
THESE DE DOCTORAT

presentée par

Laurence Emilie UM

Discipline: Informatique et Mathématiques Appliquées

Spécialité: Codes Correcteurs d’erreurs et Sécurité de
l’Information

A CONTRIBUTION TO THE THEORY OF
CONVOLUTIONAL CODES FROM SYSTEMS

THEORY POINT OF VIEW

Laboratoire de Mathématiques Appliquées, Faculté des Sciences, 4 Avenue Ibn Battouta B.P.

1014 RP, Rabat. Tel : + 212 (0) 37 77 18 34/35/38, Fax : + 212 (0) 37 77 42 61

Facultat de Matemàtiques y Estad́ıstica, Universitat Politècnica de Catalunya.
BarcelonaTech, Campus Diagonal Sud, Edificio U. C. Pau Gargallo, 5 08028 Barcelona.

Tel: +34 93 401 58 80, Fax: +34 93 401 58 81

Acknowledgement

The work presented in this thesis were realized partly within the laboratory of
mathematical and computing sciences in the Faculty of Sciences of Rabat, at
the University Mohammed V-Rabat. That laboratory welcomed me with open
arms and helped me experiment a warm and convivial atmosphere, and I would
like to thank all of my colleagues for that experience. Also, we did relevant
research at the Universitat Politècnica de Catalunya, at the department of
Mathematics I and I would like to wholly thank the University for all the
technical support and constant support even during harsh periods.

Indeed, my work on codes has been the mainspring and the catalyst be-
hind the research project, not to forget to mention the constant growing need
for storing and handling of information (rise of usage of mobile phones, inter-
net communication, cloud computing), as well as data protection in general.
Holding a master’s degree in cryptography and information security from the
University of Mohammed V-Rabat, I worked a lot on coding theory, also for
academic projects.

I would like to first of all thank my thesis supervisors, who supported and
accompanied me during that research period, despite the difficulties encoun-
tered. I would really like to thank Pr. El Mamoun Souidi for accepting me as
a doctorate and supporting me, I would like to deeply thank the Universitat
Politècnica de Catalunya in Spain, in particular Pr. Maria Isabel Garćıa-
Planas for her advice very much needed, the constant push, for the help ma-
terial or intellectual, for her hospitality in Spain, presence at any time needed,
on top of accepting to welcome me within their structure for the realization of
the thesis in co-supervision.

I would like to thank my beloved family; in particular my amazing and
beloved parents, who despite the distance have always been a constant, in-
valuable and continuous support of my work and progress throughout my life
in general, and student life in particular, and without whom I absolutely would

3

4

not have been able to make it this far.

I would like to thank my friends and colleagues for the encouragement, un-
derstanding and moral support; as it happens, many warm thanks to Edouard.

List of Figures

1.1 A representation of a recursive encoder 31

1.2 The State Table . 35

1.3 LFSR encoder . 36

1.4 Diagram State . 37

1.5 Encoding process . 38

5.1 Syndrome Table 5.4.1 . 174

5.2 Syndrome Table 5.4.2 . 178

5.3 Syndrome Table 5.4.3 . 180

5.4 Syndrome Table 5.4.4 . 181

5.5 Syndrome Table 5.4.5 . 183

5

6 LIST OF FIGURES

Abstract

Information is such a valuable good of our time. Given that the transmission
of information has always been subject to precision problems, knowing the ob-
stacles existing between the transmitter and the receiver, eventual disruptions
can happen anywhere in between, the physical means, channels involved with
the exchange are never perfect and they are subject to errors that might result
in loss of important data.

Given that error correcting codes are a key element in the transmission and
storage of digital information, therefore an easier and better usage opens up
to interesting opportunities in regulating transmission of information, which is
the advantage that the linear systems theory brings definition of convolutional
codes, along with the algebra material. It is the reason why in this thesis,
we follow that perspective to study the possibility to redefine and improve
properties of convolutional codes in terms of coding and decoding, with the
help of the systems and control theory.

For that matter, in chapter 1, we recall notions on coding theory, more
specifically, on linear codes, both block and convolutional, redefining the con-
volutional codes as submodules of Fnq which is our main workspace. And we
go through the prerequisites involved in the process of encoding and decoding,
both for block and convolutional codes.

And in order to approach them with tools of the systems theory, in chapter
2, we give the equivalence of the generating matrix in the form of a realization
(A,B,C,D) of an input-output system. Then, we studied the concatenation
because it has been proved to improve the transmission. In this work, we
consider two big families of concatenation: serial concatenation, and parallel
concatenation and two other models of concatenation called systematic serial
concatenation and parallel interleaver concatenation.

In chapter 3, we study control properties for each case. Nevertheless, we

7

8 LIST OF FIGURES

focus on the property of “functional output controllability”in coding theory
language is called “output-observability”, and conditions to obtain it, partic-
ularly an easy iterative test is presented in order to discuss whether a code
is output-observable. This test consists in calculating certain ranks of block
matrices constructed from the matrices A, B, C, D. The output-observability
property is very beneficial for the decoding as discussed in the next chapter.

Moreover, in chapter 4, we assess two methods for a complete decoding
operating on an iterative fashion, then suggest conditions for a step by step
decoding in a case of concatenation, in order to recover exactly each and every
original sequence after operation of every implied code. Following this concept,
we study the convolutional decoding in general, and in particular the one of
concatenated models in serial, in parallel, in systematic serial and finally in
interleaver parallel implementation.

In chapter 5, we suggest an application in steganography, in which we
implement a steganographic scheme, inspired by the linear system representa-
tion of convolutional codes. Having the output-observability matrix being the
backbone behind the construction of our decoding algorithms, coupled with the
syndrome method, we formed some embedding/retrieval algorithms inspired
by that construction. Those methods display the protection of communication
within time-related transfer of information, with interesting possibilities and
results.

Finally, a chapter summarizing all our achievements, within which the es-
tablishment of a new realization building algorithm, methods and algorithms
to solve the decoding of convolutional codes. This application of linear systems
within the convolutional codes theory showed a range of possibilities for us to
explore, since as an additional application, we developed some new stegano-
graphic models, based on the representation of convolutional codes within the
linear systems theory, and also a short list of possible future lines of work that
we would like to continue studying in order to achieve new related goals.

Résumé

L’information est un bien de notre époque dont l’importance n’est plus à
démontrer. Etant donné que la transmission de l’information a toujours été
soumise à des problèmes de précisions, dûs aux obstacles existant entre le trans-
metteur and le recepteur, d’éventuelles pertubations peuvent arriver n’importe
où, entre les canaux physiques, faisant partie du processus d’échange qui n’est
jamais parfait et ils peuvent toujours être affectés par des erreurs créant
d’importantes pertes d’information. Les codes correcteurs d’erreurs sont un
élément clé dans la transmission et la conservation de l’information numérique.

Etant donné que les codes correcteurs d’erreurs sont un élement clé dans la
transmission et la conservation de l’information digitale, ainsi un meilleur et
plus simple usage ouvre des opportunités plus intéressantes dans la régulation
de la transmission de l’information, qui est l’avantage que la définition des
codes convolutifs suivant la théorie des systèmes linéaires apporte, avec le
matériel de l’algèbre linéaire. C’est pour cette raison que dans cette thèse, nous
suivons cette perspective pour étudier la perspective d’étudier la possibilité de
redéfinir et d’améliorer les propriétés des codes convolutifs en terme de codage
et de décodage, grâce aux outils de la théorie des systèmes et de contrôle.

A cet effet, dans le chapitre 1, nous rappelons des notions sur la théorie des
codes linéaires, les codes en bloc ainsi que les codes convolutifs, redéfinissant les
codes convolutifs comme des sous-modules de Fnq qui est notre principal espace
de travail. Et c’est ainsi que nous invoquons tous les pré-réquis nécessaires
pour le processus de codage et de décodage, pour ce qui est des codes en bloc,
et des codes convolutifs.

Et dans le but d’approcher ces derniers grâce aux outils de la théorie
des systèmes, dans le chapitre 2, nous donnons l’équivalence de la matrice
génératrice sous la forme d’une réalisation (A,B,C,D) d’un un système input-
output. Ensuite, nous étudions la concatenation parce qu’elle a été prouvée
d’améliorer la transmission. Pour cette partie, nous considérons deux grandes

9

10 LIST OF FIGURES

familles de concaténation: concaténation en série et en parallèle, ainsi que deux
autres modèles de concaténation appelés: concaténation systématique en série
et concaténation en parallèle avec interleaver.

Dans le chapitre 3, nous étudions les propriétés de contrôle pour cha-
cun des cas. Néanmoins, nous nous concentrons sur la propriété de “func-
tional output controllability”que dans le langage de théorie est appelé “output-
observability”, et sur les conditions pour l’obtenir, en particulier un test itératif
relativement facile a été présenté en vue de discerner les codes output-observables
de ceux qui ne le sont pas. Ce test permet de calculer certains rangs de
blocs de matrices construits à partir des matrices A, B, C, D. La propriété
d’output-observabilité est très bénéfique pour le décodage comme explicité
dans le prochain chapitre.

De plus, dans le chapitre 4, nous évaluons deux méthodes pour un décodage
complet opérant de manière itérative, ensuite suggérons des conditions pour un
décodage étape par étape dans un cas de concaténation, en vue de recuperer
exactement chacune des séquences d’origine après opération de chacun des
codes impliqués. Suivant ce concept, nous étudions le décodage convolutif
en géneral et en particulier celui des modèles de concaténation en série, en
parallèle, en série systématique et finalement en parallèle avec interleaver.

Dans le chapitre 5, nous suggérons une application en stéganographie,
dans laquelle nous implémentons un schéma steganographique, inspiré par la
représentation en termes de systèmes linéaires des codes convolutifs. Ayant la
matrice d’output-observabilité étant la matrice de réference pour la construc-
tion de nos algorithmes de décodage, couplée avec la méthode du syndrome,
nous avons proposé quelques algorithmes d’encapsulation et de recouvrement
inspirés par cette construction. Ces méthodes montrent la protection de la
communication lors des transferts d’information dépendant du temps, avec
d’intéressantes possibilités ainsi que des résultats encourageants.

Finalement, un chapitre résumant tout ce que nous avons accompli, en
l’occurence la mise sur pied d’un nouvel algorithme pour écrire une réalisation,
méthodes et algorithmes pour résoudre le décodage des codes convolutifs.
Cette application des systèmes linéaires sur la théorie des codes convolutifs
montre un ensemble de possibilités pour nous à explorer, puisque nous avons
développé une application de plus , nous avons developpé quelques modèles
stéganographiques, basés sur la représentation des codes convolutifs grâce à
la théorie des systèmes linéaires, et une courte liste des futurs possibles axes
de travail sur des aspects que nous souhaiterions étudier pour parachever nos

LIST OF FIGURES 11

buts traitant de problématiques similaires.

12 LIST OF FIGURES

Resumen

La información es un valioso bien de nuestro tiempo. Dado que la trans-
misión de la información siempre ha estado sujeta a problemas de precisión,
conociendo los obstáculos existentes entre el transmisor y el receptor, las inter-
rupciones eventuales pueden ocurrir en cualquier lugar en el medio, el medio
f́ısico, canal involucrado con el cambio nunca es perfecto y está sujeto a errores
que podŕıan dar como resultado una pérdida de datos importantes.

Dado que los códigos correctores de errores son un elemento clave en la
transmisión y almacenamiento de información digital, por eso un más fácil y
mejor uso abre interesantes oportunidades en la regulación de la transmisión de
la información, el cual es una ventaja que ofrece la teoŕıa de sistemas lineales y
el álgebra lineal a la definición de los códigos de convolución . Esta es la razón
por la que en esta tesis, seguimos esa perspectiva para estudiar la posibilidad
de redefinir y mejorar las propiedades de los códigos de convolución en base
a la codificación y descodificación, con la ayuda de los sistemas y la teoŕıa de
control.

En este sentido, en el caṕıtulo 1, recordamos nociones sobre la teoŕıa de
códigos, más espećıficamente, sobre los códigos lineales, tanto de bloques como
de convolución, se redefinen los códigos convolucionales como submódulos de
Fnq que es nuestro espacio principal de trabajo. Y damos un repaso a los
requisitos previos necesarios en el proceso de codificación y descodificación,
tanto para los códigos de bloque como los códigos convolucionales.

Y con el fin de aproximarnos a los códigos convolucionales con las herra-
mientas de la teoŕıa de sistemas, en el caṕıtulo 2, damos la equivalencia de la
matriz generatriz en función de una realización (A,B,C,D) de un sistema de
entrada-salida. A continuación, se estudia la concatenación porque es conocido
que mejora la transmisión. En este trabajo, se consideran dos grandes familias
de concatenación: la concatenación en serie, y la concatenación en paralelo
aśı como otros dos modelos de concatenación llamados concatenación en serie

13

14 LIST OF FIGURES

sistemática y la concatenación en paralelo con intercalador.

En el caṕıtulo 3, estudiamos propiedades de control para cada caso. Sin em-
bargo, nos hemos centrado en la propiedad de “funcional output-controlabilidad”
que en lenguaje de teoŕıa de códigos es conocido como “output-observabilidad”,
y en obtener condiciones que aseguren dicha condición, en particular se pre-
senta un fácil test iterativo, que permite discutir cuando un código de con-
volución es output-observable. Este test consiste en calcular los rangos de
ciertas matrices por bloques construidas a partir de las matrices A, B, C, D.
La propiedad de output-observabilidad es muy útil para la descodificación que
se estudia en el próximo caṕıtulo.

Por otra parte, en el caṕıtulo 4, se presentan dos métodos para una com-
pleta descodificación operando de forma iterativa, a partir de ah́ı, se sugieren
condiciones para paso a paso descodificar la concatenación, a fin de recuperar
exactamente todos y cada uno de los códigos implicados en la operación. Si-
guiendo esta idea, se estudia la descodificación de los códigos convolucionales
en general, y en particular la de los modelos concatenados en serie, en paralelo,
en serie sistemática y finalmente la concatenación en paralelo con intercalador.

En el caṕıtulo 5, se presenta una aplicación a la esteganograf́ıa, en el que
se implementa un esquema esteganográfico, inspirado en la representación del
sistema lineal de códigos convolucionales. La matriz de output-observabilidad
es la columna vertebral que está detrás de la construcción de nuestros algo-
ritmos de descodificación que junto con el método de śındrome, formamos al-
gunos algoritmos Inclusión/recuperación inspirados en esa construcción. Estos
métodos muestran la protección de la comunicación dentro de la transferencia
relacionada con el tiempo que dura la información, con interesantes posibili-
dades y resultados.

Por último, un caṕıtulo que resume todos nuestros logros, en este caso el
desarrollo de un nuevo algoritmo para escribir una realización, los métodos y
algoritmos para resolver la descodificación de códigos convolucionales. Esta
aplicación a los códigos convolucionales de la teoŕıa de sistemas lineales mues-
tra un abanico de oportunidades para explorar, ya que como una aplicación
adicional, hemos desarrollado algunos nuevos modelos esteganográficos, basa-
dos en la representación de los códigos convolucionales usando la teoŕıa de
sistemas lineal, y una corta lista de posibles futuras ĺıneas de trabajo en los
aspectos que nos gustaŕıa seguir estudiando para alcanzar nuevas metas rela-
cionadas seguir estudiando para alcanzar nuevas metas relacionadas con este
tema.

Contents

Acknowledgement 3

List of Figures 4

Abstract 7

Résumé 9

Resumen 13

Introduction 19

1 Linear block and convolutional codes 25

1.1 Linear block codes . 25

1.2 Convolutional codes . 28

2 Systems theory 41

2.1 Convolutional codes as linear systems 42

2.1.1 Realization algorithm . 43

2.2 Concatenated systems . 50

2.2.1 Serial concatenation . 50

2.2.2 Parallel concatenation 52

15

16 CONTENTS

2.2.3 Systematic serial concatenation 54

2.2.4 Parallel Interleaver concatenation 56

3 Controllability and Observability 59

3.1 Controllability, observability . 60

3.2 Output-observability . 62

3.2.1 Alternative method for output-observability 66

3.3 Controllability of concatenated codes 72

3.3.1 Serial concatenation . 72

3.3.2 Parallel concatenation 76

3.3.3 Systematic serial concatenation 78

3.3.4 Parallel interleaver concatenation 79

3.4 Observability of concatenated codes 81

3.4.1 Serial concatenation . 81

3.4.2 Parallel concatenation 84

3.4.3 Systematic serial concatenation 85

3.4.4 Parallel interleaver concatenation 88

3.5 Output-observability of concatenated codes 88

3.5.1 Serial concatenation . 88

3.5.2 Parallel concatenation 94

3.5.3 Systematic serial concatenation 101

3.5.4 Parallel interleaver concatenation 103

4 Decoding problem 105

4.1 Introduction . 105

4.2 Decoding convolutional codes 107

CONTENTS 17

4.3 The first iterative decoding algorithm 117

4.4 Second iterative decoding algorithm 128

4.4.1 Iterative decoding algorithm for serial concatenated codes136

4.4.2 Iterative decoding algorithm for systematic serial con-
catenated codes . 141

4.4.3 Iterative decoding algorithm for parallel concatenation . 151

4.4.4 Iterative decoding algorithm for parallel with interleaver
concatenation . 158

4.5 Output-observability matrix and Syndrome former matrix . . . 160

5 Convolutional Codes and Steganography. 165

5.1 Introduction . 165

5.2 Steganography . 165

5.2.1 Characteristics of a steganographic scheme 166

5.3 Steganography and Coding . 168

5.4 Steganography and convolutional coding 169

5.4.1 The purposes and interest 169

5.4.2 Proposition of a Stegosystem based on convolutional codes170

6 Conclusion and future work 187

Bibliography 189

List of publications 199

List of Communications 201

18 CONTENTS

Introduction

The transmission of information has always been subject to precision prob-
lems, given the obstacles existing between the transmitting and the receiver,
especially within the scope when both are subject to distance constraints [92].
Then, the fundamentals to ensure an efficient transfer such as availability (ef-
ficient use of the network, the time delays) or traceability at the reception (to
ensure non-rejection) when getting to the recipient are to be met. The need to
ensure quality transfer goes back to the delivery of messages by illustrations
carved in stone, until invention of the writing, where more modern methods
have been requested.

Indeed, my work on codes has been the mainspring and the catalyst be-
hind the research project, not to forget to mention the constant growing need
for storing and handling of information (rise of usage of mobile phones, inter-
net communication, cloud computing), as well as data protection in general.
Holding a master’s degree in cryptography and information security from the
University of Mohammed V-Rabat, I worked a lot on coding theory, also for
academic projects. Given the already known link with the systems theory, the
idea of combination of those two theories in order to consider convolutional
codes under a different angle different from the classical one were suggested.

The information theory also known as Shannon’s information theory, was
officially born in 1948 [75]. This theory helps treat raw information in a set
of sections and/or partitions, in an acceptable format by the transmission
channel, in order to ensure a coherent and adequate distribution, corresponding
to the utilization needs (messages, different sort of data, etc...) see [37]. This
last is represented by many other theories, such as the coding one (see [93]).

In 1948, Claude Shannon landed the first stone of what he called a “math-
ematical theory of information”. It is said that its theory was born from
thoughts on the language (english as it happens): Shannon was trying to
mask a variable proportion of text that he was reading, and to piece them

19

20 CONTENTS

together from the visible part. Because those hidden words were redundant,
they wouldn’t bring anything more to the meaning of the message. If he took
out too much, he could reconstruct the message with certainty. Then Shannon
put in place a theory that would be able to compute the quantity of infor-
mation in any type of message which comes down to determining the rate of
redundancy (for more, see [18]).

The coding theory which is part of the big picture, rather focuses on ef-
ficiency of messages transmission, in order to guarantee the integrity at the
moment of reception by the addressee (For more information, see [9], [11], [49],
[86]). Then, it actually tackles the storage question, and also the sending and
reception via a channel, in the aim to minimize the disturbances generally
encountered when transferring data.

At the origin, coding theory has had mainly the fundamental dedication
on information theory. In fact coding theory had arisen from the need for
better communication and better computer data storage (see [42]). Getting
to grips with the problem generally goes by tackling at first the coding, and
then the decoding or vice-versa. The coding theory is itself a very large and
deep subject (see [39], [57], [65], [40]). There are various ways to implement
the coding theory, such as network coding [8], or LRC coding for instance, as
well as for the decoding as list decoding for instance [32], [80]. Usually, the
decoding is one of the most challenging problem to solve; as we can imagine, for
convolutional sequences, they are semi-infinite, which means that the decoding
complexity is one not an ignorable issue. The most known one is the Viterbi
algorithm, based on maximum likelihood. Aside from that, there is also the
Massey’s threshold decoding as well as sequential and feedback algorithms [54],
[41], [61]. Also, some iterative decoding have been introduced in the field, prior
to the low density parity check codes, and the general graphs based methods
[82], [85] (for much more information, see [67]).

In coding theory, a linear code is an error-correcting code for which any
linear combination of codewords is also a codeword. It is the guarantee of con-
fidence for non alteration in numerical transmission via a channel. Following
the linear algebra rules, a linear code to be defined needs three sets, the first
being the alphabet, the set of all the symbols used for messages; the second
being a set of messages to be sent, which will be designated by M , the last be-
ing a set of messages to be received, which will be designated by R. Indeed, we
use a lot of algebra notions. The process of messages transmission from M to
R is then insured by a linear encoding matrix G, and the decoding by another
function ψ. If we look specifically at the encoding process, which is supposed

CONTENTS 21

to provide the non alterability of sent messages, the idea is to add redundance
to them. On the other side, the decoding process verifies the veracity of the
messages received.

During the first half of the twentieth century, linear systems were analyzed
using frequency domain (e.g., Laplace and Z-transform) based approaches in
an effort to deal with issues such as noise and bandwidth issues in communica-
tion systems. While they provided a great deal of intuition and were sufficient
to establish some fundamental results, frequency domain approaches presented
various drawbacks when control scientists started studying more complicated
systems (containing multiple inputs and outputs, nonlinearities, noise, and so
forth). Starting in the 1950s (around the time of the space race), control engi-
neers and scientists started turning to state-space models of control systems in
order to address some of these issues. These time-domain approaches are able
to effectively represent concepts such as the internal state of the system, and
also present a method to introduce optimality conditions into the controller
design procedure, [81].

Concretely convolutional codes are extensively used in many wireless trans-
missions systems such as transmitting information in deep space with remark-
able clarity. These codes are oftentimes implemented in concatenation with
a hard-decision code, particularly Reed Solomon [59]. Before turbo codes [2],
such constructions were the most efficient, coming closest to the Shannon limit.
Recently, as we are working on convolutional codes over linear systems, some
interesting proposals have resurfaced, knowing the fact that we are in an era
of information. Indeed, information is so much powerful and present in our life
than ever, and of course dealing with instantaneous and important flow of data
requires means of supervising the exchanges all over the internet(video stream-
ing for instance). Convolutional codes then find their spot and importance, as
well as decoding.

The initial work on connection between the coding theory and the systems
theory derives from a workshop initiated by Paul Fuhrmann at the “Institute
for Mathematics and its Applications”(IMA) in August 1999 [66]. Within
that meeting, Paul Fuhrmann suggested to the participants to establish di-
verse approaches and eventually unusual of convolutional codes from their own
perspectives. Which generated a variety of points of view, for example the dy-
namic systems point of view resulting from the analogy existing between an
input-output system and the “LFSR”(Linear Feedback Shift Register) which is
the way used for the storage and encoding of information for the convolutional
codes. The work realized in that area go from J. Rosenthal, R. Smarandache

22 CONTENTS

on [66],[35], to J-J. Climent [12]; those inspired and brought us, and they are
also the ones we based our contribution on; we also tried to bring our personal
contribution and continue on their results.

From our perception, handling the convolutional codes using the algebraic
approach has shown tremendous advantages, considering not only an easier
manner to handle construction, but computationally speaking as well. Our
own contributions are visible with coding, decoding and an additional appli-
cation with steganography. When it comes to coding, it feels very convenient
to be able to move from one side to another, algebraic or vector-space model
corresponding to the context of the needs of the user, there is much more flex-
ibility. Specially for decoding, some decoding algorithms have been suggested
two years ago, such as the decoding over the erasure channel [72], as we are
also trying to propose decoding procedures using the algebraic technique over
the Hamming metric.

This thesis has been built around five chapters. We started by giving
the preliminaries that are involved with our work, which is talking about the
linear block codes and convolutional codes, and also introduced the notions
involved in that theory, such as the distance, the length, the dimension, the
weight and the ratio. Specifically, for the convolutional codes, those notions
are defined and interpreted a slightly different way, which is as in a time-
depending transaction. In fact, we illustrate the fact that convolutional codes
are implemented with LFSR, that are registers characterized by their memory
very helpful for saving in that situation of time dependance. We present some
concrete examples to clearly show the encoding and the decoding in both cases.
The second chapter displays the systems theory, as it starts by the input-state-
output representation and the quadruple of matrices (A,B,C,D) involved in
that representation. It also shows the theory of linear systems, and we give
the representation of convolutional codes as linear systems as well. The third
chapter assembles the control theory, in where start our contributions; in this
one, we assess properties of the system theory with conditions in order to
reach those, properties such as controllability and observability, and a new
one introduced called output-observability; it represents the possibility of an
internal state, to be only defined by a finite set of outputs, for a finite number
of steps. Indeed, we use this concept in order to assess the minimality of a
realization, which translates into minimality of a convolutional encoder. The
fourth chapter is about algorithms for the decoding of the several constructions
of convolutional codes we worked on. On the fifth chapter, we introduced
steganography based on convolutional codes, inspired by steganography based

CONTENTS 23

on coding theory in general. And on the last chapter, we have a summary of
all of our achievements with a list of other aspects we would like to continue
working in the future.

24 CONTENTS

Chapter 1

Linear block and convolutional
codes

The information theory deals with the means to quantify the encoding of
information and its transmission in noisy channels. In this chapter, We recall
notions on coding theory. Most specifically, We focus on notions on linear
codes, both block and convolutional; we go through the prerequisites involved
in the process of encoding and decoding, both for block and convolutional
codes.

1.1 Linear block codes

In coding theory, block codes refer to the large and important family of error-
correcting codes that encode data in blocks. (For more information, see [73]).

We consider a finite set of symbols Fq, called alphabet, with q elements. The
information to be processed and the codewords will be expressed with symbols
from this alphabet. The set Fq is structured as a finite field (in particular the
size q of the alphabet is a power of a prime number).

If confusion is not possible, we will denote the finite field Fq by F.

Definition 1.1.1. A linear block code of length n and dimension k is a k-
dimensional subspace C of the vector space Fnq .

The block code is referred as C(n, k). The length of the code fixes the length

25

26 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

of the data streams sent through the channel, and the dimension measures the
amount of information, without redundancy, that each of these streams has.

The block code can also be characterised by a size called ratio defined by:

Definition 1.1.2. A ratio of a linear block code is given by the expression:
k/n, where n is the length of the code, and k is its dimension.

Encoding is described by means of an injective linear map called encoding
map,

g : Fkq −→ Fnq
with image space g(Fkq) = C.

The set Fkq is called the set of information words, and each element of the
code C = {v×G, ∀ v ∈ Fkq} is a codeword, where G ∈Mk×n(Fq) is the matrix
associated to the linear map, called generator matrix.

Example 1.1.1. Let us consider a binary linear block code C(6, 2), defined by
the matrix

G =

(
1 0 1 1 0 1
0 0 0 1 1 1

)
.

Since we have a binary code, our finite field is Z/2Z; and we have n = 6 and
k = 2;

Taking into account that F2
2 = {(0, 0), (1, 0), (0, 1), (1, 1)}

0 0
1 0
0 1
1 1

(1 0 1 1 0 1
0 0 0 1 1 1

)
=


0 0 0 0 0 0
1 0 1 1 0 1
0 0 0 1 1 1
1 0 1 0 1 0

 .

Then, the code is the linear subspace of dimension 2:

C = {000000, 101101, 000111, 101010}.

When defining error correcting codes, the notion of distance is very im-
portant. It is the decisive factor when it comes to the decoding, since the
verification of a good data transmission depends on the distance between the
received word, and those in the codewords space. This notion is defined by
Richard Hamming in one of the first articles defining the encoding theory
([33]).

1.1. LINEAR BLOCK CODES 27

Definition 1.1.3. Let x ∈ Fn be a vector, we define the Hamming weight of
x as the number of nonzero components of the n-vector x. We will denote the
Hamming weight of x by w(x).

Definition 1.1.4. If x1, x2 are two vectors in Fn, we define the Hamming
distance dist (x1, x2) through the formula dist (x1, x2) = w(x1 − x2).

As before, the Hamming distance satisfies all axioms of the Euclidean met-
ric defined in Rn.

Definition 1.1.5. The minimal distance is defined by either the smallest dis-
tance between two words, or the smallest non zero Hamming weight of all
codewords.

Example 1.1.2. Let us compute the minimal distance of some specific codes.

In F2, let us have the code C1(4, 2) given by the generator matrix(
1 0 1 1
0 1 0 1

)
.

The family of codewords generated by encoding is

C1 = {0000, 1011, 0101, 1110}.

For this code, the minimal distance is 2, the weight of the word 0101.

In F3, we consider the code C2(4, 2) given by the following generating matrix(
0 1 2 1
2 0 1 0

)
.

The codewords belonging to this code are:

C2 = {0000, 0121, 2010, 2101, 0212, 1020, 1202, 2222, 1111, 1202}.

The minimal distance is 2, the weight of both 2010 and 1020.

In coding theory the usual criterion for representation of generator matrices
is the horizontal which means a (k, n) representation and encoding from the
left. From the next section and the rest of the chapters, we will keep the
vertical representation because it is usual criterion in linear systems theory.

28 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

1.2 Convolutional codes

Convolutional code is a type of error-correcting code in which each k-bit infor-
mation symbol (each k-bit string) to be encoded is transformed into an n-bit
symbol, where k/n is the code rate and the transformation is a function of the
last information symbols contained in the memory of the physical encoder.

Convolutional codes are used extensively in numerous applications in order
to achieve reliable data transfer, including digital video, radio, mobile commu-
nication, and satellite communication (See [3]). These codes are often imple-
mented in concatenation with a hard-decision code, particularly Reed Solomon
code. Prior to turbo codes, such constructions were the most efficient, coming
closest to the Shannon limit. Convolutional codes were considered for the first
time by Elias in [19].

Convolutional codes are an improvement of block codes. They were imple-
mented in order to allow error correcting codes, to encode a longer sequence of
block words, at the same time, and have a better efficiency for error correction,
as well as encoding and decoding. The principle was, for a sequence of blocks
m1,m2, ...,ms ∈ Fk, to be encoded, to introduce a polynomial vector, that
would reunite them all, with m(z) =

∑s
i=0 mizi ∈ Fk[z], and transmit them

with a polynomial encoder [61]; to do so, we define a matrix G, entries in F[z],
we get c(z) = G(z)m(z) ∈ Fn[z], ([66]).

Definition 1.2.1. A convolutional code of length n and dimension k is a
k-rank submodule of Fnq [z].

Remember that

Definition 1.2.2. Let A be a ring. An A-module M is an additive abelian
group M equipped with an action:

A×M → M
(a,m) 7→ am

(1.1)

satisfying the conditions:

1. a(m1 +m2) = am1 + am2 for each a ∈ A and m1,m2 ∈M ;

2. (a1 + a2)m = a1m+ a2m for each a1, a2 ∈ A and m ∈M ;

1.2. CONVOLUTIONAL CODES 29

3. (a1a2)m = a1(a2m) for each a1, a2 ∈ A and m ∈M .

Definition 1.2.3. Let A be a ring. Given an A-module M, an A-submodule
N ⊂ M is an additive subgroup such that, for each a ∈ A and n ∈ N , we have
an ∈ N .

The word “convolutional” is used because the output sequences can be
regarded as the convolution of the input sequences with the sequences in the
encoder (see [20]).

Corollary 1.2.1 ([70]). Let C be a convolutional code. Then, there exists an
injective morphism of modules

ψ : Fk[z] 7→ Fn[z]
u(z) 7→ v(z).

(1.2)

Equivalently, there exists a polynomial matrix G(z) (called encoder) of order
n× k and having maximal rank such that

C= {v(z) | ∃u(z) ∈ Fk[z], v(z) = G(z)u(z)}. (1.3)

The rate k/n is known as the ratio of a convolutional code. We denote
by νi the maximum of all degrees of each of the polynomials of each line, we
define the complexity of the encoder as δ =

∑n
i=1 νi, and finally we define the

complexity of a convolutional code δ(C) as the maximum of all degrees of the
largest minors of G(z) that we will write simply by δ if no confusion is possible
[41].

The representation of a code among relatively different representations by
means of a polynomial matrix is not unique, but we have the following propo-
sition.

Proposition 1.2.1 ([70]). Two n×k rational encoders G1(z), and G2(z) define
the same convolutional code, if and only if there exists a k × k unimodular
matrix U(z) such that G1(z)U(z) = G2(z).

Remember that

Definition 1.2.4. A polynomial matrix P (z) ∈ F[z] is unimodular if there
exists another matrix Q(z) such that P (z)Q(z) = I.

30 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Equivalently, a polynomial matrix P (z) ∈ F[z] is unimodular if and only if
detP (z) is a non-zero element of the field F. Notice that the “inverse”Q(z) is
also an invertible polynomial matrix.

After a suitable permutation of the rows, we can assume that the generator
matrix G(z) is in the form

G(z) =

(
P (z)
Q(z)

)
(1.4)

with right coprime polynomial factors (block of polynomials) P (z) ∈ F(n−k)×k
and Q(z) ∈ Fk×k, respectively.

It is possible to consider the equivalent rational encoder where Q(z) 6= 0(
P (z)
Q(z)

)
Q−1(z) =

(
P (z)Q−1(z)

I

)
. (1.5)

Such operation can be implemented through shift registers. Those Linear
Feedback Shift Registers (LFSR) can be characterized by their memory, which
represents the number of delays realized by each one, while encoding every bit
of information.

Depending on the type of the shift registers, convolutional codes can be
qualified in accordance with 3 properties: systematic recursive, systematic
nonrecursive and nonsystematic nonrecursive [51].

The encoder is said to be systematic if the output bits are reproduced
transparently in the transmitted stream; and the opposite when none of the
outputs is transparently similar. The recursivity, as the name suggests comes
when there is feedback into the input.

Indeed, it is important to denote that encoding a message, is pretty similar
to the block code encoding, with the generator matrix; the small difference
will be specific to the type of code we are dealing with, especially because
of the interlacement. However, it is much easier than the decoding, whose
algorithms can get quickly complex, and that could be seen as the weakness
of convolutional codes.

Example 1.2.1. The convolutional code C corresponding to Figure 1.1 is given
by

1.2. CONVOLUTIONAL CODES 31

Figure 1.1: A representation of a recursive encoder

C1(z) = z3m(z) +
z

1 + z
m(z)

C2(z) = m(z).

The encoding matrix corresponding to our encoder is given by:

G =

(
z3 +

z

1 + z
1

)
.

We can have an equivalent polynomial matrix, with the product G(1 + z)
that is equivalent to a proper rational matrix.

G(1 + z) =

(
z + z3 + z4

1 + z

)
∼
(

1 + z
z + z3 + z4

)
∼

 1 + z

z + z3 + z4

1

 .

Definition 1.2.5. The state diagram is a diagram that shows the different
possible states that can be taken by the encoder, depending on the entering
bit, and how to move from one another.

(An example is showed in Figure 1.4)

Definition 1.2.6. The state table is a table whose entries are filled in with
bits contained in the shift registers either at present (two last entries of each
row) or next time(two first entries of each row).

(An example is showed in Figure 1.2)

32 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Many other different definitions of convolutional codes can be found in the
literature, as suggested by [66]. In his work, J. Rosenthal details all of the
different definitions over “the linear algebra, the symbolic dynamics, the linear
time-invariant behavior, and the first order representation definition”, as well
as their relevance and shows the equivalence between them. The one to pick
depends on the goal we are pursuing. For our work, especially, our aim is to
benefit from the linear systems theory, to define some algebraic properties, and
always improve convolutional codes, by privileging the concatenation, and the
decoding algorithms as well. One of the highly used is the Viterbi algorithm.
Another algorithm is given by Massey for decoding BCH codes by a shift
register approach (For more information, see [54]). Therefore, We will be
focusing, for the rest of our work, on a linear systems theory definition of
convolutional codes. One of the best representation We found corresponding
to illustrate this connection will be the first-order representation.

As for the linear block codes, let us consider a Galois finite field, our basic
finite field. Then, Fn is our arrival space.

Theorem 1.2.1. Let C ⊂ Fn be a k/n convolutional code, of complexity of
convolutional code δ. Then, there exist matrices K, L of sizes (δ + n− k)× δ,
and a matrix M , of size (δ + n − k) × n, with entries in F, such that the
convolutional code C is defined by

C = {u(z) ∈ Fn[z]|∃x(z) ∈ Fδ[z] : zKx(z) + Lx(z) +Mu(z) = 0}.

Example 1.2.2. We consider the following specific model of encoding:

Let G(z) =

 z2 z + 1
z2 + z + 1 1

1 z

 be the generator matrix of a code with

k

n
=

2

3
, [νi] = [ν1, ν2] = [2, 1] where ν1 and ν2 represent the highest degrees

of respectively the first and second columns of G(z), then, the complexity of
convolution code is δ = ν1 + ν2 = 3.

Consider the matrix

X(z) =

1 0
z 0
0 1

 ∈Mδ×k(F)

such has maximal rank, rankX(z) = k, then for each f(z) ∈ Fk[z] there exists
v ∈ Fδ, such that vX(z) = f(z)

1.2. CONVOLUTIONAL CODES 33

Let


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 1 1
1 1 1 1 0
1 0 0 0 1

 be the scalar matrix of Q(z) =

zX(z)
X(z)
G(z)

.

We have
Λ : F2δ+n 7→ Fδ+k

v 7→ vQ(z)

We obtain Ker Λ by solving

(
x1 x2 x3 x4 x5 x6 x7 x8 x9

)



0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 1 1
1 1 1 1 0
1 0 0 0 1


= 0

The subspace Ker Λ is the subspace generated by the row vectors
1 0 0 0 1 0 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 1 1 0 1 0
0 0 1 1 0 0 0 0 1


Then,

K =


1 0 0
0 1 1
0 1 0
0 0 1

 ∈M(δ+n−k)×δ(F), L =


0 1 0
0 0 1
1 1 1
1 0 0

 ∈M(δ+n−k)×δ(F),

M =


0 0 0
1 0 0
0 1 0
0 0 1

 ∈M(δ+n−k)×n(F).

34 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Obviously,
(
zK L M

)XX
G

 = zKX + LX +MG = 0.

The definition of Hamming distance given in 1.1.4, can be extended to
vector spaces in the following manner

Definition 1.2.7. The free distance represents the minimal distance between
two codewords, at a specific time of the encoding.

The free distance can be assimilated to the minimal distance as interpreted
with block codes when it comes to convolutional codes.

Example 1.2.3. In F2, let us consider the non-recursive and non-systematic
convolutional code C, of ratio 1/2, whose matrix is defined below.
As mentioned earlier, we consider convolutional encoders as matrices with
rational or polynomial entries. Considering that we operate at the right, the
polynomial generator matrix is given by:

G(z) =

(
1 + z + z2

1 + z2

)
.

In order to make it easier to compute the outputs, knowing the input vectors,
we can rewrite the scalar matrix, by considering every scalar associated to
the indeterminate z and rewriting them from left to right, starting from z’s
smallest power as:

G =

(
1 1 1
1 0 1

)
.

This means that G has one input at the time, and two outputs.

Let us encode words of length 3.

Let us define the code’s state Table 1.2, considering that the bits enter in
the encoder from left to right:

This table shows what happens at a specific time t. The first cell of each
line is the next bit going into the Linear Feedback Shift Register(LFSR), the
first two cells show the sequence at time t+ 1 into both registers of the LFSR,
right after the entry of the bit in the first cell; and the last two cells show the
content of the LFSR at time t.

1.2. CONVOLUTIONAL CODES 35

Figure 1.2: The State Table

36 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Figure 1.3: LFSR encoder

Now, let us have a look at both the LFSR encoder, and the state diagram.
(A linear-feedback shift register (LFSR) is a shift register whose input bit is a
linear function of its previous state)

With the state diagram, we clearly see the possible states of the encoding
machine, more precisely the various possible content of the registers. Moreover,
it explains how to go from one state to another, and gives the output we get
when moving from one state to a different one. Those outputs are the couples
written on top of the long lines and underneath “Next bit”. The state diagram
is very helpful when encoding.

If we want to encode this set of words of length 3, considering that we
always start with the state 00 this is how it goes.

In this example, we start from the state 00. As we move along, we send
each and every bit of the sequence we wish to encode, from left to right. To
compute the output sequence we get after every move, we take a look at the
state diagram, and it gives us exactly the output value from one state to
another, bit after bit.

From the generator matrix, we have both outputs:{
C1(i) = Si + Si−1 + Si−2

C2(i) = Si + Si−2
(1.6)

Then, we get the following codeword family:

1.2. CONVOLUTIONAL CODES 37

Figure 1.4: Diagram State

38 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Figure 1.5: Encoding process

1.2. CONVOLUTIONAL CODES 39

G(000, 010, 001, 100, 101, 011, 110, 111) =
(000000, 001110, 000011, 111011, 111000, 001101, 110101, 110110)

This process is the convolutional way for encoding; which means that it is
how semi-infinite sequences can be encoded bit after bit.
The free distance is given by the smallest distance to 000000 of every codeword;
in our case it is d(000011, 000000).
The free distance in this case is: 2.
Then, we have: 2 ≤ 6. (k = 1, δ = 2)

40 CHAPTER 1. LINEAR BLOCK AND CONVOLUTIONAL CODES

Chapter 2

Systems theory

In this chapter, we recall the systems theory tools by introducing the input-
state-output representation; then, we will talk about convolutional codes using
the linear systems theory; and also introduce the realization for the transition
between codes and linear systems. Then, we look at concatenated systems
as linear systems, in order to later introduce the control properties of those
systems focusing on their specific construction structure.

A discrete linear time-invariant system is described by the equations

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.1)

where A ∈Mδ(F), B ∈Mδ×k(F), C ∈Mp×δ(F), D ∈Mp×k(F) (with p = n−k)
are constant matrices over the field F, and u(t) ∈ Fk, x(t) ∈ Fδ, y(t) ∈ Fp are
the input, state and output vectors, respectively.

We will denote a system simply as the quadruple of matrices (A,B,C,D).

With initial condition x(0) = 0, a solution of the Equation (2.1) can be
obtained by making use of the Z-transform. Let u(z), x(z), y(z) be the Z-
transforms of the variables u, x, y of a time- invariant linear system. Then by
applying the Z-transform to the equations of the system we have

{
zx(z) = Ax(z) +Bu(z)
y(z) = Cx(z) +Du(z)

(2.2)

41

42 CHAPTER 2. SYSTEMS THEORY

and as a result we have

y(z) = (C(zIδ − A)−1B +D)u(z), (2.3)

called the transfer function of the system, and C(zIδ − A)−1B + D is the
transfer matrix.

Remark 1. For any initial condition x(0), the Z-transform takes the form{
zx(z)− x(0) = Ax(z) +Bu(z)

y(z) = Cx(z) +Du(z)

Remark 2. Observe that

C(zIδ − A)−1B +D =
1

det(zIδ − A)
C(Adj(zIδ − A))tB +D.

Each entry of the adjoint matrix Adj(zIδ−A) is a polynomial of degree strictly
less than the degree of the determinant of zIδ−A. Consequently, C(zIδ−A)−1B
is a strictly proper rational matrix, and if D 6= 0, C(zIδ − A)−1B + D is a
proper rational matrix.

The values z0 ∈ F (where F denotes the algebraic closure of the field F)
such that det(z0Iδ − A) = 0 are called eigenvalues of A and the set of all
eigenvalues is called spectrum of A and is denoted by Spec(A).

2.1 Convolutional codes as linear systems

Given a convolutional code, with a specific encoding matrix G(z), we can al-
ways give a first-order representation of this matrix. By a series of transforma-
tions, we can find four matrices (A,B,C,D) of adequate sizes, corresponding
to this matrix. The linear system (A,B,C,D) associated to the encoder G(z)
is called a realization of G(z).

In general, such a representation is intended to have a different approach
and understanding of codes, and be able to impact either the input, output,
or the generator matrix, with the algebra material.

Linear systems for convolutional codes represent a mechanism to work on
every little sub-piece of the encoding process. If we try to understand the
physical control process, that goes along with the coding, the state of our
encoding machine is modified by both the dynamics matrix and the input
matrix. The final result, the output corresponds to the combination action of
the sensor and the feedthrough matrices.

2.1. CONVOLUTIONAL CODES AS LINEAR SYSTEMS 43

2.1.1 Realization algorithm

Let us consider some linear systems, that we would like to study as convolu-
tional codes.

Given a linear system (A,B,C,D) it is easy to obtain a convolutional code
such that the given system is a realization, as we can see in the following
example.

Example 2.1.1. In F7, let us consider the realization (A,B,C,D) of a convo-
lutional code with

A =

0 0 0
4 0 −1
0 1 0

 , B =

1 −3
1 −2
0 0

 ,

C =
(
4 1 0

)
, D =

(
1 −2

)
.

Indeed, we have the transfer matrix, which is given by the formula: G(z) =
C(zIδ − A)−1B +D.

We have: (zI − A)=

 z 0 0
−4 z 1
0 −1 z

. So,

(zIδ − A)−1 =


1

z
0 0

4

z2 + 1

z

z2 + 1

−1

z2 + 1
4

z3 + z

1

z2 + 1

z

z2 + 1


and

C(zIδ − A)−1B +D

=

(
z3 + 5z2 + 5z + 4

z3 + z

−2z3 − 5

z3 + z

)
= P (z)Q(z)−1

.

Taking Q(z) =

(
z3 + z

z3 + z

)
, we consider the matrix

G(z)Q(z)−1 =

(
P (z)Q(z)−1

I

)
.

44 CHAPTER 2. SYSTEMS THEORY

Then, the encoder G(z) is given by the following matrix

G(z) =

z3 + 5z2 + 5z + 4 −2z3 − 5
z3 + z 0

0 z3 + z



Equivalently, we can write as

z3 + 5z2 + 5z + 4 5z3 + 2
z3 + z 0

0 z3 + z


The convolutional code obtained out of this transformation can be simply

designed by C(A,B,C,D).

We are interested in the inverse problem, that is to say, given a convolu-
tional code we want to obtain a realization of this code.

From Theorem 1.2.1 and taking into account the following proposition

Proposition 2.1.1. Let (K1, L1,M1) be another representation of the convo-
lutional code C. Then there exist invertible matrices T and S of adequate sizes,
such that

(K1, L1,M1) = (TKS−1, TLS−1, TM).

We have the following corollary

Corollary 2.1.1. The triple (K,L,M) can be written as

K =

(
−Iδ

0

)
, L =

(
A
C

)
, M =

(
0 B

−In−k D

)
.

And we deduce the following corollary

Corollary 2.1.2.

C = {v(z) ∈ Fn[z] | ∃x(z) ∈ Fδ[z] :
(
zI−A 0 −B
−C I −D

) (x(z)
v(z)

)
= 0}

Now, if we divide the matrix v(z) in two parties v(z) =
(
y(z)
u(z)

)
, the equality(

zI−A 0 −B
−C I −D

) (x(z)
v(z)

)
= 0 can be expressed as{

zx(z) = Ax(z) +Bu(z)
y(z) = Cx(z) +Du(z)

2.1. CONVOLUTIONAL CODES AS LINEAR SYSTEMS 45

Finally, applying the antitransform Z, we obtain the system

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
,

v(t) =

(
u(t)
y(t)

)
,

x(0) = 0.

Remark 3. The vectors u(t), x(t), y(t) and v(t) =

(
u(t)
y(t)

)
are known as infor-

mation vector, state vector, parity vector and the code vector transmitted via
the communication channel respectively.

Following the example 1.2.2, we have,

Example 2.1.2.
1 0 0 0 1 0 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 1 1 0 1 0
0 0 1 1 0 0 0 0 1

 ∼


1 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 1 0
0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1




1 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 1 0
0 0 1 −1 −1 0 1 −1 0
0 0 1 1 0 0 0 0 1

 ∼

−1 0 0 0 −1 0 0 0 0
0 −1 0 −1 −1 −1 0 −1 0
0 0 −1 1 1 0 −1 1 0
0 0 0 2 1 0 −1 1 1

 ∼


-1 0 0 0 -1 0 0 0 0
0 -1 0 -1 -1 -1 0 -1 0
0 0 -1 -1 0 0 0 0 -1
0 0 0 2 1 0 -1 1 1

 .

Then,

A =

 0 −1 0
−1 −1 −1
−1 0 0

 , B =

 0 0
−1 0
0 −1

 ,

C =
(
2 1 0

)
, D =

(
1 1

) .

Now, we present another method to obtain a realization.

46 CHAPTER 2. SYSTEMS THEORY

Let G(z) be a matrix generator of (n, k, δ) convolutional code, in which we

consider that is in the form
(
P (z)
Q(z)

)
with Q(z) invertible and the degree δ of

the polynomial detQ(z) being maximal among all minors of order k.

We decompose P (z)Q(z)−1 into a polynomial matrix and a strictly proper
matrix.

Let p(z) = zδ + aδ−1z
δ−1 + . . . + a1z + a0 the monic polynomial deduced

from detQ(z). So, the matrix P (z)Q(z)−1 is written in the form


d11 +

q11(z)

p(z)
. . . d1k +

q1k(z)

p(z)
...

...

dn−k1 +
qn−k1(z)

p(z)
. . . dn−kk +

qn−kk(z)

p(z)


qij = cij0 + cij1 z + . . .+ cijδ−1z

δ−1

(by construction dij ∈ F and degree qij < δ).

First of all and for simplicity, we analyze the case where k = 1.

We consider the following matrices

D =

 d11

...
dn−k1

 ∈M(n−k)×1(F).

A =


−aδ−1 −aδ−2 . . . −a1 −a0

1 0 . . . 0 0
. . .

0 0 . . . 1 0

 ∈Mδ(F)

B =


1
0
...
0

 ∈Mδ×1(F)

2.1. CONVOLUTIONAL CODES AS LINEAR SYSTEMS 47

C =

 c11
δ−1 . . . c11

0

...
...

cn−k1
δ−1 . . . cn−k1

0

 ∈M(n−k)×δ.

A simple calculation shows that C(zIδ − A)−1B +D = P (z)Q(z)−1.

Example 2.1.3. Let G(z) be the following encoder matrix

G(z) =

(
1 + z + z2

1 + z2

)
=

(
P (z)
Q(z)

)
. (2.4)

So,

C(zI − A)−1B +D = P (z)Q(z)−1 =
1 + z + z2

1 + z2

and we can decompose P (z)Q(z)−1 into a polynomial matrix and a strictly

proper matrix: P (z)Q(z)−1 = 1 +
z

1 + z2
. Then, we take the matrix D as the

polynomial, and C(zI − A)−1B the strictly rational part.

So, D = 1 and C(zI − A)−1B =
c0 + c1z

a0 + a1z + z2
. Then A =

(
−a1 −a0

1 0

)
,

B =

(
1
0

)
, C =

(
c1 c0

)
. So, A =

(
0 −1
1 0

)
, and C =

(
1 0

)
.

Example 2.1.4. We consider the following code

G(z) =

 1 + z + z2

α + z + α2z2

α2 + z + αz2


over the field F4,

First of all we make the addition and multiplication table of the field F4

considered.

+ 0 1 α α+ 1

0 0 1 α α+ 1

1 1 0 α+ 1 α

α α α+ 1 0 1

α+ 1 α+ 1 α 1 0

· 0 1 α α+ 1

0 0 0 0 0

1 0 1 α α+ 1

α 0 α α+ 1 1

α+ 1 0 α+ 1 1 α

(2.5)

48 CHAPTER 2. SYSTEMS THEORY

G(z) =

 1 + z + z2

α + z + α2z2

α2 + z + αz2

 =



1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1


α2 + z + αz2



1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1


=



α + 1 +
1 + α + αz

α2 + z + αz2

α +
(1 + α) + (1 + α)z

α2 + z + αz2

1


;

P (z)Q(z)−1 =


1 + α +

α + z

α + (α + 1)z + z2

α +
α + αz

α + (α + 1)z + z2

 .

Following as before we obtain the following realization (A,B,C,D) of the
convolutional code where

D =

(
α + 1
α

)
, B =

(
1
0

)
,

q11 = α + z = c11
0 + c11

1 z
q21 = α + αz = c21

0 + c21
1 z

C =

(
c11

1 c11
0

c21
1 c21

0

)
=

(
1 α
α α

)
p(z) = a0 + a1z + z2 = α + (1 + α)z + z2

A =

(
−a1 −a0

1 0

)
=

(
1 + α α

1 0

)

Now, we analyze the case k > 1

2.1. CONVOLUTIONAL CODES AS LINEAR SYSTEMS 49

In this case, we construct the matrix A in the following manner

A =


−aδ−1Ik −aδ−2Ik . . . −a1Ik −a0Ik

Ik 0 . . . 0 0
. . .

0 0 . . . Ik 0

 ∈Mk×δ(F)

now takingD =

 d11 . . . d1k

...
...

dn−δ1 . . . dn−kk

, B =

(
Ik

0k(δ−1),k

)
and C =

(
C1 . . . Cδ

)

where C1 =

 c11
δ−1 . . . c1k

δ−1

...
...

cn−k1
δ−1 . . . cn−kkδ−1

, C2 =

 c11
δ−2 . . . c1k

δ−2

...
...

cn−k1
δ−2 . . . cn−kkδ−2

, . . .,

Cδ =

 c11
0 . . . c1k

0
...

...

cn−k1
0 . . . cn−kk0

.

Example 2.1.5. Let G(z) be the following encoder matrix

G(z) =


1 + z 1
z 1 + z

1 + z + z2 0
0 1 + z + z2

 =

(
P (z)
Q(z)

)

So,

C(zI − A)−1B +D = P (z)Q(z)−1 =

 1 + z

1 + z + z2

1

1 + z + z2

z

1 + z + z2

1 + z

1 + z + z2



In this case D = 0 and A =


−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 1 0 0

, B =


1 0
0 1
0 0
0 0

,

C =

(
1 1 0 1
1 0 1 1

)
.

50 CHAPTER 2. SYSTEMS THEORY

2.2 Concatenated systems

For convolutional codes, concatenation is proved to improve the transmission.
As an example, turbo codes, invented during the 90s, by an ENST-Bretagne
group of researchers directed by Claude Berrou and Alain Glavieux, have been
adopted by most of the telecommunication systems [5]. The turbo codes tech-
nique is built on the interlacing of recursive convolutional codes, concatenated
in parallel. Systems concatenation are implemented in the same spirit.

In our work, we are going to consider two big families of concatenation:
serial concatenation, and parallel concatenation and two other models of con-
catenation called systematic serial concatenation and parallel interleaver con-
catenation.

2.2.1 Serial concatenation

In the serial concatenation process, both codes are serialized one after another.
Precisely, a first code is used to encode the information. This first codeword
represents the second encoder’s input, since it is then sent to the second box.
The obtained word represents our final codeword.

Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) be convolutional codes, called
outer code, and inner code respectively. Let x1(t), u1(t), and y1(t) be the state
vector, the information vector and the parity vector of C1(A1, B1, C1, D1), and
let x2(t), u2(t), and y2(t) be the state vector, the information vector and the
parity vector of C2(A2, B2, C2, D2), respectively.

The outer code C1 and the inner code C2 are serialized, one after the other,
so that the input information u2(t) = y1(t). Consequently

x1(t+ 1) = A1x1(t) +B1u1(t)
x2(t+ 1) = A2x2(t) +B2C1x1(t) +B2D1u1(t)

y2(t) = C2x2(t) +D2C1x1(t) +D2D1u1(t)

That is to say the concatenated code is C(A,B,C,D) with

2.2. CONCATENATED SYSTEMS 51

A =

(
A1 0
B2C1 A2

)
, B =

(
B1

B2D1

)
,

C =
(
D2C1 C2

)
, D = D2D1.

(2.6)

If C0(A1, B1, C1, D1) is a (m, k, δ1)-code and Ci(A2, B2, C2, D2) is a (n,m −
k, δ2)-code, then C(A,B,C,D) is a (n−m+ 2k, k, δ1 + δ2)-code.

Example 2.2.1. In the field F7, let (A1, B1, C1, D1) with

A1 =

1 0 2
5 1 5
4 3 0

 , B1 =

2 1
0 3
2 4

 ,

C1 =

(
2 0 2
1 1 3

)
, D1 =

(
4 1
0 4

) (2.7)

and (A2, B2, C2, D2) with

A2 =

(
2 4
5 1

)
, B2 =

(
4 1
3 0

)
,

C2 =

5 1
4 0
1 2

 , D2 =

5 1
2 6
0 4

 (2.8)

be two realizations of two encoders G1(z) and G2(z). Then the realization of
the serial concatenated is:

A =


1 0 2 0 0
5 1 5 0 0
4 3 0 0 0
2 1 4 2 4
6 0 6 5 1

 , B =


2 1
0 3
2 4
2 1
5 3

 ,

C =

4 1 6 5 1
3 6 1 4 0
4 4 5 1 2

 , D =

6 2
1 5
0 2

 .

Proposition 2.2.1. The transfer matrix defining the matrix encoder of the
serial concatenated code is:

G(z) = G2(z)G1(z) (2.9)

where G1(z) and G2(z) are the transfer matrices corresponding to the codes
C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), respectively.

52 CHAPTER 2. SYSTEMS THEORY

Proof.(
zIδ1 − A1 0
−B2C1 zIδ2 − A2

)−1

=

(
(zIδ1 − A1)−1 0

(zIδ2 − A2)−1B2C1(zIδ1 − A1)−1 (zIδ2 − A2)−1

)
.

So,

(
D2C1 C2

)(zIδ1 − A1 0
−B2C1 sIδ2 − A2

)−1(
B1

B2D1

)
+D2D1 =

D2C1(zIδ1 − A1)−1B2C1(zIδ1 − A1)−1B1 + C2(zIδ2 − A2)−1B2D1 +D2D1 =
G2(z)G1(z).

2.2.2 Parallel concatenation

The second concatenated model that we will study is the parallel concatena-
tion. Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) be convolutional codes. Let
x1(t), u1(t), and y1(t) be the state vector, the information vector and the parity
vector of C1(A1, B1, C1, D1), and let x2(t), u2(t), and y2(t) be the state vector,
the information vector and the parity vector of C2(A2, B2, C2, D2), respectively.

Both codes are concatenated in a parallel form, so that the input informa-
tion is u2(t) = u1(t) = u(t) and the final parity vector is y(t) = y1(t) + y2(t).
Consequently

x1 = A1x1(t) +B1u(t)
x2 = A2x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t) + (D1 +D2)u(t)

A =

(
A1 0
0 A2

)
, B =

(
B1

B2

)
,

C =
(
C1 C2

)
, D = D1 +D2.

(2.10)

If C1(A1, B1, C1, D1) is a (n, k, δ1)-code and C2(A2, B2, C2, D2) is a (n, k, δ2)-
code, then C(A,B,C,D) is a (n, k, δ1 + δ2)-code.

2.2. CONCATENATED SYSTEMS 53

Example 2.2.2. In the field F7, let (A1, B1, C1, D1) with

A1 =

(
1 3
4 1

)
, B1 =

(
0
2

)
,

C1 =

5 2
0 6
3 0

 , D1 =

2
5
6

 .

(2.11)

and (A2, B2, C2, D2) with

A2 =

6 3 0
0 6 2
1 0 1

 , B2 =

1
2
3

 ,

C2 =

4 2 6
6 5 5
3 3 2

 , D2 =

1
0
4

 .

(2.12)

be two realizations of two encoders G1(z) and G2(z). Then the realization of
the parallel concatenated is:

A =


1 3 0 0 0
4 1 0 0 0
0 0 6 3 0
0 0 0 6 2
0 0 1 0 1

 , B =


0
2
1
2
3

 ,

C =

5 2 4 2 6
0 6 6 5 5
3 0 3 3 2

 , D =

3
5
3

 .

Proposition 2.2.2. The transfer matrix defining the matrix encoder of the
parallel concatenated code is:

G(z) = G1(z) +G2(z) (2.13)

where G1(z) and G2(z) are the transfer matrices corresponding to the codes
C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), respectively.

Proof. (
zIδ1 − A1 0

0 zIδ2 − A2

)−1

=

(
(zIδ1 − A1)−1 0

0 (zIδ2 − A2)−1

)
.

54 CHAPTER 2. SYSTEMS THEORY

So, (
C1 C2

)(zIδ1 − A1 0
0 zIδ2 − A2

)−1(
B1

B2

)
+D1 +D2 =

C1(zIδ1 − A1)−1B1 +D1 + C2(zIδ2 − A2)−1B2 +D2 =
G1(z) +G2(z).

2.2.3 Systematic serial concatenation

In this case we consider the same kind of codes than the case of serial concate-
nation. Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) be convolutional codes,
called outer code, and inner code respectively. Let x1(t), u1(t), and y1(t) be the
state vector, the information vector and the parity vector of C1(A1, B1, C1, D1),
and let x2(t), u2(t), and y2(t) be the state vector, the information vector and
the parity vector of C2(A2, B2, C2, D2), respectively.

The systematic serial concatenation of these codes is C(A,B,C,D) with

A =

(
A1 0
B2C1 A2

)
, B =

(
B1

B2D1

)
, C =

(
C1 0
D2C1 C2

)
, D =

(
D1

D2D1

)
.

If C0(A1, B1, C1, D1) is a (m, k, δ1)-code and Ci(A2, B2, C2, D2) is a (n,m−
k, δ2)-code, then C(A,B,C,D) is a (n+ k, k, δ1 + δ2)-code.

Example 2.2.3. In the field F7, let (A1, B1, C1, D1) with

A1 =

1 0 2
5 1 5
4 3 0

 , B1 =

2 1
0 3
2 4

 ,

C1 =

(
2 0 2
1 1 3

)
, D1 =

(
4 1
0 4

) (2.14)

and (A2, B2, C2, D2) with

A2 =

(
2 4
5 1

)
, B2 =

(
4 1
3 0

)
,

C2 =

5 1
4 0
1 2

 , D2 =

5 1
2 6
0 4

 (2.15)

2.2. CONCATENATED SYSTEMS 55

be two realizations of two encoders G1(z) and G2(z). Then the realization of
the systematic serial concatenated is:

A =


1 0 2 0 0
5 1 5 0 0
4 3 0 0 0
2 1 4 2 4
6 0 6 5 1

 , B =


2 1
0 3
2 4
2 1
5 3

 ,

C =


2 0 2 0 0
1 1 3 0 0
4 1 6 5 1
3 6 1 4 0
4 4 5 1 2

 , D =


4 1
0 4
6 2
1 5
0 2

 .

Proposition 2.2.3. The transfer matrix defining the matrix encoder of the
systematic serial concatenated code is

G(z) =

(
G1(z)

G2(z)G1(z)

)
(2.16)

where G1(z) and G2(z) are the transfer matrices corresponding to the codes
C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), respectively.

Proof.(
zIδ1 − A1 0
−B2C1 zIδ2 − A2

)−1

=

(
(zIδ1 − A1)−1 0

(zIδ2 − A2)−1B2C1(zIδ1 − A1)−1 (zIδ2 − A2)−1

)
.

So,

(
C1 0
D2C1 C2

)(
zIδ1 − A1 0
−B2C1 sIδ2 − A2

)−1(
B1

B2D1

)
+

(
D1

D2D1

)

=

(
C1(zIδ1 − A1)−1B1 +D1

D2C1(zIδ1 − A1)−1B2C1(zIδ1 − A1)−1B1 + C2(zIδ2 − A2)−1B2D1 +D2D1

)
=

(
G1(z)

G2(z)G1(z)

)
.

56 CHAPTER 2. SYSTEMS THEORY

2.2.4 Parallel Interleaver concatenation

The other concatenated model that we will study is the parallel concatena-
tion with interleaver. Let C1(A1, B1, C1, D1) be a (n, k, δ1)-convolutional code
and C2(A2, B2, C2, D2) be an (n, k, δ2)-convolutional code, and P a (k × k)
permutation matrix that We call the interleaver matrix. Let x1(t), u1(t),
and y1(t) be the state vector, the information vector and the parity vector
of C1(A1, B1, C1, D1), and let x2(t), u2(t), and y2(t) be the state vector, the in-
formation vector and the parity vector of C2(A2, B2, C2, D2), respectively. We
suppose that the input sequence goes through an interleaver before being en-
coded with the encoder C2. We are going to encode in parallel on one side the
first code C1, and on the other side, the code C2(A2, B̄2, C2, D̄2) with B̄2 = B2P
and D̄2 = D2P obtained after to apply the interleaver to the second code C2.

Both sides are concatenated in a parallel form, so that the input information
u1(t) = u(t), and u2(t) = Pu(t) and the final parity vector y(t) = y1(t)+ ȳ2(t).
Consequently, we get the new realization:


x1(t) = A1x1(t) +B1u(t)
x2(t) = A2x2(t) +B2Pu(t)
y(t) = C1x1(t) + C2x2(t) + (D1 +D2P)u(t)

A =

(
A1 0
0 A2

)
, B =

(
B1

B2P

)
,

C =
(
C1 C2

)
, D = D1 +D2P .

(2.17)

If C1(A1, B1, C1, D1) is a (n, k, δ1)-code and C2(A2, B̄2, C2, D̄2) is a (n, k, δ2)-
code, then C(A,B,C,D) is a (n, k, δ1 + δ2)-code.

Example 2.2.4. In F5, let us consider (A1, B1, C1, D1) with

A1 =

0 1 2
3 2 1
1 1 0

 , B1 =

4 3
1 0
2 2

 ,

C1 =
(
2 1 0

)
, D1 =

(
2 0

) (2.18)

2.2. CONCATENATED SYSTEMS 57

and (A2, B2, C2, D2) with

A2 =

4 2 1
3 0 3
1 2 1

 , B2 =

1 3
0 2
2 1

 ,

C2 =
(
0 3 4

)
, D2 =

(
4 2

) (2.19)

and the interleaver matrix P =

(
0 1
1 0

)
.

The concatenated system (A,B,C,D) is such that:

A =


0 1 2 0 0 0
3 2 1 0 0 0
1 1 0 0 0 0
0 0 0 4 2 1
0 0 0 3 0 3
0 0 0 1 2 1

 , B =


4 3
1 0
2 2
3 1
2 0
1 2

 ,

C =
(
2 1 0 0 3 4

)
, D =

(
4 4

)
.

(2.20)

Proposition 2.2.4. The transfer matrix defining the matrix encoder of the
concatenated code with interleaver is

G(z) = G1(z) +G2(z)P , (2.21)

where G1(z) and G2(z) are the transfer matrices corresponding to the codes
C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), respectively.

Proof. (
zIδ1 − A1 0

0 zIδ2 − A2

)−1

=

(
(zIδ1 − A1)−1 0

0 (zIδ2 − A2)−1

)
.

So,

(
C1 C2

)(zIδ1 − A1 0
0 zIδ2 − A2

)−1(
B1

B2P

)
+ (D1 +D2P) =(

C1(zIδ1 − A1)−1B1 +D1

)
+
(
C2(zIδ2 − A2)−1B2P +D2P

)
=

G1(z) +G2(z)P .

58 CHAPTER 2. SYSTEMS THEORY

Chapter 3

Controllability and
Observability

In control systems theory the major concepts are controllability and observ-
ability. These concepts were introduced by R. Kalman in 1960 ([46]). Roughly
speaking observability means the possibility of identifying the internal state
of a system from measurements of the outputs. Controllability means instead
the possibility of steering the system from any initial state to any final one
by means of a control signal in the input. In this chapter, we recall some
properties and notions of the control theory, such as controllability and ob-
servability, and we will introduce output-observability as well. We want to
remark that in Control Theory the output observability is known as functional
output-controllability that generally means, that the system can steer output
of dynamical system along the arbitrary given curve over any interval of time,
independently of its state vector. Nevertheless, the name used in coding theory
is to output-observability and for that we use this name in this thesis.

In this chapter, we write those properties for concatenated systems; we will
study necessary or sufficient conditions in order to reach those properties for
concatenated codes. We highlight that it contains in majority some of the
articles we published.
Let us formalize these concepts.

59

60 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

3.1 Controllability, observability

In this section, we introduce the definitions, as we use those results and get
inspired by the concepts, since they are very useful for the rest of the thesis.

Definition 3.1.1. A linear system (A,B,C,D) is a controllable system if the
controllability matrix of the system

C =
(
B AB A2B . . . Aδ−1B

)
(3.1)

has full rank δ, where δ is the complexity of the code.

Or equivalently (Hautus test [38]), a linear system (A,B,C,D) is controllable
if and only if

rank
(
zI − A B

)
= δ, for all z ∈ F, (3.2)

where F denotes the algebraic closure of F.

Definition 3.1.2. A linear system (A,B,C,D) is said to be observable if the
observability matrix of the system

O =


C
CA
CA2

...

CAδ−1

 (3.3)

has full rank δ.

or equivalently (Hautus test [38]), a linear system (A,B,C,D) is observable if
and only if

rank

(
zI − A
C

)
= δ, for all z ∈ F, (3.4)

where F denotes the algebraic closure of F.

Example 3.1.1. Over F = Z2, we consider the encoder

G(z) =


1 + z + z2

z + z2 + z3

z2 + z3 + z4

z3 + z4 + z5

 =



1+z+z2

z3+z4+z5

z+z2+z3

z3+z4+z5

z2+z3+z4

z3+z4+z5

1


(z3 + z4 + z5).

3.1. CONTROLLABILITY, OBSERVABILITY 61

corresponding to the encoder of a convolutional code A realization of this code

is (A,B,C,D) whereA =


−1 −1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, B =


1
0
0
0
0

, C =

0 0 1 1 1
0 1 1 1 0
1 1 1 0 0

,

and D = 03×1.

Taking into account that

rank
(
B AB A2B A3B A4B

)
= rank


1 −1 0 1 −1
0 1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 = 5

and

rank


C
CA
CA2

CA3

CA4

 = rank



0 0 1 1 1
0 1 1 1 0
1 1 1 0 0
0 1 1 1 0
1 1 1 0 0
0 0 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



= 3 < 5,

this system is controllable but not observable.

For controllable systems, the following result is well known and that we
reproduce by the interest for this work.

Proposition 3.1.1. If a system is controllable, then from the initial state
x0 = 0 we can reach any state x ∈ Fδ.

Proof. If rank
(
B AB . . . Aδ−1B

)
= δ, for any vector x there exists u(0),

62 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

u(1), . . ., u(δ − 1) such that

x = Bu(0) + ABu(1) + . . .+ Aδ−1Bu(δ − 1)

Then, from x0 = 0 taking the inputs u(0), u(1), . . ., u(δ − 1) we have

x(1) = Ax(0) +Bu(0) = Bu(0)
x(2) = Ax(1) +Bu(1) = ABu(0) +Bu(1)
x(3) = A2Bu(0) + ABu(1) +Bu(2)

...

x(δ) = Aδ−1Bu(0) + . . .+ ABu(δ − 2) +Bu(δ − 1) = x

The observability character of a code means that one can be sure that a
message has been completed once a sufficiently long string of zeros has been
received.

Proposition 3.1.2 ([71]). A code C (on Z+) is observable if and only if it
has a generator matrix G(z) (and therefore any other generator matrix) that
is right-prime when is considered as a matrix over F[z, z−1]. That is to say
their minors of size k × k are non-zero and have no common trivial factors
(considering factors zn with n ∈ N as trivial). If G(z) is a generator matrix of a
convolutional code observable, then G(z) is not catastrophic (More information
can be found in [61])

3.2 Output-observability

Related to the minimality realization of an encoder is the output-observability
property.

Output-observability represents the possibility of an internal state, to be
only defined by a finite set of outputs, for a finite number of steps. In their
work [30], Ma

¯ I. Garćıa-Planas, and S. Tarragona presented this concept, from
a general point of view. Indeed, the definition is given for singular linear
systems, over C, but we can apply it to our convolutional coding context,
where the support spaces are finite fields. Our approach is very inspired by
theirs.

Definition 3.2.1. A system (A,B,C,D) is said to be output observable if the
state sequence x(0), . . . , x(`) is uniquely determined by the knowledge of the
output sequence y(0), . . . , y(`) for a finite number of steps ` ∈ N.

3.2. OUTPUT-OBSERVABILITY 63

Observe that x(1), . . . , x(`) are determined by the knowledge of x(0) and
u(0), . . . , u(`− 1) because of

x(1) = Ax(0) +Bu(0)
x(2) = Ax(1) +Bu(1)

= A2x(0) + ABu(0) +Bu(1)
...

x(`) = Ax(`− 1) +Bu(`− 1)

= A`x(0) + A`−1Bu(0) + . . .+ ABu(`− 2) +Bu(`− 1),

and the elements x(0), u(0), . . . , and u(`) can be obtained solving the following
system of matrix equations.

y(0) = Cx(0) +Du(0)
y(1) = Cx(1) +Du(1)

= CAx(0) + CBu(0) +Du(1)
...

y(`) = Cx(`) +Du(`)

= CA`x(0) + CA`−1Bu(0) + . . .+ CBu(`− 1) +Du(`).

(3.5)

In a more general way we can define the output-observability character
saying that the state sequence x(s), . . . , x(`) is uniquely determined by the
knowledge of the output sequence y(s), . . . , y(s + `) for a finite number of
steps ` ∈ N.

In an analogous way we have that x(s+ 1), . . . , x(s+ `) are determined by
the knowledge of x(s) and u(s), . . . , u(s+ `) because

x(s+ 1) = Ax(s) +Bu(s)
x(s+ 2) = Ax(s+ 1) +Bu(s+ 1)

= A2x(s) + ABu(s) +Bu(s+ 1)
...

x(s+ `) = Ax(s+ `− 1) +Bu(s+ `− 1)

= A`x(s) + A`−1Bu(s) + . . .+ ABu(s+ `− 2) +Bu(s+ `− 1),

and the elements x(s), and u(s), . . . , u(s + `) can be obtained by solving the

64 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

following system of matrix equations.

y(s) = Cx(s) +Du(s)
y(s+ 1) = Cx(s+ 1) +Du(s+ 1)

= CAx(s) + CBu(s) +Du(s+ 1)
...

y(s+ `) = Cx(s+ `) +Du(s+ `)

= CA`x(s) + CA`−1Bu(s) + . . .+ CBu(s+ `− 1) +Du(s+ `).
(3.6)

Calling T`(A,B,C,D) (that we simply write T` if no confusion is possible)
the matrix

T` =


C D
CA CB D
CA2 CAB CB D

...
.

CA` CA`−1B CA`−2B . . . CB D

 . (3.7)

We have the following.

Proposition 3.2.1. A system (A,B,C,D) is output observable if and only if
the matrix T` has full row rank for all ` ∈ N.

Proof. It suffices to observe that for each `, the matrix T` is the corresponding
matrix to the system (3.5).

Remark 4. If the number of rows is bigger than the number of columns, there
are values of y(0), . . . , y(`), for which (y(0), . . . , y(`)) is not a parity vector.

Corollary 3.2.1. A necessary condition for output-observability of the system
(A,B,C,D) is that the matrix

(
C D

)
has full row rank.

Example 3.2.1. Let α be a primitive element of F = GF (8) = Z2[α]/α3+α2+1.

Let (A,B,C,D) be a realization of a convolutional code with

A =

(
α3 α2

α 1

)
, B =

(
1 α
1 α2

)
, C =

(
1 α6

α3 α2

)
, D =

(
α2 α4

α5 1

)
.

3.2. OUTPUT-OBSERVABILITY 65

The system is not output observable because

rank
(
C D

)
= rank

(
1 α6 α2 α4

α3 α2 α5 1

)
= 1 < 2.

Therefore, we assume that the number of rows is less than or equal to the
number of columns. It is well known that in this case and for each `, the
systems (3.5) have solution for all y(0), . . . , y(`), if and only if the systems
have full rank.

The following corollary is obvious.

Corollary 3.2.2. If the matrix D in the system (A,B,C,D) has full row rank,
then the system is output-observable.

Fixing the initial state x(s) = 0, the output-observability matrix allows us
to describe a sequence of trajectories {vs, . . . , vs+`} in the following manner.

Theorem 3.2.1. Let (A,B,C,D) be a representation of a convolutional code.
Suppose that the initial state of the system is x(s) = 0, then

{vs, . . . , vs+`} = Ker T`,

where

T` =


D −I
CB 0 D −I
CAB 0 CB 0 D −I

...
.

CA`−1B 0 CA`−2B 0 . . . CB 0 D −I



Proof. The system

T`


x(s)
u(s)

...
u(s+ `)

 =

 y(s)
...

y(s+ `)



66 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

is equivalent to

(
T` −I

)


x(s)
u(s)

...
u(s+ `)
y(s)

...
y(s+ `)


= 0.

And now, it suffices to make column block elementary transformations to the
system matrix.

3.2.1 Alternative method for output-observability

Now, we present a new and simple method to analyze output-observability
character. This method is simple in the sense that we do not need to compute
the products of the matrices CAiB.

Let (A,B,C,D) be a system and we consider the matrices that we will
write M`(A,B,C,D) (that we simply write M` if confusion is not possible)
defined in the following manner:

M` =



A B −I 0 0 0 . . . 0 0
C D 0 0 0 0
0 0 A B −I 0
0 0 C D 0 0
...

. . .

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D


where M` ∈M(`(δ+p)+p)×(`+1)(δ+k)(F).

(3.8)

We have the following result.

Theorem 3.2.2. Let (A,B,C,D) be a system. Then

rankM` = rank (T` + `δ).

3.2. OUTPUT-OBSERVABILITY 67

Proof. Making block row and column elementary transformations, we have

rank



A B −I 0 0 0 . . . 0 0
C D 0 0 0 0
0 0 A B −I 0
0 0 C D 0 0
...

. . .

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D



= rank



I

. . .
(`)

I
C D
CA CB D
CA2 CAB CB D

...
. . .

CA` CA`−1B CB D


.

In order to obtain properties, we define the following equivalence relation
preserving the required properties.

Definition 3.2.2. The systems (A,B,C,D) and (A1, B1, C1, D1) are feedback
equivalent, that we write

(A,B,C,D) ∼ (A1, B1, C1, D1),

if and only if(
A1 B1

C1 D1

)
=

(
P−1 W

0 S

)(
A B
C D

)(
P 0
V R

)
, (3.9)

for some matrices P ∈ Mδ(F), R ∈ Mk(F), S ∈ Mp(F), V ∈ Mk×δ(F) and
W ∈Mδ×p(F).

Remark 5. Note that this equivalence generalizes the similarity equivalence

(A,B,C,D) ' (A1, B1, C1, D1)

68 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

if and only if

(A1, B1, C1, D1) = (P−1AP, P−1B,CP,D)

It suffices to take V = 0, W = 0, R = Im, and S = Ip.

Proposition 3.2.2. Let (A,B,C,D) and (A1, B1, C1, D1) be equivalent sys-
tems under equivalence relation considered. Then

rankM`(A,B,C,D) = rankM`(A1, B1, C1, D1), (3.10)

for all ` ∈ N.

Proof. Calling

P =



P−1 W
0 S
0 0 P−1 W
0 0 0 S

. . .

P−1 W
0 S

S


,

and

Q =



P 0
V R

P 0
V R

. . .

P 0
V R

R
R


,

We have

3.2. OUTPUT-OBSERVABILITY 69

P



A B −I 0 0 0 . . . 0 0
C D 0 0 0 0
0 0 A B −I 0
0 0 C D 0 0
...

. . .

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D


Q =



A1 B1 −I 0 0 0 . . . 0 0
C1 D1 0 0 0 0
0 0 A1 B1 −I 0
0 0 C1 D1 0 0
...

. . .

. . . A1 B1 −I 0

. . . C1 D1 0 0

. . . 0 0 C1 D1


.

Then, both matrices have the same rank.

Corollary 3.2.3. Let (A,B,C,D) and (A1, B1, C1, D1) be two equivalent sys-
tems under equivalence relation considered. Then

rankT`(A,B,C,D) = rankT`(A1, B1, C1, D1), (3.11)

for all ` ∈ N.

Test for output-observability

Remark 6. It is obvious that if the matrix T` (consequently M`) has full row
rank for some ` ∈ N, then all matrices Tj (consequently Mj) with j ≤ ` have
full row rank.

Moreover we have the following.

Proposition 3.2.3. Let (A,B,C,D) be a system. For all ` ≥ δ we have

rankT`+1 − rankT` = rankT`+2 − rankT`+1 (3.12)

70 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Proof. Let (A,B,C,D) be a system, taking into account Proposition 3.2.2 and
Corollary 3.2.3, we can consider an equivalent system in the form (A1, B1, C1, D1)
with

A1 =

(
0 Ā1

0 Ā2

)
, B1 =

(
B̄1 0

B̄2 0

)
,

C1 =

 Ic 0
0 0
0 0

 , D1 =

 0 0
0 0
0 Id


with Ā2 ∈Mδ−c(F).

In the case where d = p the matrix C1 = 0 and the result is obvious.

In the case where d = k the matrix B1 = 0. Calling C̄ =

(
Ic 0
0 0

)
and

taking into account that Aδ =
∑δ−1

i=0 A
i, we get

rank



C̄
0 Id
C̄A 0 0
0 0 Id
...

. . .

C̄Aδ−1 0 0 0
. . . 0

0 0 0 0
. . . Id

0 0 0 0
. . . 0

0 0 0 0
. . . Id

...



= d.

Then,
rankT`+1 − rankT` = d, for all ` ≥ δ.

Suppose now, d 6= p, k. Firstly, we analyze the particular case where Ā1 =
0. It is easy to observe that

rankT`+1 − rank T` = rank B̄1 + d.

We observe that this case includes one of the more particular cases where
c = δ and then A1 = 0.

3.2. OUTPUT-OBSERVABILITY 71

Then, we analyze the case Ā1 6= 0. We have

rankM` = rank



Ir
Id

. . .

Id
Ā1 B̄1

Ā1Ā2 Ā1B̄2 B̄1

...
. . .

Ā1Ā
`
2 Ā1Ā

`−1
2 . . . Ā1B̄2 B̄1



Now, we consider the following reduced order system (Ā2, B̄2, Ā1, B̄1) and
we apply the previous steps.

Corollary 3.2.4. Let (A,B,C,D) be a system. For all ` ≥ δ we have:

rankM`+1 − rankM` = rankM`+2 − rankM`+1.

As a Corollary, and taking into account Remark 6, we can conclude the
following result.

Theorem 3.2.3 (Main Theorem). A system (A,B,C,D) is output observable
if and only if the matrix Mδ has full row rank.

This theorem provides an iterative method to compute output-observability.

Algorithm

1: Compute rank M0

2: if rankM0 < p+ δ then
3: the system is not output observable
4: else if rank = p+ δ then
5: Compute rank M`

6: end if
7: if rank M` < (`+ 1)p+ (`+ 1)δ then
8: the system is not output observable
9: else if rank = (`+ 1)p+ (`+ 1)δ and ` = δ then

10: the system is output observable

72 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

11: else if ` < δ then
12: Go to step 5
13: end if

Example 3.2.2. In F = Z2, we consider the (A,B,C,D) a representation of a

convolutional code with A =

0 0 0
1 0 0
0 1 0

, B =

1
0
0

, C =

0 0 1
0 1 0
1 0 0

 and

D = 03×1.

rank
(
C D

)
= rank

0 0 1 0
0 1 0 0
1 0 0 0

 = 3

rank

(
C D 0
CA CB D

)
=


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

 = 4 < 6.

Then, the system is not output observable.

3.3 Controllability of concatenated codes

We try to characterize the controllability of concatenated codes, from the prop-
erty of the initial codes.

3.3.1 Serial concatenation

Let (A,B,C,D) be the serial concatenated code of the codes (Ai, Bi, Ci, Di),
i = 1, 2, as defined in (2.6).

The controllability character for serial concatenated codes can be described
using the Hautus test in the following manner.

Theorem 3.3.1. A serial concatenated code is controllable if and only if

rank

(
zIδ1 − A1 0 B1

−B2C1 zIδ2 − A2 B2D1

)
= δ1 + δ2 ∀z ∈ F

3.3. CONTROLLABILITY OF CONCATENATED CODES 73

From there, it is possible to deduce conditions in terms of both systems.

Corollary 3.3.1. A necessary condition for controllability of serial concate-
nated code is that the pair (A1, B1) be controllable.

Corollary 3.3.2. A necessary condition for controllability of serial concate-
nated code is that the pair (A2, B) where B =

(
−B2C1 B2D1

)
be controllable.

Corollary 3.3.3. A necessary condition for controllability of serial concate-
nated code is that the pair (A2, B2) be controllable.

Proof.

rank
(
zI2 − A2 B2C1 B2D1

)
= rank

(
zI2 − A2 B2 B2

)I2

C1

D1


≤ min

rank
(
zI2 − A2 B2

)
, rank

I2

C1

D1

 .

So,

rank
(
zI2 − A2 B2C1 B2D1

)
≤ rank

(
zI2 − A2 B2

)
≤ δ2.

Example 3.3.1. Let (A,B,C,D) be a serial concatenated code of (A1, B1, C1, D1),
and (A2, B2, C2, D2), where

A1 = (0), B1 =
(
1 −3

)
, C1 = (4), D1 =

(
1 −2

)
and

A2 =

(
0 −1
1 0

)
, B2 =

(
1
0

)
, C2 =

(
1 0

)
, D2 = (1),

the concatenated serial code (A,B,C,D) of both is

A =

(
A1 0
B2C1 A2

)
=

0 0 0
4 0 −1
0 1 0

 , B =

(
B1

B2D1

)
=

1 −3
1 −2
0 0

 ,

C =
(
D2C1 C2

)
=
(
4 1 0

)
, D =

(
D2D1

)
=
(
1 −2

)
.

74 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

In this case is it easy to observe that all systems are controllable, this can
be easily observed from the Hautus representation of our serial controllability
matrix,

rank
(
zI1 − A1 B1

)
= rank

(
z 1 −3

)
= 1, for all z ∈ F

rank
(
zI2 − A2 B2

)
= rank

(
z 1 1
−1 z 0

)
= 2, for all z ∈ F

rank

(
zI1 − A1 0 B1

−B2C1 zI2 − A2 B2D1

)
= rank

z 0 0 1 −3
0 z 1 1 −2
0 −1 z 0 0

 = 3,

for all z ∈ F.

Nevertheless the corollary only gives us a necessary condition, not sufficient,
as we can see in the following example.

Example 3.3.2. Let (A,B,C,D) be a realization of the serial concatenated code
of (A1, B1, C1, D1) and (A2, B2, C2, D2) where A1 = (1), B1 = (1), C1 = (1),
D1 = (1), and A2 = (0), B2 = (1), C2 = (1) and D2 = (1).

Both systems are controllable because

rank
(
z − 1 1

)
= 1 for all z ∈ F

rank
(
z 1

)
= 1 for all z ∈ F,

but the serial concatenated system (A,B,C,D) where

A =

(
1 0
1 0

)
, B =

(
1
1

)
, C =

(
1 1

)
, D = (1).

is not controllable because of

rank
(
zI − A B

)
=

(
z − 1 0 1
−1 z 1

)
=

{
2 for all z 6= 0,
1 for z = 0.

Remark 7. Obviously, if the matrix(
B1

B2D1

)
has full row rank, then the concatenated serial system (A,B,C,D) is control-
lable.

3.3. CONTROLLABILITY OF CONCATENATED CODES 75

A sufficient condition is obtained in the case where Spec(A1)∩Spec(A2) =
∅.

Proposition 3.3.1. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the encoders G1(z) and G2(z) respectively with Spec(A1) ∩ Spec(A2) = ∅.
If the pairs (A1, B1) and (A2, B2) are controllable and the transfer matrix of
(A1, B1, C1, D1) has full row rank for all z /∈ Spec(A1), then the serial concate-
nated system is controllable.

Proof. For all z /∈ Spec(A1) ∪ Spec(A2), we have that

rank

(
zIδ1 − A1

−B2C1 zIδ2 − A2

)
= δ1 + δ2,

so

rank

(
zIδ1 − A1 B1

−B2C1 zIδ2 − A2 B2D1

)
= δ1 + δ2.

If z0 ∈ Spec(A1), taking into account that Spec(A1) ∩ Spec(A2) = ∅ we
have that rank (z0Iδ2 − A2) = δ2, then

rank

(
z0Iδ1 − A1 B1

−B2C1 z0Iδ2 − A2 B2D1

)
= rank

(
z0Iδ1 − A1 B1

−B2C1 B2D1 z0Iδ2 − A2

)
= rank

(
z0Iδ1 − A1 B1

)
+ δ2.

But, taking into account that (A1, B1) is controllable we have rank
(
z0Iδ1 − A1 B1

)
=

δ1. Then,

rank

(
z0Iδ1 − A1 B1

−B2C1 z0Iδ2 − A2 B2D1

)
= δ1 + δ2.

Finally, if z0 ∈ Spec(A2), we have that rank (z0Iδ1 − A1) = δ1, then

rank

(
z0Iδ1 − A1 B1

−B2C1 z0Iδ2 − A2 B2D1

)
= rank

(
Iδ1 0
0 z0Iδ2 − A2 B2C1(z0I − A1)−1B1 +B2D1

)
= δ1 + rank

(
z0I − A2 B2

)(Iδ2 0
C1(z0I − A1)−1B1 +D1

)
= δ1 + δ2, for all z0 ∈ Spec(A2),

76 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

knowing that (A2, B2) is controllable and C1(z0I −A1)−1B1 +D1 has full row
rank.

Remark 8. Example 3.3.2 shows that if C1(z0I −A1)−1B1 +D1 does no t have
full rank for all z0 ∈ Spec(A2) the Result 3.3.1 is not true.

3.3.2 Parallel concatenation

In the parallel concatenation case, the same entries are used for both codes.
Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) be convolutional codes.

The input information u2(t) = u1(t) = u(t) and the final parity vector
y(t) = y1(t) + y2(t).

A =

(
A1 0
0 A2

)
, B =

(
B1

B2

)
C =

(
C1 C2

)
, D = D1 +D2.

If C1(A1, B1, C1, D1) is a (n, k, δ1)-code and C2(A2, B2, C2, D2) is a (n, k, δ2)-
code, then C(A,B,C,D) is a (n, k, δ1 + δ2)-code.

So, we have the following result.

Theorem 3.3.2. The parallel concatenated code C(A,B,C,D) is controllable,
if and only if the following matrix(

B1 A1B1 ... Aδ1+δ2−1
1 B1

B2 A2B2 ... Aδ1+δ2−1
2 B2

)

has full rank.

Or, using the Hautus test, we have

Theorem 3.3.3. The parallel concatenated code C(A,B,C,D) is controllable,
if and only if the following matrix

rank

(
zIδ1 − A1 B1

zIδ2 − A2 B2

)
= δ1 + δ2, for all z ∈ F.

Proposition 3.3.2. A necessary condition for controllability of parallel con-
catenated system is that the pairs (A1, B1) and (A2, B2) are controllable.

3.3. CONTROLLABILITY OF CONCATENATED CODES 77

Unfortunately, this condition is only necessary, but not sufficient. As we
can see in this particular case:

Example 3.3.3. For instance, let us have two realisations:

A1 =

(
1 0
1 1

)
, B1 =

(
1
0

)
, C1 =

(
1 1
1 0

)
, D1 =

(
0
0

)
Indeed, (A1, B1) is controllable,

rank
(
B1 A1B1

)
= rank

(
1 1
0 1

)
= 2

A2 =

(
1 1
0 1

)
, B2 =

(
0
1

)
, C2 =

(
1 1
1 0

)
, D2 =

(
0
0

)
(A2, B2) is controllable as well,

rank
(
B2 A2B2

)
= rank

(
0 1
1 1

)
= 2

However, the parallel concatenated model

A =


1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

 , B =


1
0
0
1

 , C =

(
1 1 1 1
1 0 1 0

)
, D =

(
0
0

)

is not controllable since

rank


1 1 1 1
0 1 2 3
0 1 2 3
1 1 1 1

 = 2 < 4.

A sufficient condition is obtained in the case where Spec(A1)∩Spec(A2) =
∅.

Proposition 3.3.3. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the encoders G1(z) and G2(z) respectively with Spec(A1)∩Spec(A2) = ∅. If
the pairs (A1, B1) and (A2, B2) are controllable, then the parallel concatenated
system is controllable.

78 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Proof. For all z /∈ Spec(A1) ∪ Spec(A2), we have that

rank

(
zIδ1 − A1

zIδ2 − A2

)
= δ1 + δ2,

so

rank

(
zIδ1 − A1 B1

zIδ2 − A2 B2

)
= δ1 + δ2.

If z0 ∈ Spec(A1), taking into account that Spec(A1) ∩ Spec(A2) = ∅ we
have that rank (z0Iδ2 − A2) = δ2, then

rank

(
zIδ1 − A1 B1

zIδ2 − A2 B2

)
= rank

(
zIδ1 − A1 B1

B2 zIδ2 − A2

)
= rank

(
z0Iδ1 − A1 B1

)
+ δ2.

But, taking into account that (A1, B1) is controllable we have rank
(
z0Iδ1 − A1 B1

)
=

δ1. Then,

rank

(
z0Iδ1 − A1 B1

z0Iδ2 − A2 B2

)
= δ1 + δ2.

Analogously, if z0 ∈ Spec(A2), we have that rank (z0Iδ1 − A1) = δ1, then

rank

(
z0Iδ1 − A1 B1

z0Iδ2 − A2 B2

)
= δ1 + δ2, for all z0 ∈ Spec(A2).

Remark 9. Example 3.3.3 shows that if Spec(A1) ∩ Spec(A2) 6= ∅ the result
3.3.3 is not true.

3.3.3 Systematic serial concatenation

Let (A,B,C,D) be the systematic serial concatenated code of (Ai, Bi, Ci, Di),
i = 1, 2, codes defined in (2.6).

As in the two previous cases, the controllability character for systematic
serial concatenated codes can be described in terms of the both systems using
the Hautus test in the following manner.

3.3. CONTROLLABILITY OF CONCATENATED CODES 79

Theorem 3.3.4. A systematic serial controllability concatenated code of (Ai, Bi,
Ci, Di), i = 1, 2 is controllable, if and only if.

rank

(
zIδ1 − A1 0 B1

−B2C1 zIδ2 − A2 B2D1

)
= δ1 + δ2 ∀z ∈ F

We observe that this result coincides with the case of serial concatena-
tion. Then all results about controllability of serial concatenation are valid for
systematic serial concatenation and vice-versa.

3.3.4 Parallel interleaver concatenation

Considering the parallel interleaver concatenated code of (Ai, Bi, Ci, Di), i =
1, 2, with the interleaver matrix P , the parallel interleaver controllability con-
catenated condition can be obtained from the Hautus test:

Theorem 3.3.5. The parallel interleaver concatenated code C(A,B,C,D) is
controllable if and only if

rank

(
zIδ1 − A1 0 B1

0 zIδ2 − A2 B2P

)
= δ1 + δ2 ∀z ∈ F.

From this theorem, we obtain some necessary and sufficient conditions for
observability of this concatenated code.

Proposition 3.3.4. A necessary condition for controllability of the parallel
interleaver concatenated code of (A1, B1, C1, D1) and (A2, B2, C2, D2), with the
interleaver matrix P is that the pair (A1, B1) be controllable.

Proposition 3.3.5. A necessary condition for controllability of the parallel
interleaver concatenated code of (A1, B1, C1, D1) and (A2, B2, C2, D2), with the
interleaver matrix P is that the pair (A2, B2) be controllable.

Proof. In case (
zIδ1 − A1 0 B1

0 zIδ2 − A2 B2P

)
has full row rank. Then the block

(
0 zIδ2 − A2 B2P

)
has full row rank.

80 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Moreover, we can observe that:

rank
(
zIδ2 − A2 B2P

)
= rank

(
zIδ2 − A2 B2

)(Iδ2
P

)
.

Proposition 3.3.6. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations of
the encoders G1(z) and G2(z) respectively, and P the matrix for interleaving.
Then, the concatenated system of both codes is controllable under the parallel
interleaver model if and only if the concatenated code of (A1, B1P−1, C1, D1)
and (A2, B2, C2, D2) is controllable under the parallel model.

Proof. When trying to compute the controllability character, we realize that:

rank

(
zIδ1 − A1 0 B1

0 zIδ2 − A2 B2P

)
=

rank

(
zIδ1 − A1 0 B1P−1

0 zIδ2 − A2 B2

)Iδ1 Iδ2
P

 .

A sufficient condition is obtained in the case where Spec(A1)∩Spec(A2) =
∅.

Proposition 3.3.7. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the encoders G1(z) and G2(z) respectively, and P the matrix for interleav-
ing, with Spec(A1) ∩ Spec(A2) = ∅. If the pairs (A1, B1) and (A2, B2) are
controllable, then the parallel interleaver concatenated system is controllable.

Proof. For all z /∈ Spec(A1) ∪ Spec(A2), we have that

rank

(
zIδ1 − A1

zIδ2 − A2

)
= δ1 + δ2,

so

rank

(
zIδ1 − A1 B1

zIδ2 − A2 B2P

)
= δ1 + δ2.

3.4. OBSERVABILITY OF CONCATENATED CODES 81

If z0 ∈ Spec(A1), taking into account that Spec(A1) ∩ Spec(A2) = ∅ we
have that rank (z0Iδ2 − A2) = δ2, then

rank

(
z0Iδ1 − A1 B1

z0Iδ2 − A2 B2P

)
= rank

(
zIδ1 − A1 B1

B2P zIδ2 − A2

)
= rank

(
z0Iδ1 − A1 B1

)
+ δ2.

But, taking into account that (A1, B1) is controllable we have rank
(
z0Iδ1 − A1 B1

)
=

δ1. Then,

rank

(
z0Iδ1 − A1 B1

z0Iδ2 − A2 B2P

)
= δ1 + δ2.

If z0 ∈ Spec(A2), we have that rank (z0Iδ1 − A1) = δ1, then

rank

(
z0Iδ1 − A1 B1

z0Iδ2 − A2 B2P

)
= δ1 + rank

(
z0Iδ2 − A2 B2P

)
=

δ1 + rank
(
z0Iδ2 − A2 B2

)(Iδ2
P

)
= δ1 + δ2, for all z0 ∈ Spec(A2),

knowing that rank
(
z0Iδ2 − A2 B2P

)
= rank

(
z0Iδ2 − A2 B2

)(Iδ2
P

)
.

3.4 Observability of concatenated codes

3.4.1 Serial concatenation

The serial observability concatenated character is obtained from the Hautus
test:

Theorem 3.4.1. The serial concatenated code C(A,B,C,D) of (A1, B1, C1, D1)
and (A2, B2, C2, D2) is observable if and only if:

rank

zIδ1 − A1 0
−B2C1 zIδ2 − A2

D2C1 C2

 = δ1 + δ2 ∀z ∈ F.

Corollary 3.4.1. A necessary condition for observability of concatenated code
is that the pair (A2, C2) be observable.

82 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Corollary 3.4.2. A necessary condition for observability of concatenated code

is that the pair (A1, C̄1), with C̄1 =

(
−B2C1

D2C1

)
be observable.

Corollary 3.4.3. A necessary condition for observability of concatenated code
is that the pair (A1, C1), be observable.

Proof.

rank

zIδ1 − A1

−B2C1

D2C1

 = rank

Iδ1 −B2

D2

zIδ1 − A1

C1

C1


≤ min

rank

Iδ1 −B2

D2

 , rank

zIδ1 − A1

C1

C1


Then

rank

zIδ1 − A1

−B2C1

D2C1

 ≤ rank

(
zIδ1 − A1

C1

)
≤ δ1.

In this specific case, a sufficient condition is obtained after observation of
the spectrum of both matrices A1 and A2.

Proposition 3.4.1. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the encoders G1(z) and G2(z) respectively with Spec(A1)∩Spec(A2) = ∅. If
the pairs (A1, C1) and (A2, C2) are observable, with B2 has full column rank,
then the serial concatenated system is observable.

Proof. Let us suppose that we have: z /∈ Spec(A1) ∪ Spec(A2); then,

rank

(
zIδ1 − A1 0
−B2C1 zIδ2 − A2

)
= δ1 + δ2, ∀z ∈ F

which means that:

rank

zIδ1 − A1 0
−B2C1 zIδ2 − A2

D2C1 C2

 = δ1 + δ2,∀z ∈ F

3.4. OBSERVABILITY OF CONCATENATED CODES 83

Let us consider z0 ∈ Spec(A2); knowing that Spec(A1) ∩ Spec(A2) = ∅,
then rank

(
z0Iδ1 − A1

)
= δ1

then,

rank

z0Iδ1 − A1 0
−B2C1 z0Iδ2 − A2

D2C1 C2

 = δ1 + rank

(
z0Iδ2 − A2

C2

)
= δ1 + δ2

since (A2, C2) is observable.

Let us consider z0 ∈ Spec(A1); knowing that Spec(A1) ∩ Spec(A2) = ∅,
then rank

(
z0Iδ2 − A2

)
= δ2

then, rank

z0Iδ1 − A1 0
−B2C1 z0Iδ2 − A2

D2C1 C2

 = δ2 + rank

z0Iδ1 − A1

−B2C1

D2C1


If we suppose that B2 has full column rank, we can see that:

rank

z0Iδ1 − A1

−B2C1

D2C1

 = rank

Iδ1 −B2

D2

z0Iδ1 − A1

C1

C1


= rank


z0Iδ1 − A1

C1

0
D2C1

 = δ1

since (A1, C1) is observable

Which means that:

rank

zIδ1 − A1 0
−B2C1 zIδ2 − A2

D2C1 C2

 = δ1+δ2, for allz ∈ F when Spec(A1)∩Spec(A2) = ∅

84 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

3.4.2 Parallel concatenation

In parallel concatenated model C(A,B,C,D) obtained from the convolutional
codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), the observability matrix is

C
CA
CA2

...

CAδ1+δ2−1

 =


C1 C2

C1A1 C2A2

C1A
2
1 C2A

2
2

...

C1A
δ1+δ2−1
1 C2A

δ1+δ2−1
2

 (3.13)

So, we have the following theorem.

Theorem 3.4.2. The parallel concatenated code C(A,B,C,D) is observable,
if and only if, the matrix (3.13), has full rank.

Using the Hautus test we have

Theorem 3.4.3. The parallel concatenated code C(A,B,C,D) is observable,
if and only if the following matrix

rank

zIδ1 − A1

zIδ2 − A2

C1 C2

 = δ1 + δ2, ∀z ∈ F.

Proposition 3.4.2. A necessary condition for observability of parallel con-
catenated system is that the pairs (A1, C1) and (A2, C2) are observable.

Nevertheless, this condition is not sufficient as we can see in the following
example.

Example 3.4.1. Let C(A,B,C,D) be the parallel concatenated code of the fol-
lowing realizations. The first realization is defined by the system (A1, B1, C1, D1)

with A1 =

0 1 0
0 0 1
1 0 0

, B1 =

1 0
0 1
1 1

, C1 =
(
2 1 0

)
and D1 =

(
1 1

)
,

and the second realization is defined by the system (A2, B2, C2, D2) with

A2 =

−1 −1 0
−1 0 −1
1 0 0

 , B2 =

 0 0
−1 0
0 −1

 , C2 =
(
2 0 1

)
, D2 =

(
1 0

)
.

3.4. OBSERVABILITY OF CONCATENATED CODES 85

Both codes are observable since

rank

 C1

C1A1

C1A
2
1

 = rank

2 1 0
0 2 1
1 0 2

 = 3,

rank

 C2

C2A2

C2A
2
2

 = rank

 2 0 1
−1 −2 0
3 1 2

 = 3.

However, the parallel concatenated model is not observable since

rank


2 1 0 2 0 1
0 2 1 −1 −2 0
1 0 2 3 1 2
2 1 0 −2 −3 −1
0 2 1 4 2 3
1 0 2 −3 −4 −2

 = 5 < 6.

Proposition 3.4.3. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the encoders G1(z) and G2(z) respectively with Spec(A1)∩Spec(A2) = ∅. If
the pairs (A1, C1) and (A2, C2) are observable, then the parallel concatenated
system is observable.

Proof. Analogous to 3.3.3.

3.4.3 Systematic serial concatenation

In the systematic serial concatenated code C(A,B,C,D) obtained from the
convolutional codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2), the observability
concatenated character is obtained from the Hautus test:

Theorem 3.4.4. The systematic serial concatenated code C(A,B,C,D) is ob-
servable if and only if the following relation holds.

rank


zIδ1 − A1 0
−B2C1 zIδ2 − A2

C1 0
D2C1 C2

 = δ1 + δ2 for allz ∈ F

86 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

After this theorem it is obvious the following sufficient condition for ob-
servability of systematic serial concatenated code.

Corollary 3.4.4. A sufficient condition for observability of systematic serial
concatenated code is that the serial concatenated code is.

Proof.

δ1 +δ2=rank

zIδ1 − A1 0
−B2C1 zIδ2 − A2

D2C1 C2

≤rank


zIδ1 − A1 0
−B2C1 zIδ2 − A2

C1 0
D2C1 C2

≤δ1 +δ2.

In this case we have a necessary and sufficient condition depending only on
the conditions of the initial codes.

Theorem 3.4.5. A necessary and sufficient condition for observability of sys-
tematic serial concatenated code is that both codes are observable.

Proof.

rank


zIδ1 − A1 0
−B2C1 zIδ2 − A2

C1 0
D2C1 C2


= rank


Iδ1

Iδ2 B2

Im−k
−D2 In−m+k



zIδ1 − A1 0
−B2C1 zIδ2 − A2

C1 0
D2C1 C2


= rank


zIδ1 − A1 0

0 zIδ2 − A2

C1 0
0 C2

 = rank


zIδ1 − A1 0

C1 0
0 zIδ2 − A2

0 C2

 .

Example 3.4.2. In F5, we consider the codes C1(A1, B1, C1, D1) , C2(A2, B2, C2, D2)
concatenated in a serial systematic form. The matrices defining the codes are

A1 =

1 3 1
0 2 4
3 0 2

 , B1 =

0
1
2

 , C1 =
(
1 0 2

)
, D1 =

(
3
)

3.4. OBSERVABILITY OF CONCATENATED CODES 87

and

A2 =

1 3 0
2 1 2
1 0 4

 , B2 =

0
2
0

 , C2 =

(
1 4 2
1 0 4

)
, D2 =

(
3
1

)
.

Taking into account that

rank

 C1

C1A1

C1A
2
1

 = rank

1 0 2
2 3 0
2 4 4

 = 3

rank

 C2

C2A2

C2A
2
2

 = rank


1 4 2
1 0 4
1 2 1
0 3 3
1 0 2
2 3 3

 = 3

both codes are observable.

Then, applying theorem 3.4.5, the concatenated code C is observable.

We can check the result:

A =


1 3 1 0 0 0
0 2 4 0 0 0
3 0 2 0 0 0
0 0 0 1 3 0
2 0 4 2 1 2
0 0 0 1 0 4

 , B =


0
1
2
0
1
0

 , C =

1 0 2 0 0 0
3 0 1 1 4 2
1 0 2 1 0 4

 , D =

3
4
3



and rank



C
CA
CA2

CA3

CA4

CA5

 = rank



1 0 2 0 0 0
3 0 1 1 4 2
1 0 2 1 0 4
2 3 0 0 0 0
4 4 1 1 2 1
2 3 0 0 3 1
4 0 3 0 0 0
2 4 1 2 3 2
2 3 0 0 1 1


= 6.

88 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Then, the systematic serial concatenated matrix is observable.

3.4.4 Parallel interleaver concatenation

The observability condition for the parallel interleaver concatenated system of
two convolutional codes C1(A1, B1, C1, D1) , C2(A2, B2, C2, D2), and interleaver
matrix P is given by the following theorem

Theorem 3.4.6. A parallel interleaver concatenated system is observable, if
and only if

rank

zIδ1 − A1

zIδ2 − A2

C1 C2

 = δ1 + δ2, ∀z ∈ F.

Indeed, the observability character of this concatenated model is the same
as the parallel concatenated model. In this concatenated model all results for
parallel concatenation are the same for the observability property.

3.5 Output-observability of concatenated codes

3.5.1 Serial concatenation

Unlike the cases of controllability and observability of serial concatenated
codes, the output-observability of the convolutional codes is not a necessary
condition for output-observability of serial concatenated code obtained from
these codes, as we can see in the following example.

Example 3.5.1. Over the field F = Z5, we consider the following realizations
(A1, B1, C1, D1), and (A2, B2, C2, D2) of the codes C1 and C2 respectively, with

A1 =

(
0 1
0 0

)
, B1 =

(
0 1
0 0

)
, C1 =

(
1 0
0 0

)
, D1 =

(
1 0
−1 0

)
and

A2 = A1, B2 = B1, C2 = C1, D2 =

(
1 1
0 0

)
.

The serial concatenated system considered is (A,B,C,D) with

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 89

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 1
0 0
4 0
0 0

 , C =

(
1 0 1 0
0 0 0 0

)
, D =

(
0 0
0 0

)
.

In this case, the system (A1, B1, C1, D1) is output observable but neither
(A2, B2, C2, D2) nor the serial concatenated system (A,B,C,D) are output
observable:

rank

 C1 D1

C1A1 C1B1 D1

C1A
2
1 C1A1B1 C1B1 D1

 =

rank


1 0 1 0
0 0 −1 0
0 1 0 1 1 0
0 0 0 0 −1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 −1 0

 = 6.

rank
(
C2 D2

)
= rank

(
1 0 1 1
0 0 0 0

)
= 1

And

rank
(
C D

)
= rank

(
1 0 1 0 0 0
0 0 0 0 0 0

)
= 1.

But sometimes it is possible that the three codes are output-observable.

Example 3.5.2. Over the field F = Z5, we consider the realizations (A1, B1, C1, D1),
and (A2, B2, C2, D2) of the codes C1 and C2 respectively, with

A1 =
(
0
)
, B =

(
1 2

)
, C =

(
4
)
, D =

(
1 3

)
and

A2 =

(
0 4
1 0

)
, B2 =

(
1
0

)
, C2 =

(
1 0

)
, D2 =

(
1
)

The serial concatenated code considered is (A,B,C,D) with

A =

0 0 0
4 0 4
0 1 0

 , B =

1 2
1 3
0 0

 , C =
(
4 1 0

)
, D =

(
1 3

)

90 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

It is easy to show that all systems (A1, B1, C1, D1), (A2, B2, C2, D2) and
(A,B,C,D) are output observable:

rank

(
C1 D1

C1A1 C1B1 D1

)
= rank

(
4 1 3
0 4 3 1 3

)
= 2

rank

 C2 D2

C2A2 C2B2 D2

C2A
2
2 C2A2B2 C2B2 D2

 = rank

1 0 1
0 4 1 1
4 0 0 1 1

 = 3

And

rank


C D
CA CB D
CA2 CAB CB D
CA3 CA2B CAB CB D

 =

rank


4 1 0 1 3
4 0 4 0 1 1 3
0 4 0 4 3 0 1 1 3
1 0 1 4 2 4 3 0 1 1 3

 = 4.

The output-observability character of each of the systems (A1, B1, C1, D1)
and (A2, B2, C2, D2) it is not sufficient for output-observability character of the
serial concatenated system (A,B,C,D).

Example 3.5.3. Over a finite field F, we consider the realizations (A1, B1, C1, D1)
and (A2, B2, C2, D2) of the codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) re-
spectively, with

A1 =

(
0 0
0 0

)
, B1 =

(
0 0
0 0

)
, C1 =

(
0 0
0 0

)
, D1 =

(
0 1
1 0

)
and

A2 = A1, B2 =

(
0 1
0 0

)
, C2

(
1 0
0 0

)
, D2 =

(
0 0
1 0

)
The serial concatenated system considered is (A,B,C,D) with

A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
0 1
0 0

 , C =

(
0 0 1 0
0 0 0 0

)
, D =

(
0 0
0 1

)
.

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 91

In this case, the system (A1, B1, C1, D1) and (A2, B2, C2, D2) are output
observable but the serial concatenated system (A,B,C,D) is not output ob-
servable:

rank

 C1 D1

C1A1 C1B1 D1

C1A
2
1 C1A1B1 C1B1 D1

 = rank


0 0 0 1
0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 = 6

rank

 C2 D2

C2A2 C2B2 D2

C2A
2
2 C2A2B2 C2B2 D2

 = rank


1 0 0 0
0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0

 = 6

And

rank

(
C D
CA CB D

)
= rank


0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 = 3 < 4.

We can try now to obtain conditions for output-observability of concate-
nated codes. The first one is a sufficient condition that follows from 3.2.2.

Corollary 3.5.1. Let C(A,B,C,D) be the serial concatenated code obtained
from the concatenation of the codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2).
If matrix D2D1 has full row rank, then the code C(A,B,C,D) is output ob-
servable.

Unfortunately, as seen in the previous cases, when this case is not really
satisfied, we can still observe a necessary condition for the output-observability
in terms of the matrices C1, C2, D1 and D2, defining the codes.

92 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Let T0 be the first line matrix block code of our output controllability
matrix T`.

T0 =
(
D2C1 C2 D2D1

)
.

Proposition 3.5.1. A necessary condition for output-observability of the se-
rial concatenated code C(A,B,C,D) is that the matrix

(
C2 D2

)
has full row

rank.

Proof. If the code C(A,B,C,D) is output-observable the matrix T0 has full
row rank. Then, taking as well into account that

rank
(
D2C1 C2 D2D1

)
= rank

(
D2 C2 D2

)C1

I
D1


≤ min

rank
(
D2 C2 D2

)
, rank

C1

I
D1


we have

rankT0 ≤ rank
(
C2 D2

)
.

Let recall GLn(F) the group of all invertible n× n matrices. Suppose now
k = p, we have the following proposition

Proposition 3.5.2. Let C1(A1, B1, C1, D1), C2(A2, B2, C2, D2) two convolu-
tional codes with (A2, B2, C2, D2) = (P−1A1P, P

−1B1, C1P,D1) for some in-
vertible matrix P ∈ Gl(δ1,F). Then, the serial concatenated code C(A,B,C,D)
of these codes is output observable, if and only if the concatenated convolutional
code C(A,B,C,D) of C1(A1, B1, C1, D1) with itself is output observable.

Proof. First of all we observe that the codes Ci(Ai, Bi, Ci, Di) can be concate-
nated in a serial form because of k = p.

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 93

Now, it suffices to observe that

rank



A1 0 B1 −I1 0
B2C1 A2 B2D1 0 −I1
D2C1 C2 D2D1 0 0

0 0 0 A1 0 B1 −I1 0
0 0 0 B2C1 A2 B2D1 0 −I1
0 0 0 D2C1 C2 D2D1 0 0

. . .
. . .

. . .

0 0 0 A1 0 B1 −I1 0 0
0 0 0 B2C1 A2 B2D1 0 −I1 0
0 0 0 D2C1 C2 D2D1 0 0 0

0 0 0 D2C1 C2 D2D1



= rank Q·



A1 0 B1 −I1 0
B1C1 A1 B1D1 0 −I1
D1C1 C1 D2

1 0 0

0 0 0 A1 0 B1 −I1 0
0 0 0 B1C1 A1 B1D1 0 −I1
0 0 0 D1C1 C1 D2

1 0 0

. . .
. . .

. . .

0 0 0 A1 0 B1 −I1 0 0
0 0 0 B1C1 A1 B1D1 0 −I1 0

0 0 0 D1C1 C1 D2
1 0 0 0

0 0 0 D1C1 C1 D2
1


·P

= rank



A1 0 B1 −I1 0
B1C1 A1 B1D1 0 −I1
D1C1 C1 D2

1 0 0

0 0 0 A1 0 B1 −I1 0
0 0 0 B1C1 A1 B1D1 0 −I1
0 0 0 D1C1 C1 D2

1 0 0

. . .
. . .

. . .

0 0 0 A1 0 B1 −I1 0 0
0 0 0 B1C1 A1 B1D1 0 −I1 0

0 0 0 D1C1 C1 D2
1 0 0 0

0 0 0 D1C1 C1 D2
1


Where the matrices Q and P are:

Q =



I1

P−1

I2

I1

. . .

P−1

I2

I1



94 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

and

P =



I1

P
I2

I1

. . .

P
I2


with I1 and I2 the identity matrices in the adequate size.

Example 3.5.4. Over F4, we consider the representation of a convolutional code
(A1, B1, C1, D1) with A1 = (α), B1 = (1), C1 = (α + 1) and D1 = (1). The
serial concatenated code of this code with itself is (A,B,C,D) with

A =

(
α 0

α + 1 α

)
, B =

(
1
1

)
, C =

(
α + 1 α + 1

)
, D = (1)

is clearly output-observable, then after Proposition 3.5.2 the serial concate-
nated system of (A1, B1, C1, D1) with (P−1A1P, P

−1B1, C1P,D1) is output-
observable for all P ∈ Gl(1,F).

3.5.2 Parallel concatenation

Like the case of serial concatenation, the output-observability of the convolu-
tional codes is not a necessary condition for output-observability of the parallel
concatenated code obtained from these codes, as we can see in the following
example.

Example 3.5.5. Let (A1, B1, C1, D1) with

A1 =

(
0 1
0 0

)
, B1 =

(
0 0
1 1

)
, C1 =

(
1 1
1 1

)
, D1 =

(
1 2
1 2

)
and (A2, B2, C2, D2)

A2 =

(
0 0
1 0

)
, B2 =

(
1 1
0 0

)
, C2 =

(
1 1
2 2

)
, D2 =

(
1 1
2 2

)
be the realizations of the codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2).

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 95

Applying the test 3.2.1, obtained in chapter 2, it is easy to observe that
these codes are not output-observable;

rank
(
C1 D1

)
= rank

(
1 1 1 2
1 1 1 2

)
= 1 < 2,

rank
(
C2 D2

)
= rank

(
1 1 1 1
2 2 2 2

)
= 1 < 2.

Nevertheless, the parallel concatenated system is output observable, for that
it suffices to observe that

rank (D1 +D2) = 2.

Neither a sufficient condition as we show in the following example.

Example 3.5.6. Let (A1, B1, C1, D1) with A1 =

(
0 1
0 0

)
, B1 =

(
1 0
0 0

)
, C1 =(

1 0
0 0

)
, D1 =

(
0 0
0 1

)
and (A2, B2, C2, D2) with A2 = A1, B2 = B1, C2 = C1,

D2 = −D1 be the realizations of the convolutional codes C1(A1, B1, C1, D1)
and C2(A2, B2, C2, D2) respectively.

Clearly, both codes are output-observable:

rank

 C1 D1

C1A1 C1B1 D1

C1A
2
1 C1A1B1 C1B1 D1

 = rank


1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

 = 6

and

rank

 C2 D2

C2A2 C2B2 D2

C2A
2
2 C2A2B2 C2B2 D2

 = rank


1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1

 = 6.

However, the parallel concatenated code C(A,B,C,D,) where

A =


0 1
0 0

0 1
0 0

 , B =


1 0
0 0
1 0
0 0

 , C =

(
1 0 1 0
0 0 0 0

)
, D =

(
0 0
0 0

)

96 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

is not output observable, as we can see applying the test 3.2.1:

rank
(
C D

)
= rank

(
1 0 1 0 0 0
0 0 0 0 0 0

)
= 1 < 2.

Taking into account the above, we will try to find conditions for particular
cases.

As a first result following corollary 3.2.2 we have:

Corollary 3.5.2. Let C(A,B,C,D) be the parallel concatenated code obtained
from the concatenation of the codes C1(A1, B1, C1, D1)and C2(A2, B2, C2, D2).
If matrix D1 + D2 has full row rank, then the code C(A,B,C,D) is output
observable.

Working now, over a field F of characteristic different from 2, we consider
a parallel concatenated code C(A,B,C,D) obtained from the concatenation of
the codes C1(A1, B1, C1, D1), and C2(A2, B2, C2, D2), with C2(A2, B2, C2, D2) =
C1(A1, B1, C1, D1).

The output-observability matrix of this concatenated code is


C1 C1 2D1
C1A1 C1A1 2C1B1 2D1

C1A2
1 C1A2

1 2C1A1B1 2C1B1 2D1

...
...

...
C1A

2δ1
1 C1A

2δ1
1 2C1A

2δ1−1
1 B1 ... 2C1B1 2D1


and the rank of this matrix coincides with the rank of


C1 D1
C1A1 C1B1 D1

C1A2
1 C1A1B1 C1B1 D1

...
... ...

C1A
2δ1
1 C1A

2δ1−1
1 B1 ... C1A1B1 C1B1 D1


Notice that the submatrix

Tδ =


C1 D1
C1A1 C1B1 D1

C1A2
1 C1A1B1 C1B1 D1

...
... ...

C1A
δ1
1 C1A

δ1−1
1 B1 ... C1A1B1 C1B1 D1



3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 97

corresponds to the output-observability matrix of the C1(A,B,C,D) code.

Therefore, is having the following proposition.

Proposition 3.5.3. Over a field F of characteristic different from two, a
necessary condition for output-observability of the parallel concatenated code
C(A,B, C,D) of C1(A1, B1, C1, D1) with itself is that the code C1(A1, B1, C1, D1)
be output-observable.

Notice that over a field F of characteristic two the result is false.

Example 3.5.7. Let C1(A1, B1, C1, D1) be a code with A1 =

(
0 1
0 0

)
, B1 =

(
0
1

)
,

C1 =
(
1 0

)
and D1 =

(
1
)
. This code is output observable but the parallel

concatenated code C(A,B,C,D) of C1(A1, B1, C1, D1) with itself is not output
observable (D = 2D1 = 0 and CAB = 0).

Calling Ti the matrix

Ti =


C1 D1
C1A1 C1B1 D1

C1A2
1 C1A1B1 C1B1 D1

...
... ...

C1A
i−1
1 C1A

i−2
1 B1 ... C1A1B1 C1B1 D1


for all i ≥ δ, we have the following theorem.

Theorem 3.5.1. Suppose that the code C1(A,B,C,D) is output observable. A
necessary condition for output-observability of the concatenated code C(A,B,C,D)
is

rankTδ+1 − rankTδ = n− k.

Proof. Following [25], for all i ≥ δ the relation

rankTi+1 − rankTi = ` (constant).

Proposition 3.5.4. Let C(A1, B1, C1, D1) and C(A2, B2, C2, D2) be two con-
volutional codes, such that D1 = D2 = 0, and C2 = 0 (respec. C1 = 0). Then,
the parallel concatenated code C(A,B,C,D) is output observable if and only if
C(A1, B1, C1, D1) (respc. C(A2, B2, C2, D2)) is output observable.

98 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

Proof. Taking into account C =
(
C1 0

)
and D = 0, we have that for all `

rank


C1 0 0
C1A1 0 C1B1 0
C1A

2
1 0 C1A1B1 C1B1 0

...
.

C1A
`
1 0 C1A

`−1
1 C1A

`−2
1 B1 . . . C1B1 0



= rank


C1 0 0
C1A1 C1B1 0
C1A

2
1 C1A1B1 C1B1 0

...
.

C1A
`
1 C1A

`−1
1 C1A

`−2
1 B1 . . . C1B1 0

 .

Over a field F of characteristic different from two we have the following
proposition.

Proposition 3.5.5. Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2) be two con-
volutional codes with (A2, B2, C2, D2) = (P−1A1P, P

−1B1, C1P,D1) for some
invertible matrix P ∈ Gl(δ,F). Then, the parallel concatenated code C(A,B,C,
D) of these codes is output observable, if and only if the concatenated code
C(A,B, C, D) of C1(A1, B1, C1, D1) with itself is output observable.

Proof. It suffices to observe that

rank



A1 0 B1 −I1 0
0 A2 B2 0 −I1
C1 C2 D1 +D2 0 0
0 0 0 A1 0 B1 −I1 0
0 0 0 0 A2 B2 0 −I1
0 0 0 C1 C2 D1 +D2 0 0

. . .
. . .

. . .

0 0 0 A1 0 B1 −I1 0 0
0 0 0 0 A2 B2 0 −I1 0
0 0 0 C1 C2 D1 +D2 0 0 0

0 0 0 C1 C2 D1 +D2



3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 99

= rank Q·



A1 0 B1 −I1 0
0 A1 B1 0 −I1

C1 C1 2D1 0 0
0 0 0 A1 0 B1 −I1 0
0 0 0 0 A1 B1 0 −I1

0 0 0 C1 C1 2D1 0 0
.

0 0 0 A1 0 B1 −I1 0 0
0 0 0 0 A1 B1 0 −I1 0
0 0 0 C1 C1 2D1 0 0 0

0 0 0 C1 C1 2D1



·P

= rank



A1 0 B1 −I1 0
0 A1 B1 0 −I1

C1 C1 2D1 0 0
0 0 0 A1 0 B1 −I1 0
0 0 0 0 A1 B1 0 −I1

0 0 0 C1 C1 2D1 0 0
.

0 0 0 A1 0 B1 −I1 0 0
0 0 0 0 A1 B1 0 −I1 0
0 0 0 C1 C1 2D1 0 0 0

0 0 0 C1 C1 2D1


Where the matrices Q and P are:

Q =



I1

P−1

I2

I1

P−1

I1

. . .

P−1

I2

I1



100 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

and

P =



I1

P
I2

I1

. . .

P
I2


with I1 and I2 are the identity matrices in the adequate size.

Example 3.5.8. Over F5, let (A,B,C,D) be a representation of a convolutional
code with A = (2), B = (1), C1 = (3), D1 = (0).

The parallel concatenated code C(A,B,C,D) is output-observable because
matrices

T` =


3 3 0
1 1 1 0
...

. . .

3 · 2` 3 · 2` 1 0


has full row rank for all `. Then, for all P ∈ G(1,F) the parallel concatenated
code of (A1, B1, C1, D1) with (P−1A1P, P

−1B1, C1P,D1) is output-observable.
It is not difficult to observe that the output-observability matrix for this code
is 

3 3p 0
1 1p 1 0
...

. . .

3 · 2` 3 · 2`p 1 0


that has full row rank.

For fields with characteristic two the result fails. In fact we can deduce
that

Proposition 3.5.6. Let C1(A1, B1, C1, D1), C2(A2, B2, C2, D2) be two convo-
lutional codes with (A2, B2, C2, D2) = (P−1A1P, P

−1B1, C1P,D1) for some in-
vertible matrix P ∈ Gl(δ,F). Then, the parallel concatenated code C(A,B,C,D)
of these codes is never output observable.

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 101

Proof. The output-observability matrix for this case is

T` =


C1 C1P 0
C1A1 C1A1P 0 0

...
...

. . .

C1A
`
1 C1A

`
1P 0 0 . . . 0

 .

3.5.3 Systematic serial concatenation

In order to analyze the output-observability of the systematic serial concate-
nated code, we compute the rank of the matrices M`

M` =



A1 0 B1 −Iδ1 0
B2C1 A2 B2D1 0 −Iδ2
C1 0 D1 0 0
D2C1 C2 D2D1 0 0
0 0 0 A1 0 B1 −Iδ1 0
0 0 0 B2C1 A2 B2D1 0 −Iδ2
0 0 0 C1 0 D1 0 0
0 0 0 D2C1 C2 D2D1 0 0

. . .

A1 0 B1 −Iδ1 0
B2C1 A2 B2D1 0 −Iδ2
C1 0 D1 0 0
D2C1 C2 D2D1 0 0

C1 0 D1

D2C1 C2 D2D1



.

Example 3.5.9. Let C1(A1, B1, C1, D1) and C2(A2, B2, C2, D1) the realizations
of two convolutional codes with

A1 = (0), B1 =
(
1 0

)
, C1 =

(
1
1

)
, D1 =

(
0 0
1 0

)
,

A2 = (1), B2 =
(
0 1

)
, C2 = (1), D2 =

(
0 1

)
.

Then the systematic serial concatenated code is C(A,B,C,D) with

A =

(
0 0
1 1

)
, B =

(
1 0
1 0

)
, C =

1 0
1 0
1 1

 , D =

0 0
1 0
1 0



102 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

The system is not output-observable because of

rankM0 = rank

1 0 0 0
1 0 1 0
1 1 1 0

 = 3

rankM1 = rank



0 0 1 0 −1 0 0 0
1 1 1 0 0 −1 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 1 1 0


= 6 < 8

Observe that the first system is not output-observable:

rankM0 = rank

(
1 0 0
1 1 0

)
= 2

rankM1 = rank


1 0 0
1 0 1
0 1 0 0 0
0 1 0 1 0

 = 3 < 4.

Proposition 3.5.7. A necessary condition for output-observability of system-
atic serial concatenated system is that the code C1(A1, B1, C1, D1) be output-
observable.

3.5. OUTPUT-OBSERVABILITY OF CONCATENATED CODES 103

Proof. Making block row transformations to the matrix M` we have that

rankM` =

rank



A1 0 B1 −Iδ1 0
C1 0 D1 0 0
0 0 0 A1 0 B1 −Iδ1 0
0 0 0 C1 0 D1 0 0

. . .

A1 0 B1 −Iδ1 0
C1 0 D1 0 0

C1 0 D1

B2C1 A2 B2D1 0 −Iδ2
D2C1 C2 D2D1 0 0
0 0 0 B2C1 A2 B2D1 0 −Iδ2
0 0 0 D2C1 C2 D2D1 0 0

. . .

B2C1 A2 B2D1 0 −Iδ2
D2C1 C2 D2D1 0 0

D2C1 C2 D2D1



.

3.5.4 Parallel interleaver concatenation

In order to obtain conditions for the output-observability character of a parallel
interleaver concatenated code, we consider the output-observability matrix M`.

Proposition 3.5.8. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations
of the codes C1 and C2 respectively, and P an interleaver matrix. A sufficient
condition for output-observability of the concatenated interleaver code of both
codes is that the matrix D1 +D2P have full rank.

Proposition 3.5.9. Let (A1, B1, C1, D1) and (A2, B2, C2, D2) be realizations of
the codes C1 and C2 respectively, and P the interleaver matrix. Then the parallel
interleaver concatenated system of both codes is output observable if and only if
the parallel concatenated code of (A1, B1P−1, C1, D1P−1) and (A2, B2, C2, D2)
is.

Proof. If we compute the output-observability character of the parallel inter-

104 CHAPTER 3. CONTROLLABILITY AND OBSERVABILITY

leaver concatenated code, we can observe that:

rank



A1 0 B1 −Iδ1 0 . . . 0 0
0 A2 B2P 0 −Iδ2
C1 C2 D1 +D2P 0 0

A1 0 B1 −Iδ1 0
0 A2 B2P 0 −Iδ2
C1 C2 D1 +D2P 0 0

...
. . .

. . . A1 0 B1 −Iδ1 0 0

. . . 0 A2 B2P 0 −Iδ2 0

. . . 0 0 0 C1 C2 D1 +D2P


=

rank



A1 0 B1P−1 −Iδ1 0 . . . 0 0

0 A2 B2 0 −Iδ2
C1 C2 D1P−1 +D2 0 0

A1 0 B1P−1 −Iδ1 0

0 A2 B2 0 −Iδ2
C1 C2 D1P−1 +D2 0 0

...
. . .

. . . A1 0 B1P−1 −Iδ1 0 0

. . . 0 A2 B2 0 −Iδ2 0

. . . 0 0 0 C1 C2 D1P−1 +D2


.P

with

P =



Iδ1
Iδ2
P

. . .

Iδ2
P


.

Chapter 4

Decoding problem

In this chapter, we briefly recall notions already known on the decoding, and
in particular algorithms for decoding already known such as the Viterbi, or
the Berlekamp-Massey for instance. We also implement our own decoding
algorithms inspired by the linear systems theory approach for convolutional
codes as presented in previous chapters. Our approach is an iterative method,
which suggests decoding step by step for each state of the process. Apart from
the general method, we present as well derived methods specially suitable to
each model of concatenation that is involved with our work. Material of this
chapter can be found in [29].

4.1 Introduction

It is well known the existence of several algorithms for decoding convolutional
codes. Foremost among them, codes are decoded using the so called Viterbi
decoding algorithm. The Viterbi Algorithm was first proposed as a solution
to the decoding of convolutional codes by Andrew J. Viterbi in 1967 [84].
With regard to the case of concatenated codes, some decoding methods have
also been suggested as in [7]. When it comes to the linear systems approach
for the decoding algorithm, an algebraic method has also been suggested by
J. Rosenthal in [67], which calls upon the controllability and observability
properties of convolutional codes, as well as algorithms such as the Berlekamp-
Massey one [54]. We try to implement algorithms better suited to our own
linear systems construction.

105

106 CHAPTER 4. DECODING PROBLEM

In order to analyze this process we assume that a certain code word {vt}t≥0 ={(
ut
yt

)}
is sent and the message word {v̂t}t≥0 =

{(
ût
ŷt

)}
is received. The

decoding problem then asks for the minimization of the error

error = min{vt}∈C
∑∞

t=0 dist (vt, v̂t)

= min (
∑∞

t=0(dist (yt, ŷt) + dist (ut, ût))
(4.1)

where the weight

w({vt}t>0) =
∞∑
t=0

(w(yt) + w(ut)

and
dist (vt, v̂t) = w(vt − v̂t).

If in the transmission, no errors are produced, then {v̂t}t≥0 is a valid tra-
jectory and the error value defined in (4.1) is zero.

Otherwise, if the error value is not null, then the sequence received is
not a codeword, and does not belong to the code family. Then, comes the
importance of decoding, which consists of finding out, from the gotten sequence
the encoded word supposed to have been received.

However, it is also possible to consider the transmission done over the
“Gaussian channel”; indeed, it is possible to give conditions for minimization
of the error in the case when we do the decoding on R linear trajectories [67].
In this case, let us consider a convolutional code C described by the realization
(A,B,C,D) and let T > Θ integers satisfying the following assumptions.

Assumptions 4.1.1. i) A is invertible, the matrix
(
B AB . . . AT−1B

)
has full row rank δ and its rows form the parity check matrix of a block
code of distance at least d1.

ii) The matrix


C
CA

...

CAΘ−1

 has full column rank δ and its rows form the

generator matrix of a block code of distance d2.

Remark 10. These conditions imply that the pair (A,B) is controllable and T
is necessarily larger than controllability index, and the pair (A,C) is observable
and Θ is necessarily larger than observability index.

4.2. DECODING CONVOLUTIONAL CODES 107

Under these conditions, we have the following lemma:

Lemma 4.1.1. [67] Assume that the matrices A,B,C and the integers T,Θ
satisfy the assumptions 4.1.1. Assume that(

u(t)
y(t)

)
t≥0

and

(
ũ(t)
ỹ(t)

)
t≥0

are two sets of codewords both satisfying the conditions above. Let x(t)t≥0 and
x̃(t)t≥0 be the corresponding set of state vectors. If there is a τ ≥ 0 with

xτ = x̃τ and xτ+1 6= x̃τ+1

then for any γ satisfying τ + T > γ ≥ τ one has that

γ∑
t=τ

(dist(u(t), ũ(t)) + dist(y(t), ỹ(t))) ≥ min(d1, b
γ − τ

Θ
c+ 1)

4.2 Decoding convolutional codes

We are interested in the decoding of convolutional codes represented as linear
systems.

In general, using the matrix (5.4) we obtain a representation in terms of
state input-output of the code

C D
CA CB D
CA2 CAB CB D

...
.

CA` CA`−1B CA`−2B . . . CB D



x(0)
u(0)

...
u(`)

 =


y(0)
y(1)

...
y(`)

 (4.2)

Proposition 4.2.1. Let (A,B,C,D) be a representation of an output-observable
code. Then, the system (4.2) is solvable.

Proof. Assume the system (A,B,C,D) is output-observable; then the matrix
of the equation (4.2) has full row rank.

108 CHAPTER 4. DECODING PROBLEM

Remark 11. It is usual to consider the initial state of the system x(0) = 0. In
this case the system (4.2) is reduced to

D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D


u(0)

...
u(`)

 =


y(0)
y(1)

...
y(`)

 . (4.3)

So, in this case the solvability of the system is ensured if the matrix

T̂`−1 =


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D


has full rank.

But, if the matrix of the system (4.2) has full row rank, the system (4.3)
is not necessarily solvable as we can see in the following example.

Example 4.2.1. Let (A,B,C,D) a realization of a convolutional code with

A =

(
0 0
1 0

)
, B =

(
0
0

)
, C =

(
0 1

)
and D = (0), the system

(
C D
CA CB D

)x(0)
u(0)
u(1)

 =

(
0 1 0 0
1 0 0 0

)
x1(0)
x2(0)
u(0)
u(1)

 =

(
y(0)
y(1)

)

is compatible for all
(
y(0)
y(1)

)
and the solution is x1 = y(1), x2 = y(0), neverthe-

less the system(
D
CB D

)(
u(0)
u(1)

)
=

(
0 0
0 0

)(
u(0)
u(1)

)
=

(
y(0)
y(1)

)
has only solution for y(0) = y(1) = 0. That is to say the initial condition for
the system are restrictive conditions for solving the system.

But, in any case, we have the following proposition.

4.2. DECODING CONVOLUTIONAL CODES 109

Proposition 4.2.2. If the matrix T̂`−1 has full row rank the system (4.2) is
solvable with initial condition x(0) = 0.

Proof. If the matrix T̂`−1 has full row rank, the system (4.3) is solvable. Then,
if (u(0), . . . , u(`)) is a solution of this system, clearly (0, u(0), . . . , u(`)) is a
solution for the system (4.2).

Example 4.2.2. In F2, let (A,B,C,D) be a representation of the convolutional
code C with

A =

(
0 1
1 0

)
, B =

(
1
0

)
, C =

(
1 0

)
, D =

(
1
)

Clearly det(zI − A) = z2 + 1.

Let be now m =
(
1 1 0 1 1

)
, so m(z) = 1 + z + z3 + z4,

and (1 + z2)m(z) = (1 + z + z2 + z4 + z5 + z6);

then the inputs are

(u(0), u(1), u(2), u(3), u(4), u(5), u(6)) = (1, 1, 1, 0, 1, 1, 1)

written in a polynomial form 1 + 1s+ 1s2 + 0s3 + 1s4 + 1s5 + 1s6

G(z)m(z) =

(
P (z)Q−1

I

)
Q(z)m(z) =

(
C(zI − A)−1B +D

I

)
Q(z)m(z)

=

(
1 + z6

1 + z + z2 + z4 + z5 + z6

)
,

Q(s)m(z) = 1 + z + z2 + z4 + z5 + z6).

Suppose that the initial state is x(0) = 0, the outputs (y(0), y(1), y(2),
y(3), y(4), y(5), y(6)) can be obtained in the following manner:

y(0) = Cx(0) +Du(0) =
(
1 0

)(0
0

)
+ 1 · 1 = 1

x(1) = Ax(0) +Bu(0) =

(
0 1
1 0

)(
0
0

)
+

(
1
0

)
1 =

(
1
0

)
y(1) = Cx(1) +Du(1) =

(
1 0

)(1
0

)
+ 1 · 1 = 1 + 1 = 0

x(2) = Ax(1) +Bu(1) =

(
0 1
1 0

)(
1
0

)
+

(
1
0

)
1 =

(
1
1

)

110 CHAPTER 4. DECODING PROBLEM

y(2) = Cx(2) +Du(2) =
(
1 0

)(1
1

)
+ 1 · 1 = 0

x(3) = Ax(2) +Bu(2) =

(
0 1
1 0

)(
1
1

)
+

(
1
0

)
1 =

(
0
1

)
y(3) = Cx(3) +Du(3)

(
1 0

)(0
1

)
+ 1 · 0 = 0 + 0 = 0

x(4) = Ax(3) +Bu(3) =

(
0 1
1 0

)(
0
1

)
+

(
1
0

)
0 =

(
1
0

)

y(4) = Cx(4) +Du(4) =
(
1 0

)(1
0

)
+ 1 · 1 = 0

x(5) = Ax(4) +Du(4) =

(
0 1
1 0

)(
1
0

)
+

(
1
0

)
1 =

(
1
1

)
y(5) = Cx(5) +Du(5) =

(
1 0

)(1
1

)
+ 1 · 1 = 1 + 1 = 0

x(6) = Cx(5) +Du(5)

(
0 1
1 0

)(
1
1

)
+

(
1
0

)
1 =

(
0
1

)
y(6) = Cx(6) +Du(6) =

(
1 0

)(0
1

)
+ 1 · 1 = 0 + 1 = 1

and the outputs are (1, 0, 0, 0, 0, 0, 1).

Reciprocally

Given (y(0), y(1), y(2), y(3), y(4), y(5), y(6)) = (1, 0, 0, 0, 0, 0, 1), solving the
system



C D
CA CB D
CA2 CAB CB D
CA3 CA2B CAB CB D
CA4 CA3B CA2B CAB CB D
CA5 CA4B CA3B CA2B CAB CB D
CA6 CA5B CA4B CA3B CA2B CAB CB D





x1(0)
x2(0)
u(0)
u(1)
u(2)
u(3)
u(4)
u(5)
u(6)


=



1
0
0
0
0
0
1



4.2. DECODING CONVOLUTIONAL CODES 111

Concretely:



1 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
1 0 0 1 0 1 1 0 0
0 1 1 0 1 0 1 1 0
1 0 0 1 0 1 0 1 1





x1(0)
x2(0)
u(0)
u(1)
u(2)
u(3)
u(4)
u(5)
u(6)


=



1
0
0
0
0
0
1


.

The solution is

x1 = 0u(5) + 1u(6) + 1
x2 = 1u(5) + 0u(6) + 1

u(0) = 0u(5) + 1u(6) + 0
u(1) = 1u(5) + 1u(6) + 1
u(2) = 1u(5) + 0u(6) + 0
u(3) = 0u(5) + 1u(6) + 1
u(4) = 1u(5) + 1u(6) + 1

Taking into account the initial states are x1 = 0, x2 = 0, we have

(u(0), u(1), u(2), u(3), u(4), u(5), u(6)) = (1, 1, 1, 0, 1, 1, 1)
= 1 + z + z2 + z4 + z5 + z6

= Q(z)m(z)
= (1 + z2)m(z)

then m(z) = 1 + z + z3 + z4 =
(
1 1 0 1 1

)
.

Describing the code vector v(t)

System (4.3) permits us to describe the code vector v(t) =
(
u(t)
y(t)

)
as a solution

of a linear homogeneous equation, as we have seen in Theorem 3.2.1.

Proposition 4.2.3. The code vectors v(t) of a convolutional code (A,B,C,D)
with initial state x(0) = 0 are the solutions of the following linear homogeneous

112 CHAPTER 4. DECODING PROBLEM

system


D −I 0 0
CB 0 D −I
CAB 0 CB 0 D −I

...
...

.

CA`−1B 0 CA`−2B CB 0 D −I





u(0)
y(0)
u(1)
y(1)

...
u(`)
y(`)


= 0

(4.4)

Proof. For that, we observe that (4.3) can be written in the following manner


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D



u(0)
u(1)

...
u(`)

 =


I

I
. . .

I



y(0)
y(1)

...
y(`)


equivalently


D 0 0 0 −I
CB D −I
CAB CB D −I

...
...

.

CA`−1B CA`−2B CB D −I





u(0)
u(1)

...
u(`)
y(0)
y(1)

...
y(`)


= 0,

now, we just need to reorder the columns of the matrix as well as the rows of
the vector and then the proof is completed.

Example 4.2.3. In F5, we consider A =

(
1 0
2 1

)
, B =

(
4
0

)
, C =

(
1 1

)
,

D =
(
3
)
.

We consider the sequence v = (v(0), v(1), v(2)) with v(0) = (1, 3), v(1) =
(2, 4), v(2) = (3, 1)

4.2. DECODING CONVOLUTIONAL CODES 113

We have ` = 2, which means that our matrix is:3 −1 0 0 0 0
4 0 3 −1 0 0
2 0 4 0 3 −1


For sequences of ` = 2, the set of solutions of the homogeneous equation is

such that:

3 −1 0 0 0 0
4 0 3 −1 0 0
2 0 4 0 3 −1



u(0)
y(0)
u(1)
y(1)
u(2)
y(2)

 = 0.

Then, the possible code vectors v(t) are the elements of vector subspace{(
u(0)
3u(0)

)
,

(
u(1)

4u(0) + 3u(1)

)
,

(
u(2)

2u(0) + 4u(1) + 3u(2)

)
, ∀u(0), u(1), u(2) ∈ F5

}
Now, we verify whether our vector code v is a solution to the previous

system.

We easily check that:

3 −1 0 0 0 0
4 0 3 −1 0 0
2 0 4 0 3 −1




1
3
2
4
3
1

 =

0
1
3

 6= 0

Finally, v is not a solution to the homogeneous system, then v is not a valid
vector code.

A valid vector code with outputs y(0) = 3, y(1) = 4, y(2) = 1 can be
obtained solving the system

3 = 3u(0)
4 = 4u(0) + 3u(1)
1 = 2u(0) + 4u(1) + 3u(2)

114 CHAPTER 4. DECODING PROBLEM

the solution is u(0) = 1, u(1) = 0, u(2) = 3.

Then, the vector code with outputs y(0) = 3, y(1) = 4, y(2) = 1 is v =
((1, 3), (0, 4), (3, 1)) and d(v, v) = 1.

Analogously, a valid vector code with entries u(0) = 1, u(1) = 2, u(2) = 3
can be obtained directly as follows


y(0) = 3u(0) = 3
y(1) = 4u(0) + 3u(1) = 0
y(2) = 2u(0) + 4u(1) + 3u(2) = 4

Then, the valid vector code with entries u(0) = 1, u(1) = 2, u(2) = 3 is
v = ((1, 3), (2, 0), (3, 4)) and d(v, v) = 2.

Now, we compute the free distance.

Since the free distance is equivalent to the minimum weight of all codewords
(except for the zero word), it can also be found in the case when almost all
inputs are null.

In other words, in our case, taking into account the triangular shape having
the solution, if we consider for i ∈ {0, . . . , `− 1} that u(i) = 0, then y(i) = 0,
0 ≤ i ≤ ` − 1; and if we consider u(`) 6= 0 we have that v(`) has minimum
weight. In our particular case, if we have u = (u(0), u(1), u(2)) = (0, 0, x) with
x ∈ F5, x 6= 0. Then,

v(0)
v(1)
v(2)

 =


0
0
0
0
x
3x


the code vector (v(0), v(1), v(2)) has minimum weight, which means that the
free distance is 2.

Remark 12. If u(0) = u(1) = . . . = u(` − 1) = 0 then y(0) = y(1) = . . . =
y(`−1) = 0, then the weight w verifies w ≤ k+p. And if we consider u(`) = ej
the j-vector of the canonical basis we have that the weight w verifies w ≤ 1+p.

4.2. DECODING CONVOLUTIONAL CODES 115

Solving the system (4.2)

In the case where the matrix of the system (4.2) does not have full row rank,

the existence of the solution is not guaranteed and depends on
(
y(0)
y(1)

)
.

If the system is not compatible we can find approximate solutions using
generalized inverse matrices and under some conditions we can consider the
Moore-Penrose pseudoinverse matrix.

Remember that, given a matrix A ∈Mn×m(F), a matrix XA ∈Mm×n(F) is
called generalized inverse if it satisfies

a) AXAA = A,

A generalized inverse XA of A is called a reflexive generalized inverse if it
satisfies

b) XAAXA = XA

A reflexive generalized inverse XA of A is called normalized and will be
denoted by Anor if it satisfies

c) (AAnor)t = AAnor

And finally, a normalized generalized inverse Anor is called the Moore-
Penrose pseudoinverse and will be denoted by A+ if it satisfies

d) (A+A)t = A+A.

Obviously, if A is a square invertible matrix, then the matrix XA exists
and XA = A−1.

A linear system Ax = y can be solved if we have a generalized inverse of
the matrix A.

Observe that if
Ax = y

we have
AXAAx = y

so
AXAy = y

that is to say
XAy

116 CHAPTER 4. DECODING PROBLEM

is a solution and the general solution can be easily obtained if we are taking
into account that Im (Im −XAA) = KerA, that is to say, if XAy is a solution,
then XAy + (w −XAAw) is also a solution.

If does not exists a solution x of the system, XAy is an approximated
solution of the system (i.e. is a solution of the compatible system Ax =
AXAy = y).

Not always there exists the normalized and pseudoinverse matrix. Penrose
[14] showed that every matrix A over the complex field has a normalized inverse
and a unique A+. However, Pearl [13] showed that a matrix A ∈ Mm×n(F)
of rank r over an arbitrary field has a normalized and a Moore-Penrose A+

(unique) only under certain conditions. In fact we have the following result

Theorem 4.2.1. Let A be an m × n matrix of rank r over a field F (having
involutory automorphism). Then, A has a normalized generalized inverse Anor

if and only if
r = rank (AtA).

And A has a Moore-Penrose pseudoinverse A+ if and only if

r = rank (AtA) = rank (AAt).

Example 4.2.4. Over F5 the 1 × 5-matrix A =
(
1 1 1 1 1

)
does not have

a A+ pseudo-inverse.

Anyway, we have the following result (see [91] for more details).

Lemma 4.2.1. For any matrix over an arbitrary field Fq with q = qm1 , q1 being
prime and m ≥ 1, there exists a reflexive generalized inverse matrix.

For those methods of solving, instead of only detecting the error, (as for
instance in the Viterbi decoding algorithm), and put out the correct sequence
that should have been received, at the same time we detect the error, and give
the original message before encoding.

Proposition 4.2.4. Let Fq be a field with q = qm1 , and consider a represen-
tation (A,B,C,D) of a convolutional code. Suppose that y = (y(0), . . . , y(`))
is a received sequence, we have that u = (u(0), u(1) . . . , u(`)) is obtained as
follows

a) Set x(0) = 0, then u = XT̂`
y

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 117

b) Do not set x(0), then u = XT`y.

Example 4.2.5. In F2, let us consider the code C(A,B,C,D) defined by:

A =

(
0 1
0 0

)
, B =

(
1 0
0 0

)
, C =

(
0 1
0 0

)
, D =

(
0 1
1 0

)

We observe that the system is output-observable.

Suppose that we want to decode the sequence

y = (y(0), y(1), y(2)) = (1 0, 0 1, 0 1)

We set x(0) = (0 0)

Then, we solve

 D
CB D
CAB CB D

u(0)
u(1)
u(2)

 =

y(0)
y(1)
y(2)


In this case

XT̂`
= T̂` =


0 1
1 0
0 0 0 1
0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0


and the decoded sequence is u = (u(0), u(1), u(2)) = (0 1 1 0 1 0).

4.3 The first iterative decoding algorithm

Our contribution can be found at [29]. In order to easily solve the system
(4.2), the algorithms we will be using are divided between some steps.

The first algorithm for solving focuses more on directly correcting the error
in case of disturbance by approaching the original input that is supposed to
have been encoded (and whose encoding was disturbed, in case of disturbance).
We consider that if we get as close as possible to the initial input, with the

118 CHAPTER 4. DECODING PROBLEM

output received, by approaching the best possible solution of our system, then
we will have the error implicitly corrected and the original message. We do so
considering initial conditions, and output-observability matrix.

Of course, initial conditions are not our main concern. We denote by
XM a generalized inverse of the matrix M , and by M+ the Moore-Penrose
pseudoinverse of the matrix M, if exists.

Step 1: Look at the number of outputs denoted by `; give `

Step 2: Solve

T0

(
x(0)
u(0)

)
=
(
C D

)(x(0)
u(0)

)
= y(0) (4.5)

If rank (C D) is row maximal (4.5) is compatible; in particular if rankD is
row maximal, then (4.5) is compatible as well.

switch case 1: Fix x(0) such that x(0) = 0 then solve: Du(0) = y(0)

If D+exists D+
(
y(0)

)
is a solution; otherwise XD

(
y(0)

)
is

case 2: Do not fix x(0) then solve
(
C D

)(x(0)
u(0)

)
= y(0)

If T+
0 exists T+

0

(
y(0)

)
is a solution; otherwise X(C D)

(
y(0)

)
is

Then, we find approximate solutions by computing the Moore-Penrose gen-
eralized inverse of T̂0 considering x(0) = 0 or T0 for no fixed value for x(0) and

minimize dH(T0

(
x(0)
u(0)

)
, y(0)) and Hamming weight of u as well. Then, settle

for the approximate minimal solution.

Step 3: Iteratively, solve T`


x(0)
u(0)

...
u(`)

 =

y(0)
...

y(`)

, for all `

Considering the list of solutions x(0), u(0), . . ., u(`− 1), we solve

Du(`) = y(`)− CA`x(0)− CA`−1Bu(0)− . . .− CBu(`− 1)

and

u(`) = D+(y(`)− CA`x(0)− CA`−1Bu(0)− . . .− CBu(`− 1)

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 119

is a solution if D+ exists; otherwise

XD(y(`)− CA`x(0)− CA`−1Bu(0)− . . .− CBu(`− 1)

is a solution, for all `. As before, minimize dH(T`

(
x(0)
u

)
, y) and Hamming

weight of u = (u(0), . . . , u(`)) as well. Settle for that approximate minimized
solution.

Example 4.3.1. In F2, let us consider the code C(A,B,C,D) defined by

A =

(
0 1
0 0

)
, B =

(
1 0
0 0

)
, C =

(
0 1
0 0

)
, D =

(
0 1
1 0

)

First of all we observe that the system is output-observable because the
matrix D has full row rank.

Suppose that we want to decode the sequence:

y = (y(0), y(1), y(2)) = (1 0, 0 1, 0 1)

Step 1: We have ` = 2

Step 2: We have

D =

(
0 1
1 0

)
;

then we solve (4.5) T0

(
x(0)
u(0)

)
= y(0)

We have that rankD = 2, D has full rank; thus, we decide to choose the usual
initial state x(0) = (0 0); so we solve

T̂0(u0) = Du(0) =

(
0 1
1 0

)(
u(0)

)
= y(0) =

(
1
0

)
We easily get u(0) = (0 1)

Step 3: We solve T1

x(0)
u(0)
u(1)

 =

(
y(0)
y(1)

)
with x(0) = (0 0) and u(0) = (0 1)

Then, it suffices to solve(
CB D

)(u(0)
u(1)

)
=
(
y(1)

)
, with u(0) = (0 1)

120 CHAPTER 4. DECODING PROBLEM

that is to say
Du(1) = y(1)− CBu(0)

u(1) = D+(y(1)− CBu(0)) = D+y(1)

We obtain u(1) = (1 0)

Finally, we solve T2


x(0)
u(0)
u(1)
u(2)

 = y(2) with x(0) = (0 0), u(0) = (0 1) and

u(1) = (1 0)
Then, it suffices to solve

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2), with u(0) = (0 1), and u(1) = (1 0)

that is to say
Du(2) = y(2)− CABu(0)− CBu(1)

So, we easily obtain u(2) = (1 0)

For this case, y = (y(0), y(1), y(2)) = (1 0 0 1 0 1) there was no error during
transmission;

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (0 1 1 0 1 0)

Example 4.3.2. Over the field F3, let us consider the code C(A,B,C,D) given
by :

A =

(
0 2
1 0

)
, B =

(
0 1
2 0

)
, C =

(
1 1
2 0

)
, D =

(
0 2
0 0

)
First of all we observe that the system is not output-observable because of

rankT2 < 6.

When we try to decode the sequence y = (y(0), y(1), y(2)) = (2 1, 0 1, 0 2),
the steps we follow are the following:

Step 1: We have ` = 2

Step 2: We have

D =

(
0 2
0 0

)
;

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 121

We have that rankD = 1 < 2 = p, then, the existence of a solution of the
system Du(0) = y(0) depends on y(0), in our particular case the system is not

solvable, however, rank
(
C D

)
= rank

(
1 1 0 2
2 0 0 0

)
= 2 = p, so, we choose

not to fix x(0).

So, we solve T0

(
x(0)
u(0)

)
= y(0)

(
C D

)(x(0)
u(0)

)
=

(
1 1 0 2
2 0 0 0

)(
x(0)
u(0)

)
=

(
2
1

)
= y(0)

Taking into account that

rank
(
C D

)
= rank

(
C D

) (
C D

)t
= rank

(
C D

)t (
C D

)
= 2

there exists the generalized inverse of such a matrix M =
(
C D

)
that is given

by M+ = M t(MM t)−1. So, we get: (C D)+ =


0 2
2 2
0 0
1 1

 Then,


0 2
2 2
0 0
1 1

(2
1

)
=


2
0
0
0

 .

Indeed, we get: x(0) = (2 0) and u(0) = (0 0).

Notice that x(0) = (2 0) and u(0) = (0 0) is a particular solution of the

compatible system
(
C D

)(x(0)
u(0)

)
= y(0). In fact, all solutions are x(0) =

(2 0) + α(0 2) and u(0) = (0 0) + α(0 2) + β(2 0).

Step 3: Solve T1

x(0)
u(0)
u(1)

 =

(
y(0)
y(1)

)
with x(0) = (2 0) and u(0) = (0 0).

It suffices to solve
(
CA CB D

)x(0)
u(0)
u(1)

 = y(1) with x(0) = (2 0) and

u(0) = (0 0). Equivalently, we solve

122 CHAPTER 4. DECODING PROBLEM

Du(1) = y(1)− CAx(0)− CBu(0).

We get Du(1) = y(1)−
(

2
0

)
=

(
1
1

)
;

Taking into account that

rankD = rankDDt = rankDtD = 1,

there exists D+ =

(
0 0
0 2

)
. So,

D+

(
1
1

)
=

(
0 0
2 0

)(
1
1

)
=

(
0
2

)
is an approximate solution for u(1).

Since

(
1 2 2 1 0 2
0 1 0 2 0 0

)


1
0
0
0
0
2

− y(1) =

(
0
2

)
6=
(

0
0

)
; we can detect that

there was an error produced at the second element of the sequence y(1) = (0 1),
and our approximate solution is u(1) = (0 2).

Finally, we solve T2


x(0)
u(0)
u(1)
u(2)

 =

y(0)
y(1)
y(2)

 with x(0) = (2 0), u(0) = (0 0) and

u(1) = (0 2); so, it suffices to solve
(
CA2 CAB CB D

)
x(0)
u(0)
u(1)
u(2)

 = y(2)

Then, we solve

Du(2) = y(2)− CA2x(0)− CABu(0)− CBu(1)

So, D+

(
0
2

)
=

(
0 0
2 0

)(
0
2

)
=

(
0
0

)
is an approximate solution for u(2).

Indeed, we can detect that there was a transmission error in the second
part of the sequence y(2) = (0 2) as well, yet we approximate the original
input sequence: u(2) = (0 0).

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 123

For this case, y = (y(0), y(1), y(2)) = (2 1, 0 1, 0 2) there were several errors
during transmission, on two sequences.

The decoded sequence is u = (u(0), u(1), u(2)) = (0 0, 0 2, 0 0), with initial
condition: x(0) = (2 0)

In fact, taking into account that there exists D+, we can obtain an approx-
imate solution with x(0) = 0 solving in the first step D+u(0) = y(0).

Example 4.3.3. We are going to see the decoding of words, with the code in
which p ≥ k. in the field F7, let (A1, B1, C1, D1) with

A =

(
1 3
4 1

)
, B =

(
0
2

)
, C =

5 2
0 6
3 0

 , D =

2
5
6

 (4.6)

We try to decode the sequence: y = (y(0), y(1), y(2)) = (3 1 5, 6 0 2, 4 2 2)

Observe that in this case, the system is not output-observable.

Step 1: We have ` = 2

Step 2: We have

D =

2
5
6

 ;

then we solve
(
C D

)(x(0)
u(0)

)
= y(0).

We choose to fix x(0) = 0. So, we solve

Du(0) =

2
5
6

u(0) = y(0) =

3
1
5

 .

The system is clearly incompatible, but the matrix D verifies conditions
for existence of D+ that in this particular case the pseudoinverse of the matrix
D is given by D+ = (DtD)−1Dt. So, D+ =

(
1 6 3

)
Then,

D+y(0) =
(
1 6 3

)3
1
5

 =
(
3
)

= u(0)

124 CHAPTER 4. DECODING PROBLEM

We get u(0) = 3; when verifying Du(0) =

6
1
4

. Here, at least we detect errors

on two elements of the sequence. Indeed, we get for x(0) = (0), u(0) = (3).

Step 3: We solve T̂1

(
u(0)
u(1)

)
=

(
y(0)
y(1)

)
with u(0) = 3. So, it suffices to solve

(
CB D

)(u(0)
u(1)

)
= y(1) =

6
0
2


Then, we solve

Du(1) = y(1)− CBu(0).

So, D+

1
6
2

 =
(
1 6 3

)1
6
2

 = 1 = u(1). Then the solution u(1) is (1).

When we verify,
(
CB D

)(u(0)
u(1)

)
=

4 2
5 5
0 6

(3
1

)
=

0
6
6

 6=
6

0
2

.

So, we detected errors in the second sequence, and our approximate solution
u(1) is 1.

Finally, we solve T̂2

u(0)
u(1)
u(2)

 with u(0) = 3, and u(1) = 1.

So, we solve
(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2) =

4
2
2

 with u(0) = 3, and

u(1) = 1.

Then, we solve

Du(2) = y(2)− CABu(0)− CBu(1)

We get Du(2) =

3
3
4

;

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 125

u(2) = D+(y(2)− CABu(0)− CBu(1)) =
(
1 6 3

)3
3
4

 =
(
5
)

= u(2).

The approximate solution u(2) is (5). Verifying, we have:

(
CAB CB D

)3
1
5

 =

6 4 2
5 5 5
4 0 6

3
1
5

 =

4
3
0


However, dH((4, 3 0), (4, 2 2)) = 2; so, we detected two errors, and we ap-
proached the solution the best way possible.

For this case, (y(0), y(1), y(2)) = (3 1 5, 6 0 2, 4 2 2) there were multiple errors
during transmission.

The decoded sequence is u = (u(0), u(1), u(2)) = (3, 1, 5), with initial condi-
tion x(0) = (0 0).

Example 4.3.4. We are going to see the decoding of words, with the code
defined in the field F22 ; we have (A,B,C,D) with

A =

(
1 α + 1
0 0

)
, B =

(
0 1
1 0

)
, C =

(
0 1
0 α

)
, D =

(
0 α

α + 1 1

)
(4.7)

Suppose that we want to decode the sequence

y = (y(0), y(1), y(2)) = (1α, 0 1, α + 1 1)

First of all we observe that the system is output-observable because of the
matrix D has full row rank.

Step 1: We have ` = 2

Step 2: We have

D =

(
0 α

α + 1 1

)
;

then, we solve T0

(
x(0)
u(0)

)
= y(0)

We decide to choose x(0) = (0 0); so we solve

Du(0) =

(
0 α

α + 1 1

)
u(0) = y(0) =

(
1
0

)
There exists D+ = D−1 =

(
1 α

α + 1 0

)
; then, it follows

126 CHAPTER 4. DECODING PROBLEM

u(0) = D−1y(0) =

(
1 α

α + 1 0

)(
1
0

)
=

(
1

α + 1

)
.

Obtaining u(0) = (1 α + 1)

Step 3: We solve T1

x(0)
u(0)
u(1)

 =

(
y(0)
y(1)

)
with x(0) = (0 0) and u(0) = (1α+ 1)

Then, it suffices to solve

Du(1) = y(1)− CBu(0), with u(0) = (1 α + 1)

We get Du(1) = y(1)−
(

1
α

)
=

(
0
1

)
−
(

1
α

)
=

(
1

α + 1

)
.

It follows u(1) = D−1

(
1

α + 1

)
=

(
1 α

α + 1 0

)(
1

α + 1

)
=

(
0

α + 1

)
.

We get u(1) = (0 α + 1)

Finally, we solve T2


x(0)
u(0)
u(1)
u(2)

 =

y(0)
y(1)
y(2)

 with x(0) = (0 0), u(0) = (1α + 1)

and u(1) = (0α + 1)
Then, it suffices to solve

Du(2) = y(2)−CABu(0)−CBu(1) with u(0) = (1α+1), and u(1) = (0 α+1).

It follows u(2) = D−1

(
α + 1

1

)
=

(
1 α

α + 1 0

)(
α + 1

1

)
=

(
1
α

)
.

We get u(2) = (1 α).

For this case, y = (y(0), y(1), y(2)) = (1α, 0 1, α + 1 1); there was no error
during transmission;

With x(0) = 0, the decoded sequence is:

u = (u(0), u(1), u(2)) = (1α + 1, 0α + 1, 1α)

Generalizing the process presented in the previous examples, we have the
following result.

4.3. THE FIRST ITERATIVE DECODING ALGORITHM 127

Proposition 4.3.1. Let (A,B,C,D) be a representation of a convolutional
code over a field Fq with q = qm1 , q1 being prime. Given the sequence y =
(y(0), y(1), . . . , y(`)) the decoded sequence u(0), u(1), . . . , u(`) is obtained re-
cursively as follows

a) Choosing x(0) = 0

i) u(0) = XDy(0)

ii) u(1) = XD(y(1)− CBu(0)) with u(0) obtained in i)

...

`) u(`) = XD(y(`)− CA`−1Bu(0)− CA`−2Bu(1)− . . .− CBu(`− 1))
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1).

b) Not choosing x(0)

i)

(
x(0)
u(0)

)
= X(C D)y(0)

ii) u(1) = XD(y(1)−CAx(0)−CBu(0)) with x(0), u(0) obtained in i)

...

`) u(`) = XD(y(`) − CA`x(0) − CA`−1Bu(0) − CA`−2Bu(1) − . . . −
CBu(` − 1) with x(0), u(0), u(1), . . ., u(` − 1) obtained in i), ii),
. . ., `− 1).

Remark 13. This method is quite efficient for error detection; indeed, we can
tell when there was a mistake within a sequence, by computing dH(y, ȳ), y the
output obtained from the approximate solution; however the correction rate
is harder to figure out, since we only detect when a mistake occurs, and we
assume the solution we get is the closest without any verification.

Remark 14. In case p ≤ k, the correction process becomes heavy and its
capacity decreases. Indeed, we have little information on the solution of the
system we are trying to solve; therefore, the approximation of the solution may
not be completely accurate.

Remark 15. In case p ≤ k, the distance between the received sequence and the
decoded one is most likely higher, than in the case when p ≥ k. Indeed, the
codeword space is less dense.

128 CHAPTER 4. DECODING PROBLEM

4.4 Second iterative decoding algorithm

The second algorithm for solving focuses more on detecting the error at first,
before getting into the correction process. Indeed, we will consider that we
need first to check wether or not the received sequence is the encoded one, and
has not been compromised or modified due through the sending process. If so,
we will correct the error first, and later figure out or deduce the original input
message that is supposed to have been encoded. We will do so considering
initial conditions, and output-observability matrix.

The objective of this second algorithm of decoding will be to try to ap-
proach at first, the word received from the encoding machine to the list of
codewords.

Step 1: Set the initial conditions x(0).

Step 2: With D we compute the list of u0 codewords.

Then iteratively, generate the list of codewords, with matrix T`, ` = 1, . . . , l
and store them in a set.

Step 3: Compute the distance between the received y(0) and the set of y(0)
in the codewords. Compute dH until it is minimal; then settle for the closest
codeword y(0) in the list; thus, the system (4.3) becomes solvable; deduce the
corresponding input u(0).

Iteratively, compute the distance between the received y(1) . . . y(`) and the set
of corresponding codewords. Detect the minimum distance dH between them
and settle for the closest codeword y(i), i ∈ 1, . . . , ` in the list; thus, the system
(4.3) becomes compatible; deduce the corresponding input sequence.

Example 4.4.1. In F2, let us consider the code C(A,B,C,D) defined by:

A =

(
0 1
0 0

)
, B =

(
1 0
0 0

)
, C =

(
0 1
0 0

)
, D =

(
0 1
1 0

)

We observe that the system is output-observable.

Suppose that we want to decode the sequence

4.4. SECOND ITERATIVE DECODING ALGORITHM 129

y = (y(0), y(1), y(2)) = (1 0, 0 1, 0 1)

Step 1: We set x(0) = (0 0)

Step 2: We have

D =

(
0 1
1 0

)
;

that it has full row rank, so (1 0) belongs to ImD = {(0 0), (1 0), (0 1), (1 1)} .

Then, we solve the system Du(0) = y(0) =

(
1
0

)
, so, we obtain u(0) = (0 1).

Step 3: We have (
CB D

)(u(0)
u(1)

)
= y(1)

Then, we solve (
0 0 0 1
0 0 1 0

) 0
1

u(1)

 = y(1) =

(
0
1

)

(1 0 0 1) belongs to Im

(
D
CB D

)
; we get: u(1) = (1 0).

Lastly, we have:

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2)

Then, we solve

(
0 0 0 0 0 1
0 0 0 0 1 0

)
0
1
1
0

u(2)

 = y(2) =

(
0
1

)

(1 0 0 1 0 1) belongs to Im

 D
CB D
CAB CB D

; we finally get: u(2) = (1 0)

130 CHAPTER 4. DECODING PROBLEM

For this case, y = (y(0), y(1), y(2)) = (1 0 0 1 0 1) there was no error during
transmission.

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (0 1 1 0 1 0)

Example 4.4.2. We consider that the encoding is done on F3, and the the code
C(A,B,C,D) given by:

A =

(
0 2
1 0

)
, B =

(
0 1
2 0

)
, C =

(
1 1
2 0

)
, D =

(
0 2
0 0

)
.

We observe that the system is not output-observable.

When we try to decode the sequence y = (y(0), y(1), y(2)) = (2 1, 0 1, 0 2),
the steps we follow are the following

Step 1: We set x(0) = (0 0)

Step 2: We have

D =

(
0 2
0 0

)
;

then we try to solve the system Du(0) = y(0) =

(
2
1

)
.

We observe that (2 1) does not belong to ImD = {(0 0), (1 0), (2 0)}; how-
ever, dH((2 1), (2 0)) = 1, so we can observe that there was an error on the
second piece of the sequence, and changing (2 1) by (2 0), we have that u(0) is
either: (0 1) or (α 1), ∀α ∈ F3; we will consider u(0) = (1 1).

Step 3: We have (
CB D

)(u(0)
u(1)

)
= y(1)

Du(1) = y(1)− CBu(0) =

(
0
1

)
−
(

0
2

)
=

(
0
2

)
.

Then, we solve

Du(1) =

(
0
2

)
.

(0 2) does not belong to ImD = {(0 0), (1 0), (2 0)}; however, dH((0 0), (0 2)) =
1, which means that the error is in the second piece of the sequence, and

4.4. SECOND ITERATIVE DECODING ALGORITHM 131

changing y(1) by

(
0
2

)
and solving the system we obtain that u(1) is either

(1 0), (2 0) or (0 0) in KerD; let us consider u(1) = (1 0).

Lastly, we have:

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2).

Then, we solve

Du(2) = y(2)− CABu(0)− CBu(1) =

(
0
2

)
∈ ImD,

the system is compatible with u(2) ∈ {(0 1), (α 1)}, with α ∈ F3. We decide to
settle with u(2) = (0 1).

For this case, y = (y(0), y(1), y(2)) = (2 1, 0 1, 0 2) there are multiple errors
during transmission; there was 2 errors in the first 2 sequences. The original
encoded sequence is: y = (y(0), y(1), y(2)) = (2 0 0 2 0 2).

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (1 1, 1 0, 2 0).

Example 4.4.3. In the field F7, we consider (A,B,C,D) with

A =

(
1 3
4 1

)
, B =

(
0
2

)
, C =

5 2
0 6
3 0

 , D =

2
5
6

 .

We observe that the code is not output-observable.

We try to decode the sequence: y = (y(0), y(1), y(2)) = (3 1 5, 6 0 2, 4 2 2)

Step 1: We set x(0) = (0 0)

Step 2: We can observe that D has full column rank; However, y0 = (3 1 5) does
not belong to ImD = {(0 0 0), (2 5 6), (4 3 5), (6 1 4), (1 6 3), (3 4 2), (5 2 1)}. So,
the minimum distance is obtained over (4 3 5), (6 1 4) and (3 4 2):

dH((3 1 5), (4 3 5)) = dH((3 1 5), (6 1 4)) = dH((3 1 5), (3 4 2)) = 2;

which means that we have multiple choices. We decide to choose the sec-
ond closest codeword in the list of codewords, that is to say, we consider the
codeword y(0) = (6 1 4) and then u(0) = (3).

132 CHAPTER 4. DECODING PROBLEM

Step 3: We have (
CB D

)(u(0)
u(1)

)
= y(1)

So, we solve Du(1) =

6
0
2

− 3

4
5
0

 =

1
6
2


(6 0 2) does not belong to ImD; however, dH((1 6 2), (1 6 3)) = 1, which means
that the error is in the third element of the second sequence, and u(1) is (4).

Lastly, we have:

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2),

Du(2) =

4
2
2

− 3

6
5
4

− 4

4
5
0

 =

5
2
4

 .

(5 2 4) does not belong to ImD. However, dH((5 2 4), (5 2 1)) = 1, and the
system is compatible with u(2) = (6). We decide to settle with u(2) = (6).

For this case, y = (y(0), y(1), y(2)) = (3 1 5, 6 0 2, 4 2 2) there are errors during
all transmission; there are 4 errors; 2 during the first transfer of information
and 1 for the second and last transfer dH = 4. The original encoded sequence
is y = (y(0), y(1), y(2)) = (6 1 4, 6 0 3, 4 2 6).

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (3, 4, 6).

Example 4.4.4. We are going to see the decoding of words, with the code
defined in the field F22 ; we have (A,B,C,D) with

A =

(
1 α + 1
0 0

)
, B =

(
0 1
1 0

)
, C =

(
0 1
0 α

)
, D =

(
0 α

α + 1 1

)
(The same code as in (4.7))

We observe that the system is output-observable, since rankD is maximal
in F4.

4.4. SECOND ITERATIVE DECODING ALGORITHM 133

Suppose that we want to decode the sequence y = (y(0), y(1), y(2)) =
(1 α, 0 1, α + 1 1).

Step 1: We set x(0) = (0 0)

Step 2: We have

D =

(
0 α

α + 1 1

)
;

since D has full row rank, so (1α) belongs to ImD = {(0 α + 1), (α 1)} .

Then, we solve the system Du(0) = y(0) =

(
1
α

)
, so, we obtain u(0) =

(α α + 1)

Step 3: We solve (
CB D

)(u(0)
u(1)

)
= y(1).

We get Du(1) =

(
α
α

)
. The vector (α α) belongs to Im

(
D
)
; we get:

u(1) = (1 1)

Lastly, we have

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2).

Then, we solve

(
0 0 1 0 0 α
0 0 α 0 α + 1 1

)
α

α + 1
1
1

u(2)

 = ȳ(2) =

(
α + 1

1

)
−
(

1
α

)
=

(
α

1 + α

)
.

We have Du(2) =

(
α

α + 1

)
. The vector (α α+ 1) belongs to ImD; we finally

get u(2) = (α + 1 1).

For this case, y = (y(0), y(1), y(2)) = (1 α, 0 1, α + 1 1) there was no error
during transmission;

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (α α +
1, 1 1, α + 1 1)

134 CHAPTER 4. DECODING PROBLEM

Generalising the process presented, we have the following result:

Proposition 4.4.1. Let (A,B,C,D) be a representation of a convolutional
code over a field Fq with q = qm1 , q1 being prime. Given the sequence y =
(y(0), y(1), . . . , y(`)) the decoded sequence u(0), u(1), . . . , u(`) is obtained re-
cursively as follows

a) Setting x(0) = 0

b) i) Computing dH(y(0), ImD);

if dH(y(0), ImD) = 0, we solve Du(0) = y(0);
else, for some y ∈ ImD such that dH(y(0), ImD) = min dH , we
solve u(0) is a solution of: Du(0) = y.

ii) Computing dH(y(1)− CBu(0), ImD);

if dH(y(1)−CBu(0), ImD) = 0, we solve Du(1) = y(1)−CBu(0),
with u(0) obtained in i);
else, for some y ∈ ImD such that dH(y(1) − CBu(0), ImD) =
min dH , we solve Du(1) = y, with u(0) obtained in i)

...

`) Computing

dH(y(`)− CA`−1Bu(0)− CA`−2Bu(1)− . . .− CBu(`− 1), ImD);

if dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`−1), ImD) =
0, we solve Du(l) = (y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . −
CBu(` − 1) with u(0), u(1), . . ., u(` − 1) obtained in i), ii), . . .,
`− 1);
else, for some y ∈ ImD such that

dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`− 1), ImD) =
mindH , we solve Du(l) = y, with u(0), u(1), . . ., u(`− 1) obtained
in i), ii), . . ., `− 1)

Corollary 4.4.1. Let (A,B,C,D) be a representation of a convolutional code
over a field Fq with q = qm1 , q1 being prime. If D has full column rank and
n ≤ 2k, given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence
u(0), u(1), . . . , u(`) is obtained recursively as follows:

a) Setting x(0) = 0

b) i) u(0) is a solution of Du(0) = y(0).

4.4. SECOND ITERATIVE DECODING ALGORITHM 135

ii) u(1) is a solution of Du(1) = y(1)−CBu(0), with u(0) obtained in
i);

...

`) u(`) is a solution of

Du(l) = (y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1))
with u(0), u(1), . . ., u(` − 1) obtained in i), ii), . . ., ` − 1), with
u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1)

Proof. If D has full column rank, and n ≤ 2k, then p = k, and the matrix
D is invertible, so, for all y(0), there exists u(0) such that Du(0) = y(0).
Similarly, for all i ∈ {1, . . . , `} and for all y(i), there exists u(i) such that
Du(i) = y(i)− CAi−1Bu(0)− CAi−2Bu(1)− . . .− CBu(i− 1)

Remark 16. This decoding is both a detection and correction method; at first,
we detect the error; and then we try to correct.

Remark 17. The resolution with this method depends heavily on the matrix
D.

Remark 18. Suppose that we have the code C, that is not output-observable.
Then, we know that D does not have full row rank, and it can potentially
increase the decoding time.

In order to get into the decoding of concatenated convolutional codes, we
will be working within two cases:

Case 1 The first method consists of considering that the mistake occurred some-
where in between the encodings, before the concatenation, but not after.
Therefore, we would have to first of all try to recover the original input,
and then attempt to detect where the error occurred. For this decoding
algorithm, we will be trying to assess the value of each and every code’s
capacity to decode, one at the time.

Case 2 The second angle would be to consider that in case of error, it occurred
after the concatenation, which is after encoding with the second code C2.
The approach for this decoding method consists of detecting the error,
correct it and then recover the encoded each part coming from every
convolutional code.

136 CHAPTER 4. DECODING PROBLEM

4.4.1 Iterative decoding algorithm for serial concate-
nated codes

For this decoding algorithm, we will try to assess the value of each and every
code’s capacity to decode, one at the time.

Let (A,B,C,D) be the serial concatenation of the convolutional codes
(A1, B1, C1, D1) and (A2, B2, C2, D2) over Fq with q = qm1 and q1 prime.

It is possible to decode this system decoding both systems in the following
manner.

Proposition 4.4.2. In this conditions, the decoded sequence u = (u(0), u(1), . . .,
u(`)) of the sequence y = (y(0), y(1), . . . , y(`) is given by

XT̂`(A1,B1,C1,D1)XT̂`(A2,B2,C2,D2)y

and
XT̂`(A2,B2,C2,D2)y

is the decoded sequence of the y with respect the second system.

Proof. It suffices to observe that u2(t) = y1(t) and

XT̂`(A2,B2,C2,D2)y = u2 = y1

XT̂`(A1,B1,C1,D1)y1 = u.

Let us look at more examples of decoding of concatenated convolutional
codes, with decoding for each an every code intervening in the concatenation
process. We need to dissociate the decoding of both convolutional codes, and
separate them into two, and recover the initial sequence before each encoding.

Example 4.4.5. For this case, we look at a serial concatenated model.

Over the field F5, we consider a concatenated serial code C of a (3, 2, 1)-
convolutional code C1, and a (3, 1, 2)-convolutional code C2, where

A1 =
(
0
)
, B1 =

(
1 0

)
, C1 =

(
0
)
, D1 =

(
1 3

)
and

A2 =

(
0 4
1 0

)
, B2 =

(
1
0

)
, C2 =

(
1 0
2 1

)
, D2 =

(
3
0

)

4.4. SECOND ITERATIVE DECODING ALGORITHM 137

The serial concatenation of those two codes is

A =

0 0 0
0 0 4
0 1 0

 , B =

1 0
1 3
0 0

 , C =

(
0 1 0
0 2 1

)
, D =

(
3 4
0 0

)

We will try to decode the sequence y = (2 1 3 2 1 1). We will consider the
encoded sequence with the C1-code y1 = (y1(0), y1(1), y1(2)), and the one with
the C2-code y2 = (y2(0), y2(1), y2(2)).

Step 1: we fix x(0) = (x1(0), x2(0)) = (0 0)

Step 2: we can observe that p = k and D does not have full row rank; in-
deed, y0 = (2 1) does not belong to ImD. The distance dH((2 1), (2 0)) = 1,
which means an error during transmission has affected the second piece of
the sequence, and u(0) is either (1 1), (2 4), (3 2), (4 0), or (0 3); we consider
u(0) = (1 1); u(0) is the original input, the message to be encoded.

In this case, because it is the serial concatenation, we have that D = D2D1.
Then, we can deduce y(0) = Du(0) = D2D1u(0), which means that y1(0) =

D1u(0) =
(
1 3

)(1
1

)
= (4).

As well as for the second encoder, we can deduce y(0) = Du(0) = D2y1(0),

which means that y2(0) = D2y1(0) =

(
3
0

)(
4
)

=

(
2
0

)
.

In conclusion, we get y1(0) = (4) and y2(0) =

(
2
0

)
Step 3: We have (

CB D
)(u(0)

u(1)

)
=
(
y(1)

)
.

Then, we solve (
1 3 3 4
2 1 0 0

) 1
1

u(1)

 =
(
y(1)

)
=

(
3
2

)
.

Then, solving that system comes down to solving Du(1) =

(
4
4

)
(4 4) does not

belong to ImD; however, dH((4 4), (4 0)) = 1; then, a solution for Du(1) =(
4
0

)
is u(1) = (0 1)

138 CHAPTER 4. DECODING PROBLEM

Then, we can deduce y(1) = Du(1) + CBu(0) = D2D1u(1) + CBu(0),

which means that y1(1) = D1u(1) =
(
1 3

)(0
1

)
=
(
3
)
.

As well as for the second encoder, we can deduce Du(1) = D2y1(1) = y2(1),
which means that

y2(1) = D2y1(1) + CBu(0) =

(
3
0

)(
3
)

+

(
4
3

)
=

(
4
0

)
+

(
4
3

)
=

(
3
3

)
.

In conclusion, we get: y1(1) =
(
3
)

and y2(1) =

(
3
0

)
.

Lastly, we have

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2).

Then, we solve

(
0 0 1 3 3 4
1 3 2 1 0 0

)
1
1
0
1

u(2)

 = y(2) =

(
1
1

)
.

Then, solving that system comes down to solving Du(2) =

(
3
1

)
(3 1) does not

belong to ImD. However, dH((3 1), (3 0)) = 1, and the system is compatible
with u(2) = (1 0). We decide to settle with u(2) = (1 0).

Then, we can deduce y(2) = Du(2) + CBu(1) + CABu(0) = D2D1u(2) +

CBu(1) + CABu(0), which means that y1(2) = D1u(2) =
(
1 3

)(1
0

)
= (1)

As well as for the second encoder, we can deduce y2(2) = Du(2) + CBu(1) +

CABu(0) = D2y1(2)+CBu(1)+CABu(0), which means that y2(2) =

(
3
0

)(
1
)
+(

3
0

)
=

(
1
0

)
.

In conclusion, we get y1(2) =
(
1
)

and y2(2) =

(
1
0

)
.

For this case, y = (y(0), y(1), y(2)) = (2 1, 0 2, 1 1) there was errors during
all transmission; there was 3 errors: dH = 3. The original encoded sequence
was: y = (y(0), y(1), y(2)) = (2 0 3 3 1 0).

4.4. SECOND ITERATIVE DECODING ALGORITHM 139

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (1 1, 0 1, 1 0).

Generalizing the process presented in those previous examples, we have the
following results.

Case 1 If we consider the first case, where the errors could occur in between
concatenation while encoding, we have the following proposition.

Proposition 4.4.3. Let (A,B,C,D) be a representation of a serial concate-
nated code of two convolutional codes: C1(A1, B1, C1, D1), as the outer code
and C2(A2, B2, C2, D2) as the inner code over a field Fq with q = qm1 , q1 be-
ing prime. Given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence
u2(0), u2(1), . . . , u2(`) input of the inner code C2 is obtained recursively as fol-
lows

a) Choosing x(0) = 0

i) u2(0) = XD2y(0)

ii) u2(1) = XD2(y(1)− CBXD1u2(0)) with u2(0) obtained in i)

...

`) u2(`) = XD2(y(`) − CA`−1BXD1u2(0) − CA`−2BXD1u2(1) − . . . −
CBXD1u2(` − 1)) with u2(0), u2(1), . . ., u2(` − 1) obtained in i),
ii), . . ., `− 1).

b) Not Choosing x(0)

i) u2(0) = XD2(y(0)− Cx(0))

ii) u2(1) = XD2(y(1) − CAx(0) − CBXD1u2(0)) with x(0), u2(0) ob-
tained in i)

...

`) u2(`) = XD2(y(`)−CA`x(0)−CA`−1BXD1u2(0)−CA`−2BXD1u2(1)−
. . .−CBXD1u2(`−1)) with x(0), u2(0), u2(1), . . ., u2(`−1) obtained
in i), ii), . . ., `− 1).

From the precedent propositions on the serial concatenated decoding, we
can give the following result.

140 CHAPTER 4. DECODING PROBLEM

Proposition 4.4.4. Let (A,B,C,D) be a representation of a serial concate-
nated code of two convolutional codes C1(A1, B1, C1, D1), as the outer code and
C2(A2, B2, C2, D2) as the inner code over a field Fq with q = qm1 , q1 being
prime. Given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence
u1(0), u1(1), . . . , u1(`) of the outer code C1 is obtained recursively as follows

a) Choosing x(0) = 0

i) u1(0) = XDy(0)

ii) u1(1) = XD(y(1)− CBu1(0)) with u1(0) obtained in i)

...

`) u1(`) = XD(y(`)−CA`−1Bu1(0)−CA`−2Bu1(1)−. . .−CBu1(`−1))
with u1(0), u1(1), . . ., u1(`− 1) obtained in i), ii), . . ., `− 1).

b) Choosing x(0) 6= 0

i) u1(0) = XD(y(0)− Cx(0))

ii) u1(1) = XD(y(1) − CAx(0) − CBu1(0)) with x(0), u1(0) obtained
in i)

...

`) u1(`) = XD(y(`)−CA`x(0)−CA`−1Bu1(0)−CA`−2Bu1(1)− . . .−
CBu1(`− 1)) with x(0), u1(0), u1(1), . . ., u1(`− 1) obtained in i),
ii), . . ., `− 1).

This last method is an alternative of the general decoding of the convo-
lutional code, since recovering the input of the outer code is equivalent to
recovering the input of the whole concatenated code.

Case 2

Proposition 4.4.5. Let (A,B,C,D) be a representation of a serial concate-
nated code of two convolutional codes C1(A1, B1, C1, D1), as the outer code and
C2(A2, B2, C2, D2) as the inner code over a field Fq with q = qm1 , q1 being prime.
Given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence (u(0), u(1),
. . . u(`)) input of the outer code C1 is obtained recursively as follows

a) Choosing x(0) = 0

4.4. SECOND ITERATIVE DECODING ALGORITHM 141

b) i) Computing dH(y(0), ImD);

if dH(y(0), ImD) = 0, u(0) is a solution of: D.u(0) = y(0);
else, for some y ∈ ImD such that dH(y(0), y) = min dH(y(0), ImD),
u(0) is a solution of: D.u(0) = y.

ii) Computing dH(y(1)− CBu(0), ImD), with u(0) obtained in i);

if dH(y(1)− CBu(0) , ImD) = 0, u(1) is a solution of:
D.u(1) = y(1)− CBu(0), with u(0) obtained in i);
else, for some y ∈ ImD such that dH(y(1)−CBu(0) , y) = min dH(y(1)−
CBu(0), ImD),
u(1) is a solution of: Du(1) = y, with u(0) obtained in i)

...

`) Computing dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`−
1), ImD), with u(0), u(1), . . ., u(`−1) obtained in i), ii), . . ., `−1).

if dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD) =
0, u(`) is a solution of:

Du(l) = y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`−1) with
u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1);
else, for some y ∈ ImD such that
dH(y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1) , y) =
min dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1) , ImD),
u(l) is a solution of: Du(l) = y, with u(0), u(1), . . ., u(` − 1)
obtained in i), ii), . . ., `− 1).

4.4.2 Iterative decoding algorithm for systematic serial
concatenated codes

When it comes to the decoding in a systematic serial concatenation case, we
need to keep in mind that the original input is encoded with D1, and the result
is sent over to the inner encoder. The classic decoding method only goes back
to the very first input; with this algorithm we will be trying to decode every
step of the way.

Let (A,B,C,D) be the serial concatenation of the convolutional codes
(A1, B1, C1, D1) and (A2, B2, C2, D2) over Fq with q = qm1 and q1 prime.

It is possible to decode this system decoding both systems in the following
manner.

142 CHAPTER 4. DECODING PROBLEM

Proposition 4.4.6. In this conditions, the decoded sequence u = (u(0), u(1),
. . ., u(`)) of the sequence

y = (y1, y2) = ((y1(0), y2(0)), (y1(1), y2(1)), . . . , (y1(`), y2(`))

is given by

XT̂`(A1,B1,C1,D1)y1 = XT̂`(A1,B1,C1,D1)XT̂`(A2,B2,C2,D2)y2

and
XT̂`(A2,B2,C2,D2)y2

is the decoded sequence of the y2 with respect the second system.

Proof. It suffices to observe that u(t) = XT̂`(A1,B1,C1,D1)y1(t);

and that in the conditions of the systematic serial concatenation
y1(t) = XT̂`(A2,B2,C2,D2)y2(t).

In similar conditions as mentioned above, it is possible to detect eventual
errors occurred during encoding using the following process.

Proposition 4.4.7. For (A,B,C,D) a representation of a systematic serial
concatenated code of two convolutional codes C1(A1, B1, C1, D1), as the outer
code and C2(A2, B2, C2, D2) as the inner code over a field Fq with q = qm1 , q1

being prime, considering the output sequence y = (y(0), y(1), . . . , y(`)), Q =
(Im−k | 0m−k×n−(m−k)) and R = (0n−(m−k)×m−k | In−(m−k)), the approximation
of errors during encoding can be assessed by:

w({XT̂`(A1,B1,C1,D1)Qy} − {XT̂`(A1,B1,C1,D1)XT̂`(A2,B2,C2,D2)Ry})

In case minw > 0, the number of errors is definitely not null.

Example 4.4.6. For this case, we look at a systematic serial concatenated
model.

We decode the input from the outer code C1.

In F7, we consider two convolutional codes C1 a (3, 2, 1)-convolutional code,
and C2 a (3, 1, 2)-convolutional code, with respectively

A1 =
(
0
)
, B1 =

(
2 1

)
, C1 =

(
3
5

)
, D1 =

(
1 0
4 2

)

4.4. SECOND ITERATIVE DECODING ALGORITHM 143

and

A2 =

(
0 4
1 0

)
, B2 =

(
3 0
5 2

)
, C2 =

(
1 0
2 1

)
, D2 =

(
2 1
1 5

)
After the serial concatenation of those two codes, we get

A =

0 0 0
2 0 4
4 1 0

 , B =

2 1
3 0
6 4

 , C =


3 0 0
5 0 0
4 1 0
0 2 1

 , D =


1 0
4 2
6 2
0 3


We will try to decode the sequence y = (y(0), y(1), y(2)) = (2 1 1 3, 3 0 2 1, 1 4 1 5)

We will consider the encoded sequence with the C1-code y1 = (y1(0), y1(1), y1(2)),
and the one with the C2-code y2 = (y2(0), y2(1), y2(2)).

Step 1: we fix x(0) = (0 0)

Step 2: In order to recover u(0), we decide to approach the supposed input
sequence by computing the Moore-Penrose pseudoinverse if exists; otherwise
a generalized inverse will do.

Taking into account that

rank(D) = rank(Dt) = rank(DDt) = rank(DtD) = 1

we have that D+ exists and D+ = (DtD)−1Dt =

(
6 2
2 1

)(
1 4 6 0
0 2 2 3

)
=(

6 0 5 6
2 3 0 3

)
.

Then, u(0) = D+y(0) =

(
6 0 5 6
2 3 0 3

)
2
1
1
3

 =

(
0
2

)
.

All possible solutions are u(0) +

(
x
y

)
−D+D

(
x
y

)
=

(
0
2

)
.

Step 3: we have

(
CB D

)(u(0)
u(1)

)
=
(
y(1)

)
.

144 CHAPTER 4. DECODING PROBLEM

Then, solving that system comes down to solving Du(1) =


4
4
1
0

,

(
6 0 5 6
2 3 0 3

)
4
4
1
0

 =
(
u(1)

)
=

(
1
6

)
.

All possible solutions are u(1) +

(
x
y

)
−D+D

(
x
y

)
=

(
1
6

)
.

Then, we have a solution u(1) = (1 6).

Lastly, we have

(
CAB CB D

)u(0)
u(1)
u(2)

 =
(
y(2)

)
=


1
4
1
5


Then, we solve u(2) = D+(y(2)− CABu(0)− CBu(1));


0 0 6 3 1 0
0 0 3 5 4 2
0 4 4 4 6 2
4 5 5 4 0 3




0
2
1
6

u(2)

 = y(2) =


1
4
1
5



This comes down to solving Du(2) =


1
4
1
5

−


0
0
1
3

−


3
5
0
1

. We already have

D+ =

(
6 0 5 6
2 3 0 3

)
; then u(2) = D+


5
6
0
1

 =

(
1
3

)
.

All possible solutions are u(2) +

(
x
y

)
−D+D

(
x
y

)
=

(
1
3

)
.

4.4. SECOND ITERATIVE DECODING ALGORITHM 145

We have u(2) = (1 3).

We finally get, after decoding of the outer code u = (u(0), u(1), u(2)) =
(0 2 1 6 1 3).

For this same case of systematic serial concatenation, after decoding, we
will try to approximate the number of eventual errors occurred during the
transmission.

At step 0
let us compute: dH(XD2Ry(0), D1u(0));

we have D2 = Dt
2 =

(
2 1
1 5

)
; therefore

rank(D2) = rank(Dt
2) = rank(D2D

t
2) = rank(Dt

2D2) = 2;

then

D−1
2 =

(
6 3
3 1

)
XD2Ry(0) = D−1

2 Ry(0) =

(
6 3
3 1

)(
1
3

)
=

(
1
6

)
D1u(0) =

(
1 0
4 2

)(
0
2

)
=

(
0
4

)
which means that: dH(XD2Ry(0), D1u(0)) = dH(D−1

2 Ry(0), D1u(0)) =

dH

((
1
6

)
,

(
0
4

))
= 2.

At step 1
let us compute: dH(D−1

2 R(y(1)− CBu(0)), D1u(1));

D−1
2 R(y(1)− CBu(0)) =

(
6 3
3 1

)(
1
0

)
=

(
6
3

)
D1u(1) =

(
1 0
4 2

)(
1
6

)
=

(
1
2

)
.

which means that:

dH(D−1
2 R(y(1)− CBu(0)), D1u(1)) = dH

((
6
3

)
,

(
1
2

))
= 2.

At step 2
let us compute: dH(D−1

2 R(y(2)− CABu(0)− CBu(1)), D1u(2));

146 CHAPTER 4. DECODING PROBLEM

D−1
2 R(y(2)− CABu(0)− CBu(1)) =

(
6 3
3 1

)(
0
1

)
=

(
3
1

)
D1u(2) =

(
1 0
4 2

)(
1
3

)
=

(
1
3

)
which means that:

dH(D−1
2 R(y(2)−CABu(0)−CBu(1)), D1u(2)) = dH

((
3
1

)
,

(
1
3

))
= 2.

Finally, after decoding the sequence, we can conclude that in between both
encoding, the sequence was subject to errors all the way; which means that
the sequence received was distorted.

Case 1
Generalizing the previous example, we can generalize the process.

Proposition 4.4.8. Let (A,B,C,D) be a representation of a systematic serial
concatenated code of two convolutional codes C1(A1, B1, C1, D1), an (m, k, δ1)-
code as the outer code and C2(A2, B2, C2, D2), an (n,m − k, δ2)-code as the
inner code over a field Fq with q = qm1

1 , q1 being prime.
Given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence (u(0), u(1),
. . . , u(`)) input of the outer code C1 is obtained recursively as follows:

a) Choosing x(0) = 0

i) u(0) = XDy(0)

ii) u(1) = XD(y(1)− CBu(0)) with u(0) obtained in i)

...

`) u(`) = XD(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`− 1))
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1).

b) Choosing x(0) 6= 0

i) u(0) = XD(y(0)− Cx(0))

ii) u(1) = XD(y(1) − CAx(0) − CBu(0)) with x(0), u(0) obtained in
i)

...

`) u(`) = XD(y(`) − CA`x(0) − CA`−1Bu(0) − CA`−2Bu(1) − . . . −
CBu(`− 1)) with x(0), u(0), u(1), . . ., u(`− 1) obtained in i), ii),
. . ., `− 1).

4.4. SECOND ITERATIVE DECODING ALGORITHM 147

The methods of decoding stated earlier allow us to directly recover inputs
of each encoder. Let us not forget that in this case, we considered that if errors
happened, they did in between the two encodings.

In order to evaluate the errors that happened, we will be proceeding as
follows:

Proposition 4.4.9. Let (A,B,C,D) be a representation of a systematic serial
concatenated code of two convolutional codes: C1(A1, B1, C1, D1), an (m, k, δ1)-
code as the outer code and C2(A2, B2, C2, D2), an (n,m−k, δ2)-code as the inner
code over a field Fq with q = qm1

1 , q1 being prime.
Given the decoded sequence (u(0), u(1), . . . , u(`)) input of the outer code C1

and the sequence y = (y(0), y(1), . . . , y(`)), and considering Q = (Im−k |
0m−k×n−(m−k)) and R = (0n−(m−k)×m−k | In−(m−k)), the approximative num-
ber of errors is obtained recursively as follows:

a) Choosing x(0) = 0

i) min dH({XD2Ry(0)}, D1u(0)), at step 0

ii) min dH({XD2R(y(1)− CBu(0))}, D1u(1)), at step 1

...

`) min dH({XD2R(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`−
1))}, D1u(`)), at step `.

b) Choosing x(0) 6= 0

i) min dH({XD2R(y(0)− Cx(0))}, D1u(0)), at step 0

ii) min dH({XD2R(y(1)− CAx(0)− CBu(0))}, D1u(1)), at step 1

...

`) min dH({XD2R(y(`)−CA`x(0)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−
CBu(`− 1))}, D1u(`)), at step `.

Proof. It suffices to realize that for the systematic serial concatenated code,
the matrix D is such that:

D =

(
D1

D2D1

)

148 CHAPTER 4. DECODING PROBLEM

In order to give the decoding of the inner code, we will generalize from the
previous examples

Proposition 4.4.10. Let (A,B,C,D) be a representation of a systematic
serial concatenated code of two convolutional codes: C1(A1, B1, C1, D1), an
(m, k, δ1)-code as the outer code and C2(A2, B2, C2, D2), an (n,m − k, δ2)-
code as the inner code over a field Fq with q = qm1

1 , q1 being prime. Given
the sequence y = (y(0), y(1), . . . , y(`)), and considering Q = (0n−(m−k)×m−k |
In−(m−k)), the decoded sequence (u2(0), u2(1), . . . , u2(`)) input of the inner code
C2 is obtained recursively as follows:

a) Choosing x(0) = 0

i) u2(0) = XD2Qy(0)

ii) u2(1) = XD2Q(y(1)− CBXD1u2(0)) with u2(0) obtained in i)

...

`) u2(`) = XD2Q(y(`)−CA`−1BXD1u2(0)−CA`−2BXD1u2(1)− . . .−
CBXD1u2(` − 1)) with u2(0), u2(1), . . ., u2(` − 1) obtained in i),
ii), . . ., `− 1).

b) Choosing x(0) 6= 0

i) u2(0) = XD2Q(y(0)− Cx(0))

ii) u2(1) = XD2Q(y(1)−CAx(0)−CBXD1u2(0)) with x(0), u2(0) ob-
tained in i)

...

`) u2(`) = XD2Q(y(`)−CA`x(0)−CA`−1BXD1u2(0)−CA`−2BXD1u2(1)−
. . .−CBXD1u2(`−1)) with x(0), u2(0), u2(1), . . ., u2(`−1) obtained
in i), ii), . . ., `− 1).

In order to assess the eventual error occurred anywhere in between con-
catenation, we can proceed with the following result:

Case 2
Generalizing the previous examples, we can generalize the process:

Proposition 4.4.11. Let (A,B,C,D) be a representation of a systematic
serial concatenated code of two convolutional codes: C1(A1, B1, C1, D1), an

4.4. SECOND ITERATIVE DECODING ALGORITHM 149

(m, k, δ1)-code as the outer code and C2(A2, B2, C2, D2), an (n,m− k, δ2)-code
as the inner code over a field Fq with q = qm1

1 , q1 being prime. Given the
sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence (u(0), u(1), . . ., u(`))
input of the outer code C1 is obtained recursively as follows:

a) Choosing x(0) = 0

b) i) Computing dH(y(0), ImD);

if dH(y(0), ImD) = 0, u(0) is a solution of: D.u(0) = y(0);
else, for some y ∈ ImD such that dH(y(0), y) = min dH(y(0), ImD),
u(0) is a solution of: Du(0) = y.

ii) Computing dH(y(1)− CBu(0), ImD), with u(0) obtained in i);

if dH(y(1)− CBu(0), ImD) = 0, u(1) is a solution of:
Du(1) = y(1)− CBu(0), with u(0) obtained in i);
else, for some y ∈ ImD such that dH(y(1)−CBu(0), y) = min dH(y(1)−
CBu(0), ImD), u(1) is a solution of: Du(1) = y, with u(0) obtained
in i)

...

`) Computing
dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`− 1), ImD1),
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1).

if
dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD) = 0,
u(`) is a solution of:
D.u(l) = y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1)
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1);
else, for some y ∈ ImD such that
dH(y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1), y) =
min dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD),
u(l) is a solution of: Du(l) = y, with u(0), u(1), . . ., u(` − 1)
obtained in i), ii), . . ., `− 1).

In order to do the other decoding, we can use the following result.

Proposition 4.4.12. Let (A,B,C,D) be a representation of a systematic
serial concatenated code of two convolutional codes: C1(A1, B1, C1, D1), an
(m, k, δ1)-code as the outer code and C2(A2, B2, C2, D2), an (n,m − k, δ2)-
code as the inner code over a field Fq with q = qm1

1 , q1 being prime. Given

150 CHAPTER 4. DECODING PROBLEM

the sequence y = (y(0), y(1), . . . , y(`)), and considering Q = (0n−(m−k)×m−k |
In−(m−k)), the decoded sequence (u2(0), u2(1), . . . , u2(`)) input of the inner code
C2 is obtained recursively as follows:

a) Choosing x(0) = 0

b) i) Computing dH(Qy(0), ImD2);

if dH(Qy(0), ImD2) = 0, u2(0) is a solution of: D2.u2(0) = Qy(0);
else, for some y ∈ ImD2 such that dH(Qy(0), y) = min dH(Qy(0),
ImD2), u2(0) is a solution of: D2u2(0) = y.

ii) Computing dH(Q(y(1)−CBXD1u2(0)), ImD2), with u2(0) obtained
in i);

if dH(Q(y(1) − CBXD1u2(0)), ImD2) = 0, u2(1) is a solution of:
D2u2(1) = Q(y(1)− CBXD1u2(0)), with u2(0) obtained in i);
else, for some y ∈ ImD2 such that dH(Q(y(1)−CBXD1u2(0)), y) =
rm min dH(Q(y(1) − CBXD1u2(0)), ImD2), u2(1) is a solution of
D2u2(1) = y, with u2(0) obtained in i)

...

`) Computing
dH(Q(y(`)−XD1(CA

`−1Bu2(0)− CA`−2Bu2(1)− . . .− CBu2(`−
1)), ImD2)), with u2(0), u2(1), . . ., u2(`−1) obtained in i), ii), . . .,
`− 1).

if
dH(Q(y(`) −XD1(CA

`−1Bu2(0) − CA`−2Bu2(1) − . . . − CBu2(` −
1))), ImD2) = 0, u2(`) is a solution of: D2u2(l) = Q(y(`)−XD1(CA

`−1

Bu2(0)− CA`−2Bu2(1)− . . . −CBu2(`−1))) with u2(0), u2(1), . . .,
u2(`− 1) obtained in i), ii), . . ., `− 1);
else, for some y ∈ ImD2 such that
dH(Q(y(`)−XD1(CA

`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1))), y) =
min dH(Q(y(`)−XD1(CA

`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`−
1))), ImD2), u2(l) is a solution of: D2.u2(l) = y, with u2(0), u2(1),
. . ., u2(`− 1) obtained in i), ii), . . ., `− 1).

4.4. SECOND ITERATIVE DECODING ALGORITHM 151

4.4.3 Iterative decoding algorithm for parallel concate-
nation

When it comes to the decoding in a parallel concatenation case, we have to
consider the issue under multiple angles. For this, we need to keep in mind
that the input is the same for both codes, so the recovery of the input is only
done once. And then later on, outputs coming from the two codes are summed
up.

case 1 The first angle is to consider that in case of error, it occurred after the
concatenation of outputs of both codes. The approach for this decoding
method would be to follow the steps that are to detect the error, correct
it and then dissociate each part coming from the different convolutional
codes, in that order.

case 2 The second possibility is to consider that the mistake occurred in between
each encoding and concatenation, but not after. Therefore, we would
have to first of all try to dissociate both pieces, and then attempt to
decode from every one of them.

case 3 The last option, that makes the decoding more complicated is if there
are errors occurring somewhere between encoding and concatenation,
and also after concatenation. In that case, there are multiple errors, and
the decoding is more complex, and takes a longer time.

Example 4.4.7. For this case, we look at a parallel concatenated model.

In F3, we consider two convolutional codes C1 and C2 , with respectively

A1 =

(
0 1
0 0

)
, B1 =

(
0 0
1 1

)
, C1 =

(
1 1
1 1

)
, D1 =

(
1 2
1 2

)
and

A2 =

(
0 0
1 0

)
, B2 =

(
1 0
0 1

)
, C2 =

(
1 1
2 2

)
, D2 =

(
1 0
2 1

)
.

After the parallel concatenation of those two codes, we get:

A =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , B =


0 0
1 1
1 0
0 1

 , C =

(
1 1 1 1
1 1 2 2

)
, D =

(
2 2
0 0

)
.

152 CHAPTER 4. DECODING PROBLEM

We will try to decode the sequence y = (2 1, 0 2, 1 1).

We consider the encoded sequence with the C1-code: y1 = (y1(0), y1(1), y1(2)),
and the one with the C2-code y2 = (y2(0), y2(1), y2(2)).

In this particular case, we consider the case 1, where in case of an error, it
occurred after concatenation.

Step 1: we set x(0) = (0 0)

Step 2: we can observe that D does not have full rank; moreover, ȳ(0) = (2 1)
does not belong to Im

(
D
)
. dH((2 1), (2 0)) = 1, which means that the error

was in the second piece of the sequence; and u(0) is either (1 0) or (0 1); we
consider u(0) = (1 0).

Moving on to the dissociating part; having that: D = D2 + D1, then

Du(0) = (D1 +D2)u(0) = y1(0) + y2(0) =

((
1 2
1 2

)
+

(
1 0
2 1

))(
1
0

)
=

(
2
0

)
.

Which comes down to: y1(0) = (1 1) and y2(0) = (1 2).

Step 3: We have (
CB D

)(u(0)
u(1)

)
=
(
y(1)

)
.

Then, we solve

(
2 2 2 2
0 0 0 0

) 1
0

u(1)

 =
(
ȳ(1)

)
=

(
0
2

)
.

This comes down to solving Du(1) =

(
2 2
0 0

)
u(1) =

(
1
2

)
(1 2) does not belong

to Im(D); however, (1 0) does; and dH((1 2), (1 0)) = 1, which means that the
error is in the second piece of the sequence, and u(1) is (1 1).

Moving on to the dissociating part; having that:
y(1) = (C1B1 + C2B2)u(0) + (D1 +D2)u(1), then:
y1(1) = C1B1u(0) +D1u(1) and y2(1) = C2B2u(0) +D2u(1)

Then we have: y1(1) =

(
1 1
1 1

)(
1
0

)
+

(
1 2
1 2

)(
1
1

)
=

(
1
1

)
.

y2(1) =

(
1 1
2 2

)(
1
0

)
+

(
1 0
2 1

)(
1
1

)
=

(
2
2

)

4.4. SECOND ITERATIVE DECODING ALGORITHM 153

Which comes down to: y1(1) = (1 1) and y2(1) = (2 2).

Lastly, we have

(
CAB CB D

)u(0)
u(1)
u(2)

 = y(2).

Then, we solve

(
2 1 2 2 2 2
0 1 0 0 0 0

)
1
0
1
1

u(2)

 = y(2) =

(
1
1

)
.

This comes down to solving Du(2) =

(
2 2
0 0

)
.u(2) =

(
1
1

)
(1 1) does not

belong to Im(D). However, dH((1 1), (1 0)) = 1, and the system is compatible
with u(2) = (1 1). We decide to settle with u(2) = (1 1).

Moving on to the dissociating part; having that
y(2) = (C1A1B1 + C2A2B2)u(0) + (C1B1 + C2B2)u(1) + (D1 +D2)u(2), then:
y1(2) = C1A1B1u(0)+C1B1u(1)+D1u(2) and y2(2) = C2A2B2u(0)+C2B2u(0)+
D2u(1).

Then we have:

y1(2) =

(
1 1
1 1

)(
1
0

)
+

(
1 1
1 1

)(
1
1

)
+

(
1 2
1 2

)(
1
1

)
=

(
0
0

)
y2(2) =

(
1 0
2 0

)(
1
0

)
+

(
1 1
2 2

)(
1
1

)
+

(
1 0
2 1

)(
1
1

)
=

(
1
0

)
For this case, y = (y(0), y(1), y(2)) = (2 1, 0 2, 1 1) there was errors during all
transmission; there was 3 errors: dH = 3. The original encoded sequence was:
y = (y(0), y(1), y(2)) = (2 0 0 0 1 0).

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (1 0, 1 1, 1 1).

Example 4.4.8. For this case, we look at a parallel concatenated model.

154 CHAPTER 4. DECODING PROBLEM

In F3, we consider two convolutional codes C1 and C2, with respectively

A1 =

(
0 1
0 0

)
, B1 =

(
0 0
1 1

)
, C1 =

(
1 1
1 1

)
, D1 =

(
1 2
1 2

)
and

A2 =

(
0 0
1 0

)
, B2 =

(
1 0
0 1

)
, C2 =

(
1 1
2 2

)
, D2 =

(
2 0
2 1

)
.

After the parallel concatenation of those two codes, we get

A =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , B =


0 0
1 1
1 0
0 1

 , C =

(
1 1 1 1
1 1 2 2

)
, D =

(
0 2
0 0

)
.

We try to decode the sequence using the second model of decoding: ȳ =
(2 1 0 2 1 1).

In this particular case, we consider the case 2, where in case of an error, it
occurred before concatenation.

Step 1: we set x(0) = (0 0)

Step 2: We can observe that D does not have full rank; moreover, y(0) = (2 1)
does not belong to ImD. We clearly observe that an error occurred within the
sequence. We decide to approach the supposed input sequence by computing
the Moore-Penrose pseudoinverse if exists; otherwise a generalized inverse will
do.

We have rankD = rank (Dt) = rank(DDt) = rank(DtD) = 1 Which means

that D+ exists; we finally get: D+ =

(
0 0
2 0

)
Then u(0) = D+y(0) =

(
0 0
2 0

)(
2
1

)
=

(
0
1

)
So, we get u(0) = (0 1).

For u(0) = (0 1), we get y(0) = Du(0) = (D2 + D1)u(0) =

(
0 2
0 0

)(
0
1

)
=(

2
0

)
; moreover (2 0) belongs to ImD. So, we consider that only one error

occurred, in the second piece of the sequence before concatenation.

4.4. SECOND ITERATIVE DECODING ALGORITHM 155

So we get

y1(0) = D1u(0) =

(
1 2
1 2

)(
0
1

)
=

(
2
2

)
and

y2(0) = D2u(0) =

(
2 0
2 1

)(
0
1

)
=

(
0
1

)
.

We can detect that there was an error either on y1(0) = (2 2) or y2(0) =
(0 1).

Step 3: We have (
CB D

)(u(0)
u(1)

)
=
(
y(1)

)
Then, we solve

(
2 2 0 2
0 0 0 0

) 0
1

u(1)

 =
(
y(1)

)
=

(
0
2

)

This comes down to solving Du(1) =

(
0 2
0 0

)
u(1) =

(
1
2

)
(1 2) does not belong to ImD; we clearly observe that an error occurred

within the sequence. We already have D+ =

(
0 0
2 0

)
;

Then u(1) = D+ȳ(1) =

(
0 0
2 0

)(
1
2

)
=

(
0
2

)
. So, we get u(1) = (0 2).

For u(1) = (0 2), we get Du(1) = (D2 + D1)u(1) =

(
0 2
0 0

)(
0
2

)
=

(
1
0

)
;

moreover (1 0) belongs to ImD. So, we will consider that only one error
occurred, in the second piece of the sequence before concatenation.

So we get

y1(1) = D1u(1) =

(
1 2
1 2

)(
0
2

)
=

(
1
1

)
and

y2(1) = D2u(1) =

(
2 0
2 1

)(
0
2

)
=

(
0
2

)
.

156 CHAPTER 4. DECODING PROBLEM

We can detect that there was an error either on y1(0) = (1 1) or y2(0) =
(0 2).

Lastly, we have

(
CAB CB D

)u(0)
u(1)
u(2)

 =
(
y(2)

)
.

Then, we solve

(
2 1 2 2 0 2
0 1 0 0 0 0

)
0
1
0
2

u(2)

 = ȳ(2) =

(
1
1

)
.

This comes down to solving Du(2) =

(
0 2
0 0

)
u(2) =

(
2
0

)
.

Then, u(2) = D+

(
2
0

)
=

(
0 0
2 0

)(
2
0

)
=

(
0
1

)
So, we get u(2) = (0 1).

For u(2) = (0 1), we get Du(2) = (D2 + D1)u(2) =

(
0 2
0 0

)(
0
1

)
=

(
2
0

)
;

moreover (1 0) belongs to Im(D). So, we consider that only one error occurred,
in the second piece of the sequence before concatenation.

So we get

y1(2) = D1u(2) =

(
1 2
1 2

)(
0
1

)
=

(
2
2

)
and

y2(2) = D2u(1) =

(
2 0
2 1

)(
0
1

)
=

(
0
1

)
.

We can detect that there was an error either on y1(2) = (2 2) or y2(2) =
(0 1).

4.4. SECOND ITERATIVE DECODING ALGORITHM 157

For this case, y = (y(0), y(1), y(2)) = (2 1, 0 2, 1 1) there were errors during
all transmission; there was 3 errors: dH = 3. The original encoded sequence
was y = (y(0), y(1), y(2)) = (2 0 1 0 2 0).

With x(0) = 0, the decoded sequence is u = (u(0), u(1), u(2)) = (1 0, 1 1, 1 1).

We consider that we are dealing with the first case.

Generalizing the following examples, we already know that the input is the
same for both codes, and is given by the general decoding procedure.

Indeed, the procedure used for the general decoding procedure is the same
as for the parallel concatenated case.

Proposition 4.4.13. Let (A,B,C,D) be a representation of a parallel concate-
nated code of two convolutional codes: C1(A1, B1, C1, D1), and C2(A2, B2, C2, D2),
over a field Fq with q = qm1

1 , q1 being prime. Given the sequence y = (y(0), y(1),
. . . , y(`)), the decoded sequence (u(0), u(1), . . ., u(`)) input of the concatenated
code C is obtained recursively as follows:

a) Choosing x(0) = 0

b) i) Computing dH(y(0), ImD);

if dH(y(0), ImD) = 0, u(0) is a solution of: D.u(0) = y(0);
else, for some y ∈ ImD such that dH(y(0), y) = min dH(y(0), ImD),
u(0) is a solution of: Du(0) = y.

ii) Computing dH(y(1)− CBu(0), ImD), with u(0) obtained in i);

if dH(y(1)− CBu(0), ImD) = 0, u(1) is a solution of:
Du(1) = y(1)− CBu(0), with u(0) obtained in i);
else, for some y ∈ ImD such that
dH(y(1) − CBu(0), y) = min dH(y(1) − CBu(0), ImD), u(1) is a
solution of: Du(1) = y, with u(0) obtained in i)

...

`) Computing

dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`− 1), ImD1),
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1).

if

dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD) = 0,
u(`) is a solution of:

158 CHAPTER 4. DECODING PROBLEM

D.u(l) = y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1)
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1);
else, for some y ∈ ImD such that

dH(y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1), y) =
min dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD),
u(l) is a solution of: Du(l) = y, with u(0), u(1), . . ., u(` − 1)
obtained in i), ii), . . ., `− 1).

However, we can deduct the following result, in order to evaluate the output
from each code:

Corollary 4.4.2. Let (A,B,C,D) be a representation of a parallel concate-
nated code of two convolutional codes: C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2)
over a field Fq with q = qm1 , q1 being prime.
Given the decoded input sequence u(0), u(1), . . . , u(`) and choosing x(0) = 0,
the output sequence y1(0), y1(1), . . . , y1(`) (respectively y2(0), y2(1), . . . , y2(`))
of the code C1 (respectively C2) is obtained by:

y1(j) =
∑`−1

i,j−1=0C1A
`−(`−(j−1))
1 B1u(i) +D1u(j)

(resp y2(j) =
∑`−1

i,j−1=0C2A
`−(`−(j−1))
2 B2u(i) +D2u(j)).

4.4.4 Iterative decoding algorithm for parallel with in-
terleaver concatenation

When it comes to the decoding in a parallel concatenation case with interleaver,
we have to consider the issue under multiple angles. For this, we need to keep
in mind that the input is the same for both codes, so the recovery of the input
is only done once. And then later on the outputs, the first coming form C1,
and the second from C2 preceded by an interleaver, are summed up.

From the concatenation process used in parallel mode with interleaver, we
can deduce the result, very similar to the parallel concatenated mode.

Proposition 4.4.14. Let (A,B,C,D) be a representation of a parallel concate-
nated code of two convolutional codes C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2)
over a field Fq with q = qm1 , q1 being prime, with P the interleaver.
Given the sequence y = (y(0), y(1), . . . , y(`)), the decoded sequence (u(0), u(1),
. . ., u(`)) input of the parallel concatenated code with interleaver P is obtained
recursively as follows:

4.4. SECOND ITERATIVE DECODING ALGORITHM 159

a) Choosing x(0) = 0

b) i) Computing dH(y(0), ImD);

if dH(y(0), ImD) = 0, u(0) is a solution of: D.u(0) = y(0);
else, for some y ∈ ImD such that dH(y(0), y) = min dH(y(0), ImD),
u(0) is a solution of: Du(0) = y.

ii) Computing dH(y(1)− CBu(0), ImD), with u(0) obtained in i);

if dH(y(1) − CBu(0), ImD) = 0, u(1) is a solution of: Du(1) =
y(1)− CBu(0), with u(0) obtained in i);
else, for some y ∈ ImD such that dH(y(1)−CBu(0), y) = min dH(y(1)−
CBu(0), ImD), u(1) is a solution of: Du(1) = y, with u(0) obtained
in i)

...

`) Computing
dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)− . . .−CBu(`− 1), ImD1),
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1).

if
dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD) = 0,
u(`) is a solution of:
D.u(l) = y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1)
with u(0), u(1), . . ., u(`− 1) obtained in i), ii), . . ., `− 1);
else, for some y ∈ ImD such that
dH(y(`) − CA`−1Bu(0) − CA`−2Bu(1) − . . . − CBu(` − 1), y) =
min dH(y(`)−CA`−1Bu(0)−CA`−2Bu(1)−. . .−CBu(`−1), ImD),
u(l) is a solution of: Du(l) = y, with u(0), u(1), . . ., u(` − 1)
obtained in i), ii), . . ., `− 1).

However, we can deduct the following result, in order to evaluate the output
from each code:

Corollary 4.4.3. Let (A,B,C,D) be a representation of a parallel concate-
nated code with interleaver P of two convolutional codes: C1(A1, B1, C1, D1)
and C2(A2, B2, C2, D2) over a field Fq with q = qm1 , q1 being prime.
Given the decoded input sequence u(0), u(1), . . . , u(`) and choosing x(0) = 0,
the output sequence y1(0), y1(1), . . . , y1(`) (respectively y2(0), y2(1), . . . , y2(`))
of the code C1 (respectively C2) is obtained by:

y1(j) =
∑`−1

i,j−1=0C1A
`−(`−(j−1))
1 B1u(i) +D1u(j)

(resp y2(j) =
∑`−1

i,j−1=0C2A
`−(`−(j−1))
2 B2Pu(i) +D2Pu(j))

160 CHAPTER 4. DECODING PROBLEM

4.5 Output-observability matrix and Syndrome

former matrix

In this section we are going to relate the output observability matrix with the
syndrome former matrix used by Rosenthal and York [71], solving the decoding
problem.

Let (A,B,C,D) be a realization of a convolutional code.

From the system
C D
CA CB D
CA2 CAB CB D

...
.

CA` CA`−1B CA`−2B . . . CB D




x(s)
u(s)

...
u(s+ `)

 =


y(s)

y(s+ 1)
...

y(s+ `)

 (4.8)

we can deduce the syndrome former matrix for the given code.

Proposition 4.5.1. Suppose that ` ≥ δ. By making elementary transforma-
tions to matrix equation (4.8) we can deduce the syndrome former matrix for
the convolutional code.

Proof. The system (4.8) can be rewritten as


C
CA
CA2

...

CA`

x(s)+


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D




u(s)
u(s+ 1)

...
u(s+ `)

 =


y(s)

y(s+ 1)
...

y(s+ `)




C
CA

CA2

...

CA`

x(s) =


D
CB D
CAB CB D

...
. . .

. . .

CA`−1B CA`−2B . . . CB D



−u(s)
−u(s+ 1)

...
−u(s+ `)

+

I . . .

I




y(s)
y(s+ 1)

...
y(s+ `)



4.5. OUTPUT-OBSERVABILITYMATRIX AND SYNDROME FORMERMATRIX161

That can be written as


C
CA
CA2

...

CA`

x(s) =


D I
CB D I
CAB CB D I

...
.

CA`−1B CA`−2B . . . CB D I





−u(s)
−u(s+ 1)

...
−u(s+ `)
y(s)

y(s+ 1)
...

y(s+ `)


(4.9)

Now, and taking into account that ` ≥ δ there exist an invertible matrix
P ∈ Gl(p× `,F), such that

P


C
CA
CA2

...

CA`

 =



C
CA

...

CAδ−1

0
...
0


=

(
O
0

)

where O is the observability matrix defined in (3.3).

Applying the matrix P to the matrix equation (4.9) we obtain

(
O
0

)
(x(s)) =

(
M1 M2

M3 M4

)


−u(s)
...

−u(s+ `)
y(s)

...
y(s+ `)


(4.10)

Then,
(
M3 M4

)
is the syndrome former matrix.

Example 4.5.1. Considering the above example 4.2.2, the system (4.9) for this
particular case is

162 CHAPTER 4. DECODING PROBLEM



1 0
0 1
1 0
0 1
1 0
0 1
1 0


(x(s)) =



1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1





−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)


Now, taking

P =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
−1 0 0 0 1 0 0
0 −1 0 0 0 1 0
−1 0 0 0 0 0 1


The system is reduced to



1 0
0 1
0 0
0 0
0 0
0 0
0 0


(x(s)) =



1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0
−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0
−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0
−1 1 0 1 0 1 1 −1 0 0 0 0 0 1





−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)



4.5. OUTPUT-OBSERVABILITYMATRIX AND SYNDROME FORMERMATRIX163

So, the syndrome former matrix is
−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0
−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0
−1 1 0 1 0 1 1 −1 0 0 0 0 0 1

 .

164 CHAPTER 4. DECODING PROBLEM

Chapter 5

Convolutional Codes and
Steganography.

5.1 Introduction

In this chapter, we introduce an application of the convolutional coding theory
in steganography. As we already know, block codes are largely used for dissim-
ulation of information using the steganographic process, such as in [23]. Here,
we suggest a steganographic protocol based on convolutional codes defined un-
der the linear systems theory. As defined earlier, convolutional codes can be
given by the quadruple (A,B,C,D) which works by considering an embedding
protocol for a message m into a message u with as less distortion as possible.

5.2 Steganography

Steganography can be comparable to protection of communication, as it is
known as a technique being used in order to protect some information to
be exchanged by hiding its original existence, onto some digital files, could
it be a photographies or videograms. As we know of cryptography as the
technique and science behind the protection of messages and information to be
transmitted, the idea for steganography is actually to prevent a nasty observer
to even detect the need for that protection firstly, and it is also depending on
the situations, as for instance in places where cryptography cannot be used.
Sometimes, it is also possible to mix together both techniques for protection

165

166CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

of communication and information. The classic example known to illustrate
use of a steganographic scheme is the prisoners problem exchanging messages
under the surveillance of a warden.

5.2.1 Characteristics of a steganographic scheme

A steganographic scheme is characterized by some necessary conditions and
components which are:

i) the choice of a communication support

ii) the message to be embedded

iii) embedding function

iv) extracting function

v) optional steganographic key-management

The embedding and extracting functions are as their names show consist
of the functions responsible for hiding messages or information. For digital
steganography, as it is in our case, the purpose is to hide or embed a sequence
of bits in that digital cover, within some conditions such as making sure that
the cover object does not show “perceptuable”distortion.
Knowing that within the digital world, the choice of covers is quite large
(graphic files, messages, etc), but is then dictated by the nature of the in-
formation to embed. For that matter, the performance of a steganographic
method can be assessed over a certain cover object mainly by its average dis-
tortion and its embedding rate.

For instance, a very popular method used in digital steganography is called
Least Significant Bit (LSB) Steganography, and it consists into hiding infor-
mation in a graphic file, by replacing the least significant bits of specifically
selected pixels by message bits, in such a way that they are “visually imper-
ceptible”.

Definition 5.2.1. A digital steganographic scheme S of type [k, n] over an
alphabet A is a pair of functions:

emb : An × Ak −→ An

rec : An −→ Ak

5.2. STEGANOGRAPHY 167

such that
rec(emb(c,m)) = m for all c ∈ An and m ∈ Ak,

with m being the secret message, and c the cover vector.

The scheme is denoted as: S(emb, rec).
We have: c′ = emb(c,m) and rec(c′) = m

Then, the scheme S has the following parameters:

a) the cover length n

b) the embedding capacity k

c) the embedding radius ρ, defined by:

ρ = max{d(c, emb(c,m)) | c ∈ An,m ∈ Ak}.

where d is the Hamming distance

d) the average number of embedding changes Ra, given by:

Ra =
1

qkn

∑
d(c, emb(c,m))

where q =]A

Proposition 5.2.1 ([58]). Let S = (emb, rec) be a steganographic scheme of
type [n, k] defined over the alphabet A. Then:

1) the map rec is surjective;

2) for fixed c ∈ An, the map emb(c,−) : Ak −→ An is injective.

In particular, k ≤ n.

Proof. From the condition rec(emb(c,m)) = m.

Knowing that the purpose of a stegoscheme is to embed as much informa-
tion as possible, with as few changes as possible, we have the definition of a
proper scheme;

168CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Definition 5.2.2. A steganographic scheme S = (emb, rec) is said to be
proper if the number of changes produced in the cover is the minimum possible
allowed by the recovering map.

d(c, emb(c,m)) = d(c, rec−1(m)), for all c ∈ An and m ∈ Ak.

We have the following proposition:

Proposition 5.2.2 ([58]). Let S = (emb, rec) be a steganographic scheme of
type [n, k] over A. There exists a proper stegoscheme S∗ = (emb∗, rec) of the
same type [n, k] such that Ra(S

∗) ≤ Ra(S).

5.3 Steganography and Coding

There are some interesting steganographic protocols that have already been
defined from coding theory. Considering the fact that error-correcting codes
are used in order to detect and/or correct errors, during data transfer. If
we consider for instance some of the methods involving the existence of the
parity check matrix, we can implement the syndrome coding. Considering a
steganographic protocol within the spatial domain of gray scale image, inspired
by [57]. This approach suggests to divide the cover block into blocks of equal
sizes.

For instance, let us consider the following protocol having the cover object
v whose LSB values are given by v = v0, v1, . . . , vn over Fn2 , the message m to
embed m = m0,m1, . . . ,mt with t < n over Ft2, the code given by its parity
matrix H.
Embedding m into v produces the stego object r = r0, r1, . . . , rn, given by the
relation:

m = r ×H t (5.1)

In order to extractm, it is the same equation 5.1 that is used. After embedding,
some of the bits of the cover block are modified (either 0 or 1); if we consider
e, the flip pattern representing the modified bits of that cover block, by having
every object of the protocol given by its polynomial representation, the stego
object is given by:

r(X) = v(X) + e(X) (5.2)

From both equations 5.1 and 5.2, we have:

m− v ×H t = e×H t (5.3)

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 169

which gives us the extraction formula.

Example 5.3.1. In the F5 algorithm [88], the technique used with an [n, n −
k, 1]-code consists of embedding k bits into an n-length cover sequence by
changing at most 1 bit.

This method is called the syndrome coding, and from a steganographic
point of view, we need to find a minimal number of flips of e(X) to decrease
distortion.

5.4 Steganography and convolutional coding

Before going any further, let us recall some notions involved within the con-
struction of the steganographic protocol based on coding.

5.4.1 The purposes and interest

From what we already get out of the traditional steganographic procedure, the
idea is to suggest an efficient steganographic protocol that is implementable
on convolutional encoding/decoding. As we know that there exists several
steganographic protocols defined over error-correcting block codes, within the
decoding method actually used to detect and correct errors, in order to in-
troduce a minimum amount of errors, as few as possible [58]. We are using
the same approach on our own steganographic model here, with the twist and
particularity of convolutional codes, which requires for the sequential char-
acteristic of the implementation, for instance embedding of a sequence while
transmission of a message, file or images during an undetermined, or semi-
infinite sequence of time. Indeed, the general plan is to introduce “as few
distortion as possible”, onto the cover sequence, in order to embed another
digital sequence (preferably, of less length).

As we are trying to get there, some key points we have to cover are:

1. the conditions for the steganographic scheme to be established, which
means rec and emb functions to be right, and well described.

2. the conditions for the modified subsections, which is the bound on the
flipping bits, the bits that are being altered while embedding, in order
to alter the least bits possible;

170CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

3. the classical bound of imperceptibility, as far as the embedding radius.
Indeed, we have to give conditions on the convolutional code in order to
keep the imperceptibility of the change on the cover, independently of
the cover or the message to hide;

4. the interest and benefits, as compared to the steganography, based on
block codes;

As for the case for some steganographic schemes based on codes in block,
the embedding and recovering functions are based on the decoding procedure;
we will be working around the same idea in order to implement our own func-
tions in this case.

5.4.2 Proposition of a Stegosystem based on convolu-
tional codes

In this subsection, we show our construction and implementation of the stegano-
graphic scheme based on convolutional codes, most specifically based on the
convolutional codes approach based on linear systems. Before going any fur-
ther, let us introduce some notions we use throughout the process;

Let (A,B,C,D) be a convolutional code. We denote by τ the minimum num-
ber of linearly-dependent columns of D.

By analogy to the block coding theory, τ can be related to the minimal
distance of a block code whose control matrix is represented by D.

As already defined earlier, we consider our convolutional codes, by their real-
ization representation given by the quadruple of matrices (A,B,C,D). For this
scheme, we are using the decoding method and protocol implemented for this
specific representation of convolutionals, by involving the output-observability

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 171

matrix T` given by the matrix:

T` =


C D
CA CB D
CA2 CAB CB D

...
.

CA` CA`−1B CA`−2B . . . CB D

 . (5.4)

Indeed, decoding a system for this type of system consists of solving the
system:

T`

(
x(0)
u

)
= y. (5.5)

We recall that it is usual to consider the initial state of the system x(0) = 0,
as in our case for instance; therefore, our new output-observability matrix is
reduced to:

T̂`−1 =


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D

 (5.6)

In order to do the embedding, the process goes by considering the output-
observability matrix as the control matrix. The model of steganography we
build is inspired by the (A,B,C,D)-representation of the convolutional code.
Knowing that we are normally using its structure on convolutional codes for the
decoding, step by step, when it comes down to steganography it is our base for
the embedding function. In this case, we decide to approach it in a sequential
fashion which means that for each step of the time-related steganographic
process, at each t = 1, . . . , `, the protocol consists of “embedding”the message
sequence, by altering lightly the cover sequence with some error, in order to
build the stego-sequence. In order to do so, we need to figure out the best
sequence corresponding to the flipping bits that minimizes the modification,
which corresponds to the coset leader of the list of potential “error vectors
e(t)” for embedding m(t) in u(t) by the formula: u(t) + e(t).

When it comes to the retrieval of the hidden message, that’s when the
actual output-observability matrix explicitly appears for the solving of the
corresponding equation. Indeed, the recovery process of the embedded mes-
sage consists of the encoding of the stego-sequence. Which is an analogy of

172CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

the syndrome steganographic protocol method, in order to retrieve the hidden
message, we extract at each step from the stego-sequence, using the control
”block of matrices“, each part of the embedded message.

Definition 5.4.1. The quasi-syndrome denoted by s is the value from which
we choose the estimated pertubation e for embedding m into u. It is given by:
s = He.

It can be related to the syndrome given within the stego-codes, based on
block coding.

The following algorithm provides the method for the embedding process.

Embedding algorithm for embedding function emb
Input: Message m, Cover sequence u
Output: Stego-sequence St

1: if rankD is row maximal then
2: for t:=0 to ` do
3: s(t) = m(t)−Du(t)−

∑t−1
k=0CA

t−1−kB(u(k) + e(k));
4: list sysdTableD = {e(t)};
5: compute min

e∈listw(e(t));
6: pick and store one corresponding e(t);
7: St(t) = u(t) + e(t);
8: end for
9: St = (St(0), . . . , St(`))
10: else
11: Choose an adequate code with D corresponding
12: end if

The next algorithm is used to extract the embedded message.

Extracting algorithm for recovery function rec

1: m = T̂`−1

(
u+ e

)
2: for t:=0 to ` do
3: m(t) = Du(t) +De(t) +

∑t−1
k=0CA

t−1−kB(u(k) + e(k));
4: end for
5: m(t) = (m(0), . . . ,m(`))

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 173

Example 5.4.1. In F2, let us consider the code C(A,B,C,D) defined by :

A =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 , B =


1 0 0
0 1 0
0 0 1
0 0 1

 , C =

(
1 1 0 1
1 0 1 1

)
, D =

(
0 1 0
0 1 1

)

We observe that the system is output-observable.

Let us consider the message to be embedded be m = (m(0),m(1),m(2)),
and is done so within those sections, at each step, in a cover sequence denoted
by u.

Let us consider m = (10, 00, 01)

We consider that knowing each input sequence u, we will try to find out
characteristics of each sequence e of the flipping bits that were added to u, in
order to embed the message m. The corresponding quasi-syndrome is denoted
by s.

Consider the decoding matrix for the convolutional codes given by:

T̂`−1 =


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D


At each step here: 0, 1, . . . , `, we will be try to evaluate our error value e

We already have: m = T̂`−1

(
u+ e

)
As inputs, we have m and u.

First of all, let us assess the coset of potential errors e; as a general formula,
m and u are given by: m(t) =

∑t−1
k=0CA

t−1−kB(u(k) + e(k)) +D(u(t) + e(t));
which means that:

De(t) = s(t) = m(t)−
t−1∑
k=0

CAt−1−kB(u(k) + e(k))−Du(t)

Going through all possible cases of syndromes (or cover sequences), we get the
coset of errors e.

174CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Figure 5.1: Syndrome Table 5.4.1

Therefore, at each step, there is always a sequence e that can be used for
embedding such that: w(e) ≤ 2.

Let us work with u = (111 010 001) having m = (10, 00, 01).

At step t = 0, we have: D(u(0) + e(0)) = m(0)
Then, s = (0 0), and e(0) = (0 0 0)

At step t = 1, we have: D(u(1) + e(1)) = m(1)− CB(u(0) + e(0))
Then, s = (0 0), we pick e(0) = (0 0 0) and e(1) = (0 0 0)

At step t = 2, we have: D(u(2) + e(2)) = m(2) − CAB(u(0) + e(0)) −
CB(u(1) + e(1))
Then, s = (1 0), and e(2) = (0 1 1).

Then, for u = (1 1 1, 0 1 0, 0 0 1), we can embed m = (10, 00, 01) with
the flip pattern: e = (0 0 0, 0 0 0, 0 1 1).

For this operation, we embedded 6 bits in a 9-length cover sequence by
changing 2 bits.

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 175

Functions embedding and recovery

In order to define our convolutional code for the proper stegoscheme, according
to our protocol, the following necessary condition is requested.

Proposition 5.4.1. Let (A,B,C,D) be a representation of a convolutional
code C, with A ∈ Mδ(F), B ∈ Mδ×k(F), C ∈ Mp×δ(F), D ∈ Mp×k(F) (with
D 6= 0 and p = n− k). Let p < k.
A necessary condition for building a stegoscheme from C is that rankD be row
maximal.

Conditions on the modified subsections of the cover

Here are some conditions applying to the modification of the cover sequence
when embedding.

Proposition 5.4.2. Let (A,B,C,D) be a representation of a convolutional
code C for a steganographic scheme S. Then, at each step t of the convolutional
sequence, the flipping sequence e introduced for embedding m in u can be given
by the formula:

De(t) = m(t)−Du(t)−
t−1∑
k=0

CAt−1−kB(u(k) + e(k))

Proof. Having that the embedding of m is given by: m = T̂`−1

(
u+ e

)
, and

having: T̂`−1 =


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D

, we can deduce the result.

Classical bound of imperceptibility

Proposition 5.4.3. Let (A,B,C,D) be a representation of a convolutional
code C for a steganographic scheme S. Let us consider embedding m in u, with
error sequence e. Let D have all of its columns non-zero and distinct.

176CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Then, for each step t of the convolutional sequence: ∃ e(t) such that w(e(t)) ≤
d− 1.

Proof. Considering T̂`−1 the control matrix, the embedding of m is given by:
m = T̂`−1

(
u+ e

)
;

at each step t, we have: De(t) = s(t).

Let us consider Dj the columns of D; knowing that d is the minimal num-
ber of linearly-dependent columns of D, for all t, for s(t) 6= 0, there exists
n columnsDj such that:

∑n
j=1 Dj = s(t) = De(t) 6= 0, with n ≤ τ − 1;

therefore, w(e(t)) = n ≤ τ −1; and for s(t) = 0, there is always e(t) = 0 which
verifies: w(e(t)) = 0 ≤ τ − 1.

From there, we can deduce the result.

This proposition follows from the precedent one.

Proposition 5.4.4. Let us consider a steganographic scheme S given by a
convolutional code (A,B,C,D), and functions emb and rec. Let D have all of
its columns non-zero and distinct. Then, within an `k-length cover sequence,
we can embed at most `p-length message by modifying at most `(τ − 1) bits

Example 5.4.2. In F2, let us consider the code C(A,B,C,D) defined by :

A =


1 0 1 1 0 1
0 0 1 0 0 1
1 1 0 0 0 0
0 1 0 0 1 1
1 1 0 0 0 1
0 0 0 0 1 0

 , B =


1 0 0 0 1
0 1 0 0 0
1 0 0 1 0
0 0 0 0 1
1 1 1 0 1
0 1 1 0 0



C =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 0 1 1

 , D =

1 1 0 0 0
0 0 1 1 0
1 0 1 0 1


We observe that the system is output-observable.

Let us consider the message to be embedded be m = (m(0),m(1),m(2)),
and is done so within those sections, at each step, in a cover sequence denoted
by u.

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 177

Let us consider m = (111, 100, 001)

We consider that knowing each input sequence u, we will try to find out
characteristics of each sequence e of the flipping bits that were added to u, in
order to embed the message m. The corresponding quasi-syndrome is denoted
by s.

Consider the decoding matrix for the convolutional codes given by:

T̂`−1 =


D
CB D
CAB CB D

...
.

CA`−1B CA`−2B . . . CB D


At each step here: 0, 1, . . . , `, we will be try to evaluate our error value e

We already have: m = T̂`−1

(
u+ e

)
As inputs, we have m and u.

First of all, let us assess the coset of potential errors e; as a general formula,
m and u are given by: m(t) =

∑t−1
k=0CA

t−1−kB(u(k) + e(k)) +D(u(t) + e(t));
which means that:

De(t) = s(t) = m(t)−
t−1∑
k=0

CAt−1−kB(u(k) + e(k))−Du(t)

Going through all possible cases of syndromes (or cover sequences), we get
the coset of errors e.

Therefore, at each step, there is always a sequence e that can be used for
embedding such that: w(e) ≤ d− 1 (d = 3).

Let us work with u = (11011 01000 10101) having m = (111, 100, 001).

At step t = 0, we have: D(u(0) + e(0)) = m(0)
Then, s = (1 0 1), and e(0) = (1 0 0 0 0)

At step t = 1, we have: D(u(1) + e(1)) = m(1)− CB(u(0) + e(0))
Then, s = (0 0 0), we pick e(0) = (1 0 0 0 0) and e(1) = (0 0 0 0 0)

At step t = 2, we have: D(u(2) + e(2)) = m(2) − CAB(u(0) + e(0)) −

178CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Figure 5.2: Syndrome Table 5.4.2

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 179

CB(u(1) + e(1))
Then, s = (0 0 0), and e(2) = (0 0 0 0 0).

Then, for
u = (1 1 0 1 1, 0 1 0 0 0, 1 0 1 0 1),

we can embed
m = (111, 100, 001)

with the flip pattern:

e = (1 0 0 0 0, 0 0 0 0 0, 0 0 0 0 0).

For this operation, we embedded 9 bits in a 15-length cover sequence by
changing only 1 bits.

Interest and benefits compared to steganography based on block
codes

Example 5.4.3. Let us consider a steganographic protocol based on a block
code given by its transfer matrix:

H =

1 1 0 0 0
0 0 1 1 0
1 0 1 0 1


Let us consider a set of messages m to be embedded in a set of cover

sequences u given by: m(0) = (111) in u(0) = (11011), m(1) = (100) in
u(1) = (01000), and m(2) = (001) in u(2) = 10101 one after the other, with
this steganographic process.

Given the syndrome table:

The flipping sequence at each step is given by: e.

Embedding m is given by:

m(X) = H(u(X) + e(X)).

Then, m(0) = H(u(0)+e(0)); which means that: He(0) = m(0)−Hu(0) =
s(0); s(0) = (1 0 1), and we pick e(0) = (1 0 0 0 0)

180CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Figure 5.3: Syndrome Table 5.4.3

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 181

Figure 5.4: Syndrome Table 5.4.4

As well as for e(1), we have De(1) = m(1)−Hu(1) = s(1); s(1) = (0 0 0),
and we have e(1) = (0 0 0 0 0)

As well as for e(2), we have De(2) = m(2)−Hu(2) = s(2); s(2) = (1 1 0),
and we pick e(2) = (0 1 0 1 0)

For the whole sequences put together, we have:
For u = (1 1 0 1 1, 0 1 0 0 0, 1 0 1 0 1), we can embed m = (111, 100, 001) with
the flip pattern: e = (1 0 0 0 0, 0 0 0 0 0, 0 1 0 1 0).

Working with the convolutional code, as previously, we have: for the same
u = (1 1 0 1 1, 0 1 0 0 0, 1 0 1 0 1), we can embed m = (111, 100, 001) with the
flip pattern: e = (1 0 0 0 0, 0 0 0 0 0, 0 0 0 0 0).

When compared to the convolutional case, we are flipping 2 more bits.

Example 5.4.4. Let us consider a steganographic protocol based on a block
code given by its transfer matrix:

H =

(
0 1 0
0 1 1

)
Let us consider a set of messages m to be embedded in a set of cover se-

quences u given by: m(0) = (10) in u(0) = (111), m(1) = (00) in u(1) =
(010), and m(2) = (01) in u(2) = (001) one after the other, with this stegano-
graphic process.

Given the syndrome table:

The flipping sequence at each step is given by: e.

182CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Embedding m is given by: m(X) = H(u(X) + e(X)).

Then, m(0) = H(u(0)+e(0)); which means that: He(0) = m(0)−Hu(0) =
s(0); s(0) = (0 0), and we pick e(0) = (0 0 0)

As well as for e(1), we have De(1) = m(1) − Hu(1) = s(1); s(1) = (1 1),
and we have e(1) = (0 1 0)

As well as for e(2), we have De(2) = m(2) − Hu(2) = s(2); s(2) = (0 0),
and we pick e(2) = (0 0 0)

For the whole sequences put together, we have:
for u = (1 1 1, 0 1 0, 0 0 1), we can embed m = (10, 00, 01) with the flip pat-
tern: e = (0 0 0, 0 1 0, 0 0 0)

Working with the convolutional code, as previously, we have:
for the same u = (1 1 1, 0 1 0, 0 0 1), we can embed m = (10, 00, 01) with the
flip pattern: e = (0 0 0, 0 0 0, 0 1 1)

When compared to the convolutional case, we are flipping 1 less bit.

Example 5.4.5. Let us consider a steganographic protocol based on a block
code given by its transfer matrix:

H =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


Let us consider a set of messages m to be embedded in a set of cover

sequences u given by: m(0) = (110) in u(0) = (1100110), m(1) = (010) in
u(1) = (0010011), and m(2) = (011) in u(2) = (1001010) one after the other,
with this steganographic process.

Given the syndrome table:

The flipping sequence at each step is given by: e.

Embedding m is given by: m(X) = H(u(X) + e(X)).

Then, m(0) = H(u(0)+e(0)); which means that: He(0) = m(0)−Hu(0) =

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 183

Figure 5.5: Syndrome Table 5.4.5

s(0); s(0) = (1 0 0), and we pick e(0) = (1 0 0 0 0 0 0)

As well as for e(1), we have De(1) = m(1)−Hu(1) = s(1); s(1) = (0 0 1),
and we have e(1) = (0 0 1 0 0 0 0)

As well as for e(2), we have De(2) = m(2)−Hu(2) = s(2); s(2) = (1 1 0),
and we pick e(2) = (0 0 0 1 0 0 0)

For the whole sequences put together, we have:
for u = (1 1 0 0 1 1 0, 0 0 1 0 0 1 1, 1 0 0 1 0 1 0), we can embedm = (110, 010, 011)
with the flip pattern: e = (1 0 0 0 0 0 0, 0 0 0 1 0 0 0 0, 0 0 0 1 0 0 0)

Let us consider instead the convolutional code, given by:

184CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

A =



1 0 0 1 1 0 1 1
0 0 1 0 0 1 1 0
1 1 1 0 1 1 0 1
0 0 1 1 0 0 1 1
1 0 1 1 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1


, B =



1 0 0 1 1 0 1
0 1 0 0 0 1 1
1 1 0 1 0 0 0
0 1 1 1 1 1 1
1 0 1 1 0 0 1
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0


,

C =

1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 1
1 1 0 0 0 1 0 0

 , D =

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


At step t = 0, we have: D(u(0) + e(0)) = m(0)

s(0) = (1 0 0), and we pick e(0) = (1 0 0 0 0 0 0)

At step t = 1, we have: D(u(1) + e(1)) = m(1)− CB(u(0) + e(0))
Then, s = (0 1 1), we pick e(0) = (1 0 0 0 0 0 0) and e(1) = (0 0 0 0 1 0 0)

At step t = 2, we have: D(u(2) + e(2)) = m(2) − CAB(u(0) + e(0)) −
CB(u(1) + e(1))
Then, s = (0 1 1), and e(2) = (0 0 0 0 1 0 0).

for the same u = (1 1 0 0 1 1 0, 0 0 1 0 0 1 1, 1 0 0 1 0 1 0), we can embed m =
(110, 010, 011) with the flip pattern: e = (1 0 0 0 0 0 0, 0 0 0 0 1 0 0, 0 0 0 0 1 0 0)

When compared to the convolutional case, we are flipping 3 bits, just as
for the block code case.

If we try to assess in terms of relationship between all error vectors, let’s
look at what we have at each step:

At Step t = 0, De(0) = m(0)−Du(0) < τ ;

At step t = 1,
(
CB D

)(e(0)
e(1)

)
= m(1) −

(
CB D

)(u(0)
u(1)

)
; which means

that: (
e(0)
e(1)

)
= X(

CB D
)(m(1)−

(
CB D

)(u(0)
u(1)

))

5.4. STEGANOGRAPHY AND CONVOLUTIONAL CODING 185

which means that: w(e(0)) + w(e(1)) = C1, C1 being a constant;

At step t = 2,
(
CAB CB D

)e(0)
e(1)
e(2)

 = m(2)−
(
CAB CB D

)u(0)
u(1)
u(2)

;

which means that:e(0)
e(1)
e(2)

 = X(
CAB CB D

)
m(2)−

(
CAB CB D

)u(0)
u(1)
u(2)


which means that: w(e(0)) + w(e(1)) + w(e(2)) = C2, C2 being a constant;

We can relate, using the same process, weights of all flipping sequences from
t = 0 to t = ` from an analogical analysis.

186CHAPTER 5. CONVOLUTIONAL CODES AND STEGANOGRAPHY.

Chapter 6

Conclusion and future work

In this thesis, we studied the plurality of convolutional codes. In fact, diverse
definitions for convolutional codes can be found in the literature as suggested in
a survey realized by Rosenthal in [66], and among all of the possible definitions,
we picked the most suitable one for connection with the linear systems theory.
Our ultimate purpose here is to comprehend all aspects of the convolutional
codes, under the material and tools of the linear systems theory, as far as it
concerns the algebraic aspect, coding or decoding, as well as the control theory
properties involved.

First of all, we worked on the encoding aspect of the convolutional codes;
doing so, we established a new realization building algorithm, to concretely
express convolutional codes in terms of linear systems theory, and also con-
structed concatenated codes, following different models already existing. This
algorithm introduced a less complicated, more intuitive approach to compu-
tation of our quadruple (A,B,C,D) in order to put in perspective the input-
state-output representation from any convolutional code polynomial encoding
matrix.

Within the possible construction of convolutional codes, we also explored
the concatenation, which brings various benefits. We also worked on the con-
trol properties of those convolutional codes; we also showed, enhanced condi-
tions to meet the control properties for any specific construction of those convo-
lutional codes, such as controllability, observability and output-observability.
Such as in other work on control properties, we remarked that it isn’t trivial to
extract those interesting conditions to match the control properties; however
we managed to do so.

187

188 CHAPTER 6. CONCLUSION AND FUTURE WORK

We worked on the decoding problem, by suggesting new methods and al-
gorithms to solve the decoding of convolutional codes, based on terms of the
linear systems. In fact, knowing that the Viterbi algorithm, is one of those re-
ally well known and used, decoding algorithms; with the construction based on
algebraic terms, coming from the input-output representation, we were able to
suggest easier methods to solve that complex problem of decoding, especially
within the context of time-related communication. We noticed a tremendous
saving of time, and more manageable computation process. With our methods
also, we can directly get to the input, and we suggest the option to either detect
the error(s), or correct, or both. Even though they are most-likelihood meth-
ods as well, the complexity for decoding is way more interesting, within any
Galois Field, when compared to the algorithm used in Viterbi’s for instance.

We also developed some new steganographic models, based on the represen-
tation of convolutional codes within the linear systems theory. In fact, the idea
resides on considering the output-observability matrix, along with the encod-
ing/decoding procedures used for the convolutionals. Indeed, the embedding
and recovery maps inspired by this algebraic computational method, enable
us to implement steganography for time-related transactions, for instance for
protection of communication within transactions during an unspecified time,
which is relatively new. That method revealed interesting results, such as an
ability to hide a tremendous amount of information, with very little distor-
tion, with specific conditions, which shows to abound in possibilities for that
matter.

189

190 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] B.M. Allen, Linear Systems Analysis and Decoding of Convolutional
Codes. Ph.D. thesis, Department of Mathematics, University of Notre
Dame, Indiana, USA (June 1999).

[2] W. Boumerdassi, E. Collange & Team Space Busters, Turbo codes Encod-
ing/Decoding & EXIT charts, Georgia Tech Atlanta, 2010.

[3] F. Bavaud, J.-C. Chappelier, J. Kohlas, An Introduction to Information
Theory and Applications. UniFr course, version 2.04, pp 9-11, (2005).

[4] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, Parallel concate-
nated trellis coded modulation, in Proc. IEEE Int. Conf. Communications,
vol. 2, Dallas, TX, pp. 974-978, June 1996.

[5] C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon limit error-
correcting coding and decoding: turbocodes, ICC 1993, Geneva, Switzer-
land, pp. 1064-1070, May 1993.

[6] G. Battail, C. Berrou and A. Glavieux, Pseudorandom recursive convolu-
tional coding for near capacity performance, GLOBECOM 1993, Houston,
Texas, USA, pp. 23-27.

[7] S.A. Barbulescu, Iterative Decoding Of Turbo Codes and Other Concate-
nated Codes, A dissertation, School of Electronic Engineering; University
of South Australia, 1996.

[8] Bassoli et al.: Network Coding Theory: A Survey, IEEE Communications
Surveys & Tutorials, Accepted for Publication, (2010).

[9] E. Berlekamp, editor. Key Papers in the Development of Coding Theory.
IEEE Press, New York, 1974.

[10] E. Berlekamp. Algebraic Coding Theory, McGraw-Hill, New York, 1968.

191

192 BIBLIOGRAPHY

[11] R.E. Blahut. Theory and Practice of Error Control Codes, Addison Wes-
ley, Reading, Mass., 1987.

[12] J-J. Climent, V. Herranz, C. Perea, A first approximation of concatenated
convolutional codes from linear systems theory viewpoint, Linear Algebra
and its Applications 425, pp. 673-699, (2007).

[13] J-J. Climent, V. Herranz, C. Perea, Linear system modelization of concate-
nated block and convolutional codes, Linear Algebra and its Applications,
429, pp. 1191-1212, (2008).

[14] C.-T. Chen, Linear System Theory and Design. Oxford, U.K.: Oxford
Univ. Press, (1999).

[15] D. Divsalar and R.J. McEliece, On the design of generalized concatenated
coding systems with interleavers, TMO PR 42-134, (1998).

[16] Y. Denneulin, J.-L. Roch, E. Tannier, Théorie des codes, pp. 41-46, (Jan-
uary 2000).

[17] D. Divsalar and F. Pollara, On the design of turbo codes, TMO PR 42-123,
(1995).

[18] J-G. Dumas, J-L. Roch, E. Tannier, S. Varrette, Théorie des codes: com-
pression, cryptage, correction, Dunod, pp. 13-17, (2007).

[19] P. Elias, Coding for noisy channels, IRE Conv. Rec. 4 , pp. 37-46, (1955).

[20] G.D. Forney, Convolutional codes, Algebraic structure, IEEE Trans. In-
formation Theory (1970).

[21] G.D. Forney, Jr. On decoding BCH codes, IEEE Trans. Information The-
ory, vol. IT-11, pp. 549-557, (October 1965).

[22] Ch. Fragouli, R.D. Wesel, Convolutional Codes and Matrix Control The-
ory, Proceedings of the 7th International Conference on Advances in Com-
munications and Control, Athens, Greece, (1999).

[23] J. Fridrich, Steganography in Digital Media - Principles, Algorithms, and
Applications, Cambridge Univ. Press, 2009.

[24] R.G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, (1968).

BIBLIOGRAPHY 193

[25] Ma
¯ I. Garćıa-Planas, M.D. Magret, An alternative System of Structural

Invariants for Quadruples of Matrices, Linear Algebra and its Applica-
tions 291, (1-3), pp. 83-102, (1999).

[26] M.I. Garcia-Planas, D. Magret, M.E. Montoro, Two parametric quasi-
cyclic codes as hyperinvariant subspaces. Cybernetics and physics Journal,
2, (2), pp. 90-96, (2013).

[27] Ma
¯ I. Garćıa-Planas, El M. Souidi, L.E. Um, Convolutional codes under

linear systems point of view. Analysis of output-controllability. WSEAS
Transactions on Mathematics. vol. 11, (4), pp. 324-333, (2012).

[28] Ma
¯ I. Garcia-Planas, El M. Souidi, L.E. Um. Convolutional codes un-

der control theory point of view. Analysis of output-observability. Recent
Advances in Circuits, Communications & Signal Processing, pp. 131-137,
(2013).

[29] M. I. Garcia-Planas, El M. Souidi, L. E. Um. Decoding Algorithm for Con-
volutional Codes under Linear Systems Point of View. Recent Advances
in Circuits, Systems, Signal Processing and Communications, (2014), pp.
17-24.

[30] Ma
¯ I. Garćıa-Planas, S. Tarragona, Output observability of time-invariant

singular linear systems, PHYSCON 2011, Léon, Spain, (2011).

[31] H. Gluesing-Luerssen and F.-L. Tsang, A matrix ring description for
cyclic convolutional codes, Adv. Math. Commun., vol. 2, no. 1, pp. 55-
81, (2008).

[32] V. Guruswami, List Decoding of Error-Correcting Codes, Department of
Electrical Engineering and Computer Science, M.I.T , (September 2001).

[33] R. Hamming, Coding and Information Theory, Prentice Hall, (1980).

[34] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes.
Cambridge Univ. Press, 2003.

[35] R. Hutchinson, J. Rosenthal, R. Smarandache, Convolutional codes with
maximum distance profile, Systems Control Lett. 54 (1), pp. 53-63, (2005).

[36] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes.
Cambridge Univ. Press, 2003.

194 BIBLIOGRAPHY

[37] R. V. L. Hartley. Transmission of information. Bell System Tech. J.,7 pp
535-538 (1928).

[38] M. Hautus, Controllability and observability condition for linear au-
tonomous systems, Proceedings of Nedderlandse Akademie voor Weten-
schappen, Series A 72, pp. 443-448, (1969).

[39] A. Hocquenghem, Codes correcteurs dérreurs, Chiffres(Paris)2, pp. 147-
156 (1959).

[40] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes.
Cambridge Univ. Press, (2003).

[41] R. Johannesson and K.Sh. Zigangirov, Fundamentals of Convolutional
Coding. New York: IEEE Press, (1999).

[42] G.A. Jones, J.M. Jones, Information and Coding Theory, Springer-Verlag
London 2000, pp. 97-113, (2000).

[43] H. Jouhari, New Steganographic Schemes using Binary and Quaternary
Codes, Ph.D thesis, Université Mohammed V-Agdal, Morocco; (2013)

[44] H. Jouhari and El M. Souidi, Application of Cyclic Codes over Z4 in
Steganography. Journal of Applied Mathematical Sciences, vol.6, N139,
pp 6911-6925, (2012).

[45] H. Jouhari and El M. Souidi, Steganographic Scheme Using The Z4-Linear
Goethals Codes. Proceedings of the Third International Conference on
Digital Inforation Processing and Communications, UAE, pp. 114-121,
(Dubai 2013).

[46] R. E. Kalman, Contribution to the theory of optimal control. Bolet́ın de
de la Sociedad Matemática Mexicana. Vol 5, pp.102-119, (1960).

[47] S. Kullback, Information Theory and Statistics. Dover, Reprint of 1959
edition published by Wiley, (New York 1968).

[48] S. Lin and D. Costello, Error Control Coding: Fundamentals and Appli-
cations. Prentice-Hall, Englewoods Cliffs, NJ, (1983).

[49] S. Lin, Introduction to Error Correcting Codes. Prentice-Hall, Englewood
Cliffs, NJ, (1970).

BIBLIOGRAPHY 195

[50] R.J. McEliece, The algebraic theory of convolutional codes, in Handbook
of Coding Theory, V. Pless and W. C. Huffman, Eds. Amsterdam, The
Netherlands: Elsevier Science, vol. 1, pp. 1065-1138, (1998).

[51] D. MacKay, Information Theory, Inference, and Learning Algorithms,
Cambridge university Press, chapter 48, pp.576-583, (2003).

[52] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, vol. 16 of North-Holland Mathematical Library. North-Holland,
ninth edition, (1996).

[53] D. Mandelbaum, Decoding beyond the Designed Distance of Certain Al-
gebraic Codes, Info. and Control, vol. 35, pp. 209-228, (1977).

[54] J.L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Transac-
tions on Information Theory, vol. IT-15, N1, (January 1969).

[55] J.L. Massey, D.J. Costello, and J. Justesen. Polynomial weights and code
constructions, IEEE Trans. Inform. Theory, IT-19(1), pp 101-110, (1973).

[56] J.L. Massey, M.K. Sain. Codes, automata, and continuous systems: Ex-
plicit interconnections. IEEE Trans. Automat. Contr., AC-12(6), pp 644-
650, (1967).

[57] M.O. Medeni and E.M. Souidi, A Novel Steganographic Protocol from
Error-correcting Codes. Journal of Information Hiding and Multimedia
Signal Processing, vol.1, 2010.

[58] C. Munuera, Steganography From A Coding Theory Point Of View. De-
partment of Applied Mathematics, University of Valladolid.

[59] NASA Tech Briefs, Technical Support Package for Tutorial on Reed-
Solomon Error Correction Coding, Lyndon B. Johnson Space Center,
Houston, Texas

[60] W.W. Peterson, Error-Correcting Codes. Cambridge, Mass: M.I.T. Press,
and New York: Wiley, ch.9, (1961).

[61] Ph. Piret, Convolutional codes. An algebraic Approach, The MIT Press,
Cambridge, Massachussets, (1988).

[62] V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4,
IEEE Transactions on Information Theory, vol. 42, N5, pp. 1594-1600,
(1996).

196 BIBLIOGRAPHY

[63] D. Radkova , D.J. Van Zanten, Constacyclic codes as invariant subspaces,
Linear Algebra and its Applications 430, pp. 855-864, (2009).

[64] D. Radkova, A. Bojilov, A.J. Van Zanten, Cyclic codes and quasi-twisted
codes: an algebraic approach, Report MICC 07-08, Universiteit Maastricht
(2007).

[65] I.S. Reed, A class of multiple errors correcting codes and the decoding
scheme, IRE Trans. Inform. Theory IT-4, pp. 38-49, (1954).

[66] J. Rosenthal, Connections between linear systems and convolutional codes,
Springer, (2000)

[67] J. Rosenthal, An algebraic Decoding Algorithm for Convolutional Codes,
Progress in Systems and Control Theory, Vol. 25 c© Birkhauser Verlag
Basel/Switzerland, (1999)

[68] J. Rosenthal, R. Smarandache, Maximum distance separable convolutional
codes, Applicable algebra in engineering, Commun. Comput. 10 (1999) pp.
15-32.

[69] J. Rosenthal, J. Schumacher, E.V. York, On behaviors and convolutional
codes, IEEE Trans. Inform. Theory 42 (6) (1996) 1881-1891.

[70] J. Rosenthal, E.V. York, BCH convolutional codes, IEEE Trans. Inform.
Theory 45 (6) (1999) pp. 1833-1844.

[71] J. Rosenthal, E.V. York, On Behaviors and Convolutional Codes, IEEE
Trans. Inform. Theory 42 (6) (1996) pp. 1881-1891

[72] J. Rosenthal, R. Smarandache, V. Tomás, Decoding of Convolutional
Codes Over the Erasure Channel, IEEE Trans. Inform. Theory 58 (1)
(2012).

[73] R. Roth, Introduction to Coding Theory, Cambridge University Press
(2006) pp. 26-31.

[74] A. Salagean, Factoring Polynomials over Z4 and over certain Galois rings,
Finite Fields and their Applications, Vol. 11, Issue 1, (January 2005), pp.
56-70.

[75] E. C. Shannon, A Mathematical Theory of Communication, The Bell Sys-
tem Technical Journal, Vol. 27, pp. 379-423, (July 1948).

BIBLIOGRAPHY 197

[76] D. Slepian, editor. Key Papers in the Development of Information Theory.
IEEE Press, New York, (1973)

[77] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal, Generalized
first order descriptions and canonical forms for convolutional codes. In
Proceedings of the MTNS, Padova, Italy, (1998)

[78] P. Solé: A quaternary cyclic code, and a family of quadriphase sequences
with low correlation properties. Lecture Notes in Computer Science 388,
pp. 193-201, (1989).

[79] A. Sridharan, Design and Analysis Of LDPC Convolutional Codes, Grad-
uate Program in Electrical Engineering, Notre Dame, Indiana. (February
2005).

[80] M. Sudan. List Decoding: Algorithms and Applications. In IFIP TCS, vol.
1872, Lecture Notes in Computer Science, (2000)

[81] S. Sundaram, Linear systems Lecture Notes in Electrical and Computer
Engineering, University of Waterloo, Canada. ()

[82] R. M. Tanner, A recursive approach to low complexity codes. IEEE Trans.
Inform. Theory 27, N. 5, pp. 533-547, (1983).

[83] L.E. Um, El M. Souidi, M.I. Garcia-Planas. Error correcting codes under
linear systems point of view. Electronic IPACS Library. (2011).

[84] A. J. Viterbi, Error Bounds for Convolutional Codes and an Asymptot-
ically Optimum Decoding Algorithm, IEEE Transactions on Information
Theory, 13, (2), pp. 260-269, (1967).

[85] N. Wiberg, H. A. Loeliger and R. Koetter, Codes and Iterative Decoding
on General Graphs. European Trans. on Telecommunications 6, N 5, pp.
513-525, (1995).

[86] E. J. Weldon, Jr. and W. W. Peterson. Error Correcting Codes. MIT
Press, Cambridge, Mass.. Second Ed, 1971.

[87] X. Wang and S. B. Wicker, “A soft output decoding algorithm for con-
catenated systems”, IEEE Transactions on Information Theory, vol. 42,
N2, pp. 543 - 553 (1996).

[88] A. Westfeld, F5 Steganographic Algorithm, Proc. Of the Information Hid-
ing 4th International Workshop, vol. 2137, pp. 289-302, 2001.

198 BIBLIOGRAPHY

[89] M. Wood, Convolutional Codes Over Rings, Department of Electrical and
Computer Engineering, Queens University, Canada (2009).

[90] M. Wood, Convolutional Codes Over Rings, Department of Electrical and
Computer Engineering, Queens University, Canada (2009).

[91] Ch. K. Wu, Ed Dawson, Existence of Generalized Inverse of Linear Trans-
formations over Finite Fields. Finite Fields and Their Applications. 4, (4),
pp. 307-315, (1998).

[92] R. W. Yeung, A first course in information theory. Springer, New York,
pp. 1-5, (2002).

[93] R. W. Yeung, R. Li Shuo-Yen, N. Cai, Z. Zhang, Network Coding Theory,
Foundation and Trendsr in Communications and Information Theory, vol
2, nos 4 and 5, pp. 1-4, (2006).

List of publications

1. M. I. Garćıa-Planas, El M. Souidi, L.E. Um, Convolutional codes under
linear systems point of view. Analysis of output-controllability. Wseas
Transactions on Mathematics. Vol. 11 (4), (2010), pp. 324-333.

2. L.E. Um, El M. Souidi, M.I. Garcia-Planas. Error correcting codes
under linear systems point of view. Electronic IPACS Library. (2011).

3. M. I. Garcia-Planas, El M. Soudi, L. E. Um. Analysis of control proper-
ties of concatenated convolutional codes. Cybernetics and Physics. Vol.
1 (4), (2012), pp. 252-257

4. M. I. Garcia-Planas, El M. Souidi, L. E. Um. Convolutional codes un-
der control theory point of view. Analysis of output-observability. Recent
Advances in Circuits, Communications & Signal Processing, (2013), pp.
131-137.

5. M. I. Garcia-Planas, El M. Souidi, L. E. Um. Concatenated convolu-
tional Codes. Analysis of control properties under linear systems theory
point of view. 3eme Edition Des Journées Nationales de la Sécurité(JNS3),
DOI: 10.1109/JNS3.2013.6595475. ṖP. 1–6 , (2013), IEEE Xplore Digital
Library(2013).

6. M. I. Garcia-Planas, El M. Souidi, L. E. Um. Decoding Algorithm for
Convolutional Codes under Linear Systems Point of View. Recent Ad-
vances in Circuits, Systems, Signal Processing and Communications,
(2014), pp. 17-24.

7. J. L. Domı́nguez-Garćıa, M. I. Garćıa-Planas, L. E. Um. Sufficient con-
ditions for controllability of serial concatenated linear systems. Advances
in Applied and Pure Mathematics. (2014), pp. 123-127.

199

200 BIBLIOGRAPHY

8. M.I. Garcia-Planas, S. Tarragona, L.E. Um. Códigos de convolución
desde el punto de vista de teoŕıa de control. Análisis de la observabili-
dad. Ciber, Revista Hispánica de Tendencias en Ciberseguridad. 1, (1),
(2014). pp. 1-8.

9. M.I. Garcia-Planas, J.L. Domı́nguez, L.E. Um. Sufficient conditions for
controllability and observability of serial and parallel concatenated linear
systems. International journal of circuits, systems and signal processing.
Vol. 8, (2014) pp. 622-630.

List of Communications

1. 5th International Scientific Conference on Physics and Control (Physcon-
2011), September 5-8, 2011. León Spain.
Error correcting codes under linear systems point of view.

2. 3rd International Conference on Multimedia Computing and Systems
(ICMCS’12), May 10-12, 2012. Tangier, Morocco. IEEE/SAI co-sponsored
Conference.
Properties of convolutional codes under linear systems point of view. A
Survey.

3. 3rd edition of the National Security Days (JNS3), April 26-27, 2013.
ENSIAS, Rabat, Morocco.
Concatenated convolutional Codes. Analysis of control properties under
linear systems theory point of view.

4. 8th International Conference on Circuits, Systems, Signal and Telecom-
munications (CSST’14), January 10-12, 2014. Tenerife, Spain.
Decoding Algorithm for Convolutional Codes under Linear Systems Point
of View.

5. 2nd International Conference on Mathematical, Computational and Sta-
tistical Sciences (MCSS’14). May 15-17, 2014. Gdansk, Poland.
Sufficient conditions for controllability of serial concatenated linear sys-
tems.

6. Algebra, Codes and Networks (ACN 2014), June 16-20, 2014. Université
de Bordeaux, France.
Decoding of convolutional codes under linear systems.

201

