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Preface

The resolution of differential equations began, in certain sense, as soon as the rela-
tion among the procedures of differentiation and integration was known in the XVII
century by Newton and Leibnitz. Before Newton, the infinity was only thought in
potential but he establishes its actualization writing functions as series expansions. In
Philosophie naturalis principia mathematica (1687), he associated the infinite series
with the change rate of two magnitudes flowing continuously in a geometric way. Ten
years after Newton’s discoveries, Leibnitz obtains the same results but using differential
notation.

The procedures of differentiation were known as calculus differentialis and the
integration ones as calculus summatorius and later calculus integralis and were used
to compute the slope of a curve as a quotient of infinitesimal differences and the area
under the curve as a summation of rectangles with infinitesimal base, respectively.

After Newton and Leibnitz, important mathematicians like Jacques Bernoulli and
John Bernoulli followed the previous works and introduced the first differential equa-
tions, properly speaking. Other important differential equations were solved in the
following years by Euler, D’Alambert, Clairaut, Riccati, Legendre, and so on.

Differential equations from a geometric and qualitative point of view were first
studied by Poincaré centering his attention to the trajectories of a mobile point. In
"Sur les courbes définies par les équations différentielles” (1886), Poincaré studies the
differential equations, singular points and also closed trajectories:

”... au sujet des trajectoires qui s’approchent assez pres d’une
trajectoire fermée, une théorie tout a fait analogue a celle que
nous avons faite pour les trajectoires qui s’approchent assez pres
d’un point singulier; de sorte que ces courbes fermées jouent dans
une certaine mesure le méme role que les points singuliers.”

The future idea and definition of a limit cycle was born. As he says, in certain
cases

?... le point mobile se rapprocherait asymptotiquement de la tra-
jectoire fermée.”

Poincaré’s work is so important that other mathematicians have been unknown,
like Darboux, who in his "Mémoire sur les équations différentielles algébriques du
premier ordre et du premier degré” (1878) studied algebraic solutions of differential



equations in the complex projective plane. In the last years, his work has been studied
again and has taken importance. For example, the mathematicians have kept in mind
the way he considered projective differential equations and the relationship he estab-
lished between the existence of algebraic solutions, and the existence of first integrals
(integrale generale) and how to construct them:

7Si lon a m(m+1)/2—q = p solutions particuliéres representant
des courbes ne passant pas par q des points singuliers, ui, ..., u,
deésignant ces solutions, l'inteégrale générale sera de la forme

a1, 09 ap ”
uytug® - uy? = C.

With the XIX century disappear those great mathematicians who was able to
concentrate all mathematic knowledge and its applications. In the next generation,
a tendency to the specialization is manifested. This fact made Cantor the driver of
the necessity of an International Congress of Mathematicians (ICM): The first was
celebrated in Zurich (1897). The aim of these congresses was to establish meeting
points for the communication and the group discussion. In the second ICM, celebrated
in Paris (1900), Hilbert proposed a list of twenty-three problems to be solved along the
XX century. One of the most difficult problems suggested by Hilbert is related with
Poincaré limit cycles:

7"Im Anshuf... die Frage nach der Mazxzimalzahl und Lage der
Poincaréschen Grenzzyklen fir eine Differentialgleichung erster
Ordnung und erster Grades von der Form:
dy Y
dr X

wo X, Y ganze rationale Funktionen n-ten Grades xz, y sind.”

This problem is known in the literature as 16" Hilbert Problem and involves two
subproblems: relative position and number of limit cycles. Smale, in Mathematical
problems for the next century (1998), reformulates the second part of Hilbert problem
as follows:

Consider the differential equation in R?

dx dy

“_p 29 _

dt (ﬂf,y), dy Q(x7y)7
where P and Q) are polynomials. Is there a bound k on the number
of limit cycles of the form K < d? where d is the mazximum of the
degrees of P and @, and q is a universal constant?

It is well known that there are not limit cycles for linear systems but Hilbert
Problem is unsolved even for quadratic systems. This fact, brings to a systematic study
of quadratic systems which can have limit cycles and there can be found a Russian



classification and a Chinese classification. According to the last one, quadratic systems
that can have limit cycles are classified in the following three families

& =0x —y+Lx® +may +ny?, y=ax(1+ax+by),

according to: family (I) if @ = b = 0; family (I1) if a # 0 and b = 0; family (I17) if
b # 0.

The difficulty of such problem made necessary a weakness of the hypothesis and
the most considered limit cycles are those that are included in algebraic curves. For
this reason, Darboux theory emerges. Of course, the study of the degree of algebraic
limit cycles is directly related to the study of the degree of invariant algebraic curves.
To find an upper bound of the last one is known as Poincaré Problem.

This work is essentially dedicated to the existence, and therefore non-existence, of
algebraic limit cycles. Thus, in the first chapter are given the definitions and some
preliminary results that we need along the work. There are also some new results and
its proof. In the following chapter we consider invariant algebraic curves of degree 4,
and we study when these curves have an oval which is a limit cycle of a quadratic
system. We find all the algebraic limit cycles of degree 4 for quadratic systems; the
results of this chapter belong to

J. CHAVARRIGA, J. LLIBRE AND J. SOROLLA, Algebraic limit cycles for quadratic
systems, J. of Differential Equations 200 (2004), 206-244.

In the next two chapters, we study the existence of algebraic limit cycles from
a different point of view: our starting object is a given quadratic system. Thus, we
consider first the systems in the three families of the Chinese classification and using
non-algebraic techniques we obtain results on existence which belong to

I.LA. GaRrcia, J. GINE AND J. SOROLLA, On the existence of polynomial inverse
integrating factors in quadratic systems with limit cycles, to appear in Dynamics of
Continuous, Discrete and Impulsive Systems.

Finally, we conclude algebraically that there are not algebraic limit cycles in the
first family; as is also showed in

J. CHAVARRIGA, I.A. GARCiA AND J. SOROLLA, Resolution of the Poincaré Problem
and Nonezxistence of Algebraic Limit Cycles in Family (I) of Chinese Classification,
Chaos, Solitons & Fractals 24, 2 (2005), 491-499.

In the last chapter, we prove among other facts that if two algebraic limit cycles
belonging to different invariant algebraic curves coexist in the phase portrait, then they
must be nested. The main body of this chapter belongs to

J. CHAVARRIGA, I.A. GARCIA AND J. SOROLLA, Non-nested configuration of alge-
braic limit cycles in quadratic systems, Submitted to J. of Differential Equations.

Some other results which are not included in this memory can be found in the
paper

J. CHAVARRIGA, J. GINE AND J. SOROLLA, Analytical integrability of a class of nilpo-
tent cubic systems, To appear in Mathematics and computers in simulation.
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Chapter 1

Introduction to planar
differential systems

In this chapter we give a brief summary on differential equations and algebraic curves.
We make a description of the most important questions related to algebraic curves in
CP?, such as multiple points, intersection index, genus and so on. We also introduce
formal differential equations, formal solutions and how to involve them in the study of
differential equations.

1.1 Planar differential systems and solution curves

We consider planar polynomial differential systems of the form

m m

‘i‘:P(‘%‘?y):ZPi(xvy) ) QZQ(x,y)ZZQi(x,y) ’ (1'1)

=0 =0

where the dot stands for the derivative with respect to the independent variable t.
Here P, Q € R[z,y] are coprime polynomials such that max{deg P,deg Q} = m, and
P; and Q; are the homogeneous components of degree i. As usual, Rz, y] denotes the
ring of the real polynomials in two variables.

In the literature equivalent mathematical objects to refer to this planar differential
systems appear: as a vector field

0 0
X=P— —
oz + Q@y’
as a differential form
w = Qdx — Pdy,

and also, some authors use a more geometric notation and they think a planar differ-
ential systems as a foliation F of codimension 1, because a phase portrait of a planar
differential system consists on the plane formed (foliated) by 1-dimensional differential
varieties.



6 Introduction to planar differential systems

Definition 1.1. A flow in C? along a time ¢ € R is defined as

¢p: RxC? — (2
Q) — Q)

such that

@) () =9,
(if) ¢' (¢°(Q)) = ¢""*(Q),

for all Q in C? and ¢, s in R.

System (1.1) defines a flow in C2, ¢(z,y). It is known that this flow is a smooth
function defined for all (z,y) in some neighborhood of the initial position and initial
time. Also, it satisfies (1.1) in the sense that

2 (@), =x(s@)

Definition 1.2. A solution of (1.1) through a point (zg,y0) € C? is defined as
(x(y),y(t)) = {¢"(z0,0), t € R}.

The set of all the solutions is called phase portrait.

To found the solution of (??), when an initial condition y(zy) = yo is given, is
known as Cauchy Problem. The following theorem is well known:

Theorem 1.3. (Existence and uniqueness) Consider equation dy/dx = F(x,y)
with initial condition y(xo) = yo. Then,

(1) If F is a continuous function in a neighborhood of (xo,yo) there exist a solution
y(z) of (7?) through this point that is defined in (xo— A, xo+A) for some A > 0.

(i) If F is also Lipschitz with respect to the second variable, then the solution is
unique.

Definition 1.4. The o — limit set (resp. w — limit) of a point (zg,yo) through
¢! is defined as ao = {(x,y) € C?|¢p'" (x0,y0) — (x,y) for some t,, — —oo} (resp.
weo = {(2,y) € C*|¢" (20,0) — (z,y) for some t, — oco}).

For flows in the plane, Bendixon-Poincaré Theorem is an important result from a
topological point of view, that can not be generalized to higher dimensions. According
to this theorem, there are three types of limit sets: singular points, closed periodic
orbits, and the union of singular points and trajectories connecting them. The second
ones are limit cycles, and the latter ones are referred as heteroclinic orbits when they
connect distinct points and homoclinic orbits when they connect a point to itself. The
next subsections are dedicated to the those objects which are invariant for the flow of a
differential system; we are specially interested in its relation with limit cycles. Singular
points are defined in the next section.
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1.1.1 Singular points

Definition 1.5. A singular point or (critical point) for system (1.1) is a point (xo, yo)
such that P(xo,y0) = Q(xo,y0) = 0.

A singular point is a particular case of solution, where ¢!(xg,yo) = (29, yo) for all
teR.

We will denote by DX the jacobian matrix associated to vector field X. The
flow of (1.1) in a neighborhood of the singular point (zg,yo) is classified according
to the eigenvalues of the matrix DX (zo,y0). Observe that, as system (1.1) is real, if
(0, ¥o) is a complex singular point, then its conjugated (Zo, 7o) is also a singular point.
Moreover, if (9, yo) is a real singular point of a real system with non-real associated
eigenvalues A and pu, then = .

Definition 1.6. Let p = (z¢,y0) be a singular point of system (1.1). Let A and p be
the eigenvalues of DX (p).

(i) If A= p =0, then p is called degenerate. If moreover DX (p) # 0, we say that p is
a nilpotent point.

(ii) If A = 0 but A2 + 2 # 0, then p is called elementary degenerate.
(iii) Otherwise, p is termed non-degenerate.

(a) When DX (p) can be diagonalized, p is
o of focus type (A = i € C\ R), a saddle (A < 0 for A, € R) or a node
(A > 0 for A, u € R), if p is a real point.
o a resonant node (A/p € Q) or a non-resonant node (A ¢ Q), if p is a
complex point.

(b) When DX (p) can not be diagonalized, p is a logarithmic singular point.

In fact, the definition of a center was first given by Poincaré [42]:

Definition 1.7. A singular point O of (1.1) is a center if it possesses a neighborhood
U such that for all p € U \ {O} verifies P?(p) + Q%(p) # 0, and the solution passing
through p is closed, surrounding O.

1.1.2 Invariant curves

Once the flow is defined, take sense the fact that every set in the phase portrait is trans-
formed into another along time. The more interesting sets to understand differential
equations are those which are transformed into itself for all time.

Definition 1.8. A set Q is said to be invariant for (1.1) if ¢*(2) C Q for all t € R,
where ¢ is the flow defined by (1.1).

Obviously, when the invariant set is a curve we talk about invariant curves. Since
the solutions of planar differential equations are points or 1-dimensional components,
the invariant curves play a very important role in the study of them. Every singular



8 Introduction to planar differential systems

point and solution of a differential equation are invariant for the flow but the reciprocal
is not true. An invariant curve may not be a solution of a differential equation but it
is formed by solutions.

The tangents to the trajectories of a planar polynomial differential system are
defined almost everywhere. So, if f(z,y) = 0 is the equation of an invariant curve,
its tangent must coincide with the tangents of the trajectories. In other words, the
gradient to f, Vf = (%, %) and (P, Q) must be orthogonal over the curve f = 0,
that is,

f= <Pg£ + Q‘SDH —0. (1.2)

An invariant curve f(x,y) = 0 is said to be algebraic and of degree n when f(z,y)
is a polynomial of degree n. Said this,

Definition 1.9. A curve f(z,y) = 0 of degree n is an invariant algebraic curve if there
exists a polynomial k(z,y) of degree at most m — 1 called cofactor such that

of

of
Py @5, =k (1.3)

In fact, this last definition is a consequence of (1.2) when f = 0 is algebraic.

1.1.3 Exponential factors

Definition 1.10. A function F' = exp[g/h] where g and h are polynomials is said to
be an exponential factor if there exists a polynomial k(z,y) of degree at most m — 1
called cofactor such that (1.3) is satisfied for F.

For any exponential factor F' = exp[g/h] It is easy to check that h = 0 is an
invariant algebraic curve.

1.1.4 First integrals

Since the differential system is considered with real coefficients, we consider real first
integrals.

Definition 1.11. A function H(x,y) is said to be a strong first integral of system (1.1)
in an open subset U of R? if H(x,y) is a nonconstant function in & which is constant
on each solution curve (z(t),y(t)) € U of (1.1). We say that H(z,y) is a weak first
integral in an open subset U of R?\ X, if it is a nonconstant function which is constant
over each solution curve in U of R?\ 3.

A strong first integral is the classical first integral. Notice that system & = z,
¥ =y in R? does not have a strong first integral because it would be constant over all
the plane. The function H = zy/(z? + y?) is a weak first integral where ¥ = {(0,0)},
see [8]. When H exists in U, all the solutions of the differential system in U are known
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since every solution is given by H(z,y) = c, for some ¢ € R. Clearly, if H € C(U)

verifies oH SH
H=="-P+-—"Q=0.
Ox * dy @

It has been seen that the existence of invariant algebraic curves (real or complex)
forces the real integrability of a real differential system (1.1). This theory is due to
Darboux [21], who studied differential equations in the projective complex plane. In
particular, he studied singular points, algebraic curves and looked for first integrals in
the form H = ff‘l o fA with \; € C and f; = 0 real or complex invariant algebraic
curves.

Some improvements to Darboux’s theory are known: Jouanoulou [34] in 1979
studies the existence of rational first integrals. A rational first integral is more useful
than a darbouxian one because taking into account it and its inverse, there is a first
integral defined in any place of the plane. In particular, the existence of a rational first
integral excludes the existence of limit cycles. When a differential system possesses a
rational first integral H = h/g, then all the invariant curves can be defined by f. =0
where f. = h — cg for some constant ¢ € R, and thus they are algebraic.

Prelle and Singer [45] prove that when a polynomial system possesses an elemen-
tary first integral it can be computed using the algebraic invariant curves. Chavar-
riga, Llibre and Sotomayor [12] introduce independent points: (xp,yn), h = 1,...,7
are independent points with respect to R,,_1[z,y] if the intersection of the hyper-
plans {(a;;)| ZZ:LO ziylai; = 0}, h = 1,...,7 is a vectorial subset of dimension
W —r > 0. Christopher [13] considers exponential factors F' = exp|g/h], which
play an important role in the construction of first integrals. First integrals with expo-
nential factors are called generalized Darboux first integrals.

We summarize the most important results on first integrals of this theory in the
following theorem. We emphasize again the fact that the curves and the exponential
factors are in general complex but the first integral is real if the differential system is
real.

Theorem 1.12. Suppose that (1.1) has degree m and possesses

(a) p invariant algebraic curves f; = 0 with cofactors k; fori=1,...,p.
(b) q exponential factors F; = explg;/h;] with cofactors L; forl=1,...,q.

(c) r independent singular points (zn,yn) € R? such that fi(xn,yn) # 0 fori=1,...,p
and hj(xp,yn) #0 for j=1,...,q foranyh=1,...,7.

Then,

(i) If there exists \;, puj € C not all zero such that

P q
> Aiki+ Y uL; =0,
i=1 j=1

the function H = f* ---J‘}?“'Fl”1 -~ F'* is a first integral of system (1.1).
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(i) Ifp+q+r> W + 1, there exist s, u; € C not all zero such that

(i) If p+q+r > W + 2, then (1.1) has a rational first integral. In this case,

a rational first integral can be constructed using W + 1 invariant algebraic
curves.

Recently, Llibre and Pereira [36] have introduced different notions of multiplicity
for an invariant algebraic curve of a differential system which brings the authors to
improve Darboux theory of integrability summarized in the last theorem.

Definition 1.13. A Liouvillian first integral is a first integral constructed from a
rational function by a finite number of algebraic operations, compositions, exponentials
and integrations.

For a more precise definition see [45].

1.1.5 Integrating factors

Definition 1.14. A function R(x,y) is an integrating factor of system (1.1) in an open
subset Y CR? if R € CY(U), R# 0 in U and

or y
where as usual the divergence of a vector field X = (A, B) is defined as

04 0B

div(X) = div(A, B) = 3 + o
€z )

The first integral H associated to the integrating factor R is given by
H(z,y) = /R(m, y)P(z,y)dy + h(zx), (1.4)

satisfying %—Ia{ = —RQ.

When a polynomial differential system has an integrating factor R we can make a
time rescaling and the associated 1-form w = RQdz + RPdy becomes closed.

Following Darboux theory of integrability and improvements, we summarize the
results on integrating factors.

Theorem 1.15. Suppose that (1.1) has degree m and possesses

(a) p invariant algebraic curves f; = 0 with cofactors k; fori=1,... p.

q ezxponential factors F; = exp g;/h; with cofactors L; for j=1,...,q.
b tial F; 5/ with L, =1
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(c) r independent singular points (zpyn) € R? such that fi(zpyn) #0 fori=1,...,p
and hj(zpyn) #0 forj=1,...,q forany h=1,...,r.

Then,

(i) If there exit A\, iu; € C not all zero such that
P q
> ki + Y piL; = —div(P,Q),
i=1 j=1

then the function R = ff‘l ~~f,§"’F1’L1 -« F}' is an integrating factor of (1.1).

) If p+qg+r > mm+D)  ond the independent singular points are weak (that is

div(P, Q)(zn,yn) =0), then exist A;, u; € C not all zero such that

p q
> ki + > piL; = —div(P, Q).

i=1 j=1

1.1.6 Inverse integrating factors

Definition 1.16. A function V(z,y) is an inverse of integrating factor of system (1.1)
in an open subset Y C R? if V € C1(U), V # 0 in U and

oV 9V (0P  0Q
Py T9%, = (% aj)v-

Clearly, from the definition, V' = 0 is an invariant curve of system (1.1), not
algebraic at first. Moreover, it is easy to check that the function R = 1/V defines an
integrating factor in U \ {V = 0} of system (1.1).

The following result on closed rational 1-forms is proved in page 205 of [47].

Lemma 1.17. If w is a closed complex rational differential 1-form, then there exist
polynomials f;, f,g € Clz,y] and constants \; € C fori=1,...,m, such that

- dfs (9)
w=) N—(—+d| =] . (1.5)
ZZ::I fi f

The next corollary, works even for complex polynomial differential systems.

Corollary 1.18. Assume that a polynomial system & = P(x,y), v = Q(x,y) with
P,Q € Clz,y] possesses a rational inverse integrating factor V.. Then it has a general-
ized Darbouz first integral.

Proof. We associate to the polynomial differential system @ = P(z,y), ¥ = Q(z,y) the
rational 1-form w = A(z,y)dz + B(x,y)dy with A = Q/V and B = —P/V. Since V is
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an inverse integrating factor of the system it is clear that w is closed. Therefore, using
Lemma 1.17, we can write w as in (1.5). Hence, integrating we have that

m

M=% Nlogfi+ 5,
i=1

verifies 0H /0x = A and OH /0y = B, i.e. H is a first integral of the system. Finally,

taking exponentials, we have that H = exp(H) is a generalized Darboux first integral

of the form .
g
H =exp <>
7l

=1

Ai
It
as stated in the corollary. B

We emphasize that the proof of Lemma 1.17 (and therefore the proof of Corollary
1.18) is constructive. Moreover, these same ideas with almost identical proof are used
in the main result of Christopher [14]. In fact, Theorem 2 of that paper looks different,
but works also for first integrals and its proof can be used to prove our Corollary 1.18.

1.1.7 Limit cycles

Definition 1.19. A limit cycle of system (1.1) is an isolated periodic solution in the
set of all the periodic solutions.

Definition 1.20. An algebraic limit cycle is a limit cycle which is contained in the
zeroes set of an invariant algebraic curve.

The existence of limit cycles was first detected by Poincaré [43], but one of the
most interesting questions was proposed by Hilbert [32] in 1900 in the part (b) of
16" Hilbert Problem: Compute H(m) such that the number of limit cycles of any
polynomial vector field of degree m is less or equal than H(m).

Up to now, the more general result related with 16t" Hilbert Problem, due to
Dulac [22] and corrected separately by II’yashenko [33] and Ecalle, Martinet, Moussu
and Ramis [23], is the fact that there are finitely many limit cycles for every polynomial
vector field of degree m, but an upper bound for H(2) is unknown. On the other hand it
is well known that H(2) > 4, Zoladek [54] showed that H(3) > 11 perturbing a center,
and in general it is proved by Christopher and Lloyd [17] that H(m) > m?logm. It
is known that a quadratic system with an invariant stright line has at most one limit
cycle, see Coppel [18], or Coll and Llibre [20].

In Ye Yian-Qian [53] can be found a resum of the most important results on limit
cycles but Hilbert Problem remains unsolved even for m = 2. So in Smale [49], the
author includes Hilbert Problem in the list of unsolved problems.

It is known that the existence of a rational first integral excludes the existence of
limit cycles because any region of the plane belongs to the definition domain of the
first integral or his inverse. Also, when a rational first integral exists, there is not any
focus.

In a paper of Giacomini, Llibre and Viano [31] a method has been introduced
to study the existence and nonexistence of limit cycles of planar vector fields. This
method is based on the following result:
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Theorem 1.21. (Giacomini, Llibre & Viano) Let (P,Q) be a C! wvector field
defined in the open subset U of R%. Let V(x,y) be an inverse integrating factor If ~
is a limit cycle of the vector field (P, Q) in the domain of definition of V', then v is
contained in ¥ = {(z,y) € U : V(z,y) = 0}.

1.1.8 Quadratic systems

When m = 2, the differential system (1.1) is called quadratic.

i = Py+Pi+Py = agp+aior+ any + a2z’ + aizy + agy?

. 1.6
] Qo+ Q1+ Q2 = boo+ biox + bory + booz? + biizy + boay? (1.6)

Of course, all the definitions and ideas on differential systems of arbitrary degree
work also for systems of degree 2. We would like to remark some results only valid for
quadratic systems.

The following Theorem establishes the coexistence of different type of real singular
points in a quadratic system. A simple proof can be found in Kukles and Casanova
[35] or Coppel [19] but the property was previously stated by Berlinskif [1].

Theorem 1.22. (Berlinskii) Suppose that there are four real different critical points
of a quadratic system. If the quadrilateral with vertices these points is convex then the
opposite critical points are saddles and the other two are antisaddles (nodes, foci or
centers). But if the quadrilateral is not convex then either the three exterior vertices
are saddles and the interior vertex an antisaddle or the exterior vertices are antisaddles
and the interior vertex is a saddle.

The next result is well known, see Ye Yian-Qian [53].

Theorem 1.23. Let C be a limit cycle of a quadratic system (1.6). There exists one
only singular point inside the bounded region defined by the limit cycle and it is also a
focus.

1.2 The complex projective plane

Consider a real affine algebraic curve f(x,y) = 0 of degree n. If we want to compute
the intersection points with a parametric straight line (z(t), y(t)) = (¢, at +b), we must
solve the equation of degree n, f(t,at + b) = 0. This equation may be solved over the
complex field, that is, there can be complex points that play an important role even
when the curve is real. Moreover, it has been shown that the complex behavior plays
a very important role even for real affine differential systems of equations. Darboux’s
theory of integrability is a good example of this fact.

Moreover, the behavior at infinity is as important as the affine behavior and alge-
braic projective curves are more useful than algebraic affine curves when we proceed to
study their properties. In fact, this is in this way due to the compactness of projective
spaces. Thus, the projective plane allows to work with the infinite line and provides
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a global vision of the curves necessary from now on. So, we must imagine the differ-
ential equations over the complex projective plane. Poincaré and Darboux, considered
differential equations in this way, yet.

The complex projective plane is constructed as ((C?’—{()})/ ~, where (Xo, Yy, Zy) ~
(X17Y17Z1) lf (X()a}/zh ZO) = ()\Xla)\ylu )\Zl) fOI' (X07}/bu ZO)a (X17Y17Z1) S (CS - {0}
and \ # 0. Thus, the points in CP? are ratios (X : Yp : Zp). The sets

Ux ={(X:Y :Z)€CP*| X #0},
Uy ={(X:Y :Z) e CP?|Y #0},
Uy ={(X:Y :Z) € CP*| Z +#0},
with the difeoeomorphisms
(ZS)( . Z/{X i (C2
(x:v:2) — (%.%)

oy : Uy — C?
(X:Y:2) — (%,%)

¢z : Uz — C?
(X:YV:2) — (gg)

define a differenciable atlas and give to CP? a differenciable manifold structure.

To consider local coordinates of a projective curve at a point is to apply ¢x, ¢y
or ¢z depending on the local chart where the point lives. By cbgl, every affine object
can be extended to the projective plane.

1.2.1 Projective algebraic curves

A projective algebraic curve of degree n is the set of projective points where a ho-
mogeneous polynomial of degree n vanishes. The real affine curve f(z,y) = 0 in the
projective coordinates (X,Y,Z) is given by F(X,Y,Z2) := Z"f(X/Z,Y/Z) = 0, a
homogeneous polynomial on X, Y, Z.

From Euler’s formula one has Xg—f; + Yg—g + Zg—g =nk.

Multiple points

Let f(x,y) = 0 be an affine curve. By virtue of the implicit function derivative theorem

of
dy _ 5
af
dx 5

what determines the slope of the tangent to the curve. Clearly, this angular coefficient
is well defined at a point if %ch # 0 or g—i # 0. When such partial derivatives are
both zero over a point of the curve, it is said to be a multiple point or singular point.



1.2 The complex projective plane 15

We will use the expression multiple point to distinguish between these points and the
singular points of a differential equation. Intuitively, the extension of this concept to
the projective plane is clear, but we will do it in a precise way.

Let p = (Xo : Yy : Zp) be a point on the projective curve F(X,Y,Z) = 0. Since
not all the coordinates of the point can be zero, we suppose that Zy # 0 and that
p=1(0:0:1). If we consider the expression of the curve for Z = 1, we have

F(XaY; 1) = Fs(Xv Y) + Es+1(Xa Y) + ...+ Fn(XaY)v (17)

where F;(X,Y) are homogeneous polynomials of degree 4, with F5(X,Y) #£0. If s =0
the curve does not contain the point.

Definition 1.24. Under the above assumptions, we say that p is a point of multiplicity
s.
(1) If s =1 we will say that p is a simple point.

(ii) If s > 1, then we will say that p is a multiple point with multiplicity m,, = s.

In particular, p is a multiple point of F(X,Y, Z) = 0 if and only if g—f;(p) = g—f;(p) =
g—g(p) = 0. This is clear assuming p = (0 : 0 : 1) and considering the partial derivatives

of F' as power expansions of Z and taking into account (1.7) with s > 1.

If p is a multiple point of multiplicity s > 0 we have Fs = Hle L7 where L; are
different straight lines.

Definition 1.25. The lines L; are called tangent straight lines to F' = 0 at p; r; is the
multiplicity of the tangent.

Definition 1.26. We say that p is an ordinary multiple point if r; = 1 for i = 1, ...k,
otherwise we say that p is a non ordinary multiple point.
Relative to the multiplicity of the points of a curve we have the following theorem,

whose proof can be seen in Fulton [28].

Theorem 1.27. If F(X,Y,Z) = 0 is an irreducible curve in CP? of degree n, then
Z mp(";p_l) < (”*1)2(”*2)
» <

, where p runs over the multiple points of the curve.

Genus of a projective algebraic curve

Let po = (Xo : Yy : Zp) be a multiple point on a given algebraic projective curve. By
means of a birrational quadratic transformation, the curve is applied into another, and
po into the set of r1 points p1,1,p1,2, ... P1,,. We say that the given curve has r; points
in the first neighborhood of py. By means of at most r; birrational quadratic transfor-
mations we obtain the ry points of the second neighborhood of pg: p2.1, p2,2,. . -,D2,r,-
Successively, we proceed until the points of some neighborhood are all simple, and we
say that the singularity of the given curve at pg is resolved. The multiple point pq is
said to be explicit and py -, (k > 0) are said to be implicit. Now we are ready for the
following definition:
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Definition 1.28. We define the genus of a curve of degree n as

g:wfzw (1.8)

2 2 ’

where the sum runs over all the multiple points, explicit and implicit, and m,, is their
multiplicity.

Since the genus of a curve is a non negative integer, this is an improvement of
Theorem 1.27. For more details see Primrose [46].

Relative to the genus of a curve we have the following theorem:

Theorem 1.29. (Harnack-Klein) Let C be an algebraic curve in RP?. The number
of real 1-dimensional connected components of C is at most g+ 1, where g is the genus

of C.

Intersection index

Here we present a brief introduction to the intersection index. For more detail see
Foulton [28].

Definition 1.30. Let p € C2. The local ring of C? in p, O,(C?), is defined as the set
of all the rational functions with complex coefficients such that the denominator does
not vanish in p.

Let p= (X0 : Yy : Zy) € CP2. Since not all the coordinates of p can be zero we
can consider Zy # 0 and making the change zo = X¢/Zy and yo = Yy/Zp, p is given
by its local coordinates (xo, yo) and one can define the local ring at p, O,.

Definition 1.31. Let C4,...,C, be algebraic curves in CP? defined in the local co-
ordinates at p by fi(z,y) =0,..., fu(z,y) = 0. The intersection index of the curves
at p is defined as

(i) L(Cy,...,C)=0ifpg CyN---NCy,

(ii) I,(Ch,...,Cy) = 0o if fi = hg; for i = 1,...,n, where h is a polynomial that
vanish on p,

(iii) I,(C1,...,Cy) = dimc O,/(f1,-.. fn) otherwise, where (fi,...f,) is the ideal
defined by the polynomials fi,..., fn.

From the inclusion of ideals (f;, f;) C (fi1,..., fn) for i,5 = 1,...,n one have the
following relation between the intersection index of n curves and the intersection index
of each pair: I,,(Cy,...,Cy) < min; ;{I,(C;,Cj)}.

Let F(X,Y,Z) = 0 and G(X,Y,Z) = 0 be two algebraic curves and let p be a
point on them.

Definition 1.32. We say that F' = 0 and G = 0 cut themselves strictly at p, if F and
G does not have common factors that vanish on p. We say that ' = 0 and G = 0
cut themselves transversally at p if p is a simple point of F = 0 and G = 0, and the
tangent to F' =0 and to G = 0 at p are different.
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On the intersection index of two curves we have the following theorem.
Theorem 1.33. The intersection index of F =0 and G =0 at p, I,(F,G), is unique
for all p € CP? and satisfies the following conditions:

(i) I,(F,Q) is a non negative integer for all F', G and p when F and G cut themselves

in strict sense. I,(F,G) = oo if F and G does not cut themselves in strict sense.

(i) I,(F,G) = 0 if and only if p is not a common point of F' and G. I,(F,G) only
depends on the factors of F' and G vanished on p.

(iii) If T is a coordinates change and T(p) = q, then I,(T(F),T(G)) = I,(F, Q).
(iv) I,(F,G) = L,(G, F).

(v) I,(F,G) > my(F)my,(G), verifying the equality if and only if F and G does not
have common tangents at p, where my,(F) and m,(G) are the multiplicities of p
with respect to F' and G.

(vi) If F=1[-, F/" and G =[];_, G';-j, then the intersection index can be computed
as I,(F,G) = 37, 22:1 risilp(Fy, Gj).
(vil) I,(F,G) = I,(F,G+ AF) for all homogeneous polynomial A on X, Y and Z.

We will need a property like (vi) for the intersection index of three projective
algebraic curves. It is given in the following Lemma.

Lemma 1.34. Let A, B, C, C' be homogeneous polynomials in three variables Then

I,(A, B,CC") < I,(A, B,C) + I,(A, B,C").

Proof. Consider the following sequence of vector spaces:

i Op " Op é Op
0= Kerlh) = 1 B6)  (AB.CCY  (4.B.07

_>0’

where i is an inclusion, ¥(z) = C'z and ¢ is the natural projection.

The sequence is exact because ¢ is injective, ¢ is surjective, Im(i) = Ker(¢) and
Im(¢) = Ker(¢) ={z € (,41307]()}0') such that z = C'w for any w}. So

o 0
dimg ——2—— = dimg ———2— +dim¢ ——2—— — dim¢ K
MeaB.ooy - MMc@mo T @s.on e i)
0
< di P 4 di ___7pr
< dimg (4,B,C) + dimg¢ (4.B,07)’
and by the definition of the intersection index the lemma follows immediately. [ |

A very useful result for the developing of this work was the named Darboux Lemma
that can be found in [21], but not correctly stated. See Chavarriga, Llibre and Moulin-
Ollagnier [11] for a proof of the correct version.
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Theorem 1.35. (Darboux Lemma) Let A, A’, B, B, C, C’ be homogeneous poly-
nomials in CP? in the variables X, Y, Z of degrees I, ', m, m’, n, n’, respectively.
Suppose that A, B, C and A’, B', C' are two sets of coprime polynomials verifying
AA"+ BB+ CC' =0. Then,

1ot 1

() 32, 1p(A. B,C) + 3, L(A', B, ") > tmntfmon,

I 1!

(ii) If ANBNCNA'NB'NC’ =0, then Y-, I,(A, B,C)+Y., I,(A', B, (") = tmndmn
where \=1l+1U'=m+m' =n+n'.

Theorem 1.36. (Bézout) Let F = 0 and G = 0 be two curves in CP? of degrees r
and s, respectively without common components. Then Zp I,(F,G) =rs.

1.2.2 Projective differential equations

Let P, Q and R be homogeneous polynomials of degree m + 1 in the variables X, Y
and Z. The homogeneous 1-form

w="PdX + QdY + RdZ
is said to be projective if XP +Y Q + ZR = 0, that is,
P=MZ-NY, Q=NX-LZ R=LY-MX,

for some L, M and N homogeneous polynomials of degree m. Then

w=LYdZ - ZdY)+ M(ZdX — XdZ) + N(XdY — YdX),
and w = 0, that is,

L(YdZ — ZdY )+ M(ZdX — XdZ) + N(XdY —YdX) =0, (1.9)
defines a differential equation. For more details, see Darboux [21].

The following result is well known.

Lemma 1.37. If we take L = L+ AX, M = M + AY, N = N + AZ being A a
homogeneous polynomial of degree m — 1, then (1.9) remains invariant.

Let I be a homogeneous polynomial of degree n in CP?. We say that F' = 0 is an
irreducible invariant algebraic curve of (1.9) if

OF  OF _ OF
oLt gy M+ 5N =KF, (1.10)

where K is a polynomial of degree m — 1. Using Euler’s Formula we have

OF KX\ OF KY\ OF KZ
(‘3X(Ln>+8Y(Mn>+8Z<Nn>& (1.11)

Remark 1.38. Taking L = L — KX/n, M = M — KY/n and N = N — KZ/n we can
always consider that the cofactor of one invariant algebraic curve is zero.
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1.2.3 Projective singular points

The singular points of (1.9) are those for which the tangent is not determined. These
points verify the system

P=MZ—-NY =0, Q=NX-LZ=0, R=LY - MX =0. (1.12)

In order to determinate the number of singular points we use the following corollary
of Theorem 1.35.

Corollary 1.39. The number of singular points of the differential equation (1.9) where
L, M, N are coprime polynomials of degree m, is m? +m -+ 1.

1.2.4 Relationship among affine and projective objects

Now we show the behavior of a differential equation, and cofactors when we take local
coordinates in the local chart determined by Z = 1. Of course, we can do the same for
X =1and Y =1, similarly.

Lemma 1.40. Let (1.9) be a differential equation with L, M and N of degree m. Let
F =0 be an invariant algebraic curve of degree n of (1.9) with cofactor K. Then, the
restriction of the projective differential equation to the affine plane is

(L(X,Y,1)— XN (X,Y,1))dY — (M (X,Y,1) — YN (X,Y,1))dX = 0.

It has degree m + 1 and F(X,Y,1) = 0 is an invariant algebraic curve with cofactor

K(X,Y,1)=K(X,Y,1) —nN(X,Y,1) of degree at most m, whenever Z = 0 is not an
imvariant straight line.

Proof. Since F' = 0 is an invariant algebraic curve of (1.9) it follows (1.10). On the
other hand, from Euler’s Formula outside the infinite straight line we obtain

oF 1 oF oF

— == (nF-X—=-Y—=|.

0z~ 7 (” X ay)
Replacing the right side of this expression in (1.10) and taking Z = 1 we see that
F(X,Y,1) = 0 is invariant for the restricted differential equation and we obtain the
expression of the cofactor. The line Z = 0 is invariant for (1.9) if and only if N = ZA
for some polynomial A of degree m — 1. When this does not happen, N(X,Y,1) is a
polynomial of degree m. B

System (1.1) defined on the affine plane can be extended to the projective plane.
We write (1.1) as Pdy — Qdx = 0. Using projective coordinates x = X/Z, y =Y /Z we
can write the previous equation as

L(YdZ — ZdY )+ M(ZdX — XdZ) =0,
with
L=72"P(X/Z,Y/Z),
M=7"Q(X/Z,Y/Z).

Notice that in this case we have N = 0.
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Of course, any singular point p = (g, yo) of the affine differential equation (1.1)
becomes a singular point p = (X : Yp : 1) for the projective differential equation. The
points satisfying yP,, — z@Q,, = 0 are called infinite singular points. They are singular
points of the projective differential equation which, from an affine point of view, live
over the line at infinity, i.e., over Z = 0; are of the form p = (X : Yy : 0).

Definition 1.41. We say that system (1.1) has degenerate infinity if the line at infinity
Z = 0 is fulfilled of singular points or equivalently yP,, — xQ., = 0.

Systems (1.1) of degree m with degenerate infinity can be reduced to differential
equations of degree m — 1.

If f = 0 is an invariant algebraic curve of the affine differential equation with
cofactor k, then the projectivized curve F' = 0 defined by F = Z"f (X/Z,Y/Z) has
cofactor K = Z™~ 1k (X/Z,Y/Z). As we have said in Remark 1.38, we can consider
that this cofactor is identically null by making a change, but when the projective
differential equation comes from an affine planar system then this change forces N # 0.

1.3 Formal differential equations and formal solu-
tions

In this section we summarize some definitions and results about formal differential
equations and their solutions, that we shall use later on. For more details and proofs
about these results see Seidenberg [48]. Walcher in [50] states also similar results with
some precisions.

We consider the field K (either R or C). We denote by K[[z,y]] the ring of
formal power series. A wunit is an invertible element of this ring. In particular, if
Ux,y) = Y5 —ouijz'y’ is a unit then ugo # 0.

Let F(z,y) be an irreducible non—unit of K[[z, y]] such that F(z,y) # 0.

Definition 1.42. An analytic branch centered at (0,0) is the equivalence class in
K[z, y]] under the equivalence F ~ G if F = U - G with U unit.

We note that here the adjective analytic does not mean the convergence of the
power series. On the other hand F'(0,0) = 0 because F(z,y) is non-unit.

Given a representative of an analytic branch F'(z,y) centered at the origin, there
are power series z(t) = Y oo, z;t" and y(t) = Yoo yit', with z;,y; € K, not both
identically null, such that F(z(t),y(t)) = 0.

Definition 1.43. Such a pair (z(t),y(t)) is called a branch expansion of the analytic
branch.
Note that x(0) = 0 and y(0) = 0.

Given a branch expansion z(t), y(t), there is an irreducible non—unit F'(z,y) # 0
in K[[z,y]], uniquely determined up to a unit factor, such that F(x(¢),y(t)) = 0.
F(z,y) = 0 is called the equation of the branch.
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Consider the formal differential equation

P(z,y)dy — Q(x,y)dx =0, (1.13)

where P(z,y),Q(z,y) € K[[z,y]]. For a formal power series F(z,y) = >_75_, fijzty?

we define dF (z,y)/0x as the formal power series 72 i fija’™!
we define OF (x,y)/0y.

y?. Analogously,

By a solution of the formal differential equation (1.13) we mean an analytic branch
(x(t),y(t)), centered at the origin satisfying equation (1.13). More explicitly, if the
equation of the solution branch (z(t),y(t)) is F(z,y) = 0 one has

oF
P(z,y)

dy
for some K € K[[z,y]]. Conversely, every irreducible F' € K][[x, y]] with F' # 0 satisfying
(1.14) for some K € K][z,y]], yields a solution of equation (1.13).

Definition 1.44. A branch z(t) = > 2, x;t* and y(t) = > o, y;t’, with z;,y; € K,
centered at (0,0), is called linear if z1 or y; is not zero.

Using the following theorem, which summarizes the results from [48], we study
the behavior of the solutions at a singular point according to the eigenvalues of the
jacobian matrix DX, where X is the vector field associated to the differential equation
(1.13).

Theorem 1.45 (Seidenberg). Let the origin (0,0) be a critical point of the formal
system & = P(x,y), y = Q(z,y), where P,Q € Cl[z,y]], with associated eigenvalues
A p € C. In the following the dots denote higher order terms.

1. Let (0,0) be a non-degenerate critical point. Then consider the formal differential
system

B Gy (1.15)

where A\ # 0. If X # p then every formal solution of (1.15) at the origin has a
horizontal or vertical tangent. Moreover,

(i) If Mp & QF then (1.15) has exactly two formal solutions at the origin
Fi(z,y) = 0 with i = 1,2. They are linear branches with horizontal and
vertical tangent respectively, i.e., Fy(z,y) =x+---, Fa(z,y) =y +---.

(ii) If \/u € QT then the following holds.

(a) If A\ = u then, for each direction there exists only one formal solution
at the origin, a linear branch.

(b) If M # 1 (with N/ > 1) then there is one unique formal solution at
the origin with horizontal tangent: a linear branch F(x,y) =y + ---.
The other formal solutions at the origin, if they exists, have vertical
tangent, i.e., are of the form F(x,y) = x° + .-+ with s € N\{0}.

(b.1) If A/ u € N then either there are no formal solutions at the origin
with vertical tangent or there are infinitely many formal solution at
the origin with vertical tangent, all linear.
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(b.2) If\/u & N then there is one unique linear branch formal solution
at the origin with vertical tangent F(x,y) = x + ---. The other
solutions are non—linear.

2. Let (0,0) be a logarithmic critical point. Then, the formal differential system
T=Xr+y+--,y= y+---, where A # 0 has a unique formal solution at the
origin, which is a linear branch with horizontal tangent F(x,y) =y +---.

3. Let (0,0) be a elementary degenerate critical point. Then, the formal differential
system & = x + -+, y = ---, has exactly two formal solutions at the origin
Fi(z,y) = 0 with i = 1,2. They are linear branches with horizontal and vertical
tangent respectively, i.e., Fi(x,y) =x+---, Fo(z,y) =y +---.

4. Let (0,0) be a nilpotent critical point. Then, the formal differential system & =
y+---, y=---, can have either one formal solution at the origin or two linear
branch formal solutions at the origin or infinity formal solutions at the origin.

1.3.1 Relationship among formal solutions and invariant alge-
braic curves

Let us consider an irreducible algebraic curve f(z,y) = 0 with f € C[z,y] such that
f(xo,y0) = 0. We translate the point (xg,yo) to the origin. In particular f € C[[x, y]]
with f(0,0) = 0, hence f is not a unit element in C[[z,y]] and in this ring it is possible
that f be a reducible element. By using the Newton-Poiseux algorithm, see [2] one can
see that there are ¢ irreducible elements ¢;(z,y) € Cl[x,y]], with i = 1,..., ¢ such that

f factorizes as
¢

i=1
being r € NU{0} and U € C[[z,y]] a unit element. Later on, in [6], it was proved that
the above decomposition (1.16) is square free, that is, there is no repeated element ¢;
neither r > 2.

Let the origin (0,0) be a singular point of system (1.1) and let f = 0 be an
irreducible invariant algebraic curve of that system such that f(0,0) = 0. The curve
f(z,y) =>"" fi(z,y) = 0 with f; real homogeneous polynomials and s > 1, defines a
finite number of branches at the origin corresponding to its irreducible nonunit factors
in C[[z,y]]. As fs is homogeneous, it can be factorized as fs(x,y) = [[;_, Li(z,y)
where L;(x,y) = a;x + byy are called the tangents of the curve f = 0 at the origin and
a;,b; € C.

Finally, it is easy to see that each of the irreducible elements appearing in the
above formal decomposition (1.16) of f is a formal solution of (1.1). Moreover, the
tangents at the origin of these branches are given by f; = 0 as defined above.

Let (z0,y0) € C? be a critical point with eigenvalues A\, € C. Denoting by
vz, v, € C? the corresponding eigenvectors, we will call Ly (z,y) and L, (z,y) the non-
null homogeneous polynomials of degree one belonging to C[xz,y] such that VLy Lvy
and VL, v, respectively. Here V := (0/0z,0/0y) is the gradient operator and L
means orthogonality with respect to the standard Euclidean scalar product in C2.
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Taking into account all this background, in [6] the following results are proved, which
describe the tangents and the value of the cofactor at some generic class of critical
points.

Theorem 1.46. (Chavarriga, Giacomini & Grau) Let f(z,y) = 0 with f € C[z, y]
be an irreducible invariant algebraic curve with associated cofactor k(xz,y) of a real
polynomial differential system. Let (z0,y0) € C? be a non-degenerate or elementary
degenerate critical point of the system with different associated eigenvalues A and
verifying f(xo,y0) = 0. Then, the equation of the tangents of the curve f = 0 at (zo, yo)
is fs(@,y) = Ly (@,y) L3 " (2, y) with s,r € N, v <'s. Moreover k(zo,y0) = rpu+(s—1)A.

Lemma 1.47. Let f(z,y) = 0 with f € Rlz,y| be an irreducible invariant algebraic
curve in R[z, y] with associated cofactor K (x,y) of a real polynomial differential system.
Let (z0,y0) € R? be a real critical point of the system with complex eigenvalues X = a-+ib
and p = a — ib, where b # 0 and verifying f(xo,y0) = 0. Then, the equation of
the tangents of the curve f = 0 at (xo,y0) is fa(x,y) = La(x,y)Lu(x,y). Moreover

K(xo,y0) = pp+ A and no other invariant algebraic curve f(x,y) = 0 irreducible in
Rz, y] with f(zo,yo) =0 can exist.
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Chapter 2

Algebraic Limit Cycles of
Degree 4 for Quadratic
systems

In this chapter we give a characterization of the irreducible invariant algebraic curves
of fourth degree of a quadratic system containing an oval which is an algebraic limit
cycle of the system, showing that there are exactly four families of algebraic limit cycles
of degree 4 for quadratic systems.

2.1 Introduction

As we have said, 16" Hilbert problem is unsolved even for quadratic systems. In this
chapter we concentrate in algebraic limit cycles.

In 1958, Ch’in Yuan-shiin summarizes in [3] the possible quadratic system having
an algebraic limit cycle of degree 2 and he proves the uniqueness of this limit cycle:

If a quadratic system has an algebraic limit cycle of degree 2, then after an affine
change of variables, the limit cycle becomes the circle ' := x? +y% — 1 = 0. Moreover,
I is the unique limit cycle of the quadratic system which can be written in the form

@ = —ylar+by+c)—(a®+y* - 1),
y = z(ax+by+c),

with a # 0 and ¢® > a® + b>.

The case of the limit cycles of degree 3 was studied later on. Using three papers
Evdokimenco proves from 1970 to 1979 that there are no quadratic systems having
limit cycles of degree 3, see [24, 25, 26]. An easier proof can be found in Chavarriga,
Llibre and Moulin-Ollagnier [11].

The study of the algebraic limit cycles of degree 4 for quadratic systems began
before the proof of Evdokimenco. Thus, Yablonskii [51] found one of them in 1966.

25
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Seven years later, a new algebraic limit cycle of degree 4 was found by Filiptsov [27],
and a third one was found in 1999, see Chavarriga [4]. The possible existence of other
algebraic limit cycles of degree 4 and limit cycles of higher degree was unknown at the
moment of composition of this work.

The study of invariant algebraic curves is closely related to the study of algebraic
limit cycles. There is an essential open problem first stated by Poincaré [44]: find
an upper bound for the degree of the invariant algebraic curves of quadratic systems
without rational first integral. Lins Neto [38] conjectured that if a quadratic differential
system possesses an invariant algebraic curve of degree greater than 4, it would be
rationally integrable. At that moment, the study of all the algebraic limit cycles of
degree 4 was an important objective because if we know all them and we believe Lins
Neto conjecture, then we know all the algebraic limit cycles for quadratic systems.
Unfortunately, the conjecture is false. This is first showed by Christopher and Llibre
[15] and Moulin-Ollagnier [39].

2.2 The main result

We characterize the quadratic systems which have an algebraic limit cycle of degree 4.
The main result is summarized in the following theorem.

Theorem 2.1. After an affine change of variables the only quadratic systems having
an algebraic limit cycle of degree 4 are

(a) Yablonskii system

& = —dabcx — (a+b)y + 3(a + b)cx? + day
Y (a + b)abz — dabcy + 4(abc® — 3(a + b)? + 4ab)z? + 8(a + b)cxy + 8y? ,

with abc # 0, a # b, ab > 0 and 4c¢*(a—b)? + (3a—b)(a—3b) < 0. This system posseses
the irreducible invariant algebraic curve

(y + cx?)? + 2% (z — a)(z — b) = 0.

of degree 4 having two components, an oval (the algebraic limit cycle) and an isolated
point (a singular point).

(b) Filipstov system

it = 6(1+a)x+2y—6(2+a)r?®+ 122y ,
g = 15(1+a)y+ 3a(l+a)z? — 2(12 + ba)xy + 16y? ,

with 0 < a < % This system posseses the irreducible invariant algebraic curve
3(1 + a)(az® +y)? + 2y*(2y — 3(1 + a)z) = 0,

of degree 4 having two components, one is an oval and the other is homeomorphic to a
straight line. This last component contains three singular points of the system.

(c) The system
i = br+6x2+4(1+a)ry + ay?
gy = x+2y+day+(2+3a)y?,
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with %ﬁ < a < 0 posseses the irreducible invariant algebraic curve
22 + 23 + 2%y + 2azy® + 2axy® + a®y* =0,

of degree 4 having three components, one is an oval and each of the others two is
homeomorphic to a straight line. Each one of these last two components contains one
singular point of the system.

(d) The system
i = 2(1+4 2z — 2k2? + 6xy),
v = (8—3k—14kx — 2kxy — 8y?),

with 0 < k < i posseses the irreducible invariant algebraic curve

1

1 oot ke ey ety =0,
of degree 4 having three components, one is an oval and each of the other two is
homeomorphic to a straight line. Fach of these last two components contains one
singular point of the system. it has an oval, which is a limit cycle and two real branches.

This result is obtained by using projective techniques, in particular, the infinite
straight line plays an important role. From a projective point of view, and in order
to make an algebraic classification of the curves that contain limit cycles, we can say
that in case (a) (figure 2.1) the curve has two double points: a node at (0:0: 1) and
a tacnode at (0 : 1 : 0) that has real tangent but it is isolated because the branches
through it are complex conjugated. Consequently, the genus of the curve is g = 0.

x=0

g=0

Figure 2.1: Case (a). Yablonskii.

In cases (b) (figure 2.2) and (c) (figure 2.3) the curve has one only double point,
a ramphoid cusp, that is finite and can be put at (0:0:1). The genus of the curve is
g=1.

In the new case (d) (figure 2.4) the curve has an infinite ramphoid cusp at (0 : 1 : 0).
So, the genus is g = 1, too.
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Figure 2.2: Case (b). Filipstov.

2.3 Some results on singular and multiple points

On the singular points on an straight line anyone we have the following Lemma.

Lemma 2.2. Let r =0 be a straight line. Then,

ZIP(TJZ Q,R)<m+ 1

p

Proof. We know that I,(r, P, Q,R) < min{I,(r,P), I,(r, Q), I,(r,R)}.
Iy, I(r,P,Q,R) >m+1, then

ZIp(r,P) >m+1, ZIP(T,Q) >m + 1 and ZIp(r,R) >m+ 1,
P P P

from where r divides P, Q and R against the hypothesis. [ |

When a line has less that m+1 singular points it can be invariant or not, depending
on the singular points. Using the following result we give a characterization of invariant
straight lines.

Theorem 2.3. Let r = 0 be an straight line. It is invariant for equation (1.9) if and
only if Zp I,(r,P,Q,R)=m+ 1.

Proof. By means of a projectivity we can consider that the straight line is Z = 0.
Suppose that > I,(Z,P,Q,R) = m+ 1. Then

> I(ZP)>m+1and Y I,(Z,Q) >m+1

p p
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g=0

Figure 2.3: Case (c¢). Chavarriga.

On the other hand, since P = MZ — NY, Q = NX — LZ and using Theorem 1.33(vii)
follows that

> I(ZP)=) L(ZNY)and Y I,(Z,Q) => I,(ZNX).

p

Now, since X, Y and Z can not be zero simultaneously, follows that Zp I,(Z,N) >
m + 1 and from Bezout’s Theorem Z divides N. Therefore, Z = 0 verifies (1.10), and
is invariant for w = 0.

Reciprocally, if Z = 0 is an invariant straight line of w = 0 we have N = ZA for
some polynomial A of degree m—1. By taking L = L—AX, M = M—AY and N = 0 we
have Zp I,(Z,P,Q,R) = Zp I,(Z,MZ,~LZ,LY — MX) = Zp I,(Z,LY - MX) =
m + 1 by Bezout Theorem. [ |

The proof of the following result is due to Chavarriga and LLibre [10].

Proposition 2.4. All the multiple points of an irreducible invariant algebraic curve
of w =0 (1.9) are singular points of the projective differential equation w = 0. The
intersection points of two invariant algebraic curves of w = 0 are singular points of the
differential projective equation w = 0.

Let F' = 0 be an invariant algebraic curve. From (1.10) and using Euler’s Formula
it follows that

o8 (1 ) B o ) 2 (- K2 o

X n ) Tay n N==

Then, following Darboux there are two types of singular points: those that are on the
projective curve F' = (0 and those that are not necessarily on this curve and for which

one has KX Ky K7
L-——=0, M——=0, N——=0, (2.1)
n n n
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Figure 2.4: New case (d).

where n is the degree of the curve. Thus we define
OF OF OF KY KZ
=N (2 IL——M S N-22).
h zp:p(ax’aY’az)’ Z ( n’ n)
By applying Theorem 1.35(i) to equation (1.11) we have

thh,>m3+(n—1)3
= m4+n-—-1 "

In order to simplify the notation, I (gﬁ;, g{f, g—g) will be denoted by I,

When a projective differential equation is the extension of a differential equation
defined in the affine plane we get N = 0. Thus, in A’ two types of points are counted:
those given by K = 0, and those given by Z = 0. If we take

=> I(L,M,K), ZI (L—M—I;Y Z)

P

it follows from Lemma 1.34, that

W < b+ h. (2.3)

Notice that by Bezout’s Theorem we have b} < m(m — 1), otherwise the polyno-
mials P, @, k would not be coprime against the hypothesis.

If by > m, then P, = k-1 X/n and @, = kyn—1Y /n. Replacing in (1.9) L
for L — kyy—1X/n, M for M — k,,_1Y /n and N, that is zero, for —k,,_1Z/n, we
see that Z = 0 is a straight line of singular points, that is, has degenerate infinity.
Affine quadratic systems with degenerate infinity can be reduced to a linear differential
equation in CP?; in particular, they do not have limit cycles.
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In what follows we suppose that system 1.1 has not degenerate infinity. In partic-
ular, we have hy < m and consequently h’ < m? which allows to obtain, using (2.2),
an upper bound for h.

The next result is proved in [10].

Theorem 2.5. (Chavarriga & LLibre) Let f = 0 be an invariant algebraic curve
for system (1.1). Let h' be the number of points counted with their multiplicity in CP?
that verify (2.1). If ' = m?, then system (1.1) has a rational first integral.

A very useful result on invariant curves can be found in Christopher [13], but there
are preliminary versions of this lemma in other authors, see for instance Theorem 1 of
Yablonskii [52]. Here we present an improvement of such result.

Lemma 2.6. Let f := Z?:o fi = 0 be an affine invariant algebraic curve of system
(1.1) of degree n. Let d be a real or complex linear divisor of f, with multiplicity .
We denote by k = Z;’;l k; the cofactor of f = 0. Then

(1) d is a divisor of A := yPy, — 2Qp,.

(ii) Let [ be the multiplicity of d as a divisor of A. Then d is a divisor of kym—1x—nPp,
and of km_1y — nQn, with multiplicity | — 1.

(iii) hy, =m+ 1 —r where r is the number of different factors of fy,.

(iv) dis a divisor of fo_1(km—12—(n—1)Py) and of frn1(km—1y — (n—1)Qm) with
multiplicity min{l — 1,1}.

Proof. The curve f = 0 verifies (1.3) since it is invariant. Taking the terms of degree
m+mn—1and m+n —2 of (1.3) we have

Ofn Ofn _
8fn—l afn—l afn afn o
Pm O + Qm 8y + Pm—l O + Qm—l ay — km—lfn—l + km—2fn- (25)

On the other hand, from Euler’s Theorem x% + y%; = nf,. Consequently we

obtain

% - Jn(km—1y — nQm) % o Jn(nPp — kpm_17)
or A ooy A '

(2.6)

Therefore, every divisor of f,, must be a divisor of %A and %A. If d is a divisor

of f,, with multiplicity /, then using Euler’s formula it will be a divisor of % and %

with multiplicity [ — 1, and thus d must divide A, this proves (i). Since (2.6) must be
verified it follows (ii).
Suppose that f, = [[/_,d" Iy +...+1, = n and A = (H:Zl dz) B where B

contains the divisors of A that do not divide f,,. Replacing the above expressions in
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(2.6) we have

L, (H d§i1> B=km 1y —nQm, L, (H d§i1> B=nPy —kp_1z, (2.7)
=1 =1

where L, = dids...d, Y37_, -5 and Ly = dvds...d, 37, - %% Notice that L, and

L, do not have common divisors.

Taking into account the degrees of the expressions that appear in (2.7) we have

r—1+4Y (i-1)+b=
1=1

where b is the degree of B. So

T

Z(E—l)—kbzm—i—l—r.

=1
Therefore,
KY ——
ZI (L— M- Z) d(li-1)+b=m+1-r
i=1

and proves (iii). This last equality becomes clear if we take into account that

- _gpip, X pg, (H d?—1> B
n n L -

m-2Y g5 q, - Y ZS + L, (Hdgi_1> B
n n -

and that their common points on Z = 0 come from the divisors of (Hl 1 dﬁ 71)

afn 1 afn 1

From (2.5) and Euler’s formula for f,_1, that is, = +y=g = =nf,_1, we
obtain
Ofn_ Ofn—
At o (b= (= 1)Qu), AZEL (= 1) P 2)—C,
Ox Jy
where C = ky,_ofn— Pr— 186{; —Qm-1 62’ Since d is a divisor of f,,, % af" and af" with

multiplicities [, [ — 1 and [ — 1, respectively, then d is a divisor of C' Wlth multlphclty
greater or equal than [ — 1. Also, d divides A with multiplicity I and follows (iv). |

2.3.1 Structure of algebraic curves having double points

We will say that a double point p of F' = 0 is a node (figure 2.5) if I (g)};, 25, gg) 1,
in this case there are two branches and its tangents Li and Ly are different and. We
say that the node is simple if I,,(L;, F) = 3 for i = 1,2.
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Figure 2.5: Node.

Let p be a non ordinary double point of F' = 0, that is, it has a unique tangent with
multiplicity two. Then we say that p is a cusp (figure 2.6) if Ip(g—)fz, g—g, g—g) =2.In
this case, there exists a tangent line at the multiple point but the sense of the tangent
is not continuous. The curve, formed by one only branch is at both sides of the tangent
line. We say that p is a tacnode (figure 2.7) if Ip(g—)};, 2—5, g—g) = 3. In this case, two
branches cut themselves with the same tangent line. And p is a ramphoid cusp (figure
2.8) if Ip(g—f(, g—{i, g—g) = 4. The only geometric difference with the cusp is that, locally,
the curve is at only one side of the tangent.

Figure 2.6: Cusp.

Figure 2.7: Tacnode.

Remark 2.7. A very important fact for us and very useful for the compute of the genus
of a projective curve is that if a curve has a tacnode or a ramphoid cusp, then it has
a node or a cusp in the first neighborhood, respectively. Nodes or cusps does not have
implicit multiple points.

The following result gives us a technical characterization of the curves having a
double point.
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Figure 2.8: Ramphoid cusp.

Proposition 2.8. Let F = 0 be a polynomial curve of degree 4 having a double point
p. By making a projectivity and taking local coordinates at p, the curve can be written
as f = fo + f3 + f1=0 with fo = zy if the tangent are different or fy = x2 if the
tangents are the same. Then

(i) p is a node if fo = xy.

(ii) p is a cusp if fo = 2% and x [fs.

(iii) p is a tacnode if fo = 2%, f3 = xgo and x Jfs — ig%.

(iv) p is a ramphoid cusp if fo = 22, f3 = xgo, z|f1 — 193 and 2* [fs — 1g3.
(iv) I, > 5 if fo = 2%, fs = xgo, 2°|fs — 93

Proof. (i) Since p is a node, I, = 1. Therefore, from Theorem 1.33(v) the two tangents
at p are different. Consequently f; = xy.

(ii) Since p is a cusp, I, = 2. Therefore, from Theorem 1.33(v), the tangents at p
are the same. Consequently, f» = 22 and f = 22 + f3 + ... By deriving f with respect

to x and y it follows that af =2z + .., g—{/ afg + ... The intersection index of f

and 2L y is greater than two 1f and only if z d1v1des af 3 from Theorem 1.33(v). Smce

%

I, = 2, x does not divide So x does not divide f3.

(iii) Since p is a tacnode, I, = 3. By the arguments of the proof of (ii), = divides

%. So x divides f3 and we can write f3 = xgy. We have f = 22 4 xgy + f4. Deriving

with respect to x and y we have

Of _op 4 209 Ofs  0f _ 09  Ofs
8x_2x+ or +2+8x’ 3y_x8y+8y‘

Then
I, (%,%):1 (2x+x892+g +5 ‘992+6f4)
=L (20 + 292 + o+ 3,000 1+ Y — 192 (204 00 4 g, + Y1)
[}

o) 0 1) dga 0
= I, (20 + a2 + g2 + G 5 (fa - 193) - lx%%*%%ﬁ),

and from Theorem 1.33(v), since I, = 3, x does not divide a%( f1—193), and therefore

(
x does not divide f4 — 1g3.
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(iv) Since p is a ramphoid cusp, I, = 4. By the arguments of the proof of (iii),
z|fs — 193. Therefore fy — +g3 = zvz for some homogeneous polynomial vs of degree
3, and then

I, (%,%)ﬂp(mmaﬂwgﬁ%ﬁ, (—)—f>

— 992 Ofa Ous _ 1992892\ _ 1092 9fs
I<2I+I +g+8x’ (8y 2 Oz ) 2 9y Oz

— 992 Ofs 10992 0fs _ 1 (,.092 Qv _ 1992 992 ) _
=1 (258—}-1‘ + 92 +dac’ 2 9y Ox 2(56692 +g2)(’y 2 Oz y)
1 (Ovs _ 1092992\ Ofa
2 \ Oy 2 0z Oy ox |*

Since I, = 4, x does not divide

_1089290fs _ 1, Ovg 0892092 _ 1092 (Ofa _ 992 dug
29y 0z 292 ay+49 B oy — 270y \ o 29 Dz 29 Dy
_ 10992 dvd 1, Ovy _ _10(gev3)  1,.0v3
-~ 20y (U?’ t+x ) 292 oy — 2 Oy 2T,

Thus, = does not divide 8(%#;3) and therefore, x does not divide v3gs. In particular x

does not divide vz, and 22 does not divide f; — ig%.

(v) If I, > 5, by the arguments used in the proof of (iv) we obtain that z? divides
fa— % g3. Hence the proposition is proved. [ |

Lemma 2.9. Let p be a simple point of G = 0 and a double point of F = 0 with
I, (g—ﬁ;, 2—5, g—g) > 2. Let F =0 and G = 0 be tangent at p. In local coordinates the
curves can be written as f =224 f3...=0, g:=x+ga + ... = 0.

() If I, (8%, 95, 22) > 2, then I,(F,G) >3

Moreover, if I, (3—5(7 g—f:, g—g) > 3, then f3 = xhy and

(i) If I, (5%, 9E,98) > 3, then I,(F,G) > 4

(iii) If I, (8)1;, g)F,, gg) >4 and x divides ho — 2g2, then I,(F,G) > 5

(iv) If I, (25,95, 25) > 5 and x divides hy — 2go, then I,(F,G) > 6

Proof. Clearly, I,(f,g) > 3 from Theorem 1.33(v).

When I, (gf;, 25, gg) > 3, in local coordinates

L(f,9) = I,(z*> + zha + ...,z + g2 + ...) = I, (;U2 +aho+...—z(x+go+..),x+ g2+ )
= Ip (x(hQ - 92) + ey T +92 + ) 9

and from Theorem 1.33(v) the intersection index must be > 4.
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If I, (5% 5v+ 57) = 4,
L(f,9)=I,(z> +zha+ fas+...,2+ g2+ ...)
=1, (> +ahe+ fi+...—z(@+g)+..., 04+ g +...)
=1y (x(ha —g2)+ fa+ ..., 24+ g2+...)
=1, (xtha —g2) + fa—(ha —g2)(x+g2)+...,.x+g2+...)
=L (fatg(h2—g2)+....x+ga+...) =5

if z divides f1 — ga(ha — g2) = (fa — 1h3) + (3ha — g2)*.

The same argument can be used when I, (g—flz, 2—57 g—g) > 5, taking into account

that 22 divides f4 — g2(he — g2) = (f1 — $h3) + (3h2 — g2)?, and so the last statement
holds. i

2.4 Some results on quadratic systems

The following results are valid for quadratic systems (1.6), and they show some situa-
tions in which limit cycles can not appear.

Lemma 2.10. Let f:=Y."  fi = 0 be an invariant algebraic curve of (1.6) of degree
n, that does not have multiple points in the infinite straight line. Let di and do be two
linear divisors of fn, real or complex, with multiplicity strictly greater than one. If
h >3 or h' =2 and hl, = 0, then system (1.6) has a rational first integral.

Proof. It b/ = 4, then system (1.6) has a rational first integral by Theorem 2.5. Suppose
that b’ = 3; since f, has at least two different divisors, from Lemma 2.6(iii) results
h% <1, and thus b} > 2. If B’ = 2 and hj = 0, then A} = 2. In both cases h} > 2.

Let k = ko + k1 be the cofactor of f with k; homogeneous polynomials of degree .
Since h) > 2, the cofactor has either at least two singular points or one singular point
with multiplicity greater or equal than 2.

We claim that if a linear divisor d;, divides f,,—1, then there is a multiple point at
Z = 0. To prove the claim, without loss of generality we can assume that d; = = and
that f = fo+ fi+ ...+ fn_2 + 2gn_2 + 2°¢,_s with s > 2. Then it is easy to check
that the point (0,1,0) is a multiple point. So the claim is proved.

Since the curve does not have multiple points in the infinite, from Lemma 2.6(iv)
it follows that d; and dy are both divisors of k1y — (n — 1)Q2 and kix — (n — 1) Ps.
Therefore,

k k
Py = \idids + i, Q2 = Aadids + 1Y .
n—1 n—1
Now system (1.6) takes the form
. kiz . kiy
T =Py+ P+ Adids + ; ¥=Qo0+ Q1+ Aadida + ;
n—1 n—1
and so, can be written as
kox kx koy

T=FP+ P -

Adid
n—1+ 101 2+n_17

y=Qo+ Q1 —

ky
n_1+)\2d1d2+7n_1.
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By making the change z = Aax — A1y, we have 2 = B + nkfl where
kox k
B=X P+ P — = - | Qo+ Q1 — 0.
n—1 n—1

The polynomials B and k£ have and B vanishes over the two points of £k = 0 that are

singular points. So we have B = ak. Therefore, 2 = k (a + ﬁ), that is, a+% =

0 is an invariant straight line with cofactor nﬁl. Thus, H = f(a + %)1’” is a

rational first integral of the system. |

Proposition 2.11. Let F' = 0 be an irreducible invariant algebraic curve of degree 4
of a quadratic system (1.6). Suppose that the curve has two multiple points over Z = 0,
then

(1) If 1’ > 3, then the system has a rational first integral.

(i) If the two multiple points are cusps, then either the system has a rational first
integral, or the curve has three cusps.

Proof. Let p; and ps be two multiple points on the infinite straight line. We can
consider, without loss of generality, that py = (1:0:0) and po = (0: 1: 0) if they are
real, or p; = (1:4:0) and ps = (1 : —i : 0) if they are complex. In both cases we can
write

f = D? + D(ma1z + miay) + maox? + myyzy + moay® + miox + mory + moo,

where D = xy if the points are real and D = z? + 32 if the points are complex. By
means of a linear change we can write

f=D>+ fo+ f1 + fo,

where f; are homogeneous polynomials of degree i = 0,1,2. Clearly, from Lemma
2.6(iii) we have h}, = 1.

Since the above curve is invariant for the flux defined by (1.6), developing (1.3)
according to the different powers, we obtain for the terms of fifth and fourth degree
after a simplification, the following

oD D kD oD 8D koD
2

P287+Q28y277 P1%+Q187y_

Deriving D with respect to ¢t and taking into account the above relations we have

. oD oD k
=322 1422 _Ep iy 2.
I8m+y3y B + (2.8)

where [ is a linear function.

To prove (i). If A’ > 3, then k] > 2 because hfy = 1, and therefore there are at least
two singular points of the system on the cofactor taking into account multiplicities, that
is | = ak. Then equation (2.8) can be written as D = E(D+2a) and H = f(D+2a)~>
is a rational first integral of the system.
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To prove (ii). If the two multiple points are cusps, we have fo = mq; D and

oD oD m11k1
Py ool
0 0z + Qo oy 4
Then (2.8) can be written as
- . 3D . aD k mi1 :ZCO
D=i"" 457 =2 (D+ L) _pppy 2, 2.
I8x+y8y 2( + 2) My (2.9)

e If b} > 0, there must exist a singular point on the cofactor, and thus D+ ™4 =0

2
is an invariant curve of system (1.6) with cofactor 4, and therefore H = f(D +
m11)=2 is a rational first integral of the system.

o If ) = 0, then W' < h} + k), = 1 and therefore h > 6. But for a curve with
two cusps we have h = 4. Since the maximum number of multiple points on an
irreducible quartic algebraic curve is three, there must be another multiple point
and will be a cusp, too.

2.5 Proof of the main result

Let f = 0 be an irreducible invariant algebraic curve with real coefficients of a quadratic
system (1.6). Suppose that it contains an oval that is a limit cycle of the system. Let
F = 0 be the equation of the curve in the projective plane. Then, from (2.2) one has
h+ h' > 7. The existence of a rational first integral excludes the existence of a limit
cycle. So, from (Theorem 2.5 se must have b’ < 4 and it follows h > 4.

Taking into account Theorem 1.27, a quartic curve can have, at most, one triple
point or three double points.

A. The curve F' =0 has a triple point p

In this case the curve can not have any oval. In case it exists, as p is real we can draw
a straight line containing p and another point ¢ in the bounded region defined by the
oval. This straight line has five common points with the quartic curve, counted with
their multiplicity. From Bézout Theorem, the curve is not irreducible.

B. The curve F' =0 has three double points p;, ps, p3

At least one of the three multiple points must be real because when a curve has a
complex point it has also the conjugated but only 3 points are allowed.

On the other hand h > 4, the genus (1.8) of a curve is never a negative integer, and
taking into account Remark 2.7, the double points can be only cusps or nodes because
the existence of more degenerated points implies the existence of implicit double points,
which forces the genus to be negative. We have the following possibilities:
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B.1. p, is a cusp and ps; and p3 are nodes.

In this case p; is a real point and since it is a cusp, its tangent must be real. So,
the conic that contains the points p1, p2, p3, a point g in the bounded region defined
by the oval and is tangent to p;, cuts the curve F' = 0 in nine points, which is not
possible from Bezout Theorem if the curve is irreducible.

B.2. p; and p,; are cusps and p3 is a node.

In this case p; and ps can not be real. If these were real, its tangents would be
real too and the conic that contains the points py, p2, p3, a point ¢ in the bounded
region of the oval, and is tangent to p; cuts the curve F' = 0 in nine points, which is
not possible if the curve is irreducible.

The node ps can not have real tangents. It can be seen using the same conic now
tangent to p3. And using this conic not tangent to psz but containing a simple real
point r which does not belong to the oval it follows that the only real points of the
curve F' = 0 are p3 and the points of the oval.

From Proposition 2.11, neither p; nor ps can be infinite points. So, F' = 0 does not
cut the infinity and therefore F;, = D?, where D is a quadratic polinomial irreducible
over the real field.

Without loss of generality we can assume that the local expression of the curve in
the affine plane is

f = moo + mioT + mo1y + maox® + mi1ay + moey® + maor>+
m212y + miaxy® + mosy® + (2% + By + Cy°)?,
where B2 — 4C < 0 and C # 0.

We can consider p; = (0:4:1), po = (0: —i:1) and p3 = (1: 0:1). Since p;
and py are cusps and ps is a node, the following expressions must be identically zero.
Notice that the last one means that the tangent of f = 0 at p; and p, is double.

f(p1.2) = C* +moo — moz £ (mo1 — mo3)i, f(ps) =1+ moo + mio + mao + mao,

0 .0

Fi(pl,z) = myo — mi2 £ (my — 2BCO)i, %(ps) =4+ mig + 2ma0 + 3 M3,
0 .0

%(p1’2) = mo1 — 3mo3 = 2(mo2 — 20?)i, aTJj(P?a) = 2B + mo1 + m11 + ma1,

2 ¢ 92 2 ¢\ 2
(Zx{;gyf - (g;;) > (p12) = —12B*C?*+48C® —4B*mgy—8Cmoa+12BCmy1 —m3,

+4m2, —24C%mag +4moamag — 12mezma; +4(3B*mg3 +6Cmgz —6BCmM 12 +miymia—

2 .
3mozmag + 6C“ma; — mogmgl)l.

We obtain mig = mis = 2 — 202 + mso, Mog = —3 + c? — 2msg, m11 = 2BC,
mge = 2Mog = 202, mo1 = —23(1 + O), mo1 = mp3 = 0. Then the last expression
can be written as

<a2f62f (a2f

729~ \aay

2
922 Oy? ) ) (p12) =4(24+2C +m30)(2 —2C + 4C? + m3o)
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+16BC (2 + 2C + mgp)i.

If 24-2C +m3g = 0, then f = (C —x—Cz+2?+ Bxy+Cy?)? and is not irreducible.
So the only possibility is 2 — 2C + 4C? +msg = 0 and we have mgg = —2 + 2C — 4C2.
Also, since C' # 0, it must be verified that B = 0. In this case f depends only on even
powers of y. So, if there is any oval for f = 0 it is symmetrical with respect to the axis
y = 0 and there must be three intersection points of the curve f = 0 with that axis:
the points of the oval and ps. In fact,

f(2,0) = (=1 + 2)%(C? + 2Cx — 4C%x + 2?).

The first factor corresponds to ps and the second one must have two real roots. The
roots are ¥ = —C+2C%+2,/(—1 + C)C3. Thus, a necessary condition for the existence
of an oval is C' > 1.

Imposing to f = 0 to be invariant for (1.6) with cofactor mx + ny + p, we define

5
i g of of
E el
M 2 OM”xy. xP+ yQ (mx 4+ ny +p)f.

The coefficients M;; must be zero.

In order five we have

Mso = 4azg —m,

My = 4ay11 + 4beoC — n,

Mzy = 2(2&02 + 2&200 + 2b1,C — Cm),

M23 = 6(102B + 2a11B2 + 2321)02 + 4&110 + 2&2030 + 4b020 + GBb110 + 4b20027
2BCm — B?*n — 2Cn,

M14 = C(4a02 + 4b110 — Cm),

M05 = 02(4b02 — n)

We obtain m = 4@20, n = 4b02, aj]p = b02 — bQQC and ap2 = <a20 — bll)C.
The coefficients of M in order four are

Mo = 4a10 + 2az0 — 2a20C + 4az0C? — p,

M3 = 2(2&01 4+ boa — bpaC' + 2b19C + 5bygC + 2()0202 — 9b2002 + 6b2003),

Moy = 20(20,10 — 6Gagg + 2bp1 + 5b11 + 12a00C — 9b11C — 6&2002 + 6b1102 — p),
M13 = 20(2&01 - b02 + 3b020 + 2()100 - bgoc + 3b2002),

Moy = C?(2ag0 + 4bo1 — 2b11 — 6a20C + 6b1:C — p).

We obtain p = %(8[)01 — b1 + 3b11C), alg = l(4[)01 — 2b11 + 3b1:C — 3b1102),
agr = C(—=b1o — bz + 3b20C), bz = —3b20C', azo = 3b11.

In order three we have
Msg = %(8&00 + 4bg1 + b11 — 4bg1C + 5b11C + 8b0102 — 7b1102 — 15b1103 + 18b1104),
My = QC(Qboo + 5b1g + Bbag — 9b19C — 18booC' + 6b10C2 + 33b2002 — 18b20C3),

My = %C(gaoo — 4bgr — b11 + 12691 C' — 3b1:C — 3b11C2 + 9b1103),
M(]3 = 202(2b()() — bl() — b20 + 3b100 + 12b200 — 9b2002).

We obtain agg = %b1102(2+30), boo = —3b200, bo1 = _lell(1+30)27 bio = bgo(—l—f—
30).
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In order two,

Mayy = %bu(l — C)C(~1+2C)(1 +30)?,

from where by; = 0 since C' > 1. Then, by making the time rescaling j—i = % the
system is

T = —4Cuxy,

= —3C —x+3Cx + 22 — 3Cy?,

and then the cofactor is k = —12C'y. Therefore, H = mf—3 is a rational first integral and
there is not any limit cycle.

B.3. p1, p2 and p3 are cusps.

One of these cusps must be real and so we can use the argument used in B.1.

C. The curve F = 0 has two double points p;, ps

Taking into account that h > 4, this two points can not be nodes or cusps and someone
must be more degenerated. On the other hand, from Remark 2.7 and the fact that
the genus computed by (1.8) can not be a negative integer, follows that we have two
explicit double points but we can not have more than three double points (explicit or
implicit). So, p; or ps must be a node or a cusp. In this case, we have the following
possibilities:

C.1. p; is a node and p, is a tacnode.
Notice that in this case h = 4 and A’ = 3.

The points p; and p, must be real points because the curve has real coefficients,
and can not be complex conjugated because its intersection index is different. Since
po is real a real tacnode of a curve with real coefficients , it has a double tangent with
real coefficients. Hence, a real tangent.

The tangents to p; can not be real. If these was real, the conic that contains p1, ps,
another point ¢ in the bounded region of the oval and is tangent to p; and py cuts the
curve F' = 0 in nine points from Lemma 2.9 (counting their multiplicities). Therefore
the curve would not be irreducible from Bézout’s Theorem.

Using the same argument with the conic not tangent to p; but containing a simple
real point of F' = 0 it follows that the only real points of F' = 0 are p;, p2 and the
points of the oval.

One of the points p; and ps must be in the infinity. If not, the points in the infinity
would have to be simple and complex since the only real points of the curve are p1, ps
and the points of the oval. Then f; = D? where D is an homogeneous polynomial of
degree two irreducible over the real field, and from Lemma 2.10 it follows, now, that
the system is integrable.

But only ps can be in the infinity. p; can not be there because it has complex
tangents and the infinite straight line is invariant. If po is in the infinity and there are
some other, these must be complex conjugated, so there are three points in the infinity.
Then we have h}, = 0 from Lemma 2.6 and since k' = 3 it follows A} > 3 from (2.3),
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which is not possible. On the other hand, since i/ = 3, from Proposition 2.11 p; and
p2 can not be both over the infinite straight line.

Let us consider p; = (0: 0 : 1) with complex tangents and ps = (0 : 1 : 0). Since
po is a tacnode, the affine equation of the curve is

f=azx* + 2%(bx + cy) + 2* + 97,
which corresponds to case (a) of Theorem 2.1.
C.2. p; is a node and p; is a ramphoid cusp.

In this case p; and ps must be real and then the tangent to ps is real too. The
conic that contains these points, a point ¢ in the bounded region defined by the oval
and satisfies Lemma 2.9(iii) for ps, cuts the curve F' = 0 in nine points which is not
possible if the curve is irreducible.

C.3. p; and p, are cusps.

By means of a projectivity we suppose that the cusps are p; = (1 : 0 : 0) and
p2 = (0:1:0) and the projective equation of the curve F' = 0 is defined by

F=X>Y?+ MXYZ?+ (MaX + \Y)Z3 + M 2%

If A2 = 0 or A3 = 0 then p; or py are tacnodes, respectively. The projective differential
equation is defined by

L=1Lo+I1Z+LyZ% M= My+ MZ+ MyZ? N = Ny+ N1Z + NyZ>.
We can suppose that the cofactor of F' = 0 is zero.

Since p; and ps are singular points of the projective differential equation, it is
verified that

(LY — MX)(1,0,0) = —M>(1,0,0) =0, (LY — MX)(0,1,0) = Ly(0,1,0) = 0,
(LZ — NX)(1,0,0) = —N5(1,0,0) =0, (LZ — NX)(0,1,0) =0,
(MZ — NY)(1,0,0) = 0, (MZ — NY)(0,1,0) = —N(0,1,0) = 0.

Therefore, Ny = ag XY, Ly = (a1 X + a2Y)X and My = (a3 X + a4Y)Y. We consider
Li =0 X +bY, My = 03X +b4Y and N; = b5 X + bgY.

Since F' = 0 is an invariant curve of the projective differential equation we obtain
the following relations corresponding to the coefficients of the different powers of Z.

2XY?Ly +2X2Y M, =0,
2XY?L, +2X2YM; +2)M XY N, =0,
2XY2Lo+2X2Y My + MY No + M XMy + 3(A2X + A3Y)No + 20 XY Ny = 0.
That is
2Y Lo +2X My =0,
2Y Ly +2X My + 2\ Ny =0, (2.10)
2Y Lo + 2X My + 3(Aa X 4+ AsY)ag + 2A1 Ny = 0.

In particular, from the first equation of (2.10) we obtain

a1 +a3=0, as+ags =0. (2.11)
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From (2.10) it follows that
3
YL+ XM+ MZN =\Z3N, — 5(/\QX + X3Y)agZ?.

In other words, if we define G = XY + %22, we have

oG~ 9G oG )

where r = >\1ZNO — %()\QX + )\3Y)a0.
When a curve has two cusps, we have h = 4, and thus h' = Zp I,(L,M,N) > 3.

o If {L = 0}N{M = 0}n{N = 0}n{Z = 0} = @ then I,(r, L, M, N) = I,(L, M, N)
for all p from (2.12). Then

> L(rP,QR) =Y IL(rLY-MX,LZ-NX,MZ~NY) > I,(r,L,M,N) =
P P P

> I,(LM,N) 23
P

Thus r is an invariant straight line from Theorem 2.3, that contains the singular
points of the differential equation. There is never a foci over an invariant straight
line. So, there is not any limit cycle in this case .

o If ¢ belongs to {L =0} N{M =0} N{N =0} N{Z = 0} with g # p1 and ¢q # pa,
then the straight line Z = 0, that contains p1, p2, and ¢ is invariant. In this case
ap = 0 and

oG~ 0G oG 5
oL gy M+ 5 N = Nz’

Therefore, if A\; Ny # 0 all the singular points that are not over the curve F' = 0
are over the line Z = 0, which is invariant. In particular, the foci of a limit cycle
belongs to Z = 0 which is not possible. If A\; Ny = 0, we obtain H = % as a zero
degree homogeneous first integral.

e Suppose that ¢ belongs to {L =0} N{M =0} N{N =0} N{Z =0} with ¢ =p,
or ¢ = p2. We can consider, without loss of generality that ¢ = p1, and then from
L(1,0,0) = 0 we obtain a; = 0, and from (2.11) a3 =0

Taking local coordinates at p;, the differential equation is (N — ZL)dy — (M —
Y L)dz = 0. Taking into account (2.11), it can be written as a differential system
in the form

t=M-—-yL=0bsz+...,
G=N—2L=byz+.... (213)
And the curve in local coordinates at p; is f := y% + A\yz? + Ao2® + Aay2® +
Agz* = 0. Imposing to it to be an invariant curve of (2.13) with cofactor k =
ko + k1y + koz, we obtain

2y +M22 .. ) (b3z +..)+ (2 \yz + 3022 + .. ) (bsz +...) =

(ko + kry + ko2) (y% 4+ Myz? + Ao2® +...).
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Each one of the coefficients of the above expression must be zero. For the coeffi-
cients of 2, yz and 23 we obtain

k=0, 2b3=0, Abs+3\abs — Aok =0,

from where
by =bs; =0, (2.14)

since Ao # 0.
Taking local coordinates in po for the differential equation and the curve, and
using the same argument as used for p; we obtain

by =0, bg—= ‘;—2 (2.15)

Summarizing, from (2.11), (2.14) and (2.15) we obtain

L= CL1XY + b1XZ - LQZ27
M = —(IQY2 —|— b4YZ + M0Z2,
N =aoXY + LY Z + NoZ>.

Since F' = 0 is an invariant algebraic projective curve of the above system with
cofactor zero, the function

o OF OF OF
M = M X'YIZF .= —— L+ =M+ =N,
i +j%:5 " ox” Ty "oz

must be identically zero.

Moos = — Loz + A3 Mo + 4A4 No,

Mora = £(—3LoA1 + 3baAs + dazAg + 9A3No),
M104 = bl)\g + /\1M0 + 3)\2]\70,

M113 = b1>\1 + b4>\1 + 2&2)\2 + 4a0)\4 + 2)\1]\70,
M122 = %(76L0 + 2a2)\1 + 9(10)\3),

Mgu = 30{))\2 + 2M0,

Mso1 = 2(by + by + apA1).

The above expressions are zero non trivially if

O0[Moos, Moia, Mi13, Mi22, Ma12, Mao1] 32
det = — )\
et ( Bfaz, b, Lo, ba, Mo, ag, No] ) =300
where ) = )\?)\2)\3 + 27)\%)\% — /\411)\4 — 361 Ao 3\ + 8)\%)\2 — 16)\2

When Ay = 0 p; is a tacnode and when Q = 0 the curve F' = 0 has another
multiple point against the hypotesis

Therefore, there are not limit cycles in this case.
C.4. p, is a cusp and ps is a tacnode.

In this case the double points are real and their tangents are real too. The conic

that contains p; ps, a point ¢ in the bounded region defined by the oval and is tangent
to p1 and ps, cuts F' = 0 in nine points which is not possible if the curve is irreducible.

C.5. p; is a cusp and p, is a ramphoid cusp.

The above argument can be used again and this case is not possible.
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D. The curve F' = 0 has one double point p;

Taking into account that h’ < 3 because otherwise there exists a rational first integral,
follows that A > 4. We distinguish two cases:

D.1. p; is ramphoid cusp.

The point p; is a real point, and since I,, =4, fi can not have three different divi-
sors because otherwise h), = 0 from Lemma 2.6(iii). Then k] > 3 which is not possible
because the system is quadratic. We will distinguish two important possibilities

D.1.1. Let the multiple point be finite.

Let us consider p; = (0: 0 : 1) a ramphoid cusp. If y is the tangent to the curve
on pi, then we have, since I,, =4,

f=v+yfo+ f1,

where y divides fy — 1f7 and fy4 can take one of the following forms: fy = d3d3,
fo=d3ds or fu = kd?.

D.1.1.1. f; = d3d3. Since p; is the unique multiple point of the curve, there are
not multiple points of the curve in the infinity. On the other hand, A’ > 3 and f; has
two divisors with both multiplicities strictly greater than one. From Lemma 2.10, the
system has a rational first integral.

D.1.1.2. f4 = d3ds. The general form of the curve is
f =% +y(az® + by + cy®) + 2°(Az + By).

Since y divides fy — % 12 it follows A = “72. We will consider ¢ # 0 because if not there
would be a double point in the infinity, @ # 0 since the curve must be irreducible, and
B # 0. The case B = 0 will be studied in D.1.1.3.

By making the change z = X/(Bc)'/3, y = Y/c we can consider

2

a
f =y +ylaa® + by +y*) +2° (o +y).

Imposing to f = 0 to be an invariant curve of (1.6) with cofactor mz + ny + p,
then apg = bgp = 0 since p; is a singular point, and we define

5
ij._of, Of
M:HJZ:OM“I y = %PJr a—ny(quLnerp)f.

We will study the vanishing of the coefficients M;;.

In order five,

M50 = l(4@20420 + 4b20 — (127%)7

M41 = %(4&2(111 —+ ].2(120 —+ 4b11 —4m — a2n),
M3y = a*agz + 3a11 + boz — 1,

Moas = 3ayps,

My = Mos =0,
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from where we can write ags = 0, n = 3aq1 + bg2, m = %(aQall +12a20 — a’bos + 4b11),
bog = %GCLQ(GQ(ZH — 4dagg — a2b02 =+ 4b11).

In order four we have

My = =(16a*ay0 + a’a1y — 4a®azy — a®boz + 16b1g + 4a®byy — 4a’p),

M31 = §(8a2a01 + 24&10 — 2a3a11 — 8&&20 + Cl4a11b — 4a2a20b + 8b01 + 2a3b02—
a4bb02 + 4a2bb11 — 8p),

M22 = %6(480’01 - 16(1(111 + 304(111 - 12&2(120 — 4a2a11b — 32(120b — 3a4b02 + 4a2bb02
+12(12b11 + 16bb11),

M13 = i(faQan — 12(120 — 8(111b + CL2b02 + 4bb02 + 8b11),

Moy = —3a11 + 2bga.

Then we obtain

p= %(216@0 +30a3ay; + 3a%ay; + 12aa1,b — 10a*a;1b — 2a%a11b? + 72bg; — 48aby;
—6a4b11 + 20a2bb11),

boz = Sa11,

a20 = i(cﬂau — 4(111b =+ 16b11),

agr = %(24(1(1,11 + 3a4a11 - 4a2a11b - 8a11b2 - 6a2b11 + 8bb11),

blO = EQQ(*’?QUJO + 42(13@11 + 3a6a11 - 1Oa4a11b - 2a2a11b2 + 72b01 - 72&[)117
6a4b11 + 20a2bb11),

In order three,

M30 == ﬁa‘g (772 aio + 42 a3 ayl + 3(16 a1 — 10 CL4 ail b— 2&2 ail b2 + 72 b()l*
72ab11 - 6a4 b11 + 20@2 bbll,

M21 = ﬁa (—144(110 — 72 a3 ailp — 6&6 ailp — 72(10,10 b— 120,(111 b+ 62@4 ail b+
3a"a;1b+4a?a11b?2 —10a% a1 b2 —2a3 a1 0° +72abby; + 120 a by +
12a* by — 112a%bby; — 6a°bbyy +20a3 0% byy),

Mip = 5i2(=216a* a1 + 192a? agy + 150a° ay1 + 9a® ayy; — 576 a10 b+ 144 ay1 b—
152 a® aj1 b —42 a8 a1 b—112aaq; b2 + 34 a* ail b? + 8 a? a1 b3+
216 CL2 b()l + 288bb01 — 288 b11 — 264 CL3 b11 — 18 CL6 b11 + 256abb11—|—
84a4bb11 780(12 b2 bll)a

M03 = %(7216 ajg — 108 ail — 30 (l3 ayl — 3(16 ay] + 12aa11 b +13 a4 ail b—

2&2 ail b2 - 8@11 bg + 144b(]1 + 480,[)11 + 6(14 b11 - 26@2 bbll + 8b2 b11)~

Considering the system of equations given by M3 = My, = Mo = Mys = 0, with
respect to aig, a1, bp1 and b1, we will look for a non trivial solution because for the
trivial one we have P = ) = 0.

O[M30, My, My2, Mos] ) _ ia
dlaio,a11, bot1, b11] 576

det ( 4(—2+ab)(—1+ab)(108+8a> —36ab— ab* +4b°)

and this expression must be zero to get a non trivial solution.

If =24 ab =0 or 108 + 8a® — 36ab — a?b? 4 4b3 = 0 there exists another multiple
point, and so, since a # 0 it must happen that —1 + ab = 0. In this case if we take
b= 1, then we obtain the system of Theorem 2.1(c) by making the change z = aX,

A 3
and the parameter is %-.

D.1.1.3. f; = kd}. By making a linear change we can consider

f =y +ylaz® + bay + cy?) + kat.
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Since I,, =4, y divides f4 — if%, and then k = %az.

By making the rescaling x = X/A, y = Y/B with A = %b and B = 2(21:3)717—23@ we

obtain case (b) of Theorem 2.1 with a factor of proportionality 2(22521’75%2(10) and where

3ac
2b2—3ac"

the parameter is

If 2b% — 3ac = 0 we obtain f = 24x* 4+ 2422y + 6y? + 6zy> + y>, which does not
have any oval.

D.1.2. Let the multiple point be infinite.

We can consider p; = (0 : 1 : 0) the multiple point. Then f = fy+xgo+ fo+ f1+ fo,

where f4 can not have three different divisors and after linear changes of variables can

be written in one of the following forms: f; = x2y?, f1 = 23y or f1 = ax.

D.1.2.1. f; = 2%y%. In this case,

f = 2%y + z(az® + bry + cy®) + mapz® + mi1xy + moey® + mioT + mo1y + Mmoo-

Notice that we can consider b = ¢ = 0 by making the translationz = X -5,y =Y — %.

Since I,, = 4 and the tangent of f = 0 on p; is z, we obtain mpz = mo; = 0 and

2
mop = "5+ and then

m
f= (7211 + 2y)? + myox + moox? + ax’.

Doing the change © = m1; X we can take mj; = 1 since my; must not be zero because
if not the curve would be reducible. Since the branches of f = 0 are defined by
Fr + 1y /—a(mio + meox + ax?), a must not be zero because if not the curve would
not have ovals.

Imposing to f = 0 to be invariant along the flow defined by (1.6), with cofactor
mx + ny + p, we define
af af

5
M = HJZ:O Mijz'y’ = %P‘F FyQ — (mz+ny+p)f,

and we will study the vanishing of the coefficients M,;.

The coefficients of the terms of order five are:
Mso =0,
My = 2bg,
M3s = 2a2¢ + 2b11 —m,
M3z = 2a11 + 2bg2 — n,
M4 = 2a02,
Mos =0,

from where bog = aga = 0, m = 2(azo + b11), 7 = 2(a11 + bo2).

For the coefficients of the terms of fourth order of M we have

My = a(azo — 2b11),

M31 = aai1 — 2abgz + 2b1o,
Moo = 2a10 + 2bo1 — p,
M3 = 2ao1,

Moy =0,
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and then a0 = 2b11, blO = %(2&1)02 — aall), P = 2((110 + b01), apl = 0.
In order three we have

M3 = aaio — 2abg; — brimeay,
Moy = 2bgg — 3b11 — 2bgamig,
Mo = 2a00 — a11 — bo2,

Moz =0,

and from the vanishing of these coeflicients we obtain aijg = %(abm + b11mag), boo =
1(3b11 + 2bgamao), ago = 3(a11 + boz).
The rest of coefficients of M are

Msg = £(—8b11mig + 2aay; + Sabgz — 4bg1mag),
Myy = = (aarymag + 2boamao + 3abor + 2b11mag),

M02 = 07

My = L(—4abyymio — 2b11migmao + aar1mag + 2abgamag),
Mo, =0,

Moo = 5=(aa11mig + aboamio — 3abgr — 2b11mag).

Let us consider
0[Mag, My1, Mg, Moo
dlai1,bo1, b11, bo2]

det (

2
) = Emlo(mfo +2 mao) (4amyo — mgo)-

e If m1g = 0 the branches of f = 0 are defined by y = 5—; + v/—msy — ax which
does not define an oval.

o If 4amig — mj, = 0 the branches of f = 0 are defined by y = 7+ + %,
which does not define any oval.

o If m%, + mao = 0 and myg # 0, we obtain mag = —m?,. Then from My = 0 we
obtain bgy = %(—Qbmmfo + 4by1myp — aaq1), and then from M;; = 0 we have
b1 = 6#8601771?0 —aajymig — 15abg1. Now, since Mg = —bg1myo and myg # 0

10

it follows bg1 = 0.

Taking a = km3, and by making the change of variables x = X/m1q, y = m1oY,
(1.6) takes the form
mio mio

&= 7(1 + 22 — 2kx? + 6zy), ¥ = ﬁ(8 — 3k — 14kx — 2kxy — 8y?),

the curve is f = 1 + z — ? + ka® + zy + 2?y?, with cofactor ™42 (2 — 3kz + 2y).

The branches of f = 0 are defined by y = 5—11 + 7“1'%_’”’2 and there exists an

oval if 1 — 4k > 0, that is k < i. This case corresponds to the new system, case
(d) of Theorem 2.1.

D.1.2.2. f; = 23y. In this case
f=a3y+ x(ax2 + bxy + cy2) + Mmooz + murzy + moay? + miox + mory + moo-

If we consider the projectivization of the curve we see that the tangent of the curve on
p1 is Z and the terms of order three are X3 4+ bX2Z +mgX2Z +mo1 Z>. Since p; is a
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ramphoid cusp, this case is not allowed because Z does not divide the terms of order
three.

D.1.2.3. f4 = az?. In this case
f=oaz'+ x(axQ + bry + cy2) + maox? + mi1 2y + Moy + Mo + Mo1y + Moo-

Since p; is a ramphoid cusp and the tangent of the curve on this point is Z we obtain
2

c=0,mpz=1and a= bz #0 The change of variables x = X + A, y =Y + kX + B,

with A = 2 (a + bk), B = 55 (a® + 2abk + b*k? + b>mo1 — abmyy — b*kmyy), and

— —4a2—b37n0 +abm +2b mao . . .
k= ( 3b(712a+bm1111) ) vanishes the coefficients of z3, y and 22. Notice

that k is well defined since the denominator never vanishes, because if —2a+bmy; =0
then I,, = 5 which is studied later. So we can consider, making a rescaling of the

Varlable x that mi; = 1, and then f = Zx + bx?y + y? + xy + miox + moo. Let us
propose f as a partlcular solution of (1.6) with cofactor ¢f = mx + ny + p and define

5 . of of
M= i;Omelzﬂ = 5e g, @ ~ (mr+ny +p)f,

which must be identically zero and so we will study the vanishing of the coefficients
Mij~
In order five,
M50 = %(4@0 —m),
My = % (4a11 — n), Mz = agob?,
Maz = My = Mos = 0,

from where m = 4agg, n = 4ay; and age = 0 since b # 0.

In order four, the coefficients are

My = 2(4aiob+4by — bp),
M3y =b(—2a + ap1 b+ b11),
My =b (—2a11 + bo2) ,

M1z = Mops =0,

from where byy = %(p — 4aqp), b11 = 2az9 — ap1b and by = 2a;11.

For the coefficients of the terms of third order, we have

M30 = Q(—40410 +4a00 b+4b10 +p),
M21 = 5(—20,20 — 2(101 b—|— 2bb01 — bp)7
Mz = —an,

M(]S = 07

from where p= 4((110—0,001)—()10), ail = 0 and asp = b(—a01 —2a10+2a00b+b01—|—2b10).
In order two,

Moo = bbgg + big + 3agr bmig +6aigbmig — 6a00b2m10 —3bbgr m1g — 6bb1o Mg,
M1 = =3 a0+ 6ago b+ bo1 + 6b10,
Mo = ap1 —4aro +4apo b+ 2bo1 + 4 b1o,
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from where ag; = 2 (—am +4agy b+ 4b10), bo1 = 3 (a10 —2agob — 2b10), and bgy =
%(—blo + 9a10 bmm — 36 apo b2 mio — 36bb10 m10).

For the lower order terms, the coefficients to vanish are the following ones:

Mg = %(—blo —12a19 b? moo + 48 ago b® moo + 48 b? b1o Mmoo + 6 a19bmig—
32 apo b2 mio — 32 b b10 mlo),

M01 = %(CLOO b — 2 bl() + 16 aip bmw — 64 apo b2 mig — 641)1710 mlo),

Moo = —4 a0 Mmoo + 4 ago bmoo + 4 big Mmoo + ago M10)-

We can solve non trivially agg, big and a1g from M9 = Mgy, = My = On if

Mo, Mgy, M, 4
OlMo, Mo, OO]) = —(—mqgo + 108b*m2, — 36bmoomio — M3 — 32bmi,) = 0.
0lago, b1o, a1o] b

The vanishing of this determinant is a condition for the existence of another multiple
point, too. By hypothesis, this is not allowed.

det (

D.2. p; is a double point with I, > 5.

The only real points are p; and the points that are on the oval. If r is another
real point, the conic that contains r, a point ¢ in the bounded region of the oval and
satisfies Lemma 2.9(iv) on p1, cuts the quartic with index greater or equal than six in
p1, index one in 7, and cuts the oval in two points, which is not possible from Bézout’s
Theorem if the curve is irreducible.

D.2.1. Let p; be a finite point. We can consider p; = (0 : 0 : 1) and that
the tangent to the curve in p; is . Then from Lemma 2.8, in local coordinates
f=a%+xfo+ f1 and z? divides f; — if%

Since there are not real points at the infinity we have f, = AD? where D is a
quadratic polynomial irreducible over the real field. By means of linear changes we can
take D =22 +y? and A=1or A = —1.

Moreover, since z? divides f4 — % f2. it follows that AD? — % f2 = Ax? for some
polynomial A of degree 2. In particular, A # —1 because otherwise the decomposition
is not possible.

Since I, > 5 it follows that 22 divides D? — 1 f§ = (D — 3 fo)(D+ 3 f2). If z divides
both factors of the last expression, then = divides D, which is not allowed. Thus, the
possibilities are fo = £2D 4+ 2cz? for some constant ¢. Then the curve can be written
as f = (x + £D)? + 2cz®. When the minus appears, we change the sign of  and c,
and therefore, the curve is

f=(@+2®+y*)? +cr.

If ¢ is positive, any circle 22 + 32 = €2 cuts the curve in p(z) = (v + €2)? + 2c2®.
Notice that p(0) = €* and p(—€?) = —2ce®, from where there exists a real root of
p(x) = 0 in (—€2,0). Therefore, there are points of f = 0 in any neighborhood of the
origin, that is, the origin is not isolated. Since the only real points of f = 0 are p; and
the points of the oval, then p; must belong to the oval that will not be a limit cycle
because the point is singular.

Suppose that ¢ is negative. In this case

f _ (m+x2+y2)2 —CL2$3.
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Since f = 0 is an invariant algebraic curve for (1.6) with cofactor k = mx +ny+p.

a0 o O
Mzi;OMijx y = %P+@Q_(mx+“y+P)f~

And the coefficients M;; must be zero.
In order five we have

Mso = 4azg — m,

My = 4a11 + 4byg — n,

Mso = 2(2ap2 + 2a20 + 2b11 — m),
Mas = 2(2a11 + 2bo2 + 2b20 — 1),
My = 4ag2 + 4byy —m,

M05 = 4b02 —n.

We obtain m = 4(0,02 + bll)a n = bga =0, agg = ag2 + b11, bge = aq1.

In order four,

My = —2ags + a?a02 + 4ayg — 2b11 + a2611 -,
M3y = 4ag) — 2a11 + a®aq; + 4byo,

Mo = —3a”ag2 + 4ayo + 4bor — 2b11 — 2p,

Mz = 2(2a01 — a1 + 2b1o),

Moy = 2ap2 + 4bg1 — p.

We obtain a1 = 0, apr = —blo, p= 2(0,02 + 2b01), aijp = i(—4a02 —|—3a2a02 +4b01),
b1 = —4aga.

In order three we have,

Mzo = 3 (~16a02 + 38a%aoz — 9a*agz — 8bor + 4a°boy),
Moy = (=2 + 3a?)byo,
M = 5(—8aoz + 3a*agz — 4bo1),

Moz = —2byp.

We obtain big = 0, by = +(—8 + 3a%)age and now we have M3y = 2(2 — a)a®(2 +
a)aog‘

e If ago = 0 we have P =Q = 0.

e If a =2 or a = —2, after a time rescaling, the system is

& = 3z — 322 + ¢,
y=(1-—4x)y.
It is easy to check that the point (1,0) is a finite singular point that is also over

the curve f = 0 and must be over the oval because the only real points are the
points on the oval and p;. Therefore, there are not limit cycles.
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Therefore, there are not limit cycles.
D.2.2 Let p; be an infinite point. We can take p; = (1:0:0).

We can consider that the tangent to the curve at p; is z . Using the argument of
D.2.1. follows that locally the curve is given by g = (2 + 22 + y?)? + ¢23. Thus, the
global projective curve is F' = (XZ + Z? + Y?)? 4+ ¢X Z?, and in the affine plane the
curve is

f=0+z+9%)2+cx.

If ¢ is positive, using the above argument follows again that the multiple point can
not be isolated. Thus, p; must belong to the oval because the only real points are p;
and the points of the oval. We conclude that the oval can not be a limit cycle in this
case.

Suppose that ¢ is negative. In this case we can write

f=0+z+y*)?—d’z.

The branches of f = 0 are given by

1
T19 = 5(—2—1—(12 — 292 +a/—4+ a2 —4y?).

So, in order to exist a real oval, ¢ must not be zero and the polynomial inside the root
must have two different real roots. In particular, a # 2 and a # —2.

Impose to f = 0 to be invariant with cofactor k = mz + ny + p and define

> .. Of af

M = E Mx'y) == =P+ —Q — kf,
= iy or y /
i+75=0

that must be identically zero.

The coefficients in order five are
Mg = My = M3z =0,

M3z = 4bgo,
M4 = 4byy — m,
M05 = 4b02 —n.

We obtain byg = 0, m = 4by1 and n = 4bgs.

In order four,
Myo = M3 =0,
Msy = 2(ag0 — 2b11),
M3 = 2(a11 — 2bo2 + 2b10),
Moy = 2a92 + 4bo1 — p.

We obtain as0 = 2b11, ail = 2b02 - 2b10 and p= 2@02 + 4b01.

In order three,
M3z = M2 =0,
My = —2(ag2 — a10 + 2bo1 + 2b11),
Moz = 2(ao1 + 2bgo — 2bo2),
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from where apg = a1 — 2b01 — 2b11 and apl = —2b00 + 2b02.

Then, in order two the coefficients are

My = 2a2b11,
My = 2a?(boz + b1o),
Mys = 2ag9 — 2a19 — a2a10 + 2a2b01 + 4bq1 + 2a2b11.

rThllS7 b11 = O, bog = 7b10, and app = %(2&10 + a2a10 - 2a2b01).

In order one,
Mo = 2a*(a10 — bo1),
Moy = 2a?(boo + bro)

We obtain a9 = bg1 and bgg = —b1p.

Finally, the coefficient in order one is Moy = (=2 + a)a®(2 + a)bo1, from where
bpr = 0. In this case we have P = () = 0. So, we conclude that the curve is not
invariant for the flow defined by a quadratic system. Therefore, there are not limit
cycles in this case.
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Chapter 3

Polynomial inverse integrating
factors in some quadratic
systems

In this chapter we consider planar quadratic polynomial vector fields that can have
limit cycles in families (I), (I7) and (I11) according to the Chinese classification. We
study the existence polynomial inverse integrating factors and algebraic limit cycles
of arbitrary degree for some of these systems in order to determinate the existence of
limit cycles, algebraic or not.

3.1 Introduction

In Ye Yian-Qian [53] are classified quadratic systems that can have limit cycles in the
following three families

i =06r—y+ Lt +may+ny?, §=z(l+ax+by),

according to: family (I) if @ = b = 0; family (IT) if a # 0 and b = 0; family (IT1) if
b#0.

In the next sections, we study the inverse integrating factors for systems (I),
(ID)p=0, (I11)a=p and (I11),—o.
Remark 3.1. Define A := xQy — yP» for these families, where P, and Qo are the
homogeneous parts of degree 2 in & and g, respectively. It is known that A = 0
represents the singular points of the system that belong to the infinite straight line
once the phase portrait has been compacted. In Family (I), A = yT3; in Family
(IT)p=0, A = aTy; in Family (I11),—9, A = yT5 and in Family (I1]),—9, A = 2Ty,
where T; are polynomials of degree 2. Each A; appeared in the following theorems is
the discriminant of the equation T; = 0, for ¢ = 1,...,4. In order to make possible
the integration process developed in Theorem 3.2 we will consider, in certain cases,
A; < 0. Therefore, the cases more widely studied are those in which the line at infinity
contains just one or two real infinite singular points.

95
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The preliminary results we use in this chapter work for polynomial differential
systems of arbitrary degree. Let us consider a planar polynomial differential system of
the form

x:P(xay):ZPk(xay) ) y:Q($7y):ZQk(1’7y) ) (31)
k=0 k=0

in which P, @ € R[z,y] are relative prime polynomials in the variables x and y and
P, and Q) are homogeneous polynomials of degree k. Throughout this chapter we
will denote by s = max{deg P,deg @} the degree of system (3.1) in order to keep the
parameter m for the coefficient of xy in the Chinese classification, as it is habitual.
The degree of invariant algebraic curves will be denoted by d.

One interesting question to ask is whether some invariant curve of system (3.1) is
algebraic, i.e. can be described implicitly by f(x,y) = 0 where f is a polynomial. In
general, the answer is not easy but it is very interesting because it is known that the ex-
istence of invariant algebraic curves can be used to prove the existence or nonexistence
of limit cycles of system (3.1). In short, invariant algebraic curves, first integrals and
inverse integrating factors have a narrow relationship for planar polynomial systems
like it is clearly shown in the Darboux theory (Theorems 1.12 and 1.15), but also the
limit cycles with inverse of integrating factors as we have seen in Theorem 1.21.

Only a few mathematicians have worked with non-algebraicity. In this sense it is
interesting to note the proof due to Odani [40] about the non-algebraicity of the famous
van der Pol limit cycle, see [29] for a short proof, and the generalization into a family of
polynomial Liénard systems. After this work, Zotadek in [55] almost completely solve
the problem of algebraic invariant curves and algebraic limit cycles for polynomial
Liénard systems of arbitrary degree. In general, to show the non-algebraicity of all
solutions of some system (3.1) is a very hard problem. For instance Jouanolou in [34]
devotes a large section to showing that one particular system has no invariant algebraic
curves. Other explicit examples of polynomial systems (3.1) without invariant algebraic
curves are presented by Zoladek in [56].

3.2 Some Preliminary Results

Now we give an algorithm, developed in [29], which gives, recursively from the higher
homogeneous term to the other terms in descending form, all the invariant algebraic
curves of arbitrary degree.

Theorem 3.2. (Garcia) Let P(z,y) = Y ;_o Pe(z,y) and Q(z,y) = > 1o Qr(z,v)
be the development in homogeneous components of the polynomials P and Q. Assume
that polynomial system (3.1) without degenerate infinity possesses an invariant alge-
braic curve f(z,y) = 0 of degree d with associated cofactor K(x,y) such that their
developments in homogeneous components are given by f(x,y) = EZ:O fre(z,y) and
K(z,y) = Zz;é Ki(z,y). Then the polynomial sequence {fi(u)} where fi(u) :=
fillyu) with i =d,d—1,...,0 is recursively obtained from

As_ 1(”) F1(u) .
f o J Ao o [f oo du} du + C; 52)
' exp [ Li(w du} ’ .
I'(u)

i
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where C; are arbitrary real constants with Cq # 0 and

I'(u) :==Qs(1,u) —uPs(1l,u) , Ti(u):=iPs(1l,u) — Ks_1(1,u) , (3.3)
and
AS,1+d(U) = 0, (34)
d—1—i -
Norpiw) = ) /([UPeri—dM(lyu) - Qs+z‘—d+k(1au)]dfn(;75(w
k=0

HKs—1i—atr(l,u) — (d— k)Ps+i—d+k(1»u)]fd—k(u)) , (3.5)

where the dash in the previous sum should be understood in the following way: if the
index of some term does not make sense then we take null that term.

In the proof of Theorem 3.2 it is used the blow—up (z,y) — (z,u) where u = y/z.
Once we have determined the sequence {f;(u)}%, then f(x,y) = Z?:o zifi(y/x).
Remark 3.3. Let us notice that Theorem 3.2 can also be used for the study of the
existence of inverse integrating factors V(x,y) and first integrals H(z,y) of polynomial
class. The only changes in the algorithm consist on replacing K; by either the homo-
geneous part of i-th degree of the divergence of (P, Q) or to take K; = 0 respectively
fori=0,1,...,s — 1.

3.3 The main results

3.3.1 Invariant algebraic curves and inverse integrating factors
in Family (7)

It is well known, see [53] for instance, that a quadratic system of the family (I) has
at most one limit cycle. But when in this family we add the condition 6 = 0 then it
does not have any limit cycle. In fact, Theorem 12.4, pag. 268, of [53] shows that the
system of type (I)s=o has a center at the origin when m(¢+m) = 0 and does not have
any closed or singular closed orbit when m(¢ +m) # 0.

On the other hand, if £ = 0, then family (I) is a quadratic Liénard system with
constant damping whose invariant algebraic curves problem is completely solved by
Zoladek in [55]. Any invariant algebraic curve in this case must be rational or hyper-
elliptic. The author also proves that there are not algebraic limit cycles in for such
systems. The next theorem extends the above results for family (I) with £ # 0.

Theorem 3.4. Consider family (I) and define Ay = m? — 4dn. The following state-
ments hold:

1. Consider fn # 0.

(a) Suppose that Ay < 0.

(i) If§ = 0, then there is not any limit cycle. Moreover, the only irreducible
invariant algebraic curve is f(x,y) = — +n + 20(n — )y + 20%ny> +
20322 = 0 and appears when m = 0. f is also an inverse of integrating
factor.
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(i) Ifd # 0, then the unique irreducible invariant algebraic curve is f(x,y) =
nx? +maxy +ny? = 0 which is also an inverse of integrating factor and
appears when £ =n and 6 = —7*. There are not algebraic limit cycles

in this case, nor limit cycles when f exists.

(b) Suppose that Ay > 0. If § = 0, there is not any limit cycle. Moreover, the
only polynomial inverse integrating factor is f(x,y) = 1 —max —2ny —nz?+
mnzy + n?y? = 0, and appears when £ = —n and 6 = 0.

(c) Suppose that Ay = 0. If § = 0, there is not any limit cycle. Moreover, the

only polynomial inverse integrating factors are of the form f(x,y) = (v+y)?
and ezist when § =0 and m = +2¢.

2. Consider £ = 0. In this case there is not any algebraic limit cycle. Moreover,

(a) Suppose that Ay # 0.
(1) If n # 0, then there is not any polynomial inverse integrating factor.
(ii) Ifn =0, then the only irreducible invariant algebraic curve is f(x,y) =
mx — 1 = 0 and appears when 6 = 0. Moreover, this function f is a
polynomial inverse integrating factor.
(b) Suppose that Ay = 0. If n =0, then f(z,y) = 2 — dxy +y? is a polynomial
inverse integrating factor.

3. Consider n =10 and £ # 0.
(a) Suppose that Ay # 0.

(1) If 6 =0, then there are not invariant algebraic curves nor limit cycles.

(i) If § # 0, then the only invariant algebraic curves are f(x,y) = lx +
my =0 for § = —(24+m?)/(fm), or f(z,y) = mx—1=0 ford = —{/m
which are not inverse integrating factors. There are not algebraic limit
cycles.

(b) Suppose that Ay = 0.

(1) If§ =0, then there is not any limit cycle. Moreover, f(x,y) = 1+ 20y —
20222 = 0 is the only irreducible invariant algebraic curve, which is also
a polynomial inverse integrating factor.

(ii) If 0 # 0, then there are not invariant algebraic curves, and therefore,
there are not algebraic limit cycles.

Proof. As we have said, in the Statements where 6 = 0 or £ = 0 appears, we know the
nonexistence of limit cycles and algebraic limit cycles, respectively. We have included
these results in the theorem for completeness. Now we prove the rest of results.

Proof of Statement (1.a). Assume that system (I) has an invariant algebraic curve
f(x,y) = 0 of degree d and set the homogeneous part of degree one of their cofactor
Ki(z,y) = ax + By. In the generic case fnA; # 0, doing the quadrature (3.2) with
i = d we have

28¢—am _28t—am , o
27

fa(w) = Ca(=4n)~ Fu™F (V/ Ay +m + 2nu) 2VET +%(\/A71— m—2nu) VA1 ;

where Cy # 0. Since fd is a polynomial, its exponents must be nonnegative integers.
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Assume that Ay < 0. Then, we must consider

200 —am =0, (3.6)
and we take 8 = am/(2¢).

In the next step, denoting by Ky the independent term of the cofactor and carrying
out integration (3.2) with i = d — 1, we obtain

f, 1 -1-2 & d—1
Ja—1(u) mud =20+ mu + nu?)ze ! {bg )(u)
(d—1) m + 2nu (d—1) ? + mu + nu2
+b," 7/ (u) arctanh (\/E) + by (u)log <u2 7
where bédil) is a polynomial of degree 2 and
bgdil)(u) = 2nCy(—adl + 2Kol? — am + tmd) (£ + mu + nu?) |

bédil)(u) = nvA1Cyla —£d) (£ +mu + nu?) .

Since fy4_; must be polynomial we impose bgd_l)(u) = b;d_l)(u) = 0. Hence we take
o = dl and
Ko = (adl + am — tmd)/(20?). (3.7

With these assignments frn—1 becomes

(£+mu+nu2)*1+d/222: (d=1)
2nu A

fa—1(u) =

=0

(d—1)
i ~
where Cy_1 is an arbitrary constant. Obviously, from the above expression of f;_1 we

(d—l)ui

where a are real constants. More concretely agdfl) = 4dCy + 2nCy_1 — dnCy

conclude that d must be even. Moreover, u must divide the polynomial Z?:o a;
ie. a(()d_l) = 0 and therefore Cq_1 = d(n — £)Cyq/(2(n).

The next step, that is, quadrature (3.2) with ¢ = d — 2 allows us to calculate

~ (€ +mu +nu?) =242 T o) (d—2) m + 2nu
_ = — b b tanh | ———
Fuaw) T 00 7 et (22 )]

where b(()dfz) is a polynomial and

b2 (u) = 8dn2Cy(lm + 206n + mn) (€ + mu + nu?)? |

(d-2) _
(=2 =

Now, taking into account that fd,g is a polynomial we must take b 0 or equiv-

alently 6 = —m(¢ + n)/(2¢n). In this situation fy_o takes the form

(f+mu+nu2)72+d/2 4

(d—2) i
3202n2q2 % Y

fa—a(u) =

)

=0
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where az(-d72) are real constants. Here aédiQ) = 4/*Q and aﬁH) = 8(mf) with Q :=
dCq(n — £)(2¢ — d + dn) — 8¢°>n?Cy_». Imposing that u? divides to 221:0 agdfz)ui

we must take a(()d72) = agdﬂ) = 0. This condition implies 2 = 0 or equivalently

Cy_2 = dCq(n — £)(2¢ — £d + dn)/(82n?).

The next step consists on quadrature (3.2) with i = d — 3. So we compute

- (0 + mu +nu?)3FY2 [ s (d—3) m + 2nu
_ = b b tanh [ ——
fa-s(u) 38403n3(—A1)5/2u8 |0 (u) + by (u) arcta —VAT ’

where bgdf‘g) is a polynomial of degree 6 and
B (u) = 192C0mdn? (£ — n)(n + ) Ar (£ + mu + nu?)®. (3.8)

Of course in the expression of fd_g there is implicitly an arbitrary constant Cy_3 due

to the made quadrature. In order to have fd_g polynomial we impose bgd_3) =0. In

-3)

short from the vanish of bgd we obtain ¢ =n or m = 0 (we recall that A; < 0).

Suppose that ¢ = n. In this case fy_5 becomes

3 Cy_s(n + mu + nu?)?/?

fas(u) = "
Since fy_3 is a polynomial, the only possibility is given by C4y_3 = 0. Therefore

fa—3 = 0. From Theorem 3.2 we have A1 ;(u) = 0 and f;(u) = C; exp {—f I;"'(%) du} =

Ciu'=%(n 4+ mu + nu*)¥? for i < d — 4. Here C; is an arbitrary constant and from
the previous expression of f; it follows that C; = 0 and therefore f; = 0 for ¢ <
d — 4. Hence the invariant algebraic curve f(z,y) = 0 of system (I) is obtained
from f(u) = Z?;j fi(u) going back through the blow-up. But it is easy to see that
after the last condition ¢/ = n we have fd,l = fd,g = 0 and so f(u) = fd(u) =
Cy(n 4 mu + nu?)%2. Therefore the irreducible invariant algebraic curve is the conic
f(z,y) = nax? + may + ny?> = 0. Consequently, since f is homogeneous, under the
conditions of the theorem, family (I) has not algebraic limit cycles.

Suppose that m = 0 and therefore 6 = 0. In this case there is not any limit cycle
and moreover every invariant algebraic curve is a multiple of f(x,y) = —¢+n — 20?2 +
20nx + 202nx? + 203y? = 0 since the function H(z,y) = e~ 2 f(x,y) is a first integral.
Moreover, f is also an inverse integrating factor.

Proof of Statement (1.b). Suppose that A; > 0. The divergence of the system
is § + 20x + my. Therefore, looking for an inverse integrating factor is looking for an
invariant algebraic curve with cofactor K = Koy + ax + Sy such that Ky = 4§, a = 2/
and § = m. Of course, (3.6) and (3.7) of the proof of Statement (1.a) are satisfied for
d = 2. Following the proof we arrive to (3.8) and since A; > 0, we consider £ = —n.
Hence N

fa_s(u) = Cq_z(—n + mu + nu?) /u?,

where Cg_3 is an arbitrary constant. Therefore we must take Cy—3 = 0. In an anal-
ogous way, it is easy to see that we must choose C; = 0 in order to have f; = 0 for
i1 <d-—4.
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In summary, f(u) = Zg;; fi(u) = Cy[—n+mu+nu®—(m+2nu)/n+1/n] and go-
ing back through the blow—up u = y/x we obtain that f(z,y) = 1 —max —2ny —n?x? +
mnxy-+n2y? is the only inverse integrating factor and appears when £ = —n and § = 0.

Proof of Statement (1.c). From A; = m? — 4fn = 0 we take n = m?/(4¢). Doing
the quadrature (3.2) with ¢ = d and with a cofactor K equal to the divergence of the
system, we obtain R

fa(u) = Cqut=2(20 + mu)?,

where Cy # 0. In the next step, denoting by K the independent term of the divergence
of (P,Q), that is Ky = 4, and carrying out integration (3.2) with ¢ = d — 1, we obtain

5 ud=3 _ _ 20 + mu
Jama(u) = 5 | B§'™ (u) + By (u) log <u>] |

Im?

where B(()d_l) is a polynomial of degree 2 and B§d_1)(u) = Ca(2 — d)ym?(20 + mu)?.
Clearly, in the generic case fm # 0, the logarithmic term of f;_1 does not vanish except
for d = 2. So, in this case, family (I) does not have a polynomial inverse integrating
factor of degree different from 2.

7 F 2 (d=1) 2 (d—1)

Now, fq—1 becomes fq_1(u) = (3°;7_ya,” 'u')/(m?u) where a, are real con-
stants and a(()d_l) = 40(4Cyl? — Cgm?® + Cy_1¢m?). In order to have fd,l(u) a polyno-
mial we need a{’ ™" = 0, that is Cy_y = Cy(m? — 4£2)/(¢m?). The next step, that is,
quadrature (3.2) with i = d — 2 allows us to calculate

3
f — 1 (d=2), i
fa—o(u) = 3m2u2 (20 + mu) ;ai u
where agdﬁ) are real constants. Here aédiz) = 4/Q and agdd) = 6m$ where Q =

Ca(2002 +460m—m?2)+6C_20>m?2. Now, taking into account that f;_s is a polynomial
we must take a(()d_2) = agd_m =0, 1i.e., Q= 0. From this we have Cy_y = (m? —46¢m—
20¢%)/(60?m?). In this situation f;_» takes the form

Cq[60(m? — 402) + m(m? — 46m — 200?)u)
602(2¢ 4+ mu) '

fao(u) =
It is easy to see that the above expression is polynomial if and only if 462 +25¢m+m? =
0. From such condition we have § = —(m? + 4¢2)/(2¢m).

Finally, since d = 2 we must impose fz =0 for : < d— 3. Hence we do a new step
which consists on quadrature (3.2) with ¢ = d — 3 and compute

3
7 — 1 (d=3), i
fa—s(u) = 302mAu3(20 + mu) ;ai u,

where al(-dfs) are real constants. Here aédi:s) = 4020, agdfg) = 6/m¥ and aédiS) =

3m2¥ where ¥ = Cy(16¢* — m*) 4+ 6C4_3>m*. From the vanishing of fd_g we must
take Cy_3 = Cy(m* — 16£*)/(6¢3m?). In this situation f;_3 becomes

Cy(m — 20)(m + 20)(m? + 40?)

fa—s(u) = 602m(2¢ + mu) ’
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which vanish if and only if m = +2¢. Again, it is easy to see that we must choose
C; =0 in order to have f; =0 for i < d —4.

With all these conditions fd_l = fd_g = 0 and therefore f(u) = fd(u) =2Cy(1 £
u)? according to m = £2¢. The statement is proved going back through the blow—up
u=y/z.

2

Proof of Statement (2.a). If n # 0, doing the quadrature (3.2) with i = d we
have fq(u) = Cqu®!(m + nu), where Cy # 0. Hence in the next step, carrying out
integration (3.2) with ¢ = d — 1, we obtain

~ ud—3 _ _ m —+ nu
fa—1(u) = ) Bc()d 1)(1‘) + B§d 1)(’“) log ( ﬂ )

u

where Béd_l) is a polynomial of degree 2 and B;d_l)(u) = Cy(d — 2)n*u(m + nu).
Clearly, the logarithmic term of fd_l does not vanish except for d = 2. So, in this case,
family (/) does not have a polynomial inverse integrating factor of degree different
from 2. Now we have fy_1(u) = [-Cqn+ (Cam+ Cadn+ Cq_1mn)u+ Cq_1n?u?]/(nu)
which never is polynomial because n # 0.

When n = 0, and doing the quadrature (3.2) with ¢ = d, we obtain
fa(u) = Cdeﬁu*%”,

from where @ = 0 and § = km for some nonnegative integer k. That is, fd(u) =
Cdu_k+d.

In the next step,
. 1
fa—1(u) = —Eud_Q_k(Cd,lmu — Cy(d+ k(u? — 1)) + C4(dk — Ko)ulog(u)),

which is a polynomial if Ky = dk.

Following the quadrature with i = d — 2 follows

fa—a(u) = ﬁu_‘l_k*'d(bédd) +2C4(d — k)u?log(u)),

where b(()d_z) is a polynomial of degree 4. Therefore, we must take k = d and we have

5 o Cd_lmu — C’ddu2
Jar(w) = =
5 20_om? 4+ 2C38du — Cydu? + Cyd?u?

fd—Q(U) = .

2m2u?2
Clearly, in order to get algebraic curves we must have Cy_1 = Cy_o = = 0.

Now the system is & = y(max—1), ¥ = x and it is easy to check that f(z,y) = mz—1
is an inverse integrating factoré Moreover, any invariant algebraic curve is a power of
f because H(z,y) = e™2*=m)/2(ma — 1) is a first integral of the system.

Proof of Statement (2.b). In this case the system becomes linear. In particular
it does not have limit cycles and it is easy to check that f(z,y) = 2% — dzy +y° is a
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polynomial inverse integrating factor.

Proof of Statement (3.a). Consider n =0, £ # 0 and Ay # 0. In this case, m # 0.

Assume that system (I) has an invariant algebraic curve f(z,y) = 0 of degree d
and set the homogeneous part of degree one of their cofactor Ki(z,y) = ax + By.
Quadrature (3.2) with ¢ = d leads to

fa(u) = Cqu®*( + mu)*~F,
where s := «/f and k := 3/m are nonnegative integers.
In the next step,
Faa(u) = b6" Y () + 0 (w) log (w) + b5V (u) log (€ + mu),

where b(()dfl) is a rational function and bgdil)
be identically zero in order to f;_1 be a polynomial. More concretely,

with ¢ = 1,2 are polynomials that must

B\ (u) = %(d — $)u S (0 4 ) RS,
Therefore, we obtain s = d. In this case,
b (u) = %(%k + 6km — Kom — €d)(£ + mu) "+,

from where Ko = (20k 4 6km — €d)/m. Therefore, fy_; is a rational function and
taking Cy_1 = Cq(€% + 6¢m + m?)(d — k)/(fm?) becomes the polynomial

 Ca(f + mu)~tkHd
Im

(a5 + oy Vs

fao1(u) =

d—1) .
for some real numbers a' ), 1=0,1.

i

In the next step,
Faa(u) = b5 () + b (u) log (€ + mu),

where bédiz) and bgdiz) are rational functions. The second one is

B () = — Ca (m? (k — d) + 0% (2k — d) + 66m (2k — d)) (£ + mu)~*+,

miu?

If d = 2k, the above expression vanishes if k£ = 0 and therefore, d = 0. So, there are

not invariant algebraic curves in this case. Suppose that d # 2k and we obtain, from
bgd_2) =0,

20k + km? — 2d —m*d
Im (2k — d)

5:

Moreover, fd,g must be a polynomial. So we write Cy_5 in function of the rest of
parameters.

In the next step,

Fa—s(u) = b§"% (u) + 0 (u) log (¢ + mu),
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where b(()df?’) is a rational function and

204k (k — d) (¢4 mu) "
N tm? (2k — d) u®

d—
o (u)

We have two possibilities: either £k =0 or k = d.

If £ = 0, we obtain
5 Cy_3(l + mu)?
Foalu) = Gamallb )’
u

from where Cy_3 = 0 and consequently fd_i = 0 for ¢ > 3. Then we obtain f(u) =
Fa(w) + fa_1(u) + fa_o(u) = Cq(£ +mu)? and going back to the variables (z,y) follows
that the only irreducible invariant algebraic curve is f(z,y) = ¢z + my = 0. It can
be also seen that f is not an inverse integrating factor. We remark that 6 = —(¢2 +

m?)/(¢m) # 0.

On the other hand, if k¥ = d, we must take C; = 0 in order to f; be polynomials
for i < d — 3 and moreover, this f; become constants. Following the quadrature for
1 =d — j, and taking Cy_; = 0 in order to have a polynomial, we obtain

wi [ oyl

fa—j(u) = w;(u)du.

m ) {+mu
where w;(u) = (—(1+d —j)(¢ + mu)fd,(j,l)(u) +(m+Llu+m “Z)féf(jfl)(u)- In-
ductively, it can be seen that fd,j is a constant for all j and going back to the
variables (z,y) we obtain a function in one only variable. Obviously, since the sys-
tem is £ = (mzx — 1)(lx + my)/m, y = =z, the only invariant algebraic curve is
f(x,y) = mz — 1 = 0 which is not an inverse integrating factor. In particular, there
are not algebraic limit cycles. We remark that § = —¢/m # 0.

Thus, for 6 = 0 there are not limit cycles nor invariant algebraic curves.

Proof of statement (3.b). Consider n =0, £ # 0 and A; = 0. In this case, m = 0.

Assume that system (I) has an invariant algebraic curve f(z,y) = 0 of degree d
and set the homogeneous part of degree one of its cofactor K;(z,y) = ax 4+ By. Doing
the quadrature (3.2) with ¢ = d we have

fa(u) = C’de_%uu_%*'d,
from where 8 = 0 and o = k¢ for some nonnegative integer k and we obtain fd(u) =

Cyu=F+d In the next step,

u717k+d

fa—1(u) = 57— (2Ca1l = Cqu(=26k + 2Ky + ku) + 2Ca(k — d) log(w)),

from where k = d to vanish the logarithmic term. In this case fd,l is a rational
function and we take Cy_1 = 0 in order to be a polynomial. It follows fy_1(u) =
—Cq(2Ko — 20d + du)/(2¢).

Following the quadrature (3.2) for ¢ = d — 2 we obtain

R(u)

JiaW) = 5q,°
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where R(u) is a polynomial without linear term and its independent term is 24C ;_o0?
from where Cy_o = 0. Again, in order to f; be polynomials, we impose C; = 0 for
1 < d—2. It is also easy to see that when fz = 0 for some 7 the functions fj, with j <1,
that we obtain in the next steps are identically zero. Moreover, doing the quadrature
(3.2) for i = d — j and taking Cy_; = 0 we obtain

Fusw) =25 [ witwin
where w;(u) = —(K0—|—5(—1—d+j)+u+du—ju)fd,(j,1)(u)—|—(1—5u+u2)fl’i_(j_1)(u).

It can be seen that fd:;; = 0 if and only if d = 2 and § = Ky = 0. In this

situation, we consider f = fo + f1 + fo and going back through the blow-up we obtain
f(x,y) = =1+ 2022% — 20y = 0 as invariant algebraic curve. Moreover, f is also an
inverse integrating factor.

We claim that the only invariant algebraic curves have even degree and appear
only when 6 = Ky = 0. The prove of the claim follows by induction. We give here an
sketch of the steps of the proof.

Itcanbeseenthatfd,gEO@fd,4EO@f[’i_3EO@M;EO(:)d:Qand
(5:K0:0.andthatfc’l_4EO@w5£0@d:2,4and6:K0:O.

Suppose that for some j even one has fd—(j—l) =0< fd,j =0< fcllf(jfl) =0«
wi=0ed=2..j—2andd=Ky=0and that f; ;=0 wi =0sd=
2,...,jand d = Ky =0.

It is easy to check that fd—(j+1) =0& fd_(j+2) =0¢& f(’if(jﬂ) =0 wji2 =
0« d=2,..jand § = Ko =0 and also that f} ., =0 w3 =0ed=
2,...,5+2and § = Ko =0, because when d = j + 2 we have wj3 :Kofo—l—(l—éu—i—
u?) f}, which is zero when Ky = 0, since fo is a constant. So the claim is proved.

It can be checked that H(z,y) = e 2% f(x,y) is a first integral. Therefore, every

invariant algebraic curve is a power of f. Moreover, there are not limit cycles because
the set of points where f vanishes, does not contain any oval.

And finally we remark that we have also shown that when & ## 0 there is not any
invariant algebraic curve. [ |

3.3.2 Polynomial Inverse Integrating Factors in Family (/1),—

In the following theorem we study the existence of polynomial inverse integrating
factors for the family (II),—¢. In [53] can be found some results on non existence,
existence and uniqueness of limit cycles for these systems depending on the value of
the parameter §.

Theorem 3.5. Consider system (I1),—o and define Ay := (% + 4am. The following
statements hold:

1. Suppose that Ay # 0.
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(a) In the generic case m # 0, then there exist a polynomial inverse integrating

{(d — d—1
factor of degree d if + (d—3) + —— e NuU{0}.

2v/As 2
Moreover, if Ay < 0 the only polynomial inverse integrating factor is f(x,y) =
(1 + ax)(2? + dzy + y?) and appears when m = —a and £ = ad.
(b) If £ = 0, then f(z,y) = ax + 1 is the only polynomial inverse integrating
factor, and appears when m = —a and § = 0.

(c) If m =0, then there is not any polynomial inverse integrating factor.

2. Suppose that Ay = 0. In this case, the only polynomial inverse integrating factors
are f(z,y) = (1 + ax)(z £y)? and appear when £ = F2a, § = F2 and m = —a.

Proof. Assume that the vector field associated to family (I1),—o is given by (P, Q)
and has a polynomial inverse integrating factor f(x,y) of degree n. Let K; be the
homogeneous part of degree 1 of the divergence of (P, Q), i.e. Ki(z,y) = 20x + my.

Proof of Statement (1.a). Consider Agln # 0. Doing the quadrature (3.2) with
i = d we have

£(d—3) | d—1 _£(d=3) |, d—1

fd(u):Cd(—élm)%(—E-}- ﬁ—2mu)2 a2 T(€-|- @+2mu) ENSREER

In order have a polynomial, the exponents must be nonnegative integers. Moreover, if
Ay < 0, the only possibility is d = 3 and straight forward calculations show that the
only polynomial inverse integrating factor is f(z,y) = (1 + az)(2® + dzy + y2).

Proof of Statement (1.b). Suppose that ¢ = 0. In this case, fy = Cqyla —
muz)(d’l)/z, and d must be odd. In the next step, we obtain

Faoa(w) = Caor(a—mu?) T + 61D () (a — mu?) =,

where b(¢=1) is a polynomial. Since d must be odd, follows Cjy_1 = 0.

Following the quadrature (3.2) with ¢ = d — 2 we obtain

Faa(u) = (a—mu?) T b5 (u) + b log(Va + v/mu) + b5 log(va — v/mu)),

where b(()d72) is a rational function which must be a polynomial and the constants

_ 1—-d
bl = — (a + vay/mé +m)

_ 1—-d
bgd 2) = o (a—\/a\/aé‘{—m)

must be zero. We have two possibilities: either d =1 or m = —a and § = 0. Straight-
forward calculations show that does not exist any polynomial inverse integrating fac-
tor of degree 1 except for the case m = —a and § = 0. In this case the system is
& = —y(l+4azx), y = (14 ax), which can be transformed into a linear system by doing
a time-rescaling and f(x,y) = 1 + ax is a polynomial inverse integrating factor.
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Proof of Statement (1.c). Suppose that m = 0. Doing the quadrature (3.2) for
1 = d we obtain

fa(u) = Cyla — fu) =2+,
In the next step,

(a _ gu)f?ﬂrd

5 081 (u) + Ca(a® — adl + £2)(=2 + d) log(a — (u)),

fd—l(u) = -
where b(()d_l)(u) = U(—Cy_10+ C4(a(—2+ d) + ¢(d — uw))u). Since fq—1 must be a
polynomial we have two possibilities: either § = (a2 + ¢2)/(af) or d = 2.

In the first case, we obtain

(a _ gu)73+d

i (—aCy_1€ — a*Cqu + Cal*u + a®Cydu — aCylu?),

f d—l(u) = -
and in the next step we obtain for fd_g a polynomial of degree d — 1, what is not
possible. Thus, there are not polynomial inverse integrating factor in this case.

Otherwise, if d = 2, we obtain

- aChl — a?2Cou — Col?u + aCsolu?
fl (u) = )
al(a — tu)

which is a polynomial if Cy = C5 and in this case,

fl(u) = 702(6@; QU)-

In the next step, fo must be a constant but

f (u) = 6Co0% — 6aCslu + 3a2Cou? + 3C20%u? — 2aColu®
v = 602(a — Cu)? ’

which is never a constant. Therefore, there are not polynomial inverse integrating fac-
tors in this case.

Proof of Statement (2). Consider Ay = 0. In this case we write m = —¢?/(4a) and
in the first step of the algorithm we obtain

- 2a(d—3)

fd(u) = Cdez;iim(Qa _ fd)d_17

from where d must be 3 in order to have a polynomial since a # 0. Straightforward
calculations show that the only polynomial inverse integrating factors are the stated
ones. i

3.3.3 Polynomial Inverse Integrating Factors in Family (/17),—¢

It is well known that family (I17),—¢ has at most one limit cycle, see [53] for instance.
Moreover, if 6 = 0 the system has a center at the origin when m(¢+ n) = 0. Here we
study some properties for the family (I77),—o.
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Theorem 3.6. Consider system (III),—q and define Az := m? + 4n(b — ). The
following statements hold:

1. Consider the generic case (b— £)n # 0.

(a) If As # 0, then there exist a polynomial inverse integrating factor of degree
Lld—2)—b bm(3 — d) 20+ b(1 —d)

d , = — e NU{0}.

i b—0Ovh;  20b-10) {0}

Moreover, when Az < 0 and m # 0, then the only polynomial inverse inte-

grating is f(z,y) = (ny — 1)(2% — dzy + y?) and appears when m = —in,

b= —n and £ =0. There is not any limit cycle when f exists.

(b) If Az =0, then the only polynomial inverse integrating factors are f(x,y) =
(x —y)?(1+ by) which appears when £ =0, m = 2b and § = 2 and f(z,y) =
(x £4)2(1 + 20y) which appear when b = 20, m = F2¢ and 6 = F2. There
18 not any limit cycle when someone exists.

2. Suppose that b — € = 0 and n # 0. The only polynomial inverse integrating
factors are f(z,y) = (ny — 1)2(=1 + ma + ny) which appears when § = m = 0
and b = —n, and f(x,y) = (1+by)3 which appears when § = 0 and m # 0. There
are not limit cycles when someone ezist.

3. Suppose that n =0 and b — € # 0. In this case,

(a) If m # 0 then there exist a polynomial inverse integrating factor of degree d
{d—2)—b bd-—2)—¢

g 75 ) 7 € Nu{o0}.
(b) If m =0 then there exist a polynomial inverse integrating factor of degree d
_9) _
TS S

4. In the case b—{ =n =0, the only polynomial inverse integrating factor appears
when m = 0 and is f(z,y) = (1 + by)(2® — dzy + y?). In this case, there is not
any limit cycle.

Proof. Assume that the vector field associated to family (I11),—¢ is given by (P, Q)
and has a polynomial inverse integrating factor f(z,y) of degree d. Let K; be the ho-
mogeneous part of degree 1 of the divergence of (P, Q), i.e. Ki(x,y) = (b+20)x + my.

Proof of Statement (1.a). In the generic case (b—¢)nAj # 0, doing the quadrature
(3.2) with 7 = d we have

- 1— oy bm(3—d) _ 2£+4b(1—d)

fa(u) = Cq(4n) Eon UM‘*‘#(\/ Az +m 4 2nu) 0-OVE 2070

bm(3—d) 20+b(1—d)

x(\V/Bg —m — 2nu) ©-ovAs | 2D

where Cy # 0. Since fd is a polynomial, its exponents must be nonnegative integers.

On the other hand, if we assume A3z < 0, we obtain the condition d = 3 when
m # 0. Therefore, system (III),—o does not have any polynomial inverse integrating
factor of degree different from 3. Straightforward calculations show that the only poly-
nomial inverse integrating factor is f(x,y) = (=1 + ny)(z? — dry + y?) and appears
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when m = —dén, b= —n and £ = 0.

Proof of Statement (1.b). Let f(x,y) be a polynomial inverse integrating factor of
degree d for family (I11),—o. From the condition Az = 0 we take n = m?/[4(¢ — b)].
In this case, the quadrature (3.2) with ¢ = d leads to

2b(d — 3)
mu + 2(¢ — b)

b(1—d)+2¢

Falu) = Caexp ( ) W (b — €) — )T

where Cy # 0. Since fd(u) is polynomial, we conclude that d = 3 since b # 0. Straight-
forward calculations show that the only polynomial inverse integrating factors are the
stated ones.

Proof of Statement (2). Assume that family (I11),—¢ has a polynomial inverse
integrating factor f(z,y) of degree d.

Let us suppose m # 0. In this case, doing the quadrature (3.2) with ¢ = d we have
(3 — d)b) 7n2(d71)+bn(37d) nLan(de)
u m2

(m+nu) =z |
mu

fa(u) = Cyexp (

where Cy # 0. Since fy(u) is polynomial, we conclude that d = 3 because family (I11)
has always b # 0.

Otherwise, when m = 0, we have fd(u) =Cy exp(
and only if d = 3.

(3—d)b
2nu?

) u®, which is polynomial if

Straightforward calculations with d = 3 for m # 0 and m = 0 show that the pos-
sible inverse integrating factors are the stated ones.

Proof of Statement (3). Let f(x,y) be a polynomial inverse integrating factor of
degree d for family (I1I),—¢. Firstly, let us suppose m # 0. Hence the quadrature
(3.2) with 7 = d leads to

L(2—d)+b b(d—2)—¢

fd(u) =Cqu ¢ (b—Cl—mu) ¢ |

where C; # 0. Since f; is polynomial, its exponents must be nonnegative integers.
Then we conclude the Statement (3.a). Otherwise, when m = 0, f; becomes

2(d—2)—b

fa(u) = Cqu™ 70

and in analogous way we obtain Statement (3.b).

Proof of Statement (4). Assume that family (I1]),— with b= ¢ and n =0 has a
polynomial inverse integrating factor f(z,y) of degree d.

Let us suppose m # 0. In this case, doing the quadrature (3.2) with ¢ = d we have
fd(u) = Cdu2.
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In the next step,

(C’dmu(Zm —bu) + be#u(C'd_lm2 +b Cd/ <
b

mu

).

which is a polynomial if b = 0, but in this case the system belongs to Class (I) of Ye
Yian-Qian.

~ 1
fd—l(u) = W

In the case m = 0, the system becomes @ = dx — y + bx?, § = x(1 + by), which
is degenerate infinity and consequently we can not apply the algorithm of Theorem
3.2, but this system can not have limit cycles because can be transformed into a linear
system into the projective plane. Moreover, the function f(z,y) = (1+by)(z?—dxy+y?)
is a polynomial inverse integrating factor, see for instance [5]. [ |

3.3.4 Polynomial Inverse Integrating Factors in Family (171),_o

It is well known that family (I17),—¢ can be transformed into a equation of Liénard
type by a change of variables. But, in general, such equation is not polynomial. In
this section we give some results for this family.

Theorem 3.7. Consider system (I11),—0qx0 and define Ay := dam + (b — £)%. The
following statements hold:

1. If mAy4 # 0, then there exist a polynomial inverse integrating factor of degree d

L d=3)b+0) d-1
if + SN, +— € NU {0} and

(a) when b+ £ # 0 and Ay < 0 there is not any polynomial inverse integrating
factor.

(b) when b+ £ =0 there is not any polynomial inverse integrating factor.
2. If m =0, then

(a) when £ —b # 0 the system possesses a polynomial inverse integrating factor

of degree d if % € NuU{0}.

(b) when £ —b =0 there is not any polynomial inverse integrating factor.

3. If Ay =0 and m # 0, then there is not any polynomial inverse integrating factor.

Proof. Let (P, Q) be the vector field associated to family (I17),—o and assume that it
has a polynomial inverse integrating factor f(z,y) of degree d. Let K; be the homo-
geneous part of degree 1 of the divergence of (P,Q), i.e. Ki(z,y) = (b+ 20)z + my.

Proof of Statement (1.a). In the generic case mA, # 0, the quadrature (3.2) with
1 = d leads to
=040 4 a1

fd(u) = Cq(— = \/7+b £ —2mu) =

(d=3)(b+2) 3)(b+1/) d—1

X(VAL—b+ L4 2mu) VA4 2
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where Cy # 0. Since fd(u) is a polynomial, its exponents must be nonnegative integers
and we obtain the first part of the statement.

On the other hand, if we assume Ay < 0, we obtain the condition d = 3 when
b+ ¢ # 0. But straightforward calculations show that there is not any polynomial
inverse integrating factor of such degree.

Proof of Statement (1.b). If we take £ = —b then
Fal) = Cal—a — 2bu+ mu?) 472,

Notice that this expression implies that d must be an odd number under condition
Ay # 0. Furthermore, a new step in the algorithm of Theorem 3.2 gives

5 2 2bu — - _
fa-1(u) = m o oua [a(()d 1)(u) + agd 1)(u)\/ mu? —2bu — a

m3/2

+a(2d71)(u) log[—b + mu + /m(mu? — 2bu — a)ﬂ )

where agdfl) are polynomials of degree 2 and more concretely aédil)(u) = Cgb(2 —

d)(a + 2bu — mu?). Clearly, there is implicitly an arbitrary constant Cgq_1 in the ex-
pression of fg_1(u) due to the made quadrature. Since fy_; must be a polynomial we
conclude that agd_l) = 0 and this implies d = 2 because in family (I17) always b # 0.
But this leads to a contradiction with the above condition d odd.

Proof of Statement (2). In the case m = 0 and £ — b # 0 the quadrature (3.2) with

1 = d takes the form
2(d—2)—b

fa(u) = Cala+ (b= Ou] =0,
where Cy # 0. Since fy is a polynomial, its exponent must be a nonnegative integer.
Otherwise, that is, if m = 0 and £ — b = 0 then fy(u) = Cyexp[b(3 — d)u/a]. This

implies d = 3. But it is easy to see that this inverse integrating factor of degree 3 does
not exist.

Proof of Statement (3). Assume that system (I1]),—g a0 pOssesses a polynomial
inverse integrating factor of degree d. From the condition Ay = 0 we take m =
—(b—0)?/(4a) # 0 and the quadrature (3.2) with i = d leads to

2a(b+¢)(d —3)
= 0)((( - b)u—2a)

fa(u) = Cyexp { ] [2a + (b — £)u]¢t,

where Cy # 0. Since fd(u) is a polynomial, the exponential term must vanish an so,
b+¢=0ord=3and b+ ¢ #0.

If we assume b+ ¢ = 0 then a new step in the algorithm of Theorem 3.2 gives

= a+ bu)d=3 _ _
Fara(uy = P () + 0 () logfa + bu]
(1) i a polynomial of degree 2 and agd_l)(u) = Cya*(d — 2)(a + bu). Since

fd,l must be a polynomial we conclude that agdfl) =

where q
which implies d = 2. But a
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straightforward calculation shows that this inverse integrating factor of degree 2 does
not exist.

On the other hand, if we assume d = 3 and b+ ¢ # 0, straightforward calculations
show that the inverse integrating factor does not exist. [ |



Chapter 4

Resolution of the Poincaré
Problem in Family (/)

In this chapter, family (I) of the Chinese classification is widely studied. For this
type of systems, the Poincaré problem is solved: any irreducible invariant algebraic
curve has degree at most 3. As a corollary, we prove that these systems does not have
algebraic limit cycles.

4.1 Introduction

In Ye Yian-Qian [53] are classified quadratic systems that can have limit cycles in three
families as we have seen in the above chapter. Now, our target is family (1), i.e.,

t=0x —y+L+may+ny®, y==x.

The authors expend pages to de discussion on the non existence of limit cycles and its
uniqueness when exist. The limit cycle may appear in a neighborhood of the origin
for dm(¢ + n) < 0 and |4| sufficiently small. However, it is not known whether such
limit cycle is an algebraic or transcendent curve. This question will be solved along
this chapter.

Many results that we obtain in this chapter are already obtained in section 3.3.1
in the above chapter. Even so, this chapter is strictly algebraic, the proves we present
are different and it makes this chapter self-contained.

4.2 The main results

Concerning the Poincaré problem for family (I) we have the following result.

Theorem 4.1. Any irreducible invariant algebraic curve for family (I) has at most
degree 3.

73
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Proof. Consider the planar polynomial differential system of family (I). When ¢ = 0,
family (I) becomes a quadratic Liénard system with linear damping. In this case,
following Zotadek’s results [65], the invariant algebraic curves associated can be only
of two types: either rational curves of the form = = £(y) or hyperelliptic curves like
(x — &(y))? = n(x) with € and 7 polynomials. It is easy to check that any invariant
algebraic curve of the first type must have at most degree 2 and for the second type
the degree is bounded by 3. On the other hand, there are not algebraic limit cycles for
such systems.

So we continue the proof assuming ¢ # 0. In order to control the behavior of the
solutions of family (I) at infinity, we extend this family to a differential equation in the
complex projective plane CP2. Thus, following the ideas of Darboux [21] one has

P(X,Y,Z)dX + Q(X,Y, Z)dY + R(X,Y, Z)dZ = 0, (4.1)

where P = MZ, Q = —LZ and R = LY — MX. Here L and M are the following
homogeneous polynomials of second degree

L=2°P(X/Z,Y]Z) (X2 +mXY +nY? +6XZ Y7,
M =27°Q(X/2,Y)Z) = XZ.

Case 1: Consider n # 0.

Since the singular points in CP? of the differential equation (4.1) are defined by
P=Q=R=0, weobtain py = (0:0:1) and po = (0: 1/n : 1) which correspond
to finite singular points of family (I), and ps = (1 : 0 : 0), ps = (1 : a : 0) and
ps = (1: B:0), where a and §3 satisfy the equation £ + mY + nY? = 0, which corre-
sponds to the infinity ones. Notice that py = ps if and only if o = 3, i.e., m? —4fn = 0.
Moreover a3 # 0 because £ # 0.

The jacobian matrix of the associated vector of family (I) at p; is

DX (p1) = <(15 _01 >7

and the characteristic polynomial is p(t) = 1 — 6t + 2.

Similarly, at ps one has
s 1

m+n6+\/4n2+(m+n5)2 m4+nd— 4'r12-|-(’rn+n§)2

and po = T , sat-

with eigenvalues Ay = T
isfying Aopo < 0 and thus py is a saddle.

Around ps, ps and ps, the differential equation (4.1) can be written in local coor-
dinates, taking X =1, as
Y = WY +Z-mY?-—6YZ-nY3+Y?Z,
Z = —Z(l+mY +6Z+nY?-YZ). (4.2)
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Now, denoting DX the jacobian matrix of the associated vector field to system (4.2)
and, taking into account that a and /3 are solutions of the equation £+mY +nY? =0,

we can write
-4 1
DX(p3)_< 0 _£>7

—0—2ma —3na? 1 —da+a?

/A _ 2 _ 2
DX(p5):( 1 2m06 3np% 1 5€+,6’ )

At this point, we introduce the fact that family (I) has an invariant algebraic curve
f(z,y) = 0 of degree d with cofactor k(x,y) = ko + kiz + k2y. We extend it to
the projective plane taking F(X,Y,Z) = Z%f(X/Z,Y/Z) and cofactor K(X,Y,Z) =
Zk(X/Z,Y]Z) = koZ + k1 X + koY. It is known that in the local chart of the
points ps, ps and ps, the curve is given by F(1,Y,Z) = 0 and the cofactor by
K(1,Y,Z) = koZ + k1 + koY — dL(1,Y, Z).

Since ¢ #£ 0, p3 is a logarithmic singular point and from statement 2 of Theorem
1.45 the differential equation has only one formal solution at it. Since Z = 0 is solution
of (4.2) through ps, there are not more solutions at this point. In particular, it follows

that F(p3) # 0. Therefore, from (1.3), K(p3) = 0 and we obtain k; = ¢d.

The eigenvalues of the linear part at py and ps are Ay = —¢ — 2ma — 3na?, g =0
and A5 = —¢ — 2mfB3 — 3nB2, us = 0, respectively.

We claim that Ay = 0 if and only if & = 8, and A5 = 0 if and only if a = £.

We prove the claim for Ay and the claim for A5 holds by symmetry. Suppose that
A4 = 0. We know that « is a solution of the equation £ +mY +nY? =0 but a # 0
because £ # 0. Of course, it is also a solution of Y (£ +mY +nY?) = 0. Since Ay = 0,
« is also a solution of the derivative of the above expression. Therefore, @ must be
a double solution of Y (¢ + mY +nY?) = 0 whichhas Y =0, Y = a and Y = 3 as
solutions. So, the only possibility is a = (3. It is easy to see that the reciprocal is true.

Therefore, we must distinguish two possibilities for o and 3:
Case 1l.a: Consider a # .

In this case, from statement 3 of Theorem 1.45 the differential equation (4.2) has
only two different formal solutions on each point ps and ps. Since we know that Z =0
is one of these solutions, there is only another one for each point.

Taking into account that the relation £+ mY + nY? = 0 is satisfied by a and 8
one has L(p;) = 0, for i = 4,5 and then K(p;) = K(p;) for i = 4,5. Moreover, from

Theorem 1.46 and the fact that p; = 0 for i = 4,5, the cofactor must satisfy K(ps) = 0
or K(ps) = As and K(ps) =0 or K(ps) = As.

Summarizing, we must study the following possibilities:
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We have
ld + kocx = 0,
bd + ko3 =0,

from where kz(av— ) = 0 and k2 = 0 when « # 3. Hence, ¢d = 0 and then d = 0

because ¢ # 0. Therefore, there are not invariant algebraic curves in this case.
2. K(ps) =0, K(ps) = Xs or K(ps) = A1, K(ps) = 0.

Suppose that K(ps) = 0, K(ps) = A5. We have that

td + koo = 0,

Cd + kB + 0+ 2mB + 3032 = 0. (4.3)

We know that o and 8 are solutions of ¢ + mY + nY? = 0, in other words,
¢ =naf and m = —n(a + 3).

Then, from equations (4.3) we obtain (k3 +ng8)(8—a) = 0, from where ko = —nf,
because a # 3.

From this last condition and equations (4.3) we get naf(d—1) =0and sod =1
because afn # 0.

When K (pg) = Mg and K(ps) = 0, we obtain also d = 1 by symmetry.

3. f((p4) = Ay, K(ps) = As.

In this case we have

ld + ks + £ 4 2ma + 3na? =0,
bd 4 kof3 + £+ 2mpB + 3nB? = 0.

As in the former case, we add the relations ¢ = naf and m = —n(a+ ) to these
equations obtaining n(a — 8)(d — 2) = 0. Clearly, d = 2.

Case 1.b: Consider a = f3.

In this case, the singular points at infinity of family (I) are p3 and p4 being the
last a double point (1 : « : 0) where « is the double root of £ +mY +nY? = 0. In
other words m? — 4¢n = 0 from where ¢ = m?/(4n) and o = —m/(2n). Recall that p3
is the logarithmic singular point already analyzed.

Family (I) can be written now in the form

1
izém—yﬁ-g(mx—FQny)Q, Y=z, (4.4)

where we can always take n = 1/2 by using the scaling of variables X = 2nz, Y = 2ny.

DX(IM):(S ﬁ),

with A = 14+ md +m?2. In function of the value we distinguish two cases.

Now, we have
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1. Suppose that A = 0. In this case p, is a degenerated singular point. The
characteristic polynomial p(t) = 1 — §t + t? associated to DX (p;) has t = —m as
a real root and therefore p; is not a focus. There are not limit cycles in this case
because there are not finite foci.

Moreover, from A = 0 we obtain § = —(1 + m?)/m. Making the change u = ,
w =y + mz and the time rescaling dt = 2mdT we can write family (I) as

v = —2u — 2mv +mo?, v = m?(=2 + v, (4.5)

where the prime denotes derivative with respect to T. We emphasize that the
differential equation of the orbits of system (4.5), i.e., du/dv = {(u,v) is linear.
But its associated first integral H(u,v) involves hypergeometric functions de-
pending of the parameter m. Hence is not easy to analyze from H the existence
of invariant algebraic curves for (4.5).

However, notice that system (4.5) has v = 2 and v = 0 as affine invariant straight
lines. We extend now system (4.5) to CP? by using the homogeneous variables
V W and Z. Due to the changes of variables, the singular points at infinity of
(4.5) become ps = (1 : m : 0) and py = (1 : 0 : 0). Therefore, the projective
invariant straight lines V' =0, V = 2 and Z = 0 have the degenerated singular
point p4 as common point.

Let g(u,v) = 0 be the irreducible invariant algebraic curve of degree d for system
(4.5) which comes from the initial invariant curve f(x,y) = 0 through the made
linear changes of variables. Denote by c(u,v) = ¢ + c1u + cov the cofactor
associated to g = 0. Let G(U,V, Z) = 0 be the projectivization of g = 0. Since
ps is a logarithmic point, we recall that the only solution of (4.5) at ps is Z = 0.
Hence, G = 0 crosses the line at infinity only at ps. Therefore, from Lemma 2.6(i),
the highest order homogeneous degree term of g = 0 must be v¢. In addition,
from Lemma 2.6(ii) we conclude that v must divide (c;u + cov)u — dmv?. Hence
c¢1 = 0 and we get that the cofactor ¢ only depends on v. Since additionally v’
also depends only on v, taking into account (1.3), i.e., ¢’ = cg, it follows that

/ % - / c(v)dT = / e e (4.6)

In short, the irreducible real algebraic curve g = 0 only depends on v and therefore
it is either a real straight line or the product of two complex conjugated straight
lines.

2. Suppose that A # 0. Doing the change of variables

1 1 2
QTZZ(U:‘Fm'U_%UQ) 7y:A<—mu—|—(1+m5)v+T;v2> s
which is a global diffeomorphism on R? (in fact is a bipolinomial transformation),

system (4.4) becomes

. 14 .
u:—v+5u+muv+§v ,v=u.

Therefore, the transformed system belongs to family (I) with ¢ = 0, studied in
[65]. As we have said before, the degree of any invariant algebraic curve is 2 or
3 and there are not algebraic limit cycles.
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Case 2: Consider n =0 and m # 0.

In this case, there is a unique finite singular point p; = (0 : 0 : 1) and there are
three singular points over the line at infinity Z =0: p3 =(1:0:0),ps = (1: —€/m : 0)
and ps = (0:1:0). Around p; and p4 the differential equation can be written in local
coordinates, taking X =1, as

Y = Y —mY?+Z+4+Y?*Z-YZS6,
Z = —Z({+mY —YZ+ Z6).

Around ps and taking Y = 1 we have

X = —mX—UX*>+Z+X%*Z-X2756,
Z = X7%

If DX is the corresponding jacobian matrix, we have

pxem = (L),

¢ 14+02/m2+406
DX(M)(O * /n%+ /m),

with eigenvalues \y = 0 and py = ¢,

DX(P5)=<_(;7I (1)),

with eigenvalues A5 = 0 and us = —m.

By statement 2 of Theorem 1.45, it follows that there is a unique linear branch at the
logarithmic point p3, and by statement 3 of the same theorem, there are two linear
branches at ps and ps.

Let f = 0 be an invariant algebraic curve for family (I) of degree d with cofactor
k(z,y) = ko+ki1x+koy. The cofactor of the projectivized curve at the local chart of p3
and py is given by K1(1,Y, Z) = koZ + k1 + koY —dL(1,Y, Z) and at the local chart of
ps, by Ko(X,1,2) = koZ + k1 X 4+ ky —dM(X,1, Z). Since Z = 0 is the only invariant
curve through ps, from (1.3) it follows K;(p3) = 0 from where k; = df. On the other
hand, Z = 0 is one of the invariant curves through ps and ps, and from Theorem 1.46
we have either Ky(ps) = 0 or f(g(p4) = /{ and f(g(ps) =0 or [~(2(p5) = —m. Then, we
obtain ks = dm or ks = (d — 1)m and ko = 0 or ko = —m, respectively. Taking into
account that m # 0, the possibilities for the degree of f are d =0 or d = 1.

Case 3: Consider n =m = 0.

In this case, after changing t — —t, family (I) reduces to & =y — F(z), y = —¢g(x)
with F(z) = éx + f2? and g(z) = z. Hence it is a Liénard system written in the
called Liénard plane. Moreover, taking v = x, v = y — F(x) it can be written as
a quadratic Liénard system with linear damping: @ = v, v = —f(u)v — g(u). Here
f(z) = dF(z)/dz. Since deg f = degg = 1, for § # 0, g is not a constant multiple
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of f we can apply Odani’s results [40] concluding the non existence of any invariant
algebraic curve.

If additionally § = 0, then family (I) writes as
b= —y+lz? g=u, (4.7)

and possesses the Darboux first integral H(z,y) = h(z,y) exp(—20y) with h(z,y) =
—1 — 20y + 2¢%2? as an invariant parabola.

We will show now, that this parabola is the only irreducible invariant algebraic
curve of system 4.7. We recall that for any invariant algebraic curve f = 0 of degree d
with cofactor k = ko + kix + koy we get ky = ¢d since p3 = (1 : 0: 0) is a logarithmic
singular point. Also, the origin p; = (0: 0 : 1) is a weak focus which can not belong to
an algebraic curve. So, k(p1) = 0. and then kg = 0. Finally, the projectivized system
of 4.7 written in local coordinates around py = (0: 1:0) is

X = Z—-(X?’Y+X?%Z,
Z = Z(Z—1X?).

Clearly, ps is a nilpotent singular point. It can be checked that the cofactor in this
coordinates K(X,1,2Z) = 0dX + koY —dM(X,1,Z) = d({ — 1)X + koY must satisfy

K (ps) =0, from where ko = 0.

Summarizing, the cofactor of any invariant algebraic curve of degree d k(z,y) =
{dzx. The existence of two different invariant algebraic curves of degrees d; and ds with
their respective cofactors implies the existence of a rational first integral. But it is well
known, see Poincaré [44] that such first integral can not coexist with a logarithmic
singular point.

Therefore the only invariant algebraic curve of the system is the parabola h(z,y) =

0. i

Relative to the existence of algebraic limit cycles, the following result follows taking
into account the proof of Theorem 4.1.

Corollary 4.2. There are not algebraic limit cycles in family (I).

Proof. As we have seen, the real invariant algebraic curves for family (I) have at most
degree 3, and in some cases the existence of algebraic limit cycles has been discounted
along the proof. Moreover, it is well known that a quadratic system cannot have cubic
algebraic limit cycles. Hence, the only possibility for algebraic limit cycles are conics.

On the other hand, any invariant algebraic curve must intersect the line at infinity
in at least one of the singular points. In all the non discounted cases described in the
proof of Theorem 4.1 except perhaps in in Case 1.a, all the infinite singular points
are real, then the invariant conic cannot have real ovals contained in the affine plane.
Therefore, there are not algebraic limit cycles for family (I).

In Case 1.a, the singular points p; and p5 may be complex conjugated. As we have
seen, if there exists an invariant algebraic curve f = 0 it must have degree 2 and must
not contain the singular points p; and po. Let it’s cofactor be k(x,y) = ko + k1 + kay;
it follows k(p;) =0, ¢ = 1,2 and therefore ky = ko = 0. Moreover, we recall that p3 is
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a logarithmic singular point what brings us to an specific expression for the cofactor:
k(z,y) = 2¢x. Finally, imposing X' f = kf it follows § = 0 which excludes de existence
of limit cycles. [ |



Chapter 5

Nested Configuration of
Algebraic Limit Cycles in
Quadratic Systems

This chapter deals with algebraic limit cycles of planar polynomial differential systems
of degree two. More concretely, we show among other facts that a quadratic vector field
can not possess two non nested algebraic limit cycles contained in different irreducible
invariant algebraic curves.

5.1 Introduction and statement of the results

We will concentrate our study in invariant algebraic curves satisfying (1.3), containing
ovals which are limit cycles for a quadratic systems (1.6).

Differential systems and limit cycles of degree 4 presented in chapter 2 have been
studied by many mathematicians later. When the algebraic limit cycles of degree 4
where known, the next question was the uniqueness, that is, the fact that when a
differential equation has one of the known algebraic limit cycle there are not more
limit cycles for the system; this question is solved by Chavarriga, Giacomini and Llibre
[7]. In such paper is proved the following result involving projective notation, which
provides sufficient conditions i order to have a quadratic system with all its limit cycles
algebraic.

Theorem 5.1. (Chavarriga, Giacomini & Llibre) Let f(x,y) = 0 be a real in-
variant algebraic curve of degree great or equal than two of a real quadratic system
(1.6). Let k be the cofactor of f = 0. Suppose that there are two points py,ps € CP?
such that L(p;) = M(p;) = K(p;) = 0 for i = 1,2, where L = Z?P(X/Z,Y/Z),
M = Z?Q(X/Z,Y/)Z) and K = Zk(X/Z,Y/Z). Then all the limit cycles of (1.6) must
be algebraic and contained into f(x,y) = 0.

In a work due to Llibre and Rodriguez [37] is proved that any configuration of
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limit cycles is possible using algebraic limit cycles, what gives extra importance to the
study of algebraic limit cycles.

In a recent work due to Christopher, Llibre and Swirszes [16] two families of
quadratic systems with an algebraic limit cycle of degrees 5 and 6, respectively, are
given. These two families are constructed by means of a birrational transformation of
system (d) given in Theorem 2.1. Moreover, they prove that there is also a birrational
transformation which converts Yablonskii system into the system found by Ch’in Yuan-
shiin. More recently, Chavarriga, Giacomini and Grau [6] have proved that none of the
quadratic systems with known algebraic limit cycles have a liouvillian first integral and
that these systems have only one invariant algebraic curve when the limit cycle exists.
Moreover, Giacomini and Grau [30] show the hyperbolicity of these limit cycles.

Summarizing, as far we know, it seems as if the uniqueness of the invariant al-
gebraic curves containing algebraic limit cycles was unavoidable, and also perhaps
the uniqueness of the algebraic limit cycles itself. Concretely, the open question that
we think about is the following one: Can a quadratic system possess more than one
algebraic limit cycle?

Of course, if system (1.6) has more than one limit cycle, then they can be dis-
tributed in many different ways. Assuming system (1.6) possesses two algebraic limit
cycles v; with ¢ = 1, 2, two algebraically differentiated situations are presented. Either
the two limit cycles are contained in a unique irreducible invariant algebraic curve or
there are two different irreducible invariant algebraic curves f;(x,y) =0 with i = 1,2,
such that each one of them contains only one limit cycle. In this work we will concen-
trate on the second case. But one still has two cases with different topology respect
to the configuration of limit cycles: either the two algebraic limit cycles are nested or
not. The main result of this chapter is the following one.

Theorem 5.2. A quadratic system (1.6) can not possess two non-nested algebraic limit
cycles contained in different irreducible invariant algebraic curves.

It is well known that in a given quadratic system at most two singularities are
surrounded by limit cycles and that these singularities necessarily are foci. We say
that limit cycles of system (1.6) have (p, ¢)-distribution if it possesses p nested limit
cycles surrounding one focus and ¢ nested limit cycles surrounding another different
focus. In [41], Z. Pingguang proves that limit cycles of a quadratic system with two
foci must be (1,4)-distribution (i =0,1,...).

Corollary 5.3. If a quadratic system (1.6) with two foci possesses r limit cycles
Cy,...,C. (r > 1) surrounding the same focus and at least one of them is algebraic,
i.e., O1,...,Cs (1 < s < 1) are algebraic, then there exists another limit cycle C*
surrounding the other focus. Moreover, either

(i) C* is a non-algebraic limit cycle or,

(ii) O* is an algebraic limit cycle and the algebraic limit cycles C; and C* are con-
tained in the same irreducible invariant algebraic curve for some i =1,...,s.

In the next section we present the necessary concepts on quadratic systems, projec-
tive differential equations, formal differential equations and some known results. Next,
we prove some technical results. We get the proof of Theorem 5.2 in the last section.
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5.2 Preliminary results

We make some considerations on the arguments used along the proofs in order to to
facilitate the understanding:

e It is clear from (1.3) that, given an invariant algebraic curve f = 0 with cofactor
k, then all the finite critical points of a polynomial differential system (1.6) verify
either f(xo,yo) = 0 or k(zg,yo) = 0 or both above conditions. Moreover, since
ik € Rlz,y], if (xo,y0) is a complex critical point of (1.6) with f(xo,y0) # 0
then k(zo,y0) = k(Zo, Jo) = 0.

e Said this, Theorem 1.46 and Lemma 1.47 give the possible values of the cofactor
k of an invariant algebraic curve f = 0 of system (1.6) at a nondegenerate or
degenerate elementary critical point (xg,yo) € C? whose ratio of eigenvalues
does not equal one. Of course, we can extend system (1.6) to CP2. Hence, if
po = (Xo : Yo : Zp) is a singular point of the associated projective equation we
can take local coordinates at this point and Theorem 1.46 can be applied. We
notice that, for an infinite critical point pg = (Xo : Yo : 0) we will obtain by
the above procedure conditions on the degree n of the curve f = 0 because the
coefficients of the cofactor also depend on n.

e From now on, we will write k(p) = divX(p) in case that k(p) = A + .

We will study the algebraic limit cycles of system (1.6) under the next assumption:

Hypothesis A: Let us suppose that system (1.6) has two non nested algebraic
limit cycles «y; with ¢ = 1,2. We will assume moreover that system (1.6) has two dif-
ferent irreducible real invariant algebraic curves f;(z,y) = 0 with ¢ = 1,2, such that

v CH{(x,y) € R?: fi(x,y) = 0}.

Since system (1.6) is a quadratic system, a consequence of hypothesis A is the
existence of two different critical points of nondegenerate focus type p; with ¢ = 1,2,
such that p; € Int(v;), as is stated in Theorem 1.23.

Lemma 5.4. Under hypothesis A the next holds.

(1) filp1)filp2) =0 fori=1,2.
(i) fE(pj) + f2(p;) # 0 for j =1,2.

Proof. Let k;(x,y) be the cofactor of the invariant algebraic curve f;(z,y) = 0. Let us
assume the contrary of statement (i), that is, suppose that f;(p1)fi(p2) # 0 for some
i € {1,2}. Then, it follows k;(p;) = 0 for j = 1,2 and, since deg f; > 1, by Theorem
5.1 all the algebraic limit cycles of the quadratic system must be contained in either
curve f1(x,y) =0 or fa(x,y) = 0. Of course, this is in contradiction with hypothesis
A and so either p; or ps must belong to the zero level set of f; for i = 1,2 proving thus
statement (i).
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In order to prove statement (ii) we suppose the contrary, i.e., fi(p;) = fao(p;) =0
for some j € {1,2}. Since p, is a nondegenerate focus, its associated eigenvalues A and
p are complex numbers a =+ i verifying A/u ¢ Q. We can translate the focus p; to
the origin and make a complex linear change of coordinates in order to bring system
(1.6) to the form & = Az +---, §y = py + ---. After, applying Theorem 1.45(1.i), we
conclude that there are exactly two formal solutions at the origin. Therefore, going
back through the change of variables, there are exactly two formal solutions at p;:
Fi(z,y) = Ti(z,y) + -, Fy(z,y) = Fi(x,y) = T1(x,y) + - - -, being T} the tangent of
F at p; and where the over bar denotes complex conjugation operation. Finally, since
fi(x,y) = 0 are real invariant algebraic curves, we conclude that f; = fo = F1F} in
contradiction with hypothesis A. |

Lemma 5.5. Under hypothesis A, either

divX(p;), i=j. o
kz(pj) = { 0, (pj) Z#i fOT ) = 152
or

0 =],

ki(pj)z{ divA(p), i T ITLE

Proof. From Lemma 5.4 it follows that one focus belongs to a curve and the other one
belongs to the other curve of hypothesis A. So, the cofactor must be zero over at least
one of the foci. On the other hand, if any cofactor vanishes at more that one foci, from
Theorem 5.1 we get a contradiction with hypothesis A. In short, any cofactor is zero
exactly at one focus. The value of the cofactor at the other focus is given by Lemma
1.47. [ |

Anyway, respect to the configuration of the finite critical points of system (1.6),
the next possibilities are presented. Two foci p; and po exist always and: (a) There
are not more finite critical points; (b) There is exactly one more finite critical point
p3 which has multiplicity one; (¢) The rest of finite critical points p3 and p, are real.
Here it is possible ps = ps4 ; (d) The rest of finite critical points p3 and p4 have complex
conjugate coordinates.

We will see that the first two former cases (a) and (b) are in contradiction with
hypothesis A. First we present this preliminary result.

Lemma 5.6. Let us assume that quadratic system (1.6) has a common factor in their
highest order terms, i.e., P, = ALy and Q2 = ALy where A, Ly and Lo are linear
polynomials. Then system (1.6) does not satisfy hypothesis A.

Proof. By linear change of variables we consider the case A = z without lost of
generality. Then the point ¢; = (0 : 1 : 0) € CP? is an singular point of (1.6) at
infinity.

Assume the contrary of the thesis, i.e., hypothesis A is verified. Let F;(X,Y,Z) =0
and K;(X,Y, Z) be the projectivizations of the invariant algebraic curves f;(z,y) =0
and its associated cofactors for ¢ = 1,2, respectively.

We take local coordinates in a neighborhood of the singular point ¢; and denote
by F;(X,1,Z) = 0 and K;(X,1,Z7) the transformed invariant curves and cofactors in



5.2 Preliminary results 85

such coordinates respectively, see the preliminaries. Since by definition K; (X,1,2) =
Ki(X,1,Z) —deg fM(X,1,Z) with M(X,Y,Z) = Z?Q(X/Z,Y/Z) and M(q;) = 0 it
follows

Ki(q1) = Ki(q) - (5.1)
Additionally, it is easy to see that the coefficients of the linear part of the system in
local coordinates at ¢; are given by

(B0 nOD Y

This means that g; has at least one associated eigenvalue different from zero. If both
eigenvalues vanish then K;(g;) = 0 for i = 1,2. Otherwise, if exactly one eigenvalue is
zero then, from statement 3 of Seidenberg’s Theorem 1.45, it follows that there are two
formal solutions through ¢;. Since one of them is the line at infinity Z = 0, it is clear
that Fy(g1) # 0 or F»(g1) # 0. This implies that K (q;) = 0 or Ky(q1) = 0 respectively.
Hence, taking into account (5.1) we get K;(g1) = 0 (re-indexing if necessary).

We know that the affine cofactor ki(x,y) vanishes also at one of the two foci by
Lemma 5.5. Hence K1 (X,Y, Z) vanishes at such focus, too. Therefore, we are under
hypothesis of Theorem 5.1 and we get a contradiction with hypothesis A. [ |

Proposition 5.7. Let us assume that quadratic system (1.6) has two real finite differ-
ent critical points p1 and ps of nondegenerate focus type. If either there are not more
finite critical points or there is exactly one more finite critical point ps with multiplicity
one then system (1.6) does not satisfy hypothesis A.

Proof. We consider the homogeneous polynomials L(X,Y, Z) = Z2P(X/Z,Y/Z) and
M(X,Y,Z2) = Z?°Q(X/Z,Y/Z). We denote I,(L, M) the intersection index of L = 0
and M = 0 at the point p € CP2, see the preliminaries of this work. From Bézout
Theorem it follows Zp I,(L,M) = 4. Since p; and py are nondegenerate foci, its
associated eigenvalues are different from zero and then p; and ps have multiplicity one
as common roots of P(x,y) and Q(z,y). Hence I, (L, M) =1 for i = 1,2. We split
the study of each situation described in the proposition.

e If there are not more finite critical points of system (1.6) then there are points
q € {Z =0} n{L = 0} N{M = 0} such that > I, (L, M) = 2. Therefore
Q2(z,y) = aPy(z,y) with € R and from Lemma 5.6 system (1.6) does not
satisfy hypothesis A.

e If there is exactly one more finite critical point ps of system (1.6) with multiplicity
one then Z?Zl I,,(L, M) = 3. So there is exactly one point ¢ € {Z =0} N{L =
0} N {M = 0} such that I,(L, M) = 1. Therefore P, and Q2 have exactly one
real common divisor of degree 1. Hence, applying Lemma 5.6, system (1.6) does
not verify hypothesis A. |

The next two propositions explore the possibilities of the above cases (¢) and (d).
In such study we shall consider the real straight line L(x,y) := pki(x,y) + gka2(z,y) —
divX(z,y) = 0, with p,q € R. The main idea in what follows consists on to look for
three finite critical points of system (1.6) such that L vanishes at them. Of course such
critical points are not in any straight line because in this case P(x,y) and Q(z,y) are
not coprime. So the only possibility is L(z,y) = 0 and therefore, applying Darboux’s
integrability theory we conclude that f7 fi is an inverse integrating factor of the system.
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Proposition 5.8. Let us assume that quadratic system (1.6) verifies hypothesis A and
moreover the other finite critical points ps and py are real. Then f1(x,y)f2(x,y) is an
inverse integrating factor of the system.

Proof. We will start with two different cases which are either ps # py or ps = p4.

If p3 # p4 then each one have multiplicity one. Since p; and po are foci of the
quadratic system, using Theorem 1.22, we can suppose that ps is a topological saddle.
Hence the quotient of the eigenvalues associated to ps is negative. So following Sei-
denberg’s results and more concretely Theorem 1.45(1.1), there are exactly two formal
solutions (linear branch) with different tangent at ps.

If f1(p3) # 0 or fa(ps) # 0, then k1 (p3) = 0 or k2(p3) = 0. Then applying Theorem
5.1 and Lemma 5.5 we have that all the limit cycles are contained in f; = 0 or fo =0,
respectively. This is a contradiction with hypothesis A. Therefore, the only possibility
consists in that the invariant algebraic curve f; = 0 contains exactly one branch at ps
and fo = 0 the other one.

Hence, translating the critical point p3 to the origin, and making a linear change
of coordinates we will continue assuming fi(xz,y) = x +---, fo(z,y) = y+ --- and
the system becomes & = Ax + ---, ¥y = py + ---, where A and p are the eigenvalues
associated to p3. Now, equating the same powers of x and y in both members of
the equations X f; = k; f; for ¢ = 1,2, we have that ki (p3) = X and ko(p3) = u. Since
divX (ps) = A+p we have in short k1 (p3) +k2(p3) —divX (ps) = 0. As we also knew that
k1(pi) + ka(pi) — divX(p;) = 0 for ¢ = 1,2, this implies k1 (z,y) + ka2(z,y) = divX(x,y)
because k1, ke and divX’ are polynomials of degree at most one. Finally, by the Dar-
boux’s integrability theory we conclude that fi(z,y)f2(x,y) is an inverse integrating
factor of system (1.6).

In the second option, i.e. when ps = p4, we have that ps is a critical point of
system (1.6) with multiplicity two and therefore either ps is a nilpotent singular point
or exactly one of the eigenvalues associated to p3 is null. Now we put ps at the origin
and in the first case the quadratic system can be written after a linear change of
coordinates as & =y +---, y = ---. From (1.3) at lower degree it follows k;(p3) = 0
for ¢ = 1,2. Taking into account Lemma 5.5 and Theorem 5.1 we get that f; = 0 and
f2 = 0 contain each one all the limit cycles. This is a contradiction because f; # fo
and are irreducible.

We can assume that exactly one eigenvalue associated to ps (now at the origin) is
equal zero. Then we can write the system as * = Ax +--- , y =--- . By statement 3
of Seidenberg Theorem 1.45, it follows that the above system has exactly two formal
solutions at the origin F;(z,y) = 0 with ¢ = 1,2 of the form Fi(x,y) =+ --- and
Fy(x,y) = y + ---. The following possibilities appear: either f;(ps) # 0 for some
i € {1,2} and so k;(p3) = 0 for such ¢ or fi(p3) = 0 and fa(ps) = 0. The first case
leads to a contradiction with hypothesis A because we have two critical points (ps and
one focus) in the straight line k;(x,y) = 0 for some ¢ and we can apply Theorem 5.1.
In the second option, when f;(p3) = 0 for ¢ = 1,2, it follows that f; = 0 contains
exactly one branch and fo = 0 the other one. Moreover, from Theorem 1.46 we have
either k1 (p3) = 0 or ka(p3) = 0. Again, using Theorem 5.1 we get a contradiction with
hypothesis A. |
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Proposition 5.9. Let us assume that quadratic system (1.6) verifies hypothesis A and
moreover the other finite critical points ps and py are not real. Then fi(x,y)fo(x,y)
is an inverse integrating factor of the system.

Proof. Of course, since system (1.6) is real, if p3 = (z3,y3) and ps = (z4,y4) are not
real then its coordinates are complex conjugates, i.e., x4 = T3 and y4 = y3. This will
be denoted by ps = p3. Moreover, the eigenvalues associated to each point verify the
same property. So if A and u are the eigenvalues associated to ps then \ and ji are the
eigenvalues associated to py.

Let us suppose that ps (and therefore py) is not a resonant node. This means that
A € QF. In this case we may simply repeat verbatim the first part in the proof of
Proposition 5.8 when we apply Theorem 1.45(1.i) to conclude that f1(z,y)f2(x,y) is
an inverse integrating factor of system (1.6).

We continue supposing that p3 and py = p3 are resonant nodes. Hence the ratio of
the eigenvalues \ and p associated to ps is a positive rational number and are related
by means of y = kA with x € QT. Of course the eigenvalues A and ji associated to py
verify fi = kA. Moreover divX(ps) = (k + 1)\ and divX(ps) = (k + 1)\

If fi(ps) = 0 with ¢« = 1,2 then, applying Theorem 1.46 we have that k;(ps) =
rip+(s;—r;) A for i = 1,2 where s;,r; € Nand r; < s;. Clearly this implies k;(p3) = a; A
where o; = r;5 + s; — r; € QT. Furthermore since k; € R[z,y] and py = p3 then
ki(p4) = Oéi;\ for i = 1, 2.

Now let us consider the real straight line S(z,y) := pk1(z,y)+gke(z, y)—divX (x,y) =
0, with p,q € R. We have

S(p3) = [par +qaz — (k + 1)A, (5.2)

where A\ # 0. We recall here that, since ps = p3 and S € Rz, y], if S(p3) = 0 then
S(pa) = 0.

If we are in Case 1 of Lemma 5.5, then k;(p;) = divX(p;) and k;(p;) = 0 for i # j
and 7,7 € {1,2}. This implies

S(p1) = (p— DdivX(p1) , S(p2) = (¢ — 1)divX(p2) . (5.3)
First of all we claim that none of the foci p; and ps can be weak foci because in this

case divX(p;) = 0 for some i € {1,2} and so either k1(p;) = 0for i = 1,2 or ka(p;) =0
for i = 1,2 in contradiction with hypothesis A by Theorem 5.1.

So we continue the proof assuming divX(p;) # 0 for ¢« = 1,2. If we impose
S(p1) = 0 then p = 1 from the first equation (5.3). Moreover, from (5.2) we can take
qg=(k+1—a1)/az so that S(ps) = S(ps) = 0. Hence S(p;) =0 for i = 1,3,4 and
therefore S(z,y) = 0. But now, from the second equation of (5.3) we have that, in
fact, ¢ = 1. So, quadratic system (1.6) admits the polynomial inverse integrating factor

fi(z,y) f2(z, ).
If Case 2 of Lemma 5.5 is verified then the proof is similar. [ |

Proposition 5.10. Under hypothesis A, the curves f1 =0 and fo = 0 are the unique
invariant algebraic curves of system (1.6).
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Proof. We suppose that another invariant algebraic curve f3 = 0 irreducible in Rz, y]
exists with X f3 = k3f3 for some polynomial k3. Assuming hypothesis A, f3 must
have degree greater than one because it is well known that quadratic systems with an
invariant straight line have at most one limit cycle.

As we have proved in Lemma 5.4, the foci p;, i = 1,2 are contained in the curves
fi =0, i=1,2 (each focus in one curve). Then, from Lemma 1.47, f5(p;) # 0 and so
ks(p;) =0, 4 = 1,2. Now, applying Theorem 5.1, it follows that all the limit cycles of
system (1.6) must be contained in f3 = 0, against hypothesis A. |

5.3 Proof of the main result

We will see that hypothesis A can not be satisfied for system (1.6). Assuming the con-
trary, i.e. hypothesis A is fulfilled, we have shown that system (1.6) has the polynomial
inverse integrating factor V = f; fo. Hence, it must have a Darboux first integral, see
Corollary 1.18.

Since f; = 0 and fo = 0 are real curves and, from Proposition 5.10, they are the
unique invariant algebraic curves of system (1.6) it follows that

H = f32 [exp ( hnllﬂm [exp ( h52>r2,
1 2

for some \;, u; € C, n; € N\ {0}, h; € C[z,y], where h; and f; are coprime polynomials
fori=1,2.

Following the ideas of [9], we compute

hy h
log H = Ajlog fi + Aalog fo + p1—r s + p2 32
2

which is also a first integral for system (1.6) whose partial derivatives are rational
functions.

The inverse integrating factor V related to the first integral log H is given by

P Q

V:— = .
%logH %logH

It must be verified V =V (modulus a multiplicative constant). Otherwise, H=Y
a rational first integral and excludes the existence of limit cycles. In other words

flfz(% logH =Q , (5.4)

must be verified. Moreover, it can be checked that ~log H = % where A = f] n1+2 fa nz+2
and

n n 6 mnq no a
@ = Al e e 08

p1fify2t? <f18h1 —nihy %ﬁ) + pa f T2 fy (f Ohs _ n2h2%f2)
x
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Relation (5.4) becomes ® = Qff** fi**, from where f{"*!fr2*! divides ®.

Therefore, f; must divide —nlhl% and then hy = Qf; for certain polynomial Q €

R[z,y]. Thus, h; and f; are not coprime, which is a contradiction. |
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