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Summary 

The focus of the present thesis is to explore strategies for the preparation and 

modification of novel nanoarchitectures based on carbon nano-onions to expand their 

current applications in the construction of novel detection systems with improved 

performances.  

 Chapter 1 is a general introduction and literature review, which covers the 

general information on carbon allotropes with emphasis in carbon nano-onions, their 

preparation and functionalization methods, and their current applications in electronic 

devices, catalysis and biology. 

 Chapter 2 illustrates the synthesis and characterization of carbon nano-onions 

by annealing of commercially available nanodiamonds. Heat treatment of 

nanodiamonds at 1200ºC for 6 hours under argon atmosphere afforded small round 

nano-onion particles of 3-4 nm diameter and 5-6 graphitic shells. The prepared CNOs 

were visualized by HRTEM and showed the characteristic XRD and Raman features. 

The results have been compared with a sample prepared by annealing at 1600ºC.  An 

annealed sample was treated with radiofrequency plasma in a controlled Ar/O2 

atmosphere and analyzed by XPS, revealing the presence of oxygenated functionalities.  

 Chapter 3 explores the possibility to use crown ether/ammonium interactions 

for the dispersion of CNOs in water using biocompatible polymers. For this, CNOs 

were functionalized by reaction of diazotized 4-aminobenzo-18-crown-6. In the 

presence of biocompatible polymers containing pendant amino groups, such as 

aminated carboxymethyl cellulose (CMC-NH2) and poly-L-lysine, the modified CNOs 
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formed dispersions in water at acidic pH. Precipitation of the CNO-18C6 under basic 

conditions and in the presence of excess K+ cation indicates that the ammonium/crown 

ether interactions are the major driving force in the formation of the CNO dispersions.  

 Chapter 4 is dedicated to the modification of glassy carbon electrodes with 

CNOs followed either by covalent functionalization of ortho-aminophenol through in-

situ electrochemical grafting of diazonium salt or by physical adsorption of thionine. 

These electrodes were used for the detection of nitrite and ascorbic acid at different 

potentials, simultaneously. DC amperometry measurements were used to probe the 

electrocatalytic capability of the modified surface of GCE/CNO/oAP and 

GCE/CNO/thionine for the detection of nitrite and ascorbic acid. Nitrite was detected at 

potential 750mV higher than the potential of ascorbic acid at 200mV. Both results 

showed excellent enhancement in the current response and lower limit of detection as 

compared to GCE/oAP and GCE/thionine controls. 

 In Chapter 5, CNO-containing glassy carbon electrodes were modified with 

diazonium salts bearing terminal carboxylic acid and maleimide groups. The modified 

electrodes were used for the amperometric detection of a model DNA target sequence 

associated with the human papillomavirus in both synthetic sequences and clinical 

samples. The analytical parameters of the developed biosensors were compared with 

glassy carbon electrodes without CNOs. In both cases, the incorporation of CNOs 

resulted in an enhancement in sensitivity and a decrease in detection limits ascribed to a 

combination of large surface areas and enhanced electron transfer properties of the 

CNO-modified electrodes. These results offer promise for the construction of other 

CNO-based biomolecule detection platforms with enhanced sensitivities. 
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 Finally, Chapter 6 describes the construction of an immunosensor platform 

based on CNO-modified electrodes employing a sandwich assay. Electrodeposited 

diazonium chemistry served to immobilize whole antibodies on the surface of CNOs. 

As model targets immunoglobilin G (IgG) and carcinoembryonic antigen (CEA) were 

selected and we also explore different labels such as HRP and ALP-modified 

antibodies. The presence of CNOs enhanced the sensitivity of the assay by a factor of 2 

and the substitution of HRP for ALP as label of the secondary antibody decreased the 

LOD by a factor of 6. Therefore, the incorporation of CNO had a positive effect in the 

biosensor performance and are thus promising materials in immunosensor development. 

 Overall, the presented thesis has contributed to the understanding of the 

chemistry and properties of carbon nano-onions and the development of novel 

applications of these materials in the field of surface modification and biosensing. These 

nanomaterials were prepared in a controlled manner by nanodiamond annealing and 

were deposited on electrode surfaces by simple casting methods. They were 

successfully dispersed in aqueous solution using a supramolecular strategy and 

implemented in detection systems for small molecules, proteins and DNA with 

enhanced sensitivity and improved analytical properties. Although some of the 

biosensor platforms developed in this work were not fully optimized, it is clear that the 

use of carbon nano-onions in biosensing has many promising advantages over other 

nanomaterials. Our results also open up new possibilities for many other applications 

such as photovoltaics or molecular electronics in which the interfacial and electronic 

properties of carbon nano-onions can play an important role in the fabrication and 

performance of these devices. 
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Chapter 1 

Introduction 

1.1 Carbon nanomaterials 

The fascinating world of carbon nanomaterials, with their significant roles in the 

developing world of sensor technology, is being widely investigated and becoming one 

the hottest topics in materials research nowadays. Their diversity and ubiquity in nature 

makes them attractive candidates for the constructions of novel devices with improved 

analytical performances. Since their reactivity is limited by a poor solubility, they may 

be difficult to incorporate in devices or show poor compatibility with biomolecules. To 

overcome these problems, several functionalization and modification strategies have 

been investigated. Some of these well-known carbon nanomaterials will be described in 

the following sections. 

Fullerenes were the first synthesized carbon nanomaterials using vaporization of 

graphite by a focused pulse laser [1]. This zero-dimensional (0D) carbon form with 

distinctive clusters of n carbon atoms (Cn) in a cage structure such as the famous C60, 

gathered intense research interest after its discovery. Nowadays, it is the most 

investigated molecule due to their properties, reactivity and applications as reviewed by 

Delgado et. al [2]. The electrochemical properties of fullerene and their derivatives are 

extensively discussed in the review of Sherigara et. al [3], probing that the future of 

modified sensing electrodes with fullerenes would be a great advance in research 

especially as electrocatalysts and sensors for various chemical and biochemical 

reactions. For example in 2000, Gavalas and Chaniotakis [4] described the first C60-

mediated amperometric biosensor for glucose. The C60 was adsorbed on a porous 
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carbon electrode and operated as an efficient mediator for electron transfer by lowering 

the optimum operating potentials. In addition, higher loads of C60 in the surface 

exhibited faster response time, improved sensitivity and dynamic range. Recently, 

Lanzelotto et al. [5] prepared a novel nanostructured enzymatic biosensor made of gold 

nanoparticles, fullerenols and laccase assembled layer-by-layer in a gold electrode. The 

biocatalytic biosensor was preliminarily used for the detection of polyphenols such as 

gallic acid, which showed a rapid amperometric response and high stability of the 

surface. 

In the two decades after their discovery, carbon nanotubes (CNTs) were also widely 

exploited and subsequently produced in large scale using arc-discharge evaporation 

techniques [6]. CNTs are one-dimensional (1D) materials that can be classified into 

single-walled CNTs (SWCNTs), the simplest form, and multi-walled CNTs 

(MWCNTs), ranging from 2 to n-th rolls of graphitic layers wrapped around together to 

form a cylindrical tube. The perfectly aligned lattice of sp2 hybridized carbon atoms in a 

cylindrical shape give CNTs a high conductivity, excellent strength and stiffness [7]. 

The progress and latest developments in the bulk synthesis and applications of CNTs 

and their influence in the future of nanomaterial industry and engineering were recently 

described by Huang et al. [8]. Other examples of CNT and fullerene applications in 

biological and environmental technology, electronics, optoelectronics and chemical 

sensors can be found in the literature [9-12].  

With the advent of graphene, none thought that a two-dimensional (2D) sp2 carbon 

layer prepared from graphite would produce a fascinating material that is as durable as 

diamond, single atom thick, more conductive than copper, and the most promising 

nanomaterial nowadays. Graphene was first described and isolated by Geim’s group 

[13] in 2004 by an exfoliation method using a simple adhesive tape. Consequently, the 
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rapid evolution of powerful equipment in nanotechnology paved the way for the 

characterization of graphene and other methods to produce it led to the understanding of 

its unusual properties such as electrochemical, electronic and optical properties [10, 13-

16].  

Although diamonds have been used and known for a long time dating back to pre-

history, its “new” form, nanometric in size, called nanodiamonds also meant a 

significant breakthrough as material for nanotechnology due to their atypical properties 

when compared to the bulk material. They can be naturally found, even in the space 

[17-19] but became of wider interest when first produced in the laboratory by 

detonation [20, 21]. The structural properties and applications of nanodiamonds are 

described in this recently published review article [22].    

 

Figure 1.1 Graphic representation of the most common carbon nanomaterials [23]. 

1.2 Carbon Nano-onions 

Carbon nano-onions (CNOs) also known as multilayered fullerenes, were 

discovered in the same period as CNTs but remain away from the limelight of other 

popularly investigated nanocarbons. Not as trendy as other carbon nanomaterials cited 

previously, CNOs also show very attractive properties and are expected to impact the 

nanotechnology world in the future.  
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1.2.1 Preparation, Synthesis and Characterization 

In 1992, Ugarte [24] exposed an electron beam on amorphous carbon, which began 

to graphitize and with the time curled up until to form a closed circle. He called it 

onion-like graphitic particles, now known as carbon nano-onions or onion-like carbon. 

This is also the first time that CNOs were made from amorphous carbon as starting 

material by exposing it to irradiation. Several attempts on the production of CNOs using 

this technique were tried with some modifications like incorporating Al nanoparticles 

[25]. Furthermore, many other methods of synthesis have been tried such as arc 

discharge, chemical vapor deposition (CVD), radio frequency (RF) and microwave 

plasma, carbon ion implantation, thermolysis and template synthesis. In subsequent 

paragraphs each of these methods will be briefly described. 

Basically, arc-discharge is an old technique for producing nanomaterials that uses 

two high-purity graphite electrodes as the anode and cathode, usually submerged in a 

special media. Direct current is passed through the two separated electrodes under inert 

gas atmosphere until the graphite vaporizes. Sano et al. [26] were the first that made use 

of this simple method for producing a large quantity of spherical CNOs collected from 

the water surface at a production rate of 15.9 mg/min of CNOs with approximate size 

averages of 4-36 nm in diameter, as viewed in high resolution transmission electron 

microscopy (HRTEM). The same group proposed a formation mechanism of CNOs by 

this technique [27] while Xu and his group [28] made several attempts to use the arc-

discharge to synthesize CNOs in different media such as liquid benzene or under 

aqueous solution with addition of catalyst and the combination of chemical vapor 

deposition and arc discharge. CNOs produced from metal catalysts usually form 

M@CNOs clusters, in which metal atoms from the catalyst are encapsulated on CNO 

frameworks. However, neither of these methods produced size homogenous and pure 
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CNOs, since the same method was also used for the synthesis of CNTs and therefore 

other carbonaceous impurities can be found. Recently, a new optimized under-water 

arc-discharge method designed to produce CNOs with high purity and narrow 

polydispersity has been investigated by Borgohain et al. [29]. In their report, they were 

able to control the growth of CNOs to a size about 20-50nm under optimized conditions 

of the equipments and developed an efficient purification method to screen-out CNOs 

only. The electrochemical properties of the synthesized product were also studied by 

cyclic voltammetry based on the redox peak separations and heterogenous electron 

transfer rate of some electroactive species. The results showed higher and faster 

electrochemical performance as compared to bare glassy carbon electrode. 

Chemical vapor deposition involves three stages for the synthesis of thin solid films, 

typically substrate heating/conditioning, growth with precursor gases and substrate 

cooling. Usually CNOs produced in this method are metal-containing materials since 

the process requires catalysts such as Fe, Co, Ni and/or their combinations. Some of the 

precursor gases that act as carbon sources are methane, acetylene and cyclohexane 

vapor [30, 31]. Lately, efficient methods were reported by Zhang et al. [32] to 

synthesize hollow CNOs at controllable size. Initially, they used CVD technique with 

Fe-Ni alloy as catalyst and the growth started under CH4/N2. The product obtained after 

cooling was CNOs-encapsulated with Fe-Ni alloy, which was further subjected to high 

temperature annealing leading to the escape of the metal located in the center of the 

particle producing a hollow CNO in which the mean size was approximately 20 nm. 

Liu and co-workers [33-35] suggested that radio frequency and microwave plasma, 

a technique used in synthesizing other carbon nanomaterials, can be also utilized in 

producing CNOs from coal by changing some parameters in the process. Coal as 

starting material was exposed to an electromagnetic field of radio frequency or 
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microwave at low pressure of inert gas acting like a plasma. The plasma in the chamber 

is enough to break any bonds structure in coal but not all, especially for aromatic 

structures, and most of the time they form pentagonal rings favorable for fullerene 

formation. However, there are some impurities in coal such as Si, Al and Fe acting as 

catalyst believed to help the formation and growth of CNOs.  

Carbon ion implantation was first introduced by Cabioc’h group in 1995 [36] and 

the method has been continuously optimized until today [37-39]. The implantation 

procedure for synthesizing CNOs is based on the introduction of carbon ions in thin 

films of silver or copper onto different substrates at high temperatures. By varying the 

synthesis conditions, the particle diameter can be tuned from 3 up to 30 nm. 

Thermolysis is also a heating technique that was developed by Bystzejewski et al. [40] 

for the synthesis of CNOs without using catalysts. Sodium azide (NaN3) and 

hexachlorobenzene (C6Cl6) were mixed homogenously in a mechanical shaker, and then 

loaded in a quartz crucible in a calorimetric bomb. The compounds were decomposed 

by heat inside the chamber producing CNOs of large diameter (30-100 nm) along with 

other impurities that were removed in a purification step.  Another way to synthesize 

CNOs was thermal reduction of a mixture of glycerin and magnesium at 650˚C inside a 

stainless steel autoclaveto yield CNOs of a diameter of 60-90 nm [41]. Interestingly, a 

simple and easy gram-scale synthesis of CNOs by continuous explosion of naphthalene 

vapor onto a glass or ceramic substrate was probed. The carbon material collected in the 

substrate was then purified by heating under vacuum. The process yields 20% carbon 

recovery with the size of the CNOs to have an average of 50 nm with 50 shells [42]. 

The methods mentioned previously produce big CNOs until Kuznetsov’s group [43] 

tried the precise production of homogenous and small onions approximately consisting 

of 5-8 carbon shells by annealing ultra-dispersed nanodiamonds in vacuum at high 
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temperatures. The progress of transformation begins at the outer surface and moves to 

the inward of the bulk nanodiamond crystal (Figure 1.2-1). The final diameter sizes of 

CNOs will depend on the initial size of the nanodiamond. So far, this is the only 

technique that has the potential for industrial application due to the yield close to 100%. 

A detailed evaluation of the early stage transformation of nanodiamond to graphitic 

CNOs using thermal annealing (Figure 1.2-2) under inert atmosphere were investigated 

recently by Cebik et al. [44]. 

 

Figure 1.2: 1) the structural changes of nanodiamond during thermal annealing [44] 2) a typical 
HRTEM image of synthesize CNO in this process [45].  

 

To improve the graphitic layer of CNOs produced by high temperature annealing 

of ultradispersed nanodiamonds, a post-modification by annealing at low temperature 

around 450˚C in the presence of carbohydrates such as glucose or starch as carbon 

precursors has been employed [46]. The synthesized product exhibited an increased 

surface area due to added graphitization of the surface of CNO as evidenced by 

Brunauer-Emmett-Teller (BET) static nitrogen adsorption technique. Besides, there was 

an improved electrochemical property of the CNO films when post-modified as 

revealed in voltammetric measurements. 

1.2.2 Characterization of synthesized CNOs 
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Several techniques have been employed to characterize the synthesized CNOs 

such as High-Resolution Transmission Electron Microscopy (HRTEM), which is useful 

to visualize the structural properties and formation of CNOs. In this section we briefly 

review other important techniques focusing mainly in the transformation of 

nanodiamonds to CNOs.  

Raman spectroscopy is also very useful in such a way that it will distinguish the 

graphitic structure of CNOs. There are two distinct Raman bands related to the 

structural features of carbon materials: a) the presence of the D-band at around 1350  

cm-1 indicates the structural disorder present in the surface of the particle due to the 

presence of sp3 carbons and this band increases when CNOs undergoes 

functionalization whilst b) the presence of the G-band at around 1580 cm-1 corresponds 

to the graphitic layer of the surface or sp2-hybridized carbon networks. The G-band is 

very helpful to differentiate nanodiamonds from CNOs due to the change in 

hybridization from  sp3 to sp2, respectively [45, 47].  

Another valuable technique to characterize CNOs is X-ray diffraction (XRD). 

Nanodiamonds exhibit a main characteristic narrow peak at ~43˚ which come from the 

(111) planes of cubic diamond (sp3). On the onset that nanodiamonds are transformed to 

CNOs, this peak  decreases or broadens and a new peak appears around 25˚ due to the 

formation of (002) planes of graphitic (sp2) carbon, which is also associated with that of 

crystalline graphite [45, 48].  

On the other hand, the conductivity behavior of CNOs has been analyzed in the 

works of  Hou et al. [49]. Using ultrahigh vacuum AFM and scanning tunneling 

microscopy (UHV AFM/STM)  they showed that the electrical properties of CNOs 

were between graphite and single-shell fullerenes. In contrast, the electronic structure of 
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CNOs was analyzed using core-level and valence-band photoemission spectroscopy by 

intercalation of CNOs with potassium. This technique revealed a non-rigid shift of 

valence-band states which means that CNOs behave as small graphite crystals and 

display bulk-like behavior rather than molecule-like as large fullerenes do [50].  The 

optical properties of CNOs have also been described extensively using several 

techniques [51-54]. 

1.2.3 Functionalization of CNOs 

Like any other carbon nanomaterials, CNOs are highly hydrophobic and tend to 

aggregate due to strong intermolecular interactions such as van der Waals forces [26]. 

To overcome this problem, surface modification is the method of principal choice to 

improve dispersibility and other properties (Figure 1.3). 

 

Figure 1.3: Functionalization of CNOs [55]. 

Many years after their discovery, the covalent functionalization of CNOs was 

reported in 2003. Pratos’ group [56] used CNOs  from the raw soot produced by arc-
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discharge for organic functionalization. This raw soot was suspended in a mixture of an 

aminoacid and paraformaldehyde using toluene as solvent and refluxed for several days. 

The successful functionalization of CNOs was analyzed using 1H NMR spectroscopy, 

MALDI mass spectroscopy and UV-vis- NIR spectroscopy. The HRTEM studies 

revealed their sizes ranged between 60-300nm, typically large CNOs, also the presence 

of amorphous carbon in not dissolve part of the solution was determined. The modified 

CNOs in this process were used to characterize the optical properties of CNOs for 

possible use as broad-band optical limiters.  

Echegoyen and co-workers have made a significant contribution in the 

functionalization of CNOs and many of the works in this area are associated with his 

group. In an early report, his group not only made an attempt to functionalize arc-

discharge prepared CNOs but also made a significant advance in the purification of the 

raw soot derived from the process [57]. Three different functionalization reactions were 

used to modify the surface of purified CNOs. The CNO-containing-soot powder derived 

from the water arc-discharge was subjected to a successive process of purification by 

thermal annealing, microwave heating, acid and supercritical water washing to remove 

the unwanted impurities from the starting material. Thermogravimetric (TGA) and TEM 

experiments were used to follow the purification showing a high yield of CNOs in the 

sample. Due to the acid treatment during the purification the surface of the CNO were 

modified with carboxylic acid groups, which facilitate further derivatization. The 

PEGylation of CNOs using diamine-terminated oligomeric poly (ethylene glycol) 

produced the first water-soluble CNOs. In the amidation of CNOs, they employed two 

reaction process, the solid state reaction and microwave reaction for rapid amidation, 

both yielding good results despite the small differences on the TGA results.  
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The vast majority research in functionalization of CNOs for the years after 

Pratos’ report were carried out using large size of CNOs produced from arc-discharge 

which have several drawbacks, especially on the difficulty of chemical reactivity on the 

surface of CNOs. In an effort to have an in-depth study on the properties of CNOs 

produced by different methods, Palkar et al. [58] compared the methods of 

nanodiamond annealing and arc-discharge based on the reactivity of the resulting 

CNOs. Three different kinds of chemical functionalization were tested. The 

cycloaddition reaction using [2+1] Bingel-Hirsch cyclopropanation was only successful 

in CNOs prepared by annealing. Second was a free radical addition in which CNOs 

were refluxed with benzoyl peroxide as radical source in toluene, which also worked out 

only for annealed CNOs. The last method was the oxidation of surface defects with 

introduction of carboxylic acid groups in refluxing nitric/sulfuric acid. TEM and TGA 

measurements reveal that CNOs derived from annealing can be easily oxidized 

compared to the harsher treatment needed for the oxidation of arc-discharge CNOs.. 

The first radical addition of a conjugated polymer to purified CNOs via reaction 

with bis-o-diynyl arene (BODA) has been recently reported [59]. CNOs and BODA 

were ultrasonicated and heated in N-methyl-2-pyrrolidone (NMP) under pressure to 

yield CNO-BODA copolymers. The products were analyzed by different 

characterization techniques like gel permeation chromatography (GPC), TEM, TGA, 

Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). On the other hand, 

supramolecular complexes of CNOs modified with pyridyl units have also been  

described [60]. CNOs were oxidized in an acid mixture to generate reactive carboxylic 

group followed by amidation using 4-aminopyridine. The pyridyl/CNO was soluble in 

water and was characterized by TEM, NMR, UV-vis, Raman spectroscopy and TGA 

showed modification of samples as compared to starting material. This modified 
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pyridyl/CNO was used to construct a self-assembled nanoporous network by 

complexation with the central zinc atom in a Zn porphirin and the interaction has been 

confirmed by electrochemistry and NMR spectroscopy.  

Zhou et al. [61] introduced a facile and direct organic functionalization of 

multilayer fullerenes using [2+1] cycloaddition of different nitrene derivatives followed 

by in-situ grafting strategies of polymerization. This chemistry was used to introduce 

hydroxyl groups on CNOs using azidoethanol or bromide using azidoethyl 2-bromo-2-

methyl propanoate modified surface. The modified CNOs exhibited increased solubility 

in organic solvents and aqueous solution. Interestingly, CNO-OH showed fluorescence 

emission characteristics in aqueous solution. Furthermore, the modified CNOs were 

utilized as microinitiators to conduct surface–initiated ring-opening polymerization 

(ROP) or atom transfer radical polymerization (ATRP) of in-situ polymerizations of -

caprolactone or polystyrene. The modifications after the polymerization were 

characterized by 1H-NMR, SEM, TEM and AFM.  

A unique and versatile strategy of functionalization on CNOs was performed by 

Flavin et al. [62]. Initially, in-situ generated diazonium compounds were reacted onto 

the surface of CNOs producing different kinds of functional groups such as bromides, 

benzoic acids, tert-butyl groups, nitro groups, methyl esters and trimethylsilyl (TMS) 

acetylenes in modified CNOs. Pristine CNOs were suspended in DMF by sonication 

and the aniline derivative of different functionalities and isoamyl nitrite were 

subsequently added into the mixture in a stirring condition in an inert atmosphere. The 

product was collected by centrifugation, dried, then characterized using TGA and 

Raman spectroscopy.  The repeated uses of these reactions further increase the degree of 

functionalization thus leading to an increased dispersability of CNOs. They further 

proposed the use of “click” chemistry in which the CNO-TMS acetylide sample was 
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first deprotected then coupled with zinc triphenyl azidophenyl porphyrin. The 

diazotization chemistry described above on CNOs was used to incorporate 

fluoresceinamide-based fluorophores [63] or NIR-emitting aza-boron-dipyrromethenes 

[64] through amidation onto the surface of benzoic acid modified CNOs and a meso-

phenol-substituted borondipyrromethene (BODIPY) fluorophore by esterification [65]. 

All of the previously mentioned products were applied in cell imaging. Additionally, 

there was another report on the use of modified benzoic acid/CNO as a template for in-

situ chemical oxidative polymerization of polyaniline (PANI) thus creating a coated 

PANI-CNO [66]. The product has been used to study the vibrational spectroscopic 

property of the material using infrared absorption and Raman spectroscopy. 

Another interesting modification of CNOs under reactive conditions were done 

by Liu et al. [67]. CNOs were produced by inductive heating of carbon black to give 

particles of 50-100 nm in diameter and high purity. Fluorination was carried out in a 

custom-built reactor, CNOs sample loaded into a Monel-foil boat, placed inside the 

reactor, sealed and purged by continuous flow of inert gas at room temperature then 

heated at different temperatures. After 2-3 hours, samples of fluorine and hydrogen 

were introduced separately in the reactor to initiate the reaction. The process was kept 

for 6 h, thereafter the reaction has been stopped and the products were collected. 

Various characterization techniques have been employed such as FTIR, SEM/EDX, 

XRD, XPS, TGA, TEM, Raman and UV-Vis spectroscopy to follow the successful 

fluorination of the modified-CNOs. Moreover, the authors made outstanding claim that 

treating the fluorinated-CNOs with hydrazine would defluorinate and “heal” the broken 

graphene layers in the structure.  

The need for “green” technology in functionalizing CNOs, especially for 

oxidation, has been an urgent call for researchers in which no hazardous chemicals are 
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involved for improving solubility and dispersion of CNOs in aqueous solution. 

Ozonolysis is the suggested way to oxidize CNO in a mild but effective way to 

introduce the oxygen-containing functional groups on the surface of CNO. This process 

does not damage the structure of CNOs thus improving its properties like increase in 

hydrophilicity, wettability and conductivity for enhanced performance of aqueous type 

EDLC [68]. 

A single molecule CNO structure covalently functionalized via amidation 

reaction using 2-amino-1-ethane methyl sulfide or 3-amino-propane methyl disulfide to 

yield CNO-(CONH-(CH2)n-SH)m  was used to study the conductivity properties of 

CNO. Their methodology was to entrap the sulfide-terminated CNO between a gold 

surface and a scanning tunneling microscopy (STM) tip also made of gold and then 

measure the conductance using the STM-based molecular junction approach, in which 

the current-distance curves of the scanned surface have been monitored. Unexpectedly, 

the electrical conductance of CNOs were the same order of magnitude when compared 

to C60 due to the chemical linker attached to the CNOs not directly in-contact between 

the electrodes [69].   

Alkylation of CNOs by a reductive method using Na-K alloy has been 

investigated by Molina-Ontoria et al. [70]. The incorporation of hexadecyl chains on the 

surface of CNOs were carried out in two steps. Firstly, CNOs were reduced with a 

solution of Na-K alloy in 1,2-dimethoxyethane (DME) followed by alkylation with the 

addition of 1-bromohexadecane. The synthesized CNO-C16 showed high solubility in 

organic solvents enabling 1H-NMR analysis. Additionally, the covalent attachment of 

hexadecyl groups was further analyzed with FTIR, HRTEM and Raman spectroscopy.  

The alkylation reaction could be reversed by heating CNO-C16 at 415˚C.  
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Non-covalent incorporation of CNOs in composites is also becoming popular 

especially for exploring the inherent properties of CNOs and their possible applications, 

for examples, in supercapacitors, sensors and nanomedicine. Kuzhir et al. [71] reported 

the electromagnetic absorbing properties of a novel composite material made from CNO 

and binding matrices such as polymethylmetacrylate (PMMA) and 

polydimethylsiloxane (PDMS) in microwave frequency range. Other composites based 

on CNOs and poly(diallyldimethylammonium chloride) (PDDA) or chitosan have been 

prepared. The PDDA/CNO or chitosan/CNO composites  were deposited as films on 

glassy carbon electrodes and showed a typical capacitive behavior as well as excellent 

mechanical and electrochemical stability [72]. The electrochemical properties of poly-

aniline and  (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composites were 

also studied [73] [74].   

Recently, the non-covalent functionalization of CNOs with poly(4-

vinylpyridine-co-styrene) (PVPS) and poly(ethylene glycol)/polysorbate 20 (PEG/P20) 

have been utilized for further incorporation of other moieties [75]. Pristine CNOs mixed 

with PVS polymers were used as template to integrate thiol-containing compounds like 

3-mercaptopropionic (MPA) or 2-mercapto-4-methyl-5-thiazoleacetic (MMTA) acids to 

generate a carboxyl terminated group onto the surface of CNOs. In the case of modified 

CNO with PEG/P20, CNOs were oxidized prior to the dispersion in a DMF/EtOH 

mixture followed by the addition of PEG/P20 to form layers of polymers onto the 

surface of CNOs that were used to interact with quercetin, a flavonoid compound. In 

other group, CNOs have been oxidized prior to the impreganation with RuO2.xH2O for 

the development of composites for supercapacitor electrodes [76].  

Finally, our group recently prepared highly solubilized cyclodextrin-modified 

CNOs by supramolecular interactions in aqueous solutions [77]. Oxidized CNOs were 
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further functionalized with aminated -cyclodextrin (-CDs) units by amidation. The 

supramolecular assembly occurs when a ferrocene-appended dextran (Fc-Dex) polymer 

was added into the CD/CNOs suspension in which CD act as hosts and the ferrocene 

group of the polymer as guest. The prepared supramolecular structure of βCD/CNO 

showed a good solubility in aqueous solution.   

1.2.4 Applications 

 The modification and incorporation of moieties on the surface of CNOs enable 

the possibility of their wide application on many areas of research. Below we describe 

some limited examples of the exploitation of CNOs in different fields. 

 

 

Figure 1.4: Current applications of CNOs. 
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 Electronics/Electrochemical applications 

Electrical double layer capacitors (EDLC) are storage devices with the capacity 

to store charges at the interface between an electrode and tan electrolyte [78, 79]. 

Carbon materials, such as activated carbons, have been incorporated in electrodes for 

supercapacitor applications due to their high specific surface area, porosity, high 

electrochemical conductivity and stability.  

In 2007, Portet et al.[80] investigated for the first time the use of CNOs in EDLC 

along with nanodiamonds, carbon black and multi-walled carbon nanotubes. The results 

indicate excellent capacitance retention and high discharge rate of the CNO-modified 

devices due to increase in conductivity. Therefore, small resistance and the modification 

steps that cause defects in the surface of CNOs improved the ion transport in open-

surface systems. Afterwards, Bushueva et al. [81] investigated the EDCL performance 

of CNOs with water electrolytes. The working electrodes used were made up of 

composites of CNOs powder synthesized by vacuum annealing at 1800-1900 K of 

detonation nanodiamonds and polytetrafluoroethylene (PTFE) and displayed specific 

capacitances of 70-100 Fg-1 in acidic electrolytes (1M H2SO4), better than in an alkaline 

electrolytes. Likewise, they also claimed that there is a correlation between specific 

capacitance, conductivity, specific surface and annealing temperatures of 

nanodiamonds. Pech et al. [82], on the other hand, prepared microsupercapacitors made 

up thick layer (7 µm) of nanostructured CNOs deposited onto interdigital gold 

electrodes utilizing an electrophoretic deposition technique (EPD). The capacitance 

performance of the CNO-based microsupercapacitors was four orders of magnitude 

higher than that of electrocatalytic capacitors and the discharged rates exhibited three 

orders of magnitude higher than conventional supercapacitors. Additionally, the CNO 
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particles have high surface-to-volume ratio and, used directly in electrodes without 

binders and polymer separators, enhanced the performance of the microsupercapacitors.  

In an effort to study the factors influencing supercapacitor performance such as 

structure, physical and electrical properties of CNOs and nature of electrolytes, 

McDonough and co-workers [83] extensively and systematically investigated these 

parameters.  Interestingly, their experimental results on CNO-electrolyte interfaces were 

supplemented by molecular dynamics (MD) simulations for better understanding of the 

interactions and migration of ions in the surface of CNOs. The results showed that 

CNOs capacitive performance exceeds other carbon materials at high charge/discharge 

rates and CNOs produced at annealing 1800˚C had the highest conductivity and 

capacitive performance at high rates.  

Gao’s group has studied the enhancement of the porosity of the surface of CNOs 

by chemical activation using KOH to efficiently improve the specific area for ion-

accessible outer shells [84]. CNOs were prepared by combustion using laser resonant 

excitation in open air of ethylene molecules followed by KOH activation and the 

Brunauer-Emmett-Teller surface area and pore volume were measured by N2 

adsorption. Based on their findings, the activation of CNOs with KOH improved the 

porosity and hydrophilicity of the CNOs thus having a high charge/discharge rates as 

compared to non-activated CNOs. In another study, Borgohain et al. [76] oxidized 

CNOs followed by addition and precipitation of RuO2 to form composites can increase 

the capacitance of the electrodes to 334 Fg-1 as compared to pure CNO materials. 

Moreover, using other kinds of composites based on CNOs can be also useful for the 

applications in rechargeable lithium batteries as anodes with improved capacitance 

performance materials [85-88]. 
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Catalysis 

The need for increased global energy consumption and high yield efficiency 

productions of important materials in industries calls for new catalytic materials to 

address these problems. Nanoparticles are ideal candidates for this kind of applications 

due to their high surface area, which means that more catalytic reactions can occur at 

the same time resulting in an increased catalytic activity.  

CNOs obtained by annealing nanodiamonds yield small particles which have 

potential use for this area. Keller et al. [89] presented for the first time the potential 

application of CNOs in catalysis, particularly in the oxidative dehydrogenation (ODH) 

of ethylbenzene to styrene. The results revealed a 92% conversion level after an 

activation period of 2 h and 62% stability of the styrene product yield, which was better 

than K-Fe catalysts or other carbon materials. Furthermore, a follow up study of this 

group about the catalytic behavior of CNOs compared to ultradispersed nanodiamonds 

with special attention to the sp3 and sp2 structures of these materials for ODH catalysis 

was carried out [90]. It was found that CNOs selectively transformed ethylbenzene to 

styrene due to the sp2-rich surface aside from the presence of carbon-oxygen bonds 

formed as a result of the annealing and oxygen pretreatment giving a higher number 

active of surface site for styrene formation.  

On the other hand, Xu et al. [91] synthesized a Pt/OLFs catalyst by 

impregnation-reduction method for electro-oxidation of methanol in direct methanol 

fuel cells (DMFCs). The Pt/OLFs showed higher catalytic activity as compared with 

Pt/Vulcan Xc-72 by about 20% as measured by cyclic voltammetry for methanol 

electro-oxidation.  
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Later, Santiago et al. [92] tested a new method to impregnate Pt into the surface 

of CNOs with higher loading and smaller Pt particles. Rotating disk-slurry electrode 

(RoDSE) technique allowed the preparation of a Pt/CNO catalyst as a “greener” way to 

electrodeposit Pt into the surface of CNO. The highly dispersed catalyst nanomaterial 

prepared by this method showed significant thermal stability in TGA analysis, lower 

onset potential for the electrooxidation of methanol as compared to Pt/Vulcan. 

Biological Applications 

The concern of using new nanomaterials for biological applications must be 

evaluated in terms of biocompatibility and toxic effect. CNOs, as a relatively new 

material, are not exempted of these concerns considering the results obtained from the 

cytotoxic levels of other allotropes of carbon nanomaterials such as CNTs and 

fullerenes [93, 94].  

The first report on the toxic effects of CNOs on human skin fibroblast were 

reported by Ding et al. [95]. Based on their findings, large CNOs with diameters of 30 

nm produced from arc-discharged showed less adverse effects, particularly on the 

induced stress of the material on cells as compared with MWCNTs. Recently, CNOs 

prepared by the same method and with similar size were tested for potential adverse 

effect on the cardiovascular system [96]. After taking all considerations and 

experimental results, they concluded that unmodified CNOs can induce DNA damage 

and apoptosis in human umbilical vein endothelial cells (HUVECs) due to the 

generation of reactive oxygen species (ROS).  

 Small CNOs (5-6 nm), synthesized by annealing of nanodiamonds, were used 

for the first time by Luszczyn et al. [97] to covalently bind biomolecules. Initially, the 

biocompatibility test of oxidized CNOs and PEGylated CNOs were exposed to 
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fibrolasts for 4 hours. They found that there was no cytotoxic effect and these particles 

were thus viable for biological applications. In another report by Giordani et al. [63], 

small CNOs functionalized with fluorescein showed weak inflammatory response and 

low cytotoxicity in vitro and in vivo compared to CNTs. Moreover, this group made 

several attempts to use other type of cells like MCF-7 cells [64] and HeLa Kyoto [65] 

for biological imaging and did not notice any significant cytotoxic effect. 

 Biological imaging using CNOs has also been an interesting topic for 

researchers since, intrinsically, CNOs have inherent optical properties as mentioned 

earlier. Ghosh et al. [98] synthesized CNOs by carbonizing wood wool by pyrolysis 

followed by surface oxidation to form non-toxic water soluble CNOs (30 nm diameter) 

that were used for imaging Drosophila melanogaster. These water-soluble CNOs 

exhibited fluorescent properties and, when fed to D. melanogaster, it was possible to 

image the life cycle of the organism from egg to adulthood using fluorescence 

spectroscopy. Additionally, the organism excretes the fluorescent CNOs without 

adverse effects. Subsequently, after the success of their work, they were able to apply 

this in in vivo studies of Escherichia coli and the small nematode Caenorhabditis 

elegans [99].   

Detection systems 

Oxidized CNOs have been covalently attached onto a self-assembled layer of 

cysteamine on gold by amidation, followed by the immobilization of biotin, also via 

amidation, to form a complete layer of Au/thiol/ox-CNOs/biotin [97]. Subsequently, the 

layer was utilized to monitor the interaction of biotin and immobilized avidin in the 

surface using surface plasmon resonance (SPR) spectroscopy. The same group has 

evaluated CNO composites formed with poly(diallyldimethylammonium chloride 
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(PDDA) for the electrochemical determination of dopamine in the presence of ascorbic 

acid and uric acid in solution [100]. The film of PDDA/CNO composite was coated on 

glassy carbon electrode and then examined for the ability of the modified surface to 

detect dopamine in a simultaneous assay. The results showed a good selectivity and 

sensitivity for dopamine in the range between 510-5 to 410-3 M. To the best of our 

knowledge, these are the only studies devoted to the development of detecting systems 

using CNOs up-to-date.  

Other applications 

 CNOs tribological properties, such as an anti-wear and friction reducing 

material, make them interesting additives for lubricants [101-104]. CNOs have also 

been used in environmental remediation by Li and coworkers [105], who found a high 

sorption capacity for heavy metal ions like Pb2+, Cu2+, Cd2+, Ni2+ and Zn2+ and a 10-fold  

higher capacity than that of fullerene C60. Other applications include support for 

nanoparticle growth [106], gas storage [32] and nanoreactors [107]. 

1.3 Thesis Objectives 

 The interest of the researches nowadays for the continuously growing demand 

and search for novel materials in nanoscience and nanotechnology has make them 

explore new horizons in materials chemistry. As described in the preceding sections, 

CNOs are attractive materials with defined structures and remarkable properties. 

Although up to date they are not commercially available products, it becomes apparent 

that they can be prepared in large amounts and the possibility to chemically modify 

their surface to fine tune their properties gives them widespread potential applications.  
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The overall objective of this thesis is thus to explore strategies for the 

preparation and modification of novel nanoarchitectures based on CNOs.  

To achieve this general objective, we have focused on the following aspects:    

1. The preparation and characterization of CNOs by nanodiamond annealing, their 

characterization and functionalization using RF plasma  

2. The obtention of CNO dispersions in water based on supramolecular interactions 

between crown ether appended CNOs and ammonium containing polymers  

3. The immobilization of CNOs on electrode surfaces, their post-functionalization 

by electrografting of diazonium salts and their electrochemical characterization  

4. The application of the CNO modified electrodes bearing reactive functional 

groups in sensors and biosensors, in particular in the detection of small 

molecules (ascorbic acid, nitrite), proteins and DNA. 

This thesis is thus a contribution to the rapidly growing development of new classes of 

carbon nano-onion based nanomaterials that aims at expanding their current applications 

to construct novel detection systems with improved performances. 
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 Chapter 2  

 

Preparation and Characterization of Carbon Nano-onions by 

Nanodiamond Annealing and Functionalization by Radio-frequency 

Ar/O2 Plasma 

 

ABSTRACT 

Carbon nanomaterials can be prepared by several methods having in common that need 

a carbon source and often require high energies. In this Chapter, we describe the 

synthesis and characterization of carbon nano-onions by annealing of commercially 

available nanodiamonds. Heat treatment of nanodiamonds at 1200ºC for 6 hours under 

argon atmosphere afforded small round nano-onion particles of 3-4 nm diameter and 5-6 

graphitic shells. The prepared CNOs were visualized by HRTEM and showed the 

characteristic XRD and Raman features. The results have been compared with a sample 

prepared by annealing at 1600ºC.  Functionalization using RF plasma generates a facile 

way to introduce oxygen moieties into the surface of synthesized CNO. Xray 

photoemission spectroscopy (XPS) results showed that oxygen-containing groups like 

C-O, C=O and O-C=O were introduced unto the surface of CNOs. Raman spectroscopy 

clearly shows the change of ID/G ratios as indicated in the conversion of sp2 to sp3 as a 

result of functionalization in the surface of CNO. 
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2.1 INTRODUCTION 

The first method to synthesize carbon nano-onions (CNOs) by intense electron 

beam irradiation of amorphous carbon as precursor was described by Ugarte in 1992, 

which also marks the discovery of CNOs [1]. Following this report, many techniques 

were tried for efficient and gram-scale production of CNOs such as arc-discharge [2-4], 

chemical vapor deposition (CVD) [5, 6] and radio frequency/microwave plasma [7, 8]. 

As mentioned in the Introduction, these methods have some drawbacks relating with 

purity and quantity of the final product. For instance, arc-discharge often yields other 

carbon nanoparticles like carbon nanotubes, the diameter is not homogenous and the 

purification methods are destructive to the quality of CNOs.  

Kuznetsov [9] proposed a precise way to produce homogenous and small onions 

approximately with size diameter of 5-8 carbon shells using ultra dispersed 

nanodiamonds (NDs) by vacuum annealing at high temperatures. This technique 

produces high yields of pure and small CNOs since it does not require any other catalyst 

and by adjusting the size distribution of the starting NDs before annealing it is possible 

to tune the size distribution of CNOs. Furthermore, this process could be scaled-up and 

useful for many applications. The detailed molecular dynamics simulation of the 

formation of NDs to CNOs are described by Tomita [10, 11] who proposed that the 

heating treatment graphitized the NDs from the surface to the inner core until fully 

hollow CNOs are formed. However, the onset temperature of the start of graphitization 

of NDs until it is fully transformed to CNOs is not clear and different values can be 

found in the literature.  Obraztsova et al. [12] observed that at around 1400 K (1127˚C) 

the first traces of graphitic layer started to appear with almost full transformation at 

1800 K (1527˚C) but they have noticed reconfigured CNOs into a highly ordered 

hexagonal structure. On the other hand, Qiao et al. [13] synthesized CNOs by annealing 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 35 

NDs for 1 h at temperatures between 1100 and 1200˚C in an argon atmosphere. Their 

study revealed that CNOs begins to form at temperatures around 1100-1200˚C. 

Additionally, some literature claimed the onset of graphitization around 850˚C with full 

conversion to CNOs around 1200˚C [14].  

The applications of carbon nano-onions have been limited due to the 

hydrophobic nature of carbon. To improve their solubilities, several functionalizations 

have been made either covalent [15-20] or non-covalent i.e. incorporated in composite 

materials [21-23]. One of the most popular methods is the chemical oxidation using 

strong oxidants like HNO3 and H2SO4 which, in the case of nanotubes, can damage the 

structure and the conductivity decreases [24].  

Plasma-based techniques are a new and attractive way to functionalize materials 

due to its simplicity and also because they are contaminant-free method. No harsh 

chemicals were used, it is environmentally friendly and safe and extremely easy to 

handle and operate. This method induces less damage on the structure of the material 

since the excited molecules produced during the plasma discharge attack the C=C bond 

creating open ends and defect sites as primary sites for functionalization [25]. Scheme 

2.1 shows the possible reaction mechanisms of plasma treatment for 

activation/functionalization in a carbon surface with graphitic layers. As in multi-walled 

carbon nanotubes, the C=C bonds of CNOs are expected to be vulnerable to plasma 

activation with the formation of oxidized sites on the surface that can be the initial sites 

for further modifications [26] . 
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Scheme 2.1: Examples of possible oxidation mechanism of graphitic layers by Ar/O2 
microwave-surface wave plasma treatment: (a) generation of  C=O bonds and (b) O-C=O 
bonds. i: plasma, ii: oxygen transfer, iii: hydrogen transfer (adapted from [26]). 
 
 

In this Chapter, we describe the synthesis and characterization of carbon nano-

onions by annealing of commercially available nanodiamonds. The prepared particles 

were further functionalized using a radio frequency (RF) plasma in Ar/O2 atmosphere to 

introduce oxygenated groups on the surface of the CNOs [27]. The results on the 

synthesis are compared with a CNO sample kindly donated by Prof. Luis Echegoyen 

(University of Texas at El Paso).  

 

2.2 EXPERIMENTAL SECTION 

Nanodiamonds (particle size : <10 nm) were obtained from TCI Europe BV and 

used as received. The annealing process was carried out on a quartz tubular furnace 

(HST 12/600, Carbolite, UK) able to heat up until 1200˚C (Figure 2.1). 
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Figure 2.1:  Photograph of the annealing tubular furnace.  
 

Preparation: In the first attempt (CNO-1), 200 mg of nanodiamonds were 

loaded in a ceramic quartz boat and transferred to the furnace. The air in the furnace 

was removed by purging with nitrogen gas for several minutes. Annealing of 

nanodiamonds was performed at 1100˚C under nitrogen atmosphere at a flow rate of 3 

L min-1 and with a heating ramp of 50˚C min-1. The final temperature was kept for over 

a period of 3 h, and then the material was slowly cooled to room temperature. 

A second attempt (CNO-2) was tried using 300 mg of nanodiamonds. The 

sample was loaded in a quartz boat and transferred to the furnace chamber. The air in 

the furnace was first removed by purging with argon for several minutes. The annealing 

was performed at 1200˚C under argon atmosphere at a flow rate 0.05 L min-1 at a 

heating ramp of 50˚C min-1. The final temperature was maintained for 6 h and then the 

annealed sample was slowly cooled at room temperature. 

Characterization: The annealed samples were characterized using high 

resolution transmission electron microscopy on a Jeol 2011 instrument (from the Servei 

de Microscòpia of Universitat Autónoma de Barcelona) operated at 200 kV and adapted 
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with diffraction patterns to visualize the structural form of the product before and after 

annealing. Samples were prepared in copper grids with a carbon layer and CNO samples 

were dispersed in ethanol.  

Raman spectra were recorded in a RENISHAW inVia instrument equipped with 

514 nm, 633 nm and 785 nm lasers exciting at 514 nm in 1-10% energy. A glass slide 

was used to hold the samples. X-ray diffraction (XRD) was performed using a Siemens 

D5000 diffractometer (Bragg-Brentano parafocusing geometry and vertical θ-θ 

goniometer) fitted with a curved graphite diffracted beam monochromator. The angular 

2θ diffraction range was between 5˚ and 130˚. The data were collected with an angular 

step of 0.05˚ at 3 s per step and sample rotation. A low background Si (510) wafer was 

used as sample holder. Cukα radiation was obtained from a copper X-ray tube operated 

at 40 kV and 30 mA. 

Purification. Prior to the plasma treatment, sample of synthesized CNO-2 was 

subjected for further purification procedure in which 50mg were boiled in 30% 

hydrogen peroxide for 3hrs. The insoluble particles were gathered and dried under 

vacuum at 50˚C. The treatment in peroxides was applied to remove amorphous carbon 

particles in the surface of CNOs. Peroxides are selective oxidizer, it easily etches low 

crystalline particles such as amorphous carbons but not with particles with better 

graphitized like CNOs [28]. 

 Radio Frequency (RF) Plasma Treatment. RF plasma treatment was carried 

out in a Diener Electronic GmbH Femto SRCE plasma instrument equipped with PCCE 

control as shown in Figure 2.2. The low pressure plasma reactor consists of three main 

components: the vacuum chamber, the vacuum pump and a high frequency generator 

for plasma creation. A low pressure is created in the chamber by means of a vacuum 
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pump at a pressure as low as 0.3 mbar and then mixture of Ar/O2 is fed into the chamber 

continuously flowing to expel other contaminants for 2 min before the main treatment. 

The working pressure was set at 0.4 mbar and when this pressure is achieved the 

generator is switched on and the process gas in the chamber is ionized. 40 mg of p-

CNO-2 or purified CNO-2 sample were loaded in Pyrex® glass container and mounted 

into the rotary drum of the plasma machine. The plasma system receives continuously 

fresh gas while contaminated gas is removed. Ar and O2 concentration in the reaction 

were 75% and 25%, respectively. The plasma treatment was carried out for 5 min at a 

power of 30 W and 60 W and after this time, another 5 min was set to let the gas flush 

and vent the chamber. The treated sample was removed and examined by X-Ray 

Photoemission Spectroscopy (XPS) (conducted at ICN2 facilities in Barcelona, Spain) 

and RAMAN spectroscopy. Ex-situ XPS experiments were performed at room 

temperature with a SPECS PHOIBOS 150 hemispherical analyzer at 10eV pass energy 

using monochromatic Al Kα (1486.74 eV) radiation as excitation source in a base 

pressure of 10-10 mbar. 

 

Figure 2.2:  Photograph of the RF plasma activation reactor. The sample is loaded in the 
compartment displayed in the right.  
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2.3 RESULTS AND DISCUSSION  

Preparation and Characterization of CNOs by nanodiamond annealing. The 

structural transformation of ND to CNOs was first confirmed by direct visual 

observation. As shown in Figure 2.3, there was a significant change of color of the 

starting material after annealing at high temperature. The percent of recovery after 

annealing for CNO-1 and CNO-2 were (179 mg) 89.5% and (230 mg) 76.6%, 

respectively.  

A B

 

Figure 2.3:  Transformation of the starting sample of (A) nanodiamonds to (B) CNOs after 
thermal annealing.  
 
 

The transformation of nanodiamonds to carbon nano-onions was studied using 

high resolution transmission electron microscopy (HRTEM) (Figure 2.4). The HRTEM 

images of nanodiamonds (NDs) showed the presence of the typical crystal lattice of 

diamond formed by parallel planes separated by ~0.19 nm, in good agreement with 

literature reports [29] (Figure 2.4A). Inspection of HRTEM images of CNO-1 in Figure 

2.4C showed ND particles not completely transformed into CNOs in which a graphitic 

shell composed of 2-3 layers is present around a ND core with a slightly increased 

interlayer distance of 0.21 nm. Evidently is the result of the low temperature and short 

annealing time used in this process. Exposure of ND to the maximum temperature 

allowed by the furnace at 1200˚C for longer times (6 h) generated essentially spherical 
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CNO particles of 3-4 nm diameter with no presence of ND (CNO-2). These particles 

were formed by an average of 5-6 graphitic shells with distances between the carbon 

layers around of 0.35 nm and indicate that these annealing conditions are adequate to 

form small diameter CNOs from NDs (Figure 2.4D). As can be seen from figure 2.4B, 

the sample received from UTEP shows reconstructed hexagonal structures in the CNOs 

due to the fusion of graphitic layers [30] and this is also due to the annealing at higher 

temperatures (1600ºC).  

 

Figure 2.4: HRTEM images of A) NDs from TCI, B) CNO from UTEP, C) CNO-1 and D) 
CNO-2. 
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XRD data was used to follow the transformation of NDs to CNOs (Figure 2.5). 

NDs have three characteristic peaks at 2 values of 43.0º, 75º and 90º corresponding to 

the (111), (220) and (311) planes of sp3-bonded diamond, respectively. On the other 

hand, the diffraction pattern of CNOs show two main peaks, one corresponding to sp2
 

graphitic layers at 2 values of 25º (002 plane) and a second broad peak at 43.7º (100 

plane), which can be overlapped by the (111) peak of ND [11]. Figure 2.2 shows the 

diffraction patterns obtained for the starting NDs and the products resulting from 

annealing (CNO-1 and CNO-2). In principle, the XRD signal can be generated from the 

coinciding scattering of many crystal planes and is thus proportional to the crystal 

volume of the whole sample. Therefore, in the case where large ND particles are not 

fully graphitized they would strongly contribute to the overall XRD signal and even 

small NDs that were fully transformed to sp2 carbon will be overshadowed. This 

phenomenon was clearly observed in CNO-1 in which the presence of peaks at 43º, 75º 

and 90º indicate that it contains a large amount of untransformed NDs, although a small 

peak of (002) plane for graphitic carbon at 25º is observed. In contrast, in CNO-2 the 

peaks at 75º and 90º are absent, indicating the total transformation of NDs to CNOs. 

This diffraction pattern is similar to that of the CNO sample received from UTEP with 

peaks at 25º and 43.7º. The difference in peak intensities arises from the morphology of 

the particles, which is in turn a result of the annealing temperature, as seen above in 

HRTEM.  
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Figure 2.5: XRD patterns of A) NDs, B) CNO from UTEP, C) CNO-1 and D) CNO-2. 
 
 Raman spectroscopy is a very useful technique to characterize carbon structures 

that complements XRD and HRTEM, especially for the presence of the so-called D and 

G bands. The G band (~1580 cm-1) is due to the sp2 bonded carbons and indicates the 

presence of the graphitic layer. The D band (~1340 cm-1) is related with defect modes 

and is very sensitive to any disruption between the configurations of the carbon 

material. The transformation of ND to CNO is observed in the results of Raman spectra 

presented in Figure 2.6. ND spectrum shows a sharp peak at 1329 cm-1 (close to bulk 

diamond which appears at 1332 cm-1) that corresponds to the sp3 C-C bonds of the 

crystal lattice of ND. This peak is not of the same nature as found in synthesized CNOs, 

which appeared shifted to higher wavelengths and broader due to a larger crystal lattice 

spacing as observed in XRD and HRTEM. On the other hand, the peak at 1600 cm-1 is 

associated with adsorption of water molecules [31] and is shifted to a lower wavelength 
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as a result of the transformation to CNOs. Meanwhile, the ratio of the D and G bands 

indicate a change of structure of ND to CNO. The Raman spectrum of CNO-1 shows 

two bands at 1340 and 1587 cm-1 with an ID/IG ratio of 1.07. Annealing at higher 

temperature for longer times as in CNO-2, gave a spectrum with well resolved peaks 

and ID/IG = 0.94 due to a stronger G-band peak (1584 cm-1) that indicates that sp3 

carbons of the ND are converted to sp2. Finally, CNO-UTEP samples showed a G-band 

peak in similar position as CNO-2 with higher ID/IG ratio (1.11), suggesting that a high 

temperature annealing could also introduce defects into the surface of CNOs. 

 

Figure 2.6: Raman spectra of CNO-1, CNO-2 and the sample received from UTEP. 

 

RF Plasma Functionalization and XPS analysis. The possibility to use RF plasma for 

functionalization of CNOs was then investigated. For this, samples of CNO-2 were 

treated with Ar/O2 plasma for 5 min and the product was characterized by XPS and 

Raman spectroscopy (Scheme 2.2) 

 

Scheme 2.2: RF plasma functionalization of CNOs. 
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The chemical modification of the surface of CNOs arising from the plasma 

treatment was analyzed by XPS. XPS is a surface sensitive technique used to identify 

the functional groups attached to the surface of the material. Figure 2.7 shows the XPS 

survey spectra of the pristine CNO-2, purified CNO-2 and plasma treated samples 

together with the total percentages of carbon and oxygen. In all spectra, the distinctive 

existence of carbon and oxygen can be observed, even in pristine CNOs. The oxygen 

peak becomes more visible in the purified and treated samples as shown in the Figure 

2.7b to e. Purification using hydrogen peroxide in the sample of CNOs did not only 

remove amorphous carbon but also reveals oxygen functionalization into the surface. 

Table 2.1 shows the normalized C and O atomic compositions of the different samples 

analyzed. 

 

Table 2.1. XPS analysis of pristine CNO-2 (p-CNO-2) and purified CNO-2 before and after 
plasma treatment. The percents of each element were normalized to 100%. 
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Figure 2.7: XPS survey spectra and elemental composition of (a) pristine CNO-2, (b) purified 
CNO-2, (c) purified CNO-2 treated at 30 W, (d) purified CNO-2 treated at 60 W and (e) 
pristine CNO-2 treated at 60 W.  
 
 

For CNOs before purification and plasma treatment, oxygen atoms come from 

air oxidation on the surface of CNO and humidity, which is about 10.80% (Figure 2.7a). 

There is a significant increase in the oxygen concentration after purification with 

hydrogen peroxide, doubling the value of the percent of oxygen of pristine CNO 

(21.06%) indicating that this step can oxygenate the surface of CNOs (see below for 

further discussion) (Figure 2.7b). Treating the sample with plasma after purification 

removes unstable oxygen groups attached into the surface of purified CNOs. Since 

plasma can be used for both etching and functionalization, unbounded and unstable 

moieties are removed as indicated by the decrease in %O content in CNO-2 at 30W 

(Figure 2.7c) and 60W (Figure 2.7d). In the case of samples of pristine CNO-2 directly 

treated with plasma at 60W showed a minimal increase of oxygen content (about 1%), 
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which clearly indicates that plasma treatment is a mild treatment to functionalize the 

CNO surfaces.  

Further information on the nature of the functional groups on the CNO surface 

was obtained from the analysis of high-resolution XPS spectra. Figure 2.8 shows the 

deconvolution of the C1s peak of each analyzed sample. The assigned peak 1 at 284.9 

eV is attributed to the graphitic structure (C=C) and sp2 carbons. Peak 2 centered at 

286.2 eV is related with the sp3-hybridized carbon atoms (C-C). The peaks at 287.7 eV 

(peak 3) and 289.4 eV (peak 4) correspond to the C-O and O-C=O functionalities, 

respectively. An additional peak at 291.5 eV, related to π-π* transition levels associated 

with free electrons between the graphitic planes [27], can be seen in some of the 

samples. After the purification (Figure 2.8b), there was a decrease in sp2 and sp3 signals 

(49.65% and 33.87%) accompanied by an increase in C-O and O-C=O (14.6 % and 

1.68%) as compared to pristine CNO-2 (Figure 2.8A), indicating that purification 

introduced oxygen functionalities into the surface of CNO. Moreover, the π-π* peak is 

only present in pristine CNO not in purified CNO, which clearly indicates that the 

graphitic plane has been damaged decreasing the movement of free electrons. In plasma 

treated samples (Figure 2.8c and Figure 2.9d), there is an increase of sp2 carbon, 

especially when treated at 30W, with a very slight restoration of the presence of π-π* 

peak at 60 W. On the other hand, direct treatment of CNOs with plasma (Figure 2.8e) 

showed an obvious decrease in sp2 carbons and an increase in all other peaks, which 

also indicates a successful oxygen functionalization in the surface of CNO. As 

mentioned earlier in the introduction, sp2-hybridized graphite-like carbons are 

susceptible to plasma activation. The summary of the percentage of each fraction peaks 

is also shown in Table 2.1.  
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Further analysis on the oxygen content of the samples was carried out based on 

the high resolution O1s spectra of the samples before and after treatment (Figure 2.9). It 

is interesting to note the presence of water in all samples (except for pristine CNO-2 

treated at 60W), indicating a susceptibility to environment moisture, especially for 

pristine CNO. This water contents decreases when purified and treated with plasma and 

when pristine CNO was treated with plasma, a very hydrophobic surface seems to be 

generated thus moisture cannot affect the surface of CNO (Figure 2.9e).  

 

Figure 2.8: High resolution XPS C 1s spectra  of (a) pristine CNO-2, (b) purified CNO-2, (c) 
purified CNO-2 treated at 30 W, (d) purified CNO-2 treated at 60 W and (e) pristine CNO-2 
treated at 60 W.  
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Figure 2.9: High resolution XPS O 1s spectra  of (a) pristine CNO-2, (b) purified CNO-2, (c) 
purified CNO-2 treated at 30 W, (d) purified CNO-2 treated at 60 W and (e) pristine CNO-2 
treated at 60 W. 
 

 Raman spectroscopy was used to support the results in XPS for the change of sp2- 

hybridized graphitic plane C=C to sp3 carbon C-C before and after purification and plasma 

treatment as shown in Figure 2.10.  
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Figure 2.10: Raman spectra of a) pristine CNO-2, (b) purified CNO-2, (c) purified CNO-2 
treated at 60 W. 
 

The high sensitivity of Raman techniques to the disorder surface of CNO before 

and after purification and plasma treatment are clearly shown in Figure 2.10, as revealed 

in the presence of the D and G bands. Pristine CNO showed lower ID/G ratio of 0.94 due 

to the stronger intensity peak of the graphitic plane (sp2) C=C as indicated in the 

intensity signal of G band ~1584 cm-1 and lower disorder plane (sp3) C-C of D band 

~1337 cm-1 which, correlates well with the XPS findings.  After the purification, some 

of the sp2 were disrupted and converted to sp3, thus there is a significant change in the 

ID/G ratio of 1.07. The sp3 or D band has been enhanced due to the functionalization of 

the surface by purification as also reflected in XPS data. Furthermore, plasma treatment 

at 60W after purification improves the ID/G ratio of 1.01 due to the etching process or 

removal of unstable disordered plane in the surface exposing the graphitic layer of 
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CNOs as clearly stated in the XPS results.  These results allow us to propose a 

mechanism similar to that represented in Figure 2.11 to account for the XPS and Raman 

results of the different treatments.  

Figure 2.11: Possible surface transformations of CNO-2 after purification and RF treatment.  

 

 

CONCLUSIONS 

CNOs have been prepared by annealing nanodiamonds at high temperatures. Heat 

treatment of ND at 1200ºC for 6 hours under argon atmosphere afforded small round 

CNO particles of 3-4 nm diameter and 5-6 graphitic shells. The CNO sample was 

characterized by HRTEM, XRD and Raman spectroscopy. Purification and plasma 

treated samples of CNOs generates oxygen functionalities into the surface which was 

extensively and specifically determined and analyzed using XPS and Raman 

spectroscopy. 
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Chapter 3  

 

Supramolecular Dispersion of Carbon Nano-onions Based on Crown 

ether/ammonium Interactions 

 

ABSTRACT 

In this chapter, we explore the possibility of crown ether/ammonium interactions for the 

dispersion of CNOs in water using biocompatible polymers. CNOs were functionalized 

by reaction of diazotized 4-aminobenzo-18-crown-6. In the presence of biocompatible 

polymers containing pendant amino groups, such as aminated carboxymethyl cellulose 

(CMC-NH2) and poly-L-lysine, the modified CNOs formed dispersions in water at 

acidic pH. Of them, the dispersion of CNO-18C6 and CMC-NH2 at pH 4 was stable 

after several months at room temperature. Precipitation of the CNO-18C6 under basic 

conditions and in the presence of excess K+ cation indicates that the ammonium/crown 

ether interactions are the major driving force in the formation of the CNO dispersions.  
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3.1 INTRODUCTION 

Carbon nanomaterials are generally highly aggregated and poorly soluble in 

most common organic solvents. This does not only hinders to a great extent the 

possibility of  chemical functionalization to prepare new materials but also limits some 

applications in which the preparation of stable dispersions is desirable, for example to 

prepare thin films [1]. Like other carbon allotropes, CNOs are not exempted of chemical 

inertness and lack of solubility and have therefore been generally underexploited until 

recently [2]. Modification in the surface of CNOs facilitates an increase of solubility in 

different solvents [3]. Some of these covalent functionalizations include 1,3-dipolar 

cycloaddition [4, 5], oxidation reactions with strong acids [3], fluorination [6, 7], 

polymerization [8] and reaction with diazonium compounds [9]. 

Supramolecular interactions have been previously employed to prepare soluble 

CNOs (Figure 3.1). The covalent functionalization of CNOs by metal-ligand 

interactions was first described by Palkar et al [10]. In their work, CNOs were modified 

with pyridyl units and then used as axial ligands to form a complex with the central zinc 

atom of Zn-porphyrin. This strategy generated water soluble self-assembled nanoporous 

networks of CNO−porphyrin nanohybrids. The preparation of these complexes is also 

possible using other metals such as platinum and palladium and may have potential 

applications in the field of catalysis and hydrogen storage. 

Our group recently reported the solubilization of CNOs by host-guest 

interactions [11]. Initially, CNOs were oxidized followed by amidation reaction with β-

cyclodextrin amine. Subsequently, the CNO-cyclodextrin derivative was allowed to 

interact with a guest polymer prepared by grafting ferrocene units into a hydrophilic 

dextran polymer (Fc-Dex). The formation of inclusion complexes between β-
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cyclodextrin and Fc molecules caused an improvement in the solubility of CNOs 

aqueous solutions as revealed by dynamic light scattering and zeta-potential 

measurements. These dispersions precipitated back upon addition of a competitive guest 

such as adamantanecarboxylic acid, demonstrating the importance of the host-guest 

interactions in the formation of the dispersed CNOs.  

 

Figure 3.1: Supramolecular structures based on CNOs. A) CNO-porphyrin nanohybrid; B) 
CNO-cyclodextrin/Fc polymer complex. 

 

The supramolecular interactions between amines and crown ethers are well 

known and have been widely described in the literature [12-14]. Crown ethers are 

macrocyclic compounds in which -CH2CH2O- groups repeat in regular order (Figure 

3.2). The name arises from the resemblance of these molecules to a crown and, 

depending on the size of the ring and the number of oxygen atoms, they are called 12-

crown-4, 15-crown-5, and 18-crown-6, etc. They can capture positively charged ions 

like metal and ammonium ions because the negatively charged electrons of the oxygen 

atoms point inward and attract and catch the ion. These interactions have been widely 

used to construct different supramolecular architectures such as rotaxanes and catenanes 

[14, 15]. Among the many types of crown ethers, benzocrown ethers are ideal as 

ammonium receptor molecules [16]. These receptors contain more rigid catechol groups 
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instead of the oxoethyl residue and the presence of the aromatic ring allows the 

functionalization of these receptors to obtain more complex systems[17].  

 

Figure 3.2: Molecular formula of 18-crown-6 (A) and energy minimized structure of the 18-
crown-6 complex with ammonium cation (B). Crown ether/ammonium based rotaxane (C) 
(from ref [17]).  

 

In this chapter, we explore the possibility to use crown ether/ammonium 

interactions for the dispersion of CNOs in water using biocompatible polymers. For 

this, we describe the functionalization and characterization of pristine CNOs with 

benzo-18-crown-6 (CNO-18C6) and study their interaction with biocompatible 

polymers containing pendant amino groups such as aminated carboxymethyl cellulose 

(CMC-NH2) and poly-L-lysine.  
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3.2 EXPERIMENTAL SECTION 

Materials. All chemicals and solvents used were commercially available and 

used without further purification. 4-aminobenzo-18-crown-6, isopentyl nitrite, 

carboxymethyl cellulose (MW 70 kDa) and poly-L-lysine hydrobromide (MW = 

150,000-300,000) were purchased from Sigma. Water was purified using a Milli-Q-

water purification system (Millipore) to a resistivity of 18.2 M.cm then filtered 

through a 0.22 M filter. CNOs were kindly provided by Prof. Luis Echegoyen 

(University of Texas at El Paso). 

Instrumentation. Raman spectra were recorded with an Invia Renishaw using a 

514 nm laser line from an Ar laser. The samples were loaded in glass slides. Fourier 

Transform Infrared (FTIR) spectra (KBr pellets) were recorded in a Jasco FT/IR-600 

PLUS spectrometer. Thermal gravimetric analysis (TGA) experiments were carried out 

in a Mettler Toledo TGA/SDTA851 instrument. Typically, 1-2 mg of CNOs was loaded 

in the sample holder and the material was heated up at rate of 10˚C min-1 in air, while 

the weight was recorded continuously. High resolution transmission electron 

microscopy (HRTEM) images were acquired using a Jeol model 2011 operated at 200 

kV equipped with an energy dispersive spectrometer (EDS) coupled to an Oxford Inca 

detector.  Dispersed samples were deposited on Cu grids with a carbon layer. Zeta-

potentials and hydrodynamic diameters were measured using a Malvern Instruments 

Zetasizer 3000 HSa particle sizer. 

Synthesis of CNO-18C6. The synthetic procedure for the functionalization of 

CNOs by reaction with diazonium salts was similar to that described elsewhere [9]. 
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Scheme 3.1: Synthesis of CNO-18C6. 

Briefly, 50 mg of pristine CNOs were initially dispersed in dimethyl formamide 

(50 mL) by tip sonication for 30 min. To this dispersion, 5 mmol of 4-aminobenzo-18-

crown-6 were added followed by the addition of isopentyl nitrite (10 mmol) under an 

inert atmosphere. The reaction was stirred overnight at 60˚C and allowed to cool at 

room temperature. The CNO-18C6 was separated from the reaction mixture by 

centrifugation followed by successive washing with DMF. The solid was redispersed in 

toluene and methanol, washed and the black product was dried under vacuum (Yield: 47 

mg).  

Preparation of aminated-carboxymethyl cellulose (CMC-NH2).  
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Scheme 3.2: a) EDC; b) 1,6-diaminohexane. 
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One-gram of CMC was dissolved in 10 mL of acetate buffer pH 5 then 3 mL of 

0.2 M EDC was added and stirred for 30 min at 4ºC. 1,6-diaminohexane was then added 

(3g) into the mixture and stirred overnight at room temperature. To precipitate the 

CMC-NH2, analytical grade ethanol was added into the mixture and then quickly stored 

at -20˚C in the freezer. The precipitate was repeatedly washed with cold ethanol and 

dried under vacuum at 40˚C. The presence of amino groups in the modified CMC-NH2 

was evidenced by FTIR and by the ninhydrin test. 

Interaction of CNO/18C6 with the aminated polymers. Aqueous solutions of 

CMC-NH2 (5 mg/mL) and poly-L-lysine (2% w/v) were prepared at different pH. CNO-

18C6 (1mg) was added to 2 mL of the above solutions and the mixture was sonicated 

for 15 min. The supramolecular dispersions were then stored at room temperature in 

order to study their stability.  

3.3 RESULTS AND DISCUSSION 

 The overall procedure for the supramolecular solubilization of CNO-18C6 is 

showed in Figure 3.3.  The initial step involves the in-situ diazotization reaction under 

inert atmosphere to create CNO-18C6, which was slightly soluble in water. Afterwards, 

the polymers of CMC-NH2 or poly-L-lysine in aqueous solutions were tested as 

supramolecular dispersive agents at different pH for CNO-18C6. In principle, at lower 

pH the amine group of the polymers must be protonated to give a positive ammonium 

cation that interact via ion-dipole with the crown ether residues attached to CNO.  
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Figure 3.3: Strategy employed for the supramolecular solubilization of CNOs via crown 
ether/ammonium interactions. 

  

 Characterization of CNO-18C6. Evidence of the functionalization of CNOs by 

benzo-18-crown-6 was obtained from Raman spectroscopy and TGA measurements. 

The Raman spectrum (Figure 3.4) of the pristine CNOs shows the D band at 1318 cm-1, 

while the G band appears at 1578 cm-1 with an ID/IG ratio of 1.4. Attachment of the 

benzo-18-crown-6 moieties provoked a shift of the D band to 1338 cm-1 and of the G 

band to 1568 cm-1. These shifts can be attributed to the presence of disordered carbon 

structures and loss of symmetry due to incorporation of the benzo-18-crown-6 moieties 

to unsaturated carbon−carbon bond and indicate the successful modification of the 

surface of the CNOs. More notably, the ID/IG ratio in CNO-18C6 was found to be very 

close to 1. This increase of the D-band intensity has been observed in other covalently 

modified CNOs and is due to the increase of sp3-hybridized carbon atoms. 
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Figure 3.4: Raman spectra of CNO and CNO-18C6. 

 

 TGA was used to determine the degree of modification of benzo-crown ether 

groups in CNO-18C6. This analysis is based on the fact that the temperature required 

for the evaporation of the CNO-bound functional groups is considerably lower than that 

of the CNOs, allowing the selective removal of the functional groups in a TGA scan and 

thus the quantification of the degree of substitution. As shown in Figure 3.5 the TGA 

scan of modified CNO exhibits a first weight loss of 17% at 340ºC corresponding to the 

loss of the attached benzo-18-crown-6 ether from the surface of CNOs and a final 

decomposition at 746˚C. Interestingly, the covalent modification enhanced by ~30ºC the 

thermal stability of the CNOs. From the results of TGA, the average number of 

functional groups per CNO can be calculated [5]. Based on the HRTEM images of 

CNO-18C6 (Figure 3.6), they contain ~6 graphitic shells. Considering that each shell 

contains 60 × n2 atoms, where n is the shell number, the sixth shell should then contain 

2160 carbon atoms and the total number of carbon atoms in the CNO is 5460 with an 

average molecular weight of 5460 × 12 = 65520 g mol-1. Translating the weight loss of 
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17% in CNO-18C6 into moles indicates that there are ~42 benzo-18-crown-6 groups per 

CNO (~1 per every 51 carbon of the outer shell). 

 

Figure 3.5: TGA curves for CNO (∙∙∙∙) and CNO-18C6 (―). The corresponding first derivative 
curves are shown in the inset. 

 

 
 
Figure 3.6: HRTEM image of CNO-18C6. 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 64 

Interaction of CNO-18C6 with CMC-NH2 and PLL. Linear polysaccharide 

polymers tend to adopt a random coil conformation in diluted aqueous solution [18]. 

This is important so that the pendant amino groups are available for the interaction with 

CNO-18C6.  

 Similarly, the proper conformation of poly-L-lysine in solution is determinant 

for a good dispersion of CNOs in solution. The conformation structure of poly-L-lysine 

in solution can be regulated by the nature of the solvent and by adjusting the pH as 

presented and there are two main conformations that can be found (Figure 3.7). The  

helix is a spiral structure in which the peptide bonds form an intra-chain hydrogen bond 

network that stabilizes the structure and the lateral residues point outwards and are in 

contact with the solvent. This structure can be more opened as in the case of the PII 

helix. On the other hand, the -sheet is a more rigid pseudo-planar structure in which 

the hydrogen bonds associate between the strands and the side chains of the amino acids 

alternate above and below the sheet. 

 

Figure 3.7: Energy minimized structures of the possible conformations of poly-L-Lys. 
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It can be expected that the  and PII helix conformations would give a good 

dispersion of CNOs since they are more flexible structures and the amino groups of the 

side chains are more available for interaction. The conformations present in solution can 

be determined using infrared spectroscopy by analyzing the position of the amide bands. 

The amide I band stretches from 1600 to 1690 cm-1, the amide II from 1500 to 1580 cm-

1 and the amide III from 1220 to 1330 cm-1. The nature or sensitivity of these amide 

stretching bands is related with the final folding structures of poly-L-lysine in solution. 

Usually, the presence of amide I in the range 1625–1640 cm-1 is dominated by -sheet 

and strand conformations, while  and PII helix make the band appear at higher 

wavenumbers (1643-1654 cm-1). Amide II from  and PII helix can be found at 1543–

1552 cm-1 and aggregated -sheets appear at 1530 cm-1. Finally, the amide III band 

above 1200 cm-1 is much weaker and mostly originated by  conformations, while  

and PII helix give bands above 1290 cm-1 [19]. 

Poly-L-lysine has a pKa value of ~10 [20]. This means that at neutral and 

slightly acid medium it should be fully protonated. Figure 3.8 shows the FTIR spectrum 

of poly-L-lysine at pH 4. The peaks appearing at 1644 and 1547 cm-1, corresponding to 

amide I and II stretchings, respectively, indicate that the  and PII helix are the 

dominant conformations, while the presence of the weak peak at 1244 cm-1 indicates a 

small contribution of the  sheet.  
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Figure 3.8: FTIR of Poly-L-lysine at pH 4. 
 

Figure 3.9 shows photographs of CNO and CNO-18C6 dispersions obtained 

after sonication in the absence or presence of the aminated polymers at different pH 

values. As expected, CNO rapidly sediment in water and in poly-L-Lys but, 

interestingly, CNOs dispersed in CMC-NH2 solution to form a suspension that is stable 

for a few hours. The reason for this behavior is not clear, but it is evident that there is 

some kind of interaction between the surface of the CNOs and the polymer. On the 

other hand, more stable dispersions of CNO-18C6 were obtained in the presence of the 

aminated polymers. In particular, the dispersion of CNO-18C6 and CMC-NH2 at pH 4 

was still clearly visible after several months at room temperature.  
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Figure 3.9: Top: Photographs of the different dispersions obtained at different pH (3 to 7) in 
aqueous solution with CNOs (left) and CNO-18C6 (right) the absence or presence of the 
aminated polymers. Bottom: Dispersion of CNO-18C6 in the presence of CMC-NH2 at pH 4 
after several months at room temperature.  
 
 

 When the pH of the CNO-18C6/CMC-NH2 system was increased, a rapid 

precipitation of CNO-18C6 occurred due to the deprotonation of the aminated polymer 

(Figure 3.10). On the other hand, addition of an excess of K+ to CNO-18C6/CMC-NH2 

at pH 4 induced the formation of a fine precipitate of CNO-18C6. This process was 

much slower than the precipitation due to the pH change and is due to competition of 

the K+ cation with the pendant –NH3
+ groups for the crown ether moiety. These results 
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indicate that the ammonium/crown ether interactions are the major driving force in the 

formation of the CNO dispersions.  

 

Figure 3.10: Effect of pH increase (top) and addition of K+ cations (0.1 M K2SO4, bottom) on 
the CNO-18C6/CMC-NH2 system.  
 

CONCLUSIONS 

In this chapter, we have explored the possibility to use crown ether/ammonium 

interactions for the dispersion of CNOs in solution using biocompatible polymers. 

CNOs were functionalized by reaction of diazotized 4-aminobenzo-18-crown-6. In the 

presence of biocompatible polymers containing pendant amino groups, such as 

aminated carboxymethyl cellulose and poly-L-lysine, the modified CNOs formed 

dispersions in water at acidic pH. Of them, the dispersion of CNO-18C6 and CMC-NH2 

at pH 4 was stable after several months at room temperature. Precipitation of the CNO-

18C6 under basic conditions and in the presence of excess K+ cation indicates that the 

ammonium/crown ether interactions are the major driving force in the formation of the 

CNO dispersions.  
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Chapter 4 

 

Simultaneous detection of nitrite and ascorbic acid at carbon nano-

onion modified glassy carbon electrodes 

 

ABSTRACT 

In this work we have evaluated two possible different surfaces for simultaneous 

detection of two analytes. The electrochemical properties of the stable layer of pristine 

carbon nano-onion (CNO) in the surface of glassy carbon electrode (GCE) in 

ferrricyanide solution were verified in cyclic voltammetry. The glassy carbon electrode 

modified carbon nano-onions (GCE/CNO) with electrografted ortho-aminophenol (o-

AP) and physically adsorbed thionine have been used for the simultaneous detection of 

nitrite and ascorbic acid.  By utilizing cyclic voltammetry and by tuning alternately the 

desired potentials in DC amperometry, the modified surfaces exhibited fast response 

and able to detect the presence of nitrite and ascorbic acid. For simultaneous detection 

of nitrite and ascorbic acid, two well-separated voltammograms peaks were obtained 

and the corresponding peak separations between nitrite and ascorbic acid were +750mV 

and +200 mV respectively. The modified surface with GCE/CNO showed enhanced 

electrocatalytic behaviour as compared to GCE modified only with o-AP and thionine 

as shown in their amperometric results.  Furthermore, the CNO-modified surface 

showed good reproducibility and stability through time. 
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4.1 INTRODUCTION 

Nitrite and ascorbic acid (AA) are two of the most widely used additive 

compounds in products for human consumption. They are controlled substances and 

thus there is an increasing interest for their analysis [1-5]. Ascorbic acid has been 

recognized as an important food stabilizer to improve nutritional value and prevent 

autooxidation of products [6, 7]. Although ascorbic acid toxicity is very rare; a high 

dose can lead to stomach upset and diarrhea [8]. On the other hand, nitrite is a useful 

preservative in food industry to enhance color and extend the shelf life of processed 

meats. However, nitrite ions can react with amines to form nitrosamines, which are well 

known carcinogenic substances [9, 10].  

Various methods have been proposed for the detection of AA and nitrite such as 

chromatography [11-13], spectroscopic techniques [14-16] and electrochemical analysis 

[17-23]. However, these molecules can be directly oxidized in the surface of 

conventional electrodes at high overpotentials (Figure 4.1). Many new materials have 

been suggested to overcome this problem and among these is the use of carbon 

nanomaterials. They had been utilized due to their good electrocatalytic properties that 

may result in a lowering of oxidation potentials [24-32]. Like for example, Zhu et al. 

[31], prepared modified poly(amidoamine) dendrimer- carbon nanotubes for the 

determination of nitrite held at +0.73V as oxidation potential in chronoamperometry.  

Using nanodiamond powder electrode for the analysis of nitrite was investigated by 

Chen et al. [32] in which the oxidation of nitrite appears around +1.05V using cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV). On the other hand, the 

oxidation of ascorbic acid on the prepared ZnO-decorated reduced graphene oxide 

electrode exhibited at around +0.2V [26]. While using poly(xanthurenic 
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acid)/multiwalled carbon nanotubes for electrochemical determination of ascorbic 

applied a potential at +0.3 V in linear sweep voltammetry (LSV) and amperometry [24]. 
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NO2
- + H2O → NO3

- + 2H+ + 2 e- 

Figure 4.1: Oxidation reactions of AA and nitrite.  

 As we have seen in previous chapters, CNOs are attractive candidates for the 

development of electrochemical detection systems due to their morphological and 

electrical properties. To the best of our knowledge, there is only one example of 

application of CNOs in electrochemical detection of small molecules [33]. A mixture of 

carbon CNO/poly(diallyldimethylammonium chloride)- composites were deposited on a 

gold electrode then the electrochemical properties of the surface were tested for the 

ability to detect dopamine in the presence of uric and ascorbic acid. Their findings 

showed good selectivity and sensitivity of the modified electrodes.  

 Diazonium salts (R-NN+ X-) are a class of organic compounds prepared by the 

treatment of aromatic amines with sodium nitrite in the presence of a mineral acid. 

Electrochemical grafting for covalent modification of conductive surfaces by 

electrochemical reduction of aryl diazonium salts was first investigated by Pinson using 

isolated tetrafluoroborate salts [34] and further extended to in situ generated diazonium 

cations [35]. This method can be applied to a wide variety of surfaces such as carbon 

(including nanotubes and diamond), metals and metal oxides and provide an easy and 
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efficient way to covalently modify the surface of these materials [35-37]. The 

mechanism of the reaction involves the formation of an aryl radical produced upon one-

electron reduction of the diazonium salt that then reacts with the surface to form a 

covalent bond (Figure 4.2). In our group, we have exploited this technique to construct 

various types of electrochemical sensors based on ortho-aminophenol (oAP) films on 

glassy carbon surfaces [38-41]. 

R

N2
+

R

+ N2+ e-+

 

Figure 4.2: Modification of surfaces by electrografting of diazonium salts.  

On the other hand, thionine is a thiazine derived aromatic dye containing two –

NH2 groups and generally used for dyeing. Thionine is also an electrochemical redox 

indicator being colorless in reduced form and violet when oxidized. Several studies 

have been conducted, particularly on carbon nanotubes, in which thionine was directly 

absorbed and attached to the surface creating a strong supramolecular π-π interaction 

[28, 42-44].  

In this chapter, we describe the electrocatalytic behavior of electrografted ortho-

aminophenol (oAP) and physically adsorbed thionine in a modified CNO-glassy carbon 

electrode (GCE/CNO). We used pristine CNOs that were directly casted on GCE 

surface before the covalent functionalization using in-situ electrochemical grafting of 

oAP. We also study, for the first time, the absorption of thionine to the surface of CNO 

and use these surfaces for the simultaneous detection of AA and nitrite. 
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4.2 EXPERIMENTAL SECTION 

Reagents and Instrumentation. The CNO sample was kindly provided by Dr. Luis 

Echegoyen (Department of Chemistry, University of Texas at El Paso). 

Dimethylformamide (DMF), L-ascorbic acid, 2-nitro-4-aminophenol, NaNO2 and 

thionine were obtained from Sigma-Aldrich and used as received.  All other chemicals 

used in buffer solutions preparation were of analytical-reagent grade. All solutions were 

prepared with milliQ water.  

Tip sonicator (amplitude 60%, cycle 0.5, Ultraschallprocessor UP200S) was used to 

mechanically disperse CNOs in 10 mL DMF. All electrochemical measurements were 

carried out using an Autolab model PGSTAT 12 potentiostat/galvanostat controlled 

with the general purpose electrochemical system (GPES) software (Eco Chemie, The 

Netherlands), equipped with BASi C-3 Stand (RF-1085) three-electrode cell. This 

configuration contains a bare or chemically modified glassy carbon electrode (BAS 

model MF-2012, 3.0 mm diameter) as working electrode, a platinum wire as counter 

electrode and an Ag/AgCl(sat) as reference electrode. All potentials were recorded with 

respect to this electrode. A magnetic stirrer provided the convective transport during the 

amperometric experiments.  

Purification, Dispersion and Deposition of CNOs. The as-received sample of CNOs 

was subjected for purification procedure in which 5 mg were boiled in 30% hydrogen 

peroxide for 2 hours and then 1 hour in milliQ water. The insoluble particles were 

gathered and dried under vacuum at 100ºC. The treatment in peroxides was applied to 

remove amorphous carbon particles in the surface of CNOs. Two-milligrams of purified 

CNOs were dispersed in 10 mL dimethyl formamide (DMF) and subjected to tip 

sonication for 30 min to obtain a homogenous solution.  
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Prior to the deposition of CNOs, the glassy carbon electrode was polished to a 

mirror finish with 0.3 µM alumina slurries, cleaned and sonicated in milliQ water for 5 

min and then dried under a stream of nitrogen gas. 

To obtain a thin layer of CNOs on the surface of the electrode, the homogenized 

CNO solution in DMF (2 µL) was dropped into the cleaned electrode. The deposition of 

CNOs was achieved in successive cycles of drop casting and then dried with hot air at 

about 150ºC. The procedure was repeated until the desired thickness of CNOs in the 

surface of the GCE was obtained. Then the electrode was washed with milliQ water and 

dried with nitrogen gas to be ready to use. The modified electrodes were characterized 

by Environmental Scanning Electron Microscopy (ESEM, FEI Company Inc., Quanta 

600) at high vacuum at 25 kV in 10 mm working distance and cyclic voltammetry.  

Electrochemical grafting of oAP on GCE/CNO. 2-nitro-4-aminophenyl films were 

prepared on GCE/CNO electrodes using essentially the same method as described in 

reference [14]. A cold mixture of 2-nitro-4-aminophenol and NaNO2 (both 10 mM) was 

treated with 0.5 M HCl (degassed with N2) for 10 min in an electrochemical cell. 

GCE/CNO electrodes were immersed and the potential was cycled from 0 V to -0.6 V at 

100 mV/s for 60 scan cycles. The generated 2-nitrophenol film was rinsed and sonicated 

in milliQ water (5 min). For complete reduction of the nitro group the electrode was 

subjected to 5 potential scans between -0.1 and -0.85 V at 100 mV/s in 0.1 M H2SO4. 

The electrodes were washed with milliQ water then subsequently subjected to potential 

scanning between -0.1 and 0.6 V for 10 cycles at 100 mV/s in phosphate buffer (0.1 M, 

pH 7.4) to remove the physically adsorbed compounds.  

 The characterization of the oAP film in the GCE/CNO was carried out by cyclic 

voltammetry between -0.4 to 0.6 V at different scan rates in phosphate citrate buffer pH 
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3.5. O2-free nitrogen was used to remove oxygen from the solution and a continuous 

flow of nitrogen was maintained during the voltammetric measurements. All 

experiments were carried out at ambient temperature. The same procedure was done 

with bare GCE that served as a control. 

Preparation of thionine modified GCE/CNO electrode. The prepared electrode of 

GCE/CNO was immersed in a 2 mg/mL thionine solution for several hours for 

optimization (1hour, 2h, 3h, 4h and 5h) and then washed thoroughly with phosphate 

citrate buffer pH 3.5 for 30 min at  temperature with convective stirring to remove the 

unbound thionine molecules. The modified GCE/CNO/thionine was activated though 

successive voltammetric cycling between -0.3 and 1.0 V at 100 mV/s at 10 scan cycles 

in the blank phosphate citrate buffer pH 3.5. The same procedure was done with bare 

GCE that served as a control. 

Detection of nitrite and ascorbate with GCE/CNO/oAP and GCE/CNO/thionine 

electrodes. The modified electrode surfaces with electrografted oAP were used for the 

detection of nitrite and ascorbic acid. DC amperometric measurements were performed 

at 0.750 V or 0.200 V for the detection of nitrite and ascorbic acid, respectively, in an 

electrochemical cell containing 5 mL phosphate citrate buffer pH 3.5 in the presence of 

a constant concentration of 10 µM of either nitrite or ascorbic acid, depending on the 

desired analyte to be detected.  

The background current was measured under stirring conditions at 350 rpm. 

Subsequently, successive injections of 50 µL of 1 mM nitrite or ascorbic acid have been 

added to the cell and the current response was continuously recorded. The same 

procedures were done in GCE/CNO/thionine. Control experiments were carried out on 

GCE/oAP or GCE/thionine electrodes under the same conditions for comparison. 
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4.3 RESULTS AND DISCUSSION 

Deposition of CNOs on glassy carbon electrodes 

Figure 4.3 shows the ESEM images of bare GCE and modified GCE with CNO, 

A and B respectively. As can be seen in the images revealed that the morphology of 

bare GCE is very different from the modified GCE/CNO. The GCE has been properly 

covered with CNO and the surface has a markedly rough and porous characteristic.  

 

 

Figure 4.3: ESEM images of GCE (a) and GCE/CNO (b) and their corresponding cyclic 
voltammetry in 1 mM [Fe(CN)6]3- in 0.1 M KCl at scan rate 0.1 Vs-1 (c) inset: plot of the peak 
currents vs. scan rate for GCE/CNO. 
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 The electroactive surface area of GCE/CNO was determined by cyclic 

voltammetry (CV) using [Fe(CN)6]3- in KCl as electroactive marker. As shown in 

Figure 4.3c, GCE/CNO showed a notable higher peak current signal as compared to 

bare GCE due to the increased active area provided by the deposition of CNOs in the 

transducer surface. The electroactive surface area of GCE/CNO modified electrodes 

was determined using the Randles-Sevcik equation [45]:  

 

  ip = 2.69×105 A D1/2 n3/2 v1/2 c 

 

 Where ip is the peak current, A is the electroactive surface (cm2), D is the 

diffusion coefficient of [Fe(CN)6]3- in dilute aqueous solution, n is the number of 

transferred electrons by [Fe(CN)6]3-/4- (n = 1), v is the scan rate in V s-1 and c is the 

concentration of the marker (1 × 10-6 mol/cm3).  Based from this equation, by plotting 

the values of ip versus v1/2 (shown in the inset Figure 4.3c), the calculated electroactive 

surface of modified GCE/CNO is 0.56 cm2 whereas bare GCE only have 0.43 cm2 

active surface area. This suggests also that the addition of CNO into the surface 

improves the effective surface active areas thus electrochemical properties of the 

surface has been enhanced. 

 It was also observed that the deposited purified CNOs showed a good 

mechanical stability in aqueous solution. Treatments such as repetitive washings with 

water, immersion in aqueous solutions for a long time and even mild sonication did not 

cause removal of deposited material from the surface of GCE as proven by 

electrochemical measurements and reproducibility results (data not shown). 
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Electrochemical characterization of oAP and thionine modified GCE/CNO 

electrodes 

 The oAP modified electrodes were prepared in two steps by electrografting the 

in situ prepared diazonium salt of 2-nitro-4-aminophenol followed by potential 

reduction in acidic medium (Scheme 4.1) 
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Scheme 4.1: Preparation of GC/CNO/oAP electrodes. 

 

The cyclic voltammograms of GC/CNO/oAP modified electrodes at different 

scan rates showed the typical quasi-reversible signal associated with the oxidation and 

reduction  of electrografted oAP at E1/2 = -3 mV vs Ag/AgCl (Figure 4.4). As observed, 

the voltammetric response of GCE/CNO/oAP electrodes presents higher current 

intensities than the corresponding GCE/oAP prepared in a similar way although the E1/2 

is essentially the same. This enhancement in the current signal is consistent with the 
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results presented in Figure 1c associated to an increase in electrode area in the presence 

of CNOs.  

 The surface coverage of oAP in the surface of GCE/CNO/oAP was evaluated 

from the equation = Q/nFA, where Q is the charge associated with the oAP oxidation 

peak (area under the curve corrected for the baseline) at a low scan rate (10 mV s-1), n is 

the number of exchanged electrons (n = 2), F is the Faraday’s constant and A is the area 

of the electrode. The calculated value of  was 2.71  10-10 mol cm-2, which is about 2 

times higher than that obtained for the grafting of oAP on GCE.  

 

 

Figure 4.4: Cyclic voltammograms at different scan rates of electrografted oAP on GCE/CNO 
(a) and GCE (b) in phosphate citrate buffer pH 3.5. 

 

Thionine was immobilized on GCE/CNO electrodes by spontaneous adsorption 

(Scheme 4.2). CNOs have a higher surface area than and, as expected, a higher amount 
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of thionine could be absorbed onto the modified GCE/CNO surface. The rough and 

porous surface layer of GCE/CNO evidenced in the ESEM images would maximize the 

access of thionine deposited as thin film which leads to a more stable surface.   
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Scheme 4.2: Top: Preparation of GC/CNO/TH electrodes. Bottom: Redox reaction of thionine 
and dimensions. 

 

The adsorption of thionine was studied as a function of time by cyclic 

voltammetry on both surfaces (Figure 4.5). As can be seen, the redox signals of thionine 

increase with time and remain essentially constant after three hours on the GCE/CNO 

surface. This time was thus used in further experiments. In the case of GCE, the 

saturation is achieved after two hours and the redox response is markedly lower, 

indicating a weak interaction of thionine with the bare surface. 
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Figure 4.5: a) Cyclic voltammograms of thionine at different incubation times (0, 1, 2, 3, 4, 5 h)  
on GCE/CNO. (b) Cyclic voltammogram of thionine at bare GCE after 3 h of incubation. c) 
Dependence of the anodic current signal at 0.03 V with time for both surfaces. Scan rate: 50 
mVs-1 in phosphate citrate buffer pH 3.5. 

 

Figure 4.6 shows the cyclic voltammograms of thionine modified GC/CNO surface 

at different scan rates. The voltametric response of thionine is characterized by broad 

successive peaks in both anodic and cathodic scans, indicating the electrochemical 

activity of adsorbed thionine [28, 44, 46]. The current responses showed a linear 

relationship with scan rate, indicating surface confinement of thionine. After continuous 

potential cycling, the electrochemical characteristics of thionine were stable, indicating 

a strong interaction with the CNO surface. The surface coverage of thionine in the 

surface of GCE/CNO was 1.8110-10 mol cm-2. This surface coverage is about 6 times 

higher than that observed of GCE/thionine. Considering the dimensions of thionine (58 

Å2) and assuming a planar stacking on the CNO-surface, the theoretical coverage of 

thionine on GCE/CNO would be 2.7710-10 mol cm-2 and therefore about 65% of the 

surface is actually covered.  This is not surprising, considering the roughness of the 
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CNO-modified surface that could hinder the formation of a perfectly adsorbed 

monolayer.  

 

 

Figure 4.6:  Cyclic voltammograms of adsorbed thionine in GCE/CNO at different scan rates in 
phosphate citrate buffer  pH 3. Inset: current vs. scan rate plot. 

 

Electrochemistry of nitrite and ascorbic acid at GCE and GCE/CNO 

The electrochemical response of AA and nitrite at GCE is characterized by 

irreversible anodic signals at 0.12 and 0.89 V (Figure 4.7). Interestingly, at GCE/CNO 

electrodes both oxidation processes are favored and shifted to less positive potentials 

(0.09 and 0.80 V for AA and nitrite). Thus, the overpotential for the oxidation of nitrite 

is reduced by 0.11 V, indicating that the presence of CNOs favors the electron transfer 

reactions (Figure 4.8).   
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Figure 4.7: Cyclic voltammograms at bare GCE in the presence of 100 µM nitrite, 100 µM 
ascorbate and a mixture of both (100 µM each). Scan rate 100 mV/s in phosphate citrate pH 3.5. 

 

 

Figure 4.8: Cyclic voltammograms at GCE/CNO in the presence of 100 µM nitrite, 100 µM 
ascorbate and a mixture of both (100 µM each). Scan rate 100 mV/s in phosphate citrate pH 3.5. 
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Electrochemical detection of nitrite and ascorbic acid at GCE/CNO/oAP electrode 

 In order to evaluate the electrocatalytic activity of modified GCE/CNO/oAP 

surface towards the oxidation of AA and nitrite, cyclic voltammograms were recorded 

in phosphate citrate buffer pH 3.5 in the absence and presence of 100 µM NO2
- and/or 

100 µM AA as shown in Figure 4.9.  

 

Figure 4.9: Cyclic voltammograms at GCE/CNO/oAP in the presence of 10 µM nitrite, 10 µM 
ascorbate and a mixture of both (10 µM each). Scan rate 100 mV/s phosphate citrate buffer pH 
3.5. 

  

 Upon the addition of nitrite on modified GCE/CNO/oAP, there is an irreversible 

oxidation peak at 0.78 V which corresponds to the two-electron oxidation process of 

NO2
- to NO3

-. This peak potential is negatively shifted ~20 mV with respect to 

GCE/oAP indicating that the presence of CNO reduced the overpotential and also 

enhances the oxidation current. In the case of the presence of AA, there is also a 

noticeable enhancement of the anodic peak around 0.2 V, which shows that the surface 
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is sensitive to the addition of AA. Therefore, the modified GCE/CNO/oAP surface has 

the capability to oxidize ascorbate and nitrite at different potentials. 

 This surface was then used to detect ascorbic acid and nitrite by amperometric 

measurements at different potentials but in the same electrode. The amperometric 

measurements were done with either the presence of nitrite or ascorbic acid added into 

the buffer solution prior to the addition of the other analyte in order to know if the 

presence of the other analyte in the solution would somehow affect the current response. 

As can be seen in Figures 4.10a and 4.10b, the current responses rapidly achieved a 

steady current with the successive additions of 10 µM of each analyte indicating a fast 

electrochemical response. 

 

 
Figure 4.10: Amperometric responses at GCE/CNO/oAP (―, ■) and GCE/oAP (∙∙∙∙∙,●) for: (a) 
addition of 10 µM AA in the presence of 10 µM nitrite at +200 mV; (b) the successive addition 
of 10 µM of nitrite in the presence of 10 µM AA at +750 mV; (c) and (d) corresponding 
calibration curves. The same modified electrodes were used in both cases for the detection of 
nitrite and ascorbic acid. 
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 A linear relationship of the current responses with the concentration of nitrite 

and AA was observed over the ranges of 0-50 µM. The sensitivity for the detection of 

nitrite at GCE/CNO/oAP was 0.034 µA/µM with a correlation coefficient of 0.99. This 

value is almost 3 times more sensitive than GCE/oAP. The estimated limit of detection 

(LOD) of nitrite at GCE/CNO/oAP as obtained from the calibration curve was 1.82 µM 

which is 2 times lower as compared to GCE/oAP. For the detection of ascorbate the 

sensitivity of the electrode is about 0.024 µA/µM which are 8 times more sensitive than 

GCE/oAP and the LOD was 2.32 µM, about 3 times lower than the GCE/oAP. Hence, 

the incorporation of CNO gave enhanced performance in terms of sensitivity and lower 

limit of detection compared to GCE with oAP system.  

 

Electrochemical detection of nitrite and ascorbic acid at GCE/CNO/thionine 

electrode 

 Figure 4.11 shows the cyclic voltammograms of GCE/CNO/thionine modified 

electrodes with the absence and presence of 100 µM NO2
- and/or 100 µM AA in 

phosphate citrate buffer pH 3.5. Similarly to the oAP modified electrodes, upon addition 

of both analytes, the corresponding anodic signals appear in the voltammograms 

although the background signal corresponding to adsorbed thionine is higher.   

 Figure 4.12 shows the amperometric current responses and calibration curves in 

the modified GCE/CNO/thionine and GCE/thionine. In this case, the sensitivity for the 

detection of nitrite was 0.045 µA/µM (2 times more sensitive than GCE/thionine) with a 

LOD of 1.89 µM (6 times lower LOD than GCE/thionine). For the determination of 

ascorbate the sensitivity was 0.043 µA/µM (9 times higher than GCE/thionine) and the 

LOD was 0.66 µM (2 times lower than GCE/thionine).  
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Figure 4.11: Cyclic voltammograms at GCE/CNO/thionine in the presence of 100 µM nitrite, 
100 µM ascorbate and a mixture of both (100 µM each). Scan rate 100 mV/s in phosphate 
citrate buffer pH 3.5. 

 

 
Figure 4.12: Amperometric responses at GCE/CNO/thionine (―, ■) and GCE/thionine (∙∙∙∙∙,●) 
for: (a) addition of 10 µM AA in the presence of 10 µM nitrite at +200 mV; (b) the successive 
addition of 10 µM of nitrite in the presence of 10 µM AA at +750 mV; (c) and (d) 
corresponding calibration curves. The same modified electrodes were used in both cases for the 
detection of nitrite and ascorbic acid. 
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Reproducibility studies 

 The electrochemical measurements were repeated 5 times each for the detection 

of nitrite and ascorbic acid with the same electrode. The relative standard deviation of 

the current responses for GCE/CNO/oAP with nitrite was 3.2% and 3.9% for ascorbic 

acid. For GCE/CNO/thionine with nitrite and ascorbic acid were 2.8%. These low 

relative deviations derived from the responses indicate that both modified surfaces of 

GCE/CNO/oAP and GCE/CNO/thionine had good operational reproducibility. The 

stability of modified surface of GCE/CNO/oAP and GCE/CNO/thionine were found 

stable for over a month and retaining 90% of the initial response when stored at 40C. 

 

CONCLUSIONS 

Carbon nano-onions (CNOs) were used to modify glassy carbon electrodes followed 

either by covalent functionalization of ortho-aminophenol (oAP) through in-situ 

electrochemical grafting of diazonium salt or by physical adsorption of thionine. These 

electrodes were used for the detection of nitrite and ascorbic acid at different potentials, 

simultaneously. The prepared surface of GCE/CNO was characterized in ESEM for the 

morphology and structure of the surface, and then electrochemically characterized using 

cyclic voltammetry. Electrochemical grafting of oAP and adsorption of thionine were 

successful showing the reversible peaks in their corresponding cyclic voltammograms. 

DC amperometry measurements were used to probe the electrocatalytic capability of the 

modified surface of GCE/CNO/oAP and GCE/CNO/thionine for the detection of nitrite 

and ascorbic acid. Nitrite was detected at potential +750mV higher than the potential of 

ascorbic acid at +200mV. Both results showed excellent enhancement in the current 

response and lower limit of detection as compared to GCE/oAP and GCE/thionine 

controls.  
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Chapter 5 

 

Reactive carbon nano-onion modified glassy carbon surfaces as DNA 

sensors for human papillomavirus oncogene detection with enhanced 

sensitivity1 

 

 

ABSTRACT 

Glassy carbon electrodes were modified with small carbon nano-onions (CNOs) and 

activated by electro-grafting of diazonium salts bearing terminal carboxylic acid and 

maleimide groups. The CNO-modified surfaces were characterized by ESEM and AFM 

microscopy as well as by electrochemical techniques. The modified electrodes were 

used for the amperometric detection of a model DNA target sequence associated with 

the human papillomavirus by immobilizing short recognition sequences by amidation or 

thiol-maleimide reactions. The analytical parameters of the developed biosensors were 

compared with glassy carbon electrodes without CNOs. In both cases, the incorporation 

of CNOs resulted in an enhancement in sensitivity and a decrease in detection limits 

ascribed to a combination of large surface areas and enhanced electron transfer 

properties of the CNO-modified electrodes. These results offer promise for the 

construction of other CNO-based biomolecule detection platforms with enhanced 

sensitivities. 

 

                                                             
1 This chapter has been published in J. P. Bartolome, L. Echegoyen, A. Fragoso, Anal. Chem. 2015, 87, 
6744-6751.  
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5.1 INTRODUCTION 

 Carbon nano-onions (CNOs) were first reported by Ugarte in 1992 after 

irradiating a sample of carbon soot particles under an electron beam [1]. This allotrope 

of carbon is a multilayered fullerene concentrically arranged one inside the other. Their 

average sizes typically range from 5 nm to 40 nm in diameter [2] and, unlike other 

carbon allotropes, they remain relatively less explored [3, 4]. Similar to other carbon 

nanomaterials, CNOs are generally insoluble in organic and inorganic solvents. To 

improve the solubility and applicability, CNOs have been chemically functionalized 

using a wide range of reactions including cycloadditions [5, 6], amidations [6, 7], 

oxidations [8] or radical additions of diazonium compounds [9] as well as by means of 

supramolecular interactions [10, 11]. 

 CNOs have been incorporated into polydimethylsiloxane, polyurethane and 

polymethyl-methacrylate matrices and the electromagnetic properties of these materials 

have been investigated [12]. Plonska and coworkers have fabricated a novel type of 

CNO-based composite containing poly(diallyl-dimethylammonium chloride) (PDDA) 

or chitosan [13]. The composite films were deposited on glassy carbon and the 

capacitance of the films was shown to be primarily related to the amount of CNOs 

incorporated into the layer of the filler. The low relaxation times exhibited by these 

composites indicate that they can operate as capacitors in short time windows. Recently, 

the electrochemical properties of CNO/PDDA composites deposited on gold were 

examined by voltammetric techniques and their ability to detect dopamine in the 

presence of uric and ascorbic acids was studied [14]. CNOs have also been incorporated 

in microsupercapacitors [15] to exploit their fast charging and discharging rates and 

have been used as additives in lubricants due to their tribological properties [16] and as 

catalysts [17].  
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 More recently, some studies have focused on the possibility of using CNOs for 

biomedical applications [18] such as for cell imaging [19, 20] and have also shown low 

cytotoxicity and low inflammatory properties [21]. The covalent functionalization of 

oxidized CNOs (containing COOH groups) with biomolecules by using biotin-avidin 

interactions has been reported [22]. An amino-terminated monolayer was created on a 

gold surface and oxidized CNOs were covalently attached by amide bonds followed by 

reaction of biotin hydrazide with the remaining COOH groups. This Au/CNO/biotin 

surface was used to capture avidin, a process that was followed by surface plasmon 

resonance. To the best of our knowledge, this is the only report involving the use of 

CNO-modified surfaces to study biomolecular interactions. 

 Considering the previously demonstrated importance of the incorporation of 

carbon nanomaterials in transducer surfaces [23, 24] and the lack of reports on the use 

of CNOs for this purpose, we evaluate the possibility of using CNO-modified electrodes 

in biosensing applications. A stable dispersion of pristine CNOs was initially prepared 

and deposited on glassy carbon (GC) electrodes to form a mechanically stable GC/CNO 

surface that was further modified by electrochemical grafting of two different 

diazonium salts derived from 4-aminophenylacetic acid (PAA) and 4-

aminophenylmaleimide (PM) (Scheme 5.1). The GCE/CNO/PAA and GCE/CNO/PM 

surfaces were evaluated as supports for the attachment of small biotinylated or thiolated 

DNA probes. These CNO-based biosensors were then used for the amperometric 

detection of human papillomavirus (HPV) [25] oncogene DNA sequences as a model 

system using a sandwich assay. The sensitivity and analytical performance of the 

developed GCE/CNO sensors were compared with those of diazonium modified 

electrodes in the absence of CNOs. 
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Scheme 5.1: Strategy employed for the modification of glassy carbon electrodes with CNOs 
and diazonium salts 
 

5.2 EXPERIMENTAL SECTION 

Reagents. CNOs were prepared as previously reported [6]. Dimethylformamide (DMF), 

N-(4-aminophenyl)- maleimide, 4-aminophenyl acetic acid, NaNO2, 

tetrabutylammonium tetrafluoroborate (TBA-TFB), 6-ferrocenyl-1-hexanethiol (Fc-

SH), acetonitrile, 1-ethyl-3-[3-dimethylaminopropyl]-carbo-diimide hydrochloride 

(EDC), N-hydroxysuccinimide (NHS), streptavidin from Streptomyces avidini and 

Tetramethylbenzidine (TMB) Liquid Substrate for ELISA were obtained from Sigma-

Aldrich and used as received. HPV16E7-related 5’-biotinylated and 5’-thiolated DNA 

capture probe, target sequence and horseradish peroxidase (HRP) labelled reporter 

probe (21-mer) were purchased from Biomers.net (Ulm, Germany). The nucleotide 

sequences of these probes can be found elsewhere [26]. All other chemicals used in 

buffer solution preparations were of analytical-reagent grade. All solutions were 

prepared with milliQ water. 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 98 

Instrumentation. A tip sonicator (amplitude 60%, cycle 0.5, Ultraschallprocessor 

UP200S) was used to mechanically disperse CNOs. All electrochemical measurements 

were obtained using an PC-controlled PGSTAT 12 Autolab potentiostat (Eco Chemie, 

The Netherlands), equipped with BASi C-3 Stand (RF-1085) three-electrode cell. This 

configuration contains a bare or modified glassy carbon electrode (BAS model MF-

2012, 3.0 mm diameter) as the working electrode, a platinum wire as the counter 

electrode and a Ag/AgCl(sat) as the reference electrode. Impedance spectra were 

recorded over the frequency range of 10 kHz-0.1 Hz at a bias potential of +0.22 V and 

an ac amplitude of 5 mV. Transmission Electron Microscope images of CNOs dispersed 

in DMF were obtained on a Jeol 1011 instrument using a copper grid. Environmental 

Scanning Electron Microscopy (ESEM) was recorded in a Quanta 600 microscope (FEI 

Company Inc.) under high vacuum at 25 kV. The modified GCE were placed vertically 

in the sample chamber and analyzed at a 10 mm working distance. Atomic Force 

Microscopy (AFM) analyses were recorded using a Molecular Imaging model Pico 

SPM II (Pico+) instrument from Agilent Technologies in tapping mode using a 1 nm 

high resolution SHR150 tip from Budget Sensors. A freshly cleaved thin layer of 

highly-oriented pyrolytic graphite (from SPI) was used as substrate.  

Deposition of CNOs on GC electrodes. Prior to the deposition of CNOs, the glassy 

carbon electrode was polished to a mirror finish with 0.3 M alumina slurries, cleaned 

and sonicated in milliQ water for 5 min and then dried under a stream of nitrogen gas.  

Two-milligrams of purified CNOs were dispersed in 10 mL dimethylformamide (DMF) 

and subjected to tip sonication for 30 min to obtain a homogenous dispersion. To obtain 

a thin layer of CNOs on the surface of the electrode, the homogenized solution was 

sprayed onto the clean electrode for 2 s and then dried with hot air at about 150ºC 

(Scheme 5.1). The process was repeated 30 times and after every fifth cycle the 
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electrode was thoroughly washed with milliQ water and acetone then dried again. This 

method created a compact and mechanically stable layer of ~9 m thickness as 

observed by ESEM. 

Electrochemical grafting of diazonium salts on GCE/CNO. A stirred ice-cold 

solution of PAA or PM (2 mL, 10 mM) in 0.5 M HCl was treated with 2 mL of 10 mM 

NaNO2 for 10 min in an electrochemical 10 mL glass cell. After stirring for 10 min the 

GCE/CNO electrode was immersed into the mixture and the potential was cycled 

between 0 and -0.6 V for 2, 5, 10, 20, 30, 40, 50 or 60 cycles at 0.1 V/s. The modified 

electrodes were then sonicated in milliQ water for 1 min to remove physically adsorbed 

compounds. The GC/CNO/PAA and GC/CNO/PM electrodes were studied by cyclic 

voltammetry (CV) using 1 mM Fe(CN)6
3-/4- in 0.1 M KCl as an electroactive probe. The 

electrografted PM group was reacted with 500 M 6-ferrocenylhexanethiol for 2 h, 

followed by rinsing in acetonitrile and the GC/CNO/PM/Fc electrodes were 

characterized using CV in 0.1 M tetrabutylammonium tetrafluoroborate in acetonitrile. 

The surface coverage of Fc was calculated from the area of the anodic peak.  

Biosensor construction and detection of HPV DNA sequences. GC/CNO/PAA: The 

carboxyl groups of PAA were activated with an aqueous mixture of EDC (0.2 M) and 

NHS (50 mM) for 30 min followed by immersion in 20 g/mL solution of streptavidin 

in acetate buffer (pH 5) for 30 min at 4ºC. The remaining carboxyl groups were then 

blocked with 0.1 M ethanolamine hydrochloride (pH 8.5) for 30 min. The electrodes 

were washed in milliQ water and the 5’-biotinylated DNA capture probe (1 M in 

milliQ water) was incubated for 30 min at room temperature. Afterwards, the target 

DNA (0, 2.5, 5, 10, 20, 50 nM) in Trizma hybridization buffer pH 7.38 was added and 

incubated for a further 30 min at 37ºC. After washing with Trizma the HRP-labeled 
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reporter probe (50 nM) was introduced and incubated for another 30 min to complete 

the DNA sandwich assay.  

GCE/CNO/PM. A mixture of 1 M of 5’-thiolated HPV16E7 DNA and 100 M 

mercaptohexanol was co-immobilized for 30 mins (co-immobilization technique) or 

modified by sequential incubation of 1 M thiolated DNA, washing with 0.01 M PBS 

pH 7.4 and incubation of 100 M mercaptohexanol (sequential immobilization). Before 

the addition of the target DNA, the electrodes were washed with 0.1 M PBS pH 7.4. The 

target DNA and reporter probe were then incubated as described for the PAA surface.  

Amperometric measurements were carried out in a 5 mL electrochemical cell containing 

0.1 M PBS pH 6 and TMB Liquid Substrate (2:1 v/v final ratio) under stirring 

conditions at room temperature. The current was measured at 0.15 V after 2 min for a 

period of 1 min and the current vs. [DNA] calibration curves were constructed from 

triplicate measurements. The same modification and detection procedures were 

employed for GCE/PAA and GCE/PM electrodes as controls. 

Clinical samples from cervical scraps, previously genotyped to determine the type of 

HPV subtype present, were obtained from, amplified and prepared as reported earlier 

[27] and incubated directly over the electrodes. Electrochemical detection was carried 

out as described above.   

 

5.3 RESULTS AND DISCUSSION 

Deposition of CNOs on glassy carbon surfaces. Tip sonication of a CNO suspension 

in DMF afforded a homogeneous dispersion with an average diameter 3.7 nm as 

revealed by TEM (Figure 5.1a). ESEM analysis of CNOs deposited on GCE after 30 

spraying cycles (Figure 5.1b) indicated that the surface of GCE had been covered with a 

thin layer of CNOs when compared to the morphology of the bare GCE (not shown) 
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with a thickness of ~9 m (Figure 5.1c). The deposited CNO layers showed good 

mechanical stability, particularly in aqueous solution. Treatments such as repetitive 

washings with water, immersion in aqueous solutions for a long time and even 

sonication for short periods of time did not cause any partial removal of material from 

the surface of the GCE, as revealed by electrochemical measurements. The morphology 

of the GC/CNO surface was also studied by AFM (Figure 5.1d). Round shaped 

structures of about 10 nm diameter were observed, consistent with the deposition of 

CNOs on the surface.  

 

Figure 5.1: TEM image of dispersed CNOs in DMF after tip sonication (a). ESEM (b,c) and 
AFM (d) images of deposited CNO on GC. 
 

Characterization of diazonium electrografting on GC/CNO. Phenylacetic acid 

(PAA). The presence of electrografted PAA moieties on the surface of modified 

GCE/CNO electrodes was monitored by CV in Fe(CN)6
3-/4- solutions. Carboxylic acid 

terminated surfaces are neutral at low pH due to the protonation of the carboxyl group 
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and result in a negative charge as the pH is raised (Scheme 5.2). Thus the 

electrochemical response of the anionic ferricyanide probe is sensitive to pH changes. 

CHOOH

COOH COOH

CHOOH

COO- COO- COO-

OH-

COOH

 

Scheme 5.2: Deprotonation of GC/CNO/PAA in basic media. 
 

Figure 5.2a shows variations in the CV response of Fe(CN)6
3-/4- at the surface of 

modified GCE/CNO/PAA as the pH increases from 1 to 7. As expected, the CV 

response of Fe(CN)6
3-/4- solutions on modified GCE/CNO/PAA surfaces strongly 

depends on the pH of the solution. At acidic pH (pH 1), a quasirreversible redox signal 

is observed centered at E1/2 = 0.28 V and a peak-to-peak separation E = 95 mV, 

indicating that the surface is essentially neutral and does not effectively block the 

electron transfer process for the anionic Fe(CN)6
3-/4- probe. As the pH is raised, 

deprotonation of the COOH groups results in a surface negative that block the probe 

due to electrostatic repulsion. The dependence of anodic peak current as a function of 

pH showed an inflection point at pH 2.3, which corresponds to the interfacial pKa of the 

modified GCE/CNO/PAA surface (Figure 5.2b). This value is about two orders of 

magnitude lower than the corresponding value for a GCE/PAA surface (pKa = 4.7, 

Figure 5.2b, inset) and indicates that the presence of the CNO layer enhances the acidity 

of the PAA, presumably due to the electron withdrawing effect of the polyaromatic 

CNO structure. This property can be highly advantageous in the design of reactive 

surfaces as it facilitates its subsequent functionalization. 
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Figure 5.2: a) Cyclic voltammograms (for 1 mM K3Fe(CN)6 in 0.1 M KCl at 0.1 Vs-1) obtained 
at different pH values on a GCE/CNO/PAA electrode. b) Titration curve corresponding to the 
variations of the anodic peak intensity. The solid line was obtained by fitting the experimental 
points to a sigmoidal curve. Inset: Corresponding titration curve for GCE/PAA. 
 

Phenylmaleimide (PM). The maleimide group has been used as a common crosslinker 

for the immobilization of thiolated molecules on surfaces [28]. Phenylmaleimide-

diazonium was electrografted using cyclic voltammetry on GCE/CNO at different 

electrodeposition cycles and the resulting GCE/CNO/PM surface was allowed to react 

with Fc-SH and characterized by CV in 0.1 M tetrabutylammonium tetrafluoroborate in 

acetonitrile (Scheme 5.3).  
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Scheme 5.3: Reaction of GC/CNO/PM with Fc-SH. 
 

Figure 5.3a shows the values of surface coverage of ferrocene (ГFcSH) at different 

electrodeposition cycle numbers calculated from the area of the oxidation wave. ГFcSH 

values increased steadily with the number of potential cycles until a maximum of 

2.4×10-9 mol/cm2 was obtained after 30 cycles. A similar tendency was observed for the 

GCE/PM surface but in this case the maximum surface coverage obtained was 0.7×10-9 

mol/cm2, also after 30 cycles.  This marked difference in ГFcSH values can be explained 

by considering that the CNOs increase the effective surface active area of the electrodes 

making more PM molecules available for interaction with FcSH, which results in an 

enhancement of the current intensity of the electroactive species relative to the GCE-

based electrode.  

Figure 5.3b shows a comparison of the CV obtained for bare and Fc modified surfaces 

in the presence and absence of CNOs after 30 electrodeposition cycles in TBA-TFB. 

The peaks are essentially symmetrical with a peak-to-peak separation Eac = 66 mV for 

GCE/PM/CNO/Fc. Eac is essentially scan rate independent up to 1 V/s and the peak 

currents depend linearly with the scan rate indicating that the Fc groups are surface-

confined. Interestingly, for the CNO-modified surface, the Fc signal is not only larger 

than for the GCE/PM/Fc surface but also appears shifted 61 mV to lower potentials. 
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Figure 5.3c shows the dependence of the peak potential (Ep) with log ν, where ν is the 

scan rate, determined by CV. Using Laviron's formalism [29], the apparent rate constant 

for electron transfer (k) can be calculated from the equation:   

k = nFc/RT = (1-)nFa/RT 

where is the transfer coefficient calculated from the quotient a/c+a), c and a are 

the limiting cathodic and anodic scan rates obtained from Figure 5.3c and F is Faraday’s 

constant. Under these conditions,  = 0.51  and  k = 122 s−1 for the GCE/PM/CNO/Fc 

system, while k = 19 s-1 in the absence of CNO indicating a markedly faster electron 

transfer rate when the CNOs are present.  

 

Figure 5.3: a) Dependence of ГFcSH with the number of electrodeposition cycles. b) Cyclic 
voltammograms of PM-modified surfaces in 0.1 M TBA-TFB in acetonitrile at 0.1 Vs-1 (inset: 
plot of peak currents vs scan rate for GCE/CNO/PM/Fc. c) Dependence of Ep with log ν 
determined from cyclic voltammograms for  GCE/CNO/PM/Fc. 
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Amperometric detection of DNA on CNO-modified electrodes. The possibility to use 

CNO-modified surfaces in the detection of biomolecules was tested using DNA 

sequences associated to the human papillomavirus (HPV) as a model system. PAA and 

PM grafted CNO surfaces were modified with a recognition DNA sequence and a 

sandwich type assay was used to detect the target sequence using a peroxidase-labeled 

DNA reporter probe in both cases. The assay conditions used were similar to those 

previously reported by our group for the detection of HPV sequences on thiol-modified 

gold electrodes [26, 27]   

Scheme 5.4 shows the strategy used for the attachment of the DNA recognition 

sequence to the GC/CNO/PAA surface. The COOH groups of the surface were activated 

using carbodiimide chemistry followed by covalent immobilization of streptavidin and 

incubation of a biotinylated DNA capture probe. Figure 5.4a shows the CV responses 

for Fe(CN)6
3-/4- as a function of the construction steps of the biosensor. As can be seen, 

the sequential immobilization of streptavidin, biotinylated DNA and target DNA were 

accompanied by successive decreases in the signal intensity, as expected for the 

blocking of the probe upon addition of the different layers. This demonstrates the 

successful formation of the sensing layer on the CNO-modified GCE. 
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Scheme 5.4: a) EDC/NHS; b) streptavidin; c) ethanolamine; d) biotinylated HPV16 capture 
probe; e) target sequence; f) HRP-DNA detecting sequence. 
 

Figure 5.4b shows the variation of current intensity with DNA concentration in the 

presence and in the absence of CNO for PAA-terminated electrodes. For the 

GCE/CNO/PAA surface, the calibration curve shows a markedly better sensitivity (0.91 

A nM-1) and a lower limit of detection (0.54 nM) as compared with the control surface 

in the absence of CNO (sensitivity = 0.21 A nM-1; LOD = 3.9 nM). This is 4.3-fold 

sensitivity increase and a factor of seven reductions in LOD after the incorporation of 

CNOs on the surface. Interestingly, no sensitivity increase was observed when the CNO 

layer was replaced by one prepared with the precursor nanodiamonds (ND), indicating 

that the CNOs play a key role in the observed improvement of the analytical response 

(Figure 5.4b).  
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Figure 5.4: a) Cyclic voltammograms in 1 mM K3Fe(CN)6 in phosphate buffer pH 7.4 at 0.1 Vs-

1) corresponding to the sequential immobilization of streptavidin, biotinylated DNA and target 
DNA (10 nM) on GCE/CNO/PAA electrodes. b) Calibration curves for the detection of target 
DNA on GCE, GCE/CNO and GCE/ND electrodes modified with PAA.  
 

In the case of the GCE/CNO/PM surface, a thiolated DNA capture probe was reacted 

with the immobilized maleimide group to form a stable thioether bond (Scheme 5.5). 

Figure 5.5a shows a comparison of the currents obtained for the detection of 5 and 20 

nM target sequence using either a co-immobilization strategy (thiolaled HPV16 capture 

probe mixed with mercaptohexanol in 1:100 molar ratio) or sequential addition of 

thiolated probe and mercaptohexanol in the same molar ratio [30]. As can be seen, the 

co-immobilization strategy gives a 2-fold higher signal as compared to backfilling and 

is in agreement with previous results reported for the co-immobilization of thiolated 
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DNA probes with mercaptohexanol on gold surfaces. This result also suggests that the 

co-immobilization strategy may be generalized to other surfaces and, therefore, was 

used for the construction of the CNO-based sensor.   

 

NO O

NO O

S

HO

CHOOH

CHOOH

a

b,cNO

S

NO O NO
O

NO O

S

HO

NO O

S

HO

CHOOH

NO O

S

NO O

S

HO

HRP

TMBred TMBox

 
 
Scheme 5.5: a) Thiolated HPV16 capture probe/mercapto-hexanol, b) target sequence; c) HRP-
DNA probe. 
 

Figure 5.5b presents the amperometric detection of different target DNA concentrations 

for both GCE/CNO/PM and GCE/PM electrodes. The calibration curve for 

GCE/CNO/PM has a slope of 0.41 A nM-1 with a limit of detection of 0.50 nM as 

compared with the control surface without CNOs (sensitivity = 0.11 A nM-1; LOD = 

1.4 nM). This represents a 4-fold sensitivity increase and a factor of three reductions in 

LOD after the incorporation of CNOs on the surface. In addition, the CNO-based 

sensors showed a markedly larger linear range (0-20 nM) and sensitivity as compared to 
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the thiol-based immobilization on gold (0-1 nM, 0.15 A nM-1) [26]. The CNO-based 

genosensor was evaluated with four clinical samples obtained from cervical scraps 

previously genotyped to assess the absence or presence of HPV subtypes 16, 18 and 45. 

As shown in Figure 5.5c, an excellent correlation with the HPV genotyping was 

obtained as evidenced by the markedly higher signal obtained for the sample containing 

HPV16, as expected considering that the GCE/CNO/PM genosensor was modified with 

a thiolated probe selective to HPV16.  

 

 

Figure 5.5: a) Comparison of the currents obtained during the detection of 5 and 20 nM target 
sequence using co-immobilization and sequential addition of thiolated probe and mercapto-
hexanol in 1:100 molar ratio. b) Calibration curves for the detection of target DNA on GCE and 
GCE/CNO electrodes modified with PM using the co-immobilization strategy. c) Current values 
obtained from undiluted clinical samples on the GC/CNO/PM genosensor modified with an 
HPV16 capture probe. The HPV subtype of each sample is indicated in the inset. 
 

As can be seen, the presence of CNOs on the surface enhanced the sensitivity and 

lowered the limits of detection of the amperometric assays with respect to the GC-only 

electrodes. This result is primarily due to the larger surface area achieved in the 

presence of CNO, which allows a much higher number of recognition sequences to be 

immobilized on the surface. Another factor to be considered is the electron transfer rate 
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of TMB on the CNO-modified surface. It is known that TMB undergoes a quasi-

reversible two-proton coupled two-electron redox process in acidic pH. Inspection of 

the CV of TMB at the GC/CNO surface (Figure 5.6) shows a large current enhancement 

associated with the increase in surface area. In addition, the CV response shows a 

marked displacement (-90 mV) towards less positive potentials with respect to the GC-

only system, indicating a faster electron transfer, in accord with the results obtained on 

the GC/CNO/PM/Fc surface. In our case, this favored electron transfer effect is larger 

than that recently observed for catechol-based neurotransmitters [31], which were 

ascribed to the semi-metal properties and to the presence of structural defects on the 

CNOs that enhance electron transfer properties [32]. Thus, the combination of the 

unique morphological and electronic properties provided by the CNOs to the GC 

surfaces enhance the sensitivity of the assay and opens the way for further applications 

of CNO-based surfaces for the detection of other biomolecules. Such studies are 

currently underway.  

 

Figure 5.6: Cyclic voltammograms recorded in 0.1 M PBS pH 6 containing 0.1 mM TMB 
hydrochloride on GC and GC/CNO surfaces.  = 0.1 Vs-1. 
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CONCLUSIONS 

Carbon nano-onion dispersions were deposited on the surfaces of glassy carbon 

electrodes and the modified surfaces were studied by ESEM and AFM revealing a 

relatively uniform surface. The glassy carbon electrodes modified with CNOs were 

further modified by electrografting of diazonium salts possessing carboxylic acid or 

maleimide groups. The attachment of phenyl acetic acid to GCE/CNO generated a 

COOH-terminated surface to which streptavidin and biotinylated capture DNA 

sequence was immobilized. On the other hand, the maleimide-terminated surfaces were 

used for the capture of a thiolated DNA probe and both sensing platforms were 

investigated for the detection of a DNA sequence associated to the human 

papillomavirus. In both cases, the incorporation of CNOs on the surface resulted in 

better sensitivities and lower limits of detection as compared to a GCE electrode 

without the CNOs. These results were explained on the basis of the large surface area 

combined with enhanced electron transfer properties of the CNO-modified electrodes. 

These observations suggest that the developed CNO-modified surfaces are promising 

and versatile candidates for the development of different and effective analytical sensor 

systems. 
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Chapter 6 
 

Development of Amperometric Immunosensors for IgG and 

Carcinoembryonic Antigen based on Carbon Nano-onion Modified 

Electrodes 

 

ABSTRACT 

Immunosensors are affinity biosensors that use antibodies or antigens as the specific 

sensing element immobilized on the transducer surface. The search for new advanced 

nanomaterials is an important area in biosensor research and great attention has been 

paid in recent years to nano-structured materials such as nanoparticles, nanowires or 

nanotubes as they offer excellent prospects for interfacing biological recognition events 

with electronic signal transduction. In this chapter, we construct CNO-based 

immunosensors based on a sandwich assay using electrodeposited diazonium chemistry 

to immobilize whole antibodies. As model targets we selected immunoglobulin G (IgG) 

and carcinoembryonic antigen (CEA) and also explore different labels such as HRP and 

ALP-modified antibodies. The presence of CNOs enhanced the sensitivity of the assay 

by a factor of 2 and the substitution of HRP for ALP as label of the secondary antibody 

decreased the LOD by a factor of 6. Therefore, the incorporation of CNO had a positive 

effect in the biosensor performance and is thus promising materials in immunosensor 

development. 
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6.1 INTRODUCTION 

According to the International Union of Pure and Applied Chemistry (IUPAC) a 

biosensor is as a self-contained integrated device capable of providing specific 

quantitative or semi-quantitative analytical information using a biological recognition 

element. This biochemical receptor is retained in direct spatial contact with a 

transduction element capable of detecting the biological reaction and converting it into a 

signal. The result is an electrical response that is proportional to the concentration of 

either a single analyte or a group of them [1]. The biological recognition element may 

be a protein such as an enzyme or antibody, a nucleic acid, a whole cell, or even a plant 

or animal tissue [2] (Figure 6.1).  

 

Figure 6.1: Main components of a biosensor.  

In particular, an immunosensor is an affinity biosensor that uses antibodies or 

antigens as the specific sensing element. The fundamental basis of all immunosensors is 

thus the specificity of the molecular recognition of antigens by antibodies to form a 

stable complex. There are two main types of immunosensor assays: an indirect 

immunosensor uses a second labeled species that is detected after binding (sandwich 

format) and a direct immunosensor detects immunocomplex formation directly by a 

change in potential, resistance, mass, or optical properties without addition of other 

species (Figure 6.2). The indirect format, when used in combination with an enzyme 
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such as peroxidase or alkaline phosphatase, usually gives more sensitive devices but are 

not capable of real-time monitoring of the antigen-antibody reaction as in the case of the 

direct immunosensor [3]. These types of assays can also be found in genosensors 

(biosensors that use DNA probes) as we will see in the next chapter. 

 

Figure 6.2: Direct vs indirect assay. A: antigen, L: label.  

On the other hand, according to the transduction mechanism, immunosensors 

can be classified into four types: electrochemical (potentiometric, amperometric or 

conductometric/capacitative), optical (luminescent, fluorescent, reflective, ellipsometric, 

surface plasmon resonance (SPR)), microgravimetric (piezoelectric or acoustic wave), 

thermometric (calorimetric) and nanomechanic immunosensors [3, 4]. Electrochemical 

transducers are the oldest and most common methods used in biosensors and it is the 

technology used in this work. They combine the high specificity of the bioaffinity 

methods with low detection limits, high sensitivity, possibility of multiplexing and low 

cost as compared to other methods and thus exhibit great advantages. They are also not 

affected by sample turbidity, quenching, or interference from absorbing and fluorescing 

compounds commonly found in biological samples, as is the case with optical 
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immunosensors. Electrochemical transducers measure changes of potential, current, 

conductance, or impedance caused by the immunoreaction [5, 6].  

In particular, amperometric biosensors are designed to measure the 

concentration-dependent current generated by an electrochemical reaction at constant 

voltage after immuno-complex formation [7, 8]. The resulting current is directly 

proportional to the antigen concentration. Many proteins are not intrinsically 

electroactive and cannot be directly detected amperometrically, requiring the use of 

indirect assays with the incorporation of enzymatic labels that catalyze the formation of 

electroactive species. Several enzymes have been used for substrate transformation in 

amperometric systems [9], such as alkaline phosphatise (ALP), which catalyzes the 

dephosphorylation of phosphates and horseradish peroxidase (HRP), which catalyses 

the oxidation of H2O2 in presence of different redox mediators. The main disadvantages 

of amperometric immunosensors of having an indirect sensing system is compensated 

by a high sensitivity and low interferences from matrix components.  

The development of an immunosensor requires immobilization of antibodies (or in 

some cases antigens) on the transducer surface. This can be achieved by 

physicochemical adsorption or covalent attachment [10]. The former is very commonly 

used in immunosorbent assays and has the disadvantage that the binding of antibodies to 

the sensor surfaces is not very strong, it is difficult to reuse and the sensitivity can 

decrease due to loss of biocomponent from the surface [11]. To improve the uniformity 

and reproducibility of immobilised antibodies, chemical crosslinking has been used for 

the covalent immobilisation of proteins onto different solid substrate surfaces using 

defined linkages such as glutaraldehyde, carbodiimide, and other reagents such as 

succinimide esters, maleiimides, and periodate [12]. The well established strategy of 

formation of a self-assembled monolayer for immobilization of biomolecules onto gold 
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surfaces is based on the strong attachment of thiol (SH) or disulfide (-S-S-) functional 

groups to a gold surface (Figure 6.3a) and has found many applications in the 

biosensing field [13-16].  

Another alternative strategy is the deposition of diazonium salts already mentioned 

in the preceding chapter (Figure 6.3b) [17]. In this case, the electrode surface is 

previously modified with functionalized aryl groups by electrografting of the 

corresponding diazonium salts followed by biomolecule incorporation with the 

formation of a covalent bond [18-20]. Alternatively, biomolecule-diazonium salt 

conjugates are first prepared and isolated, followed by electrografting on the transducer 

surface [21]. 

 

Figure 6.3: Immobilization of antibodies through SAMs on gold (a) or diazonium deposition 
techniques (b,c).  

The advantages of the diazonium reduction approach as compared to alkanethiol 

self-assembled monolayers include a highly stable surface over time and over a wider 

potential window, and the ability to synthesize diazonium salts with a wide range of 
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functional groups [22]. In addition, the ability to create a modified surface by the 

application of a potential bias allows the selective functionalization of closely spaced 

microelectrode surfaces. The use of diazonium modification also allows for attachment 

to a variety of substrates including conducting and semiconducting substrates, carbon 

nanotubes, etc. [23] but has the disadvantage of multilayer formation, which is often 

difficult to control [24]. 

The search for new advanced materials is an important area in biosensor 

research and great attention has been paid in recent years to nano-structured materials 

such as nanoparticles, nanowires or nanotubes as they offer excellent prospects for 

interfacing biological recognition events with electronic signal transduction. Carbon 

nanotubes (CNT) were among the first carbon nanomaterials exploited in the 

development of biosensors due to their outstanding mechanical, electrical and 

electrochemical properties [25-27]. A very elegant application of CNTs to 

immunoassays involved a “forest” of nanotubes oriented perpendicularly to a pyrolytic 

graphite surface combined with multi-label secondary antibody-nanotube bioconjugates 

for highly sensitive detection of a cancer biomarker in serum and tissue lysates (Figure 

6.4) [28].  

 

Figure 6.4: CNT-based immunosensor for cancer marker detection [28]. 
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In recent years, research on graphene has seen a revolution that has stimulated 

the interest in their applications in detection devices [29] and many examples can be 

found in the literature of pristine, oxidised and reduced graphene based biosensors [30]. 

Nanodiamonds have also been very recently reported for antibody immobilization using 

a sonication-assisted nanostructuring method that allowed the impedimetric detection of 

E. coli [31]. 

To date, since the discovery of CNOs their potential applications in the area of 

biosensing and, in particular, in electrochemical biosensors have not yet been explored. 

CNOs possess higher specific areas and reactivity than carbon nanotubes which 

combined with newly developed methods of preparation makes them attractive 

nanomaterials for surface modification. In this chapter, we construct CNO-based 

immunosensors based on a sandwich assay using electrodeposited diazonium chemistry 

to immobilize whole antibodies. As model targets we selected immunoglobulin G (IgG) 

[32] and carcinoembryonic antigen (CEA) [33] and also explore different labels such as 

HRP and ALP-modified antibodies. The analytical parameters of the different sensing 

platforms are compared and discussed. 

6.2 EXPERIMENTAL SECTION 

Reagents and instrumentation. The CNO sample was kindly provided by Dr. Luis 

Echegoyen (Department of Chemistry, University of Texas at El Paso). Antimouse IgG, 

IgG from mouse serum, antimouse IgG-HRP antibody, antiCEA, CEA, antiCEA-HRP, 

antimouse IgG-Alkaline phosphatase produced from goat, alkaline phosphatase from 

bovine intestinal mucosa and all other chemicals and reagents were purchased from 

Sigma-Aldrich and used as received. Phosphate buffers (PBS) pH 7.4, TMB solutions, 

Reaction buffer (RB) consisted of 100mM Tris pH 9 with 10mM MgCl2. Washing 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 122 

buffer (WB) contained 100mM Tris, pH 8 buffered saline solutions. Hydroquinone 

diphosphate (HQDP) tetra sodium salt was purchased from DropSens Inc. All solutions 

used with HQDP were sparged with argon to prevent aerial oxidation. All solutions 

were prepared with milliQ water.  

A tip sonicator (amplitude 60%, cycle 0.5, Ultraschallprocessor UP200S) was used to 

mechanically disperse CNOs in 10 mL DMF. All electrochemical measurements were 

carried out using an Autolab model PGSTAT 12 potentiostat/galvanostat controlled 

with the general purpose electrochemical system (GPES) software (Eco Chemie, The 

Netherlands), equipped with BASi C-3 Stand (RF-1085) three-electrode cell. This 

configuration contains a bare or chemically modified glassy carbon electrode (BAS 

model MF-2012, 3.0 mm diameter) as working electrode, a platinum wire as counter 

electrode and an Ag/AgCl(sat) as reference electrode. All potentials were recorded with 

respect to this electrode. Cyclic voltammetry studies were conducted in degassed 

buffers at a scan rate of 50 mV/s. 

Deposition of CNOs on GC electrodes. This step was carried out as described in 

Chapter 4. Homogeneous dispersions of two-milligrams of CNOs in dimethyl 

formamide (DMF) were obtained by tip sonication and drop casted unto the surface of 

cleaned GC electrode and dried using hot air. The process was repeated 10 times until 

thin layer of CNOs formed in the surface, then thoroughly washed with water and dried 

again. The electrode was stored in vacuum at 40˚C to create a compact and 

mechanically stable layer of CNOs into the surface.  

Electrochemical grafting of oAP on GCE/CNO. A stirred ice-cold solution of 10 mM 

4-aminophenyl acetic acid (PAA) and 0.5 M HCl was mixed with 10 mM NaNO2 for 10 

min under argon. After stirring, the GCE/CNO electrode was immersed into the mixed 

solution and the potential cycle between 0 to -0.6V for 15 cycles at 0.1 V/s. The 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 123 

obtained modified surface of GCE/CNO with phenylacetic acid (GCE/CNO/PAA) was 

sonicated to remove the physically adsorbed compounds.  

Immobilization of capture antibodies on GCE/CNO/PAA. The carboxyl groups of 

PAA were activated with an aqueous mixture of 0.2 M EDC and 50 mM NHS for 15 

min followed by immobilization of 200 µg/mL antimouse IgG or antiCEA monoclonal 

antibody in acetate buffer (pH 5) for 2 h at 4˚C. The remaining carboxyl groups were 

then deactivated with 0.1 M ethanolamine hydrochloride (pH 8.5) for 5 min.  

Immunosensor preparation. In the HRP-labeled sytem, the electrodes were washed 

with PBS pH 7.4 and different concentrations of IgG/CEA in PBS buffer were 

incubated for 1 h at room temperature. After washing with PBS the HRP-antimouse 

IgG/CEA-HRP (1:1000 dilution) was introduced and incubated for another hour to 

complete the IgG/CEA sandwich assay. Amperometric measurements were conducted 

after washing the developed IgG assay in PBS, placed in 4 mL PBS under stirring 

conditions and a potential of +150 mV was applied. An aliquot of TMB solution (0.4 

mL) was added, and the current response was recorded as a function of time until steady 

state was reached.  

In the ALP system, the electrodes were washed with 100 mM Tris pH 9 buffered saline 

solutions and the IgG (0, 1.56, 3.125, 6.25, 12.5, 25 g/mL) was incubated for 1 h at 

room temperature. After washing with WB the ALP-antimouse IgG (1:1000) was 

introduced and incubated for another 1 h to complete the IgG sandwich assay. 

Amperometric measurements were conducted after washing the developed IgG assay in 

WB, placed in 4 mL degassed 100 mM Tris, pH 9 containing 10 mM MgCl2 under 

stirring conditions and a potential of +10 mV (+100 mV for GCE assay) was applied. 
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An aliquot of HQDP was added to a final 1 mM concentration and the current response 

was recorded as a function of time until steady state was reached.  

6.3 RESULTS AND DISCUSSION 

Figure 6.5 shows the strategy employed for the immobilization of the antibodies 

into the surface of GCE/CNO/PAA. A COOH terminated surface was created by 

electrografting of PAA diazonium salt, which was allowed to react with the amino 

groups of the capture antibodies by carbodiimide chemistry.   
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Figure 6.5: Strategy employed for the immunosensor development. a) EDC/NHS; b) antiIgG or 
antiCEA; c) ethanolamine; d) target antigen (IgG or CEA); e) enzyme-labelled antibodies. 

 The in-situ chemical functionalization and attachment of the antibodies into the 

surface of GCE/CNO was followed by cyclic voltammetry as shown in Figure 6.6. 

Attachment of the different layers on the surface provoked a decrease in the signal of 

the ferricyanide probe as expected for the blocking of the electroactive signal as the 

complexity of the immunocomplex increases.     
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Figure 6.6: Cyclic voltammograms in 1mM K3Fe(CN)6 corresponding to the GCE/CNO 
electrode (a) and the sequential immobilization of PAA (b) anti-IgG (c), IgG target (50µg) (d) 
and anti-IgG-HRP (e). 

 

 Figure 6.7 shows the values of current intensity at a fixed concentration of IgG 

(50 µg/mL) with the number of electrochemical grafting cycles of diazonium salt into 

the surface of CNO.  Interestingly, the maximum number of cycles to obtain high signal 

was at 15 scan cycles, which is less than the maximum scan cycles required when using 

DNA sensor (see Chapter 5). This might be due to the larger molecular size of 

antibodies with respect to DNA probes. 

 

 

 

 

 

 

 

 

Figure 6.7: Dependence of 
current intensity (i/µA) with the 
number of electrodeposition 
cycles at fixed [IgG] 50 µg/mL. 
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Using the optimized grafting conditions, the assay was calibrated for the 

detection of IgG. Figure 6.8 shows the variation of current intensity with increasing IgG 

or CEA concentrations in the presence and absence of CNO. In Figure 6.8a, the 

calibration curve of CNO-modified electrode with IgG showed enhanced sensitivity 

(0.040 A mL µg-1) and a lower limit of detection (6.8 g/mL) as compared to the 

surface without CNOs (sensitivity = 0.024 A mL µg-1; LOD = 7.2 µg/mL). In the case 

of CEA, as shown in Figure 6.8b, an increase of sensitivity (4.8 nA mL ng-1) and a 

lower limit of detection (29 ng/mL) as compared to the surface without CNOs 

(sensitivity = 2.6 nA mL ng-1; LOD = 32 ng/mL) was also observed. This suggests that 

the incorporation of CNOs on the surface improves the analytical performance of these 

biosensors, even in non-optimized assays. However, the achieved sensitivities and LOD 

values were still far from those reported in other works and, in the case of CEA, the 

LOD was still above the clinical cut-off value accepted in medical practice (10 ng/mL).   

These results prompted us to explore the possibility to use ALP as label in the 

development of the CNO-based electrochemical immunoassay. ALP catalyzes the 

hydrolysis  of a  range  of  electroinactive  phosphate-containing substrates to produce 

products that can be detected and quantified  using  electrochemical  techniques such as 

aminophenols, phenol and 1-naphtol [34]. As substrate we selected hydroquinone 

diphosphatase (HQDP), which is hydrolyzed enzymatically in the presence of ALP to 

produce hydroquinone (HQ) and has been proposed as a superior substrate for 

amperometric ALP-based biosensors due to a lower electrode fouling [35]. HQ is an 

electrochemically active substance that can be detected anodically at low potentials 

undergoing a two-electron oxidation and deprotonation to produce benzoquinone 

(Scheme 6.1). 

 

UNIVERSITAT ROVIRA I VIRGILI 
PREPARATION, CHARACTERIZATION AND ELECTROANALYTICAL APPLICATIONS OF CARBON NANO-ONION MODIFIED SURFACES. 
Joanne Piñera Bartolome 
Dipòsit Legal: T 1461-2015



Joanne P. Bartolome – Doctoral Thesis 

 127 

 

 

Figure 6.8: Calibration plots for the detection of a) IgG and b) CEA on GCE/CNO/PAA 
electrodes. 
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Scheme 6.1: Hydrolysis of HQDP to HQ then deprotonation to produce BQ. 
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 The electrochemical behavior of HQ and HQDP on GCE and GCE/CNO 

surfaces was first investigated using cyclic voltammetry (Figure 6.9). The cyclic 

voltammogram of HQ shows well-defined oxidation and reduction peaks in both 

electrodes GCE and GCE/CNO (Figure 6.9a). The anodic peak potential on GCE/CNO 

was +20 mV which is lower 44 mV less positive than the oxidation on GCE (+64 mV) 

denoting an easier oxidation. The peak to peak separation ΔEɑc also decreased from 122 

mV in GCE to 82 mV in GCE/CNO. These two features indicate that the presence of 

CNO facilitates the electron transfer of HQ from solution to the electrode. In addition, 

the current intensity is markedly higher (~2-fold) as a result of an increased electrode 

area. Therefore, CNO-modified electrodes would be desirable in biosensing applications 

requiring using low oxidation potentials as this reduces possible interference signals 

coming from the oxidation of non-target analytes present in biological samples.  

 HQDP is not electrochemically active and it is important to check the absence of 

degradation products such as HQ that could appear due to spontaneous hydrolysis of 

HQDP when not stored properly and not freshly prepared. For this reason, freshly 

prepared HQDP was checked in degassed solution before and after using in 

amperometric detection and the absence of signal indicated that HQDP had the required 

purity (Figure 6.9b). After the addition of ALP the redox peaks corresponding to HQ 

appear at ~0 mV together with a broad peak at 0.45 V that is presumably due to 

monophosphorylated HQ. 
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Figure 6.9: Cyclic voltammograms of a) 1 mM HQ in GCE/CNO (―) and GCE (∙∙∙∙). b) 1 mM 
HQDP in Tris buffer pH 9 on GCE/CNO before (----) and after (―) addition of ALP. The 
dotted line (∙∙∙∙) corresponds to 1 mM HQDP after addition of ALP on bare GCE. 
 
 
 
 Figure 6.10 shows the variation of current intensity with IgG concentration in 

the presence and absence of CNO using the ALP lapel. The calibration curve of CNO-

modified electrode showed a better sensitivity (0.046 µA µg-1) and a lower limit of 

detection (1.06 µg/mL) as compared to the surface without CNOs (sensitivity = 0.025 

µA µg-1; LOD = 1.43 µg/mL). In this case, the sensitivity is 17% higher and more 

notably the LOD decreased about 7 times as compared with the HRP system.  
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Figure 6.10: Calibration curves for the detection of IgG on GCE and GCE/CNO electrodes 
using HQDP-ALP system.  
 
 
 

After the amperometric detection, cyclic voltammetry has been conducted to 

check presence of HQ at different concentrations as shown in Figure 6.11. By plotting 

the peak current of the anodic process, a calibration curve could be constructed that 

shows similar sensitivity enhancement in the case of the GCE/CNO system with respect 

to bare GCE as compared to amperometric detection. In this case, the sensitivity was 

0.48 A mL g-1 and the LOD was 1.1 g/mL, a value slightly better than using carbon 

nanotubes [36].    
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Figure 6.11: Cyclic voltammograms (at 100 mV/s) obtained after enzymatic reaction on 
GCE/CNO (a) and GCE (b) at different IgG concentrations (0, 1.6, 3.1, 6.3, 12.5, 25 µg/mL). c) 
Calibration curves obtained from the peak current of the anodic process. 
 
 
 The CNO-based IgG sensor was preliminarily evaluated using a real human 

serum sample (diluted 1/10 in Tris buffer) to which different known concentrations of 

IgG were added. As shown in Figure 6.12, the CNO-modified surface showed higher 

current signal with the presence of serum sample as compared with GCE. The percent 

of recovery of the obtained current values is presented in Table 6.1. The expected values 

were interpolated in the calibration curve shown in Figure 6.10 and the obtained 

recoveries were above 85% for the CNO-modified surface but markedly lower for the 

non-CNO surface. This suggests that the serum sample contains some interfering 

substances such as other globulins that could compete in the detection and further 

optimization needs to be carried out to improve the analytical performance of the 

developed CNO-based immunosensor.  
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Figure 6.12: Current values obtained from the real serum sample with added IgG 
concentrations on the GCE/CNO/PAA and GCE/PAA sensors with ALP detection. 
 

Table 6.1. Percent recovery of current values in the calibration curve vs. the values obtained 
using serum sample. 

 Signal recovery (%) 
[IgG] added GCE/CNO/PAA GCE/PAA 

1 86 31 
3 86 42 
6 87 62 

12 97 59 
25 85 50 

 

CONCLUSIONS 

In this chapter we have explored the possibility to use CNO-modified electrodes for the 

construction of amperometric immunosensors based on a sandwich assay using 

electrodeposited diazonium chemistry to immobilize whole antibodies. The presence of 

CNOs enhanced the sensitivity of the assay by a factor of 2 and the substitution of HRP 

for ALP as label of the secondary antibody decreased the LOD by a factor of 6. 

Therefore, the incorporation of CNO had a positive effect in the biosensor performance 

although further work is required to fully optimize the immunoassays in order to 
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improve the performance of the biosensors, in particular in serum and thus in real 

samples.  
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Conclusions and Future Work 

The continuously growing demand and search for novel materials in nanoscience and 

nanotechnology has make researchers explore new horizons in materials chemistry. As 

described in the present thesis, carbon nano-onions are attractive materials with defined 

structures and remarkable properties. The focus of the present thesis was to explore 

strategies for the preparation and modification of novel nanoarchitectures based on 

CNOs to expand their current applications in the construction of novel detection 

systems with improved performances.  

 In the first part of the presented doctoral thesis we illustrated the possibility to 

prepare carbon nano-onions in gram-amounts by annealing of commercially available 

nanodiamonds at 1200ºC and apply crown ether/ammonium interactions for the 

dispersion of CNOs in water. In the presence of biocompatible polymers containing 

pendant amino groups, such as aminated carboxymethyl cellulose (CMC-NH2) and 

poly-L-lysine, the modified CNOs formed stable dispersions in water at acidic pH.  

 In the second part of the thesis, CNO-modified glassy carbon electrodes were 

prepared and characterized. Post-functionalization of the surfaces through in situ 

electrochemical grafting of diazonium salts bearing reactive functional groups allowed 

the construction of detection systems for a variety of analytes. Thus, these electrodes 

were used for the simultaneous detection of nitrite and ascorbic acid, for the 

construction of an immunosensor platform to detect immunoglobulin G and 

carcinoembryonic antigen and, finally, for the detection of a model DNA target 

sequence associated with the human papillomavirus in both synthetic sequences and 

clinical samples. In all cases, the incorporation of CNOs resulted in an enhancement in 

sensitivity and a decrease in detection limits, which was ascribed to a combination of 
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large surface areas and enhanced electron transfer properties of the CNO-modified 

electrodes. Although some of the biosensor platforms developed in this work were not 

fully optimized, it is clear that the use of carbon nano-onions in biosensing has many 

promising advantages over other nanomaterials. It also seems evident that there is 

possibility of many other applications such as photovoltaics or molecular electronics in 

which the interfacial and electronic properties of carbon nano-onions can play an 

important role in the fabrication and performance of these devices. 

Future work 

I. Optimization of the RF plasma functionalization method and study of post-

functionalization of the prepared CNOs.  

II. Optimization of the developed electrochemical assays in terms of 

electrodeposition cycles, incubation times and buffers, capture probe 

orientation, etc. to maximize the analytical performance of the developed 

detection systems.  

III. Evaluation of other novel applications on CNOs, for example, in 

photovoltaic cells and batteries.  
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