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Abstract

RNA-binding proteins (RBPs) control the fate of a multitude of coding
and non-coding transcripts. Formation of ribonucleoprotein (RNP) com-
plexes fine-tunes regulation of post-transcriptional events and influences
gene expression. Recently, it has been observed that non-canonical pro-
teins with RNA-binding ability are enriched in structurally disordered and
low-complexity regions that are generally involved in functional and dys-
functional associations. Therefore, it is possible that interactions with
RNA protect unstructured protein domains from aberrant associations or
aggregation. Nevertheless, the mechanisms that prevent protein aggrega-
tion and the role of RNA in such processes are not well understood. In this
work, I will describe algorithms that I have developed to predict protein
solubility and to estimate the ability of proteins and transcripts to inter-
act. I will illustrate applications of computational methods and show how
they can be integrated with high throughput approaches. The overarching
goal of my work is to provide experimentalists with tools that facilitate the
investigation of regulatory mechanisms controlling protein homeostasis.
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Resumen

Las proteı́nas de unión de ARN son responsables de controlar el destino
de una multitud de transcriptos codificantes y no codificantes. De hecho, la
formación de complejos de ribonucleoproteı́nas (RNP) afina la regulación
de una serie de eventos post-transcripcionales e influye en la expresión
génica. Recientemente, se ha observado que las proteı́nas con capacidad
no canónica de unión al ARN se enriquecen en las regiones estructural-
mente desordenadas y de baja complejidad, que son las que participan ge-
neralmente en asociaciones funcionales y disfuncionales. Por lo tanto, es
posible que interactuar con el ARN pudiera ser una manera de proteger
las proteı́nas no estructuradas de asociaciones aberrantes o de agregación.
Sin embargo, los mecanismos que impiden la agregación de proteı́nas y la
función del ARN en tales procesos no están bien descritas. En este trabajo,
se describen los métodos que he desarrollado para predecir la solubilidad
de proteı́nas y para estimar la capacidad de transcriptos y proteı́nas de in-
teractuar. De otra parte, voy a ilustrar sus aplicaciones y explicar como los
métodos de bajo rendimiento han evolucionado a un mayor rendimiento.
El objetivo final es proporcionar instrumentos a los investigadores experi-
mentales que se pueden utilizar para facilitar la investigación de los meca-
nismos reguladores que controlan la homeostasis molecular.
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Preface

In this thesis, I will report two projects in which I have been directly in-
volved. The first project includes the investigation of physico-chemical
properties that describe the propensity of proteins to interact with coding
and non-coding transcripts (see Chapters I, II and III). The second project
focuses on the determination of features that are relevant for the solubility
of polypeptide chains (see Chapters VI and VII). In both projects I have
been in charge of algorithm development and improvement, as well as ap-
plication to representative experimental studies. The work presented in
this thesis illustrates the flexibility of computational approaches to study
molecular processes such as X-chromosome inactivation (see Chapter II)
and to perform large-scale simulations (see Chapter III). Finally, I will
introduce the recently developed SeAMotE algorithm (see Chapter IV), a
method to search for protein recognition motifs in the sequence of their
nucleic acid targets.

The methods and analyses described here represent small elements of a
more ambitious project that aims to the identification of macromolecule
features associated with formation of functional and dysfunctional protein-
protein and protein-RNA complexes. In this context, the omics modules of
catRAPID (see Chapter III) and ccSOL (see Chapter VII) algorithms are
intended to facilitate the investigation of general evolutionary principles. It
is my belief that the synergistic use of computational tools will aid the in-
vestigation of protein-RNA interactions, which will lead to the discovery of
novel associations. By exploring the composition and dynamics of macro-
molecular structures, such as RNA granules, it will be possible to elucidate
their functional and dysfunctional implications in human neuropathology.
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Introduction

Next-generation genomics

In the past two decades, a number of high-throughput approaches have
been developed to investigate different aspects of cellular biology. In par-
ticular, the application of new technologies, such as next generation se-
quencing (NGS), has rapidly generated a substantial quantity of genomic,
transcriptomic and proteomic data (Hawkins et al., 2010). The integration
of data from various sources resulted in an exponential growth of the bioin-
formatic field and substantial development of computational tools. Very in-
triguingly, the employment of genome-wide approaches has led to a better
understanding of the human genome blueprint. In particular it has provided
compelling insights into the complexity and variability of each individual,
hereby granting access to previously uncharted areas of cell biology.

Mounting evidence accumulated throughout the past decade has shown
that a large portion of DNA, at least 75% (Djebali et al., 2012), is per-
vasively transcribed. With respect of the human genome, it has been pro-
posed “that the majority of its bases are associated with at least one primary
transcript” (Birney et al., 2007). Interestingly, the higher sequencing reso-
lution achieved by means of the new techniques resulted in the discovery of
a substantial number of human genes that do not code for proteins, but are
nonetheless transcribed to produce small and long non-coding RNAs (ncR-
NAs) (Djebali et al., 2012; Harrow et al., 2012). Although these molecules
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were initially considered a by-product of “junk” DNA regions, increasing
evidence indicates that ncRNAs possess an active role in the regulation of
several processes inside the cell. Specifically, extensive non-coding por-
tions of the genome show a high level of conservation (Bejerano et al.,
2004; Stephen et al., 2008), and the number of non-protein-coding genes
seems to correlate with the developmental complexity of eukaryotic organ-
isms (Taft et al., 2007). Collectively, both these results and the observations
derived from cytosolic and nuclear RNA mapping led to the proposal of “a
model of genome organization where protein-coding genes are at the cen-
ter of a complex network of overlapping sense and antisense (long) RNA
transcription, with interleaved (small) RNAs” (Kapranov et al., 2007).

The versatile and effective regulatory role of ncRNAs is emphasized
by their ability to bind to different types of molecules in a sequence-
or structure-specific manner, thereby providing specificity to complexes
(Hüttenhofer and Schattner, 2006), and directly or indirectly regulating
transcription of thousands of genes (Gupta et al., 2010). It is possible that
pervasive transcription allows evolutionary pressure to operate its selection
on a large dynamic pool of ncRNAs. Indeed, most ncRNAs are subject to
less rigid structure-function constraints than protein-coding RNAs (Birney
et al., 2007; Heimberg et al., 2008; Meader et al., 2010), and might func-
tion via formation of stable secondary and tertiary structures. Intriguingly,
these structures can accommodate compensatory nucleotide substitutions
without disrupting their functional integrity (Smit et al., 2009).

For the sake of space and consistency with the topics of this composition,
the small RNA subject will not be discussed, but more information can be
found in recent literature (Castel and Martienssen, 2013; Lui and Lowe,
2013; Sabin et al., 2013).
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Long non-coding RNAs

In the last few years, long non-coding RNAs (lncRNAs) have received
particular consideration due to their involvement in a variety of cellular
processes, of which they play a key role in controlling cellular regulation
(Guttman and Rinn, 2012; Guttman et al., 2011; Ørom et al., 2010; Ponting
et al., 2009; Rinn and Chang, 2012; Ulitsky and Bartel, 2013; Wang and
Chang, 2011). Furthermore, long non-coding molecules have been impli-
cated in carcinogenesis, where they act as oncogenes or tumor suppres-
sors (Gupta et al., 2010; Poliseno et al., 2010; Zhang et al., 2010), and in
other complex diseases such as myocardial infarction (Ishii et al., 2006)
and Alzheimer’s disease (Mus et al., 2007).

LncRNAs are arbitrarily defined as molecules larger than 200 nucleotides
(Furuno et al., 2006; Lyle et al., 2000) with low protein coding potential,
often represented by the lack of a functional open reading frame (ORF)
(Kageyama et al., 2011). It is not possible to absolutely rule out a potential
dual function as suggested by the presence of unordinary lncRNAs (Chew
et al., 2013; Guttman et al., 2013). The metastasis-associated lung adeno-
carcinoma transcript 1 (MALAT1) is one such example, which despite the
lack of a poly(A) tail can be efficiently translated in vivo (Wilusz et al.,
2012). A series of studies demonstrated that these molecules have lower
expression levels with respect to mRNAs and are more likely to be highly
expressed in tissue- or cell-specific patterns (Cabili et al., 2011; Derrien
et al., 2012; Guttman et al., 2010; Ravasi et al., 2006). As a matter of fact,
the existence of a few lncRNAs has been known since the beginning of the
90s (Brown et al., 1992; Penny et al., 1996). Only with the recent applica-
tion of comprehensive genome-wide sequencing analyses (Carninci et al.,
2005; Guttman et al., 2009; Ravasi et al., 2006) it was possible to establish
that these were not isolated cases but belonged to a much larger class of
regulatory molecules.

LncRNAs are often defined by their genomic location relative to nearby
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protein-coding genes (Rinn and Chang, 2012). LncRNAs are not as highly
conserved as most mRNAs and small ncRNAs, showing only a meager
level of conservation in their promoters, primary sequences and splice sites
(Carninci et al., 2005; Guttman et al., 2010; Marques and Ponting, 2009).
A subclass, namely the large intergenic transcripts (lincRNAs), received
great consideration over the past few years owing to the peculiarity of their
originating sites. These sites are represented by previously un-annotated
regions, and a higher degree of sequence conservation throughout evolu-
tion with respect to introns and untranscribed intergenic regions (Khalil
et al., 2009; Ponjavic et al., 2007). Other regions of genome in which lncR-
NAs are found include promoters, enhancers, introns, untranslated regions
(UTRs), overlapping or non-coding isoforms of coding genes, antisense
to other gene products and pseudogenes (Carninci et al., 2005; Engström
et al., 2006; Kim et al., 2010).

To date, the roles of most lncRNAs remain elusive and only few of these
molecules have been well characterized and shown to be part of almost
every level of gene expression (Wapinski and Chang, 2011). The ability
of lncRNAs to contribute to post-transcriptional processes, such as protein
synthesis, RNA maturation, transport and transcriptional gene silencing
(Bernstein and Allis, 2005; Whitehead et al., 2009) is even more striking
when considering the promiscuity of interactions and the number of ri-
bonucleoprotein (RNP) complexes they can contribute to (Rinn and Chang,
2012). By participating in the formation of RNP complexes, lncRNAs can
be involved in gene expression. The multitude of functions of lncRNAs
has been hitherto refined into four archetypes of molecular mechanisms:

I Decoys: lncRNAs can act as decoys that preclude the access of regu-
latory proteins to DNA;

II Scaffold: lncRNAs can serve as adaptors to bring two or more proteins
into discrete complexes (Spitale et al., 2011);

III Guides: lncRNAs can be required for the proper localization of spe-
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cific protein complexes, thus combining the binding ability of a pro-
tein partner with a mechanism to selectively contact regions of the
genome;

IV Enhancers: lncRNAs can interface with the chromatin-modifying ma-
chinery, resulting in enhancer-based gene activation.

These categories are endowed with flexible boundaries, as an individual
lncRNA may be involved in several functions. Moreover, these classes
provide a further example of how apparently complex functions can be
constructed from combinatorial usage of archetypal molecular mechanisms
(Wang and Chang, 2011).

Currently, a universal function of lncRNAs appears to be directing the ac-
tivity of chromatin-modifying complexes and transcription factors by spec-
ifying their genomic DNA targets and activating or inhibiting their function
(Guttman et al., 2011; Huarte et al., 2010; Nagano et al., 2008; Rinn et al.,
2007; Zhao et al., 2008). In these contexts, lncRNAs have the ability to
act as scaffolds, nucleating the assembly of larger complexes or cellular
structures (Clemson et al., 2009; Shevtsov and Dundr, 2011). Neverthe-
less, although considerable efforts have been made to elucidate the iden-
tity of proteins that interact with lncRNAs (Guttman et al., 2009; Meyer
et al., 2012), there is still much progress to be made. Perhaps a deeper
understanding could be obtained through the analysis of the similarities of
action mechanisms, which may eventually facilitate instructive and predic-
tive models of lncRNA function (Wang and Chang, 2011).

Protein and RNA interactions

RBPs have the ability to form dynamic ribonucleoprotein (RNP) com-
plexes, a critical step in the control of mRNA processing (Chen and Man-
ley, 2009; Licatalosi and Darnell, 2010) and ncRNA function (Guttman
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and Rinn, 2012; Rinn and Chang, 2012). Therefore, it is not surprising that
the proper cellular functions of virtually all ncRNAs depend upon the for-
mation of RNA-protein complexes (Eddy, 2001; Guttman and Rinn, 2012;
Rinn and Chang, 2012). The advantage of forming RNP complexes to ex-
ert a specific molecular function is not limited to the class of ncRNAs;
mRNAs are constantly coated and compacted by RBPs throughout their
life cycle. Recent studies corroborated the hypothesis that coding tran-
scripts are bound by multiple and heterogeneous RBPs and that individual
RBPs are able to control from a few to thousands of mRNA targets (Keene,
2007; Ascano et al., 2012; Ankö and Neugebauer, 2012). These analyses
provided further support to the importance of the formation of RNP com-
plexes, suggesting that the establishment of such structures can often pro-
ceed in a highly combinatorial fashion and can affect all aspects of the life
of RNA (Glisovic et al., 2008; Janga, 2012; Keene, 2007).

Given the central role of RNPs in gene expression regulatory hubs, alter-
ations in post-transcriptional expression levels or the appearance of mu-
tations in either RBPs or binding sites in targeted transcripts have been
linked to a number of human diseases including muscular atrophies, neu-
rological disorders and cancer (Lukong et al., 2008; Musunuru, 2003; Kim
et al., 2009; Castello et al., 2013a). As a matter of fact, RNAs exiting
the nucleus must be equipped with the necessary RBPs to regulate their
localization, translation and decay in the cytoplasm. Hence, RBPs exert
a tight control over these RNAs, facilitated by the presence of linear and
structural elements onto the RNA sequence, which allows the spatial and
temporal confinement of the target transcripts to specific sites within the
cytoplasm and the eventual recruitment of additional co-factors. Increased
competition between cellular compartments can promote exchanges be-
tween RBPs and impairment in intermolecular recognition and variations
in the association stoichiometry mechanisms can easily result in the onset
of pathological conditions (Kechavarzi and Janga, 2014).

Currently, the number of RBPs in the human genome is estimated to
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be aroung 2000 proteins (Dieterich and Stadler, 2013). To date, ~600
RBPs are annotated in mammalian genomes as carriers of canonical RNA-
binding domains (RBDs), but functions and in vivo binding specificities
of most RBPs remains unclear (Müller-McNicoll and Neugebauer, 2013).
Recently, the application of a new experimental protocol, the “interactome
capture” (Castello et al., 2013b) provided further insights into the iden-
tity of proteins that bind to mRNA in vivo (Baltz et al., 2012; Castello
et al., 2012; Kwon et al., 2013). These groups identified similar num-
bers of RBPs (797, 865 and 555, respectively), which is higher than ~600
canonical RBPs. Interestingly, 315 proteins from the study conducted by
Castello et al. (2012), 245 proteins from Baltz et al. (2012) and 133 protein
from Kwon et al. (2013) were not previously annotated as RNA binding,
and collectively ~200 proteins had been inferred as RBPs by homology.
Nonetheless, it has to be considered that these studies detected only the
RBPs that were active in their well-defined experimental settings and, pre-
sumably, many more condition- and tissue-specific RBPs await discovery.
It is important to stress that the technique utilized in these analyses was
aimed to the investigation of mature messenger ribonucleoprotein parti-
cles (mRNPs), whereas RBPs bound to pre-mRNA, non-polyadenylated
RNA or introns remains elusive. Nonetheless, these studies introduced the
concept of novel RBP and provided evidence that mRNPs packaging repre-
sents a crucial event in gene expression. Additionally, these studies suggest
that many RBPs are employed to influence the structure of mRNAs and to
determine localization and fate of RNAs according to their length.

In spite of these recent insights, the extent to which protein composition of
RNP changes during the lifetime of an individual RNA, and the number of
different proteins that interact, still remain to be investigated. In order to
answer these unsolved questions, perhaps the most urgent task in the field
is to investigate the proteomic and transcriptomic content of individual
RNPs. This would subsequently enable investigation into how proteomic
composition is linked to RNP function and to decipher how this changes
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temporally and spatially (Müller-McNicoll and Neugebauer, 2013).

RNA granules and neurodegeneration

An important consideration for RNA biology is the subcellular loca-
tion of RNP complexes. As a matter of fact, localization of mRNAs
enables the precise regulation of protein expression both spatially and
temporally. In addition to constrains imposed by membrane boundaries
within the cell, RNPs often localize by assorting into functionally distinct
sub-compartments in a temporally appropriate manner (Wolozin, 2012).
Hence, predicting whether remodeling of an RNP will occur after its cel-
lular re-localization is not as simple as comparing protein-RNA binding
constants, because the concentrations of both the RNA targets and com-
peting RBPs can contribute to the outcome (Riley and Steitz, 2013).

The functions of RBPs can be broadly divided into nuclear and cytoplas-
mic regulatory activities. In the nucleus, RBPs orchestrate mRNA matu-
ration, including splicing, RNA helicase activity, RNA polymerase elon-
gation and nuclear export (Liu-Yesucevitz et al., 2011). In the cytoplasm,
RBP functions encompass RNA transport, silencing, translation and degra-
dation (Liu-Yesucevitz et al., 2011). Cytoplasmic RBPs regulate transcript
activity and distribution by forming RNA aggregates or “RNA granules”
that are macromolecular complexes containing RNA binding proteins and
mRNA transcripts consolidated to form granules. The initial RNA gran-
ules can interact with other particles to grow into dynamic granules, which
sometimes reach the size of several microns. Despite their large dimen-
sions, however, such granules are not surrounded by a delimiting mem-
brane, an observation that has puzzled researchers (Alberti, 2013).

Among the multitude of assemblies, RNA granules include Cajal bodies,
nuclear speckles and paraspeckles (Caudron-Herger and Rippe, 2012; Mao
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et al., 2011) within the nucleus, and neuronal granules, stress granules, and
processing bodies (P-bodies) within the cytoplasm. RNA granules vary by
molecular composition and function. For example, RNA degradation is
mediated by the P-body (Thomas et al., 2011), whereas transport gran-
ules play important roles in neurons, where they move transcripts from the
soma into the dendritic and axonal arbors (Krichevsky and Kosik, 2001).
Most of the transcripts contained in the stress granules are translationally
silent and posses distinctive features, such as the lack of the 5’-cap or the
presence of internal ribosomal entry (IRE) sites (Anderson and Kedersha,
2008). Upon stress conditions, these structures facilitate the shift of protein
production in the cell from more heterogeneous to protective (“housekeep-
ing”) functions.

Generation and the dynamics of stress granules are probably the most in-
teresting processes for the pathology of neurodegenerative diseases. As a
matter of fact, it has been observed that, in some cases, RNA-protein ag-
gregates are detergent insoluble and show hydrogel-like features (Weber
and Brangwynne, 2012), though the degree of insolubility is less than that
observed in protein aggregates found in neurodegenerative diseases (Col-
lier et al., 1988; Liu-Yesucevitz et al., 2011). Although the RNA granules
components are of extreme interest, their characterization is technically
difficult due to the singular nature of these nonmembrane-delimited struc-
tures. So far, the most promising results were obtained employing classic
methods, commonly used to isolate insoluble proteins aggregates present
in brain tissues of subjects with neurodegenerative diseases (Johnson et al.,
2009; Liu-Yesucevitz et al., 2010). In a pair of recent publications, the
McKnight group identified protein and RNA components of RNA gran-
ules that were isolated by precipitation with a small molecule (Han et al.,
2012; Kato et al., 2012). Mass spectrometry revealed that an overwhelming
majority of the precipitated RBPs bear repetitive motifs of low-complexity
sequences (LCSs), which are intrinsically disordered. This finding is con-
sistent with what has been discovered in other related studies, where a large
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portion of RBPs contain disordered regions enriched in short repetitive
amino acid motifs with unusual RBDs (Castello et al., 2012), indicating
that LCSs might play a relevant role in protein-RNA associations and the
subsequent formation of aggregates. The most recent reports represent a
significant advance in our understanding of the complexity and subcellular
organization of RNPs: the existence of RBP aggregates could explain the
detection of indirectly associated mRNAs in immunoprecipitates, where
the analysis does not include generation of protein-RNA covalent bonds,
and some of the experimental variability.RNP complexes mediate the pro-
cess of activity dependent protein synthesis, which is critical in all aspects
of biology. Yet, this function has drawn a particularly strong interest to the
synapses, where it controls synaptic plasticity, habituation and memory
(Hoeffer and Klann, 2010).

Protein folding, misfolding and disease

Maintenance of protein solubility and hence avoidance of misfolding and
aggregation are crucial requirements for proteins to perform their cellular
functions (Ellis, 2001; Powers et al., 2009). Indeed, the level of abundance
of specific proteins in living systems has been linked to their requirements
for chaperones in order to fold successfully (Tartaglia et al., 2010) and to
maintain their solubility (Tartaglia et al., 2007). Therefore, to achieve this
degree of regulation cells control the behavior of proteins at two comple-
mentary levels:

I “molecular” level, in which the properties of the amino acid sequences
safeguard protein solubility at the concentrations required by the cell
for optimal function;

II “cellular” level, in which quality control mechanisms are in place to
maintain homeostasis, with the chaperone response ensuring that any

10
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incipiently misfolded assemblies are prevented from developing fur-
ther.

Intriguingly, the presence of factors, such as RNA molecules (Schaeffer
et al., 2001; Ayala et al., 2011; Zanzoni et al., 2013), capable of interact-
ing with nascent polypeptide chains can be crucial in the initial folding
stages or in situations of controlled protein misfolding, especially under
conditions that can promote aggregation (Tartaglia et al., 2010).

The mechanisms of stable and beneficial protein misfolding, analogous to
the biology of prions, were first examined in yeast. In this organism, the
Sup35 protein was shown to misfold in response to environmental stress
and to alter the synthesis of proteins in a manner that promotes survival
(Serio and Lindquist, 2001). This crucial role is played by the glycine
rich domains in Sup35 that mediate the misfolding and give rise to insol-
uble protein aggregates, much like amyloidogenic proteins that aggregate
in neurodegenerative diseases (Goehler et al., 2010). The level of homol-
ogy between Sup35 glycine rich domains and that of several mammalian
RNA binding proteins suggests a possible role of regulated protein aggre-
gation in the biology of RNA binding proteins. However, the aggregation
processes characterizing Sup35 and RNA binding proteins differ from the
conventional models of protein aggregation in that they perform distinct
biological functions and are reversible.

In summary, the relationships between protein solubility, abundance and
chaperone usage impose stringent conditions on the amino acid sequences
of proteins (Tartaglia et al., 2010). Therefore, to understand how processes
such as the formation of RNA granules take place and what role they play
in human disease, it is essential to examine the behavior of RNA binding
proteins throughout the biological cycle of mRNA processing. To this pur-
pose, the use of experimental techniques and computational methods to
identify mutations that can affect RBP homeostasis and, as a consequence
or co-factor, the rearrangement of intermolecular interactions, would be of
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great assistance in the exploration of this still uncharted area of biology.

Experimental investigation of protein-RNA asso-
ciations

The experimental approaches applied in the past years to characterize the
RNA-protein interaction landscape can be broadly separated into two gen-
eral categories: ‘Early methods’ and ‘High-throughput methods’.

Early methods

This category comprises a series of biochemical in vitro approaches,
such as electrophoretic mobility shift assays (EMSA) or ultraviolet (UV)
crosslinking of proteins to their target RNAs, which have been used to
study RNA-protein interactions and mRNPs assembly over the past three
decades. Twenty years ago, the systematic evolution of ligands by the
exponential enrichment (SELEX) method was introduced to isolate high-
affinity RNA aptamers from highly diverse pools of in vitro transcribed
RNAs (Klug and Famulok, 1994). Although this method enabled high-
affinity RNA recognition elements (RREs) to be identified for numerous
RBPs in vitro, it cannot be applied in vivo (Ankö and Neugebauer, 2012).
The yeast three-hybrid system, which was developed in 1996, enables
RNA-protein interactions to be monitored in vivo for the first time by mea-
suring the expression levels of reporter genes (Martin, 2012).
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High-throughput methods

Diverse RNA immunoprecipitation (RIP) protocols established in the past
10 years finally permitted the identification of endogenous RNAs present
in complex mRNPs (Niranjanakumari et al., 2002) and have laid the foun-
dation for many structural and functional studies (Khalil and Rinn, 2011).
RIP protocols begin with the creation of a lysate of cells or tissue that is
then subjected to immunoprecipitation with an antibody directed against
an RBP of interest. Formaldehyde or UV crosslinking may or may not be
used to link protein-RNA complexes covalently before lysis. RIP, followed
by microarray-based identification of protein-bound RNAs (RIP-chip) re-
vealed, for example, that the targets of an RBP could be functionally re-
lated transcripts (Ankö et al., 2010; Keene et al., 2006). A major limitation
of RIP-chip is the absence of crosslinking, which has been used to recover
less stable RNPs, often including non-coding RNAs and other poorly ex-
pressed transcripts. Yet, transient interactions are not readily captured by
this method. In analyses designed to characterize less stable RNPs, par-
ticularly those involving mRNAs, non-crosslinked RNAs and proteins re-
associate upon cell lysis, yielding false positive results that do not reflect
in vivo interactions (Mili and Steitz, 2004; Riley et al., 2012). The demon-
strated reproducibility of RIP-chip experiments is ~60-75% (Khalil et al.,
2009), complicating analyses and inarguably requiring many replicates,
which are not always undertaken. Finally, data from RIP-chip without
crosslinking represent the sum of direct and indirect interactions of a pro-
tein with RNA (Keene et al., 2006), and binding sites cannot be mapped to
the nucleotide resolution.

More recently, techniques based on UV crosslinking and immunoprecipi-
tation followed by deep sequencing (CLIP-seq) were introduced as power-
ful approaches to determine in vivo protein-RNA interactions on a global
scale (Ule et al., 2003; König et al., 2010; Licatalosi et al., 2008). UV
crosslinking requires direct contact between protein and RNA and does not

13
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promote protein-protein crosslinks. UV light with a wavelength of 254 nm
crosslinks the naturally photo-reactive nucleotide bases to specific amino
acids, and the photo-reactive thionucleosides 4-thiouridine (4-SU) and
6-thioguanosine (6-SG) that are used in photoactivatable-ribonucleoside-
enhanced CLIP (PAR-CLIP) can be crosslinked at 365 nm. PAR-CLIP
and another CLIP variant, termed iCLIP, provide resolution of RNA-
binding sites that is almost to the nucleotide (Hafner et al., 2010; König
et al., 2010). The crosslinked amino acid covalently bound to recovered
RNA constitutes a barrier for the reverse transcriptase enzyme and either
causes specific nucleotide changes (PAR-CLIP) or truncation (iCLIP) of
the cDNA during reverse transcription. After UV light treatment, lysates
are subjected to immunoprecipitation, and stringent purification steps are
used to isolate RNAs crosslinked to the protein of interest. RNA sequenc-
ing then identifies RNA regions directly bound to the RBP, whereby the
background noise is very low, and a defined consensus sequence for bind-
ing can be derived (König et al., 2012; Milek et al., 2012). As demon-
strated by recent analyses, some RBPs are favored by one method but not
the other, and neither protocol seems to be superior (Castello et al., 2012;
Kishore et al., 2011).

The different CLIP-seq approaches have been successfully used to gen-
erate transcriptome-wide RNA maps for numerous RBPs, confirming that
one RBP can have few or thousands of mRNA targets. One of the impor-
tant questions in RNA biology of how many RNAs one particular RBP can
bind to can be elucidated with these methods (Ascano et al., 2012). It is
worth mentioning that all CLIP procedures are elaborate, multistep pro-
cesses that require extensive optimization and proper controls. Biases can
arise from several sources. The nucleotide composition of the RNA link-
ers that are ligated to the precipitated RNAs or RNA fragments has been
documented to affect ligation efficiency in the creation of small RNA li-
braries (Hafner et al., 2011). The aforementioned 254 nm and 365 nm UV
crosslinking chemistries exhibit differential sequence preferences (Castello
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et al., 2012). Furthermore, sequence-specific RNase over-digestion can
also bias CLIP results (Kishore et al., 2011). Finally, since any procedure
involving immunoprecipitation is subject to noise, replicates of each CLIP
experiments are necessary to reduce significantly the background signal
(Chi et al., 2009).

The recently developed “interactome capture” and protein occupancy pro-
filing approaches also involve in vivo UV crosslinking, which in this case is
followed by capture of polyadenylated RNA-proteins complexes via incu-
bation with oligo(dT)-coated beads, subsequent stringent washes to elimi-
nate all non-crosslinked proteins and finally, elution of proteins by nucle-
ase digestion. Released proteins are then analyzed by mass spectrometry
(Castello et al., 2013b). At present, the approach cannot provide the pro-
tein composition of distinct mRNPs, which are expressed at a given time
or within cellular compartments; instead, all expressed mRNAs and their
bound RBPs are simultaneously analyzed. Furthermore, some proteins
may be indirectly associated with the selected RNA through high-affinity
protein-protein interactions that are stable despite high-stringency washing
(Müller-McNicoll and Neugebauer, 2013).

Computational tools for predicting protein-RNA
associations

Investigation of molecular mechanisms governing protein-RNA interac-
tions continues to improve as new structures of RNA-protein complexes
are solved and the spatial architecture of interactions is analyzed. Un-
fortunately, the experimental determination of RNP complexes, by means
of crystallography and nuclear magnetic resonance (NMR) techniques, re-
quires an accurate optimization of the experimental conditions, which is
often a slow and difficult process (Ke and Doudna, 2004; Scott and Hen-

15



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 16 — #28

nig, 2008). Therefore, given the scarcity of experimentally determined
structures of RNP complexes, computational prediction of RNP complex
structures can greatly help studying protein-RNA interactions (Puton et al.,
2012). Computational methods aim at providing knowledge regarding
whether a given protein binds RNA, which residues in the protein sequence
are directly involved in making contacts with the RNA, which nucleotides
interact with the protein and what is the eventual structure of the protein-
RNA complex (Puton et al., 2012). Previous studies have contributed to the
widely accepted idea that RNA-binding sites are often positively charged
patches exposed to the solvent, able to bind the negatively charged RNA
backbone (Stawiski et al., 2003). Hence, the majority of structure-based
predictive methods exploit the distribution of charged amino acids and
spatial proximity of specific key residues to infer the interaction poten-
tial. Conversely, sequence-based approaches employ the same strategy,
but replace structural observations with predicted propensities, typically
computed using physico-chemical scales.

Structure-based methods

The availability of protein tertiary structures can greatly facilitate the pre-
diction of RNA-binding sites, which are typically identified by surface-
exposed residues close to each other spatially, but not necessarily in se-
quence (Cirillo et al., 2013). Unfortunately, as of February 2014, only
1579 macromolecular complexes involving both protein and RNA com-
ponents (but excluding RNA/DNA hybrids) were available in the Protein
Data Bank (PDB), including 1327 solved by X-ray crystallography, 79 by
nuclear magnetic resonance (NMR) spectroscopy, and 173 by other meth-
ods. Therefore, the number of proteins that can be investigated by employ-
ing the information on tertiary structures is profoundly limited. Moreover,
given the difficulty in determining and modeling the tertiary structure of
RNA molecules, most of the structure-based methods focus solely on the
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inference of the protein RNA-binding site, thus overlooking binary inter-
action predictions (Liu et al., 2010; Puton et al., 2012; Walia et al., 2012;
Zhao et al., 2011b).

The algorithms Struct-NB (Towfic et al., 2010), PRIP (Maetschke and
Yuan, 2009), PatchFinderPlus (Shazman and Mandel-Gutfreund, 2008),
SPOT (Zhao et al., 2011a) and OPRA (Pérez-Cano and Fernández-Recio,
2010) predict RNA-binding using the properties of protein surfaces. SVM
and Naı̈ve Bayes Classifiers (NBCs) trained on structural data are em-
ployed to analyze surface features. The RNABindR method combines
structural information with sequence-based predictions of hydrophobicity
and entropy (Terribilini et al., 2007). In general, the success of structure-
based predictive methods can provide great structural detail on substrate-
binding clefts, but is greatly limited by the availability of protein-RNA
complexes as templates (Zhao et al., 2011a).

Sequence-based methods

There exists a wealth of low-resolution experimental data that can be an-
alyzed to derive the RNA and protein interacting components, associate
them to particular functional states, and ultimately exploit this information
to predict individual structures and RBP associations. Physico-chemical
properties are particularly useful to identify binding regions in protein and
RNA molecules, as demonstrated by a number of algorithms, such as RN-
ABindR (Terribilini et al., 2007) and SCRPRED (Fernandez et al., 2011),
which have been trained to predict the RNA-binding propensity of pro-
teins using primary structure information. Recent computational methods
focus on the simultaneous predictions of contact regions for both protein
and RNA, which are essential to capture the specificity of RBP complexes.

The catRAPID algorithm (Bellucci et al., 2011) was the first method to
predict protein associations with coding and non-coding transcripts using
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the information contained in the primary structure (see Chapter 2) and,
since its release, other methods have been developed.

Pancaldi and Bähler (2011) published an approach based on Support Vec-
tor Machine (SVM) and Random Forest (RF) classifiers to predict RBP
targets in yeast. To rationalize the factors contributing to the formation
of ribonucleoprotein complexes, the authors studied several features in-
cluding untranslated region (UTR) properties, RNA structures, expression
levels, gene ontology (GO) associations and physico-chemical features. A
subset of 40 RBPs along with their experimental targets and >12000 in-
teractions were used to validate the method. The findings of their analysis
can be summarized as follows:

1. High nitrogen content and high isoelectric point discriminate RBPs
from other proteins;

2. A significant correlation between RNA length and relative amount
of Glycine, Isoleucine and Valine has been reported;

3. Proteins with high-isoelectric points tend to bind to long mRNAs
containing a large number of stem-loops;

4. RBPs sharing common targets often interact with each other and
bind to the mRNAs of their interaction partners, building an auto-
regulatory system.

To test the predictive power of their method, the authors performed a cross-
validation resulting in an accuracy of 0.69, an Area Under the ROC Curve
(AUROC) of 0.77 and sensitivity and specificity around 0.7. SVM per-
formed better than RF, but only 14 out of 76 RBP targets could be well
discriminated.

Muppirala et al. (2011) developed RPIseq to predict protein-RNA associa-
tions using SVM and RF approaches. In this method, RNA sequences are
encoded with the normalized frequency of nucleotide tetrads (total of 256
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characteristics), while protein sequences are represented using conjoint tri-
ads (total of 343 characteristics):

1. Nucleotide tetrads are 4-mer combinations of [A, C, G, U];

2. Protein triad divides the 20 amino acids into 7 classes: [A, G, V], [I,
L, F, P], [Y, M, T, S] , [H, N, Q, W], [R, K], [D, E] and [C].

RPIseq training has been performed on two different datasets obtained
from the Protein-RNA Interface Database (PRIDB) (Lewis et al., 2011): a
larger set containing ribosomal complexes and a smaller set without ribo-
somal proteins-RNA associations. On both sets, RF outperforms SVM in
both accuracy and true positive rate. Furthermore, both approaches demon-
strate good performances on the dataset containing ribosomal information
(SVM accuracy of 0.87; RF accuracy of 0.89). RPIseq has been addition-
ally applied to predict protein interactions with non-coding RNAs down-
loaded from NPInter (Wu et al., 2006). When trained on the larger dataset,
RF correctly predicted 80% of NPInter interactions, while SVM only 66%.

Wang et al. (2013) developed a sequence-based Naı̈ve Bayes (NB) clas-
sifier to predict interactions between RBPs and non-coding RNAs. Three
different datasets were used to validate the method: PRIDB (Lewis et al.,
2011) with and without ribosomal complexes and NPInter (Wu et al.,
2006). The following features were used as input:

1. RNA sequences were analyzed using a 3-mer occurrence of [A, C,
G, U];

2. Four classes [D, E], [H, R, K], [C, G, N, Q, S, T, Y] and [A, F, I, L,
M, P, V, W] were employed for amino acid frequencies.

In a 10-fold cross validation, NB and extended NB classifiers obtained sim-
ilar results with accuracies around 0.7, specificities of 0.9 and sensitivities
of 0.3-0.4 in all the datasets.

Finally, Lu et al. (2013) implemented an algorithm, lncPro, which uses
an approach similar to catRAPID, but with a Fisher’s linear discriminant
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training of the interaction matrix, and shows comparable performance on
RNase P and MRP complexes as well as the HOTAIR network.

Approaches to predict protein solubility

Protein solubility is a thermodynamic property that depends on intrinsic
characteristics of the polypeptide chain as well as environmental conditions
such as temperature, pH and ionic strength (Tartaglia et al., 2005). As the
most insoluble regions of protein sequences are secluded from the solvent
through the folding process, the solubility of proteins is strongly dependent
on the stability of their native states (Tartaglia and Vendruscolo, 2008).

Wilkinson and Harrison (1991) used a dataset of 81 proteins to rationalize
the solubility of proteins in Escherichia coli in terms of chemical prop-
erties, including charge, propensity for forming turns, hydrophilicity and
length of the sequence:

solubility = α
[
N +G+ P + S

n

]
+ β

[
(R +K)− (D + E)

n

]
+ γ (1)

In this formula, n is the number of amino acids in the protein, α and β are
parameters coupled, respectively, to the propensity to form turns and the
electrostatic charge (N, G, P, and S are the number of Asn, Gly, Pro, and
Ser residues and R, K, D, and E the number of Arg, Lys, Asp, and Glu
residues, respectively) and γ is a constant. After this initial work, several
other studies have increased our understanding of the relationship between
the chemical properties of amino acid sequences and their solubility (Goh
et al., 2004; Chiti et al., 1999, 2003).

Tartaglia et al. (2004) introduced an equation to predict the effect of amino
acid mutation on aggregation rates υmut/υwt without the use of fitting pa-
rameters. The original purpose of the study was to investigate naturally
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occurring mutations involved in amyloid disorders such Parkinson’s and
Alzheimer’s diseases (Bolognesi and Tartaglia, 2013).

υmut/υwt = φhφβφαφc (2)

In the formula, the factor φh captures most of the apolar and polar interac-
tions. An amino acid is called p if its side chain carries a charge or dipole;
otherwise it is called a. For mutations that involve the same type of amino
acid a→ a or p→ p

φh =
{

ASAa
mut/ASAa

wt a→ a
ASAp

wt/ASAp
mut p→ p

(3)

where ASAa and ASAp are the apolar and polar water accessible surface
areas of the amino acid chains (Tartaglia et al., 2004). For mutations that
involve different types of amino acids (a→ p or p→ a), we used:

φh =
{

1/Dwt a→ a
Dwt p→ p

(4)

where D is the magnitude of the dipole of the amino acid side chains. The
factor φβ is related to the ratio of β-propensity:

φβ = βmut
βwt

(5)

Functions φα and φc take into account the contribution of aromatic residues
A and total charge C:

φαφc = e∆A− ∆|c|
2 (6)

The high accuracy obtained with these simple mathematical formulas (cor-
relation with experimental data >0.85) motivated the development of other
sequence-based methods (Fernandez-Escamilla et al., 2004; Conchillo-
Solé et al., 2007; Tsolis et al., 2013). Very importantly, this work indicated
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that mutations leading to increased aggregation propensity result in severe
cell impairment and decrease in organism longevity (Luheshi et al., 2007;
Murakami et al., 2012).

The early algorithms for prediction of protein aggregation and solubility
were trained on 100 proteins or less. Although accurate (Tartaglia and
Caflisch, 2007; Tartaglia and Vendruscolo, 2010), these methods are not
built to perform proteome-wide predictions. To have an algorithm for
large-scale predictions, one should validate the method against a high num-
ber of solubility data. Therefore, to achieve a “omic” descriptor of protein
solubility, we took advantage of a study in which the solubility of 70% of
Escherichia coli proteins was experimentally measured using an in vitro
translation system (Niwa et al., 2009).

In 2012, I introduced the ccSOL method (Chapter VI) to predict protein
solubility using only 5 physico-chemical properties: coil/disorder (Deléage
and Roux, 1987), hydrophobicity (Engelman et al., 1986), hydrophilicity
(Hopp and Woods, 1981), β-turn (Levitt, 1978) and α-helix (Deléage and
Roux, 1987). To identify the 5 features, we divided the original database
(Niwa et al., 2009) into 2 subsets containing the most soluble (1081 entries,
“head set”) and least soluble (1078 entries, “tail set”) proteins and calcu-
lated the discriminative power of 28 physicochemical properties collected
through a literature search.

Other methods have been also developed to predict protein solubility us-
ing amino acid sequences (Smialowski et al., 2012; Magnan et al., 2009).
To build PROSO II (Smialowski et al., 2012), Frishman and colleagues
studied occurrence of monopeptides (i.e., frequencies of 20 residues) and
dipeptides (400 residues). The training set was build using the pepcDB
database (Berman et al., 2009), which stores target and protocol informa-
tion (i.e., soluble expression) contributed by Protein Structure Initiative
centers, while ccSOL employs measured soluble fractions of endogenous
E. coli proteins (Niwa et al., 2009). Hence, two main differences between
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ccSOL and PROSO II are the variables and training sets employed for val-
idation. Yet, both ccSOL and PROSO II perform highly accurate predic-
tions (>75%).
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Chapter I

The catRAPID algorithm

A major focus of my doctoral thesis has been the improvement of the first
computational tool to predict the propensity of protein and RNA to inter-
act. Indeed, I participated and subsequently took the lead of the catRAPID
approach development and improvement. The idea behind this method is
to exploit physico-chemical properties contained in the primary structure
of the input molecules to generate propensity profiles, which are then com-
bined together to produce an interaction score. The algorithm was trained
with ribonucleoprotein complexes derived from the PDB and the perfor-
mances were evaluated using datasets of proteins and RNAs obtained from
different sources (e.g. UniProtKB, NPInter, etc.). The results were surpris-
ing, showing that our method was able to infer most of the known protein
and RNA association and highlighting its ability to precisely infer the bind-
ing region on both molecules.

Bellucci, M., Agostini, F., Masin, M., and Tartaglia, G. G. (2011). Predicting
protein associations with long noncoding RNAs. Nature Methods, 8(6):444–445.
PMID: 21623348
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Chapter II

catRAPID and XIST lncRNA

Due to the conformational space of nucleotide chains, prediction of RNA
secondary structures is difficult when RNA sequences are larger than few
hundreds nucleotides and simulations cannot be completed on standard
processors. To overcome this limitation, we implemented in catRAPID
fragments a procedure that involves division of protein and RNA sequences
into fragments followed by prediction of their interaction propensities.
With the uniform option, protein and RNA sequences are divided into
overlapping segments, which is particularly useful to identify the regions
involved in the binding (Cirillo et al., 2012). With the long RNA fragmen-
tation, the RNALfold algorithm (Hofacker, 2003) is employed to predict
the most stable secondary structures in the range 100-200 nt.

Agostini, F., Cirillo, D., Bolognesi, B., and Tartaglia, G. G. (2013). X-
inactivation: quantitative predictions of protein interactions in the xist network.
Nucleic Acids Research, 41(1):e31. PMID: 23093590
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ABSTRACT

The transcriptional silencing of one of the female
X-chromosomes is a finely regulated process that
requires accumulation in cis of the long non-coding
RNA X-inactive-specific transcript (Xist) followed by
a series of epigenetic modifications. Little is known
about the molecular machinery regulating initiation
and maintenance of chromosomal silencing. Here,
we introduce a new version of our algorithm
catRAPID to investigate Xist associations with a
number of proteins involved in epigenetic regula-
tion, nuclear scaffolding, transcription and splicing
processes. Our method correctly identifies binding
regions and affinities of protein interactions,
providing a powerful theoretical framework for the
study of X-chromosome inactivation and other
events mediated by ribonucleoprotein associations.

INTRODUCTION

X-chromosome inactivation (XCI) is a highly regulated
process that involves the transcriptional silencing of one
of the female X-chromosomes (1). The silencing process
is mainly attributable to the long non-coding RNA
X-inactive-specific transcript (Xist) transcribed from the
Xist gene located on the XCI inactivation centre (1).
Xist-mediated X-inactivation involves two distinct phases:
initiation and maintenance. First, Xist transcript coats in
cis the entire X-chromosome triggering transcriptional
silencing (2). Subsequently, stabilization of the repressed
state is facilitated by a number of epigenetic processes,
such as DNA methylation and chromatin modifications
mediated by the Polycomb group (PcG) proteins (3).
Notably, Xist is regulated in cis by its antisense partner
Tsix (4), which also interacts with PcG proteins (5).

Using an inducible expression system in mouse embry-
onic stem cells, Wutz et al. (6) identified a number of
Xist domains associated with chromatin localization.
Interestingly, these domains do not contain sequence or
structural motifs and could be low-affinity protein-binding

sites (6). In contrast to the poorly defined sequence
properties associated with RNA localization, the 50-
repeat region A (RepA) represents a structured domain
involved in X-chromosome silencing (6). Secondary struc-
ture predictions indicate that RepA folds in two stem
loops of !200 nt containing a number of repeats (6,7).
To date, the precise mechanisms underlying localization

and confinement of Xist onto the X-chromosome as well
as the molecular details of the silencing process remain
poorly understood. Recent experiments suggest that:
(i) alternative splicing factor SFRS1 regulates Xist pro-
cessing (8); (ii) transcriptional repressor Ying and Yang
(YY1) tethers Xist onto the X-chromosome (9); (iii) the
RNA-binding domains of scaffold attachment factor
SAF-A bind to Xist-inducing chromatin reorganization
(10) and (iv) the special AT-rich sequence-binding
protein SATB1 co-localizes with Xist in the nucleus (11).
Yet, due to the limited amount of experimental evidence,
the challenge of identifying protein–RNA interactions
associated with XCI still stands (11).
Here, we use our theoretical framework, catRAPID, to

investigate Xist interactions with a number of epigenetic
modifiers as well as transcription and splicing factors (12).
Our approach exploits physicochemical properties of
nucleotide and amino acid chains such as secondary struc-
ture, hydrogen bonding and van der Waals’ propensities
to predict protein–RNA associations with a confidence of
78% or higher (12). In the original implementation of the
method, we calculated interactions with transcripts <3 kb
(‘Materials and Methods’ section) (12). In order to inves-
tigate Xist, which is 16–19 kb long and represents the
largest non-coding transcript with known function, we de-
veloped an extension of the algorithm. In addition to the
fine calculation of protein–RNA interactions (interaction
propensity), we present here an algorithm to estimate the
specificity of associations (interaction strength) and a
method to identify binding regions in transcripts (inter-
action fragments). These new developments are
introduced to facilitate the characterization of protein
interactions with long non-coding RNA and guide
future experimental design. Notably, the new versions of
the method do not require introduction of fitting
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parameters and represent a conceptual and methodo-
logical advance to study ribonucleoprotein associations.
A new version of our web servers is released at http://
tartaglialab.crg.cat/.

MATERIALS AND METHODS

Interaction propensity

We use the catRAPID method to predict protein–RNA
interactions (12). In catRAPID, the contributions of sec-
ondary structure, hydrogen bonding and van der Waals’
are combined together into the ‘interaction profile’:

!xj i ¼ !S Sxj i+!H Hxj i+!W Wxj i ð1Þ

In Equation (1), Yj i indicates the physicochemical
profile of a property Y calculated for each amino acid
(nucleotide) starting from the N-terminus (50). For
example, the hydrogen bonding profile, denoted by Hj i,
is the hydrogen bonding ability of each amino acid (nu-
cleotide) in the sequence:

Hj i ¼ H1,H2,:::,HL ð2Þ

Similarly, Sj i represents the secondary structure occu-
pancy profile and Wj i the van der Waals’ profile. The
variable x indicates RNA (x= r) or protein (x= p)
profiles. Secondary structure, hydrogen bonding and van
der Waals contributions are calculated as described in the
original articles (12). In particular, the RNA secondary
structure is predicted from sequence using the Vienna
package including the algorithms RNAfold, RNAsubopt
and RNAplot (13). Model structures, ranked by energy,
are used as input for catRAPID. For each model structure,
the RNAplot algorithm is used to generate secondary struc-
ture coordinates. Using the coordinates, we define the ‘sec-
ondary structure occupancy’ by counting the number of
contacts within the nucleotide chain. High values of second-
ary structure occupancy indicate that base pairing occurs in
regions with high propensity to form stems, while low
values are associated with junctions or multi-loops.
We use discrete Fourier transform to compare inter-

action profiles of different length:

"k,x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

length

s
Xlength

n¼0
!n,x cos

"

length
n+

1

2

" #
k+

1

2

" #$ %

k¼ 0,1,:::‘

ð3Þwhere the number of coefficients is ‘ ¼ 50.
The ‘interaction propensity’ " is defined as the inner

product between the protein propensity profile "p

&& '
and

the RNA propensity profile "rj i weighted by the ‘inter-
action matrix’ I:

" ¼ "p

( &&I "rj i ð4Þ

To calculate the interaction propensity ", we exploit
that the squared norm of " is conserved under Fourier
transform:

Xlengthp,lengthr

i,j
p Ij j r

( '&& &&2 %
X‘r,‘p

i,j
p Ij j r

( '&& &&2 ð5Þ

The interaction matrix I as well as the parameters !S,
!H and !W are derived under the condition that inter-
action propensities " take maximal values for associations
present in the positive training set (and minimal values for
those in the negative training set):

I :
max "p

( &&I "rj i 8fr,pg 2 positive training set
) *

min "p

( &&I "rj i 8fr,pg 2 negative training set
) *

(

ð6Þ

In the training and test phases, we used protein and
RNA sequences in the range of 50–750 amino acids and
50–3000 nt, respectively (12). We note that prediction of
RNA secondary structures results in intense CPU usage
when sequences are >1500 nt and simulations cannot be
completed on standard processors (2.5GHz; 4–8 GB
memory).

The server to compute the interaction propensity
with respect to the negative training set (discriminative
power) is available at: http://tartaglialab.crg.cat/catrapid
.html.

Interaction strength

Computational models indicate that RNA sequence
length and secondary structure free energies are correlated
(Supplementary Figure S1a) (14). Hence, one would
expect that long RNAs are more stable and prone to
bind to proteins than short RNAs (see also section ‘inter-
action fragments’). Indeed, we observe a weak correlation
between secondary structure energy and protein–RNA
interaction propensity in our algorithm (Pearson’s correl-
ation=20%; P=0.07) (Supplementary Figure S2b).
Nevertheless, as no experimental evidence indicates that
long transcripts interact more than small RNAs, we
eliminated the length dependence introducing a ‘reference
set’ composed by protein and RNA sequences that have
exactly the same lengths as the molecules under investiga-
tion. In our calculations, we use random associations
between polypeptide and nucleotide sequences. Since
little interaction propensities are expected from random
associations, the reference set represents a ‘negative
control’.

For each protein–RNA pair under investigation, we use
a reference set of 102 protein and 102 RNA molecules (the
number of sequences is chosen to guarantee sufficient stat-
istical sampling). To assess the strength of a particular
association, we compute the interaction propensity "
and compare it with the interaction propensities ~" of the
reference set (total of 104 protein–RNA pairs). Using the
interaction propensity distribution of the reference set, we
generate the ‘interaction score’:

Interaction score ¼"& #
$

# ¼ 1
#

P#

i¼1
~"i

$2 ¼ 1
#

P#

i¼1
ð ~"i & #Þ2

8
>>><

>>>:

ð7Þ
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The number of interactions is # ¼ 104. From the
distribution of interaction propensities, we compute the
‘interaction strength’:

Interaction strength ¼ Pð ~" ' "Þ
¼ cumulative distribution function ðcdfÞ

ð8Þ

Reference sequences have the same lengths as the pair of
interest to guarantee that the interaction strength is inde-
pendent of protein and RNA lengths. The interaction
strength ranges from 0 (non-interacting) to 100% (inter-
acting). Interaction strengths >50% indicate propensity to
bind. The ‘RNA interaction strength’ and the ‘protein
interaction strength’ are special cases of the interaction
strength in which only a reference set is generated using
RNA or protein sequences. The RNA interaction
strengths used for the analysis of RepA, 4R and 2R
represent the RNA-binding abilities of SUZ12 and
EZH2 with respect to the polynucleotide reference set
(Figure 1). Similarly, the protein interaction strengths
used for SFRS1, SAF-A and SATB1 are the
protein-binding abilities of the experimental RNA frag-
ments with respect to the polypeptide reference set
(Figures 2 and 4). The interaction strength is also used
to compare YY1- and green fluorescent protein (GFP)-
binding propensities (proteins are RNA fragments are of
different lengths; Figure 3). It should be noted that in the
case of Xist fragment BC (nt 1898–4940), the RNA
sequence is >3 kb. In order to calculate the abilities of
fragment BC to interact with YY1 and GFP, we
analyzed all Xist fragments of size 1500 nt contained in
the region 1898–4940 nt, computed the corresponding
interaction strengths and averaged the scores.

The server to compute the interaction strength is avail-
able at: http://tartaglialab.crg.cat/catrapid.strength.html.

Interaction fragments

The use of RNA fragments is introduced to identify RNA
regions involved in protein binding. The RNALfold algo-
rithm from the Vienna package (www.tbi.univie.ac.at/
RNA/) is used to select RNA fragments in the range of
100–200 nt with predicted stable secondary structure.
Secondary structure stabilities are estimated by calculating
the RNA free energy predicted by RNALfold (15). As
long RNA segments have lower free energy for the
higher number of bases that can be paired (Supplementary
Figure S1a) (14), the choice of segments in the range of
100–200 nt is optimal because it allows simultaneously:
(i) selection of secondary structures with comparable
free energy (Supplementary Figure S1b) and (ii) high
sequence coverage (>90%) for long transcripts such as
Xist (Supplementary Figure S1c). Once the RNA frag-
ments are selected, catRAPID is used to predict their
ability to bind to polypeptide chains. Conceptually, the
interaction fragments algorithm is a variant of the RNA
interaction strength algorithm that allows identification of
putative binding areas in long sequences. If the exact
protein and/or RNA domains are known, we recommend
the use of the interaction strength method to predict the
binding specificity (Figure 3).
The server to compute fragment interactions is available

at: http://tartaglialab.crg.cat/catrapid.fragments.html.

RESULTS

Xist-mediated X-chromosome silencing implies a complex
network of macromolecular associations orchestrated by
epigenetic modifiers as well as splicing and transcription
factors. Xist function at the initiation of X-inactivation
has been extensively studied in mouse embryonic stem
cells. The mouse system is more accessible to experimental
investigation than the human one and is here investigated

Figure 1. Xist RepA, 4R, 2R and PcG proteins. We predict that Xist RepA (227–760 nt) binds strongly to (a) SUZ12 (RNA interaction
strength=99%), and (b) EZH2 (RNA interaction strength=75%), in agreement with experimental evidence; (c) SUZ12 does not bind to repeat
4R (318–521 nt; RNA interaction strength=22%), while (d) EZH2 shows high interaction propensity (RNA interaction strength=92%). Neither
(e) SUZ12 nor (f) EZH2 are in contact with repeat 2R (401–552 nt; RNA interaction strengths=0; Supplementary Table S1c) (7). Insets (b, d and f)
are secondary structures of RepA (red line), 4R and 2R (blue dots) proposed by Maenner et al. (7).

PAGE 3 OF 9 Nucleic Acids Research, 2013, Vol. 41, No. 1 e31

 at B
iblioteca de la U

niversitat Pom
peu Fabra on January 7, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 33 — #45

using two novel algorithms: interaction strength and inter-
action fragments.

SUZ12 and EZH2 bind to RepA

The Polycomb repressive complex 2 (PRC2) is one of the
two classes of PcGproteins and plays amajor role in the epi-
genetic silencing of X-chromosome (7). More specifically,

PRC2 is associated with histone modifications promoting
tri-methylation of histone H3 lysine 27 along the X-
chromosome, which is thought to generate a repressive
compartment for silencing (16). In agreement with experi-
mental evidence, we predict that Xist Repeat A region
(RepA) interacts with PRC2 (7). More specifically, we
find that Suppressor of Zeste 12 (SUZ12) protein
homolog and Enhancer of Zeste homolog 2 (EZH2) have

Figure 2. Xist and alternative splicing factor SFRS1. The interaction fragments algorithm is used to predict Xist ability to interact with SFRS1.
(a) SFRS1 shows high propensity to contact Xist 50. (b) The region studied by Royce-Tolland et al. (8) is marked in grey (nt 16–1181). In agreement
with experimental evidence, strong interaction propensity is predicted between SFRS1 and nt 16–1181 (protein interaction strength=84%);
(c) nucleotides 164–932 nt (marked in red) correspond to an RNA region whose deletion abolishes Xist splicing (8). Strong interaction propensity
is predicted between SFRS1 and nt 164–930 (protein interaction strength=92%), as previously reported (8).

Figure 3. SFRS1 and Xist 50-UTR. We predict that SFRS1 interacts with the 50-UTR exon region of Xist, in agreement with CLIP-seq experiments (18).

e31 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 4 OF 9

 at B
iblioteca de la U

niversitat Pom
peu Fabra on January 7, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 34 — #46

strong propensities to bind to RepA (region 227–760 nt;
RNA interaction strengths >75%; Figures 1a and d and
5; ‘Material and Methods’ section). Hence, our results
clearly indicate that Xist is able to contact PRC2 without
mediation of other molecules (7).

Based on secondary structure predictions, it has been
proposed that RepA contains two long stem-loop struc-
tures of !200 nt, each containing four repeats (6,7).
Nuclear magnetic resonance studies have given indication
that the second loop has higher propensity to pair (17).
This pairing propensity can lead to multiple interactions
and complex folding. Such folding was indeed observed by
structural probing of RepA and a large set of interactions
have been observed with no direct evolutionary conserva-
tion or consistency with known mutations (7).

By using chemical and enzymatic probes as well as
Förster resonance energy transfer experiments, EZH2
was shown to bind to RepA and repeat 4R located at
position 318–521 nt within RepA (7) (Figure 5 and
Supplementary Table S1a and b). By contrast, SUZ12
was found to interact with RepA and not 4R (7). Our
predictions show that both EZH2 and SUZ12 contact
RepA (RNA interaction strengths >75%) and that
EZH2 binds to 4R (RNA interaction strength=92%),
whereas SUZ12 shows much lower binding propensity
(RNA interaction strength=22%). Moreover, we predict
that neither EZH2 nor SUZ12 is able to interact

with region 2R; (nt 401–552; RNA interactions
strengths=0%), as previously demonstrated by immuno-
precipitation assays and western blot analysis (7)
(Supplementary Table S1). In agreement with experimen-
tal evidence, we also predict that EZH2 binds to the
reverse complement of RepA present in Tsix (2073–
2239 nt; Supplementary Figure S2a) (5).

SFRS1 associates with RepA

Stochastic differences in Xist RNA levels influence the
production of spliced RNA in the two X-chromosomes,
thus leading to inactivation of one chromosome upon
differentiation (8). Using HeLa cell nuclear extracts and
ultraviolet cross-linking, Royce-Tolland et al. (8) showed
that the splicing factor SFRS1 is able to associate with
RepA. Here, we use the interaction fragments algorithm
to predict the ability of SFRS1 to interact with Xist. In
our analysis, the interaction propensities are calculated
using RNA fragments with predicted stable secondary
structure (‘Materials and Methods’ section). In agree-
ment with in vitro and in vivo experiments (8), we find
that SFRS1 interacts with RepA (nt 682–881, 707–826
and 726–907; Supplementary Table S1a). In particular,
we predict that SFRS1 has strong propensity to bind to
the domain investigated by Royce-Tolland et al. (nt
16–1181; protein interaction strength=84%; Figure
2b; ‘Material and Methods’ section) and with a

Figure 4. Xist and transcriptional repressor Ying and Yang (YY1). The interaction strength algorithm is used to predict YY1 ability to interact with
Xist. (a) High interaction propensity is found between YY1 and Xist Repeat C region (RepC; interaction strength=77%). (b) No interaction is
predicted between YY1 and RepA (interaction strength=0%), as previously reported (9). (c) Experimental binding levels of AF, B, C, BC and eE1
fragments (red bars) are reproduced by catRAPID (blue bars) with high accuracy (Pearson’s correlation=92%; P=0.04 estimated with analysis of
variance, two-tailed t-test (9) (Supplementary Table S1b). Interactions strengths and RNA-binding levels are normalized subtracting GFP signals
(Supplementary Figure S2b). Errors on catRAPID predictions are evaluated using the second derivative of the cumulative distribution function
associated with the interaction strength.
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fragment whose deletion abrogates Xist splicing (nt 164–
932; protein interaction strength=92%; Figure 2c); (8).
Thus, our results indicate that SFRS1 is directly re-
cruited for selective inactivation of the X-chromosome
(8).
Recently, Sanford et al. (18) used cross-linking immuno-

precipitation coupled with high-throughput sequencing
(CLIP-seq) to characterize SFRS1’s interactome. Using
HEK293T cells, the authors gathered a large amount of
information on the RNA-binding sites targeted by
SFRS1. In particular, CLIP-seq experiments indicate that
SFRS1 binds to the 50-UTR exon region of Xist (coordin-
ates chrX:72987075–72987135 in the Human Genome
Assembly 18) (18). In agreement with this finding, we
predict high interaction propensity between SFRS1 and
the 50-UTR exon region (interaction strength: 79%;
Figure 3).
We take the opportunity offered by CLIP-seq experi-

ments to assess catRAPID’s ability to predict SFSR1’s
interactions. In our analysis, we use RNA regions
containing the highest number of CLIP-seq-binding sites
(i.e. CLIP-seq ‘clusters’). Using the interaction strength
algorithm, we predict that 78 out of 100 large (>50 nt)
clusters bind to SFSR1 with average interaction
strength of 69% (Supplementary Figure S3a), which indi-
cates strong agreement between observed and pre-
dicted interactions. Based on the analysis of SFRS1
CLIP-seq experiments, Wang et al. (19) developed the
‘RNAMotifModeler’ algorithm to predict RNA-binding
sites using sequence features and secondary structures.
RNAMotifModeler identifies binding motifs in 72 out of
100 large clusters (motifs AGAAGA, AAGAAG and GA
AGAA; Supplementary Figure S3a), which is fully

compatible with catRAPID’s performances. We also
analyse the interaction propensity of 100 small (<50 nt)
clusters and their corresponding upstream and down-
stream regions (Supplementary Figure S3b). High inter-
action propensities are observed for regions containing
SFSR1-binding sites (interactions predicted by
catRAPID: 76; RNAMotifModeler motifs: 25;
Supplementary Figure S3b), while lower interaction
strengths and fewer binding motifs are predicted in the
flanking regions (interactions predicted by catRAPID:
30; RNAMotifModeler motifs: 10; Supplementary
Figure S3b).

YY1 contacts RepC

To study Xist RNA localization onto the X-chromosome,
Jeon and Lee (9) introduced a doxycycline-inducible Xist
transgene into female mouse embryonic fibroblasts.
Multiple independent clones showed that Xist transgenes
act on endogenous locus in trans and squelch Xist RNA
clouds on the inactive X (9). The authors reported that
RepA elimination does not abolish Xist RNA clouds
squelching, which indicates that the region is not
required for X-chromosome localization (9). By contrast,
knocking down of transcriptional repressor YY1 can be
correlated with 70% loss of Xist clouds. Importantly,
pull-down assays showed that Xist RNA repeat C, a
conserved C-rich element repeated 14 times in tandem
(RepC; 3084–4940 nt; Figure 6), has a pronounced
ability to bind to YY1 with respect to GFP.

Using the interaction strength approach, we are able to
recapitulate all the in vitro assays performed by Jeon and
Lee to probe YY1 affinity for Xist fragments (9).

Figure 5. Xist, scaffold attachment factor SAF-A and special AT-rich sequence-binding protein SATB1. (a) In agreement with experimental
evidence, SAF-A is predicted to contact Xist in more than one region (10). Red lines and grey boxes indicate experimentally validated regions
involved in Xist localization (6). Stars mark primers of elements studied by Hasegawa et al. (10). (b) SAF-A shows strong propensity to bind to Xist
region 4934–5056 nt (protein interaction strength=99%). (c) Multiple binding sites are predicted between Xist and SATB1. (d) We predict that
SATB1 binds strongly to nt 292–698 (RepA; protein interaction propensity=70%), as previously suggested (6,11).

e31 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 6 OF 9

 at B
iblioteca de la U

niversitat Pom
peu Fabra on January 7, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 36 — #48

According to our calculations, Xist RepC shows very high
propensity to interact with YY1 (Figure 4a and b),
followed by one region containing an overlap between
RepC and Repeat B region (RepB; Figure 4b).

In striking agreement with experimental evidence,
we predict that YY1 interacts with Xist through RepC
and RepB (Figure 4c; Pearson’s correlation=92%;
P=0.04) and does not associate directly with RepA
(9,20).

SAF-A interacts with Xist 50

Xist chromosomal localization is regulated by cis-elements
in the 50-half of the transcript located at nt 292–698
(RepA), 1899–3488 and 4725–6079 (Supplementary
Table S1b) (6). Recently, the nuclear scaffold protein
SAF-A has been linked with Xist localization (21).
SAF-A contains three conserved domains: a SAF-box
(22) binding to AT-rich DNA regions (23), Spla and
Ryanodine receptor (SPRY) domain of unknown
function (24) and an arginine–glycine glycine (RGG)
RNA-binding domain. Deletion of the RGG-binding
domain strongly reduces Xist chromosomal localization,
suggesting direct interaction with Xist (10).

Using co-immunoprecipitation assays, Hasegawa et al.
(10) reported that SAF-A contacts nt 1899–3488 and
4725–6079 (Figure 6). Employing the interaction frag-
ments method, we find that these regions are highly
prone to interact with SAF-A (Figure 5a and
Supplementary Table S1a). In particular, we predict that
nt 4725–6079 have strong propensity to bind to SAF-A
(protein interaction strength=77%; Figure 4b). In our
analysis, we used a protein region spanning residues 50–
800, which contain the uncharacterized SPRY region and
the RNA-binding domain RGG (Supplementary Table
S1c). By sliding a window of 750 amino acids from the
N- to the C-terminus of SAF-A, we observe that the inter-
action fragments profiles correlate significantly (mean
Pearson’s correlation=90%; P=0.01; Supplementary
Figure S4a). Intriguingly, when the SAF-box is included
in the analysis (residues 9–759), we predict an increased
ability to bind to RepA (Supplementary Figure S4b). The
binding region present in RepA (Supplementary Figure
S4b and Table S1b) was not investigated by Hasegawa
et al. (10), but is consistent with the observations made
by Wutz et al. (6) and the fact that deletion of SAF-box
abolishes Xist chromosomal localization (10).

In agreement with experimental data, we expect that
direct interaction between Xist and SAF-A could have

an effect on Xist localization in the nuclear matrix, thus
facilitating association with chromosomal DNA (6,10).

Does SATB1 binds to multiple Xist sites?

In a thymic lymphoma model, the nuclear protein SATB1
was identified as a critical component for gene silencing
(25). In fact, it has been shown that viral expression of
SATB1 in fibroblasts—in which Xist does not induce gene
repression—could establish Xist silencing (3,25). As
SATB1 co-localizes with Xist at the initiation of X-inacti-
vation (25), it has been proposed that it could act as an
anchor promoting RepA-mediated chromosomal reorgan-
ization (26). Nevertheless, it should be noted that SATB1
binds and regulates chromatin domains containing genes,
whereas Xist overlaps chromosomal regions that are
enriched for genomic repeats and deprived of genes.
This aspect could lead to the idea that SATB1 makes
genes susceptible to Xist by positioning gene-rich chroma-
tin, without direct interaction (3).
In our calculations, we use SATB1 residues 23–764

(Supplementary Table S1c), which contain all the func-
tional domains with exclusion of protein localization
signals. Employing the interaction fragments method, we
predict interactions for two regions identified by Wutz
et al. (nt 292–698 and 4725–6079; Figure 6) (6). In par-
ticular, we find that SATB1 has strong propensity to bind
to RepA (region 292–698 nt; interaction strength: 85%;
Figure 5d), as suggested by Arthold et al. (11). Intri-
guingly, we observe previously uncharacterized binding
sites in correspondence of the 30-region (Figure 5c), in
agreement with the fact that more than one Xist region
could be involved in low-affinity cooperative binding of
protein factors (3,6).

DISCUSSION

XCI is a complex process that requires several regulated
events such as the Xist localization onto the X-chromo-
some and its spatial confinement. These steps are
controlled by transcriptional factors and nuclear scaffold
proteins, which play a role in the selection of chromosome
and recruitment of silencing machinery. One of the first
processes during XCI is the random selection of the
X-chromosome to be silenced. The choice has been sug-
gested to be stochastically determined by levels of spliced
Xist RNA accumulated on the X-chromosome (8). We
find that the splicing factor SFRS1 binds to the 50-UTR
exon (Figure 3) and RepA (Figure 2b and c), which

Figure 6. Xist first exon. RepA and RepC (yellow lines) encompass nt 227–760 and 3098–4713 (8,15). YY1 interactions investigated by Jeon and
Lee (9) correspond to nt 1–2406 (AF), 1898–3083 (B), 3084–4940 (C) and 6990–9467 (eE1). The localization signals identified by Wutz et al. (6)
are indicated by grey lines at nt 292–698, 1899–3488 and 4725–6079. The primers used by Hasegawa et al. correspond to nt 2339–2515 and
5125–5227 (10).

PAGE 7 OF 9 Nucleic Acids Research, 2013, Vol. 41, No. 1 e31

 at B
iblioteca de la U

niversitat Pom
peu Fabra on January 7, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 37 — #49

suggests direct involvement of this protein in the produc-
tion of mature Xist (8). Although RepA is fundamental
for PCR2 recruitment and chromosomal silencing (7), we
predict that it is unlikely to be involved in the interaction
with YY1 (9) (Figure 4b). By contrast, we find that RepC
has high interaction propensity for YY1 (Figure 4a and b).
Hence, our predictions support the current hypothesis that
PRC2 is co-transcriptionally recruited by RepA, while
YY1 tethers RepC on the X-inactivation centre (9).
How the Xist–PRC2 complex translocates in cis along

the X-chromosome is an open and tantalizing question.
It has been reported that the nuclear scaffold factor
SAF-A facilitates the association of Xist with nuclear
matrix (10). Indeed, the nuclear matrix could provide a
highly dynamic structure (27,28) to control Xist move-
ments. We observe that the interaction profile of SAF-A
correlates (Figure 5a) with that of the nuclear matrix
protein SATB1 (Figure 5c) at the 50, suggesting a
possible synergistic mechanism of action to organize Xist
translocation along the X-chromosome. The involvement
of matrix-associated factors in the X-chromosome coating
represents an intriguing scenario to be further investigated
experimentally.
Our calculations suggest that localization and confine-

ment of Xist are finely regulated by multiple factors acting
at the interface between chromosome X and the nuclear
matrix. Our results are compatible with a model in which
following X-chromosome docking mediated by YY1 (9),
matrix-associated proteins SAF-A and SATB1 recruit the
50-half of Xist and drive the translocation in cis of the
Xist–PRC2 complex.
In this work, we presented a new version of the

catRAPID method to study Xist associations with a
number of proteins, including SUZ12, EZH2, YY1,
SAF-A, SFRS1 and SATB1. In striking agreement with
experimental evidence, we demonstrated that our algo-
rithms predict RNA-binding sites and affinities for a
number of epigenetic, splicing and transcription factors.
In particular, we investigated the association with tran-
scription repressor YY1, which favours Xist tethering
onto the X-chromosome, and nuclear matrix proteins
SAF-A and SATB1, which guide its translocation. We
also applied our method to SFRS1’s interactome,
showing that catRAPID predicts CLIP-seq-binding sites
with great accuracy (18). Most importantly, we showed
that computational approaches can provide a solid basis
for the investigation of protein interactions with long
non-coding transcripts (20).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–4.
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Chapter III

catRAPID omics

To facilitate the investigation of RNA-protein interactions at a genome-
wide scale, I developed catRAPID omics, which allows fast calcula-
tion of ribonucleoprotein associations in a number of model organisms
(Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo
sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae and
Xenopus tropicalis). The algorithm computes the interaction between a
molecule (protein/transcript) and the pre-compiled reference library (tran-
scriptome/proteome) for each model organism. In addition to the in-
teraction propensities, discriminative power and interaction strength, the
method employs the Pfam (Sonnhammer et al., 1997) and RBPDB (Cook
et al., 2011) databases to provide information on the presence of known
RNA-binding domains and recognition motifs within the molecules in-
volved in the interaction. The performances have been assessed on low-
and high-throughput studies of protein and RNA associations.

Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D., and Tartaglia, G. G.
(2013). catRAPID omics: a web server for large-scale prediction of protein-RNA
interactions. Bioinformatics (Oxford, England), 29(22):2928–2930
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ABSTRACT

Summary: Here we introduce catRAPID omics, a server for large-

scale calculations of protein–RNA interactions. Our web server

allows (i) predictions at proteomic and transcriptomic level; (ii) use of

protein and RNA sequences without size restriction; (iii) analysis of

nucleic acid binding regions in proteins; and (iv) detection of RNA

motifs involved in protein recognition.

Results: We developed a web server to allow fast calculation of

ribonucleoprotein associations in Caenorhabditis elegans, Danio

rerio, Drosophila melanogaster, Homo sapiens, Mus musculus,

Rattus norvegicus, Saccharomyces cerevisiae and Xenopus tropicalis

(custom libraries can be also generated). The catRAPID omics was

benchmarked on the recently published RNA interactomes of Serine/

arginine-rich splicing factor 1 (SRSF1), Histone-lysine N-methyltrans-

ferase EZH2 (EZH2), TAR DNA-binding protein 43 (TDP43) and RNA-

binding protein FUS (FUS) as well as on the protein interactomes of

U1/U2 small nucleolar RNAs, X inactive specific transcript (Xist) repeat

A region (RepA) and Crumbs homolog 3 (CRB3) 30-untranslated region

RNAs. Our predictions are highly significant (P50.05) and will help the

experimentalist to identify candidates for further validation.

Availability: catRAPID omics can be freely accessed on the Web at

http://s.tartaglialab.com/catrapid/omics. Documentation, tutorial and

FAQs are available at http://s.tartaglialab.com/page/catrapid_group.

Contact: gian.tartaglia@crg.eu

Received on March 21, 2013; revised on July 30, 2013; accepted on

August 16, 2013

1 INTRODUCTION

Increasing evidence indicates that ribonucleoprotein interactions

are fundamental for cellular regulation (Khalil and Rinn, 2011).

Moreover, several studies highlighted the involvement of RNA

molecules in the onset and progression of human diseases includ-

ing neurological disorders (Johnson et al., 2012). To our know-

ledge, there are two sequence-based methods for prediction of

protein–RNA interactions: catRAPID (Bellucci et al., 2011) and

RPISeq (Muppirala et al., 2011). The catRAPID algorithm

exploits predictions of secondary structure, hydrogen bonding

and van der Waals’ contributions to estimate the binding pro-

pensity of protein and RNA molecules. RPISeq is based on

support vector machine (SVM) and random forest (RF)

models predicting protein–RNA interactions from primary

structure alone (Muppirala et al., 2011). Both methods show

remarkable performances, but catRAPID discriminates posi-

tive and negative cases with higher accuracy (Cirillo et al.,

2013b) and has been tested on long non-coding RNAs

(Agostini et al., 2013).

Here we introduce catRAPID omics to perform high-through-

put predictions of protein–RNA interactions using the informa-

tion on protein and RNA domains involved in macromolecular

recognition.

2 WORKFLOW AND IMPLEMENTATION

The catRAPID omics server provides two main services to

explore the interaction potential of (i) a protein of interest with

respect to a target transcriptome or (ii) a given RNA with respect

to the nucleic acid binding proteome. Several options are avail-

able to refine the type of analysis in eight model organisms or

custom libraries (see online documentation):

� In the case of a protein query, catRAPID omics takes as

input the protein sequence (FASTA format): full-length or,

alternatively, nucleic acid binding regions.

� For a transcript query (FASTA format), the server uses the

full-length sequence if below 1200 nt, or, alternatively, uses

fragments with predicted stable secondary structure

(Agostini et al., 2013). Full-length proteins and nucleic

acid binding regions can be searched.

� The server automatically detects disordered proteins lacking

canonical RNA binding domains. Indeed, it has been

observed that disordered regions are enriched in RNA bind-

ing proteins (Castello et al., 2012).

� As RNA motifs are important for protein recognition

(Kazan et al., 2010), a search for these elements is carried

out. The motifs were taken from RNA-Binding Protein

DataBase (RBPDB) (Cook et al., 2011), SpliceAid-F

(Giulietti et al., 2013) and a recent motif compendium

(Ray et al., 2013).

� Using the interaction propensities distribution, catRAPID

omics predicts the RNA binding ability of the input protein

(86% accuracy) and ranks RNA interactions (downloadable

by the user).*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 at B
iblioteca de la U

niversitat Pom
peu Fabra on January 7, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 41 — #53

In the output page (Fig. 1A), we report all the variables used

to estimate protein–RNA associations: interaction propensity

(Bellucci et al., 2011), discriminative power (Bellucci et al.,

2011), interaction strength (Agostini et al., 2013) and presence

of protein RNA binding domains as well as RNA motifs. A ‘star

rating system’ ranks the binding propensities (http://service.tar

taglialab.com/static_files/shared/faqs.html). As for the reference

sets, ENSEMBL (version 68) is used for retrieval and classifica-

tion of coding and non-coding RNAs, whereas protein sequences

are gathered from the UniProtKB database (release 2012_11).

Finally, catRAPID omics uses hmmscan, a Hidden Markov

Model-based algorithm from the HMMER3 package (Finn

et al., 2011), to identify known PfamA domains (Finn et al.,

2009) and recognize protein regions involved in binding nucleic

acid molecules. Algorithm hit significance is determined accord-

ing to the PfamA ‘gathering thresholds’.

3 PERFORMANCES

The catRAPID algorithm has been previously validated on a

number of protein–RNA associations (Agostini et al., 2013;

Bellucci et al., 2011; Cirillo, et al., 2013a; Johnson et al., 2012).

To evaluate large-scale performances of catRAPID omics, we

used data from recent large-scale experiments. To compare pre-

dicted and experimental interactions, we used Fisher’s exact test.

As shown in Figure 1B, performances on the human splicing

factor serine/arginine-rich splicing factor 1 (SRSF1) (Sanford

et al., 2009) and murine nucleic acid binding protein Histone-

lysine N-methyltransferase EZH2 (EZH2) (Zhao et al., 2010) are

highly significant (P-values: 0.01 and 0.01, respectively). Good

performances are found for low-throughput experiments on

murine non-coding X inactive specific transcript (Xist) repeat

A region (RepA) (Maenner et al., 2010; Royce-Tolland et al.,

2010) and yeast small nuclear RNA U1 (Cvitkovic and Jurica,

2012) (P-values: 0.03 and 0.015) (Fig. 1B). To illustrate the abil-

ity of catRAPID omics to predict interactions with nucleic acid

binding domains (Fig. 1C), we used murine FUS (Han et al.,

2012) and rat TAR DNA-binding protein 43 (TDP43)

(Sephton et al., 2011) (P-values: 3e-05 and 0.002) as well as

human Crumbs homolog 3 (CRB3) 30-untranslated region

(Iioka et al., 2011) and yeast small nuclear U2 (Cvitkovic and

Jurica, 2012) (P-values: 0.001 and 2e-0.6). To evaluate

catRAPID’s performances on high-throughput data, we

collected positive interactions (TDP43: 568, FUS: 99, SRSF1:

358, EZH2: 1141) as well as negative controls (same numbers

as positives and generated in four random extractions).

Comparing the interaction scores of positives and negatives, we

found enrichment (calculated as discriminative power) in 72%

(TDP43), 88% (FUS), 74% (SRSF1) and 56% (EZH2) of cases.

On the same datasets, SVM RPIseq showed enrichment in 58%

(TDP43; RF has enrichment in 53%), 83% (FUS; RF has en-

richment in 68%), 47% (SRSF1; RF has enrichment in 59%)

and 41% (EZH2; RF has enrichment in 48%) of cases.

4 CONCLUSIONS

Despite recent technical developments, detection of protein–

RNA associations remains a challenging task. For this reason,

we developed an algorithm that can be used to complement

experimental efforts (Zanzoni et al., 2013). The catRAPID

omics server offers unique features such as organism-specific

proteomic and transcriptomic libraries, possibility to generate

custom datasets, analysis of long sequences and calculation of

interaction specificities. Moreover, we implemented an algorithm

for the detection of RNA motifs as well as protein RNA binding

domains, which will help to retrieve recognition motifs embedded

in sequences. Our server enables fast calculations of ribonucleo-

protein associations and predicts RNA binding activity of pro-

teins with high accuracy, thus resulting in a powerful tool for

designing new experiments.
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Fig. 1. catRAPID omics features and performances. (A) Example of the output table showing Z-score (interaction propensity normalized with respect to

experimental cases), discriminative power (with respect to training sets), interaction strength (enrichment with respect to random interactions) and

presence of RNA binding domains as well as RNA motifs. Interaction scores are ranked according to a ‘star rating system’ ranging from 0 to 3 (http://

service.tartaglialab.com/static_files/shared/faqs.html). A click on the text redirects to reference pages. Performances on (B) full-length proteins and

(C) RNA binding protein domains. Gray is used to highlight transcriptomic studies (i.e. RNA sequencing) and red indicates proteomic analyses (i.e. mass

spectrometry). The significance of our predictions was assessed using Fisher’s exact test (the dashed line corresponds to P¼ 0.05)
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Chapter IV

The SeAMotE algorithm

RNA-binding domains represent evolutionary conserved peptide domains
that recognize specific sequence or structural elements embedded in their
target RNAs, which are referred to as RNA recognition elements (RREs)
(Ascano et al., 2012). Here, I introduce the SeAMotE algorithm to per-
form discriminative motif discovery analyses on large sets of nucleic acid
sequences. The approach offers unique features such as the discrimina-
tion based on the actual occurrences in the datasets, the choice of multiple
reference backgrounds (shuffle, random or custom) and the output of the
most significant motifs in the whole span of tested motif widths, thus pro-
viding a wide range of solutions. SeAMotE ability to find the patterns that
best represent the RBPs recognition motifs is compared against the well-
established DREME method (Bailey, 2011). To test the performances of
both approaches, we use datasets of bound and not bound transcripts de-
rived from recent PAR-CLIP experiments.

This article has been submitted for publication to the ”Web Server” issue of ”Nu-
cleic Acids Research“.
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ABSTRACT	
  

The large amount of data produced by high-throughput sequencing poses a number of computational 

challenges. In the last decade, several tools have been developed for the identification of gene 

regulation elements such as transcription and splicing factor binding sites. Here, we introduce the 

web-server SeAMotE (Sequence Analysis of Motifs Enrichment) for large-scale calculation of 

discriminative elements in nucleic acid sequences. SeAMotE provides (i) a robust and fast analysis of 

high-throughput sequence collections, (ii) a motif search based on pattern occurrences within the 

datasets and (iii) an easy-to-use web-server interface. We applied our approach to recently published 

data generated with crosslinking immunoprecipitation (CLIP) experiments and compared our results 

with those of other well-established discriminative motif discovery tools. SeAMotE shows an average 

accuracy of 80% in finding discriminative motifs and outperforms DREME in 70% of cases. The server 

can be freely accessed on the Web at http://s.tartaglialab.com/new_submission/seamote. 

 

INTRODUCTION 

Transcriptional and post-transcriptional events rely on inter-molecular recognition and interaction 

mechanisms. These processes involve the interplay between protein effectors and nucleic acid 

targets, whose physical association is thought to be guided by linear motifs and/or specific structural 

elements (1–3). In the past decade the advancement of high-throughput technologies contributed to 

the generation of a large amount of genomic data (4), promoting development of computational 

methods to detect regulatory elements such as transcription and splicing factor binding sites (5). On 

the one hand, algorithms for large-scale sequence analysis must be able to identify relevant features 

(e.g., recognition motifs) in a reasonable time (6, 7). On the other hand, bioinformatics tools should be 

as comprehensive as possible to provide insights into the nature of regulatory elements in the 

genomic context, which requires comparison with biologically relevant reference sets (8).  

As discussed by Ma et al. (9) and Weirauch et al. (10), there are several algorithms for de novo 

motif discovery, but only few are capable of performing a discriminative analysis (i.e., comparison 

between two sets) on high-throughput datasets: 
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• Dimont (7) is a discriminative method  based on ‘zero or one occurrence per sequence’ 

(ZOOPS) model (11). It works under the hypothesis that only few binding sites are present 

within long target sequences. Although Dimont achieves acceptable runtimes (7),it 

performs the discriminative analysis using only the foreground (i.e., positive or signal) set, 

thus excluding the possibility of a comparison with an experimentally derived background 

(i.e., reference) set. 

• DREME is a well-established algorithm that restricts the search for motifs to a simplified 

form of “regular expression” (RE): words over the IUPAC alphabet, which exploits 11 

wildcard characters in addition to the standard DNA alphabet, ACGT (12). To save 

computation time, DREME estimates the significance of candidate RE by a heuristic 

search without scanning the whole input sequences (12). 

• motifRG measures the discriminative power of a motif by a logistic regression model, 

which shows similarity to DREME (12) and comparable performances for the identification 

of core motifs (8). Although motifRG provides an efficient iterative process for seeds 

refinement and extension (8), the algorithm searches for specific patterns, identifying few 

motifs in both the background and foreground sets. 

Despite the variety of motif discrimination approaches, knowledge of programming languages (8, 

13) and acquaintance with web-based bioinformatics platforms (7, 14) limit use among 

experimentalists. In this article, we introduce SeAMotE, a web-server to perform de novo 

discriminative motif discovery in high-throughput nucleic acid datasets. Specifically, we present an 

approach that enables the exhaustive search of distinctive patterns in large sets of sequences, in a 

reasonable amount of computational time and with an easy-to-use interface. 

 

MATERIAL AND METHODS 

SeAMotE is based on the generation of nucleotide seeds followed by ZOOPS model testing and 

pattern refinement, techniques used in recently published tools (7, 8). However, SeAMotE includes a 

number of unique features that dramatically increase the performance of the method. The user can (i) 

set a coverage threshold, which is employed in the selection of enriched motifs for the positive set 

(foreground), and (ii) choose among multiple reference set (background) options. 

Usage 

The SeAMotE server presents an input page that allows the upload of nucleic acid sequences and 

the selection of the parameters. Default parameters (e.g. reference set, coverage threshold, etc.) are 

defined according to best settings estimated during testing on known data sets. However, most of the 

parameters can be modified by the user, which adds flexibility to our web-service. Detailed 

descriptions of the submission process and variables are provided in the on-line tutorial (see 
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http://service.tartaglialab.com/static_files/shared/tutorial_seamote.html, sections “Submission form” 

and “Interpreting the output”). 

 

• At least one input set (FASTA format file) should be provided for the analysis. Currently, the 

number of sequences is limited to 104, with a maximal length of 15,000 nucleotides per 

sequence. 

• A reference set is required to estimate the significance of the discovered motifs. This can be: 

1. Automatically generated as a shuffle set, where the foreground set composition (i.e., 

single nucleotide alphabet frequencies) and dimensions (i.e., sequence numbers and 

lengths) are kept constant; 

2. Automatically generated as a random set, where the foreground set dimensions are 

preserved but the internal composition is based on letter frequencies obtained from the 

human transcriptome/genome; 

3. Provided by the user (FASTA format file), having the same restrictions as the input set. 

• The coverage threshold (i.e. the percentage of sequences matching the searched pattern) 

represents a threshold that the algorithm uses internally to select the most abundant motifs in 

the two datasets. The higher the threshold, the faster the process will run and the more 

stringent the search will be. 

Optionally, the user can assign a job name for each submission and request for an email 

notification upon completion (not required to run the server).  

The workflow starts by exploiting a series of pre-generated seed motifs (IUPAC alphabet) of k-

mers (e.g. ACY = AC[CT]) that are employed to evaluate dataset coverage and discrimination. After 

the first scan of the datasets, the nucleotide patterns that score above the coverage threshold 

undergo an expansion process, which works by incorporating another nucleotide in the k + 1 position. 

The extended motifs are then used as seeds for the next round of calculation and the set coverage is 

re-evaluated. This process is executed iteratively until at least one motif is found above the threshold 

in the positive set.	
  	
  

The output summary consists of the information about the submission (e.g., identifier, 

downloadable datasets) and a table (Figure 1A). The latter displays the discovered motifs (IUPAC and 

RE formats), the logo representations and the statistics used to estimate their significance: motif 

coverage for positive and reference sets, discrimination factor (Youden's index = Sensitivity + 

Specificity - 1) and P-value (Fisher’s exact test) associated with each pattern. In addition, it is possible 

to retrieve the list of motifs tested (txt format), as well as their sequence logos (png format) and 

positional weighted matrices (txt format) following the links provided in the output page (Figure 1A).	
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Implementation 

The web-server is implemented in Python, HTML and JavaScript, which provides a convenient 

framework for the pipeline control and the presentation of the output data. User-provided data are 

validated by Python scripts and passed to the Amazon Web Services (AWS), which manages the 

queue system, performs the redistribution of the work on our local machines and, once the job is 

completed successfully, forwards the user to the output page. Local operations are executed by an 

ANSI C application, whereas significance estimation and sequence logo design are computed using R 

and WebLogo (15), respectively. Typically, the computations take from between 2-3 and 30-40 

minutes. 

Documentation 

The documentation/tutorial of the SeAMotE web-server is available online, and it can be accessed 

using the links in the menu at the top of every server page. It contains a brief description of the 

method, a tutorial and information on the benchmark data. Additionally, the web interface in the output 

page provides help notes (accessible also through the “mouse-over” function) for table variables and 

download buttons. Online documentation and “Frequently Asked Questions” (FAQs) sections updates 

will be provided on a regular basis according to method improvements and users’ inquiries, 

respectively. 

Availability 

The SeAMotE server is free and accessible to all users through the main browsers (we tested 

Safari, Firefox, Explorer and Chrome), and there is no login requirement. After clicking the “submit” 

button, a web link to the results is provided, which the user can bookmark and access at a later time. 

This page will refresh automatically every 10 seconds and redirects to the results once the job is 

successfully completed. 

 

RESULTS 

To evaluate SeAMotE performances on large-scale datasets, we collected recent CLIP 

experiments (16–24) and assessed ability to identify significantly enriched motifs (Fisher’s exact test). 

In each case analyzed, we compared RNAs bound to a specific protein (foreground set) with the 

same amount of non-interacting transcripts (background set; Supplementary Table 1). The DREME 

(12) algorithm was used as a reference to evaluate the performance of our system.	
   Our method 

achieves both higher discrimination, which is the ability to separate the foreground from the 

background set, and significance, denoted by lower P-values associated with sequence motifs (Figure 

1B). In addition, SeAMoTe also shows very high sensitivity (~90%) and accuracy (80%) (Table 1).  

 We compared SeAMoTe with DREME because other methods such as motifRG (8) show limited 

variability of motifs,  which results in low abundance of sequence patterns (Supplementary Table 2) 
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and scarce discrimination between datasets. Indeed, motifRG has been developed for analysis of 

chromatin immunoprecipitation (ChIP) data with an optimal peak size of ~100nt (8) and is less 

accurate on larger nucleic acid regions (Supplementary Table 1). 

 

DISCUSSION 

Detection of regulatory motifs is a challenging task. For this reason, we developed the SeAMotE 

web-server, which provides an easy-to-use interface and allows the exhaustive analysis of large-scale 

datasets. Our approach offers unique features such as the discrimination based on the actual 

occurrences (i.e. pattern counts are not estimated) in the datasets, the choice of multiple reference 

backgrounds (shuffle, random or custom) and the output of the most significant motifs in the whole 

span of tested motif widths, thus providing a wide range of solutions. In conclusion, our web-server is 

a powerful tool for the identification of enriched sequence patterns that characterize recognition 

process between proteins and nucleic acids.   

 

ACKNOWLEDGEMENT 

The authors would like to thank Guillaume Filion (CRG), Andreas Zanzoni (Inserm, U1090), Giovanni 

Bussotti (EMBL-EBI) and Samuel Francis Reid (CRG) for stimulating discussions. 

 

FUNDING 

Spanish Ministry of Economy and Competitiveness [SAF2011-26211], the European Research 

Council (ERC Starting Grant RYBOMYLOME to G.G.T). Funding for open access charge: ERC and 

Spanish Ministry of Economy and Competitiveness [SAF2011-26211]. 

Conflict of interest statement. None declared. 

 

REFERENCES 

1. Coulon,A., Chow,C.C., Singer,R.H. and Larson,D.R. (2013) Eukaryotic transcriptional dynamics: from single 
molecules to cell populations. Nat. Rev. Genet., 14, 572–584, doi:10.1038/nrg3484, PMID:23835438. 

2. Janga,S.C. (2012) From specific to global analysis of posttranscriptional regulation in eukaryotes: 
posttranscriptional regulatory networks. Brief. Funct. Genomics, 11, 505–521, doi:10.1093/bfgp/els046, 
PMID:23124862. 

3. Pichon,X., Wilson,L.A., Stoneley,M., Bastide,A., King,H.A., Somers,J. and Willis,A.E.E. (2012) RNA binding 
protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci., 13, 294–304, 
PMID:22708490. 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 49 — #61

4. Koboldt,D.C., Steinberg,K.M., Larson,D.E., Wilson,R.K. and Mardis,E.R. (2013) The next-generation 
sequencing revolution and its impact on genomics. Cell, 155, 27–38, doi:10.1016/j.cell.2013.09.006, 
PMID:24074859. 

5. Dassi,E. and Quattrone,A. (2012) Tuning the engine: an introduction to resources on post-transcriptional 
regulation of gene expression. RNA Biol., 9, 1224–1232, doi:10.4161/rna.22035, PMID:22995832. 

6. Sinha,S. (2003) Discriminative motifs. J. Comput. Biol. J. Comput. Mol. Cell Biol., 10, 599–615, 
doi:10.1089/10665270360688219, PMID:12935347. 

7. Grau,J., Posch,S., Grosse,I. and Keilwagen,J. (2013) A general approach for discriminative de novo motif 
discovery from high-throughput data. Nucleic Acids Res., 41, e197, doi:10.1093/nar/gkt831, 
PMID:24057214. 

8. Yao,Z., Macquarrie,K.L., Fong,A.P., Tapscott,S.J., Ruzzo,W.L. and Gentleman,R.C. (2013) Discriminative 
motif analysis of high-throughput dataset. Bioinforma. Oxf. Engl., 10.1093/bioinformatics/btt615. 

9. Ma,X., Kulkarni,A., Zhang,Z., Xuan,Z., Serfling,R. and Zhang,M.Q. (2012) A highly efficient and effective motif 
discovery method for ChIP-seq/ChIP-chip data using positional information. Nucleic Acids Res., 40, e50, 
doi:10.1093/nar/gkr1135, PMID:22228832. 

10. Weirauch,M.T., Cote,A., Norel,R., Annala,M., Zhao,Y., Riley,T.R., Saez-Rodriguez,J., Cokelaer,T., 
Vedenko,A., Talukder,S., et al. (2013) Evaluation of methods for modeling transcription factor sequence 
specificity. Nat. Biotechnol., 31, 126–134, doi:10.1038/nbt.2486, PMID:23354101. 

11. Lawrence,C.E. and Reilly,A.A. (1990) An expectation maximization (EM) algorithm for the identification and 
characterization of common sites in unaligned biopolymer sequences. Proteins, 7, 41–51, 
doi:10.1002/prot.340070105, PMID:2184437. 

12. Bailey,T.L. (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinforma. Oxf. Engl., 27, 
1653–1659, doi:10.1093/bioinformatics/btr261, PMID:21543442. 

13. Fauteux,F., Blanchette,M. and Strömvik,M.V. (2008) Seeder: discriminative seeding DNA motif discovery. 
Bioinforma. Oxf. Engl., 24, 2303–2307, doi:10.1093/bioinformatics/btn444, PMID:18718942. 

14. Giardine,B., Riemer,C., Hardison,R.C., Burhans,R., Elnitski,L., Shah,P., Zhang,Y., Blankenberg,D., Albert,I., 
Taylor,J., et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res., 15, 
1451–1455, doi:10.1101/gr.4086505, PMID:16169926. 

15. Crooks,G.E., Hon,G., Chandonia,J.-M. and Brenner,S.E. (2004) WebLogo: a sequence logo generator. 
Genome Res., 14, 1188–1190, doi:10.1101/gr.849004, PMID:15173120. 

16. Hafner,M., Landthaler,M., Burger,L., Khorshid,M., Hausser,J., Berninger,P., Rothballer,A., Ascano,M., 
Jungkamp,A.-C., Munschauer,M., et al. (2010) PAR-CliP--a method to identify transcriptome-wide the 
binding sites of RNA binding proteins. J. Vis. Exp. JoVE, 10.3791/2034. 

17. Lebedeva,S., Jens,M., Theil,K., Schwanhäusser,B., Selbach,M., Landthaler,M. and Rajewsky,N. (2011) 
Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 
340–352, doi:10.1016/j.molcel.2011.06.008, PMID:21723171. 

18. Kishore,S., Jaskiewicz,L., Burger,L., Hausser,J., Khorshid,M. and Zavolan,M. (2011) A quantitative analysis 
of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559–564, 
doi:10.1038/nmeth.1608, PMID:21572407. 

19. Mukherjee,N., Corcoran,D.L., Nusbaum,J.D., Reid,D.W., Georgiev,S., Hafner,M., Ascano,M.,Jr, Tuschl,T., 
Ohler,U. and Keene,J.D. (2011) Integrative regulatory mapping indicates that the RNA-binding protein 
HuR couples pre-mRNA processing and mRNA stability. Mol. Cell, 43, 327–339, 
doi:10.1016/j.molcel.2011.06.007, PMID:21723170. 

20. Hoell,J.I., Larsson,E., Runge,S., Nusbaum,J.D., Duggimpudi,S., Farazi,T.A., Hafner,M., Borkhardt,A., 
Sander,C. and Tuschl,T. (2011) RNA targets of wild-type and mutant FET family proteins. Nat. Struct. 
Mol. Biol., 18, 1428–1431, doi:10.1038/nsmb.2163, PMID:22081015. 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 50 — #62

21. Sanford,J.R., Wang,X., Mort,M., Vanduyn,N., Cooper,D.N., Mooney,S.D., Edenberg,H.J. and Liu,Y. (2009) 
Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res., 19, 
381–394, doi:10.1101/gr.082503.108, PMID:19116412. 

22. Tollervey,J.R., Curk,T., Rogelj,B., Briese,M., Cereda,M., Kayikci,M., König,J., Hortobágyi,T., Nishimura,A.L., 
Zupunski,V., et al. (2011) Characterizing the RNA targets and position-dependent splicing regulation by 
TDP-43. Nat. Neurosci., 14, 452–458, doi:10.1038/nn.2778, PMID:21358640. 

23. Wang,Z., Kayikci,M., Briese,M., Zarnack,K., Luscombe,N.M., Rot,G., Zupan,B., Curk,T. and Ule,J. (2010) 
iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol., 8, e1000530, 
doi:10.1371/journal.pbio.1000530, PMID:21048981. 

24. Ray,D., Kazan,H., Cook,K.B., Weirauch,M.T., Najafabadi,H.S., Li,X., Gueroussov,S., Albu,M., Zheng,H., 
Yang,A., et al. (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499, 
172–177, doi:10.1038/nature12311. 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 51 — #63

TABLE AND FIGURES LEGENDS 

 

 

Figure 1. SeAMotE output summary and performances. A) Example of output showing the list of 

best discriminating patterns (IUPAC and RegEx) with their logo representations and positional 

weighted matrix download button, positive and reference coverage (as percentage of sequences 

containing at least one occurrence), discrimination (Youden's index) and associated P-value (Fisher’s 

exact test). By clicking on the logo, it is possible to retrieve the image file (png format) of the 

associated motif. B) Comparison of SeAMotE and DREME performances plotted as the discrimination 

of top motifs (4- to 7-mers) obtained with DREME (red circles) and SeAMotE (green crosses), against 

the minus log of the P-value (Fisher’s exact test). 

 

 

Table 1. Comparison of SeAMotE and DREME methods. Sensitivity (True Positive Rate, TPR), 

specificity (SPC), precision (Positive Predictive Value, PPV), false discovery rate (FDR) and accuracy 

(ACC) achieved by the two methods on the experimental datasets. 
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SeAMotE

CLIP protein
SeAMotESeAMotESeAMotESeAMotESeAMotE DREMEDREMEDREMEDREMEDREME

CLIP protein
TPR (%) SPC (%) PPV (%) FDR (%) ACC (%) TPR (%) SPC (%) PPV (%) FDR (%) ACC (%)

ELAVL1 (Hafner)16 91.5 69.9 75.2 24.8 80.7 83.0 73.2 75.6 24.4 78.1
ELAVL1 (Lebedeva)17 81.0 73.0 75.0 25.0 77.0 75.6 74.5 73.3 26.7 75.0

ELAVL1 (Mnase) 93.4 69.9 75.6 24.4 81.7 86.3 71.6 75.2 24.8 79.0
ELAVL1 (Mukharjee)19 90.3 84.3 85.2 14.8 87.3 89.5 81.7 83.1 16.9 85.6

FUS20 92.9 66.6 73.5 26.5 79.7 92.2 45.3 62.8 37.2 68.8
IGF2BP1-316 84.5 35.8 56.8 43.2 60.1 92.5 27.5 56.0 44.0 60.0

PUM216 91.8 87.5 88.0 12.0 89.6 84.9 92.4 91.8 8.2 88.7
QKI16 91.0 78.1 80.6 19.4 84.6 88.4 84.9 85.4 14.6 86.6

SFSR121 86.5 79.6 80.7 19.3 83.0 86.5 79.6 80.7 19.3 83.0
TAF1520 94.9 60.0 70.3 29.7 77.5 91.0 54.9 66.9 33.1 73.0

TARDBP (iCLIP)22 91.3 85.7 86.5 13.5 88.5 87.9 93.8 93.5 6.5 90.9
TIA1 (iCLIP)23 86.7 62.3 70.4 29.6 74.5 86.7 62.3 70.4 29.6 74.5

TIAL1 (iCLIP)23 84.9 65.5 71.3 28.7 75.2 84.4 66.2 71.7 28.3 75.3
TOTAL 89.3 70.6 76.1 23.9 80.0 86.8 69.8 75.9 24.1 78.3
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CLIP protein
Positive SetPositive SetPositive SetPositive Set Negative SetNegative SetNegative SetNegative Set

CLIP protein
Number of 
Sequences

Minimum 
length

Maximum 
length GC content Number of 

Sequences
Minimum 

length
Maximum 

length GC content

ELAVL1 (Hafner)16 1000 40 160 31.1% 1000 40 160 47.3%

ELAVL1 (Lebedeva)17 1445 16 324 29.5% 1445 17 324 41.7%

ELAVL1 (Mnase) 1000 40 166 29.4% 1000 40 160 47.4%

ELAVL1 (Mukharjee)19 5625 15 111 19.2% 5625 15 111 40.1%

FUS20 1568 16 57 25.0% 1568 17 57 39.3%

IGF2BP1-316 3799 25 2015 41.0% 3799 25 2015 41.6%

PUM216 1000 19 161 24.3% 1000 20 161 44.8%

QKI16 1000 17 84 26.5% 1000 18 71 39.7%

SFSR121 310 30 84 52.6% 314 30 85 44.7%

TAF1520 1000 15 51 26.3% 1000 16 51 39.6%

TARDBP (iCLIP)22 4755 14 1653 43.4% 4745 16 1653 42.2%

TIA1 (iCLIP)23 1000 12 215 29.3% 968 12 233 42.2%

TIAL1 (iCLIP)23 2117 12 306 30.6% 2093 12 444 41.5%

Supplementary Table 1. Datasets composition. CLIP dataset information: number of sequences, minimum and maximum lengths, and GC content.

CLIP protein Motif 1 Positive 
Count

Positive 
Coverage

Reference 
Count

Reference 
Coverage Motif 2 Positive 

Count
Positive 

Coverage
Reference 

Count
Reference 
Coverage Motif 3 Positive 

Count
Positive 

Coverage
Reference 

Count
Reference 
Coverage

ELAVL1 (Hafner)16 AATTTT 129 12% 28 2% CTTTTT 281 28% 45 4% ATTTTT 282 28% 51 5%

ELAVL1 (Lebedeva)17 ACTTTT 260 17% 73 5% ATTTTT 579 40% 136 9% TCTTTT 377 26% 71 4%

ELAVL1 (Mnase) AATTTT 138 13% 41 4% TTTTTA 314 31% 41 4% TTTTTC 243 24% 46 4%

ELAVL1 (Mukharjee)19 AATTTT 985 17% 186 3% TTTTTA 2182 38% 273 4% TTTTTC 1948 34% 175 3%

FUS20 AATAAA 120 7% 30 1% TTAAAA 150 9% 38 2% TTTATA 102 6% 26 1%

IGF2BP1-316 ACTTCA 581 15% 283 7% TCTTCA 701 18% 376 9% TCCACA 430 11% 189 4%

PUM216 AAATAT 197 19% 26 2% TGTATA 348 34% 16 1% TGTAAA 365 36% 19 1%

QKI16 ACTAAT 216 21% 7 0% TTAACA 228 22% 19 1% CTAACA 196 19% 7 0%

SFSR121 AGGAGA 57 18% 7 2% GGAAGA 72 23% 7 2% AGAAGA 76 24% 3 0%

TAF1520 ACTTTT 63 6% 11 1% TATTTA 73 7% 13 1% CATTTC 61 6% 9 0%

TARDBP (iCLIP)22 ATGTGT 1885 39% 245 5% TGTGTG 3701 77% 260 5% TGTATG 1663 34% 155 3%

TIA1 (iCLIP)23 ACTTTT 123 12% 50 5% TTTTTA 360 36% 121 12% TTTTTC 263 26% 78 8%

TIAL1 (iCLIP)23 ATTTTT 711 33% 234 11% CTTTTT 636 30% 170 8% TGTTTT 503 23% 176 8%

Supplementary Table 2. Results of motifRG on CLIP data. The top 3 motifs discovered using motifRG (R package “motifRG”). The table shows for each motif the 
number of sequences containing the pattern, count and percentage for both foreground (positive) and background (reference) datasets.



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 53 — #65

Chapter V

Chaperone networks in E. coli

The following work focuses on characterizing the protein interactome of
DnaK, the major bacterial chaperone Hsp70, in E. coli. We analysed dif-
ferences in chaperone requirements by investigating the physico-chemical
properties encoded in their target sequences. We observed that DnaK sub-
strates bury amino acid residues from solvent less effectively than other
DnaK associations, suggesting that enriched interactors populate dynamic
intermediate states during folding and expose hydrophobic residues. Im-
portantly, the analyses performed in this work constitute preliminary ver-
sion of the algorithms presented in Chapter VI and VII, and in Klus et al.
(2014).

Calloni G., Chen T., Schermann S.M., Chang H., Genevaux P., Agostini F.,
Tartaglia G.G., Hayer-Hartl M., Hartl F.U. (2012). DnaK Functions as a Cen-
tral Hub in the E. coli Chaperone Network. Cell Reports, 3(1):251–264. PMID:
22832197

53
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F-31000 Toulouse, France
3Centre for Genomic Regulation and Universitat Pompeu Fabra, 08003 Barcelona, Spain
4These authors contributed equally to this work
5Present address: Micromet, Staffelseestr 2, 81477 Munich, Germany
6Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*Correspondence: mhartl@biochem.mpg.de (M.H.-H.), uhartl@biochem.mpg.de (F.U.H.)

DOI 10.1016/j.celrep.2011.12.007

SUMMARY

Cellular chaperone networks prevent potentially
toxic protein aggregation and ensure proteome
integrity. Here, we used Escherichia coli as a model
to understand the organization of these networks,
focusing on the cooperation of the DnaK system
with the upstream chaperone Trigger factor (TF)
and the downstreamGroEL. Quantitative proteomics
revealed that DnaK interacts with at least �700
mostly cytosolic proteins, including �180 relatively
aggregation-prone proteins that utilize DnaK exten-
sively during and after initial folding. Upon deletion
of TF, DnaK interacts increasingly with ribosomal
and other small, basic proteins, while its association
with large multidomain proteins is reduced. DnaK
also functions prominently in stabilizing proteins for
subsequent folding by GroEL. These proteins accu-
mulate on DnaK upon GroEL depletion and are then
degraded, thus defining DnaK as a central organizer
of the chaperone network. Combined loss of DnaK
and TF causes proteostasis collapse with disruption
of GroEL function, defective ribosomal biogenesis,
and extensive aggregation of large proteins.

INTRODUCTION

In all cell types, molecular chaperones function in preventing

protein misfolding and aggregation, typically by shielding

hydrophobic surfaces exposed by proteins in their non-native

states. Chaperones have essential roles in assisting the folding,

assembly and transport of newly synthesized polypeptides and

in surveying the conformational status of preexistent proteins

(Hartl and Hayer-Hartl, 2009). Although detailed insights into

the structure and mechanism of individual chaperone compo-

nents have been obtained in recent years, how multiple chap-

erone modules cooperate to maintain conformational proteome

integrity (proteostasis) is not yet understood (Balch et al., 2008).

What is the degree of functional overlap and specificity among

chaperones, and how robust is the network in tolerating distur-

bances and avoiding collapse? Although there is evidence that

the complexity of proteostasis networks has increased during

evolution (Gidalevitz et al., 2011), central players, such as the

ATP-regulated Hsp70 chaperones, have been highly conserved

from bacteria to human. Here we employed quantitative proteo-

mics to analyze the chaperone network of Escherichia coli as

a tractable model, focusing on the central role of the Hsp70

system.

DnaK, the major bacterial Hsp70, is one of the most abundant

constitutively expressed and stress inducible chaperones in the

E. coli cytosol. Yet it is not essential under nonstress conditions

at intermediate temperature (Bukau and Walker, 1989). Indeed,

DnaK (together with its co-chaperone DnaJ and regulator

GrpE) cooperates in de novo protein folding with the ribosome-

bound chaperone Trigger factor (TF). Although DnaK and TF

can be deleted individually, their simultaneous deletion results

in synthetic lethality at temperatures above 30�C (Deuerling

et al., 1999; Genevaux et al., 2004; Teter et al., 1999). Under

stress conditions, such as heat shock at 42�C, DnaK becomes

indispensable (Bukau and Walker, 1989). TF and DnaK act

upstream of the essential GroEL/ES chaperonin, which provides

a cage-like compartment for the folding of single protein mole-

cules, unimpaired by aggregation. About 10% of cytosolic

proteins (�250 different proteins) have been found to interact

with GroEL, of which a subset of �50�85 proteins (so-called

class III substrates) are absolutely GroEL/ES dependent for

folding (Fujiwara et al., 2010; Kerner et al., 2005).

The ATP-dependent reaction cycle of DnaK is regulated by the

Hsp40 co-chaperone DnaJ and the nucleotide exchange factor

GrpE (reviewed in Hartl et al., 2011;Mayer, 2010). DnaJ functions

in presenting non-native substrate proteins to DnaK (Figure 1A).

Substrate binding and release by Hsp70 is achieved through

the allosteric coupling of a N-terminal ATPase domain with a

C-terminal peptide-binding domain, the latter consisting of a

b sandwich subdomain and an a-helical lid segment. The b sand-

wich recognizes extended, �7 residue segments enriched with

hydrophobic amino acids, preferentially when they are framed

by positively charged residues (Rüdiger et al., 1997; Zhu et al.,

Cell Reports 1, 251–264, March 29, 2012 ª2012 The Authors 251
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Figure 1. Isolation of DnaK-Interactor Complexes

(A) Schematic representation of the DnaK reaction cycle. Upon DnaJ-mediated delivery of non-native protein substrate to ATP-bound DnaK, hydrolysis of ATP

to ADP results in closing of the a-helical lid (yellow) and tight binding of substrate by DnaK. Stable DnaK-substrate complexes are accumulated by depleting

ATP with apyrase upon cell lysis.

(B) In vivo functionality of the chromosomally encoded DnaK-His6. The dnaK gene (WT) was replaced with dnaK-His6 (KHis) in MC4100 and where indicated in the

isogenic chaperone mutant strains DdnaKdnaJ (DKJ), Dtig (DT), Dtig/dnaK-His6 (DT/KHis), DdnaKdnaJDtig (DKJT), DsecB (DB), DsecB/dnaK-His6 (DB/KHis),

DsecBDtig (DBT), and DsecBDtig/dnaK-His6 (DBT/KHis) as described in Extended Experimental Procedures. Cells in mid-log phase were serially diluted, spotted

on LB agar plates and incubated for 1 day at 30�C, 37�C, or 42�C and for 5 days at 16�C.
(C) Schematic of the SILAC approach used to identify DnaK interactors. L (light) and M (medium) Arg, Lys isotope media. DnaK-substrate complexes isolated

from M-labeled cells containing the DnaK-His6 (pulldown, PD) were mixed 1:1 with L-labeled proteins isolated with the same procedure from an equal amount

of cell lysate containing non-tagged DnaK (background, BG). The mixture was subsequently separated by SDS-PAGE, followed by in-gel trypsin digestion and

LC-MS/MS analysis.

(D) Isolation of DnaK-substrate complexes. Soluble lysate, PD and BG fractions were analyzed by 4%�12% gradient SDS-PAGE, followed by Colloidal Blue or

silver staining, as indicated.

(E) Cellular localization of DnaK interactors compared to the genome-based E. coli proteome (Yu et al., 2011). ***p % 0.001 based on c2 test.
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1996). The a-helical lid and a conformational change in the

b sandwich domain regulate the affinity state for peptide through

an ATP-dependent, allosteric mechanism (Zhuravleva and Gier-

asch, 2011). In the ATP-bound state, the lid adopts an open

conformation, resulting in high on- and off-rates for peptide

(Figure 1A). Hydrolysis of ATP to ADP is accelerated by DnaJ,

leading to lid closure and stable peptide binding. Following

ATP-hydrolysis, DnaJ dissociates and GrpE binds to the DnaK

ATPase domain, catalyzing ADP release. Binding of ATP then

results in lid-opening and substrate release for folding or transfer

to other chaperones (Figure 1A).

Attempts to identify DnaK substrates have been limited to the

analysis of proteins that aggregated in cells lacking TF upon

depletion of DnaK (Deuerling et al., 2003). Here we developed

an approach for the direct isolation of DnaK-substrate com-

plexes and their identification by quantitative proteomics from

wild-type, TF-deleted, or GroEL-depleted cells. In parallel, we

analyzed global proteome changes under conditions of single

or combined chaperone deletion. Our measurements show

that DnaK normally interacts with at least �700 newly synthe-

sized and preexistent proteins, which we characterized based

on their relative enrichment on DnaK. Individual deletion of TF

or depletion of GroEL/ES leads to specific changes in the

DnaK interactome and in global proteome composition. These

effects are highly informative as to the functional cooperativity

of chaperone modules. We conclude that DnaK is the central

hub in the cytosolic E. coli chaperone network, interfacing exten-

sively with the upstream TF and the downstream chaperonin.

The functional interconnection of these major chaperone

systems is critical for robust proteostasis control.

RESULTS

Isolation and Identification of the DnaK Interactome
To isolate DnaK-substrate complexes, we generated an E. coli

MC4100 strain in which the wild-type dnaK gene was replaced

by dnaK-His6, encoding DnaK with a C-terminal His6-tag

(henceforth called KHis). KHis cells grew like wild-type (WT) on

agar plates or in liquid culture at 30�C�37�C, or under heat

shock conditions at 42�C (Figure 1B and Figure S1A available

online). Quantitative proteomic analysis using SILAC (stable

isotope labeling with amino acids in cell culture) (Ong et al.,

2002) did not detect significant differences in protein abundance

between WT and KHis cells (Figure S1B). DnaK-His6 also

supported normal growth of TF-deleted (DT) cells above 30�C
and of cells lacking the protein export chaperone SecB (DB)

(Figure 1B and Figure S1A) (Deuerling et al., 1999; Genevaux

et al., 2004; Smock et al., 2010; Teter et al., 1999). DB cells are

cold-sensitive and this defect is compensated by deletion of

TF (Ullers et al., 2007).

We isolated DnaK interactors by immobilized metal affinity

chromatography (IMAC) from KHis cells growing exponentially

at 37�C. DnaK-substrate complexes were stabilized during cell

lysis by rapidly (within <10 s) depleting ATP with apyrase to

inhibit substrate cycling (Figure 1A) (Teter et al., 1999). The KHis

cells were SILAC-labeled with medium (M) Arg/Lys isotopes,

lysate prepared and subjected to IMAC pulldown (PD). DnaK-

His6 complexes were mixed 1:1 with a background (BG) sample

obtained by the same IMAC procedure from lysate of unlabeled

WT cells (light isotopes, L) (Figure 1C and Extended Experi-

mental Procedures). The composition of PD and BG samples

prior to mixing is shown in Figure 1D. Note that GrpE was co-iso-

lated with DnaK as a stoichiometric complex (Figures 1A and

1D), whereas DnaJ was present in substoichiometric amounts

(Table S1). The molar ratio of DnaK/GrpE/DnaJ was �30:20:1,

as estimated from the number of peptides identified byMS using

exponentially modified Protein Abundance Index (emPAI) scores

(Ishihama et al., 2005).

A total of 674 DnaK interactors (Table S1) were identified

by LC-MS/MSwith >95% confidence (Figure S1C and Extended

Experimental Procedures), including proteins either not

identified in BG samples or having a >2-fold enrichment (M/L

ratio) in PD over BG in at least two of three independent

experiments (biological repeats). Most of these (503 proteins)

were >4-fold enriched over BG (Table S1). The identification of

DnaK interactors approached saturation in consecutive ex-

periments (Extended Experimental Procedures). For the vast

majority of interactors (>95%), the amount of protein co-isolated

with DnaKwas strongly diminished upon incubation of cell lysate

with ATP (Figure S1D), indicating that these proteins bind DnaK

in an ATP-regulated manner. While GrpE was released, DnaJ

was enriched on DnaK in the presence of ATP (data not shown)

(Figure 1A). The DnaJ homolog cbpA and the two small heat

shock proteins, IbpA and IbpB (Hsp20), were also identified in

DnaK pulldowns in the presence of ATP, suggesting that these

chaperones functionally cooperate with DnaK (data not shown).

Approximately 80% of the DnaK interactors are predicted to

be cytosolic, �11% are inner membrane proteins, �3% outer

membrane proteins, and �3% are located in the periplasm (Fig-

ure 1E and Table S1). Thus, the identified DnaK interactors

comprise �25% of the cytosolic proteome. As a collective,

they are similar to a set of 1,938 proteins identified in soluble

cell lysates (list available at the Proteome Commons Tranche

repository) in terms of molecular weight (Figure S1E) and other

physico-chemical properties, such as isoelectric point, average

hydrophobicity, and aggregation propensity (data not shown),

indicating that DnaK has a broad substrate specificity.

Classification of DnaK Substrates by Enrichment
on DnaK
Wenext analyzed each of the different DnaK interactors to deter-

mine what fraction of the total protein is DnaK-bound, assuming

that this parameter correlates with chaperone dependence, as

was observed for the substrates of GroEL (Kerner et al., 2005).

Unlabeled soluble cell lysate (L) was mixed at a defined propor-

tion with DnaK complexes isolated from cells labeled with heavy

Arg/Lys isotopes (H) and H/L ratios were determined by LC-MS/

MS. H/L ratios were obtained for 666 DnaK interactors, reflecting

their relative enrichment on DnaK. The relative enrichment

factors (REF) displayed a broad, bimodal distribution (Figure 2A).

By setting thresholds at the 20th and 70th percentiles of the

distribution, we grouped 142 proteins as less-enriched, 183

proteins as enriched, and 341 proteins as medium enriched on

DnaK (Figure 2A and Table S1). Interestingly, the enriched

proteins are below average in cellular abundance but together

make up �40% of all identified DnaK interactors by mass
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(Figure 2B and Table S1), as based on emPAI scores. For these

proteins �5% of cellular content is bound to DnaK. In contrast,

the less-enriched DnaK interactors are highly abundant proteins

but amount to only �13% of all DnaK interactors by mass

(Figure 2B and Table S1). On average, only 0.1% or less of

their cellular content is DnaK-bound. The medium enriched
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Figure 2. Classification and Characterization of DnaK Interactors

(A) Relative enrichment of interactor proteins on DnaK. The histogram shows the distribution of relative enrichment factors (REF) for 666 DnaK interactors

identified in 3 independent experiments. REF indicates the fraction of total cellular protein bound to DnaK. Enriched and less-enriched sets of interactors were

selected at the extremes of the distribution for further analysis as described in Extended Experimental Procedures.

(B–F) Properties of enriched and less-enriched DnaK interactors compared to soluble lysate proteins. (B) Abundance in soluble lysate determined based on

cumulative abundance values (emPAI) (Ishihama et al., 2005). (C) Oligomeric state of all, the enriched and less-enriched DnaK interactors compared to lysate

proteins. Ribosomal proteins are analyzed separately. (D) Solubility upon in vitro translation in the absence of chaperones (Niwa et al., 2009). (E) Average

propensity of soluble lysate proteins and DnaK interactors to bury amino acid residues from solvent, calculated using the burial propensity scale of specific amino

acids by Janin (1979) (see Extended Experimental Procedures). Shown is the mean burial propensity for each class; error bars correspond to the SEM. P values

based on Mann-Whitney test: *p % 0.05; **p % 0.01. (F) SCOP fold distribution. c.37, P loop containing nucleotide triphosphate hydrolases; a.4, DNA/RNA

binding 3-helical bundle; c.1, TIM b/a barrel; d.58, Ferredoxin-like; c.2, NAD(P)-binding Rossmann-fold domains; c.23, Flavodoxin-like; c.55, Ribonuclease H-like

motif; c.94, Periplasmic binding protein-like II; b.40, OB-fold. Statistical significance for categorical variables is based on a c2 test: *p % 0.05; **p % 0.01;

***p % 0.001.
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interactors amount to �47% of all DnaK interactors by mass,

with �1% of cellular content being bound.

The DnaK-enriched proteins cover a wide range of cellular

functions, prominently including DNA replication, recombination

and repair (COG class L), and cell division and chromosome

partitioning (COG class D) (Figure S2A and Table S1). The less-

enriched DnaK interactors have a significant preference for

proteins involved in translation, ribosomal structure, and biogen-

esis (COG class J) and include 24 ribosomal proteins. Essential

proteins (Gerdes et al., 2003) are more frequent among the

less-enriched substrates (Figure S2B). The enriched interactors

include some very large proteins >100 kDa (Figure S2C) and

tend to have more predicted DnaK binding sites than the less

enriched substrates (both absolute and when corrected for

size) (Figure S2D) (Van Durme et al., 2009). Furthermore, they

are more frequently part of heterooligomeric complexes (when

ribosomal proteins are considered separately) (Figure 2C).

To determine whether the proteins enriched on DnaK have

a high propensity to aggregate, we took advantage of the study

byNiwa et al. (2009) who analyzed the solubility ofE. coli proteins

upon in vitro translation in the absence of chaperones. Indeed,

the DnaK-enriched proteins are more aggregation prone upon

translation than average proteins of soluble cell lysate, whereas

the less-enriched DnaK interactors are more soluble (Figure 2D).

This is consistent with the finding that the enriched proteins

frequently display pI values close to neutral pH (Figure S2E).

Moreover, these proteins are predicted to bury amino acid resi-

dues less effectively from solvent than the less enriched DnaK

interactors and average soluble proteins (Figure 2E) (Tartaglia

et al., 2010). This suggests that the enriched interactors populate

dynamic intermediate states during folding and expose hydro-

phobic residues, although their average sequence hydropho-

bicity is not increased (data not shown). Similar properties

were previously found for the obligate (class III) GroEL substrates

(Figure 2E) (Raineri et al., 2010; Tartaglia et al., 2010). Interest-

ingly, �18% (29 proteins) of the DnaK-enriched substrates

with assigned fold (159 proteins) contain at least one domain

with SCOP fold c.37 (P loop containing nucleoside triphosphate

hydrolases), compared to only �8% of soluble lysate proteins

and �3% of the less-enriched DnaK interactors (Figure 2F).

The c.37 fold is characterized by a complex a/b topology and

is highly represented in heterooligomeric proteins (Figure S2F).

The less-enriched substrates have a preference for the SCOP

folds c.2 (NAD(P)-binding Rossmann-fold) and b.40 (OB-fold)

(Figure 2F), which are found in abundant metabolic enzymes

and in ribosomal proteins, respectively.

In summary, the relative enrichment of proteins on DnaK

correlates with their propensity to aggregate during folding.

The �180 most enriched DnaK interactors amount to �40% of

total mass of DnaK substrates. They are of relatively low cellular

abundance, tend to contain more predicted DnaK binding sites

than the less-enriched interactors, and frequently assemble

with other proteins to heterooligomeric complexes.

Effects of DnaK Deletion at the Proteome Level
To analyze the global effects of deleting the DnaK chaperone

system, we performed quantitative proteomics of DdnaKdnaJ

(DKJ) cells (H-labeled) in comparison to KHis cells (M-labeled).

The cells were grown at 30�C where deletion of DnaK/DnaJ is

well tolerated in liquid culture (Figure 1B and Figure S1A). Out

of �1,400 proteins quantified, 105 proteins were increased in

abundance in DKJ cells (Table S2A). These proteins include 42

identified DnaK interactors, presumably reflecting a compensa-

tory response. In addition, the major cytosolic chaperones and

proteases (GroEL/ES, HtpG, IbpA, IbpB, ClpB, Hsp33, HslU,

HslV, Lon) were upregulated 5- to >10-fold, consistent with

a 4.5-fold increase in abundance of the central heat shock regu-

lator rpoH (s32), which is negatively controlled by DnaK and

DnaJ (Table S1) (Gamer et al., 1992; Straus et al., 1990). Indeed,

the genes of 56 of the 105 upregulated proteins contain known or

putative s32 binding sites in their upstream regions (Zhao et al.,

2005) (Table S2A). Interestingly, 87 proteins were reproducibly

reduced in abundance in DKJ cells by �40%�95% (median

60%; p < 0.05) (Table S2B). SILAC pulse-labeling demonstrated

similar rates of synthesis in KHis and DKJ cells (Figure S2G),

indicating that the observed decrease in protein abundance

was largely due to degradation. Notably, among the degraded

proteins were 40 identified DnaK interactors (four essential

proteins), including the periplasmic chaperones of acid-dena-

tured proteins hdeA and hdeB, and several amino acidmetabolic

enzymes. The DnaK interactors that are degraded in DKJ cells

are above average enriched on DnaK in DnaK-His6 cells (Table

S2B) and exhibit relatively low solubility upon in vitro translation

(Figure S2H) (Niwa et al., 2009).

To determine whether proteins aggregate in cells lacking

DnaK/DnaJ, we analyzed the insoluble and soluble fractions of

DKJ cells compared to KHis cells. In total, 474 proteins were

significantly increased in the insoluble fraction of DKJ cells,

including 201 identified DnaK interactors (Table S3). However,

only 65 proteins were substantially depleted from the soluble

fraction by 5%�90% (median �9%; p < 0.05) due to aggrega-

tion. Among this group of proteins were 30 identified DnaK

interactors (eight essential proteins), such as excision nuclease

subunit A (uvrA) (Table S3). The extent of aggregation correlated

strongly with enrichment on DnaK (Table S3).

These findings demonstrate that a subset of DnaK interactors

are specifically dependent on the DnaK system in vivo. These

proteins tend to be degraded or aggregate in DKJ cells, even

at a growth temperature of 30�C, where the loss of DnaK is

otherwise well compensated.

DnaK Interacts with Newly Synthesized and Preexistent
Proteins
To determine whether proteins interact with DnaK only during

initial folding or return to DnaK later for conformational mainte-

nance (newly synthesized and preexistent interactors, respec-

tively), we performed pulse-SILAC experiments. KHis cells grown

at 37�C with unlabeled Arg/Lys (L) were shifted to M-labeled

Arg/Lys for 2.5 min to label newly synthesized polypeptides.

WT cells grown in heavy (H) Arg/Lys served as background

control. Lysates from the KHis and WT cells were mixed 1:1

and DnaK interactors identified. The M/L ratio of a DnaK interac-

tor relative to its M/L ratio in the lysate (the latter correcting for

rates of synthesis and turnover) was used to indicate whether

it bound to DnaK preferentially as a newly synthesized or

preexistent protein (Figure 3A). Isotope ratios were obtained
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for �300 DnaK interactors (Table S4). Log10 M/L ratios lower

than 0, indicating a strong preference for interaction as preexis-

tent protein, were observed for only 20 interactors (Figure 3A,

green). Most other proteins bound to DnaK upon synthesis (Fig-

ure 3A, gray and blue), including �100 proteins with a strong

preference for interaction as newly synthesized polypeptides

(log10 M/L ratio R 1) (Figure 3A, blue). Ribosomal proteins are

included in this group (Figure 3A, yellow), in support of the

proposed role of DnaK in ribosome assembly (Maki et al.,

2002; René and Alix, 2011).

We next compared the physico-chemical properties of the

newly synthesized and preexistent DnaK interactors (Figure 3A).

Ribosomal proteins were analyzed separately, as their unusual

size and charge properties would introduce a strong bias. Inter-

estingly, the 71 proteins with a strong preference to interact with

DnaK upon synthesis are significantly shifted to large sizes and

thus are likely to have complex folding pathways (Figure 3B).

They are of average to above average cellular abundance and

comparable to lysate proteins in terms of hydrophobicity and

aggregation propensities, as calculated with the Zagg algorithm

based on their amino acid sequence properties (Tartaglia et al.,

2008) (Figures S3A and S3B). Interestingly, only a few of these

proteins aggregated in DKJ cells (Table S3), suggesting that

they can utilize multiple chaperones for folding or, perhaps less

likely, have only low chaperone dependence. As expected, the

ribosomal proteins have very low aggregation scores, consistent

with their charge character (Figure S3B). Furthermore, the

tendency to interact with DnaK upon synthesis correlates with

a relatively lower enrichment on DnaK, suggesting that these

proteins interact only transiently (Figure 3C). On the other

hand, the preexistent interactors are similar in size to the average

of lysate proteins (Figure 3B) and are more enriched on DnaK

than the newly synthesized substrates (Figure 3C), arguing for

longer residence times on DnaK. They are also characterized

by higher intrinsic aggregation propensities than the newly

synthesized interactors (p < 0.05) (Figure S3B) and several of
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(A–C) Analysis of DnaK interactors classified by pulse-SILAC as preexistent or newly synthesized proteins. (A) Ratios of medium to light isotopes (M/L) of DnaK

interactors relative to the M/L ratios for the same proteins in soluble cell lysate. Positive values of the log transformed ratio of ratios indicate a preferential

interaction with DnaK as newly synthesized proteins. Groups of proteins are color coded: blue and green, strong tendency to interact as newly synthesized or

preexistent proteins; gray, intermediate tendency to interact as newly synthesized proteins; yellow, ribosomal proteins. Molecular weight (B) and relative

enrichment factors (REF) on DnaK (C) of the substrates preferentially interacting as preexistent or newly synthesized polypeptides as compared to E. coli soluble

lysate proteins and all DnaK interactors, respectively. The ribosomal proteins among DnaK interactors are analyzed separately. Horizontal line indicates the

median, whisker caps and circles indicate 10th/90th and 5th/95th percentiles, respectively. P values based on Mann-Whitney test: ***p % 0.001.

(D and E) Time-dependent dissociation of proteins from DnaK as determined by pulse-chase SILAC. (D) Kinetics of dissociation from DnaK shown for selected

proteins. Data were fitted to exponential decay. (E) Distribution of the number of predicted DnaK binding sites (Van Durme et al., 2009) for the DnaK-interactor

sets with fast and slow release kinetics as compared to all DnaK interactors. Horizontal line indicates themedian, whisker caps and circles indicate 10th/90th and

5th/95th percentiles, respectively. P value based on Mann-Whitney test: *p % 0.05.
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these proteins were found to be degraded in DKJ cells (Table

S2B). Thus, a prominent feature of the preexistent interactors

is their intrinsic tendency to populate aggregation-prone states,

consistent with a requirement for conformational maintenance

by DnaK.

Protein Flux through DnaK
To measure the residence time of interactors on DnaK directly,

KHis cells were pulse-labeled with Arg/Lys isotopes (H) for

2.5 min, followed by a chase with excess unlabeled amino

acids (L). Time course data based on the time-dependent

decrease of the H/L ratio were collected for 91 proteins, with

apparent dissociation rates from DnaK corresponding to half-

times of �30 s to �25 min (Figure 3D and Table S5). Proteins

with slow release rates (%30th percentile of the rate distribution;

27 proteins) include GroEL, IbpA, and SecB, presumably reflect-

ing the functional cooperation of these chaperones with

DnaK. Slow releasing proteins (excluding chaperones) are

characterized by above average enrichment on DnaK and an

average number of predicted binding sites compared to all

DnaK interactors (Figure 3E). Proteins with fast release rates

(R70th percentile of the rate distribution; 27 proteins) display

average enrichment on DnaK and tend to have a lower number

of binding sites (Figure 3E). Most of these substrates are pre-

dicted to bury hydrophobic regions effectively (data not shown).

Thus, the residence time (and consequently the enrichment) on

DnaK appears to be regulated, at least in part, by the frequency

of potential DnaK recognitionmotifs in the polypeptide chain and

by the efficiency of their burial during folding. Fast release rates

correlate generally with the tendency of proteins to interact with

DnaK only upon synthesis, whereas proteins that utilize DnaK

also for maintenance have longer residence times.

Partial Functional Redundancy of DnaK and TF
To understand how DnaK interfaces with other modules of the

chaperone network, we first investigated how the DnaK interac-

tome changes upon deletion of the upstream chaperone TF. We

identified theDnaK interactors in the TF deletion strain at 37�Cby

pulldown from H-labeled Dtig/dnaK-His6 (DT/KHis) cells using

L-labeled DT cells as the background. The number of identified

DnaK interactors increased to 998 (see Proteome Commons

Tranche repository), including�95%of the 672 DnaK interactors

identified in KHis cells (Figure 4A). (DnaK levels increased

�1.4-fold in DT/KHis cells; see Table S6D below.) The additional
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Figure 4. Effect of TF Deletion on the DnaK Interactome and Cellular Proteome

(A) Overlap of DnaK interactors in KHis (672 proteins) and DT/KHis cells (998 proteins).

(B and C) Change in the distribution of molecular weight (B) and isoelectric point (C) of the DnaK interactome in DT/KHis cells compared to all DnaK interactors

in KHis cells.

(D) Minimal overlap of the sets of proteins significantly decreased or increased in abundance in the proteome of DT/KHis cells with the set of proteins that

increased on DnaK in DT/KHis cells.

(E) Outer membrane destabilization in DT/KHis cells. Growth curves at 37�C of KHis and DT/KHis cells in the presence and absence of 0.1% deoxycholate or

50 mg/ml vancomycin. Arrow indicates the time of addition of deoxycholate or vancomycin after dilution of an overnight culture in freshM63medium at anOD600nm

of 0.025. Error bars represent SD of three independent measurements.
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proteins have physico-chemical properties similar to the

DnaK interactors in WT cells (data not shown). To detect quanti-

tative changes in the DnaK interactome upon TF deletion, we

performed a comparative analysis of H-labeled DT/KHis and

M-labeled KHis cells. Seventy-one proteins interacted to a signif-

icantly greater extent (1.4- to 3.3-fold) and 74 proteins to a lesser

extent with DnaK in DT/KHis cells (Tables S6A and S6B). The

proteins accumulating on DnaK are typically small in size

(<20 kDa) (Figure 4B) and include 17 highly basic ribosomal

proteins as well as ten basic nonribosomal proteins (pI R 9)

(Figure 4C), such as several secretory proteins with functions

in cell envelope and outer membrane biogenesis (Skp, AmpH,

YcgK, SlyB) (Table S6A). The proteins that interacted less exten-

sively with DnaK in DT/KHis cells are larger in size (Figure 4B) and

overlap with the large newly synthesized DnaK interactors

described above (Figure 3B). Apparently, they bind to DnaK

less efficiently in the absence of TF (Figure 4B).

We also performed a proteomic analysis of total cell lysate of

DT/KHis cells as compared to KHis cells. Only 40 of 1,490 quanti-

fied proteins were reproducibly reduced in abundance by 25%�
85% (p < 0.05) when TF was deleted (Table S6C), although their

rates of synthesis were unchanged (Figure S4); 27 proteins were

increased in abundance (Figure 4D and Table S6D). Both these

groups of proteins show minimal overlap with the proteins that

accumulated on DnaK upon TF deletion (Figure 4D). Strikingly,

most of the proteins that decreased in DT/KHis cells carry pre-

dicted signal sequences (Table S6C). These proteins include

numerous outer membrane b-barrel proteins, suggesting that

TF has a specific role in outer membrane protein biogenesis.

Indeed, DT/KHis cells proved to be sensitive to treatment with

detergents like deoxycholate and the antibiotic vancomycin,

which is indicative of a weakening of the outer membrane

(Figure 4E) (Nichols et al., 2011). The proteins that increased in

DT/KHis cells include cytosolic chaperones and proteases, as

well as the ATPase SecA required for membrane translocation

of outer membrane proteins (Table S6D). However, these

proteins are only moderately upregulated (�1.5-fold), suggest-

ing that loss of TF function at 37�C causes only limited proteome

stress.

These results indicate a functional redundancy of TF andDnaK

in the folding/assembly of ribosomal and other small, basic

proteins. In addition, TF has a specific role in the biogenesis

of outer membrane b-barrel proteins. This function cannot be

performed by DnaK and is only partially replaced by other chap-

erones, resulting in outer membrane destabilization.

Interplay of DnaK and GroEL/ES
GroEL and its cofactor GroES are upregulated in both the DKJ

and DT/KHis cells (Tables S2 and S6D), suggesting that these

chaperone systems form a functional network. Strikingly, 119

of the identified DnaK interactors are known GroEL substrates

(Fujiwara et al., 2010; Kerner et al., 2005), and together these

proteins amount to �30% of all DnaK interactors by mass.

The number of GroEL substrates on DnaK increases to 152 in

DT/KHis cells (Figure 5A, Table S1, and Proteome Commons

Tranche repository). Forty-two of these DnaK interactors are

obligate GroEL-dependent (class III) and thus must be delivered

toGroEL for folding, whereas 80 belong to class II and 30 to class

I (Figure 5B). Class II substrates are highly chaperone dependent

but can utilize either GroEL/ES or DnaK/DnaJ for folding in vitro,

whereas class I proteins have a lower chaperone dependence

(Kerner et al., 2005). About 90 of the previously identified GroEL

substrates were not detected on DnaK. Many of these proteins

are of low abundance and thus may have very low steady-state

levels on DnaK.

To investigate how the depletion of GroEL/ES affects the spec-

trum of DnaK interactors, KHis cells carrying the groELS operon

under arabinose control were shifted from arabinose (LS+/KHis)

to glucose for 3.5 hr (LS�/KHis) at 37
�C, which resulted in �97%

depletion of GroEL/ES (Kerner et al., 2005; McLennan and

Masters, 1998). Note that the cells grow normally during the first

5 hr of GroEL/ES depletion (data not shown). Ninety-two proteins

increased on DnaK (2- to 60-fold) upon GroEL depletion and 54

proteins decreased (Tables S7A and S7B). The former include

38 GroEL substrates (19 class III proteins) (Figure 5B). They are

enriched in domains with SCOP fold c.1 (TIM-barrel) (Figure S5A),

which is prominently represented among obligate GroEL sub-

strates (Fujiwara et al., 2010; Kerner et al., 2005) (Table S7A).

The proteins depleted from DnaK include 11 GroEL substrates,

mostlyof class II (TableS7B), suggesting that theyarepartiallydis-

placed from DnaK by class III substrates that are unable to fold.

We also analyzed the consequences of GroEL depletion at the

proteome level. Depletion of GroEL resulted in a �35%�95%

decrease in abundance of 114 proteins and a R2-fold increase

of 95 proteins (Tables S7C and S7D). The former include 44

GroEL substrates (24 class III proteins) (Figure 5B and Table

S7C) that are apparently degraded (Figure S5B). Strikingly, 18

of these GroEL substrates nevertheless accumulated on DnaK

(Figure 5C), suggesting that they are stabilized by DnaK for trans-

fer to the degradation machinery. The proteins that are upregu-

lated upon GroEL depletion include chaperones and proteases

(upregulated �2-fold) as well as 19 GroEL substrates (Table

S7C). In addition to degradation, loss of GroEL function at 37�C
also resulted in substantial aggregation of many obligate GroEL

substrates (Figure 5D) (Chapman et al., 2006; Kerner et al., 2005).

In summary, GroEL substrates interact extensively with DnaK.

Upon depletion of GroEL, obligate GroEL substrates accumulate

further on DnaK and are either transferred to the degradation

machinery or eventually aggregate.

Proteostasis Collapse upon Combined Deletion
of DnaK and TF
Prevention of protein aggregation is considered fundamental

to proteostasis maintenance (Hartl et al., 2011). To define the

relative contribution of the different chaperone systems to

aggregation prevention, we performed a comparative analysis

of the aggregated proteomes upon individual and combined

chaperone deletion at 30�C, where cells lacking DnaK/DnaJ

and TF (DKJT) still grow, albeit slowly (Figure 1B and Figure S1A).

As described above, 474 proteins increased significantly in the

insoluble fraction of DKJ cells, compared to only 15 proteins in

DT/KHis cells and 33 proteins in GroEL/ES depleted (LS�/KHis)

cells (Figure 6A and Table S8), indicating a major role of the

DnaK system in aggregation prevention. Upon combined dele-

tion of DnaK/DnaJ and TF, 1,087 proteins aggregated, including

403 DnaK interactors identified in this study (Figure 6A and
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Table S8). The aggregated proteins also included 149 of a total of

196 proteins shown previously to aggregate in cells lacking

DnaK/DnaJ and TF (Deuerling et al., 2003; Martinez-Hackert

and Hendrickson, 2009). Moreover, whereas in DKJ cells only

65 proteins aggregated substantially (>5% depletion from the

soluble fraction), the number of substantially aggregated pro-

teins increased 4-fold upon additional loss of TF (Figure 6A

and Table S8). Strikingly, the size distribution of these proteins

showed a strong shift to large proteins >50 KDa, frequently con-

tainingmultiple domains (Figure 6B and Table S8). Many of these

proteins (�50%) are identified DnaK substrates of average or

above average abundance (Table S1) and represent a subset

of the large proteins that interact with DnaK on synthesis (Fig-

ure 3B). Apparently, these proteins are chaperone-dependent

but can utilize either the DnaK system or TF for efficient folding.

Remarkably, �70% of the previously identified GroEL sub-

strates (167 proteins) (Kerner et al., 2005) were also recovered

in the aggregate fraction ofDKJT cells (Figure 6A), many of which

aggregated substantially (Table S8). This effect was observed

despite a �10-fold upregulation of GroEL/ES (data not shown).

Aggregation of GroEL substrates was essentially undetectable

in DKJ or DT/KHis cells at 30�C (Table S8). Thus, substrate

delivery to GroEL critically depends on the upstream chaperones

but can be performed by either DnaK or TF.

A large number of ribosomal proteins also accumulated in the

insoluble fraction of DKJT cells, almost all of which were identi-

fied as DnaK interactors (Table S8). Deletion of DnaK/DnaJ alone

resulted in the aggregation of only three ribosomal proteins,

whereas none of these proteins aggregated in the DT/KHis cells.

Although aggregation did not cause a significant depletion of

ribosomal proteins from the soluble fraction, these results sug-

gested that DKJT cells have a defect in ribosomal biogenesis.

Indeed, numerous ribosomal proteins were reduced in abun-

dance by 10%�30% in total lysates of DKJT cells compared

to KHis cells and the single chaperone deletions (Figure 6C). Inter-

estingly, two small ribosomal proteins (RpsQ S17 and RpsT S20)

were increased in abundance, an effect that was also detected in

DKJ cells (Figure 6C).

In summary, the combined loss of DnaK/DnaJ and TF results

in a pronounced proteostasis collapse characterized by the

aggregation of large, multidomain proteins, disruption of proper

protein flux through GroEL/ES and defective ribosomal biogen-

esis. These findings explain the strong growth defect of DKJT

cells at 30�C and their inability to grow at higher temperatures.

DISCUSSION

The DnaK Interactome
The DnaK interactome characterized here comprises at least

�700 proteins in WT cells and �1,000 proteins in TF-deleted

cells, demonstrating the pervasive role of the Hsp70 chaperone

system in protein folding and proteostasis. While the vast
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majority of DnaK substrates (�80%) are cytosolic, DnaK also

interacts with a small subset of proteins of the inner membrane,

periplasm and outer membrane. Under conditions of exponential

cell growth at 37�C, proteins bind to DnaK preferentially upon

synthesis andmay return to DnaK during their life time for confor-

mational maintenance.

The dependence of proteins on DnaK for folding or mainte-

nance is partially buffered by TF and other chaperones, but is

reflected by the relative enrichment of substrates on DnaK. By

measuring for each protein the fraction of total that is chap-

erone-bound, we defined a set of�180 interactors that are highly

enriched on DnaK and amount to about 40% of the total mass of

DnaK substrates. DnaK-enriched proteins are generally of

average or below average cellular abundance and of low

solubility. Essential proteins are underrepresented among this

group. DnaK dependence tends to correlate with the number

of predicted DnaK binding sites in polypeptide sequences, and

the propensity of proteins to populate structurally dynamic inter-

mediates. Moreover, proteins that interact extensively with DnaK

are often part of heterooligomeric complexes (Figure 7A).

Our findings suggest that proteins of lower abundance are

frequently prone to misfolding or aggregation and thus have

high chaperone requirements (with dependence on a specific

chaperone system), whereas the folding properties of abundant

(and often essential) proteins have been optimized in evolution,

resulting in a reduced (or less specific) chaperone requirement.

This is consistent with the existence of a negative correlation

between the calculated aggregation-propensity of proteins and

their cellular abundance (Tartaglia et al., 2010; Tartaglia et al.,

2007). Indeed, the less abundant, DnaK-enriched substrates

are aggregation-prone upon translation in vitro (Niwa et al.,

2009) and are either degraded or aggregate in the absence of

DnaK in vivo, reflecting their specific requirement for DnaK for

folding and conformational maintenance. Interestingly, several

DnaK-enriched substrates contain at least one domain with

SCOP fold c.37 (Figure 7A). Proteins with this and other complex

a/b topologies have to formmany long-range interactions during

folding and are thus likely to populate dynamic folding interme-

diates exposing hydrophobic residues (Gromiha and Selvaraj,

2004). Moreover, proteins with c.37 domains often assemble

into heterooligomeric complexes (Figure S2G), a process that

may be facilitated by DnaK’s ability to bind partially structured

protein regions in addition to extended peptide segments

(Schlecht et al., 2011). On the other hand, many large proteins

of higher cellular abundance but lower enrichment on DnaK are

adapted to utilize either DnaK or TF for de novo folding. These
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(B) Size distribution of >5% aggregated proteins in DKJ and DKJT cells in comparison to soluble lysate proteins of WT cells.

(C) Changes in abundance of small and large ribosomal proteins in DKJ, DT/KHis, and DKJT relative to KHis cells. SILAC ratios (mutant/KHis) are shown with

standard deviations from three independent experiments for 21 small and 31 large ribosomal proteins.
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proteins aggregate substantially only in the absence of both

chaperones, defining sequence length, and hence multidomain

topology, as a property strongly correlated with chaperone

dependence.

Proteins with essential functions are underrepresented among

the DnaK-enriched substrates. However, our identification of

the essential tubulin homolog, FtsZ, and the cooperating

MinCDE proteins as strong DnaK binders (Table S1) would

explain why DnaK mutant cells have defects in cell division

(Bukau and Walker, 1989). Furthermore, the sensitivity of DdnaK

cells to antibiotics causing DNA damage (Nichols et al., 2011) is

consistent with the finding that proteins of COG class L (DNA

replication, recombination and repair), such as the nucleotide

excision repair protein UvrA, are overrepresented among the

DnaK-enriched substrates (Figure S2). UvrA is a large, heteroo-

ligomeric protein with two c.37 domains; which aggregates to
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30% of total in the absence of DnaK/DnaJ

already at 30�C. The sensitivity of DdnaK cells

to antibiotics inhibiting protein synthesis (Nich-

ols et al., 2011) would correlate with the exten-

sive interaction of DnaK with ribosomal proteins

and the degradation in DKJ cells of several

DnaK interactors of COG class E (amino acid

transport and metabolism). Finally, the sensi-

tivity ofDdnaK cells to acidic conditions (Nichols

et al., 2011) is consistent with the 80%�97%

degradation in DKJ cells of the periplasmic

chaperones of acid-denatured proteins, hdeA,

and hdeB.

Interplay between Chaperone Modules
Our analysis of the DnaK interactome in cells

lacking TF or depleted of GroEL/ES under-

scores the significance of DnaK as a central

hub in the chaperone network. The observed

accumulation of a subset of proteins on DnaK

in the absence of TF defines in a quantitative

manner the functional redundancy between

these two chaperone systems described earlier

(Deuerling et al., 1999; Teter et al., 1999). Inter-

estingly, these substrates comprise mostly

ribosomal and other small (<20 kDa), positively

charged proteins (Figure 7B), which may nor-

mally interact predominantly with TF, but shift to DnaK when

TF is absent. Indeed, TF has a negative net charge (Ferbitz

et al., 2004; Martinez-Hackert and Hendrickson, 2009), which

may facilitate its interaction with positively charged nascent

polypeptides, and a role of TF in the folding/assembly of ribo-

somal proteins has been suggested (Martinez-Hackert and

Hendrickson, 2009).

In contrast, the DnaK system is unable to replace the role of TF

in the biogenesis of a set of secretory proteins, prominently

including b-barrel proteins of the outer membrane (Figure 7B).

These proteins undergo partial degradation in cells lacking TF,

suggesting a specific role of TF in translocation of outer mem-

brane preproteins across the inner membrane. Such a function

of TF would be consistent with the initial identification of TF as

a chaperone of proOmpA translocation in vitro (Crooke et al.,

1988) and with the finding that TF modulates the kinetics of
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protein export (Lee and Bernstein, 2002; Ullers et al., 2007). It is

also of interest in this context that TF structurally resembles the

periplasmic chaperone for outer membrane proteins, SurA (Bitto

and McKay, 2002; Ferbitz et al., 2004).

An effective functional cooperation apparently exists between

TF and the DnaK system in the folding of a group of large multi-

domain proteins that aggregate substantially only in the absence

of both chaperones. These proteins may normally interact

sequentially with TF and DnaK during translation or with multiple

TFmolecules in the absence of DnaK, as shownwith largemodel

proteins in vitro (Agashe et al., 2004; Kaiser et al., 2006). Notably,

most of these proteins would be unable to interact productively

with GroEL, as the capacity of the GroEL/ES folding compart-

ment is limited to proteins up to �60 kDa (Kerner et al., 2005).

The DnaK interactome overlaps extensively with the set of

previously identified GroEL substrates (Figure 7B), most of which

are below 50 kDa in size (Kerner et al., 2005). GroEL substrates

amount to nearly 30%of the total mass of DnaK interactors, indi-

cating that protein transfer between DnaK and GroEL is a central

function of the chaperone network.We estimate that only aminor

fraction of GroEL substrates (�20%) are transferred directly from

TF to GroEL, circumventing DnaK (Figure 7B). Notably, upon

GroEL-depletion, obligate GroEL substrates accumulate further

on DnaK, reflecting an important role of DnaK as a buffer in stabi-

lizing these proteins until GroEL is available or in transferring

them to the proteolytic system.

Defining Proteostasis Collapse
Upon growth at 30�C, the loss of individual chaperone

modules—DnaK/DnaJ, TF or GroEL/ES—is remarkably well

tolerated by E. coli cells in terms of preventing major protein

aggregation. Instead, degradation is the strongly preferred fate

of misfolded proteins under these conditions (Tables S2B,

S6C, and S7C). However, proteostasis collapse characterized

by extensive aggregation of relatively abundant proteins occurs

when TF is deleted in addition to DnaK/DnaJ. Apparently, the

chaperone capacity available for the folding and stabilization of

large proteins in particular becomes severely limiting and, as

a result, aggregation is favored relative to degradation. Further-

more, our data show that the loss of the upstream chaperones,

TF and DnaK/DnaJ, disrupts the normal protein flux to GroEL,

resulting in wide-spread aggregation of GroEL-substrates,

despite a �10-fold upregulation of GroEL under these condi-

tions. The failure of newly synthesized GroEL substrates to reach

the abundantly expressed chaperonin signifies the systematic

collapse of the chaperone network.

EXPERIMENTAL PROCEDURES

Bacterial Strains

The E. coli strains used were based on MC4100 (WT) and are described in

Extended Experimental Procedures.

Isolation of DnaK-Interactor Complexes

SILAC labeling of cells was performed at 37�C in M63 medium supplemented

with light (L), medium (M), or heavy (H) arginine and lysine isotopes (see

Extended Experimental Procedures). DnaK interactors were isolated from cells

growing exponentially (OD600nm �1). In pulse-SILAC experiments, L-labeled

cells were shifted to M-medium for 2.5 min; in pulse chase-SILAC experi-

ments, L-labeled cells were shifted to H-medium for 2 min and then chased

by addition of a 100-fold excess of L arginine and lysine for 2, 4, and 8 min.

Spheroplasts were prepared as described (Ewalt et al., 1997) and lysed in

hypo-osmotic buffer containing apyrase. Soluble cell lysate was prepared by

centrifugation (20,000 3 g, 30 min). Talon beads (Invitrogen) were used to

isolate the DnaK-His6 and its interactors. The eluates containing bound

proteins obtained from equal amounts of L-, M-, or H-labeled cells were mixed

(see Extended Experimental Procedures). Samples were prepared for LC-MS/

MS as described (Figure 1C) (Ong and Mann, 2006). The spectra were inter-

preted using MaxQuant version 1.0.13.13 (Cox and Mann, 2008) combined

with Mascot version 2.2 (Matrix Science, www.matrixscience.com).

The MaxQuant tables along with a full list of identified proteins and

quantitations are available at the Proteome Commons Tranche repository

(https://proteomecommons.org/) by inserting the following tranche code:

RKuFJcuu8iBnZHlBN4Nth0pz+HQgPNvV0zJvdnMN8wyAN8l7ifufEnmW6j2C

wn0msEakFC6eulEqlYv+7B+dFALonrgAAAAAAAAKDA== and passphrase:

vqXGUF93rGLCraqm1yIl.

The raw data is accessible using tranche codes and passphrase given in

Extended Experimental Procedures.

Fractionation of Total Cell Lysate

E. coliMC4100 dnaK-His6 (KHis) and chaperone mutant strains were grown to

OD600nm �1 at 30�C or 37�C, as indicated, in the respective SILAC medium.

Cells were collected, flash frozen, and lysed by sonication. Whole proteome

analyses on total lysates, soluble, and detergent insoluble fractions (Deuerling

et al., 2003) were performed by LC-MS/MS as described in Extended Exper-

imental Procedures.

Bioinformatic Analysis

Bioinformatics and statistical analyses of the physico-chemical properties of

protein sequences were performed as detailed in Extended Experimental

Procedures. Note that both DnaJ and GrpE, the cofactors of DnaK, are

excluded in all bioinformatic analyses.
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René, O., and Alix, J.-H. (2011). Late steps of ribosome assembly in E. coli are

sensitive to a severe heat stress but are assisted by the HSP70 chaperone

machine. Nucleic Acids Res. 39, 1855–1867.
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Chapter VI

The ccSOL algorithm

Escherichia coli is one of the most widely used hosts for the production
of recombinant proteins. However, very often the target protein accumu-
lates into insoluble aggregates in a misfolded and biologically inactive
form (Ventura, 2005). For this reason, I took advantage of experimen-
tal data on ~70% of the E. coli proteins (Niwa et al., 2009) to design a
sequence-based algorithm to predict protein solubility. In this method, a
number of physico-chemical properties are used to describe the polypep-
tide: coil/disorder, hydrophobicity, hydrophilicity, β-turn, α-helix propen-
sities. These features are then provided as input to a support vector ma-
chine classifier, which allows the calculation of protein solubility with
great accuracy.

Agostini, F., Vendruscolo, M., and Tartaglia, G. G. (2012). Sequence-based pre-
diction of protein solubility. Journal of Molecular Biology, 421(2-3):237–241.
PMID: 22172487
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Chapter VII

ccSOL omics

The aforementioned ccSOL method was introduced in 2012 to predict the
in vitro solubility of E. coli proteins using physico-chemical information
contained in primary structure. However, in its original implementation
ccSOL allowed predictions of one protein at a time, making it difficult
to perform large-scale analyses. Therefore, we decided to develop ccSOL
omics, the first web-server for proteome-wide predictions of solubility. The
training was performed using a neural network on data retrieved from the
Target Track database and filtered using criteria similar to Smialowski et al.
(2012). In this new release we introduce three significant improvements:
i) validation of omics performances using large sets comprising >65000
non-redundant proteins (similarity ≤30%); ii) solubility profiles to reveal
the most/least soluble regions within each protein sequence and iii) detec-
tion of susceptible regions that change solubility upon single point muta-
tion. The algorithm shows an overall accuracy of 78% in predicting protein
solubility.

This article has been submitted for publication as ”Application Note” to the
”Bioinformatics“ journal.
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ABSTRACT 
Summary: Here we introduce ccSOL omics, a webserver for large-
scale calculations of protein solubility. Our method allows (i) proteo-
me-wide predictions; (ii) identification of soluble fragments within 
each sequences; iii) exhaustive single-point mutation analysis.  
Results: Using coil/disorder, hydrophobicity, hydrophilicity, β-sheet 
and α-helix propensities, we perform large-scale predictions of pro-
tein solubility. Our approach shows an accuracy of 79% on the train-
ing set (36990 Target Track entries). Furthermore, cross-validation 
on three independent sets indicates that ccSOL omics discriminates 
soluble and insoluble proteins with an accuracy of 74% on 31760 
proteins sharing less than 30% sequence similarity.  
Availability: ccSOL omics can be freely accessed on the web at 
http://s.tartaglialab.com/page/ccsol_group. 
Supplementary information: Documentation and tutorial are avail-
able at http://s.tartaglialab.com/static_files/shared/tutorial_ccsol_omics.html. 

1 INTRODUCTION  
The early methods for prediction of protein aggregation and solu-
bility were trained on 100 proteins or less (Tartaglia et al., 2005).  
Although able to identify patterns in proteome-wide analyses (Fer-
nandez-Escamilla et al., 2004; Conchillo-Solé et al., 2007), these 
algorithms were not built to make large-scale predictions of protein 
solubility. As a matter of fact, to perform proteome-wide predic-
tions of protein solubility, one should train models using a high 
number of solubility data. In 2012, we introduced the ccSOL 
method (Agostini et al., 2012) to predict protein solubility using 5 
physico-chemical properties: coil/disorder, hydrophobicity, hydro-
philicity, β-sheet  and α-helix. To identify these features, we divid-
ed the original database, consisting of experimental solubility data 
(Niwa et al., 2009), into two subsets containing the most soluble 
(1081 entries) and least soluble (1078 entries) proteins and calcu-
lated the discriminative power of a number of physicochemical 
properties collected through a literature search. Other methods 
have been developed to predict protein solubility using amino acid 
sequences alone. For instance, PROSO II (Smialowski et al., 2012) 
exploits occurrence of monopeptides and dipeptides. Two main 
differences between ccSOL and PROSO II are i) the input varia-
bles and ii) the training sets employed for validation. PROSO II 
was trained on the pepcDB database [now Target Track (Berman et 
al., 2009)] that stores target and protocol information provided by 
Protein Structure Initiative centers, while ccSOL employs soluble 
fractions of E. coli proteins (Niwa et al., 2009). Both ccSOL and 

PROSO II perform accurate predictions when used to predict en-
dogenous or heterologous soluble expressions, respectively 
[ccSOL: 76% accuracy; PROSO II: 75% accuracy (Smialowski et 
al., 2012)]. However, we note that the experimental status of a 
number of entries has been updated in Target Track 
(http://sbkb.org/tt/), which can be used to derive solubility of pro-
teins (see Supplementary information). Here, we introduce a new 
implementation of the ccSOL method to perform large-scale solu-
bility predictions of both endogenous and heterologous expression 
in E. coli. Specifically, our algorithm exploits Target Track infor-
mation and allows identification of soluble and insoluble regions 
within protein sequences. 

2 WORKFLOW AND IMPLEMENTATION 
The ccSOL omics server allows the investigation of large protein datasets 
(see online documentation). Once the user provides sequences in FASTA 
format, the algorithm calculates: 

• Solubility profiles. To identify soluble fragments within each polypeptide 
chain, protein sequences are divided into elements and calculate individ-
ual solubility propensities. Starting from the N-terminus of a protein, we 
use a sliding window of 21 amino acids that is moved one residue at a 
time until the C-terminus is reached. The solubility propensity profile of 
each window is calculated with ccSOL as defined in our original publica-
tion (Agostini et al., 2012). 

• Sequence susceptibility. For each sequence analyzed, the algorithm com-
putes the effect of single amino acid mutations at different positions. This 
approach is particularly useful to identify regions susceptible to change 
solubility upon mutation. All variants are reported along with their 
scores, which provides a basis to engineer protein sequences and test hy-
potheses such as the occurrence of specific mutations in pathology. 

• Solubility score. The solubility profile represents a unique signature 
containing information on all fragments arranged in sequential order. The 
profile can be used to estimate the solubility upon expression in the E. 
coli system. As sequences have different lengths, we exploit a method 
based on Fourier’s transform (Bellucci et al., 2011; Tartaglia et al., 2007) 
that allows comparison of polypeptide chains with different sizes. Using 
100 Fourier’s coefficients, we trained an algorithm that has the same ar-
chitecture developed for the analysis of expression levels in E. coli [neu-
ral network with 10 inner neurons and one output (Tartaglia et al., 
2009)]. 

These three types of analyses are performed for each protein in the submit-
ted dataset if its size is below 500 entries (only the solubility score will be 
computed otherwise). 

Application Note 

ccSOL omics: a web server for large-scale prediction of protein 
solubility 
Federico Agostini1,2, Davide Cirillo1,2 , Carmen Maria Livi1,2 and Gian Gaetano Tar-
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3 PERFORMANCES 
As an illustrative example, we report human prion protein. Prion 
diseases are a group of neurodegenerative disorders associated 
with a conformational transformation of the prion protein (PrPC) 
into a self-replicating conformer PrPSc. Our algorithm correctly 
identifies the fragment 130-170 as the most insoluble (Figure 1A-
C) together with region 231-253 (not present in the mature form). 
This finding is very well in agreement with what has been dis-
cussed in previous reports (Tartaglia et al., 2005, 2008). The anal-
ysis of susceptible fragments identifies a number of experimentally 
validated mutations (e.g. G131V, S132I, R148H, V176I, D178N) 
associated with lower solubility and located in the region promot-
ing PrPSc conversion (Corsaro et al., 2012). We validated ccSOL 
omics with a 10-fold cross validation on Target Track [total of 
36990 entries with 30% redundancy (Fu et al., 2012)] and ob-
served 79% accuracy in discriminating between soluble and insol-
uble proteins. Furthermore, we tested the algorithm on three inde-
pendent datasets containing protein expression data [total of 31760 
entries taken from: E. coli (Niwa et al., 2009), SOLpro (Magnan et 
al., 2009) and PROSO II (Smialowski et al., 2012) and found 74% 
accuracy (Figure 1D), which indicates that our tool achieves good 
performances (see Supplementary information).  

4 CONCLUSIONS 
The ccSOL omics algorithm shows excellent performances in pre-
dicting solubility of endogenous and heterologous genes in E. coli. 
We hope that the webserver will be useful for biotechnological 
purpose, as it could be for instance employed to design fusion tags 
for soluble expression (Wilkinson and Harrison, 1991). Moreover, 
we plan to develop a new implementation of the algorithm to as-
sess protein solubility in other expression systems, such as S. cere-
visiae, which will lead to a better understanding of i) sequence 
evolution, ii) post-translational modifications and iii) environmen-

tal conditions. In the future, it will be also important to develop 

new methods to understand the role of chaperones in preventing 
protein aggregation (Tartaglia et al., 2010) and evaluate if other 
molecules, such as RNA, can contribute to protein solubility (Choi 
et al., 2009).  
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Figure 1. Human Prion Solubility and ccSOL Performances. A) Starting from the N-terminus, ccSOL computes the solubility profile using a sliding window moved towards the 
C-terminus. ccSOL identifies the fragment 130-170 as the most insoluble within the C-terminus of human PrP. B-C) Maximal and average susceptibility upon single point muta-
tion. D) We trained on the Target Track set (AUROC = 74.13%) and tested the approach on E. coli proteins [AUROC = 92.2%; (Niwa et al., 2009)], SOLpro [AUROC = 79.0%; 
(Magnan et al., 2009)] and PROSO II [AUROC = 75.6%; (Smialowski et al., 2012)]. Inset: overall score distribution for soluble (red) and insoluble (blue) proteins.  
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Discussion

In this thesis, I presented two distinct but intimately connected topics: the
ability of proteins to interact with RNA molecules and the relation between
protein solubility and aggregation propensities. Specifically, I focused on
the development of methods to characterize ribonucleoprotein associations
(Chapters I, II, III and IV) and physico-chemical features defining pro-
tein solubility (Chapters V, VI and VII). I applied these computational ap-
proaches to investigate proteins binding to the long non-coding Xist (Chap-
ter II) as well as to unravel determinants for DnaK chaperone recognition
(Chapter V). The link between RNA-binding ability and protein aggrega-
tion is particularly relevant if one considers that a number of amyloido-
genic proteins have an RNA-binding ability. For example, as discussed
in two recent publications that I co-authored (Cirillo et al., 2012; Zanzoni
et al., 2013), proteins involved in neurodegenerative diseases such as TDP-
43 and FUS (amyotrophic lateral sclerosis) and FMRP (fragile X mental
retardation and tremor/ataxia syndrome), regulate a large part of the tran-
scriptome and possess an intrinsic propensity to aggregate (Liu-Yesucevitz
et al., 2011). Intriguingly, TDP-43 and FMRP are able to bind to their own
mRNAs (Ayala et al., 2011; Schaeffer et al., 2001; Zanzoni et al., 2013),
which can be regarded as a way to control their expression levels and, pos-
sibly, avoid high concentration and aggregation.

The role of protein-RNA interactions has been intensively studied for
its centrality in transcriptional and post-transcriptional events (Bernhardt,
2012; Keren et al., 2010). Alternative splicing represents one example of
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the importance of protein-RNA interactions (Keren et al., 2010). In fact,
splicing gradually creates protein functionalities without the need of addi-
tional genes and without affecting existing products (Gal-Mark et al., 2009;
Keren et al., 2010; Zarnack et al., 2013). Protein interaction networks have
been studied for decades yielding remarkable results concerning the un-
derstanding of basic biological mechanisms (Ryan et al., 2013; Yu et al.,
2013). Nevertheless, the recent discovery of a plethora of RNAs, including
lncRNAs and other previously uncharacterized transcripts, demanded a re-
examination of biological networks to include these new effectors in the
established protein-centric landscape (Prasanth and Spector, 2007). This
led to the formulation of a more heterogeneous perspective, where RNA
ceased to be considered a mere carrier of information but rather an active
player in nearly every cellular process.

RNA as the key player

It has now become clear that every RNA inside the cell makes contact
with a wide variety of molecules throughout its lifetime and that the abil-
ity to participate in the interactions is independent of the coding or non-
coding potential of the transcript. Compelling evidence indicates that the
complexity of higher organisms correlates with relative amount of non-
coding RNA rather than the number of protein-coding genes (Barrett et al.,
2012). One possible explanation of this phenomenon derives from the
observation that the number and complexity of regulatory pathways in-
creases in higher organisms (Levine and Tjian, 2003), and that within these
pathways, there is less conservation within non-coding sequence, produc-
ing phenotypic variation between both individuals and species (Mattick,
2001). The largest and best-characterized group of proteins engaging cod-
ing and non-coding transcripts in the formation of RNPs is represented
by the RBPs. These are generally defined as proteins with the ability to
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bind to RNA, which is usually associated with one or multiple RBDs. The
human genome harbors 1783 genes encoding known RBPs or proteins an-
notated to contain at least one RBD (Ascano et al., 2013). Nonetheless, the
number of proteins with identified RNA-binding ability, either possess-
ing canonical or non-canonical RBDs (Lunde et al., 2007), is increasing
(Baltz et al., 2012; Castello et al., 2012; Kwon et al., 2013). The fact that
some proteins are able to bind to RNA with domains or regions that are not
specifically evolved to this precise purpose (Castello et al., 2012; Kwon
et al., 2013) is quite intriguing. This suggests a scenario where unexpected
players can exert crucial functions in domains that were previously thought
of as exclusively regulated by selected RBD-containing proteins. With this
in mind, computational models represent an important source of informa-
tion that can be exploited to identify hidden trends and understand the ba-
sics of molecular recognition. As a matter of fact, bioinformatic tools can
perform exhaustive analyses and extract distinctive features, hence facili-
tating the design of new experiments. For example, it has been shown in
several studies that the composition of primary protein structure, and the
physico-chemical properties associated with it, can be used to describe the
amino acid regions that are more likely to be involved in binding to RNA
molecules (Terribilini et al., 2007; Fernandez et al., 2011). This practice,
however, cannot be applied to transcripts as very little is known of the
features and specificities of RNA-binding sites. Furthermore, due to the
limitations of current experimental approaches, it remains difficult to si-
multaneously investigate the plethora of RBPs bound to a single transcript
and the RNA regions that are likely to be involved in the binding. This has
resulted in experimentalists having to rely on protein analysis to investigate
specific signatures. Nonetheless, experimental studies and computational
analyses, such as those presented in this thesis, are providing compelling
insights into the rules that govern RNP formation.
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RNA recognition elements

A typical procedure for experimental determination of the RNP composi-
tion is the identification of exact protein binding sites and the derivation
of the underlying RNA recognition elements (RREs) (Gerstberger et al.,
2013). As a matter of fact, computational definition of patterns is ex-
tremely useful to detect false positives and negatives, and to highlight pres-
ence of degenerate motifs and putative co-binding factors (Li et al., 2014).
On the one hand, RBPs can carry one or multiple RBDs that recognize the
RNA with different affinities and in vivo they can compete for the same or
proximal binding sites (Ascano et al., 2013). On the other hand the bind-
ing sites within transcripts generally consists of sequence patterns, from
three to eight nucleotides in length, and each of these motifs can form or
possess different secondary structure conformations. Therefore, although
recognition of RNA binding site and assembly of multimeric complexes is
mainly performed by proteins (Wan et al., 2011), it is also important to con-
sider the specific features of the target molecules. Hence, the identification
of sequence motifs, structural patterns and interplay between them would
greatly advance our understanding of the mechanisms by which transcripts
participate in post-transcriptional regulation (Li et al., 2014).

RNA motifs

Motif discovery methods can be roughly classified as profile-based, such
as MEME (Bailey and Elkan, 1994), or pattern-based like CONSENSUS
(Hertz and Stormo, 1999) (see Tompa et al. (2005) for a review and perfor-
mance study of popular motif discovery tools). Most of these tools, how-
ever, compare the signal against a non-informative null distribution and do
not easily scale to very large datasets. To address these problems, a number
of discriminative motif discovery methods that perform large-scale analy-
ses have been developed (Bailey, 2011; Thomas-Chollier et al., 2011). The

82



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 83 — #95

strength of these approaches mainly consists in the calculation of motif en-
richment in a foreground dataset against an explicitly stated background
dataset, which is carefully selected to eliminate systematic biases present
in the foreground (Yao et al., 2013). The SeAMotE algorithm has been
introduced as an approach to perform discriminative large-scale motif dis-
covery analyses in datasets of nucleic acid sequences. The performances of
the method were evaluated on a series of CLIP data sets and the identified
patterns compared to the ones obtained with DREME (Bailey, 2011)and
other methods. Both algorithms are able to impartially discriminate bound
and unbound sequences by identifying representative k-mers motifs. Per-
formances seem to correlate in most of the cases, regardless of the discrim-
ination level achieved in the individual analysis. As a matter of fact, both
tools evaluate nucleotide composition of the primary sequence, but do not
take into account other sources of information. Therefore, cases showing
poor performances can be explained by involvement of other factors, such
as secondary structure or other positional features, in the determination of
binding propensities. As an example, the RNA motifs method was recently
introduced to identify enriched groups of non-degenerate or degenerate nu-
cleotide tetramers, also including the positional information along the tran-
scripts (Cereda et al., 2014). The approach was applied to evaluate clusters
of tetramers in three regions around the splice sites of alternative exons.
By integrating the positional information with motif search, the authors
were able to successfully infer the binding sites for a number of validated
RBPs (Cereda et al., 2014). This result indicates that, although the analyses
performed using primary sequences provide quick and informative results,
predictions of RBP motifs can be further improved (Hiller et al., 2006). As
a matter of fact, the implementation of additional aspects, such as sequence
conservation, RNA structure and analysis of non-clustered contiguous mo-
tifs, into motif discovery methods would definitely facilitate the compre-
hension of poorly understood and non-canonical RNA-protein recognition
mechanisms.
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Structural patterns

Although primary sequence can be used for binding site predictions, re-
cent studies indicate that knowledge of target-site structural conformation
increases the in vivo inference of the binding site (Li et al., 2010; Ray
et al., 2013). As a matter of fact, comparison of transcripts, such as lncR-
NAs, have been difficult owing to the poor degree of sequence conserva-
tion of most of these genes (Derrien et al., 2012). As the strongest signal
contained in these class of molecules is usually represented by evolution-
arily conserved secondary structures (Johnsson et al., 2014), lncRNAs are
challenging our ability of comparison, classification and search using con-
ventional alignment tools (Bussotti et al., 2013). Nevertheless, as shown
by Siebert and Backofen (2005) and Wilm et al. (2008), the combination
of multiple sequence alignment with the information on RNA secondary
structures is currently representing one the most promising approaches. A
similar strategy has been adopted by RNA context (Kazan et al., 2010),
which takes advantage of established RNA secondary structure predictive
methods (Bernhart et al., 2006; Bompfünewerer et al., 2008) to calculate
accessibility of the putative binding motifs. A number of algorithms exist
that are able to infer RNA secondary structures using minimum free energy
(MFE) or stochastic free context grammar (SCFG) approaches (Hofacker,
2014; Giegerich, 2014; Lai et al., 2013; Seetin and Mathews, 2012). The
use of such techniques, however, is often limited. Indeed, these methods
do not take into account the contribution of the environment, and predic-
tions may not accurately represent the typical base pairing that occurs in
the structure (Bussotti et al., 2013). To address these concerns, some meth-
ods consider the ensemble of all possible structures (Bernhart et al., 2006;
Bompfünewerer et al., 2008; Zuker and Stiegler, 1981). catRAPID relies
on the ViennaRNA package (Hofacker, 2003), which has an accuracy of
~76% (Lorenz et al., 2011), to generate predictions of secondary structure
ensembles. These structures are then dissected to extract information on
the pairing profile of each nucleotide. By means of this procedure, the
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probability of catRAPID predicting a protein-RNA interaction has a 72%
correlation with secondary structure information. However, a higher cor-
relation factor is consistently expected with the enhancement of secondary
structure prediction accuracies. Furthermore, as the predictive power of
global RNA structure becomes less accurate as the length of the RNA in-
creases (Doshi et al., 2004), we developed the catRAPID fragments mod-
ule that exploits the RNALfold algorithm (Lorenz et al., 2011) to determine
interactions for the most stable local structure.

A number of lncRNAs (Chapter II), inherently possess evolutionarily con-
served secondary structures (Smith et al., 2013; Johnsson et al., 2014). Dis-
ruption of such special organization can lead to a complete loss of RNA-
protein interaction and, ultimately, of RNP function (Mercer and Mattick,
2013). For example, the RepA of the Xist transcript (Brown et al., 1992)
contains eight repeated sequence elements arranged in a specific three-
stem-loop architecture, whose progressive impairment has been demon-
strated to prevent the recruitment of some, to all of the PRC2 complex sub-
units (Maenner et al., 2010). We demonstrated that the catRAPID method
is able to identify the interaction of the RepA region and the PRC2 com-
plex. Furthermore, the gradual deletion of the repeated elements, involved
in the stem-loop formation, was reflected by a decrease of the predicted in-
teracting score. Although no evidence has been provided for the existence
of a structural configuration in the RepC of Xist, the presence of repeated
elements and the site-specific binding of the YY1 protein (Jeon and Lee,
2011) suggest the possibility that a similar recognition mechanism could
be involved.

The implementation of in vitro/in vivo derived information in catRAPID
calculations represent an enticing direction for the prediction of protein-
RNA associations. As a matter of fact, the use of high quality experimen-
tally derived secondary structure information (Kertesz et al., 2010) will
definitely improve the performance of computational models in predicting
RNA regions involved in the binding. Classical experimental methods for
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RNA structure determination include X-ray crystallography, NMR, cryo-
electron microscopy and chemical and enzymatic probing. However, so far
these methods have only been applied in the analysis of single RNA and
the length of probed transcripts often limits their use. To address these is-
sues, new and promising large-scale techniques are rapidly emerging in the
field. Parallel Analysis of RNA Structure (PARS) is based on the genera-
tion of precise RNA fragments, by digestion using a single strand specific
enzyme (S1) and a double-strand specific enzyme (V1), followed by deep
sequencing (Kertesz et al., 2010).

Similarly, high-throughput sequencing of fragments generated by single-
strand specific nuclease (P1) has been applied to study RNA structures in
different cells. In this case, the selective 2’-hydroxyl acylation analyzed by
primer extension (SHAPE) chemistry, combined with multiplexed bar cod-
ing and next generation sequencing, was able to measure the structures of a
complex pool of RNAs (Lucks et al., 2011). Finally, the Parallel Analysis
of RNA structures with Temperature Elevation (PARTE) was conceived in
an attempt to combine the two approached described above (Wan et al.,
2012). In this approach, RNA footprinting using RNase V1 is coupled to
high-throughput sequencing to probe for double-stranded regions across
five temperatures, from 23 to 75ºC. Methods based on technologies such
as PARS, PARTE and SHAPE will be very useful for the determination of
RNA structure in vivo and will provide large-scale data to be exploited by
new and powerful predictive algorithms. Indeed, despite significant global
correspondences, there are substantial differences between experimental
results and computational predictions. A fact that might be due, in part
to noise in the employed approaches but also due to known inaccuracies
of folding algorithms (Kertesz et al., 2010). Therefore, it is advisable to
couple data obtained by means of these techniques with the use compu-
tational algorithms to have a better estimate of RNA secondary structures
and folding energies.

86



“TSWLatexianTemp˙000102” — 2014/4/25 — 16:16 — page 87 — #99

Homeostasis and RNA-protein interactions

Protein homeostasis is crucial for the maintenance of proteins in their sol-
uble state (Chapter V). Even relatively small impairments in the quality
control mechanisms that regulate the protein concentration can eventu-
ally lead to aberrant conditions (Vendruscolo et al., 2011). It has been
shown that proteins are present in the cytosol at concentrations at which
they are only marginally soluble (Tartaglia et al., 2007) and that differ-
ent types of stress conditions can lead to widespread aggregation in liv-
ing organisms (Geiler-Samerotte et al., 2011; Narayanaswamy et al., 2009;
Olzscha et al., 2011). At present, determining how even small changes in
amino acid composition can alter local physico-chemical context and in-
advertently lead to aggregation presents an exciting challenge (Weber and
Brangwynne, 2012). As a matter of fact, not all regions of a polypep-
tide chain are equally important for determining the aggregation propen-
sities. Very short specific amino acid stretches can act as facilitators or
inhibitors to the incorporation of globular proteins into pathological ag-
gregates (Chiti et al., 2003; Ventura et al., 2004; Tartaglia et al., 2005;
Calloni et al., 2005). Intriguingly, recent experiments demonstrated that
several disease-related mutations in RBPs, such as TDP-43 and FUS, pro-
mote granule formation (Murakami et al., 2012; Ramaswami et al., 2013).
By associating with their target transcripts, RBPs can influence protein pro-
duction at different stages of the mRNA lifetime (transcription, translation,
and mRNA degradation). This suggests that mRNP complexes, by rapidly
undergoing extensive remodeling, can be responsible for both the spatial
and temporal expression of a number of potentially dangerous targets, such
as proteins with a high propensity to aggregate. In this context, theoretical
approaches such as ccSOL (Chapters VI-VII) and catRAPID (Chapters I-
III) can be considered powerful instruments to rapidly assess the presence
of insoluble/hydrophobic amino acid patches and their ability to interact
with transcripts, respectively. In this thesis, I have shown (Chapters V-VII)
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that solubility and aggregation propensities are tightly related to physico-
chemical features such as hydrophobicity, secondary structure propensity
and solvent accessibility (Tartaglia et al., 2005; Tartaglia and Vendruscolo,
2008; Vendruscolo and Tartaglia, 2008). Moreover, I have illustrated that
similar physico-chemical features can be employed to predict protein and
RNA associations and to define the regions involved in the interaction. To-
gether with the evidence that non-canonical RBPs are enriched in unstruc-
tured and low-complexity sequence regions (Castello et al., 2012; Kwon
et al., 2013), these findings indicate that solubility/aggregation and RNA-
binding propensity can be analyzed simultaneously. Hence, the synergistic
use of ccSOL and catRAPID would enhance previously collected data on
the general promiscuity of natively unfolded proteins in protein-protein in-
teraction networks, at the protein-RNA level (Babu et al., 2011; Olzscha
et al., 2011). Ultimately, it will provide a better understanding on the role
of RBPs in maintaining homeostasis throughout post-transcriptional regu-
lation of mRNAs, and of coding and non-coding transcripts in promoting
the formation of RNP aggregates.

RNPs and control of gene expression

Previously, it has been observed that protein and RNA physico-chemical
properties impose stringent conditions on their intracellular localization
and expression levels (Tartaglia et al., 2009; Tartaglia and Vendruscolo,
2009). However, while evolutionary constraints on tissue-specific gene ex-
pression patterns have been extensively investigated (Brawand et al., 2011;
Chan et al., 2009; Merkin et al., 2012; Ravasi et al., 2010), the regulation of
RBP-mediated interactions is still poorly understood (Hogan et al., 2008;
Masuda et al., 2012). In a recent publication, our group showed for the
first time that catRAPID omics predictions (Chapter III) can be integrated
with expression profile data (Harrow et al., 2012; Uhlen et al., 2010) to
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guide the discovery of distinct features of RBP biological functions (Cirillo
et al., 2014). Specifically, we observed that an enrichment of unique and
functionally related GO terms for RBP-mRNA pairs associates with high
interaction propensities and specific expression patterns. Co-expression
of interacting partners are linked to the constitutive regulation of processes
such as proliferation and cell cycle control. In contrast, anti-expression pat-
terns are likely to be a distinctive characteristic of specific spatiotemporal
events involved in survival, growth and differentiation processes. Never-
theless, as spatial and temporal separation, and limited chemical reactivity
could be ways to avoid aberrant associations (Quenneville et al., 2012), it
is not possible to rule out the possibility that associations with lower inter-
action affinities might have relevant implications. As a matter of fact, pro-
teins harboring disordered regions are highly reactive (Gsponer and Babu,
2012) and the degree of multimerization or low-complexity content can en-
dow them with a wider spectrum of intermolecular affinities (Lunde et al.,
2007). Moreover, increasing evidence indicates that unexpected protein
features, such as multivalency and low complexity, are capable of driving
the conversion between small complexes and large, dynamic, macromolec-
ular assemblies (Han et al., 2012; Kato et al., 2012; Li et al., 2012). The
latter are enriched in multivalent proteins and nucleic acids (Lunde et al.,
2007; Parker and Sheth, 2007) and include a great variety of cellular struc-
tures such as Cajal bodies, P bodies and RNP granules (Buchan and Parker,
2009; Matera et al., 2009). Recruitment of RNA inside these granules,
however, is not surprising, as non-canonical RBPs often bear multivalent
domains in association with structurally disordered or low complexity re-
gions (Castello et al., 2012; Kwon et al., 2013). By using catRAPID on a
number of disease-associated pathways, we found that structurally disor-
dered regions are able to interact with transcripts (Cirillo et al., 2014; Zan-
zoni et al., 2013), a fact that corroborate the possible involvement of RNA
in aggregation (Olzscha et al., 2011) and toxicity mechanisms (Vavouri
et al., 2009). Furthermore, we observed that contribution of structural dis-
order to the interaction seems to be greater in proteins lacking classical
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RBDs, thus indicating a putative mimicking activity of the RNA-binding
function (Cirillo et al., 2014). In addition, it is possible that stable RNA
secondary structures, especially those enriched in GC content, contribute
to the spatial rearrangement of disordered protein regions (Zanzoni et al.,
2013). Collectively, these results suggest that protein-RNA interactions,
followed by transition into dynamic aggregates, need to be tightly regu-
lated in order to control homeostasis and avoid potential damage. Indeed,
it has been proposed that the packaging of cytoplasmic mRNA into dis-
crete RNP granules regulates gene expression by delaying or preventing
the translation of specific transcripts (Kedersha and Anderson, 2007). Cur-
rently, the boundaries that separate normal RNP granules assemblies from
pathological transitions to amyloid structures are not clear. Therefore, the
application of bioinformatics tools will be critical to understand the prin-
ciples of assembly, disassembly, and clearance of RNP aggregates in both
normal and pathological conditions. Ultimately, this will help to clarify
the role of RNA in the pathology of neurodegenerative diseases and, possi-
bly, it will suggests strategies for diagnostic and therapeutic interventions
(Ramaswami et al., 2013).

In summary, the methods and ideas discussed here have been developed in
an exciting moment of the post-genomic era (Harrow et al., 2012). Experi-
mental and computational approaches have started to unveil the complexity
of our genomes and RNA-protein interactions emerged as key events in a
large number of regulatory processes (Altman, 2013). As shown in this
thesis, albeit some work has been accomplished, there are still areas that
need to be explored and discovered. New and ever more sophisticated algo-
rithms will definitely help facing these challenges. I believe that my meth-
ods will provide valid assistance in carrying out the simultaneous investi-
gation of RNA-binding ability and aggregation propensity. Understanding
of these processes will be the key to elucidate the pathogenesis of several
disorders, including neurodegeneration and cancer (Wolozin, 2012).
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Conclusions

The work carried out during my PhD can be divided in two separate stages.
The first involving the development of core algorithms and the fine-tuning
of these on a number of well-studied cases. The second consisting of an
expansion of the current approaches to perform large-scale analysis and
the ability to derive general information on post-transcriptional regulatory
mechanisms. Collectively, the thesis can be summarized in the following
Chapters:

I The development of catRAPID, the first sequence-based method to
perform RNA-protein interaction predictions. The algorithm exploits
the physico-chemical information derived from the primary structure
of transcripts and proteins to compute their probability of interac-
tion. The method was trained using ribonucleoprotein complexes ac-
quired from the PDB and its performance assessed on a number of
proteins and RNAs obtained from the NNBP and NPInter databases.
The catRAPID approach is suitable for the investigation of protein
association with coding and non-coding transcripts;

II The application of the catRAPID approach to investigate a number
of regulatory mechanisms mediated by ribonucleoproteins. In partic-
ular, I hereby presented the interactions of the long non-coding Xist
with several proteins involved in the X-inactivation process: EZH2,
SUZ12, YY1, SAF-A/hnRNP-U and SATB1. To analyze the 17kb
long Xist RNA, I implemented two additional modules to the main al-
gorithm: i) catRAPID fragments, to generate smaller fragments from
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very large transcripts and ii) catRAPID strength, to better appreciate
the degree of interaction;

III The transition to large-scale analysis with catRAPID omics, which of-
fers unique features such as i) organism-specific proteomic and tran-
scriptomic pre-generated libraries, ii) use of custom datasets, iii) anal-
ysis of long sequences and iv) identification of interaction specifici-
ties. The main advantages of this method are the fast calculation of
ribonucleoprotein associations and the prediction of the RNA binding
activity of proteins with high accuracy, thus resulting in a powerful
tool for designing new experiments;

IV The development of SeAMotE to perform discriminative motif discov-
ery in large sets of nucleic acid sequences. The approach offers fea-
tures such as i) discrimination, based on the actual occurrences in the
datasets, ii) multiple reference backgrounds (shuffle, random or cus-
tom) and iii) output of the most significant motifs in the whole span
of tested motif widths;

V The application of physico-chemical properties to characterize the in-
teraction network of DnaK, the major bacterial chaperone Hsp70, in
E. coli. By using a number of features we were able to identify burial
propensity as the attribute that best discriminates the set of proteins
enriched on DnaK from the depleted and from the lysate. The result
obtained in this study represents the starting point from which we de-
rived the rationale to design ccSOL and other algorithms;

VI The development of ccSOL, a sequence-based method to predict the
solubility of proteins in the E. coli expression system. This method
exploits a SVM that was trained using approximately 70% of the Es-
cherichia coli proteins, for which the solubility was experimentally
measured in vitro. I demonstrated that 5 physico-chemical proper-
ties (coil/disorder, hydrophobicity, hydrophilicity, β-turn, α-helix) are
sufficient to accurately infer protein solubility in silico;
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VII The implementation of the ccSOL omics module, which performs
large-scale analyses of proteins’ solubility also providing information
on: i) soluble and insoluble regions along the protein sequence, and
ii) areas more susceptible to mutations. The algorithm employs a neu-
ral network trained on more than 30000 proteins obtained from the
TargetTrack database and tested on an equal size dataset.
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Supplementary Methods 

 

Training Set 

 

Structural data were collected in March 2010 and consisted of 858 RNA-protein 

complexes (8367 protein-RNA pairs) available from the RCSB databank 

(http://www.pdb.org/). A cutoff of 7 Å for physical contacts was employed to 

discriminate between interacting and non-interacting protein-RNA pairs. The cutoff 

was decided according to the average resolution of structural complexes and led to 

define a positive dataset containing 7409 interacting protein-RNA pairs and a 

negative set containing 958 non-interacting protein-RNA pairs. The CD-HIT tool 

(http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi) was used to filter out RNA 

and protein sequences with identities higher than 80% and 60%, respectively. After 

redundancy removal, the database contained 410 interacting (“Positive set”) and 182 

non-interacting (“Negative set”) protein-RNA pairs. With regards to the composition of 

the Positive and Negative sets, protein-RNA associations were grouped into five 

functional classes: “Ribosome and protein synthesis”, “Splicing”, “Transcription”, 

“tRNA synthesis and Viral RNA assemblies”, which account for 70%, 10%, 8%, 12% 

and 10% of the entire training set.  Performances were estimated using a ten-fold 

cross-validation approach, in which a representative set of each functional class was 

sampled. In the analysis, the data set of interactions was randomly partitioned into 

ten subsamples requiring the condition that all the partitions carry the same 

distribution of functional classes. One subsample was retained for testing, and the 

remaining nine were used for training the algorithm. The cross-validation process 

was repeated ten times with each of the ten subsamples used exactly once as the 

validation data. The significance of our predictions was evaluated by calculating p-

values (two-tail t-test). See also section Discriminative Power. 

 

We tested catRAPIDʼs performance on the identification of binding regions. For each 

protein-RNA complex in the redundant set, we calculated interaction propensities of 

all possible associations between amino acid and nucleotide chains and ranked their 

scores from lowest to highest. Protein binding sites were top-ranked in 87% of cases 

while RNA binding sites were ranked in 75% of cases. Simultaneous identification of 
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both protein and RNA binding regions was top-ranked in 62% of cases. Indeed, these 

results underline the extreme accuracy in identifying interaction sites (Fig. 1a).  

 

 

Physico-chemical Properties  

 

Secondary Structure Propensities. The secondary structure of the RNA molecule 

is predicted from its nucleotide sequence using the Vienna package1 (including the 

algorithms RNAfold, RNAsubopt and RNAplot). Although the average predictive 

power of the RNAfold algorithm is 70%, lower performances are expected for long 

non-coding RNAs because these transcripts are poorly characterized. To increase 

the amount of information that can be extracted from secondary structure predictions, 

we adopted a strategy that exploits the generation of ensembles produced with the 

RNAsubopt algorithm. The sampling of structures was performed with probabilities 

estimated through Boltzmann weighting and stochastic backtracking in the partition 

function. Six model structures, ranked by energy, are used as input for catRAPID. For 

each model structure, the RNAplot algorithm was employed to generate secondary 

structure coordinates. Using the coordinates we defined the “secondary structure 

occupancy” by counting the number of contacts made by each nucleotide within the 

different regions of the chain. High values of secondary structure occupancy indicate 

that base pairing occurs in regions with high propensity to form hairpin-loops, while 

low values are associated with junctions or multi-loops. The secondary structure of 

proteins was taken into account in our model by calculating the Chou-Fasman2 and 

Deleage-Roux3 propensities for turn, β-strand and  α-helical elements. As the 

average predictive power of these models is around 60%, we preferred to combine 

together the individual propensities to have better performances. The correlation 

between interaction propensities and secondary structure contributions is 73% 

(Interaction Propensities). 

 

Hydrogen-Bonding Propensities. The structural information on purine and 

pyrimidine contacts was extracted from a set of 41 non-redundant protein-RNA 

complexes4. Both the number and the frequency of hydrogen-bond contacts are used 

in our method. With respect to proteins, we used Granthamʼs and Zimmermanʼs 

scales5,6 to estimate the propensity of amino acids to form hydrogen bonds. Other 

propensity scales were disregarded because they showed lower predictive power. 

Nature Methods: doi.10.1038/nmeth.1611
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The correlation between interaction propensities and hydrogen bonding contributions 

is 58% (Interaction Propensities). 

 

 

Van der Waalsʼ Propensities. The information on purine and pyrimidine contacts 

was taken from a set of 41 protein-RNA complexes4. Both the number and the 

frequency of van der Waalsʼ contacts were used in catRAPID. With respect to 

proteins, we employed Kyte-Dolittle and Bull-Breese scales7,8 to estimate the 

propensity to form van der Waalsʼ contacts. Other propensity scales were 

disregarded because they showed lower predictive power. The correlation between 

interaction propensities and Van der Waalsʼ contributions is 26%  (estimated with a 

ten-fold cross-validation). 

 

Fitting coefficients for Secondary Structure, Hydrogen-Bonding and Van der Waalsʼ 

Contributions are reported in Supplementary Table 2. 

 
Interaction Propensity 

 

Secondary structure, hydrogen bonding and van der Waals propensities were 

combined together into the interaction profile: 

 

€ 

Φx = αS Sx +αH Hx +αW Wx        (1) 

 

We used the symbol 

€ 

 to indicate the profile associated with a specific physico-

chemical property. For example, the van der Waalʼs profile of a protein is denoted by 

€ 

Wp  and contains the van der Waalʼs contributions of each amino acid: 

 

€ 

Wp =Wp 1,  Wp 2,...,  Wp L         (2) 

 

Where 

€ 

L  is the proteinʼ s sequence length. Similarly, 

€ 

H  represents the hydrogen 

bonding profile and 

€ 

S  the secondary structure profile.  The variable 

€ 

x  is used to 

distinguish between RNA (

€ 

x  =

€ 

r ) and protein (

€ 

x  =

€ 

p) profiles. 
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In order to deal with molecules of different length, we approximated each propensity 

profile using plane-waves: 

 

€ 

˜ Φ x
k =

2
length

Φx
n cos π

length
n +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥              k = 0,1,... L

n=0

length

∑ −1  (3) 

 

The number of plane waves employed to approximate each profile is L = 50 as the 

discriminative power does not improve by increasing L. 

 

The following condition was employed to derive the interaction matrix 

€ 

I: 
 

€ 

I :  max ˜ Φ r  I ˜ Φ p   for (r, p) ∈  {positive set}     (4) 

 

The interaction propensity score 

€ 

π = ˜ Φ r  I ˜ Φ p 	
   is defined as the inner product 

between the protein profile 

€ 

˜ Φ r  and the RNA profile 

€ 

˜ Φ p , weighted by the 

interaction matrix 

€ 

I: 
 

€ 

 π = ˜ Φ r  I ˜ Φ p =  ˜ Φ r
l  Il,m ˜ Φ p

m
l ,m

∑ = ˜ Λ l,ml ,m
∑ 	
   	
   	
   	
   	
   (5)	
   

 

The interaction propensity matrix 

€ 

Λ l,m 	
  is obtained by applying Eq. (3) to	
  

€ 

˜ Λ l,m . 

 

The interaction matrix 

€ 

I 	
  is given by applying Eq. (3) to the parameters 

€ 

˜ I n,k  reported in 

Supplementary Table 3. 

 

 

 

Discriminative Power 

 

In order to evaluate the ability of catRAPID to distinguish between interacting and 

non-interacting RNA-protein associations, we introduced the concept of 

discriminative power (dp): 
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€ 

dp =  
ϑ(π i −  π n )

n
∑

i
∑

ϑ(π i −  π n )
n
∑

i
∑ +ϑ(π n −π i)

=1− (I∩N)     (6) 

 

Where 

€ 

π i indicates the interaction propensity of an interacting RNA-protein pairs, 

€ 

πn  

represents the interaction propensity of non-interacting molecules, 

€ 

I is the score 

distribution associated with the positive set and 

€ 

N	
  is	
  the score distribution associated 

with the negative set. The definition of 

€ 

π  is given in the section Interaction 

Propensity. The function 

€ 

ϑ(π i −  π n )  is 1 if 

€ 

π i −πn > 0 and 0 otherwise. According 

to the definition given in Eq. (6), the discriminative power ranges from 0% to 100%. 

The significance of predictions was evaluated by calculating p-values (two-tail t-test). 

 

With regards to catRAPIDʼs performances, the discriminative power associated with 

the non-redundant training dataset is 78%. The discriminative power associated with 

the redundant training dataset is 90%. If a consistent number of protein or RNA 

sequences are moved from the negative to the positive set (or vice-versa), the 

distribution of interaction propensities associated with the positive and negative sets 

tend to overlap. When the number of sequences transferred from the negative to the 

positive set equals half the size of the positive set, dp is 42%. If Fourierʼs coefficients 

associated with RNA or protein sequences are scrambled (i.e., their order is modified 

in a random way), dp is < 50%. If we use the unitary matrix in Eq. 3, the algorithm 

shows a dp of 65% on the training set, which increases up to 71% when the NPInter 

dataset is also considered.  

 

 

Interaction Propensity 

	
  
Using the score distribution 

€ 

fn  associated with the negative training set, we 

calculated the probability 

€ 

p(v) = p(π ≤ v) that the score 

€ 

π  takes values less than or 

equal to 

€ 

v  (interaction probability): 

 

€ 

p(v) = fn (π)dπ
−∞

v

∫          (7) 
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Similarly, using the score distribution 

€ 

f p  of the positive training set, we estimated the 

probability that the score 

€ 

π  takes values more than or equal to 

€ 

v  (non-interaction 

probability):  

 

€ 

n(v) = f p (π)dπ
v

∞

∫           (8) 

 

The two probabilities 

€ 

p(v)  and 

€ 

n(v) were then combined together to define the 

interaction propensity 

€ 

P(v) : 
 

 

€ 

P(v,x) =
x[1− n(v)]p(v)

[1− n(v)]p(v)[1− x]+ x[1− p(v)]n(n)
     (9) 

 

where 

€ 

x = 0.5 

 

 

 

Test Sets  

 
The NPInter database9 (http://www.bioinfo.org.cn/NPInter/) was used to evaluate the 

ability of the algorithm to predict interactions between proteins and long non-coding 

RNAs. RNA sequences were obtained from the fRNAdb database 

(http://www.ncrna.org/frnadb/). We excluded micro-RNAs from our analysis because 

their size significantly differs from that of molecules used for training.  The long non- 

coding database contains 405 interactions from 6 model organisms. Only for a 

subset of the NPInter database direct physical evidence for protein-RNA interactions 

is reported (Fig. 1b; class “The ncRNA binds the protein” accounting for 59% of the 

NPInter dataset and class  “The protein as a factor affects the ncRNA's function” 

accounting for 22% of the NPInter dataset). We also estimated the significance of our 

predictions on the entire database by calculating p-values (two-tail t-test): 0.04 for 

class “The ncRNA is regulated by the protein”, 0.21 for class “Special linkage 

between the ncRNA and the Protein” 0.11 for class “Genetic interaction between the 

ncRNA gene and the protein”, 0.03 for class “The ncRNA regulates the mRNA”), 0.20 

for class “The ncRNA indirectly regulates a gene” and 0.6 for class “The ncRNA as a 
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factor affects the proteinʼs function”. The average discriminative power is 85% and 

was evaluated by comparing the interaction propensities of the different NPInter 

classes with the interaction propensities of the non-redundant negative set (and 

increases up to 90% by comparing with the redundant negative set).  

 

 

The Non-Nucleid-acid-Binding database NNBP10 was employed to evaluate the 

ability of catRAPID to identify proteins that have little propensity to interact with RNA 

molecules.  The original set comprises 246 proteins, among which 62 were selected 

after a search on the Uniprot database (http://www.uniprot.org/) for molecules that 

are exclusively involved in protein-protein interactions. A total of 12000 random 

associations were generated with RNA sequences of the positive set. The 

discriminative power of the algorithm was evaluated by comparing the interaction 

propensities of the negative set (Training Set) with those of the random list. The 

significance of predictions was evaluated by calculating p-values (two-tail t-test) 

(Supplementary Table 4). 

 

DNA-binding (DNA BP) and RNA-binding (RNA BP) proteins were obtained from the 

Uniprot database. DNA BP were collected by searching for molecules that bind “with 

DNA and not with RNA” (7535 hits), while RNA BP were obtained by selecting 

molecules that bind “with RNA and not with DNA” (84 hits). The CD-HIT tool was 

used to filter out sequences with identities higher than 60%. After filtering we counted 

a total of 5410 entries for DNA BP and 65 entries for RNA BP). Random associations 

were generated with RNA sequences present in the positive training set (130000 

associations for DNA-binding and 12000 for RNA-binding, respectively). The 

discriminative power of the algorithm was evaluated by comparing interaction 

propensities of the negative set (Training Set) with those of the random lists. The 

significance of predictions was evaluated by calculating p-values (two-tail t-test) 

(Supplementary Table 5).  

 

The Human MRP and RNase P Complexes 

 

The human MRP complex is comprised of ten protein subunits (hPop1, hPop5, 

Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38 and Rpp40) and one RNA unit 

(266 nucleotides). The RNA shows a catalytic core domain with evolutionary 
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conserved structural features in domain I (P1-P3 helices), and a variable portion 

named domain II (P8, P9, P12, eP19 helices) with unknown function. The human 

RNase P complex shares protein components with the MRP system. It includes one 

RNA unit (344 nucleotides) that possesses analogous structural features compared 

to the MRP RNA, with a more extended P12 stem and additional P7, P10, P11 

elements. The two complexes display different catalytic activities: MRP mediates the 

processing of rRNA precursors while RNAse P is required for processing pre-tRNAs 

in functional tRNAs molecules. 

	
  
Several studies were carried out to identify protein-RNA interactions in human, yeast 

and bacterial MRP complexes, using a wide variety of techniques11. The most 

detailed picture of the human system was given by Welting and coworkers12 who 

demonstrated, using GST pull-down data, that hPop1, Rpp20, Rpp21, Rpp25, Rpp29 

and Rpp38 directly interact with RNA, whereas hPop5 and Rpp14 are part of the 

assembly but do not contact the transcript. Interaction data for Rpp30 and Rpp40 are 

missing because of the poor solubility of the proteins. It has been observed that 

Rpp20 and Rpp25 bind strictly to the P3 helix, whereas Rpp29 mediate additional 

contacts in the P12 stem by associating with more than one RNA region. The 

interaction between RNA, Rpp20 and Rpp25 was confirmed by the very recent 

release of the crystal structure of the MRP RNA P3 stem in complex with yeast 

homologues of Rpp20 and Rpp2513.   

	
  
Comparisons between our predictions and experimental evidences can be 

summarized as follows (Supplementary Table 6, Supplementary Fig. 1): i) Rpp20 

and Rpp21 binds the P3 stem that can be considered a nucleation center. The 

predicted binding region for Rpp20 - MRP RNA corresponds to the one observed in 

the crystal structure of yeast MRP RNA P3 portion in complex with the yeast 

homolog POP713. ii) Rpp29 and Rpp38 mediate multiple interactions between P3 

helix and P12 stem. These results are in complete agreement with the known 

interaction map of Rpp29 which connects domain I and II12. iii) Rpp25 is predicted to 

have lower propensity to interact with RNA. This finding can be explained by 

considering that Rpp25 is able to recognize the P3 element of MRP RNA only after 

association with Rpp2014. iv) Rpp14, Rpp30 and Rpp40 are predicted to be non-

interacting with MRP RNA, in agreement with what was reported in literature12. v) 

hPop5 is predicted to mediate weak interactions with the MRP RNA in the P3 area. 
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This finding is in accordance with activity assays conducted on the archeal homolog 

PhoPop515. 

	
  
With regards to the RNase P system, similar interaction propensities were found for 

Rpp20, Rpp21, Rpp25, Rpp29 and Rpp38 (Supplementary Fig. 2). In general, an 

increase in the intensity of signals is observed together with an enhanced binding 

preference for the P3 stem region. This finding could be explained by considering the 

different substrate specificity and catalytic activity of the two RNA-protein assemblies. 

 

 
Association of the PRC-2 with Xist and HOTAIR  
 
The Polycomb Repressive Complex is comprised of four protein units: Ezh2, Eed, 

Suz12 and Rbap48. Ezh2 and Eed are predicted by catRAPID to contact 

approximately the same RNA regions (330-680 and 330-530 for Xist A Region; 1-240 

and 1-220 for the 5ʼ domain of HOTAIR; Supplementary Fig. 3), which is well in 

agreement with the ability of these proteins to heterodimerize16. Eed shows similar 

binding propensities with both 2R (431-531; Supplementary Fig. 3) and 4R (371-

531; Supplementary Fig. 3) segments, as shown by immuno-precipitation assays17. 

According to previous experimental evidences18 and in agreement with our 

predictions on repeat regions, Ezh2 can be regarded as the main RNA-binding 

subunit, representing the catalytic core of the PCR2 complex. Higher propensity to 

bind 2R is found for Rbap48, which might arise from its involvement in mediating 

protein-protein interactions in addition to RNA binding19. 

 

 

Databases used for MRP, Xist and HOTAIR 

 

RNA sequences (human MRP RNA, FR355912; human RNase P RNA, FR174566) 

were downloaded from the fRNAdb database (http://www.ncrna.org/frnadb/). Protein 

sequences were retrieved from Uniprot database (hPop5, Q969H6; Rpp14, O95059; 

Rpp20, O75817; Rpp21, Q9H633; Rpp25, Q9BUL9; Rpp29, O95707; Rpp30, 

P78346; Rpp38, P78345; Rpp40, O75818). The catRAPID algorithm was employed 

to predict the interaction propensity of all protein subunits except for hPop1 whose 

large size does not fit with our computational requirements. The three-dimensional 

structure of the MRP P3 domain in complex with POP6-POP7 was displayed using 
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the UCSF Chimera visualization tool (http://www.cgl.ucsf.edu/chimera/). The crystal 

structure of the yeast MRP P3 domain in complex with the POP6-POP7 protein 

heterodimer (PDB code: 3iab) was released in July 2010. 

 

The RNA sequences of human Xist (M97168.1) and HOTAIR (DQ926657.1) were 

downloaded from the NCBI database. Regions of interest were selected on the basis 

of available experimental data (sequence numbering is reported): Xist A Region, 330-

796; Xist 4R, 371-531; 5ʼ HOTAIR, 1-300; 3ʼ HOTAIR, 1500-2146. The catRAPID 

algorithm was used to predict the interaction propensity of the four PRC2 protein 

subunits, whose Uniprot IDs are: Ezh2, Q15910; Eed, O75530; Suz12, Q15022; 

Rbap48, Q09028. 
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b) Xist fragments,  localization signals (restriction 
enzymes)  and primers; c) Proteins, sequence 
lengths and Uniprot codes.
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Figure S2: Positives and negative interactions. a) Tsix and EZH2. In agreement with experimental evidence, we predict that 
EZH2 binds to Tsix nucleotides 2073-2239, which correspond to an antisense region of RepA (5). b) Green Fluorescent Protein 
(GFP) and Xist nucleotides 227-760 (RepA). GFP and RepA are predicted to have poor propensity to interact, as previously 
reported (9).

Figure S3: SFRS1 and its RNA interactome. a) 
SFRS1 and CLIP-seq clusters > 50 nt. The top 100 
CLIP-seq large clusters (i.e., RNA sequences 
containing the highest number of SFRS1 binding sites 
> 50 nt) are predicted to have strong propensity to bind 
SFRS1. catRAPID predictions (blue bars; interacting 
pairs = 78; average interaction strength =69%) are in 
good agreement with RNAMotifModeler performances 
(red bars; binding motifs AGAAGA, AAGAAG and 
GAAGAA present in 72 sequences) (19); b) SFRS1 
and CLIP-seq clusters < 50 nt. The top 100 CLIP-seq 
regions < 50 nt show higher interaction strengths than 
the upstream and downstream flanking regions 
(binding sites: 76 protein-RNA pairs predicted by 
catRAPID; 25 motifs found by RNAMotifModeler; 
flanking regions: 30 protein-RNA pairs predicted by 
catRAPID; 10 motifs found by RNAMotifModeler).
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Glossary

Intrinsically disordered region (IDR) Part of protein sequence that cannot accept sta-
ble secondary or tertiary structures. Disordered regions are very flexible and often
serve as binding sites for other proteins.

Long non-coding RNA (lncRNA) Transcripts longer than 200 nucleotides that have lit-
tle or no protein-coding capacity.

Low-complexity sequence (LCS) Sequence region of biased nucleotide or amino acid
composition. Low-complexity regions in amino acid sequences typically assume
non-globular structure in proteins.

Physico-chemical property Physical molecular property of a compound. Typical prop-
erties are solubility, acidity, lipophilicity, polar surface area, shape, flexibility, etc..

Protein aggregate An abnormal protein assembly that results from the cohesion of two
or more misfolded monomeric proteins.

Ribonucleoprotein complex (RNP complex) A multimolecular complex that is com-
posed of RNAs and associated proteins.

RNA granule Macromolecular structure enriched with RNA and RNA-binding proteins,
thought to be involved in the preservation and transport of mRNA.

RNA recognition element (RRE) Sequence or structural elements embedded in the tar-
get RNAs bound by specific RBPs.

RNA-binding protein (RBP) Protein that bind to RNA through an RNA-binding motif.
The binding may regulate the translation of RNA or induce post-transcriptional
changes, such as RNA splicing and editing.

Stress granules Dense cytosolic protein and RNA aggregations that appear under condi-
tions of cellular stress.
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