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Copyright c© 2015 by Joan M. Núñez Do Rio. All rights reserved. No part of this publication
may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the author.

ISBN: 978-84-943427-6-9

Printed by Ediciones Gráficas Rey, S.L.



Als meus pares.





We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started
and know the place for the first time.

from Little Gidding (1942), T. S. Eliot (1888 - 1965),





Acknowledgements

Aquesta tesi mai hauria estat possible sense tota la gent que m’ha recolzat i m’ha acompanyat
durant aquests anys. Ja sigui des de la col·laboració directa o simplement des de la vostra
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Vull donar les gràcies també al Dr. Xavi Sànchez per la seva implicació, per les seves
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Abstract

Colorectal cancer is the third most common cancer worldwide and the second most common
malignant tumor in Europe. Screening tests have shown to be very effective in reducing
the amount of deaths since they allow an early detection of polyps. Among the different
screening techniques, colonoscopy is considered the gold standard although clinical studies
mention several problems that have an impact in the quality of the procedure. The navigation
through the rectum and colon track can be challenging for the physicians which can increase
polyp miss rates. The thorough visualization of the colon track must be ensured so that
the chances of missing lesions are minimized. The visual analysis of colonoscopy images can
provide important information to the physicians and support their navigation during the
procedure.

Blood vessels and their branching patterns can provide descriptive power to potentially
develop biometric markers. Anatomical markers based on blood vessel patterns could be used
to identify a particular scene in colonoscopy videos and to support endoscope navigation by
generating a sequence of ordered scenes through the different colon sections. By verifying the
presence of vascular content in the endoluminal scene it is also possible to certify a proper
inspection of the colon mucosa and to improve polyp localization. Considering the potential
uses of blood vessel description, this contribution studies the characterization of the vascular
content and the analysis of the descriptive power of its branching patterns.

Blood vessel characterization in colonoscopy images is shown to be a challenging task.
The endoluminal scene is conformed by several objects whose similar characteristics hinders
the development of particular models for each of them. To overcome such difficulties we
propose the use of the blood vessel branching characteristics as low-level features for pattern
description. We created two data sets including manually labeled vessel information as well
as manual ground truths of two types of keypoint landmarks: junctions and endpoints. We
present a model to characterize junctions in binary patterns. The implementation of the
junction model allows us to develop a junction localization method. The proposed method
outperforms the available algorithms in the literature in experiments in both, our newly
created colon vessel data set, and in DRIVE retinal fundus image data set. In the latter
case, we created manual ground truth of junction coordinates. Since we want to explore the
descriptive potential of junctions and vessels, we propose a graph-based approach to create
anatomical markers. In the context of polyp localization, we present a new method to inhibit
the influence of blood vessels in the extraction of low-level profile information. The results
show that our methodology decreases vessel influence, increases polyp information and leads
to an improvement in state-of-the-art polyp localization performance.
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Resum

El càncer de còlon és el tercer amb més incidència al món i el segon tipus de tumor maligne
més comú a Europa. Les tècniques d’exploració directa del còlon han demostrat la seva
eficiència en la reducció del nombre de v́ıctimes mortals, permetent la detecció de pòlips en
estadis prematurs. Entre les diferents tècniques d’exploració, la colonoscòpia és considerada
actualment l’estàndard cĺınic, tot i que diferents estudis revelen la incidència d’alguns factors
en la qualitat de l’exploració. La navegació al llarg del còlon i el recte evidencia una sèrie
de reptes per als endoscopistes que provoquen un augment en la taxa d’errors. L’acurada
inspecció del còlon ha de ser certificada per tal de minimitzar les possibilitats que alguna
lesió no sigui detectada. La inspecció de les imatges de colonoscòpia pot aportar informació
crucial per als endoscopistes i donar suport a la navegació durant el procediment.

Els vasos sanguinis i els seus patrons de ramificació poden aportar potencial descriptiu
per desenvolupar marcadors biomètrics. Els marcadors anatòmics basats en vasos sanguinis
podrien ser utilitzats per identificar escenes en v́ıdeos de colonoscòpia i donar suport per
a la navegació generant una seqüència d’imatges ordenades en el recorregut de les seccions
del colon. Verificant la presència de contingut vascular a l’escena endoluminal també és
possible certificar una acurada inspecció de les mucoses i millorar la localització de pòlips.
Considerant els usos potencials de la descripció dels vasos sanguinis, aquesta contribució
estudia la caracterització del contingut vascular i l’anàlisi de la capacitat descriptiva dels
seus patrons de ramificació.

La caracterització dels vasos sanguinis en imatges de colonoscòpia suposa reptes impor-
tants. L’escena endoluminal inclou diferents objectes amb caracteŕıstiques similars, fet que
dificulta el desenvolupament de models diferents per a cadascun d’aquests objectes. Per
afrontar aquestes dificultats, proposem l’ús dels patrons de ramificació dels vasos sanguinis
com a trets a baix nivell per a la descripció de formes. Hem creat dues bases de dades
d’imatges que inclouen la segmentació manual dels arbres vasculars, aix́ı com la localització
manual de dos tipus de punts d’interès: encreuaments i punts finals. Presentem un model
per a la caracterització dels punts d’encreuament en patrons binaris. La implementació
del model ens permet desenvolupar un mètode de localització de punts d’encreuament. El
mètode supera els algorismes existents a la literatura en experiments en dues bases de dades:
una de creació pròpia i la base de dades DRIVE, d’imatges de fons d’ull. En el segon cas, hem
creat una extensió amb la localització manual dels punts d’encreuament. Pel fet que volem
explorar la capacitat descriptiva de patrons vasculars i punts d’encreuament, proposem una
aproximació basada en grafs per crear marcadors anatòmics. En el context de la localització
de pòlips, establim un nou mètode per inhibir la influència dels vasos sanguinis en l’extracció
d’informació de baix nivell. Els resultats mostren que la nostra metodologia disminueix la
influència dels vasos sanguinis, augmenta la informació als pòlips i millora els mètodes de
localització de pòlips.
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Resumen

El cáncer de colon es el tercero de mayor incidencia en el mundo y el segundo tipo de tumor
maligno más común en Europa. Las técnicas de exploración directa del colon han demostrado
su eficiencia en la reducción del número de v́ıctimas mortales, permitiendo la detección de
pólipos en estadios prematuros. Entre las diferentes técnicas de exploración, la colonoscopia
se considera actualmente el estándar cĺınico, aunque diferentes estudios revelan la incidencia
de algunos factores en la calidad de la exploración. La navegación a través del colon y el
recto evidencia una serie de retos para los endoscopistas que provocan un aumento en la tasa
de errores. La inspección minuciosa del colon debe ser certificada con el fin de minimizar las
posibilidades de que alguna lesión no sea detectada. La inspección de imágenes de colono-
scopia puede aportar información crucial para endoscopistas y proporcionar herramientas de
apoyo durante el procedimiento.

Los vasos sangúıneos y sus patrones de ramificación pueden aportar potencial descrip-
tivo para desarrollar marcadores biométricos. Los marcadores anatómicos basados en vasos
sangúıneos podŕıan ser utilizados para identificar escenas en v́ıdeos de colonoscopia y propor-
cionar apoyo a la navegación generando una secuencia de imágenes ordenadas a lo largo de las
secciones del colon. Verificando la presencia de contenido vascular en la escena endoluminal
también es posible certificar la inspección minuciosa de las mucosas y mejorar la localización
de pólipos. Considerando los usos potenciales de la descripción de vasos sangúıneos, esta
contribución estudia la caracterización del contenido vascular y el análisis de la capacidad
descriptiva de sus patrones de ramificación.

La caracterización de vasos sangúıneos en imágenes de colonoscopia supone retos im-
portantes. La escena endoluminal incluye diferentes objetos con caracteŕısticas similares,
dificultando el desarrollo de modelos diferentes para cada uno de esos objetos. Para afrontar
estas dificultades, proponemos el uso de patrones de ramificación de vasos sangúıneos como
caracteŕısticas a bajo nivel para la descripción de formas. Hemos creado dos bases de datos
de imágenes que incluyen la segmentación manual de los árboles vasculares, aśı como la lo-
calización manual de dos tipos de puntos de interés: cruces y puntos finales. Presentamos un
modelo para la caracterización de puntos de cruce en patrones binarios. La implementación
del modelo nos permite desarrollar un método de localización de puntos de cruce. El método
supera los algoritmos existentes en la literatura en experimentos en dos bases de datos: una
de creación propia y la base de datos DRIVE, de imágenes de fondo de ojo. En el segundo
caso, hemos creado una extensión con la localización manual de los puntos de cruce. Dado
que queremos explorar la capacidad descriptiva de patrones vasculares y puntos de cruce,
proponemos una aproximación basada en grafos para crear marcadores anatómicos. En el
contexto de la localización de pólipos, establecemos un nuevo método para inhibir la influ-
encia de los vasos sangúıneos en la extracción de información a bajo nivel. Los resultados
muestran que nuestra metodoloǵıa disminuye la influencia de los vasos sangúıneos, aumenta
la información en los pólipos y mejora los métodos de localización de pólipos.
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Chapter 1

Introduction: colonoscopy quality
improvement

1.1 Colon cancer

Colorectal cancer (CRC) is the cancer that develops in the tissues of the large intestine,
which is part of the digestive system and is formed by the colon -the longest part of the
large intestine- and the rectum -the part of the large intestine closest to the anus-. Cancer is
more commonly found in the colon or rectum than in the small intestine. CRC is the third
most common cancer worldwide and the second most common malignant tumor in Europe.
Deaths related to CRC in Europe reach 230, 000 cases every year and estimations arise that
colorectal cancer cases will reach the 9.7 % of the total global cancer cases by 2020 [1].

Besides prevention habits, such as a healthy diet [141], screening tests have shown to
be very effective in reducing CRC deaths [90, 70]. Screening techniques allow physicians to
find precancerous growths -called polyps- and cancer before the patient can feel any of its
symptoms. Once cancer appears, it grows into the wall of the colon or rectum. This process
is described in several stages. Polyps detected in its early stages are reported to have higher
survival rates as well as allow a less extensive treatment and faster recovery [152].

1.2 Colon screening and colonoscopy

Different screening techniques for the inspection of the colon and rectum exist, such sigmoi-
doscopy, double-contrast barium enema, fecal occult blood test, colonoscopy or digital rectal
exam. Colonoscopy is a procedure used to screen the colon and rectum which is consid-
ered the gold standard to detect and treat different intestinal pathologies. Different types
of endoscopes are available to be used for colonoscopy. They allow endoscopists to screen
and examine the colon so that different gastrointestinal pathologies can be detected and
evaluated, such as inflamed tissue, ulcers, abnormal growths, tract bleeding or polyps. A
single procedure permits clinical personnel to diagnose pathologies and perform therapeutic
operations like tissue sample collection (biopsy) or polyp removal.

The equipment includes a colonoscope and a computer for monitorization (see Figure
1.1a). Although many colonoscopes are available, most of them share the main features.
The colonoscope instrument has two different parts: the insertion tube and the control head
(see Figure 1.1b). The insertion tube is a flexible shaft that contains the electrical wires

1
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(a) (b)

Figure 1.1: (a) Endoscope system1. (b) Colonoscope components2.

sending the images from the distal tip to the video processor as well as tubes for suction,
air and water feeding and, in many cases, an extra tube for a forward water-jet. The
characteristics of this tube are a important feature in a colonoscope. The tube diameter
must be big enough to provide enough space for the different components while keeping the
outer diameter as small as possible to maximize patient tolerance. The diameter can reach
15 mm. In addition, the tube design must combine flexibility to open its way through the
intestine, with torqueability to be able to transmit accurately the torsion in the proximal tip
of the tube to the distal tip. Usually, the flexibility of the tube is not the same throughout
its length. The proximal portion of the insertion tube is more rigid to prevent loop formation
whereas the distal part of the tube (40 cm) is remarkably more flexible to ease the insertion
through the intestinal track. The most distal portion of the insertion tube -around 10cm-
is known as the bending section. This portion of the tube is deflectable and can be fully
angulated by the endoscopist. The control head holds the two angulation control wheels
-left/right and up/down- and the suction, air/water and biopsy valves to control the air,
water and suction channels. Endoscopists use the control head to command any action
during the procedure, such as guiding the endoscope, cleaning the lens, pulling fluids up or
performing any intervention by passing several types of devices through the biopsy channel.
The design of any kind of endoscopy includes several safety features to prevent accidents in
the air, water or suction channels which may lead to accidents such as overinsufflation of the
patient.

1.3 Colonoscopy procedure

The whole procedure involves two steps: colon preparation and colon examination. The
colon must be cleaned out prior to the examination so that colon mucosa inspection is not
hindered by the presence of residual stool. Patients are given detailed instructions as the
colon must be empty for the test. The second step consists in the colonoscopy itself.

The procedure can be split in two phases: insertion and withdrawal. The patient is
usually placed in the left lateral position and the endoscope insertion tube is inserted in

2text1
2text2
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the anus. The head control is operated by the endoscopist’s left hand, and the right hand
is mostly used to control the insertion tube. During the insertion phase the endoscope is
guided through the different parts of the colon tract until the cecum is reached. Angulating
and rotating the endoscope helps the endoscopist to find the lumen if any difficulty is found
allowing the endoscope to move forward in the insertion. The insertion phase is the most
uncomfortable for the patient. During this phase, the cecum, which is considered to be the
beginning of the large intestine, must be reached as soon as possible. During the withdrawal
phase the endoscopist pulls the endoscope out of the intestine. This phase is used to carry
out the thorough inspection of the colon mucosa to clean the colon of neoplasia and perform
colonoscopy polypectomy if needed (surgical excision of a polyp).

The endoscope and the colonoscopy procedure are designed to service the purpose of
screening the colon and rectum. The final aim of the screening is to detect and remove
polyps. Colonoscopy is still considered the gold standard for colon screening [126] and the
cornerstone of current prevention guidelines [141]. It reduces drastically the risk of death
of screened population [90, 70] and allows the longest interval for rescreening among all the
forms of testing. However, several reasons can affect the quality of interventions increasing
polyp missdetection -miss rate values can reach 20%, or even 10% in the case of large or ad-
vanced adenomas (larger than 5 mm) [62]-. The missdetection of polyps have been found to
be related to different issues involved in the screening process that are liable to be exploited
by Computer Vision techniques. Providing computerized knowledge of the endoluminal scene
by means of an accurate analysis of the scene objects can provide a important support for
endoscopists. That standard knowledge can be used to improve polyp localization as well
as to improve the intervention itself or the post planification, by supporting the navigation
through the colon and rectum and developing standard scales to measure the quality of an
intervention and improve the planification of future screenings. In all this possible appli-
cations, the accurate characterization of the vascular content in the endoluminal scene and
the accurate knowledge of its branching pattern can be crucial. The next section explores
several matters affecting the quality of colonoscopy.

1.4 Colonoscopy quality

The effectiveness of colonoscopy in reducing colon cancer incidence depends on several rea-
sons. This fact has prompted researchers to clarify these reasons so that colonoscopy quality
indicators could be developed to standardize the reliability of the procedure. The proper
visualization of the colon tract, the thoroughness in mucosa examination and the acceptance
of the procedure by the patient are just some examples of elements that can affect the qual-
ity of the procedure [120]. Among the different indicators that have been proposed in the
literature, we will focus on those which may be exploited from the point of view of computer
vision.

Colon preparation

The patient must follow preprocedure instructions to clean the bowel from stool and allow
a better examination of the colon mucosa [120]. An adequate bowel preparation reduces
sedation requirements, increases polyp detection rates [60, 52] and decreases insertion and
withdrawal time [79] and cecal intubation time [22] and increases intervals (<10 years) for
repeated colonoscopies [118], which also results in a higher economical cost [119]. Commonly,
categorical scales are used after any examination to classify separately the different parts
of the colon among a variable number of categories to report bowel preparation [11, 128].
Standardized techniques to quantify the level of proper colon preparation would improve
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the evaluation of interventions and the planning of future screening. Identifying colonoscopy
frames with a certain amount of solid or liquid stool could quantify the frames containing
stool to develop bowel cleansing metrics.

Center and endoscopist variability

Several works affirm that there is a clear evidence of the substantial variability of colonoscopy
performance among different centers and endoscopists [156, 95]. The lack of measurable
standard methods to provide the degree of quality of an intervention increases the ambiguity
of the screening outcome. For instance, some studies suggest that the description of too
many cleansing levels results on ambiguity and disagreement between experts [95].

Cecal intubation

Cecal intubation is defined as the complete intubation into the cecum with the tip of the
endoscope. It is considered the prove that the whole colon tract is examined, including
the proximal colon. Colonoscopy recommendations prompt endoscopists to report the iden-
tification of the cecum as a quality indicator of the colonoscopy procedure. If the cecum
visualization is not documented the colonoscopy efficiency drops drastically. The report of
cecal intubation can be based on different landmarks. The appendiceal orifice and the ileo-
cecal valve are considered the most important landmarks [119]. Other possibilities are the
lips of the ileocecal valve or intubation of the terminal ileum. The certification of cecum
visualization guarantees the complete screening of the colon and rectum. Appendiceal orifice
detection could provide an important clue to propose automated systems aiming to assess
cecal intubation rates.

Withdrawal time

The withdrawal time is the time between the cecum was reached and the colonoscope was
completely removed from the anus. Assuming that a certain variability may be possible
given that the length of colons may differ, the withdrawal phase in patients without previous
surgical resection should last at least 6 minutes [120, 15, 107]. Some studies suggest that the
quality of colonoscopy withdrawal technique should also be considered [85], regarding fold
examination and adequacy of colonic cleansing and distension.

Navigation and lesion tracking

The wall of colon and rectum is made up of several layers. In between the inner mucosa and
the outermost connective tissue layer -with the exception of the rectum-, we found a thin
and a thick muscle layer forcing the contents of intestines along. To navigate through this
folding tube with the colonoscope can be challenging for the endoscopist as well as to orient
himself in a specific colon section. Computer-assisted tools to provide guiding clues through
the intervention can represent long step forward in the reduction of polyp missdetection.

1.5 Scope of the thesis: Blood vessels, junctions
and colonoscopy quality

In the context of the improvement of colon quality, we focus in the development of computer-
assisted tools to support a better knowledge of the endoluminal scene. We propose the
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characterization of blood vessels that are visible in the colon inner layer and, as its most
remarkable structural elements, the localization of bifurcations and branch crossings.

Up to our knowledge, there is no existing work that has paid attention to the role of
blood vessels in polyp localization. The accurate characterization of the vessel patterns
in the endoluminal scene is crucial to improve the knowledge of the other elements in the
scene. Vessel branching patterns merge into these other elements of the scene and can lead
to inaccurate polyp localization or even to complete missdetection. Moreover, the nature of
branching patterns such as vascular trees can be used as anatomical markers in a navigation
framework to support endoscopists in their exploration of the colon and rectum.

A proper knowledge and characterization of vessel branching patterns in colonoscopy
images sets the foundations for important advances in the quality and reliability of the
colonoscopy procedure. The analysis of vessel patterns arises a wide variability. The com-
plexity of the branching tree described by the vessels when visible in the inner layer of
the colon track makes its modeling a challenging task. Nevertheless, it also demonstrates
its potential as anatomical markers which would be clue in the development of computer-
assisted tools to improve the navigation of the colon track and the quality of a colonoscopy
intervention:

• Anatomical markers based on the blood vessel patterns can be used to identify a
particular scene in colonoscopy videos. Endoluminal scene identification can improve
the navigation through the rectum and the colon track by generating a sequence of
ordered scenes through the different colon sections. The scene matching based on
vessel pattern anatomical patterns leads to a sequentially consistent map of the colon
track to support endoscopist navigation.

• The endoscopist must try to reach the cecum in the insertion phase in order to perform
the thorough inspection in the withdrawal phase. However, the endoscopist may notice
a suspicious area in the colon mucosa during the insertion phase which would like
to inspect carefully in the withdrawal phase. An anatomical marker based on the
blood vessel content of the endoluminal scene would allow endoscopists to set up
alarms. An alarm could be set up in the introduction phase and then be raised by the
support computer system to notify the endoscopist when the region previously labeled
is revisited in the withdrawal phase.

• The characterization of blood vessel patterns allows the development of support tools
to analyze the visibility of colon wall mucosa. An standard quality measure quantifying
the presence of vessel content in the course of an screening intervention can be used
to score the adequate cleansing level.

• The identification of the vascular content in a given endoluminal scene can help to
improve polyp localization methods. Several objects in the colon track and rectum
appear as similar visual objects in the endoluminal scene as visualized in colonoscopy
videos. A better knowledge of the blood vessel patterns in a given scene allows a better
knowledge of the other objects in the scene, such as polyps or adenomas.

1.6 Main contributions of the thesis

This thesis focuses on the improvement of the computerized knowledge of the endolumi-
nal scene focusing on the blood vessel content, the junction keypoints on their patterns as
well as the usage of that information for the development of anatomical markers and the
improvement of polyp localization and segmentation techniques.
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• Analysis of the complexity of blood vessel characterization in colonoscopy images. The
coexistence of different elements in the endoluminal scene with similar characteristics
makes it difficult to develop models for each of them, particularly for blood vessels.

• Creation of two data sets of colonoscopy images including a selection of images from
several colonoscopy videos and the corresponding manually created ground truth of
the blood vessel content. Two manually created ground truths of keypoint landmarks
are also included for one of them: junctions and endpoints.

• Creation of an extension for the DRIVE retinal fundus imaga data set that includes
the coordinates of the junction in the vascular patterns.

• Definition of a general model of junctions and intersections in binary images. An
implementation of the model is also proposed which leads to an automatic tool for
the localization of junctions in a given binary pattern. The new method -GRowing
Algorithm for Intersection Detection, GRAID- outperforms existing methods in the
bibliography, as showed by experiments on blood vessel patterns in both colonoscopy
and retinal images.

• Introduction of a new skeletonization based on the foundation of our novel junction
localization method. This new skeletonization algorithm prioritizes the extraction of
a skeleton that keeps the branching structure of the shape.

• Verification of the potential of blood vessels and junctions as anatomical markers based
on a graph-based branching pattern characterization.

• Study of the impact of the influence of blood vessel mitigation in the state-of-the-
art polyp localization method caused by the reduction of valley-shaped geometric
information in the image.

• Development of a polyp segmentation algorithm based on state-of-the-art polyp local-
ization method.

1.7 Structure of the thesis

The thesis is organized in three parts. Throughout the first part, which spans Chapters 2
and 3, we introduce the endoluminal scene and the objects found in colonoscopy videos and
images. This analysis of the image formation and context let us introduce the challenges of
the characterization of objects in colonoscopy images. We also present the data sets involved
in the experiments exposed in the following chapters. Among those data sets, a new set of
colonoscopy images including the corresponding newly manually created Ground Truth of
vascular content and keypoints -junctions and endpoints-. The second part, spanning from
Chapters 4 and 6, introduces a novel method for the characterization and detection of junc-
tions in binary images containing vessel patterns. The performance of this new method is
analyzed quantitatively and compared to the other state-of-the-art methods. Based on the
novel junction localization method, we introduce a new skeletonization algorithm design to
describe shapes including branching structures that must be extracted. Then, a graph strat-
egy is proposed to create branching pattern markers and show the importance of junctions
and endpoints as branching pattern descriptors. The third part, which includes Chapter
7, explores the endoluminal scene and presents a methodology to minimize the interference
of vascular pattern information in the extraction of information for polyp localization. The
methodology inhibits blood vessel influence and maximizes polyp information. A novel polyp
segmentation algorithm is also presented and compared to general segmentation methods.
Finally, Chapter 10 exposes the overall conclusions of the thesis and highlights the future
lines of research.
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Chapter 2

Endoluminal Scene

2.1 Introduction to Colonoscopy images

The colonoscope is provided with a CCD (charge-coupled device) chip which transmits the
images from the distal tip of the insertion tub to the video monitor. Color information is
captured by color chipset cameras. However, many endoscopes use monochrome chipsets
which obtain color information from monochrome chipsets in successive extractions with
different color filters. These different streams are then merged into one single color video
stream. The imaging system made up by the camera chipsets with a light source solid to
it together with the nature of the colon track and rectum conform the endoluminal scene
captured by colonoscopy videos. Colonoscopy images are a consequence of the 2D projections
of the objects in the colon and rectum captured by the system. As a result, the analysis of
the colon scene and the modeling of endoluminal objects present a wide range of challenges
that will be introduced in this chapter.

2.2 Endoluminal scene objects

The navigation of the endoscope during the colonoscopy procedure can find several objects
that can be more or less frequent. The main objects among the content of the common
endoluminal scene can include lumen, wrinkles and folds, blood vessels, polyps, specular
highlights, bubbles and specular content (see Figure 2.1). It is important to be able to
provide an accurate model of each of the visual features that come out as a consequence of
those endoluminal objects in order to provide a proper description of the endoluminal scene.
The different objects may or may not be found in a single scene. Hence the model for every
single object must cope with the problem of the separability of the different objects.

• Lumen. The inner cavity within the colon tubular cavity is known as the lumen. In
the context of colonoscopy the camera may be pointing at the colon cavity -when
moving through the colon- or may be focusing on the inspection of the colon walls and
mucosa -commonly in the withdrawal phase-. Consequently, the lumen can be found
in any position in the colonoscopy video procedure or even not be found at all. The
region described as the lumen goes from dark to medium-dark, given the variability
of ilumination in the endoluminal scene.

• Folds. Wrinkles and folds are a consequence of the muscular nature of the inner colon

9
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Figure 2.1: Graphical example of a typical endoluminal scene from a colonoscopy
video: 1) Lumen; 2) Wrinkles and folds; 3) Blood vessels; 4) A polyp; 5) Specular
highlights

layer. The existence of wrinkles and folds in the colon walls creates visual objects
induced by occlusions and illumination changes.

• Polyps. Many kinds of polyps can be present in the endoluminal scene. There is a
high variability is terms of shape and texture as well as the position of the polyp itself
in scene regarding the lumen, the colon walls and the relative position to the camera.

• Specular highlights. The colon wall humidity and the proximity of the camera source
light causes specular highlights to appear as brightest regions in the scene.

• Fecal content. Although part of the colonoscopy procedure includes colon prepara-
tion and cleansing, the presence of fecal content is still high. A high degree of fecal
content hinders the inspection of the colon mucosa and decreases the reliability of the
procedure.

• Blood vessels. Vascular patterns can be found in the endoluminal scene when vessels
are close enough to the inner colon surface. The analysis of blood vessels will be
tackled in subsequent sections in this chapter.

2.3 Bibliography on computer-assisted colonoscopy

Developing standardized systems to assess the quality of the colonoscopy procedure involves
several tasks. Several visual objects or regions in a colonoscopy image can be the aim of an
automated system, such as lumen, polyps, stool, vessels or folds. However, the final goal
of a proper intervention is to guarantee the complete screening of the colon tract and the
localization of all possible polyps in the colon walls. Existing polyp localization intelligent
systems could be divided into shape-based polyp localization [18, 167] and texture-based
polyp localization [151, 6].

A good knowledge of the elements of the scene must support the tasks of a proper polyp
localization as well as an accurate screening of the colon and rectum. The lumen in a tubular
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structure is the inner cavity within it. As a visual object in colonoscopy images, it is the
darkest region of the image which points out the path to follow to move forward in the
colon since it represents the deepest obstacle-free part in the colon. Consequently, lumen
segmentation can be an interesting tool to develop computer-aimed systems to assist the
advance of the colonoscope in the colon. Morever, the presence of the lumen region in the
center of an image may indicate that the endoscopist is focusing on the examination of the
colon mucosa. In this line we find the work of Duncan Gillies et al. which describes an
autonomous guidance system to navigate automatically in the colon [116]. They propose
a lumen segmentation system based on a pyramid-extraction technique where the image is
represented by a successive subdivision of an the image into quadrants. The original image is
at the bottom of the pyramid and each upper level is built by applying a transformation to the
previous level quadrants in the pixel-level. They use pixel intensity transformations to detect
the seed of the darkest area in the image followed by a merging process based on variance
and average gray level criteria. Tan et al. proposed another technique for lumen detection
based on a fuzzy-directional edge-detection method and a region-growing algorithm [116].
Tian et al. faced the problem of lumen segmentation with a two step algorithm [150]. In the
first step an adaptative progressive thresholding technique is used to segment preliminary
region of interest. Afterwards, and adaptive Iris filter is used to determine the actual region
from the preliminary region of interest.

Hwang et al. presented a computer-based method which produces several objective
metrics to reflect the quality of a colonoscopic procedure by analyzing its digitized video
[66]. Oh et al. presented subsequently an extension to that work [105]. The analysis of the
procedure video is based on frame classification and camera motion. Each frame is classified
identifying different patterns in its frequency spectrum so that non-informative frames -
blurred or containing blocking material- are discarded [106]. An affine camera model is
used to provide a video segmentation based on camera motion that allows to estimate the
boundary between insertion and withdrawal phases. The technique proposed to achieve
camera motion estimation uses MPEG motion vectors. They use basically insertion and
withdrawal time to compute several single quality scores and validate them qualitatively on
a database made up of seven colonoscopy videos. Other proposal for metrics in [66] included
lumen identification based on JSEG [48] and a technique to determine whether a planar
region is convex or concave [44].They also included in [105] the detection of therapeutic
shot detection [38]. The authors did not proposed any experimental setup to assess the
possibilities of the metrics the proposed to discern the quality of colonoscopy videos.

Several kinds of frames can be expected to be found in a colonoscopy video, as for instance
frames where the appendiceal orifice is visualized. The presence of the appendiceal orifice
has been described as the main clue to obtain cecal intubation rates. Cao et al. proposed
an algorithm for automated detection of the presence of the appendiceal orifice [37]. Their
method exploits the idea that, when the appendix is closely inspected, the colon lumen is
not visible. They use the segmentation method in [66] to segment colonoscopy frames and
propose several new features. Finally, k-means is used to classify colonoscopy frames as
appendix images or non-appendix images.

The presence of solid or liquid stool in the frames of colonoscopy provide information
about the degree of bowel cleansing. We already introduced the algorithm proposed in
[106] to classify frames as non-informative. Hwang et al. proposed a stool segmentation
algorithm using color features and and support vector machines [67]. Arnold et al. introduced
an algorithm to detect indistinct frames based on the wavelet analysis [10]. They define
indistinct frames as those which do not carry any useful clinical information, which are not
clinically relevant for further analysis and do not include clear views of the mucosa or the
lumen.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Image example and surface: (a)(d) polyp. (b)(e) vessel. (c)(f) fold.

2.4 Image formation and endoluminal object ap-
pearance

Colonoscopy videos are the result of the endoscope navigation through the patient colon
track and large intestine with a camera and a light source. Endoluminal objects and light
source interaction cause the visual objects that are finally found in the colonoscopy video.
All the endoluminal objects in the scene have an impact in the endoluminal image. That
impact is what we call the visual object, which is the consequence of an endoluminal object.
Despite the different nature of the visual objects in a colonoscopy image, their impact as
visual object in the scene always has the shape of valley objects in the image surface. This
valley-shape of the visual objects can be used as the basis for the characterization of different
endoluminal objects in the scene. That is the case of polyps [18] and blood vessels, but also
folds, which leads to a high degree of ambiguity in valley-based models, as seen in Figure
2.2. The presence of specular highlights is also an important source of valley profiles in the
images. Sharp profiles appear as a consequence of the presence of specular highlights and
overshadow medium to small scale profiles due to their strong response to state-of-the-art
valley detectors. Fecal content also increases the valley information in the scene. In this
case, low scale valley information is added, which increases the overall valley information
in the image. The similarities between visual objects since they share valley-based profiles
hinder the development of univocal models.

The characterization of polyps is based on a model which results from both a model of
the polyp itself and a model of the illumination in the colonoscopy videos, as described by
state-of-the-art works [18]. A general model considers polyps as semi-spherical shapes. The
interaction between the polyp shape and the colonoscope light source results on shadings
-areas of darkness in reference to a source of light- around the polyp, that are valley profiles
in the intensity image.

In the case of folds and wrinkles, their presence depends on the scene captured by the
colonoscopy camera and the spectral properties of the light source as well as its position
and orientation with respect to the colon walls wrinkles. If we assume that the properties of
the intestinal wall remain unchanged in wall folds, or the difference is negligible, the visual
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Figure 2.3: Wrinkle & fold features: 1) Shading. 2) Shadow 3) Edge.

features caused by wrinkles and folds are a consequence of the illumination of the scene.
Fold/wrinkle features have a 3D nature cause while blood vessels are 2D features.

Figure 2.3 exemplifies this nature of wrinkles and folds in the scene. The variability of
folds and wrinkles in the scene in terms of shape and position in relation to the light source
results in visual features with different nature. Folds and wrinkles can produce several visual
features. An abrupt fold with the source light in a determined position and orientation can
cause an occlusion that can be more or less prominent. In that case an edge appears in
the image. That edge can be the only visual feature caused by the fold (see Figure 2.3)).
However, depending on the illumination and the fold/wrinkle itself, the occlusion can also
result in a shadow (see Figure 2.3)). A shadow is an area of darkness relative to the object
blocking the source of light. Refers to a shape cast by an object that block the light source.
A third case can be still described when the fold/wrinkle is not abrupt enough. In that
event the visual feature is a consequence of the shading caused by the shape variation of the
intestinal wall (see Figure 2.3)).

Unlike wrinkles and folds, the presence of blood vessels is not just a consequence of the
light source orientation. The appearance of vessels in the scene is just caused by the nature
of the intestinal wall that is modified by the presence of blood vessels close to its surface.
The visual features caused by blood vessels in a colonoscopy image are just a consequence of
the illumination of the scene and the reflectivity properties of the intestinal wall when there
is a blood vessel, which modifies the reflectivity properties of the intestinal wall. However,
despite the different nature of the objects conforming the endoluminal scene, modeling and
characterizing them particularly is a challenging task.

2.5 Vessel branching pattern characterization

Vascular patterns describe an elongated path which branches off and crosses over itself. These
elongated paths present a high variability in terms of shape, thickness and, although less
evident, color. Unlike other branching patterns -such as road networks-, vascular patterns
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(a) (b) (c)

Figure 2.4: Examples of blood vessel patterns.

-as in in retinal fundus images or colonoscopy videos- do not hold any symmetry or pattern
periodicity. In the case of colonoscopy vessel patterns, they may not be connected in a fully
tree-like way and they are usually not single-root tree structures. Concavity/convexity and
tortuosity, defined as the property of a curve being twisted or tortuous, or having many turns,
can be found in endless combinations. The thickness of the piecewise elongated structure
which conforms the branching patterns can also vary among a high range of values even in
a single continuous pattern. Branching and bifurcation frequency can also be remarkably
different. Figure 2.4 shows three colon vascular patterns. This examples include different
degrees of thickness, branching frequency and tortuosity.

Color information in colonoscopy videos can also be exploited. Colon images show little
variance in terms of color. The high variability in terms of brightness also affects the visual
objects in the scene. It all results in images with low contrast between the wall -considered
as the background-, and the visual objects in the scene, such as polyps, vessels or folds.
Color in the endoluminal scene expands from black and white in terms of intensity, while
keeping very concentrated along a range of very few colors.

2.6 Junctions in vessel branching patterns

Characteristic visual objects that are easily recognizable by humans appear when blood vessel
patterns branch off or cross over: junctions and intersections, respectively. Apparently, this
definition states a clear rule. However, the characterization of junctions is not straightforward
either in binary, gray-level or color images.

The human ability to analyze branching patterns such as the vascular content in colonoscopy
image is not easily achieved automatically. This is due to the high variability of all the visual
objects most people would agree to recognize as junctions. Modeling junctions represents
a challenging task given the variability in their shape. The suitable approach should take
into account 3 considerations we will introduce in the following sections: junction topology,
junctions are not corners and junctions are an image object. Junctions are important image
interest points with a clear shape or topology although they have an ambiguous geometry.
Junctions have not been considered in depth as topological shapes. They have rather been
tackled as a corner problem in the interest point literature. Such approach offers limitations
and junctions as shapes should be considered as separate task. The complex characterization
must also cope with the problems of shape information extraction from images.
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2.6.1 Junction shape

Junctions or intersections appear in a branching pattern where three or more paths merge.
Strictly, we name the points of a linear pattern as bifurcations when three paths converge
and intersections when more than three paths converge. We will often refer to all of them
as junctions, no matter the number of branches. This apparent simplicity of the definition
entails sort of paradoxical outcomes. On one hand, it represents a simple description and,
therefore, a clear statement for a human observer to discern junctions from non-junctions.
On the other hand, the apparently simple definition involves a high level of ambiguity which
must be utterly faced in a proper and accurate description of the object shape.

Given that a junction appears when several elongated branches converge in a common
region, the shape will always be made up of a central region and 3 or more branches con-
verging to it. This approach seems sufficient to describe the topology of a vascular pattern
although it lacks of necessary accuracy to describe the geometry and shape of junctions. The
variability in shape and size of the central region as well as the relative width and tortuos-
ity of the branches result on a broad amount of shapes comprised in the general junction
definition. The geometrical variability of a junction can be grouped in several aspects to
consider:

• The central region shape and width and the relative width and length of the branches.
The consideration of elongated structures can become a vague notion as it deals with
the relative widths of the branches and the central region. The width of the branches
can make a difference to be considered as a branch or as concavity in a given region.

• The tortuosity of the branches when reaching the central regions. The more tortuose
the branches are when reaching the central region, the less circular the junction is the
and less radial its topology.

• The lack of any kind of symmetry and the variability of the angle of incidence of
branches to the central region. Adding the fact that the topology does not offer
any structural reference, the development of models verifying invariance to rotation
becomes a challenging goal.

All the previous considerations interact together resulting in multitude of combinations.
The shapes that are more accessible and easier to analyze are isolated cases with straight
branches whose length and width have similar values to the central region. Figures 2.5c,
2.5a, 2.5b and 2.5d exemplify this kind of shapes. This case make it easier to verify the
convergence of long enough branches to a single region since it can be locally isolated.

The variations of central region size and branch length and width hinders the possibility
to isolate the structure and validate it as a junction. This is the case of junctions depicted
in Figures 2.5e, 2.5f, 2.5g and 2.5h. This cases make more difficult to catch and describe
the shape locally and increase the ambiguity of the location of the single-pixel intersection
landmark.

The tortuosity and variability of branch incidence angle increases the difficulties since it
eliminates the most intuitive radial shape of a junction. The junction shapes in Figures 2.5i
and 2.5j show clear examples on this matter. Central region shape adds more difficulties in
the same sense as well as in the location of the intersection landmark, as shown in examples
in Figures 2.5k and 2.5l.

The previous situations are usually combined in a broad number of possibilities and
aggravated by the fact that junctions are usually not isolated structures. Junctions can
appear in a high density in branching structures, such as vascular patterns, which hinders
even more their characterization and location, as depicted by the examples in Figures 2.5m,
2.5n, 2.5o and 2.5p



16 ENDOLUMINAL SCENE

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.5: Junction shape examples.

2.6.2 Junctions versus corners

Interest points are very attractive in computer vision because they are useful in many prob-
lems. For that reason, many interest point detectors exist. The general notion of interest
point refers to points in an image that are distinct and geometrically stable [135]. Both of
these conditions are verified by junctions and intersections in vascular patterns. However,
the traditional approach to interest point extraction focuses on points for which the image
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suffers some kind of two-dimensional change. This definition usually includes corners of
several kinds and even isolated extremum values or edge endings [12, 61, 94].

In the case of junction shapes as described above, any general approach aiming at cur-
vature significant points or two-dimensional changes is too permissible. As already shown
in the previous Section, junction shapes have a clear topological structure although a broad
range of geometrical shapes are possible. As far as we know, the characterization of junction
shapes can not be achieve by any of the existing low-level feature detectors in the literature
. For this reason, unlike many works in the literature, we will make a difference between
junction structures and corners although they can share some of their characteristics.

2.6.3 Junctions in images

Modeling junctions must also cope with the adjusted feature extraction from images. The
nature of the images must be considered by any possible characterization of junction topology
and shape variability. The information we can gather from images to tackle the problem
of junction localization can basically be grouped in two categories: color and geometry. In
terms of color, the problem will remain in the same terms as the blood vessel pattern itself.
In terms of geometry, the shapes and structures must be extracted from the image surface
information, which would then allow the analysis of shape topology as already introduced.

Given that junctions are shapes created at the convergence of elongated structures, the
shape is the consequence of the intensity variations of all the converging branches and the
central region. As show before, the branches converging to the junction describe valleys on
the image surface. Therefore, junction localization may combine the challenges of a proper
analysis of valley-profile structures in the image while adding the junction scale combination.

The extraction of geometric information leading to junction modeling must consider the
variability of branch scales and profiles -valley scales and profiles- and the lack of a strictly
defined converging region shape. A local analysis of the images
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.6: Junction image examples: color image and green component image and
surface.



Chapter 3

Data sets and Grount Truths

Several data sets have been used in the different quantitative and qualitative experiments
performed through this thesis. The new data sets created along this work are introduced in
this chapter as well as different existing data sets used in some experiments.

In the context of colonoscopy, we present COLON-V-TRACE and COLON-VESSEL
data sets , new data sets of colonoscopy images to study the vascular content in colonoscopy
videos, its structure and landmarks -junctions and endpoints-, and its interaction with the
other elements of the seen. Some experiments regarding the use of vacular content influence
in the improvement of state-of-the-art polyp localization methods are tested on the only
existing public colonoscopy polyp data set.

Name # images Content

COLON-VESSEL* 40

Original image.
Vessel manual segmentation.
Vessel manual junction landmark GT.
Vessel manual endpoint landmark GT.

COLON-V-TRACE* 29
Original image.
Vessel trace manual segmentation.

CVC-ColonDB 300

Original image.
Polyp manual segmentation.
Polyp manual segmentation contour.
Non-informative region manual segm.

* Newly created data sets and ground truths.

Table 3.1: Colonoscopy data sets and ground truths.

In the context of retinal fundus images, we create a new ground truth for the images in
a data set already available in the bibligraphy to perform experiments regarding vascular
patterns. We present NunGT, a manually created intersection ground truth add-on for the
well-known DRIVE retinal fundus image data set. NunGT together with the already existing
intersection ground truth AzzoGT allows us to study vascular patterns in a different context
and validate the influence and variability of several observers in the location of intersection
landmarks.

19
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Name # images Content

DRIVE 40
Original image.
Vessel manual segmentation.

NunGT*

(DRIVE add-on)
40 Vessel manual junction landmark GT.

AzzoGT
(DRIVE add-on)

40 Vessel manual junction landmark GT.

* Newly created ground truth.

Table 3.2: Retinal data sets and ground truths.

3.1 Colonoscopy images

3.1.1 COLON-VESSEL data set

As fas as we know, there was no existing data set of colonoscopy images for the study of the
blood vessels in the endoluminal scene. In order to carry out experiments on the vascular
patterns in colonoscopy videos, we created a new data set and provided it with manual vessel
segmentations and ground truths of the landmark points in the segmented structures.

COLON-VESSEL data set has been conformed by selecting frames extracted from 15
different colonoscopy videos created at St. Vincent’s Hospital and Beaumont Hospital in
Dublin, Ireland. An expert selected 40 frames whose resolution is 574×500. Considering the
variability in the presence of vascular patterns in colonoscopy, the selected frames present
different degrees of vascular content. The selected images also vary regarding the other
elements in the scene, ranging from frames where only the colon wall and a vessel pattern is
visible to images where several of the possible endoluminal object appear and interact. The
images do not include any patient information and present a blank frame in the borders as
commonly found in endoscopy videos.

The data set includes a ground truth consisting of a mask of the blood vessels present in
of the 40 images. An expert segmented manually the vascular patterns appearing at every
image. The mask has been created at pixel level and provides an accurate segmentation of
blood vessels. Vascular structures in colonoscopy image do not show any regular pattern. The
vascular content can be linked in a single branching structure or split in several structures.
Figure 3.1 shows examples of COLON-VESSEL data set.

A ground truth of landmark keypoints in the blood vessel patterns is also included. The
manual location of landmarks was achieved on the previously segmented vascular structures
and it includes junctions and intersections with any number of branches. A single pixel was
labeled as an intersection if it was identified as the point where at least three branches meet
together. Given the ambiguity of the task of locating a single intersection pixel, the expert
was given the rule of placing the landmark in the intersection of the imaginary axis of the
branches as long as the length of the branches is proportionally high enough. Come examples
can be seen in Figure 3.1.

The intersection ground truth includes 1516 landmarks and the number of intersections
per image ranges from 3 to 124. In the case of endpoints, 2110 landmarks have been labeled
and the number of endpoints per image ranges from 12 to 119. In both cases, the land-
mark density or concentration varies between the images. Figure 3.2 shows the number of
intersections and endpoints for each image.
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Figure 3.1: COLON-VESSEL data set examples. First row: Original image. Second
row: Vessel manual segmentation. Third row: Junction (red) & endpoint (green)
landmarks.
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(a) (b)

Figure 3.2: COLON-VESSEL data set statistics. (a) Number of junctions. (b)
Number of endpoints.

3.1.2 COLON-V-TRACE data set

The main goal of colon and track screening and colonoscopy is the search for lesions, ade-
nomas and polyps. The previous data set includes blood vessels in colonoscopy but polyps
are not present in all the imagse. The study of the interaction of polyps and the vascular
patterns in the endoluminal scene demands for a data set that includes both objects in ev-
ery single. This is the case of COLON-V-TRACE data set, which includes 29 colonoscopy
images including both polyps and blood vessels (see Figure 3.3 for some examples).

COLON-V-TRACE data set is composed by a selection of images from CVC-ColonDB,
the only public data set of colonoscopy images [18]. CVC-ColonDB includes 300 different
images selected randomly by physician experts from the same 15 colonoscopy videos used
in the creation of COLON-VESSEL data set. In this case, 20 frames per video sequence
were obtained, whose image resolution is also 574 × 500 pixels. The frames were selected
by experts so that they show endoluminal scenes containing polyps and adenomas and the
points of view of the scene were significantly different. The database includes the original
frame image as well as the manual segmentation of the polyps -and their contours- and the
non-informative regions. Figure 3.4 includes some examples of images in the database and
shows the variability in polyp appearance.

The images in CVC-ColonDB data set have been selected by the experts to provide a
polyp database and maximize the variability in that sense. Different types of polyps, with
different sizes and presenting different positions are covered by the data set. Nevertheless,
the presence of other endoluminal objects -such as blood vessels, folds or highlights- in the
selected colonoscopy frames is not assured since the frame selection is an expression of the
variability aimed by the authors regarding polyps. That is why the creation of COLON-V-
TRACE data set arises as a necessity for the exploration of polyp and vascular interaction.

COLON-V-TRACE is conformed by a subselection of 29 images from CVC-ColonDB
data set following a selection criteria based on the presence of vascular content. By selecting
images which contain blood vessels among those included in CVC-ColonDB, we create a set
of images containing both polyps and vascular patterns.

The original colonoscopy image frames are paired with a ground truth of blood vessel
traces manually labeled by experts. The vascular content in the images have been labeled
without considering the width of the vessels. Therefore, only the vessel trace information is
considered.
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Figure 3.3: COLON-V-TRACE data set examples. First row: Original image.
Second row: Vessel trace manual segmentation. Third row: Vessel trace mask super-
imposed on image.

3.2 Retinal fundus images

3.2.1 DRIVE data set, NunGT & AzzoGT

Branching structures or vascular patterns are present in different kinds of images besides
colonoscopy. That is the case of retinal fundus images (see Figure 3.5a). In order to broaden
our experiments to other contexts, we also experimented with DRIVE, a well-known retinal
fundus data set. This data set has also been used in previous studies of intersections and
a public ground truth of junctions and intersections is already available. We contributed
with newly created ground truth. Together with the existing ground truth, they give us the
chance to analyze the challenging task of intersection characterization regarding 2 observers.
The location of intersections of any type is not a simple question and can be challenging for
expert human observers or even a matter of disagreement. That is why it is important to
have the possibility of different observers for the same data.

DRIVE is a public data set of retinal fundus images published in [144]. This data set
has been commonly used in comparative studies on segmentation of blood vessels in retinal
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Figure 3.4: CVC-ColonDB data set examples (polyps in blue) (as in [18]).

(a) (b)

(c) (d)

Figure 3.5: DRIVE data set examples. (a) Original image. (b) Manual segmenta-
tion. (c) NunGT. (d) AzzoGT.
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(a) (b)

Figure 3.6: Number of junctions in DRIVE ground truths: (a) NunGT. (b) AzzoGT.

images. It was obtained from a diabetic retinopathy screening program on a population of
400 diabetic subjects between 25 and 90 years old and 40 images of size 546 × 584 pixels
were selected. The whole set of images is divided into a training and a test set, both
containing 20 images. A single manual segmentation is provided for the training images.
However, two manual segmentations are available for the test cases. As stated by the authors,
one segmentation is the gold standard and the other one can be used as a reference for
comparisons to computer generated segmentations. In the experiments performed in this
work we will always refer to the 40 image data set including the gold standard manual
segmentation in the case of the test set. Figure 3.5 shows examples of DRIVE data set.

We contributed with a new ground truth of manually annotated intersection landmarks
for DRIVE data set, NunGT, that includes 5607 landmarks. As in the case of DRIVE-
VESSEL landmark ground truths, the manual location of landmarks was achieved on the
previously segmented vascular structures, which in this are case available in DRIVE data
set. The expert was given the same rule of placing the landmark in the intersection of the
imaginary axis of the branches.

There is an existing ground truth of manually annotated intersections for the DRIVE
data set, AzzoGT [13], that has been used as a second observer. It includes 5118 bifurcations
and crossroads, and it is publicly available1. Examples of both NunGT and NunGT ground
truths are showed in Figure 3.5.

1http://goo.glMAKuPd
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JUNCTIONS &
BRANCHING PATTERNS
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Chapter 4

Junction Characterization in Vessel
Patterns

4.1 Branching patterns and junctions

Vascular structures are relevant in the analysis of colonoscopy scenes. The analysis of the
blood vessels in colonoscopy images helps to improve the knowledge of the endoluminal scene.
The better knowledge of the vascular content in the scene would represent an important
step forward in the improvement of techniques for polyp and adenoma localization, and
the development of endoscopy navigation support systems or colon wall mucosa visibility
evaluation standards.

From a broader point of view, branching patterns are certainly common structures in na-
ture. Patterns such as vascular trees, road networks, palm prints or topographical structures
like rivers are just some examples of common branching patterns. Therefore, the analysis
of branching patterns represents a very important task not only in the case of blood vessels
and medical diagnosis contexts, but also in fields such as road detection or biometrics. The
presence of branching structures in medicine and biology has been widely reported [3, 131].
Retinal blood vessel morphology has been described as an important indicator of hyperten-
sion, diabetes, arteriosclerosis or other cardiovascular diseases [40, 154]. Retinal vascular
trees or palm prints have also been reported as reliable biometrics for personal identification
tasks [117] or registration systems [35].

The detection of branching structures in every different context, their characterization
and the measurement of the network properties are crucial tasks for subsequent applications.
In every different context, the branching patters have particular characteristics. Their seg-
mentation in every single context can be highly dependable on the nature of the problem
and the images.

As a common valid notion, branching patterns can be defined as piecewise elongated
structures that cross over each other or branch off more or less frequently. This definition is
verified by branching patterns of any nature and certifies the importance of the branching
points as crucial landmarks in this kind of structures. Detecting intersection keypoints
becomes a necessary task when capturing the structure of branching patterns in any context.
The knowledge of the branching points becomes an important step for any application that
intends to characterize the original pattern and can be recognized as task of interest itself.

In this chapter a novel and very simple geometrical model to describe intersections in
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(a) (b)

Figure 4.1: Usual thinning artifacts. (a) Original patterns. (b) Thinning results
with artifacts (Necking: green, Tailing: red, Spurs: orange).

branching structures is presented. The model based on two conditions: Bounded Tangency
condition (BT) and Shortest Branch condition (SB). The proposed model precisely sets a ge-
ometrical characterization of intersections and allows the introduction of a new unsupervised
operator for intersection extraction. Ann implementation is also proposed, which handles the
consequences of digital domain operation that, unlike existing approaches, is not restricted
to a particular scale and does not require the computation of the thinned pattern.

The new proposal, as well as other existing approaches in the bibliography, are evaluated
in a common framework for the first time. Although the new method is applied here in the
context of medical 2D structures, it can be straightforwardly generalized to 3D or any kind
of branching pattern. Performance results are showed on COLON-VESSEL and DRIVE
data sets [144]. In the latter case results are validated by using both the existing AzzoGT
intersection landmark ground truth [13] and the newly created NunGT ground truth.

4.2 Literature review

The existing approaches for vascular intersection detection, fundamentally proposed in the
field of retinal imaging, can be separated into three categories [13, 25]: geometrical-feature
based methods and model based methods.

4.2.1 Geometrical-feature based methods

Geometrical-feature based approaches usually perform a pixel-level processing stage followed
by different kinds of post-processing analysis. These approaches usually involve adaptive
filtering and branch analysis based on thinned structures. They are often computationally
costly since they involve the processing of each pixel independently. An important step of the
methods in this category usually consists of a thinning algorithm leading to compute the so-
called skeleton of the structure, as in [25, 39, 74, 114]. These methods claim that it is desirable
to reduce the original structures to one-pixel wide vascular trees. A skeleton, which has not
a unified definition for the different implementations, is generated by a process of thinning.
This process starts from the original structure and must identify the pixels belonging to it
that are essential to keep the original structure shape [110]. Skeletonized shapes are usually
affected by thinning artifacts like necking, tailing, spurs or staircase artifacts (see Figure
4.1), which landmark detectors will have to handle [110]. This topic is tackled in depth in
Chapter 5.

Martinez-Perez et al. [114] proposed a characterization of retinal vascular content based
on the one-pixel wide tree computed from the vessel pattern. Skeleton pixels are scanned in
a 3× 3 neighborhood so that bifurcation and crossover candidates are extracted by selecting
skeleton pixels with 3 or 4 neighbors respectively. They propose a semiautomatic method to
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overcome the fact that close bifurcations are usually joint into a crossover. Chanwimaluang
et al. [39] proposal performs a similar first candidate selection procedure followed by a
second processing step that removes small intersections by using the boundary pixels of an
11 × 11 window. Jung et al. [74] detector of vascular landmarks is also use the skeleton to
detect crossroads as cross perpendicular structures with four connections and bifurcations
as Y-type structures.

Bhuiyan et al. [25] method extracts vascular landmarks from the centerline image by
using 3 × 3 rotational invariant masks to select potential candidates. The candidates are
analyzed to find geometrical and topological properties that are used to classify landmark
candidates as bifurcations or crossovers. Ardizzone et al. work [7] included vascular landmark
extraction again based on the connectivity of the one-pixel wide vascular tree without any
further candidate selection.

Another approach called combined cross-point number (CNN) method is introduced in
[2]. This is a hybrid method of two intersection detection techniques: the simple cross-point
number (SCN) [24] and the modified cross-point number (MCN) method. The former is
based on a 3 × 3 window that is placed in the considered pixel to compute its so-called
cross-point number (cpn), which basically counts the number of converging branches to the
pixel. Bifurcation points must hold 3 transitions (cpn = 3). This method follows the same
idea as the previous approaches. However, the authors propose a solution to the problem
of turning a crossroad into a pair of bifurcations. The solution is based on MCN, a new
operator based on a 5 × 5 which also computes the number of converging branches to the
pixel but, in this case, in a 5-side window parameter.

The work proposed by Calvo et al. [33] also reduces the vascular structure to its skele-
ton, which is filtered to reduce spurious projections. The skeleton pixels are then classified
by using their intersection number, equivalent to the already mentioned SCN, followed by
post-processing techniques to solve crossover detection problems based on the intersections
between a circumference of a given radius and the thinned pattern tree. The authors propose
a voting system which involves three different radii. Finally, the classification is refined by
merging two bifurcations into a crossroad if they are close enough (represented by a radius
parameter) and connected by a single segment.

Saha et al. [132] method also takes skeleton tree extracted from the vascular structure
and does not detect crossroads. They consider a window centered in the candidate pixel
and each connected-component is uniquely labelled. The algorithm makes an anti-clockwise
round-trip along the perimeter of the window. A pixel is classified as a bifurcation point if
the cyclic path length is 3 and does not have any repetition.

4.2.2 Model based methods

These group of methods is based on a vectorial tracing of the desired structure. Seed points
are usually placed as initial locations so that the vascular structures in the image can be
tracked from them recursively. These methods usually have lower computational complexity
than the methods in the previous category as they do not need to process every pixel in the
image so they are usually proposed for real-time applications.

The method introduced by Can et al. [34] is based on an antiparallel edges model of the
linear portions of the vascular pattern. The algorithm keeps relevant tracing information in
two data structures as the tracking of the branching pattern proceeds, the so-called ”center-
line image” and ”centerline network”. The former is an array which keeps non-zero values
for the already traced centerlines and increments a variable called the ”segment number”
when each new segment in the vascular structure is tracked. The latter consists of a linked
list of segments so that every single segment is a linked list of connected pixels which rep-
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resent the already traced centerline of that segment. The centerline image is checked from
the current tracing point to label it as a bifurcation candidate if non-zero values are found
in three different small line searches. At the same time, the centerline network is searched
every time a previously detected vessel is intersected and the intersection point is updated.
When multiple close intersections are detected they are replaced by their centroid.

Tsai et al. [153] presented an exploratory or tracking approach named exclusion region
and position refinement (ERPR). This approach is also based on the antiparallel model.
Nevertheless, this work considers this model is valuable for the tracing algorithm itself but it
is no longer valid when approaching intersection or branching points. As a consequence, the
authors claim that the estimation of vascular landmarks is clearly affected. They propose
a model for intersections based on the landmark location, the set of vessel orientations
that meet in the intersection and a circular exclusion region where the antiparallel model
is violated. The landmark extraction algorithm starts at an endpoint of the trace, either
when it intersects another vessel or when it meets at least two other trace endpoints. They
launch an iterative process from those endpoints that re-estimates the traces when outside
exclusion regions and re-estimates the landmark position otherwise.

4.2.3 Hybrid approaches

Azzopardi et al. [13] introduced a different approach proposing the use of so-called COS-
FIRE (Combination Of Shifted FIlter REsponses) filters [14]. COSFIRE filters are keypoint
detection operators that must be trained to extract given local patterns. These filters are
made up of Gabor filters that are combined so that the response of a given pixel is computed
as a combination of the shifted responses of the Gabor filters. The final output includes the
local maxima from the outputs of all trained filters.

4.3 GRAID: GRowing Algorithm for Intersection
Detection

GRowing Algorithm for Intersection Detection (GRAID) is a hybrid approach based on the
definition of a precise intersection model that operates at pixel level. An intersection model
allows us to define the landmark which represents the location of an intersection. The model
is defined by two conditions: Bounded Tangency (BT) condition, and Shortest Branch (SB)
condition. The algorithmic implementation has one single parameter that states the leverage
between the geometrical proportions of the branches and the intersection. The method is
not restricted to the computation of the thinned pattern nor conditioned by a sliding window
size. For these reasons the algorithm is independent from drawbacks of thinning methods
and it is not restricted to any particular scale. The outcome is a straightforward and precise
intersection detector which does not need to go through a training process and that is able
to classify separately the intersections regarding its number of branches.

We propose a method to extract bifurcations and crossroads from branching patterns in
binary images based on a general intersection model. A precise model to allow the definition
of the landmarks representing the location of intersections is stated. Given that model,
an algorithm which handles the consequences of working on a digital domain, such as the
approximation of the Euclidian distance and the lack of resolution to reach maximal ball
tangencies, is proposed. The first part of this section introduces our proposed model and
the second part proposes the corresponding implementation of the detector.
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4.4 Intersection model in binary patterns

An intersection candidate is defined by the center of a maximal circumference inscribed in
the branching pattern. The candidates are extracted as intersections if and only if they hold
the following two conditions:

• Bounded Tangency (BT): the maximal inscribed circumference and the pattern con-
tour must have 3 or more tangencies.

• Shortest Branch (SB): the relation between the shortest branch and the radius of the
inscribed circumference must be higher than a given ratio.

Given a binary image containing a structure pattern, S, and a point, x ∈ S, we define
the circumferences with a radius r, centered at x and inscribed in S as CS(x, r), where
0 < r ≤ rmax. When r = rmax the circumference is maximally circumscribed. Then, a
decision function for intersection extraction is defined as follows:

B(x) = |PS ∩ CS(x, rmax)| (4.1)

where PS is the contour of the structure, S.

The verification of BT condition is achieved through the analysis of B(x) function. B(x)
describes the number of tangent points between the maximal inscribed circumference and
the branch pattern contour. Every single point within S will be forwarded as an intersection
candidate if the number of tangent points between the inscribed circumference and the struc-
ture contour is ≥ 3. Since the number of tangencies is equivalent to the number of branches,
B(x) also describes the number of branches converging at each intersection candidate. Re-
garding the usual terminology in the bibliography, those points verifying B(x) = 3 will be
bifurcation candidates (3 branches) and those verifying B(x) = 4 will be crossroad candi-
dates (4 branches). Our model allows in this way to separately extract intersections with a
particular number of branches, although we will focus in this work in general intersection
extraction by simply allowing B(x) ≥ 3.

After verifying BT condition each branch must be tracked to assess that SB condition
imposed by our model is also held. SB condition is mathematically defined as:

rmax
mini (di)

< δ (4.2)

where δ is the geometrical parameter balancing the size of the circumscribed circumference
and the length of the branches converg di, 0 < di ≤ B(x), are the lengths of all branches from
point x. Thus, the SB condition assures a minimal length for all the branches converging in
the intersection landmark.

Figure 4.2a illustrates a positive candidate as it verifies both conditions imposed by our
model. However, Figure 4.2b shows a negative candidate as there are only two tangent points
so BT condition is not validated. A different negative candidate situation is illustrated by
Figure 4.2c since BT condition is verified but SB condition is not.

4.5 Algorithm description and implementation

The input to the intersection detector is a binary image containing the branching pattern the
output is the set of pixels representing the location of intersections. The input image is first
pre-processed by a filtering stage that tackles the problem of isolated or spurred pixels inside
the branching region by setting them to background value. This can be simply achieved by
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(a) (b) (c)

Figure 4.2: Intersection model: candidate examples. (a) Positive (verifies both
BT and SB conditions). (b) Negative (does not verify BT condition). (c) Negative
(verifies BT condition but does not verify SB condition).

bringing to foreground those pixels whose 8-connectivity neighbors are at least 7 of them set
to foreground.

Algorithm 1 shows the basis of the proposed method. The algorithm takes as input the
binary image containing the branching structure and the branching ratio δ. We set δ = 1.5
so that the targeted intersections can be unequivocally accepted, not allowing spurs to be
taken as branches.

The first step of the algorithm is based on the Danielsson distance algorithm (line 1) [46],
which computes the distance map -dMap- of the complementary of the input image based
on the distance function Cost. Based on our model, we would ideally use the Euclidean
distance. However, dealing with a discrete domain and the necessity of a geodesic distance
in the moment of expanding branches prompts us to define an approximation. We define
a cost function describing the distance to 8 neighbors starting from upper left corner as
Cost(n). We selected the cost function as shown in Figure 4.3a. Other possibilities can be: a
float approximation to the Euclidean distance (Figure 4.3b) -which provides similar results
although increasing computational cost- or the block distance (Figure 4.3c) -which misses
some center ball candidates-.

Algorithm 1: Algorithm

Input: image: Input binary image, δ: minimum branching factor
Output: output: Intersection binary image
dMap = DanielssonDistance(Cost,!image);
for pix in image do

if IsBallCenter(pix,dMap) then
frontier = ExpandCenter(pix,dMap,Cost);
len = dMap(pix)*δ;
nbranch = ExpandFrontier(frontier,Cost,len);
if nbranch > 2 then

output(pix) = true;
end

end

end
return output;
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(a) (b) (c)

Figure 4.3: Cost function examples. (a) Integer approximation of Euclidean dis-
tance. (b) Float approximation of Euclidean distance. (c) Block distance.

Next, each pixel in the image is processed separately. There are three basic functions in
the algorithm implementation: IsBallCenter and ExpandCenter, both used to check BT
condition, and ExpandFrontier, which checks SB condition.

IsBallCenter function (line 3) checks the branching pattern to select those pixels, x,
that are centers of a maximal ball:

{x ∈ S | ∃CS(x, rmax)} (4.3)

rmax = arg min
r
{PS ∩ CS(x, r) 6= 0} (4.4)

A pixel will be extracted as a maximal ball center in any of the following cases:

1. The maximal ball radius rmax from the candidate pixel x is higher than the difference
between the maximum radius from each neighbor n, rnmax, and the distance to that
neighbor, Cost(n):

rmax > max
n
{rnmax − Cost(n)}, ∀n (4.5)

2. The difference between the maximum radius from each neighbor and the distance to
that neighbor is positive, and the maximal ball radius from the candidate pixel is
higher than the minimum cost to reach a neighbor:

{rnmax − Cost(n) > 0} ∨ {rmax > min
n
{Cost(n)}}, ∀n (4.6)

The inequality in 1) would be enough if a discrete domain. The implementation in
a digital domain forces the introduction of the or-condition in 2). Figure 4.4b shows an
example of maximal ball centers by IsBallCenter.

Every ball center is then analysed further so that the second part of BD condition is
tested. We must select those maximal ball centers which have at least 3 tangencies to the
pattern contour, i.e. at least 3 branches. To asses the number of branches we must expand
the ball from its center to its radius. This task is achieved by ExpandCenter function (line
4). The discrete domain can cause the maximal circumference radii we already computed to
be too short to reach all the expected tangent points. We handle this problem by adding an
offset equivalent to the maximum value of the Cost function to the radius of the maximal
ball:

r′max = rmax + max
n
{Cost(n)} (4.7)

With this offset we make sure that the algorithm reaches the contour and the right amount
of tangencies are identified. This improvement saves us from missing maximal ball centers
with 3 or more branches (see Figure 4.4c and 4.4d for an example).
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(a) (b) (c) (d) (e)

Figure 4.4: Algorithm samples. (a) Intersection pattern. (b) Maximal ball candi-
dates. (c) Maximal ball (green) and 2 outer branch frontiers (orange). (d) Extended
maximal ball (green) and 3 outer branch frontiers (orange). (e) Frontier expansion
(blue)

ExpandCenter function (line 4) expands every center pixel to its maximal ball contour.
The pixels that are part of that contour are tested to isolate those that have at least one
neighbor that is part of the structure (foreground) and out of the maximal ball. Those
isolated pixels are then grouped in connected blobs that we call branch frontiers (see Figure
4.4d).

Finally, branch frontiers need to be expanded as shown by Figure 4.4e (line 6) to assess
the verification of SB condition. The corresponding ball center pixel will be labelled as an
intersection candidate if and only if at least 3 branches verify SB condition expressed by
Equation 4.2 (line 7).

Algorithm 2 shows the explicit pseudocode implementation of ExpandCenter and Ex-
pandFrontier. The algorithm expands a given pixel based on the distance map by pri-
oritizing the expansion of those pixels with a lower distance cost until the corresponding
StopCondition is reached (line 17). In the case of ExpandCenter, the stop condition is
to reach a frontier pixel. In the case of ExpandFrontier the condition would consist of
reaching the branch distances that assess SB condition (Equation 4.2).

The final output of the algorithm are the centroids of the landmark candidate blobs
since several candidates may be selected for a given intersection due to the discrete working
domain.

4.6 Results

4.6.1 Validation framework

We implemented our operator in C/C++ and all the experiments were run in a Personal
Computer with a 2.67 GHz processor. In order to validate or method, we use two different
data sets of vascular images related to two different anatomical problems: 1) The DRIVE
data set, for retinal fundus images, and 2) the COLON-VESSEL for colon vessels from
colonoscopy images. In the case of DRIVE data set we use both the already existing AzzoGT
intersection ground truth and the newly created NunGT ground truth, which allows us to
compare the variability in intersection landmark placement. In the case of COLON-VESSEL
data set we will use the only existing intersection landmark ground truth for colonoscopy
vascular patterns.

In the case of our new NunGT and COLON-VESSEL junction ground truths, as already
introduced in Chapter 3 the landmark was placed in the intersection of the imaginary axis
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Algorithm 2: Expand

Input: pix: pixel to be expanded dMap: Danielsson Distance map to
background CostFunc: 8 connectivity cost function

Output: output: number of frontiers/branches
Make-Queue: queue;
queue.Push(pix);
Cost = ascendingSort(CostFunc);
temp = dMap;
while !queue.isEmpty do

if queue.F irst! = NULL then
queue.Push(NULL);
dinc = min(Cost);
forall the n neighbors in Cost do

if Cost(n) < dinc then
queue.Push(NULL);
dinc = Cost(n);

end
forall the q in queue do

if Pixelisforeground then
d = temp(n) + Cost(n);
if StopCondition then

[...];
else

temp(n) = d;
queue.Push(n);

end

end

end

end

else
queue.Pop();

end

end
return output;

of each branch as long as the branch length is proportionally high enough. We know this
procedure verifies both BT and SB conditions.

The different performance results have been compared in terms of precision, sensitivity
and their harmonic mean (F1 score), which are defined as follows:

Precision =
TP

TP + FP
(4.8)

Sensitivity =
TP

TP + FN
(4.9)
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H.mean = 2 · Prec · Sens
Prec+ Sens

(4.10)

where TP (True Positives) are the number of landmarks extracted correctly, FP (False
Positives) are the number incorrectly extracted landmarks and FN (False Negatives) are the
landmarks that were not detected. Any detected landmark is considered correctly extracted
(TP) if the distance to the corresponding landmark in the ground truth is smaller than an
evaluation parameter ε. The value of ε has been set to 5 pixels for the evaluation of the
different approaches. The impact of ε in the validation will be discussed in Section 4.7.

4.6.2 Experimental results

The performance of our method has been compared to previous approaches. We implemented
several methods among those introduced in Section 4.2 that have never been compared in
the same framework: Filter Based Junction detector (FBJ), Aibinu approach [2] and Saha et
al. [132] proposal with some modifications. We call FBJ the basic idea used in intersection
extraction methods such as Martinez-Perez et al. [114] and Chanwimaluang et al. [39].
These algorithm selects from the skeletonized structure those pixels which have at least 3
neighbors considering 8 connectivity. Saha et al. [132] algorithm is designed to extract
bifurcations -3 branch intersections- by processing the cyclic path of a sliding window (see
Section 4.2) whose length must be 3. We allow the length to be 3 or higher to widen the
algorithm target to intersections with any number of branches. Since the authors did not
clarify what window size should be used, after extensive tests we determined to use a window
size of 10 × 10 as the optimal trade off to avoid missing intersections and not to join those
that are closer.

The method published by Azzopardi et al. is also considered in the comparison although
we just took the performance results published by the authors [13]. The method is based
on COSFIRE filters, which must go through a training process. We performed different
trainings following the authors directions which showed a large variety in the outcome and
did not get to approach the performance published by the authors -96.60 % precision, 97.81
% recall, with no reference to ε-.

FBJ, Saha and Aibinu include a thinning step. The selection of a thinning algorithm
has consequences in the performance of an intersection detector. The selection of a thinning
algorithm should mind the problems described in Section 4.2 (see Figure 4.1). Aibinu is
the only method, among those which use skeletonized structures, that explicitly proposes
to use a particular thinning algorithm for its intersection detector: Kwon et al. algorithm
[83]. For this reason we decided to use Kwon thinning method for FBJ, Modified Saha and
Aibinu, although we also tested other standard methods without remarkable performance
changes. In this way performance can be compared considering exactly the same advantages
or drawbacks offered by the same single thinning algorithm.

Regarding GRAID, as introduced in Section 4.5, we defined δ = 1.5 so that the geometrics
of the targeted intersection are more inclusive, which just depends on the nature of the
problem. The bigger the value of δ, the most restrictive SB condition is. GRAID does not
need to go through a training stage and, give an input image, its performance is completely
repeatable.

We first present the performance results for ε = 5 and then we assess the impact of ε in
the final performance. Three experiments are carried out: 1) AzzoGT on DRIVE data set,
2) NunGT on DRIVE data set, and 3) ColonVesselGT on COLON-VESSEL data set:

1. Table 4.1 shows the performance metrics for the different approaches using AzzoGT
as the ground truth -we also include the 2nd observer results represented by NunGT -
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Table 4.1: Exp. 1.1: Detector comparison on AzzoGT data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 90.60 93.22 91.89

Aibinu et al. 80.99 93.73 86.90

Modified Saha et al. 85.70 91.79 88.64

FBJ 53.24 89.55 66.78

2nd observer (NunGT ) 89.23 96.64 92.78

Table 4.2: Exp. 1.2: Detector comparison on NunGT data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 96.67 93.12 94.86

Aibinu et al. 89.15 93.95 91.49

Modified Saha et al. 90.69 90.71 90.70

FBJ 56.84 88.26 69.15

2nd observer (AzzoGT ) 96.68 89.35 92.87

Table 4.3: Exp 1.3: Detector comparison on COLON-VESSEL data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 96.65 93.58 95.09

Aibinu et al. 91.64 95.76 93.65

Modified Saha et al. 87.93 94.97 91.31

Skeleton 47.72 92.97 63.07

. Our approach outperforms all the approaches considered and implemented in this
study which have been compared in a common framework. The performance values
published by Azzopardi et al. still remain higher -96.60 % precision, 97.81 % recall-
. Nevertheless, as already mentioned, the evaluation conditions of the COSFIRE
method are not clearly stated in the original work and our experiments showed a high
performance variability when different training patterns are selected.

2. Table 4.2 shows the performance values for the same methods when considering NunGT.
In this case we verify that again our proposal reaches values much higher than the
other algorithms.

3. Table 4.3 shows results achieved for the images in COLON-VESSEL data set with
ColonVesselGT. Again our method outperforms the state of the art.

Finally , in order to clarify the importance of a common framework to achieve a compar-
ison of different intersection detectors, the previous experiments were repeated modifying
the value of ε = 5. Similarly to the previous group of experiments, several tests were car-
ried out. Figure 4.5 shows the results for COLON-VESSEL data set. Figure 4.6 shows the
results for DRIVE data set and both AzzoGT and NunGT. The different plots show the
variation of precision, sensitivity and harmonic mean when modifying the value of ε. These
results demonstrate the important variation that performance metrics suffer when increasing
ε value.
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(a)

(b)

(c)

Figure 4.5: ε value influence on performance metrics for COLON-VESSEL data
set. (a) Harmonic mean. (b) Precision. (c) Sensitivity.

4.7 Discussion

The experiments exposed above clarify that in all cases our algorithm reaches higher perfor-
mance values than the other implemented methods. In the results shown in Table 4.1 and
Table 4.2 the values of sensitivity keep close for the cases of GRAID, Aibinu and Modified
Saha although GRAID reaches higher values of precision. The output of these two former
methods is highly conditioned by the sizes of the windows they use since it varies the tar-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: ε value influence on performance metrics: (a) Harmonic mean for Az-
zoGT. (b) Harmonic mean for NunGT. (c) Sensitivity for AzzoGT. (d) Sensitivity for
NunGT. (e) Precision for AzzoGT. (f) Precision for NunGT.
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geted intersection size. As Aibinu states, we used 3× 3 and 5× 5 windows. As we explained
above, 10 × 10 windows were selected in Saha algorithm. Conversely, our algorithm is not
scale dependent so it is suitable to a wide range of images. FBJ algorithm extracts a high
amount of False Positives decreasing to 53.24% of precision due to its basic approach based
on a thinning process, suffering from the usual skeleton artifacts (see Figure 4.1). On the
contrary, our proposal does not suffer from the problems caused by a thinning step.

The comparison between both ground truths -AzzoGT and NunGT - shows an increase in
the precision for all the methods when using NunGT as the ground truth. To clarify these
results we carried out a qualitative analysis of the extracted intersections when NunGT
expert is tested against AzzoGT ground truth. We manually identified 501 out of 598 of the
False Positives as actual True Positive intersections which were not considered in AzzoGT.
Figure 4.7a shows some examples. Regarding False Negatives, 33 out of 177 resulted to be
intersections that would not meet the formal criteria defined in 4.6.1 (see some examples in
Figure 4.7b). In both cases the remaining intersections are caused by a shift in the pixel
selected as the keypoint for each intersection. Some of these can be accepted as a consequence
of different criteria. In this sense, we point out that our intersection model states a clear
and concise criteria to select the representative keypoint for each structure. Some other
cases, however, would not be accepted as good keypoints in our ground truth as they appear
too shifted or they are not representative of the structure they should describe (Figure 4.7c
shows some examples).

The experiment showed in Table 4.3 on COLON-VESSEL database points similar trends
to the previous experiment. GRAID is still providing the higher values of harmonic mean
although in this case the difference in terms of precision and sensitivity is lightly wider.
Aibinu and Modified Saha reach higher levels of sensitivity but GRAID is much more precise.

Experiments on ε value let us know about the algorithm accuracy as well as the influence
of ε in the performance metrics. Plots in Figure 4.6 show that our value of ε = 5 is big
enough to be away from the sloppiest regions of the plots, which make it less prone to be
influenced by small displacements of the landmark in the ground truth. At the same time,
ε = 5 is small enough to avoid the bias provided by random detections. In addition, the plots
highlight the higher accuracy and performance of GRAID algorithm. For the particular case
of Aibinu, sensitivity reaches higher values for the particular case of low ε, however showing
lower values of precision for the same ε.

The results published by Azzopardi et al. -96.60 % precision, 97.81 % recall- are still
higher than our tested method. Nevertheless, the values reached by GRAID keep consider-
ably close. This is an important outcome since the validation conditions used by Azzopardi
et al. are not completely clarified and present intrinsic problems for repeatability. The
method they propose is based on COSFIRE filters, which need to go through a training
process. Tools that need to go through a training process, and that are sensitive to the
particular patterns chosen for the training phase, are less repeatable. The training process
must consider the heterogeneity and redundancy of the training data -or patterns- to carry
out a generalized implementation which is able to predict the correct output. For this rea-
son, setting up the training process can be complex and demands for a deeper knowledge
of the methodology. Moreover, the selection of the training samples, as well as their size,
becomes crucial to reach a repeatable implementation. As seen in Figure 4.8, a difference
in only a few pixels in the training pattern size entails including closer structures that will
cause important differences in the resulting trained filter. Therefore, even though the final
COSFIRE filter is not scale dependant, the final implementation is highly dependant on
the shapes included in each selected pattern and, particularly, on its size. Differently, our
method can be directly applied to a given binary pattern as it just requires a geometrical
ratio to describe the targeted intersection proportions.
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(a)

(b)

(c)

Figure 4.7: AzzoGT examples. (a) Not labelled intersections. (b) Labelled intersec-
tion not meeting our formal criteria. (c) Divergence in landmark placement (NunGT:
red; AzzoGT: blue).

(a) (b) (c) (d)

Figure 4.8: Branching patterns on different window sizes: influence on resulting
training patterns. (a) 7 pixel side. (b) 11 pixel side. (c) 15 pixel side. (d) 21 pixel
side.

This paper assumes the binary branching pattern is given as input to all methods. The
binary pattern can be obtained in several ways regarding the nature of the images in a
given problem -such as vascular tree segmentation in retinal images, which has been largely
studied-. Geometrical-feature based methods outcome depend on the connectivity of the
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(a) (b)

Figure 4.9: Error samples. (a) Caused by connectivity (orange: pixels causing
connectivity). (b) Caused by proximity (blue: missing intersection).

given pattern. Model based methods does not rely on a given binary pattern. Their per-
formance depend on the reliability of the tracking process, which is based on image surface
gradient information. Since most of the methods used in branching pattern segmentation
are also based on gradient information, the lack of connectivity will affect to the tracking
process in the same way as it affects to most branching pattern segmentation approaches.
Regarding hybrid approaches, Azzopardi et al. approach can manage a lack of connectivity
although, for the same reason, False Positives will be extracted when closer branches are
found. GRAID performance is based on the connectivity of the branching pattern. The lack
of connectivity can be tackled by adding a previous morphological operation although False
Positive intersection may be also extracted.

The main difference between the two considered hybrid approaches rely on the training
process needed by the method proposed by Azzopardi et. al. The COSFIRE-based approach
must go through a training process which highly conditions the performance of the trained
detector and its repeatability. GRAID is applied as an operator based on a simple geometrical
model whose complexity dealing with binary domain implementation is transparent to the
user.

GRAID performance reaches state-of-the-art values when detecting intersection land-
marks. The computation time of the operator depends on the nature of the branching
pattern since it determines the number of times the conditions imposed by the model must
be assessed. Our implementation of the methodology in C/C++ takes on average 60.8ms
for each COLON-VESSEL image and 110ms for each DRIVE image.

The analysis of the intersections extracted by GRAID arises some error sources caused by:
1) the definition of the connectivity in the input image, and 2) the proximity of intersections.
The former leads to erroneous extraction of intersections. Our method is based on the
expansion from single pixels inside a given pattern, which we assume to be defined using 8-
connectivity. The problem appears when 8-connectivity happens between parallel branches
connected by a single pixel. This pattern verifies our model whereas the expert did not
label it as an intersection (see Figure 4.9a for an example). The proximity of intersections
causes our method to miss some landmarks due to the fact that our output integrates close
intersections into a single one. This is caused by the approximations we make to implement
our model in a digital domain (see Figure 4.9b for an example).

Another remarkable aspect on the performance of GRAID is related to one-pixel wide
patterns. In such cases the area of the maximally inscribed circle is just one pixel. Consid-
ering our cost function -see Figure 4.3c-, the maximal ball candidates can be extracted by
Equation 4.5. In these cases, the computation of the number of branches could be problem-
atic though. Introducing an offset to the maximal ball candidate radius succeeded in making
sure there will not be any branch missed.
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4.8 Conclusions

We have proposed a new approach for precise intersection landmark extraction from binary
branching structures based on a novel intersection model. The model states that junctions
are those landmarks in the input branching pattern where a maximal inscribed circumference
can be placed that has more than 2 tangent points with the pattern contour. The number of
tangent points is equivalent to the number of branches, which allows our method to classify
separately bifurcations -3 branches- and different kinds of crossroads -4 or more branches-
. Given the radius of that circumference, the branches from that landmark must have a
minimum length. The ratio between the circumference radius and branch lengths can be
selected by the user regarding the targeted intersections. We have successfully overcome
the implementation problems of this kind of approach given the digital domain of images
providing a robust and simple interpretation of its performance. Moreover, our method can
be naturally extended to 3-dimensional input data or branching patterns of any nature, such
as vessels, roads, palm prints or topographical structures.

We have compared our algorithm with previously published works in order to provide
the first evaluation of several approaches in a single evaluation framework. For that purpose,
we have assessed the performance of our proposal in the a existing ground truth for DRIVE
retinal data set and we have contributed with a second intersection landmark ground truth
to the retinal DRIVE data set to provide a reliable interpretation of results. We also created
a new data set of colonoscopy frames and the corresponding intersection ground truth.

The performance values reached in terms of precision and sensitivity place our method in
the best performance level for those approaches implemented in this work. The performance
of our method remains in lower levels than the cited values by Azzopardi et al. However,
we have showed that the impact of evaluation conditions on the the final performance is
high enough to make that difference less remarkable as well as the necessity of a training
process and a complicated parametrizing process, which have a direct impact on results and
overfitting. Conversely, the novel method we propose is simple, highly repeatable and does
not need neither a parameter tuning step nor a training stage.
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Chapter 5

Vessel Pattern Analysis and
Skeletonization

Shape representation and description is an important task in several areas of Computer
Vision, such as image retrieval or object categorization. Shape recognition is also key in
the interpretation of medical images as well as in the development of biometric tools. The
description of branching patterns, like blood vessels in colonoscopy images, must focus on
the representation of topological information. In this chapter we propose the description
of binary branching patters by means of a novel skeleton computation method based on
GRADE junction localization algorithm. This approach keeps the advantages of skeletons in
terms of simplicity and improves traditional approaches with an improvement on topology
representation and by reducing sensitivity to boundary noise.

5.1 Related Work

Shape description has been a common research topic in the last decades in the context of
different recognition applications. In the different contexts, shape representation has been
approached in many ways. Shape description can be based on the shape contour information
or on the whole region shape. This difference allows the classification of the shape description
approaches into two categories [163].

Contour-based methods usually compute a feature descriptor by exploiting only shape
boundary information. The comparison between different shapes is achieved by measuring
some kind of metric distance between descriptor vectors. Shapes can be represented as
simple global features computed from the shape -such as area, eccentricity, convexity or
elliptic variance [161, 115]-, as point sets [54, 129, 16, 17], or by one dimensional functions
[164]. Other countour-based approaches explored shape representation in other domains,
such as Fourier or wavelet descriptors [42, 78, 130], or descriptors that break the contours
down into smaller segments [51, 56, 23, 143].

Region-based methods use all the pixels within the region shape to compute its de-
scription. Basically, three approaches are found within this category: moment descriptors,
scan-based descriptors and skeletons. Moment descriptors use nonlinear combinations of the
image moments to describe shapes [65, 149, 148, 80]. Scan-based descriptors use a grid to
scan the shape and acquire information, either a rectangular grid [88] or a circular raster
sampling [55, 111]. Skeleton methods exploit the idea of eliminating redundant information

47
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by reducing shapes to its medial axis.

Skeletons are one-pixel structures that presume to describe shapes by minimizing the
number of necessary pixels. The definition of a skeleton is very ambiguous and usually has
not a unified description for the different processes followed to generate it. The process to
reduce a region to those minimum number of pixels that are essential to represent its shape
is know as thinning. The definition of a skeleton and the description of the first thinning
process is commonly taken at Blum’s medial axis function (MAF) [28]. The medial axis is
the set of points for which there exists more than one closest point in the shape’s boundary.
One way to implement this approach to thinning is to compute the region distances to the
boundaries. The selection of the distance function has an impact on the skeleton result and
arises several problems as, for example, the missing of pixels when using Euclidean distance.

The many different approaches in skeleton computation can be grouped in 4 categories:
iterative methods, contour-based methods, polygon-based methods and force-based methods
[110].

Iterative methods are based on a process of peeling away the outer pixel layers of a
shape until any layer can be remove anymore. These techniques state a set of rules to define
the process to remove pixels. The iterative process marks and deletes pixels and usually
includes some kind of template matching [146, 160, 165]. The rules must ensure endpoint
preserving and connectedness. These methods usually suggest the use of preprocessing stages
to minimize some of the usual artifacts in skeletons [63]. Contour-based methods locate the
entire shape contour and delete all pixels that are not necessary to ensure connectedness
[112, 82]. These algorithms are supposed to provide faster execution speeds than iterative
methods. Polygon-based methods consider the shapes as polygons and use their geometric
properties to locate the skeleton [92]. In this category we find triangulation methods, which
take advantage of the so-called computer graphics approach and coverts the polygon into
triangles to extract its skeleton [104, 96]. These group of methods can have some difficulties
related to the starting point taken when considering the polygon. Force-based methods
exploit the idea of considering a repulsive force exerted on the object pixels. The nearer
the pixel to the boundary, the greater the force it suffers. The skeleton lies on the pixels
suffering forces from opposite directions [30].

5.2 GRAID-based skeletonization

The use of skeletons to represent branching patterns like blood vessels seems to arise as
good possibility. Given their topological structure, branching patterns are clearly described
by their junction distribution, which is basically a description of their topological struc-
ture. We propose a novel skeleton method which ensures the preservation of the branching
characteristics. This skeleton method is a straightforward consequence of GRADE junc-
tion localization algorithm (chapter 4) and exploits Bounded Tangency condition (BT) and
Shortest Branch condition (SB) for its implementation. Consequently, the resulting skeleton
will minimize the loss of branching information.

5.2.1 Methodology

As mentioned in the previous section, skeletons can be defined by MAF introduced by Blum
[28]. However, the implementation of such approach must achieve some approximations that
may cause some undesired result in the computed skeleton. The MAF defines a function to
guide the expansion of a wave front that starts at the boundaries. The wave front expands
to neighbor pixels until two waves meet in a single pixel. The meeting points describe the
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medial axis and conform the skeleton of the original shape. However, the implementation of
this approach have been traditionally pointed out as having some drawbacks. The resulting
skeletons can not ensure connectivity, spurious branches and junctions may appear and
endpoints can be modified.

We present a methodology to compute skeletons from binary structures that is based on
GRAID junction algorithm. This new algorithm prioritizes the preservation of the topology
of the branching structure is prioritized. To accomplish that, the resulting skeleton must
preserve the junctions and the endpoints of the original shape.

Our new methodology can described in 3 main steps: 1) distance computation, 2) max-
imal inscribed circumference extraction, and 3) branch expansion. Distance computation is
based on a two scan Fast Euclidian distance transformation (EDT) [139]. This approach
to distance transformation allows to compute the Euclidean distance function efficiently by
recording the relative x- and y-coordinates in only two raster scans of image under a 3 × 3
neighborhood.

The second stage extracts the pixels where a circumference maximally inscribed in the
shape can be located, given the distance function. This stage is based on the BT condition
already introduced in Section 4.4. As defined by Eq. 4.1, the number of tangencies between
the maximal inscribed circumference and the pattern contour is equivalent to the amount
of branch candidates. In the case of junction extraction, candidates are selected when the
amount of tangencies is higher than 3. In the case of skeleton extraction, all candidates with
2 or more tangencies will be forwarded to next stages. Therefore, the implementation in the
case of the skeleton computation is the same as already described in Section 4.5 by Eq’s 4.3
and 4.4.

The last stage grows conforms the skeleton by analyzing selected candidates on the basis
of SB condition, defined by Eq. 4.2. As introduced in Section 4.5, this task is achieved
in two steps. The first step expands the candidates to its maximal circumference and the
second step expands the circumference boundaries along the branches to verify SB condition.
Both cases follow the implementation described by Algorithm 2. However, in the case of
maximal circumference expansion we use EDT since no geodesic expansion within the shape
is needed.

5.3 Results

Figures 5.1 and 5.2 show some results on some colonoscopy images from the COLON-
VESSEL data set and on some retinal fundus images from the DRIVE dataset, respectively.

5.4 Conclusions

We have presented a novel methodology to compute skeletons from binary shapes. Our
method prioritizes the description of a shape in terms of its topology by accurately preserving
the junctions and endpoints in the original structure. To achieve that goal, the algorithm is
based on the GRAID junction localization algorithm and exploits Bounded Tangency and
Shortest Branch conditions.
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Figure 5.1: Skeleton examples on colonoscopy images. First row: Original image.
Second row: Skeleton.
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Figure 5.2: Skeleton examples on fundus retinal images. First row: Original image.
Second row: Skeleton.
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Chapter 6

Graph-based characterization of
vessel patterns from keypoints

6.1 Introduction

One of the potential applications of computer-aided diagnosis methods (CAD) for colonoscopy
is the development of patient’s follow-up methods to allow the recognition of a single area of
the colon containing a lesion when that area is revisited. Consequently we need to define and
characterize those anatomical structures that remain stable over time in order to use them
as markers to guide these follow-up methods. The only elements of the endoluminal scene
whose appearance tend to keep stable are blood vessels and polyps -if they are not removed
during biopsy-, as the appearance of structures such as folds is more prone to change.

In this chapter we focus on the characterization of blood vessels as anatomical landmarks
with potential to be used as part of the development of follow-up methods. Blood vessels
can be seen as branching patterns. The characterization of branching patterns has been
deeply studied in other research fields, since the presence of these kind of structures is very
common either in nature -palm prints [117]- or in anatomical structures -vascular trees [13]-.
An accurate detection of these patterns along with a proper characterization of the network
properties play a key role for applications using this kind of information. The segmenta-
tion of vessel patterns can be a difficult task though, given the nature of the procedure or
image quality issues, such as resolution. However, keypoints in the pattern can be used
to unequivocally characterize branching structures without the necessity of computing an
accurate segmentation of the vessel pattern. These keypoints can potentially be identified
as anatomical landmarks to be used in image registration methods.

Therefore, an accurate detection of these keypoints appears as a key stage for a good
performance of these methods. There are basically two kinds of keypoints: junctions/inter-
sections and endpoints. The detection of vascular intersections has mainly been studied in
the field of retinal imaging. Available methods have been separated in two categories: geo-
metrical feature-based and model-based methods [25, 13]. The first category groups methods
which commonly start by a pixel-level processing stage followed by post-processing analysis
specific for each methods. Methods belonging to this group tend to involve adaptive filter-
ing and branch analysis based on thinned structures -being thinning a common step in the
majority of available methods and an important source of error-. Some examples of geomet-
rical feature-based methods appear in the works of Bhuiyan et al. [25] or Saha et al. [132].
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Regarding the second category, model-based methods are based on a vectorial tracing of the
desired structure. These methods use seed points as initial locations so vascular structures
that appear in the image can be recursively tracked from them. Examples of this can be
found in [35, 153]. Finally, the method of [13] offers a completely different approach which
is based on the definition of COSFIRE filters to detect intersections in retinal images.

At this point, one question arises: which is the minimal performance these methods have
to achieve so that those keypoints can be used as reliable anatomical landmarks. In other
words, if we characterize blood vessels in terms of intersections and/or endpoints, how many
of them could be missed and still be able to recognize a posterior appearance of the same
structure in a different frame. In this paper we: 1) Assess the suitability of vessels on the
colon wall as anatomical markers, and 2) We study the amount of keypoints allowed to be
missed in order to still have a correct matching for a given vascular pattern.

To do this, we represent blood vessels using graphs. Graphs consist of a finite set of nodes
connected by edges and they are one of the most general data structure in computer science.
Due to the ability of graphs to represent properties of entities and binary relations at the
same time, a growing interest in graph-based object representation can be observed in various
fields. In bio and chemoinformatics, for instance, graph based representations are intensively
used [89]. Further areas of research where graph based representations draw attention are
web content and data mining [134], image classification [59], object categorization [49], shape
analysis [113, 137], and graphical symbol and character recognition [87], among others.

We use a graph representation in which nodes can be either junctions or endpoints. Our
validation will assess the similarity -using graph edit distance- between the original graph
and an altered version created by removing some nodes from the original graph (simulating
that those keypoints are not detected). We do not intend to propose the best graph matching
framework but to assess the descriptive power of vessels. The validation is performed on a
database of 40 colonoscopy images specially rich in blood vessel content.

6.2 Vascular structures in colonoscopy images

Blood vessels appear as vascular structures in colonoscopy images. They can be seen as
branching patterns and different keypoints can be used to help in their unequivocal charac-
terization. In our case we define two different keypoints associated to blood vessels: junctions
and endpoints. The definition of this keypoints can be better understood by looking at a
binary segmentation of blood vessels. Considering this, a single pixel is labelled as an junc-
tion if it was identified as the point where at least three of the branches meet together.
Conversely a pixel is labelled as an endpoint if it constitutes the end of a given branch and
not reaching the boundary of informative area of the colonoscopy image.

Figure 6.1 shows an example of manually labelled keypoints in a vessel pattern. Once
the keypoints are defined and characterized for each colonoscopy image with blood vessels
we can proceed with the extraction of a graph.

6.3 Graph matching strategy

Graphs are used in many scientific fields as a powerful structural representation of objects.
A graph is a mathematical structure for representing relationships which consists of a set
of nodes connected by edges. This definition clarifies the great representative potential
of graphs. A node could be a state, a condition or a location identified by features of
any kind and the edges can represent the relations between nodes from a wide variety of
interpretations.
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(a) (b) (c)

Figure 6.1: Keypoint definition in colonoscopy images. (a) Original image. (b)
Binary representation of blood vessels. (c) Keypoints: junctions (red), endpoints
(green).

A graph matching strategy involves the construction of graph models of objects and
the graph matching process. The graph models must be constructed from the given data
and consist of a characterization of its nodes and a description of the relationships between
them. The construction of object graphs is closely linked to the nature of the problem. The
graph matching step must provide a matching environment which trusts on some kind of
measure between graphs -similarity, dissimilarity, distance,...- able to provide a quantitative
comparison rule between the graphs in the given data scenario. The graph matching process
must find a correspondence between the nodes and edges of the graph while satisfying some
constraints.

The kind of blood vessels we are dealing with contains high structural information.
Junctions and endpoints and the way they relate to other points appear to be crucial for
blood vessel characterization. For this reason, we use a graph matching framework to assess
the impact of the selection of nodes in the robustness of a graph as a characterization of a
vascular pattern. To accomplish this task, we first need to transform our images into graphs
and define the attributes of both the nodes and the edges. Once the graphs are constructed,
a similarity measure to compare such graphs is needed. In our case we use the graph edit
distance. We remark that the purpose of this study is the assessment of the consequences of
losing keypoint information in the descriptive power of the resulting vessel pattern graphs.

6.3.1 Graph extraction

We extract the graph given a set of keypoints and the binary pattern to be characterized. The
keypoints will stand for the nodes and the binary pattern provides the structural information
to create the adjacency matrix of the graph. The computation of the adjacency matrix from
the binary pattern comprises the following steps (see example in Figure 6.2):

• In order to find adjacencies between branches, a first segmentation of the graph is
achieved by grouping all the pixels behind the binary pattern into clusters represented
by each keypoint detected. The criteria to assign a given pixel to a cluster is the
Euclidean distance -Figure 6.2a-.

• We can observe from Figure 6.2a how the first segmentation may present some in-
coherences as some pixels and branches might be associated to keypoints which do
not have connectivity. To solve this problem, all the regions which do not contain a
keypoint are merged into any of the regions that are connected to them -Figure 6.2b-.

• The final graph is the region adjacency graph extracted from the segmented image
-Figure 6.2c-.
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(a) (b) (c)

Figure 6.2: Example of adjacency matrix calculation to create the final graph. (a)
First segmentation. (b) Refined segmentation. (c) Final graph. Areas marked with
A and B exemplify problems related with the first graph segmentation.

The distance of each node to the centroid of the vessel pattern is associated as the
only attribute of each graph node. The distances are normalized with respect to the highest
distance. This makes this simple characterization invariant to translation, rotation and scale.
This decisions intend to lead to an experiment framework to validate the keypoint impact
on vessel patterns as markers. The best configuration for the graph should be studied in
future clinical works.

6.3.2 Graph edit distance

Graph edit distance [133, 31] is one of the most flexible and versatile approaches to error-
tolerant graph matching. One of the major advantages of graph edit distance is that it is able
to cope with directed and undirected graphs, as well as with labeled and unlabeled graphs.
If there are labels on nodes, edges, or both, no constraints on the respective label alphabets
have to be considered. Moreover, through the concept of cost functions, graph edit distance
can be adopted and tailored to various applications such as fingerprint classification [99],
diatom identification [4], or clustering of color images [125], just to mention a few.

The major drawback of graph edit distance is its high computational complexity that
restricts its applicability to graphs of rather small size. In fact, graph edit distance belongs
to the family of quadratic assignment problems (QAPs), which in turn belong to the class
of NP-complete problems. That is, an exact and efficient algorithm for the graph edit
distance problem can not be developed unless P = NP . Therefore, both the development of
fast approximation algorithms and the gradual improvement of established approximation
schemes are important and reasonable lines of research. In recent years, a number of methods
addressing the high computational complexity of graph edit distance computation have been
proposed [29, 142, 75, 102].

Given two graphs, the source graph g1 and the target graph g2, the basic idea of graph edit
distance is to transform g1 into g2 using some edit operations. A standard set of distortion
operations is given by insertions, deletions, and substitutions of both nodes and edges. A
sequence of edit operations e1, e2, ...ek that transforms g1 completely into g2 is called an edit
path between g1 and g2. To find the most suitable edit path out of all possible edit paths
between two graphs g1 and g2, a cost is introduced for each edit operation, measuring the
strength of the corresponding operation. The edit distance of two graphs is then defined by
the minimum cost edit path between two graphs. As can be thought, the cost function is
highly dependent on the attributes of the nodes and edges. A different cost, specific for each
problem to be solved, is applied to each of the distortion operations.

The definition of the cost usually depends on the meaning of the graphs, and prior
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knowledge on the graphs’ labels is often inevitable for graph edit distance to be a suitable
proximity measure. However, the possibility to parametrize graph edit distance by means of
a cost function crucially amounts for the versatility of this particular dissimilarity model and
automatic procedures for learning the edit cost can be used [97, 98, 100, 101] to calculate
the optimal costs.

We propose the use of the algorithmic framework presented in [123] which allows the
approximate computation of graph edit distance in a substantially faster way than traditional
methods. The basic idea of this approach is to reduce the difficult problem of graph edit
distance to a linear sum assignment problem (LSAP). LSAPs basically constitute the problem
of finding an optimal assignment between two independent sets of entities. There is a large
amount of available polynomial algorithms for LSAPs and an interested reader can find more
information in [32].

In our case we are using the Euclidean Cost Function defined as follows: for two graphs
g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2), where µ1, µ2 and ν1, ν2 are the sets of node
and edge labels, respectively, the Euclidean cost function is defined for all nodes u ∈ V1,
v ∈ V2 and edges p ∈ E1 and q ∈ E2 by:

c(u→ ε) = α · τnode
c(ε→ v) = α · τnode
c(u→ v) = α · ‖µ1(u)− µ2(v)‖
c(p→ ε) = (1− α) · τedge
c(ε→ q) = (1− α) · τedge
c(p→ q) = (1− α) · ‖ν1(p)− ν2(q)‖

(6.1)

where τnode, τedge ∈ R+ are non-negative parameters representing the cost of a node and
edge deletion/insertion, respectively. The weighting parameter α ∈ [0, 1] controls whether
the edit operation cost on the nodes or on the edges is more important.

6.4 Results

6.4.1 Experimental setup

We run several experiments on COLON-VESSEL data set (see Section 3.1.1) to assess the
degree of robustness of blood vessel representation using graphs. The graphs are created
from the ground truth provided by experts. From the original image graph, we progressively
and randomly eliminate junctions or endpoints -and the corresponding edges converging
to them-. A query consisting of the identification of the altered graph over the set of the
original graphs for each image is performed. The experiment removes a certain percentage of
keypoints from the original graph (Figure 6.3 shows an example) before they are compared
in terms of graph edit distance. This proposed graph matching framework will provide
the closest graph among the data set for each query frame. Hence the system will always
provide a matching -correct or not-. We do not address this issue as our goal is to assess
the descriptive power of keypoint graphs rather than proposing a real solution to the frame
matching problem, which should be addressed in the future.

For the particular case of blood vessel structure representation using graphs we define
the following cost function:

• Node deletion/insertion, c(u→ ε), c(ε→ v): cost is a constant value equal to 0.9.

• Node substitution, c(u→ v): absolute value of the difference between distances to the
centroid.

• Edge deletion/insertion, c(p→ ε), c(ε→ q): cost is a constant value equal to 1.7.
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(a) (b) (c)

Figure 6.3: Graph modification examples (note that the removed keypoints are
different as they are removed randomly). (a) Original graph. (b) Graph after 40
nodes removal. (c) Graph after 70 nodes removal.

(a) (b) (c) (d)

Figure 6.4: Graph extraction examples. (a) Binary pattern. (b) Graph created
with junctions and endpoints on original image. (c) Graph created with junctions on
original image. (d) Graph created with endpoints on original image.

• Edge substitution, c(p→ q): cost is 0.

For the parameter setting we apply the well documented values in the literature [122, 124],
and which appear to provide good results for our particular the data set, being the deep
study about parameter optimization out of the scope of this paper but a necessary step for
a potential working prototype.

The removal of keypoints is carried out in a 5% step -which entails 20 intervals- and each
step is repeated 10 times to provide statistically significant results regarding the impact of
the removal of keypoints. We run three different experiments, regarding the keypoints we
used -junctions, endpoints and both junctions and endpoints- to assess the descriptive power
of each possibility (see examples in Figure 6.4).

6.4.2 Experimental results

Figure 6.5 shows two results for the three experiments introduced above.

Regarding junctions, we observe in Figure 6.5a that a 100% matching between incomplete
graphs is possible if a given intersection detector is able to achieve less than 20% missing
error. Matching success decreases when we remove more than 20% of the intersections in the
image, reaching very low matching performance when removal reaches 70%. As mentioned
above, we do not obtain a 0% matching because the experiment always provides the closest
graphs. Hence when all the nodes are removed the similarity output will provide with a
match with the graph with less nodes. Figure 6.5b presents a breakdown of the results for
each image; this experiment confirms that for the majority of the images matching starts
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Impact of percentage of node removal in the number of correct matches.
(a,b) Junctions. (c,d) Endpoints. (e,f) Junctions and endpoints.
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to fail when we remove more around 25% of the junctions. Figure 6.5e shows the same
behaviour when we remove randomly either a junction or a endpoint.

Regarding endpoint removal, we can observe a similar behaviour in Figure 6.5c although
in this case the minimal error permitted for keypoint detectors reaches 25%. One possible
reason behind this differences is that in this case nodes tend to have less edges reaching
them. Results broken down per image -Figure 6.5d- show again the same trend, although in
this case there seems to be a more direct relation between the number of endpoints in the
image and the threshold percentage needed to lose matching precision.

6.5 Conclusions

One of the needs expressed by physicians is the ability of following-up lesions in colonoscopy
procedures. One of the elements present in the endoluminal scene that can be used to
help tracking these lesions are blood vessels, as their appearance tends to keep stable along
different revisions of the same patient. Blood vessels can be seen as branching patterns
and therefore they may be characterized by means of the position and number of branching
points. Our approach for characterizing blood vessels consists of using graphs created from
detected branching points in a way such their structure can be unequivocally recognized.

In this paper we present a study of the impact of the accuracy in keypoint detection in
the way to develop graph matching based registration systems for colonoscopy frames. We
propose a graph matching configuration whose only purpose is to provide a framework for
our experiments. Experimental results show that there is a clear decrease in the success of
the matching framework when a considerable amount of nodes is removed. We confirm that,
when the removal of nodes keeps below certain percentages, blood vessels are still suitable
as anatomical markers. This conclusion applies -with small differences- for the three kinds
of graph characterization we have tested: using intersections/junctions, endpoints, or both
intersections and endpoints.

Future work should consist of making further analysis regarding the impact of the con-
nectivity of a given keypoint, that is, the relationship between missing the detection of a
highly connected keypoints and the descriptive power of the associated graph. Given the
trends concluded from this study, further research should be performed regarding bigger
datasets. Different approaches to define the graph configuration and cost functions should
be studied and experiments should also be extended to considering the several kind of image
deformation that patterns can suffer in a colonoscopy procedure. As keypoints are the source
of the graphs characterizing blood vessels, an accurate intersection and endpoint detector
will be necessary. The degree of information in a query frame should also be evaluated to
test the ability of a matching system to provide a matching for the query or to discard the
request because of lack of information in the scene.

Another interesting research line would address the assessment of the descriptive power
of graphs after a partial removal of node information in other kind of graphs from structured
patterns.



Part III

ENDOLUMINAL SCENE
ANALYSIS

61





Chapter 7

Blood Vessel Mitigation to improve
polyp characterization

In this chapter we face the problem of blood vessels interfering in the analysis of the endo-
luminal scene. Vascular content hinders the extraction of scene information to locate polyps
and adenomas. We will introduce a method for colonoscopy images which will allow us
to separate information referring to blood vessels from scene objects related to the shape
of the intestinal wall. By means of our approach we are able to make a difference between
2-dimensional objects, like blood vessels, and 3-dimensional objects, such as folds and polyps.

Our method is built on a previously published model of appearance for polyps. We follow
the lines depicted in [18, 21] which pointed out the use of energy images, particularly the
output of a valley detector, to make a first approach to endoluminal scene object boundaries
detection. The valley information is used to generate accumulated energy maps to guide
polyp localization methods. We provide a solution to mitigate the effect of blood vessels on
the energy image, which shows to be useful to provide a more complete scene description.
The mitigation step helps to improve the performance of the polyp localization algorithm.

We wil also present a novel segmentation method from Depth of Valley Accumulation
(DOVA) Energy Maps (SDEM) algorithm for polyp localization in colonoscopy images. We
work under the assumption that a faithful segmentation of the polyp region along with a
exhaustive description of the polyp region could be potentially used to characterize polyps
and will allow a posterior tracking of the lesion. Our segmentation method has been de-
veloped by considering the way the mentioned energy maps are calculated. We assess the
performance of our method by comparing it with general and specific segmentation methods
over a publicly annotated database.

7.1 Related work

As already mentioned, there are several bibliographic references devoted to the description
of elements of the endoluminal scene. Regarding the scope of this paper, we can divide the
published works into two different areas, namely: 1) Image enhancement and preprocessing;
and 2) Polyp localization.

There are several types of artifacts associated to colonoscopy video that are a conse-
quence of the image acquisition process, which fundamentally consists of color phantoms
and specular highlights. Color phantoms are caused by a temporal misalignment of the color
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channels implied by the use of monochrome CCD cameras in colonoscopy (see Section 1.1).
A worsening on the quality of images is caused by the fact that RGB components are taken
at different times [9, 45]. Specular highlights appear on the intestinal surface as an effect of
frontal illumination, causing the apparition of highly saturated regions in the image. There
are several approaches to detect and restore the surface below the specular highlights [8, 69].

Polyp localization concentrates the great majority of the bibliography devoted to intel-
ligent systems for colonoscopy. One relevant issue, which has not received much attention,
relates to the impact of the different elements of the endoluminal scene -such as folds, wrin-
kles and vessels- in the overall performance of the polyp localization methods.

7.1.1 Blood vessel segmentation

Up to our knowledge, besides the work presented in this chapter, the role of blood vessels in
polyp localization has not received much attention in the literature. Therefore, there is not
particular bibliography about vessel detection in colonoscopy videos. However, many differ-
ent methods have been used to provide a segmentation of blood vessels in two-dimensional
images. Most of them have been tested in retinal or angiography images. Despite the wide
variability of enhancement steps and segmentation methods they are usually separated in
two big groups: pixel-based methods and tracking-based methods [93].

• Pixel-based methods include different approaches: kernel-based methods, model-based
techniques, classifier-based methods, and morphology-based strategies.

– Kernel-based methods make use of a convolution operator with a particular ker-
nel designed according to a model. The aim of the convolution is usually to
extract vessel borders or centerlines. A matched filter approach based on Gaus-
sian kernels is used in some methods to model the cross-section of a blood vessel
[41, 64]. These methods use Gaussian-shaped templates in different orientations
and scales to identify vessel profiles.

– Model-based techniques verify a model previously stated. An example of this ap-
proach [72] proposed a knowledge-guided adaptive thresholding framework where
binarization is used to generate object hypotheses. Those hypotheses are only
accepted if they pass a verification procedure.

– Classifier-based methods intend to assign each pixel in the image to the vessel or
non-vessel class. In this group we find what the authors called a primitive-based
method [145]. In this method a ridge detection is performed as a first step to
achieve a segmentation of the image. Afterwards, that information is considered
to classify regions and pixels. In some examples a bayesian classifier is used
after computing feature vectors obtained by Wavelet Gabor responses [140] or
a neural network is used after computing a feature vector based on moment
invariants-based features [91].

– Morphology-based techniques use morphological operators to take advantage of
shape characteristics of blood vessels. Morphological operators are usually com-
bined with other techniques. Other authors used the extraction of vessel cen-
terlines combined with local information as the vessel length is followed by an
iterative vessel filling phase based on morphological filters [93]. Mathematical
morphology can also be combined with curvature evaluation to differentiate ves-
sels from other structures [162].

• Tracking-based methods aim to obtain the vasculature structure using local infor-
mation to follow vessel centerlines. Tracking techniques trace vessels from selected
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starting points which usually correspond to well known anatomical structures. At
each point a neighborhood is evaluated to decide whether they are vessel candidate
pixels regarding some kind of local information. The process finishes when the pixels
evaluated are considered to be end points. Other approaches that can be included
in this category are based on deformable or snake models. This techniques place an
active contour model near the aimed contour and evolve it iteratively to fit the desired
object [50].

Many methods using techniques in different categories can also be found. For instance,
some approaches combine a classification based on support vector machine followed by a
tracking stage based on the Hessian matrix [159].

7.1.2 Polyp localization and segmentation

We propose a classification of the available works on polyp characterization according to their
specific applications. The works in the literature can then be grouped into two categories:
1) polyp detection and localization, focused on determining whether there is or not a polyp
in a given image and, in case of polyp presence, indicate the precise region in the image
where the polyp is and 2) polyp segmentation, which aims at determining which pixels in
the image correspond to the polyp.

Concerning the first category, we could divide the existing methods in two different
groups according to the type of information used to characterize the polyps [19]: shape-based
and texture and color-based. Shape-based localization methods propose the observation of
specific cues in image contours that match to polyp usual outlines. Among this group,
two main approaches are commonly used: detection by curvature analysis and detection
by ellipse fitting. Polyp detection by curvature analysis intends to locate polyp-like shapes
by analyzing curvature profiles of the contour information extracted from the image. Some
examples belonging to this group can be found at [81, 71, 147, 19]. Polyp detection by
ellipse fitting methods work under the assumption that polyps tend to present an elliptical
shape and aim to fit deformable ellipses into the contour information found in the endoscopic
image. Works within this group can be found at [76, 20]. There are also some methods that
combine both curvature and ellipse fitting cues such as the one presented in [68].

Regarding texture and color-based methods, most of them are based on a classification
framework to determine whether each pixel candidate belongs to a polyp based on the com-
putation of a selected descriptor. Following this procedure, several state-of-the-art texture
descriptors have been used such as wavelets [77], local binary patterns [158] or co-ocurrence
matrices [5]. The work of [43] obtains polyp characterization by combining MPEG-7 texture
and color descriptors. Other works, such as [109], propose a combination of texture and
shape information to aid in polyp detection tasks.

Polyp segmentation methods in colonoscopy videos have been mainly applied for CT
colonoscopy images [57] or chromoendoscopy [58]. Some simple segmentation methods have
also been applied, although they are prone to be affected by noise and other image artifacts
-specular highlights, image blurring- [121]. The only reported polyp segmentation method
whose performance has been assessed in a public database is the one published in [18].
This paper compared the performance of a endoscopy image-focused method against general
state-of-the-art segmentation methods such as Normalized Cuts [138] or Turbo Pixels [86]
and proved that specific methods tend to outperform general approaches.

All the available works are focused on the characterization of polyps in the endolumi-
nal scene but recent works [21] indicate the importance that the characterization of other
elements (specular highlights, blood vessels, lumen) may have in polyp characterization.
Consequently, this approach proposes to make efforts in the characterization of the whole
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endoluminal scene to improve the performance of polyp detection and localization methods.
Considering this, we will use the so-called MSA-DOVA localization method [21], to build
up our polyp segmentation method in colonoscopy images. Our novel Segmentation from
Energy Maps -SDEM- algorithm is based on the characterization of polyp boundaries in
terms of valley information. SDEM also considers how MSA-DOVA energy maps integrate
valley information to provide an initial segmentation of the polyp.

MSA-DOVA energy maps

MSA-DOVA energy maps are based on a model of appearance for polyps which was firstly
described in [18]. This model combined information on how colonoscopy frames are acquired
with the appearance of polyps in those colonoscopy frames. The model of appearance for
polyps describes polyp boundaries by means of valley information.

The calculation of MSA-DOVA energy maps is based on the assumption that a pixel
inside a polyp should be surrounded by valleys in several directions. The calculation of these
maps is based on the use of a grid of radial sectors, Si. Under each sector the maximum of
DV image is extracted. MSA-DOVA offered an improvement over sum-based accumulation
as presented in [21], using a median operator to calculate the final accumulation value.
MSA-DOVA accumulation value for every image coordinates, ~x, is calculated as follows:

MaxSec(~x) = max
Si
{DV }, i = 1, .., ns (7.1)

Acc(~x) = Median
i

(MaxSec(~x)) (7.2)

where ns is the number of sectors in the grid. High energy regions in the accumulation map
correspond with the polyp.

7.2 Feature image computation

As introduced in Section 2.5, blood vessels appear in 2-dimensional images as piecewise
linear connected components. Unlike other image types, such as retinal images, the vascular
structure in colonoscopy images is not connected in a fully tree-like way nor a single-root
tree. The consequence of this is that spatial heuristics such as those mentioned above are
not helpful in this case. Therefore, considering the previous definition, intensity valleys in a
monochromatic image are a good starting point to detect the vascular structure, as confirmed
by the existing related works. However, it becomes an overly broad model in the case of
colonoscopy images since the endoluminal scene is made up of several objects of different
nature. The problem with this simple blood vessel model is that it also matches other visual
components of the endoluminal scene like boundaries of specular highlights, shades, bubble
edges, colon wall folds or polyp contours.

We propose a framework adapted to MSA-DOVA localization method [21] to remove
vessel information prior to polyp localization. In order to separate vessel information from
the remaining anatomical structures we propose the following schema consisting of different
stages, namely: 1) Image preprocessing; 2) Valley detection and 3) Vessel mitigation 4)
MSA-DOVA. In the next sections we will present the proposed stage of the framework and
we will also briefly introduce MSA-DOVA localization method.
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(a) (b) (c)

Figure 7.1: (a) Original image. (b) Specular highlights mask. (c) Output image.

7.2.1 Pre-processing

Our image preprocessing consists of two different stages: obtaining images from interlaced
video and specular highlights detection and inpainting.

Interlaced video frame consists of two sub-fields taken in sequence, each sequentially
scanned at odd and even lines of the image sensor [47]. All of the newer displays, contrary to
previous analogic technology, are inherently digital. This means that the display comprises
discrete pixels. Consequently the two fields need to be combined into a single frame, which
leads to various visual defects which the deinterlacing process should try to minimise. In
our case, we perform deinterlacing by taking one of each pair of horizontal lines of the image
-the odd one- and then resizing it to half the original size. As mentioned in Section 7.1,
specular highlights detection and inpainting is already covered in the literature. In our
case, as the method is applied to the same type of images, we will use a method already
available [8] to automatically segment and inpaint the specular highlights. The proposed
specular highlights detection method consists of two different modules. The first one uses
color balance adaptative thresholds to determine the parts of specular highlights that show
too high intensity to be part of nonspecular image content (saturated parts of the image). We
have to take into account that specular highlights can appear only in one of the three RGB
channels and, while it may suggest to apply a different threshold for each of the channels, the
authors set one fixed gray scale threshold and compute the color channel thresholds using
available image information. The second module compares every given pixel to a smoothed
nonspecular surface color at the pixel position, which is estimated from local image statistics.
This module aims at detecting the less intense parts of the specular highlights in the image.
After specular highlights detection is done, image inpainting is performed. Image inpainting
is the process of restoring missing data in still images and usually refers to interpolation of
the missing pixels using information of the surrounding neighborhood. One straightforward
solution will be to replace each detected specular highlight by the average intensity on its
contour. A problem with this approach is that the resulting hard transition between the
inpainted regions and their surroundings may again lead to strong gradients. In order to
prevent these artifacts, the inpainting is done in two levels. We use a filling technique where
the image is modified by replacing all detected specular highlights by the centroid color
of the pixels within a certain distance range of the outline. The second level implies the
conversion of the binary mask that marks the specular regions in the image to a smooth
weighting mask. The resulting integer valued weighting mask is used to blend between the
original image and the smoothed filled image.

An example of specular highlight detection and inpainting can be seen in Figure 7.1.
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(a) (b) (c) (d) (e) (f)

Figure 7.2: Second derivative of anisotropic gaussian ( single scale σ and 6 orien-
tations).

7.2.2 Valley detection

Our basic blood vessel model states that blood vessels appear as valleys in monochromatic
images. Observation of colonoscopy images in RGB color space shows that the green compo-
nent is the one that provides greater contrast between vessels and background, which agrees
with the generalized idea regarding retinal images [93]. Therefore, the valley detection stage
will have as input the preprocessed green component. Since vessels are described as piecewise
linear connected components, different linear feature detectors appear as suitable candidates
[108]. Among those detectors, we selected to use matched filters (see Appendix A for another
example). It does not imply it to be the only possible solution, considering that designing a
valley detector is not the aim of this study.

Blood vessels appear as darker line segments due to its lower reflectance with respect
to colon walls. It prompted us to design our filter templates based on second derivatives
of anisotropic Gaussian kernels. The kernel values are defined by the oriented Gaussian
function described by:

G(σx,σy),θ =
1

(2π)σxσy
e
−
(
x̃2

2σ2x
+ ỹ2

2σ2y

)
(7.3)

where (σx, σy) are the scales in the corresponding axis and θ is the rotation angle of the
filter. x̃ and ỹ are the coordinates given by the rotation angle. Hence they are defined as:

x̃ = x cos θ + y sin θ
ỹ = x sin θ − y cos θ

(7.4)

As we use anisotropic Gaussians with σ = σx = 2σy the Gaussian function results in:

Gσ,θ =
1

(2π)2σ2
e
−
(

x̃2

2(2σ)2
+ ỹ2

2σ2

)
(7.5)

Since we are modeling blood vessel profiles with second derivatives of anisotropic Gaus-
sian kernels, the kernel will be defined as (see Figure 7.2):

∂2
ỹGσ,θ =

ỹ2 − 1

σ4
Gσ,θ (7.6)

We apply a normalization so that the geometry of the valleys is prioritized:

GNσ,θ :=
‖∂2
ỹGσ,θ ∗ I‖

‖∂2
ỹGσ,θ‖‖I‖

(7.7)

where ‖ · ‖ stands for the L2 integral norm and ∗ denoting the convolution operator.
The kernels are applied for 8 equally distributed orientations and scales σ = [2, 4, 6],

which cover all vessels width in our test dataset. It all means we have 24 output images,
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: (a) Image after highlight removal. (b) Green component. (c) Valley
energy image. (d) Saturation (HSV space). (e) Shadings energy image. (f) Final
output energy image.

each of them corresponding to a determined orientation and scale. Hence, the output Ivalleys
must be a combination of all of them, defined as follows:

Ivalleys = max
i,j

(
GNσi,θj

)
(7.8)

Prior to the valley detection method described above, structure preserving diffusion is ap-
plied in order to remove image surface irregularities while preserving image structure. This
kind of feature-preserving filters are inspired in heat diffusion theory and apply iterative
methods that use partial differential equations (PDEs). Diffusion is a physical process for
balancing concentration changes with strong mathematical foundations. This way, smooth-
ing filters based on diffusion interpret image intensity as that ’concentration’. Then, noise
or artifacts are considered image inhomogeneities. The image intensity structure is adapted
by a diffusion tensor. This tensor must be designed considering the diffusion values across
structures to preserve.

Anisotropic diffusion proposed by Gil et. al. [53] will be used in this study. Non-linear
anisotropic diffusion improves the adaptation of the tensor to image structure. This way
diffusion values can be reduced on feature regions going around them. Anisotropic filtering
will provide an output image so that the features are preserved and the noise (diffusion
inhomogeneities) is reduced.

The output of this stage, Ivalleys, is a gray level image in which the higher the value of a
pixel, the higher the chances of that pixel to be part of a valley. See Figures 7.3a, 7.3b and
7.3c for an example of the process described so far.
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7.2.3 Vessel mitigation

With regard to intensity values, both blood vessels and shadings from folds and wrinkles
appear as elongated regions which are darker than intestinal walls in the background. Previ-
ous works showed that shadings from all the endoluminal structures can be approximated by
the Phong’s model [18], which includes ambient, diffused and specular components. Spec-
ular reflections have a spectral distribution nearly the same as the incident light but the
diffuse component depends also on the object properties [136]. The ambient component is a
non-directional source that groups environmental inter-reflections [27]. The resulting color
of a given region in the endoluminal scene will depend on the orientation of the light source,
which is coupled to the camera with its same orientation. In that sense, the dark areas
created by folds are never oriented to the light source, and thus the nature of their color
is conditioned by this orientation. Local variations of surface orientation in folds affect to
the components in a different way. Specular reflection contribution decreases more quickly
than the diffuse component in regions not oriented to the camera. Besides, since the diffuse
component depends on the surface reflective properties and the surface orientations, regions
which are not oriented to the camera, such as parts of folds and wrinkles, will appear as
more saturated in color. In these regions the contribution of the specular component is lower,
and the diffuse component will contribute to a higher saturation in color. Conversely, blood
vessels are flat visual features that can be found in regions with any kind of orientation so
that the nature of their color is not affected differently than the surrounding areas.

These considerations about the nature of the objects in the endoluminal scene based
on its illumination led us to explore HSV color space [73], since it decouples the intensity
of the image -which conveys no discriminative power between vessels and shadings- from
its chromatic components. In HSV space H, S and V stand for hue, saturation and value,
respectively. Hue is associated with the dominant wavelength in the color spectrum. Sat-
uration refers to the amount of white light mixed with that dominant wavelength and it is
defined as:

S =
max (r, g, b)−min (r, g, b)

max (r, g, b)
= 1− min (r, g, b)

max (r, g, b)
(7.9)

Assuming that colon wall properties remain unchanged at folds and wrinkles, the different
color they show is to be related exclusively to changes in the illuminant contribution. There-
fore, fold/wrinkle regions will have higher levels of saturation than the neighboring colon
wall regions. An exhaustive test on our test dataset confirmed that color-saturation levels
in vessel regions appear to be systematically closer to the levels of the adjoining background
intestinal walls (see an example in Figure 7.3d).

Fold/wrinkle regions can then be described as piecewise linear connected regions in the
saturation component image. An energy image describing the presence of folds and wrinkles
in the scene, Ishadings, can be computed using the techniques exposed in Section ?? taking
the complementary of saturation as input. Figure 7.3e shows an example of this result. The
final output image,Iout, (see Figure 7.3f) will be computed as:

Iout(x, y) = Ivalleys(x, y)Ishadings(x, y) (7.10)

This resulting image is expected to enhance shadings from folds, wrinkles and polyps
while mitigating blood vessels. When vessel mitigation is included in the polyp localization
framework, DV image from Eq. 7.1.2 is substituted by Iout(x, y), as obtained from Eq. 7.10.
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(a) (b)

(c) (d)

Figure 7.4: Examples of polyp segmentation from the output of an energy map:
(a) Original image. (b) DV image. (c) Acc energy map. (d) Initial segmentation
obtained by joining the position of the pixels that contributed to the maximum of
MSA-DOVA accumulation image. Maximum of MSA-DOVA energy map is marked
as a green square.

7.3 Polyp Segmentation method

Our polyp segmentation method -SDEM- uses information from both DV image and the way
Acc energy maps from MSA-DOVA are calculated. Our method requires that maximum of
MSA-DOVA maps falls within the polyp (an example of the output of MSA-DOVA energy
maps is shown in Figure 7.4c). In that case we can obtain a first segmentation of the polyp
by joining the position of the pixels that contributed to this maximum (Figures 7.4b and
7.4d).

This first segmentation may present irregularities due to several reasons, such as the
presence of spurious valleys from other structures in the scene or the lack of contour infor-
mation from the polyp (Figure 7.4b). These irregularities may cause positions of maxima in
DV image for adjacent sectors not to be close to one another (Figure 7.5a).

Our goal is to eliminate the irregularities in order to have a continuous and locally
circular boundary -typically associated to polyps- as the contour of the final segmentation.
Our method locally explores distances from maxima under each sector to the coordinates of
the maximum of accumulation, ~cmax, extracted as the maximum from Acc energy map. This
way we identify the sector maxima that are far from the circumference that represents the
median of the distances from each maximum to the accumulation center (Figure 7.5b). We
use the median distance as a way to correct irregular positions in favor of the most common
distance value within a given neighborhood of positions. In this case the use of other options
such as mean value is not suitable as the contribution of irregular positions have been proven
to still have an strong influence in the performance. The positions of the pixels identified
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(a) (b)

Figure 7.5: Graphical illustration of SDEM algorithm. Sector maxima are labeled
as blue crosses. The original position showing irregularity and the corrected position
are labeled as a red cross and a green cross, respectively. The median of distances to
cmax is shown by the red discontinuous circumference.

as source of irregularities are corrected to have similar distances to ~cmax. SDEM consists of
the following steps:

1. Extraction of the position of the coordinates of the maximum of Acc energy map:
~cmax ∈ Image | Acc(~cmax) ≥ Acc(~x) ∀~x ∈ Image.

2. Definition of a grid of ns radial sectors centered in ~cmax.

3. Computation of ~pmaxi , the position of the maximum of DV image under each sector
Si, as ~pmaxi ∈ Si | ∀~k ∈ Si, DV (~pmaxi ) ≥ DV (~k), for i = 1, .., ns.

4. Conversion of ~pmaxi to polar domain: ~qmaxi = [rmaxi , θmaxi ], where r stands for the
radial coordinate and θ for the angular coordinate.

5. Computation of the new radial coordinate, rsdemi , as the median of the rj values in
an angular interval: rsdemi = Median

j
(rmaxj ), j ∈ [i − ωs, i + ωs], where ωs defines the

integration angular interval centered on Si.

6. Definition of the new polar coordinates as ~qsdemi = [rsdemi , θmaxi ]

7. Revert the conversion to cartesian coordinates to obtain the corrected position of the
maximum under each sector, ~psdemi .

SDEM algorithm has one single parameter ωs which sets up the size of the integra-
tion angular interval. MSA-DOVA parameters -minimum radii -radmin-, maximum radii
-radmax- and the number of sectors -ns- are set to the values published in the original paper
(radmin = 25,radmax = 135 and ns = 180). Figure 7.6 illustrates SDEM methodology with
a qualitative example of segmentation.
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(a) (b) (c) (d)

Figure 7.6: SDEM illustrative example. (a) Preprocessed image and initial segmen-
tation, (b) Polar representation of the initial segmentation, (c) Polar representation
of corrected segmentation, (d) Preprocessed image and corrected segmentation.

7.4 Vessel mitigation experiments

7.4.1 Experimental Setup

Several experiments were developed to assess quantitatively the performance of our method
on mitigating blood vessels. Both CVC-ColonDB and COLON-VESSEL-TRACE data sets
have been used in the experiments (see Chapter 3.1.2). More specifically, we want to compare
the energy corresponding to blood vessels in both the valley energy image and the valley
energy image after blood vessel mitigation.

Since our vessel masks in COLON-VESSEL-TRACE data set have been created only as
descriptors of its trace without any width information, we dilated the masks of blood vessels
using morphological operators to provide us with a region of blood vessel influence. It allows
us to separate the energy in blood vessel regions from the energy in non-vessel regions. Given
Lv as the vessel mask and ⊕ as the dilation operator, vessel energy, Ev, in the considered
energy image I is defined as:

Ev =

∑
(x,y)∈I

I(x, y)(Lv ⊕ Sr)(x, y)

∑
(x,y)∈I

I(x, y)
∗ 100 (7.11)

Consequently, the total energy in an image, Etotal, will satisfy:

Etotal = Ev + Env = 100; (7.12)

which describes the balancing of energy between vessels and non-vessels as a percentage of
contribution.

7.4.2 Vessel mitigation results

The proposed metrics have been computed for both the valley energy images and the valley
energy images after vessel energy removal. Figure 7.7a shows Ev performance metric for
each image in the whole COLON-VESSEL-TRACE already introduced. The figure allows
us to verify the decrease of energy in areas previously identified as blood vessels as well as the
variability of that decrease. The decrease of energy referred to vessels depends on the content
of visual objects on the image. Images which had a high degree of vascular content prior to
our processing and no folds interfering with them suffer an important decrease. Nevertheless,
images whose vascular content was low or its trace is close or strongly crossed by folds do
not show remarkable differences in terms of vessel energy, as expected. An example of both
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(a) (b)

Figure 7.7: (a) Energy under vessel mask for each image. (b) Variation of vessel
energy regarding vessel energy at input.

situations can be seen in Figure 7.8. First row in the figure shows an example where the
input image has a large amount of vascular content in a clear surface not interfered with
shades or folds. The example in the second row contains few vascular content and many clear
folds. For this reason, folds and shades keep most of the image energy after vessel detection
and vessel energy removal has less impact. Figure 7.7b plots the variation of energy under
vessel masks regarding the energy under vessel mask prior to our removal step. The increase
of energy, ∆Ev, is defined so that a positive value corresponds to vessel energy decrease:

∆Ev = Ewov − Ewv (7.13)

where Ewov is the energy image without vessel mitigation and Ewv is the energy image with
vessel mitigation. We can see that the energy decrease is related to the energy at the
beginning of the process (Pearson correlation coeficient of 0.65). The results regarding
energy in non-vessel regions are the complementary of the ones presented in Figure 7.7a as
stated in Equation 7.12. Therefore, we can also affirm that regions which has been manually
identified as non-vessels does not suffer substantial energy decrease.

7.4.3 Application to polyp localization

Our aim is to provide a first approximation of a blood vessels characterization. This charac-
terization could be useful to provide a better scene description, but it also shows to provide
relevant information for some other applications such as helping in polyp localization. Polyp
localization and the different approaches to this topic is further covered in Chapter ??. In
this section we will measure how the characterization of blood vessels could be useful to
improve the polyp localization methods in the DOVA family [18, 21], which have already
been tested in the CVC-ColonDB public data set (see Section 3.1.2). In our case, we will use
the output of our processing scheme as the depth of valleys image, and we will measure the
accumulation of energy by using the MSA-DOVA descriptor. MSA-DOVA descriptor defines
an accumulation image by using data from a depth of valleys image.

Our hypothesis is that by identifying which parts of the energy image correspond to
blood vessels information we could be able to mitigate their effect and check if the energy
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Example 1: (a) Input image. (b) Valley energy image. (c) Energy
image after energy removal). Example 2: (d) Input image. (e) Valley energy image.
(f) Energy image after energy removal.

inside and outside the polyp changes. The metric that we will use in this experiments is:

Ep =

∑
(x,y)∈I

I(x, y)Lp(x, y)

∑
(x,y)∈I

I(x, y)
∗ 100 (7.14)

where Lp is the polyp mask from the Polyp Dataset. We measure the percentage of energy
inside the polyp mask whereas the energy outside the polyp will be the complementary. We
expect that a polyp localization decision scheme based on the amount of energy concentrated
on some area of the image will benefit from a blood vessel mitigation system which reduces
the presence of vessel energy. We measure the increment of energy inside the polyp mask as:

∆Ep = Ewp − Ewop (7.15)

where Ewop stands for the energy image without vessel mitigation and Ewp stands for the
energy image with vessel mitigation. That difference of energy, ∆Ep, referred to Ewop is
plotted in Figure 7.9. Table 7.1 shows that we improve the amount of energy inside the polyp
mask in a large majority of images (217). This is true even considering that an increase or
decrease lower than a 5% can be assumed as not significant (74 improved images).

To conclude with this section, we will show the direct impact that blood vessels mitigation
has on polyp localization. In this case we will use the same polyp localization criteria than
the one depicted in [18], that is, measuring if the maxima of the accumulation image is
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Figure 7.9: Difference of percentage of energy under polyp mask before and after
blood vessel energy mitigation.

Table 7.1: Difference of percentage of energy under polyp mask with and without
blood vessel mitigation.

∆Ep # of images

> 0 217

> 5% 74

< −5% 13

Table 7.2: Polyp localization results (placing accumulation maxima inside polyp
mask): comparing results using vessel mitigation with no vessel mitigation.

# of images Polyp Dataset %

improved 59 19.67%

worse 17 5.67%

same 224 74.67%

placed inside the polyp mask. We can see a comparison between the results before and after
applying our blood vessel energy mitigation in Table 7.2.

As we can see from Table 7.2, by applying our blood vessel mitigation algorithm the
maxima of the accumulation image is placed inside the polyp mask in 59 more images
(19.67%), the results were worse for 17 (5.67%), and no modification took place for 224
images (74.67%). This study shows that blood vessel mitigation can be a key part in the
improvement of a polyp localization scheme, as it does have an impact on direct polyp
localization results. Finally we show in Figure 7.10 some qualitative results of the comparison
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.10: Example 1: (a) Original images. (b) Energy image before shade de-
tection. (c) Accumulation image before shade detection. (d) Energy image after
shade detection. (e) Accumulation image after shade detection (polyp region marked
in green). Example 2: (f) Original images. (g) Energy image before shade detec-
tion. (h) Accumulation image before shade detection. (i) Energy image after shade
detection. (j) Accumulation image after shade detection (polyp region marked in
green).

of the accumulation images before and after applying our processing scheme. The first
row shows a positive example, where the percentage of energy inside the polyp grows after
applying vessel mitigation whereas the second row shows a negative example.

7.5 Polyp segmentation experiments

7.5.1 Experimental Setup

In order to assess the performance of our proposal, we will compare our method to the
following both general and endoscopic-specific methods:

• Normalized Cuts (NCuts): The normalized cuts method [138] is a graph theoretic
approach for solving the perceptual grouping problem in vision in which every set
of points lying in the feature space is represented as a weighted, undirected graph.
Segmentation is performed by disconnecting edges with small weights.

• Turbo pixels (TurPix): this algorithm [86] starts by computing a dense over segmen-
tation of an image by means of a geometric-flow-based algorithm. This segmentation
respects local image boundaries while limiting under segmentation by using a com-
pactness constraint. Regions are refined by using criteria such as size uniformity,
connectivity or compactness.

• Watershed with markers (WSM): watershed segmentation [18] considers a grayscale
image as a topographic surface and achieves the segmentation by a process of ”filling”
of catchment basins from local minimums. Providing markers helps the algorithm to
define the catchment basins that must be considered in the process of segmentation
[166].

• Depth of Valleys (DoV)-based Region Merging Segmentation [18] (DV-RMS): this
method assumes polyp boundaries to be described in terms of valley information.
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Table 7.3: Segmentation results without -160 images- and with image preprocessing
-203 images-.

Method Prec [%] Sens [%] F2 Prec [%] Sens [%] F2

NCuts 20.29 80.27 0.50 18.02 83.84 0.48

TurPix 19.40 75.56 0.47 14.75 76.30 0.41

WSM 42.89 68.36 0.61 43.68 74.40 0.65

DoV-RMS 56.87 44.93 0.47 54.13 57.46 0.56

SDEM 69.93 69.32 0.69 65.07 81.22 0.77

The method starts from a first rough segmentation of the input image obtained by
means of watershed. The segmented regions are merged using different criteria such
as boundary strength and region content.

All the methods that have been compared were implemented under the same parameter
configuration as described in [18]. We remark that both NCuts and TurPix need to be
provided with a number of target regions nr to be extracted. After performing several
segmentation tests we selected nr = 3 as the most representative result, considering that
most colonoscopy images present three main regions, which are: 1) lumen; 2) polyp; 3) colon
wall. For all the methods we used the position of maximum of MSA-DOVA to select the
final polyp region. Regarding SDEM, we set ωs = 20 -corresponding to an angular segment
of ±40 deg- after a training state over 30 images not included in the validation data set.

We compare the performance of all methods over CVC-ColonDB data set (see Section
3.1.2) by means of three different metrics computed on the pixel-level segmentations. The
metrics are the following:

Precision = 100 · TP

TP + FP
Sensitivity = 100 · TP

TP + FN
F2 =

5Prec · Sens
4Prec+ Sens

(7.16)

where TP , FP and FN stand for the number of True Positive, False Positive and False
Negative pixels, respectively.

7.5.2 Results

The experiments were performed using as input both the original and the preprocessed
image to compare its influence in the segmentation output. The preprocessing stage includes
specular highlights detection and inpainting as introduced in Section 7.2.1. In both cases
results are only considered for those images in which the polyp localization succeeded in
order to focus on segmentation performance analysis.

Table 7.3 shows performance results for all methods. We can observe that our proposed
methodology outperforms the rest of approaches, specially in terms of precision. Our method
provides with regions with a higher amount of polyp content while adding less non-polyp
areas. This result is confirmed by F2-score. Our method provides with a segmentation that
covers almost the 70% of the polyp region -much higher than the other methods- whereas it
still keeps a reasonably high performance in terms of sensitivity. Our proposal also improves
the results achieved by our most similar competitor -WSM-: segmentation guided by energy
maps leads to obtain bigger final regions closer to the actual polyp region.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.11: Examples of polyp segmentation results: (a-f) Normalized Cuts; (b-g)
Turbo Pixels; (c-h) Watershed with MSA-DOVA markers; (d-i) PR and (e-j) Our
proposal. Each image shows segmentation output (green) and polyp mask (blue).
Top row shows results without image preprocessing, bottom row with image prepro-
cessing operations applied.

Regarding the impact of image preprocessing, we also notice that our method outperforms
the rest of approaches. In this case the final regions are much less prone to miss polyp regions
-81.22% vs. 69.32% sensitivity values- although slightly less precise. The outcome is that
preprocessing helps the procedure to minimize missing rates of polyp region extraction.
Image preprocessing also has an impact in the performance of the rest of the methods. This
impact follows the same trend in all cases, which means a considerable increase in terms of
sensitivity and a light decrease in precision. WSM is the only case in which the precision value
suffer and hardly noticeable variation. It must be remarked that preprocessing techniques
have an impact in the polyp localization algorithm performance, which is reflected in an
important decrease in the number of images considered in segmentation experiments. We
can conclude that preprocessing has a positive impact in whole segmentation methodology.

Finally we present some qualitative results on polyp segmentation in Figure 7.11 some
qualitative examples of polyp segmentation of several images before and after applying pre-
processing operations.

7.6 Conclusions

In this chapter we introduced a characterization for blood vessels which allowed us to model
them differently than other objects in a endoluminal scene, more specifically folds and wrin-
kles. We presented a procedure for mitigating blood vessels which consists of three stages: 1)
Image preprocessing, to correct artifacts from the original image such as specular highlights;
2) Valley detection, to provide a first characterization of the objects in the image, and 3)
Valley mitigation as a novel method which aims to discriminate between objects that have
shades from objects that do not have them, such as blood vessels.

Our experiments show an encouraging trend, indicating that there is a decrease of energy
on blood vessel areas. Quantitative results suggest that our method is able to achieve vessel
mitigation successfully and that mitigation is more important on images with more blood
vessel content. Our procedure was used to improve the only existing polyp localization
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method that has been tested in a public database. As expected, the polyp localization
decision scheme -based on the amount of energy concentrated on some area- benefited from
a blood vessel mitigation system which reduces the presence of vessel energy. This is the first
time that the impact of blood vessels in polyp localization has been measured quantitatively,
proving that their presence makes it harder to identify 3-dimensional objects such as polyps.

Regarding future work, vessel characterization should be validated on a bigger manually
labeled dataset. It should also involve the consideration of the superposition of blood vessels
and other elements in the endoluminal scene. The appearance of vessels in folds must prompt
us to add more information to the improved characterization presented in this work.

We have also presented a novel polyp segmentation method in colonoscopy videos, which
is built on a general model of appearance for polyps which describes polyp boundaries using
valley information. This information is integrated to generate energy maps linked with polyp
presence in the image. Our method explores the way these maps are created to develop a
polyp region segmentation algorithm, considering which pixels in the image contributed to
the localization of the polyp. Our algorithm is able to improve an initial segmentation
by adjusting the shape of the final region discarding some contributions prone to provide
irregularity.

The results show that our method outperforms other general and specific segmentation
methods in terms of Precision, Sensitivity and F2 measure. Our experiments also confirm
the necessity of image preprocessing to improve the final segmentation of the polyp.



Chapter 8

Conclusions

Throughout the dissertation several tools and methods for the analysis of the endoluminal
scene and the characterization of blood vessels have been presented. This chapter revisits
the main contributions and summarizes the conclusions. Finally, future perspectives and
lines of research are pointed out.

8.1 Conclusions and contributions

The following points summarize the structure and contributions of the thesis:

• In the context of colonoscopy procedure, the knowledge of the endoluminal scene can
support technicians in their screening task. The impact of several aspects in the
quality of colonoscopy procedure have been described in the medical literature. A
better knowledge of the endoluminal scene may lead to the development of support
tools for technicians. We focus on the characterization of blood vessels in the inner
layer of the colon.

• Vessel characterization in colonoscopy images is a challenging task in the complex
context of the endoluminal scene. The existence of several objects with similar char-
acteristics and their interaction makes the segmentation of blood vessels in colonoscopy
images a difficult

• We created two data sets of colonoscopy images: COLON-V-VESSEL and COLON-
VESSEL. COLON-VESSEL includes a selection of 40 images and the corresponding
manually created ground truth consisting of an accurate mask of blood vessel con-
tent. Two manually created ground truths of keypoint landmarks are also included:
junctions and endpoints.

• We created a keypoint landmark ground truth for the DRIVE data set, an existing
data set of retinal fundus images and the corresponding vascular content manual seg-
mentation.

• A novel method for junction localization from binary branching patterns, such as
blood vessels, have been presented. Our GRowing Algorithm for Intersection Detection
(GRAID) is based on two simple geometric conditions: Bounded Tangency condition
and Shortest Branch condition. The comparison of GRAID to other methods in the
literature in a common framework verifies that our new method outperforms the other
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approaches. We also tested the importance of localization accuracy and showed the
high performance of GRAID on that point.

• We propose the use of junctions in the vascular content of the endoluminal scene, when
present, to create anatomical markers to guide the navigation of endoscopists through
the rectum and colon track. Junctions, representing the branching characteristics
of the vascular pattern, show description abilities profitable for the development of
biometric prints.

• Blood vessels in colonoscopy images can be modeled as piecewise elongated structures.
Since this model also matches other elements in the endoluminal scene, such as polyp
contours, we propose a methodology to inhibit the presence of blood vessel responses
in valley energy images. We show the success of our methodology in both mitigating
blood vessels presence in energy images and increasing the concentration of energy
in polyp regions. Moreover, the methodology shows to have a positive impact in
state-of-the-art polyp localization techniques.

• In the context of state-of-the-art polyp localization techniques, we propose a polyp-
specific segmentation method that outperforms other general segmentation approaches.
The development of an specific and local approach have been shown to be successful
in providing a accurate segmentation of polyp contours.

8.2 Future perspective

This dissertation includes several contributions regarding branching patterns and, specifi-
cally, the vascular content in colonoscopy images. Blood vessel characterization as well as
junction description and localization are important tools for the development of techniques
to improve colonoscopy quality and provide support during the procedure. We list some
ideas regarding the future perspective of this work:

• The junction localization algorithm we have introduced (GRAID) shows high perfor-
mance results in terms of precision/sensitivity and location accuracy. Regarding the
future use of this methodology in clinical frameworks it is important to be sure it is
not computationally costly. We believe there is a margin of improvement around this
matter.

• We propose the use of the vascular content in the endoluminal scene to create biometric
markers. A new data set should be created to assess the graph-based markers in a
framework including a higher variability of endoluminal scenes. The assessment should
he assessment of vascular patterns as biometric markers should be tested on bigger
data sets including more variability. The extraction of graph-based markers from
junctions as representatives from the vascular content in the image offers a promising
line of research to develop navigation support tools for the screening inspection.

• We have presented a method to minimize the impact of blood vessels in polyp local-
ization techniques. However, our experiments to achieve an accurate segmentation of
the vascular content in colonoscopy images have not been successful enough. An open
challenge is to overcoming the difficulties -pointed out in this dissertation- of blood
vessel segmentation regarding the similarities to other elements of the scene.

• The characterization and localization of binary junction structures should be extended
to gray level or color images. Exist a large amount of studies in the literature regarding
corner detection. The topological structures we described as junctions -including cross-
road with any number of branches- are an interesting problem which would represent
an important tool in several topics in Computer Vision.
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Appendix A

Valley-like feature characterization
example: finger joints

A.1 Introduction to X-ray images for rheumatoid
arthritis assessment

Rheumatoid arthritis (RA) is a chronic disease that causes joint dysfunction which results,
among other symptoms, in the reduction of the joint space width (JSW) and the erosion of
the joint bones. Since there is not any cure for RA, the assessment of the disease becomes
very important and it has led to the emergence of several semi-quantitative assessment
methods. Among them, the Sharp-Van der Heijde (SvdH) score, which provides separate
discrete values for JSW and bone erosion based on X-ray image examination, is the most
widely used nowadays [155]. The patient score is the sum of the scores for all the considered
joints in hands and feet.

Three stages should be considered to face the automation of RA assessment: joint de-
tection, joint characterization and joint measurements. As the main goal of this study is to
propose and assess a JSW measure we will focus on the second and third stages taking hand
joints as input (Figure A.1). This statement leads us to a hand joint modelling to describe
the necessary features to compute JSW measures. Sclerosis and lower bone appear to be
the main necessary features to obtain JSW measures and the corresponding detectors are
proposed.

Few previous works have faced this problem. Bielecki et al. [26] developed the first
study that faced the challenge of a fully automatic system for RA assessment. Vera et al.
[157] provided a method which included all the different stages of the problem improving
significantly the joint detection rates. Langs et al. [84] presented a new method whose scope
is also the whole RA assessment process. However, these works faced the problem as a whole
stage, not modular, and did not show a clear correlation among its proposed JSW score and
Svdh.

Our proposal clearly separates joint detection, joint characterization and joint measure-
ments in three independent modules. It also provides a framework for sclerosis and lower
bone detection performance assessment, and proposes a JSW score which exhibits a close
relation with SvdH score. This approach allows us to confirm for the first time a relation
between an automatic score and the RA disease stage. Moreover, the modular orientation
of our contribution, unlike previous approaches, enables future research to specifically focus
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Figure A.1: Rheumatoid Arthritis characterization system.

on the improvement of the different open challenges independently.

A.2 Data analysis

This study is focused on the same digital database used by Vera et al. [157] enriched with
our own manually segmented ground truth for the selected visual features necessary for
JSW computation. Twenty X-ray images from different patients containing pairs of hands
in posterioanterior view are available in DICOM format, 2828x2320 resolution and intensity
range from 0 to 4095. Hand joints have been marked by an expert who was asked to spot
the joint middle point along the finger axis and the joint orientation. A hand joint dataset
containing 560 images of joints have been created (14 joints/hand). Among these samples, a
total number of 320 joints were labelled with their SvdH score for inter-phalangeal distance
(discrete values from 0 to 3). These 320 samples comprised 160 metacarpo-phalangeal joints
(MCP) and 160 proximal inter-phalangeal joints (PIP) -distal inter-phalangeal joints (DIP)
are not considered within SvdH score-. Erosion scoring was not collected because it is out
of the scope of this this study.

Our proposed hand joint model does not consider thumb joints as they represent a
different problem due to its specific profile. Since images are taken with the hands in poste-
rioanterior view -from the hand back with the palm facing down- a profile view of the thumb
is taken. Consequently, a frontal projection is obtained for the rest of the fingers whereas a
lateral projection is obtained for the thumbs. This reason, as well as their specific skeletal
structure, causes the visual features observed in thumbs to be substantially different and jus-
tifies that they are not included in this study. As far as the other finger joints are concerned,
several features are distinguished within the model: sclerosis, upper bone contour, lower
bone contour and lower bone inner edges, as depicted in Figure A.2 [103]. The sclerosis and
the lower bone contour are the main necessary features to carry out measures on JSW. The
sclerosis (feature 1 in Figure A.2b) appears as a consequence of the upper bone shape and
the way an X-ray image is created. The X-ray beam have to pass through a higher density
region due to the concavity of the lower part of the upper bone of the joint (feature 2 in
Figure A.2b). As a consequence, the sclerosis appears as a prominent high intensity region.
Regarding the lower bone, the visual features are also a consequence of the mentioned X-ray
image acquisition mechanism and the lower bone shape (feature 3 in Figure A.2b). That
shape can vary in the different fingers or the different hand joints and the inner edges may
be present or not (feature 4 in Figure A.2b). However, the lower bone contour is defined by
the outer part of the lower bone.
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(a) (b)

Figure A.2: (a) Joint example. (b) Joint model schema (1: sclerosis, 2: upper bone,
3: lower bone, 4: inner edges).

A.3 Methodology

Our proposed sclerosis and lower bone detectors include several stages: energy space image,
linear feature extraction, binarization and anatomical feature extraction.

The first stage aims to obtain the energy space image. The intensity levels of that image
describe the chances of finding a feature in every pixel. Two separate processes are achieved
in order to obtain the ridge space image and the edge space image. A second derivative of
anisotropic Gaussian (DoG) method is used to compute the ridge space image.

On the other hand, the edge space image is obtained as the gradient of the input image
after applying structure preserving diffusion [53]. Diffusion filtering proved its success in
improving the quality of the edge detection by smoothing the image irregularities while
keeping the main image structure.

The second stage performs the feature extraction using Non-maximum Suppresion al-
gorithm [36], which only keeps pixels that are local maxima along the gradient direction.
Gradients are computed using the structure tensor of the space image.

In the third stage hysteresis thresholding algorithm [36] is used to binarize the non-
maximum suppressed images while preserving feature connectivity and removing weak re-
sponses.

Finally, the two images forwarded by the third stage must go through the fourth pro-
cessing step in order to provide the final sclerosis and lower bone segmentations. This stage
is different for the two thresholded images:

• The final sclerosis segmentation is the ridge in the binarized image that is closer to
the center of the image following the finger orientation .

• As far as lower bone is concerned, the corresponding binarized image is processed to
remove the edges in the upper part and the margins. Afterwards, the endpoints in the
remaining processed edges are linked. The final lower bone segmentation is obtained
by computing the convex hull of the linked-edge image.
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A.4 Experimental setup

Two subsets were created from our dataset of 320 annotated images to perform our exper-
iments: 1) Tune Dataset, with 40 randomly selected healthy joints (20 MCP and 20 PIP);
2) Test Dataset, with the remaining 280 joints (140 MCP and 140 PIP). The Tune Dataset
was used to tune the parameters of the system for sclerosis and lower bone contour segmen-
tation, and the Test Dataset was used to compute the output of our system and compare
the proposed distance measure with the SvdH score. We added 20 DIP joints from the non-
annotated dataset to enrich the variability of the Tune Dataset -these joints can be safely
included because, although not having a SvdH score, they fit our model-. Both sclerosis and
lower bone were manually segmented by an expert using OsiriX [127] software exclusively
for the 60 images of the Tune Dataset.

Performance metrics were developed to evaluate the performance of the system, i.e. the
quality of our detections, and tune the parameters. We based our metrics on the Average
Surface Distance (ASD), defined as follows:

ASD(U, V ) =
1

|S(U)|

 ∑
sU∈S(U)

d(sU , S(V ))

 (A.1)

where, given a pixel p and a region R conformed by a set of pixels S(R), d(p, S(R)) is defined
as:

d(p, S(R)) = min
sR∈S(R)

‖p− SR‖ (A.2)

where ‖.‖ stands for the Euclidean distance.

Thus, if A denotes our automatic segmentation and M denotes the manual delineation,
we define:

Caught = ASD(A,M) (A.3)

Missed = ASD(M,A) (A.4)

When both Caught and Missed metrics are zero the segmentation is perfect. Caught
metric value is related to the quality of the detector at detecting valid pixels (true positives)
and avoiding non-desired pixels (false positives). Analogously, the lower the value of Missed,
the less desired information was missed (false negatives).

This experimental setup was used in order to train the detection systems with the Tune
Dataset. The system providing the lowest values for the performance metrics was selected,
giving priority to a lower Caught value so that the provided output is better although some
parts may be missed. Afterwards, the selected detectors were applied to the Test Dataset.
The final sclerosis and lower bone outputs were then visually tested in order to separate the
wrong detections from those detections that can be useful to compute JSW scores. The final
detections were accepted if they provided a good segmentation and there were not remaining
spurs in the joint interspace.

Finally, the proposed JSW measurement is the minimum distance between the sclerosis
and the lower bone. It is defined as:

dmin = min
p∈L

d(p, S) (A.5)

where S and L stand for the sclerosis surface and the lower bone contour, respectively.
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(a) (b)

Figure A.3: (a) MCP valid detection. (b) MCP wrong detection.

A.5 Results

Table A.1 shows the valid sclerosis and lower bone rates when applying our sclerosis detector
to the Test Dataset. High detection rates have been obtained in the case of sclerosis detection,
reaching higher rates in the case of healthy samples (SvdH 0), providing 96.1%, since they
are closer to our joint model. However, these detection rates drop down to 58.3% in the
case of joints in a more advanced RA stage, which makes clear the potential usefulness of
the model in order to classify advanced stages of the disease. All in all, the detection rate
reaches the remarkable value of 89.6% on the whole dataset. As far as MCP and PIP are
concerned, the detection rates remain close although a light tendency is confirmed which
shows that PIP joints present more detection problems.

On the other hand, lower bone detection arises as a very difficult problem. The overall
detection rate drops to 58.9% although the healthy samples reach 69.7%. The lack of an
stardard practice in X-ray image techniques causes an important variability in the samples
which makes lower bone segmentation difficult to achieve. Figure A.3 shows two detection
examples of wrong and valid segmentations.

The samples where both lower bone and sclerosis segmentations were labelled as valid
were considered for further analysis. Table A.2 contains the corresponding results. The rates
when the two segmentations are considered altogether are just slightly below the lower bone
detection rates, reaching 67.0% for healthy samples and 54.2% for the whole dataset.

Afterwards, the proposed JSW measure was computed and tested in relation to SvdH
score. In the case of MCP samples (Figure A.4a), the JSW estimation shows a light decreas-
ing trend as the value of SvdH score increases. Nevertheless, that decreasing trend is clear
in the case of PIP samples (Figure A.4b). It is an encouraging result taking into account
that our system is only considering JSW values. Standard clinical assessment considers more
information as the symmetry between hand joints or erosion information.

Finally, the reliability of the proposed system to provide a proper JSW estimation inde-
pendently of its relation to the RA stage was tested. The JSW measure was computed both
for the manual and automatic segmentations of the Tune Dataset, providing a final error of
1± 0.7 pixels. This result confirms the robustness of the JSW estimation.
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(a) (b)

Figure A.4: Distance measure and SvdH score. (a) MCP joints. (b) PIP joints.

A.6 Conclusions

The proposed system sets the foundations of a modularized RA assessment system. We
created a hand joint sample dataset and introduced a hand joint model based on the skeletal
structure of hand bones. Our sclerosis detector achieves remarkably good results. However,
lower bone segmentation appears to be a harder task when faced in a local way. The JSW
measure we propose was compared with the gold standard score for RA assessment. We
showed for the first time that an automatic measure for JSW can be computed so that its
value has a clear relation to the SvdH manual measure assessed by clinical personnel and,
therefore, to RA disease stage. Future work should involve the confirmation of this trend
with a dataset which should include a larger study with samples from multiple sources.
Higher SvdH score samples, particularly scarce in number should be also considered.
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