arches 196,2m (span L’) by means of a hanger system for each arch 

anchored to the deck edges (Figure 3-1a). The rise above the deck is f’=14 m, equivalent to 

L’/14. The 83mm vertical imperfection value is equal to L’/2364= f’/169=L/2764=f/241. 

                                                           
1
 according to DIN 18800/2, section 6.3 Tables 23 and 24 (values equal to those stated by EC3 Part 1.1 

chapter 6.3.1.2 buckling curves, curve b for all the arches). Out-of-plane a 250mm value was employed. 
Both of these values are based on the span of the deck hanging from the arch (ie: measured in between the 
points where the deck crosses the arch). 



CHAPTER VI. SECTION A. BASIS OF STABILITY ANALYSIS FOR ARCH BRIDGES 

275 

  
 (a) (b) 

Figure 3-1: (a) Dreiländer bridge (b) Nijmegen bridge (both images reproduced by kind permission 
of Hans-Peter Andrä). 

A planar vertical arch bridge example is the Nijmegen bridge (Figure 3-1b). It has a steel arch 

with 285m span (L) and a 60m rise (f), which is equal to L/4,75. The inferior deck hangs from 

the arch by means of a double hanger system anchored at the deck edges. The hangers of each 

hangers-system criss-cross once. The maximal construction vertical imperfections of the arch of 

the Nijmegen bridge have been also provided by Leonhardt, Andrä und Partner. They have a 

value of 38mm near to the span centre, 34mm at approximately L/3, 33mm at one of the 

springings and 10mm at span center (Figure 3-2). The 38mm maximal vertical imperfection 

value is equivalent to L/7500 and approximately f/1580. 

The EC3 establishes values of a total in-plane imperfection of L/500 for buckling curve b. This 

would give an imperfection of 570mm for the Njimmegen bridge. If 38mm are considered as 

constructive imperfections out of 570mm,, that would mean that load eccentricity variation and 

residual stresses have a value of (570-38)=532mm, which is very large. 

Out-of-plane imperfections are often not measured in construction control and no data have 

been obtained. 

 

Figure 3-2: Measured imperfection vertical values along the axis of the Nijmegen Bridge 
(Reproduced by kind permission of Hans-Peter Andrä). Vertical axis in mm, horizontal axis in m, 

origin at the bridge span center 
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4. CONCLUSIONS AND FUTURE LINES OF STUDY 
• The hanger/strut and deck system can have a stabilizing or destabilizing effect on 

the arch buckling 

• Codes and research give buckling formulation but the hypothesis under which these 

formulae are valid are no clearly stated and not all cases for arch bridges are 

included. 

• There are no equivalent European buckling curves for arch bridges. According to 

several researches, the coded buckling curves in Eurocode 3 Part 1.1 chapter 6.3.1.2 

are conservative for arches. 

• The values of the imperfections and geometry for arch bridges in order to conduct a 

geometrically non-linear analyses can be obtained in two different ways according 

to Eurocode 3 (EC3): as complex structures with the geometry based on the 

buckling shape (EC3 Part 1.1 chapter 5.3.2) or specifically for arches (EC3 Annex 

D.3.5). The latter separates in- and out-of-plane imperfections. 

o Buckling curves in EC3 Part 1.1 chapter 6.3.1.2 are conservative for arches 

(Backer et al, 2009) 

o coded imperfections in EC3 Part 1.1 chapter 5.3.2 are conservative for a 

straight beam with respect to the buckling curves of EC3 Part 1.1 chapter 

6.3.1.2 according to the benchmark developed in the present study. 

o Therefore, EC3 Part 1.1 chapter 5.3.2 calculation method can be safely 

used for arch bridges. 

• There are hardly no published construction imperfection measures as far as the 

authors know. 

• When imperfections measured in the construction site are compared to those stated 

by the codes for the design analyses, the difference should correspond to residual 

stresses. However the value is very large, coded imperfections might be far too 

much on side of security. Empirical studies should be conducted. 
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1. INTRODUCTION 

1.1 Previous considerations 

It is noteworthy that, for the studied bridge type, there is no buckling design criteria and, for arch 

bridges, there is also a very little number of reliable formulations and not all the cases are 

covered. 

A detailed state-of-the-art of the stability of arches can be read in chapter VI. A section 2. 

The formulation of Eurocode 3 (Part 2, 2006) does not consider the hanger or struts’ distribution 

possibilities, nor the arch inclination, nor the deck stiffness, nor the imperfections nor the second 

order effects, neither the case of non-planar arches. 

Recent research studies to obtain the buckling load include the rigidity of the deck (Bergmeister et 

al, 2009) and others the imperfections and second order effects (A. A. Correia, 2006). However, 

they are specific for vertical, planar arch bridges with a straight inferior deck and for certain 

bearing conditions. A formula which considers those different criteria at the same time has still 

not been developed and buckling curves have been proved to be too conservative (De Backer et 

al, 2009, and Manzanares et al, 2011). Moreover, the aforementioned formulations are for arches 

with hangers and for a vertical loading contained in the arch’s plane. But SABs undergo out-of-

plane effects already for vertical loadings. The hangers or struts might not even be in the plane of 

the arch and the arch might also not be contained in a plane. For SABs employing a planar arch, 

buckling is expected a priori to take place in both planes (in-plane and out-of-plane of the arch). 

It is expected that buckling has a relationship with the following values: 

• Axial forces in the arch 

• Displacements in the arch and deck 

• Arch stiffness 

• Deck boundary conditions 

• Deck stiffness 

• Struts stiffness 

They are all related to the geometry of the bridge and the stiffness of the different elements. 

A priori it is impossible to determine whether the deck has a stabilising or destabilising effect in 

SABs because: 

• it is not clear whether the arch will buckle in-plane or out-of-plane 

• if the hypothesis of out-of-plane buckling is made: 

o The struts have different inclinations in different cross-sections of the bridge and 

they will have a stabilising effect in one direction of the buckling and a 

destabilising effect in the other direction. The destabilizing effect is larger due to 

the increase of the struts’ inclination in that direction (Figure 1-1). 
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o As in the case of g=0, the stabilising effect cannot be reliably stated, since the 

deck will move with the arch. Figure 1-1 or the figures shown in chapter VI.A for 

various researches for g=0 (Bergmeister et al, 2010 and Galambos 1988), are not 

considering the movement of the deck and its bearing conditions that might 

change the hypothesis that its effect on the arch when employing a superior deck 

is destabilising. Fixing the transeverse movement of the deck would be expected 

to have a stabilising effect. 

 

Figure 1-1: Stabilising or destabilising effects of struts on SABs 

The present study does not pretend to obtain a specific formulation, but to give an idea of the 

elastic buckling behavior of this bridge type and whether it will be conditioning for the design. 

Imperfections are not considered in the present chapter. A further research including 

imperfections is conducted in chapter VI. C. 

The elastic buckling loading and shape is obtained for a series of 3D FE frame models with 

SAP2000. Two of the models have been compared with equivalent models analysed in SOFISTIK 

and ABAQUS and equivalent results have been obtained.  

For spatial arch bridges with superior curved deck (SABWSCD) and a planar vertical arch, a 

broad study has been conducted. It is based on the results of chapter V. B. The influence different 

parameters on the buckling shape and loading is analysed. 

In order to understand the behaviour of these arches, different frame 3D models have been 

developed and analyzed with commercial software, as part of a set of thorough parametric 

analyses (parameters described in section 1.2). As described in the parametric study analyses 

(chapter V. B), the deck plan curvature is measured as horizontal sag (g), the arch rise is called f, 

the arch/deck eccentricity in plan view is e, the distance between arch and deck at span center is v 

and the arch and deck spans are LSA and LSD respectively and are considered equal (L) in all 

models. β is the longitudinal inclination of the struts in relation to the reference distribution 

Fdestab Fstab
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obtained by dividing the arch and deck uniformly (radial distribution, 

 

 

Figure 1-2). Please employ the bookmark to see these parameters in the figure. 

In section 4.3, a case study for inferior deck arch bridges with imposed curvature (IDABWIC, 

defined in chapter IV) is also conducted. 

Planar arch bridges are also analysed and the results of the buckling loads are compared with 

equivalent SABs with the same span (L) and the same rise (f), with the results obtained for the 

aforementioned formulations. 

As mentioned in section A2.1 of the present chapter VI, the loading distribution for which Ncr is 

given in Eurocode 3 (EC3) Part 2 Annex D3 is not clearly stated, but, according to Figure D.4 in 

EC3 and to the formulation in Galambos (1988) (commented in section 2.2 section A of the 

present chapter), it is for a uniformly distributed vertical load in the whole deck length. Therefore, 

in the present research the criteria that Ncr is the largest axial force value in the arch under a 

uniformly distributed vertical loading on the whole deck length has been adopted. The loads are 

detailed in section 1.4. 

1.2 Studied parameters 

Based on the results of the parametric analyses of chapter V.B, the most efficient e value (please 

check the nomenclature of the figure in the bookmark) for the maximal deck curvature g=20m is 

employed for the curved superior deck SAB models of the present buckling study. 

The influence of f on the arch buckling is analysed (Figure 1-3), as well as the influence of 

employing different cross-sections, ie: influence of the stiffness distribution of arch, deck and 

struts. 
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The influence of angle β (

 

 

Figure 1-2) on buckling is also analysed. For such a purpose f=25m and design cross-sections 

values with a stiffer deck (Table 1-6) are employed, for SABWSCD with a planar vertical arch 

with g=20m and e=16,57m. 

The reference model employed for the strut distribution is the one obtained from equal divisions 

of arch and deck. This strut distribution is called a radial system of struts in the present study. 

Each strut axis elongation converges below the deck with its symmetrical (

 

 

Figure 1-2). These are taken as the reference orientation, considering β=0 for each strut. A more 

vertical orientation (β2) of the struts and a distribution of struts in which each strut axis elongation 

converges above the deck with its symmetrical (β1, opposite inclination to the original system) 
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have also been studied (

 

 

Figure 1-2). The latter distribution is called a convergent system of struts in the present study. 

The buckling of IDABWIC with g=20m and f=20m and reference cross-sections of Table 1-1 is 

also analysed and compared with a planar vertical arch bridge with straight deck for different 

cross-section values. 

 

 

 
Figure 1-2: Geometry of β variation for L=100m, g=f=L/5=20m e=g/1,2=16,67m, v=0 

Layout 

Plan view 

β=0 
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Figure 1-3: Geometry of f variation (f=10, 15, 20, 25 and 50m) for L=100m, g=20m, e=L/1,2=16,67m, 

v=0 

 

1.3 Objectives 

The purpose of our study is: 

• to analyse the influence of different parameters (f, β, EI and GJ of arch, struts and 

deck) on the buckling shape and loading of SABWSCD with a planar vertical arch 

with g=0 and g=20m and e=16,57m  

• to analyse the buckling behaviour of IDABWIC with g=20m and f=20m and 

different cross-sections 

• to compare the buckling shape and loading of SABs with that of equivalent (ie: 

with the same arch rise (f) and span (L) values) planar vertical arch bridges with a 

straight deck  

• to evaluate the validity of different existing formulations for the determination of 

arch bridge buckling values 

• to evaluate the worst live load distribution for SABs buckling 



CHAPTER VI. SECTION B. BUCKLING ANALYSES OF SPATIAL ARCH BRIDGES WITH A CURVED DECK 
 
 

289 

 

1.4 Loading cases and combinations 

The loading combinations A1 and A2 are employed for the elastic buckling analyses with 

SAP2000. These load case combinations have been considered according to the ultimate state 

response of EC1 Part 2. 

Different buckling coefficient values have been obtained: 

The buckling coefficient α corresponds to the live load in the combination A1, ie: 

• Combination A1 for elastic buckling: 1,35·(w+pl)+ α·lu 

The buckling coefficient α1 corresponds to the combination A1, ie: 

• Combination A1 for elastic buckling: α1·[1,35·(w+pl)+1,5·lu] 

The buckling coefficient α2 corresponds to the combination A2, ie: 

• Combination A2: α2·[1,35·(w+pl)+ 1,5· la] 

In these combinations for the elastic buckling: 

• w is the self-weight, with a steel weight of 76,97kN/m3 

• pl is the permanent load of 2,5kN/m2. Considering 4m width: pl=10kN/m 

• lu is a uniform live loading on the whole length of the deck (Figure 1-4a) and 

• la is an asymmetrical live loading on half the length of the deck (Figure 1-4b)  

• Live loads value is of 5kN/m2 according to EC1 Part 2. Section 4.3.5. Considering 

3m of usage width, employing the rest of the width for the railings, the value of live 

loads is 15kN/m. 

• In the case of α, the buckling analysis starts after the geometrically non-linear 

analysis (GNLA) of the permanent load state: 1,35·(w+pl) 

• In the case of α1 and α2, the whole analysis is elastic, ie: the elastic buckling 

analysis starts from an unstressed state. 

• The self-weight (w) and the permanent load (pl) are not scaled by the buckling 

coefficient α, but they are by α1 and α2.  

• Note that ULS coeffcients are included in the loads and are all affected by α1 and 

α2, but, in the case of coefficient α, the ULS coefficient of the live load is not 

included in the load, but in α. 

  

 (a) (b) 

Figure 1-4: Load system: 15kN/m (a) on the whole length of the deck (lu) and (b) on half the 

length of the deck (la) 
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1.5 Research procedure and values 

The values employed in the different frame 3D models are described in the following paragraphs. 

Please employ the bookmark to see these parameters in the figure. 

In all the models a vertical planar arch has been employed.  

The arch is fixed at its springings. The struts are fixed to both, arch and deck.  

Different bearing conditions have been considered for the deck at abutments:  

• The deck is always pinned at the abutments.  

• Transverse and vertical displacements are always restrained, if not mentioned 

specifically. 

• Longitudinal displacements can be restrained (rtr) or free (ftr). 

• Torsional rotations can be restrained (rtr) or free (ftr). 

This comparison is conducted since it is the best configuration for internal forces to fix 

longitudinal displacements for g=20m but to free them for g=0, as indicated in chapter V. A. In 

order to compare the buckling it makes sense to compare each model at its best, but also to 

compare them in identical conditions. Torsional rotations would be considered to be restrained in 

both models in practice, though for a linear analysis for g=0 it is not necessary. The possibility to 

free torsional rotations has been considered just as a theoretical possibility in order to test its 

influence on buckling. 

For all the studies presented, the following dimensions have been employed:  

• LSA=LSD=L=100m;  

• g=0 and 20m 

• e=g/1,2=16,67m for g=20m as recommended in chapter V.B 

• f varying from L/10=10 to L/2=50m (Figure 1-3) 

• v=0 

The shape of the arch is always a parabola. 16 struts have been employed in all the models. The 

inclination of the struts is determined by the uniform division of the deck and the arch for all the 

models, which leads to a radial distribution. As stated, a study of the influence of the inclination 

of the struts in longitudinal view (β) is conducted, considering radial, vertical and convergent 

struts (
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Figure 1-2). 

The material employed is steel with a 2,0·108 kN/m2 modulus of elasticity (E). 

A linear buckling analysis has been employed. 

Different cross-section values have been considered and compared: 

• Reference cross-section values (Table 1-1): the stiffness of the different elements is equal 

for all the models, so that buckling differences between models are not due to the 

employed cross-sections, but to the geometry. 

• Design cross-section values (Table 1-2, Table 1-3 and Table 1-4): the stiffness of the 

different elements is different for each model. The comparison of the buckling 

coefficients is a more realistic value, since bridges which satisfy the ULS are being 

compared. 

• Design arch and struts cross-section values (Table 1-5 and Table 1-6) and a thicker deck: 

the influence of the stiffness of the deck is being evaluated. 

• A less stiff deck (Table 1-7) 

 Reference model 

 

 

ARCH 

CHS D=1m; t=30mm 

A= 0,0914m2 

J= 0,0215m4 

I2= 0,0108m4 

I3= 0,0108m4 

DECK 

BOX GIRDER 4000x800mm; t=15mm 

A= 0,1431m2 

J= 0,0615m4 

I2= 0,2517m4 

I3= 0,0196m4 

STRUTS 

CHS D=451mm;t=22,6mm 

A= 0,0304m2 

J= 0,0014m4 

I2= 0,0007m4 
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I3= 0,0007m4 

Table 1-1: Reference cross-sections 

 g=20m 

 f=10m f=15m f=20m f=25m f=50m 

ARCH 

CHS D=750mm; t=40mm 

A= 0,0892m2 

J= 0,0113m4  

I= 0,0056m4 

CHS D=750mm; t=30mm 

A= 0,0679m2 

J= 0,0088m4  

I= 0,0044m4 

CHS D=750mm; t=25mm 

A= 0,0569m2 

J= 0,0075m4  

I= 0,0037m4 

CHS D=750mm; t=20mm 

A= 0,0459m2 

J= 0,0061m4  

I= 0,0031m4 

DECK 

BOX GIRDER 4000x700mm; t=10mm 

A= 0,0936m2 

J= 0,0324m4 

I2= 0,1608m4 

I3= 0,0100m4 

STRUTS 

CHS D=300mm;t=60mm 

A= 0,0452m2 

J= 0,0007m4 

I= 0,0003m4 

CHS D=300mm;t=55mm 

A= 0,0423m2 

J= 0,0007m4 

I= 0,0003m4 

CHS D=300mm;t=35mm 

A= 0,0291m2 

J= 0,0005m4 

I= 0,0003m4 

CHS D=300mm;t=45mm 

A= 0,0360m2 

J= 0,0006m4 

I= 0,0003m4 

Table 1-2: Design cross-section values for g=20m 

 

 g=0 

 f=10m f=20m f=50m 

ARCH 

CHS D=750mm; t=32mm 

A= 0,0722m2 

J= 0,0093m4  

I= 0,0047m4 

CHS D=750mm; t=25mm 

A= 0,0569m2 

J= 0,0075m4  

I= 0,0037m4 

CHS D=750mm; t=20mm 

A= 0,0459m2 

J= 0,0061m4  

I= 0,0031m4 

DECK 

BOX GIRDER 4000x700mm; t=10mm 

A= 0,0936m2 

J= 0,0324m4 

I2= 0,1608m4 

I3= 0,0100m4 

STRUTS 

CHS D=300mm;t=50mm 

A= 0,0393m2 

J= 0,0006m4 

I= 0,0003m4 

CHS D=300mm;t=25mm 

A= 0,0216m2 

J= 0,0004m4 

I= 0,0002m4 

CHS D=300mm;t=12mm 

A= 0,0109m2 

J= 0,0002m4 

I= 0,0001m4 

Table 1-3: Design cross-section values for g=0 

 

 g=20m, f=25m 

 β: Radial struts β: Vertical struts β: Convergent struts 

ARCH 
CHS D=750mm; t=25mm 

A= 0,0569m2 

I= 0,0037m4 

CHS D=750mm; t=25mm 

A= 0,0569m2 

I= 0,0037m4 

CHS D=750mm; t=20mm 

A= 0,0459m2 

I= 0,0031m4 

STRUTS 
CHS D=300mm;t=35mm 

A= 0,0291m2 

I= 0,0003m4 

CHS D=300mm;t=45mm 

A= 0,0456m2 

I= 0,0010m4 

CHS D=300mm;t=35mm 

A= 0,0291m2 

I= 0,0003m4 
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Table 1-4: Design cross-section values of the arch and struts for g=20m and f=25m with different β 

values 

 

 g=20m 

 f=10m f=15m f=20m f=25m f=50m 

ARCH 
CHS D=750mm; t=40mm 

A= 0,0892m2 

I= 0,0056m4 

CHS D=750mm; t=30mm 

A= 0,0679m2 

I= 0,0044m4 

CHS D=750mm; t=25mm 

A= 0,0569m2 

I= 0,0037m4 

CHS D=750mm; t=20mm 

A= 0,0459m2 

I= 0,0031m4 

DECK 

BOX GIRDER 4000x700mm; t=20mm 

A= 0,1864m2 

I2= 0,3179m4 

I3= 0,0195m4 

STRUTS 
CHS D=300mm;t=60mm 

A= 0,0452m2 

I= 0,0003m4 

CHS D=300mm;t=55mm 

A= 0,0423m2 

I= 0,0003m4 

CHS D=300mm;t=35mm 

A= 0,0291m2 

I= 0,0003m4 

CHS D=300mm;t=45mm 

A= 0,0360m2 

= 0,0003m4 

Table 1-5: Design cross-section values of the arch and struts for g=20 and a stiffer deck 

 

 g=0 

 f=10m f=20m f=50m 

ARCH 
CHS D=750mm; t=32mm 

A= 0,0722m2 

I= 0,0047m4 

CHS D=750mm; t=25mm 

A= 0,0569m2 

I= 0,0037m4 

CHS D=750mm; t=20mm 

A= 0,0459m2 

I= 0,0031m4 

DECK 

BOX GIRDER 4000x700mm; t=20mm 

A= 0,1864m2 

I2= 0,3179m4 

I3= 0,0195m4 

STRUTS 
CHS D=300mm;t=60mm 

A= 0,0452m2 

I= 0,0003m4 

CHS D=300mm;t=60mm 

A= 0,0452m2 

I= 0,0003m4 

CHS D=300mm;t=60mm 

A= 0,0452m2 

I= 0,0003m4 

Table 1-6: Design cross-section values of the arch and struts for g=0 and a stiffer deck 

 

BOX GIRDER 4000x700mm; t=3mm 

A= 0,0282m2 

J= 0,0099m4 

I2= 0,0486m4 

I3= 0,0031m4 

Table 1-7: Deck less stiff cross-section mechanical properties 
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 Reference model Reference model with flexible hangers Stiff hanger-deck system model 

 

 
Hangers fixed at deck and transversally 

pinned at arch (M3-3 released at arch) 

 
 

 

 
Hangers fixed at deck and 

transversally pinned at arch (M3-3 

released at arch) 

ARCH 

CHS D=1m; t=30mm 

A= 0,0914m2 

J= 0,0215m4 

I2= 0,0108m4 

I3= 0,0108m4 

CHS D=1m; t=30mm 

A= 0,0914m2 

J= 0,0215m4 

I2= 0,0108m4 

I3= 0,0108m4 

CHS D=1m; t=30mm 

A= 0,0914m2 

J= 0,0215m4 

I2= 0,0108m4 

I3= 0,0108m4 

DECK 

BOX GIRDER 4000x800mm; 

t=15mm 

A= 0,1431m2 

J= 0,0615m4 

I2= 0,2517m4 

I3= 0,0196m4 

BOX GIRDER 4000x800mm; t=15mm 

A= 0,1431m2 

J= 0,0615m4 

I2= 0,2517m4 

I3= 0,0196m4 

A= 0,1431m2 

J= 10m4 

I2= 0,2m4 

I3= 0,2m4 

STRUTS 

CHS D=451mm;t=22,6mm 

A= 0,0304m2 

J= 0,0014m4 

I2= 0,0007m4 

I3= 0,0007m4 

Flexible hangers 

Stay cables 

A= 9,8·10-4 m2 

J= 0 m4 

I2= I3= 0 m4 

A= 0,0304m2 

J= 0,0011m4 

I2= 7,34m4 

I3= 7,34m4 

Table 1-8: Cross-section values for IDABWIC case study 

2. ARCH BRIDGES WITH A SUPERIOR DECK.               
BUCKLING RESULTS 

In this section the buckling coefficients for the different loads or load combinations described in 

section 1.4 are obtained, comparing different bearing combinations for the cases g=0 and g=20m 

of deck plan curvature. These buckling coefficient values are shown in Figure 2-1, Figure 2-2 and 

Figure 2-3. The curves for different f values are given. A radial distribution of struts, result of 

dividing the arch and deck in equal lengths between struts, is employed in all cases.  

The buckling loads for different f values with a radial distribution of the struts and no 

imperfections have been compared employing reference cross-section values (given in Table 1-1) 

for all the models, so that buckling differences between models are not due to the employed cross-

sections, but to the geometry (Figure 2-1, Figure 2-2 and Figure 2-3).  

The influence of the struts inclination (β) is analysed in Figure 2-17 and Figure 2-18 for models 

with g=L/5=20m and f=L/4=25m with different cross-section values. 

In Figure 2-10, Figure 2-11 and Figure 2-12 the design cross-section values, obtained in chapter 

V.B and displayed in Table 1-2 and Table 1-3, are employed. In Figure 2-11 and Figure 2-12 

other stiffness distributions are also considered, employing a stiffer deck is also considered (Table 

1-5 and Table 1-6). 

Considering imperfections or not does not influence the elastic buckling analysis studied in the 

present chapter, which corresponds to the bifurcation of the equilibrium state. 
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2.1 ARCH RISE (f) AND BEARING CONDITIONS INFLUENCE ON 
BUCKLING  

The influence of the arch rise (f) and of the bearing conditions on buckling has been studied and 

the results are summarized in figures from Figure 2-1 to Figure 2-3.  

 

 

 

Figure 2-1: Buckling coefficient α of the design live load on the whole deck (lu) for the bridge already 

loaded with permanent loads. Comparison of different arch rise (f) values and bearing conditions, 

employing the reference cross-section values of Table 1-1 
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Figure 2-2: Buckling coefficient α1 of the loading combination A1 for different arch rise (f) values 

and bearing conditions, employing the reference cross-section values of Table 1-1 

 

Figure 2-3: Buckling coefficient α2 of the loading combination A2 for different arch rise (f) values 

and bearing conditions, employing the reference cross-section values of Table 1-1 
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The following conclusions are drawn of the results: 

• Whereas the most efficient f value regarding both steel mass and stresses is 25m=L/4, 

other f values give the highest buckling load, ie: f=20=L/5, if g=20m and flm are 

employed; 15m<f<20m, if g=0, and 20m<f<25m, if g=20m and rlm are employed. For 

f>25m the buckling load diminishes. For f=50m and g=20m and both, flm or rlm, the 

structure buckles for a load 23 times the live load specified in EC1 (Figure 2-1). 

Therefore, unless imperfections and non-linear geometrical forces lead to buckling for a 

lower load, the buckling load is higher than the coded ULS live load with 1,5 safety 

factor. However, the employed sections are not the dimensioned ones (see section 2.2). 

• Buckling is highly dependent on the bearing conditions of the deck, especially for 

f≤L/5=20m. For large f values, what has more influence is whether deck torsional 

rotations are restrained at the abutments, this implies larger changes in the buckling 

critical load than the value of g (from Figure 2-1 to Figure 2-3).  

• Whatever the load case, the relationship of the buckling factor with f and the bearing 

conditions follows a similar tendency (compare from Figure 2-1 to Figure 2-3), except for 

the case of g=0 with free longitudinal movements (flm) and torsional rotations (ftr) which 

shows an improved behaviour in comparison with other bearing conditions for the live 

loads in half the length of the deck (Figure 2-3).  

• The lowest buckling condition for all cases is obtained for a uniform distributed load 

(compare from Figure 2-2 to Figure 2-3).  

• If the total load on the bridge is calculated for α and α1 very similar values are obtained, 

but the error is non-negligible (approximately 6%). Strictly correct method and most 

realistic would be to calculate α, employing α1 gives insecure (larger) buckling load 

values. 

• When employing flm, ftm, ftr and pinned hangers the destabilising effect of the deck can 

be clearly observed (Table 2-1 and Figure 4-1 , in spite of what could be expected with a 

theoretical simplified cross—sectional analysis (Figure 3-5b)). However, when 

restraining the transverse displacements, when comparing the results to the ones of the 

free standing arch, it can be concluded that the deck improves the buckling behaviour of 

the arch (Table 4-1). 

• Given a certain loading, it would seem logical that arches working under larger axial 

forces buckle for a lower load than those under lower axial forces (Figure 2-4 and Figure 

2-5). However, it is not always so. This is due to the fact that the shape, length and 

stiffness have a larger influence on buckling. Observing the buckling shapes helps 

understanding buckling better. 

• For large f values the arch buckles nearly independently of the deck (Figure 2-6a). This 

happens because the struts are longer and thus less stiff. However, for low f values the 

arch and deck buckle together (Figure 2-6b). This is because the struts for low values of f 
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are shorter and hence stiffer. Therefore, the arch and deck tend to work as a truss and this 

improves the buckling behaviour. 

• Planar vertical arches with a superior straight deck buckle out-of-plane and symmetrically 

when restraining longitudinal movements (rlm) if torsional rotations are restrained (rtr): 

o For flm and ftr the bridge also buckles symmetrically out-of-plane whatever the f 

value (Figure 2-6 from a to d).  

o For f≤20m the bridge buckles asymmetrically in-plane for flm and rtr (Figure 

2-6e), but has higher α values, except for f=10m. Restraining torsional rotations 

improves the buckling behaviour, since it diminishes the destabilizing effect of 

the deck described in chapter VI. A. 

• Planar vertical SABs with a planar vertical arch and a superior curved deck buckle in both 

planes of the arch symmetrically except for low f values: 

o  For g=20m, f=10m buckling takes place in both planes but it is asymmetrical 

(Figure 2-7).  

o For f≤15m buckling takes place in both planes but mostly in-plane (Figure 2-7). 

For f=20m the buckling shape deforms as much as in-plane as out-of-plane 

(Figure 2-8).  

o For f≥25m symmetrical buckling takes place in both planes but mostly out-of-

plane (Figure 2-9).  

o The larger the f value, the larger the out-of-plane component. 

o The buckling shapes are equivalent whatever the value of the cross-sections 

employed and of the bearing conditions. 
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Figure 2-4: Arch axial forces comparison for different f values and g=0. The abscissas are the arch 

length from 0 to LA 

 

Figure 2-5: Arch axial forces comparison for different f values and g=20. The abscissas are the arch 

length from 0 to LA 
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 (a) (b) 

 

  

 (c) (d) 

 

(e) 

Figure 2-6: Planar bridge. Buckling shape for g=0, employing reference cross-sections. Out-of-plane 

symmetrical buckling: (a) Plan view of the buckling shape of model with flm, ftr, f=50m (b) Plan view 

of the model with flm, ftr, f=10m. (c) Perspective of the model with flm, ftr, f=50m (d) Perspective of 
the model with flm, ftr, f=10m. In-plane symmetrical buckling: (e) Longitudinal view of the model 

with rlm, ftr, f=10m 

  



CHAPTER VI. SECTION B. BUCKLING ANALYSES OF SPATIAL ARCH BRIDGES WITH A CURVED DECK 
 
 

301 

 

 

(a) 

 

(b) 

Figure 2-7: SAB asymmetrical buckling shape in both planes for g=20m, f=10m, rlm and rtr, 

employing reference cross-sections (a) Plan view (b) Layout 

 

 

(a) 

 

(a) 

Figure 2-8: SAB symmetrical buckling shape in both planes for g=20m, f=20m, rlm and rtr, 

employing reference cross-sections (a) Plan view (b) Layout 
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(a) 

 

(b) 

Figure 2-9: SAB symmetrical buckling shape in both planes for g=20m, f=50m, rlm and rtr, 

employing reference cross-sections (a) Plan view (b) Layout 
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g (m) distribution of struts Bearing conditions f (m) L (m) 
Numerical Ncr 

(kN) 

Buckling shape 
according to the 

numerical analysis 

0 
radial (reference 

model) 
flm, ftr 20 100 44833 Out-of-plane 

0 
radial (reference 

model) 
rlm,  rtr 20 100 63310 Out-of-plane 

0 
radial (reference 

model) 
flm, rtr 20 100 55975 In-plane 

0 
radial (reference 

model) 

flm, ftm, ftr pinned 

hangers 
20 100 3465 Out-of-plane 

0 
radial (reference 

model) 
free standing arch 20 100 6978 Out-of-plane 

Table 2-1: Results comparison for different bearing and joint conditions employing the reference 

cross-sections. Influence of the boundary conditions on Ncr 

2.2 CROSS-SECTION VALUES INFLUENCE ON BUCKLING  

The most efficient f value for g=20m, regarding both steel mass and stresses, is 25m=L/4, 

whereas f=20=L/5 gives the highest buckling load, which is nearly 5 times the ULS load (Figure 

2-10) for g=20m employing design cross-sections (Table 1-2). For higher f values, the buckling 

load diminishes. For f=50m the structure buckles for a load twice the ULS and 6 times the live 

load (Figure 2-1) specified in EC1. Therefore, unless imperfections and non-linear geometrical 

forces lead to buckling before, the buckling load is higher than the coded one with 1,5 safety 

factor. This means that the most stressed cross-section will plasticize before buckling. 

When comparing the buckling of models employing reference cross-sections (Table 1-1) or 

design cross-section values (Table 1-2 and Table 1-3) a change in the dependence of the buckling 

coefficient α on f and g can be appreciated (Figure 2-10): 

• The buckling coefficients of g=0 and g=20m become more similar, especially for f>20m. 

For 40≤f≤50m the differences can be considered negligible (Figure 2-10). This effect 

slightly increases when increasing the stiffness of the deck (Figure 2-11 and Figure 2-12). 

• For f≥L/2=50m, SABs employing a planar vertical arch with a curved superior deck even 

buckle later than planar vertical arches with a superior straight deck, when considering 

the dimensioned cross-sections (Figure 2-10). 

• For g=0 the dependence of α on f clearly changes for f≤20m. The model with f=10m is the 

one with the highest buckling coefficient when employing dimensioned cross-sections 

(Figure 2-10). This happens because a stiffer arch is employed for this model, the 

relationship Iarch/I2deck of design cross-sections decreases with f. This effect highly 

increases when increasing the stiffness of the deck (Figure 2-11 and Figure 2-12), but 

does not take place if the longitudinal movements of the deck are free at abutments 
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(Figure 2-11), since the arch buckles in-plane. If longitudinal movements are restrained 

the deck helps stabilizing the arch. 

• For g=0 and f≥L/5=20m restraining longitudinal movements or not has no influence, for 

planar vertical arch models with a superior straight deck (g=0, Figure 2-11). This is so 

because when employing a stiffer deck the arch and deck buckle independently (Figure 

2-13a). For less stiff decks as the one employed in the previous section the deck still has a 

stabilizing influence on the arch when torsional rotations are restrained, either buckling 

in-plane due to the flm (Figure 2-13b) or out-of-plane when rlm (Figure 2-13c). 

• Employing a stiffer deck improves the buckling behaviour for f values below L/4=25m, 

whatever the value of g and the bearing conditions (Figure 2-11 and Figure 2-12). As 

expected, for low f values, the stiffness of the deck has more influence on the buckling of 

models with g=0 than on SABs (Figure 2-11 and Figure 2-12). For low f values and g=0 

the deck has a stabilizing effect, this happens because the deck buckles with the arch 

(Figure 2-14) but for f>25m the destabilizing effect of the deck described in chapter VI.A 

takes place. This is appreciated because the deck does not buckle with the arch (Figure 

2-6a and Figure 2-15). 

• For g=20m the deck has a stabilizing effect, on the contrary of what was expected a priori 

(Figure 1-1). The axial forces might destabilize the arch but, since struts are fixed to both 

arch and deck, the shear forces and bending moments, which they produce on the arch, 

stabilize it (Figure 2-16). 

• The buckling shape of the models does not change with the cross-sections, except for the 

model flm, rtr g=0 in which when increasing the stiffness of the deck the arch buckles 

out-of-plane and symmetrically instead of in-plane asymmetrically as it occurred for the 

reference cross-section (section 2.1). 
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Figure 2-10: Comparison of different arch rise (f) values, employing the design cross-section values 
for each model or the reference cross-section values for all the models (from Table 1-1 to Table 1-3). 

Buckling coefficient alfa (α) of the design live load on the whole deck (lu) for the bridge already 

loaded with permanent loads.  
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Figure 2-11: Comparison of different arch rise (f) values and bearing conditions, employing the 
design cross-section values for the arch and struts for each model and a stiffer deck of the same 

dimensions as the design deck (4000x700mm) but thicker (20mm) (Table 1-5 and Table 1-6). Buckling 

coefficient alfa (α) of the design live load on the whole deck (lu) for the bridge already loaded with 

permanent loads.  
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Figure 2-12: Comparison of different arch rise (f) values and deck stiffness (4000x700mm, thickness 
10mm versus 20mm, employing the design cross-section values for the arch and struts (from Table 

1-2 to Table 1-6). Buckling coefficient alfa (α) of the design live load on the whole deck (lu) for the 

bridge already loaded with permanent loads.  
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(a) 

(b) 

 

(c) 

Figure 2-13: Planar bridges. Buckling shapes for g=0 and f=20m models (a) Plan view of the out-of-

plane identical buckling shape for both flm and rtr when employing cross-sections in Table 1-6. (b) 
Longitudinal view of the in-plane buckling shape when employing flm, rtr and reference cross-

sections in Table 1-1. (c) Plan view of the out-of-plane buckling shape when employing rlm, rtr and 

reference cross-sections in Table 1-1. 

  



CHAPTER VI. SECTION B. BUCKLING ANALYSES OF SPATIAL ARCH BRIDGES WITH A CURVED DECK 
 
 

309 

 

 

                           

(a) 

 

 

 

 

 

 

 

 

 

 

(d) 

Figure 2-14: Planar bridges. Buckling shape of arch bridge model with g=0, f=20m, rlm and rtr (a) 

Perspective. (b) Cross-section: destabilizing effect caused by both shear and axial forces (c) Cross-

section: destabilizing effect caused by axial forces out-of-plane projection and stabilizing effect 

caused by shear forces (d) Plan view 

FstabFdestab

(b) (c) 
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 (a) (b) 

Figure 2-15: (a) Destabilizing effect of struts on arch buckling due to the axial forces; (b) Stabilizing 

effect of struts on arch buckling when considering shear forces and bending moments 

 

 

 

 (a) (b) 

Figure 2-16: (a) Stabilizing and destabilizing effect of struts on arch buckling when not considering 

shear forces due to bending moments; (b) Stabilizing effect of struts on arch buckling when 

considering shear forces due to bending moments 

Fstab

Fdestab

Fdestab Fstab Fstab Fstab
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2.3 STRUTS INCLINATION IN LONGITUDINAL VIEW (β). INFLUENCE 
ON BUCKLING  

The nomenclature of β is described in section 1.2. As a reminder the inclinations considered are 

the following and can be seen in 

 

 

Figure 1-2: 

• Radial strut distribution system: each strut axis elongation converges below the 

deck with its symmetrical.  

• A more vertical orientation (β2) of the struts and  

• Convergent system of struts: each strut axis elongation converges above the deck 

with its symmetrical (β1, opposite inclination to the radial system. 

The influence of the struts inclination (β) for models with g=L/5=20m and f=L/4=25m is analysed 

in Figure 2-17 and Figure 2-18. In Figure 2-17 the influence of cross-section values is shown. In 

Figure 2-18 reference cross-sections are employed for all models to check the influence of the of 

β in buckling for the designed models for both cases uniform loading on half the deck length and 

on the whole length. The results are displayed with the already analysed models with g=0 and 

different f values and bearing conditions, so as to be shown in the comparative context previously 

commented. 

The geometry that best resists buckling, when employing reference cross-section values, is 

employing convergent struts (Figure 2-17). This is coincident with the fact that for this geometry 

the arch bears the lowest axial forces and stresses (Figure 2-19 and Figure 2-20). This means that 

it is not a phenomenon of stabilizing geometry but of the fact that for a same loading lower axial 

forces are transmitted to the arch and, therefore, it reaches the critical axial buckling load for a 

larger loading. 

However, when employing design cross-section values for the struts and arch (Table 1-4), either 

with a design cross-section deck of 10mm thickness (Table 1-2) or a stiffer one with 20mm 

thickness (Table 1-5), the model employing vertical struts shows the best behaviour (Figure 2-17 
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and Figure 2-18) in spite of the axial forces being lower for the convergent struts (Figure 2-21). 

This is due to the stiffness distribution in the bridge. It must be also observed that, when 

employing design cross-sections, arch axial forces of the model employing vertical struts are more 

similar to the ones of the model employing convergent struts than when employing reference 

cross-sections (Figure 2-19 and Figure 2-21). 

The model with radial struts employing design cross-sections has a stiffer arch, but this does not 

help increasing the buckling load, since the geometry gives the largest axial forces with an 

important difference (Figure 2-21). 

The model with vertical struts has struts with a larger flexural rigidity (Table 1-4). In spite of 

being longer than the ones with a radial distribution, they are stiffer and, thus, deform less (as 

commented in the following paragraphs) so that they produce a stabilizing effect. 

When employing a stiffer deck the buckling behaviour improves for the models with a radial or 

convergent distribution. This means that the deck has a stabilizing effect in this bridge type. The 

model employing stiffer struts does not improve its buckling behaviour since the struts were 

already stiff enough. 

In all cases, but especially for convergent struts a uniformly distributed loading on the whole deck 

is more unfavourable than on half the length (Figure 2-18). 

Whatever the value of β and the employed cross-sections, the buckling shape is very similar, as 

shown in Figure 2-22 and Figure 2-23. A slight difference in the struts can be observed: 

• When employing reference cross-sections (Table 1-1), the convergent struts have the 

lowest displacements compared to other β values (Figure 2-22c). 

• When employing design cross-sections (Table 1-4), the vertical struts have the lowest 

displacements compared to other β values (Figure 2-23b). This happens because they are 

stiffer, as previously observed. 

• Radial struts are the ones with the largest displacements whatever the cross-sections 

employed (Figure 2-22a and Figure 2-23a) 
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Figure 2-17: Buckling coefficient alfa1 (α1) comparison of struts inclination (β) values when 
employing different cross-sections (Table 1-1, Table 1-2 and Table 1-5) with g=20m and f=25m 

 

Note: for the cases with vertical and convergent struts ony arches with f=25m have been analysed. Hence 

there is a single result 

Figure 2-18: Buckling coefficient alfa1 (α1) and alfa2 (α2) (defined in section 1.4). Comparison of 

different arch rise (f) values, struts inclination (β) values and bearing conditions. The design cross-
section values (Table 1-2 and Table 1-3) are employed for each model. Note that for non-radial struts 

only the values for f=25m are given 
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Figure 2-19: Arch axial forces comparison for different β values, f=25m and g=20m, employing 

reference cross-sections (Table 1-1), under a uniform loading on the whole deck length (self-weight 

not included, only q=10kN/m). The abscissas are the arch length from 0 to LA 

 

Figure 2-20: Arch stresses comparison for different β values, f=25m and g=20m, employing reference 
cross-sections (Table 1-1), under a uniform loading on the whole deck length (only q=10kN/m). The 

abscissas are the arch length from 0 to LA 
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Figure 2-21: Arch axial forces comparison for different β values, f=25m and g=20m, employing 

design cross-sections (Table 1-4), under a uniform loading on the whole deck length (only q=10kN/m). 

The abscissas are the arch length from 0 to LA 

 

 

 

Plan view 

 

Layout  

(a) 

 

 

A
x

ia
l 

F
o

rc
e

 (
k

N
)

-800

-700

-600

-500

-400

-300

-200

-100

0

A
x

ia
l 

F
o

rc
e

 (
k

N
)

g=20;e=16,67;f=25;v=0_radial struts (reference 

model)

g=20;e=16,67;f=25;v=0_vertical struts

g=20;e=16,67;f=25;v=0_convergent struts



CHAPTER VI. SECTION B. BUCKLING ANALYSES OF SPATIAL ARCH BRIDGES WITH A CURVED DECK 
 
 

316 

 

 

Plan view 

 

Layout 

(b) 

 

Plan view 

 

Layout 

(c) 

Figure 2-22: Buckling shapes for g=20m, f=25m and different β values employing reference cross-

sections. (a) Radial struts (b) Vertical struts (c) Convergent struts 
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Plan view 

 

Layout 

(c) 

Figure 2-23: Buckling shapes for g=20m, f=25m and different β values employing design cross-

sections. (a) Radial struts (b) Vertical struts (c) Convergent struts 

2.4 3D BUCKLING: DECK INFLUENCE ON THE BUCKLING OF 
SABWSCD 

As the results in the previous sections attest, SABs suffer a unique phenomenon in comparison to 

planar arch bridges with a straight deck: 3D buckling. 

The fact that SABs buckle in two planes is something expected a priori due to their own definition 

which involves an important spaciality character, but it is an important difference with planar arch 

bridges with a straight deck and does not have an obvious explanation. It may be due to different 

facts: 

• A vertical loading on the deck is introduced by the struts on the arch as in-plane and out-

of-plane forces. 

• The curved deck has a radial stiffness which could be modelled as out-of-plane springings 

on the arch. 

However, the arch suffers the buckling only due to axial forces and the out-of-plane forces 

introduced by struts produce bending and torsional moments on the arch, but do not contribute to 

axial forces. Therefore, 3D buckling must be due to the deck radial stiffness. Nonetheless, planar 

vertical arch bridges with a straight superior deck and struts fixed to both arch and deck also have 

the influence of the transverse stiffness of the deck, but only buckle in one plane. 

In order to explain 3D buckling and assure it is produced by the shape of the deck and not by the 

orientation of the struts a model without deck has been analysed. The loads transmitted to the 

struts by the deck under the load combination A1 (defined in section 1.4) have been introduced 
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into a model of structure system of the arch with fixed struts and with no superior deck. Buckling 

elastic analysis has been conducted. 

The value of α1 obtained for the described model with f=50m and employing the cross-sections 

described in Table 1-2 is 0,26. This value versus α1 obtained for the equivalent model with deck 

(α1=0,26, versus α1=5,92) demonstrates the important stabilising effect of the deck.  

The arch buckles out-of-plane and not in-plane. This clearly proves that the arch does not buckle 

in two planes due to the fact that it is submitted to forces in and out-of-plane under vertical 

loading of the deck, but due to the curved superior deck. However, 3D buckling is not really due 

to the deck stiffness, but to the fact that under vertical loadings the deck is acting as an arch in 

plan view and suffers radial displacements which are transmitted as out-of-plane displacements to 

the arch. When the arch starts buckling in-plane or out-of-plane the direction of its movements is 

altered by 3d movements of the deck.  

Just as the arch and deck move in 3D under vertical loadings under the buckling load, the arch 

buckles in both planes. 

3. ELASTIC BUCKLING OF INFERIOR DECK ARCH BRIDGES  

Several models of IDABWIC have been analysed in chapter IV. A. 

The buckling loads and modes of an IDABWIC with L=100m, g=20m and f=20m (Figure 3-1a), 

as studied in chapter IV. A, have been analysed here and compared to those of an equivalent 

inferior straight deck planar arch bridge with g=0 and f=20m (Figure 3-1b). The arch is fixed to 

the deck which is itself fixed at abutments. 

Different cross-sectional properties have been employed (Table 1-8). Rigid hangers fixed to both 

arch and deck have been employed, as well as flexible pinned hangers. 

The elastic buckling of planar vertical arch bridges with an inferior curved deck with the 

equivalent values to the previously studied superior arch bridges, with L=100m, g=20m, 

e=16,67m and f=20m has also been studied for reference cross-section values (Figure 3-1c). 

 

 (a) (b) (c) 

Figure 3-1. Studied geometries (a) IDABWIC with L=100m, g=20m and f=20m (b) Planar vertical 

arch with an inferior straight deck, g=0 and f=20m (c) Planar vertical arch with a curved inferior 

deck with L=100m, g=20m, e=16,67m and f=20m 
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3.1 Analyses of the results for reference cross-section values 

The results are displayed in Table 3-1, Figure 3-2, Figure 3-3 and Figure 3-4 and are commented 

as follows: 

• The critical buckling load for an IDABWIC is much higher than for a planar vertical 

bridge, because the arch takes lower axial forces (see Chapter IV.A and values of axial 

forces in Table 3-1). However, for a planar vertical bridge with a curved inferior deck it is 

interesting to note that the buckling load is very similar to that of a planar vertical arch 

bridge with an inferior straight deck (Table 3-1), since destabilizing forces take place at 

span center. At span center the deck has less influence on the arch and there is a longer 

destabilizing path (Figure 3-4 BB’). 

• The deck in both cases, planar vertical arch bridges and IDABWIC, acts stabilizing the 

arch buckling, since the hangers are under tension (Figure 3-5). However, when 

comparing the results of α1 with arch bridges employing a superior deck (results for 

f=20m in Figure 2-2 (rlm, rtr) versus Table 3-1), the buckling load for vertical planar 

arches with a straight or curved inferior deck (α1= 4,4 and 5, respectively)  is lower than 

with a straight or curved  superior deck (α1= 13,5 and 10,2, respectively). This is so 

because, in spite of the fact that an inferior deck offers more stabilizing forces, a superior 

deck controls better the movements of the arch at span center, where the struts are shorter 

and, thus, stiffer. 

• For a planar vertical arch with an inferior straight deck a larger buckling load is obtained 

when employing rigid, fixed hangers. However, flexible hangers have given higher 

buckling loads than rigid ones in IDABWIC. This is so because the axial forces in the 

arch are greatly diminished when employing flexible hangers (ie, no Vierendel effect), 

but not because the structure has a better buckling behaviour. If the axial forces are 

compared (Table 3-1) it is clear that, in spite of buckling for a larger load, the arch has a 

worse buckling behaviour. 

• In comparison to planar vertical arch bridges, IDABWICs buckle for a larger load, but as 

just observed it is due to the fact that, given a loading value, the arch undergoes lower 

axial forces for IDABWIC.  

• The values of critical buckling axial loads are similar for all the models except for the 

planar vertical arch with an inferior straight deck suspended of flexible hangers which has 

a lower axial buckling critical load (Table 3-1). 

• The IDABWIC model with g=20 and rigid hangers fixed to arch and deck, however, has a 

different behavior than the rest of the studied examples. Whereas in all cases the arch is 

under compression in its whole length, for this model the arch is tensioned at springings. 

• For all models the axial compressive critical buckling force (Ncr) takes place at 

springings is given in Table 3-1, but, for the IDABWIC model with rigid hangers, it takes 

place at span center. These values are given in Table 3-1. 
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ARCH GEOMETRY 
Buckling 

Mode 
qCRITICAL α1 Ncr Nq0 min (kN) 

Buckling 

Form 

ID-ABWIC with g=20 

and rigid hangers fixed 

to arch and deck 

1 96,2q0 11,85 24748 302 

Unsymmetrical 

In and out of 

plane 

Figure 3-3 

ID-ABWIC with g=20 

and flexible hangers 
1 139,2q0 17,15 20696 192 

Unsymmetrical 

In and out of 

plane 

Planar vertical arch with 

inferior curved deck 
1 36,6 q0 4,98 22894 - 

Symmetrical 

In and out of 

plane 

Figure 3-4 

Planar vertical arch with 

inferior straight deck and 

rigid hangers fixed to 

arch and deck 

1 36,6q0 4,44 23441 754 

Symmetrical 

Out of plane 

Figure 3-2 

2 39,1q0    
Asymmetrical 

Out of plane 

3 82,2q0    
Symmetrical 

Out of plane 

Planar vertical arch with 

inferior straight deck and 

flexible hangers 

1 26,2q0 3,18 14818 756 
Symmetrical 

Out of plane 

q0=10kN/m 

Nq0 min=Minimal axial force in the arch under q0 uniformly distributed loading on the whole deck 

Table 3-1: Buckling critical loads comparison for the first 3 modes of an IDABWIC and a planar 

vertical bridge employing reference cross-sections (Table 1-8) 

 

 

 (a) (b) 

Figure 3-2: Buckling shape of arch bridge model with g=0 and f=20m, employing reference cross-

sections (Table 1-8). (a) Perspective (b) Plan view 
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 (a) (b) 

 

(c) 

Figure 3-3: Buckling shape of IDABWIC with g=20m and f=20m employing reference cross-sections 

(Table 1-8). (a) Longitudinal view (b) Lateral view (c) Plan view 

 

(a) (b) 

 

 AA’  BB’ 

 

 

(c)  

Figure 3-4: Buckling shape of planar vertical arch bridge with an inferior curved deck with g=20m, 

e=16,67m and f=20m, employing reference cross-sections (Table 1-8). (a) Longitudinal view (b) 

Lateral view (c) Plan view with cross sections showing stabilizing and destabilizing forces 

FstabFdestab

A 

A’  

B 

B’  

Fstab FstabFdestab
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Figure 3-5: Cross-section of buckling shape for both, of the arch bridge model with g=0 and f=20m 

and of the IDABWIC with g=20m and f=20m, employing reference cross-sections. (a) Stabilizing 
effect caused by axial forces out-of-plane projection and (b) stabilizing effect caused by shear forces 

which appear due to fixed hanger joints. 

3.2 Analyses of the results for a rigid hanger-deck system  

The results of the buckling analyses employing cross-section values for a rigid hanger-deck 

system (Table 1-8) are displayed in Table 3-2. 

• The cross-section values for a radially (or transversally) very stiff hanger-deck system 

given in Table 1-8 (and employed at the end of chapter IV) are theoretical values, that is 

why this models give incredibly higher buckling loads in comparison with the reference 

values. Nonetheless, the buckling forms are equal and IDABWICs still buckle in both 

planes. 

• When the hanger-deck system has a large transversal stiffness, IDABWICs and planar 

vertical arches with an inferior straight deck buckle nearly for the same vertical uniformly 

distributed loading (Table 3-2). 

• As it happens with the structural behavior of IDABWIC regarding internal forces, it is 

also much more efficient increasing the hangers radial stiffness than the transverse one- 

meaning with transverse the orientation perpendicular to the straight imaginary line which 

would join the abutments, ie: the hangers would all be parallel. Thus, radially stiff 

hangers give a buckling load more than double than transversally stiff ones (Table 3-2).  

ARCH GEOMETRY qCRITICAL α1 Buckling Form 

ID-ABWIC with g=20 and with 

radially stiff hangers 
247,9q0 34,0 

Unsymmetrical 

in and out-of-plane 

ID-ABWIC with g=20 and with 

transversally stiff hangers 
116,6q0 15,5 

Unsymmetrical 

in and out-of-plane 

Planar vertical arch with inferior 

straight deck 
113,3q0 15,5 

Unsymmetrical 

in-plane 

q0=10kN/m; radially stiff hangers have their largest stiffness oriented radially to the deck 

curvature, transversally stiff hangers are orientated perpendicularly to the cord of the deck 

Table 3-2: First mode of buckling critical loads comparison for the first 3 modes of an IDABWIC and 

a planar vertical bridge employing a stiff hanger-deck system (Table 1-8)  

Fstab

Fstab
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4. COMPARISON OF NUMERICAL RESULTAS VERSUS 
ANALYTICAL RESULTS OF THE BUCKLING LOADS 

The comparison of analytical and numerical results is carried out in the present chapter for the 

following cases: 

• Planar arch bridges with a superior straight deck with different bearing conditions  

• Superior deck arch bridges with different g and f values and with different deck stiffness 

values. 

• Different inferior deck arch bridges  

In order to establish if the analytical formulation is good enough it is compared with the 

numerical results. To compare the results, the error for various parameters is calculated as 

follows: 

����� =
������	
�	

��� − 
�
����	
�	

���

������	
�	

���
∙ 100 

As mentioned in section A2.1 of the present chapter, the loading distribution for which Ncr is 

given in Eurocode 3 (EC3) Part 2 Annex D3 is not clearly stated, but, according to Figure D.4 in 

EC3 and to the formulation in Galambos (1988) (commented in section 2.2 of section A of the 

present chapter), it is for a uniformly distributed vertical load in the whole deck length. Therefore, 

in the present research the criteria that Ncr is the largest axial force value in the arch under a 

uniformly distributed vertical loading on the whole deck length has been adopted. 

An analytical formulation, proposed for inferior deck planar vertical arch bridges in a recent 

research study (Bergmeister et al, 2009), has also been employed. 

4.1 Planar arch bridges with a superior straight deck. Analytical and numercial 
results comparison for different bearing conditions 

4.1.1 Considerations 

Out-of-plane buckling in the codes is for free standing arches, but the buckling factor is dependent 

on certain characteristics of the deck. Therefore, it is not clear for which bearing conditions are 

the code formulae developed. A comparison of different bearing conditions has been therefore 

carried out (Table 4-1) to validate the codes formulae under different conditions and joints. The 

following situations for g=0 and f=20m have been considered: 

• Free longitudinal movements (flm) and free rotations (including free torsional rotations, 

ftr) at deck abutments. Transverse and vertical displacements are restrained. The arch is 

fixed at its springings and struts are fixed at both ends, ie: at arch and deck. 

• All movements are restrained (including longitudinal movements, rlm), torsional rotations 

are restrained (rtr) and the rest of rotations at deck abutments are free. The arch is fixed at 

its springings and struts are fixed at both ends, ie: at arch and deck. 

• Free longitudinal movements (flm) and restrained torsional rotations (rtr) at deck 

abutments. Transverse and vertical displacements are restrained and the rest of rotations 
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are free. The arch is fixed at its springings and struts are fixed at both ends, ie: at arch and 

deck. 

• Free longitudinal movements (flm), free transverse movements (ftm) and free rotations 

(including free torsional rotations, ftr) at deck abutments. Vertical displacements are 

restrained. The arch is fixed at its springings and struts are pinned at both ends, ie: at arch 

and deck. 

• Free standing arch (no deck or struts) fixed at its springings. 

Since there are no coefficients in table D4 of Eurocode 3 (EC3) Part 2 Annex D3 for fixed bridges 

and in-plane symmetric buckling, the buckling case of some examples cannot be handled. 

Therefore, the coefficients for fixed arches and asymmetric buckling have been employed in all 

cases. 

It must be highlighted that the formula for out-of-plane Ncr of Bergmeister et al (2010) is for 

inferior-deck planar arch bridges, as explained in Chapter VI. A, so it is only comparable in such 

a case. 

Reference cross-sections have been employed for this study. 

4.1.2 Analyses of the results 

An example of the buckling shape can be observed in Figure 4-1. 

The results are summarized in Table 4-1 and are commented as follows: 

• It is clear that the out-of-plane formulation is for a free standing arch as the code states, in 

spite of the deck being considered in the buckling factors of the formulation (Table 4-1). 

The Ncr, however is more similar to the one obtained at the deck crown: 

o Free standing arch: 

� Ncr at springings for the numerical value of the buckling load: 6978kN 

� Ncr at crown for the numerical value of the buckling load: 5336kN 

� Ncr according to EC3: 5043kN 

• The results of EC3 of the simplified formulation do not give a good enough 

approximation for buckling in arch bridges (minimal error=68%, Table 4-1). 

• As already observed in Figure 2-1 and Figure 2-2 the model with rlm and rtr is the one 

which presents the best behaviour to buckling according to the numerical analyses. 

• Whereas according to EC3 the arch would buckle out-of-plane for all cases (Table 4-1), 

the FE model show that for flm and rtr the buckling takes place in-plane, as already 

observed in Figure 2-6e. 
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g 
(m) 

distribution 
of struts 

Bearing 
conditions 

f 
(m) 

L 
(m) 

Numerical 
Ncr (kN) 

Buckling 
shape 

according to 
the numerical 

analysis 

Minimal Ncr in-plane 
or out-of-plane 

according to EC3 
(kN) 

Error of EC3 
simplified 

formula with 
respect to Ncr 

numerical 
results (%) 

0 

radial 

(reference 

model) 

flm, ftr 20 100 44833 Out-of-plane 14430.8 
Buckling 

out-of-plane  
68 

0 

radial 

(reference 

model) 

rlm,  rtr 20 100 63310 Out-of-plane 14554.0 
Buckling 

out-of-plane  
69 

0 

radial 

(reference 

model) 

flm, rtr 20 100 55975 In-plane 14515.4 
Buckling 

out-of-plane  
77 

0 

radial 

(reference 

model) 

flm, ftm, ftr 

pinned 

hangers 

20 100 3465 Out-of-plane 10564.1 
Buckling 

out-of-plane  
-205 

0 

radial 

(reference 

model) 

free standing 

arch 
20 100 6978 Out-of-plane 5043.2 

Buckling 

out-of-plane  
28 

Table 4-1: Analytical results comparison for different bearing and joint conditions employing the 

reference cross-sections 

 

 

 (c) 

Figure 4-1: Buckling shape of arch bridge model with g=0, f=20m, flm, ftm, ftr and pinned hangers 

(a) Perspective (b) Cross-section: stabilizing effect (c) Plan view  

  

(a) (b) 
Fstab
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4.2 Superior deck arch bridges. Analytical and numerical results comparison for 
different g and f values and for different deck stiffness values.  

4.2.1 Considerations 

• The comparison of the numerical results of the axial loads at the arch springings obtained 

for the critical buckling load, for different g and f values, with the ones obtained with 

simplified formulae detailed in Eqs 1 and 2 in section A2.1 of the present chapter VI are 

displayed in Table 4-2 and Table 4-3. For both tables, design cross-sections have been 

employed for the struts and arch (Table 1-2 and Table 1-3).  

• In Table 4-3 a stiffer deck than the one needed according to design has been employed 

(Table 1-6). 

• In Table 4-2 a less stiff deck with 3mm thickness (Table 1-7) has been employed. 

• Models with g=0 have free longitudinal movements at deck abutments, the rest of the 

movements are restrained and the rotations are all free (flm, ftr), because these were the 

bearing conditions with a lower error according to Table 4-1, apart from the free standing 

arch.  

• For models with g=20m, all the movements and the torsional rotations are restrained at 

deck abutments, the rest of the rotations are free.  

• For g=20m, these bearing conditions are chosen for the deck because they are the ones 

which best work for this bridge type, as proved in chapter V.A. 

4.2.2 Analyses of the results 

• A priori, a less stiff deck is expected to have less influence on the buckling of the arch 

and, therefore, the results would be expected to be nearer to the ones obtained analytically 

by means of EC3 formulae in the case of g=0.  

o This is so for f≤20m (errors of EC3 in Table 4-2compared to Table 4-3). As 

already commented in section 2.2 these are the values mainly affected by the 

rigidity of the deck, since arch and deck buckle together.  

o For f>20m the error in Table 4-3 and Table 4-2 is the same, since the deck has a 

lower influence on the buckling of the arch. 

• The formulae of EC3 are for free standing arches as demonstrated in section 4.1. 

Therefore, the error committed for all the analysed models is very high, whatever the g 

value.  

• Not only need formulae for SABs be developed, but also an improvement of the existing 

formulae for planar arch bridges with a superior straight deck is required, since existing 

formulae are very conservative. 
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g (m) 
distribution 

of struts 
f (m) L (m) 

Iarch 
(m4) 

Ideck 
(m4) 

Numerical 
Ncr (kN) 

Minimal Ncr in-
plane or out-of-

plane according to 
EC3 (kN) 

Error of 
EC3 

simplified 
formula 

with 
respect to 

Ncr 
numerical 

results 
(%) 

0 

radial 

(reference 

model) 

10 100 4.66E-03 4.86E-02 14268.80 7532.1 

Buckling 

out-of-

plane 

according 

to EC3 

47 

radial 

(reference 

model) 

20 100 3.75E-03 4.86E-02 12800.44 4302.9 

Buckling 

out-of-

plane 

according 

to EC3 

66 

radial 

(reference 

model) 

50 100 3.75E-03 4.86E-02 5038.30 901.6 

Buckling 

out-of-

plane 

according 

to EC3 

82 

20 

radial 

(reference 

model) 

10 100 5.64E-03 4.86E-02 19862.81 8937.9 

Buckling 

out-of-

plane 

according 

to EC3 

55 

radial 

(reference 

model) 

20 100 4.41E-03 4.86E-02 17565.65 5117.1 

Buckling 

out-of-

plane 

according 

to EC3 

71 

radial 

(reference 

model) 

50 100 3.06E-03 4.86E-02 6452.21 818.1 

Buckling 

out-of-

plane 

according 

to EC3 

87 

Table 4-2: Analytical results comparison for different f and g values employing the design cross-

sections and a low stiffness deck with a thickness of 3mm, neglecting local buckling 
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g (m) 
distribution 

of struts 
f (m) L (m) 

Iarch 
(m4) 

Ideck 
(m4) 

Numerical 
Ncr (kN) 

Minimal Ncr in-
plane or out-of-

plane according to 
EC3 (kN) 

Error of 
EC3 

simplified 
formula 

with respect 
to Ncr 

numerical 
results (%) 

0 

radial 

(reference 

model) 

10 100 4.66E-03 3.18E-01 40477.57 7669.2 
Buckling 

in-plane  
81 

radial 

(reference 

model) 

20 100 3.75E-03 3.18E-01 16427.09 4382.9 

Buckling 

out-of-

plane  

73 

radial 

(reference 

model) 

50 100 3.75E-03 3.18E-01 4975.45 907.3 

Buckling 

out-of-

plane  

82 

20 

radial 

(reference 

model) 

10 100 5.64E-03 3.18E-01 41340.86 8617.2 

Buckling 

out-of-

plane  

79 

radial 

(reference 

model) 

15 100 4.41E-03 3.18E-01 32063.15 6153.8 

Buckling 

out-of-

plane  

81 

radial 

(reference 

model) 

20 100 4.41E-03 3.18E-01 26422.85 4938.1 

Buckling 

out-of-

plane  

81 

radial 

(reference 

model) 

25 100 3.75E-03 3.18E-01 20028.60 3359.8 

Buckling 

out-of-

plane  

83 

radial 

(reference 

model) 

50 100 3.06E-03 3.18E-01 7690.35 727.4 

Buckling 

out-of-

plane  

91 

Table 4-3: Analytical results comparison for different f and g values employing the design cross-

sections with a stiffer deck (Table 1-6). 
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4.3 Inferior deck arch bridges. Analytical and numerical results comparison for  

In section A2.1 of the present chapter VI it has been stated according to the state-of-the-art that 

for planar vertical arch bridges with inferior straight deck a useful simplified formulation would 

be the one described by Bergmeister et al (2009) to obtain elastic buckling (Eq 3 and 6 in section 

A2.1 of the present chapter VI). This is still expected to be conservative. This has been verified 

with numerical results. Results are shown in Table 4-4. 

In all the models, the abutments are fixed to the arch springings, which are themselves fixed to the 

ground. Rigid hangers are employed and they are fixed to arch and deck. 

• When compared to a free standing arch of identical geometry as the one employed for the 

planar vertical arch bridge, the EC3 results are nearer to numerical ones than when 

considering the whole bridge, as observed in section 4.1.  

• It is clear that the deck and struts have a stabilizing effect, allowing more than thrice the 

buckling load of a free standing arch.  

• IDABWICs have a much higher buckling load, nearly 9 times the buckling load of a free 

standing arch. 

• The larger values of qcr of IDABWIC in comparison with planar arch bridges, in spite of 

a smller Ncr, are due to the structural behavior of the arch bridge in which the arch takes 

smaller axial forces. This has been already explained for different models in the previous 

sections. 

• As it occurred in the previous analysed cases EC3 values give a very high error. 

• Bergmeister et al (2009) formulae give an error which is even higher than the EC3 

formula, since the qH/q relationship to determine β2 (Table D7 EC3) is not considered. 

• Not only need formulae for IDABWICs be developed, but also an improvement of the 

existing formulae for planar arch bridges with an inferior straight deck is required, since 

existing formulae are very conservative. 
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Geometry 

Planar vertical arch 

with inferior straight 

deck with rigid 

hangers fixed to arch 
and deck 

IDABWIC with 

rigid hangers fixed 

to arch and deck 

Free standing 

arch 

g (m) 0 20 0 

f (m) 20 20 20 

L (m) 100 100 100 

Iarch (m4) 0,0108 0,0108 0,0108 

Ideck (m4) 0,2517 0,2517 - 

Numerical Ncr (kN)      (1) 

23441 24748 19320 

Symmetrical. 

Out-of-plane 

Antymmetrical 

In and out of plane  

 

Symmetrical. 

Out-of-plane 

Numerical qcr (kN/m) 304 801 90 

Minimal Ncr in-plane or out-of-plane 
according to EC3 (kN)                        (2) 

5369 5213 5043 

Buckling in-plane 

according to EC3 

Buckling out-of-

plane according to 

EC3 

Buckling out-of-

plane according to 

EC3 

Error of EC3 simplified formula with 

respect to Ncr numerical results (%) 

��� − ���

���
∙ ��� 

77 79 27 

Ncr out-of-plane according to EC3 (kN) 9100 5213 5043 

Error of EC3 out-of-plane simplified 
formula with respect to Ncr numerical 

results (%) 

61 79 27 

Ncr out-of-plane buckling according to 

Bergmeister et al EC3 formula 

modification (kN) 

6980 6980 - 

Error of Bergmeister et al EC3 formula 
modification with respect to Ncr 

numerical results (%) 

70 72 - 

qcr out-of-plane buckling according to 

Bergmeister et al formula (kN/m) 
81 81 - 

Error of Bergmeister et al simplified 

formula with respect to qcr numerical 

results (%) 

73 90 - 

Table 4-4: Analytical results comparison for arch bridges with an inferior deck with different g 

values and f=20m (Figure 3-1), employing the reference cross-sections 
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5. CONCLUSIONS 

• SABs with a curved deck buckle in- and out-of-plane at the same time, even if a planar 

vertical arch is employed. This is so because, for a vertical loading, the deck undergoes 

horizontal and vertical displacements due to spatial the geometry of SABs. 

• Critical buckling loads for a uniform distributed load on the whole deck length (lu) are 

lower than for a uniformly distributed loading on half the deck length (la) as expected, 

since lu causes larger axial forces in the arch that la. 

• Geometries which give lower critical buckling loads usually coincide with geometries 

which bear larger axial forces in the arch. However, f values approximately in the range 

L/6≤f≤L/4 buckle for a larger load than f>L/4, in spite of undergoing larger axial forces. 

• For large f values the arch buckles nearly independently of the deck because the struts are 

longer and thus less stiff.  

• For low f values the arch and deck buckle together because arch and deck tend to work as 

a truss. 

• For planar vertical arches with a superior straight deck, restraining torsional rotations 

improves the buckling behaviour, since it diminishes the destabilizing effect of the deck. 

• Planar vertical SABs with a planar vertical arch and a superior curved deck buckle in both 

planes of the arch symmetrically except for low f values: 

• The larger the f value, the larger the out-of-plane component. 

• The buckling shapes are equivalent whatever the value of the cross-sections employed 

and of the bearing conditions. 

• The geometry that best resists buckling is employing convergent struts, since for this 

geometry the arch bears the lowest axial forces and stresses. As expected, this is 

coincident with the most efficient model for spatial arch bridges with a curved superior 

deck sustained by a planar vertical arch regarding the minimum mass criteria employing 

design cross-sections as concluded in chapter V. B. 

• However, when employing the design cross-sections to analyse the buckling, not only the 

geometry has influence, but also the stiffness distribution in the bridge. Since models 

employing vertical struts need stiffer struts, employing vertical struts happens to be more 

favourable for avoiding buckling in practice. 

• Employing a stiffer deck or struts improves the buckling behaviour of the arch, since the 

deck has a stabilizing effect. This is more efficient than increasing the arch stiffness. 

• Not only need formulae for SABs be developed, but also an improvement of the existing 

formulae for planar arch bridges with a straight deck is required, since the existing 

formulae are very conservative. 



CHAPTER VI. SECTION B. BUCKLING ANALYSES OF SPATIAL ARCH BRIDGES WITH A CURVED DECK 
 
 

333 

 

• If the total load on the bridge is calculated for the buckling coefficient α under the load 

case (1,35·(w+pl)+ α·lu) and α1 (α1·[1,35·(w+pl)+1,5·lu]) very similar values are 

obtained, but the error of employing α1 instead of α is non-negligible (approximately 

6%). Strictly correct method and most realistic would be to calculate α, employing α1 

gives insecure (larger) buckling load values. 

 

6. FUTURE LINES OF STUDY 

• Development of analytical formulae for the critical buckling load of SABs  

• Improvement of the existing formulae for the critical buckling load of planar arch bridges 

with a straight deck, since existing formulae are very conservative. 
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1. INTRODUCTION 
Spatial arch bridges might undergo important geometrical non-linearities. Therefore, their 

behavior should be checked conducting a geometrically non-linear analysis and obtaining the 

ultimate load.  

For the present study it is considered that the ultimate load is reached when the first fibre of the 

cross-section bearing the largest stresses plasticizes. 

1.1 Previous studies 

There are no equivalent European buckling curves for arch bridges. Therefore, the coded 

imperfections will be employed following the first mode of buckling shape as stated in Eurocode 

3 (EC3 Part 1.1 Chapter 5.3.2). The specific values for arches in EC3 (Annex D.3.5) will also be 

employed. These imperfection values are expected to be conservative, as confirmed in the 

benchmark for the program SAP2000 v14 presented in Chapter III. B. 

These tables are for planar vertical arch bridges with a straight deck and are not meant for 

composing both imperfections, but for evaluating each buckling mode independently. There is no 

reason while in this bridge type the imperfection should be larger than the maximal usual value 

for arches. However, since the imperfection according to EC3 Part 1.1 chapter 5.3.2 will also be 

employed and the sensitivity to imperfections is being evaluated, the composition of in-plane and 

out-of-plane imperfections will be employed. 

In Manzanares et al (2011) the value L/1000 has been employed for out-of-plane imperfections as 

additional to residual stresses for a planar arch bridge with a straight deck and the same value has 

been used by Outtier et al (2007) for modelling imperfections, together with eccentricity 

variations and residual stresses. 

1.2 Objectives 

The purpose of our study is to: 

• compare the effects of geometrical non-linearities on planar arch bridges with a straight 

deck and on SABs with a superior curved deck. 

• compare the effects of geometrical non-linearities on SABs with a superior curved deck 

with different f values. 

• evaluate the sensitivity of SABs with a superior curved deck to the values of 

imperfections stated in EC3 

• evaluate whether the design cross-sections obtained from a linear analysis (LA) are still 

valid when considering geometrical non-linearities 
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1.3 Loading cases and combinations 

LA-GNLA comparison of the model with the cross-section already designed for LA is conducted 

under:  

• Combination A1 and Combination A2 (defined in chapter V. B section 1.5.3 and 
bookmark), since most of the forces of the stress envelope of the arch come from 
Combination A1 with small differences with Combination A2 but it is interesting 
to see what happens with Combination A2 

• Combination B and Combination A2 (defined in chapter V. B section 1.5.3 and 
bookmark), since most of the forces of the stress envelope of the deck come from 
these hypothesis 

• Combination A1 and Combination A2, since most of the forces of the stress 
envelope of the struts come from these hypothesis 

The cross-section design is obtained from the loading combinations envelope which gives the 

highest stresses when conducting a LA, as described in Chapter V. B. 

The loading combination A1 (Chapter V. B section 1.5.3), with a UDL on the whole arch, is 

employed as basis for the geometrically non-linear step-loading analyses with SAP2000 

(combination A1’ defined in the following lines). This load case combination has been chosen, 

since it was the more critical loading distribution for buckling (previous section B of the present 

chapter) and proved to be the loading combination which gave the largest arch stresses in the 

results obtained in chapter V. B. 

Based on the aforementioned combination a step loading (∆q) has been conducted in order to 

obtain a live load coefficient (α) for the beginning of the plasticization for each model, ie: for a 

certain ∆q plasticization starts for an α value that satisfies ∆q=α·lu 

The load under which the bridge is analysed is Combination A1’: 1,35·(w+pl)+ ∆·q, where: 

• w is the self-weight, with a steel specific weight of 76,97kN/m3 

• pl is the permanent load of 2,5kN/m2. Considering 4m width: pl=10kN/m 

• lu is a uniform live loading on the whole length of the deck. The live load value is of 

5kN/m2 according to EC1 Part 2. Section 4.3.5 for footbridges. Considering 3m of usage 

width, employing the rest of the width for the railings, the value of live loads is 15kN/m. 

• The step loading analysis starts after the geometrically non-linear analysis (GNLA) of the 

permanent load state 1,35·(w+pl) has been performed 
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1.4 Research procedure and values 

1.4.1 Model values 

In order to understand the behaviour of these arches, different frame 3D models have been 

developed and analysed with commercial software. As in the previous studies, the arch and deck 

plan curvature are measured as horizontal sag (gA and gD respectively), the arch rise is called f, the 

arch/deck eccentricity in plan view is e, the distance between arch and deck at span center is v and 

the arch and deck spans are LSA and LSD respectively and are considered equal (L) in all models 

(see Figure 1-1 for a particular model as an example). 

The parameters are closely detailed in Chapter V.B section 1.2. Please refer to the aforementioned 

chapter or employ the bookmark. 

The imperfection value considered at the arch point with maximal displacement in the deformed 

buckling shaped is named e0. 

 

Figure 1-1: Frame 3D model for g=20m, f=20m and maximal spatial  imperfection e0 = 224mm 

For all the studies presented, the following dimensions have been employed:  

• LSA=LSD=L=100m;  

• gA=0; g=gD=  0 and 20m 

• e=g/1,2=16,67m for g=20m as recommended in chapter V.B 

• f =L/5=20m as recommended in chapter V.B and section VI.B of the present chapter and 

f=L/2=50m, since it gave the lowest buckling load in section VI.B of the present chapter 

• v=0 
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The shape of the arch is always a parabola. 16 struts have been employed in all the models. The 

inclination of the struts is determined by the uniform division of the deck and the arch for all the 

models, which leads to a radial distribution.  

The material employed is steel S355 with a 2,0·108 kN/m2 modulus of elasticity (E) and resistance 

fy=355MPa. 

The studied arches in each of the considered models are fixed at the springings. The deck is 

pinned at abutments and tangential longitudinal displacements are restrained for SABs and free 

for g=0, as recommended in Chapter V.A. The radial displacements are restrained. 

The struts are completely fixed to arch and deck. 

For stresses and axial forces values>0 are tensions and <0, compressions. 

A GNLA has been conducted for the reference cross-section values (Table 1-1) and also for the 

design cross-sections for arch, deck and struts (Table 1-2 and Table 1-3) obtained in ChapterV.B. 

ARCH 

CHS D=1m; t=30mm 
A= 0,0914m2 
J= 0,0215m4 
I2= 0,0108m4 
I3= 0,0108m4 

DECK 

BOX GIRDER 4000x800mm; t=15mm 
A= 0,1431m2 
J= 0,0615m4 
I2= 0,2517m4 
I3= 0,0196m4 

STRUTS 

CHS D=451mm;t=22,6mm 
A= 0,0304m2 
J= 0,0014m4 

I2= 0,0007m4 
I3= 0,0007m4 

Table 1-1: Reference cross-section values 

 

 g=20m 
 f=20m f=50m 

ARCH 

CHS D=750mm; t=30mm 
A= 0,0679m2 
J= 0,0088m4  
I= 0,0044m4 

CHS D=750mm; t=20mm 
A= 0,0459m2 
J= 0,00061m4  
I= 0,0031m4 

DECK 

BOX GIRDER 4000x700mm; t=20mm 
A= 0,1864m2 
J= 0,0629m4 
I2= 0,3179m4 
I3= 0,0095m4 

STRUTS 
CHS D=300mm;t=35mm 

A= 0,0291m2 
J= 0,00052m4 
I= 0,0003m4 

CHS D=300mm;t=45mm 
A= 0,0360m2 
J= 0,0006m4 
I= 0,0003m4 

Table 1-2: Design cross-section values for g=20m 

  



CHAPTER VI. SECTION C. GEOMETRICALLY NON-LINEAR ANALYSES OF SPATIAL ARCH BRIDGES 
WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

341 

 

 g=0 
 f=20m 

ARCH 

CHS D=750mm; t=25mm 
A= 0,0569m2 
J= 0,0075m4  
I= 0,0037m4 

DECK 

BOX GIRDER 4000x700mm; t=20mm 
A= 0,1864m2 
J= 0,0629m4 
I2= 0,3179m4 
I3= 0,0095m4 

STRUTS 

CHS D=300mm;t=60mm 
A= 0,0452m2 
J= 0,00069m4 
I= 0,0003m4 

Table 1-3: Design cross-section values for g=0 

 

1.4.2 Analyses method 

A step loading and geometrically non-linear analysis (GNLA) with SAP2000 v14 has been 

developed for the 3D frame models with values described in section 1.4.1. The P-delta+large 

displacements method (as recommended in the benchmark in chapter III. B) has been employed. 

An example of one of these frame models can be observed in Figure 1-1. Various models with 

different number of FE have been analysed. An analysis with SOFISTIK has also been conducted 

for the model with g=20m and f=50m. 

A previous benchmark has been done with both softwares (chapter III. B). Whereas SAP2000 

gave better results. Hence, SAP2000 is used for the step loading analysis (section 2.2). However, 

introducing the imperfections based on the 1st mode buckling shape is quicker with SOFISTIK. 

Therefore, SOFISTIK is employed to obtain the imperfection geometry and for section 2.1 in this 

chapter. Employing both softwares in a SAB example and comparing the results (section 2.1.1), 

shows the equivalency of employing one software or another for this section. 

Analyses have been conducted with both displacement and load control for one of the models. 

Both methodologies have shown identical results and load control has been applied for all the 

models. 

An elastic analysis has been employed and it is considered valid until the yielding of the most 

stressed cross-section of the structure. For the step-loading analyses this gives a loading 

coefficient value α described in section 1.3. 

1.4.3 Imperfection values 

As already explained in section 1.1 and the state-of-the-art in the present chapter V.A, there are 

no equivalent European buckling curves for arch bridges. Therefore, the coded imperfections will 

be employed following the first mode of buckling shape as stated in EC3 Part 1.1 Chapter 5.3.2. 

Two different imperfection values have been employed for each model according to EC3 Part 1.1 

Chapter 5.3.2 and EC3 (Annex D.3.5)  

These imperfection values are conservative, as demonstrated with a benchmark for the program 

SAP2000 v14 in chapter III.B and Outtier et al (2007a). 
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According to EC3 (Annex D.3.5) imperfections of arches are only given in one plane, either in-

plane or out-of-plane of the arch. However spatial arch bridges buckle in both planes as 

demonstrated in Chapter III.B. Therefore the buckling shape is employed and as imperfection 

value it seems logical to consider the maximal value either in-plane or out-of-plane given by the 

standards, since imperfections should not expected to be bigger as in a planar arch. However, on 

the side of security and in order to see the influence of large imperfections, the vector of both in-

plane and out-of-plane imperfections given in EC3 (Annex D.3.5) have been employed. 

The imperfection values obtained for each model and according to both, EC3 (Annex D.3.5) and 

specific for arch bridges (EC3 Annex D.3.5 Tables D.8 and 9, shown in section A of the present 

chapter) are displayed in Table 1-4. 

L (m) g (m) f (m) 
e0(mm) according to 

imperfections for 
complex structures 

e0(mm) according to 
imperfections for 

arch bridges  
(EC3 Annex D.3.5) 

100 20 20 23 224 
100 20 50 44 224 
100 0 20 29 149 
Table 1-4: Arch imperfection values according to different chapters of EC3 

L/1000 is employed as the maximal out-of-plane imperfection by Manzanares et al (2011), a 

much larger value than the measured imperfections, but it is not really comparable since these 

were in-plane imperfections in the vertical direction. Outtier et al (2007) employ L/1000 for out-

of-plane imperfections, but including the residual stresses. 

 

2. ANALYSES OF THE RESULTS 

2.1 STRUCTURAL RESPONSE UNDER DESIGN LOADING 

A first study has been conducted for g=20m and f=50m, based on the results of Chapter V. B. 

On the one hand, the validity of both, the SAP2000 software and SOFISTIK is controlled by 
comparing the results obtained with each software. Both softwares will be combined since certain 
features are easier in one or another (section 1.4.2). 

On the other hand, the bridge behavior and stresses under the design load obtained by means of a 
first order analysis and a GNLA have been compared, in order to see the influence of non-
linearities in this bridge type on a first approach. No imperfections have been introduced for this 
first approach. 

2.1.1 SOFISTIK and SAP2000 results comparison 

A SAB model with planar vertical arch, g=20m and f=50m and a superior curved deck with 
e=16,67 has been analysed with SAP2000 and SOFISTIK. Reference cross-sections have been 
employed. 

Both LA and GNLA have been carried out with each software and compared. The arch structural 
forces response comparison under Combination A1 is displayed in Figure 2-1 and Figure 2-2. 



CHAPTER VI. SECTION C. GEOMETRICALLY NON-LINEAR ANALYSES OF SPATIAL ARCH BRIDGES 
WITH A CURVED SUPERIOR DECK AND A PLANAR VERTICAL ARCH 
 

343 

 

The same forces have been obtained with both softwares employed for the analysis, the 
differences are negligible. Both, in the case of linear and geometrically non-linear analysis. 

 
(a) 

 
(b) 

 
(c) 

Figure 2-1: Internal forces under Combination A1 LA for g=20 and f=50m. SAP2000 and SOFISTIK 
LA comparison. (a) Arch axial forces (kN); (b) Arch out of plane bending moments (M2-2, kN·m); (c) 
Arch in-plane bending moments (M3-3, kN·m) The abscissas are the arch length from 0 to LA (or from 
0 to LA/2 in cases b and c, the symmetry dashed line marks LA/2, the numbers indicate the station of the 

FE analysis numeration) 
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(a) 

 
(b) 

 
(c) 

Figure 2-2: Internal forces under Combination A1 GNLA for g=20 and f=50m. SAP2000 and 
SOFISTIK GNLA comparison. (a) Arch axial forces (kN); (b) Arch out of plane bending moments 
(M2-2, kN·m); (c) Arch in-plane bending moments (M3-3, kN·m) The abscissas are the arch length 
from 0 to LA (or from 0 to LA/2 in cases b and c, the symmetry dashed line marks LA/2, the numbers 

indicate the station of the FE analysis numeration) 
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2.1.2 Linear and geometrically non-linear analyses comparison 

A SAB model with planar vertical arch, g=20m and f=50m and a superior curved deck with 
e=16,67 has been analysed with SAP2000 performing a LA and a GNLA. Reference cross-
sections have been employed. 
Internal forces in the arch and stresses in the bridge under Combination A1 obtained by both, LA 
and GNLA, have been compared (Figure 2-3 and Figure 2-4, respectively). 

 
(a) 

 
(b) 

 
(c) 

Figure 2-3: Internal forces under Combination A1 for g=20 and f=50m. LA and GNLA comparison. 
(a) Arch axial forces (kN); (b) Arch out of plane bending moments (M2-2, kN·m); (c) Arch in-plane 
bending moments (M3-3, kN·m) The abscissas are the arch length from 0 to LA (or from 0 to LA/2 in 

cases b and c, the symmetry dashed line marks LA/2, the numbers indicate the station of the FE analysis 
numeration) 
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 (a) 

 
 (b) 

 
(c) 

Figure 2-4: Stresses (kN/m2) under Combination A1 for g=20 and f=50m. LA and GNLA comparison. 
(a) Stresses along the arch. The abscissas are the arch length from 0 to LA; (b) Stresses along the deck. 
The abscissas are the deck length from 0 to LD/2; (c) Stresses in struts. The abscissas are half the struts 

from the closest to the springings to the nearest at span center 
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Arch 

From the arch internal forces point of view the geometrical non-linearity is highly significant for 

bending and torsional moments.  

• Out-of-plane bending moments (Figure 2-3b) nearly double at L/8 (40% maximal relative 

error), torsional moments nearly double at the arch springings (30% maximal relative 

error). 

• In-plane bending moments (Figure 2-3c) more than double themselves at L/8 (40% 

maximal relative error) and have also high differences at L/3.  

• This is because the deformations increase the eccentricities with respect to the pressure 

line of the arch.  

• However, this effect is hardly significant in the axial forces (Figure 2-3a), which only 

diminish slightly at the arch springings and crown (1% maximal relative error). 

The stresses in the arch highly increase with respect to the ones obtained from a linear analysis 

(Figure 2-4a), When considering the geometrical non-linear effects. 

• The maximal relative error is 37% and takes place at L/8.  

• The highest effects of geometrical non-linearity take place at springings, L/8 and L/3 of 

the arch. This corresponds to the cross-sections where the main increase in bending 

moments takes place. 

• Local buckling establishes a minimal thickness for the cross-sections. Only near to the 

springings are they dependent on the internal forces.  

• Considering the geometrical non-linearities the arch cross-sections would plastify at 

springings when dimensioned with a linear analysis. There is a 27% stress maximal 

variation at springings 

• When considering the geometrical non-linearities the live load which the structure can 

bear before the first fiber in the arch cross-section plastifies is nearly half than when 

geometrical non-linearities are not considered.  

Deck 

From the internal forces point of view the geometrical non-linearity is very important for bending 

moments and also quite significant for shear forces. 

• The shape of the distribution of M2 is completely different. The location of the maximal 

bending moments changes when considering geometrical non-linearities. 

From stresses standpoint the geometrical non-linear has a non-negligible influence; with a 

maximal error of 68% (Figure 2-4b).  

• The highest effects of geometrical non-linearity take place in the central third of the deck. 

• The design of the cross-sections does not change when considering geometrical non-

linearities, since the deck is overdimensioned for the design loads because the given 

10mm thickness is needed for local bending moments, local instability of compressed 

plates and durability. 
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When considering geometrical non-linearity, the displacements become completely unbearable. 

Hence, a dynamic analysis is carried out in Chapter VII  

 

Struts 

Stiffer cross-sections are needed when considering geometrical non-linearities, in comparison 

with the ones designed to resist the forces obtained with a linear analysis. 

When considering the geometrical non-linear effects, the stresses in the struts can even double 

themselves with respect to the ones obtained from a linear analysis (maximal relative error 120%, 

Figure 2-4c). 

 

All in all, it is necessary to consider geometrical non-linearity in this bridge type. 

 

2.2 STRUCTURAL RESPONSE OF THE ARCH UNDER STEP LOADING 

The different models described in 1.4.1 have been analysed under Combination A1’ (section 1.3). 

The design cross-section values detailed in Table 1-2 and Table 1-3 have been employed. 

The largest stresses in the arch take place at springings for all models (Figure 2-5), as stated in 

section 2.1. 

The results of the axial forces and total bending moments at the arch springings under LA and 

GNLA with and without imperfections and with the different imperfection values described in 

1.4.3 have been plotted for the different steps of loading1. This gives the interaction diagram for 

the most critical cross-section of the arch (from Figure 2-5 to Figure 2-8).  

When comparing planar arch bridges with a superior straight deck with SABs with a curved 

superior deck and a planar vertical arch (Figure 2-6), the following conclusions can be drawn: 

• NLG effects have a high influence on the behavior of arch bridges, as expected. 

• For SABs, results obtained with a LA are nearer to the GNLA than for planar arch 

bridges with a superior straight deck. This is so because important bending moments are 

already obtained for SABs with LA due to their geometry and structural behavior 

described in Chapter V.B. 

When comparing SABs with a curved superior deck and a planar vertical arch with different rise 

and imperfection values (Figure 2-7), the following conclusions can be drawn: 

                                                           
1
 In all the cases the yielding load is under a 50% of the buckling load. Hence the results are considered to 

be reliable according to the benchmark in chapter III. B section 2.4 
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• NLG effects have a high influence on the behavior of SABs. A GNLA must be conducted 

for this bridge type, since the design obtained with LA can give values which will not 

resist ULS when considering GNL effects. 

• The influence of NLG effects is larger for arches with large rise values than when 

employing f values recommended in Chapter V.B. 

• The value of imperfections has a lower influence for arches with large rise values than 

when employing f values recommended in Chapter V.B 

 

Slightly stiffer cross-sections are needed when considering geometrical non-linearities, in 

comparison with the ones designed to resist the forces obtained with a linear analysis.  

The f=50 model has been analysed with a D750t20 arch, a D300t45 struts and a 700x4000t20 

deck cross-sections with and without imperfections.  

• Whereas a security factor of 2,2 for live loads is obtained with a linear analysis without 

imperfections, a 1,4 security factor is obtained with a GNLA of the model without 

imperfections (Figure 2-6).  

• This value is below the security factor of 1,5 for live loads established by the spanish 

code IAP2011 and the EC1 Part2.  

• With imperfections according to EC3 Part 1.1 Chapter 5.3.2, the security factor can fall to 

1,2. 

Note that for f=50m, when employing very large imperfection values the arch first plasticizes for 

a larger load than when analizing the model with no imperfections. This happens because it bears 

lower axial forces and similar bending moments (Figure 2-8). However it is clear, that for larger 

loads, if the material had not failed, the geometrically non-linear effects are more important when 

employing large imperfections. It must be, though, highlighted, that values above the 

plasticization load are not valid anymore, since material non-linearities have not been considered. 

2.2.1 First buckling mode imperfections direction sign 

The buckling shape obtained by means of the FE Model has two directions, positive or negative. 

Due to the asymmetry of SABs with a curved deck, both directions should be analysed. 

Since the objective of the present study was not the bridge design, but evaluating the influence of 

geometrical non-linearity on this bridge type and such influence has been already proved by 

employing the buckling shape in one direction, the negative direction will not be considered. 
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Figure 2-5: Step loading GNLA results. Axial and bending moments at different arch sections for SABs with f=50m with 224mm imperfections 
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Figure 2-6: Step loading diagram for different models with different imperfection values and with the corresponding interaction diagrams 
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Figure 2-7: Step loading diagram for SAB models with different imperfection values and with the corresponding interaction diagrams. Movements restrained at deck 
abutments. Yielding steps detail 
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Figure 2-8: Step loading GNLA results. Axial and bending moments at arch springings for SABs with f=50m without imperfections and with 224mm imperfections 
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3. CONCLUSIONS 

• NLG effects have a high influence on the behavior of SABs with a superior curved 

deck. A GNLA must be conducted for this bridge type, since the design obtained with 

LA can give values which will not resist ULS when considering GNL effects and elastic 

material failure. 

• For SABs, results obtained with a LA are nearer to the GNLA than for planar arch 

bridges with a superior straight deck. This is so because important bending moments are 

already obtained for SABs with LA due to their geometry and structural behavior. 

• The influence of NLG effects is lower when employing f values L/5=20m 

(recommended in Chapter V.B) than for arches with larger rise values. 

• The value of imperfections has a lower influence for arches with large rise values than 

when employing f values recommended in Chapter V.B. 

 

4. FUTURE LINES OF STUDY 
• Compare the behavior of different imperfection shapes obtained by the positive and 

negative buckling deformed shapes, by conducting a GNLA. 

• Consider material non-linearity as well as geometrical non-linearity, in order to observe 

the formation of hinges and the bearing capacity margin of these structures with respect 

to the material linear analysis. 
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1. INTRODUCTION AND OBJECTIVES 
For footbridges with more than 50 m span, more than 3m walkway or non-conventional bridge 

types, a dynamic analysis is necessary (IAP 2011, Ruiz-Teran and Aparicio, 2009). SABs in the 

present study satisfy all those characteristics, so whatever the frequencies would be, a dynamic 

analysis is necessary. 

Moreover, the natural frequencies of the studied SABs in the previous chapters are in the critical 

range for vibrations. 

Therefore, the conclusions of the study are not complete without conducting a dynamic analysis, 

since dynamic behaviour can be critical in this bridge type design. 

The present chapter does not pretend to draw conclusions on dynamic behaviour of this bridge 

type, which could be a subject for future lines of study. It merely pretends to check the dynamic 

behavior of the geometry concluded in previous chapters as most efficient for SABs with a planar 

vertical arch with a superior curved deck. Its dynamic behaviour is also compared with that of a 

planar vertical arch with straight deck with an equivalent span and rise. 

The necessity to conduct a dynamic analysis is evaluated according to the natural frequency of 

each structure under criteria stated by both, the IAP 2011 and the Sétra Guidelines (2006), which 

are discussed in the basis of analyses and design. 

The load cases are defined following the Sétra Guidelines (2006). These guidelines and the 

reasons for employing them and not others are discussed in the basis of analyses and design. 

The aim of the present study is giving a first approach of the dynamic behaviour of a type of 

SABs. It is therefore interesting to analyse its behaviour under design dynamic loads of one of the 

present codes or guidelines and also the behaviour under the dynamic load case of a single 

pedestrian and of a small group. 
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2. BASIS OF ANALYSIS AND DESIGN 

2.1  Codes and research 

Dynamic analysis necessity research 

According to Ruiz-Teran and Aparicio, 2009: “The correlation between deflections and 

accelerations (proposed by Smith and accepted by several codes) only exists for systems with a 

single degree of freedom (or for systems in which one mode dominates the dynamic response). No 

correlation between both approaches can be established for real structures with multiple degrees 

of freedom. 

“Consequently, conducting a full dynamic analysis is required in order to verify the SLS 

vibrations.” In the aforementioned paper the acceleration-based approach is proposed for the 

appropriate verification of the SLS of vibrations, since for non-conventional bridges, also with 

small spans, the deflection-based approach might be unsafe for some cases and too conservative 

for other cases of non-conventional bridges, leading to an over-design. 

Eurocode 1 

The EC1 Part2 section 5 on actions on footways, cycle tracks and footbridges states that 

appropriate dynamic models of pedestrian loads and comfort criteria should be defined. The 

dynamic models of pedestrian loads and associated comfort criteria may be defined in the 

National Annex or for the individual project. Therefore, the dynamic analyses is not defined for 

the EC, leaving the criteria of this analysis to the designers. 

Eurocode 1 UK National Annex  

In general, for road and railway bridges, the Eurocode 1 UK National Annex NA.2.50 (2003) 

states that determining whether a dynamic analysis is required (in addition to static analysis) is 

based on a series of requirements in which, firstly, it must be differentiated between simple and 

complex structures. According to EC1 UK NA (2003): 

“Simple structures which exhibit longitudinal line beam behaviour with insignificant 

contributions from other dynamic modes will generally comprise of deck type structures of slab, 

beam and slab or box and slab construction where the tracks are located over the webs of 

longitudinal spanning elements and where the deck/floor elements are not required to directly 

distribute axle/wheel load effects to the longitudinal elements by transverse bending”.   

“Complex structures require deck/floor elements to distribute axle/wheel loads to primary 

longitudinal elements. Complex structures will typically include through/half through structures 

with primary transverse spanning deck/floors, as well as deck type structures of beam and slab 

(or box and slab) construction where the deck/floor elements are required to distribute loads to 

the longitudinal elements in bending”.  

Once classified into simple or complex, the need of a dynamic analysis depends on the maximum 

speed at the bridge and the span length and the first natural bending frequency of the bridge 

loaded by permanent actions.  
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For footbridges, dynamic models are defined in NA.2.44 and they are associated to comfort 

criteria. Two analyses are required: 

• The maximal vertical deck acceleration 

• The likelihood of large synchronized lateral responses. 

We would like to highlight, that the EC1 UK NA (2003) already takes into account the lock-in of 

a pedestrian crowd, but reliable test measurements on which the code is based are only available 

for footbridges with lateral frequencies in the range of 0,5 and 1,1Hz. If out of this range, or if out 

of the lock-in stability boundaries, the EC1 UK NA does not define a lateral dynamic loading to 

conduct ananalysis. 

As for vertical acceleration dynamic loading analysis, the EC1 UK NA establishes no limits to 

decide whether it should be checked or not. It directly considers the necessity of defining a 

vertical dynamic loading. 

Bridges are categorized into bridge classes by their usage to determine the appropriate actions due 

to pedestrians. Group sizes for each bridge class and densities should be applied as given in Table 

2-1. 

According to NA.2.44.2 “Depending on the expected bridge usage, it may be determined that 

jogging cases given in Table NA.7 can be neglected for individual projects”. 

 

Table 2-1: Recommended densities for design (Source: EC1 UK NA Table NA.7) 

According to NA.2.44.3: 

“In calculating the peak vertical deck accelerations account should be taken of the following.  

• The load models provided should be applied in order to determine the maximum vertical 

acceleration at the most unfavourable location on the footbridge deck.  

• The calculated vertical responses should include the effect of torsional or other motions.  

• Modes other than the fundamental mode may need to be taken into account in order to 

calculate the maximum responses.  

• When the vertical deck modes are not well separated, consideration should be given to 

the use of more sophisticated methods of analysis, in order to determine combined mode 
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responses. In all cases, it is conservative to use the vector sum of the peak accelerations 

for those modes that need such combination.” 

The design maximum vertical accelerations that result from single pedestrians or pedestrian 

groups should be calculated by assuming that these are represented by the application of a vertical 

pulsating force (F, sinusoidal time history function), moving across the span of the bridge at a 

constant speed: F = F0.k(fv). �1	 + �	. (�	– 	1). sin(2π.fv.t) 

The natural frequency of the bridge is employed to define the time history function. 

The reference load of a pedestrian and walking speed is defined in Table 2-2. 

Several factors are employed in order to consider: 

• the effects of a more realistic pedestrian population,  

• the harmonic responses  

• the pedestrian sensitivity to response 

• the unsynchronized combination of actions in a pedestrian group, depending on damping 

and effective span  

• the mode shape. 

 

F0 is the reference amplitude of the applied fluctuating force F 

Table 2-2: Parameters to be used in the calculation of pedestrian response (Source: EC1 UK NA Table 
NA.8) 

The design maximum vertical accelerations that result from pedestrians in crowded conditions 

may be calculated by assuming that these are represented by a vertical pulsating distributed load, 

applied to the deck for a sufficient time so that steady state conditions are achieved. 

A sinusoidal time history function with the natural frequency of the bridge is employed. 

The crowd is limited to 1.0 persons/m2. This is because crowd densities greater than this value 

produce less vertical response as the forward motion slows. 

In addition to the previously mentioned factors to define the single pedestrians or pedestrian 

groups load, other factors are employed in order to define the crowd load: 

• Factor to allow for the unsynchronized combination of actions in a crowd. 

• The effective number of pedestrians when loading from only part of the span contributes 

to the mode of interest. 

NA.2.44.6 defines a limit acceleration which depends on: 

• the site usage  
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• the route redundancy (ie: if there other routes available) 

• the height of structure  

Note that the two latter are not considered in other codes or guidelines summarized in the present 

document. 

Finally, the EC1 UK NA also considers the importance of avoiding lateral responses due to crowd 

loading in NA.2.44.7: 

• “Structures should be designed to avoid unintended unstable lateral responses. 

• If there are no significant lateral modes with frequencies below 1,5Hz it may be assumed 

that unstable lateral responses will not occur”. 

For all other situations, the pedestrian mass damping parameter and the mode frequency should be 

compared with a stability boundary defined in the code (Lateral lock-in stability boundaries, 

Figure NA.11, EC1 UK NA, 2003) 

The pedestrian mass damping parameter depends on:  

• the mass per unit length of the bridge 

• the mass per unit length of pedestrians for the relevant crowd density 

• the structural damping 

Instrucción de Acciones en Puentes (IAP 2011, Spanish bridge action code) 

According to IAP (2011), in general, apart from the exceptions indicated on the following lines, 
the SLS of vibrations in footbridges will be considered under control if their natural frequencies 
are outside the two ranges below: 

• Critical range for vertical and longitudinal vibrations: from 1.25 to 4.60 Hz 
• Critical range for lateral vibrations: from 0.50 to 1.20 Hz 

In those gateways whose natural frequencies are within these ranges shall be required specific 
dynamic studies to ensure comfort requirements of pedestrians. 

In any case, regardless of the value of the natural frequencies, also be checked by dynamic studies 
proper vibrational response of the walkways when any of the following circumstances: 

• Span greater than 50 m  
• Platform width greater than 3.0 m  
• Special structural type or new materials 
• Location in urban areas where heavy pedestrian traffic is expected or with a risk of 

concentration of people on the footbridge itself 

The comfort level according to the acceleration is also defined in this code (see Table 2-3). 

Comfort level Vertical acceleration Lateral acceleration 
Maximum < 0,50 m/s2 < 0,10 m/s2 
Middle From 0,50 to 1,00 m/s2 From 0,10 to 0,30 m/s2 
Minimum From 1,00 to 2,50 m/s2 From 0,30 to 0,80 m/s2 
Unacceptable >2,50 m/s2 > 0,80 m/s2 

Table 2-3: Comfort level for different acceleration ranges according to IAP2011 

In this code no specific loading is given to conduct the dynamic analyses. 
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Sétra Guidelines 

The Sétra guidelines (2006) take into account the lock-in of a pedestrian crowd studied by Fujino 

et al (1993), the theory formulated for the Millenium footbridge, the Solferino footbridge and also 

performed laboratory tests on a platform. The analysis of these studies lead to the conclusion that 

the concept of critical acceleration seems more relevant than that of a critical number of 

pedestrians. It is thus the critical acceleration threshold, which is mainly discussed in the Sétra 

guidelines. 

The Sétra recommendations offer a summary of the risk frequencies for vertical vibrations in 

current regulations (Table 2-4) and critical accelerations given a natural frequency (Figure 2-1). 

 

Table 2-4: Risk frequencies in current regulations (Source: Sétra, 2006) 

 

Figure 2-1: Vertical critical accelerations in m/s2 as a function of the natural frequency for various 
regulations (Source: Sétra, 2006) 

The Sétra guidelines themselves establish the acceleration ranges for different comfort levels 

(Figure 2-2). Accelerations in Range 1 corresponds to the maximum comfort level, 3 to the 

minimum and 4 to uncomfortable acceleration levels that are not acceptable. 

The horizontal acceleration is limited in any case to 0,10m/s2 to avoid “lock-in” effect (Figure 

2-2b).  
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 (a) (b) 

Figure 2-2: Acceleration ranges in m/s2 for (a) vertical and (b) horizontal vibrations (Sétra, 2006) 

The risk of resonance is classified in different ranges for different frequencies (Figure 2-3) with 2 
mass assumptions: empty footbridge and loaded throughout its bearing area, to the tune of one 
700N pedestrian per square meter. 

  

 (a) (b) 

Figure 2-3: Risk of resonance. Frequency ranges in Hz for (a) vertical and (b) horizontal vibrations 
(Source: Sétra, 2006) 

The necessity of the dynamic calculation is decided according to the natural frequency range 

(from range 1 with a maximum risk of resonance to 3 minimum, being the risk negligible for 

frequencies in the range 4). The natural frequency range and the bridge class gives the dynamic 

load cases for which it must be conducted (Figure 2-4). The class depends on the bridge usage. 

For very light bridges Sétra advises to consider at least class III to ensure a minimum amount of 

risk control. 

 

Figure 2-4: Verifications. Load case under consideration of the natural frequency and class of the 
footbridge (Source: Sétra, 2006) 
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The loading adopted for the dynamic analyses establishes the density of the crowd (d) for the 

different cases. Given the total area of the footbridge, the density gives the number of pedestrians 

involved. This is transformed into an equivalent number of pedestrians 

Case 1: 

The details of this case are given as an example and will be used to calculate the loading for the 

present study (section 5). Summarising and citing Sétra (2006): 

“The density d of the pedestrian crowd is to be considered according to the class of the 

footbridge” (Table 2-5). 

 

Table 2-5: Density d of the pedestrian crowd according to the class of the footbridge (Source: Sétra, 
2006) 

“The load that is to be taken into account is modified by a minus factor ψ which makes 

allowance for the fact that the risk of resonance in a footbridge becomes less likely the further 

away from the range 1.7 Hz – 2.1 Hz for vertical accelerations, and 0.5 Hz – 1.1 Hz for horizontal 

accelerations”. The values which this factor adopts for different frequencies are shown in Figure 

2-5. 

 

Figure 2-5: Factor ψψψψ in the case of walking, for vertical and longitudinal vibrations on the left, and 
for lateral vibrations on the right. (Source: Sétra, 2006) 

Table 2-6 “summarises the load per unit area to be applied for each direction of vibration, for any 

random crowd” (Sétra, 2006).  

• ξ represents the critical damping ratio (no unit), and n the number of pedestrians on the 

footbridge (d x S).  

• These loads are to be applied until the maximum acceleration of the resonance is 

obtained.  

• These load cases are not to be applied simultaneously. The vertical load case is applied 

for each vertical mode at risk, and the longitudinal load case for each longitudinal mode 

at risk, adjusting on each occasion the frequency of the load to the natural frequency 

concerned. 
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Table 2-6: Load per unit area to be applied for each direction of vibration (Source: Sétra, 2006) 

Cases 2 and 3 are obtained by the same process but with other values. 

The load direction should follow the sign of the mode shape as shown in Figure 2-6. 

 

Figure 2-6: Calculation methodology for the equivalent number of pedestrians Neq (Source: Sétra, 
2006) 
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 “ Design of floor structures for human induced vibrations” ( JRC European Commission) 

Feldmann et al (2009) have developed a report under the JRC-ECCS cooperation agreement for 
the evolution of Eurocode 3. This report gives a procedure for the determination and assessment 
of floor responses to walking of pedestrians and leads to easy-to-use design charts, taking account 
of the complexity of the mechanical vibrations problem. 

The phases of walking are described. The duration of the pace and the distribution of the weight 
on the floor during time depend exclusively on the frequency of the pedestrian. A statistical study 
of the dynamic loading normalized to the weight and according to the frequency is described in 
this report. This leads to a polynomial function which describes the contact force due walking 
along the time (Figure 2-7a). Another polynomial function describes the duration of the pace as a 
function of the frequency (Figure 2-7b). 

 
(a) 

 
(b) 

Figure 2-7: (a) Contact force due walking along the time. (b) Duration of the pace as a function of the 
frequency 

The weight of the pedestrian and the frequency are independent variables. 
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In order to obtain a time history of the dynamic loads due to several people walking on the 
structure: 

1) n pace frequencies of pace and n pedestrian masses are chosen randomly. 
2) Frequencies and masses are paired randomly. 
3) A time history of each pair of data is generated, ie for each pedestrian a time history is 

generated with the aforementioned polynomial function 
4) All the time histories obtained are added 

This method leads to establish a time history, enabling a dynamic loading analysis which will give 
an acceleration. The comfort degree can then be obtained with the comfort degrees given by 
different codes for footbridges, such as the aforementioned IAP 2011 or the Sétra Guidelines. 

 

2.2 Examples of dynamic behaviour 

2.2.1 Dynamic response of the Millenium Bridge. Quantification of the locking 
effect 

An example worth mentioning, that set out different tests and researches, which added to previous 
ones, set nowadays codes, is the London Millenium Bridge, a suspension footbridge. 

Citing Dallard et al (2001): “During design of the London Millenium Bridge, a modified BS 5400 
approach was used for assessment of the response to vertical pedestrian excitation, using a 
higher input force than is recommended in the code”. “To take into account the effects resulting 
from the inclined cables, including the coupling of lateral and torsional movements, the lateral 
and torsional response to eccentrically applied vertical loads was also assessed”. 
“It is estimated that between 80 000 and 100 000 people crossed the bridge during the opening 
day. Analysis of video footage showed a maximum of 2000 people on the deck at any one time, 
resulting in a maximum density of between 1.3 and 1.5 people per square metre” (Dallard et al 
2001). Unexpected excessive lateral vibrations of the bridge occurred. The movements took place 
mainly at a frequency of around 0.8Hz and at frequencies of just under 0.5Hz and 1.0Hz (different 
values for different spans that were not the most critical ones of the aforementioned analysis). 

“Excessive vibration did not occur continuously, but built up when a large number of pedestrians 
were on the affected spans of the bridge and died down if the number of people on the bridge 
reduced, or if the people stopped walking “(Dallard et al 2001). 

“From visual estimation of the amplitude of the movements on the south and central span, the 
maximum lateral acceleration experienced on the bridge was between 200 and 250 milli.-Agt”. 
The strong lateral response of the Millennium Bridge was caused by resonance. 

Until the research lead as a result of the incident of the excessive vibration of the London 
Milenium bridge the phenomenon of synchronous lateral excitation was explained in a few 
reports, but none of them gave any reliable quantification of the lateral force due to the 
pedestrians, or any relationship between the force exerted and the movement of the deck surface 
(Dallard et al 2001). Research was conducted through laboratory tests and crowd tests on the 
Millennium Bridge itself. Useful results were obtained, which enabled the design of the retrofit to 
be progressed. 
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2.2.2 Highlights on SABs 

Some examples of SABs with a vertical inclined arch and a straight deck are the Merchants 
Bridge and the York Millenium Bridge (Figure 2-8) and the Dreiländer bridge with a straight deck 
suspended of a vertical arch braced to an inclined arch (Figure 2-9). 
  

  

 (a) (b) 

Figure 2-8: (a) Merchants Bridge. (b) York Millenium Bridge 

Tuned mass dampers were installed within the deck of the Merchants Bridge (Mairs, 2001).  
The York Millenium Bridge did not require the use of dampers. An analysis was conducted with 
an average of 2 people per square meter of main span each applying a peak dynamic load of 25N. 
This generates a horizontal acceleration of 0,4m/s2 (Mairs, 2001). 
 

 

Dreiländer bridge 

 

Figure 2-9: Dreiländer bridge (reproduced by kind permission of Hans-Peter Andrä) 

The natural frequency of the bridge is 0,9Hz according to a modal analysis (Strobl et al, 2007). 
This is in the range of pedestrian lateral frequency. A dynamic analysis was conducted according 
to Fujino et al (1990 and 2005). According to this analysis, walking crowds with a density higher 
than 0,24pers/m2 would destabilize the bridge and the use of 10T mass damper at midspan would 
be needed. 
However, practical dynamic tests were performed on the bridge, giving a natural frequency a 10% 
higher (1,01Hz). For 0,24pers/m2 the frequency of the pedestrian pace was below 1Hz. Bringing 
the pace near to the bridge frequency, an acceleration of 1,5m/s2 was reached. It was decided to 
use no dampers and there have been no problems up to date in spite of the large pedestrian density 
during the bridge inauguration and celebrations (Strobl et al, 2007, and LAP internal reports, 
2015). 
  



CHAPTER VII. DYNAMIC ANALYSIS OF SPATIAL ARCH BRIDGES WITH A CURVED SUPERIOR DECK 
AND A PLANAR VERTICAL ARCH 
 

371 

 

3. STUDIED PARAMETERS AND GEOMETRIES 
A dynamic analysis has been conducted for vertical planar arch bridges with a straight superior 
deck and spatial arch bridges with a vertical planar arch and a superior curved deck with g=20m 
(see Figure 3-1, Figure 3-2  and bookmark) and the values e=16,67m and f=20m, concluded to be 
the most efficient in Chapter V. 

The cross-sections employed are detailed in Table 4-4. 

The damping coefficient employed, considering that it is a steel structure is 0,4% 

The arch in both bridges is fixed at its springings. The torsional rotations are restrained at the deck 
abutments (rtr), other rotations are free and vertical and transverse/radial movements are 
restrained. Longitudinal movements are restrained (rlm) at the deck abutments for SABs and are 
free (flm)for the planar vertical arch with straight deck. 

         

(a)  (b) 

 

  (c) 

Figure 3-1: Geometry of arch bridge with g=0 and f=20m.. (a) Lateral view (yz); (b) Layout (xz); (c) 
Plan view (xy) 

  

 (a) (b) 

 

  (c) 

Figure 3-2: Geometry of arch bridge with g=20m and f=20m. (a) Lateral view (yz); (b) Layout (xz); 
(c) Plan view (xy)  
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g e f Struts Arch Deck 
Movements at 

deck abutments** 

0 0 20 
D300t25. Reference 

distribution*  
D750t25 

B4000H700t20→Sec1 flm,rtr 

20 16,67 20 D300t35. radial (Reference*) D750t30 B4000H700t20→Sec1 rlm,rtr 
20 16,67 20 D300t35. radial (Reference*) D750t30 B4000H700t12→Sec2 rlm,rtr 

*See chapter V.B    ** See chapter V.A or bookmark     

Table 3-1: Characteristics of the analysed models 

4. NATURAL FREQUENCIES AND NEED OF CONDUCTING A 
DYNAMIC ANALYSIS 
A modal analysis has been conducted prior to the determination of the loads for the dynamic 
analyses.  

The modes observed are shown from Figure 4-1 to Figure 4-5. For bridges with a straight deck 
g=0, the bridge deforms in the different directions for separate modes, whereas for bridges with a 
curved deck (Figure 4-5), the 1st mode is already in all directions x, y and z. The bridge with a 
curved deck has clearly a spatial behaviour.  

The first mode of the model with a straight deck (Figure 4-5) gives the natural frequency in y 
direction. The 2nd mode (Figure 4-2) gives the frequency in z direction. This mode shape is non-
symmetrical. The next mode also gives a natural frequency in z direction, but it is symmetrical 
(Figure 4-5). The bridge with a curved deck also shows a non-symmetrical deformed shape for the 
first mode and symmetrical for the second mode.  

Since for the bridges with a curved deck, the first mode already causes deformations in all three 
directions (Figure 4-5), we might wonder whether the aforementioned comment in Sétra “These 
load cases are not to be applied simultaneously. The vertical load case is applied for each vertical 
mode at risk, and the longitudinal load case for each longitudinal mode at risk, adjusting on each 
occasion the frequency of the load to the natural frequency concerned” (section 2.1) should be 
applied here or not. It seems logical studying the dynamic behaviour with the load cases in all 
three directions at the same time (see section 5). Before doing so, the participating mass ratios are 
observed (see tables from Table 4-1 to Table 4-3). 

The frequencies obtained in each case are detailed in Table 4-4. The necessity to perform a 
dynamic load case calculation is determined according to the natural frequency of the bridge. This 
evaluation has been done based on both, IAP 2011 and Sétra Guidelines (2006) (Table 4-4), as 
described in section 2.1 

The EC1 UK NA does not establish frequency ranges which define the need of a dynamic 
analyses. 

In some cases the lateral response is out of the range of frequencies of the test measurements on 
which EC1 UK NA is based. Hence, this code has not been employed to evaluate the necessity of 
checking lateral stability. 
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 (a) (b) 

 

  (c) 

Figure 4-1: 1st mode g=0m; f=20m (Table 3-1). (a) Lateral view; (b) Layout; (c) Plan view 

 

 

         

(a)  (b) 

 

  (c) 

Figure 4-2: 2nd mode g=0m; f=20m (Table 3-1). (a) Lateral view; (b) Layout; (c) Plan view 

 

         

(a)  (b) 

 

  (c) 

Figure 4-3: 3rd mode g=0m; f=20m (Table 3-1). (a) Lateral view; (b) Layout; (c) Plan view 
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 (a) (b) 

 

  (c) 

Figure 4-4: 8th mode g=0m; f=20m (Table 3-1). (a) Lateral view; (b) Layout; (c) Plan view 

 

 (a) (b) 

 

  (c) 

Figure 4-5: 1st mode g=20m; f=20m and deck with Sec1 and Sec2 (Table 3-1). (a) Lateral view; (b) 
Longitudinal view; (c) Plan view 
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 (a) (b) 

 

  (c) 

Figure 4-6: 3rd mode g=20m; f=20m and deck with Sec1 and 4th mode with Sec2 (Table 3-1). (a) 
Lateral view; (b) Longitudinal view; (c) Plan view 

The participating mass ratio of the structure modal output must be near to 1 for each direction 
when adding the mass ratios participating in each direction in the different modes. In order to 
obtain such a value the first 20 modes are analysed for the case of a vertical planar arch with a 
straight deck (g=0, geometry shown in Figure 3-1 and participating mass ratios in Table 4-1). For 
the SAB models (Figure 3-2) the first 30 modes are analysed to obtain values of participating mass 
near to one (Table 4-2 and Table 4-3). 

Whereas planar vertical arch bridges with a straight deck mobilise masses only in one direction 
for each natural mode (Table 4-1), SABs mobilise masses in different directions for the same 
natural mode (Table 4-2 and Table 4-3). 

The modes which will be studied and the participating mass ratio are marked in each table. 
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Modal Participating Mass Ratios 

  Period Frequency UX UY UZ SumUX SumUY SumUZ 

  Sec Cyc/sec Unitless Unitless Unitless Unitless Unitless Unitless 

Mode 1 1.349 0.74 0.000 0.801 0.000 0.000 0.801 0.000 

Mode 2 1.221 0.82 0.343 0.000 0.000 0.343 0.801 0.000 

Mode 3 0.549 1.82 0.000 0.000 0.000 0.343 0.801 0.000 

Mode 4 0.372 2.69 0.000 0.000 0.000 0.343 0.801 0.000 

Mode 5 0.326 3.07 0.000 0.028 0.000 0.343 0.828 0.000 

Mode 6 0.305 3.28 0.001 0.000 0.000 0.343 0.828 0.000 

Mode 7 0.279 3.59 0.000 0.000 0.000 0.343 0.828 0.000 

Mode 8 0.249 4.01 0.000 0.000 0.720 0.343 0.828 0.720 

Mode 9 0.199 5.04 0.000 0.000 0.189 0.343 0.828 0.910 

Mode 10 0.160 6.26 0.365 0.000 0.000 0.709 0.828 0.910 

Mode 11 0.150 6.67 0.000 0.023 0.000 0.709 0.851 0.910 

Mode 12 0.145 6.89 0.000 0.064 0.000 0.709 0.914 0.910 

Mode 13 0.138 7.27 0.000 0.000 0.000 0.709 0.914 0.910 

Mode 14 0.131 7.61 0.245 0.000 0.000 0.954 0.914 0.910 

Mode 15 0.108 9.25 0.000 0.000 0.028 0.954 0.914 0.937 

Mode 16 0.089 11.23 0.000 0.000 0.000 0.954 0.914 0.937 

Mode 17 0.085 11.79 0.002 0.000 0.000 0.956 0.914 0.937 

Mode 18 0.084 11.93 0.000 0.003 0.000 0.956 0.917 0.937 

Mode 19 0.076 13.09 0.000 0.000 0.000 0.956 0.917 0.937 

Mode 20 0.068 14.66 0.000 0.000 0.010 0.956 0.917 0.947 

Table 4-1: Participating mass ratios in each mode for planar vertical arch bridge with superior 
straight deck (g=0, see Figure 3-1 and Table 3-1) 
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Modal Participating Mass Ratios 

 Period Frequency UX UY UZ SumUX SumUY SumUZ 

 Sec Cyc/sec Unitless Unitless Unitless Unitless Unitless Unitless 

Mode 1 0.789 1.267 0.108 0.000 0.000 0.108 0.000 0.000 

Mode 2 0.668 1.497 0.000 0.000 0.005 0.108 0.000 0.005 

Mode 3 0.419 2.386 0.000 0.045 0.472 0.108 0.045 0.476 

Mode 4 0.411 2.433 0.056 0.000 0.000 0.164 0.045 0.476 

Mode 5 0.354 2.825 0.032 0.000 0.000 0.195 0.045 0.476 

Mode 6 0.332 3.011 0.000 0.068 0.267 0.195 0.113 0.743 

Mode 7 0.248 4.025 0.110 0.000 0.000 0.305 0.113 0.743 

Mode 8 0.246 4.061 0.000 0.002 0.051 0.305 0.115 0.794 

Mode 9 0.221 4.522 0.000 0.109 0.005 0.305 0.225 0.799 

Mode 10 0.173 5.772 0.002 0.000 0.000 0.308 0.225 0.799 

Mode 11 0.151 6.624 0.000 0.016 0.025 0.308 0.241 0.824 

Mode 12 0.148 6.744 0.033 0.000 0.000 0.341 0.241 0.824 

Mode 13 0.130 7.696 0.000 0.002 0.033 0.341 0.244 0.858 

Mode 14 0.125 7.989 0.000 0.574 0.011 0.341 0.817 0.869 

Mode 15 0.113 8.855 0.045 0.000 0.000 0.386 0.817 0.869 

Mode 16 0.109 9.200 0.000 0.011 0.063 0.386 0.829 0.932 

Mode 17 0.103 9.743 0.000 0.000 0.000 0.386 0.829 0.932 

Mode 18 0.088 11.409 0.003 0.000 0.000 0.389 0.829 0.932 

Mode 19 0.084 11.926 0.000 0.001 0.002 0.389 0.829 0.934 

Mode 20 0.081 12.372 0.000 0.000 0.012 0.389 0.830 0.946 

Mode 21 0.071 14.105 0.001 0.000 0.000 0.390 0.830 0.946 

Mode 22 0.069 14.497 0.000 0.020 0.000 0.390 0.850 0.946 

Mode 23 0.068 14.786 0.002 0.000 0.000 0.392 0.850 0.946 

Mode 24 0.060 16.710 0.000 0.001 0.000 0.392 0.851 0.946 

Mode 25 0.057 17.588 0.000 0.000 0.007 0.392 0.851 0.953 

Mode 26 0.055 18.071 0.441 0.000 0.000 0.833 0.851 0.953 

Mode 27 0.053 18.719 0.001 0.000 0.000 0.834 0.851 0.953 

Mode 28 0.050 20.172 0.021 0.000 0.000 0.855 0.851 0.953 

Mode 29 0.049 20.512 0.000 0.000 0.000 0.855 0.851 0.953 

Mode 30 0.047 21.390 0.000 0.000 0.001 0.855 0.852 0.954 

Table 4-2: Participating mass ratios in each mode for planar vertical arch bridge with superior 
curved deck (g=20m, Sec1, see Figure 3-2 and Table 3-1) 
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TABLE:  Modal Participating Mass Ratios 

  Period Frequency UX UY UZ SumUX SumUY SumUZ 

  Sec Cyc/Sec Unitless Unitless Unitless Unitless Unitless Unitless 

Mode 1 0,848 1,180 0,135 0,000 0,000 0,135 0,000 0,000 

Mode 2 0,698 1,432 0,000 0,001 0,009 0,135 0,001 0,009 

Mode 3 0,432 2,315 0,023 0,000 0,000 0,159 0,001 0,009 

Mode 4 0,406 2,463 0,000 0,106 0,210 0,159 0,107 0,219 

Mode 5 0,357 2,798 0,032 0,000 0,000 0,190 0,107 0,219 

Mode 6 0,337 2,964 0,000 0,040 0,476 0,190 0,147 0,695 

Mode 7 0,263 3,802 0,000 0,017 0,037 0,190 0,164 0,732 

Mode 8 0,253 3,955 0,000 0,095 0,018 0,190 0,259 0,750 

Mode 9 0,246 4,066 0,096 0,000 0,000 0,286 0,259 0,750 

Mode 10 0,184 5,440 0,007 0,000 0,000 0,293 0,259 0,750 

Mode 11 0,159 6,295 0,000 0,071 0,015 0,293 0,330 0,765 

Mode 12 0,153 6,523 0,049 0,000 0,000 0,342 0,330 0,765 

Mode 13 0,141 7,081 0,000 0,425 0,000 0,342 0,755 0,765 

Mode 14 0,136 7,365 0,000 0,074 0,078 0,342 0,830 0,843 

Mode 15 0,127 7,903 0,027 0,000 0,000 0,370 0,830 0,843 

Mode 16 0,111 9,011 0,001 0,000 0,000 0,370 0,830 0,843 

Mode 17 0,111 9,035 0,000 0,006 0,082 0,370 0,835 0,926 

Mode 18 0,091 10,956 0,000 0,001 0,005 0,370 0,836 0,930 

Mode 19 0,089 11,196 0,000 0,000 0,000 0,370 0,836 0,930 

Mode 20 0,084 11,915 0,000 0,003 0,009 0,370 0,839 0,939 

Mode 21 0,076 13,133 0,000 0,015 0,001 0,370 0,854 0,940 

Mode 22 0,076 13,232 0,000 0,000 0,000 0,371 0,854 0,940 

Mode 23 0,070 14,300 0,008 0,000 0,000 0,379 0,854 0,940 

Mode 24 0,064 15,662 0,000 0,000 0,004 0,379 0,855 0,944 

Mode 25 0,062 16,045 0,414 0,000 0,000 0,793 0,855 0,944 

Mode 26 0,059 17,007 0,000 0,001 0,004 0,793 0,855 0,947 

Mode 27 0,057 17,539 0,023 0,000 0,000 0,816 0,855 0,947 

Mode 28 0,055 18,204 0,008 0,000 0,000 0,824 0,855 0,947 

Mode 29 0,051 19,484 0,000 0,000 0,000 0,824 0,855 0,947 

Mode 30 0,049 20,553 0,000 0,000 0,004 0,824 0,855 0,951 

Table 4-3: Participating mass ratios in each mode for planar vertical arch bridge with superior 
curved deck (g=20m, Sec2, see Figure 3-2 and Table 3-1) 
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Models with a superior curved deck, which differ in the cross-section employed for the deck 
(Table 3-1) have very similar values of natural frequencies which need be analysed. Since the 
model with a slightly stiffer deck (Sec1) has more frequency values to be analysed, the dynamic 
analysis will be further carried out for this model, but not for the one employing Sec2 (shaded in 
Table 4-4). The same deck is employed for the model with a planar vertical arch with a straight 
deck. Therefore, the deck for both for which the dynamic analysis will be carried out differs only 
in its geometry and its influence can be hence compared. 

  fx (Hz) 

Need of dynamic analysis 

fy (Hz) 

Need of dynamic 
analysis 

fz (Hz) 

Need of dynamic 
analysis 

According 
to 

IAP2011 

According 
to Sétra 
2006 

According 
to 

IAP2011 

According 
to Sétra 
2006 

According 
to 

IAP2011 

According 
to Sétra 
2006 

g=0 Sec1 

0,82 
Mode 2 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

0,74 
Mode 1 

need of 
dynamic 
analysis 

Range 1: 
maximum 

risk of 
resonance 

4.01  
Mode 8 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

6,26 
out of 

pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

- 

g=20m 

Sec1 

1,27  
Mode 1 

need of 
dynamic 
analysis 

Range 2: 
medium 
risk of 

resonance 

2.39  
Mode 3 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

2.39  
Mode 3 

need of 
dynamic 
analysis 

Range 2: 
medium 
risk of 

resonance 

4,02 
Mode 7 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

3,01 
Mode 6 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

3,01 
Mode 6 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

18,07 
Mode 26 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

4,52 
Mode 9 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

4,52 
Mode 9 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

- 
7,99 

Mode 14 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

7,99 
out of 

pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

Sec2 

1,18 
Mode 1 

out of 
pedestrian 
load range 

Range 2: 
medium 
risk of 

resonance 

2,46 
Mode 4 

out of 
pedestrian 
load range 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

2,46  
Mode 4 

need of 
dynamic 
analysis 

Range 2: 
medium 
risk of 

resonance 

16,05 
Mode 25 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

2,96 
Mode 6 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

2,96  
Mode 6 

need of 
dynamic 
analysis 

Range 3: 
low risk of 
resonance 

for standard 
loading 

situations 

- 
7,08 

Mode 13 

out of 
pedestrian 
load range 

Range 4: 
negligible 

risk of 
resonance 

- 

Table 4-4: Frequency values for the 1st modes and necessity of dynamic analysis 
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5. LOAD CASES 
Sétra Guidelines and UK National Annex to EC1 have been followed to establish the load cases 
for the dynamic analysis. 

The Sétra Guidelines have been employed to obtain the crowd load case, as discussed in section 
Fehler! Verweisquelle konnte nicht gefunden werden.. Since a single pedestrian is not 
considered in this guidelines, the EC1 UK NA has been employed to define the dynamic load case 
of a single pedestrian and of a small group, but employing another time history function that 
allows tracking the different pedestrian locations. 

The following values and criteria have been employed: 

• The time given is the time required by a pedestrian to cross the bridge and reach a 
maximal acceleration in the dynamic load case of a crowd. Additionally such an extra 
time lapse has been employed that, once the crowd has crossed the bridge, there is enough 
time for the free oscillation until the movement is damped. This gives the number of 
cycles. 

• The damping coefficient employed, considering that it is a steel structure is 0,4% 
• The usage width of the bridge is 3m. 

5.1 Crowd dynamic load cases according to Sétra Guidelines (2006) 

According to Sétra (2006), as described in section 2.1, the following values and criteria have been 
employed: 

• Class III with sparse traffic has been considered. This gives a crowd density of 
0,5pedestrians/m2. 

• The Sétra minorisation factor has been employed. The load per area to be applied for each 
direction of vibration is summarized in Table 5-1.  

• The load is applied for the different vibration modes (Table 4-4 and from Figure 4-1 to 
Figure 4-5).  

• The dynamic load cases are defined as modal time history cosines functions with the 
corresponding period (Table 5-1).  

According to EC1 UK NA, the equivalent class to III of Sétra is class B. The crowd density is 
then 0,4persons/m2, only slightly lower than the one indicated by Sétra. It has been decided to 
employ Sétra Guidelines for the crowd loading. 

g 
Tz (s) 

vertical 
Vertical load 

(N/m)/cos(2*pi*fz*t) 

Ty (s) 
transversal, 

radial 

Transverse load 
(N/m2)/cos(2*pi*fy*t) 

Tx (s) 
longitudinal, 

tangential 

Longitudinal load 
(N/m2)/cos(2*pi*fy*t) 

g=0 
0.249 0 1.349 39.207 1.2 0 

- - - - 0.16 0 

g=20m, Sec1 
(Table 3-1) 

0.221 0 0.221 0   - 

0.332 0 0.332 0 0.055 0 

0.125 0 0.125 0 0.248 0 

0.419 130.594 0.419 0 0.789 58.458 

Table 5-1: Dynamic loads simulating crowds on the bridge following the Sétra Guidelines 

The loads in the different directions should not be applied simultaneously according to Sétra 
Guidelines (2006).  

However, pedestrians cause the loads in all the different directions when walking. They are 
concomitant actions. 
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The reasons for which this is so are not specified in the Guidelines, but according to the Authors, 
it is due to: 

- The load cases which cause dynamic effects in one direction, do not contribute in the 
dynamic effects of other vibrations, so they not need to be applied simultaneously. 

- The lock-in effect has not been proved to take place in different directions at the same 
time. 

This makes sense for planar arch bridges with a straight deck, which have deformations in each 
direction for different modes.  

However, for SABs with a planar arch bridge and a curved deck, which have shown to have a 
spatial behaviour, it makes sense to load the bridge in the three directions simultaneously. 

 

 

Figure 5-1: g=20, Sec1 (Table 3-1) Longitudinal pedestrian loading, amplitude for the time history 
longitudinal function 

 

Figure 5-2: g=20, Sec1 (Table 3-1) Vertical pedestrian loading, amplitude for the time history 
longitudinal function 

Torsional vibration occurs with vertical loads. It has not been considered in the present study, 
since this analysis is only a first approach and many effects are mixed in the spatial model. 
Therefore, it is better to understand the behaviour of separate effects. If the bridge is already 
sensitive to vertical or transverse vibrations, it already points out the need of further research and 
the torsional dynamics should also be included in such a research. If not, the torsional vibration 
will be studied in a next section. 
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5.2 Vertical loading of a single pedestrian and a small pedestrian group crossing 
the bridge 

Sétra Guidelines design footbridges with crowd loads, but do not consider the necessity to study a 
single pedestrian or small group. However, as already explained in section 2.1, EC1 UK NA 
considers group loads. 

For the present example class B has been employed. According to EC1 UK NA a group size of 4 
pedestrians walking should be considered.  

Depending on the bridge usage, 1 jogging pedestrian should also be considered for class B, but 
EC1 UK NA establishes that this can be neglected. It is not considered in the present analysis.  

The code does not indicate how to distribute the load. Therefore, instead of employing the code, a 
reasonable common used methodology has been employed. 

The EC1 UK National Annex states the dynamic analysis should be conducted with pedestrian 
loads matching the natural frequency of the bridge. Nonetheless, it also states the speed of a 
pedestrian walking of 1,7m/s should be employed (Table 2-2). Hence, for the group load, two 
different pedestrian walking frequencies have been employed. 

To see the bridge behaviour under small groups, the vertical loading of a single walking 
pedestrian and a small group of 4 pedestrians, walking in 2 rows of 2, has been analysed 
according to usual walking speed values. 

This loading has been studied only for the SAB model with a superior curved deck (g=20m, 
Figure 3-2) and employing a slightly stiffer deck (Sec1, Table 3-1). 

The following values and criteria have been employed: 

• Time history functions are defined as triangular periodic functions in SAP2000 v14. They 
simulate the increase and fall of a step linearly in the time the step takes place and 
reaching its peak value at the midpoint of the time lapse. 

• To match the natural frequency of the bridge, as a pedestrian walks at a 0,82m/s. 
Therefore the arrival time of pedestrians has been set to 0,98s for vertical loads. The peak 
of the function corresponds with this value. 

• As a pedestrian walks at a 1,7m/s, according to EC1 UK NA, the arrival time of 
pedestrians has been set to 0,48s for vertical loads. The peak of the function corresponds 
with this value. 

• To achieve the rise and fall of the amplitude caused by a single pedestrian 
(0,7kN±0,28kN) or group(2 groups of 2, ie: 1,4kN±0,146kN) every 0,98s or 0,48s, 
respectively, are given to the periodic time history function. 

• The loading has been calculated employing minus factor values as defined in EC1 UK 
National Annex. Results are given in Table 5-2. 

• A series of 98 point loads are defined as static loads in SAP2000 v14. These static loads 
define the position (approximately every meter) and value of the loads. Their values 
correspond to the loading results of Table 5-2. 

• All these static loads are combined with the time history function, each taking place at 
successive arrival times, simulating the pedestrian or group of 4 pedestrians crossing the 
whole bridge length (Figure 5-3). A last time lapse is added with no loading in order to 
observe the bridge damping. 
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N walking 

(table NA.7) 
Pedestrian 
mass (kg) 

Minus factor 
k walking 
(Fig NA.8) 

Minus factor 
gamma (pedestrian 

Fig NA.9) 
Vertical load (N/m2) 

g=20m, Sec1 
(Table 3-1) 

1 70.00 1.00 1.00 280.0 

4 280.00 0.52 1.00 291.2 
Table 5-2: Dynamic loads according to EC1 UK National Annex 

 

 (a) (b) 

Figure 5-3: Examples of static point loads defining the pedestrian load in different positions. Each 
position is associated for an arrival time. They all have the same load value 

 

6. DISCUSSION OF RESULTS 

6.1 Crowd dynamic load cases according to Sétra Guidelines (2006) results 

The evolution of accelerations with time for the different models, as the crowd described by Sétra 
Guidelines (see section 5.1) crosses the bridge, is shown in figures from Figure 6-1 to Figure 6-4. 
In all cases and directions it can be observed that: 

• The accelerations increase as the crowd crosses the bridge. 

• When the crowd has already crossed the bridge accelerations decrease due to the damping 
effect. 
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Figure 6-1: Transverse acceleration (m/s2, ordinates) versus time at midspan (s, abscissae) for the 
model with a straight deck (g=0 and Sec1, Table 3-1) under transverse dynamic loading 
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Figure 6-2: Transverse acceleration (m/s2, ordinates) versus time at 0,25L (s, abscissae) for the model 
with a straight deck (g=20 and Sec1, Table 3-1) under vertical dynamic loading 
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Figure 6-3: Vertical acceleration (m/s2, ordinates) versus time at L/4 (s, abscissae) for the model with 
curved deck (g=20m and Sec1, Table 3-1) under vertical dynamic loading 
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Figure 6-4: Longitudinal acceleration (m/s2, ordinates) versus time at midspan (s, abscissae) for the 
model with curved deck (g=20m and Sec1, Table 3-1) under longitudinal dynamic loading 
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The maximal acceleration results for the model with a straight deck (g=0, Sec1, see Table 3-1 
and Figure 3-1), for the analysed time history function (see section 5.1) are summarised in Table 
6-1.  

• Dynamic loading in the transverse direction only causes acceleration in the transverse 
direction.  

• The transverse acceleration of 1,8m/s2, is above the comfortable and admissible level 
range (Range 4, Figure 2-2b). A possible solution is to install dampers in order to change 
the natural frequency of the bridge and assure that lock-in does not happen.  

The maximal acceleration results for the model with a curved deck (g=20m, Sec1, see Table 3-1 
and Figure 3-2), for each of the analysed time history functions (see section 5.1) are summarised 
in Table 6-2. 

• Dynamic loading in one direction causes acceleration in all directions. 
• The maximal transverse acceleration of 0,07m/s2, is within the maximal comfort level 

range (Range 1, Figure 2-2b) and below the 0,1m/s2 threshold, so the lock-in effect does 
not take place.  

• The maximal transverse acceleration is caused by the vertical dynamic loading. 
• The maximal vertical acceleration of 3,9m/s2, is extremely large, well above the 0,8m/s2 

threshold, which defines uncomfortable acceleration levels that are not acceptable (Range 
4, Figure 2-2a) 

• A possible solution is to install dampers in order to change the natural frequency of the 
bridge and assure that the vertical acceleration is within the required range of comfort.  

 Cosine function with T=1,349s 
(transverse loading) 

Maximal ax (m/s2) 0 
Maximal ay (m/s2) 1,8 at midspan 
Maximal az (m/s2) 0 

Table 6-1: Maximal acceleration results for the model g=0, Sec1 (see Figure 3-1 and Table 3-1) 

 Cosine function with T=0,419s 
(vertical loading) 

Cosine function with T=0,789s 
(longitudinal loading) 

Maximal ax (m/s2) 0,004 at L/4 0,10 at midspan 
Maximal ay (m/s2) 0,066 at L/4 0,017 at L/4 
Maximal az (m/s2) 3,9 at L/4 0,043 at L/4 

Table 6-2: Maximal acceleration results for the model g=20m, Sec1 (see Figure 3-2 and Table 3-1) 

In relation to SABs spatial behaviour and different modes the statement in EC1 UK NA (“When 
the vertical deck modes are not well separated, consideration should be given to the use of more 
sophisticated methods of analysis, in order to determine combined mode responses. In all cases, it 
is conservative to use the vector sum of the peak accelerations for those modes that need such 
combination”) should be observed and further defined. 
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6.2 Small pedestrian group and single pedestrian dynamic load results 

The results of the vertical acceleration for the analysed SAB under dynamic loads are shown in 
Figure 6-5 and Figure 6-7. The following conclusions can be drawn: 

• The acceleration increases remarkably when the pedestrians reach certain locations. 

• These locations are the same for a small pedestrian group of 4 people crossing the group 
in two rows (Figure 6-5) and for a single pedestrian (Figure 6-7), ie: they do not depend 
on the load. 

• They are also the same for the pedestrians walking at different speeds, ie: they do not 
depend on the pedestrian frequency. 

• These vertical dynamic load locations, which give relative maximal vertical acceleration 
values, correspond with the ones shown in Fehler! Verweisquelle konnte nicht gefunden 

werden. and their longitudinally symmetricals, ie: approximately L/6 and L/3. 

• The maximal vertical acceleration for the pedestrian group is 0,025m/s2 

• The maximal vertical acceleration for the single pedestrian is 0,013m/s2 
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Figure 6-5: Vertical acceleration (m/s2, ordinates) depending on the time (s, abcissae) for a SAB 
(Figure 3-2) under the dynamic load of a group of 4 pedestrians walking at the natural frequency of 

the bridge 
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Figure 6-6: Vertical acceleration (m/s2, ordinates) depending on the time (s, abcissae) for a SAB 
(Figure 3-2) under the dynamic load of a group of 4 pedestrians walking at 1,7m/s 
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Figure 6-7: Vertical acceleration (m/s2, ordinates) depending on the time (s, abcissae) for a SAB 
(Figure 3-2) under the dynamic load of a single pedestrian walking at the natural frequency of the 

bridge 
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7. CONCLUSIONS 
The results obtained in the present chapter lead to the following conclusions: 

• When comparing the dynamic behaviour of a planar vertical arch with a straight superior 
deck with an equivalent planar vertical arch with a curved superior deck, the first one 
shows to be sensitive to transverse accelerations, but not to vertical ones, whereas the 
SAB is highly sensitive to vertical dynamic loads but not to transverse ones. 

• Whereas planar vertical arch bridges with a straight deck mobilise masses only in one 
direction for each natural mode, SABs mobilise masses in different directions for the 
same natural mode. Some guidelines (Sétra, 2006) state not to apply dynamic loads in 
different directions simultaneously. This criteria should be revised for SABs.  

• For SABs with a planar vertical arch with a superior curved deck, dynamic loading in one 
direction causes acceleration in all directions, whereas for planar vertical arch bridges 
with a superior straight deck, dynamic loading in one direction only causes acceleration in 
that same direction. 

• Existing codes or guidelines do not consider the spatial effects of arch bridges with a 
curved deck, in which dynamic loading in one direction causes acceleration in all 
directions.  

• The studied planar vertical arch with a straight superior deck presents a too large 
transverse acceleration, which surpasses the threshold that assures comfort. Mass or 
viscous dampers must be employed for the studied model. 

• Arch bridges with a curved deck reach very high vertical accelerations for the geometry 
(very large deck curvature, f=g) and cross-sections employed in the present research, but 
undergo low transverse accelerations. Mass or viscous dampers must be employed for the 
studied model. 

• The acceleration increases remarkably when the pedestrians reach certain locations. 

• These locations do not depend on the load or on the pedestrian frequency. 

• These vertical dynamic load locations, which give relative maximal vertical acceleration 
values, correspond with the ones shown are approximately L/6 and L/3. 

 

8. FUTURE LINES OF STUDY 
• Dynamic loading in existing codes and guidelines should be revised for SABs. 

• The high vertical accelerations of SABs, together with the fact that dynamic loading in 
one direction causes acceleration in all directions in this bridge type, highlight the need of 
a deep research of the dynamic behaviour of this bridge type. 

• In relation to SABs spatial behaviour and different modes the statement in EC1 UK NA 
(“When the vertical deck modes are not well separated, consideration should be given to 
the use of more sophisticated methods of analysis, in order to determine combined mode 
responses. In all cases, it is conservative to use the vector sum of the peak accelerations 
for those modes that need such combination”) should be observed and further defined. 
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• Torsional vibration occurs with vertical loads. Given that the bridge is already sensitive to 
vertical or transverse vibrations, it is important to include the torsional dynamics study in 
a further research. 

• Influence of the stiffness of different elements on the dynamic behaviour of different 
SAB bridge types.  

• In the present research it is established which parameters are determinant for an efficient 
behaviour of SABs with a curved under static loading. Conducting an equivalent 
parametric study under dynamic loading is recommended. 

• Studying possible solutions for diminishing the large vertical accelerations of SABs under 
dynamic loading of pedestrian crowds is necessary. 

• Study for SABs if the locations where the pedestrians cause the largest accelerations are 
coincident with the load position which causes the largest deformation 
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VIII. CONCLUSIONS 

The present doctoral thesis presents an extensive state-of-the-art of Spatial Arch Bridges (SABs), 

gives a clear and compact definition of this bridge type as well as a classification. This state-of-

the-art makes clear the necessity of developing a research of this bridge type, due to the 

increasing number of built examples and the scarce number of systematic research studies on the 

subject. 

A very scarce number of published papers deals with the behavior of some examples this bridge 

type and there are no design criteria recommendations and no studies of their stability or dynamic 

behavior. However, there are several papers dealing with antifunicularity obtention methodologies 

for this bridge type. 

The present thesis research achieves to extend the present knowledge of SABs, since this thesis: 

• Gives a clear definition for this bridge type and classification. 

• Explains the structural behavior of SABs of the type of inferior deck arch bridges with 

imposed curvature (defined in chapter III.A) and SABs with a superior curved deck, 

especially those supported by a planar vertical arch, for which a thorough parametrical 

study has been conducted. 

• Develops conceptual models and simplified formulations, which help clearly 

understanding the behavior, before undergoing the linear numerical analysis for which 

various series of models are analysed. 

• Clarifies several aspects of the behavior of SABs, for which an answer was not given on 

previous research studies. 

• Compares the structural behaviour of SABs with a curved deck, with planar, vertical arch 

bridges with a straight deck, given a bridge span and an arch vertical rise employing the 

same cross-sections. SABs, in general, present lower axial forces, larger bending 

moments (both in- and out-of-plane) and torsional bending moments. 

• To control the structural behavior and the amount of steel needed for the SABs structures, 

it is important to control the out-of-plane behavior of this bridge type. Given a plan 

curvature, this can be achieved by: 

o  carefully selecting the key geometrical parameters, namely the vertical rise and 

the arch/deck eccentricity,  

o keeping the arch cross-section to the strictly necessary dimensions in order to 

mainly stand in-plane forces, and employing a stiff hanger/struts-deck system. 

o Creative ways to control the out-of-plane behavior, such as employing secondary 

hangers system lead to interesting solutions. 



VIII. CONCLUSIONS 
 

398 

 

• To control the structural behavior of SABs with a curved deck under both, vertical loads 

and temperature variations, it is recommended to restrain displacements in all directions 

and torsional rotations at the deck abutments and to fix the deck/struts or deck/hangers 

joints connections.  

• Instability of this bridge type has also been studied with buckling and geometrically non-

linear analyses. A state-of-the-art of arch bridge instability has been presented and 

formulation in the codes and research is compared with the numerical results in the 

studied bridge models. 

• The dynamic behavior of an example of SABs has also been checked and demonstrates 

that SABs present accelerations in all directions under dynamic vertical loads, with far 

too large vertical acceleration values. 

• The research of the aforementioned SAB types leads to design criteria recommendations. 

• Following the design criteria recommendations given in this thesis, employing a SAB 

instead of a traditional planar vertical arch with a straight deck implies a significant but 

not important steel mass increase. As an order of magnitude, for a 100m bridge span, 

employing a steel planar vertical arch with a curved superior with a 20m (L/5) horizontal 

sag, increases the total mass of the bridge a 15% when compared with a steel vertical 

planar bridge with a straight deck of the same span. When employing another geometry 

but with the same cross-sections main dimensions, the mass could be about 5 times more 

than for a steel vertical planar bridge with a straight deck of the same span. 

All in all, it can be concluded that SABs not only prove to be architecturally interesting, but also 

present a bearable structural behaviour when employing a geometry that enhances the arch/deck 

interaction and the correspondent adequate boundary conditions.  

 

The conclusions derived of this document are summarized and grouped for each chapter and at 

the end a series of design criteria are summarised. 

Chapter III: 

In this chapter spatial arch bridges have been fully defined and classified, and the variables that 

define both the geometrical and structural configuration have been presented. 

• Under the global concept of “spatial arch bridges” (SABs) we understand both, bridges 

supported by arch ribs and by shells. 

• SABs employing arch ribs are arch bridges in which vertical deck loads produce bending 

moments and shear forces not contained in the arch plane due to their geometrical and 

structural configuration. Moreover, the arch itself may not be contained in a plane.  

• Their definition can be developed further: “true spatial arch rib bridges” are those in which 

vertical deck loads centred on the deck induce internal forces not contained in the arch plane, 
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due to their geometrical and structural configuration.  

• Shell arch bridges have a completely different configuration and structural behaviour. In 

such bridges the main bearing element is an arch consisting of a shell with double curvature 

• A type of true spatial arch rib bridges are Arch Bridges With Imposed Curvature (ABWIC). 

In these SABs, the arches are forced to have the same curvature in plan as the deck. 

Therefore, the arch and deck centroid lines are contained in the same vertical cylinder. They 

can have an inferior or superior deck (IDABWIC and SDABWIC). ABWIC can have either 

planar (inclined arch) or non-planar. 

• The spatial arch bridge type has its origins in some of Maillart’s bridges built at the 

beginning of the 19th century, whose rationale was based on functional considerations. Its 

use has reached its peak in the 1990s and until nowadays, becoming increasingly popular in 

urban areas as a means of creating city landmarks. 

Chapter IV and corresponding annexes: 

In the context of the study conducted in chapter IV for inferior deck arch bridges with imposed 

curvature (ID-ABWIC), we can conclude: 

• Non-planar arches with imposed curvature can be approximated by inclined planar 

arches with imposed curvature with the same rise, with an error for internal forces 

inferior to 1,3% for uniform distributed loading applied on the whole deck span and to 

2% for uniform distributed loading applied on half the length of the deck span, in both 

cases for f/g≤1. 

• The minimal total bending moment in the arch, when employing a deck cross-section 

with large torsional rigidity, is obtained with M3-3 fixed at hanger/deck joints. By fixing 

M3-3 at hanger/deck joints, when employing a stiff to torsion deck and stiff hangers, the 

total bending moments can be reduced 6 times the crown of the arch and 9 times at the 

arch springings, the maximal torsional bending moments, 32 times, whereas the axial 

force compression increases 6 times in the arch crown and changes from being tensioned 

at springings to compressions slightly larger as in the arch crown. 

• If the hangers most stiff direction is oriented radially to the arch plan curve the behaviour 

of total bending moments and axial forces improves at springings (83% decrease and 

12% increase, respectively). 

• There is a value for the out-of-plane arch rigidity for which the distribution of axial 

forces along the arch changes, tending to concentrate either at mid-span or at springings, 

and also a bound for which the internal forces and deflections converge. Increasing the 

balcony beam rigidity above this bound has no advantage at all. 

• Given a vertical rise of the arch, and employing pinned hangers, the higher the plan 

curvature, the lower the axial forces and the higher both, the out-of-plane and in-plane, 

bending moments in the arch. 
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• To enhance the arch behaviour in an ID-ABWIC, employing a rigid hanger-deck system 

(a deck with high torsional rigidity and hangers with high transverse flexural rigidity) 

and an arch with low flexural rigidity is more efficient than increasing the rigidity of the 

arch1. This ‘ideal configuration’ is the simplest way to make the arch tend toward its anti-

funicular form. 

• For ID-ABWIC with a large g/f ratio, the critical live load case is obtained when the 

uniform distributed loading is applied on the whole deck span, whereas for a 

conventional vertical arch bridge (g=0) the maximal arch shear forces, bending moments 

and deflections are higher for a uniform distributed loading applied on half the deck 

span. 

• Employing a compensatory hanger system with an adequate distribution increases the 

axial forces compressions in the arch (160% in the arch crown and 95% at springings for 

the studied models), because it increases the in-plane behaviour of the arch, and 

diminishes the out-of-plane and total bending moments (40% in the arch crown, 65% at 

L/3 and 22% at springings for the studied models), because it controls the out-of-plane 

behaviour of the arch. 

• These conclusions are valid for a linear behaviour of ID-ABWIC. 

  

                                                           
1
 As a quantitative example: giving the arch cross-section an out-of-plane rigidity equal to the deck vertical 

rigidity-ie 20 larger as the arch in-plane rigidity-, the out-of-plane bending moments of the arch are 
multiplied by 10 and the in-plane bending moments are doubled in comparison with an arch with the same 
in-plane and out-of-plane rigidity 20 times lower than that of the deck 
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Chapter V. A: 

From the analyses of the results of the studied cases of SABs with a superior deck (Figure 1), the 

following conclusions can be inferred: 

  

 (a) (b) (c) 

   

 (d) (e) 

Figure 1: Studied bridge geometries. (a) Vertical planar arch bridge with superior straight deck (reference model); (b) 
Vertical planar arch with superior curved deck; (c) Arch and deck with symmetrical curvature in plan; (d) Arch and 
deck with coincident curvature in plan (imposed curvature); (e) Arch curved in plan with superior straight deck (both 
contained in the same plane) 

• The highest total ( 2 2
22 33M M M= + ) and out of plane (M2-2) bending moments in L/4 

of the arch and in the arch springings under a vertical uniform loading are obtained for 

model (b). M3-3 bending moments are very high too (about fifty times larger than for 

model (a) in the deck and a hundred times in the arch). 

• The highest total and out of plane bending moments in the mid-span of the arch under a 

vertical uniform loading are obtained for model (e). 

• Models (c) and (d) show the best structural behavior if the longitudinal displacements of 

the deck abutments are restrained. 
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• Spatial arch bridges have an improved structural behaviour under temperature increments 

with respect to conventional vertical arch bridges (model (a)) when restraining the 

longitudinal displacements of the deck abutments. Axial forces in the deck decrease, e.g.: 

for model (c) with r.l.d. the axial forces in the deck are nearly a hundred times smaller 

than those for model (a). In exchange, significant M2-2 bending moments appear in the 

deck, but they are resisted by the deck’s width, which is its highest dimension. 

• For models with a curved deck (models (b), (c) and (d)), it is convenient to restrain 

longitudinal displacements of the deck abutments under both vertical and temperature 

increments. This is a very important difference with conventional vertical arch bridges. 

• For models with a straight deck (models (a) and (d)) it is obviously better to release 

longitudinal displacements of the deck abutments under temperature increments. 

• In general, the restriction of the twisting rotations at the support sections on the abutments 

does not have a significant impact on the structural response 

 

Chapter V. B: 

• The most efficient model for spatial arch bridges with a curved superior deck sustained by 

a planar vertical arch is displayed in Figure 2. 

o The angle β for the strut distribution is measured taking as reference the model 

obtained from equal divisions of arch and deck. 

 

 

Figure 2: Most efficient model for spatial arch bridges with a curved superior deck 
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Parameter conclusions 

e and β (Figure 3) are key parameters for spatial arch bridges with a curved superior deck 

sustained by a planar vertical arch. 

Regarding e (the arch/deck eccentricity in plan view, Figure 3): 

Whatever the deck curvature, the value of f (Figure 3), the stiffness of the strut-deck system or 

that of the arch: 

• Results for all the different indicators are low enough in the range of g/1,3≤e≤g/1,1, 

approximately in the range in which there is the same number of hangers at each side of 

the arch. 

• Given a g value, in the range g/1,36≤e≤ g/1,2 the internal forces in the whole bridge are 

reasonable. 

• The value e=g/1,2=0,83g is the most efficient value for the arch/eccentricity in plan view 

according to all of the studied efficiency indicators. For this value internal torsional 

moments in the arch and the deck under a uniform deck load are minimal and the 

maximal in-plane and maximal out-of-plane displacements acquire the same value 

• e=g/1,2=0,83g is at a distance of approximately 0,28L of length and at 0,81*f of height of 

the springings of the arch (Figure 2), whatever the g value. It is a key point to control the 

arch behaviour, since at this point controlling the out-of-plane behaviour is most critical. 

Therefore, it is the most efficient e value because it obtains the stiffest struts at this key 

point.  

• For high g values, ie: when spatial behaviour increases, the influence of e is larger. 

• The higher the f value, the higher the importance of choosing an adequate e value. 

• Regarding the stresses in the arch, the influence of employing a stiff strut-deck system is 

lower for values of e between g/1,30 and g/1,20. 

• Given a g and f values, choosing the adequate e value can mean a decrease of between 

242 and 307% of the sum of stresses in the bridge, depending on the cross-sections 

employed. 

• Given a g and bridge cross-sections, choosing the adequate e value can mean a decrease 

of between 216 and 652% of the sum of stresses in the bridge, depending on the f values 

employed. 

Regarding v (the vertical distance between the arch crown and the deck mid-span, Figure 3):  

• Depending on the stiffness of the strut-deck system it might be worth or not adjusting the 
value of e. 

• v=0 is the most convenient value, since it stiffens the struts at key points e=g/1,2. 

• Increasing the verticality of the struts by increasing the vertical distance between the arch 

crown and the deck mid-span (v), decreases the efficiency of the system, since it increase 

the length of the struts and thus decreases their stiffness. 

• For an efficient e value, v has a significant influence in the internal forces, stresses and 

mass of the bridge. However, most important is to control e. 
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• Given a g and bridge cross-sections, and given adequate e and f values choosing the 

adequate v value can mean a decrease of 12% of the sum of stresses in the bridge. 

Regarding f (the rise of the arch, Figure 3): 

• Whatever the value of g, values of f between L/6,67-L/4 give a negligible difference of 

the total mass of the bridge, so they can be considered with an equivalent efficiency.  

• Employing a vertical rise f>L/4 for the arch is not recommendable.  

• The range of adequate values of f for SABs is smaller than for g=0. 

• For g=0, choosing the adequate f value can mean a decrease of 8,7% in the total mass of 

the bridge. If g=20m is employed together with adequate e and v values, a similar 

influence is obtained: 9,1% variation in the total mass of the bridge. 

Regarding β (the inclination of the struts in longitudinal view): 

• It is convenient to employ a convergent distribution of struts (ie: a distribution of struts in 

which each strut axis elongation converges above the deck with its symmetrical), in order 

to reduce the total material employed for the bridge, in spite of being the longest ones. 

Controlling key points proves to be more efficient than verticality or stiffness small 

variations. 

• A small β variation leads to an important mass variation (39% given g and adequate e, v 

and f values). Therefore, β is a key parameter for the efficiency of SABWCSD. 

Regarding z (deck height, Figure 3): 

• From a structural point of view, it is convenient to employ an intermediate deck crossing 
the arch at 0,28L of its abutments (in plan view, ie coincident 0,81f height), if the ground 
is strong enough to bear horizontal loads. If this intermediate deck position cannot be 
obtained and there are no ground limitations, employing a superior deck is more efficient 
than an inferior one. 

• Employing a middle deck improves the in-plane behaviour of the arch, but not the out-of-
plane behaviour, causing a displacement increase at span center. This behaviour has been 
studied with a linear analysis, but a geometrically non-linear parametrical analysis 
(GNLPA) has not been conducted. The described conclusions should be verified with a 
GNLPA due to the described large displacements of the model which has shows a stress 
reduction. 

• Given a g and bridge cross-sections, and given adequate e, v and f values choosing the 

adequate z value can mean a decrease of 35% of the sum of stresses in the bridge. 

Regarding gA (curvature of the arch in plan measured by its sag): 

• If employing an efficient value of e, it is convenient to employ a planar vertical arch 

(gA=0) instead to a curved in plan arch in order to reduce the total stresses in the bridge.  
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Figure 3: Nomenclature of variables 

Efficiency criteria conclusions 

Regarding the different comparison criteria which have been studied in order to decide the most 

efficient value of the different parameters: 

• It has been demonstrated that, for spatial arch bridges with a curved superior deck, given 

a certain stiffness of the bridge elements, comparing the maximal displacements of the 

arch under permanent loads is always equivalent to comparing the total mass of the 

bridge. Therefore, reducing the maximal displacement of the arch is equivalent to 

reducing the total mass of the bridge. 

• It is remarkable that for efficient parameters for SABs with a planar vertical arch with a 

superior curved deck, the out-of-plane maximal arch displacements have a similar value 

to in-plane maximal arch displacements. This is a simple and representative enough 

criterion for easily evaluating the efficiency of a model without doing a parametrical 

study. 

• Given an f and cross-section values of the bridge, reducing the total bending moments of 

the arch, ie: tending to its antifunicular under permanent loads, is also a valid criterion to 

reduce the total mass of the bridge. 

• When studying the stiffness of the system, the total mass of the bridge must be compared. 

• It must be noted that the mass of the bridge can be a misleading criteria in order to choose 
the most efficient parameters if it is not correctly employed. Two different procedures can 
be defined to employ this criterion correctly: 

o the cross-sections of the different elements should be carefully chosen in order to 
minimise the mass of each specific studied model. Only then can the masses be 
compared, regardless of employing or not the same diameters for the different 
elements. 

o Fix the diameter (for CHS) or width and depth (for box girders) under an 
aesthetical criterion and only vary the plate thickness when dimensionening the 
cross-sections. 



VIII. CONCLUSIONS 
 

406 

 

In order to obtain the most efficient parameter value, a linear analysis is enough in all the 

studied cases, except for the z parameter, where inferior, intermediate and superior deck 

SABs where compared. For this case study a further geometrically non-linear analysis 

should be conducted. 

Critical loading combinations conclusions 

Regarding the critical loading combinations it has been proved for the different parameters that, in 

comparison with a planar vertical arch with a straight deck, asymmetrical loading in half the deck 

loses importance for SABs with a superior curved deck. 

The higher the importance of the out-of-plane behavior of the arch, the lower the influence of an 

asymmetrical uniform live loading on half the deck span. 

The worst loading combination in ULS for the most efficient model described in Figure 2 is A1 

(see definition in the bookmark) except at springings and approximately around LA/3, where the 

worst loading case is A2 (see the bookmark). 

Chapter VI. A: 

• The hanger/strut and deck system can have a stabilizing or destabilizing effect on the 

arch buckling 

• Codes and research give buckling formulation but the hypothesis under which these 

formulae are valid are no clearly stated and not all cases for arch bridges are included. 

• There are no equivalent European buckling curves for arch bridges. According to 

several researches, the coded buckling curves in Eurocode 3 Part 1.1 chapter 6.3.1.2 

are conservative for arches. 

• The values of the imperfections and geometry for arch bridges in order to conduct a 

geometrically non-linear analyses can be obtained in two different ways according to 

Eurocode 3 (EC3): as complex structures with the geometry based on the buckling 

shape (EC3 Part 1.1 chapter 5.3.2) or specifically for arches (EC3 Annex D.3.5). The 

latter separates in- and out-of-plane imperfections. 

o Buckling curves in EC3 Part 1.1 chapter 6.3.1.2 are conservative for arches 

(Backer et al, 2009) 

o coded imperfections in EC3 Part 1.1 chapter 5.3.2 are conservative for a 

straight beam with respect to the buckling curves of EC3 Part 1.1 chapter 

6.3.1.2 according to the benchmark developed in the present study. 

o Therefore, EC3 Part 1.1 chapter 5.3.2 calculation method can be safely 

used for arch bridges. 

• There are hardly no published construction imperfection measures as far as the 

authors know. 



VIII. CONCLUSIONS 
 

407 

 

• When imperfections measured in the construction site are compared to those stated by 

the codes for the design analyses, the difference should correspond to residual 

stresses. However the value is very large, coded imperfections might be far too much 

on side of security. Empirical studies should be conducted. 

Chapter VI. B: 

• SABs with a curved deck buckle in- and out-of-plane at the same time, even if a planar 

vertical arch is employed. This is so because, for a vertical loading, the deck undergoes 

horizontal and vertical displacements due to spatial the geometry of SABs. 

• Critical buckling loads for a uniform distributed load on the whole deck length (lu) are 

lower than for a uniformly distributed loading on half the deck length (la) as expected, 

since lu causes larger axial forces in the arch than la. 

• Geometries which give lower critical buckling loads usually coincide with geometries 

which bear larger axial forces in the arch. However, f values approximately  in the range 

L/6≤f≤L/4 buckle for a larger load than f>L/4, in spite of undergoing larger axial forces. 

• For large f values the arch buckles nearly independently of the deck because the struts are 
longer and thus less stiff.  

• For low f values the arch and deck buckle together because arch and deck tend to work as 
a truss. 

• For planar vertical arches with a superior straight deck, restraining torsional rotations 
improves the buckling behaviour, since it diminishes the destabilizing effect of the deck. 

• SABs with a planar vertical arch and a superior curved deck buckle in both planes of the 
arch symmetrically except for low f values: 

• The larger the f value, the larger the out-of-plane component. 

• The buckling shapes are equivalent whatever the value of the cross-sections employed 
and of the bearing conditions. 

• The geometry that best resists buckling is employing convergent struts (ie: each strut axis 

elongation converges above the deck with its symmetrical), since for this geometry the 

arch bears the lowest axial forces and stresses. As expected, this is coincident with the 

most efficient model for spatial arch bridges with a curved superior deck sustained by a 

planar vertical arch regarding the minimum mass criteria employing design cross-sections 

as concluded in chapter V. B chapter. 

• However, when employing the design cross-sections to analyse the buckling, not only the 

geometry has influence, but also the stiffness distribution in the bridge. Since models 

employing vertical struts need stiffer struts, employing vertical struts happens to be more 

favourable for avoiding buckling. 
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• Employing a stiffer deck or struts improves the buckling behaviour of the arch, since the 

deck has a stabilizing effect. This is more efficient than increasing the arch stiffness. 

• Not only need formulae for SABs be developed, but also an improvement of the existing 
formulae for planar arch bridges with a straight deck is required, since the existing 
formulae are very conservative. 

• If the total load on the bridge is calculated for the buckling coefficient α under the load 
case (1,35·(w+pl)+ α·lu) and α1 (α1·[1,35·(w+pl)+1,5·lu]) very similar values are 
obtained, but the error of employing α1 instead of α is non-negligible (approximately 
6%). Strictly correct method and most realistic would be to calculate α, employing α1 
gives insecure (larger) buckling load values. 

Chapter VI. C: 

• NLG effects have a high influence on the behavior of SABs with a superior curved deck. 

A NLGA must be conducted for this bridge type, since the design obtained with LA can 

give values which will not resist ULS when considering GNL effects and elastic material 

failure. 

• For SABs, results obtained with a LA are nearer to the NLGA than for planar arch bridges 

with a superior straight deck. This is so because important bending moments are already 

obtained for SABs with LA due to their geometry and structural behavior. 

• The influence of NLG effects is lower when employing f values L/5=20m (recommended 

in chapter V.B) than for arches with larger rise values. 

• The value of imperfections has a lower influence for arches with large rise values than 

when employing f values recommended in chapter V.B. 

These conclusions are quantified in Table 1 and *For bending moments: 
���������

���

∙ 100	, 

similar for other internal forces or stresses 

Table 2, which summarise some results obtained in this thesis research study. The % influence 

refers to the ultimate live load variation due to considering geometrical non-linearities (with 

or without imperfections) with respect to a linear analysis. 

g (m) 0 20 20 

f(m) 20 20 50 

% influence of geometrical non-linearities 
without imperfections 

6,04 17,32 37,05 

% influence of geometrical non-linearities with 
EC3 complex structures imperfections 

6,04 19,48 47,77 

% influence of geometrical non-linearities with 
EC3 arch bridges imperfections 

31,68 37,66 28,13 
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Table 1: Influence of geometrical non-linearities and imperfections fot models with different g and f 
values for a 100m span, e=g/1,2 (see Figure 3) and employing design cross-sections 

Arch internal force/ Stress 
Out-of-plane 

bending 
moments 

In-plane 
bending 
moments 

Torsional 
moments 

Axial forces Stresses 

Maximal variation due to to 
geometrically non-linaer effects 

without imperfections* and place 
of the arch where it takes place 

40% at L/8 40% at L/8 
30% at arch 
springings 

-1% at arch 
springings 
and crown 

37% at L/8 

*For bending moments: 
���������

���

∙ 100	, similar for other internal forces or stresses 

Table 2: Influence of geometrical non-linearities on the arch internal forces and stresses of a SAB 
with superior curved deck and L=100m, g=20m, f=20m, g=e/1,2 and employing reference cross-

sections 

Chapter VII: 

• When comparing the dynamic behaviour of a planar vertical arch with a straight superior 
deck with an equivalent planar vertical arch with a curved superior deck, the first one 
shows to be sensitive to transverse accelerations, but not to vertical ones, whereas the 
SAB is highly sensitive to vertical dynamic loads but not to transverse ones. Under a 
transverse crowd loading according to Sétra Guidelines a planar vertical arch with a 
superior straight deck of 100m span and a 20m rise suffers 1,8m/s2 transverse 
accelerations, whereas a SAB with a superior curved deck and a planar vertical arch with 
the same rise and span and e=16,67m undergoes 0,066m/s2 transverse accelerations but 
3,9m/s2 vertical accelerations. 

• Whereas planar vertical arch bridges with a straight deck mobilise masses only in one 
direction for each natural mode, SABs mobilise masses in different directions for the 
same natural mode. Some guidelines (Sétra, 2006) state not to apply dynamic loads in 
different directions simultaneously. This criteria should be revised for SABs.  

• For SABs with a planar vertical arch with a superior curved deck, dynamic loading in one 
direction causes acceleration in all directions, whereas for planar vertical arch bridges 
with a superior straight deck, dynamic loading in one direction only causes acceleration in 
that same direction. 

• Existing codes or guidelines do not consider the spatial effects of arch bridges with a 
curved deck, in which dynamic loading in one direction causes acceleration in all 
directions.  

• The studied planar vertical arch with a straight superior deck presents a too large 
transverse acceleration (1,8m/s2) under transverse dynamic loading, which surpasses the 
threshold that assures comfort. Mass or viscous dampers must be employed for the 
studied model. 

• Arch bridges with a curved deck under vertical dynamic loading reach very high vertical 
accelerations (3,9m/s2) for the geometry (very large deck curvature, f=g) and cross-
sections employed in the present research, but undergo low transverse accelerations 
within the maximal comfort range (0,066m/s2). Mass or viscous dampers must be 
employed for the studied model. 



VIII. CONCLUSIONS 
 

410 

 

• The acceleration increases remarkably when the pedestrians reach certain locations. 

• These locations do not depend on the load or on the pedestrian frequency. 

• These vertical dynamic load locations, which give relative maximal vertical acceleration 
values, correspond with the ones shown are approximately L/6 and L/3. 
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IX. DESIGN CRITERIA RECOMMENDATIONS.  

Inferior deck arch bridges with imposed curvature: 

For this bridge type the main conclusions for an efficient design are the following: 

• Stiff hanger-deck system: 

o deck cross-section with a high torsional and flexural rigidity  

o hangers cross-sections with a high flexural rigidity in the radial direction of the deck 
curvature. Employing a secondary hanger system is an interesting solution to supply 
stiffness in this direction. 

• Slender arch, with low flexural rigidity 

• It is important to keep the dynamic behavior of this bridge type under control when employed as a 
footbridge, since they can reach large vertical accelerations. The use of tuned mass dampers is 
probably necessary. 

In the following figures the aforementioned recommendations can be appreciated: 
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Spatial arch bridges with a planar vertical arch and a curved superior deck: 

Given a deck with a span L and a horizontal sag g supported by a planar vertical arch, it is recommendable 
to employ the following values for the parameters in Fehler! Verweisquelle konnte nicht gefunden 

werden.: 

• e=g/1,2=0,83g is the most efficient value for the arch/eccentricity  

• v=0 

• L/6,67≤ f ≤-L/4 

• It is convenient to employ a convergent distribution of struts (ie: a distribution of struts in which 
each strut axis elongation converges above the deck with its symmetrical) 

• Torsional rotations and displacements restrained at deck abutments. 

• Fixed arch springings. 

• Struts fixed to arch and deck 

It is important to keep the dynamic behavior of this bridge type under control when employed as a 
footbridge, since they can reach large vertical accelerations. The use of tuned mass dampers is probably 
necessary.  

 

 

 
Figure 1: Nomenclature of variables 
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IX. FUTURE LINES OF STUDY 

In the following lines we recommend a series of lines of study to extend the research study 

conducted in this thesis about Spatial Arch Bridges (SABs). 

Regarding Inferior Deck Arch Bridges With Imposed Curvature: 

• In a future research the Inferior Deck Arch Bridges With Imposed Curvature (ID-ABWIC) 

study could be widened for more cross-sections, employing real cross-section values to 

quantify the improvement of increasing the stiffness. 

• A parametrical relationship of the horizontal sag and the torsional and flexural stiffness of 

arch, hangers and deck could be found. 

• The study of second hanger systems could be broadened. A comparison between model (a) 

(Figure 1) studied in chapter IV and the bridge over the Galindo river (Figure 1b) employing 

the same cross-section values would be interesting.  

 

 (a) (b) 

Figure 1: Frame models for IDABWIC employing a secondary hanger system. (a) Model purposed in 
chapter IV. (b) Galindo bridge 

Regarding SABs with a superior curved deck: 

• Considering the importance of the point at 0,28*L for controlling the structural behavior 

of SABs with a superior curved deck supported by a planar vertical arch, it would be 

interesting: 

o Conducting a parametrical analysis of the struts distribution concentrating the 

struts in the area 0,28*L of the arch and deck. 

o Consider varying the stiffness of the different struts along the bridge, varying the 

stiffness within each strut and along the arch (Figure 2). 

 

 

 



X. FUTURE LINES OF STUDY 
 

418 

 

 

 

 

Figure 2: Variable stiffness possibilities for arch and struts 
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• Conduct a new the parametrical analysis of z employing geometrically non-linear analysis 

(Figure 3). 

• The case study of chapter V.B is devoted to planar vertical arch bridges with a curved 

deck. A study of arch in plan view curvature has been conducted in chaper V.A and V.B 

section 7, to determine which arch shape is nearer to a more efficient solution. A next step 

would be to study the optimal e value for each shape, determine the antifunicular solution 

and compare the mass variation of the most efficient solution with the most efficient e 

(Figure 3) in each case in order to determine whether finding the antifunicular shape is 

worth the mass variation it implies.  

This last step involves developing a software which is not contained in the scope of this 

thesis since it has been developed in previous works (Jorquera 2007, Lachauer 2014 and 

Todisco 2014). It is also not necessary for the objectives of the present thesis since the 

present case study is enough to understand the structural behaviour and determine easy 

design criteria. However, due to the considerable number of researches developing 

antifunicularity-finding-softwares, it would be interesting to determine whether the 

improvement structural efficiency due to antifunicularity is valuable or not. If the 

differences of the mass of the dimensioned bridge are negligible, planar arches can be 

employed and further researches are not necessary. 

 

Figure 3: Nomenclature of variables 

 

Regarding instability analysis of SABs: 

• Development of analytical formulae for the critical buckling load of SABs  

• Improvement of the existing formulae for the critical buckling load of planar arch 
bridges with a straight deck, since existing formulae are very conservative. 

• Codes and research give buckling formulation, but the hypothesis under which these 

formulae are valid are not clearly stated and not all cases for arch bridges are 

included. In an improved formulation this should be clearly stated. 
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• Model the studied bridge types with sectional FE shells model in order to introduce 

residual stresses, transverse bracings and diaphragms and sectional changes that 

might cause load eccentricities.  

• Obtainment of construction site imperfection measures and tolerances and 

comparison with those stated by the codes for the design analyses. The difference 

should correspond to residual stresses. Compare this value with residual stresses 

introduced in analytical models and their equivalent imperfection. On such a basis 

new code imperfection values could be set. 

• Development of a series of curves for arch bridges based on empirical values 

equivalent to the European buckling curves in EC3.  

• Compare the behavior of different imperfection shapes obtained by the positive and 

negative buckling deformed shapes, by conducting a NLGA. In the present study only 

the imperfection shape for one sign of the buckling shape has been employed. 

• Consider material non-linearity as well as geometrical non-linearity, in order to 

observe the formation of hinges and the bearing capacity margin of these structures 

with respect to the material linear analysis. 

 

Regarding the dynamic behaviour of spatial arch footbridges: 

• Dynamic loading in existing codes and guidelines should be revised for SABs. 

• The high vertical accelerations of SABs, together with the fact that dynamic loading in 
one direction causes acceleration in all directions in this bridge type, highlight the need of 
a deep research of the dynamic behaviour of this bridge type. 

• In relation to SABs spatial behaviour and different modes the statement in EC1 UK NA 
(“When the vertical deck modes are not well separated, consideration should be given to 
the use of more sophisticated methods of analysis, in order to determine combined mode 
responses. In all cases, it is conservative to use the vector sum of the peak accelerations 
for those modes that need such combination”) should be observed and further defined. 

 

 

The arches have been considered to have rigid boundary conditions, with fixed springings. Of 

course the flexibility of the foundations will change the boundary conditions of the arches. A 

study of the flexibility of the foundations and its influence on the bridge behaviour should be 

conducted. 
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A specific in depth study of shell SABs could be also a very interesting field of research, due to 

the scarce number of built examples and research studies. A proposal of research study line would 

be continuing the already published studies and design proposal published in Sarmiento-Comesías 

et al, 2013 and 2014 (see Figure 4). 

 

    

 

Figure 4: Shell arch solutions for (a) Salford Meadows Bridge. S-shape in plan IDABWIC (b) C-
curved in plan IDABWIC 
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