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Preface

The resolution of differential equations began, in certain sense, as soon as the rela-
tion among the procedures of differentiation and integration was known in the XVII
century by Newton and Leibnitz. Before Newton, the infinity was only thought in
potential but he establishes its actualization writing functions as series expansions. In
Philosophiæ naturalis principia mathematica (1687), he associated the infinite series
with the change rate of two magnitudes flowing continuously in a geometric way. Ten
years after Newton’s discoveries, Leibnitz obtains the same results but using differential
notation.

The procedures of differentiation were known as calculus differentialis and the
integration ones as calculus summatorius and later calculus integralis and were used
to compute the slope of a curve as a quotient of infinitesimal differences and the area
under the curve as a summation of rectangles with infinitesimal base, respectively.

After Newton and Leibnitz, important mathematicians like Jacques Bernoulli and
John Bernoulli followed the previous works and introduced the first differential equa-
tions, properly speaking. Other important differential equations were solved in the
following years by Euler, D’Alambert, Clairaut, Riccati, Legendre, and so on.

Differential equations from a geometric and qualitative point of view were first
studied by Poincaré centering his attention to the trajectories of a mobile point. In
”Sur les courbes définies par les équations différentielles” (1886), Poincaré studies the
differential equations, singular points and also closed trajectories:

”. . . au sujet des trajectoires qui s’approchent assez près d’une
trajectoire fermée, une théorie tout à fait analogue à celle que
nous avons faite pour les trajectoires qui s’approchent assez près
d’un point singulier; de sorte que ces courbes fermées jouent dans
une certaine mesure le même rôle que les points singuliers.”

The future idea and definition of a limit cycle was born. As he says, in certain
cases

”. . . le point mobile se rapprocherait asymptotiquement de la tra-
jectoire fermée.”

Poincaré’s work is so important that other mathematicians have been unknown,
like Darboux, who in his ”Mémoire sur les équations différentielles algébriques du
premier ordre et du premier degré” (1878) studied algebraic solutions of differential
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equations in the complex projective plane. In the last years, his work has been studied
again and has taken importance. For example, the mathematicians have kept in mind
the way he considered projective differential equations and the relationship he estab-
lished between the existence of algebraic solutions, and the existence of first integrals
(integrale generale) and how to construct them:

”Si l’on a m(m+1)/2− q = p solutions particulières representant
des courbes ne passant pas par q des points singuliers, u1, . . . , up

dèsignant ces solutions, l’inteégrale générale sera de la forme

uα1
1 uα2

2 · · ·uαp
p = C.”

With the XIX century disappear those great mathematicians who was able to
concentrate all mathematic knowledge and its applications. In the next generation,
a tendency to the specialization is manifested. This fact made Cantor the driver of
the necessity of an International Congress of Mathematicians (ICM): The first was
celebrated in Zurich (1897). The aim of these congresses was to establish meeting
points for the communication and the group discussion. In the second ICM, celebrated
in Paris (1900), Hilbert proposed a list of twenty-three problems to be solved along the
XX century. One of the most difficult problems suggested by Hilbert is related with
Poincaré limit cycles:

”Im Anshuß. . . die Frage nach der Maximalzahl und Lage der
Poincaréschen Grenzzyklen für eine Differentialgleichung erster
Ordnung und erster Grades von der Form:

dy

dx
=

Y

X

wo X, Y ganze rationale Funktionen n-ten Grades x, y sind.”

This problem is known in the literature as 16th Hilbert Problem and involves two
subproblems: relative position and number of limit cycles. Smale, in Mathematical
problems for the next century (1998), reformulates the second part of Hilbert problem
as follows:

Consider the differential equation in R2

dx

dt
= P (x, y),

dy

dy
= Q(x, y),

where P and Q are polynomials. Is there a bound k on the number
of limit cycles of the form K ≤ dq where d is the maximum of the
degrees of P and Q, and q is a universal constant?

It is well known that there are not limit cycles for linear systems but Hilbert
Problem is unsolved even for quadratic systems. This fact, brings to a systematic study
of quadratic systems which can have limit cycles and there can be found a Russian
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classification and a Chinese classification. According to the last one, quadratic systems
that can have limit cycles are classified in the following three families

ẋ = δx− y + `x2 + mxy + ny2 , ẏ = x(1 + ax + by) ,

according to: family (I) if a = b = 0; family (II) if a 6= 0 and b = 0; family (III) if
b 6= 0.

The difficulty of such problem made necessary a weakness of the hypothesis and
the most considered limit cycles are those that are included in algebraic curves. For
this reason, Darboux theory emerges. Of course, the study of the degree of algebraic
limit cycles is directly related to the study of the degree of invariant algebraic curves.
To find an upper bound of the last one is known as Poincaré Problem.

This work is essentially dedicated to the existence, and therefore non-existence, of
algebraic limit cycles. Thus, in the first chapter are given the definitions and some
preliminary results that we need along the work. There are also some new results and
its proof. In the following chapter we consider invariant algebraic curves of degree 4,
and we study when these curves have an oval which is a limit cycle of a quadratic
system. We find all the algebraic limit cycles of degree 4 for quadratic systems; the
results of this chapter belong to

J. Chavarriga, J. Llibre and J. Sorolla, Algebraic limit cycles for quadratic
systems, J. of Differential Equations 200 (2004), 206-244.

In the next two chapters, we study the existence of algebraic limit cycles from
a different point of view: our starting object is a given quadratic system. Thus, we
consider first the systems in the three families of the Chinese classification and using
non-algebraic techniques we obtain results on existence which belong to

I.A. Garćıa, J. Giné and J. Sorolla, On the existence of polynomial inverse
integrating factors in quadratic systems with limit cycles, to appear in Dynamics of
Continuous, Discrete and Impulsive Systems.

Finally, we conclude algebraically that there are not algebraic limit cycles in the
first family; as is also showed in

J. Chavarriga, I.A. Garćıa and J. Sorolla, Resolution of the Poincaré Problem
and Nonexistence of Algebraic Limit Cycles in Family (I) of Chinese Classification,
Chaos, Solitons & Fractals 24, 2 (2005), 491–499.

In the last chapter, we prove among other facts that if two algebraic limit cycles
belonging to different invariant algebraic curves coexist in the phase portrait, then they
must be nested. The main body of this chapter belongs to

J. Chavarriga, I.A. Garćıa and J. Sorolla, Non-nested configuration of alge-
braic limit cycles in quadratic systems, Submitted to J. of Differential Equations.

Some other results which are not included in this memory can be found in the
paper

J. Chavarriga, J. Giné and J. Sorolla, Analytical integrability of a class of nilpo-
tent cubic systems, To appear in Mathematics and computers in simulation.
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Chapter 1

Introduction to planar
differential systems

In this chapter we give a brief summary on differential equations and algebraic curves.
We make a description of the most important questions related to algebraic curves in
CP 2, such as multiple points, intersection index, genus and so on. We also introduce
formal differential equations, formal solutions and how to involve them in the study of
differential equations.

1.1 Planar differential systems and solution curves

We consider planar polynomial differential systems of the form

ẋ = P (x, y) =
m∑

i=0

Pi(x, y) , ẏ = Q(x, y) =
m∑

i=0

Qi(x, y) , (1.1)

where the dot stands for the derivative with respect to the independent variable t.
Here P , Q ∈ R[x, y] are coprime polynomials such that max{deg P, deg Q} = m, and
Pi and Qi are the homogeneous components of degree i. As usual, R[x, y] denotes the
ring of the real polynomials in two variables.

In the literature equivalent mathematical objects to refer to this planar differential
systems appear: as a vector field

X = P
∂

∂x
+ Q

∂

∂y
,

as a differential form
ω = Qdx− Pdy,

and also, some authors use a more geometric notation and they think a planar differ-
ential systems as a foliation F of codimension 1, because a phase portrait of a planar
differential system consists on the plane formed (foliated) by 1-dimensional differential
varieties.
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6 Introduction to planar differential systems

Definition 1.1. A flow in C2 along a time t ∈ R is defined as

φ : R× C2 −→ C2

(t, Ω) 7−→ φt(Ω)

such that

(i) φ0(Ω) = Ω,

(ii) φt (φs(Ω)) = φt+s(Ω),

for all Ω in C2 and t, s in R.

System (1.1) defines a flow in C2, φ(x, y). It is known that this flow is a smooth
function defined for all (x, y) in some neighborhood of the initial position and initial
time. Also, it satisfies (1.1) in the sense that

d

dt

(
φt(x, y)

)
t=τ

= X
(
φτ (x, y)

)
.

Definition 1.2. A solution of (1.1) through a point (x0, y0) ∈ C2 is defined as
(x(y), y(t)) = {φt(x0, y0), t ∈ R}.

The set of all the solutions is called phase portrait.

To found the solution of (??), when an initial condition y(x0) = y0 is given, is
known as Cauchy Problem. The following theorem is well known:

Theorem 1.3. (Existence and uniqueness) Consider equation dy/dx = F (x, y)
with initial condition y(x0) = y0. Then,

(i) If F is a continuous function in a neighborhood of (x0, y0) there exist a solution
y(x) of (??) through this point that is defined in (x0−∆, x0+∆) for some ∆ > 0.

(ii) If F is also Lipschitz with respect to the second variable, then the solution is
unique.

Definition 1.4. The α − limit set (resp. ω − limit) of a point (x0, y0) through
φt is defined as α∞ = {(x, y) ∈ C2|φtn(x0, y0) → (x, y) for some tn → −∞} (resp.
ω∞ = {(x, y) ∈ C2|φtn(x0, y0) → (x, y) for some tn →∞}).

For flows in the plane, Bendixon-Poincaré Theorem is an important result from a
topological point of view, that can not be generalized to higher dimensions. According
to this theorem, there are three types of limit sets: singular points, closed periodic
orbits, and the union of singular points and trajectories connecting them. The second
ones are limit cycles, and the latter ones are referred as heteroclinic orbits when they
connect distinct points and homoclinic orbits when they connect a point to itself. The
next subsections are dedicated to the those objects which are invariant for the flow of a
differential system; we are specially interested in its relation with limit cycles. Singular
points are defined in the next section.
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1.1.1 Singular points

Definition 1.5. A singular point or (critical point) for system (1.1) is a point (x0, y0)
such that P (x0, y0) = Q(x0, y0) = 0.

A singular point is a particular case of solution, where φt(x0, y0) = (x0, y0) for all
t ∈ R.

We will denote by DX the jacobian matrix associated to vector field X . The
flow of (1.1) in a neighborhood of the singular point (x0, y0) is classified according
to the eigenvalues of the matrix DX (x0, y0). Observe that, as system (1.1) is real, if
(x0, y0) is a complex singular point, then its conjugated (x̄0, ȳ0) is also a singular point.
Moreover, if (x0, y0) is a real singular point of a real system with non-real associated
eigenvalues λ and µ, then µ = λ̄.

Definition 1.6. Let p = (x0, y0) be a singular point of system (1.1). Let λ and µ be
the eigenvalues of DX (p).

(i) If λ = µ = 0, then p is called degenerate. If moreover DX (p) 6≡ 0, we say that p is
a nilpotent point.

(ii) If λµ = 0 but λ2 + µ2 6= 0, then p is called elementary degenerate.

(iii) Otherwise, p is termed non-degenerate.

(a) When DX (p) can be diagonalized, p is

• of focus type (λ = µ̄ ∈ C \ R), a saddle (λµ < 0 for λ, µ ∈ R) or a node
(λµ > 0 for λ, µ ∈ R), if p is a real point.

• a resonant node (λ/µ ∈ Q) or a non-resonant node (λ/µ 6∈ Q), if p is a
complex point.

(b) When DX (p) can not be diagonalized, p is a logarithmic singular point.

In fact, the definition of a center was first given by Poincaré [42]:

Definition 1.7. A singular point O of (1.1) is a center if it possesses a neighborhood
U such that for all p ∈ U \ {O} verifies P 2(p) + Q2(p) 6= 0, and the solution passing
through p is closed, surrounding O.

1.1.2 Invariant curves

Once the flow is defined, take sense the fact that every set in the phase portrait is trans-
formed into another along time. The more interesting sets to understand differential
equations are those which are transformed into itself for all time.

Definition 1.8. A set Ω is said to be invariant for (1.1) if φt(Ω) ⊆ Ω for all t ∈ R,
where φ is the flow defined by (1.1).

Obviously, when the invariant set is a curve we talk about invariant curves. Since
the solutions of planar differential equations are points or 1-dimensional components,
the invariant curves play a very important role in the study of them. Every singular
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point and solution of a differential equation are invariant for the flow but the reciprocal
is not true. An invariant curve may not be a solution of a differential equation but it
is formed by solutions.

The tangents to the trajectories of a planar polynomial differential system are
defined almost everywhere. So, if f(x, y) = 0 is the equation of an invariant curve,
its tangent must coincide with the tangents of the trajectories. In other words, the
gradient to f , ∇f = (∂f

∂x , ∂f
∂y ) and (P, Q) must be orthogonal over the curve f = 0,

that is,

ḟ =
(

P
∂f

∂x
+ Q

∂f

∂y

)

f=0

= 0. (1.2)

An invariant curve f(x, y) = 0 is said to be algebraic and of degree n when f(x, y)
is a polynomial of degree n. Said this,

Definition 1.9. A curve f(x, y) = 0 of degree n is an invariant algebraic curve if there
exists a polynomial k(x, y) of degree at most m− 1 called cofactor such that

P
∂f

∂x
+ Q

∂f

∂y
= kf. (1.3)

In fact, this last definition is a consequence of (1.2) when f = 0 is algebraic.

1.1.3 Exponential factors

Definition 1.10. A function F = exp[g/h] where g and h are polynomials is said to
be an exponential factor if there exists a polynomial k(x, y) of degree at most m − 1
called cofactor such that (1.3) is satisfied for F .

For any exponential factor F = exp[g/h] It is easy to check that h = 0 is an
invariant algebraic curve.

1.1.4 First integrals

Since the differential system is considered with real coefficients, we consider real first
integrals.

Definition 1.11. A function H(x, y) is said to be a strong first integral of system (1.1)
in an open subset U of R2 if H(x, y) is a nonconstant function in U which is constant
on each solution curve

(
x(t), y(t)

) ∈ U of (1.1). We say that H(x, y) is a weak first
integral in an open subset U of R2 \Σ, if it is a nonconstant function which is constant
over each solution curve in U of R2 \ Σ.

A strong first integral is the classical first integral. Notice that system ẋ = x,
ẏ = y in R2 does not have a strong first integral because it would be constant over all
the plane. The function H = xy/(x2 + y2) is a weak first integral where Σ = {(0, 0)},
see [8]. When H exists in U , all the solutions of the differential system in U are known
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since every solution is given by H(x, y) = c, for some c ∈ R. Clearly, if H ∈ C1(U)
verifies

Ḣ =
∂H

∂x
P +

∂H

∂y
Q ≡ 0.

It has been seen that the existence of invariant algebraic curves (real or complex)
forces the real integrability of a real differential system (1.1). This theory is due to
Darboux [21], who studied differential equations in the projective complex plane. In
particular, he studied singular points, algebraic curves and looked for first integrals in
the form H = fλ1

1 · · · fλn
n with λi ∈ C and fi = 0 real or complex invariant algebraic

curves.

Some improvements to Darboux’s theory are known: Jouanoulou [34] in 1979
studies the existence of rational first integrals. A rational first integral is more useful
than a darbouxian one because taking into account it and its inverse, there is a first
integral defined in any place of the plane. In particular, the existence of a rational first
integral excludes the existence of limit cycles. When a differential system possesses a
rational first integral H = h/g, then all the invariant curves can be defined by fc = 0
where fc = h− cg for some constant c ∈ R, and thus they are algebraic.

Prelle and Singer [45] prove that when a polynomial system possesses an elemen-
tary first integral it can be computed using the algebraic invariant curves. Chavar-
riga, Llibre and Sotomayor [12] introduce independent points: (xh, yh), h = 1, . . . , r
are independent points with respect to Rm−1[x, y] if the intersection of the hyper-
plans {(aij)|

∑m−1
i+j=0 xi

hyj
haij = 0}, h = 1, . . . , r is a vectorial subset of dimension

m(m+1)
2 − r > 0. Christopher [13] considers exponential factors F = exp[g/h], which

play an important role in the construction of first integrals. First integrals with expo-
nential factors are called generalized Darboux first integrals.

We summarize the most important results on first integrals of this theory in the
following theorem. We emphasize again the fact that the curves and the exponential
factors are in general complex but the first integral is real if the differential system is
real.

Theorem 1.12. Suppose that (1.1) has degree m and possesses

(a) p invariant algebraic curves fi = 0 with cofactors ki for i = 1, . . . , p.

(b) q exponential factors Fj = exp[gj/hj ] with cofactors Lj for l = 1, . . . , q.

(c) r independent singular points (xh, yh) ∈ R2 such that fi(xh, yh) 6= 0 for i = 1, . . . , p
and hj(xh, yh) 6= 0 for j = 1, . . . , q for any h = 1, . . . , r.

Then,

(i) If there exists λi, µj ∈ C not all zero such that

p∑

i=1

λiki +
q∑

j=1

µjLj = 0,

the function H = fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q is a first integral of system (1.1).
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(ii) If p + q + r ≥ m(m+1)
2 + 1, there exist λi, µj ∈ C not all zero such that

p∑

i=1

λiki +
q∑

j=1

µjLj = 0,

(iii) If p + q + r ≥ m(m+1)
2 + 2, then (1.1) has a rational first integral. In this case,

a rational first integral can be constructed using m(m+1)
2 + 1 invariant algebraic

curves.

Recently, Llibre and Pereira [36] have introduced different notions of multiplicity
for an invariant algebraic curve of a differential system which brings the authors to
improve Darboux theory of integrability summarized in the last theorem.

Definition 1.13. A Liouvillian first integral is a first integral constructed from a
rational function by a finite number of algebraic operations, compositions, exponentials
and integrations.

For a more precise definition see [45].

1.1.5 Integrating factors

Definition 1.14. A function R(x, y) is an integrating factor of system (1.1) in an open
subset U ⊆ R2 if R ∈ C1(U), R 6≡ 0 in U and

∂(RP )
∂x

= −∂(RQ)
∂y

, div(RP, RQ) = 0, or
∂R

∂x
+

∂R

∂y
= −Rdiv(P,Q),

where as usual the divergence of a vector field X = (A,B) is defined as

div(X ) = div(A,B) =
∂A

∂x
+

∂B

∂y
.

The first integral H associated to the integrating factor R is given by

H(x, y) =
∫

R(x, y)P (x, y)dy + h(x), (1.4)

satisfying ∂H
∂x = −RQ.

When a polynomial differential system has an integrating factor R we can make a
time rescaling and the associated 1-form ω = RQdx + RPdy becomes closed.

Following Darboux theory of integrability and improvements, we summarize the
results on integrating factors.

Theorem 1.15. Suppose that (1.1) has degree m and possesses

(a) p invariant algebraic curves fi = 0 with cofactors ki for i = 1, . . . , p.

(b) q exponential factors Fj = exp gj/hj with cofactors Lj for j = 1, . . . , q.
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(c) r independent singular points (xhyh) ∈ R2 such that fi(xhyh) 6= 0 for i = 1, . . . , p
and hj(xhyh) 6= 0 for j = 1, . . . , q for any h = 1, . . . , r.

Then,

(i) If there exit λi, µj ∈ C not all zero such that

p∑

i=1

λiki +
q∑

j=1

µjLj = −div(P,Q),

then the function R = fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q is an integrating factor of (1.1).

(ii) If p + q + r ≥ m(m+1)
2 and the independent singular points are weak (that is

div(P,Q)(xh, yh) = 0), then exist λi, µj ∈ C not all zero such that

p∑

i=1

λiki +
q∑

j=1

µjLj = −div(P,Q).

1.1.6 Inverse integrating factors

Definition 1.16. A function V (x, y) is an inverse of integrating factor of system (1.1)
in an open subset U ⊆ R2 if V ∈ C1(U), V 6≡ 0 in U and

P
∂V

∂x
+ Q

∂V

∂y
=

(∂P

∂x
+

∂Q

∂y

)
V.

Clearly, from the definition, V = 0 is an invariant curve of system (1.1), not
algebraic at first. Moreover, it is easy to check that the function R = 1/V defines an
integrating factor in U \ {V = 0} of system (1.1).

The following result on closed rational 1-forms is proved in page 205 of [47].

Lemma 1.17. If ω is a closed complex rational differential 1-form, then there exist
polynomials fi, f, g ∈ C[x, y] and constants λi ∈ C for i = 1, . . . , m, such that

ω =
m∑

i=1

λi
dfi

fi
+ d

(
g

f

)
. (1.5)

The next corollary, works even for complex polynomial differential systems.

Corollary 1.18. Assume that a polynomial system ẋ = P (x, y), ẏ = Q(x, y) with
P, Q ∈ C[x, y] possesses a rational inverse integrating factor V . Then it has a general-
ized Darboux first integral.

Proof. We associate to the polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) the
rational 1-form ω = A(x, y)dx + B(x, y)dy with A = Q/V and B = −P/V . Since V is
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an inverse integrating factor of the system it is clear that ω is closed. Therefore, using
Lemma 1.17, we can write ω as in (1.5). Hence, integrating we have that

H̄ =
m∑

i=1

λi log fi +
g

f
,

verifies ∂H̄/∂x = A and ∂H̄/∂y = B, i.e. H̄ is a first integral of the system. Finally,
taking exponentials, we have that H = exp(H̄) is a generalized Darboux first integral
of the form

H = exp
(

g

f

) m∏

i=1

fλi
i ,

as stated in the corollary.

We emphasize that the proof of Lemma 1.17 (and therefore the proof of Corollary
1.18) is constructive. Moreover, these same ideas with almost identical proof are used
in the main result of Christopher [14]. In fact, Theorem 2 of that paper looks different,
but works also for first integrals and its proof can be used to prove our Corollary 1.18.

1.1.7 Limit cycles

Definition 1.19. A limit cycle of system (1.1) is an isolated periodic solution in the
set of all the periodic solutions.

Definition 1.20. An algebraic limit cycle is a limit cycle which is contained in the
zeroes set of an invariant algebraic curve.

The existence of limit cycles was first detected by Poincaré [43], but one of the
most interesting questions was proposed by Hilbert [32] in 1900 in the part (b) of
16th Hilbert Problem: Compute H(m) such that the number of limit cycles of any
polynomial vector field of degree m is less or equal than H(m).

Up to now, the more general result related with 16th Hilbert Problem, due to
Dulac [22] and corrected separately by Il’yashenko [33] and Ecalle, Martinet, Moussu
and Ramis [23], is the fact that there are finitely many limit cycles for every polynomial
vector field of degree m, but an upper bound for H(2) is unknown. On the other hand it
is well known that H(2) ≥ 4, ŻoÃla̧dek [54] showed that H(3) ≥ 11 perturbing a center,
and in general it is proved by Christopher and Lloyd [17] that H(m) ≥ m2 log m. It
is known that a quadratic system with an invariant stright line has at most one limit
cycle, see Coppel [18], or Coll and Llibre [20].

In Ye Yian-Qian [53] can be found a resum of the most important results on limit
cycles but Hilbert Problem remains unsolved even for m = 2. So in Smale [49], the
author includes Hilbert Problem in the list of unsolved problems.

It is known that the existence of a rational first integral excludes the existence of
limit cycles because any region of the plane belongs to the definition domain of the
first integral or his inverse. Also, when a rational first integral exists, there is not any
focus.

In a paper of Giacomini, Llibre and Viano [31] a method has been introduced
to study the existence and nonexistence of limit cycles of planar vector fields. This
method is based on the following result:
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Theorem 1.21. (Giacomini, Llibre & Viano) Let (P, Q) be a C1 vector field
defined in the open subset U of R2. Let V (x, y) be an inverse integrating factor If γ
is a limit cycle of the vector field (P,Q) in the domain of definition of V , then γ is
contained in Σ = {(x, y) ∈ U : V (x, y) = 0}.

1.1.8 Quadratic systems

When m = 2, the differential system (1.1) is called quadratic.

ẋ = P0 + P1 + P2 = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 ,
ẏ = Q0 + Q1 + Q2 = b00 + b10x + b01y + b20x

2 + b11xy + b02y
2 .

(1.6)

Of course, all the definitions and ideas on differential systems of arbitrary degree
work also for systems of degree 2. We would like to remark some results only valid for
quadratic systems.

The following Theorem establishes the coexistence of different type of real singular
points in a quadratic system. A simple proof can be found in Kukles and Casanova
[35] or Coppel [19] but the property was previously stated by Berlinskĭı [1].

Theorem 1.22. (Berlinskĭı) Suppose that there are four real different critical points
of a quadratic system. If the quadrilateral with vertices these points is convex then the
opposite critical points are saddles and the other two are antisaddles (nodes, foci or
centers). But if the quadrilateral is not convex then either the three exterior vertices
are saddles and the interior vertex an antisaddle or the exterior vertices are antisaddles
and the interior vertex is a saddle.

The next result is well known, see Ye Yian-Qian [53].

Theorem 1.23. Let C be a limit cycle of a quadratic system (1.6). There exists one
only singular point inside the bounded region defined by the limit cycle and it is also a
focus.

1.2 The complex projective plane

Consider a real affine algebraic curve f(x, y) = 0 of degree n. If we want to compute
the intersection points with a parametric straight line

(
x(t), y(t)

)
= (t, at+b), we must

solve the equation of degree n, f(t, at + b) = 0. This equation may be solved over the
complex field, that is, there can be complex points that play an important role even
when the curve is real. Moreover, it has been shown that the complex behavior plays
a very important role even for real affine differential systems of equations. Darboux’s
theory of integrability is a good example of this fact.

Moreover, the behavior at infinity is as important as the affine behavior and alge-
braic projective curves are more useful than algebraic affine curves when we proceed to
study their properties. In fact, this is in this way due to the compactness of projective
spaces. Thus, the projective plane allows to work with the infinite line and provides
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a global vision of the curves necessary from now on. So, we must imagine the differ-
ential equations over the complex projective plane. Poincaré and Darboux, considered
differential equations in this way, yet.

The complex projective plane is constructed as
(
C3−{0})/ ∼, where (X0, Y0, Z0) ∼

(X1, Y1, Z1) if (X0, Y0, Z0) = (λX1, λY1, λZ1) for (X0, Y0, Z0), (X1, Y1, Z1) ∈ C3 − {0}
and λ 6= 0. Thus, the points in CP 2 are ratios (X0 : Y0 : Z0). The sets

UX = {(X : Y : Z) ∈ CP 2 | X 6= 0},

UY = {(X : Y : Z) ∈ CP 2 | Y 6= 0},
UZ = {(X : Y : Z) ∈ CP 2 | Z 6= 0},

with the difeoeomorphisms

φX : UX −→ C2

(X : Y : Z) 7→
(

Y
X , Z

X

)

φY : UY −→ C2

(X : Y : Z) 7→
(

X
Y , Z

Y

)

φZ : UZ −→ C2

(X : Y : Z) 7→
(

X
Z , Y

Z

)

define a differenciable atlas and give to CP 2 a differenciable manifold structure.

To consider local coordinates of a projective curve at a point is to apply φX , φY

or φZ depending on the local chart where the point lives. By φ−1
Z , every affine object

can be extended to the projective plane.

1.2.1 Projective algebraic curves

A projective algebraic curve of degree n is the set of projective points where a ho-
mogeneous polynomial of degree n vanishes. The real affine curve f(x, y) = 0 in the
projective coordinates (X, Y, Z) is given by F (X, Y, Z) := Znf(X/Z, Y/Z) = 0, a
homogeneous polynomial on X, Y , Z.

From Euler’s formula one has X ∂F
∂X + Y ∂F

∂Y + Z ∂F
∂Z = nF .

Multiple points

Let f(x, y) = 0 be an affine curve. By virtue of the implicit function derivative theorem

dy

dx
= −

∂f
∂x
∂f
∂y

,

what determines the slope of the tangent to the curve. Clearly, this angular coefficient
is well defined at a point if ∂f

∂y 6= 0 or ∂f
∂x 6= 0. When such partial derivatives are

both zero over a point of the curve, it is said to be a multiple point or singular point.
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We will use the expression multiple point to distinguish between these points and the
singular points of a differential equation. Intuitively, the extension of this concept to
the projective plane is clear, but we will do it in a precise way.

Let p = (X0 : Y0 : Z0) be a point on the projective curve F (X, Y, Z) = 0. Since
not all the coordinates of the point can be zero, we suppose that Z0 6= 0 and that
p = (0 : 0 : 1). If we consider the expression of the curve for Z = 1, we have

F (X,Y, 1) = Fs(X,Y ) + Fs+1(X, Y ) + ... + Fn(X, Y ), (1.7)

where Fi(X,Y ) are homogeneous polynomials of degree i, with Fs(X,Y ) 6≡ 0. If s = 0
the curve does not contain the point.

Definition 1.24. Under the above assumptions, we say that p is a point of multiplicity
s.

(i) If s = 1 we will say that p is a simple point.

(ii) If s > 1, then we will say that p is a multiple point with multiplicity mp = s.

In particular, p is a multiple point of F (X, Y, Z) = 0 if and only if ∂F
∂X (p) = ∂F

∂Y (p) =
∂F
∂Z (p) = 0. This is clear assuming p = (0 : 0 : 1) and considering the partial derivatives
of F as power expansions of Z and taking into account (1.7) with s > 1.

If p is a multiple point of multiplicity s > 0 we have Fs =
∏k

i=1 Lri
i where Li are

different straight lines.

Definition 1.25. The lines Li are called tangent straight lines to F = 0 at p; ri is the
multiplicity of the tangent.

Definition 1.26. We say that p is an ordinary multiple point if ri = 1 for i = 1, ...k,
otherwise we say that p is a non ordinary multiple point.

Relative to the multiplicity of the points of a curve we have the following theorem,
whose proof can be seen in Fulton [28].

Theorem 1.27. If F (X, Y, Z) = 0 is an irreducible curve in CP 2 of degree n, then∑
p

mp(mp−1)
2 ≤ (n−1)(n−2)

2 , where p runs over the multiple points of the curve.

Genus of a projective algebraic curve

Let p0 = (X0 : Y0 : Z0) be a multiple point on a given algebraic projective curve. By
means of a birrational quadratic transformation, the curve is applied into another, and
p0 into the set of r1 points p1,1,p1,2, . . . p1,r1 . we say that the given curve has r1 points
in the first neighborhood of p0. By means of at most r1 birrational quadratic transfor-
mations we obtain the r2 points of the second neighborhood of p0: p2,1, p2,2,. . .,p2,r2 .
Successively, we proceed until the points of some neighborhood are all simple, and we
say that the singularity of the given curve at p0 is resolved. The multiple point p0 is
said to be explicit and pk,rk

(k > 0) are said to be implicit. Now we are ready for the
following definition:
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Definition 1.28. We define the genus of a curve of degree n as

g =
(n− 1)(n− 2)

2
−

∑
p

mp(mp − 1)
2

, (1.8)

where the sum runs over all the multiple points, explicit and implicit, and mp is their
multiplicity.

Since the genus of a curve is a non negative integer, this is an improvement of
Theorem 1.27. For more details see Primrose [46].

Relative to the genus of a curve we have the following theorem:

Theorem 1.29. (Harnack-Klein) Let C be an algebraic curve in RP 2. The number
of real 1-dimensional connected components of C is at most g +1, where g is the genus
of C.

Intersection index

Here we present a brief introduction to the intersection index. For more detail see
Foulton [28].

Definition 1.30. Let p ∈ C2. The local ring of C2 in p, Op(C2), is defined as the set
of all the rational functions with complex coefficients such that the denominator does
not vanish in p.

Let p = (X0 : Y0 : Z0) ∈ CP 2. Since not all the coordinates of p can be zero we
can consider Z0 6= 0 and making the change x0 = X0/Z0 and y0 = Y0/Z0, p is given
by its local coordinates (x0, y0) and one can define the local ring at p, Op.

Definition 1.31. Let C1, . . . , Cn be algebraic curves in CP 2 defined in the local co-
ordinates at p by f1(x, y) = 0, . . . , fn(x, y) = 0. The intersection index of the curves
at p is defined as

(i) Ip(C1, . . . , Cn) = 0 if p /∈ C1 ∩ · · · ∩ Cn,

(ii) Ip(C1, . . . , Cn) = ∞ if fi = hgi for i = 1, . . . , n, where h is a polynomial that
vanish on p,

(iii) Ip(C1, . . . , Cn) = dimCOp/(f1, . . . fn) otherwise, where (f1, . . . fn) is the ideal
defined by the polynomials f1, . . . , fn.

From the inclusion of ideals (fi, fj) ⊆ (f1, . . . , fn) for i, j = 1, . . . , n one have the
following relation between the intersection index of n curves and the intersection index
of each pair: Ip(C1, . . . , Cn) ≤ mini,j{Ip(Ci, Cj)}.

Let F (X,Y, Z) = 0 and G(X, Y, Z) = 0 be two algebraic curves and let p be a
point on them.

Definition 1.32. We say that F = 0 and G = 0 cut themselves strictly at p, if F and
G does not have common factors that vanish on p. We say that F = 0 and G = 0
cut themselves transversally at p if p is a simple point of F = 0 and G = 0, and the
tangent to F = 0 and to G = 0 at p are different.
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On the intersection index of two curves we have the following theorem.

Theorem 1.33. The intersection index of F = 0 and G = 0 at p, Ip(F, G), is unique
for all p ∈ CP 2 and satisfies the following conditions:

(i) Ip(F,G) is a non negative integer for all F , G and p when F and G cut themselves
in strict sense. Ip(F, G) = ∞ if F and G does not cut themselves in strict sense.

(ii) Ip(F, G) = 0 if and only if p is not a common point of F and G. Ip(F, G) only
depends on the factors of F and G vanished on p.

(iii) If T is a coordinates change and T (p) = q, then Iq(T (F ), T (G)) = Ip(F, G).

(iv) Ip(F, G) = Ip(G,F ).

(v) Ip(F, G) ≥ mp(F )mp(G), verifying the equality if and only if F and G does not
have common tangents at p, where mp(F ) and mp(G) are the multiplicities of p
with respect to F and G.

(vi) If F =
∏r

i=1 F ri
i and G =

∏s
j=1 G

sj

j , then the intersection index can be computed
as Ip(F, G) =

∑r
i=1

∑s
j=1 risjIp(Fi, Gj).

(vii) Ip(F, G) = Ip(F, G + AF ) for all homogeneous polynomial A on X, Y and Z.

We will need a property like (vi) for the intersection index of three projective
algebraic curves. It is given in the following Lemma.

Lemma 1.34. Let A, B, C, C ′ be homogeneous polynomials in three variables Then

Ip(A,B, CC ′) ≤ Ip(A,B, C) + Ip(A,B, C ′).

Proof. Consider the following sequence of vector spaces:

0 −→ Ker(ψ) i−→ Op

(A,B, C)
ψ−→ Op

(A,B, CC ′)
φ−→ Op

(A,B, C ′)
−→ 0,

where i is an inclusion, ψ(z) = C ′z and φ is the natural projection.

The sequence is exact because i is injective, φ is surjective, Im(i) = Ker(ψ) and
Im(ψ) = Ker(φ) = {z ∈ Op

(A,B,CC′) such that z = C ′w for any w}. So

dimC
Op

(A,B,CC ′)
= dimC

Op

(A,B,C)
+ dimC

Op

(A, B,C ′)
− dimCKer(ψ)

≤ dimC
Op

(A,B,C)
+ dimC

Op

(A, B,C ′)
,

and by the definition of the intersection index the lemma follows immediately.

A very useful result for the developing of this work was the named Darboux Lemma
that can be found in [21], but not correctly stated. See Chavarriga, Llibre and Moulin-
Ollagnier [11] for a proof of the correct version.
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Theorem 1.35. (Darboux Lemma) Let A, A′, B, B′, C, C ′ be homogeneous poly-
nomials in CP 2 in the variables X, Y , Z of degrees l, l′, m, m′, n, n′, respectively.
Suppose that A, B, C and A′, B′, C ′ are two sets of coprime polynomials verifying
AA′ + BB′ + CC ′ ≡ 0. Then,

(i)
∑

p Ip(A,B, C) +
∑

p Ip(A′, B′, C ′) ≥ lmn+l′m′n′
λ .

(ii) If A∩B∩C∩A′∩B′∩C ′ = ∅, then
∑

p Ip(A,B, C)+
∑

p Ip(A′, B′, C ′) = lmn+l′m′n′
λ ,

where λ = l + l′ = m + m′ = n + n′.

Theorem 1.36. (Bézout) Let F = 0 and G = 0 be two curves in CP 2 of degrees r
and s, respectively without common components. Then

∑
p Ip(F,G) = rs.

1.2.2 Projective differential equations

Let P, Q and R be homogeneous polynomials of degree m + 1 in the variables X, Y
and Z. The homogeneous 1-form

ω = PdX +QdY +RdZ

is said to be projective if XP + YQ+ ZR = 0, that is,

P = MZ −NY, Q = NX − LZ, R = LY −MX,

for some L, M and N homogeneous polynomials of degree m. Then

ω = L(Y dZ − ZdY ) + M(ZdX −XdZ) + N(XdY − Y dX),

and ω = 0, that is,

L(Y dZ − ZdY ) + M(ZdX −XdZ) + N(XdY − Y dX) = 0, (1.9)

defines a differential equation. For more details, see Darboux [21].

The following result is well known.

Lemma 1.37. If we take L̄ = L + AX, M̄ = M + AY , N̄ = N + AZ being A a
homogeneous polynomial of degree m− 1, then (1.9) remains invariant.

Let F be a homogeneous polynomial of degree n in CP 2. We say that F = 0 is an
irreducible invariant algebraic curve of (1.9) if

∂F

∂X
L +

∂F

∂Y
M +

∂F

∂Z
N = KF, (1.10)

where K is a polynomial of degree m− 1. Using Euler’s Formula we have

∂F

∂X

(
L− KX

n

)
+

∂F

∂Y

(
M − KY

n

)
+

∂F

∂Z

(
N − KZ

n

)
= 0. (1.11)

Remark 1.38. Taking L̄ = L−KX/n, M̄ = M −KY/n and N̄ = N −KZ/n we can
always consider that the cofactor of one invariant algebraic curve is zero.
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1.2.3 Projective singular points

The singular points of (1.9) are those for which the tangent is not determined. These
points verify the system

P = MZ −NY = 0, Q = NX − LZ = 0, R = LY −MX = 0. (1.12)

In order to determinate the number of singular points we use the following corollary
of Theorem 1.35.

Corollary 1.39. The number of singular points of the differential equation (1.9) where
L, M , N are coprime polynomials of degree m, is m2 + m + 1.

1.2.4 Relationship among affine and projective objects

Now we show the behavior of a differential equation, and cofactors when we take local
coordinates in the local chart determined by Z = 1. Of course, we can do the same for
X = 1 and Y = 1, similarly.

Lemma 1.40. Let (1.9) be a differential equation with L, M and N of degree m. Let
F = 0 be an invariant algebraic curve of degree n of (1.9) with cofactor K. Then, the
restriction of the projective differential equation to the affine plane is

(L (X,Y, 1)−XN (X,Y, 1)) dY − (M (X, Y, 1)− Y N (X, Y, 1)) dX = 0.

It has degree m + 1 and F (X, Y, 1) = 0 is an invariant algebraic curve with cofactor
K̃(X,Y, 1) = K(X, Y, 1)− nN(X, Y, 1) of degree at most m, whenever Z = 0 is not an
invariant straight line.

Proof. Since F = 0 is an invariant algebraic curve of (1.9) it follows (1.10). On the
other hand, from Euler’s Formula outside the infinite straight line we obtain

∂F

∂Z
=

1
Z

(
nF −X

∂F

∂X
− Y

∂F

∂Y

)
.

Replacing the right side of this expression in (1.10) and taking Z = 1 we see that
F (X, Y, 1) = 0 is invariant for the restricted differential equation and we obtain the
expression of the cofactor. The line Z = 0 is invariant for (1.9) if and only if N = ZA
for some polynomial A of degree m − 1. When this does not happen, N(X, Y, 1) is a
polynomial of degree m.

System (1.1) defined on the affine plane can be extended to the projective plane.
We write (1.1) as Pdy−Qdx = 0. Using projective coordinates x = X/Z, y = Y/Z we
can write the previous equation as

L(Y dZ − ZdY ) + M(ZdX −XdZ) = 0,

with
L = ZmP (X/Z, Y/Z) ,
M = ZmQ (X/Z, Y/Z) .

Notice that in this case we have N ≡ 0.
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Of course, any singular point p = (x0, y0) of the affine differential equation (1.1)
becomes a singular point p = (X0 : Y0 : 1) for the projective differential equation. The
points satisfying yPm − xQm = 0 are called infinite singular points. They are singular
points of the projective differential equation which, from an affine point of view, live
over the line at infinity, i.e., over Z = 0; are of the form p = (X0 : Y0 : 0).

Definition 1.41. We say that system (1.1) has degenerate infinity if the line at infinity
Z = 0 is fulfilled of singular points or equivalently yPm − xQm ≡ 0.

Systems (1.1) of degree m with degenerate infinity can be reduced to differential
equations of degree m− 1.

If f = 0 is an invariant algebraic curve of the affine differential equation with
cofactor k, then the projectivized curve F = 0 defined by F = Znf (X/Z, Y/Z) has
cofactor K = Zm−1k (X/Z, Y/Z). As we have said in Remark 1.38, we can consider
that this cofactor is identically null by making a change, but when the projective
differential equation comes from an affine planar system then this change forces N 6≡ 0.

1.3 Formal differential equations and formal solu-
tions

In this section we summarize some definitions and results about formal differential
equations and their solutions, that we shall use later on. For more details and proofs
about these results see Seidenberg [48]. Walcher in [50] states also similar results with
some precisions.

We consider the field K (either R or C). We denote by K[[x, y]] the ring of
formal power series. A unit is an invertible element of this ring. In particular, if
U(x, y) =

∑∞
i,j=0 uijx

iyj is a unit then u00 6= 0.

Let F (x, y) be an irreducible non–unit of K[[x, y]] such that F (x, y) 6≡ 0.

Definition 1.42. An analytic branch centered at (0, 0) is the equivalence class in
K[[x, y]] under the equivalence F ∼ G if F = U ·G with U unit.

We note that here the adjective analytic does not mean the convergence of the
power series. On the other hand F (0, 0) = 0 because F (x, y) is non-unit.

Given a representative of an analytic branch F (x, y) centered at the origin, there
are power series x(t) =

∑∞
i=1 xit

i and y(t) =
∑∞

i=1 yit
i, with xi, yi ∈ K, not both

identically null, such that F (x(t), y(t)) = 0.

Definition 1.43. Such a pair (x(t), y(t)) is called a branch expansion of the analytic
branch.

Note that x(0) = 0 and y(0) = 0.

Given a branch expansion x(t), y(t), there is an irreducible non–unit F (x, y) 6≡ 0
in K[[x, y]], uniquely determined up to a unit factor, such that F (x(t), y(t)) = 0.
F (x, y) = 0 is called the equation of the branch.
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Consider the formal differential equation

P (x, y)dy −Q(x, y)dx = 0, (1.13)

where P (x, y), Q(x, y) ∈ K[[x, y]]. For a formal power series F (x, y) =
∑∞

i,j=0 fijx
iyj

we define ∂F (x, y)/∂x as the formal power series
∑∞

i=1,j=0 ifijx
i−1yj . Analogously,

we define ∂F (x, y)/∂y.

By a solution of the formal differential equation (1.13) we mean an analytic branch
(x(t), y(t)), centered at the origin satisfying equation (1.13). More explicitly, if the
equation of the solution branch (x(t), y(t)) is F (x, y) = 0 one has

P (x, y)
∂F

∂x
+ Q(x, y)

∂F

∂y
= K(x, y)F (x, y), (1.14)

for some K ∈ K[[x, y]]. Conversely, every irreducible F ∈ K[[x, y]] with F 6≡ 0 satisfying
(1.14) for some K ∈ K[[x, y]], yields a solution of equation (1.13).

Definition 1.44. A branch x(t) =
∑∞

i=1 xit
i and y(t) =

∑∞
i=1 yit

i, with xi, yi ∈ K,
centered at (0, 0), is called linear if x1 or y1 is not zero.

Using the following theorem, which summarizes the results from [48], we study
the behavior of the solutions at a singular point according to the eigenvalues of the
jacobian matrix DX , where X is the vector field associated to the differential equation
(1.13).

Theorem 1.45 (Seidenberg). Let the origin (0, 0) be a critical point of the formal
system ẋ = P (x, y), ẏ = Q(x, y), where P, Q ∈ C[[x, y]], with associated eigenvalues
λ, µ ∈ C. In the following the dots denote higher order terms.

1. Let (0, 0) be a non-degenerate critical point. Then consider the formal differential
system

ẋ = λx + · · · , ẏ = µy + · · · , (1.15)

where λµ 6= 0. If λ 6= µ then every formal solution of (1.15) at the origin has a
horizontal or vertical tangent. Moreover,

(i) If λ/µ 6∈ Q+ then (1.15) has exactly two formal solutions at the origin
Fi(x, y) = 0 with i = 1, 2. They are linear branches with horizontal and
vertical tangent respectively, i.e., F1(x, y) = x + · · · , F2(x, y) = y + · · · .

(ii) If λ/µ ∈ Q+ then the following holds.

(a) If λ = µ then, for each direction there exists only one formal solution
at the origin, a linear branch.

(b) If λ/µ 6= 1 (with λ/µ > 1) then there is one unique formal solution at
the origin with horizontal tangent: a linear branch F (x, y) = y + · · · .
The other formal solutions at the origin, if they exists, have vertical
tangent, i.e., are of the form F (x, y) = xs + · · · with s ∈ N\{0}.
(b.1) If λ/µ ∈ N then either there are no formal solutions at the origin

with vertical tangent or there are infinitely many formal solution at
the origin with vertical tangent, all linear.
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(b.2) If λ/µ 6∈ N then there is one unique linear branch formal solution
at the origin with vertical tangent F (x, y) = x + · · · . The other
solutions are non–linear.

2. Let (0, 0) be a logarithmic critical point. Then, the formal differential system
ẋ = λx + y + · · · , ẏ = λy + · · · , where λ 6= 0 has a unique formal solution at the
origin, which is a linear branch with horizontal tangent F (x, y) = y + · · · .

3. Let (0, 0) be a elementary degenerate critical point. Then, the formal differential
system ẋ = x + · · · , ẏ = · · · , has exactly two formal solutions at the origin
Fi(x, y) = 0 with i = 1, 2. They are linear branches with horizontal and vertical
tangent respectively, i.e., F1(x, y) = x + · · · , F2(x, y) = y + · · · .

4. Let (0, 0) be a nilpotent critical point. Then, the formal differential system ẋ =
y + · · · , ẏ = · · · , can have either one formal solution at the origin or two linear
branch formal solutions at the origin or infinity formal solutions at the origin.

1.3.1 Relationship among formal solutions and invariant alge-
braic curves

Let us consider an irreducible algebraic curve f(x, y) = 0 with f ∈ C[x, y] such that
f(x0, y0) = 0. We translate the point (x0, y0) to the origin. In particular f ∈ C[[x, y]]
with f(0, 0) = 0, hence f is not a unit element in C[[x, y]] and in this ring it is possible
that f be a reducible element. By using the Newton-Poiseux algorithm, see [2] one can
see that there are ` irreducible elements φi(x, y) ∈ C[[x, y]], with i = 1, . . . , ` such that
f factorizes as

f(x, y) = xrU(x, y)
∏̀

i=1

φi(x, y) , (1.16)

being r ∈ N∪{0} and U ∈ C[[x, y]] a unit element. Later on, in [6], it was proved that
the above decomposition (1.16) is square free, that is, there is no repeated element φi

neither r ≥ 2.

Let the origin (0, 0) be a singular point of system (1.1) and let f = 0 be an
irreducible invariant algebraic curve of that system such that f(0, 0) = 0. The curve
f(x, y) =

∑n
i=s fi(x, y) = 0 with fi real homogeneous polynomials and s ≥ 1, defines a

finite number of branches at the origin corresponding to its irreducible nonunit factors
in C[[x, y]]. As fs is homogeneous, it can be factorized as fs(x, y) =

∏s
i=1 Li(x, y)

where Li(x, y) = aix + biy are called the tangents of the curve f = 0 at the origin and
ai, bi ∈ C.

Finally, it is easy to see that each of the irreducible elements appearing in the
above formal decomposition (1.16) of f is a formal solution of (1.1). Moreover, the
tangents at the origin of these branches are given by fs = 0 as defined above.

Let (x0, y0) ∈ C2 be a critical point with eigenvalues λ, µ ∈ C. Denoting by
vλ, vµ ∈ C2 the corresponding eigenvectors, we will call Lλ(x, y) and Lµ(x, y) the non-
null homogeneous polynomials of degree one belonging to C[x, y] such that ∇Lλ⊥vλ

and ∇Lµ⊥vµ respectively. Here ∇ := (∂/∂x, ∂/∂y) is the gradient operator and ⊥
means orthogonality with respect to the standard Euclidean scalar product in C2.
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Taking into account all this background, in [6] the following results are proved, which
describe the tangents and the value of the cofactor at some generic class of critical
points.

Theorem 1.46. (Chavarriga, Giacomini & Grau) Let f(x, y) = 0 with f ∈ C[x, y]
be an irreducible invariant algebraic curve with associated cofactor k(x, y) of a real
polynomial differential system. Let (x0, y0) ∈ C2 be a non-degenerate or elementary
degenerate critical point of the system with different associated eigenvalues λ and µ
verifying f(x0, y0) = 0. Then, the equation of the tangents of the curve f = 0 at (x0, y0)
is fs(x, y) = Lr

λ(x, y)Ls−r
µ (x, y) with s, r ∈ N, r ≤ s. Moreover k(x0, y0) = rµ+(s−r)λ.

Lemma 1.47. Let f(x, y) = 0 with f ∈ R[x, y] be an irreducible invariant algebraic
curve in R[x, y] with associated cofactor K(x, y) of a real polynomial differential system.
Let (x0, y0) ∈ R2 be a real critical point of the system with complex eigenvalues λ = a+ib
and µ = a − ib, where b 6= 0 and verifying f(x0, y0) = 0. Then, the equation of
the tangents of the curve f = 0 at (x0, y0) is f2(x, y) = Lλ(x, y)Lµ(x, y). Moreover
K(x0, y0) = µ + λ and no other invariant algebraic curve f̃(x, y) = 0 irreducible in
R[x, y] with f̃(x0, y0) = 0 can exist.
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Chapter 2

Algebraic Limit Cycles of
Degree 4 for Quadratic
systems

In this chapter we give a characterization of the irreducible invariant algebraic curves
of fourth degree of a quadratic system containing an oval which is an algebraic limit
cycle of the system, showing that there are exactly four families of algebraic limit cycles
of degree 4 for quadratic systems.

2.1 Introduction

As we have said, 16th Hilbert problem is unsolved even for quadratic systems. In this
chapter we concentrate in algebraic limit cycles.

In 1958, Ch’in Yuan-shün summarizes in [3] the possible quadratic system having
an algebraic limit cycle of degree 2 and he proves the uniqueness of this limit cycle:

If a quadratic system has an algebraic limit cycle of degree 2, then after an affine
change of variables, the limit cycle becomes the circle Γ := x2 + y2 − 1 = 0. Moreover,
Γ is the unique limit cycle of the quadratic system which can be written in the form

ẋ = −y(ax + by + c)− (x2 + y2 − 1) ,
ẏ = x(ax + by + c) ,

with a 6= 0 and c2 > a2 + b2.

The case of the limit cycles of degree 3 was studied later on. Using three papers
Evdokimenco proves from 1970 to 1979 that there are no quadratic systems having
limit cycles of degree 3, see [24, 25, 26]. An easier proof can be found in Chavarriga,
Llibre and Moulin-Ollagnier [11].

The study of the algebraic limit cycles of degree 4 for quadratic systems began
before the proof of Evdokimenco. Thus, Yablonskii [51] found one of them in 1966.

25
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Seven years later, a new algebraic limit cycle of degree 4 was found by Filiptsov [27],
and a third one was found in 1999, see Chavarriga [4]. The possible existence of other
algebraic limit cycles of degree 4 and limit cycles of higher degree was unknown at the
moment of composition of this work.

The study of invariant algebraic curves is closely related to the study of algebraic
limit cycles. There is an essential open problem first stated by Poincaré [44]: find
an upper bound for the degree of the invariant algebraic curves of quadratic systems
without rational first integral. Lins Neto [38] conjectured that if a quadratic differential
system possesses an invariant algebraic curve of degree greater than 4, it would be
rationally integrable. At that moment, the study of all the algebraic limit cycles of
degree 4 was an important objective because if we know all them and we believe Lins
Neto conjecture, then we know all the algebraic limit cycles for quadratic systems.
Unfortunately, the conjecture is false. This is first showed by Christopher and Llibre
[15] and Moulin-Ollagnier [39].

2.2 The main result

We characterize the quadratic systems which have an algebraic limit cycle of degree 4.
The main result is summarized in the following theorem.

Theorem 2.1. After an affine change of variables the only quadratic systems having
an algebraic limit cycle of degree 4 are

(a) Yablonskii system

ẋ = −4abcx− (a + b)y + 3(a + b)cx2 + 4xy ,
ẏ = (a + b)abx− 4abcy + 4(abc2 − 3

2 (a + b)2 + 4ab)x2 + 8(a + b)cxy + 8y2 ,

with abc 6= 0, a 6= b, ab > 0 and 4c2(a−b)2 +(3a−b)(a−3b) < 0. This system posseses
the irreducible invariant algebraic curve

(y + cx2)2 + x2(x− a)(x− b) = 0.

of degree 4 having two components, an oval (the algebraic limit cycle) and an isolated
point (a singular point).

(b) Filipstov system

ẋ = 6(1 + a)x + 2y − 6(2 + a)x2 + 12xy ,
ẏ = 15(1 + a)y + 3a(1 + a)x2 − 2(12 + 5a)xy + 16y2 ,

with 0 < a < 3
13 . This system posseses the irreducible invariant algebraic curve

3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x) = 0,

of degree 4 having two components, one is an oval and the other is homeomorphic to a
straight line. This last component contains three singular points of the system.

(c) The system
ẋ = 5x + 6x2 + 4(1 + a)xy + ay2 ,
ẏ = x + 2y + 4xy + (2 + 3a)y2 ,
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with −71+17
√

17
32 < a < 0 posseses the irreducible invariant algebraic curve

x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4 = 0,

of degree 4 having three components, one is an oval and each of the others two is
homeomorphic to a straight line. Each one of these last two components contains one
singular point of the system.

(d) The system
ẋ = 2(1 + 2x− 2kx2 + 6xy),
ẏ = (8− 3k − 14kx− 2kxy − 8y2),

with 0 < k < 1
4 posseses the irreducible invariant algebraic curve

1
4

+ x− x2 + kx3 + xy + x2y2 = 0,

of degree 4 having three components, one is an oval and each of the other two is
homeomorphic to a straight line. Each of these last two components contains one
singular point of the system. it has an oval, which is a limit cycle and two real branches.

This result is obtained by using projective techniques, in particular, the infinite
straight line plays an important role. From a projective point of view, and in order
to make an algebraic classification of the curves that contain limit cycles, we can say
that in case (a) (figure 2.1) the curve has two double points: a node at (0 : 0 : 1) and
a tacnode at (0 : 1 : 0) that has real tangent but it is isolated because the branches
through it are complex conjugated. Consequently, the genus of the curve is g = 0.

Figure 2.1: Case (a). Yablonskii.

In cases (b) (figure 2.2) and (c) (figure 2.3) the curve has one only double point,
a ramphoid cusp, that is finite and can be put at (0 : 0 : 1). The genus of the curve is
g = 1.

In the new case (d) (figure 2.4) the curve has an infinite ramphoid cusp at (0 : 1 : 0).
So, the genus is g = 1, too.
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Figure 2.2: Case (b). Filipstov.

2.3 Some results on singular and multiple points

On the singular points on an straight line anyone we have the following Lemma.

Lemma 2.2. Let r = 0 be a straight line. Then,

∑
p

Ip(r,P,Q,R) ≤ m + 1.

Proof. We know that Ip(r,P,Q,R) ≤ min{Ip(r,P), Ip(r,Q), Ip(r,R)}.
If

∑
p Ip(r,P,Q,R) > m + 1, then

∑
p

Ip(r,P) > m + 1,
∑

p

Ip(r,Q) > m + 1 and
∑

p

Ip(r,R) > m + 1,

from where r divides P, Q and R against the hypothesis.

When a line has less that m+1 singular points it can be invariant or not, depending
on the singular points. Using the following result we give a characterization of invariant
straight lines.

Theorem 2.3. Let r = 0 be an straight line. It is invariant for equation (1.9) if and
only if

∑
p Ip(r,P,Q,R) = m + 1.

Proof. By means of a projectivity we can consider that the straight line is Z = 0.
Suppose that

∑
p Ip(Z,P,Q,R) = m + 1. Then

∑
p

Ip(Z,P) ≥ m + 1 and
∑

p

Ip(Z,Q) ≥ m + 1.
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Figure 2.3: Case (c). Chavarriga.

On the other hand, since P = MZ−NY , Q = NX−LZ and using Theorem 1.33(vii)
follows that

∑
p

Ip(Z,P) =
∑

p

Ip(Z, NY ) and
∑

p

Ip(Z,Q) =
∑

p

Ip(Z, NX).

Now, since X, Y and Z can not be zero simultaneously, follows that
∑

p Ip(Z, N) ≥
m + 1 and from Bezout’s Theorem Z divides N . Therefore, Z = 0 verifies (1.10), and
is invariant for ω = 0.

Reciprocally, if Z = 0 is an invariant straight line of ω = 0 we have N = ZA for
some polynomial A of degree m−1. By taking L̄ = L−AX, M̄ = M−AY and N̄ = 0 we
have

∑
p Ip(Z,P,Q,R) =

∑
p Ip(Z, M̄Z,−L̄Z, LY −MX) =

∑
p Ip(Z, LY −MX) =

m + 1 by Bezout Theorem.

The proof of the following result is due to Chavarriga and LLibre [10].

Proposition 2.4. All the multiple points of an irreducible invariant algebraic curve
of ω = 0 (1.9) are singular points of the projective differential equation ω = 0. The
intersection points of two invariant algebraic curves of ω = 0 are singular points of the
differential projective equation ω = 0.

Let F = 0 be an invariant algebraic curve. From (1.10) and using Euler’s Formula
it follows that

∂F

∂X

(
L− KX

n

)
+

∂F

∂Y

(
M − KY

n

)
+

∂F

∂Z

(
N − KZ

n

)
= 0.

Then, following Darboux there are two types of singular points: those that are on the
projective curve F = 0 and those that are not necessarily on this curve and for which
one has

L− KX

n
= 0, M − KY

n
= 0, N − KZ

n
= 0 , (2.1)
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Figure 2.4: New case (d).

where n is the degree of the curve. Thus we define

h =
∑

p

Ip

(
∂F

∂X
,
∂F

∂Y
,
∂F

∂Z

)
, h′ =

∑
p

Ip

(
L− KX

n
,M − KY

n
, N − KZ

n

)
.

By applying Theorem 1.35(i) to equation (1.11) we have

h + h′ ≥ m3 + (n− 1)3

m + n− 1
. (2.2)

In order to simplify the notation, Ip( ∂F
∂X , ∂F

∂Y , ∂F
∂Z ) will be denoted by Ip.

When a projective differential equation is the extension of a differential equation
defined in the affine plane we get N ≡ 0. Thus, in h′ two types of points are counted:
those given by K = 0, and those given by Z = 0. If we take

h′1 =
∑

p

Ip(L,M,K), h′2 =
∑

p

Ip

(
L− KX

n
,M − KY

n
,Z

)
,

it follows from Lemma 1.34, that

h′ ≤ h′1 + h′2. (2.3)

Notice that by Bezout’s Theorem we have h′1 ≤ m(m − 1), otherwise the polyno-
mials P , Q, k would not be coprime against the hypothesis.

If h′2 > m, then Pm ≡ km−1X/n and Qm ≡ km−1Y /n. Replacing in (1.9) L
for L − km−1X/n, M for M − km−1Y /n and N , that is zero, for −km−1Z/n, we
see that Z = 0 is a straight line of singular points, that is, has degenerate infinity.
Affine quadratic systems with degenerate infinity can be reduced to a linear differential
equation in CP 2; in particular, they do not have limit cycles.
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In what follows we suppose that system 1.1 has not degenerate infinity. In partic-
ular, we have h2 ≤ m and consequently h′ ≤ m2 which allows to obtain, using (2.2),
an upper bound for h.

The next result is proved in [10].

Theorem 2.5. (Chavarriga & LLibre) Let f = 0 be an invariant algebraic curve
for system (1.1). Let h′ be the number of points counted with their multiplicity in CP 2

that verify (2.1). If h′ = m2, then system (1.1) has a rational first integral.

A very useful result on invariant curves can be found in Christopher [13], but there
are preliminary versions of this lemma in other authors, see for instance Theorem 1 of
Yablonskii [52]. Here we present an improvement of such result.

Lemma 2.6. Let f :=
∑n

i=0 fi = 0 be an affine invariant algebraic curve of system
(1.1) of degree n. Let d be a real or complex linear divisor of fn with multiplicity l.
We denote by k =

∑m−1
i=0 ki the cofactor of f = 0. Then

(i) d is a divisor of ∆ := yPm − xQm.

(ii) Let l̄ be the multiplicity of d as a divisor of ∆. Then d is a divisor of km−1x−nPm

and of km−1y − nQm with multiplicity l̄ − 1.

(iii) h′2 = m + 1− r where r is the number of different factors of fn.

(iv) d is a divisor of fn−1(km−1x− (n− 1)Pm) and of fn−1(km−1y− (n− 1)Qm) with
multiplicity min{l − 1, l̄}.

Proof. The curve f = 0 verifies (1.3) since it is invariant. Taking the terms of degree
m + n− 1 and m + n− 2 of (1.3) we have

Pm
∂fn

∂x
+ Qm

∂fn

∂y
= km−1fn, (2.4)

Pm
∂fn−1

∂x
+ Qm

∂fn−1

∂y
+ Pm−1

∂fn

∂x
+ Qm−1

∂fn

∂y
= km−1fn−1 + km−2fn. (2.5)

On the other hand, from Euler’s Theorem x∂fn

∂x + y ∂fn

∂y = nfn. Consequently we
obtain

∂fn

∂x
=

fn(km−1y − nQm)
∆

,
∂fn

∂y
=

fn(nPm − km−1x)
∆

. (2.6)

Therefore, every divisor of fn must be a divisor of ∂fn

∂x ∆ and ∂fn

∂y ∆. If d is a divisor
of fn with multiplicity l, then using Euler’s formula it will be a divisor of ∂fn

∂x and ∂fn

∂y

with multiplicity l − 1, and thus d must divide ∆, this proves (i). Since (2.6) must be
verified it follows (ii).

Suppose that fn =
∏r

i=1 dli
i , l1 + . . . + lr = n and ∆ =

(∏r
i=1 dl̄i

i

)
B where B

contains the divisors of ∆ that do not divide fn. Replacing the above expressions in
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(2.6) we have

Lx

(
r∏

i=1

dl̄i−1
i

)
B = km−1y − nQm, Ly

(
r∏

i=1

dl̄i−1
i

)
B = nPm − km−1x, (2.7)

where Lx = d1d2...dr

∑r
i=1

1
di

∂di

∂x and Ly = d1d2...dr

∑r
i=1

1
di

∂di

∂y . Notice that Lx and
Ly do not have common divisors.

Taking into account the degrees of the expressions that appear in (2.7) we have

r − 1 +
r∑

i=1

(l̄i − 1) + b = m,

where b is the degree of B. So

r∑

i=1

(l̄i − 1) + b = m + 1− r.

Therefore,

h′2 =
∑

p

Ip

(
L− KX

n
,M − KY

n
,Z

)
=

r∑

i=1

(l̄i − 1) + b = m + 1− r,

and proves (iii). This last equality becomes clear if we take into account that

L− KX

n
= ZR + Pm − km−1X

n
= ZR + Lx

(
r∏

i=1

dl̄i−1
i

)
B,

M − KY

n
= ZS + Qm − km−1Y

n
= ZS + Ly

(
r∏

i=1

dl̄i−1
i

)
B,

and that their common points on Z = 0 come from the divisors of
(∏r

i=1 dl̄i−1
i

)
B.

From (2.5) and Euler’s formula for fn−1, that is, x∂fn−1
∂x + y ∂fn−1

∂y = nfn−1, we
obtain

∆
∂fn−1

∂x
= yC+fn−1(km−1y−(n−1)Qm), ∆

∂fn−1

∂y
= fn−1((n−1)Pm−km−1x)−xC,

where C = km−2fn−Pm−1
∂fn

∂x −Qm−1
∂fn

∂y . Since d is a divisor of fn, ∂fn

∂x and ∂fn

∂y with
multiplicities l, l − 1 and l − 1, respectively, then d is a divisor of C with multiplicity
greater or equal than l − 1. Also, d divides ∆ with multiplicity l̄ and follows (iv).

2.3.1 Structure of algebraic curves having double points

We will say that a double point p of F = 0 is a node (figure 2.5) if Ip( ∂F
∂X , ∂F

∂Y , ∂F
∂Z ) = 1,

in this case there are two branches and its tangents L1 and L2 are different and. We
say that the node is simple if Ip(Li, F ) = 3 for i = 1, 2.
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Figure 2.5: Node.

Let p be a non ordinary double point of F = 0, that is, it has a unique tangent with
multiplicity two. Then we say that p is a cusp (figure 2.6) if Ip( ∂F

∂X , ∂F
∂Y , ∂F

∂Z ) = 2. In
this case, there exists a tangent line at the multiple point but the sense of the tangent
is not continuous. The curve, formed by one only branch is at both sides of the tangent
line. We say that p is a tacnode (figure 2.7) if Ip( ∂F

∂X , ∂F
∂Y , ∂F

∂Z ) = 3. In this case, two
branches cut themselves with the same tangent line. And p is a ramphoid cusp (figure
2.8) if Ip( ∂F

∂X , ∂F
∂Y , ∂F

∂Z ) = 4. The only geometric difference with the cusp is that, locally,
the curve is at only one side of the tangent.

Figure 2.6: Cusp.

Figure 2.7: Tacnode.

Remark 2.7. A very important fact for us and very useful for the compute of the genus
of a projective curve is that if a curve has a tacnode or a ramphoid cusp, then it has
a node or a cusp in the first neighborhood, respectively. Nodes or cusps does not have
implicit multiple points.

The following result gives us a technical characterization of the curves having a
double point.
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Figure 2.8: Ramphoid cusp.

Proposition 2.8. Let F = 0 be a polynomial curve of degree 4 having a double point
p. By making a projectivity and taking local coordinates at p, the curve can be written
as f := f2 + f3 + f4=0 with f2 = xy if the tangent are different or f2 = x2 if the
tangents are the same. Then

(i) p is a node if f2 = xy.

(ii) p is a cusp if f2 = x2 and x 6 |f3.

(iii) p is a tacnode if f2 = x2, f3 = xg2 and x 6 |f4 − 1
4g2

2.

(iv) p is a ramphoid cusp if f2 = x2, f3 = xg2, x|f4 − 1
4g2

2 and x2 6 |f4 − 1
4g2

2.

(iv) Ip ≥ 5 if f2 = x2, f3 = xg2, x2|f4 − 1
4g2

2.

Proof. (i) Since p is a node, Ip = 1. Therefore, from Theorem 1.33(v) the two tangents
at p are different. Consequently f2 = xy.

(ii) Since p is a cusp, Ip = 2. Therefore, from Theorem 1.33(v), the tangents at p
are the same. Consequently, f2 = x2 and f = x2 + f3 + ... By deriving f with respect
to x and y it follows that ∂f

∂x = 2x + ..., ∂f
∂y = ∂f3

∂y + ... The intersection index of ∂f
∂x

and ∂f
∂y is greater than two if and only if x divides ∂f3

∂y , from Theorem 1.33(v). Since
Ip = 2, x does not divide ∂f3

∂y . So x does not divide f3.

(iii) Since p is a tacnode, Ip = 3. By the arguments of the proof of (ii), x divides
∂f3
∂y . So x divides f3 and we can write f3 = xg2. We have f = x2 + xg2 + f4. Deriving
with respect to x and y we have

∂f

∂x
= 2x + x

∂g2

∂x
+ g2 +

∂f4

∂x
,

∂f

∂y
= x

∂g2

∂y
+

∂f4

∂y
.

Then

Ip

(
∂f
∂x , ∂f

∂y

)
= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x , x∂g2

∂y + ∂f4
∂y

)

= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x , x∂g2

∂y + ∂f4
∂y − 1

2
∂g2
∂y

(
2x + x∂g2

∂x + g2 + ∂f4
∂x

))

= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x , ∂

∂y (f4 − 1
4g2

2)− 1
2x∂g2

∂x
∂g2
∂y − 1

2
∂g2
∂y

∂f4
∂x

)
,

and from Theorem 1.33(v), since Ip = 3, x does not divide ∂
∂y (f4− 1

4g2
2), and therefore

x does not divide f4 − 1
4g2

2 .
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(iv) Since p is a ramphoid cusp, Ip = 4. By the arguments of the proof of (iii),
x|f4 − 1

4g2
2 . Therefore f4 − 1

4g2
2 = xv3 for some homogeneous polynomial v3 of degree

3, and then

Ip

(
∂f
∂x , ∂f

∂y

)
= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x , x

(
∂v3
∂y − 1

2
∂g2
∂x

∂g2
∂y

)
− 1

2
∂g2
∂y

∂f4
∂x

)

= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x , x

(
∂v3
∂y − 1

2
∂g2
∂x

∂g2
∂y

)
− 1

2
∂g2
∂y

∂f4
∂x −

1
2

(
∂v3
∂y − 1

2
∂g2
∂x

∂g2
∂y

) (
2x + x∂g2

∂x + g2 + ∂f4
∂x

) )

= Ip

(
2x + x∂g2

∂x + g2 + ∂f4
∂x ,− 1

2
∂g2
∂y

∂f4
∂x − 1

2

(
x∂g2

∂x + g2

)(
∂v3
∂y − 1

2
∂g2
∂x

∂g2
∂y

)
−

1
2

(
∂v3
∂y − 1

2
∂g2
∂x

∂g2
∂y

)
∂f4
∂x

)
.

Since Ip = 4, x does not divide

− 1
2

∂g2
∂y

∂f4
∂x − 1

2g2
∂v3
∂y + 1

4g2
∂g2
∂x

∂g2
∂y = − 1

2
∂g2
∂y

(
∂f4
∂x − 1

2g2
∂g2
∂x

)
− 1

2g2
∂v3
∂y

= − 1
2

∂g2
∂y

(
v3 + x∂v3

∂x

)− 1
2g2

∂v3
∂y = − 1

2
∂(g2v3)

∂y − 1
2x∂v3

∂x .

Thus, x does not divide ∂(g2v3)
∂y and therefore, x does not divide v3g2. In particular x

does not divide v3, and x2 does not divide f4 − 1
4g2

2 .

(v) If Ip ≥ 5, by the arguments used in the proof of (iv) we obtain that x2 divides
f4 − 1

4g2
2 . Hence the proposition is proved.

Lemma 2.9. Let p be a simple point of G = 0 and a double point of F = 0 with
Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 2. Let F = 0 and G = 0 be tangent at p. In local coordinates the
curves can be written as f := x2 + f3... = 0, g := x + g2 + ... = 0.

(i) If Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 2, then Ip(F, G) ≥ 3.

Moreover, if Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 3, then f3 = xh2 and

(ii) If Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 3, then Ip(F,G) ≥ 4.

(iii) If Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 4 and x divides h2 − 2g2, then Ip(F,G) ≥ 5.

(iv) If Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 5 and x divides h2 − 2g2, then Ip(F, G) ≥ 6.

Proof. Clearly, Ip(f, g) ≥ 3 from Theorem 1.33(v).

When Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 3, in local coordinates

Ip(f, g) = Ip(x2 + xh2 + ..., x + g2 + ...) = Ip

(
x2 + xh2 + ...− x(x + g2 + ...), x + g2 + ...

)
= Ip (x(h2 − g2) + ..., x + g2 + ...) ,

and from Theorem 1.33(v) the intersection index must be ≥ 4.
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If Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 4,

Ip(f, g) = Ip(x2 + xh2 + f4 + . . . , x + g2 + . . .)
= Ip

(
x2 + xh2 + f4 + . . .− x(x + g2) + . . . , x + g2 + . . .

)
= Ip (x(h2 − g2) + f4 + . . . , x + g2 + . . .)
= Ip (x(h2 − g2) + f4 − (h2 − g2)(x + g2) + . . . , x + g2 + . . .)
= Ip (f4 + g2(h2 − g2) + . . . , x + g2 + . . .) ≥ 5

if x divides f4 − g2(h2 − g2) = (f4 − 1
4h2

2) + ( 1
2h2 − g2)2.

The same argument can be used when Ip

(
∂F
∂X , ∂F

∂Y , ∂F
∂Z

) ≥ 5, taking into account
that x2 divides f4 − g2(h2 − g2) = (f4 − 1

4h2
2) + ( 1

2h2 − g2)2, and so the last statement
holds.

2.4 Some results on quadratic systems

The following results are valid for quadratic systems (1.6), and they show some situa-
tions in which limit cycles can not appear.

Lemma 2.10. Let f :=
∑n

i=0 fi = 0 be an invariant algebraic curve of (1.6) of degree
n, that does not have multiple points in the infinite straight line. Let d1 and d2 be two
linear divisors of fn, real or complex, with multiplicity strictly greater than one. If
h′ ≥ 3 or h′ = 2 and h′2 = 0, then system (1.6) has a rational first integral.

Proof. If h′ = 4, then system (1.6) has a rational first integral by Theorem 2.5. Suppose
that h′ = 3; since fn has at least two different divisors, from Lemma 2.6(iii) results
h′2 ≤ 1, and thus h′1 ≥ 2. If h′ = 2 and h′2 = 0, then h′1 = 2. In both cases h′1 ≥ 2.

Let k = k0 + k1 be the cofactor of f with ki homogeneous polynomials of degree i.
Since h′1 ≥ 2, the cofactor has either at least two singular points or one singular point
with multiplicity greater or equal than 2.

We claim that if a linear divisor di, divides fn−1, then there is a multiple point at
Z = 0. To prove the claim, without loss of generality we can assume that di = x and
that f = f0 + f1 + . . . + fn−2 + xgn−2 + xsgn−s with s ≥ 2. Then it is easy to check
that the point (0, 1, 0) is a multiple point. So the claim is proved.

Since the curve does not have multiple points in the infinite, from Lemma 2.6(iv)
it follows that d1 and d2 are both divisors of k1y − (n − 1)Q2 and k1x − (n − 1)P2.
Therefore,

P2 = λ1d1d2 +
k1x

n− 1
, Q2 = λ2d1d2 +

k1y

n− 1
.

Now system (1.6) takes the form

ẋ = P0 + P1 + λ1d1d2 +
k1x

n− 1
, ẏ = Q0 + Q1 + λ2d1d2 +

k1y

n− 1
,

and so, can be written as

ẋ = P0 + P1 − k0x

n− 1
+ λ1d1d2 +

kx

n− 1
, ẏ = Q0 + Q1 − k0y

n− 1
+ λ2d1d2 +

ky

n− 1
.
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By making the change z = λ2x− λ1y, we have ż = B + kz
n−1 where

B = λ2

(
P0 + P1 − k0x

n− 1

)
− λ1

(
Q0 + Q1 − k0y

n− 1

)
.

The polynomials B and k have and B vanishes over the two points of k = 0 that are
singular points. So we have B = ak. Therefore, ż = k

(
a + z

n−1

)
, that is, a+λ2x−λ1y

n−1 =

0 is an invariant straight line with cofactor k
n−1 . Thus, H = f(a + λ2x−λ1y

n−1 )1−n is a
rational first integral of the system.

Proposition 2.11. Let F = 0 be an irreducible invariant algebraic curve of degree 4
of a quadratic system (1.6). Suppose that the curve has two multiple points over Z = 0,
then

(i) If h′ ≥ 3, then the system has a rational first integral.

(ii) If the two multiple points are cusps, then either the system has a rational first
integral, or the curve has three cusps.

Proof. Let p1 and p2 be two multiple points on the infinite straight line. We can
consider, without loss of generality, that p1 = (1 : 0 : 0) and p2 = (0 : 1 : 0) if they are
real, or p1 = (1 : i : 0) and p2 = (1 : −i : 0) if they are complex. In both cases we can
write

f = D2 + D(m21x + m12y) + m20x
2 + m11xy + m02y

2 + m10x + m01y + m00,

where D = xy if the points are real and D = x2 + y2 if the points are complex. By
means of a linear change we can write

f = D2 + f2 + f1 + f0,

where fi are homogeneous polynomials of degree i = 0, 1, 2. Clearly, from Lemma
2.6(iii) we have h′2 = 1.

Since the above curve is invariant for the flux defined by (1.6), developing (1.3)
according to the different powers, we obtain for the terms of fifth and fourth degree
after a simplification, the following

P2
∂D

∂x
+ Q2

∂D

∂y
=

k1D

2
, P1

∂D

∂x
+ Q1

∂D

∂y
=

k0D

2
.

Deriving D with respect to t and taking into account the above relations we have

Ḋ = ẋ
∂D

∂x
+ ẏ

∂D

∂y
=

k

2
D + l (2.8)

where l is a linear function.

To prove (i). If h′ ≥ 3, then h′1 ≥ 2 because h′2 = 1, and therefore there are at least
two singular points of the system on the cofactor taking into account multiplicities, that
is l = ak. Then equation (2.8) can be written as Ḋ = k

2 (D+2a) and H = f(D+2a)−2

is a rational first integral of the system.
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To prove (ii). If the two multiple points are cusps, we have f2 = m11D and

P0
∂D

∂x
+ Q0

∂D

∂y
=

m11k1

4
.

Then (2.8) can be written as

Ḋ = ẋ
∂D

∂x
+ ẏ

∂D

∂y
=

k

2

(
D +

m11

2

)
−m11

k0

4
. (2.9)

• If h′1 > 0, there must exist a singular point on the cofactor, and thus D+ m11
2 = 0

is an invariant curve of system (1.6) with cofactor k
2 , and therefore H = f(D +

m11
2 )−2 is a rational first integral of the system.

• If h′1 = 0, then h′ ≤ h′1 + h′2 = 1 and therefore h ≥ 6. But for a curve with
two cusps we have h = 4. Since the maximum number of multiple points on an
irreducible quartic algebraic curve is three, there must be another multiple point
and will be a cusp, too.

2.5 Proof of the main result

Let f = 0 be an irreducible invariant algebraic curve with real coefficients of a quadratic
system (1.6). Suppose that it contains an oval that is a limit cycle of the system. Let
F = 0 be the equation of the curve in the projective plane. Then, from (2.2) one has
h + h′ ≥ 7. The existence of a rational first integral excludes the existence of a limit
cycle. So, from (Theorem 2.5 se must have h′ < 4 and it follows h ≥ 4.

Taking into account Theorem 1.27, a quartic curve can have, at most, one triple
point or three double points.

A. The curve F = 0 has a triple point p

In this case the curve can not have any oval. In case it exists, as p is real we can draw
a straight line containing p and another point q in the bounded region defined by the
oval. This straight line has five common points with the quartic curve, counted with
their multiplicity. From Bézout Theorem, the curve is not irreducible.

B. The curve F = 0 has three double points p1, p2, p3

At least one of the three multiple points must be real because when a curve has a
complex point it has also the conjugated but only 3 points are allowed.

On the other hand h ≥ 4, the genus (1.8) of a curve is never a negative integer, and
taking into account Remark 2.7, the double points can be only cusps or nodes because
the existence of more degenerated points implies the existence of implicit double points,
which forces the genus to be negative. We have the following possibilities:
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B.1. p1 is a cusp and p2 and p3 are nodes.

In this case p1 is a real point and since it is a cusp, its tangent must be real. So,
the conic that contains the points p1, p2, p3, a point q in the bounded region defined
by the oval and is tangent to p1, cuts the curve F = 0 in nine points, which is not
possible from Bezout Theorem if the curve is irreducible.

B.2. p1 and p2 are cusps and p3 is a node.

In this case p1 and p2 can not be real. If these were real, its tangents would be
real too and the conic that contains the points p1, p2, p3, a point q in the bounded
region of the oval, and is tangent to p1 cuts the curve F = 0 in nine points, which is
not possible if the curve is irreducible.

The node p3 can not have real tangents. It can be seen using the same conic now
tangent to p3. And using this conic not tangent to p3 but containing a simple real
point r which does not belong to the oval it follows that the only real points of the
curve F = 0 are p3 and the points of the oval.

From Proposition 2.11, neither p1 nor p2 can be infinite points. So, F = 0 does not
cut the infinity and therefore F4 = D2, where D is a quadratic polinomial irreducible
over the real field.

Without loss of generality we can assume that the local expression of the curve in
the affine plane is

f = m00 + m10x + m01y + m20x
2 + m11xy + m02y

2 + m30x
3+

m21x
2y + m12xy2 + m03y

3 + (x2 + Bxy + Cy2)2,

where B2 − 4C < 0 and C 6= 0.

We can consider p1 = (0 : i : 1), p2 = (0 : −i : 1) and p3 = (1 : 0 : 1). Since p1

and p2 are cusps and p3 is a node, the following expressions must be identically zero.
Notice that the last one means that the tangent of f = 0 at p1 and p2 is double.

f(p1,2) = C2 + m00 −m02 ± (m01 −m03)i, f(p3) = 1 + m00 + m10 + m20 + m30,

∂f

∂x
(p1,2) = m10 −m12 ± (m11 − 2BC)i,

∂f

∂x
(p3) = 4 + m10 + 2 m20 + 3 m30,

∂f

∂y
(p1,2) = m01 − 3m03 ± 2(m02 − 2C2)i,

∂f

∂y
(p3) = 2B + m01 + m11 + m21,

(
∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂xy

)2
)

(p1,2) = −12B2C2+48C3−4B2m02−8Cm02+12BCm11−m2
11

+4m2
12−24C2m20+4m02m20−12m03m21±4(3B2m03+6Cm03−6BCm12+m11m12−

3m03m20 + 6C2m21 −m02m21)i.

We obtain m10 = m12 = 2 − 2C2 + m30, m20 = −3 + C2 − 2m30, m11 = 2BC,
m02 = 2m00 = 2C2, m21 = −2B(1 + C), m01 = m03 = 0. Then the last expression
can be written as

(
∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂xy

)2
)

(p1,2) = 4(2 + 2C + m30)(2− 2C + 4C2 + m30)
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±16BC(2 + 2C + m30)i.

If 2+2C+m30 = 0, then f = (C−x−Cx+x2+Bxy+Cy2)2 and is not irreducible.
So the only possibility is 2− 2C + 4C2 + m30 = 0 and we have m30 = −2 + 2C − 4C2.
Also, since C 6= 0, it must be verified that B = 0. In this case f depends only on even
powers of y. So, if there is any oval for f = 0 it is symmetrical with respect to the axis
y = 0 and there must be three intersection points of the curve f = 0 with that axis:
the points of the oval and p3. In fact,

f(x, 0) = (−1 + x)2(C2 + 2Cx− 4C2x + x2).

The first factor corresponds to p3 and the second one must have two real roots. The
roots are x = −C+2C2±2

√
(−1 + C)C3. Thus, a necessary condition for the existence

of an oval is C > 1.

Imposing to f = 0 to be invariant for (1.6) with cofactor mx + ny + p, we define

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− (mx + ny + p)f.

The coefficients Mij must be zero.

In order five we have

M50 = 4a20 −m,
M41 = 4a11 + 4b20C − n,
M32 = 2(2a02 + 2a20C + 2b11C − Cm),
M23 = 6a02B + 2a11B

2 + 2B2b02 + 4a11C + 2a20BC + 4b02C + 6Bb11C + 4b20C
2−

2BCm−B2n− 2Cn,
M14 = C(4a02 + 4b11C − Cm),
M05 = C2(4b02 − n).

We obtain m = 4a20, n = 4b02, a11 = b02 − b20C and a02 = (a20 − b11)C.

The coefficients of M in order four are

M40 = 4a10 + 2a20 − 2a20C + 4a20C
2 − p,

M31 = 2(2a01 + b02 − b02C + 2b10C + 5b20C + 2b02C
2 − 9b20C

2 + 6b20C
3),

M22 = 2C(2a10 − 6a20 + 2b01 + 5b11 + 12a20C − 9b11C − 6a20C
2 + 6b11C

2 − p),
M13 = 2C(2a01 − b02 + 3b02C + 2b10C − b20C + 3b20C

2),
M04 = C2(2a20 + 4b01 − 2b11 − 6a20C + 6b11C − p).

We obtain p = 1
2 (8b01 − b11 + 3b11C), a10 = 1

4 (4b01 − 2b11 + 3b11C − 3b11C
2),

a01 = C(−b10 − b20 + 3b20C), b02 = −3b20C, a20 = 3
4b11.

In order three we have

M30 = 1
2 (8a00 + 4b01 + b11 − 4b01C + 5b11C + 8b01C

2 − 7b11C
2 − 15b11C

3 + 18b11C
4),

M21 = 2C(2b00 + 5b10 + 5b20 − 9b10C − 18b20C + 6b10C
2 + 33b20C

2 − 18b20C
3),

M12 = 1
2C(8a00 − 4b01 − b11 + 12b01C − 3b11C − 3b11C

2 + 9b11C
3),

M03 = 2C2(2b00 − b10 − b20 + 3b10C + 12b20C − 9b20C
2).

We obtain a00 = 3
4b11C

2(2+3C), b00 = −3b20C, b01 = −1
4 b11(1+3C)2, b10 = b20(−1+

3C).
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In order two,

M20 =
3
2
b11(1− C)C(−1 + 2C)(1 + 3C)2,

from where b11 = 0 since C > 1. Then, by making the time rescaling dt
dτ = 1

b20
the

system is
ẋ = −4Cxy,
ẏ = −3C − x + 3Cx + x2 − 3Cy2,

and then the cofactor is k = −12Cy. Therefore, H = f
x3 is a rational first integral and

there is not any limit cycle.

B.3. p1, p2 and p3 are cusps.

One of these cusps must be real and so we can use the argument used in B.1.

C. The curve F = 0 has two double points p1, p2

Taking into account that h ≥ 4, this two points can not be nodes or cusps and someone
must be more degenerated. On the other hand, from Remark 2.7 and the fact that
the genus computed by (1.8) can not be a negative integer, follows that we have two
explicit double points but we can not have more than three double points (explicit or
implicit). So, p1 or p2 must be a node or a cusp. In this case, we have the following
possibilities:

C.1. p1 is a node and p2 is a tacnode.

Notice that in this case h = 4 and h′ = 3.

The points p1 and p2 must be real points because the curve has real coefficients,
and can not be complex conjugated because its intersection index is different. Since
p2 is real a real tacnode of a curve with real coefficients , it has a double tangent with
real coefficients. Hence, a real tangent.

The tangents to p1 can not be real. If these was real, the conic that contains p1, p2,
another point q in the bounded region of the oval and is tangent to p1 and p2 cuts the
curve F = 0 in nine points from Lemma 2.9 (counting their multiplicities). Therefore
the curve would not be irreducible from Bézout’s Theorem.

Using the same argument with the conic not tangent to p1 but containing a simple
real point of F = 0 it follows that the only real points of F = 0 are p1, p2 and the
points of the oval.

One of the points p1 and p2 must be in the infinity. If not, the points in the infinity
would have to be simple and complex since the only real points of the curve are p1, p2

and the points of the oval. Then f4 = D2 where D is an homogeneous polynomial of
degree two irreducible over the real field, and from Lemma 2.10 it follows, now, that
the system is integrable.

But only p2 can be in the infinity. p1 can not be there because it has complex
tangents and the infinite straight line is invariant. If p2 is in the infinity and there are
some other, these must be complex conjugated, so there are three points in the infinity.
Then we have h′2 = 0 from Lemma 2.6 and since h′ = 3 it follows h′1 ≥ 3 from (2.3),
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which is not possible. On the other hand, since h′ = 3, from Proposition 2.11 p1 and
p2 can not be both over the infinite straight line.

Let us consider p1 = (0 : 0 : 1) with complex tangents and p2 = (0 : 1 : 0). Since
p2 is a tacnode, the affine equation of the curve is

f = ax4 + x2(bx + cy) + x2 + y2,

which corresponds to case (a) of Theorem 2.1.

C.2. p1 is a node and p2 is a ramphoid cusp.

In this case p1 and p2 must be real and then the tangent to p2 is real too. The
conic that contains these points, a point q in the bounded region defined by the oval
and satisfies Lemma 2.9(iii) for p2, cuts the curve F = 0 in nine points which is not
possible if the curve is irreducible.

C.3. p1 and p2 are cusps.

By means of a projectivity we suppose that the cusps are p1 = (1 : 0 : 0) and
p2 = (0 : 1 : 0) and the projective equation of the curve F = 0 is defined by

F = X2Y 2 + λ1XY Z2 + (λ2X + λ3Y )Z3 + λ4Z
4.

If λ2 = 0 or λ3 = 0 then p1 or p2 are tacnodes, respectively. The projective differential
equation is defined by

L = L2 + L1Z + L0Z
2, M = M2 + M1Z + M0Z

2, N = N2 + N1Z + N0Z
2.

We can suppose that the cofactor of F = 0 is zero.

Since p1 and p2 are singular points of the projective differential equation, it is
verified that

(LY −MX)(1, 0, 0) = −M2(1, 0, 0) = 0,
(LZ −NX)(1, 0, 0) = −N2(1, 0, 0) = 0,
(MZ −NY )(1, 0, 0) = 0,

(LY −MX)(0, 1, 0) = L2(0, 1, 0) = 0,
(LZ −NX)(0, 1, 0) = 0,
(MZ −NY )(0, 1, 0) = −N2(0, 1, 0) = 0.

Therefore, N2 = a0XY , L2 = (a1X + a2Y )X and M2 = (a3X + a4Y )Y . We consider
L1 = b1X + b2Y , M1 = b3X + b4Y and N1 = b5X + b6Y .

Since F = 0 is an invariant curve of the projective differential equation we obtain
the following relations corresponding to the coefficients of the different powers of Z.

2XY 2L2 + 2X2Y M2 = 0,
2XY 2L1 + 2X2Y M1 + 2λ1XY N2 = 0,
2XY 2L0 + 2X2Y M0 + λ1Y N2 + λ1XM2 + 3(λ2X + λ3Y )N2 + 2λ1XY N2 = 0.

That is
2Y L2 + 2XM2 = 0,
2Y L1 + 2XM1 + 2λ1N2 = 0,
2Y L0 + 2XM0 + 3(λ2X + λ3Y )a0 + 2λ1N2 = 0.

(2.10)

In particular, from the first equation of (2.10) we obtain

a1 + a3 = 0, a2 + a4 = 0. (2.11)
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From (2.10) it follows that

Y L + XM + λ1ZN = λ1Z
3N0 − 3

2
(λ2X + λ3Y )a0Z

2.

In other words, if we define G = XY + λ1
2 Z2, we have

∂G

∂X
L +

∂G

∂Y
M +

∂G

∂Z
N = Z2r, (2.12)

where r = λ1ZN0 − 3
2 (λ2X + λ3Y )a0.

When a curve has two cusps, we have h = 4, and thus h′ =
∑

p Ip(L,M,N) ≥ 3.

• If {L = 0}∩{M = 0}∩{N = 0}∩{Z = 0} = ∅ then Ip(r, L, M,N) = Ip(L,M, N)
for all p from (2.12). Then
∑

p

Ip(r,P,Q,R) =
∑

p

Ip(r, LY−MX, LZ−NX,MZ−NY ) ≥
∑

p

Ip(r, L, M,N) =

∑
p

Ip(L, M, N) ≥ 3

Thus r is an invariant straight line from Theorem 2.3, that contains the singular
points of the differential equation. There is never a foci over an invariant straight
line. So, there is not any limit cycle in this case .

• If q belongs to {L = 0} ∩ {M = 0} ∩ {N = 0} ∩ {Z = 0} with q 6= p1 and q 6= p2,
then the straight line Z = 0, that contains p1, p2, and q is invariant. In this case
a0 = 0 and

∂G

∂X
L +

∂G

∂Y
M +

∂G

∂Z
N = λ1N0Z

3.

Therefore, if λ1N0 6= 0 all the singular points that are not over the curve F = 0
are over the line Z = 0, which is invariant. In particular, the foci of a limit cycle
belongs to Z = 0 which is not possible. If λ1N0 = 0, we obtain H = F

G2 as a zero
degree homogeneous first integral.

• Suppose that q belongs to {L = 0} ∩ {M = 0} ∩ {N = 0} ∩ {Z = 0} with q = p1

or q = p2. We can consider, without loss of generality that q = p1, and then from
L(1, 0, 0) = 0 we obtain a1 = 0, and from (2.11) a3 = 0

Taking local coordinates at p1, the differential equation is (N − ZL)dy − (M −
Y L)dz = 0. Taking into account (2.11), it can be written as a differential system
in the form

ẋ = M − yL = b3z + . . . ,
ẏ = N − zL = b5z + . . . .

(2.13)

And the curve in local coordinates at p1 is f := y2 + λ1yz2 + λ2z
3 + λ3yz3 +

λ4z
4 = 0. Imposing to it to be an invariant curve of (2.13) with cofactor k =

k0 + k1y + k2z, we obtain

(2y + λ1z
2 + . . .)(b3z + . . .) + (2λ1yz + 3λ2z

2 + . . .)(b5z + . . .) =

(k0 + k1y + k2z)(y2 + λ1yz2 + λ2z
3 + . . .).
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Each one of the coefficients of the above expression must be zero. For the coeffi-
cients of y2, yz and z3 we obtain

k = 0, 2b3 = 0, λ1b3 + 3λ2b5 − λ2k0 = 0,

from where
b3 = b5 = 0, (2.14)

since λ2 6= 0.

Taking local coordinates in p2 for the differential equation and the curve, and
using the same argument as used for p1 we obtain

b2 = 0, b6 =
a2

3
, (2.15)

Summarizing, from (2.11), (2.14) and (2.15) we obtain

L = a1XY + b1XZ − L0Z
2,

M = −a2Y
2 + b4Y Z + M0Z

2,
N = a0XY + a2

3 Y Z + N0Z
2.

Since F = 0 is an invariant algebraic projective curve of the above system with
cofactor zero, the function

M =
∑

i+j+k=5

MijkXiY jZk :=
∂F

∂X
L +

∂F

∂Y
M +

∂F

∂Z
N,

must be identically zero.

M005 = −L0λ2 + λ3M0 + 4λ4N0,
M014 = 1

3 (−3L0λ1 + 3b4λ3 + 4a2λ4 + 9λ3N0),
M104 = b1λ2 + λ1M0 + 3λ2N0,
M113 = b1λ1 + b4λ1 + 2a2λ2 + 4a0λ4 + 2λ1N0,
M122 = 1

3 (−6L0 + 2a2λ1 + 9a0λ3),
M212 = 3a0λ2 + 2M0,
M221 = 2(b1 + b4 + a0λ1).

The above expressions are zero non trivially if

det
(∂[M005,M014, M113,M122,M212,M221]

∂[a2, b1, L0, b4,M0, a0, N0]

)
=

32
3

λ2Ω,

where Ω = λ3
1λ2λ3 + 27λ2

2λ
2
3 − λ4

1λ4 − 36λ1λ2λ3λ4 + 8λ2
1λ

2
4 − 16λ3

4.

When λ2 = 0 p1 is a tacnode and when Ω = 0 the curve F = 0 has another
multiple point against the hypotesis

Therefore, there are not limit cycles in this case.

C.4. p1 is a cusp and p2 is a tacnode.

In this case the double points are real and their tangents are real too. The conic
that contains p1 p2, a point q in the bounded region defined by the oval and is tangent
to p1 and p2, cuts F = 0 in nine points which is not possible if the curve is irreducible.

C.5. p1 is a cusp and p2 is a ramphoid cusp.

The above argument can be used again and this case is not possible.
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D. The curve F = 0 has one double point p1

Taking into account that h′ ≤ 3 because otherwise there exists a rational first integral,
follows that h ≥ 4. We distinguish two cases:

D.1. p1 is ramphoid cusp.

The point p1 is a real point, and since Ip1 = 4, f4 can not have three different divi-
sors because otherwise h′2 = 0 from Lemma 2.6(iii). Then h′1 ≥ 3 which is not possible
because the system is quadratic. We will distinguish two important possibilities

D.1.1. Let the multiple point be finite.

Let us consider p1 = (0 : 0 : 1) a ramphoid cusp. If y is the tangent to the curve
on p1, then we have, since Ip1 = 4,

f = y2 + yf2 + f4,

where y divides f4 − 1
4f2

2 and f4 can take one of the following forms: f4 = d2
1d

2
2,

f4 = d3
1d2 or f4 = kd4

1.

D.1.1.1. f4 = d2
1d

2
2. Since p1 is the unique multiple point of the curve, there are

not multiple points of the curve in the infinity. On the other hand, h′ ≥ 3 and f4 has
two divisors with both multiplicities strictly greater than one. From Lemma 2.10, the
system has a rational first integral.

D.1.1.2. f4 = d3
1d2. The general form of the curve is

f = y2 + y(ax2 + bxy + cy2) + x3(Ax + By).

Since y divides f4− 1
4f2

2 it follows A = a2

4 . We will consider c 6= 0 because if not there
would be a double point in the infinity, a 6= 0 since the curve must be irreducible, and
B 6= 0. The case B = 0 will be studied in D.1.1.3.

By making the change x = X/(Bc)1/3, y = Y/c we can consider

f = y2 + y(ax2 + bxy + y2) + x3(
a2

4
x + y).

Imposing to f = 0 to be an invariant curve of (1.6) with cofactor mx + ny + p,
then a00 = b00 = 0 since p1 is a singular point, and we define

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− (mx + ny + p)f.

We will study the vanishing of the coefficients Mij .

In order five,

M50 = 1
4 (4a2a20 + 4b20 − a2m),

M41 = 1
4 (4a2a11 + 12a20 + 4b11 − 4m− a2n),

M32 = a2a02 + 3a11 + b02 − n,
M23 = 3a02,
M14 = M05 = 0,
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from where we can write a02 = 0, n = 3a11 + b02, m = 1
4 (a2a11 +12a20− a2b02 +4b11),

b20 = 1
16a2(a2a11 − 4a20 − a2b02 + 4b11).

In order four we have

M40 = 1
16 (16a2a10 + a5a11 − 4a3a20 − a5b02 + 16b10 + 4a3b11 − 4a2p),

M31 = 1
8 (8a2a01 + 24a10 − 2a3a11 − 8aa20 + a4a11b− 4a2a20b + 8b01 + 2a3b02−

a4bb02 + 4a2bb11 − 8p),
M22 = 1

16 (48a01 − 16aa11 + 3a4a11 − 12a2a20 − 4a2a11b− 32a20b− 3a4b02 + 4a2bb02

+12a2b11 + 16bb11),
M13 = 1

4 (−a2a11 − 12a20 − 8a11b + a2b02 + 4bb02 + 8b11),
M04 = −3a11 + 2b02.

Then we obtain

p = 1
72 (216a10 + 30a3a11 + 3a6a11 + 12aa11b− 10a4a11b− 2a2a11b

2 + 72b01 − 48ab11

−6a4b11 + 20a2bb11),
b02 = 3

2a11,
a20 = 1

24 (a2a11 − 4a11b + 16b11),
a01 = 1

72 (24aa11 + 3a4a11 − 4a2a11b− 8a11b
2 − 6a2b11 + 8bb11),

b10 = 1
288a2(−72a10 + 42a3a11 + 3a6a11 − 10a4a11b− 2a2a11b

2 + 72b01 − 72ab11−
6a4b11 + 20a2bb11),

In order three,

M30 = 1
288a3 (−72 a10 + 42 a3 a11 + 3 a6 a11 − 10 a4 a11 b− 2 a2 a11 b2 + 72 b01−

72 a b11 − 6 a4 b11 + 20 a2 b b11,
M21 = 1

144a (−144 a10 − 72 a3 a11 − 6 a6 a11 − 72 a a10 b− 12 a a11 b + 62 a4 a11 b+
3 a7 a11 b + 4 a2 a11 b2 − 10 a5 a11 b2 − 2 a3 a11 b3 + 72 a b b01 + 120 a b11+
12 a4 b11 − 112 a2 b b11 − 6 a5 b b11 + 20 a3 b2 b11),

M12 = 1
288 (−216 a2 a10 + 192 a2 a11 + 150 a5 a11 + 9 a8 a11 − 576 a10 b + 144 a11 b−

152 a3 a11 b− 42 a6 a11 b− 112 a a11 b2 + 34 a4 a11 b2 + 8 a2 a11 b3+
216 a2 b01 + 288 b b01 − 288 b11 − 264 a3 b11 − 18 a6 b11 + 256 a b b11+
84 a4 b b11 − 80 a2 b2 b11),

M03 = 1
72 (−216 a10 − 108 a11 − 30 a3 a11 − 3 a6 a11 + 12 a a11 b + 13 a4 a11 b−

2 a2 a11 b2 − 8 a11 b3 + 144 b01 + 48 a b11 + 6 a4 b11 − 26 a2 b b11 + 8 b2 b11).

Considering the system of equations given by M30 = M21 = M12 = M03 = 0, with
respect to a10, a11, b01 and b11, we will look for a non trivial solution because for the
trivial one we have P = Q = 0.

det
(∂[M30,M21,M12,M03]

∂[a10, a11, b01, b11]

)
=

1
576

a4(−2+ab)(−1+ab)(108+8a3−36ab−a2b2+4b3)

and this expression must be zero to get a non trivial solution.

If −2 + ab = 0 or 108 + 8a3 − 36ab− a2b2 + 4b3 = 0 there exists another multiple
point, and so, since a 6= 0 it must happen that −1 + ab = 0. In this case if we take
b = 1

a , then we obtain the system of Theorem 2.1(c) by making the change x = aX,
and the parameter is a3

2 .

D.1.1.3. f4 = kd4
1. By making a linear change we can consider

f = y2 + y(ax2 + bxy + cy2) + kx4.
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Since Ip1 = 4, y divides f4 − 1
4f2

2 , and then k = 1
4a2.

By making the rescaling x = X/A, y = Y/B with A = −b
2 and B = 3b2

2(2b2−3ac) we

obtain case (b) of Theorem 2.1 with a factor of proportionality 27b6c2

2(2b2−3ac) and where
the parameter is 3ac

2b2−3ac .

If 2b2 − 3ac = 0 we obtain f = 24x4 + 24x2y + 6y2 + 6xy2 + y3, which does not
have any oval.

D.1.2. Let the multiple point be infinite.

We can consider p1 = (0 : 1 : 0) the multiple point. Then f = f4+xg2+f2+f1+f0,
where f4 can not have three different divisors and after linear changes of variables can
be written in one of the following forms: f4 = x2y2, f4 = x3y or f4 = αx4.

D.1.2.1. f4 = x2y2. In this case,

f = x2y2 + x(ax2 + bxy + cy2) + m20x
2 + m11xy + m02y

2 + m10x + m01y + m00.

Notice that we can consider b = c = 0 by making the translation x = X− c
2 , y = Y − b

2 .
Since Ip1 = 4 and the tangent of f = 0 on p1 is x, we obtain m02 = m01 = 0 and
m00 = m2

11
4 and then

f = (
m11

2
+ xy)2 + m10x + m20x

2 + ax3.

Doing the change x = m11X we can take m11 = 1 since m11 must not be zero because
if not the curve would be reducible. Since the branches of f = 0 are defined by
−1
2x ± 1

x

√
−x(m10 + m20x + ax2), a must not be zero because if not the curve would

not have ovals.

Imposing to f = 0 to be invariant along the flow defined by (1.6), with cofactor
mx + ny + p, we define

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− (mx + ny + p)f,

and we will study the vanishing of the coefficients Mij .

The coefficients of the terms of order five are:

M50 = 0,
M41 = 2b20,
M32 = 2a20 + 2b11 −m,
M23 = 2a11 + 2b02 − n,
M14 = 2a02,
M05 = 0,

from where b20 = a02 = 0, m = 2(a20 + b11), n = 2(a11 + b02).

For the coefficients of the terms of fourth order of M we have

M40 = a(a20 − 2b11),
M31 = aa11 − 2ab02 + 2b10,
M22 = 2a10 + 2b01 − p,
M13 = 2a01,
M04 = 0,
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and then a20 = 2b11, b10 = 1
2 (2ab02 − aa11), p = 2(a10 + b01), a01 = 0.

In order three we have

M30 = aa10 − 2ab01 − b11m20,
M21 = 2b00 − 3b11 − 2b02m20,
M12 = 2a00 − a11 − b02,
M03 = 0,

and from the vanishing of these coefficients we obtain a10 = 2
a (ab01 + b11m20), b00 =

1
2 (3b11 + 2b02m20), a00 = 1

2 (a11 + b02).

The rest of coefficients of M are

M20 = 1
2 (−8b11m10 + 2aa11 + 5ab02 − 4b01m20),

M11 = −1
a (aa11m10 + 2b02m10 + 3ab01 + 2b11m20),

M02 = 0,
M10 = 1

a (−4ab01m10 − 2b11m10m20 + aa11m20 + 2ab02m20),
M01 = 0,
M00 = 1

2a (aa11m10 + ab02m10 − 3ab01 − 2b11m20).

Let us consider

det
(∂[M20,M11,M10,M00]

∂[a11, b01, b11, b02]

)
=

2
a
m10(m2

10 +2 m20)(4am10 −m2
20).

• If m10 = 0 the branches of f = 0 are defined by y = −1
2x ±

√−m20 − ax which
does not define an oval.

• If 4am10 − m2
20 = 0 the branches of f = 0 are defined by y = −1

2x ± m20+2ax
2
√−ax

,
which does not define any oval.

• If m2
10 + m20 = 0 and m10 6= 0, we obtain m20 = −m2

10. Then from M20 = 0 we
obtain b02 = 2

5a (−2b01m
2
10 + 4b11m10 − aa11), and then from M11 = 0 we have

b11 = 1
6m2

10
8b01m

3
10−aa11m10−15ab01. Now, since M10 = −b01m10 and m10 6= 0

it follows b01 = 0.

Taking a = km3
10, and by making the change of variables x = X/m10, y = m10Y ,

(1.6) takes the form

ẋ =
m10

6
(1 + 2x− 2kx2 + 6xy), ẏ =

m10

12
(8− 3k − 14kx− 2kxy − 8y2),

the curve is f = 1
4 + x− x2 + kx3 + xy + x2y2, with cofactor m10

3 (2− 3kx + 2y).

The branches of f = 0 are defined by y = −1
2x ±

√−1+x−kx2√
x

and there exists an
oval if 1− 4k > 0, that is k < 1

4 . This case corresponds to the new system, case
(d) of Theorem 2.1.

D.1.2.2. f4 = x3y. In this case

f = x3y + x(ax2 + bxy + cy2) + m20x
2 + m11xy + m02y

2 + m10x + m01y + m00.

If we consider the projectivization of the curve we see that the tangent of the curve on
p1 is Z and the terms of order three are X3 + bX2Z +m20X

2Z +m01Z
3. Since p1 is a
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ramphoid cusp, this case is not allowed because Z does not divide the terms of order
three.

D.1.2.3. f4 = αx4. In this case

f = αx4 + x(ax2 + bxy + cy2) + m20x
2 + m11xy + m02y

2 + m10x + m01y + m00.

Since p1 is a ramphoid cusp and the tangent of the curve on this point is Z we obtain
c = 0, m02 = 1 and α = b2

4 6= 0. The change of variables x = X + A, y = Y + kX + B,
with A = −1

b2 (a + bk), B = −1
2b3 (a2 + 2abk + b2k2 + b3m01 − abm11 − b2km11), and

k =
−(−4 a2−b3m01+a b m11+2 b2 m20)

3 b (−2 a+b m11)
vanishes the coefficients of x3, y and x2. Notice

that k is well defined since the denominator never vanishes, because if −2 a+bm11 = 0
then Ip1 = 5 which is studied later. So we can consider, making a rescaling of the
variable x that m11 = 1, and then f = b2

4 x4 + bx2y + y2 + xy + m10x + m00. Let us
propose f as a particular solution of (1.6) with cofactor cf = mx + ny + p and define

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− (mx + ny + p)f,

which must be identically zero and so we will study the vanishing of the coefficients
Mij .

In order five,
M50 = b2

4 (4a20 −m),
M41 = b2

4 (4a11 − n), M32 = a02b
2,

M23 = M14 = M05 = 0,

from where m = 4a20, n = 4a11 and a02 = 0 since b 6= 0.

In order four, the coefficients are

M40 = b
4 (4 a10 b + 4 b20 − b p),

M31 = b (−2 a20 + a01 b + b11),
M22 = b (−2 a11 + b02) ,
M13 = M04 = 0,

from where b20 = b
4 (p− 4a10), b11 = 2a20 − a01b and b02 = 2a11.

For the coefficients of the terms of third order, we have

M30 = b
4 (−4 a10 + 4 a00 b + 4 b10 + p),

M21 = 1
2 (−2a20 − 2 a01 b + 2 b b01 − b p),

M12 = −a11,
M03 = 0,

from where p = 4(a10−a00b−b10), a11 = 0 and a20 = b(−a01−2a10+2a00b+b01+2b10).

In order two,

M20 = b b00 + b10 + 3 a01 bm10 + 6 a10 bm10 − 6 a00 b2 m10 − 3 b b01 m10 − 6 b b10 m10,
M11 = −3 a10 + 6 a00 b + b01 + 6 b10,
M02 = a01 − 4 a10 + 4 a00 b + 2 b01 + 4 b10,
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from where a01 = 2 (−a10 + 4 a00 b + 4 b10), b01 = 3 (a10 − 2 a00 b− 2 b10), and b00 =
1
b (−b10 + 9 a10 bm10 − 36 a00 b2 m10 − 36 b b10 m10).

For the lower order terms, the coefficients to vanish are the following ones:

M10 = 1
b (−b10 − 12 a10 b2 m00 + 48 a00 b3 m00 + 48 b2 b10 m00 + 6 a10 bm10−

32 a00 b2 m10 − 32 b b10 m10),
M01 = 1

b (a00 b− 2 b10 + 16 a10 bm10 − 64 a00 b2 m10 − 64 b b10 m10),
M00 = −4 a10 m00 + 4 a00 bm00 + 4 b10 m00 + a00 m10).

We can solve non trivially a00, b10 and a10 from M10 = M01 = M00 = 0n if

det
(∂[M10,M01,M00]

∂[a00, b10, a10]

)
=

4
b
(−m00 + 108b2m2

00 − 36bm00m10 −m2
10 − 32bm3

10) = 0.

The vanishing of this determinant is a condition for the existence of another multiple
point, too. By hypothesis, this is not allowed.

D.2. p1 is a double point with Ip1 ≥ 5.

The only real points are p1 and the points that are on the oval. If r is another
real point, the conic that contains r, a point q in the bounded region of the oval and
satisfies Lemma 2.9(iv) on p1, cuts the quartic with index greater or equal than six in
p1, index one in r, and cuts the oval in two points, which is not possible from Bézout’s
Theorem if the curve is irreducible.

D.2.1. Let p1 be a finite point. We can consider p1 = (0 : 0 : 1) and that
the tangent to the curve in p1 is x. Then from Lemma 2.8, in local coordinates
f = x2 + xf2 + f4 and x2 divides f4 − 1

4f2
2 .

Since there are not real points at the infinity we have f4 = λD2 where D is a
quadratic polynomial irreducible over the real field. By means of linear changes we can
take D = x2 + y2 and λ = 1 or λ = −1.

Moreover, since x2 divides f4 − 1
4f2

2 , it follows that λD2 − 1
4f2

2 = Ax2 for some
polynomial A of degree 2. In particular, λ 6= −1 because otherwise the decomposition
is not possible.

Since Ip ≥ 5 it follows that x2 divides D2− 1
4f2

2 = (D− 1
2f2)(D+ 1

2f2). If x divides
both factors of the last expression, then x divides D, which is not allowed. Thus, the
possibilities are f2 = ±2D + 2cx2 for some constant c. Then the curve can be written
as f = (x + ±D)2 + 2cx3. When the minus appears, we change the sign of x and c,
and therefore, the curve is

f = (x + x2 + y2)2 + cx3.

If c is positive, any circle x2 + y2 = ε2 cuts the curve in p(x) = (x + ε2)2 + 2cx3.
Notice that p(0) = ε4 and p(−ε2) = −2cε6, from where there exists a real root of
p(x) = 0 in (−ε2, 0). Therefore, there are points of f = 0 in any neighborhood of the
origin, that is, the origin is not isolated. Since the only real points of f = 0 are p1 and
the points of the oval, then p1 must belong to the oval that will not be a limit cycle
because the point is singular.

Suppose that c is negative. In this case

f = (x + x2 + y2)2 − a2x3.
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Since f = 0 is an invariant algebraic curve for (1.6) with cofactor k = mx+ny +p.

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− (mx + ny + p)f.

And the coefficients Mij must be zero.

In order five we have

M50 = 4a20 −m,
M41 = 4a11 + 4b20 − n,
M32 = 2(2a02 + 2a20 + 2b11 −m),
M23 = 2(2a11 + 2b02 + 2b20 − n),
M14 = 4a02 + 4b11 −m,
M05 = 4b02 − n.

We obtain m = 4(a02 + b11), n = b02 = 0, a20 = a02 + b11, b02 = a11.

In order four,

M40 = −2a02 + a2a02 + 4a10 − 2b11 + a2b11 − p,
M31 = 4a01 − 2a11 + a2a11 + 4b10,
M22 = −3a2a02 + 4a10 + 4b01 − 2b11 − 2p,
M13 = 2(2a01 − a11 + 2b10),
M04 = 2a02 + 4b01 − p.

We obtain a11 = 0, a01 = −b10, p = 2(a02 +2b01), a10 = 1
4 (−4a02 +3a2a02 +4b01),

b11 = −4a02.

In order three we have,

M30 = 1
4 (−16a02 + 38a2a02 − 9a4a02 − 8b01 + 4a2b01),

M21 = (−2 + 3a2)b10,
M12 = 1

2 (−8a02 + 3a2a02 − 4b01),
M03 = −2b10.

We obtain b10 = 0, b01 = 1
4 (−8 + 3a2)a02 and now we have M30 = 3

2 (2− a)a2(2 +
a)a02.

• If a02 = 0 we have P = Q = 0.

• If a = 2 or a = −2, after a time rescaling, the system is

ẋ = 3x− 3x2 + y2,
ẏ = (1− 4x)y.

It is easy to check that the point (1, 0) is a finite singular point that is also over
the curve f = 0 and must be over the oval because the only real points are the
points on the oval and p1. Therefore, there are not limit cycles.
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Therefore, there are not limit cycles.

D.2.2 Let p1 be an infinite point. We can take p1 = (1 : 0 : 0).

We can consider that the tangent to the curve at p1 is z . Using the argument of
D.2.1. follows that locally the curve is given by g = (z + z2 + y2)2 + cz3. Thus, the
global projective curve is F = (XZ + Z2 + Y 2)2 + cXZ3, and in the affine plane the
curve is

f = (1 + x + y2)2 + cx.

If c is positive, using the above argument follows again that the multiple point can
not be isolated. Thus, p1 must belong to the oval because the only real points are p1

and the points of the oval. We conclude that the oval can not be a limit cycle in this
case.

Suppose that c is negative. In this case we can write

f = (1 + x + y2)2 − a2x.

The branches of f = 0 are given by

x1,2 =
1
2
(−2 + a2 − 2 y2 ± a

√
−4 + a2 − 4 y2).

So, in order to exist a real oval, a must not be zero and the polynomial inside the root
must have two different real roots. In particular, a 6= 2 and a 6= −2.

Impose to f = 0 to be invariant with cofactor k = mx + ny + p and define

M =
5∑

i+j=0

Mijx
iyj :=

∂f

∂x
P +

∂f

∂y
Q− kf,

that must be identically zero.

The coefficients in order five are

M50 = M41 = M32 = 0,
M23 = 4b20,
M14 = 4b11 −m,
M05 = 4b02 − n.

We obtain b20 = 0, m = 4b11 and n = 4b02.

In order four,
M40 = M31 = 0,
M22 = 2(a20 − 2b11),
M13 = 2(a11 − 2b02 + 2b10),
M04 = 2a02 + 4b01 − p.

We obtain a20 = 2b11, a11 = 2b02 − 2b10 and p = 2a02 + 4b01.

In order three,
M30 = M21 = 0,
M12 = −2(a02 − a10 + 2b01 + 2b11),
M03 = 2(a01 + 2b00 − 2b02),
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from where a02 = a10 − 2b01 − 2b11 and a01 = −2b00 + 2b02.

Then, in order two the coefficients are

M20 = 2a2b11,
M11 = 2a2(b02 + b10),
M02 = 2a00 − 2a10 − a2a10 + 2a2b01 + 4b11 + 2a2b11.

Thus, b11 = 0, b02 = −b10, and a00 = 1
2 (2a10 + a2a10 − 2a2b01).

In order one,
M10 = 2a2(a10 − b01),
M01 = 2a2(b00 + b10)

We obtain a10 = b01 and b00 = −b10.

Finally, the coefficient in order one is M00 = 1
2 (−2 + a)a2(2 + a)b01, from where

b01 = 0. In this case we have P = Q = 0. So, we conclude that the curve is not
invariant for the flow defined by a quadratic system. Therefore, there are not limit
cycles in this case.
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Chapter 3

Polynomial inverse integrating
factors in some quadratic
systems

In this chapter we consider planar quadratic polynomial vector fields that can have
limit cycles in families (I), (II) and (III) according to the Chinese classification. We
study the existence polynomial inverse integrating factors and algebraic limit cycles
of arbitrary degree for some of these systems in order to determinate the existence of
limit cycles, algebraic or not.

3.1 Introduction

In Ye Yian-Qian [53] are classified quadratic systems that can have limit cycles in the
following three families

ẋ = δx− y + `x2 + mxy + ny2 , ẏ = x(1 + ax + by) ,

according to: family (I) if a = b = 0; family (II) if a 6= 0 and b = 0; family (III) if
b 6= 0.

In the next sections, we study the inverse integrating factors for systems (I),
(II)n=0, (III)a=0 and (III)n=0.
Remark 3.1. Define ∆ := xQ2 − yP2 for these families, where P2 and Q2 are the
homogeneous parts of degree 2 in ẋ and ẏ, respectively. It is known that ∆ = 0
represents the singular points of the system that belong to the infinite straight line
once the phase portrait has been compacted. In Family (I), ∆ = yT1; in Family
(II)n=0, ∆ = xT2; in Family (III)a=0, ∆ = yT3 and in Family (III)n=0, ∆ = xT4,
where Ti are polynomials of degree 2. Each ∆i appeared in the following theorems is
the discriminant of the equation Ti = 0, for i = 1, . . . , 4. In order to make possible
the integration process developed in Theorem 3.2 we will consider, in certain cases,
∆i < 0. Therefore, the cases more widely studied are those in which the line at infinity
contains just one or two real infinite singular points.

55
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The preliminary results we use in this chapter work for polynomial differential
systems of arbitrary degree. Let us consider a planar polynomial differential system of
the form

ẋ = P (x, y) =
s∑

k=0

Pk(x, y) , ẏ = Q(x, y) =
s∑

k=0

Qk(x, y) , (3.1)

in which P , Q ∈ R[x, y] are relative prime polynomials in the variables x and y and
Pk and Qk are homogeneous polynomials of degree k. Throughout this chapter we
will denote by s = max{deg P, deg Q} the degree of system (3.1) in order to keep the
parameter m for the coefficient of xy in the Chinese classification, as it is habitual.
The degree of invariant algebraic curves will be denoted by d.

One interesting question to ask is whether some invariant curve of system (3.1) is
algebraic, i.e. can be described implicitly by f(x, y) = 0 where f is a polynomial. In
general, the answer is not easy but it is very interesting because it is known that the ex-
istence of invariant algebraic curves can be used to prove the existence or nonexistence
of limit cycles of system (3.1). In short, invariant algebraic curves, first integrals and
inverse integrating factors have a narrow relationship for planar polynomial systems
like it is clearly shown in the Darboux theory (Theorems 1.12 and 1.15), but also the
limit cycles with inverse of integrating factors as we have seen in Theorem 1.21.

Only a few mathematicians have worked with non-algebraicity. In this sense it is
interesting to note the proof due to Odani [40] about the non-algebraicity of the famous
van der Pol limit cycle, see [29] for a short proof, and the generalization into a family of
polynomial Liénard systems. After this work, ŻoÃla̧dek in [55] almost completely solve
the problem of algebraic invariant curves and algebraic limit cycles for polynomial
Liénard systems of arbitrary degree. In general, to show the non-algebraicity of all
solutions of some system (3.1) is a very hard problem. For instance Jouanolou in [34]
devotes a large section to showing that one particular system has no invariant algebraic
curves. Other explicit examples of polynomial systems (3.1) without invariant algebraic
curves are presented by ŻoÃla̧dek in [56].

3.2 Some Preliminary Results

Now we give an algorithm, developed in [29], which gives, recursively from the higher
homogeneous term to the other terms in descending form, all the invariant algebraic
curves of arbitrary degree.

Theorem 3.2. (Garćıa) Let P (x, y) =
∑s

k=0 Pk(x, y) and Q(x, y) =
∑s

k=0 Qk(x, y)
be the development in homogeneous components of the polynomials P and Q. Assume
that polynomial system (3.1) without degenerate infinity possesses an invariant alge-
braic curve f(x, y) = 0 of degree d with associated cofactor K(x, y) such that their
developments in homogeneous components are given by f(x, y) =

∑d
k=0 fk(x, y) and

K(x, y) =
∑s−1

k=0 Kk(x, y). Then the polynomial sequence {f̃i(u)} where f̃i(u) :=
fi(1, u) with i = d, d− 1, . . . , 0 is recursively obtained from

f̃i(u) =

∫ Λs−1+i(u)
Γ(u) exp

[∫ Γi(u)
Γ(u) du

]
du + Ci

exp
[∫ Γi(u)

Γ(u) du
] , (3.2)
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where Ci are arbitrary real constants with Cd 6= 0 and

Γ(u) := Qs(1, u)− uPs(1, u) , Γi(u) := iPs(1, u)−Ks−1(1, u) , (3.3)

and

Λs−1+d(u) ≡ 0 , (3.4)

Λs−1+i(u) :=
d−1−i∑

k=0

′(
[uPs+i−d+k(1, u)−Qs+i−d+k(1, u)]

df̃n−k(u)
du

+[Ks−1+i−d+k(1, u)− (d− k)Ps+i−d+k(1, u)]f̃d−k(u)
)

, (3.5)

where the dash in the previous sum should be understood in the following way: if the
index of some term does not make sense then we take null that term.

In the proof of Theorem 3.2 it is used the blow–up (x, y) → (x, u) where u = y/x.
Once we have determined the sequence {f̃i(u)}d

i=0 then f(x, y) =
∑d

i=0 xif̃i(y/x).
Remark 3.3. Let us notice that Theorem 3.2 can also be used for the study of the
existence of inverse integrating factors V (x, y) and first integrals H(x, y) of polynomial
class. The only changes in the algorithm consist on replacing Ki by either the homo-
geneous part of i-th degree of the divergence of (P, Q) or to take Ki ≡ 0 respectively
for i = 0, 1, . . . , s− 1.

3.3 The main results

3.3.1 Invariant algebraic curves and inverse integrating factors
in Family (I)

It is well known, see [53] for instance, that a quadratic system of the family (I) has
at most one limit cycle. But when in this family we add the condition δ = 0 then it
does not have any limit cycle. In fact, Theorem 12.4, pag. 268, of [53] shows that the
system of type (I)δ=0 has a center at the origin when m(`+m) = 0 and does not have
any closed or singular closed orbit when m(` + m) 6= 0.

On the other hand, if ` = 0, then family (I) is a quadratic Liénard system with
constant damping whose invariant algebraic curves problem is completely solved by
ŻoÃla̧dek in [55]. Any invariant algebraic curve in this case must be rational or hyper-
elliptic. The author also proves that there are not algebraic limit cycles in for such
systems. The next theorem extends the above results for family (I) with ` 6= 0.

Theorem 3.4. Consider family (I) and define ∆1 = m2 − 4`n. The following state-
ments hold:

1. Consider `n 6= 0.

(a) Suppose that ∆1 < 0.
(i) If δ = 0, then there is not any limit cycle. Moreover, the only irreducible

invariant algebraic curve is f(x, y) = −` + n + 2`(n − `)y + 2`2ny2 +
2`3x2 = 0 and appears when m = 0. f is also an inverse of integrating
factor.
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(ii) If δ 6= 0, then the unique irreducible invariant algebraic curve is f(x, y) =
nx2 + mxy + ny2 = 0 which is also an inverse of integrating factor and
appears when ` = n and δ = −m

n . There are not algebraic limit cycles
in this case, nor limit cycles when f exists.

(b) Suppose that ∆1 > 0. If δ = 0, there is not any limit cycle. Moreover, the
only polynomial inverse integrating factor is f(x, y) = 1−mx−2ny−n2x2+
mnxy + n2y2 = 0, and appears when ` = −n and δ = 0.

(c) Suppose that ∆1 = 0. If δ = 0, there is not any limit cycle. Moreover, the
only polynomial inverse integrating factors are of the form f(x, y) = (x±y)2

and exist when δ = 0 and m = ±2`.

2. Consider ` = 0. In this case there is not any algebraic limit cycle. Moreover,

(a) Suppose that ∆1 6= 0.

(i) If n 6= 0, then there is not any polynomial inverse integrating factor.
(ii) If n = 0, then the only irreducible invariant algebraic curve is f(x, y) =

mx − 1 = 0 and appears when δ = 0. Moreover, this function f is a
polynomial inverse integrating factor.

(b) Suppose that ∆1 = 0. If n = 0, then f(x, y) = x2− δxy + y2 is a polynomial
inverse integrating factor.

3. Consider n = 0 and ` 6= 0.

(a) Suppose that ∆1 6= 0.

(i) If δ = 0, then there are not invariant algebraic curves nor limit cycles.
(ii) If δ 6= 0, then the only invariant algebraic curves are f(x, y) = `x +

my = 0 for δ = −(`2+m2)/(`m), or f(x, y) = mx−1 = 0 for δ = −`/m
which are not inverse integrating factors. There are not algebraic limit
cycles.

(b) Suppose that ∆1 = 0.

(i) If δ = 0, then there is not any limit cycle. Moreover, f(x, y) = 1+2`y−
2`2x2 = 0 is the only irreducible invariant algebraic curve, which is also
a polynomial inverse integrating factor.

(ii) If δ 6= 0, then there are not invariant algebraic curves, and therefore,
there are not algebraic limit cycles.

Proof. As we have said, in the Statements where δ = 0 or ` = 0 appears, we know the
nonexistence of limit cycles and algebraic limit cycles, respectively. We have included
these results in the theorem for completeness. Now we prove the rest of results.

Proof of Statement (1.a). Assume that system (I) has an invariant algebraic curve
f(x, y) = 0 of degree d and set the homogeneous part of degree one of their cofactor
K1(x, y) = αx + βy. In the generic case `n∆1 6= 0, doing the quadrature (3.2) with
i = d we have

f̃d(u) = Cd(−4n)−
α
2` ud−α

` (
√

∆1 + m + 2nu)
2β`−αm

2`
√

∆1
+ α

2` (
√

∆1 −m− 2nu)
− 2β`−αm

2`
√

∆1
+ α

2` ,

where Cd 6= 0. Since f̃d is a polynomial, its exponents must be nonnegative integers.
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Assume that ∆1 < 0. Then, we must consider

2β`− αm = 0, (3.6)

and we take β = αm/(2`).

In the next step, denoting by K0 the independent term of the cofactor and carrying
out integration (3.2) with i = d− 1, we obtain

f̃d−1(u) =
1

2`2n
√

∆1

ud−1−α
` (` + mu + nu2)

α
2`−1

[
b
(d−1)
0 (u)

+b
(d−1)
1 (u) arctanh

(
m + 2nu√

∆1

)
+ b

(d−1)
2 (u) log

(
` + mu + nu2

u2

)]
,

where b
(d−1)
0 is a polynomial of degree 2 and

b
(d−1)
1 (u) = 2nCd(−αδ` + 2K0`

2 − αm + `md)(` + mu + nu2) ,

b
(d−1)
2 (u) = n

√
∆1Cd(α− `d)(` + mu + nu2) .

Since f̃d−1 must be polynomial we impose b
(d−1)
1 (u) = b

(d−1)
2 (u) ≡ 0. Hence we take

α = d` and
K0 = (αδ` + αm− `md)/(2`2). (3.7)

With these assignments f̃n−1 becomes

f̃d−1(u) =
(` + mu + nu2)−1+d/2

2nu

2∑

i=0

a
(d−1)
i ui ,

where a
(d−1)
i are real constants. More concretely a

(d−1)
0 = `dCd + 2`nCd−1 − dnCd

where Cd−1 is an arbitrary constant. Obviously, from the above expression of f̃d−1 we
conclude that d must be even. Moreover, u must divide the polynomial

∑2
i=0 a

(d−1)
i ui,

i.e. a
(d−1)
0 = 0 and therefore Cd−1 = d(n− `)Cd/(2`n).

The next step, that is, quadrature (3.2) with i = d− 2 allows us to calculate

f̃d−2(u) = − (` + mu + nu2)−2+d/2

8`n2∆3/2
1 u2

[
b
(d−2)
0 (u) + b

(d−2)
1 (u) arctanh

(
m + 2nu√

∆1

)]
,

where b
(d−2)
0 is a polynomial and

b
(d−2)
1 (u) = 8dn2Cd(`m + 2δ`n + mn)(` + mu + nu2)2 .

Now, taking into account that f̃d−2 is a polynomial we must take b
(d−2)
1 ≡ 0 or equiv-

alently δ = −m(` + n)/(2`n). In this situation f̃d−2 takes the form

f̃d−2(u) =
(` + mu + nu2)−2+d/2

32`2n2u2

4∑

i=0

a
(d−2)
i ui ,
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where a
(d−2)
i are real constants. Here a

(d−2)
0 = 4`2Ω and a

(d−2)
1 = 8`mΩ with Ω :=

dCd(n − `)(2` − `d + dn) − 8`2n2Cd−2. Imposing that u2 divides to
∑4

i=0 a
(d−2)
i ui

we must take a
(d−2)
0 = a

(d−2)
1 = 0. This condition implies Ω = 0 or equivalently

Cd−2 = dCd(n− `)(2`− `d + dn)/(8`2n2).

The next step consists on quadrature (3.2) with i = d− 3. So we compute

f̃d−3(u) =
(` + mu + nu2)−3+d/2

384`3n3(−∆1)5/2u3

[
b
(d−3)
0 (u) + b

(d−3)
1 (u) arctanh

(
m + 2nu

−√∆1

)]
,

where b
(d−3)
0 is a polynomial of degree 6 and

b
(d−3)
1 (u) = 192Cd`mdn2(`− n)(n + `)∆1(` + mu + nu2)3. (3.8)

Of course in the expression of f̃d−3 there is implicitly an arbitrary constant Cd−3 due
to the made quadrature. In order to have f̃d−3 polynomial we impose b

(d−3)
1 ≡ 0. In

short from the vanish of b
(d−3)
1 we obtain ` = n or m = 0 (we recall that ∆1 < 0).

Suppose that ` = n. In this case f̃d−3 becomes

f̃d−3(u) = −Cd−3(n + mu + nu2)d/2

u3
.

Since f̃d−3 is a polynomial, the only possibility is given by Cd−3 = 0. Therefore
f̃d−3 ≡ 0. From Theorem 3.2 we have Λ1+i(u) ≡ 0 and f̃i(u) = Ci exp

[
− ∫ Γi(u)

Γ(u) du
]

=

Ciu
i−d(n + mu + nu2)d/2 for i ≤ d − 4. Here Ci is an arbitrary constant and from

the previous expression of f̃i it follows that Ci = 0 and therefore f̃i ≡ 0 for i ≤
d − 4. Hence the invariant algebraic curve f(x, y) = 0 of system (I) is obtained
from f̃(u) =

∑d−2
i=d f̃i(u) going back through the blow–up. But it is easy to see that

after the last condition ` = n we have f̃d−1 = f̃d−2 ≡ 0 and so f̃(u) = f̃d(u) =
Cd(n + mu + nu2)d/2. Therefore the irreducible invariant algebraic curve is the conic
f(x, y) = nx2 + mxy + ny2 = 0. Consequently, since f is homogeneous, under the
conditions of the theorem, family (I) has not algebraic limit cycles.

Suppose that m = 0 and therefore δ = 0. In this case there is not any limit cycle
and moreover every invariant algebraic curve is a multiple of f(x, y) = −`+n−2`2x+
2`nx + 2`2nx2 + 2`3y2 = 0 since the function H(x, y) = e−2`yf(x, y) is a first integral.
Moreover, f is also an inverse integrating factor.

Proof of Statement (1.b). Suppose that ∆1 > 0. The divergence of the system
is δ + 2`x + my. Therefore, looking for an inverse integrating factor is looking for an
invariant algebraic curve with cofactor K = K0 + αx + βy such that K0 = δ, α = 2`
and β = m. Of course, (3.6) and (3.7) of the proof of Statement (1.a) are satisfied for
d = 2. Following the proof we arrive to (3.8) and since ∆1 > 0, we consider ` = −n.
Hence

f̃d−3(u) = Cd−3(−n + mu + nu2)/u3,

where Cd−3 is an arbitrary constant. Therefore we must take Cd−3 = 0. In an anal-
ogous way, it is easy to see that we must choose Ci = 0 in order to have f̃i ≡ 0 for
i ≤ d− 4.
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In summary, f̃(u) =
∑d−2

i=d f̃i(u) = Cd[−n+mu+nu2−(m+2nu)/n+1/n] and go-
ing back through the blow–up u = y/x we obtain that f(x, y) = 1−mx−2ny−n2x2 +
mnxy+n2y2 is the only inverse integrating factor and appears when ` = −n and δ = 0.

Proof of Statement (1.c). From ∆1 = m2 − 4`n = 0 we take n = m2/(4`). Doing
the quadrature (3.2) with i = d and with a cofactor K equal to the divergence of the
system, we obtain

f̃d(u) = Cdu
d−2(2` + mu)2,

where Cd 6= 0. In the next step, denoting by K0 the independent term of the divergence
of (P, Q), that is K0 = δ, and carrying out integration (3.2) with i = d− 1, we obtain

f̃d−1(u) =
ud−3

`m2

[
B

(d−1)
0 (u) + B

(d−1)
1 (u) log

(
2` + mu

u

)]
,

where B
(d−1)
0 is a polynomial of degree 2 and B

(d−1)
1 (u) = Cd(2 − d)m2(2` + mu)2.

Clearly, in the generic case `m 6= 0, the logarithmic term of f̃d−1 does not vanish except
for d = 2. So, in this case, family (I) does not have a polynomial inverse integrating
factor of degree different from 2.

Now, f̃d−1 becomes f̃d−1(u) = (
∑2

i=0 a
(d−1)
i ui)/(m2u) where a

(d−1)
i are real con-

stants and a
(d−1)
0 = 4`(4Cd`

2−Cdm
2 + Cd−1`m

2). In order to have f̃d−1(u) a polyno-
mial we need a

(d−1)
0 = 0, that is Cd−1 = Cd(m2 − 4`2)/(`m2). The next step, that is,

quadrature (3.2) with i = d− 2 allows us to calculate

f̃d−2(u) =
1

3m2u2(2` + mu)

3∑

i=0

a
(d−2)
i ui ,

where a
(d−2)
i are real constants. Here a

(d−2)
0 = 4`Ω and a

(d−2)
1 = 6mΩ where Ω =

Cd(20`2+4δ`m−m2)+6Cd−2`
2m2. Now, taking into account that f̃d−2 is a polynomial

we must take a
(d−2)
0 = a

(d−2)
1 = 0, i.e., Ω = 0. From this we have Cd−2 = (m2−4δ`m−

20`2)/(6`2m2). In this situation f̃d−2 takes the form

f̃d−2(u) =
Cd[6`(m2 − 4`2) + m(m2 − 4δm− 20`2)u]

6`2(2` + mu)
.

It is easy to see that the above expression is polynomial if and only if 4`2+2δ`m+m2 =
0. From such condition we have δ = −(m2 + 4`2)/(2`m).

Finally, since d = 2 we must impose f̃i ≡ 0 for i ≤ d− 3. Hence we do a new step
which consists on quadrature (3.2) with i = d− 3 and compute

f̃d−3(u) =
1

3`2m4u3(2` + mu)

3∑

i=0

a
(d−3)
i ui ,

where a
(d−3)
i are real constants. Here a

(d−3)
0 = 4`2Ψ, a

(d−3)
1 = 6`mΨ and a

(d−3)
2 =

3m2Ψ where Ψ = Cd(16`4 −m4) + 6Cd−3`
3m4. From the vanishing of f̃d−3 we must

take Cd−3 = Cd(m4 − 16`4)/(6`3m4). In this situation f̃d−3 becomes

f̃d−3(u) =
Cd(m− 2`)(m + 2`)(m2 + 4`2)

6`2m(2` + mu)
,
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which vanish if and only if m = ±2`. Again, it is easy to see that we must choose
Ci = 0 in order to have f̃i ≡ 0 for i ≤ d− 4.

With all these conditions f̃d−1 ≡ f̃d−2 ≡ 0 and therefore f̃(u) = f̃d(u) = 2`Cd(1±
u)2 according to m = ±2`. The statement is proved going back through the blow–up
u = y/x.

Proof of Statement (2.a). If n 6= 0, doing the quadrature (3.2) with i = d we
have f̃d(u) = Cdu

d−1(m + nu), where Cd 6= 0. Hence in the next step, carrying out
integration (3.2) with i = d− 1, we obtain

f̃d−1(u) =
ud−3

nm2

[
B

(d−1)
0 (u) + B

(d−1)
1 (u) log

(
m + nu

u

)]
,

where B
(d−1)
0 is a polynomial of degree 2 and B

(d−1)
1 (u) = Cd(d − 2)n2u(m + nu).

Clearly, the logarithmic term of f̃d−1 does not vanish except for d = 2. So, in this case,
family (I) does not have a polynomial inverse integrating factor of degree different
from 2. Now we have f̃d−1(u) = [−Cdn+(Cdm+Cdδn+Cd−1mn)u+Cd−1n

2u2]/(nu)
which never is polynomial because n 6= 0.

When n = 0, and doing the quadrature (3.2) with i = d, we obtain

f̃d(u) = Cde
α

mu u−
β
m +d,

from where α = 0 and β = km for some nonnegative integer k. That is, f̃d(u) =
Cdu

−k+d.

In the next step,

f̃d−1(u) = − 1
m

ud−2−k(Cd−1mu− Cd(d + k(u2 − 1)) + Cd(δk −K0)u log(u)),

which is a polynomial if K0 = δk.

Following the quadrature with i = d− 2 follows

f̃d−2(u) =
1

2m2
u−4−k+d(b(d−2)

0 + 2Cd(d− k)u2 log(u)),

where b
(d−2)
0 is a polynomial of degree 4. Therefore, we must take k = d and we have

f̃d−1(u) =
Cd−1mu− Cddu2

mu2
,

f̃d−2(u) =
2Cd−2m

2 + 2Cdδdu− Cddu2 + Cdd
2u2

2m2u2
.

Clearly, in order to get algebraic curves we must have Cd−1 = Cd−2 = δ = 0.

Now the system is ẋ = y(mx−1), ẏ = x and it is easy to check that f(x, y) = mx−1
is an inverse integrating factor. Moreover, any invariant algebraic curve is a power of
f because H(x, y) = em(2x−my2)/2(mx− 1) is a first integral of the system.

Proof of Statement (2.b). In this case the system becomes linear. In particular
it does not have limit cycles and it is easy to check that f(x, y) = x2 − δxy + y2 is a
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polynomial inverse integrating factor.

Proof of Statement (3.a). Consider n = 0, ` 6= 0 and ∆1 6= 0. In this case, m 6= 0.

Assume that system (I) has an invariant algebraic curve f(x, y) = 0 of degree d
and set the homogeneous part of degree one of their cofactor K1(x, y) = αx + βy.
Quadrature (3.2) with i = d leads to

f̃d(u) = Cdu
d−s(` + mu)s−k,

where s := α/` and k := β/m are nonnegative integers.

In the next step,

f̃d−1(u) = b
(d−1)
0 (u) + b

(d−1)
1 (u) log(u) + b

(d−1)
2 (u) log(` + mu),

where b
(d−1)
0 is a rational function and b

(d−1)
i with i = 1, 2 are polynomials that must

be identically zero in order to f̃d−1 be a polynomial. More concretely,

b
(d−1)
1 (u) =

Cd

`
(d− s)u−1+d−s(` + mu)−k+s.

Therefore, we obtain s = d. In this case,

b
(d−1)
2 (u) =

Cd

m2u
(2`k + δkm−K0m− `d)(` + mu)−k+d,

from where K0 = (2`k + δkm − `d)/m. Therefore, f̃d−1 is a rational function and
taking Cd−1 = Cd(`2 + δ`m + m2)(d− k)/(`m2) becomes the polynomial

f̃d−1(u) = −Cd(` + mu)−1−k+d

`m
(a(d−1)

0 + a
(d−1)
1 u);

for some real numbers a
(d−1)
i , i = 0, 1.

In the next step,

f̃d−2(u) = b
(d−2)
0 (u) + b

(d−2)
1 (u) log(` + mu),

where b
(d−2)
0 and b

(d−2)
1 are rational functions. The second one is

b
(d−2)
1 (u) = − Cd

m4u2

(
m2 (k − d) + `2 (2k − d) + δ`m (2 k − d)

)
(` + mu)−k+d

.

If d = 2k, the above expression vanishes if k = 0 and therefore, d = 0. So, there are
not invariant algebraic curves in this case. Suppose that d 6= 2k and we obtain, from
b
(d−2)
1 ≡ 0,

δ = −2`2k + km2 − `2d−m2d

`m (2k − d)
.

Moreover, f̃d−2 must be a polynomial. So we write Cd−2 in function of the rest of
parameters.

In the next step,

f̃d−3(u) = b
(d−3)
0 (u) + b

(d−3)
1 (u) log(` + mu),
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where b
(d−3)
0 is a rational function and

b
(d−3)
1 (u) =

2Cdk (k − d) (` + mu)−k+d

`m2 (2k − d)u3
.

We have two possibilities: either k = 0 or k = d.

If k = 0, we obtain

f̃d−3(u) =
Cd−3(` + mu)d

u3
,

from where Cd−3 = 0 and consequently f̃d−i ≡ 0 for i ≥ 3. Then we obtain f̃(u) =
f̃d(u)+ f̃d−1(u)+ f̃d−2(u) = Cd(`+mu)d and going back to the variables (x, y) follows
that the only irreducible invariant algebraic curve is f(x, y) = `x + my = 0. It can
be also seen that f is not an inverse integrating factor. We remark that δ = −(`2 +
m2)/(`m) 6= 0.

On the other hand, if k = d, we must take Ci = 0 in order to f̃i be polynomials
for i ≤ d − 3 and moreover, this f̃i become constants. Following the quadrature for
i = d− j, and taking Cd−j = 0 in order to have a polynomial, we obtain

f̃d−j(u) =
u−j

m

∫
u−1+j

` + mu
ωj(u)du.

where ωj(u) = (−(1 + d − j)(` + mu)f̃d−(j−1)(u) + (m + `u + m u2)f̃ ′d−(j−1)(u). In-

ductively, it can be seen that f̃d−j is a constant for all j and going back to the
variables (x, y) we obtain a function in one only variable. Obviously, since the sys-
tem is ẋ = (mx − 1)(`x + my)/m, ẏ = x, the only invariant algebraic curve is
f(x, y) = mx − 1 = 0 which is not an inverse integrating factor. In particular, there
are not algebraic limit cycles. We remark that δ = −`/m 6= 0.

Thus, for δ = 0 there are not limit cycles nor invariant algebraic curves.

Proof of statement (3.b). Consider n = 0, ` 6= 0 and ∆1 = 0. In this case, m = 0.

Assume that system (I) has an invariant algebraic curve f(x, y) = 0 of degree d
and set the homogeneous part of degree one of its cofactor K1(x, y) = αx + βy. Doing
the quadrature (3.2) with i = d we have

f̃d(u) = Cde
− βu

` u−
α
` +d,

from where β = 0 and α = k` for some nonnegative integer k and we obtain f̃d(u) =
Cdu

(−k+d). In the next step,

f̃d−1(u) =
u−1−k+d

2`
(2Cd−1`− Cdu(−2δk + 2K0 + ku) + 2Cd(k − d) log(u)),

from where k = d to vanish the logarithmic term. In this case f̃d−1 is a rational
function and we take Cd−1 = 0 in order to be a polynomial. It follows f̃d−1(u) =
−Cd(2K0 − 2δd + du)/(2`).

Following the quadrature (3.2) for i = d− 2 we obtain

f̃d−2(u) =
R(u)

24`2u2
,
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where R(u) is a polynomial without linear term and its independent term is 24Cd−2`
2

from where Cd−2 = 0. Again, in order to f̃i be polynomials, we impose Ci = 0 for
i < d−2. It is also easy to see that when f̃i ≡ 0 for some i the functions f̃j , with j < i,
that we obtain in the next steps are identically zero. Moreover, doing the quadrature
(3.2) for i = d− j and taking Cd−j = 0 we obtain

f̃d−j(u) =
u−j

`

∫
ωj(u)du,

where ωj(u) = −(K0+δ(−1−d+j)+u+du−ju)f̃d−(j−1)(u)+(1−δu+u2)f̃ ′d−(j−1)(u).

It can be seen that f̃d−3 ≡ 0 if and only if d = 2 and δ = K0 = 0. In this
situation, we consider f̃ = f̃2 + f̃1 + f̃0 and going back through the blow-up we obtain
f(x, y) = −1 + 2`2x2 − 2`y = 0 as invariant algebraic curve. Moreover, f is also an
inverse integrating factor.

We claim that the only invariant algebraic curves have even degree and appear
only when δ = K0 = 0. The prove of the claim follows by induction. We give here an
sketch of the steps of the proof.

It can be seen that f̃d−3 ≡ 0 ⇔ f̃d−4 ≡ 0 ⇔ f̃ ′d−3 ≡ 0 ⇔ ω4 ≡ 0 ⇔ d = 2 and
δ = K0 = 0 and that f̃ ′d−4 ≡ 0 ⇔ ω5 ≡ 0 ⇔ d = 2, 4 and δ = K0 = 0.

Suppose that for some j even one has f̃d−(j−1) ≡ 0 ⇔ f̃d−j ≡ 0 ⇔ f̃ ′d−(j−1) ≡ 0 ⇔
ωj ≡ 0 ⇔ d = 2, . . . , j − 2 and δ = K0 = 0 and that f̃ ′d−j ≡ 0 ⇔ ωj+1 ≡ 0 ⇔ d =
2, . . . , j and δ = K0 = 0.

It is easy to check that f̃d−(j+1) ≡ 0 ⇔ f̃d−(j+2) ≡ 0 ⇔ f̃ ′d−(j+1) ≡ 0 ⇔ ωj+2 ≡
0 ⇔ d = 2, . . . , j and δ = K0 = 0 and also that f̃ ′d−(j+2) ≡ 0 ⇔ ωj+3 ≡ 0 ⇔ d =

2, . . . , j +2 and δ = K0 = 0, because when d = j +2 we have ωj+3 = K0f̃0 +(1− δu+
u2)f̃ ′0, which is zero when K0 = 0, since f̃0 is a constant. So the claim is proved.

It can be checked that H(x, y) = e−2`yf(x, y) is a first integral. Therefore, every
invariant algebraic curve is a power of f . Moreover, there are not limit cycles because
the set of points where f vanishes, does not contain any oval.

And finally we remark that we have also shown that when δ 6= 0 there is not any
invariant algebraic curve.

3.3.2 Polynomial Inverse Integrating Factors in Family (II)n=0

In the following theorem we study the existence of polynomial inverse integrating
factors for the family (II)n=0. In [53] can be found some results on non existence,
existence and uniqueness of limit cycles for these systems depending on the value of
the parameter δ.

Theorem 3.5. Consider system (II)n=0 and define ∆2 := `2 + 4am. The following
statements hold:

1. Suppose that ∆2 6= 0.
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(a) In the generic case `m 6= 0, then there exist a polynomial inverse integrating

factor of degree d if ±`(d− 3)
2
√

∆2

+
d− 1

2
∈ N ∪ {0}.

Moreover, if ∆2 < 0 the only polynomial inverse integrating factor is f(x, y) =
(1 + ax)(x2 + δxy + y2) and appears when m = −a and ` = aδ.

(b) If ` = 0, then f(x, y) = ax + 1 is the only polynomial inverse integrating
factor, and appears when m = −a and δ = 0.

(c) If m = 0, then there is not any polynomial inverse integrating factor.

2. Suppose that ∆2 = 0. In this case, the only polynomial inverse integrating factors
are f(x, y) = (1 + ax)(x± y)2 and appear when ` = ∓2a, δ = ∓2 and m = −a.

Proof. Assume that the vector field associated to family (II)n=0 is given by (P,Q)
and has a polynomial inverse integrating factor f(x, y) of degree n. Let K1 be the
homogeneous part of degree 1 of the divergence of (P,Q), i.e. K1(x, y) = 2`x + my.

Proof of Statement (1.a). Consider ∆2`n 6= 0. Doing the quadrature (3.2) with
i = d we have

f̃d(u) = Cd(−4m)
1−d
2 (−` +

√
∆2 − 2mu)

`(d−3)
2
√

∆2
+ d−1

2 (` +
√

∆2 + 2mu)
− `(d−3)

2
√

∆2
+ d−1

2 .

In order have a polynomial, the exponents must be nonnegative integers. Moreover, if
∆2 < 0, the only possibility is d = 3 and straight forward calculations show that the
only polynomial inverse integrating factor is f(x, y) = (1 + ax)(x2 + δxy + y2).

Proof of Statement (1.b). Suppose that ` = 0. In this case, fd = Cd(a −
mu2)(d−1)/2, and d must be odd. In the next step, we obtain

f̃d−1(u) = Cd−1(a−mu2)
d−2
2 + b(d−1)(u)(a−mu2)

d−3
2 ,

where b(d−1) is a polynomial. Since d must be odd, follows Cd−1 = 0.

Following the quadrature (3.2) with i = d− 2 we obtain

f̃d−2(u) = (a−mu2)
d−3
2 [b(d−2)

0 (u) + b
(d−2)
1 log(

√
a +

√
mu) + b

(d−2)
2 log(

√
a−√mu)],

where b
(d−2)
0 is a rational function which must be a polynomial and the constants

b
(d−2)
1 =

1− d

m
(a +

√
a
√

mδ + m)

b
(d−2)
2 =

1− d

m
(a−√a

√
mδ + m)

must be zero. We have two possibilities: either d = 1 or m = −a and δ = 0. Straight-
forward calculations show that does not exist any polynomial inverse integrating fac-
tor of degree 1 except for the case m = −a and δ = 0. In this case the system is
ẋ = −y(1+ax), ẏ = x(1+ax), which can be transformed into a linear system by doing
a time-rescaling and f(x, y) = 1 + ax is a polynomial inverse integrating factor.
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Proof of Statement (1.c). Suppose that m = 0. Doing the quadrature (3.2) for
i = d we obtain

f̃d(u) = Cd(a− `u)−2+d.

In the next step,

f̃d−1(u) = − (a− `u)−3+d

`2
(b(d−1)

0 (u) + Cd(a2 − aδ` + `2)(−2 + d) log(a− `u)),

where b
(d−1)
0 (u) = `(−Cd−1` + Cd(a(−2 + d) + `(d − u))u). Since fd−1 must be a

polynomial we have two possibilities: either δ = (a2 + `2)/(a`) or d = 2.

In the first case, we obtain

f̃d−1(u) = − (a− `u)−3+d

a`
(−aCd−1`− a2Cdu + Cd`

2u + a2Cddu− aCd`u
2),

and in the next step we obtain for f̃d−2 a polynomial of degree d − 1, what is not
possible. Thus, there are not polynomial inverse integrating factor in this case.

Otherwise, if d = 2, we obtain

f̃1(u) =
aC1`− a2C2u− C2`

2u + aC2`u
2

a`(a− `u)
,

which is a polynomial if C1 = C2 and in this case,

f̃1(u) =
C2(`− au)

a`
.

In the next step, f̃0 must be a constant but

f̃0(u) =
6C0`

2 − 6aC2`u + 3a2C2u
2 + 3C2`

2u2 − 2aC2`u
3

6`2(a− `u)2
,

which is never a constant. Therefore, there are not polynomial inverse integrating fac-
tors in this case.

Proof of Statement (2). Consider ∆2 = 0. In this case we write m = −`2/(4a) and
in the first step of the algorithm we obtain

f̃d(u) = Cde
2a(d−3)
`d−2a (2a− `d)d−1,

from where d must be 3 in order to have a polynomial since a 6= 0. Straightforward
calculations show that the only polynomial inverse integrating factors are the stated
ones.

3.3.3 Polynomial Inverse Integrating Factors in Family (III)a=0

It is well known that family (III)a=0 has at most one limit cycle, see [53] for instance.
Moreover, if δ = 0 the system has a center at the origin when m(` + n) = 0. Here we
study some properties for the family (III)a=0.
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Theorem 3.6. Consider system (III)a=0 and define ∆3 := m2 + 4n(b − `). The
following statements hold:

1. Consider the generic case (b− `)n 6= 0.

(a) If ∆3 6= 0, then there exist a polynomial inverse integrating factor of degree

d if
`(d− 2)− b

`− b
, ± bm(3− d)

(b− `)
√

∆3

− 2` + b(1− d)
2(b− `)

∈ N ∪ {0}.
Moreover, when ∆3 < 0 and m 6= 0, then the only polynomial inverse inte-
grating is f(x, y) = (ny − 1)(x2 − δxy + y2) and appears when m = −δn,
b = −n and ` = 0. There is not any limit cycle when f exists.

(b) If ∆3 = 0, then the only polynomial inverse integrating factors are f(x, y) =
(x− y)2(1+ by) which appears when ` = 0, m = 2b and δ = 2 and f(x, y) =
(x ± y)2(1 + 2`y) which appear when b = 2`, m = ∓2` and δ = ∓2. There
is not any limit cycle when someone exists.

2. Suppose that b − ` = 0 and n 6= 0. The only polynomial inverse integrating
factors are f(x, y) = (ny − 1)2(−1 + mx + ny) which appears when δ = m = 0
and b = −n, and f(x, y) = (1+by)3 which appears when δ = 0 and m 6= 0. There
are not limit cycles when someone exist.

3. Suppose that n = 0 and b− ` 6= 0. In this case,

(a) If m 6= 0 then there exist a polynomial inverse integrating factor of degree d

if
`(d− 2)− b

`− b
,

b(d− 2)− `

b− `
∈ N ∪ {0}.

(b) If m = 0 then there exist a polynomial inverse integrating factor of degree d

if
`(d− 2)− b

`− b
∈ N ∪ {0}.

4. In the case b− ` = n = 0, the only polynomial inverse integrating factor appears
when m = 0 and is f(x, y) = (1 + by)(x2 − δxy + y2). In this case, there is not
any limit cycle.

Proof. Assume that the vector field associated to family (III)a=0 is given by (P,Q)
and has a polynomial inverse integrating factor f(x, y) of degree d. Let K1 be the ho-
mogeneous part of degree 1 of the divergence of (P,Q), i.e. K1(x, y) = (b + 2`)x + my.

Proof of Statement (1.a). In the generic case (b−`)n∆3 6= 0, doing the quadrature
(3.2) with i = d we have

f̃d(u) = Cd(4n)
2`+b(1−d)

2(b−`) u
`(d−2)−b

`−b (
√

∆3 + m + 2nu)
bm(3−d)

(b−`)
√

∆3
− 2`+b(1−d)

2(b−`)

×(
√

∆3 −m− 2nu)
− bm(3−d)

(b−`)
√

∆3
− 2`+b(1−d)

2(b−`) ,

where Cd 6= 0. Since f̃d is a polynomial, its exponents must be nonnegative integers.

On the other hand, if we assume ∆3 < 0, we obtain the condition d = 3 when
m 6= 0. Therefore, system (III)a=0 does not have any polynomial inverse integrating
factor of degree different from 3. Straightforward calculations show that the only poly-
nomial inverse integrating factor is f(x, y) = (−1 + ny)(x2 − δxy + y2) and appears



3.3 The main results 69

when m = −δn, b = −n and ` = 0.

Proof of Statement (1.b). Let f(x, y) be a polynomial inverse integrating factor of
degree d for family (III)a=0. From the condition ∆3 = 0 we take n = m2/[4(` − b)].
In this case, the quadrature (3.2) with i = d leads to

f̃d(u) = Cd exp
(

2b(d− 3)
mu + 2(`− b)

)
u

`(d−2)−b
`−b (2(b− `)−mu)

b(1−d)+2`
`−b ,

where Cd 6= 0. Since f̃d(u) is polynomial, we conclude that d = 3 since b 6= 0. Straight-
forward calculations show that the only polynomial inverse integrating factors are the
stated ones.

Proof of Statement (2). Assume that family (III)a=0 has a polynomial inverse
integrating factor f(x, y) of degree d.

Let us suppose m 6= 0. In this case, doing the quadrature (3.2) with i = d we have

f̃d(u) = Cd exp
(

(3− d)b
mu

)
u

m2(d−1)+bn(3−d)
m2 (m + nu)

m2bn(d−3)
m2 ,

where Cd 6= 0. Since f̃d(u) is polynomial, we conclude that d = 3 because family (III)
has always b 6= 0.
Otherwise, when m = 0, we have f̃d(u) = Cd exp

(
(3−d)b
2nu2

)
ud, which is polynomial if

and only if d = 3.

Straightforward calculations with d = 3 for m 6= 0 and m = 0 show that the pos-
sible inverse integrating factors are the stated ones.

Proof of Statement (3). Let f(x, y) be a polynomial inverse integrating factor of
degree d for family (III)a=0. Firstly, let us suppose m 6= 0. Hence the quadrature
(3.2) with i = d leads to

f̃d(u) = Cdu
`(2−d)+b

b−` (b− `−mu)
b(d−2)−`

b−` ,

where Cd 6= 0. Since f̃d is polynomial, its exponents must be nonnegative integers.
Then we conclude the Statement (3.a). Otherwise, when m = 0, f̃d becomes

f̃d(u) = Cdu
`(d−2)−b

`−b ,

and in analogous way we obtain Statement (3.b).

Proof of Statement (4). Assume that family (III)a=0 with b = ` and n = 0 has a
polynomial inverse integrating factor f(x, y) of degree d.

Let us suppose m 6= 0. In this case, doing the quadrature (3.2) with i = d we have

f̃d(u) = Cdu
2.
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In the next step,

f̃d−1(u) =
1

bm2

(
Cdmu(2m− bu) + be

b
mu u(Cd−1m

2 + b Cd

∫ ∞

b
mu

e−z

z
dz)

)
,

which is a polynomial if b = 0, but in this case the system belongs to Class (I) of Ye
Yian-Qian.

In the case m = 0, the system becomes ẋ = δx − y + bx2, ẏ = x(1 + by), which
is degenerate infinity and consequently we can not apply the algorithm of Theorem
3.2, but this system can not have limit cycles because can be transformed into a linear
system into the projective plane. Moreover, the function f(x, y) = (1+by)(x2−δxy+y2)
is a polynomial inverse integrating factor, see for instance [5].

3.3.4 Polynomial Inverse Integrating Factors in Family (III)n=0

It is well known that family (III)n=0 can be transformed into a equation of Liénard
type by a change of variables. But, in general, such equation is not polynomial. In
this section we give some results for this family.

Theorem 3.7. Consider system (III)n=0,a 6=0 and define ∆4 := 4am + (b − `)2. The
following statements hold:

1. If m∆4 6= 0, then there exist a polynomial inverse integrating factor of degree d

if ± (d− 3)(b + `)
2
√

∆4

+
d− 1

2
∈ N ∪ {0} and

(a) when b + ` 6= 0 and ∆4 < 0 there is not any polynomial inverse integrating
factor.

(b) when b + ` = 0 there is not any polynomial inverse integrating factor.

2. If m = 0, then

(a) when `− b 6= 0 the system possesses a polynomial inverse integrating factor

of degree d if
`(d− 2)− b

`− b
∈ N ∪ {0}.

(b) when `− b = 0 there is not any polynomial inverse integrating factor.

3. If ∆4 = 0 and m 6= 0, then there is not any polynomial inverse integrating factor.

Proof. Let (P,Q) be the vector field associated to family (III)n=0 and assume that it
has a polynomial inverse integrating factor f(x, y) of degree d. Let K1 be the homo-
geneous part of degree 1 of the divergence of (P, Q), i.e. K1(x, y) = (b + 2`)x + my.

Proof of Statement (1.a). In the generic case m∆4 6= 0, the quadrature (3.2) with
i = d leads to

f̃d(u) = Cd(−4m)
1−d
2 (

√
∆4 + b− `− 2mu)

(d−3)(b+`)
2
√

∆4
+ d−1

2

×(
√

∆4 − b + ` + 2mu)
(d−3)(b+`)

2
√

∆4
− d−1

2 ,
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where Cd 6= 0. Since f̃d(u) is a polynomial, its exponents must be nonnegative integers
and we obtain the first part of the statement.

On the other hand, if we assume ∆4 < 0, we obtain the condition d = 3 when
b + ` 6= 0. But straightforward calculations show that there is not any polynomial
inverse integrating factor of such degree.

Proof of Statement (1.b). If we take ` = −b then

f̃d(u) = Cd(−a− 2bu + mu2)(d−1)/2.

Notice that this expression implies that d must be an odd number under condition
∆4 6= 0. Furthermore, a new step in the algorithm of Theorem 3.2 gives

f̃d−1(u) =
mu2 − 2bu− a

m3/2

[
a
(d−1)
0 (u) + a

(d−1)
1 (u)

√
mu2 − 2bu− a

+a
(d−1)
2 (u) log[−b + mu +

√
m(mu2 − 2bu− a)]

]
,

where a
(d−1)
i are polynomials of degree 2 and more concretely a

(d−1)
2 (u) = Cdb(2 −

d)(a + 2bu −mu2). Clearly, there is implicitly an arbitrary constant Cd−1 in the ex-
pression of f̃d−1(u) due to the made quadrature. Since f̃d−1 must be a polynomial we
conclude that a

(d−1)
2 ≡ 0 and this implies d = 2 because in family (III) always b 6= 0.

But this leads to a contradiction with the above condition d odd.

Proof of Statement (2). In the case m = 0 and `− b 6= 0 the quadrature (3.2) with
i = d takes the form

f̃d(u) = Cd[a + (b− `)u]
`(d−2)−b

`−b ,

where Cd 6= 0. Since f̃d is a polynomial, its exponent must be a nonnegative integer.

Otherwise, that is, if m = 0 and `− b = 0 then f̃d(u) = Cd exp[b(3− d)u/a]. This
implies d = 3. But it is easy to see that this inverse integrating factor of degree 3 does
not exist.

Proof of Statement (3). Assume that system (III)n=0,a 6=0 possesses a polynomial
inverse integrating factor of degree d. From the condition ∆4 = 0 we take m =
−(b− `)2/(4a) 6= 0 and the quadrature (3.2) with i = d leads to

f̃d(u) = Cd exp
[

2a(b + `)(d− 3)
(`− b)((`− b)u− 2a)

]
[2a + (b− `)u]d−1 ,

where Cd 6= 0. Since f̃d(u) is a polynomial, the exponential term must vanish an so,
b + ` = 0 or d = 3 and b + ` 6= 0.

If we assume b + ` = 0 then a new step in the algorithm of Theorem 3.2 gives

f̃d−1(u) =
(a + bu)d−3

b2

[
a
(d−1)
0 (u) + a

(d−1)
1 (u) log[a + bu]

]
,

where a
(d−1)
0 is a polynomial of degree 2 and a

(d−1)
1 (u) = Cda

2(d − 2)(a + bu). Since
f̃d−1 must be a polynomial we conclude that a

(d−1)
1 ≡ 0 which implies d = 2. But a
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straightforward calculation shows that this inverse integrating factor of degree 2 does
not exist.

On the other hand, if we assume d = 3 and b + ` 6= 0, straightforward calculations
show that the inverse integrating factor does not exist.



Chapter 4

Resolution of the Poincaré
Problem in Family (I)

In this chapter, family (I) of the Chinese classification is widely studied. For this
type of systems, the Poincaré problem is solved: any irreducible invariant algebraic
curve has degree at most 3. As a corollary, we prove that these systems does not have
algebraic limit cycles.

4.1 Introduction

In Ye Yian-Qian [53] are classified quadratic systems that can have limit cycles in three
families as we have seen in the above chapter. Now, our target is family (I), i.e.,

ẋ = δx− y + `x2 + mxy + ny2 , ẏ = x .

The authors expend pages to de discussion on the non existence of limit cycles and its
uniqueness when exist. The limit cycle may appear in a neighborhood of the origin
for δm(` + n) < 0 and |δ| sufficiently small. However, it is not known whether such
limit cycle is an algebraic or transcendent curve. This question will be solved along
this chapter.

Many results that we obtain in this chapter are already obtained in section 3.3.1
in the above chapter. Even so, this chapter is strictly algebraic, the proves we present
are different and it makes this chapter self-contained.

4.2 The main results

Concerning the Poincaré problem for family (I) we have the following result.

Theorem 4.1. Any irreducible invariant algebraic curve for family (I) has at most
degree 3.

73
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Proof. Consider the planar polynomial differential system of family (I). When ` = 0,
family (I) becomes a quadratic Liénard system with linear damping. In this case,
following ŻoÃla̧dek’s results [55], the invariant algebraic curves associated can be only
of two types: either rational curves of the form x = ξ(y) or hyperelliptic curves like
(x − ξ(y))2 = η(x) with ξ and η polynomials. It is easy to check that any invariant
algebraic curve of the first type must have at most degree 2 and for the second type
the degree is bounded by 3. On the other hand, there are not algebraic limit cycles for
such systems.

So we continue the proof assuming ` 6= 0. In order to control the behavior of the
solutions of family (I) at infinity, we extend this family to a differential equation in the
complex projective plane CP 2. Thus, following the ideas of Darboux [21] one has

P(X, Y, Z)dX +Q(X, Y, Z)dY +R(X,Y, Z)dZ = 0, (4.1)

where P = MZ, Q = −LZ and R = LY − MX. Here L and M are the following
homogeneous polynomials of second degree

L = Z2P (X/Z, Y/Z) = `X2 + mXY + nY 2 + δXZ − Y Z,

M = Z2Q(X/Z, Y/Z) = XZ.

Case 1: Consider n 6= 0.

Since the singular points in CP 2 of the differential equation (4.1) are defined by
P = Q = R = 0, we obtain p1 = (0 : 0 : 1) and p2 = (0 : 1/n : 1) which correspond
to finite singular points of family (I), and p3 = (1 : 0 : 0), p4 = (1 : α : 0) and
p5 = (1 : β : 0), where α and β satisfy the equation ` + mY + nY 2 = 0, which corre-
sponds to the infinity ones. Notice that p4 = p5 if and only if α = β, i.e., m2−4`n = 0.
Moreover αβ 6= 0 because ` 6= 0.

The jacobian matrix of the associated vector of family (I) at p1 is

DX (p1) =
(

δ −1
1 0

)
,

and the characteristic polynomial is p(t) = 1− δt + t2.

Similarly, at p2 one has

DX (p2) =
(

m
n + δ 1

1 0

)
,

with eigenvalues λ2 =

�
m+n δ+

√
4 n2+(m+n δ)2

�

2 n and µ2 =

�
m+n δ−

√
4 n2+(m+n δ)2

�

2 n , sat-
isfying λ2µ2 < 0 and thus p2 is a saddle.

Around p3, p4 and p5, the differential equation (4.1) can be written in local coor-
dinates, taking X = 1, as

Ẏ = −`Y + Z −mY 2 − δY Z − nY 3 + Y 2Z,

Ż = −Z(` + mY + δZ + nY 2 − Y Z). (4.2)
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Now, denoting DX the jacobian matrix of the associated vector field to system (4.2)
and, taking into account that α and β are solutions of the equation `+mY +nY 2 = 0,
we can write

DX (p3) =
( −` 1

0 −`

)
,

DX (p4) =
( −`− 2mα− 3nα2 1− δα + α2

0 0

)
,

DX (p5) =
( −`− 2mβ − 3nβ2 1− δβ + β2

0 0

)
.

At this point, we introduce the fact that family (I) has an invariant algebraic curve
f(x, y) = 0 of degree d with cofactor k(x, y) = k0 + k1x + k2y. We extend it to
the projective plane taking F (X, Y, Z) = Zdf(X/Z, Y/Z) and cofactor K(X, Y, Z) =
Zk(X/Z, Y/Z) = k0Z + k1X + k2Y . It is known that in the local chart of the
points p3, p4 and p5, the curve is given by F (1, Y, Z) = 0 and the cofactor by
K̃(1, Y, Z) = k0Z + k1 + k2Y − dL(1, Y, Z).

Since ` 6= 0, p3 is a logarithmic singular point and from statement 2 of Theorem
1.45 the differential equation has only one formal solution at it. Since Z = 0 is solution
of (4.2) through p3, there are not more solutions at this point. In particular, it follows
that F (p3) 6= 0. Therefore, from (1.3), K̃(p3) = 0 and we obtain k1 = `d.

The eigenvalues of the linear part at p4 and p5 are λ4 = −`− 2mα− 3nα2, µ4 = 0
and λ5 = −`− 2mβ − 3nβ2, µ5 = 0, respectively.

We claim that λ4 = 0 if and only if α = β, and λ5 = 0 if and only if α = β.

We prove the claim for λ4 and the claim for λ5 holds by symmetry. Suppose that
λ4 = 0. We know that α is a solution of the equation ` + mY + nY 2 = 0 but α 6= 0
because ` 6= 0. Of course, it is also a solution of Y (` + mY + nY 2) = 0. Since λ4 = 0,
α is also a solution of the derivative of the above expression. Therefore, α must be
a double solution of Y (` + mY + nY 2) = 0 which has Y = 0, Y = α and Y = β as
solutions. So, the only possibility is α = β. It is easy to see that the reciprocal is true.

Therefore, we must distinguish two possibilities for α and β:

Case 1.a: Consider α 6= β.

In this case, from statement 3 of Theorem 1.45 the differential equation (4.2) has
only two different formal solutions on each point p4 and p5. Since we know that Z = 0
is one of these solutions, there is only another one for each point.

Taking into account that the relation ` + mY + nY 2 = 0 is satisfied by α and β
one has L(pi) = 0, for i = 4, 5 and then K̃(pi) = K(pi) for i = 4, 5. Moreover, from
Theorem 1.46 and the fact that µi = 0 for i = 4, 5, the cofactor must satisfy K̃(p4) = 0
or K̃(p4) = λ4 and K̃(p5) = 0 or K̃(p5) = λ5.

Summarizing, we must study the following possibilities:
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1. K̃(p4) = K̃(p5) = 0.

We have
`d + k2α = 0,
`d + k2β = 0,

from where k2(α−β) = 0 and k2 = 0 when α 6= β. Hence, `d = 0 and then d = 0
because ` 6= 0. Therefore, there are not invariant algebraic curves in this case.

2. K̃(p4) = 0, K̃(p5) = λ5 or K̃(p4) = λ4, K̃(p5) = 0.

Suppose that K̃(p4) = 0, K̃(p5) = λ5. We have that

`d + k2α = 0,
`d + k2β + ` + 2mβ + 3nβ2 = 0.

(4.3)

We know that α and β are solutions of ` + mY + nY 2 = 0, in other words,
` = nαβ and m = −n(α + β).

Then, from equations (4.3) we obtain (k2+nβ)(β−α) = 0, from where k2 = −nβ,
because α 6= β.

From this last condition and equations (4.3) we get nαβ(d− 1) = 0 and so d = 1
because αβn 6= 0.

When K̃(p4) = λ4 and K̃(p5) = 0, we obtain also d = 1 by symmetry.

3. K̃(p4) = λ4, K̃(p5) = λ5.

In this case we have

`d + k2α + ` + 2mα + 3nα2 = 0,
`d + k2β + ` + 2mβ + 3nβ2 = 0.

As in the former case, we add the relations ` = nαβ and m = −n(α+β) to these
equations obtaining n(α− β)(d− 2) = 0. Clearly, d = 2.

Case 1.b: Consider α = β.

In this case, the singular points at infinity of family (I) are p3 and p4 being the
last a double point (1 : α : 0) where α is the double root of ` + mY + nY 2 = 0. In
other words m2 − 4`n = 0 from where ` = m2/(4n) and α = −m/(2n). Recall that p3

is the logarithmic singular point already analyzed.
Family (I) can be written now in the form

ẋ = δx− y +
1
4n

(mx + 2ny)2, ẏ = x, (4.4)

where we can always take n = 1/2 by using the scaling of variables X = 2nx, Y = 2ny.

Now, we have

DX (p4) =
(

0 ∆
0 0

)
,

with ∆ = 1 + mδ + m2. In function of the value we distinguish two cases.
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1. Suppose that ∆ = 0. In this case p4 is a degenerated singular point. The
characteristic polynomial p(t) = 1− δt + t2 associated to DX (p1) has t = −m as
a real root and therefore p1 is not a focus. There are not limit cycles in this case
because there are not finite foci.

Moreover, from ∆ = 0 we obtain δ = −(1 + m2)/m. Making the change u = x,
w = y + mx and the time rescaling dt = 2mdT we can write family (I) as

u′ = −2u− 2mv + mv2, v′ = m2(−2 + v)v, (4.5)

where the prime denotes derivative with respect to T . We emphasize that the
differential equation of the orbits of system (4.5), i.e., du/dv = ξ(u, v) is linear.
But its associated first integral H(u, v) involves hypergeometric functions de-
pending of the parameter m. Hence is not easy to analyze from H the existence
of invariant algebraic curves for (4.5).

However, notice that system (4.5) has v = 2 and v = 0 as affine invariant straight
lines. We extend now system (4.5) to CP 2 by using the homogeneous variables
V W and Z. Due to the changes of variables, the singular points at infinity of
(4.5) become p3 = (1 : m : 0) and p4 = (1 : 0 : 0). Therefore, the projective
invariant straight lines V = 0, V = 2 and Z = 0 have the degenerated singular
point p4 as common point.

Let g(u, v) = 0 be the irreducible invariant algebraic curve of degree d for system
(4.5) which comes from the initial invariant curve f(x, y) = 0 through the made
linear changes of variables. Denote by c(u, v) = c0 + c1u + c2v the cofactor
associated to g = 0. Let G(U, V, Z) = 0 be the projectivization of g = 0. Since
p3 is a logarithmic point, we recall that the only solution of (4.5) at p3 is Z = 0.
Hence, G = 0 crosses the line at infinity only at p4. Therefore, from Lemma 2.6(i),
the highest order homogeneous degree term of g = 0 must be vd. In addition,
from Lemma 2.6(ii) we conclude that v must divide (c1u + c2v)u− dmv2. Hence
c1 = 0 and we get that the cofactor c only depends on v. Since additionally v′

also depends only on v, taking into account (1.3), i.e., g′ = cg, it follows that
∫

dg

g
=

∫
c(v)dT =

∫
c(v)

v

m2(−2 + v)v
dv. (4.6)

In short, the irreducible real algebraic curve g = 0 only depends on v and therefore
it is either a real straight line or the product of two complex conjugated straight
lines.

2. Suppose that ∆ 6= 0. Doing the change of variables

x =
1
∆

(
u + mv − m

2
v2

)
, y =

1
∆

(
−mu + (1 + mδ)v +

m2

2
v2

)
,

which is a global diffeomorphism on R2 (in fact is a bipolinomial transformation),
system (4.4) becomes

u̇ = −v + δu + muv +
1
2
v2 , v̇ = u .

Therefore, the transformed system belongs to family (I) with ` = 0, studied in
[55]. As we have said before, the degree of any invariant algebraic curve is 2 or
3 and there are not algebraic limit cycles.
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Case 2: Consider n = 0 and m 6= 0.

In this case, there is a unique finite singular point p1 = (0 : 0 : 1) and there are
three singular points over the line at infinity Z = 0: p3 = (1 : 0 : 0), p4 = (1 : −`/m : 0)
and p5 = (0 : 1 : 0). Around p3 and p4 the differential equation can be written in local
coordinates, taking X = 1, as

Ẏ = −`Y −mY 2 + Z + Y 2Z − Y Zδ,

Ż = −Z(` + mY − Y Z + Zδ).

Around p5 and taking Y = 1 we have

Ẋ = −mX − `X2 + Z + X2Z −XZδ,

Ż = XZ2.

If DX is the corresponding jacobian matrix, we have

DX (p3) =
( −` 1

0 −`

)
,

DX (p4) =
(

` 1 + `2/m2 + `δ/m
0 0

)
,

with eigenvalues λ4 = 0 and µ4 = `,

DX (p5) =
( −m 1

0 0

)
,

with eigenvalues λ5 = 0 and µ5 = −m.
By statement 2 of Theorem 1.45, it follows that there is a unique linear branch at the
logarithmic point p3, and by statement 3 of the same theorem, there are two linear
branches at p4 and p5.

Let f = 0 be an invariant algebraic curve for family (I) of degree d with cofactor
k(x, y) = k0+k1x+k2y. The cofactor of the projectivized curve at the local chart of p3

and p4 is given by K̃1(1, Y, Z) = k0Z +k1 +k2Y −dL(1, Y, Z) and at the local chart of
p5, by K̃2(X, 1, Z) = k0Z + k1X + k2− dM(X, 1, Z). Since Z = 0 is the only invariant
curve through p3, from (1.3) it follows K̃1(p3) = 0 from where k1 = d`. On the other
hand, Z = 0 is one of the invariant curves through p4 and p5, and from Theorem 1.46
we have either K̃2(p4) = 0 or K̃2(p4) = ` and K̃2(p5) = 0 or K̃2(p5) = −m. Then, we
obtain k2 = dm or k2 = (d − 1)m and k2 = 0 or k2 = −m, respectively. Taking into
account that m 6= 0, the possibilities for the degree of f are d = 0 or d = 1.

Case 3: Consider n = m = 0.

In this case, after changing t → −t, family (I) reduces to ẋ = y−F (x), ẏ = −g(x)
with F (x) = δx + `x2 and g(x) = x. Hence it is a Liénard system written in the
called Liénard plane. Moreover, taking u = x, v = y − F (x) it can be written as
a quadratic Liénard system with linear damping: u̇ = v, v̇ = −f(u)v − g(u). Here
f(x) = dF (x)/dx. Since deg f = deg g = 1, for δ 6= 0, g is not a constant multiple
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of f we can apply Odani’s results [40] concluding the non existence of any invariant
algebraic curve.

If additionally δ = 0, then family (I) writes as

ẋ = −y + `x2, ẏ = x, (4.7)

and possesses the Darboux first integral H(x, y) = h(x, y) exp(−2`y) with h(x, y) =
−1− 2`y + 2`2x2 as an invariant parabola.

We will show now, that this parabola is the only irreducible invariant algebraic
curve of system 4.7. We recall that for any invariant algebraic curve f = 0 of degree d
with cofactor k = k0 + k1x + k2y we get k1 = `d since p3 = (1 : 0 : 0) is a logarithmic
singular point. Also, the origin p1 = (0 : 0 : 1) is a weak focus which can not belong to
an algebraic curve. So, k(p1) = 0. and then k0 = 0. Finally, the projectivized system
of 4.7 written in local coordinates around p2 = (0 : 1 : 0) is

Ẋ = Z − `X2Y + X2Z,

Ż = Z(Z − `X2).

Clearly, p2 is a nilpotent singular point. It can be checked that the cofactor in this
coordinates K̃(X, 1, Z) = `dX + k2Y − dM(X, 1, Z) = d(` − 1)X + k2Y must satisfy
K̃(p2) = 0, from where k2 = 0.

Summarizing, the cofactor of any invariant algebraic curve of degree d k(x, y) =
`dx. The existence of two different invariant algebraic curves of degrees d1 and d2 with
their respective cofactors implies the existence of a rational first integral. But it is well
known, see Poincaré [44] that such first integral can not coexist with a logarithmic
singular point.

Therefore the only invariant algebraic curve of the system is the parabola h(x, y) =
0.

Relative to the existence of algebraic limit cycles, the following result follows taking
into account the proof of Theorem 4.1.

Corollary 4.2. There are not algebraic limit cycles in family (I).

Proof. As we have seen, the real invariant algebraic curves for family (I) have at most
degree 3, and in some cases the existence of algebraic limit cycles has been discounted
along the proof. Moreover, it is well known that a quadratic system cannot have cubic
algebraic limit cycles. Hence, the only possibility for algebraic limit cycles are conics.

On the other hand, any invariant algebraic curve must intersect the line at infinity
in at least one of the singular points. In all the non discounted cases described in the
proof of Theorem 4.1 except perhaps in in Case 1.a, all the infinite singular points
are real, then the invariant conic cannot have real ovals contained in the affine plane.
Therefore, there are not algebraic limit cycles for family (I).

In Case 1.a, the singular points p4 and p5 may be complex conjugated. As we have
seen, if there exists an invariant algebraic curve f = 0 it must have degree 2 and must
not contain the singular points p1 and p2. Let it’s cofactor be k(x, y) = k0 +k1x+k2y;
it follows k(pi) = 0, i = 1, 2 and therefore k0 = k2 = 0. Moreover, we recall that p3 is
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a logarithmic singular point what brings us to an specific expression for the cofactor:
k(x, y) = 2`x. Finally, imposing Xf = kf it follows δ = 0 which excludes de existence
of limit cycles.



Chapter 5

Nested Configuration of
Algebraic Limit Cycles in
Quadratic Systems

This chapter deals with algebraic limit cycles of planar polynomial differential systems
of degree two. More concretely, we show among other facts that a quadratic vector field
can not possess two non nested algebraic limit cycles contained in different irreducible
invariant algebraic curves.

5.1 Introduction and statement of the results

We will concentrate our study in invariant algebraic curves satisfying (1.3), containing
ovals which are limit cycles for a quadratic systems (1.6).

Differential systems and limit cycles of degree 4 presented in chapter 2 have been
studied by many mathematicians later. When the algebraic limit cycles of degree 4
where known, the next question was the uniqueness, that is, the fact that when a
differential equation has one of the known algebraic limit cycle there are not more
limit cycles for the system; this question is solved by Chavarriga, Giacomini and Llibre
[7]. In such paper is proved the following result involving projective notation, which
provides sufficient conditions i order to have a quadratic system with all its limit cycles
algebraic.

Theorem 5.1. (Chavarriga, Giacomini & Llibre) Let f(x, y) = 0 be a real in-
variant algebraic curve of degree great or equal than two of a real quadratic system
(1.6). Let k be the cofactor of f = 0. Suppose that there are two points p1, p2 ∈ CP 2

such that L(pi) = M(pi) = K(pi) = 0 for i = 1, 2, where L = Z2P (X/Z, Y/Z),
M = Z2Q(X/Z, Y/Z) and K = Zk(X/Z, Y/Z). Then all the limit cycles of (1.6) must
be algebraic and contained into f(x, y) = 0.

In a work due to Llibre and Rodŕıguez [37] is proved that any configuration of
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limit cycles is possible using algebraic limit cycles, what gives extra importance to the
study of algebraic limit cycles.

In a recent work due to Christopher, Llibre and Świrszcs [16] two families of
quadratic systems with an algebraic limit cycle of degrees 5 and 6, respectively, are
given. These two families are constructed by means of a birrational transformation of
system (d) given in Theorem 2.1. Moreover, they prove that there is also a birrational
transformation which converts Yablonskii system into the system found by Ch’in Yuan-
shün. More recently, Chavarriga, Giacomini and Grau [6] have proved that none of the
quadratic systems with known algebraic limit cycles have a liouvillian first integral and
that these systems have only one invariant algebraic curve when the limit cycle exists.
Moreover, Giacomini and Grau [30] show the hyperbolicity of these limit cycles.

Summarizing, as far we know, it seems as if the uniqueness of the invariant al-
gebraic curves containing algebraic limit cycles was unavoidable, and also perhaps
the uniqueness of the algebraic limit cycles itself. Concretely, the open question that
we think about is the following one: Can a quadratic system possess more than one
algebraic limit cycle?

Of course, if system (1.6) has more than one limit cycle, then they can be dis-
tributed in many different ways. Assuming system (1.6) possesses two algebraic limit
cycles γi with i = 1, 2, two algebraically differentiated situations are presented. Either
the two limit cycles are contained in a unique irreducible invariant algebraic curve or
there are two different irreducible invariant algebraic curves fi(x, y) = 0 with i = 1, 2,
such that each one of them contains only one limit cycle. In this work we will concen-
trate on the second case. But one still has two cases with different topology respect
to the configuration of limit cycles: either the two algebraic limit cycles are nested or
not. The main result of this chapter is the following one.

Theorem 5.2. A quadratic system (1.6) can not possess two non-nested algebraic limit
cycles contained in different irreducible invariant algebraic curves.

It is well known that in a given quadratic system at most two singularities are
surrounded by limit cycles and that these singularities necessarily are foci. We say
that limit cycles of system (1.6) have (p, q)-distribution if it possesses p nested limit
cycles surrounding one focus and q nested limit cycles surrounding another different
focus. In [41], Z. Pingguang proves that limit cycles of a quadratic system with two
foci must be (1, i)-distribution (i = 0, 1, . . .).

Corollary 5.3. If a quadratic system (1.6) with two foci possesses r limit cycles
C1, . . . , Cr (r > 1) surrounding the same focus and at least one of them is algebraic,
i.e., C1, . . . , Cs (1 ≤ s ≤ r) are algebraic, then there exists another limit cycle CF

surrounding the other focus. Moreover, either

(i) CF is a non-algebraic limit cycle or,

(ii) CF is an algebraic limit cycle and the algebraic limit cycles Ci and CF are con-
tained in the same irreducible invariant algebraic curve for some i = 1, . . . , s.

In the next section we present the necessary concepts on quadratic systems, projec-
tive differential equations, formal differential equations and some known results. Next,
we prove some technical results. We get the proof of Theorem 5.2 in the last section.
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5.2 Preliminary results

We make some considerations on the arguments used along the proofs in order to to
facilitate the understanding:

• It is clear from (1.3) that, given an invariant algebraic curve f = 0 with cofactor
k, then all the finite critical points of a polynomial differential system (1.6) verify
either f(x0, y0) = 0 or k(x0, y0) = 0 or both above conditions. Moreover, since
f, k ∈ R[x, y], if (x0, y0) is a complex critical point of (1.6) with f(x0, y0) 6= 0
then k(x0, y0) = k(x̄0, ȳ0) = 0.

• Said this, Theorem 1.46 and Lemma 1.47 give the possible values of the cofactor
k of an invariant algebraic curve f = 0 of system (1.6) at a nondegenerate or
degenerate elementary critical point (x0, y0) ∈ C2 whose ratio of eigenvalues
does not equal one. Of course, we can extend system (1.6) to CP 2. Hence, if
p0 = (X0 : Y0 : Z0) is a singular point of the associated projective equation we
can take local coordinates at this point and Theorem 1.46 can be applied. We
notice that, for an infinite critical point p0 = (X0 : Y0 : 0) we will obtain by
the above procedure conditions on the degree n of the curve f = 0 because the
coefficients of the cofactor also depend on n.

• From now on, we will write k(p) = divX (p) in case that k(p) = λ + µ.

We will study the algebraic limit cycles of system (1.6) under the next assumption:

Hypothesis A: Let us suppose that system (1.6) has two non nested algebraic
limit cycles γi with i = 1, 2. We will assume moreover that system (1.6) has two dif-
ferent irreducible real invariant algebraic curves fi(x, y) = 0 with i = 1, 2, such that
γi ⊂ {(x, y) ∈ R2 : fi(x, y) = 0}.

Since system (1.6) is a quadratic system, a consequence of hypothesis A is the
existence of two different critical points of nondegenerate focus type pi with i = 1, 2,
such that pi ∈ Int(γi), as is stated in Theorem 1.23.

Lemma 5.4. Under hypothesis A the next holds.

(i) fi(p1)fi(p2) = 0 for i = 1, 2.

(ii) f2
1 (pj) + f2

2 (pj) 6= 0 for j = 1, 2.

Proof. Let ki(x, y) be the cofactor of the invariant algebraic curve fi(x, y) = 0. Let us
assume the contrary of statement (i), that is, suppose that fi(p1)fi(p2) 6= 0 for some
i ∈ {1, 2}. Then, it follows ki(pj) = 0 for j = 1, 2 and, since deg fi > 1, by Theorem
5.1 all the algebraic limit cycles of the quadratic system must be contained in either
curve f1(x, y) = 0 or f2(x, y) = 0. Of course, this is in contradiction with hypothesis
A and so either p1 or p2 must belong to the zero level set of fi for i = 1, 2 proving thus
statement (i).
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In order to prove statement (ii) we suppose the contrary, i.e., f1(pj) = f2(pj) = 0
for some j ∈ {1, 2}. Since pj is a nondegenerate focus, its associated eigenvalues λ and
µ are complex numbers α ± iβ verifying λ/µ 6∈ Q+. We can translate the focus pj to
the origin and make a complex linear change of coordinates in order to bring system
(1.6) to the form ẋ = λx + · · · , ẏ = µy + · · · . After, applying Theorem 1.45(1.i), we
conclude that there are exactly two formal solutions at the origin. Therefore, going
back through the change of variables, there are exactly two formal solutions at pj :
F1(x, y) = T1(x, y) + · · · , F2(x, y) = F̄1(x, y) = T̄1(x, y) + · · · , being T1 the tangent of
F1 at pj and where the over bar denotes complex conjugation operation. Finally, since
fi(x, y) = 0 are real invariant algebraic curves, we conclude that f1 = f2 = F1F̄1 in
contradiction with hypothesis A.

Lemma 5.5. Under hypothesis A, either

ki(pj) =
{

divX (pj), i = j,
0, i 6= j,

for i, j = 1, 2.

or

ki(pj) =
{

0, i = j,
divX (pj), i 6= j,

for i, j = 1, 2.

Proof. From Lemma 5.4 it follows that one focus belongs to a curve and the other one
belongs to the other curve of hypothesis A. So, the cofactor must be zero over at least
one of the foci. On the other hand, if any cofactor vanishes at more that one foci, from
Theorem 5.1 we get a contradiction with hypothesis A. In short, any cofactor is zero
exactly at one focus. The value of the cofactor at the other focus is given by Lemma
1.47.

Anyway, respect to the configuration of the finite critical points of system (1.6),
the next possibilities are presented. Two foci p1 and p2 exist always and: (a) There
are not more finite critical points; (b) There is exactly one more finite critical point
p3 which has multiplicity one; (c) The rest of finite critical points p3 and p4 are real.
Here it is possible p3 = p4 ; (d) The rest of finite critical points p3 and p4 have complex
conjugate coordinates.

We will see that the first two former cases (a) and (b) are in contradiction with
hypothesis A. First we present this preliminary result.

Lemma 5.6. Let us assume that quadratic system (1.6) has a common factor in their
highest order terms, i.e., P2 = ΛL1 and Q2 = ΛL2 where Λ, L1 and L2 are linear
polynomials. Then system (1.6) does not satisfy hypothesis A.

Proof. By linear change of variables we consider the case Λ = x without lost of
generality. Then the point q1 = (0 : 1 : 0) ∈ CP 2 is an singular point of (1.6) at
infinity.

Assume the contrary of the thesis, i.e., hypothesis A is verified. Let Fi(X, Y, Z) = 0
and Ki(X, Y, Z) be the projectivizations of the invariant algebraic curves fi(x, y) = 0
and its associated cofactors for i = 1, 2, respectively.

We take local coordinates in a neighborhood of the singular point q1 and denote
by F̃i(X, 1, Z) = 0 and K̃i(X, 1, Z) the transformed invariant curves and cofactors in
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such coordinates respectively, see the preliminaries. Since by definition K̃i(X, 1, Z) =
Ki(X, 1, Z)− deg fiM(X, 1, Z) with M(X, Y, Z) = Z2Q(X/Z, Y/Z) and M(q1) = 0 it
follows

K̃i(q1) = Ki(q1) . (5.1)

Additionally, it is easy to see that the coefficients of the linear part of the system in
local coordinates at q1 are given by

(
L1(0, 1) P1(0, 1)

0 0

)
.

This means that q1 has at least one associated eigenvalue different from zero. If both
eigenvalues vanish then K̃i(q1) = 0 for i = 1, 2. Otherwise, if exactly one eigenvalue is
zero then, from statement 3 of Seidenberg’s Theorem 1.45, it follows that there are two
formal solutions through q1. Since one of them is the line at infinity Z = 0, it is clear
that F̃1(q1) 6= 0 or F̃2(q1) 6= 0. This implies that K̃1(q1) = 0 or K̃2(q1) = 0 respectively.
Hence, taking into account (5.1) we get K1(q1) = 0 (re–indexing if necessary).

We know that the affine cofactor k1(x, y) vanishes also at one of the two foci by
Lemma 5.5. Hence K1(X,Y, Z) vanishes at such focus, too. Therefore, we are under
hypothesis of Theorem 5.1 and we get a contradiction with hypothesis A.

Proposition 5.7. Let us assume that quadratic system (1.6) has two real finite differ-
ent critical points p1 and p2 of nondegenerate focus type. If either there are not more
finite critical points or there is exactly one more finite critical point p3 with multiplicity
one then system (1.6) does not satisfy hypothesis A.

Proof. We consider the homogeneous polynomials L(X, Y, Z) = Z2P (X/Z, Y/Z) and
M(X,Y, Z) = Z2Q(X/Z, Y/Z). We denote Ip(L, M) the intersection index of L = 0
and M = 0 at the point p ∈ CP 2, see the preliminaries of this work. From Bézout
Theorem it follows

∑
p Ip(L, M) = 4. Since p1 and p2 are nondegenerate foci, its

associated eigenvalues are different from zero and then p1 and p2 have multiplicity one
as common roots of P (x, y) and Q(x, y). Hence Ipi(L,M) = 1 for i = 1, 2. We split
the study of each situation described in the proposition.

• If there are not more finite critical points of system (1.6) then there are points
qj ∈ {Z = 0} ∩ {L = 0} ∩ {M = 0} such that

∑
qj

Iqj (L,M) = 2. Therefore
Q2(x, y) = αP2(x, y) with α ∈ R and from Lemma 5.6 system (1.6) does not
satisfy hypothesis A.

• If there is exactly one more finite critical point p3 of system (1.6) with multiplicity
one then

∑3
i=1 Ipi(L,M) = 3. So there is exactly one point q ∈ {Z = 0} ∩ {L =

0} ∩ {M = 0} such that Iq(L, M) = 1. Therefore P2 and Q2 have exactly one
real common divisor of degree 1. Hence, applying Lemma 5.6, system (1.6) does
not verify hypothesis A.

The next two propositions explore the possibilities of the above cases (c) and (d).
In such study we shall consider the real straight line L(x, y) := pk1(x, y) + qk2(x, y)−
divX (x, y) = 0, with p, q ∈ R. The main idea in what follows consists on to look for
three finite critical points of system (1.6) such that L vanishes at them. Of course such
critical points are not in any straight line because in this case P (x, y) and Q(x, y) are
not coprime. So the only possibility is L(x, y) ≡ 0 and therefore, applying Darboux’s
integrability theory we conclude that fp

1 fq
2 is an inverse integrating factor of the system.
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Proposition 5.8. Let us assume that quadratic system (1.6) verifies hypothesis A and
moreover the other finite critical points p3 and p4 are real. Then f1(x, y)f2(x, y) is an
inverse integrating factor of the system.

Proof. We will start with two different cases which are either p3 6= p4 or p3 = p4.

If p3 6= p4 then each one have multiplicity one. Since p1 and p2 are foci of the
quadratic system, using Theorem 1.22, we can suppose that p3 is a topological saddle.
Hence the quotient of the eigenvalues associated to p3 is negative. So following Sei-
denberg’s results and more concretely Theorem 1.45(1.i), there are exactly two formal
solutions (linear branch) with different tangent at p3.

If f1(p3) 6= 0 or f2(p3) 6= 0, then k1(p3) = 0 or k2(p3) = 0. Then applying Theorem
5.1 and Lemma 5.5 we have that all the limit cycles are contained in f1 = 0 or f2 = 0,
respectively. This is a contradiction with hypothesis A. Therefore, the only possibility
consists in that the invariant algebraic curve f1 = 0 contains exactly one branch at p3

and f2 = 0 the other one.

Hence, translating the critical point p3 to the origin, and making a linear change
of coordinates we will continue assuming f1(x, y) = x + · · · , f2(x, y) = y + · · · and
the system becomes ẋ = λx + · · · , ẏ = µy + · · · , where λ and µ are the eigenvalues
associated to p3. Now, equating the same powers of x and y in both members of
the equations Xfi = kifi for i = 1, 2, we have that k1(p3) = λ and k2(p3) = µ. Since
divX (p3) = λ+µ we have in short k1(p3)+k2(p3)−divX (p3) = 0. As we also knew that
k1(pi) + k2(pi)− divX (pi) = 0 for i = 1, 2, this implies k1(x, y) + k2(x, y) ≡ divX (x, y)
because k1, k2 and divX are polynomials of degree at most one. Finally, by the Dar-
boux’s integrability theory we conclude that f1(x, y)f2(x, y) is an inverse integrating
factor of system (1.6).

In the second option, i.e. when p3 = p4, we have that p3 is a critical point of
system (1.6) with multiplicity two and therefore either p3 is a nilpotent singular point
or exactly one of the eigenvalues associated to p3 is null. Now we put p3 at the origin
and in the first case the quadratic system can be written after a linear change of
coordinates as ẋ = y + · · · , ẏ = · · · . From (1.3) at lower degree it follows ki(p3) = 0
for i = 1, 2. Taking into account Lemma 5.5 and Theorem 5.1 we get that f1 = 0 and
f2 = 0 contain each one all the limit cycles. This is a contradiction because f1 6= f2

and are irreducible.

We can assume that exactly one eigenvalue associated to p3 (now at the origin) is
equal zero. Then we can write the system as ẋ = λx + · · · , ẏ = · · · . By statement 3
of Seidenberg Theorem 1.45, it follows that the above system has exactly two formal
solutions at the origin Fi(x, y) = 0 with i = 1, 2 of the form F1(x, y) = x + · · · and
F2(x, y) = y + · · · . The following possibilities appear: either fi(p3) 6= 0 for some
i ∈ {1, 2} and so ki(p3) = 0 for such i or f1(p3) = 0 and f2(p3) = 0. The first case
leads to a contradiction with hypothesis A because we have two critical points (p3 and
one focus) in the straight line ki(x, y) = 0 for some i and we can apply Theorem 5.1.
In the second option, when fi(p3) = 0 for i = 1, 2, it follows that f1 = 0 contains
exactly one branch and f2 = 0 the other one. Moreover, from Theorem 1.46 we have
either k1(p3) = 0 or k2(p3) = 0. Again, using Theorem 5.1 we get a contradiction with
hypothesis A.
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Proposition 5.9. Let us assume that quadratic system (1.6) verifies hypothesis A and
moreover the other finite critical points p3 and p4 are not real. Then f1(x, y)f2(x, y)
is an inverse integrating factor of the system.

Proof. Of course, since system (1.6) is real, if p3 = (x3, y3) and p4 = (x4, y4) are not
real then its coordinates are complex conjugates, i.e., x4 = x̄3 and y4 = ȳ3. This will
be denoted by p4 = p̄3. Moreover, the eigenvalues associated to each point verify the
same property. So if λ and µ are the eigenvalues associated to p3 then λ̄ and µ̄ are the
eigenvalues associated to p4.

Let us suppose that p3 (and therefore p4) is not a resonant node. This means that
λ/µ 6∈ Q+. In this case we may simply repeat verbatim the first part in the proof of
Proposition 5.8 when we apply Theorem 1.45(1.i) to conclude that f1(x, y)f2(x, y) is
an inverse integrating factor of system (1.6).

We continue supposing that p3 and p4 = p̄3 are resonant nodes. Hence the ratio of
the eigenvalues λ and µ associated to p3 is a positive rational number and are related
by means of µ = κλ with κ ∈ Q+. Of course the eigenvalues λ̄ and µ̄ associated to p4

verify µ̄ = κλ̄. Moreover divX (p3) = (κ + 1)λ and divX (p4) = (κ + 1)λ̄.

If fi(p3) = 0 with i = 1, 2 then, applying Theorem 1.46 we have that ki(p3) =
riµ+(si−ri)λ for i = 1, 2 where si, ri ∈ N and ri ≤ si. Clearly this implies ki(p3) = αiλ
where αi := riκ + si − ri ∈ Q+. Furthermore since ki ∈ R[x, y] and p4 = p̄3 then
ki(p4) = αiλ̄ for i = 1, 2.

Now let us consider the real straight line S(x, y) := pk1(x, y)+qk2(x, y)−divX (x, y) =
0, with p, q ∈ R. We have

S(p3) = [pα1 + qα2 − (κ + 1)]λ , (5.2)

where λ 6= 0. We recall here that, since p4 = p̄3 and S ∈ R[x, y], if S(p3) = 0 then
S(p4) = 0.

If we are in Case 1 of Lemma 5.5, then ki(pi) = divX (pi) and ki(pj) = 0 for i 6= j
and i, j ∈ {1, 2}. This implies

S(p1) = (p− 1)divX (p1) , S(p2) = (q − 1)divX (p2) . (5.3)

First of all we claim that none of the foci p1 and p2 can be weak foci because in this
case divX (pi) = 0 for some i ∈ {1, 2} and so either k1(pi) = 0 for i = 1, 2 or k2(pi) = 0
for i = 1, 2 in contradiction with hypothesis A by Theorem 5.1.

So we continue the proof assuming divX (pi) 6= 0 for i = 1, 2. If we impose
S(p1) = 0 then p = 1 from the first equation (5.3). Moreover, from (5.2) we can take
q = (κ + 1 − α1)/α2 so that S(p3) = S(p4) = 0. Hence S(pi) = 0 for i = 1, 3, 4 and
therefore S(x, y) ≡ 0. But now, from the second equation of (5.3) we have that, in
fact, q = 1. So, quadratic system (1.6) admits the polynomial inverse integrating factor
f1(x, y)f2(x, y).

If Case 2 of Lemma 5.5 is verified then the proof is similar.

Proposition 5.10. Under hypothesis A, the curves f1 = 0 and f2 = 0 are the unique
invariant algebraic curves of system (1.6).
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Proof. We suppose that another invariant algebraic curve f3 = 0 irreducible in R[x, y]
exists with Xf3 = k3f3 for some polynomial k3. Assuming hypothesis A, f3 must
have degree greater than one because it is well known that quadratic systems with an
invariant straight line have at most one limit cycle.

As we have proved in Lemma 5.4, the foci pi, i = 1, 2 are contained in the curves
fi = 0, i = 1, 2 (each focus in one curve). Then, from Lemma 1.47, f3(pi) 6= 0 and so
k3(pi) = 0, i = 1, 2. Now, applying Theorem 5.1, it follows that all the limit cycles of
system (1.6) must be contained in f3 = 0, against hypothesis A.

5.3 Proof of the main result

We will see that hypothesis A can not be satisfied for system (1.6). Assuming the con-
trary, i.e. hypothesis A is fulfilled, we have shown that system (1.6) has the polynomial
inverse integrating factor V = f1f2. Hence, it must have a Darboux first integral, see
Corollary 1.18.

Since f1 = 0 and f2 = 0 are real curves and, from Proposition 5.10, they are the
unique invariant algebraic curves of system (1.6) it follows that

H = fλ1
1 fλ2

2

[
exp

(
h1

fn1
1

)]µ1
[
exp

(
h2

fn2
2

)]µ2

,

for some λi, µi ∈ C, ni ∈ N\{0}, hi ∈ C[x, y], where hi and fi are coprime polynomials
for i = 1, 2.

Following the ideas of [9], we compute

log H = λ1 log f1 + λ2 log f2 + µ1
h1

fn1
1

+ µ2
h2

fn2
2

which is also a first integral for system (1.6) whose partial derivatives are rational
functions.

The inverse integrating factor V̂ related to the first integral log H is given by

V̂ = − P
∂
∂y log H

=
Q

∂
∂x log H

.

It must be verified V̂ = V (modulus a multiplicative constant). Otherwise, Ĥ = V̂
V is

a rational first integral and excludes the existence of limit cycles. In other words

f1f2
∂

∂x
log H = Q , (5.4)

must be verified. Moreover, it can be checked that ∂
∂x log H = Φ

Λ , where Λ = fn1+2
1 fn2+2

2

and

Φ = λ1f
n1+1
1 fn2+2

2

∂f1

∂x
+ λ2f

n1+2
1 fn2+1

2

∂f2

∂x
+

µ1f1f
n2+2
2

(
f1

∂h1

∂x
− n1h1

∂f1

∂x

)
+ µ2f

n1+2
1 f2

(
f2

∂h2

∂x
− n2h2

∂f2

∂x

)
.
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Relation (5.4) becomes Φ = Qfn1+1
1 fn2+1

2 , from where fn1+1
1 fn2+1

2 divides Φ.
Therefore, f1 must divide −n1h1

∂f1
∂x and then h1 = Ωf1 for certain polynomial Ω ∈

R[x, y]. Thus, h1 and f1 are not coprime, which is a contradiction.
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