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Abstract

There is a clear trend nowadays to use heterogeneous high-performance computers, as they
offer considerably greater computing power than regular homogeneous CPU systems. Extend-
ing regular CPU systems with specialized processing units (accelerators such as GPGPUs or
Intel Xeon Phi) has become a tremendous revolution in the High Performance Computing
world. Not only the traditional performance per Watt ratio has been increased with the use
of such systems, but also the performance per Euro/Dollar has significantly been raised.

Heterogeneous machines can adapt better to different application requirements, as each ar-
chitecture type offers different characteristics. Thus, in order to maximize application per-
formance in these platforms, applications should be divided into several portions according
to their execution requirements. These portions should then be scheduled to the processing
unit that best fits their requirements.

Hence, heterogeneity introduces complexity in application development, up to the point of
forming a programming wall: on the one hand, source codes must be adapted to fit new
architectures, and sometimes they must even be rewritten from scratch. On the other hand,
resource management becomes more complicated. For example, multiple memory spaces
may exist and require explicit memory movements and, moreover, additional synchronization
mechanisms must be added between different code portions that run on different processing
units. For all these reasons, efficient programming and code maintenance in heterogeneous
systems has been extremely complex and expensive.

Although several approaches have been proposed for accelerator programming, like CUDA
and OpenCL, these models do not solve the aforementioned programming challenges, as they
expose low level hardware characteristics to the programmer. Ideally, programming models
should be able to hide all these complex accelerator programming by providing a homogeneous
development environment.

In this heterogeneous context, this thesis makes two major contributions: first, it proposes a
general design to efficiently manage the execution of heterogeneous applications and second,
it presents several scheduling mechanisms to spread application execution among all the
processing units of the system and maximize performance and resource utilization.

Regarding the first contribution, this work proposes an asynchronous design to manage ex-
ecution, data movements and synchronizations on accelerators. This approach has been de-
veloped in two steps: first, a semi-asynchronous proposal and then, a fully-asynchronous
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proposal in order to fit contemporary hardware restrictions. The experimental results from
different multi-accelerator platforms showed that these approaches could reach the maximum
expected performance. Even if compared to native, hand-tuned codes, they could get the
same results and outperform native versions in selected cases.

Regarding the second contribution, four different scheduling strategies are presented. They
combine different aspects of heterogeneous programming to minimize the execution time of
applications. For example, minimizing the amount of data shared between processing units
and their local memory spaces, or maximizing resource utilization by scheduling each portion
of code on the processing unit that fits better. The experimental results were performed on
different heterogeneous platforms, including general purpose CPUs, GPGPU and Intel Xeon
Phi accelerators. As shown in these tests, it is particularly interesting to analyze how all
these scheduling strategies can impact application performance.

Three general conclusions can be extracted from the research work derived from this thesis.
First, application performance is not guaranteed across new hardware generations. Therefore,
source codes must be periodically updated as hardware characteristics evolve. Second, the
most efficient way to run an application on a heterogeneous platform is to divide it into
smaller portions and pick the processing unit that fits better to run each portion. Hence,
system resources can cooperate together to execute the application. Finally, and probably
the most important, the requirements derived from the first and second conclusions can be
implemented inside runtime frameworks, so the complexity of programming heterogeneous
architectures is completely hidden from the programmer point of view.
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Chapter 1

Introduction

1.1 Context and Motivation

Heterogeneous high-performance computers have become a key evolution of regular
homogeneous CPU systems due to their computing power. The addition of specialized

processing units (accelerators) to regular CPU systems has led a tremendous revolution in the
High Performance Computing (HPC) world: on the one hand, the ratio between performance
and energy consumption, also known as performance per Watt, has significantly increased.
On the other hand, vendors offer such kind of devices at very competitive prices, so the ratio
between performance and hardware prices, also known as performance per Euro/Dollar, has
considerably raised as well. The main examples of these recent hardware accelerators include
General Purpose GPUs (GPGPUs) [1, 2], the Intel Xeon Phi [3] or FPGAs [4].

Table 1.1 compares the peak performance (single and double precision), power consumption
and cost of three different accelerators from nVIDIA, AMD and Intel and one general purpose
CPU from Intel respectively [5, 6, 7, 8, 9, 10]. The general purpose CPU has clearly the lowest
performance per Watt and performance per Dollar ratios: while its performance is two orders
of magnitude lower than the accelerators, it consumes around half the power of accelerators.
Moreover, it is the most expensive architecture.

The current TOP500 list (from June 2015) [11] reflects the popularity of heterogeneous com-

Architecture Peak Perf. (GFlop/s) Power Consumption (W) Cost ($)a
SP DP

nVIDIA GTX 980 Ti 6144 192 250 806
AMD FirePro S9150 5070 2530 235 3323
Intel Xeon Phi 7120P 2416 1208 300 3883
Intel Xeon E7-8770 96 48 130 5402

Table 1.1: Comparison between different architecture product characteristics
a Reference prices were extracted from US Amazon website as of July 2015.
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puters, as four of the top 10 machines have either GPGPUs or Xeon Phi coprocessors, the
top 2 being heterogeneous computers. Moreover, this trend has held for the last two years.
We can then expect that future many-core chips will be heterogeneous (different type of pro-
cessors, including accelerators) and may be organized in a certain hierarchy (for example,
organized in clusters of cores, possibly with associated local memory).

Heterogeneity adds adaptability to a machine, as different processing units of a system may
offer better capabilities for specific computations. For example, compute-intensive algorithms
fit perfectly on GPGPUs, as they offer a peak performance that can be up to 2 orders of mag-
nitude greater compared to a normal CPU. To make the most of heterogeneous systems,
applications should be split into different portions depending on their computational charac-
teristics and requirements. Then, ideally, each portion, should be executed on the processing
unit that will run it in the most efficient way.

However, heterogeneity makes the programming task more difficult, especially for program-
mers that want to fully exploit machine resources. Firstly, some accelerators, like GPGPUs,
may not be able to run regular CPU code; others, like the Intel Xeon Phi, are able to run
CPU code directly, but it may not exploit its massively-parallel hardware. So, in any case,
applications targeting traditional CPU architectures may have to be redesigned and rewritten.
Secondly, even in single-node systems, accelerators may have their own separated memory
space with limited capacity and access restrictions. From the programmer’s point of view,
CPUs usually have a single memory space with several transparent mechanisms that speed-up
memory accesses, like the different levels of hardware caches. But accelerators, like GPGPUs,
expose their memory hierarchy to programmers and leave them the decision of where to put
each piece of data as well as the responsibility of moving data from one memory space to an-
other. This forces programmers to include additional code to manage data movements across
different memory spaces and to keep data coherency. Finally, distributing the execution of
an application among all the computing resources of a system is a non-trivial task and het-
erogeneity makes it even more complex: synchronizations become particularly complicated if
we want to split the computation between multiple devices and still want to get optimal per-
formance. Therefore, code maintenance and performance portability become more complex
(and expensive) as source codes must be adapted to fit new architectures. In other words,
heterogeneity has raised the programming wall up to an unaffordable level for programmers.

Several proposals have arisen in the last years to program accelerators, the most important
being CUDA [12], which targets NVIDIA GPUs, and OpenCL [13], which works with Intel
Xeon Phi cards and GPGPUs as well. However, none of them addresses the aforementioned
challenges, since they both expose the underlying hardware to the programmer and only
offer a resource management API. Consequently, programming models should be able to hide
heterogeneity and hierarchy in a way that applications are unaware of the underlying hardware
and that can dynamically adapt to it. Moreover, this would allow programmers focus on
their application development and forget about the management of available resources, data
movements and synchronizations.

The code in Figure 1.1 implements the scale function in CUDA: it multiplies vector A by
the scalar sc. The figure illustrates the additional actions that programmers must add in
their source codes in order to offload a computation to a GPGPU in CUDA: first, allocate
and transfer memory to the device. Then, offload the computation and synchronize with the
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1.2. Programming Challenges in Heterogeneous Systems: One code does not fit all

1 __global__ v o i d s c a l e _ k e r n e l ( i n t n , d o u b l e ∗A, d o u b l e sc )
2 {
3 i n t idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4
5 i f ( idx < n )
6 A[ idx ] = A[ idx ] ∗ sc ;
7 }
8
9 v o i d s c a l e ( i n t n , d o u b l e ∗A, d o u b l e sc )

10 {
11 // A l l o c a t e device memory
12 d o u b l e ∗dA ;
13 cudaMalloc(&dA, n ∗ s i z e o f ( d o u b l e ) ) ;
14
15 // Transfer data to device memory
16 cudaMemcpy(&dA, &A, n ∗ s i z e o f ( d o u b l e ) , cudaMemcpyHostToDevice ) ;
17
18 // Off load computation
19 dim3 dimBlock ( 2 5 6 ) ;
20 dim3 dimGrid ( ( n / dimBlock . x ) + 1 ) ;
21 s c a l e _ k e r n e l <<< dimGrid , dimBlock >>>(n , dA, sc ) ;
22
23 // Synchronize with device
24 cudaDeviceSynchronize ( ) ;
25
26 // Copy r e s u l t back to host
27 cudaMemcpy(&A, &dA, n ∗ s i z e o f ( d o u b l e ) , cudaMemcpyDeviceToHost ) ;
28
29 // Free device memory
30 cudaFree (dA ) ;
31 }

Figure 1.1: A simple CUDA implementation of scale function

device. In addition, the device kernel implementation (scale_kernel) must be provided by the
programmer. Finally, copy the result back to the host and free all the allocated resources.
This source code is not optimized and its only objective is to show all the additional steps
that must be done to offload a computation to a GPGPU. In order to optimize this code,
these operations should be split into smaller parts, each one processing smaller pieces of the
vector, so that computations and data transfers can be overlapped. Writing a code that splits
the computation across multiple devices would even be more complex.

1.2 Programming Challenges in Heterogeneous Systems: One code
does not fit all

In general, there is not a single piece of code that fits all the existing hardware architectures,
and even if we find that code, it will not be the best (in terms of performance, energy con-
sumption, etc.) for all of them. Thus, it is not unusual to find different ways of implementing
the same algorithm. As an example, there are uncountable versions of the matrix multiply
algorithm. Figure 1.2 shows a simple CPU implementation of a tiled matrix multiply algo-
rithm that could run in different architectures. However, this is not the optimal version for
any of them.

There are many libraries that implement highly optimized versions of this algorithm for
CPUs, like BLAS [14], LAPACK [15] or MKL [16]. The matrix multiply implementation
found in these libraries has vectorized code to fully exploit the CPU hardware capabilities
and is usually optimized for particular matrix sizes (e.g. power-of-two matrix sizes or square
matrices).
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1 v o i d dgemm ( i n t m, i n t l , i n t n , d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C )
2 {
3 f o r ( i n t i = 0 ; i < m; i ++)
4 f o r ( i n t j = 0 ; j < n ; j++)
5 f o r ( i n t k = 0 ; k < l ; k++)
6 t i l e C [ i ∗n+j ] += t i l e A [ i ∗ l+k ] ∗ t i l e B [ k∗n+j ] ;
7 }
8
9 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗∗A, d o u b l e ∗∗B, d o u b l e ∗∗C, i n t tm , i n t t l , i n t tn )

10 {
11 f o r ( i n t i = 0 ; i < m; i ++)
12 f o r ( i n t j = 0 ; j < n ; j++)
13 f o r ( i n t k = 0 ; k < l ; k++)
14 dgemm(tm , t l , tn , A[ i ∗ l+k ] , B[ k∗n+j ] , C[ i ∗n+j ] ) ;
15 }

Figure 1.2: A simple C implementation of matrix multiply

However, none of the aforementioned CPU libraries will work on GPGPUs. Instead, there are
specific GPU-compatible implementations that can be found in libraries like CUBLAS [17]
or MAGMA [18]. Indeed, these implementations are carefully designed to fully exploit GPU
capabilities and massively parallel hardware. Thus, these codes are highly parallelized, take
into account how memory accesses are performed (as certain sequences of memory accesses
give higher memory bandwidths), make use of GPU registers and shared memory to reduce
memory latency, etc. Also, these codes are usually optimized for certain matrix sizes and,
depending on that, different kernel configurations (thread grid size and block size) are selected
as well. In addition, some libraries, like CUBLAS, have several internal implementations
optimized for a particular GPGPU hardware family, as different hardware families may present
different characteristics and require different optimizations.

For example, the code in Figure 1.3 illustrates a simple CUDA implementation of matrix
multiply. In contrast with the scale function presented before, there is no need to provide the
kernel code in this case, as the application calls CUBLAS to offload the computation to the
GPGPU. However, CUBLAS requires additional initialization and clean-up operations that
must be done by the programmer. In this case, implementing a tiled version of this algorithm
would make it possible to overlap operations or even split the computation across several
GPGPUs. However, this would introduce much more complexity in terms of programmability.

To make things even more complicated, the Xeon Phi cards present a combination of CPU
and GPGPU properties: on the one hand, Xeon Phi cards are built with regular CPUs, so
vectorization is a key factor for any code to achieve good performance. On the other hand, it
offers a massively parallel hardware where hundreds of threads can run simultaneously. Then,
all these hardware properties must be taken into account to write optimized codes. In this
case, the native MKL library for Xeon Phi [19] provides a matrix multiply implementation
especially designed for this type of architecture.

The source code in Figure 1.4 shows the same simple matrix multiply algorithm targeting
the Xeon Phi architecture. The hStreams [20] library provided by Intel is used to manage
the offloading and call the native MKL library to perform the computation on the device.
Like the CUDA version, this code is not optimized and a more complex tiled structure would
be needed to make it more efficient. These codes reflect the diversity and complexity that
programmers must face when writing applications for heterogeneous systems.
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1 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
2 {
3 // A l l o c a t e device memory
4 d o u b l e ∗dA, ∗dB , ∗dC ;
5 cudaMalloc(&dA, m ∗ l ∗ s i z e o f ( d o u b l e ) ) ;
6 cudaMalloc(&dB , l ∗ n ∗ s i z e o f ( d o u b l e ) ) ;
7 cudaMalloc(&dC, m ∗ n ∗ s i z e o f ( d o u b l e ) ) ;
8
9 // I n i t i a l i z a t i o n needed by device l i b r a r i e s

10 cublasHandle_t handle ;
11 cublasCreate (&handle ) ;
12
13 // Transfer data to device memory
14 cudaMemcpy(&dA, &A, m ∗ l ∗ s i z e o f ( d o u b l e ) , cudaMemcpyHostToDevice ) ;
15 cudaMemcpy(&dB , &B, l ∗ n ∗ s i z e o f ( d o u b l e ) , cudaMemcpyHostToDevice ) ;
16 cudaMemcpy(&dC, &C, m ∗ n ∗ s i z e o f ( d o u b l e ) , cudaMemcpyHostToDevice ) ;
17
18 // Off load computation
19 cublasDgemm ( handle , CUBLAS_OP_T, CUBLAS_OP_T, m, n , l , &alpha ,
20 dA, l , dB , n , &alpha , dC, m) ;
21
22 // Synchronize with device
23 cudaDeviceSynchronize ( ) ;
24
25 // Copy r e s u l t back to host
26 cudaMemcpy(&C, &dC, m ∗ n ∗ s i z e o f ( d o u b l e ) , cudaMemcpyDeviceToHost ) ;
27
28 // Free device memory and clean−up device l i b r a r i e s
29 cudaFree (dA ) ;
30 cudaFree (dB ) ;
31 cudaFree (dC ) ;
32 cublasDestroy ( handle ) ;
33 }

Figure 1.3: A simple CUDA implementation of matrix multiply calling CUBLAS library

1 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
2 {
3 // I n i t i a l i z e hStreams l i b r a r y and a l l o c a t e device memory
4 hStreams_app_init ( 1 , 1 ) ;
5 hStreams_app_create_buf (A, m ∗ l ∗ s i z e o f ( d o u b l e ) ) ;
6 hStreams_app_create_buf (B, l ∗ n ∗ s i z e o f ( d o u b l e ) ) ;
7 hStreams_app_create_buf (C, m ∗ n ∗ s i z e o f ( d o u b l e ) ) ;
8
9 // A l l operat ions are asynchronous , but use the same stream ,

10 // so hStreams w i l l c o n t r o l data dependences between them
11 i n t stream = 1 ;
12
13 // Transfer data to device memory
14 hStreams_app_xfer_memory (A, A, m ∗ l ∗ s i z e o f ( d o u b l e ) , stream , HSTR_SRC_TO_SINK, NULL) ;
15 hStreams_app_xfer_memory (B, B, l ∗ n ∗ s i z e o f ( d o u b l e ) , stream , HSTR_SRC_TO_SINK, NULL) ;
16 hStreams_app_xfer_memory (C, C, m ∗ n ∗ s i z e o f ( d o u b l e ) , stream , HSTR_SRC_TO_SINK, NULL) ;
17
18 // Off load computation , nat ive MKL w i l l be invoked on device
19 hStreams_app_dgemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans , m, n , l ,
20 1 . 0 , A, m, B, l , 1 . 0 , C, m, stream , NULL) ;
21
22 // Copy r e s u l t back to host
23 hStreams_app_xfer_memory (C, C, m ∗ n ∗ s i z e o f ( d o u b l e ) , stream , HSTR_SINK_TO_SRC, NULL) ;
24
25 // Synchronize with device
26 hStreams_app_thread_sync ( ) ;
27
28 // Free device memory and f i n a l i z e hStreams l i b r a r y
29 hStreams_DeAlloc (A) ;
30 hStreams_DeAlloc (B ) ;
31 hStreams_DeAlloc (C) ;
32 hStreams_app_fini ( ) ;
33 }

Figure 1.4: A simple hStreams implementation of matrix multiply for Intel Xeon Phi
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Despite these software development problems, accelerators have become very popular thanks
to its capabilities: a small amount of them can give the same computational power as a
supercomputer at a considerably lower price. Unfortunately, they are not the universal solu-
tion to accelerate existing applications, as they can perform very well at compute-intensive
algorithms, but we can find a large set of applications where accelerators get no speed-up, or
even perform worse than CPUs.

Nowadays, it is the programmer responsibility to consider whether their code (or a part of it)
can benefit from accelerator capabilities and to add all the necessary operations to perform
such offloading. Nevertheless, there are many research lines opened in software systems for
heterogeneous computers. Hopefully, these software systems will become smart enough in the
future to make all these decisions automatically and transparently to help programmers. The
work developed in the context of this thesis is an example and other research proposals are
illustrated in Chapter 3 as well. For example, the OpenMP and OpenACC directive-based
programming models are two high-level proposals that seek lowering the programming wall
by offering code portability across different architectures.

1.3 Contributions
The main goal of this PhD thesis is to design the appropriate scheduling techniques and
resource management for heterogeneous systems. The objective is to include them into a
runtime system, so that they are completely automatic and transparent to programmers. In
order to prove the validity of this work and increase its impact on the scientific community,
the research has been focused on the two most common accelerators that exist nowadays:
GPGPUs and Intel Xeon Phi.

In recent years, task programming has become popular and fits perfectly well in heterogeneous
programming, as each task can be seen as the sequential piece of code that is run by one of
the machine resources. However, developing a new programming model from scratch is out
of the scope of this thesis. OmpSs is an OpenMP-like task-based programming model. It
has been carefully designed in a modular way and can be extended easily with new features.
OmpSs offers flexibility to programmers and adaptability to current and future hardware
architectures. For these reasons, OmpSs was chosen as the basis of this work and all thesis
contributions have been developed and tested on top of it.

The contributions of this thesis can be divided into two main areas described below:

o Accelerator support and management: we demonstrate that it is possible to hide the
difficulties of accelerator programming from the programming model side. In this sense,
we have designed an approach capable of performing all the accelerator-related manage-
ment (like execution offloading, data movements or synchronizations) that is completely
transparent and needs no additional effort from the programmer. This approach mainly
targets task-based programming frameworks and adds the specific support needed to
offload task execution to GPGPU and Xeon Phi accelerators.

o Scheduling techniques for heterogeneous architectures: we provide a set of scheduling
techniques especially designed for heterogeneous architectures. Each technique focuses
on a different objective (like minimizing the amount of data transfers, prioritizing the
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execution of critical paths, or maximizing the resource utilization) and they can also be
combined together. We prove that our scheduling techniques can dynamically decide
the best task execution order and distribution for a particular objective.

OmpSs 
 

Scheduling 
Techniques 

 

Accelerator 
Support 

GPGPU 

Priority Propagation 

Xeon Phi 

Affinity-ready SSMART 

Versioning 

Figure 1.5: Illustration of thesis contributions

Figure 1.5 pictures the thesis contributions and how they are integrated in the OmpSs frame-
work. The accelerator support and scheduling techniques have been added into the OmpSs
framework and can be combined to execute OmpSs applications.

The publications that support this thesis are listed below in chronological order.

o [21] Javier Bueno, Judit Planas, Alejandro Duran, Xavier Martorell, Eduard Ayguadé,
Rosa M. Badia and Jesús Labarta. Productive Programming of GPU Clusters with
OmpSs. Paper presentation, 26th IEEE International Parallel and Distributed Process-
ing Symposium. May 21-25, 2012. Shangai, China.

o [22] Judit Planas, Rosa M. Badia, Eduard Ayguadé and Jesús Labarta. Self-Adaptive
OmpSs Tasks in Heterogeneous Environments. Paper presentation, In proc. of 27th
IEEE International Parallel & Distributed Processing Symposium (IPDPS 2013). Boston,
Massachusetts, USA. May 2013.

o [23] Judit Planas, Rosa M. Badia, Eduard Ayguade, and Jesus Labarta. AMA: Asyn-
chronous Management of Accelerators for Task-based Programming Models. Paper pre-
sentation, International Conference on Computational Science (ICCS 2015), Volume 51,
Pages 130-139. Reykjavik, Iceland. June 2015.

o Judit Planas, Rosa M. Badia, Eduard Ayguadé and Jesús Labarta. SSMART: Smart
Scheduling of Multi-ARchitecture Tasks on Heterogeneous Systems. Submitted to Second
Workshop on Accelerator Programming using Directives (WACCPD). 2015.

The contributions of this thesis have also been published as part of a collective group work.
The related publications are listed below in chronological order.
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o [24] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Du-
ran, Marc Gonzalez, Francisco Igual, Daniel Jimenez-Gonzalez, Jesús Labarta, Luis
Martinell, Xavier Martorell, Rafael Mayo, Jose M. Perez, Judit Planas and Enrique
S. Quintana-Ortí. Extending OpenMP to Survive the Heterogeneous Multi-core Era.
Journal publication, International Journal of Parallel Programming, Vol. 38, No. 5-6,
440-459. June 2010.

o [25] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell, R. Badia,
E. Ayguadé and J. Labarta. Optimizing the Exploitation of Multicore Processors and
GPUs with OpenMP and OpenCL. Paper presentation, In proceedings of the 23rd In-
ternational Workshop on Languages and Compilers for Parallel Computing. October,
2010. Houston, Texas, USA.

o [26] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell and Judit Planas. OmpSs: A proposal for programming heterogeneous
multi-core architectures. Journal publication, Parallel Processing Letter, Volume 21,
Issue 2, pp. 173 - 193. June, 2011.

o [27] Eduard Ayguade, Rosa M. Badia, Pieter Bellens, Javier Bueno, Alex Duran, Yoav
Etsion, Montse Farreras, Roger Ferrer, Jesus Labarta, Vladimir Marjanovic, Lluis Mar-
tinell, Xavier Martorell, Josep M. Perez, Judit Planas, Alex Ramirez, Xavier Teruel,
Ioanna Tsalouchidou and Mateo Valero. Hybrid/Heterogeneous Programming With
OmpSs And Its Software/Hardware Implications. Book chapter, In Programming Multi-
core and Many-core Computing Systems (Wiley Series on Parallel and Distributed Com-
puting), ed. John Wiley & Sons, Inc. January 2012.

o Chris J. Newburn, Gaurav Bansal, Judit Planas, Alejandro Duran, Paulo Souza, Leonardo
Borges and Jesus Labarta. Heterogeneous Streaming. Under submission process.

The next sections describe the contributions in more detail and link them with the publica-
tions.

1.3.1 Accelerator Support and Management
This thesis contributes with the design and implementation of an efficient way to give support
and manage task execution on accelerators. Our design is based on the asynchronous prop-
erty that most accelerators present and focuses on minimizing the amount of time spent in
host-device synchronization. As explained before, it mainly focuses task-based programming
frameworks. With our contribution, we add all the necessary support to the target framework
to be able to offload tasks to a given accelerator. This support includes (i) runtime opera-
tions such as device initialization and configuration (if needed), data movements, host-device
synchronization and task offloading and (ii) compiler capabilities to apply the appropriate
source code transformations to enable task offloading to accelerators. This model has been
presented in several publications [24], [26] and [27].

Figure 1.6 illustrates the OmpSs implementation of the simple matrix multiply code presented
before. By just inserting the target, task and taskwait directives, OmpSs will offload the
computation to a GPGPU and will handle all the necessary memory movements. In this
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1 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps
2 #pragma omp t a s k i n o u t ( [m ] [ n ] t i l e C ) i n ( [m ] [ l ] t i l e A , [ l ] [ n ] t i l e B )
3 v o i d matmul_kernel ( i n t m, i n t l , i n t n , d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
4 {
5 d o u b l e alpha = 1 . 0 ;
6
7 // Get the appropriate execut ion stream and CUBLAS context from OmpSs runtime
8 cublasHandle_t handle = nanos_get_cublas_handle ( ) ;
9 cudaStream_t stream = nanos_get_kernel_execution_stream ( ) ;

10 cublasSetStream ( handle , stream ) ;
11
12 cublasDgemm ( handle , CUBLAS_OP_T, CUBLAS_OP_T, m, n , l , &alpha ,
13 A, m, B, l , &alpha , C, m) ;
14 }
15
16 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
17 {
18 // No need to a l l o c a t e nor t r a n s f e r device memory
19 // CUBLAS l i b r a r y i s i n i t i a l i z e d i n s i d e OmpSs runtime
20
21 // Off load computation
22 matmul_kernel (m, l , n , A, B, C) ;
23
24 // Synchronize with device
25 // This synchronizat ion a l s o b r i n g s output data back to the host
26 #pragma omp t a s k w a i t
27
28 // No need to f r e e device memory nor clean−up CUBLAS l i b r a r y
29 }

Figure 1.6: Simple OmpSs matrix multiply code using the GPGPU to offload the computation

case, since the CUBLAS library is used, the code in lines 8-10 is required by the runtime
to properly manage the offloading. This CUBLAS particularity is explained and justified in
detail in Section 4.1.2.5.

Regarding the runtime contribution, two different prototypes where explored: first, a semi-
asynchronous approach and, second, a fully asynchronous approach.

1.3.1.1 Semi-asynchronous Approach

The semi-asynchronous approach interleaves asynchronous periods with fully blocking syn-
chronized points because the existing technologies, by the time it was implemented, did not
offer any possibility for a fully asynchronous host-device communication behavior.

Having blocking synchronizations negatively affects performance, because this means that the
CPU has to block at some points and waste its time while it is waiting for the device to finish
its operations (data transfers and computations). But this was the only way to check for
the state of operations that were issued to the device. So, we found a compromise between
the number of blocking synchronization points and the level of control the host had over the
device.

The semi-asynchronous approach was only implemented and tested on GPGPUs devices be-
cause it was the most famous and almost the only type of accelerators that existed by that
time. This work was published as a conference paper [21].
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1.3.1.2 Fully asynchronous Approach

Although the semi-asynchronous approach was good enough for its time, as the technology
evolved, accelerators offered new features that could clearly improve our first approach. Thus,
a second prototype, called AMA (Asynchronous Management of Accelerators), was designed
with the property of being completely asynchronous.

AMA is able to completely remove the previous blocking synchronizations and establish and
event-driven communication between host and device. This approach clearly enhances the
existing design because it completely decouples the operations done on both host and device
sides. The main idea behind this design is to use the CPU to do some other useful work while
it is waiting for the device to finish its computations.

We have proved the validity of the fully asynchronous approach with two of today’s most
famous accelerators: GPGPUs and Intel Xeon Phi. This model and its GPGPU implemen-
tation were presented as a conference paper [23]. The Intel Xeon Phi related work is under
publication process.

1.3.1.3 Accelerator Compiler Support

In order to make the accelerator programming task easier, the accelerator compiler support
tries to minimize as much as possible the source code differences between calling a regular
CPU task or an accelerator task. For example, in the case of GPGPUs, the compiler inserts
calls to the runtime that will decide at run time which execution stream is used for each
kernel, being this completely transparent from the programmer point of view. This work was
published as a conference paper [25].

1.3.2 Scheduling Techniques for Heterogeneous Architectures

The second thesis contribution is a set of scheduling techniques designed and optimized for
heterogeneous architectures. Also targeting task-based programming frameworks, each of our
scheduling technique focuses on a specific objective and finds the best task execution order
and distribution to accomplish such objective.

The set of scheduling techniques focuses on the following objectives: prioritize the execution
of the critical path of an application (task priority propagation), minimize the amount of
data transferred (affinity-ready scheduler), maximize system’s resource utilization (versioning
scheduler) and a combination of maximizing resource utilization while minimizing the amount
of data transfers (SSMART scheduler).

1.3.2.1 Task Priority Propagation

Assuming that we have a task graph where tasks that belong to the critical path1 are assigned
higher priorities than those outside the critical path, the task priority propagation mechanism
helps finding such tasks with higher priority in advance.

1 The critical path of an application task graph is the sequence of tasks determining the minimum time
needed to execute the application.
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We do not consider this mechanism a scheduling technique itself, but it can be combined with
any other scheduling technique to help it improve the order in which tasks are being run.
This work was published in a conference paper [23].

1.3.2.2 Affinity-ready Scheduler

This scheduling technique checks for task data locality and assigns each task to the processing
unit that needs less data to be transferred to run the given task. It is especially designed for
accelerators by carefully accounting the number of total bytes that need to be transferred for
each task.

In addition, it can be combined with the task priority mechanism to enhance the order in
which tasks are selected. This work was published in a conference paper [23].

1.3.2.3 Versioning Scheduler

The versioning scheduling technique contributes in two aspects of the programming frame-
work. First, it adds the ability to join separate pieces of code (i.e. new or alternative
task implementations) to the original application without having to modify it. And second,
proposes a new scheduling strategy to evaluate these new added pieces. The aim of this con-
tribution is performance portability at low-cost maintenance: programmers can add different
task implementations of the same algorithm (that can also target different architectures) and
let the runtime dynamically explore and decide which implementation is chosen each time a
task is called.

The main objective of the scheduling strategy is to increase application performance by max-
imizing resource utilization: task2 performance is monitored on each processing unit and a
look-ahead scheduling is done to find the best distribution of future tasks on system resources.
Since all system resources cooperate to run the application, its performance can be potentially
increased. This work was presented as conference paper [22].

1.3.2.4 SSMART Scheduler

The SSMART scheduler completes the set of scheduling techniques by combining and im-
proving some of the aforementioned scheduling objectives. On the one hand, it enhances the
versioning scheduler in several aspects and, on the other hand, combines both versioning and
affinity-ready objectives.

In short, SSMART extends the versioning scheduler characteristics in the following aspects:
first, SSMART takes into account data locality to decide which processing unit is the most
suitable to run a task as well as the estimated time needed for data transfers. Second, for each
pair task-processing unit, SSMART creates a rank of suitability (how good is a processing
unit to run the given task, taking into account its workload and task data locality). Then,
if needed, the scheduler is able to decide the most suitable device within a subset of the
processing units of the whole system. Third, SSMART allows stealing tasks that were already
assigned to a certain processing unit. Fourth, it supports task priority propagation. Finally,

2 Only those tasks that have more than one implementation are taken into account in the monitoring and
scheduling process. The rest of the tasks are scheduled following a breadth-first strategy.

11



1. Introduction

versioning only profiles tasks with more than one implementation, while SSMART profiles all
tasks of the application. This work is under publication process.

1.4 Thesis Organization
This thesis document is structured in the following way: this chapter, Chapter 1, is the
introduction and describes the motivations, the context and the contributions of this thesis.
Chapter 2 gives an overview of OmpSs, the programming model and framework used as
the basis to develop the contributions of the thesis. It also includes a description of the
applications that have been used to evaluate the implementations. The following chapter,
Chapter 3, summarizes the state of the art with respect to each thesis contribution. Then,
Chapters 4 and 5 give a detailed description of the contributions and present their evaluation.
The conclusions and future work of this thesis are discussed in Chapter 6. Finally, the reader
can find the bibliography at the end of this document.

In addition, as a complement of the preceding chapters, Appendix A shows the specific OmpSs
runtime options for GPGPU and Xeon Phi devices and Appendix B compares the source codes
of an OmpSs version of a tiled matrix multiply algorithm with sequential C, CUDA, OpenMP
and hStreams versions.
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Chapter 2

Development Environment

This chapter introduces the OmpSs programming model and describes the applications
that have been used in the context of this thesis.

2.1 OmpSs programming model

The OmpSs programming model [24] defines a single task-based programming model for
homogeneous and heterogeneous architectures and is open to support new architectures that
may appear in the future.

OmpSs combines ideas from OpenMP [28] and StarSs [29]: on the one hand, it enhances
OpenMP with support for irregular and asynchronous parallelism and heterogeneous archi-
tectures and, on the other hand, it incorporates StarSs dependence support [30] and data-flow
concepts that allow the framework to automatically move data as necessary and perform dif-
ferent kinds of optimizations. OmpSs is currently able to run applications on clusters of
nodes that combine shared memory processors (SMPs) and other external devices, for exam-
ple, FPGA, GPU and Xeon Phi [21, 23, 31], being the last two contributions of this thesis.

2.1.1 Execution Model

OmpSs uses a thread-pool execution model instead of the traditional OpenMP fork-join model.
There is a master thread that starts the execution of the application and several other threads
that cooperate executing the work it creates from worksharing or task constructs. Therefore,
unlike OpenMP, there is no need for a parallel region. Nesting of constructs allows other
threads to generate work as well.

An application’s inherent parallelism is exploited from task constructs at runtime: a data-
dependency graph is dynamically built with the information extracted at compile time from
parameter directionality clauses (in, out and inout). This task graph construction is essential
to keep application’s data coherence and correctness. Then, only ready tasks (i.e. tasks that
do not depend on other tasks) can be run in parallel.
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2.1.2 Memory Model
From the application point of view, there is a single address space. However, internally,
OmpSs assumes that multiple address spaces may exist. Then, data can be shared between
these address spaces and may reside in memory locations that are not directly accessible from
some of the computational resources. Thus, all parallel code can only safely access private and
shared data that has been marked explicitly with OmpSs extended syntax. This assumption
is true even for SMP machines as the implementation may reallocate shared data to improve
memory accesses in, for example, NUMA systems [32].

The runtime takes care of where data resides by means of a directory structure. The archi-
tecture support manages data transfers between memory spaces as tasks consume or produce
them. Data can be replicated on different memory spaces and coherency is transparently
managed by the runtime.

2.1.3 OmpSs Syntax Extensions
OmpSs supports OpenMP directives in general, but, additionally, it defines several extensions
to OpenMP’s syntax that are explained below:

o Dependency synchronization: OmpSs integrates the StarSs dependence support. It
allows annotating tasks with three clauses: in, out and inout. They allow expressing,
respectively, that a given task depends on some data produced before, that it will
produce some data, or both. The clause allows specifying arrays, pointers and pointed
data. Data addresses and sizes do not need to be constant at compile time since they are
computed at execution time. In addition, the taskwait construct is extended with the
on clause, which allows the encountering task to block only until the set of data specified
in this clause is produced. taskwait has been extended as well with the noflush clause
which allows synchronizing tasks without flushing all the data on remote devices.
Dependence clauses have been recently introduced in OpenMP 4.0: the OpenMP depend
clause is now very similar to the OmpSs in, out and inout clauses. However, OmpSs is
able to detect dependences between non-contiguous or strided regions whereas OpenMP
uses the initial address of a region to detect task dependencies. Therefore, partially
overlapping or strided regions cannot be detected [33, 34].

o The target construct: This extension was introduced to support heterogeneity and data
motion and it is represented by the target construct [35]. It can be applied to tasks
and accepts the following clauses:

n device: It specifies which devices can run the associated code (e.g., fpga, gpu,
smp). SMP device (for CPUs) is assumed by default. The construct target
device can also be applied to other functions that are not necessarily tasks.

n copy_in: It specifies that some data must be accessible to the task when running.
This may imply a data transfer between memory spaces.

n copy_out: It specifies that some data that was accessible to the task when running
will be the only valid version when the task finishes its execution.

n copy_inout: This clause is a combination of copy_in and copy_out.
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2.1. OmpSs programming model

n copy_deps: It specifies that any task’s dependence clause will also have copy
semantics (i.e., in will be also considered copy_in, out will be also copy_out and
inout will be also copy_inout). To make sure that data that were moved to a
device are valid again in the host, SMP tasks (for CPUs) must also use the copy
clauses or appear after an either implicit or explicit OpenMP flush.

n implements: This clause is used to specify that the annotated task is an imple-
mentation of another task and has been developed in the context of this thesis.

Since OpenMP 4.0, the target construct is accepted in OpenMP as well. But the seman-
tics are very different: while the OpenMP construct forces the programmer to specify
which data movements must be performed, OmpSs offers the possibility to deduct the
necessary data transfers from the data-dependency clauses (copy_deps clause). More-
over, The OpenMP device receives an integer parameter that identifies the physical
unit where the task will be run. In contrast, OmpSs device clause is used to specify
the architecture type of the task; the runtime will transparently decide which physical
unit (of the appropriate architecture type) executes the task. This approach is more
flexible and the same source code can run in different machine configurations regarding
the number and type of available processing units. In addition, OmpSs is not able to
generate device code, so the appropriate kernel code (e.g. in CUDA, OpenCL, etc.) is
required.

The different copy clauses do not necessarily imply a copy before and after the execution of
each task. This allows the runtime to take advantage of devices with access to the shared
memory or implement different data caching and prefetching techniques without the user
needing to modify their code.

The OmpSs framework is distributed with two different components: the Nanos++ runtime
library and the Mercurium source-to-source compiler, both explained below.

2.1.4 Nanos++ Library
Nanos++ [36] is an extensible runtime library that supports the OmpSs programming model.
Its responsibility is to schedule and execute parallel tasks as specified by the compiler, based
on constraints specified by the user: order, coherence, etc.

Most of the runtime components are independent from the actual target architectures, so
general runtime characteristics are explained in this chapter and the specific architecture
support developed in the context of this thesis is described in Chapter 4. As of today,
Nanos++ supports the following conceptual architectures:

o smp: targets general purpose CPUs.

o smp-numa: used in Non-Unified Memory Access (NUMA) systems with general purpose
CPUs.

o gpu [37]: offloads tasks in CUDA-capable GPGPUs.
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o opencl: offloads tasks to any architecture that supports OpenCL (currently CPUs,
GPGPUs and Xeon Phi).

o hstreams: offloads tasks to any architecture supported by the hStreams library (cur-
rently Xeon Phi, general purpose CPUs will be supported in the future as well).

o fpga: offload tasks to FPGA devices.

o cluster [38]: distributes tasks among the different nodes of a cluster system and can be
combined with other conceptual architectures that the hardware system may offer.

o mpi: distributes tasks among the different nodes of a cluster system using the Message
Passing Interface (MPI) [39] library.

o tasksim [40]: used in a simulated architecture.

The following sections give an overview of the most important independent mechanisms of
the library that serve as glue between the different architectures.

2.1.4.1 Nanos++ Independent Layer

When a piece of code annotated as a task is reached, the runtime creates a new task. The
data environment of the task is captured from the function arguments or scope variables and
is used to dynamically build a task data-dependency graph to ensure program’s correctness.
When the task data dependencies are satisfied (usually by the completion of its predecessor
tasks), the task becomes ready and can be run.

The task life can be divided into five stages (from its creation to its completion), described
in chronological order:

o Instantiation: OmpSs creates the task and all its related data structures. The de-
pendency support computes task data dependencies and adds a new node to the task
graph representing this task. The appropriate connections between the task and its
predecessors are created.

o Ready: task’s data dependencies are satisfied, typically as a result of the completion of
the predecessor tasks. Task scheduling usually occurs in this stage1.

o Active: this stage includes all the operations needed once the task has been scheduled
to a system’s processing unit and before the task can be run. The coherence layer is
invoked in this stage to ensure that all necessary data is available in the appropriate
memory space. Then, if needed, data allocations and input data transfers are issued.

o Run: the task is executed. The corresponding architecture dependent layer is the
responsible for this action and will notify the system when the execution is finished.

1 Most schedulers decide the unit where the task will be run at this stage, but, for example, the locality-
aware scheduler (explained later in this chapter) computes the affinity score and makes this decision in the
instantiation stage for performance reasons.
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o Completion: all the operations needed once the task has been run occur in this stage.
The coherence layer is invoked again to process task’s output data. Depending on the
configuration of this layer, data transfers and data deallocations may occur or not. The
dependency support updates the task graph by removing the corresponding task node
and its connections. Then, task successors that have no other dependence will become
ready.

2.1.4.2 Nanos++ Dependency Support

The runtime maintains a directed acyclic graph where tasks are connected following the
dependencies extracted from the directionality clauses specified by the user. Edges between
nodes are created for different kinds of dependencies: read-after-write, write-after-read, write-
after-write.

The OmpSs model does not allow data dependencies outside the dynamic extent of a given
task. This means that only sibling tasks will be connected together. This is particularly im-
portant as it allows a hierarchical implementation of the graph for applications with multiple
levels of task parallelism.

The dependency support is implemented as a runtime plug-in, so, different behaviors can be
implemented and chosen at run time.

2.1.4.3 Nanos++ Task Scheduler

Nanos++ allows changing the scheduler used for each execution and, thus, experimenting
with different scheduling strategies. The runtime offers several scheduling policies, explained
below. The ones included in this thesis contributions are explained in Chapter 5:

o Breadth-first: It follows a simple first in, first out (FIFO) scheduling strategy, but
before picking the first task from the ready task queue, it tries to schedule a successor
of the task that just finished. The idea behind this is that the successor task will share
data and it will likely minimize the number of data transfers between disjoint memory
spaces.

o Locality-aware: In this strategy, when a new task is submitted, the scheduler computes
an affinity score for each system memory space. This score is based on where each piece
of data specified by the task clauses is located and also takes into account the size of
that data. Then, the score is used to place the task in any of the computing units with
direct access to the memory space with the highest affinity. Unlike the other schedulers,
affinity-aware makes the decision in the task instantiation stage for performance reasons.

o NUMA-aware: The aim of this strategy is to minimize memory latency in NUMA
systems. It takes into account the physical location of data and assigns tasks to those
processing units that are physically attached to the memory bank where task data
resides. Task stealing is allowed as well to reduce load imbalance between processing
units.
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Figure 2.1: Nanos++ runtime components and execution flow

Many schedulers support task priorities2 to establish a task execution order while preserving
data dependencies: tasks with higher priority will be executed earlier.

2.1.4.4 Nanos++ Coherence Support

During the task active stage, just before the task is executed, the coherence support is invoked
to ensure that an up-to-date copy of the data is available in the address space where the task
is going to run.

A hierarchical directory keeps track of the physical location of data and of the most recent
version. In addition, a software cache exists for each device that has a separate address
space. This cache keeps track of which data is in each address space so it allows skipping
unnecessary data transfers. The cache can work in two different write policies: write-through
or write-back, being this last one the default policy.

The coherence layer ultimately invokes the architecture support to perform the necessary data
allocations, deallocations and transfers.

It is important to notice that the coherence mechanisms assume program correctness. Ap-
plications where the programmer provides tasks that write to the same data simultaneously
without specifying proper synchronization (e.g., using the dependency clauses) result in un-
defined behavior.

2 Task priority and task priority propagation are two concepts highly linked, but they should not be
confused. Task priority reflects the fact that the task execution order can be modified by giving some priority
to certain tasks (usually represented as an integer). Task priority propagation refers to the action of propagating
the task priority to its predecessors (usually done by adding its priority to the current predecessor priority).
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Figure 2.1 illustrates the different Nanos++ runtime components and its execution flow. The
figure shows the runtime components that are loaded in a heterogeneous system with several
CPUs, one GPGPU and one Intel Xeon Phi (MIC) card. Thus, several threads are created
to run the tasks on the different execution units. Threads that run tasks on CPUs are called
worker threads and those threads used to manage and offload tasks to accelerators are called
helper threads and run on the CPU as well. In this case, one helper thread is created for each
accelerator. As the OmpSs application binary is executed, task creation code will be reached
and, thus, the Nanos++ dependency layer will create a new node in the task dependency
graph for each created task. When the task becomes ready, the runtime scheduler component
decides which execution unit will run the task. Then, the architecture support for that unit
and the coherence layer coordinate the necessary data transfers and run the task. Finally,
once the task is run, the dependency and coherence layers are invoked again to update their
information.

Thanks to the flexible design and implementation of OmpSs runtime, it is very easy to extend
any of its features, like adding a new scheduler or even the support for a new architecture.
New features can be added as new plug-ins and later on, when the application is run, the user
can decide which plug-ins should be enabled through configuration arguments or environment
variables. Thus, the same application can be run several times using, for example, different
schedulers, and there is no need to recompile neither the OmpSs runtime nor the application;
only the appropriate environment variables or configuration arguments must be set before
each execution.

2.1.5 Mercurium Compiler
The compiler [41] plays a relatively minor role on the implementation of the OmpSs model.
On one side, the compiler recognizes the constructs and transforms them into calls to the
Nanos++ runtime library. The data-flow clauses are transformed into a set of expressions.
The evaluation of these expressions at execution time will generate addresses of memory that
will be passed to the runtime library to build the task dependency graph.

On the other side, the compiler manages code restructuring for different target devices. When
the compiler is about to generate the code for a task construct it checks if there is a target
device directive. If so, then the appropriate internal representation for the task is passed
onto a device-specific handler for each non-SMP device 3.

These handlers generate the device-dependent data to be associated with the task. If nec-
essary, they can also generate additional code for different specific devices in separate files.
These additional files are reintroduced in the compiler pipeline usually following different
compilation profiles that will invoke different backend tools (e.g., in the case of GPU devices,
the nVIDIA nvcc compiler will be invoked).

Additional files and binaries generated by the compiler are merged together into a single
object file that contains additional information about the different subobjects. This way, the
compiler maintains the traditional behavior of generating one object file per source file to
enable compatibility with other tools, like makefiles. The information is recovered at the
linkage step to generate the final binary with all the objects.

3The specific GPU device handler has been developed within the context of this thesis and it is explained

19



2. Development Environment

#pragma omp task 

… 

Application 
source code 

Mercurium compiler 

Language 
frontend 

(C/C++, Fortran) 

OmpSs Core Device Provider 
(SMP, GPU, MIC,…) 

Source-to-source Transformation 

Native compilers 
(gcc, nvcc, icc,…) 

Embed files 
& link 

Application 
binary 

Native Compilation 

Figure 2.2: Mercurium file compilation flow

1 #pragma omp t a s k i n o u t ( [ t s ] [ t s ] t i l e C ) i n ( [ t s ] [ t s ] t i l e A , [ t s ] [ t s ] t i l e B )
2 v o i d dgemm_task ( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
3 {
4 cblas_dgemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans , ts , ts , ts , 1 . 0 ,
5 t i l eA , ts , t i l e B , ts , 1 . 0 , t i l e C , t s ) ;
6 }
7
8 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗∗A, d o u b l e ∗∗B, d o u b l e ∗∗C, i n t t s )
9 {

10 i n t i , j , k ;
11 f o r ( i = 0 ; i < m; i ++)
12 f o r ( j = 0 ; j < n ; j++)
13 f o r ( k = 0 ; k < l ; k++)
14 dgemm_task (A[ i ∗ l+k ] , B[ k∗n+j ] , C[ i ∗n+j ] , t s ) ;
15
16 #pragma omp t a s k w a i t
17 }

Figure 2.3: OmpSs tiled matrix multiply calling CBLAS

Figure 2.2 shows the file compilation flow of an OmpSs application. First, Mercurium does a
source-to-source transformation of the application source code annotated with directives by
replacing the constructs with calls to the Nanos++ runtime. Then, host and device codes are
split into different files and are processed by the corresponding device provider component.
Finally, each piece of code is compiled with its appropriate native compiler and all the resulting
object files are linked together to generate the OmpSs application binary.

2.1.6 OmpSs Application Example
This section illustrates a tiled matrix multiply algorithm written in OmpSs as a didactic
example. The algorithm takes two input matrices, A and B of m× l and l× n elements
respectively, and computes its product in a resulting matrix, C of m×n elements. Each
matrix is divided into tiles of ts× ts elements.

Figure 2.3 shows its source code implementation on a shared-memory CPU system. The
dgemm function is a task that computes the partial product of each tile by calling the CBLAS

in more detail in Chapter 4.
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User functions: Edge types:

void dgemm(double *, double *, double *, int) ➝ True dependence | Taskwait | Barrier
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Figure 2.4: Data-dependency graph for a tiled matrix multiply algorithm

library. The in and inout clauses ensure that the partial computations over the different
tiles are done in the correct order. The taskwait at the end ensures that all tasks have been
run at that point.

Figure 2.4 illustrates the resulting data-dependency graph built at runtime for matrices of
4×4 tiles. Nodes represent tasks and arrows represent data dependencies: the target node of
the arrow is a successor of the source node. Nodes have an identification number according
to the order of task creation. Each dependency chain corresponds to the computation of one
tile of the output C matrix. The last node corresponds to the taskwait synchronization.

2.2 Applications
This section describes all the applications that have been used in the context of this thesis.
These applications have been carefully chosen depending on their characteristics to evaluate
the different contributions presented in this work. They are presented in alphabetical order
and only their general description is provided below; the specific data set sizes and/or any
configurations are described in the corresponding sections where they have been evaluated.
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User functions: Edge types:

void bsop(unsigned int, unsigned int, unsigned int, uint [], float [], float [], float [], float [], float [], float []) ➝ True dependence | Taskwait | Barrier

16

Taskwait

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2.5: Data-dependency graph for a Black-Scholes algorithm

2.2.1 Black-Scholes
The BlackScholes benchmark computes the pricing of European-style options. In a GPGPU
context, it is a very data intensive benchmark as the kernel computation is very small with
respect to its data input size. Even so, it is worth to be executed on a GPU due to its kernel
speed-up with respect to the CPU (∼300x).

In the OmpSs implementation, data is divided into smaller, independent chunks so that tasks
operate over these chunks and run in parallel to compute the final output result. Figure 2.5
illustrates the data-dependency graph of the application with data divided into 16 chunks.

2.2.2 Cholesky Factorization
The Cholesky factorization is a matrix operation commonly used to solve normal equations in
linear least square problems. it mainly calculates a triangular matrix (L) from a symmetric
and positive definite matrix (A). The product of this triangular matrix L and its transposed
copy is A: Cholesky(A) = L, where L ·Lt = A.

The source code is the main algorithm of a tiled Cholesky factorization. The matrix A is
organized in tiles. The computation is done inside a set of nested loops that operate on these
tiles by calling four different kernels: dpotrf, dsyrk, dgemm and dtrsm.

In the OmpSs implementation, each kernel is annotated as a task and task data dependencies
are managed by the OmpSs runtime.

Figure 2.6 shows the data-dependency graph of this algorithm for a matrix of 8 × 8 tiles. In
order to get good performance in this application, it is important to schedule carefully the
execution of dpotrf tasks, because in Cholesky’s task graph, there are some points where all
the following tasks depend on the dpotrf task. So, it acts like a bottleneck and if it is not run
as soon as its data dependencies are satisfied, there is less parallelism to exploit and, thus,
we observe a slowdown in application’s performance.
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User functions:

Edge types:void dpotrf(double *, int, unsigned int)

void dtrsm(double *, double *, unsigned long int, unsigned int)

void dgemm(double *, double *, double *, unsigned long int, unsigned int)

void dsyrk(double *, double *, long int, unsigned int)

➝ True dependence | Taskwait | Barrier

18

19

2021 222324 2526

2729 323641 47

28

30 333742 48

31

343843 49

35

3944 50

40

45 51

46

52

53

54

5556 575859 60

6162 646771 7663 656872 77666973 787074 7975 80 81

82

83 848586 87

88 899194 98909295 999396 10097 101 102

103

104105106 107

108109111 114110112 115113 116 117

118

119120 121

122123 125124 126 127

128

129 130

131 132 133

134

135

136

137

Taskwait

Figure 2.6: Data-dependency graph for the Cholesky factorization
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User functions:

Edge types:

first_transpose_diag

first_transpose_2b

tw_diag

tw_2b

second_transpose_diag

second_transpose_2b

fft_round

➝ True dependence | Taskwait | Barrier
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Figure 2.7: Data-dependency graph for the FFT1D transformation

2.2.3 FFT1D
The Fast Fourier Transform 1D (FFT1D) application measures the floating point rate of
execution of the double precision complex one-dimensional Discrete Fourier Transform (DFT).
The data is distributed in a two-dimensional array of complex double precision elements. The
first step of the algorithm performs an in-place transposition of the data, after this, an FFT1D
round is applied to each of the rows of the data. The next step is to transpose again the data
and to apply a twiddle factor, to follow with a second round of FFT1D on each row. Finally,
a last in-place transpose obtains the final result.

In the OmpSs implementation, each of the steps is translated into several tasks that operate on
several rows of the matrix. The parallelization of the transpose and the twiddle+transpose are
also implemented using tasks that operate on sub-blocks of the matrix. Figure 2.7 represents
the data-dependency graph for this algorithm using a matrix of 8×8 tiles.

2.2.4 Krist
This application computes crystallographic normalized structure factors. Data are represented
on three arrays: two of them are read and the other one is used to write the results. The size
of these arrays is determined by the number of atoms and the number of reflections used in
each execution.

In the OmpSs implementation, these arrays are divided into smaller chunks and tasks perform
the computation on these chunks, so there is almost no data sharing between them. Figure 2.8
illustrates the data-dependency graph of running Krist for 10 iterations over arrays divided
into 8 chunks.

2.2.5 N-Body Simulation
The N-Body simulation is a molecular dynamics computation where a system of bodies
(atoms, molecules) is allowed to interact for a period of time. The result of the simula-
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User functions: Edge types:

void structfac(int, int, float, int, float *, int, float *, int, float *) ➝ True dependence | Taskwait | Barrier
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Figure 2.8: Data-dependency graph for Krist application

tion gives a view of the motion of the bodies whose trajectories are determined by forces
between bodies and their potential energy.

A CUDA native implementation is distributed with CUDA SDK examples [12, 42]. This code
has been transformed into an OmpSs application by adding task directives around GPU
kernel calls with the appropriate data directionality clauses and by removing all explicit data
transfers and GPU-management related code.

This simulation is memory bound and its performance is limited by the amount of data
that needs to be transferred between GPU devices after each iteration. Figure 2.9 shows the
data-dependency graph of 3 iterations of this simulation and partitioning data into 16 chunks.

2.2.6 PBPI
PBPI is a parallel implementation of a Bayesian phylogenetic inference method for DNA
sequence data. This solution is based on the construction of phylogenetic trees from DNA
or AA sequences using a Markov Chain Monte Carlo (MCMC) sampling method. There are
two factors that determine the computation time: the length of the Markov chains used later
to approximate the probability of the phylogenetic trees and the time actually needed to
evaluate the likelihood values at each generation.
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User functions: Edge types:

void integrateNbodySystem(DeviceData *, float **, int, int, unsigned int, float, float, unsigned int, unsigned int, int, int) ➝ True dependence | Taskwait | Barrier
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Figure 2.9: Data-dependency graph for N-Body simulation

In the OmpSs implementation, three different tasks are defined for each of the three computa-
tional loops that account for the majority of the execution time of the program. These loops
evaluate the likelihood values and one task is created for each iteration of each loop. Fig-
ure 2.10 represents a simplified data-dependency graph of this application for the first three
iterations of the likelihood loops (thousands of tasks are created in the real application).

2.2.7 Perlin Noise

Perlin noise is a gradient noise used to increase the appearance of realism in computer-
generated images. The implementation involves three steps that are computed for each pixel
of the image: grid definition, computation of the dot product between the distance-gradient
vectors and interpolation between these values.

In the OmpSs implementation, a two-dimensional input image is divided into several stripes
containing several rows of pixels and each task computes the noise for one of these stripes.
Figure 2.11 illustrates the data-dependency graph of Perlin Noise for an image divided into 8
stripes and applying the algorithm twice (2 iterations).

2.2.8 STREAM Benchmark

STREAM is an HPC Challenge (HPCC) [43] benchmark that measures memory bandwidth
for simple kernels, intended for use with large data sets. It performs four simple operations
on three one-dimensional arrays: copy, scale, add and tri-add.

In the OmpSs implementation, four different tasks are defined to perform each of the four
operations. The arrays are divided into several chunks and each task operates on one of these
chunks. Then, tasks that compute the same operation do not share data and can be run in
parallel. However, they must synchronize between different operations. Figure 2.12 shows
the data-dependency graph of STREAM with arrays divided into 16 chunks and running 2
iterations of the benchmark.
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User functions:

Edge types:
void likelihoodL1(int, int, double *, double *, double *, double *, double *)

void likelihoodL2(int, int, double *, double *, double *, double *, double *, double *, double *)

void likelihoodL3(int, int, double *, double *, int *, double *, double *, double *)

➝ True dependence | Taskwait | Barrier
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Figure 2.10: Simplified data-dependency graph for PBPI application
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User functions: Edge types:

void perlin_noise(pixel *, float, int, int, int, int) ➝ True dependence | Taskwait | Barrier
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Figure 2.11: Data-dependency graph for Perlin Noise application

User functions:

Edge types:void copy(double *, double *, int)

void scale(double *, double *, double, int)

void add(double *, double *, double *, int)

void triadd(double *, double *, double *, double, int)

➝ True dependence | Taskwait | Barrier

14

34

66

50

82

98

114

17

35

67

51

83

99

115

18

36

68

52

84

100

116

20

37

69

53

85

101

117

22

38

70

54

86

102

118

23

39

71

55

87

103

119

24

40

72

56

88

104

120

25

41

73

57

89

105

121

26

42

74

58

90

106

122

27

43

75

59

91

107

123

28

44

76

60

92

108

124

29

45

77

61

93

109

125

30

46

78

62

94

110

126

31

47

79

63

95

111

127

32

48

80

64

96

112

128

33

49

81

65

97

113

129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

Taskwait

Figure 2.12: Data-dependency graph for STREAM benchmark

2.2.9 Tiled Matrix Multiply
This application performs a dense matrix multiplication of two matrices and stores the result
into another matrix: A×B = C. For simplicity, all matrices are square matrices and are
divided into square tiles as well. Matrix multiply is a well-known algorithm that requires a
significant amount of data movements, but also benefits a lot of locality optimizations. This
algorithm and its OmpSs implementation have already been explained in Section 2.1.6.
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Chapter 3

State of the Art

Heterogeneous architectures that combine different types of computational units (e.g.,
GPGPUs and traditional CPU processors) are becoming popular mainly due to their

high performance capabilities. However, the programmability of these systems is not trivial for
the programmer who needs to take into account several aspects such as parallelism, different
programming styles or different coexisting memory spaces.

Therefore, many proposals have arisen in the last years to address such complexity. This
chapter collects the most relevant ones related to this thesis research work. The contents are
divided into different conceptual categories and ordered by relevance. Those proposals that
could fit into more than one category are classified according to their main target.

3.1 Task-based Programming Models and Languages
With regard traditional node-level parallel programming models, several approaches have
been wide-adopted by programmers to parallelize their applications. As the use of hetero-
geneous systems is increasing its popularity, these models have revised and extended their
specifications in order to support these systems as well.

3.1.1 OpenMP
OpenMP [28] is one of the most popular parallel programming models. Designed for pro-
ductivity, it defines a standard for a programming model where some parts of the code are
executed sequentially, and only those parts of the code (where the programmer has explic-
itly introduced some directives) are executed in parallel. It supports C, C++ and Fortran
and is based on adding some annotations to the source code: compiler directives, which are
translated into calls to the OpenMP runtime library routines.

At runtime, there is one thread that executes the sequential regions of the code, and spreads
into several threads when a parallel region is found. At the end of the region, all threads join
together again and a single thread continues the sequential execution until it reaches another
parallel region, or the end of the application.
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It also offers the possibility of tuning the scope of parallel-region variables (shared among
threads, by default). They are used to control when variables must be shared or thread-
private, and how data is transferred and returned from the parallel regions of the code.

OpenMP has been typically used in shared memory systems to execute do or for loops in
parallel. Nevertheless, task-based parallelism support was later included in its version 3.0 [44].
In addition, it has been recently extended in its latest version 4.0 with additional clauses to
express data dependencies between tasks. This version includes accelerator support as well:
the standard is defined to support a wide variety of compute devices. OpenMP API provides
mechanisms to describe regions of code where data and/or computation should be moved to
another computing device. Several prototypes with accelerator support have already been
implemented. The support for specific accelerator architectures depends on each vendor
implementation: for example, the Intel compiler offers support for offloading OpenMP code
to Intel Xeon Phi.

Although OpenMP is mainly focused on shared memory architectures, it is not unusual to
combine it with other programming models, like MPI, to target distributed memory sys-
tems [45].

3.1.2 Cilk Plus
Cilk Plus [46] is a task-based general-purpose programming language for multi-threaded par-
allel programming. It is based on C/C++ language and supports task nesting and parallel
loops as well. There are two main keywords: spawn, to identify tasks and sync, to wait for
spawned tasks. There is no data dependence detection mechanism between tasks, but Cilk
hyperobjects can be used to solve data race problems arisen in global variable accesses. Then,
respecting data dependencies is the programmer’s responsibility. Cilk scheduler is based on
a work-stealing model, capable of exploiting data locality.

Cilk Plus runs on symmetric multiprocessors (SMPs) and Intel Xeon Phi coprocessors. How-
ever, the thread pools on the host processor and the Xeon Phi are totally separate and work
cannot be stolen between these units. The model targets single-node systems with shared
memory, but, like OpenMP, can be combined with other models to execute on distributed
memory systems.

3.1.3 Chapel
Chapel [47] is a parallel programming language with the objective of improving the produc-
tivity of programmers. It is an imperative block-structured language designed from scratch.
Its aim is to make easier the programmability of large-scale computers at the same time that
keeps or even improves the performance of current portable programming models.

The proposal is based on a multi-threaded execution model with high-level abstractions for
data and task parallelism, concurrency and nested parallelism. It allows reusing code and
prototyping through an object-oriented design and features for generic programming.

Chapel has been designed for an ideal system with a global shared address space, hardware
support for multi-threading, a high-bandwidth low-latency network and latency-tolerant pro-
cessors. Thus, when used in a machine that lacks some of these aspects, it gets less perfor-
mance than expected.
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3.1.4 Sequoia
Sequoia [48] is a programming language focused on machines with a hierarchical memory
configuration. The aim of Sequoia is to be portable across such kind of machines. It provides
a source-to-source compiler and a platform-specific runtime.

The model exposes the memory hierarchy to the language, and provides mechanisms to es-
tablish communications between different memory modules. Tasks are self-contained units of
computation and are used to express parallelism. They also contain additional information
about communication and their specific working sets. There are two types of tasks: inner, to
describe how to partition data and work into sub-tasks, and leaf, to perform computations.
The programmer is able to provide several implementations of a task and specify which im-
plementation will be executed according to the context within the task is called.

The framework was first implemented for Cell/B.E. blades and distributed-memory cluster
platforms. GPGPU support [49] was later introduced as well. The GPGPU support is
implemented on top of CUDA: the CUDA abstract machine model is ignored and instead
the Sequoia knowledge of the application is used to target the device directly. Thus, the
runtime only launches as many cooperative thread arrays (CTAs) as there are streaming
multiprocessors (SMs) on the device. The Sequoia compiler is then able to map tasks directly
onto the SMs rather than simply launching CTAs and trusting the hardware to schedule them
efficiently.

3.2 Accelerator Programming
The number of proposals for accelerator programming is increasing year after year, as more
programmers tend to offload parts of their applications to accelerators, like GPGPUs or
the Intel Xeon Phi. Since accessing an accelerator requires specific driver support, most
of these proposals have been implemented on top of the software/driver support provided
by the accelerator vendor. For example, many approaches targeting GPGPUs have been
implemented on top of CUDA.

3.2.1 CUDA
nVIDIA GPUs are one of the most popular accelerators and are extensively integrated in
HPC clusters. Compute Unified Device Architecture (CUDA) [12] is almost the de-facto
standard for programming GPUs. The programmer has to write specialized pieces of code
(called CUDA kernels) that are executed concurrently by many threads on the GPU.

With CUDA, the programmer is not only responsible for writing the application code and
computational kernels, but also for performing memory allocation and managing data trans-
fers between host memory and device memory to achieve optimal performance.

Since the first CUDA 1.0 release in 2007, the framework has evolved in many different aspects
to fulfil and attract new users. For example, Unified Memory Access (UMA) was introduced
in CUDA 6.0: a pool of managed memory is created and accessible from both host and device
sides. The programmer always uses the same pointer address to access memory on both sides
and the CUDA runtime performs internally the necessary memory transfers between the
different memory spaces. Then, there is no need to issue any explicit memory transfer. UMA

31



3. State of the Art

has dramatically improved the easiness of CUDA programming, but still its performance is
questioned among the expert programmer community [50].

CUDA is usually combined with MPI as well to distribute computations among GPGPU
clusters [51, 52, 53, 54, 55].

3.2.2 OpenCL
Open Computing Language (OpenCL) [13] has been proposed as an alternative to CUDA to
program accelerators. They both offer very similar functionalities, but OpenCL’s strongest
aspect is portability, as, in addition to GPGPUs, it supports programming general purpose
multicores, Intel Xeon Phi cards, FPGAs and Digital Signal Processors (DSPs) as well. How-
ever, it offers a very low-level API to the programmer, exposing them to explicitly manage data
and thread execution. For example, it is programmer’s responsibility to build the program
executable or to move data between cores and accelerators. In addition, although application
source codes are portable across different platforms, performance portability is not guaranteed
and, in fact, experiments demonstrate slow-downs for several applications [56, 57].

3.2.3 HSA
The Heterogeneous System Architecture (HSA) Foundation defines a standard to unify the
architecture of accelerators [58]. The HSA specification establishes a set of requirements
regarding several architecture aspects, like virtual memory, memory coherency, offloading
mechanisms and power-efficient signals. HSA defines different components [59] (i) the HSA
system architecture, which specifies a common base to build portable applications targeting
accelerators, (ii) a high-level compiler that generates HSA Intermediate Language (HSAIL)
code, (iii) a low-level compiler, called finalizer, that translates HSAIL code into the target
architecture code and (iv) the HSA runtime API that provides mechanisms to handle accel-
erators from the host, such as memory management, computation offload, synchronization,
signals, error handling, etc.

The HSA runtime [60] has been designed to offer a common accelerator interface for other
programming languages, like OpenCL, OpenMP, Java or a domain-specific language (DSP).
These languages offer a way to express parallel regions of code that can be offloaded to an
accelerator. Then, the language compiler is responsible for generating the HSAIL code for
such parallel regions, including the necessary calls to the HSA runtime to set up and offload the
computation. And the finalizer, which must be provided by the accelerator vendor, translates
the HSAIL code into accelerator’s hardware code.

3.2.4 OpenACC
Open Accelerators (OpenACC) [61] aims at simplifying offloading of tasks to accelerators. It
defines a set of functions and compiler directives, similar to OpenMP, to specify parts of a pro-
gram whose computation may be offloaded to an accelerator, to transfer data between main
memory and the accelerator and to synchronize with the execution of those accelerator com-
putations. OpenACC has support for accelerators like Accelerated Processing Units (APUs),
GPUs or many-core processors. However, the current OpenACC 2.0 version specification only
addresses machines with one accelerator.
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The programming model defined by OpenACC allows programmers to create high-level hybrid
host+accelerator programs without the need to explicitly initialize the accelerator, manage
data or program transfers between the host and accelerator, or initiate accelerator startup
and shutdown.

3.2.5 Intel Offload
The Intel C++ compiler [62] supports a set of directives to offload portions of code to an Intel
Many Integrated Core (MIC) Architecture. Similarly to OpenMP, it defines several clauses
to specify the offload target device and the data needed by the offloaded code, as it will be
copied to MIC’s memory space. Code offloading can be synchronous or asynchronous and
synchronization mechanisms are also offered.

3.2.6 StarPU
StarPU [63] is based on a tasking API and also on the integration of a data-management
facility with a task execution engine. With regard to data management, StarPU proposes a
high level library that automates data transfers throughout heterogeneous machines [64].

The model defines codelets as an abstraction of a task (e.g., a matrix multiplication) that can
be executed on a core or offloaded onto an accelerator using an asynchronous continuation
passing paradigm. Multicore processors, nVIDIA GPUs, OpenCL devices and Cell/B.E. pro-
cessors [65] are supported nowadays [66, 67]. Future support for Intel Xeon Phi is advertised
on their website [68].

StarPU offers low level scheduling mechanisms (like work stealing) to be used in a high
level fashion, regardless of the underlying (possibly heterogeneous) target architecture. The
authors are not proposing a programming model, but only a runtime library. Therefore, the
programmer is exposed with low-level APIs and execution details.

3.2.7 Offload
Offload [69] is a programming model for offloading portions of C++ applications to run on
accelerators. Code to be offloaded is wrapped in an offload block, indicating that this code
should be compiled for an accelerator, and executed asynchronously as a separate thread.

Call graphs rooted at an offload block are automatically identified and compiled for the accel-
erator. Data movement between host and accelerator memories is also handled automatically.

3.3 Heterogeneous Schedulers
There have been many proposals to partition workload between the different units of a hetero-
geneous system. However, only a few of them are able to make such partition dynamically, at
runtime, without requiring a previous application profiling. And to the best of our knowledge,
there is no dynamic partition proposal that considers more than two different processing units
within the same system, like SSMART1 scheduler does.

1 SSMART scheduler is one of this thesis contributions and its description can be found in Section 5.4.
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3.3.1 MDR

Model Driven Runtime (MDR) [70] is a runtime framework to schedule workloads represented
as Direct Acyclic Graphs (DAGs) in heterogeneous parallel platforms. The proposal is based
on four criteria, called SLAC (Suitability, Locality, Availability and Criticality):

o Suitability: which processing unit is faster to execute a given task.

o Locality: whether the data needed by a task is present in the memory space of the
processing unit.

o Availability: when a processing unit will be available to run a task.

o Criticality: how the execution of a given task can affect the overall execution of the
application.

The runtime combines all the aforementioned criteria with performance models to make de-
cisions such as mapping a task to a processing unit or copying data between memory spaces.
The authors show that the four SLAC criteria must be considered by a heterogeneous run-
time framework in order to achieve good performance under varying application and platform
characteristics. MDR has been implemented on top of Intel Thread Building Blocks (TBB)
and nVIDIA CUDA.

3.3.2 Qilin

Qilin [71] aims at distributing kernel computations between CPUs and GPUs. An API to
write parallelizable operations is offered at application level. The Qilin compiler dynamically
translates the API calls into native machine codes. It also decides the near-optimal mapping
from computations to processing elements using an adaptive algorithm. In order to reduce
the compilation overhead, translated codes are stored in a code cache to be reused without
recompilation. Once native machine codes are available, they are scheduled to run on the
CPU and/or GPU by the Qilin scheduler.

The runtime component creates a directed acyclic dependency graph of kernels as the appli-
cation is being run. The runtime determines which kernels can be run in parallel and maps
them dynamically to available processing units (either CPU or GPU). Qilin uses an ana-
lytical performance model to determine the execution time of individual kernels on specific
accelerators, but it can only exploit parallelism within a single basic block.

3.4 Tools for Heterogeneous Platforms
Writing and offloading code to an accelerator is not a trivial process, since it includes several
tasks, like translating sequential code into massively parallel code or dealing with a hierar-
chical memory distribution. Therefore, many tools have arisen to simplify these tasks.

34



3.4. Tools for Heterogeneous Platforms

3.4.1 hiCUDA
hiCUDA [72] is a high-level directive-based language for CUDA programming. Programmers
can use hiCUDA directives in a sequential source code to give hints to the compiler about
regions of code that can be exploited on GPUs and about data motion. Then, the authors
also present a source-to-source compiler that transforms a hiCUDA program into a CUDA
program. The resulting source code can be compiled with the CUDA compiler.

3.4.2 CAPS HMPP
The CAPS HMPP [73] toolkit is a set of compiler directives, tools and software runtime that
supports parallel programming in C and Fortran. HMPP works based on codelets that define
functions that will be run in a hardware accelerator. These codelets can either be hand-written
for a specific architecture or be generated by some code generator. Both GPGPU and Xeon
Phi devices are supported. This work was later derived to the OpenHMPP standard [74] that
defines a set of compiler directives for heterogeneous computing.

3.4.3 ispc
The Intel SPMD Program Compiler (ispc) [75] is a compiler that delivers high performance
on CPUs thanks to effective use of both multiple processor cores and SIMD vector units.
ispc relies on the idea of GPU programming languages, which have shown that for many
applications the easiest way to program SIMD units is to use a single-program, multiple-data
(SPMD) model. The compiler supports C and C++ languages and targets both CPU and
Intel Xeon Phi architectures.

3.4.4 OpenMPC
Lee et al. propose OpenMPC [76]: an OpenMP-to-CUDA translation system that performs a
source-to-source conversion of a standard OpenMP program to a CUDA program and applies
various optimizations to achieve high performance.

The compiler interprets OpenMP semantics under the CUDA programming model and iden-
tifies kernel regions (code sections to be executed on a GPU). Then, those eligible kernel
regions are transformed into CUDA kernel functions. It also inserts the necessary memory
transfer code to move data between CPU and GPU.

3.4.5 CUDA-lite
CUDA-lite [77] is a set of tools and source code annotations to better map algorithms to
the GPU memory hierarchy. Programmers provide straight-forward implementations of the
application kernels using only global memory with some annotations. CUDA-lite tools do the
appropriate transformations automatically to exploit local memory hierarchy and minimize
memory latency through coalesced accesses.

3.4.6 UPC for GPU Clusters
With the objective of tackling clusters of GPUs, Chen et al. present an extension to Unified
Parallel C (UPC) [78] with hierarchical data distribution [79]. The approach extends the
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semantics of upc_forall to support multi-level work distribution. This work also presents
features based on compiler analysis such as affinity-aware loop tiling and the runtime im-
plementation of a unified data management on each UPC thread to optimize data transfers
between CPU and GPU.
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Chapter 4

Accelerator Support for

OmpSs

One of the contributions of this thesis, as introduced in Chapter 1, is to add support
for accelerators in the context of the OmpSs programming model. This support was

developed in two steps that were adapted to their contemporary technologies. Therefore, a
semi-asynchronous accelerator support was developed as a first step and transformed into a
fully-asynchronous approach as the second step.

The reason why a first semi-asynchronous approach was developed is that the existing technol-
ogy by the time it was implemented did not offer any support to develop a fully-asynchronous
approach. In addition, the accelerator support in this first step only included GPGPUs be-
cause Intel Xeon Phi had not appeared in the market. The semi-asynchronous approach is
described in Section 4.1.

As the existing technologies evolved, it became clear the need to offer fully-asynchronous
mechanisms to establish communications between host and accelerators. Therefore, mecha-
nisms like events and callbacks were introduced in CUDA and OpenCL programming lan-
guages. Once these new features became available to accelerator programmers, the second
fully-asynchronous approach was developed. The validity and efficiency of this second step
has been proved with both GPGPU and Intel Xeon Phi accelerators. The details of this
second design are explained in Section 4.2.

One of the main goals of the OmpSs accelerator support is the ease of managing accelerators
from the programmer point of view. On the one hand, all memory transfers needed by
offloaded tasks from/to the device memory space are managed by the runtime, in such a way
that the programmer does not have to worry about them. On the other hand, the runtime
is able to transparently manage several devices (possibly of different types) at the same
time. Even though developing a multi-accelerator application is more complicated because
the device management must be done by hand, creating several host threads, synchronizing
them explicitly, etc., the OmpSs accelerator support allows running the same application
equally on a single device or several devices without modifying its source code. This means
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that switching from a single-accelerator application to a multi-accelerator version is effortless
for the programmer.

In addition, the OmpSs accelerator support offers several configurable run time parameters.
The specific options depend on the accelerator architecture, such as the ability to set the
number and accelerator types that Nanos++ runtime can use, limit the amount of memory
available on each accelerator, etc. In general, it is better to have as much device memory
available as possible to maximize performance, but programmers may want to use extra device
memory on their own, or even limit the amount of memory used in order to reduce energy
consumption.

4.1 Semi-asynchronous Accelerator Support
This section explains in detail the first prototype designed as an OmpSs extension to support
GPGPU architectures. First, the general design that could target different types of accelera-
tors is presented. Then, the specific GPU support characteristics and features are explained.
Most part of the work was developed inside the Nanos++ runtime library, but some sup-
port from Mercurium compiler was also needed. Although the compiler support needed by
both the semi-asynchronous and the fully-asynchronous approaches is exactly the same, it is
described in this section for completeness.

4.1.1 Accelerator Agnostic Design
The Nanos++ independent layers explained in Chapter 2 interact with the architecture-
dependent components to execute tasks on the processing units of the system. The accelerator
support component was designed in the context of this thesis to provide the base model for the
architecture-dependent components that target accelerators. Its accelerator agnostic design
takes into account the general properties that characterize accelerators, making it valid for
different kinds of device architectures.

The architecture-dependent component for each accelerator is responsible for the following
actions:

o Device data movements: Issue data transfers between host memory and its device
memory space.

o Execute tasks: Usually, the task targeting the device will be launched from the host
side and will run asynchronously on the device.

o Synchronize with device operations: This basically includes synchronizations with ker-
nel launches and memory transfers, that may or may not be asynchronous.

4.1.1.1 Overlap of Data Transfers and Computations

In general, accelerators offer the possibility to hide the overhead of data movements between
memory spaces by overlapping device computations with data transfers. Hence, our acceler-
ator agnostic design is based on this feature. It is important to notice that device operations
must be asynchronous from the host point of view in order to be able to overlap them.
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The OmpSs software cache is prepared to support asynchronous operations, working as a
non-blocking cache, provided that the underlying architecture-dependent layers support it.
Then, the cache will not wait for data transfers to complete and will return control to the
runtime so that it can do other operations, like launching a kernel on the device. When
the software cache works in the non-blocking mode, it expects a later transfer completion
notification from the architecture-dependent component. From the point of view of Nanos++
independent layers, asynchronous data transfers are not completed until the software cache
is notified. This implies that, for example, the task execution cannot be safely triggered until
the software cache has verified that all task data is present and updated on the device. Thus,
it is important for the architecture-dependent component to notify transfer completions as
soon as possible.

4.1.1.2 Data Prefetch

Prefetching and overlapping are two actions that are usually combined because data prefetch-
ing is just a way to make overlapping of data transfers with computations possible. In the
case of OmpSs applications, tasks are annotated with data-directionality clauses, therefore
the runtime is aware of what pieces of data each task needs at its creation time. This infor-
mation can be used by the architecture-dependent component to issue task data transfers in
advance. Hence, task data will be available on the device by the time the task is offloaded,
so there will be no delays.

4.1.1.3 Task Execution Flow

We define a task execution cycle as the set of needed actions to run a task. Then, the execution
cycle of a task can be divided into the five stages of the task life cycle described in Section
2.1.4.1: instantiation, ready, active, run and completion.

The SMP-dependent component, used to run tasks on CPUs, executes one task cycle after
another as long as there are tasks pending to be run on a CPU. However, if the same approach
is followed for accelerators, there will be no overlapping at all. Then, the accelerator agnostic
design interleaves several task cycles to overlap data transfers with computations on a device
in the following way: for every task code offloaded at the run stage, if possible, another two
stages from different task cycles happen:

o Completion stage for the previous task: if needed, data transfers from the device to
the host will happen in this stage, so that they can potentially overlap with the current
task execution.

o Active stage for the next task: data transfers from host memory to device memory
are issued in this stage, if needed. Then, there is another opportunity to overlap data
transfers with the execution of the current task.

For this semi-asynchronous approach, we assume that the only way to synchronize the host
and the device is by means of blocking the host side and waiting for the device to finish
its operations. Thus, on one side, issuing many asynchronous device operations is good for
overlapping, but on the other side, host-device synchronizations are needed to notify the
runtime independent layers when device operations finish.
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Figure 4.1: Semi-asynchronous task execution flow

Therefore, we found a balance between synchronization and overlapping for the accelerator-
agnostic design: a single synchronization point is introduced for every task cycle, at the end
of the run stage of the current task. This way, three simultaneous operations are allowed
(two data transfers and one kernel execution) and synchronized at the same time. Figure 4.1
illustrates the execution flow of four tasks: t1, t2, t3 and t4. Only the representative stages
involved in the overlapping process are shown as colored boxes:

o Orange boxes: Labelled as HtD (host-to-device), represent the active stage, where data
may be transferred to the device memory.

o Blue boxes: Labelled as Run, represent the run stage, where the task is executed on the
device.

o Green boxes: Labelled as DtH (device-to-host), represent the completion stage, where
data may be transferred back to the host memory space.

o Vertical red lines: Indicate the synchronization points after each run stage.

As the runtime has more tasks to run, the number of operations that can be overlapped
increases. For example, the optimal overlapping is achieved in the run stages of tasks t2
and t3. Since a single synchronization point is introduced for potentially three different
operations, the synchronization completes when the three operations are finished. Then, if
one of the operations takes considerably much longer than the other two, it will negatively
affect performance. But, unfortunately, it is impossible to detect this situation a priori.

4.1.2 OmpSs GPU Support
This section explains the specific implementation of the OmpSs GPU semi-asynchronous
support. It is based on the accelerator agnostic design and specialized for GPGPU devices.

4.1.2.1 GPU Accelerator Initialization

The Nanos++ GPU dependent layer works on top of the nVIDIA CUDA runtime library.
When an OmpSs application is executed, the Nanos++ library is loaded and initialized right
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before the main program function is called. The GPU dependent layer detects the number of
CUDA-capable GPGPUs during the Nanos++ initialization and creates a GPU helper thread
for each available GPGPU in the system. Helper threads run on the host and are associated to
one GPGPU accelerator. These threads will be used through the entire application execution
to manage, issue and synchronize all the operations related to its device.

At this point, the GPGPU devices are initialized and their characteristics are captured to be
used later by the runtime. For example, the Nanos++ software cache needs to know the exact
amount of GPU device memory to detect when the memory is full and whether it is possible
to transfer more data or not. CUDA streams are created during initialization as well.

4.1.2.2 GPU Memory Management

Allocations and deallocations of GPU global memory from the host are costly and take a
considerable amount of time. In order to avoid such overheads that can penalize application’s
performance, the whole GPU memory is allocated during the Nanos++ initialization as one
piece and is then internally managed by the runtime.

Data coherence is managed by the runtime software cache, explained in Section 2.1.4.4. When-
ever the software cache detects that a data transfer involving a GPU device is needed, a data
transfer request is sent to its helper thread. The helper thread keeps a list of the requested
memory transfers and such transfers are issued, if possible, during the run stage of a task,
so that they can be overlapped with the task kernel execution. If the device is idle and has
no tasks to run, the transfers are issued as soon as they are received to avoid delays and
unnecessary waits from the other runtime components.

4.1.2.3 Overlap of Data Transfers and GPU Computations

In CUDA, data transfers and kernel launches must accomplish several restrictions so that the
hardware can overlap transfers with computations. The complete list of restrictions can be
found in the CUDA C Programming Guide [12], but, in short, two operations can overlap if
they meet the following requirements:

o The GPGPU hardware must have support for: overlap of data transfer and kernel
execution, concurrent kernel execution and/or concurrent data transfers.

o Operations must be asynchronous.

o Operations must be issued to a stream different than the NULL stream.

o All host memory involved in copy operations must be page-locked.

The contemporary GPGPU devices to this design supported, at most, overlapping the fol-
lowing three operations: one host-to-device data transfer, one device-to-host data transfer
and one kernel execution. But, for example, two kernels could not run simultaneously on the
GPGPU. Then, the GPU helper thread uses three different CUDA streams to issue operations:
two streams for host-device data transfers (one for each transfer direction) and one stream
for kernel launches. Alternatively, since operations issued to the same stream are executed in
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1 // A l l o c a t e page−locked memory
2 v o i d ∗ nanos_malloc_pinned_cuda ( s i z e _ t s i z e ) ;
3
4 // Free page−locked memory
5 v o i d nanos_free_pinned_cuda ( v o i d ∗ address ) ;

Figure 4.2: Nanos++ API functions for allocating and deallocating page-locked memory

a FIFO order, a different approach can be used: data transfers needed by a kernel are issued
in the same stream, right before the kernel launch. Then, output data transfers are issued in
the same stream as well, right after the kernel launch. While this alternative approach is also
valid, the chances to overlap operations are lower due to hardware limitations [80].

Since the Nanos++ runtime cannot check whether a user memory region is page-locked or
not, an auxiliary page-locked memory buffer is allocated and used as an intermediate buffer
to perform memory copies between host and device: for host-to-device transfers, first, the
original user memory is copied to the intermediate buffer (using a regular memory copy) and
then, an asynchronous copy is issued from the intermediate buffer to the device memory. For
device-to-host transfers, the same steps are followed in the reverse order. The auxiliary page-
locked memory buffer is allocated at Nanos++ initialization and its contents are invalidated
after each memory copy.

For performance reasons, the GPU dependent component offers two Nanos++ API functions
to allocate and deallocate page-locked host memory through the Nanos++ runtime. The
runtime keeps a list of the page-locked regions that is updated every time these functions
are invoked from the user application. Then, asynchronous memory copies involving memory
regions that are present in the page-locked region list can be issued directly, without the
extra copy to the intermediate memory buffer. These copies are obviously faster and can
increase application performance. The syntax of these functions is shown in Figure 4.2 and
for compatibility, it is equivalent to the C malloc() and free() functions. The runtime calls
internally the CUDA library to allocate and deallocate page-locked memory.

4.1.2.4 Data Prefetch and Task Execution Flow

In order to follow the accelerator agnostic model, once the GPU dependent component has
offloaded a task T to its GPGPU device, it asks the runtime scheduler for a new task Tnext.
Then, if a new task is assigned to the accelerator, Tnext active stage begins and its input data
transfers are issued.

Moreover, if a previous task Tprev was executed before T, the completion stage for Tprev begins
at this point. Hence, the GPU dependent component is able to overlap two data transfers (one
in each direction) with device computation. According to contemporary GPGPU features,
this is the maximum number of operations that can be overlapped.

Once the three operations are issued, the GPU dependent component waits until they have
finished by means of CUDA stream synchronization mechanisms.
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1 // Get the appropriate CUDA execut ion stream
2 cudaStream_t nanos_get_kernel_execution_stream ( v o i d ) ;
3
4 // Get the CUBLAS context a s s o c i a t e d to the current GPU device
5 cublasHandle_t nanos_get_cublas_handle ( v o i d ) ;

Figure 4.3: Nanos++ API additional functions to manage GPU computation offload

4.1.2.5 GPU Computation Offload

Since all the CUDA stream and synchronization management is done inside the runtime and
completely hidden to the programmer, the GPU computation offloading must be issued to the
appropriate CUDA stream that the runtime expects. Thus, the GPU dependent component
offers an additional Nanos++ API function to query for the appropriate CUDA stream where
the computations must be offloaded. The syntax of this call is shown in Figure 4.3. As
explained in the next section, the Mercurium compiler is able to automate this step and hide
it from the programmer point of view.

Nanos++ with the GPU support is, in general, compatible with other libraries that implement
GPU computations, like CUBLAS or MAGMA. However, the CUBLAS library specification
changed from its version 3.2 to 4.0: all API functions now receive an extra parameter that
corresponds to a CUBLAS context of type cublasHandle_t. The context is an opaque struc-
ture internally used by the CUBLAS library that must be initialized at the beginning of the
application and destroyed at the end to release its associated resources. It can also be used
to associate a specific GPGPU device to the context, so that all the CUBLAS calls receiving
that context will be issued to its associated device. The introduction of the CUBLAS con-
text concept conflicts with the OmpSs philosophy, as it forces the user to be aware of which
GPGPU has to run each computation.

Consequently, additional support to use the CUBLAS library was required from the Nanos++
library: a CUBLAS context is created for each GPGPU device at Nanos++ initialization and
it can be queried by the user through a Nanos++ API function. The syntax of this API
function is shown in Figure 4.3. Although we put all our efforts to hide such kind of details
from the programmer point of view, programmers need to get the CUBLAS context through
the Nanos++ API call each time they call a CUBLAS library function and this must be done
inside the task context in order to work properly.

In addition, the user is also required to set the appropriate CUDA stream for each CUBLAS
call. Even though we tried to hide this requirement from the programmer, our attempts failed:
trying to set the appropriate CUDA stream internally in the Nanos++ runtime had no effect
as CUBLAS kernels were not sent to such stream. The only possible way for CUBLAS to
send the computations to the appropriate CUDA stream is to set such stream from the user
code and inside the task context. Figure 4.4 shows how a CUBLAS library call must be
invoked from an OmpSs task: inside the task context, both the CUBLAS context and the
CUDA stream must be queried to Nanos++ runtime and then used to set the appropriate
computation stream for the CUBLAS library through the cublasSetStream() function. Then,
the desired CUBLAS function can be called by passing as the first argument the CUBLAS
context returned by the Nanos++ runtime API call.
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1 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps
2 #pragma omp t a s k i n o u t ( [ n ] X)
3 v o i d sca l_task ( d o u b l e ∗ X, i n t n )
4 {
5 d o u b l e alpha = 2 . 0 ;
6 cublasHandle_t handle = nanos_get_cublas_handle ( ) ;
7 cudaStream_t stream = nanos_get_kernel_execution_stream ( ) ;
8 cublasSetStream ( handle , stream ) ;
9 c ub la s D sc a l ( handle , n , alpha , X, 1 ) ;

10 }

Figure 4.4: Task source code example calling a CUBLAS library function

Scheduler 

Coherence support 
(Directory / Cache) 

Dependency support 
(task graph) 

Copy 
data 

Nanos++ independent layers 

GPU GPU Device 

GPU Mem. 
Transfer List 

GPU 
Processor 

GPU Thread 

Nanos++ GPU 
Component 

Query 
info 

Query 
info 

Offload 
(launch kernels) 
& synchronize 

Memory copies 

Request 
mem. transfers 

Nanos++ API 

Copy in/out 
task data 

GPU-related 
API services 

Execute 
task 

Notify task 
completion 

Figure 4.5: Interaction between Nanos++ independent layers and GPU dependent component

Figure 4.5 summarizes the GPU component functionalities and its interaction with the other
Nanos++ independent layers. The GPU Mem. Transfer List component is used by the co-
herence layer to request memory transfers of data regions that are needed by other processing
units of a different memory space. This situation usually happens when the GPGPU device
was the latest producer of a data region and another processing unit (that cannot access the
GPU memory space) is going to run a task that needs such data region. This component
manages the data requests and interacts with the GPU Device component, which is the one
that will issue the real memory transfers. The coherence layer also uses the GPU Device
directly to request the data transfers that are needed by tasks that will run on the GPGPU.
The GPU Processor is the entity that represents the GPGPU device: it stores the hardware
characteristics, like the amount of global device memory, takes care of GPU initialization,
like the creation of CUDA streams and manages memory allocations on both the GPU global
memory and on the host side as page-locked memory. The other elements of the GPU com-
ponent also interact with the GPU Processor to get the desired information, for example, the
GPU Device gets the CUDA stream from the GPU Processor when it has to issue a mem-
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1 // Orig ina l k e r n e l c a l l
2 myKernel <<< grid , b lock >>> ( param1 , param2 ) ;
3
4 // Modified k e r n e l c a l l by Mercurium ’ s CUDA device p r o f i l e
5 myKernel <<< grid , block , 0 , nanos_get_kernel_execution_stream ( ) >>> ( param1 , param2 ) ;

Figure 4.6: Comparison between original and modified kernel calls by Mercurium

ory transfer. The GPU-related Nanos++ API services also interact with the GPU Processor
to get the information related to CUDA streams and CUBLAS context and to allocate and
deallocate page-locked memory. Finally, the GPU Thread is the responsible for launching the
task kernels on the GPGPU. It uses the Nanos++ scheduler to get GPU tasks to execute on
the device and, once they are completed, notifies the dependency layer. It also interacts with
the GPU Processor to get the appropriate execution stream for kernels.

4.1.3 CUDA Device Profile for Mercurium Compiler
The programmer needs a small support from Mercurium compiler in order to compile their
applications using GPUs. This section explains how Mercurium compiler has been extended
to fit these user needs with the CUDA device profile, which is also included in the context of
this thesis.

The CUDA device profile has been developed as a component of the Mercurium compiler
and participates in the compilation process of an OmpSs application. It is invoked each time
the compiler parses the user code and finds a GPU task (annotated with the device (cuda)
clause). First, it generates a specialized outline for the GPU device: a function wrapper1 that
calls the user task. Then, the whole implementation of the GPU task is removed from the
original source code file and it is copied to a separate CUDA file (a file with .cu extension).
Additional symbols and include files are checked and also brought into this new CUDA file if
the compiler determines that the GPU task needs them. Finally, this new file is reintroduced
in the compiler pipeline with the specialized GPU compilation profile and it is compiled using
the nVIDIA nvcc native compiler.

The programmer can decide which CUDA stream uses to launch their kernels. However, it
is recommended for an OmpSs application to let the Nanos++ runtime make this decision.
Otherwise, the host-device synchronization inside the Nanos++ runtime will not work prop-
erly. In CUDA, each kernel call must be configured through the CUDA extended syntax by
placing the kernel configuration parameters between the kernel function name and the kernel
arguments, surrounded by <<< and >>> symbols. CUDA defines two mandatory parameters
for the kernel configuration, which are, respectively, the grid and block sizes of the GPU
threads running the kernel. Optionally, two more parameters can be specified, which are the
amount of shared memory needed by the kernel and the CUDA stream where the kernel must
be launched respectively.

With the objective of making the programmer task easier, Mercurium’s CUDA device profile
is able to recognize CUDA kernel calls and add the necessary code to make the Nanos++

1 When a task is called, the information about the task environment, like task parameters, are captured in
several data structures that are passed to the runtime. Then, when the task is run, the task function wrapper
is used, for example, to extract the information of these data structures and call the user task code.
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runtime decide the stream to launch the kernel. Figure 4.6 shows how the compiler can
transform the kernel call in line 2 into the call in line 5. By adding the Nanos++ API
call nanos_get_kernel_execution_stream(), the runtime will decide the stream to launch the
kernel at run time. However, the CUDA device profile component checks if the original
kernel call is already setting a specific stream in order to respect the user’s decision: if
the user decided to launch the kernel in a specific stream, the compiler does not change this
configuration, since it could have collateral effects and lead to incorrect application execution.
Then, it is also the user’s responsibility to properly synchronize the host with this kernel
launch.

It is important to notice that Mercurium does not generate CUDA kernels automatically since
CUDA code generation falls out of the compiler scope. However, external tools can be used
to generate such kernels and then compile the resulting files with Mercurium.

4.1.4 OmpSs Example Using GPUs
Figure 4.7 shows an OmpSs implementation of a tiled matrix multiply algorithm that offloads
the computation to the GPGPU. The equivalent CPU version of this code has been presented
in Chapter 2. By just adding a few clauses and providing the GPU kernel implementation,
the same code can then target GPGPU devices as well. The device(cuda) clause specifies
that the task should be run on a GPU. The copy_deps clause indicates that the data specified
by the dependence clauses must be available in the GPU memory before the task starts its
execution. However, this last clause does not necessarily imply copying all the input and
output data of each task right before and after its execution. This allows the runtime to take
advantage of different caching and prefetching techniques without the user needing to modify
their code.

In this case, the CUBLAS library is called to perform the computation. As explained in
Section 4.1.2.5, the Nanos++ API functions are used to set the proper CUDA stream for
CUBLAS. Despite the fact that the user is responsible to either write their own kernel code
or use an appropriate library, OmpSs takes care of all data movements and kernel synchro-
nizations. Moreover, because these operations are not reflected in the user source code, the
same application can be run in a multi-GPU system and the Nanos++ runtime can perform
different kinds of optimizations without these being noticed in the source program.

4.1.5 Evaluation
This section covers the evaluation of the OmpSs GPU support component. The experiments
analyze the Nanos++ runtime performance when running several OmpSs applications with
GPU task offloading.

4.1.5.1 Methodology

In order to evaluate the Nanos++ runtime with GPU support, a set of OmpSs applications
were selected and their scalability was measured within the runtime environment.

Environment. The testing system was a multi-GPU system running CentOS 5.3 and it had
two Intel Xeon E5440 with four cores each and four Tesla M2050 GPUs, each with 2.62 GB
of memory. The total amount of system memory was 15.66 GB.
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1 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps
2 #pragma omp t a s k i n o u t ( [ t s ] [ t s ] t i l e C ) i n ( [ t s ] [ t s ] t i l e A , [ t s ] [ t s ] t i l e B )
3 v o i d dgemm_task ( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
4 {
5 d o u b l e alpha = 1 . 0 ;
6 cublasHandle_t handle = nanos_get_cublas_handle ( ) ;
7 cudaStream_t stream = nanos_get_kernel_execution_stream ( ) ;
8 cublasSetStream ( handle , stream ) ;
9 cublasDgemm ( handle , CUBLAS_OP_T, CUBLAS_OP_T, ts , ts , ts , &alpha ,

10 t i l eA , ts , t i l e B , ts , &alpha , t i l e C , t s ) ;
11 }
12
13 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗∗A, d o u b l e ∗∗B, d o u b l e ∗∗C, i n t t s )
14 {
15 i n t i , j , k ;
16 f o r ( i = 0 ; i < m; i ++)
17 f o r ( j = 0 ; j < n ; j++)
18 f o r ( k = 0 ; k < l ; k++)
19 dgemm_task (A[ i ∗ l+k ] , B[ k∗n+j ] , C[ i ∗n+j ] , t s ) ;
20
21 #pragma omp t a s k w a i t
22 }

Figure 4.7: OmpSs tiled matrix multiply example using the GPU to offload the computation

All the application codes where compiled with the Mercurium compiler with optimization
level −O3. GCC version 4.3.4 and CUDA version 3.2 were used as back-end compilers for
the CPU and GPU parts respectively.

Experiments. The selected applications were run with different configurations of number of
GPGPU devices to obtain the performance and scalability of each application. The biggest
possible data set was selected so that the performance obtained was not limited due to using
a small problem size.

In addition, four applications were selected to run with different configuration parameters of
the runtime to evaluate the impact of such parameters as well:

o Software cache policies:

n No-cache: It emulates the absence of the Nanos++ software cache by always mov-
ing data in and out for each task.

n Write through: Shown as wt in the charts, it propagates GPU memory writes to
main memory immediately.

n Write back: Shown as wb on the charts, it delays the writing to main memory until
the last moment (this is forced by a taskwait).

o Runtime scheduling policies:

n Breadth-first scheduler: Shown as bf in the charts, the details of this scheduler
can be found in Section 2.1.4.3. It basically does a breadth-first task scheduling,
but prioritizes the execution of dependency chains.

n Locality-aware scheduler: Shown as locality in the charts, this scheduler is ex-
plained in Section 2.1.4.3. In short, it takes into account where data is located to
schedule tasks and minimize the amount of transferred data.
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o Overlap of data transfers with computations: when the overlapping option is activated,
it is shown as ovl in the charts.

4.1.5.2 Results

This section presents the results of the selected applications run with the different runtime
configurations.

Matrix Multiply. The general details of this application are described in Section 2.2.9. In this
test, each matrix had 12288×12288 single-precision floating-point elements and was divided
into tiles of 1024 × 1024 elements. The computational tasks called the CUBLAS library to
calculate the results.
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Figure 4.8: Matrix multiply performance results for OmpSs with GPU support

Figure 4.8 shows the evaluation of the matrix multiply. The reduction of data transfers
impacts directly on application’s performance: when the use of any cache is avoided, the
application gets the lowest performance, as data are moved back and forth each time a kernel
needs them. Using a write-through policy improves the performance thanks to the data reuse,
but writes still create a significant number of transfers that limit application’s performance.
Using the write-back policy helps to reduce this effect and obtains the best performance of
all three policies. In addition, the scheduling policy has also a smaller impact on performance
as the breadth-first scheduler can also preserve data locality, but not as good as the locality-
aware scheduler does. Finally, enabling the overlap of data transfers with computations gives
better performance as well. In terms of scalability, the application scales close to linearly,
although there is a small performance loss in the case of running with four GPUs.

STREAM Benchmark. The STREAM benchmark is explained in Section 2.2.8. In this
case, the size of each array was 320 MB and they were divided into 16 chunks of 20 MB each.
Double-precision floating-point data was used and the benchmark was run for 10 iterations.
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Figure 4.9: STREAM performance results for OmpSs with GPU support

The performance of STREAM benchmark can be found in Figure 4.9. Since the algorithmic
structure of this benchmark is very simple, there are no performance differences between
the tested schedulers. Nevertheless, the key point of STREAM is the memory management:
no-cache and write-through policies move data to main memory every time a task writes to
the GPU memory, which overloads the runtime with avoidable memory transfers and has a
notably bad effect. In contrast, write-back handles better the data management and obtains
a good performance. Enabling overlapping plays a minor role for this benchmark, as its
objective is to stress the memory, so there are too few computations to be overlapped with
data transfers. The runtime is able to scale almost linearly from one to four GPUs.

N-Body Simulation. The general characteristics of this simulation can be found in Section
2.2.5. The simulation was run for 10 iterations of a system with 122880 bodies.

The performance results of the simulation are presented in Figure 4.10. N-Body uses a
lot of GPU memory and requires data to be shared between all the GPU devices. This
causes that the no-cache policy outperforms the rest of policies, which completely fill the
GPU memory and trigger the runtime cache invalidation mechanisms. Invalidations in the
Nanos++ software cache have a considerable overhead, so they delay the writing to main
memory. The no-cache policy avoids these situations which are more costly than just keep
sending data back and forth to keep the GPU memory free. With this, good scalability is still
achieved with two and four GPUs. Since this application is clearly dominated by the amount
of data that needs to be exchanged at the end of each iteration, the scheduling policy and
the overlapping feature play a minor role and have almost no effect.

Perlin Noise. The Perlin Noise algorithm is described in Section 2.2.7. For this test, an
image of 1024 x 1024 pixels was used and 1500 iterations were performed.

The chart in Figure 4.11 represents the number of Mpixels/s processed by the Perlin Noise
algorithm. The application stresses memory usage but the amount of computation is very
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Figure 4.10: N-Body simulation performance results for OmpSs with GPU support
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Figure 4.11: Perlin Noise performance results for OmpSs with GPU support

little. Then, most of the execution time is spent in data transfers while the task computation
time is almost negligible. Data is not reused between tasks, so no data locality can be
exploited. This is why the different configurations tested with cache and scheduling policies
and overlapping have no impact in application’s performance. The scalability of Perlin Noise
is poor as well due to the same reasons.

Black-Scholes. The general explanation of the Black-Scholes benchmark can be found in
Section 2.2.1. Arrays of 225 single-precision floating-point elements were used in this case and
they were split into 16 chunks each.

Black-Scholes application results for the multi-GPU environment are shown in Figure 4.12.
Each task receives a considerable amount of data, so for executions on one and two GPUs the
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Figure 4.12: Black-Scholes execution time with OmpSs with GPU support

runtime can handle this and scale almost ideally. However, when running the application with
four GPUs, the communication bus is collapsed, as the tasks need more data than what the
runtime can transfer through the PCIe bus. Using a locality-aware scheduler clearly benefits
the performance of this application.

Krist. Krist application is described in Section 2.2.4. This test was run for 100 iterations
with 16384 atoms and 65536 reflections.
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Figure 4.13: Krist execution time with OmpSs with GPU support

Figure 4.13 shows the execution time of the application. It performs very well in the tested
environment, as a linear scalability is observed for one, two and four GPUs. In this case, the
locality-aware scheduler does not get any extra benefit because the breadth-first policy is able
to keep good data locality as well.
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4.2 AMA: Asynchronous Management of Accelerators
The fully-asynchronous accelerator support is called AMA: Asynchronous Management of
Accelerators. This section describes the AMA design in detail, along with the specific imple-
mentations that were done for both GPGPUs and Intel Xeon Phi devices. These implemen-
tations and their successful results prove the validity of the AMA design. First, the design
of this fully-asynchronous approach is described. Then, the following sections give the imple-
mentation details for both the GPU and Xeon Phi support. Finally, the performance results
for the two implementations are presented and discussed.

4.2.1 AMA Design
The main goal of the fully-asynchronous approach is to speed-up applications from the run-
time side, so that they experience a performance increase while their source code remains
untouched. This is the advantage of hiding the particular actions related to accelerators from
the programmer point of view: the issue of such actions is done inside the runtime, so it can
be changed and optimized as desired, without the application being aware of it.

AMA has been carefully designed to be completely asynchronous. This means that the host
side will never block for any device synchronization nor communication. In order to accom-
plish this objective, AMA establishes that the host-device communication is always done
through events and callbacks. Events and callbacks were chosen as the synchronization mech-
anisms because the most widely-used accelerator programming languages (CUDA, OpenCL)
offer such mechanisms to manage asynchronous device operations.

Then, every operation (data transfer or computation offload) will have an associated event
that will reflect its status. The host will use such event to query for the operation state.
Optionally, an event can have a list of actions, i.e. other operations that must be performed
once the event’s associated operation is finished. Actions can target both host or device
and can be either synchronous or asynchronous. Synchronous actions will typically happen
on the host and asynchronous actions will usually target the device. The specific device
implementation is free to decide whether the action trigger is managed through callbacks or
any other equivalent mechanism.

There are three possible states for an event, described below in chronological order:

o Pending: Event’s operation has been issued to the device, but still not finished.

o Raised: The device operation associated to this event is finished.

o Completed: All the actions related to this event have been processed. In other words,
if the action was synchronous, it has been triggered and finished. If the action was
asynchronous, it has been issued, but may or may not have finished: a different event
has been created for this new asynchronous operation and such event must be used to
query for its status.

4.2.1.1 Event-driven Flow

The execution of tasks on the accelerator mainly follow an event-driven flow. Once the
runtime scheduler assigns a task to the accelerator, the following steps are performed:
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1. Task active stage begins and hence, input data transfers will be issued. For every
transfer, a new event will be created and set to reflect the transfer state2. Each event
will have at least one action to notify the runtime software cache the completion of
the transfer. The last event will also have an additional action that will trigger the
task execution. In the case where there is no need to transfer input data (because the
task has no input data or because the data is already in the device memory), the task
execution can start immediately. It is left to the specific implementations to decide
whether this action is started directly or a false event with a raised state is created to
trigger the task execution.

2. Immediately after this, the architecture-dependent component is ready to request an-
other task to the scheduler. If a new task is assigned to the device, step number 1 can
be started for the new task.

3. Once all the input data transfers have finished, the task execution action will be trig-
gered and, thus, the run stage will begin. The specific offloading mechanism of the
accelerator will start the task execution on the device and will create a new event to
reflect the execution state. This event will have, at least, one action that will trigger
the completion stage of the task. Since the architecture-dependent component has al-
ready issued input data transfers for the following tasks, the overlapping of input data
transfers and computations is very likely to happen.

4. After the task has been executed on the device, the completion stage action will be
triggered and thus, the output data transfers will be issued. In addition, the dependency
layer will be notified as well for the task completion. Similarly to step number 1, every
data transfer will have an associated event to reflect its state and, at least, one action
to notify the software cache when the transfer is finished. The last event will have an
additional action to release the task-related data structures or perform any clean-up
operations needed by the runtime. In this case, if the task does not need to transfer
output data (because it does not produce any data or because the software cache decides
to delay the data transfers), there is no need to create an extra event and the task-related
data structures can be directly released. Since at this point there may be several task
cycles initiated, the overlapping of output data transfers with either input data transfers
or device computations is very likely to happen.

Figure 4.14 shows the event-driven flow of AMA design: the starting point is to check if there
is any raised event. If so, its actions are processed, the event is marked as completed and the
process starts again by checking if there is another raised event. If no raised events are found,
the architecture dependent component asks the scheduler for another task. If a new task is
assigned to the device, task’s active stage is started and it checks again for any raised event.

The aim of this flow is to fill the accelerator work queues as much as possible, so that it always
has some work to do and is never idle. Hence, we consider that it is more important to give
priority to the operation of processing actions of raised events rather than getting a new task
for the device: an event changes its status to raised when its device operation is finished, so

2 The way the event is set to reflect its associated transfer state is implementation-dependent of the
accelerator type, so it is left open for the general AMA design.
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Figure 4.14: Event-driven flow of AMA

there is a probability that the device becomes idle after finishing the operation. By processing
the actions of the raised event, the probability of adding more work to the device increases:
for example, when the input data transfers are finished, a task will be offloaded to the device.
This way, we also give priority to finish the work that has already started on the device rather
than getting new work.

This design is ideal for task-based frameworks where the runtime has information about the
future tasks that will be run and the data they need: data prefetching can be issued for
several tasks ahead so that accelerator work queues have enough operations to overlap and
keep the resources busy.

4.2.1.2 FTFR

In OmpSs, there is a restriction regarding task execution order: tasks that are assigned to
the same device are run following the same order of assignment. This approach can work
well for CPU tasks, but it is not the ideal situation for accelerators. Therefore, AMA adds
a simple, small scheduling policy to reorder the execution of tasks that are assigned to the
same device, called First-Transferred-First-Run (FTFR). This policy establishes that a task
can start its run stage as soon as it has its data available on the device, disregarding the state
of other previous tasks. FTFR does not replace the general scheduling policy of the runtime;
it is a supplementary policy. The general scheduling policy decides where and when each task
is run. FTFR decides the execution order of the tasks that have been assigned to the same
device at approximately the same time. This policy is very advantageous for accelerators
when tasks that need input data transfers are mixed with tasks that either do not need input
data or their input data is already available on the device: tasks with no input data can be
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Figure 4.15: Task execution flow with AMA

run directly on the device while tasks with input data wait for their input transfers to finish
and both operations can be overlapped.

The execution flow of four tasks t1, t2, t3 and t4 and the potential overlapping of their task
stages with AMA is represented in Figure 4.15, following the same convention as Figure 4.1. If
supported by the underlying hardware, the active stage of the tasks (with their data transfers)
can start one after another, overlapping all the operations. In this case, since t4 does not
need input data transfers, its execution can begin immediately thanks to the FTFR policy,
even though it was the last task assigned to the device. Without FTFR, the execution of t4
would be delayed until the execution of the other three tasks is started. Then, the different
stages of the four tasks are completely overlapped with each other and resource utilization is
maximized. This illustration shows that AMA is able to overlap all the device operations, but
there may be accelerators, limited by the hardware, that cannot support overlapping certain
combinations of operations. In these cases, such operations will be delayed until the hardware
can issue them, but this is completely compatible with AMA as well.

The AMA’s event-driven execution flow can largely speed-up application performance, as the
overhead of task management and data transfers is hidden by the execution and data transfers
for other tasks. As a result of applying this design, host-side threads are never blocked, so
they can do other useful work. This also gives the opportunity of making other runtime
components smarter and more powerful, even if they would increase runtime’s overhead.
Thanks to AMA, several OmpSs scheduling strategies have been improved, as explained in
the next chapter.

4.2.2 OmpSs GPU Support with AMA
This section explains the implementation of AMA on top of the OmpSs GPU device support.
There are several aspects that remain the same as the semi-asynchronous approach, like
the GPU initialization (explained in Section 4.1.2.1) and the GPU memory management
(described in Section 4.1.2.2). The host page-locked memory is managed in the same way as
well.

4.2.2.1 Event-driven Flow

The two main differences between the semi-asynchronous and the AMA approaches are the
way how host and device synchronize and the number of tasks that can be handled simulta-
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Figure 4.16: Distribution of asynchronous operations and events on GPGPU device streams

neously.

The AMA implementation for GPUs follows an event-polling mechanism: the host-device
synchronization is done by inserting a CUDA event after each device asynchronous operation
(data transfer or kernel launch). The helper thread registers the CUDA event right after
issuing a device operation and creates the appropriate set of actions for that event. Both
the operation and the event are issued to the same CUDA stream. According to CUDA
specification, the event will not be raised until the preceding asynchronous operation has been
completed on the device side, so it will be used to check for the completion of its preceding
asynchronous operation. Figure 4.16 shows this mechanism: after each data transfer (CP) or
kernel launch (K ) from the host, an event (E1, E2 and E3, in yellow) is created with a pending
(P) state. When the operation completes on the device side, the event changes the state to
raised (R). Then, helper thread processes its actions and marks the event as completed (C ).
Each device operation is issued to a different stream to overlap with device operations from
other tasks.

In this approach, the GPU device helper thread can ask the scheduler for several tasks con-
secutively. As soon as a new task is assigned to the device, its active stage is started. The
thread holds a list of pending events for its device and the state of each event is frequently
checked by querying CUDA. When a raised event is found, the thread executes its associated
actions. If no raised events are found, the thread requests a new task to the scheduler. This
process is repeated over the whole application execution.

In order to favour load balance when more than one processing unit is used, the OmpSs GPU
component has a task prefetching threshold, which limits the number of tasks that GPU helper
threads can handle simultaneously. In other words, when the number of non-completed tasks
of the device reaches the threshold, the helper thread is not allowed to request a new task
until one of the current tasks is finished. This threshold can be configured through an OmpSs
environment variable. Choosing a lower threshold is better to balance the work between
processing units, but it can decrease the number of overlapping operations.

Several CUDA streams are used to overlap as many operations as possible. Two CUDA
streams are dedicated to data transfers (one for each host-device direction). There is no need
to have more than two streams because the hardware limits the number of simultaneous data
transfers to one in each host-device direction. However, more streams can be added in the
future if the hardware of next-generation GPGPUs supports more simultaneous transfers.
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Figure 4.17: Task execution comparison between semi-asynchronous and AMA approaches
on a GPGPU device

CUDA’s concurrent kernel execution feature is exploited as well by having multiple streams
for kernel executions. The number of streams devoted to kernels is set accordingly to the
task prefetching configuration variable and different streams are used for subsequent task
executions in a Round Robin fashion.

Figure 4.17 compares the execution of four tasks t1, t2, t3 and t4 on a GPGPU with the
semi-asynchronous approach (at the top) and the AMA implementation (at the bottom). The
semi-asynchronous execution takes more time due to the device synchronization stages and
the lack of overlapping at several points. In contrast, the global execution time with AMA
is lower because the synchronization points have been removed and thus, overlapping time is
increased. Still, some gaps are observed due to hardware limitations: a kernel can start only
when all thread blocks of all prior kernels from any stream have started and two data transfers
in the same direction are serialized. That is why tasks t1 and t2 can only partially overlap
their execution. Since t4 task does not need input data transfers, the FTFR scheduler can
advance its execution right at the beginning: there is no need to wait for t1, t2 and t3 data
transfers and execution. Then, t4 ’s output data transfers are overlapped with t1 ’s execution
and t2 ’s input data transfers. The overall result is that the AMA approach has significantly
reduced the total execution time of these tasks. Moreover, t4 ’s dependences would be released
at the end of its execution, so its dependent tasks would be ready to run much earlier.

4.2.3 OmpSs Xeon Phi Support with AMA

This section describes how task offloading on Intel Xeon Phi cards in OmpSs is supported
by means of the hStreams library [20]. Developed by Intel, this library offers an interface
to offload pieces of code on a Xeon Phi device. Conceptually, hStreams is very similar to
CUDA or OpenCL: memory transfers must be explicit between host and device memory
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1 // A l l o c a t e device memory
2 v o i d ∗ nanos_malloc_hstreams ( s i z e _ t s i z e ) ;
3
4 // Free device memory
5 v o i d nanos_free_hstreams ( v o i d ∗ address ) ;

Figure 4.18: Nanos++ API functions for allocating and deallocating Xeon Phi memory

spaces, streams and events are used to issue and control device operations, data transfers and
offloaded executions are asynchronous, etc.

The OmpSs Xeon Phi support on top of hStreams has been developed in an iterative and
interactive process with Intel: early software releases were provided by Intel, new features
have been requested to Intel and several bugs inside the hStreams library have been reported.

We took advantage of class abstraction and inheritance to avoid duplicated code between the
GPU and Xeon Phi support components. Then, the main execution flow implementation is
shared between both devices and only some small parts have been specialized for each device.

4.2.3.1 Xeon Phi Accelerator Initialization

The hStreams library needs to be initialized before any call to the library and finalized at the
end of the application. The initialization includes setting the desired options for the Xeon
Phi device, like configuring the number of partitions or OpenMP core thread affinity.

The OmpSs Xeon Phi support component performs all these operations internally, so that
they are hidden from the programmer side. The programmer can configure the number of
hStreams partitions through an OmpSs environment variable.

Like the GPU component, one helper thread is created for each Xeon Phi card in the system
and linked to one of the cards. In this case, the device characteristics are also captured to
guarantee a correct execution of the application.

4.2.3.2 Xeon Phi Memory Management

By default, data is allocated on the Xeon Phi memory space the first time they are needed
by a task. However, we detected that the hStreams interface used to allocate such data takes
a long time to perform data allocations. Thus, for performance reasons, the OmpSs Xeon
Phi support offers two Nanos++ API functions to allocate and deallocate user data. Figure
4.18 shows the syntax of these functions. In this case, it is not possible to follow the same
approach as the GPU support component because the hStreams streams handle dependencies
between operations based on the address of their parameters. If the whole device memory
was allocated at once, we could break this hStreams dependence detection mechanism. Figure
4.18 shows the syntax of the functions.

4.2.3.3 Event-driven Flow

The hStreams library provides a slightly different stream abstraction compared to CUDA:
operations issued to the same stream may not be executed in a FIFO order. Only those
dependent operations, referring to the same host address, are guaranteed to execute in order.
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Figure 4.19: Distribution of asynchronous operations and events on Xeon Phi device streams

This automatic-dependence detection allows the OmpSs Xeon Phi support component to
apply an optimization in the AMA design: it is not necessary to wait for the completion of
input data transfers to launch the kernel. Instead, task offload can be issued immediately
after its input data transfers in the same stream and the hStreams library will preserve their
dependencies. So, in this case, the three stages of a task (active, run and completion) are
issued to the same stream, and several streams are used to overlap the stages of different
tasks.

In order to maximize resource utilization, the device helper thread creates several partitions of
the Xeon Phi card: cores are evenly distributed between partitions. Then, tasks are assigned
to partitions in a Round Robin fashion. In addition, several streams per partition are created,
so that there can be several operations overlapping for each partition.

All device operations are issued asynchronously and an hStreams event is associated to each
operation. The hStreams asynchronous API functions receive as one of their parameters a
pointer to an hStreams event, so the event is automatically associated to its API call. Like
CUDA, the library offers calls to either wait for event completion or query its state. The Xeon
Phi helper thread always uses the query method to avoid blocking. Figure 4.19 shows how
asynchronous operations are issued for a task: the input data transfers and kernel execution
are launched one after the other in the same stream. Unlike CUDA, the hStreams runtime
creates and initializes the events automatically for each operation. The events associated to
input data transfers are still needed to notify the OmpSs software cache of their completion.
Finally, when the kernel launch is completed, task’s output data transfers are issued. For
simplicity, the complete event-driven flow is showed only for one task, issued to Stream #1,
but the operations of other tasks (shaded boxes) can be handled simultaneously in other
streams (in this example, Stream #2 and Stream #3 ).

Figure 4.20 illustrates the task execution flow of four tasks t1, t2, t3 and t4. The active
stages for each task are issued one after the other. According to hStreams specification, the
data transfers happen simultaneously from the programmer point of view. However, it is not
clear how the DMA transfers are programmed in the hardware. Assuming that the Xeon Phi
device is divided into four partitions, each task runs on a different partition, so they can run
in parallel on the same device. Once the tasks are executed, their output data transfers are
issued.
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Figure 4.20: Task execution flow on a Xeon Phi device

4.2.4 OmpSs Example Using Intel Xeon Phi
The code presented in Figure 4.21 shows an OmpSs implementation of the tiled matrix mul-
tiply algorithm presented in Chapter 2 that offloads the computation to the Xeon Phi. This
code looks very similar to the GPU version presented in Section 4.1.4: the same OmpSs
directives are used, with just changing the device(hstreams) clause. The Xeon Phi kernel
implementation is provided as well. So, the programmer can easily change the targeting de-
vice with small source code modifications. Moreover, tasks targeting different devices can be
combined together in the same application.

The OmpSs directives have the same semantics as explained in the GPU example: the task
will be run on the Xeon Phi by means of the hStreams library and the OmpSs runtime will
manage all the needed data transfers.

In this case, the MKL library is invoked from the kernel code to perform the computation.
Like the GPU version, the user is responsible to either write their own kernel code or use an
appropriate library. Then, OmpSs takes care of all data movements and kernel synchroniza-
tions. Since these operations are always done inside the runtime, the same application can
be run in a multi-device environment and different kinds of optimizations can be performed
by the OmpSs runtime.

4.2.5 Evaluation of AMA Design
This section presents the performance results of several applications in order to evaluate
the AMA design implemented for GPGPU and Xeon Phi accelerators. In these evaluations,
the AMA implementations were combined with the affinity-ready scheduler and the priority
propagation mechanism, explained in the next chapter. These scheduling strategies favour
task execution on accelerators as well and their implementation was possible thanks to the
AMA design. Otherwise, they would introduce too much overhead and it would not be worth
applying them.

4.2.5.1 AMA Evaluation on GPGPU Accelerators

The evaluation of AMA for GPGPUs was performed on a multi-GPU Linux system with two
Intel Xeon E5-2650 at 2.00 GHz, 62.9 GB of main memory and four nVIDIA Tesla K20c with
2496 CUDA cores and 4.7 GB of memory.
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1 #pragma omp t a r g e t d e v i c e ( h s t r e am s ) copy_deps
2 #pragma omp t a s k i n o u t ( [ t s ∗ t s ] t i l e C ) i n ( [ t s ∗ t s ] t i l e A , [ t s ∗ t s ] t i l e B )
3 v o i d dgemm_task ( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
4 {
5 d o u b l e alpha = 1 . 0 ;
6 c o n s t c h a r t r a n s = ’N ’ ;
7 dgemm(&trans , &trans , &ts , &ts , &ts , &alpha , t i l eA , &ts , t i l e B , &ts , &alpha , t i l e C , &t s ) ;
8 }
9

10 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗∗A, d o u b l e ∗∗B, d o u b l e ∗∗C, i n t t s )
11 {
12 i n t i , j , k ;
13 f o r ( i = 0 ; i < m; i ++)
14 f o r ( j = 0 ; j < n ; j++)
15 f o r ( k = 0 ; k < l ; k++)
16 dgemm_task (A[ i ∗ l+k ] , B[ k∗n+j ] , C[ i ∗n+j ] , t s ) ;
17
18 #pragma omp t a s k w a i t
19 }

Figure 4.21: OmpSs tiled matrix multiply example using the Xeon Phi to offload the compu-
tation

The results were compared with hand-tuned native CUDA versions and the semi-asynchronous
approach. The native CUDA codes were compiled with CUDA 5.5 and the OmpSs versions
were compiled with OmpSs compiler (using nvcc 5.5 and GCC 4.6.4). Optimization level
−O3 was used in all codes. The same application source code was used with both the semi-
asynchronous and AMA implementations. However, the locality-aware scheduler, described in
Section 2.1.4.3, was used for the semi-asynchronous approach and the affinity-aware scheduler
was used for the AMA approach. The affinity-ready scheduler is part of the contributions of
this thesis and is explained in Section 5.2.

The applications were run with different configurations of number of GPU devices and data
set sizes to analyze its impact on performance. The performance values shown were computed
as the mean value of several executions.

The results obtained from three applications: matrix multiply, Cholesky factorization and
N-Body simulation are presented and discussed below.

Matrix Multiply. The general details of this application are described in Section 2.2.9. In this
test, the GPU computation is done by calling the cublasDgemm() function from CUBLAS
library. The different configurations tested are explained in Table 4.1. Double-precision
floating-point data was used.

In the native CUDA version, matrices A and C are split into as many chunks as GPUs, so each
GPU receives a set of consecutive rows. Matrix B is fully copied to all GPGPU devices. This
division avoids data dependences between GPU computations, so all the devices can run their
computation part in parallel with the others. Each device calls the cublasDgemm() function
once with its corresponding chunk of the matrix. The largest data set size that fits in a single
GPU’s global memory was chosen, so that data transfers between kernel computations are
not required.

In the OmpSs version, each matrix is divided into square blocks of 2048×2048 elements. Each
task performs a matrix multiply operation on a given block of the destination matrix.

61



4. Accelerator Support for OmpSs

Configuration App version Runtime Data set size Data transfers
[#elements] accounted?

Semi-async 16K OmpSs CUDA OmpSs GPGPU 16384×16384 Yes, all
semi-asynchronous

AMA 16K OmpSs CUDA OmpSs GPGPU 16384×16384 Yes, all
AMA

Semi-async 32K OmpSs CUDA OmpSs GPGPU 32768×32768 Yes, all
semi-asynchronous

AMA 32K OmpSs CUDA OmpSs GPGPU 32768×32768 Yes, all
AMA

CUDA 16K Native CUDA CUDA 16384×16384 No

Table 4.1: Matrix multiply configurations
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Figure 4.22: Matrix multiply performance results for OmpSs with GPGPU AMA support

Figure 4.22 shows the performance results of matrix multiply run with the different configu-
rations. The results for the CUDA 16K configuration do not include the data transfer time;
only computation time is accounted. Then, they can be considered as the peak performance
of this application, so this is why they are presented as a chart line. Since the algorithm
is highly parallel, the performance of Semi-async 16K and Semi-async 32K get close to the
peak values, even though data transfers are taken into account in these measurements. The
performance increases as larger data set sizes are used because the application creates more
tasks and thus, opens more parallelism. In the case of OmpSs with AMA, a bigger data
set size (AMA 32K ) is also better and the peak performance is achieved. This proves that
OmpSs with AMA can fully occupy GPGPU resources and completely hide the overhead of
data transfers. The amount of transferred data is optimal in both OmpSs semi-asynchronous
and OmpSs with AMA cases, but still OmpSs with AMA gets an extra 4% benefit from the
exploitation of the concurrent kernel execution feature.

62



4.2. AMA: Asynchronous Management of Accelerators

Configuration App version Runtime Data set size Data transfers
[#elements] accounted?

Semi-async 16K OmpSs CUDA OmpSs GPGPU 16384×16384 Yes, all
semi-asynchronous

AMA 16K OmpSs CUDA OmpSs GPGPU 16384×16384 Yes, all
AMA

Semi-async 32K OmpSs CUDA OmpSs GPGPU 32768×32768 Yes, all
semi-asynchronous

AMA 32K OmpSs CUDA OmpSs GPGPU 32768×32768 Yes, all
AMA

CUDA 16K Native CUDA CUDA 16384×16384 Only between
devices

CUDA dgemm Native CUDA CUDA 16384×16384 No
16K ceiling ref.

Table 4.2: Cholesky factorization configurations

Cholesky Factorization. The Cholesky factorization is explained in Section 2.2.2. Double-
precision floating-point data was used for the computation. The four different kernels: dpotrf,
dsyrk, dgemm and dtrsm were offloaded to the GPGPU. A customized implementation of
dpotrf based on its corresponding function from MAGMA library was used and CUBLAS
library was called for the other kernels. The different configurations used are described in
Table 4.2. The block size for all configurations was 2048 × 2048 elements. Note that CUDA
dgemm 16K ceiling reference is the performance of matrix multiply previously evaluated in
this section. Although the Cholesky factorization cannot scale as good as matrix multiply,
these results were added as a reference of scalability.

The CUDA native version used an OpenMP-like fork-join approach due to its complexity
of data dependencies between kernels. Data transfers between host and devices, issued at
the beginning and at the end of the computation to load data on device memory and get
the results back to the host are not taken into account for the performance measurements.
However, in this case, GPGPUs need to share data between each other after each join phase
of the computation, so these data transfers between device memories are accounted for the
performance measurements. The biggest power-of-two data set size that fits in one GPU
global memory was chosen, so the whole matrix can be stored in every device memory and
additional data transfers and evictions can be avoided during the computation.

In the OmpSs version, each kernel is annotated as a task and task data dependencies are
managed by the OmpSs runtime. Different task priorities were used to give more priority to
critical tasks. In the OmpSs with AMA configurations, task priorities are propagated up to
five levels upwards3.

Cholesky’s performance results are shown in Figure 4.23. The native CUDA version cannot
scale across several GPUs due to the synchronization bottlenecks and the fact that GPUs
need to exchange data too frequently and these transfers cannot be overlapped with other

3 The description of this mechanism can be found in Section 5.1.
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Figure 4.23: Cholesky factorization performance results for OmpSs with GPGPU AMA sup-
port

computations. This is the reason why the values of CUDA dgemm 16K ceiling reference
are shown as well. The two OmpSs configurations with small matrix sizes (Semi-async 16K
and AMA 16K ) cannot scale beyond two GPUs because there is a lack of parallelism. In
contrast, when the data set size is increased, there is more parallelism available and both
Semi-async 32K and AMA 32K scale better. However, the OmpSs with AMA configurations
get better performance than the OmpSs semi-asynchronous executions thanks to its enhanced
non-blocking data management and task priority propagation, getting up to 1.5x performance
speed-up.

N-Body Simulation. The general characteristics of this simulation can be found in Section
2.2.5. The simulation was run for 10 iterations with different number of bodies using double-
precision floating-point data, described in Table 4.3.

The results for the native CUDA version only take into account the data transfers performed
between iterations; like in the Cholesky case, the initial and final data transfers between host
and devices, to load data and get the result back, are not accounted in the performance
results.

Figure 4.24 shows the performance results of running the different configurations of this
simulation. The OmpSs semi-asynchronous configurations (Semi-async 256Kbod and Semi-
async 512Kbod) are negatively affected by the amount of data exchanged between iterations,
up to the point of not being able to scale across several GPUs. In contrast, the OmpSs
with AMA configurations (AMA 256Kbod and AMA 512Kbod) can scale at the same ratio
as the original CUDA application does and, in some points, they even get slightly better
performance than the native CUDA implementation. In this case, OmpSs with AMA gets up
to 2.2x performance speed-up compared to the OmpSs semi-asynchronous approach.

It is interesting to analyze and compare these results with the first evaluation of the semi-
asynchronous model, in Section 4.1.5. In the previous evaluation, the semi-asynchronous
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Configuration App version Runtime Data set size Data transfers
[#bodies] accounted?

Semi-async OmpSs CUDA OmpSs GPGPU 262144 Yes, all
256Kbod semi-asynchronous
AMA OmpSs CUDA OmpSs GPGPU 262144 Yes, all

256Kbod AMA
Semi-async OmpSs CUDA OmpSs GPGPU 524288 Yes, all
512Kbod semi-asynchronous
AMA OmpSs CUDA OmpSs GPGPU 524288 Yes, all

512Kbod AMA
CUDA Native CUDA CUDA 262144 Only transfers
256Kbod between iterations
CUDA Native CUDA CUDA 524288 Only transfers
512Kbod between iterations

Table 4.3: N-Body simulation configurations
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Figure 4.24: N-Body simulation performance results for OmpSs with GPGPU AMA support

model was able to scale a little bit across several GPUs. As new generations of GPGPUs
appeared, legacy code does not perform as good as it used to run, up to the point where it
becomes obsolete. The N-Body simulation clearly demonstrates two facts: on the one hand,
that performance is not guaranteed with new generations of hardware and it must be adapted
to fit new characteristics. On the other hand, that it is possible for runtime frameworks to
enhance application’s performance by internally adapting to new architectures, while the user
code remains untouched.

4.2.5.2 AMA Evaluation on Intel Xeon Phi Accelerators

The AMA implementation evaluation for Intel Xeon Phi cards was performed on a system
running Linux with an Intel Xeon E5 2x 2680 at 2.6 GHz, 64 GB of memory and an Intel
Xeon Phi 7120P card with 61 cores at 1.238 GHz and 16 GB of memory. An early-release
package of MPSS version 3.5 was installed in the system.
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Figure 4.25: Matrix multiply performance results for OmpSs with Xeon Phi support

The results were compared with optimized native hStreams versions, provided by Intel within
the hStreams library framework (distributed in the MPSS 3.5 package). The native hStreams
codes were compiled with icc 11.1. The OmpSs versions were compiled with OmpSs compiler
(using icc 11.1 and GCC 4.6.4). Optimization level −O3 was used in all codes. The appli-
cations were run with different data set sizes to analyze how runtime overheads impact on
performance. Results are computed as the mean value of several runs.

The results obtained from two applications: matrix multiply and Cholesky factorization are
presented and discussed below.

Matrix Multiply. The general details of this application are described in Section 2.2.9. The
tests were run with different data set sizes in double-precision floating-point format. Matrices
were always divided into 10×10 square tiles. The Xeon Phi was configured with the number of
partitions that gave the best performance results for each version: in this case, four partitions
in both versions. The time for all data transfers is accounted in both versions as well.

The hStreams native version is distributed with the hStreams library. The code offloads the
computations to Xeon Phi and the native MKL library is called. This implementation uses
several streams to overlap data transfers and computations.

The OmpSs code is structured as explained in the general description. OmpSs uses hStreams
to offload the computations and the native MKL library is called as well to calculate the
result. In this case, the breadth-first scheduler was used, as the executions cannot benefit
from any scheduling based on data locality.

The performance results of matrix multiply are presented in Figure 4.25. As the data size
is increased, the performance of both hStreams and OmpSs versions increases as well. The
overhead of the OmpSs runtime has a significant impact for small matrix sizes, because the
computation time is too short. However, as the size is increased the OmpSs performance gets
closer to the hStreams native performance, and for big matrix sizes, OmpSs gets even better
performance than hStreams. The lack of profiling tools to visualize when data transfers occur
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and how computations are scheduled on Xeon Phi partitions make performance analysis
difficult, as it is not clear to us why the hStreams performance slightly decreases for big
matrix sizes. However, we presume that data is not transferred with enough time in advance,
so computations are delayed until the data they need is available in device memory. This
issue is not observed in the OmpSs version thanks to the AMA design because data transfers
are issued much before.

Cholesky Factorization. The Cholesky factorization is explained in Section 2.2.2. Double-
precision floating-point data was used to run the computation with different data set sizes.
The native Xeon Phi MKL library was used for all the different kernels of the application:
dpotrf, dsyrk, dgemm and dtrsm. The matrix was divided into 10×10 square tiles. The Xeon
Phi was configured with the number of partitions that gave the best performance results for
each version: five partitions in the native hStreams version and six partitions in the OmpSs
version. The time for all data transfers is accounted in both versions.

The hStreams native version is distributed with the hStreams library. The native implemen-
tation is very complex: many streams are used to overlap computations with data transfers
and to preserve data dependencies between the different kernels.

The OmpSs implementation follows the structure described in the general explanation. Task
priorities were used in this case and they were propagated up to five levels upwards. The
affinity-ready scheduler was used, as it was the only scheduler available with priority propa-
gation support.

The complexity of the native hStreams implementation denotes the difficulty of programming
efficient applications for accelerators and still, this code can only run on a single device.
In contrast, the OmpSs version is very similar to the sequential CPU algorithm, and only
directives (for tasks and barriers) and task implementations (which call the native MKL
library and have less than ten lines of code) have been added. Moreover, the same OmpSs
version can run on a multi-accelerator system.

Figure 4.26 shows the performance results of the Cholesky factorization. In this case, the
differences between OmpSs and hStreams for small data sets is minimal, and as the data
set size increases, OmpSs quickly gets better performance than hStreams. Although the
native version is highly optimized, OmpSs is able to get more performance thanks to a better
dynamic scheduling of tasks and the priority propagation mechanism. As mentioned before,
application performance and efficiency cannot be analyzed in detail due to a lack of profiling
tools, but we believe that the hStreams version has some load imbalance between Xeon Phi
partitions, so it cannot get the same performance as OmpSs.
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Figure 4.26: Cholesky factorization performance results for OmpSs with Xeon Phi support
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Chapter 5

Runtime Scheduling Policies

for Heterogeneous

Environments

The previous chapter demonstrates that applications targeting accelerators need to be
carefully tuned to get good performance and that this accelerator tuning can be trans-

parently applied in runtime frameworks. While this is a key aspect to optimize performance,
it is not the only one, as the scheduling of computations is important as well. Making good
decisions on the work distribution among computing units and across time can potentially
increase application performance.

This chapter describes the thesis contributions related to task scheduling techniques. They
have been developed on top of the OmpSs runtime and their main target are accelerator
architectures and heterogenous systems. First, two scheduling mechanisms designed for ac-
celerators are presented: the priority propagation mechanism and the affinity-ready scheduler.
And second, two scheduling policies for heterogeneous systems are described: the versioning
and the SSMART schedulers. The use of these last two schedulers show that the optimal
performance of an application can only be achieved by the execution cooperation of all the
processing units of a system.

5.1 Task Priority Propagation
Generally, in a task-based heterogeneous environment, accelerators consume tasks faster than
the host. So, in order to maximize resource utilization and application performance, it is
important to give priority to those tasks that open more parallelism (i.e., tasks with several
successors) and also to those in the critical path of the data dependency graph. The priority
clause of the OmpSs programming syntax allows programmers to give a certain priority to each
task. Task priority is represented by an integer expression that will be evaluated at application
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Figure 5.1: Task priority propagation in the OmpSs runtime

run time, when the task is created. Higher integer values correspond to higher priority tasks.
Several OmpSs schedulers support task priority and have the ability to propagate priority to
the parent task. However, this feature is disabled by default due to its overhead.

Thanks to the AMA design (described in Section 4.2), the idle time of device helper threads
can be used to propagate task priorities. Then, the priority propagation overhead is com-
pletely hidden and does not impact performance. Moreover, the priority is not only propa-
gated to the parent task, as it is currently supported by OmpSs, but it has also been extended
to propagate the priority to several levels of parent tasks. This is not possible without AMA,
due to its overhead, but it is particularly useful in applications with complex task graphs,
like the Cholesky factorization (explained in Section 2.2.2). In such kind of applications, it
is difficult for a task scheduler to find and give priority to the execution of the critical path.
With the help of the priority propagation mechanism, paths to critical tasks are found earlier,
and thus, its execution is scheduled earlier as well.

Figure 5.1 illustrates how priority is propagated across the task dependency graph: each node
represents a task; straight, thin arrows represent dependencies between tasks and thick, curved
arrows indicate the priority propagation direction. Each node is labelled with a number that
corresponds to the task priority. After the priority propagation, the priority of each task has
been increased by its children priority, which, in turn, their priority was also increased by
their children priority.

The implementation uses a double-linked data dependency graph so that successor tasks can
access their predecessors to update their priority. The construction of this double-linked graph
was disabled by default in OmpSs due to its overhead and the navigation was only allowed
from parent to child tasks. As mentioned before, the overhead added by the double-linked
graph construction and navigation is hidden by the execution of other tasks and their data
transfers, so, effectively, it is cost-free in the AMA implementation.

The priority propagation mechanism is not considered to be a scheduler itself, but it is a tool
that schedulers can use to enhance their task scheduling quality to ensure that the dependen-
cies of higher priority tasks are satisfied as soon as possible. This mechanism is activated each
time a new task is added to the dependency graph, and will affect its predecessors. The opti-
mum number of predecessor levels to navigate and update priority is application-dependent.
Then, the scheduling policies that support this feature offer a configuration option to set the
maximum number of predecessor levels where priority must be propagated.
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5.2 Affinity-ready Scheduler
The use of accelerators usually implies dealing with more than one memory space, even in
single-node environments. Consequently, data movements must be performed to device local
memory before and/or after device computations. Memory transfers can take a considerable
amount of time with respect to accelerator code execution time, so, ideally, they should be
minimized.

This is the objective of the existing OmpSs locality-aware scheduler: a task affinity score
is computed for every memory space in the system. The affinity score takes into account
task data size and is computed at task creation time because it has a considerable overhead:
if it was computed at the ready stage, it would delay task execution and negatively affect
performance. This approach has a clear weakness: the affinity score is likely to be out of date
at the ready stage, when the task is going to be run on the assigned processing unit. Then,
the objective of reducing memory transfers is not completely fulfilled.

The affinity-ready scheduler, which is a contribution of this thesis, solves the problems that
the locality-aware scheduler presents. On the one hand, the computation of the affinity score
has been modified to better fit accelerator systems. On the other hand, the affinity score is
calculated at the ready stage of the task, and the overhead that this may introduce can be
completely hidden by the AMA design.

In addition to the global ready queue of the Nanos++ runtime, the affinity-ready scheduler
creates a separate ready queue for each memory space of the system. So, processing units
fetch tasks from the local queue corresponding to their memory space. When a task becomes
ready, the scheduler decides which memory space is the most suitable to place the task. The
affinity score is computed as the number of bytes that must be transferred to each memory
space in order to execute the task. This information comes from the copy clauses inserted
by the user in the application code. Both input and output data transfers are accounted,
and inout data are accounted twice. Then, the task will be placed in the local queue of the
memory space with the lowest score. In case of a tie between memory spaces, tasks are placed
in the local queue with the lowest number of tasks. Only the memory spaces where there is a
processing unit that can run the task are considered in the scheduling decision. For example,
only GPGPU memory spaces will be considered for a task targeting a GPGPU architecture.

The scheduler implements a task stealing mechanism to correct load imbalance. This mecha-
nism also tries to preserve data locality as much as possible and requires the minimum number
of data transfers. So, when a processing unit tries to fetch a task from its local queue and the
queue is empty, it will try to steal a task from another memory space. The stealing process
is done conforming to a set of rules: if the scheduler does not find a task that fits the first
one, it will try to find a task that fits the next rules successively, in the following order:

1. There is no need to perform any memory transfer to run the task.

2. Moving the task to its memory space will not trigger a data invalidation in another
memory space (only output and inout data can trigger invalidations).

3. There is enough free space in the local memory to bring the data needed by the task.
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Figure 5.2: Affinity-ready task scheduling in the OmpSs runtime

4. If none of the rules above applied, try to steal a task from any queue, in a Round Robin
fashion.

Figure 5.2 illustrates the scheduling decision when a task becomes ready. The system has
two different memory spaces with three and two processing units (PU) respectively. The
processing units access their corresponding local queues to get tasks. In this example, the
new ready task receives two parameters: one input parameter of 16 KB and one output
parameter of 8 KB. The input parameter is already present in the Memory Space #1 and
the output parameter is present in the Memory Space #2. Then, the amount of additional
data needed in Memory Space #1 is 8 KB (8192 bytes) and this is its affinity score. In the
same way, the affinity score of Memory Space #2 is 16384 (16 KB). Thus, the affinity-ready
scheduler decides to place the task to the local queue of Memory Space #1 because it needs
less data to be transferred.

5.3 Versioning Scheduler
Running applications on accelerators can significantly speed-up their performance, but it may
be even better not to just use accelerators, but all the computing units of the system as well.
The main challenge of this approach is programmability: first, application code must be split
into smaller parts; second, the programmer has to decide which processing unit executes
each part; and finally, these code fragments probably need additional communication and
synchronization between them. OmpSs supports running the different tasks of an application
among all the processing units of a system, even if they are of different types. However, the
model expects that each task targets one single architecture type. The versioning scheduler
offers a new feature to OmpSs: the ability to address heterogeneous tasks, i.e. tasks that
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target more than one architecture. Heterogeneous tasks can have a single implementation
that targets several architectures, a specialized implementation for each architecture they
target or a combination of both.

The objective of this new feature is to provide code performance at low-cost maintenance: as
new architectures appear, new programming paradigms do too and applications may become
obsolete in a relatively short amount of time. The versioning scheduler offers the ability to
join separate pieces of code (new task implementations) to the original application without
having to modify it. Programmers can then rewrite certain parts of the old application to
improve performance, fit new architectures or adjust to user needs and join these rewritten
parts to the original code, just like a puzzle.

The versioning scheduler is able to dynamically choose the most appropriate task implemen-
tation each time a task must be executed. As tasks are executed, the scheduler learns and
keeps track of them so that it can make more accurate decisions in the immediate future of ap-
plication’s execution. The key point of the scheduler is to improve application’s performance
by means of resource and thread cooperation.

The details of the versioning scheduler, the source code syntax and the compiler support
needed are explained in the following sections.

5.3.1 Syntax and Compiler Support
Application tasks must be annotated in a certain way so that the runtime recognizes hetero-
geneous tasks and their implementations. Figure 5.3 shows an example of a source code with
a heterogeneous task with three task implementations. The main version is called main_impl
and is annotated like a regular task. The other two versions are called another_impl and
yet_another_one and have an additional implements clause. Note that all versions receive
exactly the same parameters and have the same dependency clauses. The implements clause
is only valid for functions annotated as tasks (it cannot be used in inlined tasks) and its
argument always references the main implementation. It is not possible to create an imple-
mentation of a task that already has the implements clause: only regular tasks can have
alternative implementations (e.g. yet_another_one task cannot be an implementation of an-
other_impl). There are no restrictions about task device clause: the main implementation
does not need to target SMP architectures, the programmer can give more than one imple-
mentation for each device or even the same implementation can be targeted to more than one
device (provided that all devices specified in the device clause are able to execute the code).
A heterogeneous task is then the set of all its task implementations. For each heterogeneous
task, the compiler creates a structure with the necessary information for the runtime to rec-
ognize the heterogeneous task with all its implementations. Basically, this structure contains
a list of devices where the task can be executed and a pointer to the corresponding implemen-
tation function address for each device. The distinction between the main implementation
and the others is just a compiler requirement and does not affect the versioning scheduler, as
all task versions are treated equally at run time.

5.3.2 Data Collection
The versioning scheduler keeps and updates several data structures over the whole execution of
the application. These structures are used to collect information related to each heterogeneous
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1 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps
2 #pragma omp t a s k i n ( [ N ]A) ou t ( [ N ] B) i n o u t ( [ N ] C)
3 v o i d main_impl ( i n t N, d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
4 {
5 // Task code
6 }
7
8 #pragma omp t a r g e t d e v i c e ( cuda ) imp l emen t s ( ma in_impl ) c opy_deps
9 #pragma omp t a s k i n ( [ N ]A) ou t ( [ N ] B) i n o u t ( [ N ] C)

10 v o i d another_impl ( i n t N, d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
11 {
12 // Task code
13 }
14
15 #pragma omp t a r g e t d e v i c e ( cuda ) imp l emen t s ( ma in_impl ) c opy_deps
16 #pragma omp t a s k i n ( [ N ]A) ou t ( [ N ] B) i n o u t ( [ N ] C)
17 v o i d yet_another_one ( i n t N, d o u b l e ∗A, d o u b l e ∗B, d o u b l e ∗C)
18 {
19 // Task code
20 }

Figure 5.3: Example of different task versions

HeterogeneousTask DataSetSize <VersionId, ExecTime, #Exec>
<het-task1-v1, 30ms, 200>

2 MB <het-task1-v2, 18ms, 350>
het-task1 <het-task1-v3, 25ms, 230>

<het-task1-v1, 45ms, 80>
3 MB <het-task1-v2, 25ms, 300>

<het-task1-v3, 40ms, 120>
het-task2 5 MB <het-task2-v1, 15ms, 40>

<het-task2-v2, 20ms, 3>

Table 5.1: Versioning’s data structure for heterogeneous tasks

task as shown in Table 5.1. The information is grouped according to heterogeneous tasks and
the data set size of each task call, because the execution time of each task is likely to be
related to the amount of data that it needs. Then, for each pair of heterogeneous task and
data set size, the scheduler stores the mean execution time (ExecTime) and the number of
executions (#Exec) of each task version(VersionId). There are two different heterogeneous
tasks in Table 5.1: het-task1 (with three different implementations) and het-task2 (with two
different implementations). In the case of het-task1, there are two different groups of data set
sizes, because this task has been called with two different data set sizes. For each size, the
three implementations have been run several times and their mean execution time has been
recorded. Similarly, information for all the tasks implementations of het-task2 has also been
recorded, but in this case, there is only one group of data set sizes, because this type of task
has always been called with the same data set size.

Each OmpSs worker1 thread is currently devoted to run tasks on a single device (SMP, GPU,
etc.) and there can be as many workers as machine resources (cores, GPGPUs, etc.). With
the versioning scheduler, each worker has its own private task queue. Each element of the

1 For simplicity, OmpSs worker refers to either worker and helper threads, as the versioning scheduler
makes no distinction between them.
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queue is a pointer to a task that will be run by the corresponding thread. So, it will be used
at runtime to assign tasks to threads and keep track of the amount of work each thread has
in order to balance the task execution among all threads.

5.3.3 Runtime Scheduling Policy
The versioning scheduler is based on the Nanos++ breadth-first policy, which follows task
dependency chains in order to promote data locality and minimize data transfers in a fast
and simple way. Before explaining the versioning scheduling policy, several scheduler-related
concepts must be defined:

o Mean execution time of a task version: Each time a task is run, its execution time is
recorded and its mean execution time is updated as the arithmetic mean of all the task
executions. This value is used by the scheduler as the estimated execution time of that
task version for future executions.

o Fastest executor of a task: For each group of data set sizes, this is the fastest task version.
This concept refers only to those OmpSs workers that can run such task versions.

o Earliest executor of a task: This is the OmpSs worker that can finish the execution of
a task version at the earliest time. It will usually be the fastest executor, but in some
cases, when the fastest executor is busy running other tasks, the earliest executor may
be another OmpSs worker.

o OmpSs worker estimated busy time: Time estimation for an OmpSs worker to finish
the execution of all its assigned tasks. It is computed as the addition of the estimated
execution time for each task in its queue.

When using the versioning scheduler, the execution of an application is divided into two
different phases from the scheduler’s point of view: the initial learning phase and the reliable
information phase. The initial learning phase finishes when the scheduler has enough reliable
information about the execution of heterogeneous tasks.

The initial learning phase consists of picking task versions from ready heterogeneous tasks
in a Round Robin fashion and distributing them among the OmpSs workers. For each task
version run, its execution time is recorded and thus data structures of Table 5.1 are filled with
this information. The scheduler forces each task version to be run at least λ times during the
initial learning phase2. Once all tasks versions belonging to the same group of data set sizes
have been run at least λ times, the scheduler considers that has enough reliable information
and it switches to the reliable information phase3 for the given group of data set size. This
means that the scheduler can have different criteria for the tasks that picks from the global
ready queue, depending on whether their corresponding group of data set size has enough
reliable information or not.

2 This threshold can be configured by the user.
3 Changing from one phase to the other just means that the scheduler changes the criteria to assign task

versions to workers.
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Figure 5.4: Example of a scheduling decision by versioning

During the reliable information phase, the scheduler assigns each task version to its earliest
executor (taking into account task’s data set size). To make this decision, it takes into account
who is the fastest executor of the corresponding group of data set size, but also how busy
each worker is (by checking each worker’s task list). Figure 5.4 represents an example of this
situation: for simplicity, there is only one type of heterogeneous task in the task graph. Each
rectangle represents a task assigned to a worker and its width represents the mean execution
time of the task version. The scheduler picks the ready task colored as orange and decides
which worker should run this task. The GPU W3 is the fastest executor of that task (GPU
version runs faster than SMP version), but it is busy because it has many tasks in its task list,
so the current task would have to wait until all the previous tasks are finished4. Although
the SMP version is slower, the SMP W2 is idle and, in fact, can finish the execution of the
current task before the GPU W3 has run all the tasks in its queue. The scheduler will then
assign the current task to SMP W2 because it is the earliest executor.

In the reliable phase, execution information is also recorded exactly in the same way as the
previous phase: for each task version, its execution time is computed and its corresponding
mean execution time is updated accordingly, so, in a sense, the scheduler is always learning
and recording execution information. This makes the scheduler more flexible and easily adapts
to application’s behavior, even if it changes over the whole execution.

Figure 5.5 synthesizes versioning decision’s flow. The starting point is a worker thread getting
a task from the ready queue. If the scheduler is in the learning phase for such task and there is
not enough reliable information for thread’s device, versioning assigns this task to the thread.
Otherwise, the scheduler is in the reliable information phase for that task. Then, if the thread
is the earliest executor, it will get the task. As an optimization, the thread can still get the
task, even not being the fastest executor, if there are more than T tasks in the dependency
graph. T represents a certain threshold and is used to determine the amount of work pending

4 This information is just an estimation based on the past history of each task version, but it is very likely
that future executions of the task version will behave similarly to the past executions of the same task version.
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Figure 5.5: Versioning scheduler flow

to execute. This optimization is based on the following reasoning: if there is still a lot of
work to do and the thread is idle, let it run the task, even if it is not the earliest executor.
When there is a few work pending, only the fastest executor can run the task; otherwise,
slower executors could harm application performance. This allows the scheduler to use idle
units but prevent slow units to execute tasks at later stages of the application that would
impact directly on its execution time. Finally, if none of the previous attempts to get the
task succeeded, the task will be assigned to the earliest executor.

When the data set size of a ready task differs from what the scheduler has registered in its
previous executions, it is considered like a new group of data set sizes and it switches back
to the initial learning phase behavior until it has again enough reliable information to move
forward to the next phase (the reliable information phase). The versioning scheduler does
not allow work stealing between worker threads, so when a task is assigned to a worker, it is
not possible to change this decision.

The learning costs of the versioning scheduler are very application-dependent. Although the
scheduler never stops learning (because it is always updating the data structures of heteroge-
neous tasks), we could say that there is an initial learning phase while one or more versions
of a task have not been run enough times. But still, the cost of this initial learning phase
is application-dependent: for example, if one of the task versions is much slower than the
others, the impact of the learning cost will be higher. In the same way, a short run with a few
task instances (e.g. less than 10) will be highly affected by the learning costs (applications
with 50-100 or more task instances have low learning costs).

5.3.4 Example
Considering the matrix multiply example presented in Figure 2.3 from Chapter 2, Figure 5.6
shows the additional code that should be added to the original matrix multiply code in order
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1 // Addit ional code
2 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps imp l emen t s ( dgemm )
3 #pragma omp t a s k i n o u t ( [ t s ∗ t s ] t i l e C ) i n ( [ t s ∗ t s ] t i l e A , [ t s ∗ t s ] t i l e B )
4 v o i d dgemm_cublas ( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
5 {
6 d o u b l e alpha = 1 . 0 ;
7 cublasHandle_t handle = nanos_get_cublas_handle ( ) ;
8 cudaStream_t stream = nanos_get_kernel_execution_stream ( ) ;
9 cublasSetStream ( handle , stream ) ;

10 cublasDgemm ( handle , CUBLAS_OP_T, CUBLAS_OP_T, ts , ts , ts , &alpha ,
11 t i l eA , ts , t i l e B , ts , &alpha , t i l e C , t s ) ;
12 }
13
14 // Orig ina l code
15 #pragma omp t a s k i n o u t ( [ t s ∗ t s ] t i l e C ) i n ( [ t s ∗ t s ] t i l e A , [ t s ∗ t s ] t i l e B )
16 v o i d dgemm ( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
17 {
18 cblas_dgemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans , ts , ts , ts , 1 . 0 , t i l eA , ts ,
19 t i l e B , ts , 1 . 0 , t i l e C , t s ) ;
20 }
21
22 v o i d matmul ( i n t m, i n t l , i n t n , d o u b l e ∗∗A, d o u b l e ∗∗B, d o u b l e ∗∗C, i n t t s )
23 {
24 i n t i , j , k ;
25 f o r ( i = 0 ; i < m; i ++)
26 f o r ( j = 0 ; j < n ; j++)
27 f o r ( k = 0 ; k < l ; k++)
28 dgemm(A[ i ∗ l+k ] , B[ k∗n+j ] , C[ i ∗n+j ] , t s ) ;
29
30 #pragma omp t a s k w a i t
31 }

Figure 5.6: OmpSs Matrix Multiply task calling CUBLAS

1 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps imp l emen t s ( dgemm )
2 #pragma omp t a s k i n o u t ( [ t s ∗ t s ] t i l e C ) i n ( [ t s ∗ t s ] t i l e A , [ t s ∗ t s ] t i l e B )
3 v o i d dgemm_cuda( d o u b l e ∗ t i l eA , d o u b l e ∗ t i l e B , d o u b l e ∗ t i l e C , i n t t s )
4 {
5 dim3 block (16 , 1 6 ) ;
6 dim3 g r i d (N/ block . x , N/ block . y ) ;
7
8 dgemm_kernel<<<grid , block>>> ( t i l eA , t i l e B , t i l e C , t s ) ;
9 }

Figure 5.7: OmpSs Matrix Multiply task calling a hand-coded CUDA kernel

to have a heterogeneous task with two implementations: the main implementation would
be run on a CPU and the additional given implementation would run on a GPGPU. For
readability, the original code is also included in this figure.

So, by adding just the piece of code shown in Figure 5.6, Nanos++ with the versioning
scheduler will test the two implementations of dgemm task and would choose the best version
each time the task is called. There is not a hard limit on the number of task versions, so as
many task versions as desired can be added. Additionally, Figure 5.7 shows another example
of a CUDA implementation of dgemm task. This implementation configures5 and calls a
hand-coded kernel called dgemm_kernel. This piece of code can be added to the previous
matrix multiply application and provide the runtime with three task implementations: the
main one for SMP architectures (i.e. general purpose CPUs) and the other two for GPGPU
architectures.

5 Note that no streams are used in the kernel call: when compiling this code, Mecurium compiler will
insert the appropriate kernel configuration to use Nanos++ CUDA streams.
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5.3.5 Evaluation
The following sections cover the evaluation of the versioning scheduler running OmpSs appli-
cations with heterogeneous tasks specialized for CPU and GPGPU architectures.

5.3.5.1 Methodology

A set of three OmpSs applications was selected to measure their scalability and performance
with the versioning scheduler, comparing it to the other existing schedulers of the runtime
environment.

Additionally, and with the purpose of having a better understanding of the results, the amount
of transferred data between host and device memory is also measured over the whole execution
of the application. It may happen that the amount of transferred data is much bigger than
the total size of application’s data, because data may be shared between processing units of
different memory spaces. The amount of transferred data is classified into three categories:

o Device Tx: When using two GPGPU devices, it refers to the amount of data transferred
between these devices.

o Output Tx: It is the total amount of data transferred from all GPU memory spaces to
the host memory space (main memory).

o Input Tx: It is the total amount of transferred data from the host memory space (main
memory) to any of the GPGPU devices. If a piece of data is transferred to two different
devices, both transfers are taken into account.

Finally, the number of times each task implementation was run is also counted for the ver-
sioning scheduler. This gives an idea of how CPU and GPGPU devices cooperate together
with application’s execution.

Environment. The experiments were run on one node of the MinoTauro cluster at the
Barcelona Supercomputing Center. The system runs Linux and each node has two Intel
Xeon E5649 6-Core at 2.53 GHz and two nVIDIA GPUs M2090 with 512 CUDA cores. The
total amount of main memory for a node is 24 GB. Each GPGPU has 6 GB of global memory.

All the codes were compiled with OmpSs compiler version 1.3.5.8 with optimization level
−O3. GCC version 4.4.4 and CUDA version 4.0 were used as back-end compilers for CPU and
GPU codes respectively. OmpSs runtime version 0.7a with semi-asynchronous GPU support
(described in Section 4.1) was used, configured to overlap data transfers with computations.

Experiments. The selected applications were run with different configurations of number of
cores and GPGPU devices to obtain the performance of each application. We used as many
OmpSs SMP worker threads as cores, placing one worker on each core. For each application,
the charts show the results of running the regular version of the application (where each
annotated task of the source code is targeting only one device) with the heterogeneous version
of the application (where annotated heterogeneous tasks have one or more implementations
for different devices).
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For the regular version of the application, the fastest combinations of task implementations
were chosen, and this is used to evaluate the quality of the versioning scheduler.

For the heterogeneous version, several CPU and GPU task implementations are provided and
the versioning scheduler makes the decisions at run time.

Three different OmpSs schedulers were used to compare the results:

o Breadth-first scheduler: Shown as bf in the charts, the details of this scheduler can be
found in Section 2.1.4.3. It basically does a breadth-first task scheduling, but prioritizes
the execution of dependency chains.

o Locality-aware scheduler: Shown as locality in the charts, this scheduler is explained in
Section 2.1.4.3. In short, it takes into account where data is located to schedule tasks
and minimize the amount of transferred data.

o Versioning scheduler: The scheduler presented in this section as a thesis contribution.

In the OmpSs version 0.7a (the latest version by the time these tests were performed), the
breadth-first and locality-aware schedulers did not support having more than one implemen-
tation for a task, so the heterogeneous version of applications could only be run using the
versioning scheduler.

5.3.5.2 Results

This section presents and compares the results of three applications: matrix multiply, Cholesky
factorization and PBPI run with the three different scheduling policies mentioned before. It
also evaluates how the number of resources impacts application’s performance.

Matrix Multiply. The general details of this application are described in Section 2.2.9. In this
test, each matrix had 16384×16384 double-precision floating-point elements and was divided
into tiles of 1024 × 1024 elements. Three different task implementations were provided to do
this computation: two GPU tasks (one calling the CUBLAS library and the other calling a
hand-coded CUDA implementation) and one CPU task (calling the CBLAS library).

The results of two different application versions are presented. In this case, a CPU-only version
of matrix multiply was omitted because its performance was too low to be comparable to the
other tested versions:

o GPU-only: Shown as GPU in the charts, only the GPU implementation of the matrix
multiply task is given. The task calls the cublasDgemm function from CUBLAS library.

o Heterogeneous: Shown as HET in the charts, corresponds to the heterogeneous appli-
cation, with three different task implementations: the main implementation is the same
as the one given in the GPU-only version. The second implementation runs on the GPU
and calls a hand-coded CUDA kernel that performs the multiplication. And the last
one is an SMP-targeted task for the CPU that calls the CBLAS library to compute the
result.
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Figure 5.8: Matrix multiply performance results with versioning scheduler

Figure 5.8 shows the performance results of the two tested versions of matrix multiply with the
different schedulers. For the GPU version, there is no difference between using the locality-
aware (GPU locality) or the breadth-first scheduler (GPU bf ) because data locality is well
kept in both cases. In addition, the application scales linearly from one to two GPGPUs.
There is no difference between using one, two, four or eight CPU threads because there is no
parallelism to exploit on the CPU.

The only OmpSs scheduler that exploits the hybrid version of the application is the versioning
scheduler, so it can only be executed with this scheduler. The results are represented in the
chart as HET versioning. For a small number of threads, the overall performance is slightly
lower due to several reasons: first, the overheads of sharing data between different memory
spaces and second, because the execution time of the CPU version of matrix multiply tasks
is much higher than the execution time of the GPU version (CPU task duration is about 60
times the GPU task duration). Nevertheless, the more SMP worker threads collaborate in
the application execution, the more benefit versioning scheduler takes despite the fact that
more data is transferred.

The performance benefit may look very small in this case, but we cannot expect a huge speed-
up because the peak performance of eight CPU cores is still far from the performance of a
single GPU: one CPU core represents less than 1% of the machine’s peak performance and
one GPU represents around 45% of the peak.

Figure 5.9 shows the amount of data transferred for each execution. GL represents the GPU
version run with the locality-aware scheduler, GB represents the same version run with the
breadth-first scheduler and HV represents the HET version run with the versioning scheduler.
Because part of the computation is done on SMP devices (CPUs) and partial results are shared
between CPU and GPU memory spaces, the amount of data transfers for HET versioning
increases. As the number of SMP workers is increased, memory transfers increase as well,
because more work is done by SMP workers and, thus, they need to share more data between
CPU and GPU memory spaces. The versioning scheduler is also transferring data between
GPGPU devices due to a lack of data locality.

Finally, Figure 5.10 shows the number of times each version is run for the HET versioning
version. As mentioned before, the application provides three different task versions: CPU ver-

81



5. Runtime Scheduling Policies for Heterogeneous Environments

GL GB HV GL GB HV GL GB HV GL GB HV GL GB HV GL GB HV GL GB HV GL GB HV

1 2 1 2 1 2 1 2

1 2 4 8

0

2000

4000

6000

8000

10000

12000

14000

16000

Version | #GPUs | #CPUs 

Tr
an

sf
er

re
d

 D
at

a 
[M

B
] 

Device Tx

Output Tx

Input Tx

Figure 5.9: Transferred data for matrix multiply with versioning scheduler
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Figure 5.10: Matrix multiply task statistics with versioning scheduler

sion (that calls CBLAS library), CUDA version (that calls a hand-coded CUDA kernel) and
CUBLAS version (that calls CUBLAS library). The fastest implementation (the CUBLAS
version) is picked most of the times while the CUDA version is called only a few times at
the beginning of the execution, until versioning realizes that there is a faster implementation
for the same device and discards it. The CUDA version is represented in the chart in the
middle of each bar, but it is almost invisible. The SMP worker threads keep picking the CPU
version while the GPGPUs are busy (except for the final part of the computation, where only
GPGPUs run the fastest implementation to avoid losing performance), and still take about
10% of the work on average that helps improving application’s performance. As more SMP
workers are added, more work is done by them. And for the same number of SMP worker
threads, they do more work when there are less GPGPU resources to do the computation,
because the global execution time is longer and they have more time (and more chances) to
pick tasks.

Cholesky Factorization. The Cholesky factorization is explained in Section 2.2.2. Single-
precision floating-point data was used for the computation. The matrix was organized in
blocks of 2048 × 2048 elements, with a total of 32768 × 32768 elements. The application had
a heterogeneous task for the spotrf kernel with two implementations: one CPU version that
called CBLAS and one GPU version that called MAGMA. A single GPU task implementation
was provided for the other three kernels (ssyrk, sgemm and strsm) that called CUBLAS.
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The different application versions used in this test are described below:

o CPU: Only the CPU implementation of spotrf task is given. However, the other three
tasks are always run on the GPU, because running them on the CPU would take too
much time for the amount of data they are computing.

o GPU-only: Shown as GPU in the charts, a single GPU implementation is given for each
task. Then, the whole computation runs on the GPGPU.

o Heterogeneous: Shown as HET in the charts, two different implementations (CPU and
GPU versions) are given for the spotrf task. The other three tasks are always run on
the GPGPU.
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Figure 5.11: Cholesky factorization performance results with versioning scheduler

The performance results of the three Cholesky versions are presented in Figure 5.11. Running
the spotrf task on the CPU implies several data transfers from and to the GPU memory, plus
the CPU version is slower than the GPU version. Thus, the CPU versions (CPU locality and
CPU bf ) is the one that gets less performance in all cases.

The HET versioning version follows the same performance trend as the matrix multiply test:
as the number of SMP workers is increased, the performance of the versioning scheduler gets
better than the other tested versions and schedulers. However, the scenario is slightly different
in this case: there is a small number of task instances, so the initial learning phase of the
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Figure 5.12: Transferred data for Cholesky with versioning scheduler
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versioning scheduler impacts on application’s performance. However, as shown in Figure 5.12,
having more SMP worker threads benefits performance for two reasons: the initial learning
phase takes less time and a smaller amount of data is transferred compared to the other
schedulers. In this case, tasks share a lot of data, so in order to have good load balancing,
data must be continuously exchanged between GPGPUs. Then, the locality-aware scheduler
cannot exploit data locality. However, it still gets good performance because data transfers
are overlapped with computation.
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Figure 5.13: Cholesky task statistics with versioning scheduler

Figure 5.13 shows the percentage of times each task version was run for the HET versioning
version. In contrast with the matrix multiply case and due to Cholesky’s data dependency
graph complexity, there is not enough parallelism to assign a slow CPU task version to an
SMP worker thread. Then, the scheduler decides to assign all the work to the GPGPUs
because they are the earliest executors.

PBPI. The general characteristics of this application can be found in Section 2.2.6. The
Markov chains used for this test had 50000 elements, using double-precision floating-point
data. This application reports its performance as the global execution time, so the perfor-
mance charts show these results.

As explained before, the three computational loops of the likelihood evaluation were paral-
lelized with three different tasks defined for each iteration of each loop. In order to simplify
the presentation of the results, two task implementations were provided for each of the first
and second loops. The third loop, although it was annotated as a task, had a single CPU
version. Three different versions of the application were evaluated:

o CPU-only: Shown as CPU in the charts, only the CPU version of each of the three
tasks are given. In this case, data always stay in the host memory and no data transfers
are needed.

o GPU: A single GPU task version is provided for each of the first and second computa-
tional loops. The third computational loop has a single CPU task version.
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o Heterogeneous: Two implementations are given for each of the first and second loops:
the first ones target GPGPUs and the other ones target CPU architectures. The third
computational loop has a single CPU task implementation.
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Figure 5.14: PBPI execution time results with versioning scheduler

Figure 5.14 shows the execution time of each version of PBPI. The CPU-only versions (CPU
locality and CPU bf ) run faster than the GPU versions (GPU locality and GPU bf ). This
is due to the fact that sending the computational work of the first and second loops to the
GPGPU is not worthwhile, since a large amount of data needs to be transferred to the GPU
memory and transfers cannot be overlapped properly due to data dependencies.

However, the versioning scheduler is able to find the appropriate balance between CPU and
GPU execution to take advantage and decrease the execution time. Although the amount of
data transfers is higher, as shown in Figure 5.15, it is able to overlap more data transfers with
computation thanks to its scheduling decisions. Thus, the global execution time is reduced.

Figures 5.16(a) and 5.16(b) show the percentage of times each task version has been run for
the first and second loop respectively. For the first loop, the versioning scheduler decides to
send most of the work to the GPGPUs, but the execution of tasks of the second loop is shared
between GPGPUs and CPUs. The CPU implementation of the second loop is run in the order
of thousands of times, but it may not be clear in the chart, as hundreds of thousands of tasks
are run for the second loop. This cooperation helps balancing the trade-off between sending
data back and forth from GPU memories and running the tasks on the CPU: the execution
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Figure 5.15: Transferred data for PBPI with versioning scheduler
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Figure 5.16: PBPI task statistics for first and second loops with versioning scheduler

time of the task is between three and four times slower on the CPU, but the data transfer
time is relatively high enough to consider executing all the work on the CPUs.

5.4 SSMART Scheduler
SSMART (Smart Scheduling of Multi-ARchitecture Tasks) is a task scheduler, inspired by
versioning, to address the challenges of programming in heterogeneous environments and
it has been implemented on top of OmpSs as well. SSMART also supports the concept of
heterogeneous tasks annotated with the implements clause and does not require any additional
changes in the user source code with respect to versioning. Moreover, the same Mercurium
compiler support as versioning is needed, so it does not require any additional change.

SSMART improves versioning scheduler by tackling its main weaknesses: awareness of data
locality, addition of task stealing mechanisms, recognition and propagation of task priorities
and profiling of not only heterogeneous tasks, but also regular tasks.

5.4.1 Data Collection
The scheduler reuses the data structures used by versioning, explained in Section 5.3.2 and
makes use of another additional table to calculate the global execution time needed to run
a task on each processing unit. The results of this table are used to make the scheduling
decisions. The bottom part of Figure 5.17 shows an example of this table: for each system
processing unit (PU ), the following estimated times are used to calculate the estimated global
execution time GblT for each task:

o Estimated busy time (EBT): It is an estimation of the time needed by this processing
unit to finish the execution of all its assigned tasks.

o Data transfer time (DtxT): It is the time needed to transfer all the task data to the
processing unit memory space. This measure only accounts the real data transfers
required; so those pieces of data that are already updated and available on the unit’s
memory space are not counted.

o Task execution time (TkExT): This is the mean time of the previous executions of the
task on the processing unit.
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Then, the estimated global execution time needed to run a task on a processing unit includes
all the aforementioned partial times.

The local task queue of each runtime worker has been modified from the versioning scheduler
to support task priorities and task stealing as well.

5.4.2 Runtime Scheduling Policy
The conditions of versioning’s initial learning phase have been relaxed and SSMART does
not force each task implementation to be run at least λ times. Instead, the initial learning
phase has been completely removed and the scheduling decisions are based on the following
criteria6:

o Data locality: For each system unit, SSMART calculates the data transfer time, which is
the estimated amount of time that would take to transfer all the data that the given task
needs (data that is already updated on the unit’s memory space is not counted). The
time estimation is calculated from memory bandwidth between the involved memory
spaces and the amount of data to be transferred.

o Task execution time: the scheduler calculates the estimated execution time of the given
task on each system unit. Task statistics of previous executions are used to do the
calculation. This estimated time is then added to the data transfer time to obtain the
total time needed to run the given task on each processing unit.

o System workload: Since SSMART schedules tasks in advance, it is able to build a short-
term task planning on system units. Each resource has an estimated busy time to finish
all its assigned work (tasks), so, again, this time is added to the total estimated time
for the given task. This results in the global execution time of the task and will give an
estimation of when the task will complete its execution on each unit.

Then, the task is assigned to the processing unit with the lowest global execution time, or
in other words, the unit that will complete its execution at the earliest time. These three
criteria allow SSMART to optimally distribute the application execution among all the system
processing units. The execution will be balanced, as it is based on the availability of each
resource and, in addition, each task will be assigned to the unit that can efficiently run it.

The scheduler supports task priorities as well: this means that ready tasks with higher pri-
orities will be run first and is also able to propagate task priority to a certain number of
levels of task predecessors. As explained in Section 5.1, this priority propagation promotes
the execution of tasks that lead to higher priority tasks.

When a processing unit (PU) of the system becomes idle, it will ask SSMART for a new task
to run. Then, the scheduler’s first attempt is to get a ready task from the global ready queue
and assign such task to the PU. It may happen that this PU is not the most suitable unit to
run the task (it will not complete task execution at the earliest time). Then, such task will
be assigned to the most suitable unit and this process is repeated until the PU gets a task.

6 Note that only those system processing units that can run at least one implementation of the given task
are considered.
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Figure 5.17: SSMART scheduling decisions and timing table

Figure 5.17 shows an example of this process: there are five processing units (PU ) in the
system with two different memory spaces. Each OmpSs worker thread runs on a different
unit. For each worker, SSMART creates a local queue (LQ) to assign tasks to threads and
an indicator of the amount of work each thread has (estimated busy time, represented as
ETB in the figure). Then, when there is a ready task, the scheduler builds the table shown
at the bottom of the figure (described in Section 5.4.1) to find the earliest executor. In this
case, PU5 is the selected worker to run the task. The creation of this table gives SSMART
a very powerful feature that could be exploited by other runtime components: the ability to
choose the most suitable unit within a subset of all the system units. For example, in NUMA
systems, different subsets could be used to prevent CPUs from accessing data of other memory
chips. Moreover, it would also be possible to tune the scheduling decisions by giving more
weight to certain criteria. For instance, giving more weight to the data transfer time would
make SSMART prioritize data locality over the other criteria.

If PU (the processing unit requesting a task) could not get a task after the previous process
and there are no more ready tasks, the task stealing process begins. SSMART follows the
rules described below, in order. If the attempt to steal a task conforming the first rule fails,
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then, it will try the other rules successively:

1. Try to steal a task from those processing units that share the same memory space of PU
to minimize data transfers. For all the units of the same memory space, it will check
which is the busiest unit (the one with the highest estimated busy time. The latest task
assigned to this unit will be stolen and assigned to PU7.

2. The scheduler checks which of the other units of the system are the busiest ones and
tries to steal a task from one of such units. In this second attempt, SSMART takes into
account the amount of data that will need to transfer and tries to minimize it by not
only considering the absolute busiest unit.

A task that can be stolen by another worker is a stealable task. There are several restrictions
that tasks must accomplish to be stealable tasks, described below:

o A task is stealable only for those worker threads that can execute it. For example, a
GPU task is not stealable for an SMP worker thread. Then, heterogeneous tasks are
more likely to be stealable by more runtime threads.

o A task that has started its active phase and thus, task input data transfers have started,
is not stealable any more.

o A stolen task is not stealable any more. This restriction avoids certain undesired situ-
ations. For example, a thread stealing a task from another thread that just had stolen
such task.

SSMART is continuously profiling the behavior of the application and recording statistics for
both regular and heterogeneous tasks. For each task implementation, its execution time is
used to keep the mean execution time of such implementation on a certain unit. More recent
values are given a larger weight in the mean computation. Also, its data set size is taken into
account, as different data set sizes for the same task implementation will lead to different
execution times. This makes the scheduler more flexible and easily adapts to application’s
behavior, even if it changes over the whole execution.

The following list summarizes the main differences between SSMART and versioning sched-
ulers:

o Task profiling: While versioning only takes into account heterogeneous tasks, SSMART
profiles and keeps track of both regular and heterogeneous tasks. This allows SSMART
to have a better estimation of resource utilization.

o Data locality: SSMART takes into account where task data is placed to decide the most
suitable unit to run each task. In addition, it calculates, based on memory bandwidth,
the estimated time needed to perform the data transfers.

7 If there are tasks with priorities, higher priority tasks will be stolen first.
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o Suitability rank: While versioning only searches for the fastest executor of a task,
SSMART, for each pair task-processing unit, builds a suitability rank table to decide
which is the best unit to run a task. The suitability rank takes into account three
different aspects: task data transfer time, task execution time and unit’s estimated
busy time.

o Task stealing: SSMART implements a task stealing mechanism that takes into account
task data locality and system’s workload.

o Task priority: SSMART supports having tasks with different priorities and is able to
propagate such priorities to predecessor tasks.

5.4.3 Evaluation
The following sections present the evaluation and performance results of SSMART scheduler
tested on a set of OmpSs applications with heterogeneous tasks.

5.4.3.1 Methodology

Three OmpSs applications were selected to run the tests and their performance results are
compared with CUDA (GPGPU) and hStreams (Xeon Phi) native versions and other OmpSs
schedulers.

Environment. The experiments were run on two different platforms:

o Multi-GPU system: A Linux system with an Intel i7-4820K at 3.7 GHz, 63 GB of
memory and four nVIDIA Tesla K40c with 2280 CUDA cores and 12 GB of global
memory.

o Multi-accelerator system: A Linux system with an Intel Xeon E5 2x 2680 at 2.6 GHz,
64 GB of memory, an nVIDIA GeForce GTX 480 with 448 CUDA cores and 1.5 GB of
global memory and an Intel Xeon Phi 7120P with 61 cores at 1.238 GHz and 16 GB of
memory, MPSS version 3.5.

The native CUDA and hStreams codes were compiled with CUDA 6.5 and icc 11.1 respectively.
The Intel hStreams library, distributed with MPSS, was used to offload computations to
Xeon Phi in both native and OmpSs versions. The OmpSs versions were compiled with
OmpSs compiler (using nvcc 6.5, icc 11.1 and GCC 4.6.4). Optimization level −O3 was used
in all codes. The same application source code was used for all OmpSs versions. OmpSs
runtime version 0.9a with fully-asynchronous (AMA) support for both GPGPUs and Xeon
Phi architectures was used.

Experiments. The selected applications were run with different configurations of number of
accelerators and data set sizes and analyzed its impact on performance. Results are computed
as the mean value of several runs.

For each application, the results of running different native and OmpSs versions are shown:
(i) the regular OmpSs application, where each annotated task of the source code is targeting
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Configuration Application version Scheduler
OSs-CU-bf OmpSs CUDA Breadth-first
OSs-CU-aff OmpSs CUDA Affinity-ready
OSs-CU-ssm OmpSs CUDA SSMART
OSs-hStr-bf OmpSs hStreams Breadth-first
OSs-hStr-aff OmpSs hStreams Affinity-ready
OSs-hStr-ssm OmpSs hStreams SSMART
OSs-het-bf OmpSs heterogeneous Breadth-first
OSs-het-aff OmpSs heterogeneous Affinity-ready
OSs-het-ssm OmpSs heterogeneous SSMART

CUDA Native CUDA –
hStreams Native hStreams –

Table 5.2: Description of the different application configurations used

only one device, (ii) the heterogeneous OmpSs version, where all annotated tasks have imple-
mentations for all system resources and (iii) the native CUDA and hStreams versions. For
the regular OmpSs version of the application, the best combination of task implementations
was chosen in order to evaluate the quality of SSMART. Table 5.2 describes the simplified
names used in the legends of performance plots. OmpSs heterogeneous means that all tasks
target all the possible architectures of the system: CPU+GPGPU in the multi-GPU machine
and CPU+GPGPU+Xeon Phi in the multi-accelerator machine.

Several schedulers of the OmpSs runtime version used in these experiments support hetero-
geneous tasks, so the two schedulers that gave the best performance results were used to
evaluate the quality of SSMART scheduling:

o Breadth-first scheduler: the details of this scheduler can be found in Section 2.1.4.3.
It basically does a breadth-first task scheduling, but prioritizes the execution of de-
pendency chains. When applications with heterogeneous tasks are run, the scheduler
assigns the task to the first idle unit that is requesting work.

o Affinity-ready scheduler: this scheduler is explained in Section 5.2 as a contribution of
this thesis. In the case of having heterogeneous tasks, the scheduling decisions do not
change, as it will still consider all the memory spaces where there is a unit that can run
at least one of the task implementations.

o SSMART scheduler: The scheduler presented in this section as a thesis contribution.

5.4.3.2 Results

This section presents and compares the results of three applications: matrix multiply, Cholesky
factorization and FFT1D run with the three different scheduling policies mentioned before.
The evaluation analyzes how the number of resources and application data set size impact on
performance.

91



5. Runtime Scheduling Policies for Heterogeneous Environments

0

200

400

600

800

1000

1200

1400

1600

1800

8192 16384 24576 32768 40960

P
er

fo
rm

an
ce

 [
G

fl
o

p
/s

] 

Matrix size [#elements on a side] 

1 GPGPU 

OSs-CU-bf

OSs-CU-aff

OSs-CU-ssm

OSs-het-bf

OSs-het-aff

OSs-het-ssm

CUDA

(a) 1 GPGPU

0

500

1000

1500

2000

2500

3000

8192 16384 24576 32768 40960

P
er

fo
rm

an
ce

 [
G

fl
o

p
/s

] 

Matrix size [#elements on a side] 

2 GPGPUs 

OSs-CU-bf

OSs-CU-aff

OSs-CU-ssm

OSs-het-bf

OSs-het-aff

OSs-het-ssm

CUDA

(b) 2 GPGPUs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

8192 16384 24576 32768 40960

P
er

fo
rm

an
ce

 [
G

fl
o

p
/s

] 

Matrix size [#elements on a side] 

3 GPGPUs 

OSs-CU-bf

OSs-CU-aff

OSs-CU-ssm

OSs-het-bf

OSs-het-aff

OSs-het-ssm

CUDA

(c) 3 GPGPUs

0

1000

2000

3000

4000

5000

6000

8192 16384 24576 32768 40960

P
er

fo
rm

an
ce

 [
G

fl
o

p
/s

] 

Matrix size [#elements on a side] 

4 GPGPUs 

OSs-CU-bf

OSs-CU-aff

OSs-CU-ssm

OSs-het-bf

OSs-het-aff

OSs-het-ssm

CUDA

(d) 4 GPGPUs

Figure 5.18: Matrix multiply performance results of SSMART on a multi-GPU system

Matrix Multiply. The general details of this application are described in Section 2.2.9. In this
test, the GPU computation was done by calling the cublasDgemm() function from CUBLAS
library. In the native CUDA version, matrices A and C were split into as many chunks as
GPGPUs, so each GPGPU received a set of consecutive rows. Matrix B was fully copied
to all GPGPU devices. Then, all GPGPUs could compute in parallel with the others. The
Xeon Phi computation used the native MKL dgemm() implementation, called through the
hStreams library. In the native hStreams version, the sample matrix multiply code distributed
with hStreams 3.5 (from MPSS 3.5) was used. The host MKL library was used for the
CPU computations. In the OmpSs version, each matrix was divided into square blocks of
2048 × 2048. All versions used double-precision floating-point elements. All available CPUs
of each system were used in the case of OmpSs heterogeneous versions.

Figure 5.18 shows the performance results of the tested configurations of matrix multiply
on the multi-GPU system. The OmpSs CUDA versions (OCUbf, OCUaf and OCUsm) get
approximately the same performance as the native CUDA version, so this means that the
overhead introduced by SSMART scheduler is small, especially for larger matrix sizes. How-
ever, the OmpSs heterogeneous versions get bad performance for the breadth-first (OHTbf )
and affinity-ready (OHTaf ) schedulers: since they are not recording the behavior of each task
implementation, there is a considerable load imbalance in task execution. In contrast, the
OmpSs heterogeneous version gets the highest performance values with SSMART (OHTsm),
as CPUs and GPGPUs are efficiently contributing to execute the application. Only for small
matrices a small slow-down is observed when using more GPGPUs because there is a lack of
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Figure 5.19: Matrix multiply performance results of SSMART on a multi-accelerator system

parallelism. Moreover, the application scales almost linearly as more GPGPUs are used.

Figure 5.19 shows the performance results of the tested configurations on the multi-accelerator
system. In this case, to reduce the complexity of the plot, only the relevant configurations
are shown. Even though the GPGPU of this system is less powerful, the same behavior for
the OmpSs CUDA versions can be observed: the performance is the same as the CUDA
native version. In the case of the hStreams versions, the OmpSs versions get slightly better
performance than the native hStreams versions. Finally, the OmpSs SSMART version is able
to combine the power of the CPUs, GPGPU and Xeon Phi resources and distribute the work
among them all. This again results in the best performance values on this system for matrix
multiply.

Cholesky Factorization. The Cholesky factorization is explained in Section 2.2.2. Double-
precision floating-point data was used for the computation. The matrix was organized in
blocks of 2048 × 2048 elements. The GPU computations used a customized implementation
of dpotrf based on its corresponding function from MAGMA library and CUBLAS library
was called for the other kernels. The Xeon Phi computation used the corresponding native
MKL functions, called through the hStreams library. The host MKL library was used for
the CPU computations. The CUDA native version used an OpenMP-like fork-join approach
due to its complexity. In the native hStreams version, the sample Cholesky code distributed
with hStreams library was used. In the OmpSs version, each kernel was annotated as a task
and task data dependencies were managed by the OmpSs runtime. We used different task
priorities to give more priority to tasks in the critical path. All available CPUs of the system
were used in the case of OmpSs heterogeneous versions and all tasks were heterogeneous,
providing one implementation for each available architecture in the system.

Figure 5.20 shows the performance results for the tested Cholesky configurations in the multi-
GPU environment. The CUDA native version is not able to scale across several GPGPUs due
to the overhead of the fork-join approach. In contrast, the OmpSs versions are able to achieve
higher performance as we increase the number of GPUs. Nevertheless, this application is not
able to scale linearly due to the complexity of its task data dependencies. Like in the matrix
multiply case, OmpSs heterogeneous versions with breadth-first and affinity-ready schedulers
are not able to scale due to a wrong distribution of computations among the available re-
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Figure 5.20: Cholesky factorization performance results of SSMART on a multi-GPU system

sources. Regarding the OmpSs CUDA versions, those schedulers that take data affinity into
account (affinity-ready and SSMART) perform better than the others (breadth-first), as for
this application keeping data locality reduces the number of data transfers significantly. In
this case, the application cannot get a great performance improvement by using CPUs and
GPGPUs at the same time, as there is a trade-off between the number of resources and the
amount of data that needs to be shared among these resources. Thus, the SSMART scheduler
slightly enhances Cholesky’s performance in the OmpSs heterogeneous version.

Figure 5.21 shows the performance results of the tested configurations on the multi-accelerator
system. Like in the matrix multiply plot, only the most relevant versions are shown. The
CUDA native version gets low performance because this GPU is less powerful than the ones
used in the multi-GPU system. Nevertheless, the OmpSs CUDA versions get fairly good
performance. In contrast, the hStreams native implementation is highly optimized for Xeon
Phi architectures and the OmpSs versions can hardly get the same performance. The OmpSs
heterogeneous version run with the SSMART scheduler has some overhead for smaller matrix
sizes, but as the size increases, it gets better performance than the other OmpSs schedulers.
Moreover, SSMART even outperforms the native hStreams implementation for the largest
data set size because it efficiently uses all the available resources in the system: CPUs,
GPGPU and Xeon Phi.
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Figure 5.21: Cholesky factorization performance results of SSMART on a multi-accelerator
system

FFT1D. The general characteristics of this application can be found in Section 2.2.3. The
GPU computation was done by calling the functions from CUFFT library. The native CUDA
version was an adapted version based on the convolutionFFT2D sample distributed with
CUDA 6.5 SDK. Unfortunately, we did not have a multi-GPU implementation of this version
due to its complexity. The host MKL library was used for the CPU computations. In the
OmpSs versions, each of the steps was translated into several tasks, as explained in the general
description. All available CPUs of the system were used in the case of OmpSs heterogeneous
versions and all tasks were heterogeneous, providing one implementation for each available
architecture in the system.

Figure 5.22 shows the performance results of FFT1D. This application is memory-bound and
it cannot scale linearly across several GPGPUs. This also introduces a more irregular behavior
of the application. However, the OmpSs versions show fair scalability. Several optimizations
are used for power-of-two matrix sizes and this is clearly reflected in the performance of
6144 and 10240 matrix sizes. The most interesting fact to highlight in this case is that
the OmpSs CUDA version with SSMART scheduler has less performance than the other
schedulers because there are more types of tasks to profile and this increases the overhead
of this scheduler. However, when the OmpSs heterogeneous version is used, it gets the best
performance in almost all cases.
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Figure 5.22: FFT1D performance results of SSMART on a multi-GPU system
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Chapter 6

Conclusions and Future Work

With the emergence of heterogeneous systems that clearly beat the performance of tra-
ditional environments, the programming wall has been hit. The diversity of these new

systems presents new programming challenges: on the one hand, each emerging architecture
presents its own programming model and, on the other, such programming models excessively
expose hardware characteristics to the programmer. This means that, first, programmers need
to adapt their codes every time they want to run their applications on a different platform.
And second, that their codes must be redesigned to fit the specific characteristics of the
particular hardware.

Moreover, programmability is not the only challenge that must be addressed in heterogeneous
architectures; planning a good scheduling of applications on these platforms is complicated
and machine-dependent. Even though heterogeneous platforms can greatly speed-up appli-
cations, making a bad scheduling decision can harm the performance of the whole execution.

This thesis has contributed in both the programmability and work distribution of appli-
cations on heterogeneous systems. This work has proposed several approaches to manage
accelerator systems and scheduling techniques with the property that can be applied to run-
time frameworks. This property demonstrates that the inherent difficulties of programming
heterogeneous systems can be hidden from the programmer side, so that application codes
remain clean and clear from all this complexity. The next sections present and discuss the
conclusions obtained from these contributions and propose some future work as well.

6.1 Programmability and Accelerator Support
Regarding the programmability aspect of heterogeneous systems, this thesis has proposed
two approaches to deal with multi-accelerator systems: a semi-asynchronous and a fully-
asynchronous approaches. These approaches are designed to target different types of acceler-
ators where pieces of code are asynchronously offloaded to such devices and data movements
can also be issued asynchronously from the host point of view.

Their objective is to efficiently manage the execution of applications on multi-accelerator sys-
tems while hiding to the programmer all the complexity involved in accelerator management,

97



6. Conclusions and Future Work

data movements and host-device synchronization.

The semi-asynchronous approach makes use of several accelerator streams to overlap data
transfers with computations. Due to hardware restrictions, explicit, blocking synchronization
points are introduced to coordinate accelerators and host threads.

As the hardware capabilities of the first accelerators evolved, the semi-asynchronous approach
was transformed into the fully-asynchronous design, called AMA (Asynchronous Management
of Accelerators). AMA removes the blocking states of host threads devoted to device man-
agement by offering instead a blocking-free host-device communication mechanism. For that
purpose, accelerator events and callbacks are used to manage communications, computations
and data movements.

These designs have been implemented on top of OmpSs, a task-based programming model and
framework, to prove their validity. As demonstrated by the experimental results on GPGPU
and Intel Xeon Phi platforms, these approaches are able to efficiently offload tasks on such
accelerators and transparently manage their data transfers as well. The AMA design has
the additional advantage of hiding framework’s overheads and devoting the host idle time to
do other useful work in the runtime. As a result, our experiments showed that the AMA
implementations for GPGPU and Intel Xeon Phi can get up to 2x performance speed-up with
respect the semi-asynchronous approach, and in some cases, they even get better performance
than their corresponding native, hand-tuned applications.

This natural evolution of both the hardware and software designs demonstrates two facts:
first, that programmers cannot rely on hardware capabilities, as they evolve and change
relatively fast. This means that application performance is not guaranteed across hardware
generations and programmers are forced to adapt their source codes to fit new generation
hardware characteristics. The second fact is that, actually, all these changes to fit new hard-
ware capabilities can be done inside runtime frameworks, so programmers can focus on the
development of their applications without having to worry about the particular characteristics
of the specific architecture they want to target.

6.1.1 Future Work
As future work, it sounds reasonable to extend the AMA implementation to other asyn-
chronous devices supported by OmpSs, like OpenCL or FPGA devices. Then, the specific
implementations may need to be tuned to fit the particular characteristics of such devices.

In addition, in a more experimental area, it would be interesting to consider how the AMA
design could fit in a cluster environment. Given the similarities between accelerators and
cluster nodes (separate memory spaces, asynchronous operations and communications, etc.),
AMA could be redesigned to be even more general by not only targeting accelerators, but
also cluster environments.

6.2 Work Distribution and Scheduling
This thesis has contributed in the work distribution aspect by providing several scheduling
techniques carefully designed for both accelerators and heterogeneous architectures.
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Two scheduling mechanisms have been proposed to target accelerators in task-based environ-
ments: the task priority propagation mechanism and the affinity-ready scheduler.

Given a task-based application with its task data dependency graph, it is important to sched-
ule correctly those tasks in the critical path in order to get good performance. In addition, it
is also convenient to schedule first those tasks that open more parallelism. Since the develop-
ment environment, the OmpSs framework, offers the possibility to assign priorities to tasks,
programmers can assign higher priority to those tasks that belong to the critical path or
open more parallelism. The proposed priority propagation mechanism favours the execution
of those tasks leading to high priority tasks. This mechanism is able to propagate the priority
of successor tasks up to several levels of parent tasks. This process can be combined with
other scheduling policies to help them find the right paths to high priority tasks.

With the objective of minimizing the amount of data transfers between memory spaces, the
affinity-ready scheduler has been presented. For each task, the scheduler computes the affinity
score to each system’s memory space. The affinity score counts the amount of data that
should be transferred to run the task on such memory space. Then, the task is run on a
processing unit with direct access to the memory space that needs less amount of data to
be transferred. In addition, several mechanisms are provided to solve affinity score ties and
enable task stealing for a better workload balancing.

These two scheduling mechanisms take advantage of the AMA design to use the host spare
time to make their scheduling decisions. Thus, they can be used to improve application
performance while their implementation does not add runtime overhead. Our performance
results showed the importance of making good scheduling decisions to maximize application
performance.

In the context of heterogeneous architectures, two scheduling policies have been presented
to address the challenges of splitting application execution among all the processing units of
such systems: the versioning and the SSMART schedulers.

They have been implemented on top of the OmpSs task-based programming model and have
extended this framework with a new feature: the ability to run heterogeneous tasks (i.e.
tasks that provide several implementations, targeting different architectures). They are able
to distribute and balance task execution among all system processing units by taking into
account resource availability, data transfer costs (only SSMART) and task execution time on
each unit. The schedulers record statistics for both heterogeneous tasks and regular tasks
(only SSMART) since the application starts and keep updating them for the whole execution
so that they can easily adapt if the behavior of the application changes.

With these new schedulers, the programmer can write heterogeneous applications where mul-
tiple task implementations targeting multiple devices (CPU, GPGPU, Xeon Phi, etc.) are
given. This feature enhances the programmability of applications and makes their mainte-
nance easier, because the programmer, at any time, can develop a new implementation for
an already existing task in the code that targets the same or a different device and that can
potentially improve application’s performance.

The performance results showed that, in most cases, the versioning scheduler outperforms the
other existent schedulers for the OmpSs runtime and at the same time, gives more flexibility
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to the programmer. Only in a few cases the versioning scheduler slightly slows down the
application compared to the other OmpSs schedulers.

Even these versioning experimental results were promising, some weaknesses were detected
and thus corrected with the SSMART (Smart Scheduling of Multi-ARchitecture Tasks) sched-
uler. The contributions of SSMART over the versioning scheduler are: (i) enhanced task pro-
filing, by not only profiling heterogeneous tasks (like versioning does), but also regular tasks;
(ii) SSMART is aware of data locality and data transfer times are taken into account to make
scheduling decisions; (iii) SSMART creates a suitability rank for each pair of task-processing
unit, as opposed to versioning, which only searches for the task’s fastest executor; (iv) task
stealing is supported to better balance the execution across system processing units; and (v)
task priority support is included, as well as the ability to propagate priority to several levels
of parent tasks.

From our results in a CPU+multi-GPU and a CPU+GPGPU+Xeon Phi environments, we
observed that, in general, the SSMART scheduler reached higher performance than the other
tested versions, including hand-tuned native versions for GPGPU and Xeon Phi architectures.
Moreover, we have proved that the overhead of the proposed scheduler is negligible for most
cases.

This research in scheduling techniques for heterogeneous environments leads us to conclude
that resource cooperation is usually the best option to efficiently run applications on such
platforms and maximize their performance. We believe that each part of the application
should be executed on the processing unit that runs it faster. However, data locality and
high-priority tasks play an important role in task scheduling as well. Furthermore, this thesis
contributions demonstrate that the burden of task scheduling on accelerators and heteroge-
neous systems can successfully be implemented inside runtime frameworks and only a minimal
help is required from the programmer point of view (e.g. expressing task priorities).

6.2.1 Future Work
In versioning and SSMART, each heterogeneous task has its own execution information de-
pending on its data size. It is true that the execution time of a task can potentially depend
on the size of data that it computes or processes. Nevertheless, this implementation decision
means that if the data needed by two calls to the same task varies from only one byte, both
schedulers will consider that these calls are completely different. Thus, they will not reuse
the information collected at the first execution when the task is run for the second time. In
this case, it would be better to group data sizes in a reasonable range so that different calls
to a task that process different amounts of data of the same magnitude would be grouped
together.

Additionally, new features could be added to versioning and SSMART, for example, offering
the possibility to receive external hints for task implementations (e.g. better suitability on
certain processing units): this information could be given as an XML file, either written by
the user, or written by the schedulers themselves from a previous application’s execution.
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A
Nanos++ Runtime Options

A.1 Nanos++ GPU Runtime Options
Table A.1 summarizes all the GPU-related options that can be configured at run time to run
OmpSs applications. The table shows both the configuration option name (that should be
used inside the NX_ARGS environment variable) and its corresponding environment variable
(which can be used standalone without the need for NX_ARGS). The accepted and default
values are also shown along with a brief description.
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A. Nanos++ Runtime Options

Configuration option/ Accepted Default Description
Environment variable values value
--enable-cuda yes/no Enabled Enable or disable the use of GPUs
NX_ENABLECUDA with CUDA
--gpus integer All GPUs Defines the maximum number of
NX_GPUS GPUs to use
--gpu-warmup yes/no Enabled Enable or disable warming up the
NX_GPUWARMUP GPU before running user’s code
--gpu-prefetch integer 1 Defines the maximum number of tasks
NX_GPUPREFETCH to prefetch
--gpu-concurrent-exec yes/no Enabled Enable or disable concurrent kernel
NX_GPU_CONCURRENT_EXEC execution, if supported by the hardware
--gpu-overlap yes/no Disabled Set whether GPU computation should
NX_GPUOVERLAP be overlapped with all data transfers,

whenever possible, or not
--gpu-overlap yes/no Enabled Set whether GPU computation should
NX_GPUOVERLAP be overlapped with all data transfers,

whenever possible, or not. Disabling
this option is discouraged and should
only be done for debugging purposes

--gpu-max-memory integer No limit Defines the maximum amount of GPU
NX_GPUMAXMEM memory (in bytes) to use for each

GPU. If this number is below 100, the
amount of memory is taken as a
percentage of the total device memory

--gpu-pinned-buffers yes/no Enabled Set whether GPU component should
NX_GPU_PINNED_BUFFERS allocate pinned buffers used by data

transfers
--gpu-cache-policy wt/wb/ wb Defines the cache policy for GPU
NX_GPU_CACHE_POLICY nocache devices: write-through, write-back or

do not use cache
--gpu-cublas-init yes/no Disabled Enable or disable CUBLAS
NX_GPUCUBLASINIT initialization

Table A.1: OmpSs GPU-related configuration options
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A.2. Nanos++ Xeon Phi Runtime Options

A.2 Nanos++ Xeon Phi Runtime Options
Table A.2 summarizes all the Xeon Phi-related options that can be configured at run time
to run OmpSs applications. The table shows both the configuration option name and its
corresponding environment variable. The accepted and default values are also shown along
with a brief description.

Configuration option/ Accepted Default Description
Environment variable values value
--enable-hstreams yes/no Disabled Enable or disable the use of Xeon Phi
NX_ENABLE_HSTREAMS cards with hStreams
--num-hstr-devs integer All Xeon Phis Defines the maximum number of Xeon
NX_HSTR_DEVS Phi cards to use
--hstr-partitions integer 4 Defines the number of partitions per
NX_HSTR_PARTITIONS device
--hstr-warmup yes/no Enabled Enable or disable warming up the Xeon
NX_HSTR_WARMUP Phi card before running user’s code
--hstr-prefetch integer 1 Defines the maximum number of tasks
NX_HSTR_PREFETCH to prefetch
--hstr-wait-in-tx yes/no Disabled Enable or disable waiting for input
NX_HSTR_WAIT_IN_TX transfers before launching the kernel
--hstr-max-memory integer No limit Defines the maximum amount of device
NX_HSTR_MAXMEM memory (in bytes) to use for each

card. If this number is below 100, the
amount of memory is taken as a
percentage of the total device memory

--hstr-cache-policy wt/wb/ wb Defines the cache policy for Xeon Phi
NX_HSTR_CACHE_POLICY nocache devices: write-through, write-back or

do not use cache
--verbose-hstreams yes/no Disabled Enable or disable the hStreams library
NX_VERBOSE_HSTREAMS verbose mode

Table A.2: OmpSs Xeon Phi-related configuration options
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B
Application Source Code Comparison

This section presents a comparison between different implementations of the tiled matrix
multiply code first described in Section 2.1.6.

Table B.1 compares the OmpSs version for GPGPUs with a C sequential version for a CPU
and a native CUDA version for a GPGPU. The table spreads across several pages.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description / Code in 

OmpSs GPGPU 

Sequential C code 

(CPU) 

Native CUDA code 

(CUDA) 
// Runtime initialization and allocation of 

 additional support variables

  

 

1  cudaStream_t * streams = 

(cudaStream_t *) malloc(M*N * 

sizeof(cudaStream_t)); 

2  cudaEvent_t * events =     

(cudaEvent_t *) malloc(M*N*L * 

sizeof(cudaEvent_t)); 

3  cublasHandle_t handle; 

4  (0); cudaSetDevice

 

5  for (i = 0; i < M*N; i++) 

6      (&streams[i]); cudaStreamCreate

 

7  for (i = 0; i < M*N*L; i++) 

8      (&events[i]); cudaEventCreate

 

9  (&handle); cublasCreate
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B. Application Source Code Comparison

Description / Code in 

OmpSs GPGPU 

Sequential C code 

(CPU) 

Native CUDA code 

(CUDA) 
// Data allocation 

1  double **a = malloc(M*L * 

sizeof(double *)); 

2  double **b = malloc(L*N * 

sizeof(double *)); 

3  double **c = malloc(M*N * 

sizeof(double *)); 

 

4  for (i = 0; i < M*L; i++) { 

5      a[i] = nanos_malloc_pinned_cuda( 

BS*BS * sizeof(double)); 

6  } 

 

7  for (i = 0; i < L*N; i++) { 

8      b[i] = nanos_malloc_pinned_cuda( 

BS*BS * sizeof(double)); 

9  } 

 

10 for (i = 0; i < M*N; i++) { 

11     c[i] = nanos_malloc_pinned_cuda( 

BS*BS * sizeof(double)); 

12 } 

 

1  double **a = malloc(M*L * 

sizeof(double *)); 

2  double **b = malloc(L*N * 

sizeof(double *)); 

3  double **c = malloc(M*N * 

sizeof(double *)); 

 

4  for (i = 0; i < M*L; i++) { 

5      a[i] = malloc(BS*BS * 

sizeof(double)); 

6  } 

 

7  for (i = 0; i < L*N; i++) { 

8      b[i] = malloc(BS*BS * 

sizeof(double)); 

9  } 

 

10 for (i = 0; i < M*N; i++) { 

11     c[i] = malloc(BS*BS * 

sizeof(double)); 

12 } 

 

10 double **a = malloc(M*L * 

sizeof(double *)); 

11 double **b = malloc(L*N * 

sizeof(double *)); 

12 double **c = malloc(M*N * 

sizeof(double *)); 

13 double **Ad = malloc(M*L * 

sizeof(double *)); 

14 double **Bd = malloc(L*N * 

sizeof(double *)); 

15 double **Cd = malloc(M*N * 

sizeof(double *)); 
 

16 for (i = 0; i < M*L; i++) { 

17     (&a[i], BS*BS * cudaMallocHost

sizeof(double)); 

18     (&Ad[i], BS*BS * cudaMalloc

sizeof(double)); 

19 } 

 

20 for (i = 0; i < L*N; i++) { 

21     (&b[i], BS*BS * cudaMallocHost

sizeof(double)); 

22     (&Bd[i], BS*BS * cudaMalloc

sizeof(double)); 

23 } 

 

24 for (i = 0; i < M*N; i++) { 

25     (&c[i], BS*BS * cudaMallocHost

sizeof(double)); 

26     (&Cd[i], BS*BS * cudaMalloc

sizeof(double)); 

27 } 

 // Data transfers to device   

28 for (i = 0; i < M*L; i++) 

29     (&Ad[i], &a[i], cudaMemcpyAsync

BS*BS * sizeof(double), 

cudaMemcpyHostToDevice, 

streams[i%(M*N)]); 

 

30 for (i = 0; i < L*N; i++) 

31     (&Bd[i], &b[i], cudaMemcpyAsync

BS*BS * sizeof(double), 

cudaMemcpyHostToDevice, 

streams[i%(M*N)]); 

 

32 for (i = 0; i < M*N; i++) 

33     (&Cd[i], &c[i], cudaMemcpyAsync

BS*BS * sizeof(double), 

cudaMemcpyHostToDevice, 

streams[i]); 

 

34 (); cudaDeviceSynchronize
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Description / Code in 

OmpSs GPGPU 

Sequential C code 

(CPU) 

Native CUDA code 

(CUDA) 
// Kernel computation 

13 #pragma omp target device (cuda) 

copy_deps 

14 #pragma omp task inout([NB*NB]C) 

in([NB*NB]A, [NB*NB]B) 

15 void dgemm_tile (double *A, double 

*B, double *C, int NB) { 

16     double alpha = 1.0; 

17     cublasSetStream( 

nanos_get_cublas_handle(), 

nanos_get_kernel_execution_stream

()) ; 

18     cublasDgemm_v2( 

nanos_get_cublas_handle(), 

CUBLAS_OP_T, CUBLAS_OP_T, NB, 

NB, NB, &alpha, A, NB, B, NB, 

&alpha, C, BS); 

19 } 

 

 

20 for (i = 0;i < M; i++) { 

21     for (j = 0; j < N; j++) { 

22         for (k = 0; k < L; k++) { 

23             dgemm_tile(a[i*L+k], b[k*N+j], 

c[i*N+j], BS); 

24         } 

25     } 

26 } 

 

13 for (i = 0;i < M; i++) { 

14     for (j = 0; j < N; j++) { 

15         for (k = 0; k < L; k++) { 

16             cblas_dgemm(CblasRowMajor, 

CblasNoTrans, CblasNoTrans, BS, BS, 

BS, 1.0, a[i*L+k], BS, b[k*N+j], BS, 

1.0, c[i*N+j], BS); 

17         } 

18     } 

19 } 

 

35 double alpha = 1.0; 

 

36 for (i = 0;i < M; i++) { 

37     for (j = 0; j < N; j++) { 

38         for (k = 0; k < L; k++) { 

39             (handle, cublasSetStream

streams[i*M+j]); 

40             (handle, cublasDgemm_v2

CUBLAS_OP_T, CUBLAS_OP_T, BS, 

BS, BS, &alpha, Ad[i*L+k], BS, 

Bd[k*N+j], BS, &alpha, Cd[i*N+j], 

BS); 

41             ( cudaEventRecord

events[(i*M+j) * N + k]); 

42         } 

43     } 

44 } 

// Synchronization 
27  #pragma omp taskwait 

  

// Option 1: Device 

45 (); cudaDeviceSynchronize

 

// Option 2: Streams 

45 for (j = 0; j < M * N; j++) 

46     ( cudaStreamSynchronize

streams[j]); 

 

// Option 3: Events 

45 for (j = 0; j < M * N * L; j++) 

46     (events[j]); cudaEventSynchronize

// Data transfers from device 

// The taskwait directive already transfers 

 data back to host

  

46 for (i = 0; i < M*N; i++) 

47     (&c[i], &Cd[i], cudaMemcpyAsync

BS*BS * sizeof(double), 

cudaMemcpyDeviceToHost, 

streams[i]); 

 

48 (); cudaDeviceSynchronize
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B. Application Source Code Comparison

Description / Code in 

OmpSs GPGPU 

Sequential C code 

(CPU) 

Native CUDA code 

(CUDA) 
// Data deallocation 
28 for (i = 0; i < M*L; i++) { 

29     nanos_free_pinned_cuda( a[i] ); 

30 } 

 

31 for (i = 0; i < L*N; i++) { 

32    nanos_free_ pinned_cuda ( b[i] ); 

33 } 

 

34 for (i = 0; i < M*N; i++) { 

35    nanos_free_ pinned_cuda ( c[i] ); 

36 } 

 

37 free( a ); 

38 free( b ); 

39 free( c ); 

 

20 for (i = 0; i < M*L; i++) { 

21     free( a[i] ); 

22 } 

 

23 for (i = 0; i < L*N; i++) { 

24    free( b[i] ); 

25 } 

 

26 for (i = 0; i < M*N; i++) { 

27    free( c[i] ); 

28 } 

 

29 free( a ); 

30 free( b ); 

31 free( c ); 

 

49 for (i = 0; i < M*L; i++) { 

50     ( a[i] ); cudaFreeHost

51     ( Ad[i] ); cudaFree

52 } 

 

53 for (i = 0; i < L*N; i++) { 

54    ( b[i] ); cudaFreeHost

55     ( Bd[i] ); cudaFree

56 } 

 

57 for (i = 0; i < M*N; i++) { 

58    ( c[i] ); cudaFreeHost

59     ( Cd[i] ); cudaFree

60 } 

 

61 free( a ); 

62 free( b ); 

63 free( c ); 

64 free( Ad ); 

65 free( Bd ); 

66 free( Cd ); 

// Runtime finalization and deallocation 

 of additional support variables

  

 

67 (handle); cublasDestroy

 

68 for (i = 0; i < M*L*N; i++) 

69     (events[i]); cudaEventDestroy

 

70 for (i = 0; i < M*N; i++) 

71     (streams[i]); cudaStreamDestroy

 

72 free(events); 

73 free(streams); 

 

 

 

  

Table B.1: Source code comparison between OmpSs, sequential C and native CUDA
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Table B.2 compares the OmpSs version with the OpenMP and the native hStreams versions
that offload the computation to a Xeon Phi coprocessor. The table spreads across several
pages.

Description / Code in 

OmpSs Xeon Phi 

OpenMP 4.0 

(Xeon Phi) 

Native hStreams code 

(Xeon Phi) 
// Runtime initialization and allocation of 

 additional support variables

  

 

1   hStreams_app_init(4, M*N); 
2   HSTR_EVENT * events = 

(HSTR_EVENT *) malloc(M*N*L * 

sizeof(HSTR_EVENT)); 

// Data allocation 

1  double **a = malloc(M*L * 

sizeof(double *)); 

2  double **b = malloc(L*N * 

sizeof(double *)); 

3  double **c = malloc(M*N * 

sizeof(double *)); 

 

4  for (i = 0; i < M*L; i++) { 

5      a[i] = nanos_malloc_hstreams( 

BS*BS * sizeof(double)); 

6  } 

 

7  for (i = 0; i < L*N; i++) { 

8      b[i] = nanos_malloc_hstreams( 

BS*BS * sizeof(double)); 

9  } 

 

10 for (i = 0; i < M*N; i++) { 

11     c[i] = nanos_malloc_hstreams( 

BS*BS * sizeof(double)); 

12 } 

 

1  double **a = malloc(M*L * 

sizeof(double *)); 

2  double **b = malloc(L*N * 

sizeof(double *)); 

3  double **c = malloc(M*N * 

sizeof(double *)); 

 

4  for (i = 0; i < M*L; i++) { 

5      a[i] = malloc(BS*BS * 

sizeof(double)); 

6  } 

 

7  for (i = 0; i < L*N; i++) { 

8      b[i] = malloc(BS*BS * 

sizeof(double)); 

9  } 

 

10 for (i = 0; i < M*N; i++) { 

11     c[i] = malloc(BS*BS * 

sizeof(double)); 

12 } 

 

3  double **a = malloc(M*L * 
sizeof(double *)); 

4  double **b = malloc(L*N * 
sizeof(double *)); 

5  double **c = malloc(M*N * 
sizeof(double *)); 

 
6  for (i = 0; i < M*L; i++) { 
7      a[i] = (double *) malloc(BS*BS * 

sizeof(double)); 
8      hStreams_app_create_buf(a[i], 

BS*BS*sizeof(double)); 
9  } 
 
10 for (i = 0; i < L*N; i++) { 
11     b[i] = (double *) malloc(BS*BS * 

sizeof(double)); 
12     hStreams_app_create_buf(b[i], 

BS*BS*sizeof(double)); 
13 } 
 
14 for (i = 0; i < M*N; i++) { 
15     c[i] = (double *) malloc(BS*BS * 

sizeof(double)); 
16     hStreams_app_create_buf(c[i], 

BS*BS*sizeof(double)); 
17 } 

 // Data transfers to device   

18 for (i = 0; i < M*L; i++) 
19     hStreams_app_xfer_memory(a[i], 

a[i], BS*BS * sizeof(double), i, 
HSTR_SRC_TO_SINK, NULL); 

 
20 for (i = 0; i < L*N; i++) 
21     hStreams_app_xfer_memory(b[i], 

b[i], BS*BS * sizeof(double), i, 
HSTR_SRC_TO_SINK, NULL); 

 
22 for (i = 0; i < M*N; i++) 
23     hStreams_app_xfer_memory(c[i], 

c[i], BS*BS * sizeof(double), i, 
HSTR_SRC_TO_SINK, NULL); 

 
24 hStreams_app_thread_sync(); 
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B. Application Source Code Comparison

Description / Code in 

OmpSs Xeon Phi 

OpenMP 4.0 

(Xeon Phi) 

Native hStreams code 

(Xeon Phi) 
// Kernel computation 

13 #pragma omp target device 

(hstreams) copy_deps 

14 #pragma omp task inout([NB*NB]C) 

in([NB*NB]A, [NB*NB]B) 

15 void dgemm_tile (double *A, double 

*B, double *C, int NB) { 

16     cblas_dgemm(CblasRowMajor, 

CblasNoTrans, CblasNoTrans, NB, 

NB, NB, 1.0, A, NB, B, NB, 1.0, C, BS); 

17 } 

 

18 for (i = 0;i < M; i++) { 

19     for (j = 0; j < N; j++) { 

20         for (k = 0; k < L; k++) { 

21             dgemm_tile(a[i*L+k], b[k*N+j], 

c[i*N+j], BS); 

22         } 

23     } 

24 } 

 
13 for (i = 0;i < M; i++) { 

14     for (j = 0; j < N; j++) { 

15         for (k = 0; k < L; k++) { 

16             #pragma omp target device(0) 

map(to:a[0:BS*BS],b[0:BS*BS]) 

map(tofrom:c[0:BS*BS]) 

17             cblas_dgemm(CblasRowMajor, 

CblasNoTrans, CblasNoTrans, BS, BS, 

BS, 1.0, a[i*L+k], BS, b[k*N+j], BS, 

1.0, c[i*N+j], BS); 

18         } 

19     } 

20 } 

 

25 for (i = 0;i < M; i++) { 
26     for (j = 0; j < N; j++) { 
27         for (k = 0; k < L; k++) { 
28             hStreams_app_dgemm( 

CblasRowMajor, CblasNoTrans, 
CblasNoTrans, BS, BS, BS, 1.0, 
a[i*L+k], BS, b[k*N+j], BS, 1.0, 
c[i*N+j], BS, i*M+j, 
&events[(i*M+j)*N+k]); 

29         } 
30     } 
31 } 

// Synchronization 
25  #pragma omp taskwait 

  

// Option 1: Device 
32 hStreams_app_thread_sync(); 
 
// Option 2: Streams 
32 for (j = 0; j < M * N; j++) 
33     hStreams_StreamSynchronize(j); 
 
// Option 3: Events 
32 hStreams_app_event_wait(M*N*L, 

events); 

// Data transfers from device 

The taskwait directive already transfers 

 data back to host

  

33 for (i = 0; i < M*N; i++) 
34     hStreams_app_xfer_memory(c[i], 

c[i], BS*BS * sizeof(double), i, 
HSTR_SINK_TO_SRC, NULL); 

 
35 hStreams_app_thread_sync(); 

// Data deallocation 
26 for (i = 0; i < M*L; i++) { 

27     nanos_free_hstreams( a[i] ); 

28 } 

 

29 for (i = 0; i < L*N; i++) { 

30    nanos_free_hstreams( b[i] ); 

31 } 

 

32 for (i = 0; i < M*N; i++) { 

33    nanos_free_hstreams( c[i] ); 

34 } 

 

35 free( a ); 

36 free( b ); 

37 free( c ); 

 

21 for (i = 0; i < M*L; i++) { 

22     free( a[i] ); 

23 } 

 

24 for (i = 0; i < L*N; i++) { 

25    free( b[i] ); 

26 } 

 

27 for (i = 0; i < M*N; i++) { 

28    free( c[i] ); 

29 } 

 

30 free( a ); 

31 free( b ); 

32 free( c ); 

 

36 for (i = 0; i < M*L; i++) { 
37     free( a[i] ); 
38     hStreams_DeAlloc(a[i]); 
39 } 
 
40 for (i = 0; i < L*N; i++) { 
41    free( b[i] ); 
42     hStreams_DeAlloc(b[i]); 
43 } 
 
44 for (i = 0; i < M*N; i++) { 
45    free( c[i] ); 
46     hStreams_DeAlloc(c[i]); 
47 } 
 
48 free( a ); 
49 free( b ); 
50 free( c ); 
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Description / Code in 

OmpSs Xeon Phi 

OpenMP 4.0 

(Xeon Phi) 

Native hStreams code 

(Xeon Phi) 
// Runtime finalization and deallocation 

 of additional support variables

  

 

51 free(events); 
52 hStreams_app_fini(); 

 

Table B.2: Source code comparison between OmpSs, OpenMP and native hStreams

Table B.3 summarizes the differences between all the codes. Taking the sequential C version as
the basis, it shows the number of additional lines, variables and code needed by each version.
The last row of the table reflects which codes can run on a multi-device environment.

Concept OmpSs OpenMP 4.0 CUDA hStreams
Total number of GPGPU: 8 1 42 21
additional lines of code Xeon Phi: 6
Total number of – – 1 array of M*N 1 array of M*N*L
additional support elems. (streams), elems. (events)
variables 1 array of M*N*L

elems. (events),
1 opaque pointer
(CUBLAS),
1 matrix of M*L
elems. (dev. addr.),
1 matrix of L*N
elems. (dev. addr.),
1 matrix of M*N
elems. (dev. addr.)

Total number of unique GPGPU: 4 – 16 7
API calls used Xeon Phi: 2
Total number of GPGPU: 9 – 29 16
API calls used Xeon Phi: 6
Total number of unique GPGPU: 3 1 – –
compiler directives used Xeon Phi: 3
Total number of GPGPU: 3 1 – –
compiler directives used Xeon Phi: 3
Code can run on GPGPU: Yes No No No
multi-device as is Xeon Phi: Yes No No No

Table B.3: Summary of the source code comparison
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