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Resumen

La representacién interactiva de escenarios naturales en tiempo real pre-
senta problemas debido a la gran cantidad de informacién que debe ser
procesada. Un bosque puede estar compuesto por decenas de miles de es-
pecies vegetales, las cuales a su vez estan compuestas por decenas de miles
de elementos (hojas, tallos y ramas). Una descripcion precisa de una escena
de este tipo implica el procesamiento de una cantidad de informacién in-
tratable para su uso en aplicaciones en tiempo real. Durante los tltimos 20
anos se han publicado muchos trabajos de caracter cientifico para resolver
este problema, aportando diferentes estrategias con particulares ventajas e
inconvenientes.

El objetivo principal de esta tesis es la presentacién de un conjunto de
técnicas para mejorar la eficiencia en la representacién de escenas naturales
en tiempo real. Para ello se han realizado aportaciones en diferentes dmbitos
del area de los graficos por computador. Por una parte, se ha propuesto un
modelo de nivel de detalle multirresolucion especialmente disenado para la
vegetacion, basado en nivel de detalle de resolucion variable, el cual permite
la adaptacién de la complejidad poligonal de especies vegetales en tiempo
real. Esta propuesta se acompana de una nueva aportacién disenada para
el manejo de escenas masivamente pobladas, es decir, con miles de modelos
multiresoluciéon. Ademads se han propuesto nuevas técnicas para mejorar la
visualizacion en el ambito de la iluminacién, tanto en cuanto a modelar
los efectos de iluminacién en arboles como a la representacion eficiente de
sombras visualmente realistas.



Obijeto y objetivos de la investigacion

El area de estudio de los graficos por computador se centra en la visual-
izacién y manipulacién de informacién visual y geométrica para la generacion
de imagenes sintéticas. En este drea se proponen algoritmos y métodos que,
a partir de la descripcién de una escena (objetos, materiales e iluminacién),
generan una imagen que representa la escena en dos dimensiones. Dentro de
este drea, el objetivo de los graficos por computador en tiempo real es la gen-
eracion de imagenes lo mas rapidamente posible, en ocasiones en detrimento
de la calidad visual, con el objetivo de ofrecer aplicaciones interactivas, esto
supone que el tiempo maximo permitido para la generacién de cada ima-
gen sea de 66 milisegundos, lo que permite generar animaciones a 15 Hz
(fotogramas por segundo).

En el area de los graficos en tiempo real existen dos temas de gran impor-
tancia que intervienen en gran medida en el realismo y en la calidad de las
imégenes generadas: el modelado geométrico y la iluminacién. Cuanto mas
preciso y detallados sean los calculos invertidos en cada proceso mayor es
la calidad obtenida, pero mayor también es el tiempo requerido para obten-
er los resultados. Sin embargo, durante le dltima década la potencia de los
procesadores graficos (GPU) ha aumentado de forma exponencial, permi-
tiendo el desarrollo de técnicas interactivas realistas que antes se relegaban
al ambito de la representacion no interactiva.

Modelado Multirresolucion de especies vegetales

Como se ha mencionado anteriormente, cuanto mas detallado sea el mo-
delado geométrico de un objeto mayor es el realismo que aporta, sin embargo
también aumenta el coste de representacion. Para paliar este problema se
han realizado muchos estudios relativos al concepto de nivel de detalle. Este
tiene en cuenta factores como el tamafio proyectado del objeto en pantalla
o su visibilidad como criterio para reducir la complejidad geométrica del
mismo, de forma que no se desperdicien recursos procesando detalles que
estdn demasiado lejos para poder ser apreciados. El modelado multirresolu-
cién contribuye a disimular el impacto visual entre transiciones de diferentes
niveles de detalle, de lo contrario se producen efectos que resultan molestos
a la visualizacién y restan solidez a la escena. A éstos efectos se les denomina
efectos de “popping”.

Aunque a lo largo de los anos se ha publicado un gran ntmero de es-
tudios entorno al modelado multirresolucion y al nivel de detalle, éstos han
sido enfocados en la mayoria de los a mallas formadas por superficies conti-
nuas. Sobre este campo se han desarrollado multitud de métodos y métricas
de simplificacién que permiten la reduccién de la complejidad poligonal de



mallas de tridngulos a una fraccién de la original con un impacto mini-
mo sobre el aspecto original, lo que aumenta enormemente su eficiencia en
la representacién. Sin embargo, las representaciones poligonales de especies
vegetales no estan formadas por densas mallas continuas de tridngulos sino
por multitud de pequenos elementos separados que forman la copa del arbol
y las ramas. En esta situacion las métricas de simplificacion previamente
mencionadas no se comportan correctamente y generalmente no producen
aproximaciones vélidas. Sin embargo, durante los tltimos afios han surgi-
do métodos de simplificacion especialmente disenados para elementos dis-
conexos como la copa de los arboles. Esta tesis aporta soluciones en este
campo proponiendo un modelo multirresolucién de resolucién variable es-
pecialmente disenado para especies vegetales que estd ideado para ser im-
plementado en la GPU, lo que permite explotar el poder computacional de
estos dispositivos para maximizar el rendimiento.

El modelo multirresolucién propuesto en esta tesis permite la visuali-
zacion eficiente de arboles y plantas de gran densidad poligonal. No obs-
tante, no hay que perder la perspectiva de la representacién de bosques
con miles de elementos en escena. En este caso, debido al tiempo de calcu-
lo necesario para cambiar el nivel de detalle de cada objeto en la escena,
el manejo del modelado multirresolucién con una gran cantidad de obje-
tos puede repercutir negativamente en el rendimiento, creando un cuello de
botella que puede colapsar el sistema. Por esa razén se propone un sistema
de manejo de escenas de nivel de detalle que permite la utilizacién de miles
de elementos sin que se pierda velocidad en la extraccién del nivel de detalle.

lluminacién de arboles y plantas

Tal como sucede con el modelado geométrico, cuanto mas precisa y re-
alista sea la técnica de iluminacién utilizada mas costosos son los célculos
asociados. Realizar una simulacién de forma fisicamente correcta de la ilu-
minaciéon en escenas complejas en tiempo real dista mucho de ser posible
a dia de hoy. Existen técnicas, ampliamente utilizadas en entornos de pro-
duccién de animaciones sintéticas, que permiten la re-presentacién de estas
escenas de forma realista. Sin embargo, debido a la complejidad de los calcu-
los implicados en la simulacion de la luz, el tiempo requerido para calcular
cada fotograma de la animacién es muy elevado, pudiendo incluso requerir
varias horas por fotograma. Por lo tanto estas técnicas no son aplicables en
aplicaciones interactivas.

Gracias a la fuerte evolucién que han sufrido los procesadores graficos
durante los ultimos afios, han surgido técnicas que ofrecen aproximaciones
realistas de la iluminacién en entornos controlados. La clave de éstas técnicas
es que se realizan estrictas asunciones que permiten simplificar los calculos



requeridos con la consiguiente pérdida de flexibi-lidad y realismo. Sin embar-
go, éstas técnicas permiten la generacién de imagenes sintéticas de calidad
de forma interactiva. Un ejemplo de esto son las técnicas basadas en la
simulaciéon de la iluminacién ambiente en el espacio de imagen. Esta tesis
presenta técnicas para la aproximacién en tiempo real de la iluminacién es-
pecialmente disenada para simular la interaccién de la luz sobre la copa de
los arboles.

Sombras

Aunque las sombras son un efecto generado por la falta de iluminacion
y pueden ser generadas indirectamente y de forma realista me-diante algo-
ritmos de simulaciéon de iluminacién fisicamente correctos, en el campo de
los graficos en tiempo real siempre se han calculado como un fenémeno in-
dependiente. Por este motivo existe una corriente de investigacion dedicada
al estudio de la generacién eficiente de sombras realistas en tiempo real. Las
técnicas mas utilizadas hoy en dia para la generacion de sombras en aplica-
ciones interactivas son las basadas en “shadow maps”. El problema de esta
técnica es que, a parte de los problemas de discretizacién a la que esté sujeta
que produce pixelizacion o dentado, sélo es capaz de crear sombras “cortadas
a cuchillo”. Sin embargo, las luces del mundo real tienen un volumen que,
dependiendo de su tamano entre otros factores, genera una zona de transi-
cién suave entre los puntos que estan en sombra y los que no. Esta transicion
se denomina penumbra y contribuye en gran medida al realismo en escenas
generadas por ordenador. Las técnicas que estudian la generacién de este
tipo las denominan sombras suaves o “soft shadows”. Estas son capaces de
reproducir este tipo de efectos en tiempo real, aunque éstas tienen un coste
elevado dependiendo de la calidad (o suavidad) de la penumbra.

Esta tesis aporta dos tipos de mejoras en la representacion de sombras en
tiempo real. La primera contribucién propone una nueva técnica de antiden-
tado de sombras en tiempo real. Esta técnica se basa en técnicas conocidas
y las mejoras reduciendo las situaciones en las que presentan problemas. La
segunda contribucién presenta una nueva técnica de generacion de sombras
suaves que mejora el rendimiento de otras técnicas mediante la utilizacion
de filtrados Gaussianos de tamano variable en el espacio de la imagen.

Planteamiento y metodologia utilizados

Esta tesis tiene como objetivo la presentacién de técnicas que mejoren
el rendimiento en la representacién de escenas naturales en tiempo real.
Dichas técnicas pueden ser utilizadas en aplicaciones interactivas tales como
videojuegos o aplicaciones de realidad virtual. Para ello se propone realizar



las tareas siguientes:

Estado del arte

Antes de definir una linea de trabajo conviene hacer un estudio en pro-
fundidad de las técnicas existentes que aporten soluciones a los objetivos
propuestos en la tesis. Este andlisis nos ofrecerd una vision de las ventajas
e inconvenientes de los métodos existentes en la literatura y por consigu-
iente revelard las oportunidades de mejora apropiadas. En este apartado se
pretende analizar el estado actual de las siguientes dreas dentro del cam-
po de estudio de los graficos en tiempo real: modelado multirresolucion,
manejo eficiente de escenas muy pobladas, modelado y representacion de
especies vegetales, técnicas de iluminacién y de métodos de generacién de
sombras, incluyendo métodos de filtrado y representacién de sombras suaves.
El Capitulo 2 de esta tesis presenta un analisis detallado de las técnicas es-
tudiadas durante esta fase.

Propuesta y desarrollo de técnicas para mejorar el rendimiento de
escenas naturales.

Basandose en el estado del arte, se han estudiado las oportunidades de
mejora y los inconvenientes de las técnicas existentes y se han propuesto
nuevas técnicas para paliar estos problemas. Se han desarrollado técnicas
originales en los siguientes campos: modelado multirresolucién, manejo de
escenas con nivel de detalle, iluminacion de especies vegetales, filtrado de
sombras y generacion de sombras suaves en tiempo real.

Evaluacion y comparacion de los resultados

Para la validacién y comprobacién de las ideas desarrolladas se han uti-
lizado las herramientas necesarias como motores de juegos o aplicaciones de
edicion 3D. Alternativamente, en los casos apropiados se han creado nuevas
plataformas de software para la correcta validacién de las propuestas. Los
resultados obtenidos han sido analizados y comparados cuantitativa y cual-
itativamente para su validacién.

Aportaciones originales

Esta tesis propone diversos métodos y técnicas para la mejora del rendimien-
to de aplicaciones interactivas que necesiten visualizar entornos naturales en
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tiempo real. Las aportaciones realizadas en este marco son de distinta indole
y se describen a continuacién.

Inicialmente, el Capitulo 2 presenta el estado del arte de los temas trata-
dos en esta tesis. En este capitulo se hace un estudio de las técnicas existentes
en los campos de interés, analizando sus ventajas y desventajas, de forma
que se muestren claramente las oportunidades de mejora que presenta cada
una. Los temas de interés tratados en esta tesis son: modelado de multi-
rresolucion de especies vegetales, manejo de escenas con nivel de detalle,
iluminacién de arboles y plantas, filtrado de sombras y generacién de som-
bras suaves en tiempo real. Los siguientes capitulos describen las técnicas
desarrolladas para mejorar los algoritmos analizados en este capitulo.

La representacién realista de bosques masivamente poblados aporta mu-
chos problemas de eficiencia que dificultan la utilizacién de este tipo de
escenas en aplicaciones en tiempo real. Para ayudar a resolver este proble-
ma en el Capitulo 3 se propone el desarrollo de una técnica de representacion
de este tipo de modelos basada en nivel de detalle de resolucion variable, que
permite reducir considerablemente la cantidad de datos a procesar en cada
fotograma, minimizando el impacto en el aspecto visual y maximizando la
eficiencia de la etapa de dibujado.

Como se ha comentado anteriormente, la utilizacién de modelos multir-
resolucién en escenas masivamente pobladas puede provocar una caida del
rendimiento que anule por completo las ventajas de la utilizacién de mode-
los de este tipo. Para resolver este problema esta tesis propone el desarrollo
de un gestor de escenas de nivel de detalle multirresolucién. Este gestor se
basa en la alta reutilizacién de niveles de detalle similares en escenas de este
tipo. La idea detréas de esta técnica reside en que no es realmente necesario
calcular el nivel de detalle por cada objeto de la escena por separado, sino
que es posible reutilizar niveles de detalle calculados en etapas anteriores
para aplicarlos en otros objetos del mismo tipo. Esta observacién permite
implementar este tipo de modelos en escenas masivas sin la penalizacién an-
teriormente mencionada. El Capitulo 4 detalla esta técnica y los resultados
obtenidos de forma mas extensiva.

A continuacién, el Capitulo 5 presenta una técnica para el calculo de
iluminacién en arboles y plantas en tiempo real mediante la utilizacién de
mapas de distancia. La clave de este método reside en la utilizacién de mapas
de profundidad para capturar el volumen que ocupa la copa del arbol en el
espacio de forma que es posible hacer una estimacion rapida de la cantidad
de iluminaciéon que recibe cada hoja. Con esta estimacion obtenemos una
aproximacion de la iluminacién de baja frecuencia. Asi pues, se ofrecen dos
técnicas alternativas para el calculo de la iluminacion de alta frecuencia que
aporta informacién de interaccién local de la iluminacién a nuestra solucion.

El Capitulo 6 presenta una aportacion original para la generacién de som-



bras suaves con penumbra de tamano variable en tiempo real. Este método
se basa en la utilizacion de un filtrado Gaussiano de tamano variable que
difumina las sombras en espacio de imagen para generar la transicién suave
entre la luz y la sombra. Para determinar el tamano del filtro Gaussiano y
por consiguiente del tamafio de la penumbra se evalian varios pardmetros
como la distancia relativa de los objetos que proyectan la sombra y los que
la reciben, el tamano de la fuente de luz y sus distancias relativas con la
posicién de la luz. La ventaja de este método respecto a otros existentes
es que al usar un filtro Gaussiano para generar la penumbra se reduce un
orden de magnitud en el coste del algoritmo, pasando de un coste O(n?) a
un coste O(n + n).

Finalmente y continuando con el tema de las sombras, el Capitulo 7 in-
troduce una nueva técnica de filtrado de sombras para eliminar los efectos
de dentado presentes en las técnicas basadas en “shadow mapping”. Basica-
mente esta técnica es una extension de técnicas conocidas, como “variance
shadow maps”, que mejora la evaluacion de las sombras de forma que se
reducen drasticamente los casos en los que las técnicas existentes presentan
errores de representacién.

Conclusiones obtenidas y futuras lineas de investigacion

Del estudio planteado en el Capitulo 2 podemos concluir que, aunque ex-
isten multitud de técnicas que aportan mejoras en diferentes aspectos, tam-
bién tienen desventajas de algin tipo que sugieren oportunidades de mejora.
Esta tesis tiene como objetivo proponer nuevas técnicas para resolver los pro-
blemas tratados maximizando atin mas las soluciones intentando minimizar
las desventajas.

En el Capitulo 3 se presenta una técnica multirresolucion que permite
adaptar el nivel de detalle de especies vegetales y plantas modeladas poligo-
nalmente con el fin de optimizar su representacién en pantalla. Esto permite
aumentar la cantidad de vegetacién a usar en aplicaciones en tiempo re-
al, donde el tiempo de dibujado es critico para ofrecer interactividad. La
solucion propuesta estd disenada para ofrecer un modelo de nivel de de-
talle de resolucién variable, lo que permite ajustar a la complejidad del
modelo dependiendo del punto de vista del observador. Esto es importante
para modelos de arboles ya que, al estar compuestos por un conjunto den-
so de elementos (las hojas), su representacién en pantalla estd sujeta a un
gran porcentaje de auto-oclusién que depende del punto de vista. Esto con-
tribuye a optimizar mas la geometria del modelo afectando menos al as-
pecto visual del objeto en pantalla, ya que permite eliminar mas geometria
de las partes ocultas del modelo. Ademads, esta solucion estd especialmente
disenada para arquitecturas paralelas, por lo que se consigue un gran ben-
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eficio implementandolo en la GPU. Como se puede ver en los resultados del
Capitulo 3, este algoritmo rinde mejor que otras soluciones no basadas en
la GPU. Ademas, en los test de calidad visual se puede apreciar que el al-
goritmo mantiene la calidad visual del modelo original aun usando grandes
factores de simplificacién.

Como se ha comentado anteriormente, los modelos multirresolucién tienen
asociado un tiempo de extraccién, que es el tiempo necesario para “preparar”
la malla para ajustarla al nivel de detalle deseado. Por muy rapido que se
realice este paso, éste se acumula en escenas con gran cantidad de objetos
y puede repercutir negativamente en el rendimiento de la aplicacién. Para
paliar este problema, la técnica presentada en el Capitulo 4 permite mini-
mizar el nimero de operaciones de extraccion de nivel de detalle, de forma
que es posible eliminar este cuello de botella. Los resultados obtenidos confir-
man que esta técnica permite manejar escenas compuestas por grandes can-
tidades de modelos multirresolucion sin que esto repercuta negativamente en
el rendimiento. Ademads esta solucion es facilmente integrable en herramien-
tas de “software” existentes o motores 3D.

El célculo de iluminacion de forma realista es un problema en aplica-
ciones en tiempo real, ya que realizar una simulacién fisicamente correcta
del comportamiento de la luz seria inviable. La solucién presentada en el
Capitulo 5 realiza una estimacién del volumen de la copa de los arboles y
plantas involucrados en la visualizacion para aproximar la cantidad de ilu-
minacion que recibe cada hoja. Esta solucion es facilmente integrable en
aplicaciones en tiempo real y permite el cdlculo de la iluminaciéon de baja
frecuencia sobre este tipo de modelos. Para completar el calculo de la ilumi-
nacion, esta técnica se complementa con otra técnica basada en la evaluacién
del arbol en espacio de pantalla para determinar, de forma aproximada, la
iluminacion de alta frecuencia (altamente detallada). Las imagenes obtenidas
en este capitulo muestran que los resultados son visualmente satisfactorios,
incluso siendo generados en tiempo real.

El Capitulo 6 introduce una nueva técnica que permite calcular som-
bras con penumbra fisicamente realista en tiempo real (“soft shadows”). La
ventaja de esta técnica radica en que el calculo de la penumbra se realiza
mediante la aplicaciéon de un filtro Gaussiano de tamano variable en espacio
de pantalla. Dado que este tipo de filtros es separable (se puede descompon-
er en dos pasadas independientes), su complejidad computacional resulta de
un orden de magnitud inferior a soluciones existentes, como PCSS [Fer05],
que tienen un coste de O(n?). Sin embargo, aunque esta técnica rinde mejor
que otras soluciones, al ser aplicada como un filtro de post-proceso, esto
hace que sea més sensible a errores en la generacién de la penumbra.

Finalmente, el Capitulo 7 presenta una nueva técnica de filtrado de som-
bras. La principal diferencia entre las técnicas de este tipo y las de “soft



shadows” es que el objetivo de las primeras es la eliminacién del dentado,
producido por la utilizaciéon de técnicas derivadas de los mapas de sombra,
mientras que el objetivo de las iltimas es la generacién de la penumbra re-
alista que depende de factores como las posiciones relativas entre los objetos
y el tamano, posicién y forma de la fuente de luz. La técnica propuesta en
este capitulo presenta una nueva formulacion para la evaluacion de los ma-
pas de sombra, con el objetivo de reducir la sensibilidad de éstas en cuando
a produccién de errores en la representacién de las sombras antidentadas.
En la seccién de resultados se puede comprobar cémo se consigue reducir
este tipo de fallos sin aumentar los costes computacionales y de memoria.

Futuras lineas de investigacion

En esta tesis se presentan técnicas de diversa indole para mejorar la rep-
resentacién de escenas naturales en tiempo real para aplicaciones interacti-
vas. Sin embargo, aunque las técnicas propuestas presentan mejoras sobre
métodos existentes, también tienen desventajas que dependen de varios fac-
tores o presentan oportunidades de mejora que deben ser estudiados en el
futuro. Esta seccién ofrece una serie de lineas de trabajo que se desprenden
de esta tesis y que pueden servir para mejorar estas técnicas, completarlas
o hacerlas mas robustas.

En primer lugar, como extensién del modelo multirresoluciéon para es-
pecies vegetales se propone estudiar las ventajas de una implementacion
en OpenCL en lugar de CUDA, ya que esta API permite compartir recur-
sos entre distintos contextos, lo cual seria 1til para compartir informacion
con OpenGL. Otro aspecto interesante seria la inclusién de técnicas de sim-
ulacién de efectos naturales como viento o lluvia y ver cémo se deberia
modificar el modelo multirresolucion para soportar dichos efectos.

Sobre la técnica de manejo de escenas multirresolucién, se propone el
estudio de como afectaria la inclusiéon de grandes cantidades de objetos
animados en la escena y c¢émo habria que modificar el gestor presentado
para soportar esos cambios, asumiendo que la animacion influye en el fun-
cionamiento del modelo multirresolucién subyacente. También se propone la
extension el gestor para no sélo “cachear” niveles de detalle sino también an-
imaciones, de forma que el funcionamiento de éste deje de ser exclusivo para
manejar niveles de detalle y también sirva para manejar grandes cantidades
de animaciones, optimizando el rendimiento en este tipo de escenas.

En el Capitulo 5 se propone una técnica para la iluminacién de vege-
tacion en tiempo real, capturando el volumen de los arboles teniendo en
cuenta una direccién preferente. Como trabajo futuro se propone el estudio
de como extender este método para tener en cuenta mas direcciones para
estimar el volumen del arbol y asi ofrecer una mejor aproximacion de la



iluminacién en este tipo de objetos. Ademéas es conveniente aumentar el
estudio con arboles con distintos tipos de hoja para extender la técnica en
caso de que no sirva para todos.

En futuras lineas de investigacion en torno a los articulos de sombras pre-
sentados en esta tesis se proponen posibles mejoras de distinto tipo. Primero,
la calidad de técnica de generacion de penumbras realistas presentada en el
Capitulo 6 es muy dependiente del objeto sobre el que se arrojan las sombras
y de la complejidad de la escena. En el peor de los casos esta técnica podria
no funcionar bien y generar penumbras incorrectas o con errores. Se propone
el estudio de los casos en los que la técnica es mas susceptible a fallar con
el fin de extenderla para hacerla mas robusta en este aspecto. En cuanto
a la técnica de filtrado de sombras presentada en el Capitulo 7, las lineas
de trabajo futuras pasan por estudiar variantes de la técnica que permitan
aumentar la robustez de la misma para escenas complejas en las que no es
posible aplicar correctamente el método de antidentado.



Preface

Abstract

Interactive rendering of natural scenes tipically faces performance prob-
lems when being implemented for real-time applications, due to the amount
of information to be processed each frame. A single forest is tipically com-
posed by a high number of vegetal species (thousands of trees and plants)
and each single one is composed of a high amount of elements, such as
leaves and branches. A precise description of this kind of scenes involves
the processing of a massive amount of information that makes it imprac-
ticable for real-time applications, such as videogames. Several works have
appeared during the last twenty years with the aim of solving this prob-
lem. Each one of these works provides both advantages and disadvantages.
Sometimes those disadvantages are so strict that highly reduce effectifity.
The main aim of this thesis dissertation is to present a set of techniques for
enhancing efficiency in real-time applications when rendering natural scenes.
Taking this into account, a number of novel approaches are proposed in this
work which provide improvements on different areas in the field of computer
graphics. On the one hand, a new multiresolution model for efficient ren-
dering of vegetal species is presented. This proposal is accompained with a
novel technique for managing massively propulated multiresolution scenes
for avoiding performance penalties due to the uncontrolled of continuous
level of detail approaches. On the other hand, a new illumination model for
the foliage are proposed which aims to improve illumination of forests in
real-time. Finally, two new approaches for improving shadow mapping effi-
ciency are presented, one for shadow filtering and another one for efficient
soft shadows generation.

Keywords: Real-Time Rendering, GPU, multiresolution, Level-of-Detail,
illumination, shadows.
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CHAPTER

Introduction

Computer graphics is the field of research that studies the theory and
techniques for the generation of synthetic images on the computer. In 3D
computer graphics the process of generating images from a set of data which
approximates a scene is called rendering. During rendering, the scene is
processed by the graphics pipeline and converted into pixels on the screen.
The purpose of this process, which is called rasterization, is to generate a
two-dimensional representation of the scene: a synthetic image.

Synthetic scenes in computer graphics can be represented in several ways:
by using a polygonal representation, by using implicit surface modelling,
volumetric modelling (voxels) or fractal representation for procedural mod-
elling of scenes. Nevertheless, the most common representation used in 3D
computer graphics is approximating objects and scenes by polygonal sur-
faces (triangles or quadrilateral meshes) because of their flexibility and their
rendering efficiency. However, depending on the distance to the observer,
polygonal models start to become inefficient as the size of the projected in-
put geometry approaches the size of a pixel. To solve this problem, Level of
Detail algorithms (LoD) adjust the polygonal density of meshes by reducing
it according to the viewing distance and hence improving performance.

Sometimes, only a fraction of the scene is projected on the screen and
thus processing the whole scene is not efficient. Visibility methods take into
account this problem and provide acceleration structures for optimizing the
graphics pipeline by minimizing the amount of calculations. Some examples
of acceleration structures are octrees and portals, which are extensively used
in real-time game engines.

Realism is a key aspect in computer graphics. Although the amount of



Chapter 1 Introduction

geometry improves the realism of the scenes, illumination takes a key role
in improving the overall quality of synthetic images. Highly realistic illumi-
nation can be achieved by simulating the physics of light and its interaction
with the environment. Depending on the trade-off between performance and
visual quality several methods exist for performing lighting calculations.

The highest objective in computer graphics is the generation of photore-
alistic synthetic images as fast as possible. In real-time computer graphics,
this means that generating one image should not take more than 66 mil-
liseconds, which allows for generating 15 images per second (15 Hz). The
faster the generation of the images, the smoother the animation and the
sense of interactivity. From about 75 Hz the human eye is not able to detect
differences in performance.

In the last decade, real-time computer graphics have quickly evolved,
mainly due on the one hand to the video-game industry, which demands
better graphics and faster graphics processors, and on the other hand due
to the amount of scientific research that has been done on this area for more
than 30 years.

Moreover, the appearance of the first programmable graphics processors
introduced unprecedented flexibility for computer graphics programmers for
implementing algorithms that were not possible to port to the graphics pro-
cessors, due to their initial limitations. For this reason, many algorithms that
were only used in off-line rendering (such us movies and post-production)
to be able to be used for real-time graphics.

The techniques described in this thesis propose improvements to the
sub-fields of level of detail, multiresolution management, illumination, soft
shadowing and shadow filtering. These filtering techniques make extensive
use of the advanced capabilities of the graphics processors for proposing
techniques that improve performance of real-time applications in various
aspects of the rendering pipeline.

1.1. Objectives of the research

1.1.1. Modelling of vegetation

Efficient rendering of natural scenes has always posed a problem for
real-time computer graphics. More specifically, we consider that one of the
major problems when rendering outdoor scenes is the efficient visualization
of vegetal species, such as plants and trees, due to the massive amount of
information involved in rendering. Foliage density, and hence the number of
leaves of a tree, can vary depending on the species from several thousands
to hundred thousands. Depending on the shape of the leaves, they can be
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Figure 1.1: Real forest composed of hundreds of thousands of trees.

Figure 1.2: The LoD factor of a mesh associated to the viewing distance

modelled using a single quadrilateral or by using some dozens of polygons
for complex elements. In addition, as the amount of leaves increase, the
number of branches and ramifications also grow with it, amounting some
hundred thousand polygons utilized for modelling the trunk and branches.
Taking into account that many thousands of trees are possibly used in forest
scenes and that they need to be rendered at real-time speeds (more than
15 Hz), billions of polygons should be necessary for rendering large forest
(Figure 1.1). This massive amount of information also presents issues for
efficient scene management and visibility determination as well as in the
area of realistic illumination of vegetation.

This thesis proposes techniques for improving visualization of natural



Chapter 1 Introduction

Figure 1.3: Example of a natural scene with a massive amount of plants
and trees in Crysis (Crytek (©2007).

scenes in the main aspects described before: plant modelling, visualization
and illumination.

Most of the solutions adopted for games and other real-time applications
in order to manage trees and forests rely on the use of billboards and impos-
tors for replacing massive amounts of leaves by rendered polygons that offer
good visualization at far distances, but suffer from clustering and parallax
artifacts at intermediate distances. Figure 1.3 shows an example of a natural
scene rendering using the CryEngine in Crysis by Crytek.

With the motivation of providing a solution to this problem we propose
a view-dependent multiresolution LoD model specially designed for efficient
rendering of highly detailed trees. This LoD model will allow to smoothly
decreasing the geometry complexity of trees depending on the distance to
the observer and its orientation.

Techniques based on level of detail approaches allow to reduce the amount
of geometry used to render the object while maintaining visual appearance.
This solution is commonly used when rendering objects at a certain distance,
at which small details are not visible or correctly distinguishable. The LoD
factor determines the percentage of geometry to be rendered at a given level
of detail and is usually associated to the viewing distance for eliminating
unnecessary detail (see Figure 1.2).

1.1.2. Natural Scene Management

The usage of LoD objects allows for minimizing the computational ren-
dering costs. However, multiresolution modelling often involves a step in
which the LoD algorithms are executed in order to prepare the mesh for be-
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ing rendered. This stage is responsible for processing the data structures to
change the level of detail of the mesh. The time needed to perform this step
is known as LoD extraction time. This time is a performance penalty that
must be taken into account in order to work with multiresolution models
because it can degrade performance on highly populated scenes. This cost
is a key factor in the performance of multiresolution models and it is object
of research in the literature.

Therefore, using an efficient LoD model does not guarantee good per-
formance on massively populated scenes such as large forests and can even
stall the rendering system due to the amount of LoD changes per second. For
that reason, in order to avoid performing unnecessary calculations that affect
negatively to performance, scene management systems control the LoD oper-
ations performed over the whole scene. Visibility determination algorithms
are also a key feature in this kind of scenes as they provide mechanisms
for optimizing rendering, preventing potentially invisible objects from being
processed by the graphics hardware. This is an important part of an interac-
tive application, especially when rendering massively populated scenes like
forests.

In order to solve this problem we propose a new model for multireso-
lution scene management based on controlling the frequency at which LoD
models perform the extraction process per second. Our technique is based
on the concept of reusing previous LoD results, which uses a metric for de-
ciding whether to calculate the desired level of detail or reusing an existing
LoD from another object instance which already performed the extraction
process. By using this technique we are able to minimize the amount of LoD
calculations, maximizing performance on massively populated LoD scenes.
This thesis also proposes techniques for exploiting the graphics hardware to
improve these aspects when working with LoD models as well as for LoD
management of large LoD scenes.

1.1.3. lllumination

Although LoD systems provide an efficient platform for the efficient ren-
dering of geometry, realism is becoming more and more important every
day as the computational power of the graphics hardware improves from
generation to generation, allowing programmers to implement more realistic
effects and illumination algorithms.

One of the most important aspects in computer graphics is how light
affects the visualization of the rendered models on screen. While direct illu-
mination can be easily computed, indirect illumination is a current research
topic in real-time computer graphics because it is directly responsible of
the realism of synthetic scenes. However, global illumination is very hard
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to compute because it has to take into account complex light interactions
inside the scene. Many approaches have been proposed in order to approxi-
mate global illumination in real-time, however these approaches are usually
subject to strong restrictions in order to allow interactivity.

In order to provide a solution to this problem, this thesis proposes a
new illumination model for the foliage that takes into account the sparse
nature of leaves in order to provide better illuminated trees. We exploit the
observation that, due to how light interact with surfaces, the inner leaves
in a tree will potentially receive less light that the outermost leaves. Our
solution uses two depth maps that approximate the shape of the tree and,
assuming that leaves are uniformly distributed across the foliage, we are able
to approximate the illumination of each single leaf.

1.1.4. Real-time shadows

Shadows are a key feature in computer graphics because they provide a
lot of essential visual information on synthetic scenes. Although shadows are
naturally generated by the absence of light and thus they are related to the
illumination, in real-time computer graphics they are artificially generated
due to performance reasons.

Two major techniques are used in real-time computer graphics for shad-
ow rendering: shadow volumes and shadow mapping. Shadow volumes are a
geometry-based solution that is based on generating a shadow volume tak-
ing into account the position of light and the shadow caster. This is used
to determine which pixels in the shadow receiver intersect with the shadow
volume and thus are in shadow. Shadow mapping is a two-pass image-based
method that stores the depth of the shadow casters in light-space and then
uses this information in eye space for determining whether each pixel is lit or
not. Although both methods have their own drawbacks and benefits, shadow
mapping is preferred over shadow volumes because they are easier to imple-
ment and the implementation is more efficiently executed by the graphics
hardware.

The two shadowing techniques previously described are able to generate
hard-edged shadows that look great for infinitely small light sources. How-
ever, these techniques generate aliased shadows and they are not able to
generate soft-edges penumbrae, like those produced by area sources in real
life, requiring further improvements in this area. This issue has given rise
to a number of works in the literature and has become an important topic,
due to its importance in realistic representation of illumination.

This thesis dissertation presents improvements to the state of the art of
two apparently similar but different fields: shadow map antialiasing and soft
shadow mapping.
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Area light sources are volumetric objects that emit light from all the
points over their surface. In fact, area light sources can be simulated by
distributing a high number of point light sources over the surface. Although
this approach would produce physically correct soft shadows, it would be
very inefficient because a lot of rendering operations should be performed
each frame. Taking this into account a number of works proposed techniques
for efficiently approximating soft shadow penumbrae.

For solving this issue, this thesis proposes a new algorithm for efficiently
computing soft shadows in screen space by using an anisotropic Gaussian
blur of variable size. This technique takes into account the position and size
of the light source (assuming a planar light source parallel to the shadow
receiver) for deciding the size of the penumbrae for each pixel. This technique
fits well on deferred shading approaches because it can be applied as another
screen space operation.

The field of shadow filtering includes those techniques designed to elimi-
nate aliasing artifacts on hard-edged aliased shadows. The difference between
this approach and soft shadowing techniques is that the former ones do not
take into account the light source producing uniformly sized penumbrae,
even though there exist soft shadowing techniques that extend shadow fil-
tering approaches to perform variable size penumbrae based on the position
and size of the light source.

Filtering shadow maps is not trivial as they can not be filtered like reg-
ular textures, because they contain depth values, not colors, and averaging
them would produce invalid depth values. Several works have appeared in
the literature in the last years to deal with efficiently shadow map filtering
using the graphics hardware. However, these approaches have limitations
and produce artifacts, depending on how they perform the filtering. We
introduce a new shadow map filtering algorithm approach that is able to
reduce or even eliminate these artifacts for moderately complex scenes.

1.2. Contributions and Overview

The following list shows the organization used in this Ph.D. thesis, pre-
senting the contributions proposed in this dissertation:

= Chapter 2: Previous Work
This chapter presents the state-of-the-art on the different fields dis-
cussed in this dissertation. Therefore, we start by considering the work
previously carried out on the field of level of detail for foliage rendering
reviewing both image-based and geometry-based methods. Next, scene
management methods for massively populated level of detail scenes are
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reviewed. These methods are important for efficiently handling popu-
lated environments with hundreds and even thousands of LoD objects.
Then, a review of foliage illumination methods is presented, including
the Precomputed Radiance Transfer method, obscurances and ambi-
ent occlusion as well as methods based on sub-surface scattering for
realistically illuminating the leaves.

Finally, a review of the state of the art on real-time shadows is provid-
ed. We focus on relevant work about shadow mapping as our methods
are based on this approach. We review the related work about real-time
soft shadows and shadow map filtering, respectively.

= Chapter 3: View-dependent pruning for real-time rendering of
trees
The novelty of our algorithm relies on the fact that it is a completely
GPU-based view-dependent multiresolution model for the foliage. In
this method, the data storage structures, the LoD extraction process
and rendering algorithms have been designed to be performed on the
GPU. This approach has some direct advantages. First, it removes any
traffic between the CPU and the graphics processor, avoiding the PCle
bottleneck.

Secondly, the multiresolution models to date have been designed for
single threaded systems or do not specify how their algorithms are
executed on parallel architectures. This chapter provides the basics
for building view-dependent multiresolution models on highly parallel
environments such as the GPU.

Finally, we propose a LoD management system that allows for effi-
ciently managing the level of detail of thousands of tree instances.
This system, which is also entirely executed on the GPU, prevents
the system to collapse the computing resources and maximizes perfor-
mance.

= Chapter 4: LoD Manager

A framework for efficiently rendering massive multiresolution scenes in
real-time applications is introduced in this chapter. This approach uses
the concept of frame rate feedback to automatically adapt the level of
detail of the scene to achieve a target user-defined frame rate. This
approach offers more interesting results rather than static heuristics
because it allows for dynamic LOD adaptation. Even though it is less
accurate compared to predictive heuristics, it also is considerably less
expensive compared to predictive methods, which is the main aim of
this chapter: minimize the CPU work as much as possible.

= Chapter 5: Real-time illumination of foliage using depth maps
This chapter presents a new method for foliage illumination which
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takes into account direct, indirect illumination and self-shadowing.
Both indirect illumination and self-shadowing are approximated by
means of a novel technique using depth maps. In addition, a new shad-
ow casting algorithm is developed to render shadows produced by the
foliage onto regular surfaces which enhances the appearance of this
kind of shadows compared to traditional shadow mapping techniques.

Chapter 6: Screen Space Soft Shadows

A new technique for the real-time rendering of shadows with penum-
brae based on shadow mapping is presented in this chapter. The method
uses a screen-aligned texture which contains the distance between the
shadow and its potential occluder. This information is used to set up
the size of an anisotropic Gaussian filter kernel applied in screen space
which smoothens the standard shadows to create the penumbra. Giv-
en that a Gaussian filter is separable, the number of samples required
to create the penumbra is much lower than in other soft shadowing
approaches. In consequence, higher performance is obtained while also
allowing perceptually correct penumbrae to be represented.

Chapter 7: Improving Shadow Map Filtering with Statistical
Analysis

This chapter presents our shadow map filtering method that makes
use of statistical filtering for approximating the probability that the
shaded point passes the depth test. Our approach is capable of highly
reducing “light bleeding” artifacts, or even eliminating it for moder-
ately complex scenes, with no penalty of performance or storage costs
in the Gaussian case. Moreover, for very complex scenes, it can be
converted to a layered approach (in the same way as layered variance
shadow maps) for completely eliminating these artifacts. Very few lay-
ers are needed in this case, still outperforming existing techniques both
in performance and storage costs.
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CHAPTER

State of the Art

In the last years, a lot of works have appeared in the literature covering
the topics involved in real-time rendering of natural scenes. The increase of
the computational power of the graphics hardware allowed for creating a
great variety of new techniques for improving several aspects in the field of
natural phenomena, like rain, fire, ocean and terrain rendering.

This Chapter presents the state of the art focused on the topics related
to this thesis: vegetation modeling for real-time applications, level of detail
scene management, global illumination techniques oriented to the foliage as
well as on shadows for real-time applications.

2.1. Related work for plant modeling

Extensive research has been carried out offering real-time visualization
of detailed plant species. To solve this problem, many approaches have been
proposed that can be classified in two different groups: image-based and
geometry-based algorithms. At a glance, image-based methods use less ge-
ometry and provide good results at a far-medium distance, while geometry-
based methods are able to offer the best results at shorter distances.

2.1.1. Image-based rendering
This is one of the most common methods of representing trees because
of its simplicity. Impostors are the most popular example of image-based

rendering. In this method the geometry of the object is replaced with an
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Figure 2.1: Tree approximated with two crossing billboards.

image of it textured on a polygon within the scene. See Figure 2.1 for an
example of a billboarded tree.

This technique has been used in different works presented by several
authors up until now. Max [Max96] extends this technique by adding depth
information to the precalculated images. He precalculates multiple z-layers
from a set of viewpoints using multiple orthogonal projections and stores
colours, normals and depths for each pixel of each layer. That information
is used later for reprojecting pixels, taking into account their location and
depth, interpolating viewing directions for reconstructing the tree at any
viewpoint. According to the author, popping artifacts arise when changing
levels of detail. Although this technique performed properly on software
renderers, it does not fit well on current GPUs due to the reprojections.

Later, Max et al. [MDKO99] extend their previous hierarchical reprojec-
tion approach adding texture hardware support. They use the OpenGL color
matrix for transforming the precomputed normals. In order to take advan-
tage of the texture mapping hardware, they switch from using sorted lists
of depths at each pixel to just storing a set of slices of the foliage.

In this context, Shade et al. [SSHS98] and Chang et al. [CBL99] in-
troduce layered depth images (LDI) to render objects from pre-computed
pixel-based representations with depth from different viewpoints. This in-
formation allows them to recalculate different views from the stored images
of the scene. The advantage of this representation is that they are able to
calculate intermediate representations of smooth surfaces without the gaps
found in other methods. In a preprocess they store multiple pixels along each
line of sight. This means a linear storage cost with the depth complexity of
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Figure 2.2: Image-based forest rendering from [FMUO5].

the scene, which is not efficient for forest scenes because of the high amount
of depth layers in such scenes.

Other authors present solutions to this problem using the concept of
volumetric textures. Volumetric textures are an extension of traditional two-
dimensional textures that not only capture information of a model surface
but are used to capture information of a whole volume or volumetric object.
This techniques are often used to realistically render materials like marble
or ice. However, this concept is not limited to that and can be extended to
deal with smoke rendering and even forest rendering, as shown below.

Meyer et al. [MN98] present a technique for interactively rendering com-
plex natural scenes such as landscapes. They convert complex natural ob-
jects into mipmapped volumetric textures before they are raytraced by slic-
ing blocks of geometry. These slices are stored later into a series of thin
layers that are used at rendering time as textures. They make use of trans-
parent textures for representing complex objects like plants, trees and fur.
Although this technique allows to efficiently render very complex objects
and scenarios in real-time it presents some limitations. First, the volumetric
approximation needed for representing dense and large forests would only
allow to use this technique for rendering at far distances. Second, although
the authors present a way to animate volumetric objects, it only works for
simple animations that affect to large areas. However, for physical-based
tree animations it is important to provide localized animations.

The works presented in 2001 by Meyer et al. [MNPO1] and in 2004 by
Reche et al. [RMDO04] obtain 2D images from volumetric textures and com-
bine them depending on the position of the camera. The former propose a

13
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Figure 2.3: Forest created with SpeedTree (c) from Gothic 3 (c).

technique for rendering trees over a landscape with shading and shadows.
They use sets of six-dimensional light fields that store the color of a leaf
(or pack of leaves) given a viewing and lighting direction. This information
is stored into a hierarchy that is traversed at rendering time for rendering
the adequate node, depending on the viewing distance. The latter presents
a method for reconstructing image-based representations of trees from real
photographs of trees. Then they use a set of billboards at run-time for rep-
resenting the tree. However, this results in low quality images for close-ups.
[LRDMO6] extend this work and estimate opacity in a volume to generate
and visualize view-dependent textures attached to cells of that volume.

One of the main problems of these methods is that suffers from paral-
lax artifacts that are visible at medium-close distances. Moreover, they are
limited to the resolution of the textures used for date storage.

Garcia et al. [GSSKO05] [GP08] solve the parallax problem by using im-
postors that group sets of leaves and using indirect texturing to drastically
increase the detail of the leaves without incrementing the memory foot-
print. They distribute a set of quadrilaterals (impostors) that approximate
the volume of the foliage. Then each leaf is stored in the closest quadrilater-
al taking into account their position and coplanarity. The advantage of this
method is that they use an indirect rendering mechanism that allows them
to store leaves as single texels, which color indicates the orientation of the
leaf. This tecnique allows for better utilization texture memory allowing for
high quality leaf reconstructions, even at close distances. Later in [GPO0S]
they improve their work with a layered approach that solves the problem of
overlapping leaves.

Other works based on billboard clouds can be found in the literature.



2.1 Related work for plant modeling

These works are based on substituting the geometric representation of trees
in a preprocess by billboards which always are rendered facing the viewing
direction.

Décoret et al. [DDSD03] and Fuhrmann et al. [FMUO5] present a tech-
nique for extreme simplification of models with billboard clouds (see Fig-
ure 2.2). Their algorithm distributes a set of quadrilaterals over the object
volume and precalculates the viewing information from the highly detailed
geometry. That way they are able to store the visual information of models
with several thousands of trees by using only a few hundred textured poly-
gons. Moreover, they are able to perform real-time illumination calculations
by storing the normal maps along with the diffuse color into the billboard
textures. An important drawback of this method is that models can not be
animated because they are precalculated. Later they apply this technique
to the rendering of trees [FMUO05], allowing to render extremely large and
dense forests interactively, presenting a new billboard cloud creation metric
that takes into account the sparse nature of leaves.

Dylan et al. [LESTO06] use a similar approach but use a stochastic dis-
tribution of billboards over the foliage. Although authors say that this al-
gorithm is not suitable representing for continuous surfaces it perform well
for sparse objects (like the foliage) allowing to represent detailed trees with
less than 100 quadrilaterals.

Mantler et al. [MJWO07] use the concept of billboard clouds and extend
this technique by using boxes instead of quadrilaterals. They store depth
information obtained using raycasting methods in a preprocess and use this
information later performing displacement mapping for high quality recon-
struction of complex models with just some dozens of triangles. Therefore,
this technique provides better visual results than the standard billboard
cloud approximation.

Finally, one of the most successful approaches in image-based represen-
tation of vegetation is developed by SpeedTree [Spel0], which was able to
provide a full framework for tree and forest representation oriented to real-
time applications such as games (see Figure 2.3). Nowadays this software
is one of the most popular in the field of tree visualization in real-time.
Dozens of commercial videogames have used this technology successfully
because it greatly balances image quality, flexibility and performance. It us-
es a viewpoint oriented billboard representation with several levels of details
depending on the viewing distance.

Summarizing, image-based methods are useful and efficient approaches
for rendering forests at medium-far distances but present some disadvan-
tages: they usually exhibit clustering and parallax effects at close distances
and do not allow fot physically based animation of vegetation.
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Figure 2.4: Trees generated with the XFrog editor. [XFr10].

Figure 2.5: Leaf collapse operation introduced by [RCBT02].

2.1.2. Geometry-based rendering

Plant and tree rendering approaches based on geometry representations
provide better visual quality at all rendering distances, compared to image-
based methods, and do not lose realism as the viewer moving towards the
object. However, the amount of primitives that form the trees makes it
necessary to use certain techniques to obtain interactive visualization of
large forests. Figure 2.4 shows some geometry-based trees modelled with
the XFrog commercial application, rendered using an offline renderer pho-
torealistic.

Due to the sparse nature of the foliage, which is composed of a set of
disconnected leaves and not a continuous smooth surface, traditional sim-
plification operations that are usually applied to polygonal surfaces can not
be used for foliage simplification. Therefore, one of the main problems in
geometry-based representation of trees is to develop appropriate simplifica-
tion procedures that allow for removing detail from the foliage while main-
taining perceptual visual appearance.
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Figure 2.6: Geometric simplification of the folaige by [RCB102].

For solving this problem Remolar et al. [RCB*02] introduce a new simpli-
fication operation specially designed for the foliage that allows for removing
detail while minimizing the visual impact of the operation. They introduce
the concept of leaf collapse as an adequate simplification operation for the
foliage. A leaf collapse (see Figures 2.5 and 2.6) takes as input two leaves
and substitute them with a newer bigger leaf that potentially fills the gap
created by eliminating the former leaves.

This approach allows for effectively decreasing the amount of rendered
geometry while maximizing the overall shape of the tree. Authors use this
technique for constructing a multiresolution LoD model for the foliage for
decreasing the amount of detail depending on the distance to the tree.

Weber and Penn [WP95] present an algorithm for the procedurally cre-
ation of trees, and although they do not use accurate botanical principles
for modeling the tree they are able to construct high quality trees of sever-
al species. They also take count physical properties like wind sway for tree
movement. Although they provide image degradation at range for increasing
rendering speed at far distances, their rendering algorithm is outdated and
does not take full benefit of current GPUs.

Some authors propose to use rendering methods based on points and lines
so that, when the tree is rendered at a certain, it can not be distinguishable
from using triangles for representing geometry. Following this line of research
Stamminger et al. [SD01] propose to use a combination of points and lines
instead of triangles for representing the foliage. They key advantage of using
points instead of geometry is that it is faster to draw because less vertices
need to be processed (in the case of complex geometry) and that it allows
for a natural popping-free way of implementing level of detail depending on
the viewing distance.

Following the idea of using points and lines for representing the foliage,
Deussen et al. [DCSD02] present a method for rendering large natural scenes
in real-time. They store a representation of the models using a hierarchical
data structure that allows them to smoothly reduce the geometrical repre-
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Figure 2.7: Representing plants with lines at far distances on [DCSD02].

sentation. Moreover, data reduction is driven by visual importance of vegetal
species, allowing for maintaining the visual fidelity of the representation even
drastically reducing the amount of geometry.

Gilet et al. [GMNO5] propose to use a combination of triangles and points
for efficiently rendering vegetal species. When the tree or block of plants are
close to the observer, they are rendered at full level of detail using triangles to
represent leaves and branches. However, as the models move away from the
viewer triangles are progressively replaces by points which size increase with
the viewing distance. As the distance increases the amount of points needed
for rendering decreases but their size is increased for maintaining visual
appearance. The advantage of using points is that it is easy to decrease the
level of detail just by removing points from the soup.

Cook et al. [CHO5] present Stochastic Pruning as a powerful operation
for extreme simplifications of sparse geometry such as the foliage. Later, the
same authors revised their work [CHPRO7] by extending the idea to the sim-
plification of aggregate detail, which uses the same approach of stochastic
pruning to non-vegetal species, such as crowds. The idea behind this works
is to progressively eliminate primitives from a complex polygonal represen-
tation using a stochastic metric. According to the authors, that approach
enables them to rapidly and easily discard potential unseen geometry after
performing visual modifications to the remaining geometry.

In recent years, several papers based on multiresolution LoD models have
appeared. Some of them work with multiresolution models of images, such as
the work presented by Meyer et al. [MNPO1] and Lluch et al. [LCV03]. Most
of LoD models are based on geometry, as the work presented by Remolar
et al. [RCRBO3][RRCRO04]. In that work authors present a multiresolution
representation of a tree based exclusively on isolated polygons. They can
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represent different resolutions in a same tree following a view-dependent
approaching. Even this algorithm is able of effectively reducing foliage com-
plexity, they perform the LoD extraction process on the CPU, which is a
great penalty when using massive forest scenes.

In 2006, Rebollo et al. [RRCRO06] improved this representation by adapt-
ing data structures to the graphics hardware. The next year, the same au-
thors present an improved version [RRCT07] of this work which uses a
GPU-oriented storage for multiresolution data so that it can be efficient-
ly rendered. In that work, they divide the foliage into clusters and treat
them like independent LoD models with their own buffers on the GPU. The
advantage of this approach is that performing simple changes in the LoD do
not force to update the vertex buffer of the whole tree but just a part of it.
They also propose to use a multiresolution model for the trunk based on tri-
angle strips [RC04]. However, although this work uses an efficient rendering
approach, the LoD extraction step is still performed on the CPU.

Rebollo et al. [RGR*07] propose a new approach for fast foliage sim-
plification on the fly and negligible extraction cost. The article is based on
generating simplified leaves selecting different vertices based on a wvertez-
skipping approach. Although this technique performs the LoD extraction
step really fast at constant time, it is not able to preserve foliage appear-
ance on high compression ratios.

Finally, [DZYJ10] presents a new multiresolution model for the foliage
that allows for high compression ratios. Their approach is based on recursive-
ly collapsing pairs of leaves and finally replacing them by other primitives,
as lines or points. These collapses are precalculated in a preprocess by sub-
dividing the foliage using a binary tree scheme for rapidly finding pairs to
simplify.

2.2. Related work for Scene Management

The growth in computing capabilities that the graphics hardware expe-
rienced in the last decade allow developers to build more and more complex
scenes. Real-time rendering applications usually make use of LoD techniques
for improving performance in such scenarios, introducing the idea of scene
manager which takes control of individual renderable models and takes de-
cisions about their rendering behaviour.

Funkhouser and Séquin [FS93] demonstrated that it is necessary to use
a predictive selection scheme, based mainly on the complexity of the current
frame, rather than a reactive framework, based on the feedback obtained.
They formulated this problem as an optimization task which is equivalent
to a constrained version of the Multiple Choice Knapsack Problem. Even
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though this problem is NP-complete, some authors like [FS93] or [MBO1]
obtained several techniques that could only guarantee a solution that is at
least half as good as the optimum one. [WS98] reconsidered this problem
for the special case of continuous multiresolution models, obtaining a non-
iterative closed form solution which was cheap to evaluate every frame.

This way, the problem of the time-critical multiresolution rendering can
be presented as an optimization problem for finding the LoD that maximizes
the scene quality under timing constraints. Funkhouser and Séquin [FS93]
developed a generalization of the predictive approach, using approximate
heuristics of the cost and the quality obtained that were efficient and accu-
rate enough to obtain the best image possible within the target frame time.
The work in [GB99] extended the use of predictive techniques with more pre-
cise heuristics for the cost and the benefit of the resolution of the objects.
It also considers but not includes temporal coherence to minimize sudden
changes. These optimizations are very accurate but costly, and as they as-
sign one variable for each object, rendering scenes with a large number of
objects tends to be a slow solution.

All the previous works have applied static, feedback of predictive heuris-
tics. But, in all cases, a criterion to select the most adequate level of detail
must be used. This way, it is possible to use the size, the speed, the position
in the scene, etc. Many authors have addressed the necessity of investigat-
ing how the human perception system works. [Red94] considers the necessity
of including an analysis of the human visual system to understand how it
works and to offer more adequate results, extending his results in his subse-
quents publications. In this sense, several authors have included biometrics
into their heuristics, considering spatiotemporal sensitivity [YPGO1] or de-
veloping frameworks with eye tracking as the basis [DDGMO00].

Other authors have addressed this problem from different points of view.
The authors of [RL0O0] use a multiresolution hierarchy based on bounding
spheres with a rendering system based on points specially designed for 3D
scanned models with a great geometric complexity. They perform the LoD
selection based on the projected size in the screen, and adjust the threshold
from frame to frame. They also gradually refine the model when the view-
point is not moved for a period of time. The most novel aspect of [[AN02] is
the use of a distributed rendering architecture to obtain a stable frame-rate.
A group of researchers have presented the concept of interruptible rendering
[WLWDO03] to find a rational compromise between spatial and temporal de-
tail, producing a complete image on the back buffer almost immediately and
then incrementally refining it so that the refinement can be interrupted at
any time. Zach [Zac02] presents a solution based on geomorphing where the
LoD management is achieved by distributing the LoD selection and calucla-
tion between several frames, reusing the old resolution until the new one is
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ready. As the new LoDs will appear in future frames, they need a path pre-
diction process to obtain future viewpoints as directions. They also use cost
and benefits computation, but include some feedback strategy to compen-
sate for some assumptions they make. These authors extended their work in
[ZMKO02], presenting an approach for discrete and continuous models where
the time spent for LoD selection is amortized over several frames.

2.3. Related work for lllumination of plants

Realistic illumination is an important factor that provides visual quality
to synthetic images. Although realistic illumination can be achieved by sim-
ulating (or at least highly approximating) the physics of light transfer and
its interactions with the environment, that would be very inefficient even
for offline rendering. Therefore, several authors have proposed uncountable
solutions to this problem and how to efficiently compute global illumina-
tion for realistic visualization. More specifically, there are some methods to
simulate global illumination in real time, such as Precomputed Radiance
Transfer [SKS02]. This method uses spherical harmonics to capture low fre-
quency illumination scenarios (including soft shadows and interreflections of
objects). On the other hand [SSBDO03] uses a geometry instantiation system
and precise phase functions for hierarchical radiosity in botanical environ-
ments.

Mendez et al. [MSCO03] introduce Obscurances as a method to simulate
diffuse illumination by considering neighbor light contributions instead of
the global ones. Ambient Occlusion [PG04] enhances the illumination of an
object by determining the light visibility of each part of the object in a
way that the most occluded is an object point the lesser light it will receive
from the exterior. Other authors [Bun05] adapted [PG04] to the GPU so
that the ambient occlusion is computed directly in the fragment shader.
Another approach for real-time illumination of trees is [HPADO0G6]. In this
work, ellipsoidal occluders that describe the shape of the tree are evaluated
at run time.

Reeves and Blau [RB85] present a tree rendering algorithm which also
takes into account lighting and shadowing. The method is based on particle
systems. The relative position of each particle inside the tree is used to
approximate the illumination and shadowing at a given point.

Jensen et al. [JMLHO1] present a new model for subsurface light trans-
port which is useful on translucent objects such as leaves. Franzke et al.
[FFDO03] introduce an accurate plant rendering algorithm using [JMLHO1]
as a leaf illumination method and improving it for leaf rendering.

Finally, [LBOO7] presents an expressive illumination technique for fo-
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liage. It calculates implicit surfaces that approximate the general shape of
the foliage. The implicit surfaces are used both for estimating the global
illumination coefficient at a given point and for realigning leaves normals to
calculate the diffuse reflection.

2.4. Related work for Shadowing

Although shadows are created by the lack of light and then their repre-
sentation can be realistically calculated using physics of light, in computer
graphics they are usually treated as a separate element in the scene for the
sake of rendering efficiency. Realistic shadow generation is a "hot’ topic in
real-time graphics because it highly contributes to the visual quality of syn-
thetic images and they have been under research since the dawn of computer
graphics.

A very straightforward way of calculating shadows is by using ray casting
to test whether light rays hit a point or not. However, due to its computa-
tional cost this method is not well suited for real-time computer graphics
and then alternative methods have appeared.

Williams introduced shadow mapping for general meshes in 1978 [Wil78].
Although this method is highly suitable for the graphics hardware, its main
drawback is aliasing and its memory consumption. Thus lots of authors have
suggested their own approaches to solve this problem.

Adaptive Shadow Maps (ASM) [FFBGO1] reduces aliasing by storing the
shadow map as a hierarchical grid. This allows us for huge memory savings,
but it is not graphics hardware friendly, because of its hierarchical struc-
ture. Arvo [Arv04] proposes to use a tiled grid data structure to tessellate
the light’s viewport, as a simplified version of ASM. Each cell in this grid
contains a sampling density depending on a heuristical analysis.

There are some perspective parametrizations to maximize the area occu-
pied by shadow casters if they are near the observer. This allows for rendering
high quality shadows near the camera at the cost of loosing detail, but not
quality, on points that are far away from the observer. The most representa-
tive shadowing methods that use this scheme are [SDD03][WSP04][MT04].
Parallel Split Shadow Maps [ZSXLO06] use a similar approach, but it treats
the continuous depth range as multiple depth layers. This allows us to utilize
better the shadow map resolution.

As seen, there are no few methods around this topic, but there are no
specialized shadow casting methods for foliage that takes into account the
leaves structure and its spread nature.

A number of authors have developed techniques for the real-time genera-



2.4 Related work for Shadowing

Figure 2.8: Importance of perceptually correct shadows: shadows with
no penumbra (left), with uniform penumbra (middle) and with variable
penumbra rendered with our method (right). Notice how the penumbra
becomes sharper as the shadow approaches the occluder and the quality
of self-shadows compared to uniform penumbra methods.

tion of penumbrae. These methods can be classified into two groups: uniform
and variable-sized soft shadows. Uniform soft shadows are faster to compute
but variable-sized penumbrae methods are able to generate more realistic
shadows (see Figure 2.8) as they require to perform costly operations.

In 1987, Reeves [RSC87| presented a technique called percentage-closer
filtering (PCF) which makes it possible to reduce the aliasing and to simulate
an artificial penumbra of uniform size. Haines [HaiOl] provides a method
to render realistic penumbrae with the limitation that the shadow receiver
must be a plane. Chan et al. [CD03] and Akenine-Moller et al. [AMAOQ2]
are able to render a realistic penumbra. However, as they use the geometric
silhouette of the shadow caster, they have similar limitations to those found
in shadow volume approaches. Hasenfratz et al. [HLHSO03] presented a survey
of techniques for the rendering of the penumbrae, which was updated in 2008
by other authors [Bav08].

Some authors approximate the contents of the shadow map in such a
way that it can be filtered like a regular texture, reducing the aliasing.
To do so, Donnelly et al. [DLO6][LMO08] store the mean and the squared
mean of the distribution of depth to calculate the variance in real time.
Annen et al. [AMB™"07] approximate the depth function using a 1D Fourier
expansion which provides a good filtering of the shadow but introduces some
ringing. Furthermore, Annen et al. [Sal07] introduced a new technique for
filtering the shadow map by approximating the step function of depths with
an exponential function.

These methods can be used to reduce aliasing and to generate a fixed-
sized penumbra. However, they are not able to produce realistic variable-
sized penumbrae.
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Brabec et al. [BS01] uses a hardware compliant version of [PSS98] which
is able to recreate visually correct penumbrae, although it is not physically
correct. Schwarz et a. [SS07] is able to represent quality physically-based
soft shadows in real time, at the expense of speed.

F. Randima [Fer05] introduces Percentage-closer soft shadows (PCSS)
which is able to represent shadows with variable-sized penumbrae. This tech-
nique is usually combined with a filtering technique like [DL0O6][LMO8] or
[Sal07] to reduce the noise. Guennebaud et al. [DF94] are also able to gener-
ate accurate high-quality penumbrae of variable size, however the complex-
ity of the process involved makes this method much slower than the others.
They interpret the shadow map as a 3D representation of the scene and
back-projects its texels to determine the amount of light which is visible at
a given point.

Finally, Anne et al. [ADM™"08] present a realistic shadowing approach
based on convolution shadow maps [AMB™07], which filters the shadow map
in light space by using convolution operations.

Shadow mapping is a widely used hardware friendly method for com-
puting shadows in real-time scenes. However, although it is a very effi-
cient method that scales well, it produces aliasing due to the texture-based
nature of the algorithm. Aliasing can be reduced by two orthogonal ap-
proaches: projection optimization and shadow filtering [SWP10]. The for-
mer deals with how shadow caster objects are projected over the shadow
map in order to optimize texture space for important parts of the scene
[WSP04][MT04][SDDO03]. The latter deals with how the shadow map is fil-
tered in order to reduce aliasing. An important difference between them is
that projection optimization is used during the shadow map creation time,
while the shadow filtering is applied when rendering the scene with the al-
ready created shadow map by deciding how to interpret the data. Both lines
of research are orthogonal but complementary as techniques of both fields
can be used together to provide efficient anti-aliasing.

Our method can be classified in the field of shadow filtering approaches.
There are several works in the literature for dealing with this problem. One
of the first methods introduced to alleviate aliasing in shadow mapping is
percentage-closer filtering (PCF)[RSC87] which is able to filter the shadow
map by averaging the outcomes of depth comparisons against the shadow
map, instead of the depth values themselves. In fact, this is a “post-filtering”
method as it applies averaging after the non-linear depth test. However, this
means that filtering can be executed only when the distance of the shaded
point is available, so it should be repeated for every shaded point, which
makes PCF expensive when large filter sizes are used. The cost of PCF can
be reduced by moving the filtering operation before the depth comparison.
Such pre-filtering methods belong to two main branches, those that apply
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depth transformation, and those that are based on statistical analysis.

Convolution shadow maps [AMBT07] apply depth transformation and
approximately express the visibility function in a product form €(z, — z,) =
> 9i(zr) - hi(2) and then linearly filter the h;(z,) factors. This method al-
lows for anti-aliasing by representing the depth distribution with respect to
a basis which allows for linear filtering. Convolution shadow maps do not
scale well when the number of coefficients increases as all of the basis coeffi-
cients need to be sampled for a given texel of the shadow map. Ezponential
shadow maps (ESM) [Sal07] approximate the shadow test using a single ex-
ponential function. This technique allows for both shadow map pre-filtering
and hardware accelerated filtering, although it still presents artifacts, for
example, its shadows are unrealistically light when the occluder is far from
the shadow receiver.

The most important representative of statistics based shadow filtering is
the method of variance shadow maps (VSM) [DLO06]. The variance shadow
map method stores the depth and the squared depth of the shadow casters.
These values are filtered as a regular texture. The filtered values are used
at rendering time to calculate the first two moments M; and Ms of the
depth values over the shadow filter region. Then, the one-tailed version of
the Chebyshev’s Inequality allows us to approximate an upper bound of the
probability of shadowing if receiver depth z, is greater than the mean depth
Zot

0_2

P(zo > 2zp) <

RRaCEE =0

where Z, = M is the average of the depth values and 0% =M, — M12 is
their variance. If receiver depth z, is greater than the mean depth Z,, then
the variance shadow map method approximates the visibility function by
this upper bound of probability P(z, > z,):

o2

i A 22

v(zp) =

If the receiver depth is smaller than the mean depth, we assume that the
surface is fully lit and thus v(z,) = 1.

Variance shadow maps are an efficient hardware friendly method whose
performance scales well with the screen resolution. However, artifacts appear
when the scene is at least moderately complex from the light’s point of view.
A typical problem occurs on parts of objects that are completely occluded
but some amount of light still leaks inside the shadows (see Figure 2.9).

Actually, light bleeding artifacts are introduced by the fact that there
is not enough information to disambiguate all the possible cases correctly.
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Figure 2.9: A typical case where light bleeding artifacts appear. Although
object C is completely occluded by object B, it still presents some penum-
bra from object A, which is “bleeding” incorrectly.

However, as stated by [LMO0S], storing more moments in the shadow map
for evaluating the visibility function would not solve the problem, because
higher-order moments are numerically unstable.

Layered variance shadow maps (LVSM) [LMO08] is an evolution of VSM
developed for solving the “light bleeding” artifacts. LVSM divides the light’s
depth space into multiple layers which allows for a correct filtering of the
shadow map. By using this technique we can obtain different upper bounds
for P(z, > z), some tighter than others. When rendering the shadows, this
allows for selecting the appropriate warp in which the light bleeding artifacts
are less visible or even eliminated. This technique introduces the problems of
selecting the number and the optimal placement of the warps. These layers
are distributed by using an automatic method based on the Lloyd relaxation
algorithm. Although performance decreases and the storage cost increases
as more layers are used, it still can perform the shadow filtering with just a
single access to the shadow map.

Our algorithm is a statistical method and allows for eliminating (or at
least highly reducing) light bleeding artifacts. Simply put, our algorithm
replaces the Chebyshev’s Inequality by a Gaussian or a power function ap-
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Figure 2.10: Performance cost of using layers.

proximation which are able to approximate the depth distribution more ac-
curately. While our algorithm highly reduces the “light bleeding” artifacts, it
cannot completely eliminate them for complex scenes. In these cases, we can
use a layered approach (just like LVSM) to completely eliminate artifacts
with a lower cost as much fewer layers need to be used.
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CHAPTER

View-dependent pruning for
real-time rendering of trees

The main problem in the real-time rendering of vegetation is the massive
amount of primitives to be rendered. These primitives are needed to fully
describe the geometry of the plants. However, some of them are not visible
depending on the location of the viewer. This dissertation chapter focuses on
this fact to interactively reduce the amount of geometry needed to represent
the foliage through a view-dependent multiresolution scheme. Following a
camera-dependent criterion, the less visible parts of the foliage are detected
in real time, and rendered with a decreased level of detail for improving
efficiency. This fact considerably reduces the extraction and visualization
time of the geometry that represents the foliage. The novelty of the presented
method is that its design is oriented to being efficient on massively parallel
architectures, such as the graphics processing unit.

3.1. Introduction

Efficient rendering of vegetal species is a key feature for enhancing the
realism of outdoor scenes. However, realistic visualization of plants in a
natural environment has always posed a challenging problem, due to the
massive amount of geometry needed to represent a plant. This is especially
true in dense forests, where the massive amount of primitives can easily
overwhelm the most advanced rendering system available.

Multiresolution level of detail -LoD- models [RLBT02] are well known
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methods for altering the polygonal complexity of objects in order to im-
prove performance in highly detailed meshes. The basic idea behind these
methods is that highly detailed models do not always need to be represented
at full detail. Multiresolution models alleviate this problem by diminishing
the amount of triangles in a progressive way, so that the viewer does not
perceive great changes while decreasing the level of detail.

Every LoD scheme is based on a simplification method in order to con-
struct the data structure. The appropriate geometry, depending of some
criteria, is extracted in real time. Usually, LoD schemes are designed for
continuous surfaces. This is the reason they do not work properly with the
representation of the foliage, because of the characteristics of their geom-
etry [DCSDO02]. This part of the plants, which is composed of sparse non-
connected geometry, cannot be optimally simplified using standard simpli-
fication methods, as edge collapses. The multiresolution models specifically
designed for trees usually introduce their own simplification scheme adapted
to the nature of the foliage, such as those based on leaf-collapses [RCBT02]
or others based on pruning [CHO5].

This chapter presents a new view-dependent multiresolution model for
the foliage of the trees that takes advantage of the graphics hardware. In or-
der to build the LoD scheme, a stochastic pruning method [CHO05] [CHPRO07]
is applied in a preprocess, which is proved to deal correctly with sparse
meshes, such as the foliage. This fact allows us to interactively remove un-
needed data. Moreover, the presented multiresolution scheme provides a
view-dependent solution. In real-time, the less visible parts of the foliage
are detected and rendered with a coarser approximation in order to improve
efficiency. The appropriate resolution of the foliage is calculated taking into
account both the distance of the tree to the observer as well as the visibility
of the leaves. Our algorithm is designed to run efficiently on highly parallel
architectures, such as the graphic process unit (GPU). Due to the design
of the scheme, the level of detail can be calculated in parallel, so that the
extraction time is considerably reduced.

The rest of the chapter is organized as follows. Next, we present an
overview of the method in Section 3.2. In Section 3.3 the processes involved
in the construction of the presented LoD scheme are described and run-time
processes are detailed in Section 3.4. Section 3.5 deals with the implementa-
tion details and the level of detail manager for forest rendering are explained
in Section 3.6. Next, we discuss the differences between our approach and
other existing techniques in Section 3.7. Then, we show and discuss the
results in Section 3.8. Finally, conclusions are presented in Section 3.9.
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Figure 3.1: Scheme of the presented method.

3.2. Method Overview

This dissertation chapter proposes a new view-dependent geometry-based
multiresolution algorithm for foliage rendering specially designed for highly
parallel architectures. The algorithm takes into account the distance of the
foliage to the camera, as well as its relative position, in order to provide a
view-dependent level of detail solution. The presented scheme is oriented to
trees which leaves are represented by two triangles in a quad.

The algorithm is composed of two different stages as it is illustrated in
Figure 3.1. Firstly, there is a preprocess step which prepares the input data
(a mesh representing the foliage) for constructing the view-dependent ap-
proach. This pre-process performs the following operations. First, foliage is
divided into a cloud of cells, represented as oriented bounding boxes (OBBs).
Next, the visibility of each cell is computed from a set of external view-
points surrounding the foliage (Figure 3.2). Finally, leaves inside each cell
are stochastically sorted [CHO5] in order to perform the simplification oper-
ation at run-time.

Secondly, there is a run-time stage which includes the algorithms needed
to interactively alter the level of detail. First, each cell evaluates in real-time
the position of the camera in order to decide the LoD factor associated to
it. LoD factors are used as a percentage value for deciding the amount of
leaves needed to represent the contents of a cell. Next, based on this factor,
a list of triangles that constitute the visible leaves is generated for rendering,
selecting them from the original set. Finally, the size and the color of the
remaining geometry are altered in order to preserve the visual appearance
of the original mesh.

From an implementation point of view, performing all these operations
on different independent cells means the LoD extraction algorithm is paral-
lelizable, and thus GPU-friendly. The direct benefits of implementing it on
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Figure 3.2: Example of a distribution of cameras surrounding the foliage.

the graphics hardware are that the traffic between the CPU and the GPU is
minimized and the time needed to perform the needed calculations is drasti-
cally decreased, because of the parallel nature of the domain. Therefore, this
method is able of taking advantage of both processing power of the GPU
and the wide bandwidth of on-board graphics memory.

3.3. Pre-process

In order to build the data structure, the first step is to generate a cloud
of 3D cells over the foliage, so that every leaf in the foliage is clustered in a
cell. Next, the visibility of each cell is tested from different angles from the
exterior of the foliage. Thus, each cell is bound to a value that determines
the visibility of the leaves it contains from a set of viewpoints located around
the foliage (see Figure 3.2). Finally, a stochastic number is assigned to every
leaf in the cell and the leaves are re-organized using this number, following
the work presented in [CHO5].

3.3.1. Cell cloud generation

The first step is to generate a cloud of cells around the foliage. In this
process, it is important to generate the cells taking into account the shape of
the foliage and the distribution of the leaves. The objective is to maximize
the number of leaves contained in each cell while minimizing the size of
the cells needed to be spread over the foliage. For that purpose, we use the
method introduced by Gottschalk et al. [GLM96] which generates a cloud of
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oriented bounding boxes that are fitted as tightly as possible to the shape of
the object. The number of the cells in the foliage will determine the number
of processes performed in parallel in the GPU.

For the cell cloud generation, we implement an OBBTree structure which
allows us to generate a tree of tighly packed cells distributed over the foliage.
This OBBTree allows us to obtain a cell cloud of a variable number of cells
by simply selecting all the cells of a given maximum depth.

Figure 3.3: Procedure for building the OBBTree by recursively partition-
ing the bounded polygons.

For constructing the OBBTree, first the bounding volume of the whole
foliage is computed. Then, a process recursively partitions the bounding
volume, using the major axis criterion, and builds a tree of a given maximum
depth. Figure 3.3 shows this recursive process. When the tree is computed,
the resulting cell cloud is selected by traversing the tree and selecting the
leaf nodes. Figure 3.4 shows an example where the cell cloud is computed
from an input tree by using an OBBTree.

The number of cells generated in the foliage is the criterion used for
parallelizing our LoD algorithm. In the GPU, each kernel execution processes
the level of detail of each single cell in parallel. In our scheme, the amount of
cells determines the softness of the view-dependent approximation because
having more cells means a finer granularity. Therefore, the more threads
in parallel, the better visual results obtained. In this scheme, we decided
to setup our kernels to use 512 threads per block, the maximum amount of
threads per block in CUDA. Then, in this preprocess, OBBTree is generated
which has 512 cells as leaves of the tree data structure. All the leaves are
included in one of these cells distributed around the foliage.

3.3.2. Visibility determination

After performing the previous step, the visibility of each cell is computed
in order to provide a visibility factor that determines the visibility of the
leaves it contains from a set of external cameras. These cameras or view-
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Figure 3.4: Example for illustrating the 3D-cell cloud generation process
using an OBBTree.

points are uniformly distributed around the foliage in order to capture the
shape of the foliage from a finite number of directions, as shown in Figure 3.2.
In order to decide the amount of viewpoints and their distribution around
the foliage, we took into consideration the following works from Lindstrom
et al. [LT00] and Castellé et at. [CSCF08]. The good results obtained in
their works using uniformly distributed viewpoints led us to the decision to
keep this criterion for distributing the cameras around the foliage. Moreover,
they suggest in their work that using more than twenty cameras to perform
a image-driven simplification does not provide more accurate information.
In our tests, we have found that usually the number of necessary pre-cached
cameras is a small value. After various experiments, we tested that 16 cam-
eras were enough to capture the general shape of the foliage in order to
provide good estimations.

The visibility factor is a function of the type wvis(cell, camID) which
associates each cell/camera pair with a floating-point value in the range
[0,1]. This factor determines how much of the foliage it contains is visible
from a given viewpoint. Cell visibility is computed, for every cell/camera
pair, by taking into account the number of pixels of the leaves in this cell
that are not occluded by the rest of the foliage. The cost of this pre-process
is O(Neeirs X Neameras)s With nees being the number of cells in the cloud and
Neameras the number of cameras located around the tree.

Our implementation uses hardware occlusion queries to obtain the num-
ber of pixels that pass the z-buffer test. This part of the process is done
on the GPU. Algorithm 1 clarifies the process involved in calculating the
visibility values.
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visPixels

total Pixels €0.1] (3.1)

vis(cell,camID) =
Basically, for each viewpoint, camlID, the contents of each cell are ren-
dered four times. The first and second passes are used to obtain the number
of pixels visible from the current viewpoint without occlusion from other
cells: the first pass is used to set up the depth buffer and the second one
is used to obtain the number of visible pixels (total Pizels). The other two
passes are used to calculate the number of non-occluded pixels visible from
the current viewpoint: the third pass renders all cells to fill the depth buffer
and the last pass renders the current cell again to count the number of pix-
els that pass the depth test and thus the number of pixels which are visible
from the current viewpoint (visPixels). Therefore, the visibility factor for
each cell-camera pair is calculated using Equation 3.1.

Algorithm 1 Cell visibility determination on the GPU
cells < ListofClells
leaves < Listof Leaves
cameras < ListofCameras
for all ce € cells do
for all ca € cameras do
clear Buf fers(color, depth)
render LeavesCell(ce,ca) ffirstpass
resetQuery()
render LeavesClell(ce,ca) fsecondpass
total Pixels <— queryRendered|()
render LeavesAll(ca) fthirdpass
resetQuery()
render LeavesCell(ce,ca)  ffourthpass
visPizels < queryRendered()
visCellView|ce, ca] + %
end for

end for

3.3.3. Cell-based stochastic sorting of leaves

Once the leaves are clustered in cells, they are sorted following the cri-
terion introduced by Cook and Halstead [CHO5]. A stochastic criterion is
used to assign a random number to each leaf, which determines the order
of simplification of each leaf in the cell. This process makes it possible to
optimize the rendering of models made up of a large amount of disconnected
geometry, such as plants and trees.
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Figure 3.5: The visibility factor of the current viewpoint is obtained in
real time by interpolating the visibility factors of the three nearest stored
points of view.

In order to make this simplification process easier, leaves are stored in
the GPU taking into account this random number. Each leaf is represented
by two triangles, whose indices are finally stored in the graphics hardware.
This fact allows for optimal performance performing memory accesses.

3.4. Run-time

This section describes the process performed at runtime on the GPU in
order to generate and visualize the appropriate level of detail. Three stages
are clearly differentiated: LoD determination, triangles list generation and
appearance preservation.

3.4.1. LoD determination

In order to prevent unneeded geometry from being rendered, a level of
detail factor is calculated for each cell (LoD ey factor) to determine in real
time the appropriate level of detail of the geometry contained in every cell.
In order to obtain a view-dependent approach, we have implemented in this
scheme a function of the type shown in Equation 3.2. It depends both on
the visibility of the cell in the current situation of the camera and on the
distance of the object to it. However, this function can be easily adapted to
different requirements of the scene.

LoDei_factor(viewLoD(cell), dist(near, far)) € [0, 1] (3.2)

Firstly, the visualization of one cell, view LoD(cell), is interactively deter-
mined by using the pre-calculated LoD factors of the cell in the pre-process.
For every cell, the visibilities of the three closest viewpoint directions are
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linearly combined and weighted, to approximate an estimation of the current
visibility (Figure 3.5).

3
viewLoD(cell) = Z camW eightsy, - vis(cell, camlIDsy,) (3.3)
k=1

where camW eights;, and camlIDsj represent the importance and the
unique identifier of the selected camera k, respectively (see Algorithm 2 for
details).

Secondly, the function dist(near, far) maps the relative positions of the
tree (treePos) and the observer (camPos) into a value in the range [0, 1].
It takes into account two user-defined values which represent the distances
for minimum and maximum LoD (near and far planes). This function is
defined in Equation 3.4.

|camPos — treePos| < near — dist(near, far) =1
|camPos — treePos| > far — dist(near, far) =0
else (3.4)

|camPos — treePos| — near

dist(near, far) =1 — Far —near

Finally, the appropriate LoD (LoDecej_factor) is determined by using both
the visibility of the cell and the distance to the camera and is calculated as
follows:

LoDceyi_factor = dist - viewLoD (3.5)

These parameters cause the system to behave as a variable multiresolu-
tion model because the level of detail depends on both the position and the
orientation of the observer. Notice that setting viewLoD(cell) to 1 for each
pair (cell, camera) causes the system to behave as a uniform multiresolution
system which only depends on the distance to the viewer.

At the end of the process, one LoD e factor is obtained for each cell
around the foliage. These values are calculated in parallel on the GPU and
stored in a buffer located in video memory. The storage cost of this buffer is
O(neerrs), wWith neeys being the total number of cells distributed around the
foliage.
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3.4.2. Triangles list generation

The objective of this process is to obtain the leaves needed to visualize
the foliage at a given level of detail. All the cells are processed taking into
account the LoD ey factor Previously calculated. As result of this process, a
list of triangle indices that represent the leaves in the current approximation
is generated.

As leaves have been previously ordered using the stochastic number in
the pre-process, outputting a certain level of detail is accomplished by just
copying into the render buffer the first (njeqvescenr - LODceli_factor) leaves
contained in each cell, where Njegpescen 18 the amount of leaves in that cell
that represent the best approximation.

0 pruned
triangles

Celln Celln+1
triangle

indices

>
rendering ., [T]. k\\%l [TT11-[11

indiceslist

offset for ceH n offset for cell n+1

Figure 3.6: Unpruned leaves of each cell are determined and stored into
a sequential list used for visualization. Offsets are needed in order to avoid
collisions.

Taking advantage of the graphics hardware, the resulting indices list
is generated for all cells simultaneously. For this reason, it is necessary to
determine, for each one of them, the offset position in the resulting index
buffer to start writing indices to. This fact avoids collisions writing to the
buffer, as it is shown in Figure 3.6. Let o, be the offset position for cell n
and u, the amount of unpruned triangles of cell n, 0,41 is calculated as
follows:

On+1 = On + Up (3.6)

It is important to notice that calculating a valid offset for a cell re-
quires the sum of the offsets of previous cells. Although this problem seems
to be inherently sequential, there exist some works in the literature that
deal with this problem and how it can be efficiently implemented in parallel
systems using the all-prefiz-sums operation described in [Ble90]. More infor-
mation about the algorithm used in this chapter can be found in [Har07] and
[HSOO07] for a detailed description of the algorithm and its efficient CUDA
implementation.
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Once cell offsets are calculated, the system is ready to start generating
indices. Finally, for each cell a global variable is incremented in video mem-
ory to indicate the total amount of indices generated. This information is
necessary in order to know the amount of geometry finally generated in the
LoD extraction process for rendering purposes.

3.4.3. Appearance preservation

The runtime modifies the area of the rendered leaves in order to reduce
the visual impact of pruning. Thus, the visual appearance remains the closest
possible to the original unpruned model. In this LoD scheme, the technique
presented in [CHO5] has been applied. The total area of all leaves of the
object can be expressed as Equation 3.7, where a is the average area of each
single leaf and n is the number of leaves in the most detailed representation.

areaorg = Na (3.7)

Let u be the parameter in the interval [0, 1] that quantifies the amount
of geometry that remains after the pruning process is applied to the foliage.
This parameter takes into account the distance of the object to the observer
(z). The function is defined in Equation 3.8. Let h be the parameter that
controls the aggressiveness of the pruning function.

u = z~loon? (3.8)

Therefore, nu is the number of leaves in the current level of detail and
nua is the total area of the unpruned foliage in this approximation. As prun-
ing decreases the number of leaves, the area of the foliage also decreases. It
must be compensated in order to maintain the visual concordance between
levels of detail. Then, rendered elements are scaled by the factor s to com-
pensate the pruning of primitives,

areagorq = (nu)(as), s =1/u (3.9)

In practice, this step is performed in the vertex shader and has an almost
negligible rendering cost.

When the tree is rendered at a medium distance it happens that leaves
are so small that the texture on them is no longer distinguishable. As it has
been previously said, leaves are represented by a quad textured by an image
with alpha channel for opacity. Due to the texture sampling performed by
the graphics hardware on this kind of textures, when they are so small,
lots of pixels receive an incorrect averaged alpha value which causes the

39



40

Chapter 3 View-dependent pruning for real-time rendering of trees

foliage to visually lose leaf density as it moves away from the observer. This
is solved by performing a color correction adjustment in the pixel shader
as follows. We compare the size of the pixel with the size of the leaf for
gradually disabling the alpha values of the leaf texture till no alpha channel
is used and the whole leaf is rendered with a single color. This technique is
similar to the method used by Cook et al. [CHO05], which also apply a color
preservation algorithm.

3.5. Run-time implementation details

The implementation of the runtime stage is based on CUDA, the pro-
gramming API that takes advantage of the unified multiprocessor architec-
ture of the GPU. It enables efficient management of all the resources of the
GPU without the limitations of the pipeline, offering an interface for the ren-
dering API such as OpenGL or Direct3D to share data and resources. Our
method takes advantage of this architecture to access and write geometry
in the on-board memory of the graphics device.

The process performed at run time by our implementation is detailed
in Algorithm 2. Every kernel invocation in the algorithm is acompanied by
the symbols < and > just behind it. These symbols contain a number that
represents the number of threads the kernel executes for completing the task.

The algorithm uses the following data structures:

= LoDCells is a buffer allocated in video memory. Its length is equal to
the number of cells. It is used to store the appropriate LoD of each
cell according to the current situation of the camera.

= cameras is a buffer allocated in host memory. Its length is equal to the
number of viewpoints. It is used to store the position of each viewpoint
surrounding the tree.

= cells is a buffer in video memory storing the indices to the leaves
contained in each cell.

» offsets is a buffer in video memory to store the offsets for each cell in
the resulting index buffer of leaves.

= [odIndices is a buffer in video memory used to store the indices of the
triangles representing the foliage in the appropriated LoD.

Algorithm 2 works as follows. First, function FindCameras seeks for
the three nearest viewpoints given the current camera location, vpoint. This
function outputs three camera identifiers along, camlI Ds, with three weights
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Algorithm 2 Algorithm for processes performed at run time.

nC < NumberofClells
FindCameras([in]Jvpoint, [in]cameras, [out|camIDs, [out]jcamW gs)

AssignLoD < nC > ([out|LoDCells, [inJvpoint, [in|camI Ds, [in]camW gs)

CalcOf fsets < nC > ([out]of fsets, [in]LoDCells)
MapOGLBuf ferToCUDA(lodIndices)

KernelDoLoD < nC > ([in]cells, [in]of fsets, [out]lodIndices)
UnMapOGLBuf fer(lodIndices)

defining the influence of each camera in the current situation, camWgs. As
it was said above, 16 cameras were enough to capture the general shape of
the foliage in order to provide good estimations.

Next, the function AssignLoD calculates a single LoD cy_fqctor for each
cell (in the range [0, 1]) on the GPU. Results are stored in the buffer LoDCells.
The function takes into account the distance of the object to the camera,
vpoint and combines it with the view-dependent cell factors associated to
the three nearest precached cameras weighted according to their influence,
camW gs. This LoD eyi_factor is calculated in parallel for every cell.

Then, function CalcO f f sets calculates the offsets where each cell must
start writing data to the buffer lodIndices in order to avoid collisions. This
way, each cell is assigned a space in the final buffer and data can be written
in a parallel way on the GPU.

Finally, the OpenGL buffer is mapped in order to make it accessible
from CUDA, function MapOGLBuf ferToCUD A. Indices data are written
in the buffer through the invocation of the function KernelDoLoD which
copies the resulting indices to the index buffer sequentially.

After this process finishes, the buffer lodIndices is unmapped and the
tree is ready to be rendered at the current level of detail.

As it was said in a previous section, the criterion used for parallelizing
our LoD algorithm is based on the cells. Each kernel execution processes the
level of detail of each single cell in parallel. The official CUDA documentation
recommends around 192 or 256 minimum threads per block. However, given
that the amount of registers used by our kernels is less than 16, we decided
to setup our kernels to use 512 threads per block, the maximum amount of
threads per block in CUDA. In this way, we are able to maximize occupancy
of the CUDA resources as well as enabling the algorithm for scaling well on
future graphics hardware.

In order to achieve high memory bandwidth in CUDA, memory is divid-
ed into equally-sized memory banks, which can be accessed simultaneously.
Bank conflicts arise when various kernels attempt to access to the same mem-
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ory bank at the same time, which causes bad performance. In our scheme,
each single thread represents a single cell of the cloud and manages its level
of detail. Each cell contains its own set of leaves, which are mutually exclu-
sive. This way, neither calculating the LoD cy_factor nOr generating the final
indices list access to the same memory location and thus, avoiding the bank
conflict problem.

Finally, the size of the leaves is altered at run-time using a vertex shad-
er. In a preprocess step, each of the four vertices of a leaf is assigned a
precomputed vector € in the following way:

3
Vi€ {0,1,2,3} ¢ = |0, — 0,25 ) v (3.10)
7=0

The resulting € vector is passed to the vertex shader and used for deter-
mining the direction on which each vertex must be moved in order to alter
the size of the leaf.

3.6. Forest rendering

This chapter have introduced a multiresolution model for foliage render-
ing that is completely oriented to the GPU. However, efficiently handling a
forest is not trivial and some extra work needs to be done in order to avoid
costly calculations. Every multiresolution model has associated an extrac-
tion time for providing a certain level of detail. Even though our algorithm
is executed on the GPU and it provides better extraction times than other
CPU oriented algorithms (like [RRCR04][RCBT02][RRCRO06]), it would be
inefficient to be extracting the appropriate level of detail of hundreds or even
thousands of trees every frame.

To solve that problem, we provide a level of detail management system
which reduces the amount of LoD extraction operations in the whole scene
by delaying them to next frames. This LoD system runs entirely on the
GPU in order to maximize performance. When the viewpoint changes, some
LoDs of the tree instances have to be updated. Let LoD, be the difference
between the current (LoDgioreq) and the desired (LoDgesireq) level of detail
for a tree instance in the present view. This term is defined as follows:

LoDy :’ LoD gesired — LoD gtored ‘ (311>

Where LoD gesireq is defined as the sum of LoDcey_factor for all tree cells
at a given time:
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ncells

LODdesired = Z (LODcell,factor)i
=1

At run time, a set of tree instances are selected every frame for updating
their level of detail based on different factors: their individual distance to
the observer (dist) and their LoDey,.

The LoD manager computes the factors dist and LoD.,, on all tree
instances in parallel on the GPU, and obtains their LoD urgency (LoD,,) as
shown in Equation 3.12.

LoD,,, - old

LoDy = dist

(3.12)

The term old in Equation 3.12 denotes the amount of time the LoD
factor of a single tree remains unchanged. In practice, this is implemented
as a CUDA array, and it is incremented every time the LoD management

is executed and it is reset when a tree instance is selected for changing its
LoD.

This formulation ensures that tree instances that are closer to the ob-
server’s position will update their level of detail more frequently because,
as they are potentially affecting more pixels than further trees, they are
considered more important in the scene. The old term in equation ensures
that all trees are going to be recalculated once in a while, preventing further
trees of being never updated.

Furthermore, our level of detail management system is able to efficiently
determine the amount of tree instances that intersect the viewing frustum
and therefore are selected for being rendered. This is important for large
forest scenes where thousands or even tens of thousands of trees are used.

Regarding the implementation, the LoD manager runs as follows. First,
it runs a CUDA kernel for every tree instance of the forest, calculates LoDe;
and updates old values for every one of them. In the same step, viewpoint
visibility is also calculated by intersecting each tree bounding volume against
the frustum. These operations are efficiently performed due to their simplic-
ity and the massive parallel computing power of current GPUs. A second
CUDA kernel is used for performing an ordering over each tree marked as
visible in the previous step. The sorting criterion used is LoDyrgency- Our
sorting algorithm is based on previous work for efficient parallel sorting
found in the literature [Ion97|[SA08].Then, a new user defined parameter is
involved in the process. This new parameter defines the time for perform-
ing LoD extraction tasks before rendering each frame. During this time, the
LoD extraction process is executed for the first trees in the array, until the
time defined by the user is over.
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Figure 3.7: Visual results on a close up with 50 % reduction on the level
of detail over the original tree shown in Figure 3.12.

3.7. Discussion

This section discusses the differences and advantages of our method
against other geometry-based LoD approaches for the foliage.

Our approach has been designed from scratch as a completely GPU-
based view-dependent multiresolution model for the foliage. This means that
the data storage, the LoD extraction and rendering algorithms have been
designed to be stored and executed on the GPU. This approach has some
direct advantages. Firstly, compared to [RCBT02] and [RRCT07] it removes
any traffic between the CPU and the graphics processor, avoiding the PCle
bottleneck of these methods due to their necessity of uploading to GPU
memory all vertex indices each time the LoD extraction process is performed.

In addition, it provides a level of detail management system that is al-
so designed to be executed in parallel on the GPU and prevents the GPU
to perform unnecessary LoD operations on large forest scenes. Rebollo et
al. [RRCT07] use a foliage subdivision system for preventing uploading the
whole foliage to the GPU each time the LoD changes. However, without a
LoD manager both [RCB102] and [RRCT07] provide especially bad perfor-
mance, because the system is easily stalled with data transfers.

The work presented by Deng et al. [DZYJ10] uses a technique similar
to [DVS03] for efficiently rendering LoD meshes on the graphics hardware.
Although this approach is very efficient and flexible and does not require bus
traffic for extracting the LoD, it has three major drawbacks. Firstly, as the
rendering is based on sequential point trees [DVS03], it uses a large number
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of rendering calls to visualize each tree. This is especially inefficient when a
large number of trees are being rendered, such as a forest. Moreover, they use
a combination of triangles and lines for rendering the foliage, increasing the
amount of needed drawing calls. Secondly, as the authors say in their paper,
their approach is designed to view trees at moderate distances, not being
suitable for close-ups. In contrast, Figure 3.7 shows the realism achieved
with our method even for close-ups. Lastly, their LoD approach is not view-
dependent and does not allow for decreasing the level of detail in hidden
parts of the foliage, which is important for better preserving the appearance
of the tree while reducing compression ratios.

3.8. Results

This section demonstrates our technique with practical tests for measur-
ing performance and visual quality. We have configured our test bed frame-
work in the following way. All tests have been performed on an Athlon64
3500+ with 3GB of RAM and a GeForce 8800GT graphics card. The trees
used in the experiments are geometrically described in Table 3.1. This sec-
tion is divided in two parts for separating the tests performed on a tree level
and those tests performed on a forest level.

’ Tree ‘ Leaves ‘ Triangles ‘

Olea europaea 16,107 32,214
Fraxinus ornus 28,645 57,290
Quercus cerris 41,155 82,310
Cedrus atlantica | 131,042 262,084

Table 3.1: Description of the foliage of the trees used in our experiment.

] Pre-process ‘

’ Tree ‘ Time (milliseconds) ‘
Olea europaea 6,499
Fraxinus ornus 9,380
Quercus cerris 14,217
Cedrus atlantica 12,720

Table 3.2: Time employed in constructing the data structure of the mul-
tiresolution model.

Table 3.2 shows the time employed in the preprocess stage. The processes
involved in this step are not performed in real time. After they are executed,

45



46

Chapter 3 View-dependent pruning for real-time rendering of trees

the data structure is prepared to interactively extract the appropriate level
of detal.

3.8.1. Single tree analysis

For our single tree analysis we configured a rotating camera around each
tree in order to provide a good estimation for the visibility dependent factor
of our method. Moreover, for considering the distance factor of the foliage
to the observer, the tree is moved away from the camera incrementally from
the near to the far planes in order to test the whole range of active distances.

(a) Olea Europaea (b) Fraxinus Ornus

(¢) Quercus Cerris (d) Cedrus Atlantica

Figure 3.8: Performance comparison charts for extraction times between
our method and RCC*. LoD 1 means 100 % and LoD 0 means 0%. 0.1 %
used as minimum LoD.

In our experiments, we have checked the time (in milliseconds) employed
in reducing the level of detail to 66 %, 33% and 15% as well as the time
needed for pre-processing each foliage using 16 uniformly distributed cam-
eras and a cell cloud of 512 boxes. Each measurement involves the time of
extracting the geometry corresponding to the LoD, i.e., the time of mapping
the hardware vertex buffers to CUDA, the execution of all the necessary pro-
cesses in the CUDA kernels and the time of un-mapping the buffers to be
rendered.
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Table 3.3 shows the level of detail extraction times for these four dif-
ferent types of trees. For each value on the table, a number of independent
measurements (20 for each value in our case) were taken and averaged in
order to provide a good estimation of the LoD extraction times. Moreover,
an additional comparison with our method running on a CPU is shown. It
can be clearly seen that due to the parallel hardware-accelerated nature of
our method it outperforms the extraction times obtained by the CPU-based
method. Notice that, since our method has been designed to run efficient-
ly on a highly parallel architecture, it cannot perform well on a single-core
CPU. Figure 3.8 shows a quantitative detailed analysis comparing the per-
formance of our method with RCC*. It can be seen how performing the LoD
extraction process in parallel on the GPU and avoiding any traffic between
the CPU and the GPU enables for a huge performance boost compared to
a only GPU-oriented approach.

| Tree [ 66% [ 33% [ 15% |
Olea europaea 0.6 | 0.56 | 0.51
Fraxinus ornus 0.90 | 0.72 | 0.66
Quercus cerris 0.92 | 0.70 | 0.65
Cedrus atlantica 23] 1.63 | 1.23

Table 3.3: LoD extraction times in milliseconds for different tree models.

In order to demonstrate the benefits of moving the level of detail ex-
traction process from the CPU to the GPU, the graphs in Figure 3.7 are
provided. This figure compares the extraction times of reducing a tree to
10% of its original geometry with both a CPU-based LoD method RCC*
and the method presented in this chapter, which runs completely on the
GPU.

Taking advantage of the view-dependent nature of our pruning algorithm
we are able to greatly reduce the geometrical complexity of the resulting tree
while still achieving good visual results, shown in Figure 3.13. This figure
shows a comparative study of the pruning quality of our method, comparing
the quality of the resulting unpruned geometry against the original tree at
the same distance to the camera and with the same orientations. Notice how
the appearance of the trees is preserved even when the complexity of the
foliage is reduced to 10 % of the original complexity.

Table 3.4 shows a comparative study of storage costs with two trees of
different polygonal complexity using our method and the methods presented
by Deng et al. [DZYJ10] and Rebollo et al. [RRCT07]. It can be seen that,
as our method is completely implemented on the GPU, our CPU storage
costs are null. Moreover, the use of stochastic pruning allows our method to
require less memory to be stored overall than its competitors.
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Olea europaea Cedrus Atlantica

CPU GPU Total | CPU GPU Total

Our method | 0.00 1.29 1.29 | 0.00 9.21 9.21
[DZYJ10] | 2.89 8.27 11.16 | 9.08 11.33 20.41
[RRCT07] | 0.63 1.27 1.9 | 451 9.19 13.7

Table 3.4: Comparison of our storage cost with two existing techniques
measured in Megabytes.

3.8.2. Forest analysis

(a) Dense forest

(b) Sparse forest

Figure 3.9: Performance comparison of forest scenes with our approach
and with full LoD.

For the forest results analysis we set up two kind of scenes: dense and
sparse forests. For the dense forest we populated the scene with 6,450 trees
while only 210 trees were used for the sparse forest scene. Both scene types
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Figure 3.10: Visual results of our technique for a forest with a LoD
reduced to 10 %.

are populated with the following types of trees: Fraxinus Ornus, Quercus
Cerris, Olea Europaea and Cedrus Atlantica (see Table 3.1 and Figure 3.10
for details). Shadow map resolution in our scenes is 4096x4096 pixels, how-
ever, it is not recalculated every time, but only on the first frame, assuming
that neither the trees nor the light source (the sun) change. Table 3.5 shows
detailed information rendering scenes in Figures 3.10 and 3.11. These scenes
are selected because they represent examples of two different types of sce-
narios: sparse (Figure 3.11) and dense forests (Figure 3.10).

Figure 3.10 shows a visual comparison of our technique managing the
level of detail of our dense forest scene. At the camera location used to ren-
der the scene showed in Figure 3.10, 508 tree instances are detected to lie
inside of the frustum and thus marked as visible. The LoD manager of the
forest uses around 12 milliseconds each frame to perform the tasks described
in Section 3.4. These tasks include the tree visibility determination, urgen-
cy calculations and tree ordering for selecting the most urgent trees to be
updated. The LoD manager selects an average of 8 trees per frame for LoD
recalculation, an average of 440 LoD extractions per second at 50 frames per
second. It can be seen in Figure 3.10 how the view-dependent nature of our
technique is able to remove potentially invisible detail from the most hidden
parts of the trees so that the impact on the final image is minimized.

Performance improvements obtained using our approach are shown in
Figure 3.9 for the two forests scenes: dense and sparse. It can be seen that
our technique is especially useful when used for large forests scenes.
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Figure 3.10 | Figure 3.11

Trees in scene 6,450 210
Trees in view 508 24
LoD extraction/management 12 ms 10 ms
Average compression ratio 10% 30%
Rendering frequency (LoD) 56 fps 86 fps
Rendering frequency (no LoD) 13 fps 42 fps

Table 3.5: Performance results rendering scenes on Figures 3.10 and 3.11.

Figure 3.11: Snowy scene showing our pruning algorithm in a sparse
forest environment with 10 % LoD.

3.9. Conclusions

This chapter presents a view-dependent multiresolution level of detail
method for real-time rendering of the foliage designed for highly parallel
systems. The method is based on stochastically pruning unneeded leaves
for a given LoD, depending on the distance to the viewer and its relative
position with the foliage. In this way, high amounts of leaves can be rapidly
discarded while preserving the general shape of the tree.

The design of this LoD scheme is based on the GPU. All the processes in-
volved in obtaining the geometry that represents the appropriate resolution
of the foliage run in this graphics hardware. Bandwidth traffic between the
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CPU and the GPU, typically found in multiresolution models, is completely
removed since CUDA allows for gathering and scattering operations from
any direction of the video memory. It also allows for freeing the CPU from
extracting the level of detail by translating this task to the GPU. Thus, it
can be performed in parallel spreading the task among the whole amount of
multiprocessors of the graphics hardware. As the technique runs completely
on the GPU, it becomes more scalable, taking into account that the velocity

at which the GPU increases its performance is much higher compared to the
CPU.

Finally, we introduce a level of detail management for the forest in order
to avoid stalling the system when dealing with dense forests composed of
many hundreds of trees. This management system is designed to take ad-
vantage of the parallel nature of the GPU for maximizing performance and
scalability.
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Figure 3.12: The upper rows show the tree rendered at full geometrical
complexity. The lower rows show the same tree at the same distances at
the following reduction factors: 75 %, 50 % and 10 %.



CHAPTER

LoD Manager: a framework for
rendering multiresolution models
in real-time applications

Multiresolution modeling has proven to be a good solution for contin-
uously adapting the level of detail of 3D meshes, diminishing the amount
of geometry to render for improving performance. However, this solution is
not widely used because it presents inefficient level of detail update rou-
tines which reduce the overall performance. This chapter introduces a set
of techniques that allow for adapting the level of detail while adjusting to
time constraints and maintaining image quality. We call this level of detail
management system the LoD Manager. In order to fulfill the requirements
of current game engines, the LoD Manager exploits the graphics hardware
and reuses previously calculated levels of detail which avoids saturating the
application when massively populated scenes are used. Finally, we show the
integration of our LoD Manager into a game engine and we demonstrate
the validity of our solution with an interactive application as well as with a
GPU implementation of our algorithm.

4.1. Introduction

In recent years, computer graphics have experienced an intense evolu-
tion as new graphics hardware offers a final image quality that was totally
impossible to imagine a few years before. This allowed interactive graphics
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applications, such as computer games, virtual reality environments or CAD
applications, to include more complex scenes and detailed environments.

The necessity of highly realistic scenarios often involves including many
polygonal meshes made up of a high number of triangles, which poses a
problem for maintaining interactivity. In these applications, it is important
to guarantee a stable frame rate while reducing the perceived lag [W1095].
The lag, the delay between performing an action and seeing the result on
the screen, is as much important as the frame rate in order to perceive
interactivity.

One of the possible solutions to this problem is the use of level-of-detail
techniques to maintain a balance between image quality and rendering speed.
Nowadays, multiresolution modeling can be considered as a compulsory fea-
ture of libraries and game engines. In this sense, graphics libraries such
as Openlnventor or OSG, and game engines such as Director, Torque or
CryEngine, introduce multiresolution models to easily alleviate the amount
of geometry that must be rendered in a scene, and thus improving perfor-
mance. Most of them use static heuristics, like the distance of the object to
the observer or the size of its projected area in screen-space, as the metric to
select the suitable level of detail. Other works like [ASVNBO0] add a criteri-
on based on the occlusion information to obtain a tighter estimation of the
contribution of each object to the scene. These heuristics, despite improving
frame rates, are usually not enough. They cannot guarantee stable frame
rates as they are not adaptive and cannot correctly work in scenarios where
objects are moving in and out of the scene or where the objects change their
level of detail quickly.

In order to improve the results of the static heuristics, some authors
have introduced the use of feedback algorithms, which take into account
the past rendering times. These algorithms, even though are more adapted
to the rendering conditions, also suffer from oscillation and “unavoidable
overshoot” when rendering discontinuous environments. These techniques
present a good alternative for scenarios like flight simulators where there’s
a large amount of coherence between frames. This is the case of the solu-
tion presented in [Hop98], which provides temporal coherence through the
runtime creation of geomorphs to control the level of detail.

Motivation

A method for preventing the system to collapse due to massive amount
of simultaneous LoD extraction operations is presented in Chapter 3. The
method presented for multiresolution forest rendering is based on delaying
LoD changes to other frames based on the LoD urgency of each tree. Al-
though this method allows for more stable frame rates, in certain situations
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it causes that the LoD changes of some objects in the scene are delayed more
than an acceptable time. This chapter introduces a new LoD management
system for multiresolution scenes that is not based on delaying LoD changes
but on reusing previous LoD calculations. This system allows to minimize
the amount of actual LoD operations, allowing for a more stable frame rate.

Other solutions have been proposed in the literature to deal with the LoD
scene management problem. All the previous work shown in Chapter 2 have
in common that, to optimize the GPU usage, they have developed complex
heuristics [RLOO][FS93], that have a certain CPU penalty. Changes in the
current level of detail have associated a CPU consumption time, needed to
calculate and update the object to its new rendering state. This issue is
specially problematic when dealing with scenes with lots (some hundreds or
even thousands) of LoD objects. In this case, changing the level of detail of
the objects without any control could cause the application interactivity to
drop.

Many of the articles detailed in the state of the art were written in the
early days of the GPUs (or even in earlier times [FS93]) when it was viable
to spend some CPU processing time to optimize the GPU rendering process.
Nowadays, due to the great scalability of the graphics cards, we must revise
all that related work to provide an updated and practical viewpoint of that
situation: overloading the CPU is a delicate task that in most cases will
cause it to be a bottleneck for the graphics hardware.

Therefore, the aim of this method is to develop a level of detail manager
with very low CPU requirements, freeing the CPU by minimizing the num-
ber of real changes in levels of detail. Nowadays, the GPUs have experienced
a great evolution in computational power. That provokes that real-time ap-
plications tend to be CPU bounded, i.e. the CPU limits the GPU. Thus,
developing heuristics that involve high CPU processing times can be coun-
terproductive. Therefore, the objective of this chapter is to provide a simple
yet effective method that lowers the CPU usage in order to keep the bottle-
neck on the GPU.

Our approach also uses the concept of frame rate feedback to automati-
cally adapt the LoD of the scene to achieve a target user-defined frame rate.
This approach offers more interesting results compared to static heuristics
because it allows for dynamic LoD adaptation. Even though it is less ac-
curate compared to predictive heuristics, it is also considerably more in-
expensive compared to predictive methods, which is the main aim of this
technique: to minimize the CPU work as much as possible.
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Figure 4.1: Top: A LoD scene composed by 3000 LoD objects. bottom:
A LoD forest populated with 150 highly detailed trees.
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4.2. Method Overview

In some situations, scenes may be formed by hundreds or even thousands
of objects. The use of LoD techniques is a solution to maintain a balance
between image quality and rendering speed. However, if objects are repre-
sented by LoD models, every time the relative position between each object
and the observer changes, the appropriate resolution of every LoD object
potentially needs to be recalculated. One of the main problems of multires-
olution models is the time employed in the extraction of the appropriate
LoD. Changing the level of detail of the objects without any control could
cause the application interactivity to drop.

4.2.1. Desired level of detail of objects in the scene

The appropriate level of detail of one object in a scene depends on cer-
tain heuristics. In this chapter, we use an heuristic that takes as input the
distance of the object to the camera and the current application frame rate.
On the one hand, the distance of the object to the camera defines a linear
function that is mapped to the range [0,1], shown in Equation 4.2. Two dis-
tances are established by the user, range,ecqr and rangey,,. Objects will be
represented by the most detailed approximation if they are situated closer
than rangeneqr, and by the worst approximation if they are further than
rangesq,. Equation 4.2 adjusts the LoD of the objects situated between
these two distances.

disteam < rangenear —  dist = rangenear
disteam > rangefqr —  dist = rangefqr (4.1)
rangencar < disteqm < rangefqa — dist = distegm

where distcq, is the distance from the observer to the object being ren-
dered.

rangefqr — dist

lod(dist) =

(4.2)
rangefqr — rangénear

On the other hand, the heuristic gets the frame rate as a feedback param-
eter to alter the linearity of the LoD function. Users can establish a desired
frame rate fr for the visualization. If the application is running under this
desired frame rate, this can be controlled making that more objects reduce
their level of detail. This action will reduce the number of polygons in the
scene, so the frame rate will increase. Otherwise, if we are running above,
more objects can increase their LoD. This is controlled by the variable n.
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Figure 4.2: Perturbation function to calculate the desired LoD factor to
adapt it to the current frame rate.

Let desired LoD, d_lod, be the appropriate level of detail of the object de-
pending on the heuristic and the fr determined by the user (Equation 4.3).
An illustrative chart is shown in Figure 4.2. When n = 1, the LoD of an
object changes in a linear way. If we need to increase the frame rate, n will
take values greater than 1. Otherwise, if the frame rate has to be reduced,
n will take values less than 1.

d_-lod = lod(dist)" (4.3)

4.2.2. Sharing precalculated LoDs

In order to optimize the scene rendering process, the LoD manager aims
to minimize the changes of resolution for all LoD instances, performing only
the necessary ones. In massively populated scenes, it is usual to find objects
that share the same geometry, i.e. they are of the same type ¢t. Based on this
fact, there is a certain possibility that two or more objects of the same type ¢
can share a similar level of detail. This is the main idea of the presented scene
manager: when two instances of the same type are similar enough and both
have a similar desired LoD, the LoD manager assigns them a precalculated
level of detail. Thus, an object can hold its own level of detail or a borrowed
one.

The data organization of the LoD manager is shown in Figure 4.3. Let
O be an array where the LoD manager stores references to all the visible
objects in the scene. Let D; be an array of a user defined length N; associated
to a type of LoD objects t. Each position of D; represents a level of detail
that is being visualized in the scene. If we define a LoD factor, lodf € [0, 1],
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where 1 is the maximum level of detail and 0 is the worst approximation,
any intermediate values in the range represent intermediate levels of detail.
A position 7 in the array D, contains a discrete LoD associated to the levels
of detail in the following range.

[i/Ny, (i + 1) /Nt) € [0, 1]

For example, assuming an array D; of length 3, the first position in the
array would represent a discrete approximation for the range [0,0.33), the
second position one for [0.33, 0.66) and the last one for the range [0.66,1].

Then, when a LoD factor of type t (lodf?) is determined for an object,
the index ¢ where is stored the discretized representation of its range, is
obtained as follows:

i = trunc(lodf® * Ny) (4.4)

Two representations i and j of the same type ¢, lodf! and lodf;, are
similar enough when they are in the same range, so both are associated to
the same position of the array D;. Let Sy be the similarity factor defined as
Equation 4.5 shows.

Si(lodf}, lodf) < trunclodf; - Ny] = truncllodf; - Ny] (4.5)

The main idea of the LoD manager is to avoid extracting the level of
detail of a visible object if there is one stored in the D; array which is
similar enough to the desired LoD, d_lod. Then we say that the object will
hold a borrowed level of detail. However, it is important for each to store a
reference to its own index buffer. That’s because when an object changes its
level of detail, it must update its own index buffer, not the borrowed one.

4.2.3. Rendering algorithm for LoD scenes

Initially, visible objects are classified following their species or types t.
Then, the array Dy is created for each different type of objects in the scene,
and each position of the arrays is initialized to 0. Following the user defined
frequency fr, each visible object O; in the scene is checked in order to
adequate the rendered level of detail lodf to the current conditions of the
scene, and its desired LoD factor, d_lod(T;), is calculated. Then, for every O;
the similarity of its target LoD d_lod(T;) is compared with the discretized
LoD stored in the array D;. Algorithm 3 shows these steps.
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Figure 4.3: Data organization of the LoD manager.

Algorithm 3 Algorithm of LoD rendering manager.
for all O € VisibleObjs do
t = type(0)
Calculate_d_lof(O)
{Calculate the associated position in the array}
i = truncl[d-lod(O) - N¢|
if NOT S(lodf(O),d-lod(O)) then
{the rendered LoD is not similar to the desired one. This has to be
changed}
if NOT S¢(Dy[i],d-lod(O)) then
{the stored LoD is not similar enough}
Per form_Extraction_dlod(O)
lodf (O) = d_lod(O)
{update the stored LoD in DJi]}
Dyli] = d_lod(O)
else
{the stored LoD is similar enough}
lodf (0) = Dy
end if
end if
end for
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Figure 4.4: Linear vs non-linear LoD snapshots distribution.

4.2.4. Non-linear precalculated LoD intervals

As it is said before, the vector D; stores snapshots of previously cal-
culated levels of detail following a linear distribution. However, more real
applications will prefer to use a non-linear distribution to allow perform
much finer LoD changes for closer models and much coarser LoD changes
for objects that are far away from the viewer.

This distribution function can be customizable by the user so that it can
be used in very different client applications and situations. An illustration
can be seen in Figure 4.4.

This optimization will reduce popping effects because queries for closer
models will be classified with less granularity. It is important to note that
Equation 4.5 should be adapted to the new snapshot distribution.

4.2.5. The minimum and maximum LoD special case

The maximum and minimum levels of detail are important. That’s be-
cause in closeups, each object must be represented at its full level of detail,
at 1 not at 0.97 for example. To solve this, there are two special entries in
the array D; for the minimum and maximum level of detail.

4.3. Implementation and results

This section explains how the technique described in this chapter is im-
plemented into an existing Game Engine.
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4.3.1. Library usage

We have implemented this method as a library which is independent to
the underlying multiresolution model used to represent the objects. There
are only some requirements that the multiresolution model must fulfill.
These requirements are:

= The objects must provide an interface to change their level of detail.
This interface must be implemented using the range [0, 1] as the active
LoD range.

= The objects must be able to implement a fast LoD switching function-
ality. In practice, this can be done by borrowing index buffers from
other objects while keeping the original index buffer for further LoD
calculations.

Our implementation provide a LoDObject class interface which provides
some virtual functions the multiresolution models must implement. Thus,
is really simple to handle several types of different multiresolution models
inside the same scene.

4.3.2. LoD Models

In our implementation we have used two different multiresolution models:
the one presented in Chapter 3 for representing plants and trees and another
one for general meshes called LoDStrips [RC04].

LoDStrips is a multiresolution model based on triangle strips. It efficient-
ly defines a continuous sequence of level of detail changes from a base mesh.
It is a index-based mutltiresolution model, i.e. it calculates the current index
set for a defined level of detail, without affecting to the vertex list.

Both models require a certain amount of time to change the level of
detail (extraction time), depending on how much changes must be accom-
plished, and they can easily implement the fast LoD switching functionality
described in section 4.2. Therefore, they are valid multiresolution models to
demonstrate the usefulness of our manager heuristics.

4.3.3. GPU Implementation

The work presented in this chapter is susceptible of being implemented
on the GPU for optimizing performance. The LoD manager can be imple-
mented on the GPU as follows. In this case the array V' is stored on graphics
memory for making it accessible to the CUDA kernels. For efficiently porting
this algorithm to the GPU some aspects of it must be altered, due to the
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massive parallel architecture of the GPU. Firstly, objects can not borrow
LoD instances calculated on the current frame, as they do on the CPU im-
plementation, because CUDA kernels are executed in parallel. Therefore, we
change this approach by reusing LoD calculations that happened in previous
frames.

In order to avoid conflicts, we use two V buffers for the visible objects:
one for reading the results of the previous frame and one for writing the
results for the current frame, which will be used for the next frame for LoD
borrowing. As in the first iteration of the algorithm there are no results
of the previous frame, then use choose to initialize V' by performing the
first iteration of the algorithm on the CPU. Another advantage of using
the GPU is that, taking into account the tremendous parallel power of the
current graphics hardware, the visible objects list can be processed on the
GPU with logarithmic cost, instead of being linear as it happens when using
the CPU approach.

Next, in a similar way as it is done in Section 3.6 in the previous chapter,
our algorithm runs a CUDA kernel for every LoD instance of the scene, cal-
culates the error and updates old values for every one of them and, finally,
calculates Sceneg-. In the same step, viewpoint visibility is also calculat-
ed by intersecting each object bounding volume against the frustum. These
operations are efficiently performed due to their simplicity and the mas-
sive parallel computing power of current GPUs. If the Scene.,, exceeds the
threshold established by the user, a second CUDA kernel is used for per-
forming an ordering over each LoD object marked as visible in the previous
step. Our sorting algorithm is based on previous work for efficient parallel
sorting found in the literature [Ion97][SA08].

Finally, a new user defined parameter is involved in the process. This
new parameter defines the time of performing LoD extraction tasks before
rendering each frame. During this time, the LoD extraction process is exe-
cuted for the first object in the array, until the time defined by the user is
finally consumed.

4.4. Results

In our tests, we have used two different multiresolution models: one for
general meshes [RC04] and the model presented in Chapter 3.6, which is
specially designed for handling vegetal species. The test machine is an Athlon
64 3500+ CPU with 1 Gb RAM and a GeForce 6800 Ultra video card. The
Ogre mesh features 1960 triangles and its minimum level of detail reduces the
triangle count to the 10 %. It implements the LoDStrips algorithm (briefly
described in section 4.3.2). The Tree mesh represents an Olea europaea with
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97133 triangles at full level of detail, it uses the LoDTree algorithm to reduce
its triangle count to the 10 % at its minimum level of detail.

Two different tests are proposed: a performance test which measures the
performance boost when using the LoD Manager, and a visual quality test
that will prove the visual acceptability of the method.

Performance test

We have used two different test scenes. The first scene was populated
with 3000 independent LoD objects of the Ogre mesh, shown in Figure 4.1.
The second scene adds 300 highly detailed tree LoD objects to the previous
one to show how the algorithm can deal with heterogeneous scenes.

All the test scenes move the camera through a predefined path. Fig-
ures 4.6 and 4.7 show the performance comparison enabling and disabling
the LoD Manager in two different scenes. Thus, the improvements in per-
formance offered by the LoD Manager can be easly measured. In addition,
this figure offers the number of triangles rendered during the walk-through.
These graphs are a good help to understand the frame rate obtained, and
also proves how the number of triangles rendered with and without the LoD
Manager is nearly the same, proving that the LoD Manager offers higher
frame rates while maintaining a similar visual quality.

Figures 4.6 and 4.7 show how the LoD Manager efficiently manages level
of detail changes and minimizes the CPU consumption due to the LoD man-
agement. In fact, when dealing with scenes with a high count of independent
LoD objects (like in the scene of the 3000 ogres), the CPU consumption ded-
icated to LoD changes becomes the bottle neck of the application reducing
the performance to make it unsuitable for interactive content.

Visual quality test

We have provided some performance tests where our LoD Manager proves
its usefulness in LoD scenes populated with lots of independent LoD object.
Now we will demonstrate that our heuristics does not affect the visual qual-
ity of the models in a significant manner. The topmost image in Figure 4.5
shows a scene populated with ogres using our technique managing the level
of detail of the whole scene. The middle image shows the same scene without
any LoD management approach active, i.e. each independent object treats
its own level of detail independently. The differences caused by our method
are shown in the third image of Figure 4.5, where a red pixel shows a dif-
ference between the two images, and a black one indicates that the pixel is
the same. We can see that the visual differences are almost imperceptible
and that they only can seen comparing images to per-pixel level, as we have
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done in this subsection.

4.5. Conclusions

We have introduced a new technique to minimize the number of level
of detail changes of a scene populated with a high count of LoD objects.
This technique allows us to reuse LoD calculations to minimize the CPU
computation time. In Chapter 2 we have analysed some methods which
use more complicated heuristics than ours, and thus, they require more
computation time. Our algorithm also features a feedback heuristic that is
able to globaly reduce or increase the LoD of the scene to achieve a user
defined frame rate.

Nowadays, the great scalability of the graphics processor units has con-
tributed to make them more powerful than the CPUs for parallelizable algo-
rithms. Thus, real world applications tend to be CPU bound and the GPU
becomes limited by the CPU power, it’s more useful a technique that saves
CPU time as well as providing a real world acceptable LoD management,
rather than more sophisticated techniques that consume CPU to save GPU
cycles. This is specially true when dealing with scenes with a high number
of LoD objects, where predictive methods tend to be completely unsuitable
for real time applications.

Even though our technique has been designed to be much simpler than
predictive heuristics, it has proved to be quite simple to implement as well
as effective to minimize CPU consumption, to manage heterogeneous LoD
scenes and to help maintain target user-defined frame rates.
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Figure 4.5: Top: screenshot of a scene using the LoD Manager. Middle:
screenshot of the scene with the LoD Manager disabled. Bottom: per-pixel
differences between the other two pictures.
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CHAPTER

Real-time illumination of foliage
using depth maps

Illumination is a critical part in the process of image synthesis creation
in order to achieve realistic results. This area is so important that even
really simple scenes look realistic if they are rendered using high-quality il-
lumination techniques. Global illumination methods provide approaches to
simulate the physics of real-world lighting and its interaction with the ob-
jects in the scene, achieving realistic illumination effects. Nevertheless, global
illumination techniques are computationally expensive and, commonly, not
suited for real-time applications. This chapter proposes a novel technique for
enhancing illumination effects for plants and trees in real-time applications.

5.1. Introduction

Due to the scattered nature of the foliage, the standard Phong model
is unable of realistically illuminating this kind of tree models. In order to
correctly perceive the density of the foliage, the interaction of the light inside
of the foliage has to be taken into account. To solve this problem there
exist in the literature several methods for simulating global illumination
effects, such as radiosity, path tracing of photon mapping, which are suitable
for foliage rendering but they are very expensive to be used in real time
applications. Therefore, special methods for foliage lighting and shading are
needed (such as [LBOOT]).

This chapter presents a new method for foliage lighting, shading and
shadowing that provides good quality illumination in real time while keep-
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ing acceptable frame rates. More over, this chapter also provides a shadow
casting algorithm for the foliage which uses leaves density estimation criteria
for determining the amount of shadows intensity at a given point.

Our approach is based on the rendering equation introduced by Kajiya
[Kaj86] described as follows:

Lo(az,w):Le(:z:,w)+/fr(x,w’,w)Li(a:,w’)(w’~ﬁ)dw’ (5.1)
Q

where the amount of light irradiating from an object L,(x, ) at a given
point z and direction W depends on the light the object emanates Le(z, W),
which we can ignore because leaves do not emit light, and on the incoming
light L;(z,w"). Light incoming from all directions is modulated with the
angle of incidence of the light onto the surface @’ - 7 and the bidirection-
al reflectance distribution function (BRDF) f,(z, ', &) that describes the
reflectance function, which depends on the properties of the material.

This chapter discusses how to implement each part of the Equation 5.1
to provide a realistic illumination for the foliage in real-time.

Finally, a new shadow casting algorithm is introduced. This algorithm
takes into account leaf density information in a given light direction in order
to render shadows produced by the foliage over other surfaces, such as the
ground or the trunk.

5.2. Method Overview

Our method is based on the observation that the illumination over real-
life trees is greatly affected by the illumination that comes from the scene
and how that global illumination interacts with the complex structure of
leaves. Figure 5.1 shows a schematic view of how light interacts with the
foliage in terms of direct lighting, which comes directly from the sun and
through the leaves, and indirect lighting, which is the light that reaches the
foliage after being reflected by the clouds and the ground.

Figure 5.1 shows how, due to this lighting interaction, leaves which are
inside of the foliage have a greater probability of being less affected by the
light than external leaves, because they are more exposed to environmental
lighting. Figure 5.2 represents an example in a real-life photograph of a tree
that shows this behavior.

In order to capture the overall volume of the foliage, our method uses
two depth maps. The first depth map stores the nearest depth values and
the second one stores the furthest depth values when rendering the foliage.
Figure 5.3 illustrates this process. The difference of the two depth maps
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Figure 5.1: Schematic representation of different light interactions with
the foliage.

gives us an estimation of the overall depth for each light direction. Thus,
assuming that the leaves are uniformly distributed over the foliage, we are
able to calculate the relative position of each single leaf inside the foliage at
rendering time.

Although Equation 5.1 takes into account the light incoming from all
directions, evaluating all light directions would be very expensive. Thus,
we apply our BRDF calculations only over the light direction which comes
directly from the light source, separating the direct from the indirect light
contributions. Therefore, we obtain the following formula for light irradiance
at a given point x and direction w, where the direct light contribution is
separated from the indirect lighting (Aq(x)):

Lo(z, W) = Aq(x) + fr(z, @, @) Li(x, @) (@ - 77) (5.2)

The method proposed replaces the Ag term in Equation 5.2 by a new
indirect lighting algorithm specifically designed for the foliage.

Our illumination method has been developed having in mind the nature
of the leaves in order to simulate the complex interaction of the light inside
the foliage. A visual analysis of the interaction of light with the foliage
provides a simple conclusion about this issue: both inner leaves as well as
those leaves in the opposite side from the light source receive less light and
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Figure 5.2: Leaves which are inside of the foliage have a greater proba-
bility of being less affected by the light than external leaves, because they
are more exposed to environmental lighting.

Figure 5.3: Our method captures the volume of the foliage by using two
different depth maps.
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(a) Tree foliage without illumination. (b) Indirect lighting affecting the foliage.

Figure 5.4: Results of our indirect lighting approach.

Figure 5.5: Different views of a tree with different ambient light contri-
butions. From left to right: white, reddish and yellow light.

thus, are darker. This is caused due to the auto-occlusion of the leaves, which
prevents the light from reaching those leaves and makes them receive less
light.

Our approach is based on approximating the shape of the foliage from
the light source and illuminating each leaf depending on its position inside
the foliage volume in order to approximate self-shadowing effects of the
leaves. We use two depth maps capturing the nearer and further parts of
the foliage from the light source which we call D,, and D;. The main idea
is that the nearer a leaf is to Dy respective to D, the darker it should be
rendered. In addition, another texture C' is used to determine the amount
of leaf intersections per pixel, from the light source. This value will be used
to determine the leaf density in a given direction.

When rendering a leaf at run time, the relative positions of the leaf
and the light source are used to calculate the adequate texture coordinates
for accessing the depth maps, in the same way like in traditional shadow
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Figure 5.6: Left: foliage without illumination. Middle: ambient light-
ing only. Right: the complete illumination system, including direct and
indirect lighting, self-shadowing and shadows casted over the trunk and
branches.

mapping. In practice, this is done on the graphics hardware in the fragment
shading step. The pixel shader compares the depth of each leaf in light space
with the minimum and the maximum depths at that point to determine its
proximity to those values. This factor is weighted with the value contained in
the texture C' which determines the amount of leaves at that light direction.
Equation 5.3 shows the formula used to calculate the self-shadowing factor
(S) of the leaf depending on the light source .

This shadowing factor replaces the L;(z,w') term in Equation 5.2:

(5.3)

Zy— 7
LAxﬂﬁ)zz&AQ(l = ”>

 Zp—Zn

where « is the transparency level of the leaf, N, is the number of leaf
collisions at a certain light direction given by the texture C, Z, is the depth
of the current leaf fragment in light space, and Z,, and Z; are the minimum
and maximum depths in that light direction given by textures D,, and Dy
respectively.

Therefore Equation 5.3 provides the darkening factor for each pixel de-
pending on the light source direction and the general shape of the foliage
volume. The results of this equation matches to the light intensity function
of Equation 5.2. Figure 5.6 shows an example of our illumination approach
for the foliage.

The direct lighting contribution of the foliage is calculated in the fol-
lowing way. Due to the translucent nature of leaves, a subsurface scattering
based BRDF is needed to correctly simulate the illumination on the leaves.
Jensen et al. [JMLHO1] propose an efficient method for subsurface scattering
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which separates the scattering process in a single scattering term L(Y) and
a diffusion approximation term L4, as shown in Equation 5.4.

Lz, @) = LW (2, @) + Lg(x, @) (5.4)

Frankze et al. [FFDO03] show how Equation 5.4 can be approximated as
shown in Equation 5.5 due to the minimum thickness of the leaves providing
a method easier to evaluate in real-time:

fr(z, @, @) = LW + Ly = (1+ e %ie ) Ly(a;, @) - (N - &) (5.5)

Where s; is the leaf thickness and s, is a random outgoing distance
inside the material from the actual sample position. This approximation
matches the f,(z, ', W) component in Equation 5.2 and describes the BRDF
associated to the direct illumination.

Direct illumination is evaluated in the pixel shader fetching some param-
eters from textures such as leaf thickness and normal information.

5.3. High-frequency illumination

The process explained in previous section allows us to calculate low fre-
quency global illumination, taking into account direct and indirect compo-
nents, for the foliage. However, for further improving the quality of our illu-
mination solution we also need to provide accurate high frequency lighting
interactions inside the foliage. For that purpose, we developed two different
new algorithms that are used along with the solution for further enhancing
the quality of our illumination.

The first of these techniques is an accurate visibility estimation per leaf
done on the GPU. The second one is a screen-space ambient occlusion tech-
nique. The former is useful for accurate high frequency illumination assum-
ing that leaves to preserve their relative position, as it is calculated in a
preprocess, in scenes that there are no wind effects. The latter is entirely
calculated in real-time and is useful for scenes where the foliage is being
moved by strong winds, however it is slower to calculate than the former
one. Therefore, the user must choose between these two solutions depending
on the parameters of the scene.

5.3.1. Precalculating visibility

This section calculates the indirect illumination contribution as a pre-
process step. The amount of light a leaf receives from the scene is calculated
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as the visibility of the leaf from the exterior of the foliage. Figure 5.4 shows
the results of applying our indirect light algorithm.

The ambient light received from a leaf depends on the visibility of each
leaf from the exterior of the foliage. As all the leaves on the tree are of
the same size, the visibility value for each leaf from outside of the foliage is
calculated using an orthogonal projection of the leaf over a known virtual
viewport.

This has been implemented by rendering each leaf with a unique colour
with a depth buffer activated. Thus, the visibility of each leaf from outside
the tree is given by the number of pixels of the same colour on the six
faces of a cubemap surrounding the foliage. To represent the colour of the
ambient light affecting each leaf, a texture read operation is performed over
a downsampled cubemap that contains the environment of the tree. The
normals of both faces of each leaf are used as texture coordinates to fetch
this data from the cubemap. Figure 5.5 shows a tree illuminated using only
indirect illumination with different scene light ambient absorption.

These visibility calculations are performed for both sides of each leaf,
because each face of a single leaf can receive different amounts of light with a
different colour, depending on the scene and the depending on the direction
the leaf is facing. However, light tends to spread across and through the
leaf, depending on its translucency. Thus, the transparency level of the leaf
is used to add light reception values from both sides of the leaf. Thus, the
light scattering property of the leaves is taken into account to calculate the
ambient occlusion term.

Finally, the ambient occlusion colour Aq for a given face of each leaf i is
calculated as shown in Equation 5.6.

Aq = [CiLi(Vi/V)" + o CGiLi(V//V)"] (5.6)

where « is the transparency of the leaf, I; is the colour the current face
of the leaf i absorves from the scene, I/ is the colour the opposite face of the
leaf absorves from the scene, C; and C/ represent the colour of the front and
opposite faces of the leaf i, V; and V; are the number of pixels generated
by the current and opposite faces of the triangle ¢ respectively and V is the
number of pixels generated by projecting the leaf without occlusion (the rest
of the foliage). The parameter n is always positive and controls how rapidly
the darkening for the ambient term occurs in the foliage. Values of n > 1
will result in a more rapid darkening and values of n < 1 will cause the
darkening to slow down from outer to inner parts of the foliage.

The results of this process are stored per vertex so that it can be applied
per leaf at run time.
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5.3.2. Screen-space ambient occlusion

This method consists of computing an obscurance value for each visible
point in the scene. To do this, only the information of the visible parts of the
scene is used. We use a deferred shading pipeline to obtain the positions and
the normals, in eye space, for every pixel in the screen. in a subsequent step,
these images are used to generate obscurance values corresponding to each
part of the scene visible and, thus, increasing the realism of the rendered
image.

The algorithm is divided in two parts. First of all, the scene is visualized
from the observer’s point of view, storing the positions and the normals in
eye space as textures, as well as the diffuse colors for every pixel. All these
textures are generated simultaneously, processing the geometry just once, by
using a technique called Multiple Render Targets (MRT), which is available
on modern graphics hardware.

In a second step, the previously generated information is processed to
calculate the obscurance values using our algorithm. We render a full screen
quad so that every pixel in the screen is evaluated. Thus, the pixel shader
which implements our algorithm, is executed over every pixel in the screen
and decides the level of obscurancy and color of each pixel.

The explanation below describes how to calculate the level of obscurancy
for every pixel on the screen. The algorithm is only executed over every pixel
which does not belong to the background, given a fragment P, with position
P, and a normal P, in eye space.

The values generated for each valid sample are composed of four channels
of information. The first three channels contain color information and the
fourth channel contains the amount of valid samples taken into account.

Sampling function

Sampling of possible occluders for the point P is performed in image-
space. This means that the sampling distance is measured in pixels. This
decision simplifies calculations and increases the performance.

The main idea is taking samples inside a circle centered in the point P.
This allows us to use less samples to obtain the desired quality. To do that,
two random values are computed inside the range [-1.0,1.0] and they are
multiplied by a third random value to define the radius, which lies inside
the range [MinimumRadius,MaximumRadius]. To choose the random values
we use the Van der Corput’s method of generating pseudo-random numbers.

To enhance the relation quality /performance even more, these radii are
multiplied by a factor which depends on the distance to observer. This way,
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further points will take samples with a minor radius in image-space, while for
nearer points, the radius will be greater. To determine this factor, we divide
the distance to the camera by a user defined value which can be interpreted
as the scene radius. The scene radius defines the actual size of the scene in
the real world. This way, the greater the value is, the less area will be taken
into account to perform the screen space sampling. Thus, the area affected
by the obscurances is user determined by using this parameter.

Transfer function

Once an occluder is determined to be visible, its distance to Pocciuded
is used. If this distance is greater than a d,,q; distance, then there is no
occlusion at all and the algorithm returns a (1,1,1,1) vector for that sample
(Figure 6). Otherwise, the three channel obscurance values correspond to
the following formula:

reflectivity - \/m

where dist is the distance between the occluder and the occluded point,
dimaz 18 te maximum distance for accepting occluders and re flectivity cor-
responds to the diffuse color at point B. Observe that color bleeding can be
disabled by setting the reflectivity factor to a value of 1.

5.4. Shadow casting over other surfaces

While we have covered the lighting interaction of the leaves, how the light
penetrates across the foliage and reaches another surfaces is also important.
The foliage can be seen as a set of multiple layers of translucent leaves.
Therefore, the amount of shadowing other objects receive from the foliage
depends on how many leaves intersect a light direction and their amount of
transparency. To simulate this, we use the texture C' (see Section 5.2) which
stores the amount of leaf intersections at a given direction weighted with
the leaf transparency at each point.

This texture can be calculated in a single pass and updated along with
the others shadow maps. We use this information to render more realistic
shadows over surfaces, where the depth of the foliage is taken into account
to visualize more convincing foliage shadows.

Figure 5.7 shows the final appearance of our shadow casting algorithm.
Notice how the shadow map shows the depth of the foliage, being more
opaque where there is more leaf density throught the light direction, and
being more transparent where there is lower leaf density.
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Figure 5.7: A detailed view of our shadow mapping approach for the
foliage. Notice how the depth of the foliage is captured in the shadows.

Figure 5.8: Forest scenes with our illumination and shadowing approach.

5.5. Results

In our tests, we have used a geometry-based continuous level of detail
algorithm for the foliage. This allows for performance optimizations when
rendering the forest scene with such amount of trees.

Figure 5.8 shows the results of our illumination solution. Notice how
the illumination captures general shape of the foliage, darkening those parts
that are difficult to reach for the light.

This method for foliage illumination requires to access to three different
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depth maps per pixel to evaluate the illumination equation. However, this is
optimized to require just one texture read operation by packing all textures
in a single three channel floating point texture. Thus the overhead of apply-
ing this method is just one texture read operation and a few arithmetical
operations in the pixel shader. Therefore, applying our method adds a lit-
tle overhead in these cases, being the main drawback to store three values
per texel instead of just one. However, the visual quality of this method for
foliage illumination justifies this storage overhead.

The cost of casting foliage shadows over the ground or any other surface
(as the trunk) is negligible compared to a standard shadow mapping algo-
rithm, as the only difference is what the shadow map contains and a couple
of arithmetical operations in the pixel shader.

5.6. Conclusions

This dissertation chapter presents an approach for foliage illumination
and an expressive shadow casting algorithm for leaves which can be used in
real time applications. The algorithm is based on depth maps. This means
that in scenarios where shadow mapping is being used to simulate the shad-
ows of the foliage as well as the auto-occlusion of the leaves, this method will
improve the visual quality of the scene at the expense of little computational
cost.

We propose two methods for calculating the ambient occlusion factor of
the leaves. First, for static scenes our method uses the GPU to precalculate
the ambient occlusion term, this allows to speed-up the rendering because
it is easier to evaluate at run-time. Trees are always located in the same
place in the space. Therefore we take this into account to accelerate the
ambient occlusion calculation by preprocessing it and storing as per-vertex
attributes. Thus, the cost of applying the ambient occlusion is negligible.
Second, for dynamic scenes we propose to use a screen space-based ambient
occlusion technique, which allows for localized high frequency illumination
effects in real-time at a reasonable computational cost. This is useful when
dealing with windy scenes.

As it is said before, this method uses depth maps as the base tool to infer
the illumination and to render the shadows, such as trapezoidal, perspective,
light-space perspective shadow maps. This method is built on top on existing
shadow mapping algorithms, dealing with the meaning of the information
contained at each texel in the shadow map, so it does not compete with
other shadow mapping methods, but extends them.

Although we have used geometry-based trees in this article, the algo-
rithm is also applicable to image-based or point-based trees because the
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information needed to calculate the illumination is stored in a separate map
and is not attached to geometry (like in [LBOO07]) which is a restriction in
real-time rendering.
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CHAPTER

Screen Space Soft Shadows

Shadows are a very important element in synthetic scenes because they
greatly contribute to enhance the realism of the rendered images. Nowa-
days, shadow mapping is the most used technique in real-time applications
because it can be implemented efficiently on the graphics hardware and
its performance scales very well. It is also one of the most active areas of
research in the last years.

The most common shadowing methods for real-time applications can be
grouped in two categories: shadow mapping and shadow volumes. However,
the usage of shadow mapping has grown in the last years due to its per-
formance scalability, because it is very easy to implement in the graphics
hardware and to produce smooth shadows.

6.1. Introduction

Shadow mapping is a very efficient technique to calculate shadows for
point light sources. However, lights in the real world have a volume which
generates penumbrae. Figure 6.1 shows an example of real-world penumbrae,
or soft shadows. A point in a surface is considered to be in penumbrae when
it is not completely visible by the the light source (Figure 6.2).

Unfortunately, the traditional shadow mapping algorithm is unable to
generate shadows with penumbrae, as it can not handle area light sources
(Figure 6.2).

In order to generate physically correct penumbrae, we need to determine
the amount of light visible from the point being shaded, which is proportional
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Figure 6.1: Example of real world penumbrae. Shadows become sharper
as they approach the occluder.

Figure 6.2: The size of the penumbra is determined by the amount of
light rays reaching the point being rendered.
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Figure 6.3: Scene rendered with our method using a 11x11 Gaussian
anisotropic kernel in screen space. The image shows how the soft shadow
becomes sharper as it approaches to the occluder.

to the size of the penumbra.

A common idea used for representing shadows with penumbrae is to
approximate area lights by a set of point light sources, and then to combine
the contributions of each single shadow. With this method, the softness of
the penumbra is proportional to the number of virtual light sources used.
However, in practice this method is very expensive, because the shadow
casters need to be rendered many times, introducing a huge overhead in
geometry-limited scenes. Therefore, more practical solutions are needed in
order to be used in real-time applications.

6.2. Method Overview

The aim of this dissertation chapter is to introduce a new soft shadow
mapping algorithm for generating variable-sized penumbrae that minimizes
texture look-ups in order to maximize performance. Our technique generates
shadows with penumbrae using an anisotropic Gaussian blur filter in screen
space with variable size. The idea behind this approach is simple: a Gaussian
filter is separable and then it requires far fewer texture accesses than other
kernel-based sampling approaches, thus improving performance.

This chapter proposes a new method for calculating soft shadows with
variable penumbrae in real time. The method is based on blurring the shad-
ows from the observer’s point of view by using an anisotropic Gaussian filter
of variable size. The aspect ratio of the anisotropic Gaussian filter is deter-
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mined by using the normal at the point being rendered. The size of the area
affected by the filter, which generates softer or sharper penumbrae, varies
per pixel and depends on the amount of light potentially received from the
area light source. This factor is determined by the visibility of the area light
from the point being rendered. The formula used to estimate how much light
is received was proposed by [Fer05] (Equation 6.1).

o (dreceiver - dblocker) © Wiight
Wpenumbra = d (61)
blocker

where Wpepumbrq s the final width of the penumbra, dreceiver and dyocker
are the distances of the receiver and the blocker to the light and wygns is
the size of the area light.

Observation reveals that shadows produced by area lights (including the
penumbra) are larger than shadows produced by point lights, because the
area affected by the penumbra increases with the size of the light source.
Therefore, our method generates a “dilated” version of the shadow map in
order to evaluate the Gaussian filter for those pixels potentially belonging
to the area affected by the penumbra. This process is detailed in Section
6.2.1. Without this “dilated” shadow map, we only would be able to render
the so called inner penumbrae.

As a result, this method is able to generate soft shadows with percep-
tually correct penumbrae, depending on the distance between the shadow
casters, the shadow receivers and the size and position of the light source
(Figure 6.3).

The following steps describe the process performed, for each light source,
to generate soft shadows with our method.

1. Calculate the standard shadow map (Spqp) and a “dilated” version
(Spnap) of the shadow map.

2. Render the scene from the observer’s point of view and calculate the
following elements in the same rendering pass: the shadows without
penumbrae (or hard-shadows), the depth buffer, a normal buffer and
the shading of the scene (without shadows). The distances map is also
calculated in the same rendering pass. This map contains the distance
from the point being evaluated (P) to the first light occluder, as well
as the linear distance to the observer.

3. Deferred shadowing: render a full screen quad with our custom anisotrop-
ic Gaussian blur filter to blur the hard-edged shadows in screen space
and to combine them with the shaded scene. The per-pixel size of the
area affected by the blurring kernel is calculated using the data in the
distances map.
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Figure 6.4: Different intermediate steps of our algorithm. From left to
right: the model with hard shadows, the standard shadow map, the di-
lated shadow map and the final result of blurring the shadows with the
anisotropic Gaussian filter.

The configuration of the multiple render targets (MRT) used to calculate
all needed buffers in one rendering pass (step 2) is described as follows:

= MRTO. Diffuse color without shadows.

= MRT1. Normal-depth buffer (RGB: normal’s XYZ. Depth is stored in
the alpha channel).

= MRT2. Shadow buffer.

= MRTS3. Distances map, which contains the following information in the
first three channels.

e R: distance of the shadow caster to the point being rendered (D).
e G: distance of the observer to the point being rendered (Z).

e B: mask value determining whether the point is inside the penum-
bra or not.

6.2.1. Calculating the shadow maps

First of all, the standard shadow map is calculated from the light source.
It is important to note that this information is insufficient to directly deter-
mine the distance to the occluder in order to represent the outter penumbrae.

To solve this problem, we create a coarser version of the shadow map
by preprocessing it in the following way. Each pixel of the coarse shadow
map will approximate a block of pixels of the standard shadow map. The
criterion used for this approximation is the minimum value (closest to the
light). The contents of the coarse shadow map are used as a depth estimation
to calculate the distance map, not to generate the shadow itself. We use this
criterion because, performing the average of samples of the shadow map
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without taking into account the shadow receiver, would compute incorrect
z-values, and thus incorrect penumbrae.

The dilation is performed in light space, by applying an isotropic min-
filter to the original shadow map, after it is computed. Given that this filter
is separable, it is computed efficiently as two one-dimensional filters.

The amount of dilation is proportional to the size of the area light source,
because the size of the penumbra is also proportional to the size of the light
source. This is implemented by increasing the radius of the “minimum-value”
filter kernel. However, as we are performing the dilation of the shadow map in
image space, the shadow receiver can not be taken into account to calculate
the size of the penumbra. As a consequence, the user has to apply a constant
factor to the amount of dilation, because the size of the penumbra is also
proportional to the distance between the shadow caster and the shadow
receiver. This factor is interpreted as the maximum distance to the occluder
in the scene. If this parameter is too small, penumbrae will not be completely
smooth. However, if the parameter is too large the resulting penumbrae will
be less accurate. In practice, it is not difficult to visually set up this value
for a given scene.

Once calculated, the filtered shadow map will allow us to calculate the
distances map for every point of the penumbrae in screen space, including
the outer penumbrae.

6.2.2. Calculating the distances map

The distances map is a screen-aligned texture that contains, per pixel,
the distance of the shadow to its potential occluder and its distance to the
observer. This is computed by rendering a full screen quad so that every
pixel in the screen is evaluated. Distances to the occluder are computed
by transforming the point being evaluated to the light space. This way, its
depth value can be compared directly with the depth of the coarse occluder.

For optimization purposes, the distances map also stores a mask deter-
mining which pixels will never receive neither a shadow nor a penumbra. The
shadow mask is useful to reduce texture look-ups and improve performance.

6.2.3. Applying the Gaussian filter
Determining the size of the penumbrae
This step generates the penumbra by applying an anisotropic Gaussian

blur filter in screen space. The size of the region affected by the kernel varies
per pixel depending on:
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= The distance of the shadow to the occluder.
= The distance of the light source to the occluder.

= The size of the light source.

To take these factors into account, F. Randima [Fer05] introduced a
formula (Equation 6.1) which estimates the size of the penumbra by using the
parallel planes approach. This equation assumes that the occluder, shadow
receiver and light sources are parallel. However, in practice it works very
well and provides a formula which is not expensive to evaluate.

We derive Equation 6.1 by adding the distance of the pixel to the observer
to the computations, because our filter is applied in screen space and the area
affected by the filter diminishes as its distance from the observer increases.
Equation 6.2 shows how the previously calculated buffers are now combined
in order to determine the size of the area affected by the filter in screen
space.

(dreceiver - dblocker) © Wiight

(6.2)

w bra —
'penumbra
dblocker : dobserver

In Equation 6.2, the size of the penumbra (Wpepumpra) depends on the
following members. The term (dreceiver — dblocker) Tepresents the distance
between the shadow receiver and the shadow caster. dopserver 1S the distance
to the observer. These parameters are stored in the distances map. wy;gns is
the size of the light source. Finally, dpjocker represents the contents of the
“coarse” shadow map and stores the distance to the blocker in light space.

Anisotropic filtering

The anisotropic Gaussian filter is a separable filter, and then, one two-
dimensional blurring can be performed in two sequential one-dimensional
blurring passes: one horizontal and one vertical. This is the key to our
method, because applying a Gaussian filter to create the penumbra requires
far fewer texture accesses compared to the PCSS approach, which is not
separable, allowing the cost of our method to be O(n +n) instead of O(n?).

For each sample accessed to perform the Gaussian filter, their distance
to the observer is taken into account to discard samples whose distance to
the current pixel is greater than a certain threshold. This is used to prevent
the filter kernel from taking into account parts of the scene which are close
in eye space but are far away in world space. It also avoids having to filter
the shadows with the contents of the background.

The number of samples taken by the Gaussian filter determines both
the quality of the shadows and the performance. Therefore, this trade-off
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(a) Percentage-closer soft shadows. (b) Our algorithm. Kernel(23x23)

(c) Our algorithm. Kernel(11x11) (d) Our algorithm. Kernel(5x5)

(e) Reference raytraced shadow.

Figure 6.5: Visual quality comparison between our algorithm (with three
different kernel sizes) and other approaches: a raytraced shadow (e) and
an implementation of PCSS (a).
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decision is left to the user as a customizable parameter. An interesting op-
timization, in order to reduce the number of texture accesses, is to decrease
the number of samples as the area affected by the blurring kernel decreases.

To determine the shape of the anisotropic filtering, the normal of the
current pixel is fetched from the normal buffer (generated previously using
Multiple Render Targets). Using this normal, the local tangent space is
calculated and used to determine the local X, Y and Z axes. Projecting
these axes to eye space allows us to determine the shape and orientation of
the ellipse which defines the anisotropic filter.

To perform the anisotropic filtering in an efficient way, we use the method
presented by Geusebroek et al. [GS01]. This work derives the anisotropic
Gauss filtering and proposes to apply it as a separable kernel, which can be
evaluated efficiently.

Finally, after the vertical blurring pass is performed, the penumbra has
already been calculated and the pixel shader combines it with the unshad-
owed scene C to create the final image with complete shadows with penum-
brae.

6.2.4. Using average instead of minimum depth

Our technique provides a simplification which allows us to rapidly gen-
erate penumbrae minimizing the number of texture accesses per pixel, as
based on the minimum depth texture approach. However, while this tech-
nique is able to generate plausible soft shadows in most scenes, it may not
be completely accurate for some scenes with very complex shadow casters
and receivers.

Fernando R. [Fer05] shows how the average depth of the potential oc-
cluders is a valid measure to determine the size of the penumbra at a given
point. This process, called the blocker search step, is accomplished by per-
forming a number of samples over the shadow map in order to determine
the average distance of potential occluders. The size of the sampling area is
proportional to the size of the light source. On typical scenes, performing
5x5 samples over the shadow map is sufficient to provide accurate results.
However, as the size of the light source increases, more samples may be need-
ed for detailed objects to avoid artifacts due to the spacing of the samples
in texture space.

Moreover, Annen T. et al [AMB"07] introduce an optimization to the
blocker search step by performing it as a convolution filter. This way, this
step can be done efficiently on the graphics hardware.

Therefore, if desired, a traditional approach based on the blocker search
can be implemented to use the average depth instead of the minimum depth,
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as used in percentage-closer soft shadows, while still being able to use our
screen-based anisotropic Gaussian filtering to generate the penumbrae.

Obviously, the minimum depth texture is not longer necessary when
computing the size of the penumbra. Therefore, the step of generating that
texture can be safely skipped.

6.3. Implementation details

As the penumbra is generated using a screen space Gaussian filter, there
are some aspects that must be taken into account when applying this filter
because otherwise artifacts would be introduced. For example, Figure 6.6
shows the results of applying the screen space Gaussian filter without taking
into account the underlying geometry.

These artifacts are caused by the fact that the Gaussian filter is based
on filtering the hard-edged shadows that are wvisible from the screen. This
makes not possible for the Gaussian filter to take into account those parts
in the shadows that are occluded from the camera’s point of view. A good
example of that problem can be seen in Figure 6.6, where the planar object
is completely occluding it’s own shadow from the user’s point of view. That
causes that the Gaussian blur is not capable of blurring that shadow and
generating a penumbra around it which in this case should be visible (see
Figure 6.6.b). We present two different solutions for solving this problem.

6.3.1. Multi-layered shadows

As stated before, the problem of blurring occluded shadows is that they
are not visible from de user’s point of view, i.e. they are now shown in the first
layer stored which is stored on the frame buffer. A natural way of solving
this problem could be calculating the hard-edged shadows for the first N
visible layers from the user’s point of view and storing in different textures
so that they could be selected by the filter as complementary information
when needed. Figure 6.7 shows the first two shadow layers taking as input
the scene shows in Figure 6.6.

Perceptualy, we found that the number of layers needed for reducing
artifacts does not increase linearly with the complexity of the scene, but
logarithmically. That means that computational and storage costs of our
algorithm would increase by O(log(n)), being n a value linearly proportional
to scene’s complexity. In practice, the number of layers is a user-defined
parameter and determines the amount of artifacts avoided during filtering.

For improving efficiency when using this technique, the streaming out
capabilities of the graphics hardware can be used for avoiding transforming
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(b)

Figure 6.6: Figure (a) shows some artifacts which are the result of apply-
ing the Gaussian filter to the shadow buffer without taking into account
the underlying geometry. Figure (b) solves this problem by using our new
lazy shadowing technique.
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(a) (b)

Figure 6.7: The figure on the left shows the hard-edged shadows seen
from the user’s point of view. Figure on the right shows the hard-edged
shadows that are NOT seen from the camera and belong to the second
shadow layer. Black pixels on the second image show the parts of the scene
stored on the first layer.

geometry primitives multiple times. This means that, after rendering the
first layer, transformed vertices are stored in a GPU-allocated vertex buffer
that can be used in subsequent layers, increasing performance for secondary
layers. Moreover, the amount of pixels that need to be evaluated in sub-
sequent layers decrease in every layer, because those present in computed
layers are not necessary.

Algorithm 4 shows the algorithm performed by the screen space filter to
blur the hard edged shadows and how the algorithm chooses between two
different layers when there is no sufficient information in the first layer.

6.3.2. Lazy shadowing determination

Using multi-layered shadows with sufficient layers can alleviate the prob-
lem of shadowing artifacts. However, the fact that it needs multiple layers
can reduce performance in complex scenes. We propose a lazy shadowing
approach for avoiding the need of multiple shadow layers to be generated.
This approach is based on calculating the shadows on demand during the ap-
plication of the Gaussian filter, which can be calculated by using the light’s
projection matrix used for generating the shadow map.

The main problem of this technique is that, for those points that are not
visible from the user’s point of view, we can not determine whether a point
is in shadow or because we don’t know the world position of that point.
For example, consider Figure 6.8. The blue square represents the filtering
area for a given point located in the ground near the shadow caster itself.
This is a conflictive area since the blur filter is not able to filter the parts of
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Algorithm 4 Pseudo-code illustrating the different steps performed by the
algorithm.
nSamples < Number Of Filtering Samples
errDepth < User — Defined Depth Error
sampleRef < FetchSample(center) {fetch nSamples}
for ¢ = 1 to nSamples do
shadowSample < FetchSample(layer2,of fset(i)) {compare depths}
if |shadowSample.z — sampleRef.z| < errDepth then
accumWithWeight(layerl)
else
shadowSample < FetchSample(layer2,of fset(i))
if |shadowSample.z — sampleRef.z| < errDepth then
accumW ithWeight(layerl)
else
More Layers Would Be Needed
Do Not Take Sample Into Account
end if
end if
end for

the shadow that are not visible from the user’s point of view, because are
occluded be the shader caster itself. This case would introduce light ghosting
around the object’s silhouette, as shown in Figure 6.6.

Lazy shadowing determination is able to solve this problem by extrap-
olating the world position of those points taking into account the current
view/projection matrix and the local tangent and normal vectors at that
point. This is possible to calculate because we assume that the surface is
locally planar in the direction on the tangent vectors.

This technique proves to be better than the multiple layered approach
because it is able to greatly remove the light leaking artifacts without the
need of storing extra information (multiple layers) and with the extra benefit
of only fetching the shadow map for points behind objects when needed.

6.4. Results

This section presents performance and quality tests performed using our
method with different scene configurations. All tests were run on an Athlon
+3500 processor with 3GB of RAM memory and a GeForce 8800GT graphics
card. In order to better showing the quality of the shadows, quality com-
parative images were rendered using a black ambient light over untextured
surface. This way, shadows can be studied easily.
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Figure 6.8: The blue square represents the filtering kernel on a conflictive
area for a given point located in the ground near the shadow caster itself.

6.4.1. Quality tests

The number of samples used by the Gaussian kernel greatly affects the
final quality of the penumbra, especially when large light sources are used
and large penumbrae must be generated. Figure 6.5 shows a set of shadows
generated with different kernel sizes in order to show penumbrae quality
with different configurations. Three kernel sizes were used: 5x5, 11x11 and
23x23. The image shows how the small 5x5 kernel produces some discretiza-
tion artifacts in the penumbra. The 11x11 kernel is useful for the majority of
cases, but it can be insufficient when the camera comes close to the penum-
bra. In these cases a 23x23 kernel is more than enough for obtaining good
quality.

Figure 6.9 shows the effects of increasing the size of the area light. This
figure shows how the size of the penumbra grows proportionally to the size
of the light source. Figure 6.9(c) shows that, even with a huge area light, the
algorithm is able to represent visually pleasant shadows with perceptually
correct penumbrae.
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(a) Small light source.

(b) Medium light source.

(¢) Large light source.

Figure 6.9: Effect of changing the size of the light source. The size of the
penumbra is proportional to the size of the light source.
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Figure 6.10: Example of penumbrae with different light sizes and differ-
ent light colors.

6.4.2. Performance tests

Table 6.1 compares performance in the AT-AT scene (shown in fig-
ure 6.9), using different configurations and techniques. The first and sec-
ond columns indicate the methods and configurations used. The rest of the
columns show performance (measured in frames per second) for each config-
uration in both scenes. Standard shadow mapping is used to provide the time
needed to calculate shadows without penumbra. In the second row, the time
needed to calculate a uniform-sized penumbra is provided. This penumbra
is calculated using a percentage-closer filter combined with a screen space
blur filter which removes artifacts and softens penumbrae. Next, many tim-
ings are taken using our method with some different kernel configurations
under different screen resolutions. It can be seen how our method performs
very well, being its costs similar to the uniform-sized penumbrae cost. Final-
ly, percentage-closer soft shadows are used in order to provide performance
measurements for comparing our technique with a well known soft shadow-
ing method.

As it is shown in the table, our technique is able to perform very well
even at high screen resolutions, outperforming percentage-closer soft shad-
ows (PCSS) with similar kernel sizes and screen resolutions. Moreover, it can
be seen how performance drops when using PCSS while incrementing the
screen resolution and kernel sizes, while performance remains more stable
with our algorithm.

6.5. Conclusions

This chapter presents a new approach for calculating soft shadows with
variable-sized penumbrae in real-time. To optimize this task, we introduce
the concept of distance map, which stores the distance from a pixel potential-
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| Method | Kernel setup | 800x600 1280x1024 1600x1200 |
standard None 942 fps 595 fps 245 fps
PCF PCF(3x3) 462 fps 230 fps 175 fps
SSSS K (525) 553 fps 278 fps 213 fps
SSSS K(11z11) 513 fps 256 fps 181 fps
SSSS K (23223) 441 fps 221 fps 155 fps
PCSS Bs(5z5) + PCF(5z5) 504 fps 239 fps 183 fps
PCSS | Bs(525) + PCF(11z11) | 251 fps 106 fps 78 fps
PCSS | Bs(525) + PCF(23223) | 122 fps 49 fps 37 fps

Table 6.1: Performance results measured in frames per second (FPS) on
the AT-AT scene (200K triangles). SSSS stands for our method (Screen
Space Soft Shadows). K refer to the kernel sizes used with each technique.
B, stands for blocker search, used in the PCF algorithm.

ly affected by the penumbra to the occluder that produces that shadow. This
distance is used to generate penumbrae in screen space using an anisotropic
Gaussian blurring kernel.

The bottleneck of the PCSS approach is the number of texture accesses
required to achieve smooth penumbrae. First, it has to perform a blocker
search to determine the overall distance of the shadow to the occluder. Al-
though this step requires at least 3x3 texture reads, it is advisable to use at
least 5x5 or even 7x7 to completely avoid artifacts on complex shadow cast-
ers. Our method performs the blocker search by just accessing the distances
map, which can be generated from a low-resolution coarse shadow map. In
addition, PCSS needs to take multiple samples of the shadow map in or-
der to generate the penumbrae. In practice, 13x13 is a good kernel size to
achieve smooth shadows with PCSS. Thus, the number of samples required
to generate the penumbra with this method is: 5x5 (blocker search) + 13x13
(PCF) = 194 texture reads.

Besides, since our algorithm uses a separable filter, the cost of comput-
ing the penumbra is O(n + n) instead of O(n?), as in the PCSS approach.
As an example, using an 11x11 kernel with PCSS would require 11x11=121
texture accesses, while by using a separable Gaussian blur it can be per-
formed with only 11411=22 texture look-ups. This method also proves to
be very scalable because increasing the kernel to 17x17 requires only 34 sam-
ples with our method and 289 samples with PCSS. This means that even
using a massive 50x50 Gaussian filter (50450 = 100 texture look-ups), our
method would offer better performance compared to PCSS while generating
extremely smooth penumbrae.

Moreover, the use of an anisotropic filtering allows our method to take
into account the orientation of the surface being shadowed. This way, the
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screen space filtering is able to deliver precise penumbrae even at grazing
angles.

Another advantage of using our method is that it is compliant with the
concept of deferred shading. This shading scheme, which is commonly used
in films and post-production, is getting popular in the field of real-time
graphics. Deferred lighting (see [Eng08]) uses a similar approach for render-
ing efficiently a high amount of lights in real-time. Our technique is easily
integrable in a deferred shading pipeline, performing all the calculations in
screen space, taking as input the same buffers used in the deferred shading
(except for the distances map). The direct benefits of our approach are that
no superfluous calculations are wasted on invisible pixels, as it is applied in
screen space over the computed shadow buffer.

Nevertheless, this technique presents some limitations. The first limita-
tion is that we are simplifying the blocker search by using a minimum depth
filter, which selects the minimum depth from the light source instead of an
average depth of the blockers. Another issue is that the coarse shadow map
can not take into account the distance of the shadow to the receiver in order
to dilate the shadow map, which forces the user to set a fixed safe distance
by hand.

However, despite its limitations, our technique is able to deliver percep-
tually correct penumbrae on controlled scenes, with a performance boost
compared with PCSS, almost multiplying by 3 the performance obtained
with large kernels.



CHAPTER

Improving Shadow Map Filtering
with Statistical Analysis

Shadow maps are widely used in real-time applications. However, they
cannot be filtered linearly as regular textures, which leads to severe alias-
ing. This problem has been attacked by methods that transform the depth
values to allow approximate linear filtering and to approaches based on sta-
tistical analysis. Statistical methods, including variance shadow maps suffer
from “light bleeding” artifacts. In this dissertation chapter we propose a
new statistical filtering method for shadow maps, which approximates the
cumulative distribution function (CDF) of depths with a power function or
alternatively by a Gaussian CDF instead of bounding it with Chebyshev In-
equality. This approximation significantly reduces “light bleeding” artifacts,
keeping the same performance and spatial cost as the original variance shad-
ow maps. The proposed method can also benefit from a layered approach,
and can suppress the residual bleeding artifacts in complex scenes with few
layers, needing only a fraction of the processing and storage cost of classi-
cal layered variance shadow maps. Like the original variance shadow maps,
the algorithm is easy to implement on the graphics hardware and is fairly
scalable.

7.1. Introduction

Shadow mapping is a popular and effective way of solving the shadowing
problem. The depth buffer represents the occluder geometry in a discretized
form. From this information, we need to reconstruct the distance from the
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light source and the occluder in the direction of the shaded point in order
to decide whether or not occlusion happens. The shadow test can also be
imagined as a step like wisibility function v(z,) = €(z, — z,) that is 0 if the
occluder’s distance from the light source, z,, is smaller than the receiver dis-
tance z,, and 1 otherwise. Unfortunately, the occluder distance is known only
in the centers of the lexels, so this function must be reconstructed in other
points. As the occluder geometry may involve high frequency variations, the
occluder distance function can only be approximately reconstructed, and
high frequency components may distort the reconstructed signal even at low
frequencies, which leads to the well known shadow aliasing. Linear signal
theory has a solution for the aliasing problem, which low-pass filters the
signal to eliminate frequencies above the Nyquist limit. However, from sig-
nal processing point of view, shadow mapping is a non-linear operation as
it contains a comparison operation represented by the step function. Thus
filtering the depth values before the comparison does not work. A proper
solution is postponing the filtering after the comparison, which is the basic
idea of percentage closer filtering. However, this means that filtering can be
executed only when the distance of the shaded point is available, so it should
be repeated for every shaded point.

Techniques aiming at pre-filtering the shadow map belong to two main
categories, those that transform the problem into a domain where linear
signal processing becomes feasible, and those that use non-linear filtering
operations based on statistical analysis.

Our method belongs to the category of statistical filtering and approx-
imates the probability that the shaded point passes the depth test. This
probability is obtained from the approximation of the cumulative distri-
bution function of depths with a power function or by a Gaussian CDF
instead of bounding it with the Chebyshev Inequality. The two moments
of the depth’s distribution are used to construct the Gaussian CDF, while
the mean, minimum, and the maximum of the distribution are needed to
fit the power function. Our approach is capable of highly reducing “light
bleeding” artifacts, or even eliminating it for moderately complex scenes,
with no penalty of performance or storage costs in the Gaussian case. More-
over, for very complex scenes, it can be converted to a layered approach (in
the same way as layered variance shadow maps) for completely eliminating
these artifacts. Very few layers are needed in this case, still outperforming
LVSM both in performance and storage.

7.2. Method Overview

Instead of introducing layers (like LVSM) in the shadowing method, we
propose an orthogonal research direction based on improving the evalua-
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tion of the stored information for solving the “light bleeding” artifacts. Our
method introduces two new different formulations of the VSM rather than
using Chebyshev’s Inequality for performing the filtering of the shadow map.
These reformulations are based on 1) a Gaussian approximation and 2) a
reconstruction of the cumulative distribution function. Reconstruction of
CDF was also proposed in [Gru08] and for volumetric ambient occlusion
[RSKUT10].

The application of probability theory techniques in shadow mapping is
made possible by the following observation. We can make a few fundamental
assumptions on the unknown visibility function:

= At z = 0, that is when the shaded point is at the light source, the
visibility function is 1.

= At z = oo, that is when the shaded point is very far from the light
source, the visibility function is 0.

= The visibility function is monotonically decreasing, i.e. if it is father
away, then there are more occluders between the light source and the
receiver point, so the effect of the light source is possibly smaller, but
definitely not larger.

From the point of view of statistics, uncertainty is involved in the depth
buffer, since the depth values are known only in lexel centers. The goal is to
guess the visibility function at arbitrary point with minimizing this inherent
uncertainty. Unlike in signal processing, we are not constrained by linear
operations thus by the selection of a proper estimation, the depth testing
can be made more robust.

In order to propose a practically useful statistical approach, we need to
consider two additional requirements.

= Unoccluded planar objects are expected to be fully lit, so the visibility
function must give value 1 for the average depth value. This is similar
to depth biasing in classical shadow mapping and means that statistical
probability of occlusion must be corrected to avoid self-occlusions.

= As the variables needed for the estimation will be obtained with fil-
tering the depth buffer, we have to define them in a way which allows
separable filtering since separable filtering has better complexity than
general non-separable filtering.

In order to compute the visibility function, we start with the probability
of no occlusion P(z, > z,) and bias it to avoid self occlusions. Self occlusions
are eliminated for planar surfaces if average depth Z, is associated with
visibility 1, thus our proposed visibility approximation is:
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Pz, >
v(z) = PEZ;Z;, if 2z, > Z, and 1 otherwise. (7.1)
The probabilities are computed from the cumulative probability distri-
bution F'(z) = P(z, < z) of random variable z,:

1—F(z)

T=FG) if z, > Z, and 1 otherwise. (7.2)

v(z) =

7.2.1. Gaussian cumulative distribution

Let F(z; Z,,02) be the cumulative depth distribution function and let 2,
and o2 be the mean and the variance, respectively. In contrast to Cheby-
sev’s Inequality, our method will approximate the PDF with a Gaussian
distribution function:

F(2:%,,0%) = % [1+erf (’“;)] (7.3)

g

where erf(x) is the error function, which can be approximated by the fol-
lowing expression [Win08|:

4 2
erf(z) = \/1 — exp <—x2m>

~ 8(m—3)
“= 3r(4—m)

where

~ 0,140012
Substituting the Gaussian CDF into our biased visibility formula (equa-
tion 7.2), we get:

Zr — Zo

o2

v(zy) =1 —erf ( > , if 2z, > Z, and 1 otherwise. (7.4)

7.2.2. Reconstruction of the cumulative distribution with the Power
function

Our second approach is based on reconstructing the cumulative distribu-
tion from three different values that are obtained by filtering an area of the
depth buffer. The larger the area of interest, the more blurred the shadows.
This filtering operation is configured as a separable kernel that calculates
the minimum value z,,, the maximum value z,5,, and the mean Z, of the
depth values.



7.2 Method Overview

Our cumulative distribution F'(z) must be zero if z < zym, equal to 1 if
Z > Zmax, and non-decreasing in between. The following normalized depth
parameter is introduced for notational simplicity:
2 — Zmin Z — Zmin

t = = s
Zméax — “min Az

where Az = zZpnax — Zmi. Using the normalized parameter, the cumulative
distribution function must be zero if t < 0, and 1 if ¢ > 1, and non-decreasing
in the [0, 1] interval. Taking into account the distribution of all possible
shadow map values, the cumulative distribution function may be a step
function at tyq and thsc at the two extremes, respectively. Therefore, our
goal is to find a function that increases from 0 to 1 and has the flexibility
to adapt to the two extreme cases. Considering these, we propose to use the
function t? where 3 is the parameter of data fitting (see Figure 7.1). Thus,
the cumulative distribution is

F(z) =t° where z(t) =tAz+ zm. (7.5)

Let us consider the constraint on the mean:

Zméx 1
2o = dF = t)—dt =
zZ / z /z( ) i”

0

Zmin

1
/tAz+zmnﬁﬁ lat =
0

Solving this equation for 3, we get:

g = 2o~ Fmin, (7.6)

Zméx — %o

The visibility formula needs the computation of the cumulative distribu-
tion for the expected depth, which corresponds to

Zo — Zmin _ B

Az B+ 1

t=

The visibility function is obtained from equation 7.2:

1—¢°
v(t) = — if t > % and 1 otherwise. (7.7)
1- (1)
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tP approximate cumulative distribution

4

1 4
Shadowing |,
factor

Figure 7.1: Approximation of the cumulative distribution function with
th.

7.3. Results

This section presents visual quality and performance tests to compare our
two new filtering approaches with the Chebyshev’s Inequality approximation
used in the traditional variance shadow maps. All quality and performance
tests were generated on an Intel Core2 Quad Q9550 CPU @ 2.83Ghz with
a NVIDIA GeForce 280GTX using Direct3D 10. Performance data were
measured on three very different test scenes: the Car scene, Spheres scene
and the Chairs scene.

Figures 7.3, 7.4 and 7.6 show a visual comparison of our approaches and
existing methods such as VSM and ESM. It can be seen how our approaches
are able of highly reducing, or even eliminating, these artifacts. In general
terms, the Gaussian CDF approach is more robust than the Power CDF,
which is still presenting artifacts in some cases.

Floating point precision of the shadow map is a determinant factor for
both performance and visual quality. VSM and our Gaussian approxima-
tion use a shadow map with two floating point channels, while the proposed
Power CDF method needs at least three channels for storing the mean, min-
imum and maximum values. As shown in Figure 7.2, VSM and our Gaussian
approach are very sensitive to floating point precision. However, the Power
CDF reconstruction is able to render artifact-free soft shadows even with 16
bits per channel. This enables for improving performance, as shown in Table
7.1.

Table 7.1 compares performance obtained with our approaches and with
the Chebyshev’s Inequality approximation. All times were measured using
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) 16 bit Cheby- (f) 16 bit Gaussian (

shev s Inequality. CDF

) 16 bit CDF re-
construction.

(h) 32 bit CDF re-
construction.

Figure 7.2: Visual quality comparison using different shadow map float-
ing point precisions. The bottom row presents close-ups of the upper shad-
ows. Both VSM and our Gaussian CDF approximation introduce artifacts
when using 16 bits per channel. However, our Power CDF reconstruction
technique is able of properly rendering anti-aliased shadows in both cases.

512x512  1024x1024 2048x2048
Chebyshev | 481 fps 342 fps 142 fps
Exponential | 495 fps 392 fps 165 fps
Gaussian CDF | 456 fps 331 fps 142 fps
CDF recons. 32bits | 420 fps 243 fps 82 fps
CDF recons. 16bits | 468 fps 381 fps 160 fps

Table 7.1: Performance table of our two new approaches compared to
the Chebyshev’s Inequality at different shadow map resolutions. The Car
scene was rendered at fullHD (1920 x 1080). Chebyshev’s and the Gaussian
CDF approaches used 32 bits per channel in the shadow maps.
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(a) Standard VSM using Cheby- (b) Exponential shadow maps.
shev’s Inequality.

(c) Gaussian CDF approxima- (d) Power CDF approximation.
tion.

Figure 7.3: Visual quality comparison on the spheres scene.
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(a) VSM. (b) Exponential (c) Gaussian  CDF (d) Power CDF ap-
shadow maps. approximation. proximation.

Figure 7.4: Visual quality comparison on the chairs scene. The white
arrow in subfigure (a) shows the light bleeding artifacts caused by the
Chebyshev’s Inequality.

the Car scene at a screen resolution of 1920 x 1080. The reason of using a sin-
gle scene for all tests is that the performance of these methods is independent
of the geometry complexity, but depend on just the screen and shadow map
resolutions. It can be seen that our Gaussian CDF approach is as fast as the
traditional VSM approximation. For our Power CDF method, we used two
different shadow map precisions. At higher resolution this method is slower
than the other two, because this technique needs to store more information
in the shadow map (mean, minimum and maximum values), which has an
impact on graphics memory bandwidth when performing the filtering.

It is important to note that, as it can be seen in Figures 7.3, 7.4 and 7.6,
our Power CDF method is able of performing sharper antialiased shadows
compared to other methods (like VSM, ESM or even to our Gaussian CDF
approximation) using the same amount of texture samples and the same
filtering kernel size. Figure 7.3 shows an analysis of the shadow sharpness
of our Power CDF function compared to percentage closer filtering. This
property of our method allows us to use lower resolution shadow maps while
providing similar antialiasing sharpness (see Figure 7.3 for an example).
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(a) Unfiltered shadow (10242) (b) PCF (10242)

(c) Power CDF (1024%) (d) Power CDF (5122)

Figure 7.5: Visual quality comparison of shadows sharpness comparing
PCF with the Power CDF with the same number of samples and filtering
kernel size. Figures (a), (b) and (c) uses a 1024x1024 shadow map. Figure
(d) uses a 512x512 shadow map.

As shown in the results compared to the exponential shadow maps, our
algorithm is not sensitive the light leaking artifacts introduced by the mul-
tiple distant occluders. For the sake of clarity, In Figure 8 the light leaking
artifacts introduced by ESM is highlighted with a red circle.

7.4. Conclusion

We have developed two new shadow filtering approaches based on vari-
ance shadow maps. These methods are based on replacing the Chebyshev’s
Inequality for finding an upper-bound for the depth distribution of the shad-
ow map by two new approximations: a power function or alternatively a
Gaussian CDF. This allows for enhancing the visual results of shadows by
reducing “light bleeding” artifacts. In the case of the Gaussian approxima-
tion, no penalty in performance or storage costs is introduced. For the power
CDF, performance is even improved by using a 16 bit floating point precision
shadow map.

The two proposed techniques have both advantages and disadvantages.
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(a) Standard VSM using Chebyshev’s Inequality.

(b) Exponential shadow maps.

(c) VSM using our Gaussian CDF approximation.

(d) VSM using our approach for reconstructing the CDF.

Figure 7.6: Visual quality comparison on the car scene. Light leaking
artifact introduced by ESM is highlighted with a red circle in Figure (b).
Our techniques are able to remove light leaking artifacts on both VSM
and ESM.
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On the one hand, the Gaussian CDF approach is able to filter shadows
while highly reducing light leaking artifacts of the classical VSM. On the
other hand, the Power CDF reconstruction requires more texture storage
but is better in reducing the light leaking artifacts. Moreover, the Power
CDF reconstruction generates sharper anti-aliased shadows (as shown in
Figure 7.5), which allows the use of lower resolution shadow maps.

In conclusion, the new technique presented in this chapter produces good
quality anti-aliased shadows at high performance, and are very scalable for
complex scenes.



CHAPTER

Conclusions and future work

This thesis presents a number of techniques and methods for improving
performance and visual quality when rendering interactive environments.
The conclusions of the research done in this thesis and the future research
directions are presented in the section.

Throughout the different contributions presented, the aim of this work
has been to enhance the interactive visualization of natural scenes in different
fields such as: level of detail, scene management, illumination and shadowing.

This dissertation started by presenting our view-dependent multireso-
lution model for the foliage designed for exploiting massively parallel ar-
chitectures, which runs entirely on the GPU. Our results demonstrate that
this approach outperforms previous approaches that are not designed to
run completely on the graphics hardware. Moreover, we have proposed a
method for efficiently managing massively populated level of detail scenes
in Chapter 4. We demonstrate that this approach is important for large
multiresolution scenes to prevent bottlenecks when extracting the level of
detail for hundreds or even thousands of objects. In Chapter 5, we propose
a new real-time illumination method for the foliage, based on a dual depth
map approach, designed for taking into account the sparse nature of the
leaves. This method is able to increase realism of trees by taking into ac-
count the position of the leaves inside of the foliage for approximating their
illumination. Finally, two techniques built on top of shadow mapping are
proposed. Firstly, Chapter 6 introduces a new soft shadow mapping method
which is able of calculating visually plausible soft shadows in screen space.
The advantages of this approach are that it naturally fits on deferred shad-
ing renderers and that they are faster to calculate than existing methods.
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Secondly, Chapter 7 introduces two new methods for improving shadow map
filtering based on statistical information. We demonstrate that these algo-
rithms are capable of rendering antialiased shadows and that they are less
prone to “light leaking” artifacts compared to existing methods.

This chapter is organized as follows. Firstly, we conclude on the contri-
butions offered by the different proposals. Then, we outline ideas for future
work. Finally, we provide a list of publications related to this Ph.D. disser-
tation and the research projects that have enabled the development of this
thesis work.

8.1. Conclusions

First, a state of the art covering the different areas related with the
themes treated in this thesis is presented in Chapter 2. These areas include
multiresolution level of detail, LoD scene management, real-time illumina-
tion of trees and shadow mapping techniques.

Chapter 3 presents a technique for adaptively changing the level of de-
tail of the foliage in an efficient way, using the GPU. In order to minimize
popping artifacts, we use a view-dependent technique to select the less vis-
ible parts of the foliage from the observer’s point of view. This technique
allows us to decrease the geometrical complexity of the less visible parts of
the foliage.

In order to optimally perform this operations, the multiresolution model
has been designed as a parallelizable algorithm which runs efficiently on the
GPU. The benefits of executing our algorithm on the graphics hardware are:

» The cost of the algorithm is reduced by one order of magnitude and
is executed more efficiently.

= Unlike other solutions, no data is transferred through the PCle bus,
which would become a bottleneck.

As shown in Chapter 3 in Figure 3.8, our algorithm outperforms other
solutions based on the CPU while conserving the visual aspect of the fo-
liage even when drastically reducing the amount of polygonal complexity, as
shown in Figure 8.1.

Chapter 4 introduces our technique for efficiently managing large groups
of level of detail objects. Our algorithm exploits the observation that, in
massive sets of LoD objects, it is highly probable that lots of them share
a similar level of detail. Moreover, the further the objects are from the
observer, the more difficult is to distinguish the visual differences between
similar levels of detail.
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Figure 8.1: The upper row shows a tree at different distances, rendered
without level of detail. The lower row shows the same tree at the same
distances rendered with our multiresolution method, using the following
reduction factors: 61 %, 48 %, 38 %, 26 % and 16 % respectively.
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This is important for performance reasons because the process of extract-
ing the level of detail has a computational cost associated to it. Therefore,
changing the level of detail of massive sets of LoD objects can collapse the
visualization process and become the bottleneck of the application.

For alleviating this problem, our method “caches” previously calculated
LoDs and assigns them to other objects that need a similar level of detail.
This algorithm drastically reduces the amount of times the LoD extraction
process takes place in the scene. As a consequence, our technique improves
performance and prevents the LoD extraction process to become the bottle-
neck of the graphics application.

As demonstrated in Chapter 4 the LoD Manager efficiently manages lev-
el of detail changes and minimizes CPU consumption. In fact, when dealing
with scenes with a high count of LoD objects (Figure 4.1), the computational
cost caused by the LoD process becomes the bottleneck of the application,
reducing the performance and making it unsuitable for interactive appli-
cations. Our method solves this problem and keeps the bottleneck of the
application in the rendering stage, instead of in the extraction process.

Foliage illumination is a difficult problem due to the complex interaction
of light inside the foliage. Moreover, light coming from all directions also
need to be taken into account. Having this into mind, Chapter 5 presents a
technique for representing the direct and indirect contributions of light to
enhance the quality of the lighting approximation for the foliage.

This technique is a novel approach based on capturing the shape of the
foliage with two depth maps. Then, the amount of illumination received at
a certain point inside of the foliage is approximated by taking into account
its relative position inside the volume defined by the two depth maps.

This solution provides a low frequency illumination of the foliage in real-
time. In addition, we rely on two different techniques for calculating the
high-frequency illumination term. The first one is based on a preprocess
that calculates the ambient occlusion term computing the visibility of the
leaves inside the foliage. The second one is based on a screen space technique
for locally calculating the occlusion of each leaf.

As shown in Figure 8.2, this technique is able to represent high quality
illumination for the foliage in real-time.

Chapter 6 introduces a novel technique for calculating soft shadows in
real-time. The originality of this technique relies on the fact that the soft
shadows are calculated in screen space. The technique is based on applying
an anisotropic Gaussian blur of variable size, depending on the amount of
penumbrae needed for each pixel on the screen. The size of the penumbra is
calculated by taking into account the distance of the shadow caster and the
shadow receiver, as well as the size of the light source.
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Figure 8.2: Forest scenes with our foliage illumination approach.

Figure 8.3: Real-time soft shadows generated with our algorithm in
screen-space.

This technique is able to render highly smoothed soft shadows in real-
time and performs better than existing techniques, such as back-projection
or percentage-closer soft shadows, due to the fact that we use a separable
Gaussian filter, with a computational complexity of O(n + n) instead of
O(n?). Figure 8.3 shows the visual quality results of our technique.

Chapter 7 introduces a new shadow filtering algorithm for shadow map-
ping. The technique is based on exploring the capabilities of using CDF
approximation in the shadow filtering estimation. The results of this ap-
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proach show that light bleeding artifacts are highly reduced compared to
other techniques, such as VSM, and performance is still very good because
it consists of just evaluating one formula.

Two different techniques are presented in this section. In essence, they
replace the Chebyshev’s inequality estimation used in techniques like VSM
or LVSM by more precise approximations. The first approximation is based
on the Gaussian cumulative distribution while the second one is based on
reconstructing the cumulative distribution using a power function.

As seen in Figure 8.4 these approximations result on a reliable shadow
filtering technique that is able to drastically reduce light leaking artifacts
while keeping the high performance associated to these kind of shadow fil-
tering techniques.

8.2. Future work

We have various lines of research for future work. For our view-dependent
LoD approach for the foliage, we propose the use of OpenCL rather than
CUDA for the GPU implementation. This API allows for direct resource
sharing between the compute and rendering contexts, which increases per-
formance. Another future line of research would be to include in the approach
the physical effects of the environment, such as the effects of the wind, into
the multiresolution scheme, and the possibility of calculating the physics on

the GPU using CUDA or OpenCL.

Regarding the LoD management method presented in Chapter 4, we
propose to explore better heuristics to allow for minimizing the amount of
LoD changes and thus, maximize performance. Moreover, it would be also
interesting to extend the LoD Manager in order to deal with animated mesh-
es. Calculating the animation matrices for a massive amount of animated
characters is time consuming and can easily become the bottleneck of the
application. To solve this problem, the same principles that the LoD Manag-
er uses for reusing LoD calculations could be applied for reusing calculations
related to the animation system.

Chapter 5 presents a technique for real-time foliage illumination using
two shadow maps for approximating the volume the leaves in order to de-
termine the occlusion of a leaf inside the foliage. This approximation is
estimated by using two depth maps. As future work, it would interesting to
take more directions into account and study how the new approach affects
to performance as well as the benefits obtained. Moreover, we propose to
study how our technique performs on trees with other types of leaves and
how the algorithm should be changed in the case that the technique is not
directly applicable to them.
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(a) Standard VSM using Chebyshev’s Inequality.

(b) Exponential shadow maps.

(c) VSM using our Gaussian CDF approximation.

(d) VSM using our approach for reconstructing the CDF.

Figure 8.4: Visual quality comparison on the car scene. Light leaking
artifact introduced by ESM is highlighted with a red circle in Figure (b).
Our techniques are able to remove light leaking artifacts on both VSM
and ESM.
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Regarding the screen-space soft shadowing technique presented in Chap-
ter 6, the main idea of this method is to apply a Gaussian filter of variable
size to the hard-edged shadows in screen space. Therefore, the best case of
our approach is when the shadow receiver is a plane and the observer is look-
ing to it in a perpendicular direction. However, although the technique can
perform well over non-planar geometry it could be difficult to create artifact-
free penumbrae with very complex shadow receivers. Thus, as a future line
of research we propose to enhance the technique in order to make it more ro-
bust when projecting shadows over complex/irregular geometry. Moreover,
as shown in Chapter 6, the algorithm is designed as a multi-layered method
in order to handle hidden shadows. An interesting future line of research
would be to study how to modify the algorithm in order to eliminate this
requirement and how could it be converted into a single layered approach.

Finally, Chapter 7 presents a technique for shadow map filtering which
considerably reduces the amount of light leaking artifacts present in exist-
ing techniques, such as variance shadow maps or exponential shadow maps.
While our technique is able to highly decrease the amount of leaking arti-
facts, it’s still not able to completely remove them for very complex shadow
casters. Therefore the future work proposed for this topic is to study new
formulations to completely remove artifacts in all situations. Finally, a com-
mon requirement of shadow filtering techniques which use pre-filtering to
generate antialiased shadows is that both the shadow casters and the shad-
ow receivers must be stored in the shadow map. This requirement might
affect performance and relaxing it would be an interesting line of research.

8.3. Publications

For assessing the different works presented in throughout this Ph.D.
dissertation, this section lists the different publications obtained while de-
veloping this thesis.

8.3.1. Book Chapters
= Jesis Gumbau Portalés, Miguel Chover Sellés, Mateu Sbert. Screen

Space Soft Shadows. GPU Pro. Chapter 4. Part VII. AK Peters 2010.
ISBN: 978-1-56881-472-8. Editor Wolfgang Engel. [GCS10]

8.3.2. Journals

= Jestis Gumbau Portalés, Miguel Chover Sellés, Inmaculada Remolar
Quintana, Cristina Rebollo Santamaria. COMPUTER AND GRAPH-
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ICS. View-dependent pruning for real-time rendering of trees. (Accept-
ed, in press).
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2009. [GGCT09]

= Cristina Rebollo Santamaria, Inmaculada Remolar Quintana, Miguel
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Issue 7, vol 7. pp. 1020-1029. 2008. [RRC108]

= Oscar Enrique Ripollés Mateu, Miguel Chover Sellés, Jesis Gum-
bau Portalés, Jose Francisco Ramos Romero, Anna Puig Centelles.
GRAPHICAL MODELS. Rendering continuous level-of-detail meshes
by Masking Strips. Num. 71. pp. 184-195. 2009. [RCG109]

8.3.3. International Conferences

= Jestis Gumbau Portalés, Oscar Enrique Ripollés Mateu, Miguel Chover
Sellés. LODManager:a framework for rendering multiresolution models
in real-time appplications. WSCG’2007. Czech Republica: 29-01-2007.
2007 University of West Bohemia. ISBN: 978-80-86943-02-2. [GRCO7]

= Jestis Gumbau Portalés, Miguel Chover Sellés, Cristina Rebollo Santa-
maria, Inmaculada Remolar Quintana. LECTURE NOTES IN COM-
PUTER SCIENCE. Real-Time Illumination of Foliage Using Depth
Maps. Num. 5102. pp. 136-145. 2008. [GCRR08]

= Cristina Rebollo Santamaria, Inmaculada Remolar Quintana, Miguel
Chover Sellés, Jesis Gumbau Portalés. LECTURE NOTES IN COM-
PUTER SCIENCE. Hardware-Oriented Visualisation of Trees. Num.
4263. pp. 374-383. 2006. [RRCGO6]

= Oscar Enrique Ripollés Mateu, Jestis Gumbau Portalés, Miguel Chover
Sellés, Jose Francisco Ramos Romero, Anna Puig Centelles. View-
Dependent Multiresolution Modeling on the GPU. WSCG’2009. Plzen:



122

Chapter 8 Conclusions and future work

02-02-2009. 2009 University of West Bohemia. ISBN: 978-80-86943-94-
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