
ON THE PROGRAMMABILITY OF

MULTI-GPU COMPUTING SYSTEMS

by

Javier Cabezas Rodríguez

Advisor: Prof. Nacho Navarro

Co−advisor: Prof. Wen−mei Hwu

DISSERTATION

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy

in the Department of Computer Architecture

Universitat Politècnica de Catalunya

2015

Barcelona, Spain

Abstract

Multi-GPU systems are widely used in High Performance Computing envi-
ronments to accelerate scienti�c computations. This trend is expected to
continue as integrated GPUs will be introduced to processors used in multi-
socket servers and servers will pack a higher number of GPUs per node. GPUs
are currently connected to the system through the PCI Express interconnect,
which provides limited bandwidth (compared to the bandwidth of the mem-
ory in GPUs) and it often becomes a bottleneck for performance scalability.
Fortunately, the utilization of integrated GPUs that share the physical mem-
ory with CPUs, or higher-bandwidth interconnects such as NVLink, will help
to address this problem.

Current programming models present GPUs as isolated devices with their
own memory, even if they share the host memory with the CPU. Program-
mers need to copy the required data to the GPU memory before it is used
in a GPU computation, and copy the generated results to host memory be-
fore they are accessed by the CPU code. Moreover, complex data transfer
schemes (e.g., prefetching or speculative updates) are required to e�ciently
exploit GPUs, but they are di�cult to maintain, especially across di�erent
system topologies. This problem is aggravated when using multiple GPUs.
Multi-GPU systems are programmed like distributed systems in which each
GPU is a node with its own memory. Programmers explicitly manage alloca-
tions in all GPU memories and use primitives to communicate data between
GPUs. Furthermore, programmers are required to use mechanisms such as
command queues and inter-GPU synchronization. This explicit model harms
the maintainability of the code and introduces new sources for potential er-
rors.

The �rst proposal of this thesis is the HPE model. HPE enables multi-
GPU applications to e�ciently exchange data while preserving developer
productivity and application maintainability. HPE builds a simple, consis-
tent programming interface based on three major features. (1) All device
address spaces are combined with the host address space to form a Uni�ed
Virtual Address Space, or UVAS. (2) Programs are provided with an Asym-

i

metric Distributed Shared Memory (ADSM) system for all the GPUs in the
system. It allows applications to allocate memory objects that can be ac-
cessed by any GPU or CPU. HPE exploits the UVAS to easily keep track
of the location and the state of the copies for each object. (3) Every CPU
thread can request a data exchange between any two GPUs, through simple
memory copy calls. Such a simple interface allows HPE to automatically op-
timize data exchanges between devices; eliminating the need for application
code to handle di�erent system topologies.

Experimental results show that the HPE model eases programming of
multi-accelerator applications while providing performance improvements of
2× compared to the best data transfer scheme implemented on top of CUDA 3.
Improvements on real applications range from 5% in compute-bound bench-
marks and up to 2.6× in communication-bound benchmarks. HPE transpar-
ently implements sophisticated communication schemes that can deliver up
to a 2.9× speedup in I/O device transfers.

The second proposal of this thesis is a shared memory programming model
that exploits the new GPU capabilities for remote memory accesses to remove
the need for explicit communication between GPUs. This model turns a
multi-GPU system into a shared memory system with NUMA (i.e., Non-
Uniform Memory Access) characteristics. In order to validate the viability
of the model we also perform an exhaustive performance analysis of remote
memory accesses over PCIe. We show that the unique characteristics of the
GPU execution model and memory hierarchy help to hide the costs of remote
memory accesses.

Results show that PCI Express 3.0 is able to hide the costs of a 10% of
remote memory accesses if the kernels produce high GPU core occupancy
and the accesses are spread through the whole kernel execution. We also
show that caching of remote memory accesses can have a large performance
impact on kernel performance.

Finally, we introduce AMGE, a programming interface, compiler sup-
port and runtime system that automatically executes computations that are
programmed for a single GPU across all the GPUs in the system. The pro-
gramming interface provides a data type for multidimensional arrays that
allows for robust, transparent distribution of arrays across all GPU memo-
ries. The compiler extracts the dimensionality information from the type of
each array, and is able to determine the access pattern in each dimension of
the array. The runtime system uses the compiler-provided information to au-
tomatically choose the best computation and data distribution con�guration
to minimize inter-GPU communication and memory footprint. This model
e�ectively frees programmers from the task of decomposing and distributing
computation and data to exploit several GPUs.

ii

AMGE achieves almost linear speedups for a wide range of dense com-
putation benchmarks on a real 4-GPU system with an interconnect with
moderate bandwidth. We show that irregular computations can also bene�t
from AMGE, too, if kernels do not su�er from computation distribution im-
balance across thread blocks. We believe that AMGE can be used in shared
memory multi-GPU systems to automatically scale the performance of GPU
kernels to multiple GPUs.

Thanks to the results obtained in the experiments of this thesis we demon-
strate that careful programming interface design and e�cient implementation
of our proposals enable applications with not only simpler and more main-
tainable codebases, but also a performance scalability similar to hand-tuned
low-level implementations especially designed for multi-GPU systems.

iii

Contents

1 Introduction 1
1.1 Objectives and contributions 3

1.1.1 Multi-GPU Reverse Time Migration 3
1.1.2 Data sharing between the CPU and multiple GPUs . . 4
1.1.3 Shared memory programming for multiple GPUs . . . 5
1.1.4 Transparent parallelization of GPU programs to run

on multiple GPUs . 6
1.2 Organization . 7

2 Reference Hardware and Software Environment 9
2.1 Graphics Processing Units . 9

2.1.1 Memory technologies 11
2.2 Multi-GPU systems . 12

2.2.1 Interconnect . 13
2.2.2 GPU NUMA systems 14

2.3 Programming models for GPU-based systems 15
2.3.1 C for CUDA . 15
2.3.2 OpenCL . 17

3 State of the Art 19
3.1 Automatic CPU/GPU memory coherence 19
3.2 System support and GPU virtualization 20
3.3 Automatic multi-GPU execution 22

3.3.1 Compiler-based transparent multi-GPU execution . . . 22
3.3.2 Compiler-based multi-GPU code generation 23
3.3.3 Multi-GPU libraries 24

3.4 Languages for multi-GPU execution 25

4 Guiding Example: Reverse Time Migration 29
4.1 The Reverse Time Migration computation 29

4.1.1 Seismic imaging . 30

v

4.2 RTM base implementation . 31
4.2.1 Memory . 32
4.2.2 Input/Output . 33
4.2.3 Computation . 33

4.3 Porting RTM to GPUs . 34
4.3.1 Data I/O schemes . 34
4.3.2 GPU kernels . 36

4.4 RTM implementation on other architectures 39
4.4.1 General purpose CPUs 39
4.4.2 Cell B.E . 40
4.4.3 FPGA . 42

4.5 Performance evaluation . 42
4.6 Summary . 44

5 Heterogeneous Multi-GPU Execution 45
5.1 Programmability issues under CUDA 45

5.1.1 RTM on multiple GPUs 46
5.1.2 Performance considerations 50

5.2 The Heterogeneous Parallel Execution model 51
5.2.1 Multi-threaded GPU sharing 52
5.2.2 UVAS and remote memory access 54
5.2.3 Multi-threaded ADSM 57

5.3 Performance evaluation of the HPE model 60
5.3.1 Experimental methodology 60
5.3.2 Benchmarks . 60
5.3.3 Inter-GPU data transfers 62
5.3.4 Application benchmarks 63
5.3.5 Communication with I/O devices 67
5.3.6 Inter-node communication (MPI) 67

5.4 Summary . 68
5.5 Impact on CUDA 4/5/6 . 69

6 Shared Memory GPU Programming 71
6.1 Multi-GPU NUMA systems 71
6.2 Experimental methodology . 73

6.2.1 Hardware setup . 73
6.2.2 Microbenchmarks . 73
6.2.3 Multi-GPU applications 74

6.3 Performance analysis of the remote access mechanism 76
6.4 GPU-SM: towards shared memory multi-GPU programming . 83

6.4.1 Distributed memory vs shared memory 84

vi

6.4.2 Writing code for GPU-SM 84
6.4.3 Current limitations . 87

6.5 Implementation and performance evaluation of GPU-SM ap-
plications . 87
6.5.1 FDTD . 88
6.5.2 Image �ltering . 91

6.6 Summary . 93

7 Automatic Multi-GPU Execution 99
7.1 AMGE overview . 99

7.1.1 An example: matrix multiplication 101
7.2 Computation and data distribution 102

7.2.1 Compiler analysis . 103
7.2.2 Run-time distribution 106

7.3 AMGE implementation details 108
7.3.1 Array data type . 108
7.3.2 Source-to-source transformations 110
7.3.3 Run-time distribution selection policy 111

7.4 Experimental methodology . 113
7.5 Performance evaluation . 115

7.5.1 Indexing overhead . 115
7.5.2 Multi-GPU performance 118
7.5.3 Impact of remote accesses on performance 119
7.5.4 Comparison with previous works 123
7.5.5 Sparse benchmarks . 124

7.6 Summary . 127

8 Conclusions and Future Work 129
8.1 Conclusions . 129

8.1.1 Impact . 130
8.2 Future work . 131

8.2.1 Full system memory coherence 131
8.2.2 Hiding the costs of remote accesses 132
8.2.3 Memory placement . 132
8.2.4 Extensions to other environments 133

A Publications 135
A.1 Conference papers . 135
A.2 Journal papers . 135
A.3 Workshops . 136
A.4 Side publications . 136

vii

List of Figures

2.1 Multi-GPU system architectures. 10
2.2 Microarchitecture of AMD and NVIDIA GPU cores. 10
2.3 Multi-GPU NUMA system targeted in this thesis. 12
2.4 PCIe transfer rates for di�erent data sizes. 14

4.1 Computation and memory access patterns of RTM. 32
4.2 Execution timelines of the GPU implementation of RTM for

di�erent data I/O schemes. 35
4.3 Synchronization scheme used to overlap I/O and communica-

tion in the GPU implementation of RTM. 36
4.4 Data access and vectorization pattern for the Cell B.E. 41
4.5 Elapsed times for di�erent platform implementations of RTM. 42
4.6 I/O requirements of RTM using a stack rate 5, and high level

of compression. 43

5.1 Execution timeline for the multi-GPU implementation of RTM. 47
5.2 Exchange steps and synchronization in the RTM computation

using the CUDA 3 programming interface. 49
5.3 Exchange steps and synchronization in the RTM computation

when GPUs are shared across CPU threads. 51
5.4 Exchange steps and synchronization in the RTM computation

when UVAS is available. 54
5.5 Software-based Uni�ed Virtual Address Space implementation

using segmentation. 57
5.6 Measured throughput for di�erent data communication sizes. . 62
5.7 CPU thread wait time for di�erent inter-GPU data communi-

cation sizes. 62
5.8 Speedup over single GPU execution di�erent input dataset sizes. 64
5.9 Percentage of time devoted to memory transfers over the total

execution time. 66

ix

5.10 Disk↔GPU transfer speedups of HPE compared to the base
synchronous version. 67

5.11 MPI transfer speedups of HPE compared to the base syn-
chronous version. 68

6.1 Multi-GPU systems used to evaluate GPU-SM. 73
6.2 Data dependences in a 4-point 3D stencil computation. 75
6.3 Data needed to compute an output pixel in a convolution. . . 76
6.4 Memory bandwidth achieved by remote accesses for di�erent

PCIe generations. 77
6.5 Di�erent remote memory access patterns for a 2D computation

grid. 78
6.6 Execution timeline of a 2D kernel in which the 20% of the input

and 10% of the output elements of the matrices are accessed
remotely. 79

6.7 Performance overhead imposed by remote accesses for di�erent
computation intensities. 80

6.8 Execution time for di�erent remote accesses and SM occupan-
cies. 81

6.9 Execution time for di�erent sizes of the remotely accessed
read-only data structure and di�erent occupancies. 82

6.10 Distributed and shared memory multi-GPU system models. . . 83
6.11 Inter-domain data dependences for FDTD. 88
6.12 FDTD: speedups of the multi-GPU implementations for 4

GPUs compared to the original implementation on a single
GPU. 90

6.13 FDTD: execution timeline for di�erent decompostion con�gu-
rations. 91

6.14 Image �ltering: speedups of the multi-GPU GPU-SM imple-
mentation for 4 GPUs compared to the original implementa-
tion on a single GPU. 92

7.1 Overview of AMGE components. 100
7.2 Computation-to-data mapping examples. 104
7.3 Data and computation distribution con�gurations for sgemm

and transpose on a 4-GPU system. 107
7.4 Sparse matrices used in the SpMV benchmarks. 116
7.5 Overhead imposed by indexing routines of the proposed multi-

dimensional array type. 117
7.6 Speedup over baseline for di�erent computation decomposition

con�gurations using reshape and VM implementations. 118

x

7.7 Memory requests served by remote GPUs. 119
7.8 Execution timeline of stencil2D for 4 GPUs. 121
7.9 Overhead of the coherence mechanisms in AMGE and in the

related work [57]. 123
7.10 Execution time of di�erent implementations of the sparse ma-

trix vector computation on AMGE for 1, 2 and 4 GPUs. . . . 125
7.11 Computation imbalance in the SpMV benchmark (4 GPUs). . 126
7.12 Performance scalability in the BFS benchmark. 126

xi

List of Tables

2.1 Memory and interconnection network characteristics. 14

4.1 Hardware con�guration used for the evaluation of the GPU
implementation of RTM. 37

4.2 Hardware con�guration used for the evaluation of the CPU
implementation of RTM. 39

4.3 Hardware con�guration used for the evaluation of the Cell B.E.
implementation of RTM. 40

4.4 Hardware con�guration used for the evaluation of the FPGA
implementation of RTM. 41

6.1 Analyzed con�gurations for the GPU-SM implementation of
FDTD. 75

6.2 Analyzed con�gurations for the GPU-SM implementation of
image �ltering. 76

7.1 Dense benchmarks used for the evaluation of AMGE. 112
7.2 Sparse benchmarks used for the evaluation of AMGE. 114
7.3 Maximum problem size for a 4-GPU system in AMGE and in

the related work. 122

xiii

Listings

4.1 Pseudocode of the RTM algorithm. 31
5.1 Simpli�ed host code of the RTM computation using the CUDA

3 programming interface. 48
5.2 Simpli�ed host code of the RTM computation when GPUs are

shared across CPU threads. 53
5.3 Simpli�ed host code of the RTM computation when UVAS is

available. 55
5.4 Simpli�ed host code of the RTM computation when ADSM is

available. 58
6.1 FDTD: distributed implementation (simpli�ed version of the

kernel). 93
6.2 FDTD: distributed implementation (host). 94
6.3 FDTD: GPU-SM implementation (simpli�ed version of the

kernel). 95
6.4 FDTD: GPU-SM implementation (host). 96
7.1 Multi-GPU sgemm GPU code with AMGE. 101
7.2 Multi-GPU sgemm host code with AMGE. 102

xv

Chapter 1

Introduction

In the last years, massively-parallel accelerators have experienced widespread
adoption in di�erent environments due to their outstanding performance in
many types of computations. Companies and research centers that rely on
High Performance Computing (HPC) to solve complex scienti�c simulations
were the �rst to embrace the utilization of such processors. Further improve-
ments in the manufacturing technologies of chips have also made possible the
integration of accelerators and general purpose processors in a single (het-
erogeneous) chip; and they can now be found in mobile devices, desktops,
and servers. Thus, this types of accelerators are becoming ubiquitous and
this trend is expected to continue in the next years.

The most common type of massively-parallel accelerator is the Graphics
Processing Unit (i.e., GPU). GPUs have traditionally excelled at executing
�xed-function primitives that process in parallel data such as vertices, edges
and pixels. With the introduction of user-de�ned shaders (user-de�ned com-
putations on the geometry or color of 3D objects), GPUs were extended to be
programmable processors. At the beginning, this capabilities were only acces-
sible through extensions of the most popular graphics' application program
interfaces (e.g., OpenGL and DirectX). Many scientists saw the potential
of GPUs to be used for general purpose computing, and started to develop
programming frameworks such as Lib Sh [67], BrookGPU [31], and Accelera-
tor [90]. Since then, GPU vendors have created new programming languages
and frameworks such as NVIDIA R©CUDA

TM

[74] or OpenCL
TM

[56] to enable
true general purpose computing on GPUs.

The preferred form factor in HPC environments is discrete GPUs be-
cause they provide their own specialized memories (e.g., GDDR5) that de-
liver much higher bandwidth than host memory. Examples of discrete GPUs
are NVIDIA Tesla and AMD FirePro. Discrete GPUs are connected to the

1

system through standard I/O interconnects like PCI Express. Many manu-
facturers also couple a general purpose processor and an integrated GPU in
the same die. This type of chip is common in desktop and mobile systems.
Examples of integrated CPU/GPU processors include Intel Haswell, AMD
Kaveri, and NVIDIA K1. In these systems, CPUs and GPUs share the host
memory. This has two e�ects: (1) Integrated GPUs have lower performance
than their discrete counterparts (due to the lower memory bandwidth). (2)
On the other hand, they bene�t from faster CPU↔GPU communication
since they do not rely on I/O interconnects.

Oftentimes, problems are too computationally demanding or the required
data is too big to be run on a single GPU. In such cases, the problem is
decomposed into smaller subproblems (e.g., using domain decomposition)
that are executed on several GPUs in parallel. Many HPC systems systems
install several discrete GPUs per node1. GPUs installed in the same node
bene�t from lower-latency and higher-bandwidth communication. In order
to pack as many GPUs as possible in the same node, some manufacturers
have announced products that include several GPUs in the same board (e.g.,
NVIDIA Pascal). Nevertheless, the increased performance of multiple GPUs
comes at the cost of higher programming complexity.

Current programming models present GPUs as isolated devices with their
own memory. This is the case even if they share the host memory with the
GPU, because most chips with integrated GPUs do not implement hardware
memory coherence between the CPU and the GPU cores. However, exposing
separate memories hurts programmability. Programmers need to copy the
required data to the GPU memory before it is used in a GPU computation,
and copy the generated results to host memory before they are accessed by
the CPU code. Moreover, simple data transfer schemes are likely to incur
into performance penalties. On the other hand, elaborated schemes (e.g.,
prefetching or speculative updates) require complex implementations that
are di�cult to maintain, especially across di�erent system topologies.

This problem is aggravated when using multiple GPUs. Multi-GPU sys-
tems are programmed like distributed systems in which each GPU is a node
with its own memory. Programmers need to manage allocations in all GPU
memories and explicitly use primitives to communicate data between GPUs,
which can be di�cult in computations with complex data dependencies be-
tween GPUs. Furthermore, in order to manage several GPUs e�ciently,
programmers are required to use mechanisms such as command queues and
inter-GPU synchronization. This, again, further harms the maintainability

1No integrated multi-GPU systems have been released so far, but they are expected to
appear in the next years.

2

CHAPTER 1. INTRODUCTION

of the code and introduces new sources for potential errors.

1.1 Objectives and contributions

The main objective of this thesis is to facilitate the utilization of GPUs
so that they can be adopted by a broader community. More speci�cally,
improvements to the current programming models for GPUs are proposed in
order to simplify the management of multiple GPUs and the data transfers
between the host and GPU memories. Some of these changes require support
from the Operating System or the GPU architecture, too.

1.1.1 Multi-GPU Reverse Time Migration

In order to accomplish our goals, we �rst analyze the GPU programmability
issues in real applications. The RTM (i.e., Reverse Time Migration) appli-
cation is used as a guiding example in this thesis. It is a key application
in the oil and gas industry with much higher computing power requirements
than previous algorithms, that can only be ful�lled thanks to multi-GPU
execution.

We present an optimized implementation of the RTM that is speci�cally
designed to exploit the architectural characteristics of the GPUs. The work
is divided in two parts:

1. An optimized implementation of the di�erent computational kernels on
the GPU.

2. A multi-GPU multi-node execution framework for RTM. This work was
done using CUDA 3, which imposes several restrictions on how CPU
threads can access the GPUs in the system (e.g., each CPU thread can
access 1 GPU only).

This implementation is measured against three reference HPC platforms:
one that employs traditional cache-coherent cores, another one that uses
Cell B.E. accelerators [53], and a Convey HC-1 FPGA system. Results show
that GPUs outperform any other accelerator. However, PCIe and disk I/O
needs to be carefully performed to overlap them with computation to hide
the costs. Limitations in the GPU programming model makes this a di�cult
task, and we identify several programmability issues that we try to address
in the thesis.

3

1.1. OBJECTIVES AND CONTRIBUTIONS

1.1.2 Data sharing between the CPU and multiple GPUs

To e�ectively utilize a multi-GPU computing system, application developers
need to distribute large data sets across GPU memories. Within a hetero-
geneous computing cluster, application-level data exchange between GPUs
involves interactions between node-level APIs such as CUDA or OpenCL, and
inter-node APIs such as MPI. While MPI hides the complexity of the system
interconnect topology and inter-node routing, there is currently no similar
node-level interface. Therefore, developers are left with the challenging task
of code versioning needed to e�ectively use a wide variety of hardware and
drivers with very di�erent capabilities.

Moreover, CPU and GPU have separate memory spaces and developers
are in charge of managing separate copies on host and GPU memories for
each data structure, and keeping them coherent through explicit memory
transfers. Some solutions propose a single virtual memory space that is
shared between CPU and GPU [45, 52]. In these solutions, each object is
allocated once although memory is allocated both in host and GPU memory;
and a runtime system transparently keeps the di�erent copies of the object
coherent. However, they target systems with a single GPU.

We propose the Heterogeneous Parallel Execution (HPE) programming
interface and its runtime system. HPE enables multi-GPU applications to
e�ciently exchange data while preserving developer productivity and appli-
cation maintainability. HPE is available to CUDA and OpenCL developers
as a user-level library. It allows applications to allocate memory objects that
can be accessed by any GPU or CPU in the system. The HPE runtime
transparently handles data copies.

Both CUDA and OpenCL allow applications to interact with all devices
in the system. However, the physical bus topology of the system dictates
the level of interaction and data exchanges allowed between GPUs. As a
result, programmers write application code to discover the physical system
topology and implement di�erent code paths for each type of system con�gu-
ration. This represents a signi�cant e�ort resulting in large, hard-to-maintain
application code base.

HPE builds a simple, consistent programming interface based on three
major features.

1. All GPU address spaces are combined with the host address space to
form a Uni�ed Virtual Address Space, or UVAS. Starting with the
Fermi generation, all NVIDIA GPUs support UVAS based on virtual
memory.

2. Programs are provided with an Asymmetric Distributed Shared Mem-

4

CHAPTER 1. INTRODUCTION

ory (ADSM) system [45] for all the GPUs in the system. HPE exploits
the UVAS to easily keep track of the location and the state of the copies
for each object. The simple relation between a GPU address and its
corresponding host address allows a lock-free implementation of the
HPE runtime.

3. Every CPU thread can request a data exchange between any two GPUs,
through simple memory copy calls. The HPE runtime manages thread-
to-GPU connection and performs intermediate data copies when nec-
essary to realize this abstraction. Such a simple interface allows HPE
to automatically optimize data exchanges between GPUs; eliminating
the need for application code to handle di�erent system topologies.

We have been working with NVIDIA to include many of the features of
HPE in the latest versions of CUDA.

1.1.3 Shared memory programming for multiple GPUs

The common approach to multi-GPU programming is to use each GPU as an
isolated device with its own memory. This imposes the utilization of explicit
memory transfers between GPU memories every time a GPU needs data
that is located on the memory of a di�erent GPU. Further, these memory
transfers must be overlapped with computation to minimize their overhead,
thus increasing the complexity of the code. While HPE takes care of some
of these optimizations, we would like to remove all explicit data transfers.

Modern NVIDIA GPUs provide the capability of accessing the memories
of all the GPUs connected to the same PCI Express root complex [5]. They
also present a single Uni�ed Virtual Address Space (i.e., UVAS) that in-
cludes all the GPU memories in the system and the host memory. Thanks to
these features, CUDA kernels can access any memory in the system through
regular load/store instructions. While these features have been available
for some time they have gone unnoticed among application developers, and
their utilization has been mainly restricted to accelerate bulk data transfers
between GPU memories and to enable better integration with I/O devices.

In this dissertation, we propose GPU-SM, a shared memory programming
model that exploits the new GPU capabilities to remove the need for explicit
communication between GPUs. The memory of multiple GPUs is aggregated
to form a shared memory system with NUMA (i.e., Non-Uniform Memory
Access) characteristics. In this type of systems computation can be freely
decomposed and distributed across all the GPUs in the system, because
any GPU can access all the memory in the system, although with a lower
bandwidth and higher latency.

5

1.1. OBJECTIVES AND CONTRIBUTIONS

We also perform an exhaustive performance analysis of remote memory
accesses over PCIe and their viability as a mechanism to implement the
shared memory model in multi-GPU systems. Di�erent PCIe revisions (i.e.,
2.0 and 3.0) and topologies are studied. We show that the highly-multi-
threaded GPU execution model helps to hide the costs of remote memory
accesses. Other features introduced in the latest GPU families such as read-
only caches can minimize the amount of accesses to remote GPUs. The
importance of the thread block scheduling and its relation with data decom-
position is also discussed, as they determine how remote memory accesses
are distributed along kernel execution.

1.1.4 Transparent parallelization of GPU programs to
run on multiple GPUs

While using a shared memory model improves programmability of multi-
GPU systems, programmers are still in charge of decomposing the problem
and distributing it across several GPUs. Moreover, memory placement needs
to be performed in such a way that remote memory accesses are minimized,
in order to avoid the impact on the performance. This has shown to be a
challenging task in the past in other type of systems [30, 66, 65, 38] and
usually rely on hardware mechanisms not available in current GPUs such as
paging..

In this dissertation, we propose exposing to programmers a single virtual
GPU that aggregates the resources of all GPUs in the system. Similar so-
lutions have been proposed [57, 61], but their design imposes fundamental
limitations. (1) Memory footprint overhead: these solutions replicate por-
tions of the arrays that are never accessed. This is because they do not
take into account the dimensionality of the arrays. For example, consider a
kernel that performs n-dimensional tiling (a common pattern in dense GPU
computations [83, 92, 21]) where each computation partition accesses a non-
contiguous memory region of a matrix. In such a case, they transfer the whole
memory address ranges accessed by each computation partition, which may
include large portions of the array that are never used. This limits the size
of the problems that can be handled and imposes performance overheads
due to larger data transfers. (2) Data coherence overhead: replicated output
memory regions need to be merged in the host memory after each kernel
call. In many cases, this merge step leads to large performance overheads.
(3) Applications that use atomic and global memory instructions, resort to
single-GPU execution.

In this thesis, we introduce AMGE (Automatic Multi-GPU Execution), a

6

CHAPTER 1. INTRODUCTION

programming interface, compiler support and runtime system that automat-
ically executes computations that are programmed for a single GPU across
all the GPUs in the system. The programming interface provides a data type
for multidimensional arrays that allows for robust, transparent distribution
of arrays across all GPU memories. The compiler extracts the dimension-
ality information from the type of each array, and is able to determine the
access pattern in each dimension of the array. The runtime system uses the
compiler-provided information to automatically choose the best computation
and data distribution con�guration to minimize inter-GPU communication
and memory footprint.

AMGE assumes non-coherent non-uniform shared memory accesses (NCC-
NUMA) between GPUs through a relatively low-bandwidth interconnect,
such that all GPUs can access and cache any partition of the arrays. Thus,
we ensure that arrays can be arbitrarily decomposed, distributed and safely
accessed from any GPU in the system. In current systems based on discrete
GPUs, we utilize Peer-to-Peer [5] and Uni�ed Virtual Address Space [74]
technologies that enable a GPU to transparently access the memory of any
other GPU connected to the same PCIe domain. While remote GPU mem-
ory accesses have been used in the past [89], this is the �rst work to use them
as an enabling mechanism for automatic multi-GPU execution.

Results show that AMGE can e�ectively provide linear speedups for a
wide reange of dense computations a 4 GPU system. Moreover, the size of
the problems that can be handled is much larger than previous solutions.
Furthermore, AMGE can also be bene�cial to irregular workloads.

1.2 Organization

This dissertation is organized as follows:

Chapter 1: Introduction Provides an overview of the programmability
problems we are trying to solve and outline the proposed solutions.

Chapter 2: Reference Hardware and Software Environment The
chapter explains the unique characteristics of the GPU architecture and the
technologies (e.g., PCI Express, GDDR5 memory) in multi-GPU systems,
that are used in the proposals. This is followed with a discussion of current
programming models for GPUs, their features, and their limitations. Since
the RTM algorithm is used as a guiding example, it is introduced here, too.

7

1.2. ORGANIZATION

Chapter 3: State of the Art Several works have been proposed to sim-
plify the programmability of GPU-based systems. These previous works are
discussed and their limitations are highlighted. We focus on memory man-
agement and automatic multi-GPU execution.

Chapter 4: Guiding Example: Reverse Time Migration Reverse
Time Migration (RTM) is used as a guiding example in this thesis to illus-
trate programmability problems in multi-GPU systems. The RTM compu-
tation is composed of a number of computational kernels and has high I/O
requirements. We explain the implementation optimizations for GPUs and
compare them with previous approaches for di�erent architectures.

Chapter 5: Heterogeneous Multi-GPU Execution Multi-GPU exe-
cution is required to handle real-world problem sizes. This chapter intro-
duces a multi-GPU paralelization strategy in CUDA for RTM with support
for several nodes through MPI. We identify and analyze the programmability
problems that arise and propose the HPE model that eliminates or minimizes
them.

Chapter 6: Shared Memory GPU Programming Discusses the hard-
ware requirements and the characteristics to enable shared memory program-
ming in multi-GPU systems. The chapter also includes an analysis of the
performance characteristics of PCI Express and the capabilities of current
GPUs to hide the costs of remote memory accesses.

Chapter 7: Automatic Multi-GPU Execution This chapter intro-
duces a programming framework that transparently decomposes computation
and data and distributes them across all the GPUs in the system.

Chapter 8: Conclusions and Future Work Sumarizes the discoveries
made in this thesis and outlines future directions to achieve simpler and more
e�cient multi-GPU execution.

8

Chapter 2

Reference Hardware and

Software Environment

This thesis proposes improvements in the programmability of systems that
install several GPUs. This chapter introduces the details of the GPU hard-
ware and programming models which are important to understand the perfor-
mance trade-o�s and the implementability of our proposals. It also presents
the terminology used in the rest of the thesis.

2.1 Graphics Processing Units

Modern GPUs are presented in two di�erent form factors.

• Discrete GPUs are dedicated boards connected to the rest of the system
through expansion slots such as PCI Express (shown in Figure 2.1a).
They have their own high-bandwidth memory, which is explicitly man-
aged by the programmers.

• Integrated GPUs are included in the same die as the CPU and both
share the host memory (shown in Figure 2.1b). They may also share
some levels of the cache memory hierarchy with the CPU cores. For
example, the CPU and GPU in the Intel Ivy Bridge [49] chip share the
L3 cache. AMD APU [2] provides both coherent (which shares the L2
cache) and non-coherent interconnects for the integrated GPU, which
are chosen at programmer's request. On the other hand, the GPU in
the NVIDIA K1 [14] chip does not share any level of the cache memory
hierarchy with the CPU cores.

9

2.1. GRAPHICS PROCESSING UNITS

(a) Discrete (b) Integrated

Figure 2.1: Multi-GPU system architectures.

Discrete designs are preferred in High Performance Computing environ-
ments due to their much higher memory bandwidth. Moreover, several dis-
crete GPUs can be installed in each node, while there are no multi-GPU
designs that use integrated GPUs yet. Since this thesis targets the pro-
grammability of multiple GPUs, we mainly focus on discrete GPUs, although
many of the presented concepts and analyses can be applied to integrated
GPUs, too.

(a) AMD Graphics Core Next (b) NVIDIA Maxwell

Figure 2.2: Microarchitecture of AMD and NVIDIA GPU cores.

Current GPUs have several highly-multithreaded cores that contain wide
vector units. They use a SIMT (i.e., Single Instruction Multiple Threads)
execution model in which threads are organized in �xed-length groups (i.e.,
warps in NVIDIA GPUs, wave fronts in AMD GPUs) that execute the same
instruction concurrently on the di�erent lanes of the vector units. The cur-
rent size of a warp is 32 threads in NVIDIA GPUs and 64 threads in AMD
GPUs. When threads in the same warp take di�erent execution paths they
produce thread divergence. Since all threads in the warp execute in lockstep,
each path is executed by all the threads, although predication is used to dis-
able the lanes of the threads that are not in the executed path. Divergence
degrades the throughput of the GPU up to as many times as the number

10

CHAPTER 2. REFERENCE HARDWARE AND SOFTWARE ENVIRONMENT

of diverging execution paths and must be minimized. GPU cores switch ex-
ecution between di�erent warps to hide the cost of long latency operations
such as memory requests. NVIDIA refers to each of this cores as Streaming
Multiprocessor (i.e., SM) and uses CUDA core to refer to each of the lanes
of the vector unit [46, 4, 12] (Figure 2.2b). AMD uses Computing Unit (i.e.,
CU) for the cores, SIMD for the vector unit and work item for the vector
lane [1] (Figure 2.2a). In this thesis we use the terms warp, GPU core, vector
unit and vector lane.

GPUs typically include a cache memory hierarchy, but it serves a di�er-
ent purpose than CPU caches. In CPUs, threads compute coarse grain tasks
and CPU caches exploit spatial/temporal locality within each thread to min-
imize the access latency by reducing the number of o�-chip memory requests.
GPUs, however, use a large number of threads that perform �ne grain com-
putations which result in much lower data locality within each thread. On
the other hand, neighboring threads tend to access to contiguous data ele-
ments. Thus, the main purpose of caches in GPUs is to serve as a coalescing
point: memory accesses from di�erent threads in a warp to elements within
the same cache line are coalesced into a single request. In order to maximize
performance, data must be laid out in such a way that memory accesses
are always coalesced. A scratchpad memory is also commonly provided for
programmers to exploit inter-thread locality.

NVIDIA GPUs implement a two-level hierarchy with a �rst level com-
posed of a non-coherent private cache per core, and a shared second level
cache. L1 caches are write-through and, therefore, modi�cations from dif-
ferent cores to the same cache line are consolidated in the L2 cache. The
cache hierarchy supports atomic operations, which are implemented in the
L2 cache, too. The Kepler family of GPUs added a second private cache per
SM for read-only data. Each core also contains a scratchpad memory (96KB
in the Maxwell family, 48KB in previous families). AMD Core Next architec-
ture use a similar two-level memory hierarchy with a local 64KB scratchpad
per core. The main di�erence with respect to NVIDIA GPUs is that L1
caches are coherent. AMD GPUs also provide a scalar core that handles the
execution of common scalar operations (e.g., branches, pointer arithmetic)
across threads in a wave front and has its own L1 read-only cache.

2.1.1 Memory technologies

CPUs use DDR SDRAM (i.e., Double Data Rate Synchronous Dynamic
Random Access Memory) or simply DDR. The revision of this technology
that is currently used is DDR3, although many vendors are already shipping
DDR4 modules. High-end systems provide several independent communi-

11

2.2. MULTI-GPU SYSTEMS

Figure 2.3: Multi-GPU NUMA system targeted in this thesis.

cation channels with the memory modules (AMD Socket G34 supports up
to 4 channels). Each channel uses a 64-bit bus and many channels can be
combined to build a wider bus (i.e., ganged mode) although this mode is
not commonly used. Read and write accesses to the SDRAM are burst ori-
ented; an access starts at a selected location and consists of a total of four or
eight data words. For write operations a mask can be used to specify which
individual bytes are actually written to memory.

Conversely, discrete GPUs use GDDR5 (i.e., Graphics DDR version 5),
which presents some di�erences with respect to DDR3. GDDR5 devices
are always directly soldered down on the board and are not mounted on a
memory module (e.g., DIMM). They operate at a much higher frequency
than DDR devices. Each channel uses a 32-bit bus, and channels are always
ganged by the GPU memory controller to form a much wider bus (up to 512
bits). Bursts in GDDR5 always have a size of eight data words.

2.2 Multi-GPU systems

The base system targeted in this thesis is composed of several discrete GPUs
connected to the system through a PCI Express (i.e., PCIe) interconnect
(Figure 2.3). Besides having access to their own memories, since the Fermi
microarchitecture [46], NVIDIA GPUs can access other memories through
the PCIe interconnect (i.e., GPUDirect[5]) without host code intervention.
At the same time, they introduced a single Uni�ed Virtual Memory Address
Space (i.e., UVAS) for all the GPUs in the system. The goal of UVAS is
to allow every object in the system, no matter which physical memory it
resides in, to have a unique virtual address to be used by application point-
ers. Combining these two features allows regular load/store instructions to
transparently generate local or remote requests, based on the translation of

12

CHAPTER 2. REFERENCE HARDWARE AND SOFTWARE ENVIRONMENT

virtual address to the physical location of the data being accessed. Several
of the designs proposed in this thesis take advantage of the remote memory
access mechanism to implement shared memory programming on multiple
GPUs. As far as we know, AMD does not currently support remote memory
access between GPU memories.

2.2.1 Interconnect

Practically all current discrete GPUs use the PCIe interconnect to interface
with the host. However, interconnects that o�er higher bandwidth have been
announced.

PCI Express

PCIe is a expansion bus that uses a point-to-topology that connects the de-
vices to the root complex [76]. It uses a separate link per device, which can
contain several lanes (currently from 1 to 16 lanes are commonly used). The
root complex can interface with PCIe endpoints (i.e., devices) or switches
that multiplex the link among several devices. This �exibility allows to cre-
ate complex device hierarchies. Data is transmitted in packets, that can be
stripped accross lanes. Therefore, bandwidth increases with the number of
lanes. Moreover, PCIe supports full-duplex communication between any two
endpoints. Current PCIe 3.0 provides up to 16GB/s per direction. The en-
coding used to transmit data in previous PCIe versions reduced the e�ective
bandwidth by a 20%, but PCIe 3.0 uses a di�erent encoding that introduces
a 2% overhead, only.

The PCIe standard packets support up to 30-byte headers and up to
4KB payloads (although most PCIe controllers in current processors limit it
to 256 bytes or less [50]). The overhead imposed by the size of the headers
makes PCIe not well suited for very small transfers. On the other hand,
transfers larger than the payload size are broken by the PCIe controller to
several packets (which is more e�cient than breaking the transfer to smaller
transfers in software). Another source of overhead is due to PCIe transactions
not being able to use pageable host memory. To solve this problem, the
GPU driver copies data to temporary non-pageable (or pinned) bu�ers before
transmitting them to the GPU memory. While double-bu�ering can be used
to hide this cost, they are only e�ective for large data transfers. Figure 2.4
shows the achieved memory transfer rates for di�erent data sizes in a system
with a NVIDIA C2050 and a PCIe 2.0 x16 interconnect. Lines with circles
represent transfers using pinned memory bu�ers instead of regular pageable
allocations.

13

2.2. MULTI-GPU SYSTEMS

4KB 8KB
16KB

32KB
64KB

128KB
256KB

512KB 1MB 2MB 4MB 8MB
16MB

32MB
64MB

Transfer size

0

1

2

3

4

5

6

7

Ba
nd

w
id

th
 (G

B/
s)

Read (pinned)
Write (pinned)

Read
Write

Figure 2.4: PCIe transfer rates for di�erent data sizes.

Memory Latency Bandwidth

DDR3 (CPU, 2 channels) ∼ 50 ns ∼ 30GBps
GDDR5 (GPU, 4-8 channels) ∼ 500 ns ∼ 250GBps
HBM ∼ 500 ns 500�1000GBps
Interconnect Latency Bandwidth

Hypertransport 3 ∼ 40 ns 25+25GBps
QPI ∼ 40 ns 25+25GBps
PCIe 2.0 ∼ 200 ns 8+8GBps
PCIe 3.0 ∼ 200 ns 16+16GBps
NVLink (4 interconnection points) - 80GBps

Table 2.1: Memory and interconnection network characteristics.

NVLink

NVIDIA will introduce a new interconnect called NVLink [13] in the Pascal
GPU family (to be released in 2016), in an e�ort to replace PCIe with a
faster bus. NVLink also uses a point-to-point bus and includes one or several
NVLink interconnection points in each device. Devices can bond together
several interconnection points to increase the bandwidth. Preliminary studies
show 80GB/s per direction for a device using four interconnection points.

2.2.2 GPU NUMA systems

The interconnects and memories in the system have di�erent di�erent latency
and bandwidth characteristics (Table 2.1). GPUs access their local memory
(Figure 2.3, arc a) with full-bandwidth (e.g., ∼ 250GBps in GDDR5). They

14

CHAPTER 2. REFERENCE HARDWARE AND SOFTWARE ENVIRONMENT

access other memories in the system through the PCIe interconnect: host
memory (arc b) or another GPU memory (arc c)1. Remote accesses can
traverse any PCIe switch found between the client and the server GPUs. Both
CPU memory and the inter-GPU interconnects like PCIe deliver a memory
bandwidth which is an order of magnitude lower than the local GPU memory
(e.g., ∼ 12GBps in PCIe 3), thus creating a Non-Uniform Memory Access
(i.e., NUMA) system. Future interconnects such as NVLink will increase
the bandwidth, but memory interfaces with higher bandwidths have been
announced too (HBM [6] will deliver up to 1TB/s).

Remote access characteristics

Besides the lower bandwidth and increased latency, remote accesses present
some other peculiarities compared to regular memory accesses. They are not
cached in the regular memory hierarchy because modi�cations from di�erent
GPUs to the same cache line could produce coherence problems. However,
remote accesses to data that is only read in the computation can be safely
cached in the read-only (R/O) cache (currently, this must be speci�ed by
programmers by using the __ldg intrinsic provided by CUDA).

2.3 Programming models for GPU-based sys-

tems

GPUs are typically programmed using a Single ProgramMultiple Data (SPMD)
programming model, such as NVIDIA CUDA [74] or OpenCL [56]. Unless
stated otherwise, the CUDA naming conventions are used in the rest of the
thesis.

2.3.1 C for CUDA

Although the programming framework is called C for CUDA, we refer to it
simply as CUDA in the rest of the thesis. CUDA [74] is divided into two
parts:

1. A C/C++ API that exposes GPUs to programs and allows them to
manage their memory and launch computations to be run on the GPUs.

1In systems with multiple CPU sockets, the inter-CPU interconnect (e.g., HyperTrans-
port/QPI) might need to be traversed, too. Unfortunately, current systems do not support
routing remote GPU↔GPU requests over the inter-CPU interconnect. Therefore, all the
experiments presented in this thesis that require the remote memory access capability are
performed on systems with a single CPU socket.

15

2.3. PROGRAMMING MODELS FOR GPU-BASED SYSTEMS

2. A C++-like programming language to write computations that run on
the GPU.

CPU-GPU interface

Programmers need to manage GPU and host memories. Although they are
presented with a UVAS, they control in which GPU memory is physically
allocated. They need to copy the necessary data to the GPU memory be-
fore launching any GPU computation that uses it. Conversely, output data
computed on a GPU needs to be copied back to host memory before it can
be accessed by the CPU. Thanks to the UVAS, pointers to data allocated
on one GPU can be passed to a di�erent GPU, since it can be transparently
accessed through the PCIe interconnect (although with much higher latency
and much lower bandwidth).

The GPU is a passive device that executes asynchronous commands
pushed by the host code: mainly kernel launches and memory transfers.
The GPU address space is abstracted with a CUDA context. By default, a
single CUDA context is assigned to each GPU, but additional contexts can
be created. GPUs provide several command queues which are abstracted as
CUDA streams. Commands pushed to a stream are executed in order, but
commands from di�erent streams can execute in any order and, if there are
enough available resources, concurrently. Therefore, several streams must be
used to overlap computation and data transfers. CUDA provides di�erent
levels of synchronization: device, stream, and individual operation (using
CUDA events). Event barrier operations can be also pushed to streams to
guarantee inter-stream command ordering. All these abstractions need to
be used in most cases in order to achieve high performance, thus greatly
increasing coding complexity.

GPU programming model

Programmers encapsulate computations in functions (called kernels) that are
executed in parallel by a potentially large number of threads, although each
thread might take a completely di�erent control �ow path within the kernel.
All these threads are organized into a computation grid of groups of threads
(i.e., thread blocks). Each thread block has an identi�er and each thread
has an identi�er within the thread block, that can be used by programmers
to map the computation to the data structures. CUDA provides a weak
consistency model: memory updates performed by a thread block might not
be perceived by other thread blocks, except for atomic and memory fence
(GPU-wide and system-wide) instructions.

16

CHAPTER 2. REFERENCE HARDWARE AND SOFTWARE ENVIRONMENT

Each thread block is scheduled to run on an SM, and threads within
a thread block are issued in �xed-length groups (the previously described
warps). Each thread has its own set of private registers and threads within
the same thread block can communicate through a shared user-managed
scratchpad and using synchronization instructions. The number of thread
blocks that can execute concurrently on the same SM (i.e., occupancy) de-
pends on the number of threads and other resources needed by each block
(i.e., scratchpad memory and registers). Hence, the utilization of these re-
sources must be carefully managed to achieve full utilization of the GPU.

2.3.2 OpenCL

OpenCL [56] is an open programming framework maintained by the Khronos
standardization organization. It shares many design principles with CUDA
but its scope is far more ambitious since it targets virtually any type of
computing device. However, its genericity makes it more cumbersome than
CUDA to use in applications. Instead, OpenCL is more commonly used to
create higher-level development frameworks or in commercial applications
that need to run on a wide variety of hardware platforms.

Although being more generic than CUDA, it provides higher abstractions
in some areas like memory management. For example, memory is allocated
in a context instead of a device. A context can be bound to several devices
and it is the OpenCL runtime who decides in which physical memory it
is allocated. Due to the di�erent capabilities of the devices that support
OpenCL, mechanisms like remote memory accesses are not supported either.
Since the proposed techniques heavily rely on these mechanisms, we use
CUDA in the rest of the thesis.

17

Chapter 3

State of the Art

Programmability of multi-GPU systems can be tackled at di�erent levels,
ranging from system support to memory management and transparent com-
putation decomposition and distribution.

3.1 Automatic CPU/GPU memory coherence

GPUs use di�erent memories or separate memory subsystems than CPUs.
This provides a performance advantage but, on the other hand, programmers
are forced to use several copies of data and keep them coherent. Some solu-
tions have been proposed to automatize the CPU/GPU memory coherence.

The ADSM model proposed by Gelado et al. [45] presents a Uni�ed Vir-
tual Address Space (UVAS) which is shared by CPU and GPU. ADSM allows
programmers to declare objects once and use them both in GPU and CPU
functions with no need for explicit memory transfers at all. The ADSM
runtime transparently creates the needed copies of the objects and makes
sure that they are coherent at consistency points. It uses acquire/release
consistency at kernel call boundaries. ADSM is implemented in the GMAC
user-level library [10] that provides eager GPU memory update to transpar-
ently overlap CPU computation (e.g., data initialization) and data transfers.
GMAC uses the memory protection mechanism of modern CPUs to detect
with pages are accessed in the host code. However the work in these thesis
targets multi-GPU systems while ADSM is restricted to a single GPU. In
Chapter 5, we present the HPE model that extends ADSM to multi-GPU
systems.

While ADSM greatly simpli�es GPU development, programmers still
need to use a specialized allocation/free functions for data that is shared
between CPU and GPU. Jablin et al. propose compiler analysis in [52] to

19

3.2. SYSTEM SUPPORT AND GPU VIRTUALIZATION

automatically determine which data structures are shared. They also add
support for stack allocations and global variables, while GMAC is limited to
heap allocations. The runtime system inspects the parameters at kernel call
boundaries and keeps track of the location of data to determine when data
transfers are required. This approach prevents the utilization of complex
data types that use pointers, as they should be recursively inspected. Jablin
et al. extend this work in [51] by replacing the parameter inspection with
the memory protecting mechanism like the one used in GMAC. These works,
like ADSM, target systems with a single GPU, only.

Some higher-level languages have been proposed to simplify memory man-
agement in GPU programs. C++ AMP [3] provides a multi-dimensional ar-
ray data type to represent the data that is used in the GPU kernels. Objects
created from this type can be used in the CPU code, too. Using this type
instead of raw pointers allows the compiler to detect the memory objects
passed to each GPU kernel and insert the appropriate coherence annotations
for the runtime system. The solution proposed in Chapter 7 uses the same
approach of using a special data type, but the proposal in Chapter 5 works
for any type of memory allocation.

3.2 System support and GPU virtualization

GPUs are commonly presented as isolated compute-only devices that cannot
interact with other devices (e.g., network interfaces or disks). Moreover GPU
programs are not well integrated with many of the mechanisms o�ered by
Operating Systems such as inter-process communication and memory paging.

Silberstein et al. propose GPUfs in [82], a POSIX-like API for GPU
programs that makes the �le system directly accessible to GPU code. The
API is designed to exploit structured data parallelism such that threads
in the same warp cooperate to perform read/write operations. GPUfs is
mostly implemented as a library that works with the host OS on the CPU
to coordinate the �le system's namespace and data. The GPU sends �le
operation requests to the CPU while the kernel is running, by using a shared
communication bu�er. A kernel module component enables caching both
in the CPU and GPU memories by distributing the bu�er cache in the OS.
Di�erent GPUs and CPUs can concurrently work on the same �le and changes
are consolidated using di�ng1 at synchronization points.

Kim et al. present GPUnet in [58], a native networking layer that pro-
vides a socket abstraction and high-level networking APIs to GPU programs.

1Di�ng is a technique that compares a memory bu�er with its original copy to �nd
the values that have changed.

20

CHAPTER 3. STATE OF THE ART

GPUnet removes the need for programmers to coordinate NIC, CPU and
GPU in order to transfer data that resides on the GPU memory. Fur-
ther, GPU kernels can trigger network transfers and, therefore, programs no
longer need to wait for kernel �nalization in order to transfer data. GPUnet
takes advantage of GPUDirect, enabling direct communication between NIC
bu�ers and GPU memories, and avoiding intermediate copies to host mem-
ory. Optimized paths are implemented for communication between sockets
of GPUs that reside in the same node (and do not require using the NIC).

Rossbach et al. [78] propose a new abstraction called PTask for processes
that run on the accelerator and the addition of ports and channels to repre-
sent the communication graph among regular processes and PTasks. Using
this scheme, unnecessary memory transfers among CPU and GPU memo-
ries can be avoided since the placement of memory objects is known to the
system runtime. Moreover, more intelligent scheduling policies can be imple-
mented by taking advantage of the features provided by the accelerators in
the system (e.g., concurrent GPU execution and memory transfers).

Duato et al. propose the rCUDA middleware. rCUDA virtualizes the
CUDA-RT API and implements a client/server architecture to execute ap-
plications on remote GPUs. In [40], authors use rCUDA to manage all the
GPUs in a cluster. This allows applications to use remote GPUs in a similar
way as if they were local GPUs. It also enables cluster-level scheduling, which
leads to higher GPU utilization. In [39], rCUDA allows programs in guest
Virtual Machines to access the GPUs on the physical machine. Compared
to our work, rCUDA is limited to and requires a complete implementation
of the CUDA-RT API, while the HPE model proposal in Chapter 5 can be
implemented in di�erent programming models (versions exist for CUDA and
OpenCL).

Similarly to rCUDA, Shi et al. propose vCUDA in [80] to implement
GPU sharing for programs running in guest Virtual Machines. It provides a
virtual GPU view to each application running on the node, though multiple
applications actually share a single physical GPU. Instead of sharing among
applications, our solution in Chapter 7 aggregates all the GPU resources into
a single virtual GPU to transparently scale the performance of applications.

Virtualization proposals for OpenCL-based clusters also exist. Barak et
al. introduce VCL in [25], a solution based on MOSIX that exposes all the
GPUs in the cluster to standard OpenCL programs. Xiao et al. present
VOCL in [98, 99]. Besides the transparent access to remote GPUs, VOCL
is able to perform live migration of virtual GPUs between di�erent physical
GPUs in a cluster. Like rCUDA, these solutions are limited to applications
that use the OpenCL API.

Kato et al. propose in [55] a more generic GPU virtualization solution

21

3.3. AUTOMATIC MULTI-GPU EXECUTION

by implementing GPU-aware resource management in the OS, called Gdev.
Gdev integrates virtual memory management in the OS kernel, thus allowing
to implement mechanisms such as shared memory between processes. It also
implements preliminary support for paging although GPUs do not provide
support for restartable page faults (needed to implement on demand paging).
Instead, when a process requests more memory than is available on the GPU,
Gdev evicts data from other processes using the GPU and moves it to host
memory.

HSA [16] (i.e., Heterogeneous System Architecture) is a industry stan-
dard for heterogeneous systems that de�nes a set of features that need to
be supported by devices. Many of the members of the HSA Foundation are
major silicon vendors such as AMD, ARM and Samsung. One of the main
objectives of HSA is to completely remove the need for programmers to ex-
plicitly manage all the memories in the system. Similarly to our proposal in
Chapter 5, HSA provides a single �at virtual address space in which all the
memory can be accessed by any processor in the system. HSA also requires
support for context switching and paging to implement system-wide policies.
Currently, only a few devices have support for HSA and support in GPUs is
limited to integrated designs such as the ones in AMD APUs. While HSA
theoretically supports any high-level programming language, current HSA-
compliant GPUs use OpenCL.

3.3 Automatic multi-GPU execution

3.3.1 Compiler-based transparent multi-GPU execution

Kim et al. [57] introduce an OpenCL framework that combines multiple
GPUs and treats them as a single compute device. Thus, when a kernel
is launched, they decompose computation and data across the GPUs in the
system. The computation grid of the kernel is decomposed into uniform
partitions that are distributed across GPUs. In order to perform data de-
composition, they compute the array range accessed by each computation
partition by performing a sampling run of the kernel on the CPU. This step
is only performed if array references are a�ne transformations of the thread
and block identi�ers, which is determined using compiler analysis; otherwise
the whole array is replicated in all GPU memories. This solution does not
detect the dimensionality of the arrays used in the GPU kernels. Therefore,
even in cases where data can be decomposed, any array decomposition not
performed on its highest-order dimension will produce tiles whose memory
address ranges overlap, replicating big portions of the array in all memories.

22

CHAPTER 3. STATE OF THE ART

The main problem of using replication is that it reduces the size of the prob-
lems that can be handled. Another drawback is that replicated array regions
that are potentially modi�ed from di�erent computation partitions need to
be merged after every kernel execution. This step is executed on the CPU,
thus increasing CPU↔GPU tra�c and imposing a large overhead in many
computations. Furthermore, atomic operations do not on replicated data,
either.

Lee et al. [61] propose SKMD, which extends the same idea to hetero-
geneous systems with CPUs and GPUs. SKMD performs a pro�le of the
di�erent devices in the system to distribute the computation partitions ac-
cording to their capabilities. They do not use the sampling runs on the CPU
and solely rely on the compiler to detect the array region accessed by each
partition, which leads to replication in more cases than in [57]. On the other
hand, they generate a merge kernel (based on the original kernel code) for
replicated data, that is more e�cient. However, this step is still performed on
the CPU, requiring all the replicated copies to be transferred to host memory
(which is the part of the merge step that incurs the most overhead).

The solution proposed in Chapter 7 exploits the support for remote access
across GPU memories thus avoiding, in most cases, data replication and
merge operations that are required in these previous works.

3.3.2 Compiler-based multi-GPU code generation

Lee et al. [63, 62] provide automatic GPU code generation called OpenMPC,
which relies on standard OpenMP annotations for the host code. It detects
the variables accessed in each loop (that can be explicitly speci�ed through
clauses or implicitly), the access type, and implicit synchronization points.
A second phase divides parallel regions at synchronization points to enforce
correctness (there are no kernel-wide synchronization primitives in CUDA).
The next phase transforms the CPU-oriented kernel into a CUDA kernel and
performs CUDA-speci�c optimizations. The compiler inserts calls for GPU
memory allocation and data transfers between CPU and GPU memories.
Sabne et al. [79] extend OpenMPC to support out of core computations
and multi-GPU execution. It also provides communication and computation
overlap. The achieved speedups are competitive with hand-written CUDA
versions for a single GPU but they do not scale when several GPUs are used.

PGI proposes custom directives for Fortran programs to automatically
generate optimized code for accelerators in [97]. Clauses are included to ex-
plicitly specify data transfers to the GPU memory. The compiler performs

23

3.3. AUTOMATIC MULTI-GPU EXECUTION

strip-mining2 on the program loops to generate inner loops and assign the
di�erent loops to block-level and thread-level parallelism o�ered in CUDA.
These directives have been later extended and published as the OpenACC
standard [75] which is supported by many hardware and systems vendors.
OpenACC, however, requires programmers to manually decompose compu-
tations so that they can be executed on multiple GPUs.

Our solution presented in Chapter 7 uses compiler analysis to automat-
ically determine how computation and data can be decomposed and dis-
tributed, achieving linear speedups.

3.3.3 Multi-GPU libraries

Using libraries is a simple way for programs to transparently be able to run
e�ciently on di�erent computer architectures. Programmers only need to ex-
press computations in terms of calls to library functions, with no knowledge of
the characteristics of the hardware. Libraries can implement optimized ver-
sions of these computations for di�erent accelerator architectures and system
topologies.

MAGMA [93] is a widely-used linear algebra library with support for large
systems. It implements heterogeneous execution of computation kernels that
uses both CPUs and GPUs. Unfortunately, only a subset of the provided
functions is able to exploit several GPUs.

Nukada et al. [73] present a 3D FFT library for CUDA. It uses autotuning
to generate CUDA kernels that are optimized for di�erent transform sizes.

Babich et al. [24] propose QUDA, a library for numerical lattice quan-
tum chromodynamics (LQCD) calculations. Thanks to a multi-dimensional
decomposition of the problem, they are able to scale the performance to up
to 256 GPUs.

ArrayFire [17] is a C/C++/Fortran library that provides abstractions
for multidimensional arrays and a number of libraries that use them (e.g.,
data analysis, linear algebra, image and signal processing). However, the
utilization of these arrays is limited to the functions o�ered in their libraries
and cannot be used in custom user-de�ned kernels.

In the latest versions of CUDA, NVIDIA o�ers cuBLAS-XT [8], an exten-
sion of their cuBLAS [7] library that is able to decompose and spread work
across several GPUs for a set of Level 3 BLAS calls. Moreover, they also
provide NVBLAS [11], which provides automatic multi-GPU acceleration for
applications that use regular BLAS calls. NVBLAS builds on cuBLAS-XT

2Strip-mining reshapes a multi-dimensional space to create additional dimensions from
the elements of one of the original dimensions. It is commonly used to perform blocking.

24

CHAPTER 3. STATE OF THE ART

and intercepts calls from the application to regular BLAS libraries, and re-
placing them with GPU calls, transparently.

The main problem of the library approach is that only the computations
provided in the library are able to transparently use multiple GPUs.

3.4 Languages for multi-GPU execution

Several languages (that mainly use the PGAS model) have been proposed
or extended to ease the exploitation of multiple accelerators in large sys-
tems. These PGAS (Partitioned Global Address Space) languages require a
complete rewrite of the program and are not typically used to port existing
codebases.

Universal Parallel C (UPC) has been extended in [100] to transparently
access data allocated in GPUs. UPC uses a Hybrid PGAS in which each CPU
thread is bound to one shared segment, that can be either in host memory or
in GPU memory, but not both. Each thread is bound to the same memory
segment during its lifetime.

GlobalArrays [70] (GA) is a library that allows execution of computations
across a distributed system using an array-like interface. GA-GPU [91] ex-
tends GA to GPUs, and di�erentiates explicit and implicit utilization models.
The implicit model is o�ered to programmers through a pre-de�ned set of
data-parallel primitives such as linear algebra operations (e.g., GA_Dot). It
is preferred to the explicit model because its computations are encapsulated
and the runtime knows how to distribute computation data and which por-
tion of the array is used in any GPU. On the other hand, launching a kernel
for each of the operations imposes an overhead, compared to using a custom
kernel that contains all the operations. Custom kernels from programmers
(i.e., the explicit model) need to honor the memory model in GA. This mem-
ory model allows memory accesses ordering and system-wide memory fences
and, hence, it does not �t into bulk synchronous SPMD programming models
such as CUDA or OpenCL.

X10 [34] provides a Java-like syntax that is able to generate code versions
for di�erent targets (e.g., multicore, GPU). X10 presents an Asynchronous
PGAS in which the memories in the system are abstracted as places. Each
computing device is bound to a place, although they can manage (copy to/
from) objects in remote places. Since CPUs and GPUs are bound to di�erent
places, explicit memory transfers are required between CPU and GPU ob-
jects. To improve performance, copies and kernel execution can be spawned
asynchronously and managed through explicit synchronization primitives.
Habanero [33] builds on top of X10 and adds abstractions to better integrate

25

3.4. LANGUAGES FOR MULTI-GPU EXECUTION

stream parallelism with task parallelism.
Lime [41] extends Java with several constructs to program heterogeneous

architectures. The Lime compiler emits OpenCL code that can target di�er-
ent types of accelerators. Lime includes the task operator to create coarse-
grain tasks, and map and reduce primitives for �ne-grained data parallelism.
The communication between tasks is expressed through the connect oper-
ator, which allows the compiler and runtime system to optimize I/O and
synchronization without programmer intervention.

Chapel [36] is a programming language developed by Cray designed to
provide performance scalability in large systems. It provides abstractions for
data parallelism, task, concurrency and nested parallelism. Chapel supports
a global view of data structures, so that programmers can easily perform
computations on distributed data. On the other hand, it allows to reason
about data and computation placement, thus enabling performance tuning.
Sidelnik et al. [81] add support for GPUs in Chapel. They implement GPU
code generation by adding a new clause that lets programmers de�ne the
dimensionality and size of problem and data. Two data management models
are o�ered: implicit (i.e., fully automated) and explicit for hand tuning.
However, it only generates code for single-GPU execution.

Sequoia [42] tries to address the problem of programming systems with
di�erent memory topologies/hierarchies. Programs written for Sequoia are
composed of two parts: (a) an algorithmic representation of the computation
using a C-like programming language that decomposes data structures and
de�nes how to map the computation on them; and (b) a mapping of the
algorithm to the speci�c system using a declarative language. Legion [94] is
a generalization of Sequoia that exposes abstractions to declare the proper-
ties of program data. Programmers dynamically organize data into regions
and de�ne how regions are accessed (i.e., access privileges) and computed.
Using this information, Legion tries to implicitly extract parallelism to dis-
tribute the computation across all the computing devices and optimize data
movement.

Task-based programming models

Ayguadé et al. present the GPU Superscalar (GPUSs) programming model
and runtime in [23]. GPUSs relies on annotations to host functions and
CUDA kernels, processed by a source-to-source compiler, to create a data
dependency graph. These annotations are based on the OpenMP task prag-
mas, that de�ne what data is used in each task, and the type of access. A
runtime is in charge of scheduling kernel execution, allocating memory and
performing data copies among the GPUs in the system.

26

CHAPTER 3. STATE OF THE ART

Augonnet et al. present StarPU [22], a runtime dependency tracker and
scheduler for heterogeneous systems. Programmers write tasks in the form
of codelets and de�ne the dependences among tasks. Contrary to GPUSs,
StarPU allows programmers to de�ne arbitrary dependences between tasks
(using task identi�ers or tags). The runtime dynamically chooses the version
of the codelet to be executed depending on the load of the di�erent processors
in the system.

Although both solutions free programmers from explicitly allocating GPU
memory, performing memory transfers and scheduling kernel execution, they
still have to manually decompose computations into tasks and de�ne task
inputs and outputs.

27

Chapter 4

Guiding Example: Reverse

Time Migration

In this thesis, as a guiding example, we decided to take an important applica-
tion in the oil and gas industry and port it to multi-GPU systems. This work
has been done in collaboration with the Repsol oil and gas company. In this
document, we also compare the performance of our implementation against
implementations for general purpose CPUs, the Cell B.E., and FPGAs.

4.1 The Reverse Time Migration computation

RTM's major strength, compared to previous solutions [86], is the capa-
bility of showing the bottom of salt bodies at several kilometers (∼6 km)
beneath the earth's surface. The USA Mineral Management Service (MMS)
reports [26] can help understand the impact of RTM. The oil reserves of the
Mexican Gulf under the salt layer are approximately 5× 1010 barrels. More-
over, the reserves in both Atlantic coasts, Africa and South America, are
also under a similar salt structure. RTM is the key application to localize
these reserves. RTM is the method that produces the best subsurface im-
ages; however, its computational cost (at least one order of magnitude higher
than others) hinders its adoption in daily industry work. Fortunately, accel-
erators such as GPUs open the door for a high performance implementation
of RTM. The used RTM implementation is based on an explicit 3D high-
order Finite Di�erence numerical scheme for the wave equation, including
absorbing boundary conditions. Therefore, other simulations based on the
same numerical scheme will bene�t from some of our conclusions. For exam-
ple, magneto-hydrodynamics in astrophysics, atmospheric mesoscale model-

29

4.1. THE REVERSE TIME MIGRATION COMPUTATION

ing and some DNS turbulent �ow simulations.

4.1.1 Seismic imaging

Seismic imaging tries to generate images of the terrain in order to see the
geological structures. This is the basic tool of oil industry to identify possible
reservoir locations. Moreover, this technology is needed for several geologi-
cal activities, for example, the CO2 sequestration. The main technique for
seismic imaging generates acoustic waves and records the earth's response at
some distance from the source. Like in medical imaging, using some signal
processing algorithm on the recorded data, RTM rebuilds the properties of
the propagation media, i.e., the local earth structure. The propagation of
waves in the earth is a complex phenomenon that requires a sophisticated
wave equation to be modeled accurately. Unfortunately, the amount of in-
formation about local earth's properties is very little, and simpli�ed models
for wave propagation are used. The simplest model assumes that wave prop-
agation is modeled by the isotropic acoustic wave equation:

d2p(r, t)

dt2
+ c(r)2∇2p(r, t) = f(r, t) (4.1)

where c(r) is the sound speed at each terrain point r, p(r, t) is the pressure
wave value, and f(r, t) is the input wave. This simple model uses a single
parameter c(r) to model the terrain properties. Using this acoustic model
it is not possible to reproduce the complete wave form of the received wave.
However, this model is good enough to reproduce the arrival time of the
received waves. Even considering that the amplitude information is lost by
the acoustic model, the phase information is preserved.

RTM solves an inverse problem based on Equation (4.1). The inverse
problem solution is decomposed in two functions:

1. Tomography is the function that builds an approximate velocity model
c(r), using a terrain image and the empirical data.

2. Migration is the function that builds a terrain image, using a velocity
model and the empirical data.

RTM algorithm

Due to the fact that the acoustic shots (medium perturbation) are intro-
duced in di�erent moments, they can be processed independently. The most
external loop of RTM sweeps all shots. This embarrassingly parallel loop
can be distributed in a cluster or a grid of computers. The number of

30

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

shots ranges from 105 to 107, depending on the size of the area to be an-
alyzed. In this thesis, we focus on the RTM algorithm needed to process
one shot. Listing 4.1.1 shows the pseudocode of this algorithm. RTM is
based on solving the wave equation Equation (4.1) two times. First, us-
ing as right-hand side the input shot (InsertShot), and second, using as
right-hand side the receivers traces. Wave propagation is performed by using
Finite-Di�erence Time-Domain (ComputeWaveField) and uses absorving
boundary conditions (ComputeABC) to avoid wave re�ections from the
edge of the computational domain. Then, the two computed wave �elds are
correlated (Correlate) at each point to obtain the image. In order to be
able to correlate the wave �elds, snapshots of the �rst one are saved in exter-
nal storage during the forward propagation phase (StoreForward), and
read later in the backward propagation phase (ReadForward).

procedure Forward(V , SL, T)
V : velocity model
SL: shot location
T : number of steps to be simulated

P ← InitGrid

for all t ∈ T do

P ← ComputeWaveField(P)
P ← InsertShot(P , SL)
P ← ComputeABC(P)
StoreForward(P)

end for

end procedure

procedure Backward(V , R, T)
V : velocity model
R: traces from the on-site receivers
T : number of steps to be simulated

Returns C: image
P ← InitGrid

C ← InitGrid

for all t ∈ T do

P ← ComputeWaveField(P)
for all r ∈ R do

P ← InsertShot(P , rt)
end for

P ← ComputeABC(P)
F ← ReadForward(t)
C ← Correlate(P ,F ,C)

end for

end procedure

Listing 4.1: Pseudocode of the RTM algorithm.

4.2 RTM base implementation

RTM discretizes wave �elds into a regular 3D grid in which each element
represents the scalar value of the wave in a region of the space. The wave
propagates across the cells of the volume using FDTD (i.e., Finite-Di�erence
Time-Domain), which is implemented using a 3D stencil and integration
in time computations that are executed for a number of time steps. Both
computations can be merged and we refer to them as a single computational
kernel in the rest of the chapter. An stencil computation uses the central

31

4.2. RTM BASE IMPLEMENTATION

Figure 4.1: (a) The 3D stencil computation pattern. (b) 3D 7-point stencil within a
volume. (c) Memory access pattern of a 3D 7-point stencil.

value and the k neighboring elements in each dimension of the volume to
compute each output cell (Figure 4.1 a and Figure 4.1 b). This computation is
the most computationally demanding kernel in RTM. The wave is generated
by exciting the elements where the ship performed the real shot in the forward
propagation phase, and introducing the values gathered by the receivers in
the backward propagation phase. The absorving boundary conditions are
implemented by adding a few elements at the boundaries of each dimension
of the volume. The cells in this halo regions are read in the stencil kernel
but they are written by a di�erent kernel that generates values that absorve
the energy of the wave.
RTM is a very demanding application that poses challenges to developers in
several areas. We describe these problems in the next subsections.

4.2.1 Memory

RTMmemory consumption is related to the frequency at which the migration
is done. Frequencies over 20-30Hz may require the utilization of several GiB
(>10GB) of memory for computing a single time step for a single shot. While
each shot can be computed independently, the amount of required memory
can exceed the available in a single computational node, forcing a domain
decomposition technique to process one shot.
The 3D stencil computation step only needs accessing the data of the wave

32

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

�eld on the current time step. However, the velocity model and the contents
of the two previous time steps of the wave �eld are also required for the
time integration and the absorbing boundary conditions steps. Additionally,
a �fth volume is necessary to store the image illumination. The size in
memory of a wave �eld volume depends on the dimensions of the �eld, but
an additional ghost area is used in each dimension to calculate the 3D stencil.
The velocity model and the illumination volumes, on the other hand, do not
need the ghost area.
The memory requirements during the backward propagation phase are very
similar. The illumination volume used in the forward phase is replaced by
another one used to compute the �nal image by performing the correlation
between the forward and backward wave �elds. Additionally, it also uses the
information of the receivers. Each receiver has a value for each simulated
time step.

4.2.2 Input/Output

The I/O problem can be divided into three categories: data size, storage
limitations, and concurrency. First, looking for high accuracy, the spatial
discretization may produce a huge computational domain. Second, the time
discretization may imply large number of time steps (typically > 104).
RTM implementations store the whole computational domain regarding the
number of time steps in the forward propagation phase. Thus, the storage
requirements for a single shot (>1TB) largely exceed the capacity of the
RAM memory and must, therefore, be transferred to external storage (e.g.,
hard disk drive). In order to avoid that RTM becomes an I/O bound appli-
cation, it is mandatory to overlap computation and I/O using asynchronous
libraries or multiple threads. Additionally, data is compressed before being
transferred to disk in order to reduce disk transfer communication times and
storage requirements. Furthermore, the correlation can be performed every
n steps at the expense of image quality (we call this stack rate).

4.2.3 Computation

RTM presents two main characteristics regarding computation:

1. Low computation versus memory access (c/ma) ratio: Many
neighbor points are accessed to compute just one central point and,
even worse, many of the accessed points are not reused when the next
central point is computed. This e�ect is called low data locality ratio.
For instance, the generic stencil structure in Figure 4.1 a de�nes a

33

4.3. PORTING RTM TO GPUS

(3 × (n × 2)) + 1 stencil access pattern. If n = 4, then 25 points
are required to compute just one central point, then the c/ma ratio is
0.04, which is far from the ideal c/ma 1 ratio. To tackle this problem,
strategies that increase data reuse must be deployed.

2. Large data parallelism: The stencil computation performs the same
operations in every single cell of the volume (excluding the halo re-
gions). The boundary conditions' kernel also exhibits a lot of data
parallelism. Further, the insertion of the information of the receivers
can also be performed in parallel. Therefore, vectorial functional units
present in modern processors and accelerators can be exploited to
achieve the maximum performance.

4.3 Porting RTM to GPUs

A GPU executes computational kernels written in SPMD languages such as
CUDA. Data must be transferred to the GPU's GDDR memory before the
kernel that uses it is executed. GPU's performance is hugely penalized by
frequent and large memory transfers through the PCIe bus. Therefore, we
have implemented all the RTM computations as GPU kernels that operate
on data which always resides in the GPU's GDDR memory. This limits the
size of the problem that can be handled on a single GPU. The host code
only orchestrates the execution environment, the kernels' invocations, and
the I/O transfers to/from disk whenever they are necessary.

4.3.1 Data I/O schemes

In the forward propagation stage, at every stack step, the wave �eld is com-
pressed and transferred to disk. Since GPUs have their own memory, an
additional transfer between the GDDR and the host memory is necessary, as
the data cannot be directly transferred to an external device (which would
require extra support from the hardware). The transfers through the PCIe
are much shorter since it provides a bandwidth (up to 16GBs) much higher
than that of disks. In the backward propagation stage, the order of the
transfer steps is the opposite. Using a completely synchronous model lowers
the utilization of the GPU, as it is blocked until disk I/O is completed (Fig-
ure 4.2a). In order to hide the costs of these memory transfers, we use the
following scheme:

• Asynchronous PCIe transfers. Memory transfers in CUDA are syn-
chronous and blocking by default. Blocking the CPU thread while the

34

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

(a) Single thread, synchronous

(b) Two threads

(c) Two threads, perfect overlap

Figure 4.2: Execution timelines of the GPU implementation of RTM for di�erent data
I/O schemes.

compressed wave �eld is transferred to host memory prevents it from
keep invoking kernels for the next simulation time steps. In order to
avoid this problem, we use di�erent CUDA streams for data transfers
and kernel execution (Figure 4.3). Moreover all data transfers per-
formed on separate streams if the destination/source memory bu�er
in host memory is pinned. This allows the OS to program the DMA
transfer through PCIe using the bu�er provided by the programmer.
Otherwise additional copies to internal pinned bu�ers allocated by the
OS are performed.

• Dedicated bu�er for the compressed wave �eld. This comes at the cost
of extra memory utilization (that depends on the used compression
ratio). However, computation can thus continue on the GPU as soon
as the wave �eld has been compressed. The costs are hidden as long as
the transfers take less than the execution time steps between di�erent
stack steps.

• Separate thread for PCIe + I/O. While asynchronous PCIe transfers al-
low to overlap computation and communication, it forces programmers
to query the state of the transfer in each iteration of the simulation.
Further, if the transfer �nishes while the CPU thread is blocked wait-
ing for the commands in a stream (e.g., kernel calls) to �nish, it is
not noticed until later (thus inserting a buble in which the disk I/O

35

4.3. PORTING RTM TO GPUS

Figure 4.3: Synchronization scheme used to overlap I/O and communication in the GPU
implementation of RTM.

could have started). Thus, we use a separate CPU thread that exe-
cutes all the PCIe and disk operations on a separate thread. This also
eliminates the necessity for asynchronous disk I/O operations. On the
other hand, this requires the utilization of inter-thread synchronization
primitives (see Figure 4.3), which adds extra complexity to the code.
One semaphore is used to notify the CPU thread that the compressed
bu�er is ready (compressed_h_sem). A second sempahore is used to
notify that the copy has �nished and the bu�er can be overwritten
(compressed_sem). This scheme reduces the amount of time that the
GPU is not used but, depending on the capabilities of the I/O, bubbles
can appear (a stack rate of 2 produces bubbles in Figure 4.2b) and
higher stack rate values might be required in order to completely hide
the costs of the transfers (Figure 4.2c shows that increasing the stack
rate to 3 removes the bubbles), at the cost of lower accuracy.

4.3.2 GPU kernels

Our port targets the NVIDIA Tesla C1060 GPU, whose characteristics can
be seen in Table 4.1.

3D Stencil

Accesses to global memory are very expensive and, while modern GPUs
provide caches, they are too small to store all the accessed elements in the

36

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

GPU test system

Processors Xeon E5460
Clock frequiency 2.4GHz
Sockets 1
Cores per socket 4
GPU C1060
SMs 30
SIMD registers 16K (SM)
SIMD width 1024 bit
GPU memory bus width 512 bit
GPU memory 4GB
GPU shared memory 16KB (SM)
Host memory 8GB
Memory standard DDR3
Interconnect PCI Express 2.0 ×16
Peak throughput 933GFlops

Table 4.1: Hardware con�guration used for the evaluation of the GPU implementation of
RTM.

stencil computation. Therefore, optimizing global memory bandwidth usage
is a must in order to obtain good performance from the GPU. A k-order
stencil computation calculates the value of each point by using the k neighbor
elements in each direction. That is, 3k + 1 reads per calculated element.
This number is referred to as read redundancy by Micikevicius in [68]. The
same concept is also applied to writes. The sum of them is called overall
redundancy. We used this metric to analyze global memory accesses and
improve memory bandwidth usage.
In this kernel, we use a 2D sliding window approach [68] in which each thread
computes the same element in every plane of the volume, but all threads
within a thread block work on the same plane at a time. Thus, shared mem-
ory is used to store an (n + k)× (m + k) tile which holds elements of the z
and x dimensions of a plane of the wave �eld. Each thread loads an element
into the shared memory, and some threads also load halo elements needed
to compute the points in the tile boundaries. Since threads load elements
that are consecutive in memory, they can be coalesced in order to maximize
the global memory bandwidth. Accesses to neighbor elements for these di-
mensions are then fetched from shared memory, thus avoiding requests to
the regular memory hierarchy. The kernel iterates on the y dimension; thus,
each thread computes a column along this dimension. Neighboring elements
in the y dimension are stored in k registers (private to each thread) which
behave like a queue: every time a tile is done, the oldest element is popped
out and a new element is pushed.

37

4.3. PORTING RTM TO GPUS

The bigger the thread block, the lower the read redundancy as the ratio
of elements in the halo regions of the tile is smaller. On the other hand,
using large thread blocks can reduce the concurrency in the SMs because a
single thread block can monopolize all the resources. A multiple of 32 in
the x dimension of the thread block is required in order to have memory
coalescing. Given this constraint, we experimentally determine that 32 × 4
is the thread block con�guration that provides the best performance with
a read redundancy of 3.25 (for k = 4) and SM occupancy of 100%. Our
implementation also has a write redundancy of 1.

Absorving Boundary Conditions

We have implemented a di�erent kernel for each face of the 3D wave �eld
as they require di�erent memory access patterns. The used approach is the
same as the one used for the stencil computation: there is a front of threads
that traverses the points that belong to the ABC area and updates them
accordingly. In this case, the dimension which is traversed depends on the
face that is being computed. This makes memory coalescing not possible
when computing two of the faces since none of the two dimensions of these
faces is consecutive in memory. The slowdown for these two faces can be up
to 6× compared to any of the other four faces. However, the execution time
of the boundary condition kernels is much lower than the 3D stencil kernel.

Shot insertion

This computation is very simple and could be run in the host. However,
since the wave �elds reside in the GPU memory, additional memory transfers
should be performed in order to keep the data coherent. Thus, we have
implemented a simple kernel that uses a single thread in the GPU.
The backward phase of the RTM algorithm requires exciting the medium
with the data gathered by the receivers in the �eld. The algorithm is the
same one used for the shot insertion so the code has been reused. Further-
more, there can be up to thousands of receivers. Thus, we exploit the GPU
parallelism and create one thread per receiver to calculate all of them in par-
allel. Receiver's data is stored in such a way that contiguous threads read
contiguous elements in memory.

Compression

We implement a lossy compression algorithm that discretizes the �oating
point values within a range of integer values. Each thread block in the kernel
compresses/decompresses a region of the wave �eld. In order to improve the

38

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

Blade SGI Altix XE320

Processors Xeon E5460
Clock frequiency 2.5GHz
SIMD registers N/A
SIMD width 128 bit
Sockets 2
Cores per socket 4
Memory per blade 8GB
Memory standard DDR3

Peak throughput 80GFlops

Table 4.2: Hardware con�guration used for the evaluation of the CPU implementation of
RTM.

accuracy, we compute and store the maximum and minimum values within
each region, and the integer values represent the o�set within that range.
Thus, the compression kernel �rst performs a reduction step to �nd the max-
imum and minimum values in the region. Threads in each thread block work
on contiguous elements of the Z dimension of the grid, which are contiguous
in memory and, hence, provide memory coalescing.

4.4 RTM implementation on other architec-

tures

We compare the performance of our GPU implementation with previous op-
timized implementations on general purpose CPUs, the Cell B.E. processor,
and the Convey HC-1 FPGA system.

4.4.1 General purpose CPUs

We compare against the CPU implementation in [21], that uses the hardware
con�guration in Table 4.2.
The stencil memory access pattern is a main concern when designing the
RTM kernel code [54], because it is strongly dependent on the memory hier-
archy structure of the target architecture. Besides, due to the reduced size
of the L1, L2, or L3 caches, blocking techniques must be applied to e�-
ciently distribute the data among them [96], at least for classical multicore
platforms. To apply blocking, in particular the Rivera [77] strategy, the orig-
inal 3D space is divided in slices, where the X axis of each has a size that
optimally �ts the cache hierarchy
This implementation exploits all the forms of parallelism provided by the

39

4.4. RTM IMPLEMENTATION ON OTHER ARCHITECTURES

QS22

Processors Cell B.E.
Clock frequiency 3.2GHz
SIMD registers 128 (SPE)
SIMD width 128 bit
LS size 256KB (SPE)
Sockets 2
Cores per socket 1 PPE + 8 SPEs
Memory per blade 8-32GB
Memory standard XDR

Peak throughput 205GFlops

Table 4.3: Hardware con�guration used for the evaluation of the Cell B.E. implementation
of RTM.

architecture; the thread-level parallelism provided by the multiple cores, and
the data-level parallelism provided by the SIMD instruction set. Eight in-
dependent threads are used with a parallelization strategy that follows the
blocking. Each core processes its assigned set of slices independently. Since
each core has its own L2 cache, interference among threads is minimal.

4.4.2 Cell B.E

As a reference Cell B.E. platform, we consider the IBM Blade-Center QS22
blade (see Table 4.3 for the full speci�cations), which has two sockets.
Each Cell B.E. processor on a QS22 blade contains a general-purpose 64-
bit PowerPC-type (i.e., PPE) with cache memories, and eight SPEs with
software-based scratchpad memories called Local Stores (LS). The PPE and
the SPEs both have a (slightly di�erent) 128-bit-wide SIMD instruction set,
which allows, for example, to simultaneously process four single-precision
�oating-point operands. Contrary to GPUs that use regular load-store in-
structions to move data to shared memory, explicit DMA transfers must be
used in order to transfer data from the memory to the LS.
Blocking is used to evenly distribute work and data among the SPEs' local
stores. Similarly to our GPU implementation, the 3D space is split in the X
direction, so that each subvolume is given to one SPE to be processed (see
Figure 4.4). Y is the traversing direction while each subvolume is processed.
This is particularly important in the Cell B.E. processor, due to the limited
size of the SPEs local stores. Thus, a streaming of Z-X planes is constantly
providing the SPEs with the required data to compute.

40

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

Figure 4.4: Data access and vectorization pattern for the Cell B.E.

Convey HC-1 FPGA system

Processors Xeon E5345
Clock frequiency 2.33GHz
Sockets 2× 1
Cores per socket 4
FPGA 4× Virtex 5 LX330
Host memory 128GB
Memory standard DDR3
Interconnect PCI Express 2.0 ×16
Peak throughput 760GFlops

Table 4.4: Hardware con�guration used for the evaluation of the FPGA implementation
of RTM.

41

4.5. PERFORMANCE EVALUATION

300 350 400 450 500
Problem dimensions (elements)

0

10

20

30

40

50

60

Ex
ec

ut
io

n
Ti

m
e

(s
)

82.50 139.62
215.77

Intel Xeon E5460
IBM Cell B.E.
FPGA (Convey HC-1)
NVIDIA Tesla C1060

(a) Computation only

300 350 400 450 500
Problem dimensions (elements)

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

1000 - 10 - IBM Cell B.E.
1000 - 10 - NVIDIA Tesla C1060
100 - 5 - IBM Cell B.E.
100 - 5 - NVIDIA Tesla C1060

(b) Computation + I/O

Figure 4.5: Elapsed times for di�erent platform implementations of RTM.

4.4.3 FPGA

We also compare our implementation to a FPGA-based implementation for
the Convey HC-1 system 4.4. This implementation of RTM is based on a
streaming approach in which the volumes are partitioned into subvolumes
which are then streamed through the FPGA. Internally, the FPGA sweeps
the planes in the Y dimension of the subvolume. Externally, these subvolumes
need to be transferred from the host memory through PCIe to the FPGA
internal's Block-RAM. The performance in FPGAs is limited by the size of
the computation units and, therefore, how many of them can be instantiated.
Three compute units can be implemented in each of the four Virtex5 LX330
devices present in the modeled FPGA platform.

4.5 Performance evaluation

We have carried out experiments to verify �rst the numerical soundness,
and second the performance of the implementation. The experimental re-
sults show the superior performance of GPUs compared to the Cell B.E and
traditional CPUs. GPUs are also able to match the performance of special-
ized hardware implementation by the means of FPGAs, with much simpler
programmability. The results are averages over repeated runs, to eliminate
spurious e�ects (e.g., bus tra�c, or unpredictable operating system events).
Figure 4.5a shows the execution time of RTM when no I/O is performed. All
the accelerators outperform the homogeneous multicore. The performance
is up to 6× faster for the Cell B.E., up to 11× for the Convey HC-1 FPGA
based systems, and up to 24× for the NVIDIA Tesla C1060. The Tesla

42

CHAPTER 4. GUIDING EXAMPLE: REVERSE TIME MIGRATION

300 350 400 450 500
Problem dimensions (elements)

0

200

400

600

800

1000

Ba
nd

w
id

th
 (M

B/
s)

Hypernode

SSD (SATA 3.0)

SSD (PCIe 3.0)IBM Cell B.E.
FPGA (Convey HC-1)
NVIDIA Tesla C1060

Figure 4.6: I/O requirements of RTM using a stack rate 5, and high level of compression.

C1060 outperforms all other accelerators because of its highly parallel execu-
tion model and its higher memory bandwidth that allows for a very e�cient
implementation of the data-parallel kernels in RTM.
Figure 4.5b, includes disk I/O and describes two types of experiments. Ex-
periment type 1 (i.e., 100, 5) stands for 100 forward and 100 backward time
steps, where the velocity model is a volume from 256 up to 512 grid points
per side. Also, in type 1 experiments, the wave �eld is stored/restored and
correlated every �ve time steps. Experiments of type 2 (i.e., 1000, 10) have
the same setup as type 1 experiments, but the number of time steps is 1,000,
and the correlation frequency is 10 time steps. The latter kind of experiments
are close to what real industrial executions are, both in terms of model size
and time step number.
The I/O technologies attached to the tested architectures become an impor-
tant bottleneck. This is because the accelerators deliver ready-to-be-stored
data at a rate that the I/O is unable to handle. Two main approaches can
be taken to minimize this problem: increase the stack rate or apply data
compression. Nevertheless, both solutions come at the price of lower results
accuracy.
These results depend on the actual I/O technology used in each system.
Therefore, we also study the I/O requirements of the di�erent implemen-
tations in order not to produce stalls on the program execution. Figure 4.6
depicts the I/O requirements for a test case where the stack rate has been set
to 5 steps, compression is in place, and the dimension problem ranges from
256 to 512 cubic points. SSD (i.e., Solid State Disk) is a storage technology
that uses �ash memories instead of rotating magnetic disks. They are com-
monly presented as SATA devices, although some SSDs for HPC systems are
connected directly to the PCIe interconnect which o�ers higher bandwidth.
Hypernode is a technology proposed by IBM for providing high-performance

43

4.6. SUMMARY

I/O for the Cell B.E. platform, which provides a performance similar to a
SATA 2 10,000 RPM disk. As can be observed, Hypernode can only handle
the data transfer rate for the Cell B.E. processor. For the FPGA-based sys-
tem an SSD device is required, and the GPU system requires a SSD PCIe
device.
Thus, we can say I/O is the main limiting factor for RTM. Furthermore,
this problem will become even worse with the utilization of more powerful
GPUs, or a higher number of GPUs per node. Current solutions include the
utilization of RAID0 con�gurations that aggregate the bandwidth of several
storage devices.

4.6 Summary

We have presented a high-performance implementation of the RTM compu-
tation on GPUs. In order to minimize memory transfers between host and
GPU memories, all computations (even small serial computations) are per-
formed on the GPU. GPUs outperform all the other accelerators by a large
margin, while having a simpler GPU kernel code. I/O becomes the new per-
formance bottleneck, leading to more agressive compression schemes and the
utilization of more expensive disk I/O technologies.

44

Chapter 5

Heterogeneous Multi-GPU

Execution

In this chapter we propose HPE, a programming model that simpli�es the
programmability of multi-GPU systems while improving their performance
in many scenarios. We use the multi-GPU parallelization of RTM as a guid-
ing example, although many other applications can bene�t from HPE. The
research presented in this chapter started in 2009. It has been implemented
and tested extensively in several generations of HPE runtime systems as well
as adopted into the NVIDIA GPU hardware and drivers for CUDA 4.0 and
beyond since 2011. A reduced version of HPE for OpenCL has been also
developed in collaboration with Multicoreware Inc. and is shipped in the
AMD APP SDK.

5.1 Programmability issues under CUDA

When we started this work, the version 3 of CUDA was available and we use
it as a baseline. CUDA 3 presents several restrictions that complicate the
development of multi-GPU applications:

• Each thread is bound, for its entire lifetime, to a single GPU. This
model forbids direct GPU↔GPU communication, because the CPU
thread can only be bound to the source or destination GPU. Therefore,
di�erent CPU threads need to collaborate in order to implement this
operation, which introduces additional synchronization primitives.

• Each GPU has its own address space. This limitation makes it impos-
sible to determine the location of memory objects solely by inspecting

45

5.1. PROGRAMMABILITY ISSUES UNDER CUDA

their address, and programmers need to make sure to which GPU mem-
ory each allocation belongs to. Furthermore, GPUs can only access
their memory.

• Separate CPU/GPU memory domains. Thus, programmers need to
use separate memory allocations in the host and GPU memories and
keep them coherent through explicit memory transfers. Communicat-
ing GPUs with I/O devices are not supported, either.

Now we show how these limitations impact on the programmability of the
multi-GPU implementation of RTM.

5.1.1 RTM on multiple GPUs

The memory requirements of a single shot of the RTM computation can eas-
ily exceed the capacity of a single GPU. In order to distribute the execution
of a shot, a two-level domain decomposition is applied. First, we decompose
the wave �eld volumes (remember that the current and the two previous
time steps are required) into subdomains and distribute them across di�er-
ent nodes. Second, each node's subdomain is further decomposed into smaller
subdomains that are handled individually by each GPU in the node. Domain
decomposition is performed on the Y dimension of the volumes. Thus, data
that needs to be exchanged is contiguous in memory and can be communi-
cated with a single transfer. Otherwise, hundreds or thousands of smaller
transfers must be programmed. Besides the costs of the large number of the
library calls, PCIe requires large transfers to achieve good e�ciency (transfer
rates have been shown in Figure 2.4, in page 14).
We use MPI to communicate data between GPUs that are on di�erent nodes.
MPI is de facto standard to communicate data in HPC clusters. In MPI,
several instances of the program (i.e., processes) are created in the cluster and
allow the instances to communicate regardless their physical location. Thus,
MPI hides the complexity of the system interconnect topology and inter-node
routing. While a program can be written in a way that each MPI process
manages a single GPU, this causes suboptimal inter-GPU communication for
GPUs that reside in the same node. This is because each process can only
access the memory of the GPU bound to it and, therefore, intermediate copies
on the host memory would be performed by the runtime system. Therefore, a
single MPI process is used per node and each MPI process explicitly manages
all GPUs in the node.
Each subdomain has its own halo regions, but some of them refer to the real
boundaries of the original wave �eld, while halo regions in the decomposed

46

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

Figure 5.1: Execution timeline for the multi-GPU implementation of RTM.

dimension correspond to elements of the neighboring subdomains. At the end
of every simulation time step, data needs to be exchanged between GPUs so
that these halo regions contain up-to-date values.
With respect to the domain boundary exchange, the limitation from CUDA
3 makes impossible for a single thread to trigger a GPU-to-GPU memory
transfer. Therefore, two threads collaboratively perform the transfers using a
two-stage proxy pattern. Two semaphores per neighbor are used: one noti�es
that the halo region is available in host memory, the second one noti�es that
the boundary in GPU memory has been updated. In order for these transfers
to be performed in parallel to kernel execution, two additional streams per
GPU are required. Moreover, as explained in the previous chapter, disk I/O
needs to be overlapped with the execution of the next time steps, too. In
the multi-GPU version, an additional I/O thread and the two semaphores
for synchronization are used per GPU. Figure 5.1 shows an example timeline
of the used scheme with the streams used by each GPU, using a stack rate
of 3. Note that boundary exchange transfers need to wait to the GPU↔host
transfers performed by the I/O thread, as they share the down link of the
PCIe interconnect.
Listing 5.1 shows the CUDA host code for one simulation step of the RTM
loop assuming the CUDA 3 programming model. For simplicity we focus on
the 3D stencil computation and the inter-GPU boundary exchange, and the
rest of the kernels and the disk I/O scheme are not included there. Therefore,
stream2 does not appear in the code. Figure 5.2 shows a diagram with the
steps required to perform the boundary exchange and the synchronization
scheme used by the CPU threads in each MPI process. The id variable
identi�es the CPU thread within the MPI process, while global_id is the
identi�er of the CPU thread across all the MPI processes of the application.
Before the main loop, the application allocates four semaphore arrays (l_-
bound_sem[], r_bound_sem[], l_halo_sem[], r_halo_sem[]), two arrays of
host memory bu�ers (l_bound_host[], and r_bound_host[]), and two extra

47

5.1. PROGRAMMABILITY ISSUES UNDER CUDA

1 for (int i = 0; i < time_steps; ++i) {

2 launch_stencil_kernel(&out[id][left_off], &in[id][left_off], size_left, stream3);

3 launch_stencil_kernel(&out[id][right_off], &in[id][right_off], size_right, stream4);

4 launch_stencil_kernel(&out[id][center_off], &in[id][center_off], size_center, stream1);

5

6 if (global_id > 0) { // Left boundary to host (1a)

7 cudaMemcpyAsync(l_bound_host[id], &in[id][l_bound_off],

8 size, cudaMemcpyDeviceToHost, stream3);

9 cudaStreamSynchronize(stream3);

10 }

11 if (global_id < last_id) { // Right boundary to host (1b)

12 cudaMemcpyAsync(r_bound_host[id], &in[id][r_bound_off],

13 size, cudaMemcpyDeviceToHost, stream4);

14 cudaStreamSynchronize(stream4);

15 }

16 if (id > 0) // Right halo is ready (2a)

17 sem_post(&r_halo_sem[id-1]);

18 if (id < num_gpus - 1) // Left halo is ready (2b)

19 sem_post(&l_halo_sem[id+1]);

20

21 if (id == num_gpus - 1 && global_id < last_id) {

22 // MPI send right and receive left

23 MPI_SendRecv(r_bound_host[id], size, MPI_FLOAT,

24 r_neighbor, 0, MPI_COMM_WORLD,

25 l_halo_host, size, MPI_FLOAT,

26 l_neighbor, 0, MPI_COMM_WORLD, &status);

27 if (l_neighbor != MPI_NULL)

28 cudaMemcpyAsync(&in[id][l_halo_off], l_halo_host,

29 size, cudaMemcpyHostToDevice, stream3);

30 }

31 if (id == 0 && global_id > 0) { // MPI send left and receive right

32 MPI_SendRecv(l_bound_host[id], size, MPI_FLOAT,

33 l_neighbor, 0, MPI_COMM_WORLD,

34 r_halo_host, size, MPI_FLOAT,

35 r_neighbor, 0, MPI_COMM_WORLD, &status);

36 if (r_neighbor != MPI_NULL)

37 cudaMemcpyAsync(&in[id][r_halo_off], r_halo_host,

38 size, cudaMemcpyHostToDevice, stream4);

39 }

40

41 if (id > 0) { // Update left halo

42 sem_wait(&l_halo_sem[id]); // (3a)

43 cudaMemcpyAsync(&in[id][l_halo_off], r_bound_host[id-1], // (4a)

44 size, cudaMemcpyHostToDevice, stream3);

45 cudaStreamSynchronize(stream3);

46 sem_post(&r_bound_sem[id-1]); // (5a)

47 }

48 if (id < num_gpus - 1) { // Update right halo

49 sem_wait(&r_halo_sem[id]); // (3b)

50 cudaMemcpyAsync(&in[id][r_halo_off], l_bound_host[id+1], // (4b)

51 size, cudaMemcpyHostToDevice, stream4);

52 cudaStreamSynchronize(stream4);

53 sem_post(&l_bound_sem[id+1]); // (5b)

54 }

55 if (id > 0) // Wait for left neighbor (6a)

56 sem_wait(&l_bound_sem[id]);

57 if (id < num_gpus - 1) // Wait for right neighbor (6b)

58 sem_wait(&r_bound_sem[id]);

59 cudaStreamSynchronize(stream1);

60

61 tmp = in; in = out; out = tmp; // Exchange pointers

62 }

Listing 5.1: Simpli�ed host code of the RTM computation using the CUDA 3 programming
interface. 48

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

Figure 5.2: Exchange steps and synchronization in the RTM computation using the CUDA
3 programming interface. Legend: solid arrows represent semaphore updates and dashed
arrows represent data copies.

bu�ers for the data received from MPI calls (l_halo_host and r_halo_host).
The size of the semaphore and host memory bu�er arrays is equal to the
number GPUs.
At the beginning of each time step, we �rst compute the values in the bound-
aries so that they can be transferred as soon as possible (lines 2 and 3).
Then, the kernel that computes the rest of the wave �eld is launched (line
4). In the �rst stage of the exchange, the CPU thread copies the boundaries
from the GPU to host memory bu�ers (l_bound_host[id] in line 7 and r_-

bound_host[id] in line 12). These copies are shown as arcs (1a) and (1b) in
Figure 5.2. Once the left boundary data has been copied to a host memory
bu�er, the CPU thread signals its left neighbor that new data is available by
posting the r_halo_sem[id−1] semaphore (line 17 and arc 2a). An analo-
gous synchronization mechanism (l_halo_sem[id+1] semaphore) is required
for the right boundary data (line 19 and arc 2b). Outermost threads perform
a data exchange using MPI_SendRecv (lines 23 and 32) and update their halos
with the received data (lines 28 and 37).
The CPU thread starts the second stage by waiting for its neighbor to �nish
copying boundary data to the host memory bu�ers (r_bound_host[id−1]
and l_bound_host[id+1]). This is done by waiting on the semaphores for
these host memory bu�ers: r_halo_sem[id] and l_halo_sem[id] respectively
(lines 42 and 49, arcs 3a and 3b). This synchronization is not needed by the
outermost boundary data because it is explicitly requested through MPI.

49

5.1. PROGRAMMABILITY ISSUES UNDER CUDA

Then, the CPU thread copies the boundary data from each host memory
bu�er to the halo cells on the GPU (lines 43 and 50, arcs 4a and 4b), signals
its neighbors that the data from the host bu�er has been consumed (lines
46 and 53, arcs 5a and 5b) and waits, before the next iteration, for the
signals from the neighbors (lines 56 and 58, arcs 6a and 6b) using semaphores
(l_bound_sem[id] and r_bound_sem[id]). Finally, in and out pointers are
swapped so the output becomes the input in the next step.

5.1.2 Performance considerations

The boundary exchange in Figure 5.1 assumes that the host bu�ers for the
boundary exchange use pinned memory. In a typical seismic simulation using
a 4-point boundary data with a cross section of 2048× 2048 single-precision
points, 64MB per boundary are required. However, pinned memory tends
to be a scarce resource and so such large host pinned memory requirements
can easily harm the system performance. Moreover, data is only updated
when the whole boundary has been transferred to host memory by the owner
thread.
Double-bu�ering is typically used to improve data transfer rates while re-
ducing the pinned memory requirements. Thus, the region to be transferred
is split into smaller subregions, and two pinned bu�ers are allocated in host
memory. It exploits the full-duplex nature of the PCIe interconnect, so that
transfers to host memory and transfers to GPU memory overlap. In our im-
plementation, the application allocates two 2MB host pinned memory bu�ers
per boundary. One of the bu�ers is used to transfer a block of the source
boundary data to the host while the second bu�er is used to transfer the
previous block to the destination GPU. This implementation mostly hides
the cost of data transfers in one of the directions, e�ectively doubling the
data transfer memory bandwidth. In our seismic simulation example, dou-
ble-bu�ering reduces the total transfer time of a boundary from 16ms down
to 8ms.
The performance bene�ts of double-bu�ering come at the cost of code com-
plexity. Besides the semaphores in Listing 5.1, two more semaphores are
required per host pinned memory bu�er. These semaphores protect the con-
tents of the host pinned memory bu�er used by ongoing data transfers to
the destination GPU, and avoid starting transfers to the destination GPU
before the data has been completely transferred to the host memory. It also
requires the programmer to insert a new level of loops to iterate over the
original exchange code in 2MB transfer steps. The additional synchroniza-
tion calls, the management of several host memory bu�ers, and the usage of
asynchronous memory transfers greatly increase code complexity.

50

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

Figure 5.3: Exchange steps and synchronization in the RTM computation when GPUs are
shared across CPU threads.

The complexity of the application code increases further if di�erent device
system topologies need to be supported. For example, di�erent data exchange
code paths are required to avoid memory copies in systems where CPU and
GPU share the same physical memory. As a consequence, development and
maintenance costs of multi-GPU codes easily become una�ordable. We argue
that providing higher-level abstractions is key to exploit heterogeneous GPU-
based systems.

5.2 The Heterogeneous Parallel Execution

model

In this section we present the Heterogeneous Parallel Execution (HPE)
model, built around three novel mechanisms to improve the performance
and programmability of heterogeneous multi-GPU systems.

• Multi-threaded GPU sharing.

• Uni�ed virtual address space.

• Multi-GPU and multi-threaded Asymmetric Distributed Shared Mem-
ory (ADSM).

Each mechanism is illustrated with CUDA code using the simpli�ed RTM
version discussed above. All of the concepts discussed here can be applied to
other programming models, heterogeneous devices, and applications.

51

5.2. THE HETEROGENEOUS PARALLEL EXECUTION MODEL

5.2.1 Multi-threaded GPU sharing

A major limitation of CUDA 3 is the permanent and exclusive binding of
only one CUDA context to each CPU thread. Thus, a CPU thread cannot
directly copy memory between GPUs (because each GPU hast its own CUDA
context). This limitation forces programmers to implement communication
between accelerators with intermediate data copies to host memory bu�ers
(i.e., proxy pattern described in Section 5.1.1). That is, the host memory
serves as an intermediate switch for routing data from one GPU memory to
another GPU memory. Such implementations negatively impacts application
performance: a CPU thread requiring data from a GPU bound to another
CPU thread must wait until this data is copied to host memory by the other
thread. Another undesirable side e�ect is that both CPU threads might copy
their halo data from host memory to GPU memory at almost the same time
resulting in PCIe bus contention, giving each CPU thread less than half of
the peak PCIe bandwidth.
HPE enables several CPU threads to concurrently access the same GPU con-
text. Listing 5.2 shows the RTM computation code when CPU threads are
allowed to access any GPU in the system. Figure 5.3 re�ects the updated
synchronization scheme used by the CPU threads. The �rst noticeable mod-
i�cation is that GPU bu�ers (in and out) are now global variables accessible
by all CPU threads. Now, only the outermost left and right CPU threads
must copy the data to be exchanged to host memory (lines 13 and 25, not
shown in Figure 5.3 for brevity) since CPU threads within the same node
can access the GPU context of its neighbors. Then, they then send this data
and receive the updated halo points using MPI (lines 16 and 28).
The local communication code (lines 39 and 47) becomes a GPU-to-GPU
memory copy because all CPU threads can access both the source and desti-
nation GPU memories. This is enabled by the multi-threaded GPU sharing
support in HPE. In this case, each CPU thread waits on the l_halo_sem[id]
and r_halo_sem[id] (lines 38 and 46) for the data produced by other threads
to be ready before triggering the data transfer. Once the data exchange is
done, each CPU thread noti�es the completion of its data copy activity by
posting the l_bound_sem[id-1] and r_bound_sem[id+1] semaphores (lines 43
and 51). Finally, the input and output pointers are exchanged. Notice that
this exchange must wait (lines 54 and 56) until after the other threads con-
sume the data because the GPU pointer data structures are shared by several
CPU threads.
The �rst programmability bene�t shown in the code in Listing 5.2 is that
synchronization points (i.e., calls to semaphores) are conceptually easier to
understand. The thread that needs the data performs the wait operation

52

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

1 for (int i = 0; i < time_steps; ++i) {

2 launch_stencil_kernel(&out[id][left_off], &in[id][left_off], size_left, stream3);

3 launch_stencil_kernel(&out[id][right_off], &in[id][right_off], size_right, stream4);

4 launch_stencil_kernel(&out[id][center_off], &in[id][center_off], size_center, stream1);

5

6 if (id > 0) // Right halo is ready (1a)

7 sem_post(&r_halo_sem[id-1]);

8 if (id < num_gpus - 1) // Left halo is ready (1b)

9 sem_post(&l_halo_sem[id+1]);

10

11 if (id == num_gpus - 1 && global_id < last_id) {

12 // MPI send right and receive left

13 cudaMemcpyAsync(r_bound_host, &in[id][r_bound_off],

14 size, host, device[id], stream4);

15 cudaStreamSynchronize(stream4);

16 MPI_SendRecv(r_bound_host, size, MPI_FLOAT,

17 r_neighbor, 0, MPI_COMM_WORLD,

18 l_halo_host, size, MPI_FLOAT,

19 l_neighbor, 0, MPI_COMM_WORLD, &status);

20 if (l_neighbor != MPI_NULL)

21 cudaMemcpyAsync(&in[id][l_halo_off], l_halo_host,

22 size, device[id], host, stream3);

23 }

24 if (id == 0 && global_id > 0) { // MPI send right and receive left

25 cudaMemcpyAsync(l_bound_host, &in[id][l_bound_off],

26 size, host, device[id], stream3);

27 cudaStreamSynchronize(stream3);

28 MPI_SendRecv(l_bound_host, size, MPI_FLOAT,

29 l_neighbor, 0, MPI_COMM_WORLD,

30 r_halo_host, size, MPI_FLOAT,

31 r_neighbor, 0, MPI_COMM_WORLD, &status);

32 if (r_neighbor != MPI_NULL)

33 cudaMemcpyAsync(&in[id][r_halo_off], r_halo_host,

34 size, device[id], host, stream4);

35 }

36

37 if (id > 0) { // Update left halo

38 sem_wait(&l_halo_sem[id]); // (2a)

39 cudaMemcpyAsync(&in[id][l_halo_off], // (3a)

40 &out[id-1][r_bound_off],

41 size, device[id], device[id-1], stream3);

42 cudaStreamSynchronize(stream3);

43 sem_post(&r_bound_sem[id-1]); // (4a)

44 }

45 if (id < num_gpus - 1) { // Update right halo

46 sem_wait(&r_halo_sem[id]); // (2b)

47 cudaMemcpyAsync(&in[id][r_halo_off], // (3b)

48 &out[id+1][l_bound_off],

49 size, device[id], device[id+1], stream4);

50 cudaStreamSynchronize(stream4);

51 sem_post(&l_bound_sem[id + 1]); // (4b)

52 }

53 if (id > 0) // Wait for left neighbor (5a)

54 sem_wait(&l_bound_sem[id]);

55 if (id < num_gpus - 1) // Wait for right neighbor (5b)

56 sem_wait(&r_bound_sem[id]);

57 cudaStreamSynchronize(stream1);

58

59 tmp = in; in = out; out = tmp; // Exchange pointers

60 }

Listing 5.2: Simpli�ed host code of the RTM computation when GPUs are shared across
CPU threads.

53

5.2. THE HETEROGENEOUS PARALLEL EXECUTION MODEL

Figure 5.4: Exchange steps and synchronization in the RTM computation when UVAS is
available.

just before performing the data exchange, and the post operation afterward.
This is in contrast to the code in Listing 5.1, where these two semaphore calls
are made by separate CPU threads: the proxy thread performs the wait call,
while the post operation is done by the consumer CPU thread.
The second bene�t is the simpli�ed abstraction of di�erent system architec-
tures. The application code calls a GPU-to-GPU memory copy. The runtime
system provides several hardware-dependent implementations. In a system
where compute accelerators share the same physical memory, it is imple-
mented as a single memory copy. However, if both accelerators do not share
the same memory and peer-to-peer memory transfers are not supported, the
runtime system provides a double-bu�ered implementation using intermedi-
ate host pinned memory bu�ers. This hardware-independence greatly re-
duces the amount of code required to achieve high performance in di�erent
system architectures. However, programmers still have to explicitly identify
source and destination GPUs in the memory copy function.

5.2.2 UVAS and remote memory access

A common characteristic of the codes in Listings 5.1 and 5.2 is that the
same virtual memory address might refer to multiple host and GPU memory
locations on di�erent computational units (i.e., CPU or accelerator). The
most important consequence of virtual memory aliasing is the inability to
perform remote memory accesses between GPUs. Neither the host nor the
GPUs can determine at runtime the physical memory that a given pointer
variable is referring to. Therefore, memory copy operations require a source
and destination GPU/host (e.g., cudaMemcpyHostToDevice in Listing 5.1, and
device[id]/host in Listing 5.2).

54

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

1 for (int i = 0; i < time_steps; ++i) {

2 launch_stencil_kernel(out + left_off, in + left_off, size_left, stream3);

3 launch_stencil_kernel(out + right_off, in + right_off, size_right, stream4);

4 launch_stencil_kernel(out + center_off, in + center_off, size_center, stream1);

5

6 if (id == num_gpus - 1 && global_id < last_id) {

7 // MPI send right and receive left

8 cudaMemcpyAsync(r_bound_host, &out[r_bound_off], size, stream4);

9 cudaStreamSynchronize(stream4);

10 MPI_SendRecv(r_bound_host, size, MPI_FLOAT,

11 r_neighbor, 0, MPI_COMM_WORLD,

12 l_halo_host, size, MPI_FLOAT,

13 l_neighbor, 0, MPI_COMM_WORLD, &status);

14 if (l_neighbor != MPI_NULL)

15 cudaMemcpyAsync(&in[l_halo_off], l_halo_host, size, stream3);

16 }

17 if (id == 0 && global_id > 0) { // MPI send left and receive right

18 cudaMemcpyAsync(l_bound_host, &out[l_bound_off], size, stream3);

19 cudaStreamSynchronize(stream3);

20 MPI_SendRecv(l_bound_host, size, MPI_FLOAT,

21 l_neighbor, 0, MPI_COMM_WORLD,

22 r_halo_host, size, MPI_FLOAT,

23 r_neighbor, 0, MPI_COMM_WORLD, &status);

24 if (r_neighbor != MPI_NULL)

25 cudaMemcpyAsync(&in[r_halo_off], r_halo_host, size, stream4);

26 }

27

28 if (id > 0) { // Right halo is ready (1a)

29 cudaStreamSynchronize(stream3);

30 sem_post(&write_sem[id-1]);

31 }

32 if (id < num_gpus - 1) { // Left halo is ready (1b)

33 cudaStreamSynchronize(stream4);

34 sem_post(&write_sem[id+1]);

35 }

36 if (id > 0) // Wait for neighbors (2)

37 sem_wait(&write_sem[id]);

38 if (id < num_gpus - 1)

39 sem_wait(&write_sem[id]);

40 cudaStreamSynchronize(stream1);

41

42 tmp = in; in = out; out = tmp; // Exchange pointers

43 }

Listing 5.3: Simpli�ed host code of the RTM computation when UVAS is available.

55

5.2. THE HETEROGENEOUS PARALLEL EXECUTION MODEL

HPE de�nes a Uni�ed Virtual Address Space (UVAS), where a virtual mem-
ory address unequivocally identi�es a single location in a GPU/host physical
memory. This feature allows the host or any GPU to easily determine the
source and destination memories of the memory transfer operations. Cou-
pling the UVAS with hardware support for remote memory transfers, GPUs
can transparently access remote memory locations through regular pointers.
Listing 5.3 illustrates the programmability bene�ts provided by the UVAS in
our RTM example. Figure 5.4 also shows that the synchronization scheme
is much simpler. First, the GPU-to-GPU memory copies that implement
the domain boundary exchange between accelerators in the same node are
removed, since the kernel code directly accesses the boundary data of the
neighboring domains. The kernel launch now receives an additional param-
eter id that identi�es the current domain and is used by the kernel code
to determine the index of the pointers that belong to the neighboring do-
mains. The outermost CPU threads must still copy the boundary data to
an intermediate host memory bu�er (lines 8 and 18) before exchanging halo
data with neighbour MPI processes for the next iteration (lines 10 and 20).
Another host to GPU copy is needed to update the halo data in the corre-
sponding GPU memories (lines 15 and 25). Then, all CPU threads signal
that the boundary data (i.e., halo data for other CPU threads) is available
for the next kernel call using the write_sem semaphore of the left and right
neighbors (lines 30 and 34, arcs 1a and 1b). Finally, each CPU thread waits
for the neighbor CPU threads to �nish (lines 37 and 39) before exchanging
the input and output pointers.
Another bene�t of the UVAS is that fewer parameters are required by mem-
ory copy calls (lines 8, 15, 18 and 25). The UVAS enables the runtime system
to determine both the source and destination GPU/host of a memory copy
by inspecting the source and destination addresses, eliminating the need for
programmers to specify it.

Implementation notes

In order to provide UVAS in systems with pre-Fermi GPUs, we propose a
software implementation based on memory segmentation (Figure 5.5). A
virtual memory subspace is assigned to the host and each GPU present in
the system. The maximum size of each memory subspace is given by the
number of bits in GPU physical addresses (e.g., 40 bits for NVIDIA GPUs,
1TB). These memory subspaces only contain mappings for data hosted in
one physical memory. We use the upper bits of the virtual address to identify
the GPU where the data is hosted. The HPE runtime assigns a bit pattern
to each GPU in initialization time. On API calls taking pointers as input

56

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

Figure 5.5: Software-based Uni�ed Virtual Address Space implementation using segmen-
tation.

parameters (e.g., memory copy operations), HPE determines the virtual ad-
dress subspaces involved in the operation. In the GPU code, those bits that
identify the virtual address subspace must be discarded in each memory ac-
cess. Some processors already ignore the upper bits of the address, otherwise
this transformation can be transparently inserted by the compiler. For ex-
ample, a pointer to virtual address 0x000200 00001000 will be truncated to
0x00 00001000, which is a valid GPU physical address, and 2 will be used to
identify the GPU that holds the data.
However, using the software segmentation technique has some limitations.
For example, since each virtual address space is mapped to the whole contin-
uous physical address space of an accelerator, it is not possible to transpar-
ently distribute data structures by mapping di�erent virtual address ranges
across GPUs. Therefore, data structures must be split into chunks and use
di�erent pointers to access the appropriate chunks. Conversely, GPUs with
virtual memory support (e.g., Fermi and later) can have a continuous rep-
resentation of a distributed data structure in the UVAS and, therefore, only
need a single pointer for the whole data structure.

5.2.3 Multi-threaded ADSM

Despite the bene�ts provided by the UVAS, the code in Listing 5.3 still
presents a major programmability drawback. As discussed in Section 5.1.1,
overlapping MPI transfers with GPU↔host transfers to reduce the communi-
cation time is key to achieving high performance. This optimization requires
di�erent source code paths for systems with separate GPU and host mem-
ories, and systems where a single memory is shared among the accelerators
and the host.
HPE supports an extension of the Asymmetric Distributed Shared Mem-
ory (ADSM) model [45] to multi-threaded and multi-accelerator systems. In
HPE, each thread can select its current GPU. Memory allocation and kernel

57

5.2. THE HETEROGENEOUS PARALLEL EXECUTION MODEL

1 for (int i = 0; i < time_steps; ++i) {

2 launch_stencil_kernel(out + left_off, in + left_off, size_left);

3 launch_stencil_kernel(out + right_off, in + right_off, size_right);

4

5 if (id > 0) // Right halo is ready (1a)

6 sem_post(&write_sem[id-1]);

7 if (id < num_gpus - 1) // Left halo is ready (1b)

8 sem_post(&write_sem[id+1]);

9

10 if (id == num_gpus - 1 && global_id < last_id) {

11 // MPI send asynchronously right and receive asynchronously left

12 MPI_Isend(&out[r_bound_off], size, MPI_FLOAT,

13 r_neighbor, 0, MPI_COMM_WORLD, &req[0]);

14 MPI_Irecv(&in[l_halo_off], size, MPI_FLOAT,

15 l_neighbor, 1, MPI_COMM_WORLD, &req[1]);

16 }

17 if (id == 0 && global_id > 0) {

18 // MPI send asynchronously left and receive asynchronously right

19 MPI_Isend(&out[l_bound_off], size, MPI_FLOAT,

20 l_neighbor, 1, MPI_COMM_WORLD, &req[2]);

21 MPI_Irecv(&in[r_halo_off], size, MPI_FLOAT,

22 r_neighbor, 0, MPI_COMM_WORLD, &req[3]);

23 }

24

25 launch_stencil_kernel(out + center_off, in + center_off, size_center);

26

27 if (id == num_gpus - 1 && global_id < last_id) // Wait for MPI transfers

28 MPI_Wait(req[1], NULL);

29 if (id == 0 && global_id > 0)

30 MPI_Wait(req[3], NULL);

31 if (id > 0) // Wait for neighbors (2)

32 sem_wait(&write_sem[id]);

33 if (id < num_gpus - 1)

34 sem_wait(&write_sem[id]);

35

36 tmp = in; in = out; out = tmp; // Exchange pointers

37 }

Listing 5.4: Simpli�ed host code of the RTM computation when ADSM is available.

58

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

invocations are performed on the current GPU of the thread that requests
the operation. Each GPU is assigned several internal streams to implement
e�cient data transfers and computation/memory transfer overlap. In ADSM,
operations are synchronous and, therefore, several CPU threads are required
to fully utilize more than one GPU. It also eliminates the need for CUDA
streams. We de�ne a consistency model for concurrent accesses from di�er-
ent CPU threads, that relies on the common inter-thread synchronization
mechanisms. Thus, if one CPU thread needs to access the output generated
by a kernel launched by a di�erent CPU thread, synchronization primitives
such as semaphores are required. On the other hand, accesses during kernel
execution to shared objects that are only read are also allowed. This lets the
disk I/O thread access the wave �eld to be stored while the new wave �eld
is being computed. Accesses during kernel execution to shared objects that
are written are unde�ned. The programmer is responsible for ensuring that
these constraints are honored. While memory protection could be used to
enforce the constraints, it would introduce some overhead due to the required
TLB shootdowns [95]. Moreover, CUDA does not provide any interface to
change the protection of the pages in the GPU memory.
Moreover, on systems where accelerators and CPU have separate memories,
the runtime system captures MPI calls (e.g., using library interposition) and
based on the virtual address passed as source and destination bu�ers deter-
mines the accelerator hosting the data, and double bu�ers the MPI transfer.
This is performed by splitting the MPI transfer into several smaller MPI
transfers to overlap them with the GPU↔host transfers. On system archi-
tectures where the CPU and compute accelerators share the same physical
memory the runtime performs a simple MPI transfer.
Listing 5.4 shows the RTM computation code when the ADSM model is in-
corporated. The explicit cudaMemcpyAsync API calls before and after MPI
transfers have been removed. On the other hand, since kernel calls are syn-
chronous in ADSM, non-blocking MPI calls (lines 12, 14, 19 and 21) are
required so that they can overlap with the execution of the main kernel (line
25). Later, each CPU thread explicitly waits for the MPI calls (lines 28 and
30) to complete. Finally, the CPU threads waits for the neighbors to con-
sume the boundaries (lines 32 and 34) before proceeding to the next time
step.
The ADSM included in HPE raises the level of abstraction; by providing
a high-level abstract machine model, the runtime can e�ciently map data
exchange and I/O operations to all potential heterogeneous system architec-
tures. The simpli�ed MPI calls in Listing 5.4 are an example of the bene�ts
of this higher level of abstraction.

59

5.3. PERFORMANCE EVALUATION OF THE HPE MODEL

5.3 Performance evaluation of the HPE model

In this section we measure the performance e�ects of the di�erent features
in HPE. The availability of real hardware that support key HPE features
gives rise to a rare opportunity for studying the e�ectiveness of the hardware
support by running important benchmarks on real runtime and hardware.

5.3.1 Experimental methodology

All experiments were run on a system containing a dual Intel Intel(R)
Xeon(TM) E5620 at 2.40GHz with 24GB of DDR3 RAM memory, and 4
NVIDIA C2070 6GB GDDR5 GPU cards. Mellanox Technologies MT26428
QDR 11 40Gbps In�niband network adapters are used in those tests that
require network communication. The CPU sockets are connected to di�erent
PCIe 2.0 32x buses, each connected to two GPUs. Peer-DMA is enabled
for GPUs on same bus. All machines run a GNU/Linux system, with Linux
kernel 3.8.0 and NVIDIA driver 304.88. Benchmarks were compiled using
GCC 4.7.3 for CPU code and NVIDIA CUDA compiler 5.5 for GPU code.
Execution times were measured using gettimeofday, which o�ers a µsecond
granularity, for the host code and CUDA events for GPU code and mem-
ory transfers. All results show the average of 30 runs; samples higher than
the arithmetic average plus/minus the variance were considered outliers and
discarded.
We evaluate the performance impact of the HPE features using the CUDA
runtime and GMAC. GMAC provides multi-threaded ADSM, not imple-
mented in CUDA 5.5, which is the version available at the time of this
evaluation.

5.3.2 Benchmarks

Two synthetic benchmarks were used to characterize inter-GPU data copies.
The �rst benchmark is a one-way data copy from a source GPU to a des-
tination GPU. This communication pattern is found in n-body simulations,
where the particles moving out from one domain are sent to the neighbour-
ing domain. This benchmark produces no contention on the PCIe bus, which
provides an environment where software locking costs can be measured. The
second benchmark is a two-way data copy between GPUs. This inter-GPU
communication pattern is found in most multi-GPU computations. Appli-
cations present a wide range of data exchange sizes; for instance, waveguide
simulation typically requires exchanging hundreds of kilobytes, �uid dynam-
ics simulations tens of megabytes, and FFTs hundreds of megabytes. To

60

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

account for these scenarios, experiments were run using data exchange sizes
ranging from 256KB to 256MB. These benchmarks also evaluated the lock-
ing overhead required for multi-threaded GPU sharing. Experiments are run
for di�erent communication schemes (naive, pinned, double-bu�ered) imple-
mented on CUDA with no HPE features (CUDA-base), and GMAC (HPE)
with and without peer-DMA support.
The performance of HPE was also measured using real-world applications.
Current benchmark suites for GPUs like Parboil [48] and Rodinia [35] tar-
get single-GPU systems and do not stress data communication. There-
fore, we have developed CUDA (using the previously mentioned communi-
cation schemes) and HPE versions of the following well-kown computations.
We use a CPU thread for each GPU in the node. Each of these threads
launches kernels on their assigned GPU but also access other GPUs to per-
form GPU↔GPU memory transfers when needed. fdtd is the part of the
RTM application introduced in Section 5.1.1 that uses 3D �nite di�erences.
1D FFT application (�t) implements a Fast Fourier Transform on a 1D input
vector using the Radix-2 Cooley-Tukey algorithm. This algorithm performs
n steps in which di�erent elements are combined. The combination pattern
changes at each step and, therefore, in the multi-GPU implementation, data
must be exchanged between di�erent pairs of GPUs at each step. We use the
multi-GPU implementation of mergesort found in [89]. The input vector is
divided into chunks that are individually sorted by each GPU. Then, a swap
phase merges the subvectors into a sorted vector whose contents are logically
distributed among the memories of the GPUs.
We have also developed two synthetic benchmarks to convey the bene�ts of
the techniques implemented in our HPE runtime to optimize the commu-
nication with I/O devices. The �rst benchmark measures the time needed
to transfer a �le from disk to the GPU memory using four di�erent imple-
mentations: user uses a regular user-level allocation to store the contents
of the �le and then transfer it to the GPU memory; pinned uses pinned
memory instead of a user-level allocation; double-bu�ering uses two small
pinned bu�ers to minimize the usage of pinned memory and to overlap the
disk and GPU memory transfers. The second benchmark measures the time
needed to send data across GPUs in di�erent nodes through MPI. The fol-
lowing con�gurations are compared: user uses a regular user-level allocation
to store the contents of the transfer before calling to send/receive data from
the network; pinned uses pinned memory instead (it exploits the GPUDi-
rect technology that enables In�niband interfaces to use the pinned memory
allocated through CUDA); HPE uses two small pinned bu�ers to overlap
network and CPU↔GPU transfers.

61

5.3. PERFORMANCE EVALUATION OF THE HPE MODEL

 0

 2000

 4000

 6000

 8000

 10000

256KB

1M
B

4M
B

16M
B

64M
B

256M
B

256KB

1M
B

4M
B

16M
B

64M
B

256M
B

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

Transfer Size

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-buffering

HPE w/o peer DMA
HPE w peer DMA

Two-wayOne-way

Figure 5.6: Measured throughput for di�erent data communication sizes.

 10

 100

 1000

 10000

 100000

 1e+06

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

512M
B

L
o

c
k
 t

im
e

 (
m

ic
ro

s
e

c
o

n
d

s
)

Transfer Size

One-way HPE
One-way CUDA-base

Two-way HPE
Two-way CUDA-base

Figure 5.7: CPU thread wait time for di�erent inter-GPU data communication sizes.

5.3.3 Inter-GPU data transfers

Figure 5.6 (left) shows the one-way inter-GPU communication throughput
delivered by each implementation for di�erent communication sizes. Peer-
DMA always delivers the highest throughput because there are no associ-
ated software communication overheads. Peer-DMA also delivers the highest
throughput for two-way data exchange, as shown in Figure 5.6 (right). For a
one-way communication, HPE with no peer-DMA support delivers 70% com-
pared to hardware peer-DMA HPE for large data communication sizes due
to the costs of performing intermediate copies to the host memory. How-
ever, Figure 5.6 (right) shows that the throughput delivered by hardware
peer-DMA is almost 2× faster than the software emulated peer-DMA for
a two-way data exchange. This additional performance penalty is due to
contention for exclusive access to the source and destination GPU contexts,
which are being used concurrently by all CPU threads.

62

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

Figure 5.6 (left and right) also shows that the double-bu�ering strategy is
always the optimal software implementation. The bene�t of double-bu�ering
becomes noticeable for data communications larger than 1MB, when double-
bu�ering starts overlapping of host-to-GPU and GPU-to-host data transfers.
The pinned implementation transfers all the data to a pinned bu�er in host
memory and, therefore, does not overlap data transfers. Still, the throughput
delivered by this scheme is a 40% higher than the base implementation.
Figure 5.7 shows the total wait time for HPE and CUDA-base double-bu�er-
ing. Locking time in HPE is shorter than in CUDA-base double-bu�ering,
except for two-way communication of small halo sizes. HPE only requires
exclusive access to the GPU context for the duration of the API call that
enqueues an asynchronous data transfer between the host and the GPU; after
the DMA command has been requested to the hardware, the PCIe con�g-
uration registers can be used to request new DMA transactions. This is in
contrast with the double-bu�ering implementation in CUDA-base, which re-
quires exclusive access to the intermediate host bu�er for the duration of
each data transfer. For small size data transfers, the total time CUDA-
base requires exclusive access to the intermediate bu�er is short (few data is
transferred) and it shows a better behaviour than HPE.
As the data communication size increases, CUDA-base requires locking the
intermediate bu�ers for longer times, so the time each CPU thread waits to
initiate the next data transfer increases. Inter-GPU data communication in
HPE does not require waiting for any other CPU thread to bring the data to
the intermediate host bu�ers. Hence, the lock time due to exclusive access
to the GPU context only grows on the number of API calls required for
the communication, which grows linearly with the data communication size.
The smaller locking time for medium and large inter-GPU communication
accounts for the extra throughput provided by HPE.

5.3.4 Application benchmarks

Figure 5.8a shows the speedup of di�erent implementations of the FDTD
computation over the base CUDA-base version. In this application, bound-
aries are exchanged in every iteration with the left and right neighbors. Due
to the limited support of remote accesses in current NVIDIA GPUs (only
works for GPUs in the same PCIe bus), we use explicit data transfers in all
the implementations. The elements to be exchanged are computed �rst and
are transferred concurrently with the rest of the computation, in order to
hide the data transfer costs. The size of the data being transferred goes from
1MB to 9MB for the tested input datasets. Results show speedups that
range from 1.04× to 1.23× for 2 GPUs and from 1.15× to 1.63× for 4 GPUs

63

5.3. PERFORMANCE EVALUATION OF THE HPE MODEL

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

256
3

384
3

512
3

640
3

768
3

256
3

384
3

512
3

640
3

768
3

S
p
e
e
d
u
p
 (

x
)

Elements

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-buffering

HPE w/o peer DMA
HPE w peer DMA

4 GPUs2 GPUs

(a) FDTD

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

256KB 1MB 4MB 64MB 256MB 256KB 1MB 4MB 64MB 256MB

S
p
e
e
d
u
p
 (

x
)

Vector Size

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-buffering

HPE w/o peer DMA
HPE w peer DMA

4 GPUs2 GPUs

(b) 1D FFT

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

2
16

2
18

2
20

2
22

2
24

2
16

2
18

2
20

2
22

2
24

S
p
e
e
d
u
p
 (

x
)

Elements

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-buffering

HPE w peer DMA

4 GPUs2 GPUs

(c) Mergesort

Figure 5.8: Speedup over single GPU execution di�erent input dataset sizes.

64

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

in the HPE version when peer-DMA is available. The largest improvements
are obtained for small to medium input datasets, where the data transfer/
computation ratio is high, as shown in Figure 5.9a. In these cases, the data
transfer cannot be completely masked. The improvement is greater in the
4-GPU con�guration because, in the general case, each domain exchanges
twice as data as the 2-GPU case and, therefore, the improvements in the
memory transfers are more pronounced.
The 1D FFT application is communication bound and, therefore, greatly
bene�ts from the HPE model. As shown in Figure 5.9b, all con�gurations
except HPE with peer-DMA support spend at least 86 % of the application
time in data exchange routines, when using 2 GPUs and 87% for 4 GPUs.
On hardware with peer-DMA, HPE exchange time is reduced to 80% for
2 GPUs and is at least 5% lower than the base implementation for 4 GPUs.
This reduction results in speedups (see Figure 5.8b) that range from 1.58× to
2.6× for 2 GPUs over the naive CUDA3 implementation and 1.17× to 1.61×
for 4 GPUs, for vector sizes from 256KB to 256MB. HPE with no peer-DMA
support delivers speedups of 1.15× to 1.42× performance improvements over
the base version for 2 GPUs and 1.01× to 1.6× for 4 GPUs (except for the
smallest input dataset, since a single bu�er is transferred). The performance
of the double bu�ering implementation and HPE for 4 GPUs is closer because
peer-DMA transfers across di�erent PCIe buses are not currently supported,
so intermediate copies are performed on the host memory. Moreover, the
e�ect of the peer-DMA transfers is limited when using 4 GPUs because our
FFT algorithm performs memory swaps between pairs of GPUs and these
may be serialized if they involve the same GPU.
Mergesort shows notable speedups when using HPE with peer-DMA trans-
fers. This application swaps the locally sorted subarrays between GPUs in
order to be merged into the �nal sorted array. When 4 GPUs are used, a �rst
swap step is performed between GPUs 0 and 1 and GPUs 2 and 3 (to produce
two sorted subarrays) and a �nal swap step is performed to merge them into
the �nal array. Figure 5.8c reports speedups that range from 1.25× to 1.50×
for 2 GPUs and 1.45× to 1.66× for 4 GPUs. This benchmark also bene�ts
from remote accelerator memory access, but current hardware restricts the
utilization of this mechanism to GPUs connected to the same PCIe bus. Re-
mote memory accesses are used during the pivot search to determine which
data needs to be exchanged between pairs of GPUs. Using remote memory
accesses delivers much better performance than copying the necessary data
across GPUs (required by HPE when GPUs connected to di�erent PCIe
buses, and by CUDA3). Figure 5.9c shows that the percentage of time de-
voted to communication decreases as the dataset increases for 2GPUs. The
additional communication steps required in the 4 GPU implementation make

65

5.3. PERFORMANCE EVALUATION OF THE HPE MODEL

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

256
3

384
3

512
3

640
3

768
3

256
3

384
3

512
3

640
3

768
3

P
e
rc

e
n
ta

g
e
 (

%
)

Elements

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-Buffering

HPE w/o peer DMA
HPE w peer DMA

4 GPUs2 GPUs

(a) FDTD

 75

 80

 85

 90

 95

256KB 1MB 4MB 64MB 256MB 256KB 1MB 4MB 64MB 256MB

P
e
rc

e
n
ta

g
e
 (

%
)

Vector Size

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-Buffering

HPE w/o peer DMA
HPE w peer DMA

4 GPUs2 GPUs

(b) 1D FFT

 0

 10

 20

 30

 40

 50

 60

 70

2
16

2
18

2
20

2
22

2
24

2
16

2
18

2
20

2
22

2
24

P
e
rc

e
n
ta

g
e
 (

%
)

Elements

CUDA-base Naive
CUDA-base Pinned
CUDA-base Double-Buffering

HPE w peer DMA

4 GPUs2 GPUs

(c) Mergesort

Figure 5.9: Percentage of time devoted to memory transfers over the total execution time.

66

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

the communication/computation ratio increase with the input dataset size.

5.3.5 Communication with I/O devices

The use of pinned memory is key for achieving fast transfers between I/O
devices and the host memory. Pinned memory becomes even more important
for transfers between devices (e.g., disk and GPU). Since these devices usu-
ally have their own private address spaces, they rely on intermediate copies to
host memory for communication. If user-level memory allocations are used,
the Operating System has to perform a number copies to/from these alloca-
tions to (system-managed) pinned bu�ers before starting a DMA transfer.
Figure 5.10 shows that pinned memory is 2.2× to 2.7× faster than the base
version. Overlapping some of the disk and GPU transfers provides even bet-
ter performance (2.5× to 3.4×). The HPE runtime matches the hand-tuned
implementation (2.4× to 2.9×) while hiding the complexity of this technique.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4 8 16 32 64 128 256

S
p
e
e
d
u
p
 (

x
)

Transfer Size (MB)

User
Pinned

Double-buffering
HPE runtime

Figure 5.10: Disk↔GPU transfer speedups of HPE compared to the base synchronous
version.

5.3.6 Inter-node communication (MPI)

Communicating GPUs across nodes requires moving data between the GPUs'
memories and the bu�ers in the network interfaces. While future systems
will be able to perform P2P (i.e., peer-to-peer) transfers between them, cur-
rently data has to be stored in host memory. Moreover, pinned memory
must be used to avoid extra copies in the network interface driver. Fig-
ure 5.11 shows that using pinned memory provides up to 2× better perfor-
mance in GPU→GPU and GPU→host memory transfers, and up to 2.6×
in host→GPU, than regular pageable allocations. Furthermore, the dou-
ble-bu�ering implemented in the HPE runtime for some MPI calls further
improve the performance, providing speedups greater than 4×.

67

5.4. SUMMARY

32 KB 64 KB
128 KB

256 KB
512 KB 1 MB 2 MB 4 MB 8 MB

16 MB
32 MB

64 MB
128 MB

0

1

2

3

4

5

6

Sp
ee

du
p

(x
)

D2D - Pinned
D2H - Pinned
H2D - Pinned

D2D - HPE
D2H - HPE
H2D - HPE

Figure 5.11: MPI transfer speedups of HPE compared to the base synchronous version.

5.4 Summary

HPE greatly simpli�es the task of programming multi-accelerator applica-
tions for heterogeneous parallel systems, by removing the need for applica-
tions to explicitly perform intermediate copies and complex synchronization
patterns. We have implemented the HPE model and its associated techniques
into GMAC, a user-level library that is publicly available at [10]. Since CUDA
4.0, NVIDIA started to introduce most of the proposed features presented
here. AMD also ships a version of the HPE model for OpenCL in its APP
SDK. This provided us with an opportunity to quantify the bene�t of these
features on real hardware. Experiments show that the HPE runtime trans-
parently exploits GPUs that comes with hardware support for HPE features
and signi�cantly improves performance when such hardware is present in the
system. We show that simple, portable application code based on HPE often
achieves performance comparable to complex custom-written code even in
systems that do not have good hardware support for HPE techniques. We
have outlined the GPU hardware support required to e�ciently implement
the proposed UVAS. We further argue that without simple interfaces like
HPE, the advanced GPU hardware support will unlikely be used by most
software applications in practice.
Experimental results show that the HPE model eases programming of multi-
accelerator applications while providing performance improvements of 2×
compared to the best data transfer scheme implemented on top of CUDA 3.
We have also analyzed the impact of HPE on three real benchmarks. Im-
provements range from 5% in compute-bound benchmarks and up to 2.6×
in communication-bound benchmarks. Finally, experiments show that HPE
transparently implements sophisticated communication schemes that can de-
liver up to a 2.9× speedup in I/O device transfers.

68

CHAPTER 5. HETEROGENEOUS MULTI-GPU EXECUTION

5.5 Impact on CUDA 4/5/6

CUDA 4.0 introduced the UVAS support for Fermi and later GPUs. Thanks
to the UVAS, the runtime can determine the location of GPU allocations and
a single thread can initiate transfers between di�erent GPUs. Moreover, pro-
grammers do not need to specify the direction of the transfers in cudaMemcpy

(cudaMemcpyDefault is used by default). Memory allocations can be made
visible to other GPUs by synchronizing the GPU memory page tables (using
cudaDeviceEnablePeerAccess). Hardware support since Fermi (advertised as
GPU Direct [5]) transparently routes requests to data located on a di�erent
GPU memory through the PCIe interconnect.
CUDA 4.0 also implements the �oating context model for host threads. Thus,
threads can use the cudaSetDevice function to dynamically select its current
GPU for implicit operations such as memory allocation and kernel memory
launches. For explicit operations that take streams or events, the runtime
internally switches to the proper GPU context. Programs are no longer forced
to use several threads in order to exploit more than one GPU.
Moreover, CUDA 6.0 introduces an implementation of the multi-
threaded ADSM memory management called UVM. Bu�ers allocated with
cudaMallocManaged can be used both in CPU and GPU code. UVM inte-
grates with CUDA streams, unlike HPE, which tries to avoid the utilization
of CUDA-speci�c abstractions. By default, all shared bu�ers are acquired/
released at kernel call boundaries. However, users can assign memory ranges
to streams using cudaStreamAttachMemAsync, so that only the memory ranges
that are attached to a stream are taken into account when launching a kernel
on that stream.

69

Chapter 6

Shared Memory GPU

Programming

Discrete GPUs in modern multi-GPU systems can transparently access each
other's memories through the PCIe interconnect. Future systems will im-
prove this capability by including better GPU interconnects such as NVLink.
However, remote memory access across GPUs has gone largely unnoticed
among application developers, and multi-GPU systems are still programmed
like distributed systems in which each GPU only accesses its own memory.
This increases the complexity of the host code as programmers need to ex-
plicitly communicate data across GPU memories. In this chapter we present
GPU-SM, a set of guidelines to program multi-GPU systems like NUMA
shared memory systems with minimal performance overheads. This work
includes the �rst exhaustive performance study of remote memory accesses
over PCIe, and an analysis of their viability as a mechanism to implement
the shared memory model in multi-GPU systems.

6.1 Multi-GPU NUMA systems

Shared memory machines are considered to be easier to program than dis-
tributed memory machines. In these machines, all processors can access any
data regardless its location and, therefore, programmers are relieved from
the obligation of distributing data among nodes. They can be Symmetric
Multi-Processing (SMP), such as the Sun Enterprise series or Intel Pentium
Pro powered machines [37], so that the cost of access is the same for all the
memories. Nevertheless, the dominant approach in current systems is Non-
Uniform Memory Access (NUMA) machines, in which memories are located

71

6.1. MULTI-GPU NUMA SYSTEMS

at di�erent distances from the processors. Thus, each processor is typically
connected to a local memory and to several remote memories, that are ac-
cessed through an interonnection network. Some early examples of cache
coherent NUMA (CC-NUMA) machines are the MIT Alewife [18], Stanford
DASH [64], but most modern multi-socket machines are built with commod-
ity processors such as Intel CPUs [69].
In order to overcome the costs of remote accesses, early shared memory
machines implemented various latency tolerance mechanisms, such as data
prefetching or multithreading [60], in order to hide the extra cost of ac-
cessing remote memory. For example, the APRIL processor [19] from the
Alewife machine switches between threads on each remote memory request
or failed synchronization attempt, similarly to GPUs. Nevertheless, current
shared memory processors mostly rely on caching to avoid accesses to remote
memories, and software-based solutions are used to further reduce their num-
ber [72, 71, 38].
Thanks to the UVAS and P2P technologies, multi-GPU machines can be also
programmed like shared memory machines: a kernel launched on a GPU can
access the memories of all the GPUs in the system. However, they present
some key di�erences with respect to traditional shared memory machines:

• The costs of remote accesses are much higher on GPUs because of the
longer latencies introduced by the PCIe interconnect. Futures intercon-
nects such as NVLink will reduce this ratio, but it will be still greater
than in general purpose-based systems.

• Shared memory nodes implement cache coherence between processors
to simplify data sharing. GPUs do not implement cache coherence
and, therefore, they form a Non Cache Coherent NUMA (NCC-NUMA)
system. Thus, only accesses to read-only regions can be cached in GPUs
to avoid coherence problems.

• Programming models for GPUs like CUDA provide a weak consistency
model between thread blocks. Only atomic operations and memory
fences are visible across thread blocks.

• GPUs can handle up to 64 concurrent in-�ight warps in each GPU core,
with zero context-switch overhead. Thanks to this execution model,
GPUs can hide the costs of long latency operations better than general
purpose processors.

In this work we try to determine how the unique characteristics of GPUs can
help hiding the high costs of remote accesses.

72

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

(a) System A (b) System B

Figure 6.1: Multi-GPU systems used to evaluate GPU-SM.

6.2 Experimental methodology

We �rst analyze the performance characteristics of the remote memory access
mechanism on the PCIe interconnect. The perfomance impact of di�erent
GPU harwdare features is also measured.

6.2.1 Hardware setup

We use two systems with di�erent PCIe revisions and device topologies.

• System A (Figure 6.1a) contains a quad-core Intel i7-930 at 2.8GHz
with 16GB of DDR3 memory, and 3 NVIDIA Tesla K20 GPU cards
with 6GB of GDDR5 each, connected through PCIe 2.0 in x16 mode.
The PCIe topology is 2+1, with two GPUs connected to the same PCIe
switch, and the third one to a second switch.

• System B (Figure 6.1b) contains a quad-core Intel i7-3820 at 3.6GHz
with 64GB of DDR3 memory, and 4 NVIDIA Tesla K40 GPU cards
with 12GB of GDDR5 each, connected through PCIe 3.0 in x16 mode.

Both machines run a GNU/Linux system, with Linux kernel 3.16 and
NVIDIA driver 340.24. Benchmarks were compiled using GCC 4.8.3 and
NVIDIA CUDA compiler 6.5 for GPU code. Execution times are measured
using the CUPTI pro�ling library that provides support for sampling and
nanosecond timing resolution.

6.2.2 Microbenchmarks

In order to characterize the hardware platform, we developed a set of mi-
crobenchmarks with di�erent computation and memory access patterns.

73

6.2. EXPERIMENTAL METHODOLOGY

These microbenchmarks are implemented using a single parametrized GPU
kernel that reads from memory, performs several �oating point operations
on the input data and writes the result to memory. We pass local and re-
mote allocations for both input and output data to each kernel launch and,
given some parameters, the code selects the local or the remote pointer. The
available parameters are:

• Computational intensity: amount of �oating point instructions per-
formed on each input datum (FLOPs/datum). This is implemented
using an unrolled loop of dependent operations.

• Amount of remote accesses: percentage of remote accesses relative to
the total amount of memory accesses. Threads use their identi�ers to
determine if they need to access data locally or remotely.

• Remote access pattern: whether accesses are performed by a small set
of thread blocks that are scheduled for execution together (batch), or
they are spread among a bigger set of thread blocks that are executed
along with thread blocks that do not perform remote accesses (spread).

• Topology: whether remote accesses are performed between GPUs con-
nected to the same or di�erent PCIe switches, or to host memory.

• Occupancy: percentage of warps that execute concurrently on each
SM relative to the maximum (i.e., 64). Theoretically, the bigger the
occupancy, the more remote accesses can be overlapped with the exe-
cution of other threads. We control the occupancy by setting arti�cial
scratchpad memory requirements in the kernel.

• Caching: remote accesses are not cached in the local cache hierarchy.
However, remote accesses to read-only data structures can be cached
in the private L1 R/O cache in the SM by using the __ldg CUDA
intrinsic.

6.2.3 Multi-GPU applications

We use two applications in order to test the performance of a GPU-based
shared memory implementation: FDTD and Image Filtering. The original
and modi�ed implementations are discussed in detail in Section 6.5.

FDTD

This implementation of the �nite di�erence method is a simpli�ed version
of the RTM computation introduced in Chapter 4. Domain decomposition

74

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

Halo FLOPs Occupancy Volume Size Grid size % Remote

2 18 75%
1283 (4, 32) 6.25%
5123 (16, 128) 0.78%
7683 (64, 512) 0.52%

4 36 62.5%
1283 (4, 32) 12.5%
5123 (16, 128) 1.56%
7683 (64, 512) 1.04%

8 72 56.2%
1283 (4, 32) 25%
5123 (16, 128) 3.12%
7683 (64, 512) 2.08%

16 144 31.2%
1283 (4, 32) 50%
5123 (16, 128) 6.25%
7683 (64, 512) 4.17%

Table 6.1: Analyzed con�gurations for the GPU-SM implementation of FDTD.

assigns a portion of the input and output data (i.e., domain) to each GPU
in the system.

Figure 6.2: Data dependences in a 4-point 3D stencil computation.

The main loop of the �nite di�erence method iterates over the steps of the
simulation. For each step, the value of each point in the output volume is
calculated by a 3D stencil computation, illustrated in Figure 6.2, that takes
as input the value at the point and its neighbors. The output volume of the
current step becomes the input for the next step. The stencil computation
for the points at the boundaries of a partition (i.e., boundary data) requires
input values from neighboring partitions (i.e., halo data). Instead of copying
these halo regions, they accessed remotely, as needed.
We run di�erent con�gurations of the FDTD computation, that are sum-
marized in Table 6.1. Di�erent volume size and halo sizes are tested. The
amount of remote memory accesses depends on the volume and halo sizes
and range from 0.52% to 50%. Using larger halo sizes increases the num-
ber of remote memory accesses, but it also increases the amount of �oating
point operations (FLOPs) performed per output point. In order to analyze
di�erent halo access patterns, we analyze computation decompositions on
dimensions X, Y and Z.

75

6.3. PERFORMANCE ANALYSIS OF THE REMOTE ACCESS MECHANISM

Figure 6.3: Data needed to compute an output pixel in a convolution.

Filter FLOPs Occupancy Image Size Grid size % Remote

3× 3 18 100%
1282 (4, 32) 81.27%
40962 (128, 1024) 80.91%
245762 (768, 3072) 80.90%

5× 5 36 75%
1282 (4, 32) 89.58%
40962 (128, 1024) 89.30%
245762 (768, 3072) 89.29%

Table 6.2: Analyzed con�gurations for the GPU-SM implementation of image �ltering.

Image �ltering

Image �ltering allows to apply di�erent e�ects that emphasize or remove
features from images. It is typically performed in the spatial domain by using
a convolution computation, or in the frequency domain by using fast Fourier
transform (i.e., FFT). We use the convolution as it is the most e�cient
method on GPUS [43]. The convolution combines a small convolution matrix
(e.g., 3× 3 or 5× 5) with each input pixel and its neighbors, by multiplying
the value of the pixel and its corresponding element of the convolution matrix
(Figure 6.3). The value of the output pixel is the sum of all the individual
products. Domain decomposition assigns a portion of the image to each GPU.
Like in the stencil kernel, the computation pattern creates a halo of data that
is required to compute the output value for the pixels in the boundaries.
Moreover, the convolution matrix is completely accessed by each GPU in the
system. The data sets and �lter sizes used in the evaluation are summarized
in Table 6.2.

6.3 Performance analysis of the remote access

mechanism

In this section we study the characteristics of remote access and how they
can impact on the performance of applications. We formulate a number of
hypotheses and we test them using the experiments explained in the previous
section.

76

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

Hypothesis 1 Remote accesses in GPUs can achieve full PCIe bandwidth.
Since PCIe is full-duplex, it can sustain the bandwidth for R/W concurrent
remote accesses or accesses of the same type from two di�erent GPUs.

System A (PCIe 2.0) System B (PCIe 3.0)

Local Remote Host Copy Spec Local Remote Host Copy Spec
0

5

10

15

20

25

30

35

Ba
nd

w
id

th
 (G

B/
s)

Read
Write
Aggregated Read+Write

Figure 6.4: Memory bandwidth achieved by remote accesses for di�erent PCIe generations.
spec is the theoretical peak.

We use a microbenchmark that only performs remote memory accesses to ob-
tain the maximum e�ective bandwidth. Two di�erent variables are explored:

1. Number of concurrent transfers: running a kernel that reads or writes
a remote memory we can obtain the e�ective peak remote memory
bandwidth. If the kernel performs both read and write accesses we
obtain the aggregated remote memory bandwidth.

2. Topology: crossing PCIe bridges to reach the destination GPU may
increase the access latency and impact on the achieved bandwidth.
local label indicates that no PCIe bridges are crossed, while remote
indicates that one PCIe bridge is crossed. host indicates that remote
data is stored in host memory.

Results in Figure 6.4 show the measured bandwidth on our two test systems.
copy bars show the measured bandwidth using cudaMemcpy instead of remote
memory accesses and spec show the maximum theoretical bandwidth o�ered
by the interconnect. A single GPU can achieve the same memory bandwidth
as bulk memory transfers by using remote memory accesses (>6GBps for
PCIe 2.0 and >12GBps for PCIe 3.0). Write accesses exhibit 8-10% lower
bandwidth than read accesses. When one GPU performs read and write
remote accesses concurrently or two di�erent GPUs concurrently perform

77

6.3. PERFORMANCE ANALYSIS OF THE REMOTE ACCESS MECHANISM

the same type of remote accesses (read or write), the measured aggregated
memory bandwidth (>10GBps for PCIe 2.0 and >18GBps for PCIe 3.0)
is higher than the peak memory bandwidth of a single GPU, although not
twice. Crossing PCIe bridges imposes a noticeable overhead, especially for
write accesses (>20% for reads, >30% for writes). Remote accesses to host
memory exhibit a similar bandwidth than accesses to a GPU connected to
the same PCIe bridge. The rest of experiments in this section are run on
System B (PCIe 3.0).

Hypothesis 2 Temporal distribution of remote memory accesses determine
their e�ect on the kernel's performance. If all remote accesses are concen-
trated in the same phase of the kernel, it is more di�cult to hide their costs
as there is no other work that can be executed.

(a) Rows (b) Columns

Figure 6.5: 2D kernel computation grids in which the 20% (blue) of the input and 10%
(purple) of the output elements of the matrices are accessed remotely. In the con�guration
on the left, the �rst rows are remote. On the right, the �rst columns are remote. Labels
indicate the x, y indices of the thread blocks within the computation grid. Arrows indicate
the order in which thread blocks are executed.

The distribution of remote accesses is determined by the chosen data decom-
position and the thread block scheduling policy. In current NVIDIA GPUs,
thread blocks are scheduled for execution linearly following their identi�er
within the computation grid, from the lowest-order to the highest-order di-
mensions.
We execute a microbenchmark that uses a 2D computation grid in which each
thread reads an element from an input matrix, performs 10 FLOPS on the

78

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

element and writes the result to an output matrix. A 20% of reads, and a 10%
of writes are remote. We use the indices in the two di�erent dimensions of
the element being accessed by a thread in order to determine which accesses
are remote, as shown in Figure 6.5. Two di�erent data decompositions are
emulated: (1) rows of the matrix are remote (Figure 6.5a), (2) columns of
the matrix are remote (Figure 6.5b).

Timeline
0

2

4

6

8

10

12

Ba
nd

w
id

th
 (G

B/
s)

Read
Write

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

IP
C

pe
r S

M

IPC

(a)
Rows

Timeline
0

2

4

6

8

10

12

Ba
nd

w
id

th
 (G

B/
s)

Read Write
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

IP
C

pe
r S

M
IPC

(b)
Columns

Figure 6.6: 2D kernel execution timeline in which the 20% of the input and 10% of the
output elements of the matrices are accessed remotely. In the con�guration on the top,
the �rst rows are remote. On the bottom, the �rst columns are remote. Lines with circles
indicate the average IPC per SM (right axis).

Figure 6.6 shows the distribution of remote accesses across the kernel execu-
tion time for the two di�erent con�gurations. When rows are remote (top),
we see that all read and write remote accesses are performed at the begin-
ning of the kernel. This is because remote accesses are concentrated in a
set of contiguous thread blocks that are executed at the same time. The
achieved bandwidth is close to the peak bandwidth of the system measured
in the previous experiment. When columns are remote (bottom), we see that
remote accesses are spread through the whole kernel execution. In this case,
thread blocks that perform remote accesses are executed concurrently with
other thread blocks that do not. Thus, the requested remote bandwidth is

79

6.3. PERFORMANCE ANALYSIS OF THE REMOTE ACCESS MECHANISM

0 20 40 60 80 100
% of remote accesses

0

5

10

15

20

Sl
ow

do
w

n
(x

)
FLOPs/datum 1
FLOPs/datum 5
FLOPs/datum 10
FLOPs/datum 20

FLOPs/datum 40
FLOPs/datum 80
FLOPs/datum 160
FLOPs/datum 320

0 5 10 15 20
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(a) Batch

0 20 40 60 80 100
% of remote accesses

0

5

10

15

20

FLOPs/datum 1
FLOPs/datum 5
FLOPs/datum 10
FLOPs/datum 20

FLOPs/datum 40
FLOPs/datum 80
FLOPs/datum 160
FLOPs/datum 320

0 5 10 15 20
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(b) Spread

Figure 6.7: Performance overhead imposed by remote accesses for di�erent computation
intensities. Figure on the left shows the overhead when all remote accesses are concentrated
in time (thread blocks are scheduled together). Figure on the right shows the overhead
when remote accesses are evenly distributed in time.

lower than the peak.
Lines with circles show the average IPC (i.e., instructions per cycle) per SM
in the kernel. They show that requesting a remote memory bandwidth close
to the peak (rows) hugely impacts on the performance of the kernel, while
lower bandwidth requirements (columns) can be sustained through kernel
execution with almost no impact on the performance.
These results con�rm our hypothesis and indicate that the thread block
scheduling policy must be taken into account when choosing the thread blocks
to perform remote memory accesses.

Hypothesis 3 Compute-bound computations su�er from less performance
degradation than memory-bound computations due to remote memory ac-
cesses.

We execute a number of GPU kernels that explore the following variables: (1)
Amount of remote memory accesses relative to the total of memory accesses.
(2) Amount of computations performed per input datum to encompass from
completely compute-bound to memory-bound computation patterns. (3) Re-
mote memory access distribution: batch or spread.
Figure 6.7 shows the overhead su�ered by each of the GPU kernel con�g-
urations due to remote memory accesses. The overhead increases with the
number of remote memory accesses (up to 7x slowdown), as expected. Com-

80

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

0 20 40 60 80 100
% of remote accesses

0

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(m

s)

Occupancy 12 %
Occupancy 25 %
Occupancy 50 %

Occupancy 75 %
Occupancy 100 %

(a) Batch

0 20 40 60 80 100
% of remote accesses

0

2

4

6

8

10

Occupancy 12 %
Occupancy 25 %
Occupancy 50 %

Occupancy 75 %
Occupancy 100 %

(b) Spread

Figure 6.8: Execution time for di�erent remote accesses and SM occupancies. Figure on
the left shows the execution time when all remote accesses are concentrated in time (thread
blocks are scheduled together). Figure on the right shows the execution time when remote
accesses are evenly distributed in time.

pute-bound computations (large FLOPS/datum values) are less a�ected than
memory-bound computations. The distribution of remote memory accesses
is key in order to hide their overhead. batch con�guration (Figure 6.7a)
shows a degradation of the performance that grows linearly with the amount
of remote memory accesses. On the other hand, spread con�guration (Fig-
ure 6.7b) shows in the zoomed section that values up to 10% of remote
memory accesses result in less than 10% overhead for all computation inten-
sities (including completely memory-bound computations). The overhead
increases to 45% for the con�guration with 20% of remote accesses and, for
greater values, the overhead increases linearly, showing that the cost of re-
mote accesses cannot be hidden any longer.
We can conclude that current GPUs and interconnects are able to hide the
costs of 10% of remote accesses almost completely. Future interconnects such
as NVLink will likely increase this number.

Hypothesis 4 The GPU execution model helps hiding the costs of remote
memory accesses by executing work from other warps.

While Figure 6.7b already shows that the GPU execution model can hide
the costs of a certain amount of remote memory accesses, we perform a
more detailed analysis. Results in that �gure assume maximum thread block
concurrency (i.e., occupancy) in the SM. However, the amount of thread
blocks that can be concurrently executed on an SM is limited by the amount

81

6.3. PERFORMANCE ANALYSIS OF THE REMOTE ACCESS MECHANISM

of resources used by each thread block. Many algorithms ported to GPU
cannot reach the maximum occupancy, although most of them keep it high
enough to be able to hide memory latency [85, 74].
We run the same GPU kernels used in the previous experiments, but we
arti�cially modify the amount of scratchpad memory used per thread block,
thus lowering the occupancy in the SMs. Results in Figure 6.8 show the exe-
cution time of the GPU kernel con�guration that performs 10FLOPs/datum
for a di�erent amount of remote memory accesses, and di�erent SM occu-
pancies and remote memory access distributions. Figure 6.8a (using batch
distribution) shows that the execution time of the kernels increases linearly,
and no occupancy is able to hide the costs of remote memory accesses. Fig-
ure 6.8b (using spread distribution) shows that occupancies starting at 25%
are able to hide the costs of remote accesses and the execution time is lower
than the batch distribution even for an 80% of remote memory accesses, thus
con�rming our hypothesis.

Hypothesis 5 The overhead of remote accesses to small read/only data
structures can be minimized using caching.

64 1024 4096 65536
Data size (bytes)

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(m

s)

54
7.

45
54

7.
45

54
7.

45
54

7.
44

54
7.

45

Occupancy 12 %
Occupancy 25 %
Occupancy 50 %
Occupancy 75 %
Occupancy 100 %

(a) Non-cached

64 1024 4096 65536
Data size (bytes)

0
1
2
3
4
5
6
7
8
9

Ex
ec

ut
io

n
tim

e
(m

s)

Occupancy 12 %
Occupancy 25 %
Occupancy 50 %
Occupancy 75 %
Occupancy 100 %

(b) Cached

Figure 6.9: Execution time for di�erent sizes of the remotely accessed read-only data struc-
ture and di�erent occupancies. Results for non-cached (left) and cached (right) accesses
to the data structure. Note the di�erent Y scales.

In the previous experiments, each thread reads di�erent elements from either
the remote or local allocations. However, oftentimes, all threads access the
same elements of input data structures. For example, in the matrix-vector
multiplication, every thread (or warp, depending on the implementation)
accesses the whole input vector to compute the output element. Another
example is the 2D convolution, in which each thread accesses all the elements

82

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

in the small convolution matrix and combines them with the input point and
its neighbors to compute the output point.
We run again the microbenchmarks for the con�guration in which 100% of
input data accesses are remote and the code performs 10FLOPS/datum. But
this time we limit the size of the input data size so that there are elements
that are read by several threads. Since the size of the computation grid is
constant across kernel con�gurations, the smaller the input data structure,
the more threads read each of its elements. Figure 6.9 shows the execution
time of the benchmarks for di�erent SM occupancies. Results show that when
caching is not enabled, remote accesses to a small data structure impose a
huge overhead and high occupancy values do not help hiding the latency.
Interestingly, the smaller the data structure, the higher the overhead.
In conclusion, caching is e�ective for really small data structures as perfor-
mance starts to degrade when the whole structure does not �t in the cache
(the size of the R/O cache is 48KB). The 64-byte con�guration is also slower
because it is smaller than the cache line size (required to achieve full band-
width).

6.4 GPU-SM: towards shared memory multi-

GPU programming

(a) Distributed memory model

(b) Shared memory model (GPU-SM)

Figure 6.10: Multi-GPU system models. Solid lines indicate access through load/store
instructions; dashed lines represent bulk DMA transfers.

Given the results obtained in the previous section, we propose a set program-

83

6.4. GPU-SM: TOWARDS SHARED MEMORY MULTI-GPU PROGRAMMING

ming practices to program multi-GPU systems as a shared memory machine.

6.4.1 Distributed memory vs shared memory

The current approach to multi-GPU programming is to use GPUs as nodes
of a distributed system (Figure 6.10a). For example, in order to parallelize a
kernel, programmers decompose computation and data and distribute them
across GPUs. Data shared among di�erent computation partitions is repli-
cated, and outputs need to be gathered and, if they overlap, they need to be
merged. In computations with data dependencies across computation parti-
tions, data generated in one GPU might need to be explicitly transferred to
other GPU memories before next kernels can proceed. These copies perform
bulk DMA transfers across the interconnect. However, these communications
can introduce a large overhead, and techniques to overlap computation with
communication are commonly used, at the cost of increased code complexity.
We propose changing the perspective of how a multi-GPU system is pro-
grammed by looking at the GPUs and their memories as if they were a
shared memory NUMA system (Figure 6.10b), which we call GPU-SM. Any
GPU can access all the memories using regular load/store operations, thanks
to the UVAS and remote memory access capabilities introduced in Chapter 2.
Thus, programmers can freely allocate data in any of the memories. Never-
theless, the overhead imposed by remote memory accesses can be large, and
data should be placed in such a way that they are minimized.

6.4.2 Writing code for GPU-SM

When a GPU kernel is launched, a grid of thread blocks is instantiated and
a hardware scheduler distributes them for execution among the SMs in the
GPU. Since GPUs can now access all memories in the system, executing a
GPU kernel across all the GPUs in the system could be as simple as ag-
gregating all their SMs and memories. Thus, the scheduler would just need
to distribute the thread blocks among a larger amount of SMs. However,
while a GPU can contain several SMs, it is exposed as a single compute unit,
and current schedulers cannot issue thread blocks to di�erent GPUs. Hence,
programmers have to decompose the computation grid into partitions and
launch each partition on a di�erent GPU.
The computation grid is a multidimensional space of thread blocks of up to 3
dimensions (gridx×gridy×gridz). Programmers can decompose the grid on
any of their dimensions (or a combination of them). The dimensions being
decomposed determine how data structures must be partitioned and dis-
tributed. This is because programmers usually apply a�ne transformations

84

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

to the block and thread indices to compute the indices that are used to access
data structures. As a result, threads that belong to blocks with contiguous
identi�ers in one dimension tend to access elements that are contiguous in
the same or a di�erent dimension of the referenced data structure.
We now discuss important trade-o�s when using GPU-SM.

Computation decomposition and its impact on the remote memory
access pattern

When thread blocks access mostly non-overlapping regions of a data struc-
ture, the data structure can be decomposed in such a way that a data parti-
tion is predominantly accessed by a single partition of the computation grid.
If there is overlap between accessed data regions, the chosen dimensions for
the computation grid decomposition determine the pattern of the remote
memory accesses. This is caused by the thread block scheduling policy in
the GPU. For example, consider a 2D stencil computation example, that cre-
ates a 2D computation grid in which each thread uses its linear indices in X
and Y dimensions to access the matrix, reading an input element and the k
neighboring elements in the X and Y dimensions. This computation pattern
creates a halo of elements that are needed by the threads in the edges of the
thread block. Thus, neigboring thread blocks access the elements in this halo
of points and, therefore, the thread blocks in the boundaries of the computa-
tion partitions will need to access data that is located in a di�erent memory.
Depending on the dimension being decomposed, accesses to this data arrive
with di�erent distributions. When the X dimension is decomposed, some
columns of the input matrix are accessed remotely. Therefore, accesses will
be performed by thread blocks that are evenly distributed in the kernel exe-
cution time. On the other hand, when the Y dimension is decomposed, some
rows of the input matrix are accessed remotely, which creates a single big
batch of remote access and is more likely to harm the performance of the
kernel. As we have seen in Section 6.3, decomposing the X dimension would
be better in this case.
A better approach would let programmers choose between di�erent schedul-
ing policies so that implementing di�erent computation and data decompo-
sitions would not be required. We expect that future GPUs will o�er the
possibility to tune some of their internal mechanisms, such as scheduling, to
allow experts to better exploit the capabilities of the hardware.

85

6.4. GPU-SM: TOWARDS SHARED MEMORY MULTI-GPU PROGRAMMING

Replication versus caching

Another common memory access pattern is produced when every thread in
the kernel traverses a whole input data structure. The distributed approach
would use replication to eliminate the need for remote accesse at all, at the
cost of increased host code complexity. But, as we have seen, small input
data structures can be e�ciently cached using the __ldg intrinsic. Therefore,
replication can be avoided in kernels in which input data structures �t in the
L1 R/O cache (48KB in Kepler GPUs). If other data structures in the
kernel might also bene�t from __ldg, we should carefully choose which ones
are cached.

Output data structures

Replicating output data structures implies that copies need to be merged
after kernel execution in order to have a consistent version in all GPUs. This
step imposes an overhead that, in most the cases, is larger than the costs of
using remote updates. Moreover, replication limits the size of the problem
that can be handled. Furthermore, code complexity greatly increases in
order to implement merging e�ciently. Fortunately, GPUs perform better
with gather memory access patterns [85], which minimize the number of write
operations to the GPU memory. Therefore, replication of output data should
only be used if remote writes limit kernel's performance.

Memory fences

GPUs implement several memory fence instructions that work with di�erent
granularities: block-level, GPU-level, and system-level. In the �rst case, the
calling thread waits until all its writes to memory are visible to all threads
in the thread block. The other two extend the visibility of the writes to
the threads of all the thread blocks in the GPU and the system (all GPUs),
respectively. GPU-level and system-level fences are provided to enable syn-
chronization across thread blocks in a kernel or across kernels launched on
di�erent GPUs. In the typical distributed system model, a GPU only ac-
cesses data stored in its memory. In the shared memory model, computa-
tions decomposed to be executed across several GPUs may access data stored
remotely. Thus, if the kernel uses GPU-level memory fences, they need to
be upgraded to system-level memory fences since all the kernel partitions
executed on each GPU may work on the same data.

86

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

6.4.3 Current limitations

Virtual memory

CPU-based shared memory systems use VM mechanisms such as page-fault
handling to transparently detect the processors that request data. Thus,
allocation [29, 30], replication [38] and migration [72] policies can be trans-
parently implemented to minimize the amount of remote memory accesses.
Unfortunately, GPUs do not implement such VM mechanisms yet and pro-
grammers perform data placement manually. However, vendors have an-
nounced true VM capabilities such as page-fault for future GPUs, which will
allow for automatic memory placement policies.
The CUDA API does not provide the functionality to allow programmers
manage the virtual addresses in the UVAS. This feature would enable trans-
parent mapping of contiguous pages to alternate physical memories which,
in turn, would make data distribution completely transparent to the kernel
code1. Currently, di�erent allocations must be used to distribute data across
di�erent GPU memories, and the code must be aware of the di�erent allo-
cations and choose the appropriate pointer. Nevertheless, we consider that
this limitation in the API will be �xed in the future.

Atomics

GPUs support atomic operations, which are implemented in the L2 cache.
Since regular accesses to remote data cannot be cached, data resides in the
GPU cache hierarchy whose physical memory contains the accessed data,
only. This limitation simpli�es the support of atomic instructions across
GPUs as they only need to be forwarded to the GPU that owns the data.
PCIe 3.0 does support atomic operations but current NVIDIA GPUs do not
forward atomic operations to remote GPUs. Thus, we cannot port kernels
that use atomic operations to the GPU-SM model using current GPUs.

6.5 Implementation and performance evalua-

tion of GPU-SM applications

In order to evaluate the performance, we have ported two applications from
its original distributed model implementation to GPU-SM.

1Using page granularity for data decomposition can also introduce unnecessary remote
accesses. This problem is disussed in more detail in Chapter 7.

87

6.5. IMPLEMENTATION AND PERFORMANCE EVALUATION OF GPU-SM
APPLICATIONS

(a) Distributed memory (b) GPU-SM

Figure 6.11: Inter-domain data dependences for FDTD.

6.5.1 FDTD

The �rst application is a simpli�ed version of the guiding example of this
thesis, RTM, which is described in Section 6.2.3. We discuss the di�erences
between the distributed and shared memory implementations.

Distributed memory implementation

In this implementation, the halo data that is shared between domains is repli-
cated in each of the GPU memories (Figure 6.11a). This implies that GPUs
exchange data between simulation steps and, therefore, exchange e�ciency
is critical to the scalability of such applications.
The GPU kernel uses a 2D computation grid that is mapped on the front XY
plane of the volume. Each thread iterates through all the planes, computing
a single output element for each plane. The implementation used in our tests
is based on [68], which uses register tiling in the Z dimension of the array,
and shared memory to reuse the elements read by neighboring threads in
the X and Y dimensions. Due to the length of the optimized version of the
kernel, we show a simpli�ed version in Listing 6.1. The same GPU kernel
can be used in both single- and multi- GPU versions, as each computation
partition accesses data stored in its own GPU memory.
Listing 6.2 shows an optimized version of the host code that decomposes
the simulated domain on its X dimension. It is much more complex than
the single-GPU version and it heavily relies on CUDA abstractions such as
streams and events in order to overlap computation and data transfers. Each
iteration of the simulation is divided in three main phases.

1. Compute boundaries (lines 16�33): a kernel is launched to compute the
points in the boundaries, so that they can be communicated as soon
as possible. Kernels are queued into di�erent streams so they can be
concurrently executed on the GPU.

88

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

2. Compute center (lines 35�41): a kernel is launched on a third stream
to compute the rest of the points in the subdomain.

3. Exchange boundaries (lines 43�58): then, memory transfers are queued
in the two �rst streams in order that they start as soon as the kernels
that compute the points �nish.

These steps are repeated for each GPU in the system. Each operation is
tracked using an event. Event barriers are also pushed to streams before
each of the listed steps thus preventing operations of the current time step to
start before the operations launched in the previous time step have consumed
or produced the required data.

GPU-SM implementation

Using GPU-SM, halo data does not need to be replicated in GPU memories
and it is accessed through remote accesses (Figure 6.11b). Since CUDA cur-
rently does not allow us to transparently distribute the volumes by mapping
pages on alternate GPUs, we use one allocation per GPU and the kernel is
modi�ed to be aware of the di�erent allocations. Thus, threads that compute
the elements in the boundaries use the pointers to the remote allocations
(lines 13 and 26 in Listing 6.3). Without this restriction the kernel code
would be the same as in Listing 6.1. On the other hand, the host code is
much simpler than the distributed version since there are no data transfers, a
single kernel launch computes the whole domain (lines 27�30 in Listing 6.4),
and only one stream per GPU is used.

Performance analysis

Figure 6.12 shows the speedup achieved by running the di�erent implemen-
tations of the FDTD benchmark on 4 GPUs, compared to the original imple-
mentation on a single GPU. In the con�guration with the smallest volume,
the Z decomposition is the best one for both distributed and GPU-SM im-
plementations. This is because the computation grid is very small (32 × 4)
and it is further reduced (32 blocks per GPU) when the computation is de-
composed on the X or Y dimensions, which leads to the underutilization
of the SMs. When decomposed on the Z dimension, threads iterate over a
smaller number of planes, but the computation grid it is not decomposed,
and more thread blocks can run on each GPU concurrently. Bigger vol-
ume sizes produce higher speedups for all the con�gurations due to a larger
number of thread blocks and a lower relative amount of remote accesses. Z

89

6.5. IMPLEMENTATION AND PERFORMANCE EVALUATION OF GPU-SM
APPLICATIONS

Halo size

128 x 128 x 128

Halo size

512 x 512 x 512

Halo size

768 x 768 x 768

2 4 8 16 2 4 8 16 2 4 8 16

Volume size (X x Y x Z)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

(x
)

Decompositions
X Distributed
X GPU-SM

Y Distributed
Y GPU-SM

Z Distributed
Z GPU-SM

Figure 6.12: FDTD: speedups of the multi-GPU implementations for 4 GPUs compared to
the original implementation on a single GPU. Results for di�erent halo sizes and volume
sizes.

remains as the best decomposition for GPU-SM implementations, and pro-
vides > 3.60× speedups for the 512× 512× 512 volume and > 3.80× for the
768× 768× 768. Compared to the distributed implementation, the overhead
due to remote accesses is always lower than 8% for the two bigger volumes.
Figure 6.13 shows the execution timelines of the benchmark con�guration
with 768× 768× 768 volume size, 16 halo size, for the X, Y and Z decompo-
sitions. The timelines show the remote memory access throughput and the
average IPC per SM of the kernel for both the distributed and the GPU-SM
versions. Results in Figure 6.12 indicate that the best decomposition for this
con�guration is Z, followed by X and Y. Note that the X and Z decomposi-
tions exhibit higher IPC than Y even for the distributed implementation, due
to better spatial locality. The Y decomposition (rows) su�ers a sharp drop in
IPC due to the high remote access throughput (up to 8GBps) of the thread
blocks that execute at the beginning and the end of the kernel. The rate
of remote accesses is constant across the execution of the X decomposition,
while the Z decomposition shows a jagged pattern. The IPC of X degrades
over time (because thread blocks performing remote accesses accumulate),
while in Z all thread blocks perform remote accesses but only for a small
period of time (the few �rst/last planes in the domain) that can be hidden
with the execution of other thread blocks.

90

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

Timeline
0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

Read

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

IP
C

pe
r S

M

IPC Distributed
IPC GPU-SM

(a) X (columns)

Timeline
0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

Read

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

IP
C

pe
r S

M

IPC Distributed
IPC GPU-SM

(b) Y (rows)

Timeline
0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

Read

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

IP
C

pe
r S

M

IPC Distributed
IPC GPU-SM

(c) Z (planes)

Figure 6.13: FDTD: execution timeline for di�erent decompostion con�gurations. Line
with crosses indicate the achieved remote bandwidth. Lines with circles indicate the
average IPC per SM.

6.5.2 Image �ltering

The second evaluated application is Image Filtering, as described in Sec-
tion 6.2.3.

Distributed memory implementation

The traditional implementation of convolution for multiple GPUs replicates
the halos of the partitions of the input image in each GPU. The convolution
matrix is replicated in all GPU memories. The output image does not require
replication because computation partitions write in non-overlapping regions.

GPU-SM implementation

In GPU-SM, thanks to shared memory, halo data for the input image parti-
tions can be remotely accessed. With respect to the convolution matrix, it
cannot be decomposed because it is fully accessed by every thread in each
computation partition. We study two possibilities: (1) replicating it like in
the distributed implementation, (2) storing it in a single GPU or in host
memory and use caching, as it is small enough to �t in the L1 R/O cache.

91

6.5. IMPLEMENTATION AND PERFORMANCE EVALUATION OF GPU-SM
APPLICATIONS

128 x 128 4096 x 4096 24576 x 24576
Remote

GPU Remote

host Replic.
Remote

GPU Remote

host Replic.
Remote

GPU Remote

host Replic.

Image size (X x Y)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

(x
)

Decompositions
X
Y
XY

(a) 3× 3 convolution

128 x 128 4096 x 4096 24576 x 24576
Remote

GPU Remote

host Replic.
Remote

GPU Remote

host Replic.
Remote

GPU Remote

host Replic.

Image size (X x Y)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 Decompositions

X
Y
XY

(b) 5× 5 convolution

Figure 6.14: Image �ltering: speedups of the multi-GPU GPU-SM implementation for 4
GPUs compared to the original implementation on a single GPU. Results provided for
di�erent convolution matrix sizes and locations, and image sizes.

Performance analysis

Figure 6.14 shows the speedup achieved by running the GPU-SM implemen-
tation of the convolution kernel on 4 GPUs. Like in the FDTD benchmark,
the smallest input data set is too small to bene�t from multi-GPU execution.
The bars show the results for the con�gurations that use the L1 R/O cache.
Not using this cache introduced up to 1000× slowdowns when accessed re-
motely as each thread performs reads every element in the matrix (9 or 25 in
our benchmarks), and each access triggers a remote memory access. Further,
using the R/O cache is also a 35% faster than the regular cache hierarchy
when the convolution matrix is replicated. Results for the medium-size image
indicate that there is around a 10% performance loss when not using repli-
cation and resorting to caching to access the convolution matrix for both the
3×3 and 5×5 convolution matrix sizes (storing it in host memory instead of
a GPU memory improves the results by 2%). This is because all the thread
blocks in all SMs (> 100) are stalled at the beginning of the kernel until each
of the SMs brings the matrix to its L1 R/O cache and, therefore, this cost
cannot be hidden. Having a L2 shared R/O cache would help minimizing the
performance overhead as only the �rst SM would need to bring the matrix
and the rest of SMs could access cached data. For larger matrix sizes these
initial costs are negligible and we then achieve linear speedups.

92

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

1 template <typename T, unsigned Halo>

2 __global__ void

3 stencil(T* out, const T* in,

4 unsigned cols, unsigned rows, unsigned planes)

5 {

6 int k = threadIdx.x + blockIdx.x * blockDim.x + Halo;

7 int j = threadIdx.y + blockIdx.y * blockDim.y + Halo;

8

9 if ((k < Halo + cols) && j < (Halo + rows)) {

10 for (int p = Halo; p < planes + Halo; ++p) {

11 T c = IN(k, j, p);

12 for (int s = 1; s <= Halo; ++s) {

13 T left = in[IDX_3D(k-s, j, p)];

14 T right = in[IDX_3D(k+s, j, p)];

15 T top = in[IDX_3D(k, j-s, p)];

16 T bottom = in[IDX_3D(k, j+s, p)];

17 T back = in[IDX_3D(k, j, p-s)];

18 T front = in[IDX_3D(k, j, p+s)];

19

20 c += 3.f * (left + right) +

21 2.f * (top + bottom) +

22 1.f * (back + front);

23 }

24 out[IDX_3D(k, j, p)] = c;

25 }

26 }

27 }

Listing 6.1: FDTD: distributed implementation (simpli�ed version of the kernel).

6.6 Summary

In this chapter we have shown that the remote memory access mechanism en-
ables easier multi-GPU programming. While PCIe o�ers limited bandwidth
compared to GPU memories, GPU's ability to hide long latency accesses al-
lows it to tolerate a moderate amount of remote accesses. More precisely,
GPUs are able to hide the costs of a 10% of remote memory accesses if
the kernels produce high GPU core occupancy and the accesses are spread
through the whole kernel execution. We have also shown that shared mem-
ory implementations of FDTD and image �ltering computations deliver a
performance comparable to their highly-optimized distributed counterparts,
while being simpler and much more concise. Future interconnects promise
higher bandwidths that will open the GPU-SM model to a broader range of
applications.
This work has also identi�ed hardware improvements that may have the
potential to hide the costs of remote accesses.

• Increasing the number of in-�ight warps per GPU core would allow to
tolerate a higher number of remote accesses.

• Giving controls to programmers to change the thread block scheduling

93

6.6. SUMMARY

1 struct work_descriptor {

2 float *in, *out;

3 cudaStream_t stream[NUM_STREAMS];

4 cudaEvent_t events_A[NUM_EVENTS];

5 cudaEvent_t events_B[NUM_EVENTS];

6 cudaEvent_t *events_prev = events_A;

7 cudaEvent_t *events_cur = events_B;

8 bool has_left_neigh;

9 bool has_right_neigh;

10 unsigned planes;

11 };

12 void do_rtm(work_descriptor wd[NUM_GPUS])

13 {

14 for (int t = 0; t < TIME_STEPS; ++t) {

15 for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {

16 // 1a. Compute right boundary

17 if (wd[gpu].has_left_neigh)

18 cudaStreamWaitEvent(wd[gpu].stream[EXEC_R], wd[gpu-1].events_prev[COMM_R]);

19

20 cudaStreamWaitEvent(wd[gpu].stream[EXEC_R], wd[gpu].events_prev[EXEC_M]);

21 launch_stencil(wd[gpu].in, wd[gpu].out,

22 halo + wd[gpu].planes - 2 * halo, halo * 3, // offset, size

23 wd[gpu].stream[EXEC_R]);

24 cudaEventRecord(wd[gpu].events_cur[EXEC_R], wd[gpu].stream[EXEC_R]);

25 // 1b. Compute left boundary

26 if (wd[gpu].has_right_neigh)

27 cudaStreamWaitEvent(wd[gpu].stream[EXEC_L], wd[gpu+1].events_prev[COMM_L]);

28

29 cudaStreamWaitEvent(wd[gpu].stream[EXEC_L], wd[gpu].events_prev[EXEC_M]);

30 launch_stencil(wd[gpu].in, wd[gpu].out,

31 0, halo * 3, // offset, size

32 wd[gpu].stream[EXEC_L]);

33 cudaEventRecord(wd[gpu].events_cur[EXEC_L], wd[gpu].stream[EXEC_L]);

34

35 // 2. Compute center

36 cudaStreamWaitEvent(wd[gpu].stream[EXEC_M], wd[gpu].events_prev[EXEC_L]);

37 cudaStreamWaitEvent(wd[gpu].stream[EXEC_M], wd[gpu].events_prev[EXEC_R]);

38 launch_stencil(wd[gpu].in, wd[gpu].out,

39 halo, wd[gpu].planes, // offset, size

40 wd[gpu].stream[EXEC_M]);

41 cudaEventRecord(wd[gpu].events_cur[EXEC_M], wd[gpu].stream[EXEC_M]);

42

43 // 3a. Exchange right boundary

44 if (wd[gpu].has_right_neigh) {

45 cudaStreamWaitEvent(wd[gpu].stream[COMM_R], wd[gpu].events_cur[EXEC_R]);

46 copyAsync(wd[gpu+1].out, wd[gpu].out,

47 halo + wd[gpu].planes - halo, halo, // offset, size

48 wd[gpu].stream[COMM_R]);

49 cudaEventRecord(wd[gpu].events_cur[COMM_R], wd[gpu].stream[COMM_R]);

50 }

51 // 3b. Exchange left boundary

52 if (wd[gpu].has_left_neigh) {

53 cudaStreamWaitEvent(wd[gpu].stream[COMM_L], wd[gpu].events_cur[EXEC_L]);

54 copyAsync(wd[gpu-1].out, wd[gpu].out,

55 halo, halo, // offset, size

56 wd[gpu].stream[COMM_L]);

57 cudaEventRecord(wd[gpu].events_cur[COMM_L], wd[gpu].stream[COMM_L]);

58 }

59 }

60 for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {

61 swap(wd[gpu].in, wd[gpu].out);

62 swap(wd[gpu].events_prev, wd[gpu].events_cur);

63 }

64 }

65 }

Listing 6.2: FDTD: distributed implementation (host).
94

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

1 template <typename T, unsigned Halo>

2 __global__ void

3 stencil(T* out, const T* in, const T* in_left, const T* in_right,

4 unsigned cols, unsigned rows, unsigned planes)

5 {

6 int k = threadIdx.x + blockIdx.x * blockDim.x + Halo;

7 int j = threadIdx.y + blockIdx.y * blockDim.y + Halo;

8

9 if (k < cols && j < rows) {

10 for (int p = Halo; p < planes + Halo; ++p) {

11 T c = in[IDX_3D(k, j, p)];

12 for (int s = 1; s <= Halo; ++s) {

13 T left = (in_left && k-s < 0)? in_left[IDX_3D(cols + (k-s), j, p)]:

14 in[IDX_3D(k-s, j, p)];

15

16 T right = (in_right && k+s >= cols)? in_right[IDX_3D((k+s) - cols, j, p)]:

17 in[IDX_3D(k+s, j, p)];

18

19 T top = in[IDX_3D(k, j-s, p)];

20 T bottom = in[IDX_3D(k, j+s, p)];

21 T back = in[IDX_3D(k, j, p-s)];

22 T front = in[IDX_3D(k, j, p+s)];

23

24 c += 3.f * (left + right) +

25 2.f * (top + bottom) +

26 1.f * (back + front);

27 }

28 out[IDX_3D(k, j, p)] = c;

29 }

30 }

31 }

Listing 6.3: FDTD: GPU-SM implementation (simpli�ed version of the kernel).

95

6.6. SUMMARY

1 struct work_descriptor {

2 float *in, *out;

3 cudaStream_t stream;

4 cudaEvent_t event_prev;

5 bool has_left_neigh;

6 bool has_right_neigh;

7 unsigned planes;

8 };

9

10

11

12 void do_rtm(work_descriptor wd[NUM_GPUS])

13 {

14 for (int t = 0; t < TIME_STEPS; ++t) {

15 for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {

16 float *in_left = nullptr;

17 float *in_right = nullptr;

18 if (wd[gpu].has_left_neigh) {

19 in_left = wd[gpu-1].in;

20 cudaStreamWaitEvent(wd[gpu].stream, wd[gpu-1].event_prev);

21 }

22 if (wd[gpu].has_right_neigh) {

23 in_right = wd[gpu+1].in;

24 cudaStreamWaitEvent(wd[gpu].stream, wd[gpu+1].event_prev);

25 }

26 cudaStreamWaitEvent(wd[gpu].stream, wd[gpu].event_prev);

27 launch_stencil(wd[gpu].in, in_left, in_right, wd[gpu].out,

28 wd[gpu].has_left_neigh ? 0 : halo, // offset

29 wd[gpu].planes + (wd[gpu].has_right_neigh ? 0 : halo), // size

30 wd[gpu].stream);

31 }

32

33 for (int gpu = 0; gpu < NUM_GPUS; gpu++) {

34 cudaEventRecord(wd[gpu].event_prev, wd[gpu].stream);

35 swap(wd[gpu].in, wd[gpu].out);

36 }

37 }

38 }

Listing 6.4: FDTD: GPU-SM implementation (host).

96

CHAPTER 6. SHARED MEMORY GPU PROGRAMMING

policy, would allow them to distribute remote accesses along the whole
kernel execution, without the need to change the code of the application
(i.e., data and computation distribution).

• Adding a L2 read-only cache would allow a GPU core to reuse data
structures (especially small ones) that have been cached by a di�erent
GPU core.

97

Chapter 7

Automatic Multi-GPU

Execution

In the previous chapter we show that remote access is a viable mechanism
to implement shared memory programming on GPUs. However, the costs
of only a limited amount of remote memory accesses can be hidden by the
GPU architecture and execution model. Therefore, programmers are still in
charge to carefully distribute data structures so that the performance is not
a�ected. They also need to decide when to use replication.
In this chapter we present AMGE: an auto-parallelization programming
framework for multi-GPU systems that relieves programmers from these du-
ties.

7.1 AMGE overview

AMGE (Automatic Multi-GPU Execution) is a programming framework that
decomposes and distributes GPU kernels and data to be collaboratively ex-
ecuted on all the GPUs in the system. We implement AMGE using C++
and CUDA, but it can be extended to other languages. Figure 7.1 shows
the components in AMGE and how they interact with the hardware. AMGE
aggregates the GPU resources in the system and presents them as a single
virtual GPU. Thus, programmers are relieved from the burden of decompos-
ing the problem and explicitly managing several GPUs.
The AMGE compiler is a source-to-source compiler, that analyzes the CUDA
kernels in the program to detect their array access patterns and store this
information in the program executable. It also generates optimized kernel
versions for the possible array decompositions. We argue that the utiliza-

99

7.1. AMGE OVERVIEW

Figure 7.1: Overview of AMGE components. The compiler extracts array access pattern
information and stores it in the program binary. The runtime system uses this information
to decompose and distribute computation and data across the GPUs in the system. In
this example, the system is composed of a single CPU and 4 GPUs, connected through a
PCIe interconnect.

tion of the array dimensionality information is paramount in order to e�-
ciently exploit multi-GPU systems. However, CUDA is an extension of the
C/C++ languages, which do not provide data types with such information;
programmers typically �atten the multi-dimensional arrays into 1D arrays
and linearize the dimension indices in each array reference. It is practically
di�cult, if not infeasible, for static analysis to reliably recover the dimen-
sionality information once the accesses have been �attened. AMGE provides
a new data type for multi-dimensional arrays that makes this information
available to the compiler. Details on the implementation of the data type
and the generation of optimized kernel versions are discussed in Section 7.3.
The other key feature of AMGE is the utilization of remote memory accesses
between GPUs [5]. On each reference to the array, the underlying imple-
mentation determines whether the element being referenced is hosted in the
memory local to the GPU executing the code or on a di�erent GPU. Refer-
ences from a GPU to parts of the array stored in di�erent GPU memories are
handled using remote memory accesses. This approach ensures correctness
regardless of the chosen GPU computation and data distribution con�gura-
tion and removes the requirement for the compiler analysis to unequivocally
determine the bounds of the memory range accessed by a computation par-
tition.
However, remote accesses can impose performance overheads and they must
be minimized. On each kernel call, the AMGE runtime determines the best
computation and array decompositions using the information generated by
the compiler, and distributes them across all GPUs in the system.

100

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

1 void sgemm(ndarray<float, 2, storage::cmo> C, ndarray<float, 2, storage::cmo> A,

2 ndarray<float, 2> B)

3 {

4 float partial[SGEMM_TILE_N];

5 __shared__ float b_tile_sh[SGEMM_TILE_HEIGHT][SGEMM_TILE_N];

6 for (int i = 0; i < SGEMM_TILE_N; i++) partial[i] = 0.0f;

7

8 int mid = threadIdx.y * blockDim.x + threadIdx.x;

9 int row = blockIdx.x * (SGEMM_TILE_N * SGEMM_TILE_HEIGHT) + mid;

10 int col = blockIdx.y * SGEMM_TILE_N + threadIdx.x;

11

12 for (int i = 0; i < A.get_dim(1); i += SGEMM_TILE_HEIGHT) {

13 b_tile_sh[threadIdx.y][threadIdx.x] = B(i + threadIdx.y, col);

14 __syncthreads();

15 for (int j = 0; j < SGEMM_TILE_HEIGHT; ++j) {

16 float a = A(row, i + j);

17 for (int k = 0; k < SGEMM_TILE_N; ++k)

18 partial[k] += a * b_tile_sh[j][k];

19 }

20 __syncthreads();

21 }

22 for (int i = 0; i < SGEMM_TILE_N; i++)

23 C(row, i + by * SGEMM_TILE_N) = partial[i];

24 }

Listing 7.1: Multi-GPU sgemm GPU code with AMGE.

Memory model

Arrays are transparently decomposed and/or replicated before each kernel
call. Input arrays can be replicated at the cost of additional space and
data transfers, but AMGE never replicates output arrays. Replicated output
arrays requires additional coherence management to merge partial modi�ca-
tions on di�erent GPUs. Previous works [57, 61] have to transfer all copies
to the host memory for a merging step after every kernel call, imposing a
large performance overhead in many workloads. Moreover, replicating output
arrays prevents distributing codes with atomics or memory fences. AMGE
always distributes output arrays across GPU memories instead, and relies on
remote memory accesses to guarantee that they are available to all GPUs.
AMGE implements the ADSM model [45] to allow arrays to be used both by
host and GPU code. The runtime only transfers arrays between CPU and
GPU memories when needed.

7.1.1 An example: matrix multiplication

Code programmed to run on a single GPU requires only minor modi�cations
to use AMGE. Listing 7.1 shows the GPU code of a single-precision �oat-
ing point matrix-matrix multiplication computation [44] (i.e., sgemm) using
AMGE. A and C matrices are stored in column major order, and B in row
major order, for optimal performance. The highlighted text shows the mod-

101

7.2. COMPUTATION AND DATA DISTRIBUTION

1 // Initialize A and B in the host code

2 ndarray<float, 2, storage::cmo> A;

3 ndarray<float, 2> B;

4

5 read_array("A.dat", A);

6 read_array("B.dat", B);

7

8 ndarray<float, 2, storage::cmo> C(A.get_dim(1), B.get_dim(0));

9 // Computation grid size

10 dim3 block(MATRIXMUL_TILE_N, SGEMM_TILE_HEIGHT);

11 dim3 grid(C.get_dim(1)/(SGEMM_TILE_N * SGEMM_TILE_HEIGHT),

12 C.get_dim(0)/SGEMM_TILE_N);

13 // Kernel launch. A, B and C are used in the GPU code

14 sgemm<<<grid, block>>>(C, A, B);

15 // Write results for C into a file

16 write_array("C.dat", C);

Listing 7.2: Multi-GPU sgemm host code with AMGE.

i�cations performed to the original code. The only additional programming
requirement for the kernel to be automatically decomposed is the array data
type (lines 1-2), and its associated indexing routines (lines 12, 13, 16 and
23). The data type is implemented by the ndarray<T, Dims, Storage> C++
class template, where T is the type of the elements, Dims is the number of
dimensions of the array, and Storage is an optional parameter (storage::cmo
or storage::rmo) that de�nes the storage type. By default, the C/C++ row
major order(i.e., storage::rmo) storage convention is used. The kernel uses
a 2D computation grid, in which each thread block computes a 2D tile of
C by traversing A and B on their X and Y dimensions, respectively. The
compiler detects these patterns and stores them in the program executable
(access pattern info in Figure 7.1).
Listing 7.2 shows the CPU code of the sgemm computation. First, float input
matrices A and B are declared in lines 2 and 3. The bounds of each dimension
of the array are de�ned at run-time. The AMGE runtime intercepts the
kernel call and uses the information generated by the compiler to decompose
the matrices, and distribute both computation and data across all the GPUs.
Note that ndarray objects can be passed both to CPU and GPU routines,
making explicit data transfers between host and GPU memories unnecessary.

7.2 Computation and data distribution

AMGE decomposes GPU kernels at thread block boundaries. We choose
this decomposition granularity because threads within a thread block share
resources (e.g., shared memory), and perform barrier synchronization opera-
tions. Hence, all threads within a thread block must be executed in the same
compute core of the same GPU. However, the GPU programming model

102

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

guarantees that there are no data dependences across thread blocks within a
kernel and, therefore, they can execute independently.
In CUDA, programmers specify a computation grid that is a multidimen-
sional space gridx × gridy × gridz of thread blocks, similar to the it-
eration space in loop nests. Each thread block has a unique identi�er
0 ≤ blockx, blocky, blockz < gridx, gridy, gridz within the computation grid.
The AMGE runtime decomposes the computation grid so that it can be ex-
ecuted on several GPUs. In CUDA and OpenCL, the computation grid is
canonical and rectangular. Thus, the computation grid can be uniformly
decomposed into partitions along one or several of its dimensions.
AMGE uses compiler analysis to generate array access pattern information
for all the GPU kernels in the program. This information is later used by
the runtime system to try to place on each GPU the data accessed by the
computation partition assigned to it, in order to minimize the number of
remote memory accesses.

7.2.1 Compiler analysis

The AMGE compiler analyzes all array references in the kernel. Each ref-
erence contains one index for each of the dimensions of the array, allowing
the AMGE compiler to detect the individual access pattern in each dimen-
sion. This is in contrast to previous works [57, 61] that treat all arrays
as one dimensional. Kim et al. [57] compute the upper and lower mem-
ory addresses of the tiles accessed by each computation partition to dis-
tribute the arrays. This may lead to unnecessary replication of large por-
tions of the application dataset, also imposing higher data copy costs. For
example, TB0,0 (i.e., thread block with identi�er 0, 0) in Figure 7.2a ac-
cesses a 2D tile composed of elements from two di�erent rows of a matrix:
{(0, 0) . . . (0, 3)} ∪ {(1, 0) . . . (1, 3)}. However, the linear memory address
range de�ned by the upper and lower bounds of the tile also contains ele-
ments that belong to the neighboring tiles in the X dimension of the matrix:
{(0, 0) . . . (0, 15)}∪ {(1, 0) . . . (1, 3)}. Moreover, for output arrays this gener-
ates additional data merging operations, as tiles might be wrongly classi�ed
as overlapping. For example, the tiles for TB0,0 and TB1,0 do not overlap,
but the analysis in previous works uses their linear address ranges, which
do overlap. The per-dimension access pattern information allows AMGE to
identify multi-dimensional tiles as non-overlapping entities.
We consider three classes of access patterns: (1) as a function of thread
block indices, (2) local to a thread block, and (3) data-dependent. The �rst
class, the most commonly found in GPU applications, is produced when pro-
grammers access arrays using a�ne transformations of the block and thread

103

7.2. COMPUTATION AND DATA DISTRIBUTION

(a) BLOCK (b) BLOCK-CYCLIC

Figure 7.2: Computation-to-data mapping examples. TB means thread block.

indices. As a result, threads belonging to thread blocks with contiguous iden-
ti�ers in one dimension access elements that are contiguous in a dimension
of the array. In the sgemm example (Listing 7.1), blockx is used to access Ay

(line 16) and Cy (line 23), while blocky is used to access Bx (line 13) and Cx

(line 23). We use the notation Ai to refer to the ith dimension of array A.
This linear relationship allows us to relate thread blocks with the portions
of the arrays accessed by them.
The second access pattern type is produced when array dimensions are tra-
versed through loop induction variables or local thread indexes. In the sgemm
example (Listing 7.1), threads traverse Ax using the induction variables i+ j
of the nested loops (line 16).
The third type of accesses (i.e., data-dependent) cannot be determined at
compile time since the indices are computed with values that are only known
at kernel execution time.
Only array dimensions accessed using the �rst pattern class are eligible for
decomposition, since the second class refers to access patterns local to a single
thread or thread block, and the third class cannot be determined statically.
AMGE uses a novel compiler analysis, for the dimensions that are eligible
for decomposition, that determines the thread block-to-data mappings, and
classi�es them into the most common distribution types: BLOCK, CYCLIC and
BLOCK-CYCLIC [47, 59, 28], (illustrated in Figure 7.2 for a 2D array). This
analysis tries to map the index expression used in each dimension of each
array reference to the following canonical form:

m× t×G+ t×B + k (7.1)

where:

• m: index of the non-contiguous array tile accessed by a thread block
(an induction variable or a constant).

104

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

• t: array tile size. It is a multiple of the thread block size when threads
access di�erent elements or 1 if all threads access the same element
of the array's dimension (e.g., the same row in a matrix). The actual
thread block size is extracted from the kernel launch parameters at
run-time.

• G: number of thread blocks in a dimension of the computation grid
(e.g., gridx).

• B: thread block index (e.g., blockx). Expressions not using this term
do not belong to the �rst access pattern class.

• k: thread index or a constant. This value does not determine the access
patterns across thread blocks.

We �nd that most GPU array-based computations do actually use this form
to distribute the array across thread blocks.
The most common and simple index expression is found when each thread
block accesses a single contiguous array tile (i.e., m = 0). This expression
is classi�ed as BLOCK. Another common index expression assigns non-con-
tiguous array tiles to each thread block (i.e., m > 0) using a grid-sized
stride. This expression is classi�ed as BLOCK-CYCLIC. CYCLIC is a special case
of BLOCK-CYCLIC, in which t = 1.

Information generation for the runtime

The compiler analysis generates a record with the following information for
each dimension of each array used in each GPU kernel: (1) the dimension
of the computation grid whose thread block index is used to index the array
dimension; (2) the access type (Read/Write); (3) the distribution type (BLOCK,
CYCLIC, BLOCK-CYCLIC). This information is built by combining the values
from the di�erent references to the array in the kernel: (1) the intersection
of the used computation grid dimensions; (2) the union of the access types;
(3) the intersection of the distribution types. Thus, if an array dimension
is indexed using block indices of di�erent dimensions of the computation
grid or di�erent distribution types, an empty record is generated for that
dimension. Array dimensions that are not indexed using the �rst data access
pattern class, get empty records, too. Only array dimensions with non-empty
records can be distributed.

105

7.2. COMPUTATION AND DATA DISTRIBUTION

7.2.2 Run-time distribution

On each kernel execution, the runtime identi�es all possible computation
grid decompositions. Then, it uses the compiler-provided information to
compute the distribution con�gurations for each potential computation grid
decomposition. Since the computation grid is limited to three dimensions,
there are, at most, eight potential decompositions. Finally, the runtime
ranks each distribution con�guration using an analytical model (details in
Section 7.3.3) and distributes the arrays and computation using the highest-
ranked con�guration. This process is summarized in Algorithm 1.

Algorithm 1 Runtime distribution con�guration selection
procedure ChooseDistribution(A, E, g, P)
A: arrays
E: decomposition evaluation function
g: computation grid dimensionality
P : array access pattern from compiler
Returns: computation and array distribution

dims← PartDimCombinations(g)
retc ← 0
reta ← ∅
score← −1
for conf ∈ dims do

arraysconf , scoreconf ← E(conf , A, P)
if scoreconf > score then

score← scoreconf
retc ← conf
reta ← arraysconf

end if

end for

return retc, reta
end procedure

Computation grid distribution

For a speci�c computation grid decomposition, the AMGE runtime de�nes
a grid of GPUs (gpu0 × gpu1 × . . . gpuN−1) with as many dimensions as
decomposed dimensions in the computation grid. Then, the computation
grid is decomposed into as many partitions as the number of GPUs in each
dimension of the GPU grid, and each partition is assigned to a GPU. We
refer to the mapping of the computation grid to the GPU grid as computation
distribution con�guration.

106

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

Figure 7.3: Data and computation distribution con�gurations for sgemm and transpose on
a 4-GPU system. A, B, C are the arrays used in the kernels, Pi,j is a partition of the
computation grid, Gi,j is a GPU in the GPU grid.

Array distribution

The runtime system uses the compiler-generated access pattern information
to determine how arrays must be decomposed for a speci�c computation dis-
tribution con�guration. An array is decomposed along those dimensions that
are indexed with the thread block indices of the decomposed computation
grid dimensions. This creates an m-dimensional grid of tiles, where m is the
number of decomposed dimensions in the array. Output arrays that are not
accessed with any of the thread block indexes of the decomposed computa-
tion grid dimensions, are arbitrarily decomposed along their highest-order
dimension.
The size and number of tiles depend on the computation distribution con�g-
uration. If blocki is used to index Lj, and gridi is mapped on the k dimension
of the GPU grid, then Lj is decomposed into as many tiles as GPUs in gpuk
and distributed among them. Figure 7.3 shows the relationship between the
computation grid, the GPU grid and the array decomposition grid in di�er-
ent computation distribution con�gurations for sgemm and transpose. In the
sgemm example, Cx, Cy, Ay and Bx can be potentially decomposed, as they
are indexed with thread block indices. For a con�guration that decomposes
the computation grid on its Y dimension (gridy, second row of Figure 7.3), Cx

and Bx are decomposed. However, since blockx is used to index Ay but gridx
is not decomposed, Ay is not decomposed either. In transpose, both blockx

107

7.3. AMGE IMPLEMENTATION DETAILS

and blocky are used to index the two dimensions of A and B matrices and
are always decomposed. The distribution of tiles among the GPU memories
follows the mapping of the computation grid partitions on the GPU grid.
For example, in the XY computation grid decomposition of sgemm (third
row of Figure 7.3), neighboring tiles in Cx are distributed across neighboring
GPUs in gpuy.
Input arrays that are not decomposed are replicated in all GPU memories.
Moreover, tiles from input arrays that are not indexed using the thread block
indexes of all the decomposed dimensions of the computation grid, are par-
tially replicated. In this case, the array tiles are only replicated in the mem-
ories of those GPUs that belong to the GPU grid dimensions on which the
unused computation grid dimensions are distributed. For example, in sgemm,
C is indexed with both blockx and blocky and its tiles are not replicated for
any computation grid decomposition. However, A is indexed with blockx,
and B is indexed with blocky, only. Thus, A and B are fully replicated in all
GPUs for Y and X computation grid decompositions, respectively. In the
XY con�guration, the tiles in A are distributed across the GPUs in gpux
and each tile is replicated in all GPUs in gpuy. For example, the upper tile
of A is accessed by both P1,1 and P1,2 computation partitions, and it is repli-
cated in the memories of GPUs G1,1 and G1,2. Conversely, the tiles in B are
distributed across the GPUs in gpuy and replicated in the GPUs in gpux.

7.3 AMGE implementation details

7.3.1 Array data type

We utilize the UVAS support to place di�erent parts of the array in di�erent
GPU memories while having a continuous representation of the array in the
virtual address space. Hence, decomposed arrays can be referenced by us-
ing regular linearization operations on the indexes: (a1, · · · , an) →

n∑
i=1

ai ×
n∏

j=i+1
Dj

where ai is the index and Di the number of elements in the ith dimension
of the array. Indexes are ordered from the highest-order to the lowest-order
dimension. We refer to this scheme as VM implementation.
This implementation decomposes arrays with page-size granularity which, in
current GPUs, is in the order of a few kilobytes. Nevertheless, we have exper-
imentally determined that current versions of CUDA impose a 1MB (instead
of page-size) granularity to allocate contiguous virtual memory ranges on dif-
ferent GPUs. This produces data distribution imbalance if partitions cannot
be stored in balanced-sized groups of 1MB chunks, resulting in an increased
number of remote memory accesses. One solution to reduce the imbalance is

108

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

to add padding to the lower order dimensions that are not decomposed. How-
ever, achieving perfect balancing using 1MB chunks can impose a footprint
overhead in the order of hundreds of times, especially for arrays' lowest-order
dimensions, whose elements are stored contiguously in memory. Another so-
lution is to permute the dimensions of the array to ensure that decomposed
dimensions are not contiguous in memory. Unfortunately, this can break
memory coalescing [85].
Therefore, we also provide an alternate implementation proposed in [20] that
reshapes the arrays. In this implementation, each GPU contains a memory
allocation that holds all the elements in a partition, and it is padded to the
1MB boundary. The array is reorganized by adding a new dimension for
each decomposed one (i.e., strip-mining), that indicates the GPU in which
each partition is stored. In each array reference, the original indexes are
transformed into a new set of indexes. This approach allows arrays to be
decomposed on any dimension as they do not have to be stored contiguously
in the virtual address space. However, this �exibility comes at the cost
of extra computation. For example, if a 3D volume is decomposed along
its highest-order dimension using a BLOCK distribution, the index for this
dimension a1 is transformed as follows:

(a1, a2, a3)→ (

⌊
a1
D′1

⌋
, a1 mod D′1, a2, a3) (7.2)

where D′1 =
⌈
D1

P1

⌉
and P1 is the number of tiles in the �rst dimension of the

array's decomposition grid. The operations needed to compute the location
of the element a1, a2, a3, are divided into: the computations of the o�set of
the block in the dimension being decomposed, and the linearization of the
index within the block:

block(a1, a2, a3) =

⌊
a1
D′1

⌋
×O1

linear(a1, a2, a3) = (a1 mod D′1)×D2 ×D3 + a2 ×D3 + a3

where O1 is the o�set between tiles in the �rst dimension of the array's
decomposition grid. Therefore, an extra division and modulo operations
are performed in each access to the array, compared with the regular in-
dex linearization. For CYCLIC and BLOCK-CYCLIC, similar transformations are
performed.
Providing a generic indexing routine that supports all possible array decom-
positions can impose an unacceptable performance overhead due to the extra
operations needed to transform all the indexes. In order to ensure maximum

109

7.3. AMGE IMPLEMENTATION DETAILS

performance, our prototype provides di�erent implementations of the index-
ing routines optimized for the di�erent array decompositions and distribution
types.

7.3.2 Source-to-source transformations

Kernel versioning Using specialized indexing routines for each decompo-
sition requires changes in the kernels, as (1) the kernel code must explicitly
call the proper versions of the routines, and (2) the array decomposition to
be used is not known at compile time. Thus, AMGE generates di�erent
kernel versions for all the possible array decompositions of the arrays used
in the kernel. In each version, array references use the indexing routines
that are optimized for a chosen decomposition. On each kernel execution,
when the runtime system selects the distribution for all the arrays, it uses
the specialized kernel version for that con�guration.

Global thread block identi�ers Since computation partitions are exe-
cuted independently, CUDA assigns new thread block identi�ers in the kernel
invocations on each GPU. In order to retain the original identi�ers, we store
the o�sets of each computation partition in the memory of each GPU. The
compiler modi�es replaces blockIdx with code that computes the original
indexes using these o�sets.

Memory consistency model Distributed kernels must honor the mem-
ory consistency of the GPU programming model. Data propagation across
thread blocks in the GPU model is only guaranteed for atomic memory op-
erations and memory fences. For atomic operations we exploit the hardware
support provided by modern system architectures (e.g., atomic operations in
PCIe 3.0). GPU-wide memory fences are translated to system-wide memory
fences to ensure correctness. Finally, since a GPU may cache remote array
partitions, GPU caches are �ushed at kernel exit boundary.

AMGE toolchain AMGE provides a toolchain based on the LLVM frame-
work. The �rst pass performs the array access pattern analysis introduced
in Section 7.2.1 on the LLVM IR generated by the CUDA compiler, and gen-
erates code to pass the information to the runtime system. The second pass
handles blockIdx and memory fence translations. The third pass generates
specialized kernel versions for the possible array decompositions, and code
for the runtime system to retrieve the version for a chosen con�guration.
Generated code is compiled into the program executable.

110

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

7.3.3 Run-time distribution selection policy

As explained in Section 7.2.2, on a kernel call, the runtime system selects the
best distribution con�guration. Our prototype implements a policy (shown
in Algorithm 2) that (1) favors the array implementation that imposes the
least overhead, (2) minimizes the number of remote accesses. Thus, the VM
implementation is preferred (since it does not impose any indexing over-
head) unless it introduces too many remote memory accesses due to data
distribution imbalance. Our policy ranks the array decompostions given by
the runtime system for both VM and reshape implementations. For VM,
the score is calculated using the data distribution imbalance introduced by
the coarse allocation granularity. The imbalance is computed analytically by
counting the bytes that belong to an array partition that should be stored
in a di�erent GPU, with respect to the total array size. The cost of this
computation is negligible compared to the kernel execution time. When the
imbalance exceeds a threshold (in Algorithm 2 the threshold is set to 5%),
the score becomes zero (e�ectively choosing the reshape implementation). If
several con�gurations get the same score, decompositions on the highest-or-
der dimension are preferred because they allow for more e�cient CPU↔GPU
transfers.

Algorithm 2 Implemented array distribution policy
procedure ArrayDistributionPolicy(C, A, P)
C: computation decomposition con�guration
A: arrays
P : array access pattern from compiler
Returns: suggested array decomposition and its score

arraysinfo ← DecompositionInfo(A, C, P)
T ← 0.05 . Memory imbalance threshold
R← empty
score← 1.0
for arrayinfo ∈ arraysinfo do

i← ComputeImbalance(arrayinfo, C)
if i > T then . Use reshape implementation

array ← ArrayReshape(arrayinfo)
score← score× (1− T)

else . Use VM implementation
array ← ArrayVM(arrayinfo)
score← score× (1− i)

end if

R← Insert(R, array) . Add array decomposition to the set
end for

return R, score
end procedure

111

7.3. AMGE IMPLEMENTATION DETAILS

K
e
r
n
e
l

S
u
ite

In
p
u
tse

t
#
R
e
g
#
R
e
g

#
R
e
g

#
R
e
g

A
r
r
a
y

A
r
r
a
y

O
r
ig

V
M

R
e
sh

B
/
C
R
e
sh

B
-C

D
e
c
o
m
p
o
sitio

n
s

D
istr

ib
u
tio

n

co
n
v
o
lu
tio

n
2
D

P
a
rb
o
il
2

A
,B
:
1
6
K
×
1
6
K

1
7

1
9

1
9

2
2

X
→
A
,B
(* ,B

L
O
C
K)

C
(* ,*)

A
,B
:{
D

x
}
C
:{
R

x
}

1
9

2
2

Y
→
A
,B
(B
L
O
C
K,*)

C
(* ,*)

A
,B
:{
D

x
}
C
:{
R

x
}

C
:
9×

9
1
9

2
2

X
Y
→
A
,B
(B
L
O
C
K,B

L
O
C
K)

C
(* ,*)

A
,B
:{
D

x
,y
}
C
:{
R

x
,y
}

�
t1
D

P
a
rb
o
il

A
,B
:
2
5
6
M

2
2

2
4

2
4

2
4

X
→
A
(*
)
B
(B
L
O
C
K)

A
:{
R

x
}
B
:{
D

x
}

red
u
ctio

n
S
D
K

A
,B
:
2
5
6
M

1
2

1
2

1
1

1
8

X
→
A
,B
(B
L
O
C
K)

A
,B
:{
D

x
}

sa
x
p
y

-
A
,B
:
2
5
6
M

8
8

8
1
7

X
→
A
,B
(B
L
O
C
K)

A
,B
:{
D

x
}

sg
em

m
P
a
rb
o
il
2

4
1

4
1

X
→
A
,C
(*
,B
L
O
C
K)

B
(* ,*)

A
,C
:{
D

x
}
B
:{
R

x
}

A
,B
,C
:
4
K
×
4
K

3
8

3
3

4
0

4
0

Y
→
A
(* ,*)

B
(* ,B

L
O
C
K)

C
(B
L
O
C
K,*)

A
:{
R

x
}
B
:{
D

x
}
C
:{
D

x
}

4
2

4
2

X
Y
→
A
,B
(* ,B

L
O
C
K)

C
(B
L
O
C
K,B

L
O
C
K)

A
:{
D

x
,R

y
}
B
:{
D

y
,R

x
}
C
:{
D

x
,y
}

sg
em

v
-

A
:
8
K
×
8
K

-
B
,C
:
8
K

1
1

1
1

1
1

1
6

X
→
A
(B
L
O
C
K,*)

B
(*
)
C
(B
L
O
C
K)

A
:{
D

x
}
B
:{
R

x
}
C
:{
D

x
}

so
rt_

m
erg

e_
g
lo
b
a
l
S
D
K

A
k
,A

v
,B

k
,B

v
:
2
5
6
M

1
7

1
6

1
8

2
8

X
→
A

k
,A

v
,B

k
,B

v
(B
L
O
C
K)

A
k
,A

v
,B

k
,B

v
:{
D

x
}

so
rt_

m
erg

e_
sh
a
red

1
7

1
6

1
8

2
7

X
→
A

k
,A

v
,B

k
,B

v
(B
L
O
C
K)

A
k
,A

v
,B

k
,B

v
:{
D

x
}

so
rt_

sh
a
red

1
7

1
8

1
9

2
8

X
→
A

k
,A

v
,B

k
,B

v
(B
L
O
C
K)

A
k
,A

v
,B

k
,B

v
:{
D

x
}

sten
cil2

D
-

A
,B
:
1
6
K
×
1
6
K

1
7

1
8

1
7

2
3

X
→
A
,B
(* ,B

L
O
C
K)

A
,B
:{
D

x
}

+
1
7

1
9

Y
→
A
,B
(B
L
O
C
K,*)

A
,B
:{
D

x
}

h
a
lo
s

1
9

2
6

X
Y
→
A
,B
(B
L
O
C
K,B

L
O
C
K)

A
,B
:{
D

x
,y
}

sten
cil3

D
P
a
rb
o
il
2

A
,B
:
1
K
×
1
K
×
5
1
2

2
4

2
6

3
0

3
4

X
→
A
,B
(* ,* ,B

L
O
C
K)

A
,B
:{
D

x
}

+
2
9

3
1

Y
→
A
,B
(* ,B

L
O
C
K,*)

A
,B
:{
D

x
}

h
a
lo
s

3
3

4
1

X
Y
→
A
,B
(* ,B

L
O
C
K,B

L
O
C
K)

A
,B
:{
D

x
,y
}

tra
n
sp
o
se

S
D
K

A
,B
:
1
6
K
×
1
6
K

1
6

1
4

1
7

2
4

X
→
A
(* ,B

L
O
C
K)

B
(B
L
O
C
K,*)

A
,B
:{
D

x
}

1
6

2
3

Y
→
A
(B
L
O
C
K,*)

B
(* ,B

L
O
C
K)

A
,B
:{
D

x
}

1
8

2
6

X
Y
→
A
,B
(B
L
O
C
K,B

L
O
C
K)

A
:{
D

x
,y
}
B
:{
D

y
,x
}

v
eca

d
d

-
A
,B
,C
:
2
5
6
M

1
0

1
0

1
0

1
8

X
→
A
,B
,C
(B
L
O
C
K)

A
,B
,C
:{
D

x
}

T
a
b
le
7
.1
:
D
en
se

b
en
ch
m
a
rk
s
u
sed

fo
r
th
e
eva

lu
a
tio

n
o
f
A
M
G
E
.

112

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

7.4 Experimental methodology

All experiments were run on a system containing a quad-core Intel i7-3820
at 3.6GHz with 64GB of DDR3 RAM memory, and 4 NVIDIA Tesla K40
GPU cards with 12GB of GDDR5 each, connected through a PCIe 3.0 in
x16 mode (containing two PCIe switches like in Figure 6.1b, page 73). The
machine runs a GNU/Linux system, with Linux kernel 3.12 and NVIDIA
driver 340.24. Benchmarks were compiled using GCC 4.8.3 for CPU code and
NVIDIA CUDA compiler 6.5 for GPU code. Execution times were measured
using the CUPTI pro�ling library that provides support for sampling and
nanosecond timing accuracy. For runs with more than one GPU, graphs
show the time for the slowest GPU.
We evaluate AMGE using a number of dense scienti�c computations that use
di�erent computation and array access patterns. The list of benchmarks is
summarized in Table 7.1. Some of them are found in the Parboil benchmark
suite [48], some in the NVIDIA SDK, and the rest have been developed in-
house. These benchmarks are selected to provide a good variety of access
patterns and thus challenges. Both CPU and GPU codes have been modi�ed
to use the ndarray data type instead of the �at 1D arrays which are commonly
used. The benchmarks have been compiled using our toolchain and linked
with our runtime system. The ndarray implementation has an impact on the
register usage count of the kernels (columns 4-7). In the column titles, �Orig�
stands for original, �VM� for virtual memory and �Resh� for reshape, while
�B� stands for BLOCK, �C� for CYCLIC and �B-C� for BLOCK-CYCLIC. BLOCK and
CYCLIC are in the same column (�#Reg Resh B/C�) as they use the same
number of registers.
Columns 8 and 9 show the array decompositions and distributions suggested
by AMGE for the possible computation distribution con�gurations. A, B, C
are the names of the arrays used in the computation. In the case of the kernels
in merge sort, a su�x has been added for keys (Ak, Bk) and values (Av, Bv).
In the last column, �D� stands for distribution and �R� for replication in the
GPU grid. X and Y make reference to the decomposed dimensions of the
computation grid. Array decompositions are shown using the notation in
HPF [59], but dimensions are ordered (left to right) from highest to lowest
order as they are stored in memory. For example, the sgemv con�guration
says that for a computation decomposition onX, the Amatrix is decomposed
on its Y dimension and the C vector is decomposed on its X dimension. Tiles
in A and C are distributed across the GPUs in the X dimension of the GPU
grid while B vector is replicated.
We also analyze two sparse computations in order to prove that AMGE
is able to execute irregular workloads: SpMV (i.e., sparse matrix vector

113

7.4. EXPERIMENTAL METHODOLOGY

Kernel Suite Decomposition Distribution

SpMV - CSR CUSP
A_row_o�sets(BLOCK) Dx

A_col_indices(*) Rx

A_values(*) Rx

SpMV - COO CUSP
A_rows(*) Rx

A_cols(*) Rx

A_values(*) Rx

SpMV - ELL CUSP
A_col_indices_trans(*,*) Rx, y
A_values_trans(*,BLOCK) Dy ,Rx

SpMV - HYB CUSP COO + ELL

SpMV - JDS CUSP

A_col_indices_trans(*) Rx

A_col_begin_index(*) Rx

A_row_perm(*) Rx

A_nzcnt(BLOCK) Dx

A_values_trans(*) Rx

BFS Rodinia

graph_nodes(BLOCK) Dx

graph_mask(BLOCK) Dx

graph_edges(*) Rx

graph_updating_graph_mask(*) Rx

graph_visited(*) Rx

graph_cost(*) Rx

Table 7.2: Sparse benchmarks used for the evaluation of AMGE.

multiplication) and BFS (i.e., breadth �rst search).
The SpMV computation kernel implementation is highly dependent on the
used sparse matrix format. GPU implementations for the DIA, CSR, COO,
ELL and HYB formats are proposed in [27]. The DIA (from diagonal) format
is meant to represent matrices with values in their diagonal. CSR (i.e.,
Compressed Sparse Row) stores the column indices for each element, and
an array of pointers to the beginning of each row. COO (from coordinate)
stores the row and column indices of every value. Each thread computes one
element product, and then a segmented reduction is performed to sum the
values computed by di�erent threads. ELL (from ELLPACK, a system for
solving elliptic boundary value problems) pads all rows to the maximum row
size so that accesses to the elements of each row are aligned. Values are also
transposed so that adjacent threads can read elements from di�erent rows in
a coalesced manner. The ELL format works very well for matrices in which
rows have similar sizes. Otherwise, (1) if adjacent rows have very di�erent
sizes will produce thread divergence, (2) many values in the rows will be
unused and the memory requirements might become unmanageable. The
HYB (from hybrid) tries to �x this problem by mixing the COO and ELL
formats. Thus, ELL can be used to e�ciently store the �rst n elements of each
row, and COO is used to store the rest of elements. The Parboil benchmark
suite also provide a highly-e�cient implementation of SpMV using the JDS
(i.e., Jagged Diagonal Storage) format [84]. JDS rearranges rows according
to the number of nonzero elements per row. It can be viewed as a ELL

114

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

format that minimizes the imbalance among adjacent rows to avoid thread
divergence. We have ported the implementations for COO, CSR, EEL, HYB
provided in the CUSP library [9], and JDS from Parboil, to AMGE.
Table 7.2 shows the decomposition and distribution con�gurations deter-
mined by the AMGE runtime. All the kernels use a 1D computation grid
and, therefore, its partitioned on its X dimension. It is important to note that
many arrays are replicated since they are accessed through data-dependent
values and it is impossible for the compiler to infer an access pattern. The
decomposition and distribution of the input and output vectors is not shown
but it is the same for all the implementations: the input vector is replicated
in all GPUs (i.e., Rx), and the output vector is partitioned and distributed
across memories (i.e., Dx).
The performance in SpMV completely depends on the shape of the sparse
matrix. In order to use representative matrices, we use the 10 �rst matrices
in the Matrix Market database [15]. They are shown in Figure 7.4. These
matrices are used in di�erent scienti�c research areas: quantum chromod-
inamics, �nite element analysis, structural engineering, circuit design, and
�uid dynamics.
BFS is an algorithm used to traverse trees or graph data structures. It
starts in one arbitrary node and visits its neighbors. In the next step, the
same process is performed for each of the neighbors in the last step. The
BFS implementation in Rodinia [35] uses a two-kernel algorithm that avoids
communication across thread blocks. It uses arrays to describe nodes, edges,
and keeps track of the nodes that have been already visited. These pair of
kernels are called iteratively until there are no remaining nodes to visit. We
use the biggest graph inputset shipped in the Rodinia benchmark suite.

7.5 Performance evaluation

In order to evaluate the e�ciency of AMGE we evaluate several aspects,
from the overhead introduced by the array data type, to the performance
scalability and the costs due to remote memory accesses. We also compare
the performance of AMGE with prior works.

7.5.1 Indexing overhead

There are two main costs that are imposed by our array data type:

• Extra operations in the indexing routines. Both VM and reshape array
implementations linearize the indexes in order to determine the location

115

7.5. PERFORMANCE EVALUATION

(a) af23560 (b) bcsstk30 (c) bcsstk31

(d) bcsstk32 (e) conf6.0-00l8x8-8000 (f) e40r5000

(g) �dap035 (h) �dapm11 (i) memplus

(j) s3dkt3m2

Figure 7.4: Sparse matrices used in the SpMV benchmarks.

116

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

1

2

3

4

5

6

Sl
ow

do
w

n
(x

)

X Y XY X X X X Y XY X X X X X Y XY X Y XY X Y XY X

convolution2D fft1D
reduction

saxpy
sgemm

sgemv

sort_merge_global

sort_merge_shared

sort_shared
stencil2D

stencil3D
transpose

vecadd

Slowdown (BLOCK and CYCLIC)
Slowdown (BLOCK-CYCLIC)

#Inst. (BLOCK and CYCLIC)
#Inst. (BLOCK-CYCLIC)

0

2

4

6

8

10

12

14

O
ve

rh
ea

d
in

 #
in

st
ru

ct
io

ns

Figure 7.5: Grey bars show the slowdown imposed by the indexing routines for the reshape
array implementation compared to the baseline (left axis). Lines indicate the increase in
number of executed instructions (right axis).

of the referenced element. The reshape implementation performs strip-
mining, which adds some additional operations. These routines can also
increase the register usage count, thus impacting on the occupancy of
the GPU cores. This subsection analyzes this potential problem.

• Memory mapping imbalance. This introduces extra remote memory
accesses but it is only su�ered by the VM implementation due to the
mapping granularity in CUDA. We analyze this problem in the next
subsection.

Table 7.1 shows that register utilization greatly varies depending on the used
ndarray implementation. The VM implementation only performs the index
linearization and, therefore, the register count is similar to, or even slight
lower than the original version of the benchmarks. reshape, on the other
hand, uses more registers in most of the kernels, especially in BLOCK-CYCLIC

decompositions and those con�gurations in which arrays are decomposed
along several dimensions.
Figure 7.5 shows the overheads imposed by the indexing routines for the
reshape implementation in the dense computation benchmarks running on
a single GPU. While AMGE suggests the utilization of the BLOCK dis-
tribution type in all kernels, we study the overhead of the routines for all
the distribution types. Grey bars show the slowdown imposed by the in-
dexing overhead of the data distributions for each computation distribution
con�guration (left axis). Lines represent the increase in number of executed
instructions due to the extra operations performed on the indexes (right
axis). BLOCK and CYCLIC are grouped (dark gray bar and solid line) as they
perform very similar transformations on the indexes and the performance is

117

7.5. PERFORMANCE EVALUATION

virtually the same (±1%). BLOCK-CYCLIC (light Gray bar and dashed line)
is consistently the slowest implementation (up to 4.48×) and the one that
executes more instructions, too. This is caused both by the extra executed
instructions and the lower achieved occupancy in the GPU due to the in-
creased number of registers. Slowdowns are large for kernels in which thread
blocks perform little work (convolution2D, reduction, saxpy, sort_merge_*,
stencil2D, transpose and vecadd). Results for VM implementation are not
shown because performance is within ±5% of the baseline in all kernels.

7.5.2 Multi-GPU performance

X Y XY X X Y XY X X X X X X X Y XY X Y XY X Y XY X Impl AMGE
0

1

2

3

4

5

Sp
ee

du
p

(x
)

convolution2D fft1D
sgemm

sgemv
reduction

saxpy

sort_merge_global

sort_merge_shared
sort_shared

stencil2D
stencil3D

transpose
vecadd

GMEAN

Virtual Memory (2 GPUs)
Virtual Memory (4 GPUs)

Reshape (2 GPUs)
Reshape (4 GPUs)

Ideal (2 GPUs)
Ideal (4 GPUs)

AMGE 2 GPUs
AMGE 4 GPUs

Figure 7.6: Speedup over baseline for di�erent computation decomposition con�gurations
using reshape and VM implementations. Arrows point to the con�guration chosen by the
runtime system for each kernel. Results shown for 2/4 GPUs.

Figure 7.6 shows the speedup achieved by AMGE on our multi-GPU sys-
tem for all possible distribution con�gurations. Results are shown for the
VM and reshape implementations of the ndarray data type, and for an ideal
implementation with optimal data distribution (no remote accesses). Bars
labeled with �Impl� show the geometric mean for the three implementations
of the speedups achieved in each kernel by the best computation distribution
con�guration. The reshape implementation exhibits linear speedups (1.91×
and 3.54× on average for 2 and 4 GPUs, respectively) for all kinds of dis-
tribution con�gurations in most kernels. The main exceptions are X and
XY con�gurations in stencil3D due to remote memory accesses, and saxpy,
vecadd, sort_merge_global and the XY con�guration in stencil2D due to
the overhead of the indexing function. The VM implementation outper-
forms reshape in some con�gurations in which the array partitions are large
enough not to su�er from imbalance due to the memory allocation granular-
ity imposed by CUDA, but performs very poorly in the other con�gurations,
producing lower speedups on average (1.02× and 1.27× for 2 and 4 GPUs).
For example, in transpose at least one of the matrices must be decomposed
along its X dimension, which is contiguous in memory, thus leading to an

118

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

X Y XY X X Y XY X X X X X X X Y XY X Y XY X Y XY X
0

5

10

15

20

%
 o

f r
em

ot
e

ac
ce

ss
es

74.81 75.02 56.24 57.33 82.68 78.8788.3843.6276.5633.3350.0050.00

convolution2D fft1D
sgemm

sgemv
reduction

saxpy

sort_merge_global

sort_merge_shared
sort_shared

stencil2D
stencil3D

transpose
vecadd

Virtual Memory
Reshape

Figure 7.7: Memory requests served by remote GPUs.

imbalanced data distribution. Therefore, performance is poor for VM in all
con�gurations in transpose. Another example is stencil3D, for which the Y
distribution con�guration should provide reasonable performance since each
plane of the volume can be distributed across GPUs. Nevertheless, the size of
each plane still produces an imbalanced distribution. We study this example
in more detail in Section 7.5.3.
On each kernel call, AMGE's runtime system tries to choose the best com-
putation and data distribution con�guration. In this evaluation, AMGE
implements the policy introduced in Section 7.3.3, using a 5% ditribution
imbalance threshold to choose between VM and reshape implementations.
We choose this number because we have determined experimentally (Fig-
ure 6.7) that the GPUs in our evaluation system can hide the costs of up
to 10% remote accesses depending on (1) how they are distributed in the
kernel execution (Batch or Spread); and (2) the computational intensity of
the kernel (FLOPS/load). We can see that, using this value, the policy
correctly selects the best performing con�guration for most of the kernels.
Figure 7.6 highlights with an arrow the chosen con�gurations. The average
performance across all the benchmarks (i.e., bars labeled with �AMGE�) is
1.98× and 3.89× for 2 and 4 GPUs; very close to ideal.

7.5.3 Impact of remote accesses on performance

Remote accesses can happen because either, some region of an array partition
is accessed from several GPUs (e.g., in a stencil patterm), or the data distri-
bution imbalance introduced by the VM array implementation. We measure
the amount of remote memory accesses for all the computation decomposition
con�gurations.
Figure 7.7 shows the percentage of accesses to RAM memory that are served
by remote GPUs in all the kernels when they are distributed across 4GPUs.
reshape eliminates the need for remote accesses in most of the con�gurations.

119

7.5. PERFORMANCE EVALUATION

Only kernels in which computation partitions share some data use them (e.g.,
convolution2D, stencil{2,3}D). The worst cases are the X and XY decom-
positions for stencil3D in which 17.43% and 7.61% of accesses to memory
are remote, respectively. This is the reason why these con�gurations show
poor speedups in Figure 7.6. In contrast, VM introduces a lot of remote
accesses in many con�gurations due to the memory allocation granularity in
CUDA.

Fighting data distribution imbalance in VM The dimensions of the
arrays in stencil2D and stencil3D kernels make it di�cult to evenly split
them using 1MB granularity, causing imbalance and, therefore, remote mem-
ory accesses. The computation distribution con�guration that we study is Y .
Using this con�guration, the volumes of stencil3D are distributed by allocat-
ing partitions of each plane alternatively in di�erent GPUs. The size of each
plane (1K×1K + halos) produces an imbalanced distribution (2/1/1/1MB
for 4GPUs). This results in excessive communication that limits the per-
formance (0.87× and 0.91× for 2 and 4 GPUs). Adding padding to the
X dimension of the volume to obtain a balanced distribution results in a
127.01× memory footprint increment. Having a 4KB granularity would re-
duce this overhead to 1.49×. Using more friendly problem sizes that do not
produce imbalance results in much improved performance, reaching linear
speedups of 2.08× and 3.95× for 2 and 4 GPUs.
The larger size (16K×16K + halos) of the plane in stencil2D allows for a
more balanced distribution of data (65/64/64/64MB for 4GPUs). However,
there are still some e�ects on the performance. Figure 7.8a shows the memory
bandwidth consumption due to remote loads and stores (left axis), and the
number of instructions per cycle (right axis) during the execution of the
stencil2D kernel for each GPU in the system. For the sake of clarity, we
concatenate the execution timelines of the four GPUs, although they execute
in parallel. GPU 0 does not perform any remote memory access and the IPC
(instructions per cycle) remains stable during the kernel execution. GPUs
1, 2 and 3 perform remote memory accesses to the previous GPU memories
(note that the imbalance increases with the GPU identi�er). Remote accesses
degrade the performance of the GPU as re�ected in the lower IPC. Using
padding to obtain a fully balanced array distribution would increase the
memory footprint by 7.99×. Instead, we reduce the imbalance by o�setting
the beginning of the array so that GPUs 0 and 3, and GPUs 1 and 2 perform
the same amount of remote memory accesses (Figure 7.8b). The improved
balancing lowers the remote memory bandwidth consumption (2.5GBps vs
4GBps), and the period in which remote accesses are performed is shorter.

120

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

GPU 0 GPU 1 GPU 2 GPU 3
Execution timeline

0

200

400

600

800

1000

M
B/

s

Read bandwidth Write bandwidth IPC

0
10
20
30
40
50
60
70
80
90

IP
C

(a) Imbalanced distribution

GPU 0 GPU 1 GPU 2 GPU 3
Execution timeline

0

200

400

600

800

1000

M
B/

s

0
10
20
30
40
50
60
70
80
90

IP
C

(b) Balanced distribution

GPU 0 GPU 1 GPU 2 GPU 3
Execution timeline

0
500

1000
1500
2000
2500
3000
3500
4000

M
B/

s

0
10
20
30
40
50
60
70
80
90

IP
C

(c) Balanced distribution + transposed thread block scheduling

Figure 7.8: Execution timeline of stencil2D for 4 GPUs.

121

7.5. PERFORMANCE EVALUATION

Benchmark Conf Kim[57] Lee[61] AMGE

convolution2D
X 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
Y 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
XY 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K

�t1D X 750M 750M 3G
reduction X 2.99G 2.99G 11.99G
saxpy X 6G 6G 6G

sgemm
X 31.6K×31.6K 31.6K×31.6K 44.7K×44.7K
Y 44.7K×44.7K 31.6K×31.6K 44.7K×44.7K
XY 38.7K×38.7K 31.6K×31.6K 48.9K×48.9K

sgemv X 77.4K×77.4K 38.7K×38.7K 77.4×77.4
sort X 750M 750M 3G

stencil2D
X 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
Y 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K
XY 44.7K×44.7K 38.7K×38.7K 77.4K×77.4K

stencil3D
X 1.1K3 1.1K3 1.8K3

Y 1.3K3 1.1K3 1.8K3

XY 1.2K3 1.1K3 1.8K3

transpose
X 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K
X 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K
XY 54.7K×54.7K 38.7K×38.7K 77.4K×77.4K

vecadd X 4G 4G 4G

Table 7.3: Maximum problem size for a 4-GPU system in AMGE and in the related work.

This results in a 8.2% execution speedup on the slowest GPU.

Reducing instantaneous bandwidth demands In stencil2D, memory
accesses concentrate at the beginning/end of the kernel execution because
the default thread block scheduler in the GPU issues thread blocks that are
contiguous in the X dimension in order. Thus, thread blocks that access the
boundaries of the matrix partitions tend to execute concurrently, increasing
the instantaneous bandwidth demands and reducing the achieved IPC. We
evaluate the performance of a thread block scheduler that issues thread blocks
that are contiguous in the Y dimension instead. We emulate it by transposing
the mapping of thread block identi�ers on the matrices. Figure 7.8c shows
that, using this scheduler, remote accesses are distributed throughout all
kernel execution, thus reducing the instantaneous bandwidth demands to
200MBps. Now the IPC is not a�ected, since the cost of remote accesses
is hidden with the execution of other thread blocks that only perform local
accesses, reducing execution time by a 5.8%.
These results con�rm the conclusions from previous chapters, that argues
that providing mechanisms to control thread block scheduling can help re-
ducing the overhead of remote memory accesses.

122

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

X Y XY X X X X Y XY X X X Y XY X Y XY X Y XY X
0

200

400

600

800

1000

Ti
m

e
(m

ill
is

ec
on

ds
)

6.02e+05

convolution2D fft1D
reduction

saxpy
sgemm

sgemv sort
stencil2D

stencil3D
transpose

vecadd

Kim CPU-GPU transfer
Kim merge step
AMGE CPU-GPU transfer
AMGE remote access

Figure 7.9: Overhead of the coherence mechanisms in AMGE and in the related work [57].

7.5.4 Comparison with previous works

We measure the bene�ts of AMGE over the solutions proposed by Kim et
al. [57] and Lee et al. [61]. Since the source code of previous works is not
publicly available, we approximate the comparison by measuring, for each
solution, the maximum problem size, the memory coherence overhead, and
the kernel execution performance.

Memory footprint overhead Thanks to the array dimensionality in-
formation, AMGE performs much more space-e�cient data decompositions
than previous works. We compute the maximum problem size that can be
executed by the three solutions on our 4-GPU system, using the informa-
tion in [57, 61]. Table 7.3 shows that AMGE is able to run bigger problem
sizes than previous works for most benchmarks, which is one of the ma-
jor motivations for using multiple GPUs, especially on those that work on
multi-dimensional arrays.

Coherence overhead AMGE ensures coherence by not replicating out-
put arrays and using remote memory accesses when needed. The related
work relies on replication and a merge step after kernel execution. Besides,
data needs to be copied from CPU to GPU memories before kernel execu-
tion. Figure 7.9 shows the overhead of both solutions. AMGE shows lower
CPU/GPU transfer times in most cases (CPU-GPU transfer), because of the
more e�cient partitioning of multi-dimensional data structures, which re-
quires smaller regions of the arrays to be resident in each GPU memory. The
overhead of the merge step is even larger compared with the cost of remote
accesses. The most extreme case is the sort benchmark, since it executes
kernels iteratively and the merge step needs to be performed after each kernel
call.

123

7.5. PERFORMANCE EVALUATION

Kernel performance Previous works replicate arrays to ensure that all
accesses are local. We approximate the kernel performance that would have
been achieved by prior works by looking at the ideal bars (i.e., no remote
accesses) in Figure 7.6. We see that the implementation/con�guration chosen
by the AMGE runtime matches the performance of the ideal implementation
in most of the benchmarks.

Summary AMGE provides similar kernel performance than previous
works, while having much lower coherence overhead and being able to handle
much larger problem sizes.

7.5.5 Sparse benchmarks

In order to measure the performance of AMGE for irregular workloads, we
run the SpMV and BFS benchmarks.
Figure 7.10 shows the execution time of the SpMV benchmarks for 1, 2
and 4 GPUs. We can see that COO is by far the worst-performing sparse
matrix format. ELL cannot be used for the bcsstk30, bcsstk31, bcsstk32,
and memplus matrices because the row size is not balanced and the memory
requirements are too high. JDS is the best-performing format for most of
the matrices.
Figure 7.10 also compares the di�erent array implementations. We can see
that using the VM implementation (Figure 7.10b), only the JDS matrix
format shows performance improvements when increasing the number the
GPUs. This is mainly because of the large memory mapping granularity,
that introduces too many remote accesses. The reshape implementation
(Figure 7.10c) exhibits better performance for the CSR and ELL imple-
mentations. COO and HYB formats (that also uses COO for a region of
the matrix), on the other hand, are slower. The performance achieved by
the reshape implementation is very close to the performance that would be
achieved if there were no remote accesses (Figure 7.10a).
One of the main challenges that present irregular workloads is that it is di�-
cult to automatically decompose computation in such a way that each GPU
performs the same amount of work. For example, in SpMV, most implemen-
tations create a thread or warp per output element but the length of the
rows can be very di�erent. Figure 7.11 shows the computation imbalance
for each of the matrices when being executed on 4 GPUs. The imbalance
is computed as the relative execution time of the slowest GPU compared
to the fastest one. We can see that JDS is the one that introduces more
imbalance. This is because JDS stores rows sorted by their length. Thus,
threads in the thread blocks with the lower identi�ers will compute the rows

124

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

0

20
0

40
0

60
0

80
0

10
00

Execution time (ms)

12
72

.58

12
50

.66

11
99

.68

22
28

.51

11
19

.49

10
98

.30

10
39

.20

19
35

.55

10
47

.10

10
17

.02

17
88

.06

af
23

56
0

bc
ss

tk
30

bc
ss

tk
31

bc
ss

tk
32 co

nf
6.

0-
00

l8
x8

-8
00

0
e4

0r
50

00
fid

ap
03

5
fid

ap
m

11
m

em
pl

us
s3

dk
t3

m
2

CO
O

(1
 G

PU
s)

CO
O

(2
 G

PU
s)

CO
O

(4
 G

PU
s)

CS
R

(1
 G

PU
s)

CS
R

(2
 G

PU
s)

CS
R

(4
 G

PU
s)

EL
L

(1
 G

PU
s)

EL
L

(2
 G

PU
s)

EL
L

(4
 G

PU
s)

HY
B

(1
 G

PU
s)

HY
B

(2
 G

PU
s)

HY
B

(4
 G

PU
s)

JD
S

(1
 G

PU
s)

JD
S

(2
 G

PU
s)

JD
S

(4
 G

PU
s)

(a
)
Id
ea
l

0

20
0

40
0

60
0

80
0

10
00

Execution time (ms)

13
43

.20

13
24

.06

12
65

.66

23
61

.18

14
89

.95

14
78

.46

14
31

.07

26
80

.38

13
89

.57

13
80

.48

13
11

.14

24
83

.07

af
23

56
0

bc
ss

tk
30

bc
ss

tk
31

bc
ss

tk
32 co

nf
6.

0-
00

l8
x8

-8
00

0
e4

0r
50

00
fid

ap
03

5
fid

ap
m

11
m

em
pl

us
s3

dk
t3

m
2

(b
)
V
M

0

20
0

40
0

60
0

80
0

10
00

Execution time (ms)

15
02

.66

14
81

.38

14
08

.00

26
64

.58

17
45

.89

16
56

.19

15
13

.02

29
29

.25

19
80

.90

11
00

.99

18
62

.14

16
72

.54

32
79

.78

af
23

56
0

bc
ss

tk
30

bc
ss

tk
31

bc
ss

tk
32 co

nf
6.

0-
00

l8
x8

-8
00

0
e4

0r
50

00
fid

ap
03

5
fid

ap
m

11
m

em
pl

us
s3

dk
t3

m
2

(c
)
R
es
h
a
p
e

F
ig
u
re

7
.1
0
:
E
x
ec
u
ti
o
n
ti
m
e
o
f
d
i�
er
en
t
im
p
le
m
en
ta
ti
o
n
s
o
f
th
e
sp
a
rs
e
m
a
tr
ix

ve
ct
o
r
co
m
p
u
ta
ti
o
n
o
n
A
M
G
E
fo
r
1
,
2
a
n
d
4
G
P
U
s.

125

7.5. PERFORMANCE EVALUATION

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Im
ba

la
nc

e

7.43

af23560
bcsstk30

bcsstk31
bcsstk32

conf6.0-00l8x8-8000
e40r5000

fidap035
fidapm11

memplus
s3dkt3m2

COO CSR ELL HYB JDS

Figure 7.11: Computation imbalance in the SpMV benchmark (4 GPUs).

0
1000
2000
3000
4000
5000
6000
7000

Ex
ec

ut
io

n
tim

e
(m

s)

VM Reshape Ideal

AMGE 1 GPU AMGE 2 GPUs AMGE 4 GPUs

Figure 7.12: Performance scalability in the BFS benchmark.

with the highest number of elements. Since AMGE decomposes the com-
putation grid uniformly, the �rst GPU will execute the thread blocks that
access the longest rows, thus producing imbalance. Without this problem,
JDS would yield much better scalability results (e.g., see the memplus matrix
in Figure 7.10). ELL being a similar format to JDS, does not su�er from this
problems because rows of all sizes are distributed to all GPUs. This limita-
tion is intrinsic to the JDS sparse matrix format and not related to AMGE.
We believe that AMGE-aware libraries could provide with additional infor-
mation to the AMGE runtime, so that it can perform a more balanced work
distribution in these types of scenarios.
Performance results for the BFS benchmark are shown in Figure 7.12. We
can see that AMGE is able to scale the performance when using several
GPUs. The reshape implementation shows slightly worse results than VM
for 1 GPU due to the higher array indexing costs. However, reshape is
better for higher GPU counts because, like in previous experiments, VM
introduces more remote memory accesses. The good performance in BFS is
due to the low computation imbalance (0.31) introduced by the computation
distribution.

126

CHAPTER 7. AUTOMATIC MULTI-GPU EXECUTION

Parallelizing irregular workloads is an open problem and it is challenging
even for hand-tuned implemenation. While AMGE does not provide linear
speedups in all cases like with dense benchmarks, it exhibits speedups in most
of the cases, especially for kernels that do not su�er from large computation
distribution imbalance across thread blocks.

7.6 Summary

Modern GPUs provide mechanisms that enable e�cient auto-parallelization.
In this chapter we introduce AMGE, a programming interface, compiler sup-
port and runtime system that enables multi-GPU execution of computations
written for a single GPU. Thanks to remote memory accesses, AMGE im-
poses much lower memory footprint and coherence management overheads
than previous works. We also demonstrate that transparent data distribution
can be e�ciently implemented on current GPUs using the UVAS and compil-
er/runtime-assisted code versioning. Using the array data type provided in
AMGE results in shorter and cleaner code, too. AMGE achieves almost linear
speedups for most of the dense benchmarks on a real 4-GPU system with an
interconnect with moderate bandwidth. Further performance improvements
can be achieved by reducing the virtual memory mapping granularity exposed
by CUDA and by allowing programmers to tune the thread block scheduling
policy. Irregular computations can also bene�t from AMGE. However, we
believe that AMGE-aware libraries are needed in order to solve the inherent
limitations of transparent work distribution for irregular computations.
We believe that AMGE could be used in future systems such as NVIDIA
Pascal boards to automatically scale the performance of GPU kernels to
multiple GPUs.

127

Chapter 8

Conclusions and Future

Work

8.1 Conclusions

Graphics Processing Units provide computation capabilities and energy ef-
�ciency that is unmatched by regular CPUs for many types of programs.
Many High Performance Computing systems include several GPUs in each
node in order to increase their computational power. Further, GPU vendors
are announcing products that pack several GPUs in a single board. Thus,
programs need to fully utilize all the GPUs in the system ir order to provide
good execution e�ciency.
GPUs are becoming fully-featured processors with similar capabilities to gen-
eral purpose processors, such as virtual memory and inter-GPU communica-
tion. However, programming models do not exploit these hardware charac-
teristics to facilitate the task of writing programs for multiple GPUs. CUDA
and OpenCL still show GPUs as separate devices, and programmers need to
explicitly manage the GPU memories and data communication.
In this thesis we have shown that the higher-level abstractions that HPE
provides to programmers not only simpli�es application source code, but
also can yield better performance. Removing the 1:1 host-thread to GPU
mapping avoids unnecessary inter-thread synchronization. Direct GPU-to-
GPU transfers also allows for transparent highly-tuned copies (i.e., double
bu�ering, PCIe full-duplex exploitation) performed by the runtime. The
UVAS also enables P2P communication between GPUs without host inter-
vention (thus boosting memory exchange bandwidth), as virtual addresses
correspond to a single physical location in the system. The extension of the
ADSM to multi-GPU systems allows memory objects to be declared once and

129

8.1. CONCLUSIONS

used both in CPU and GPU codes in multi-GPU applications. Multithread-
ADSM also enables performing prefetching behind the scenes, which can give
better performance that hand-tuned memory transfers. We have provided a
production-level implementation of Reverse Time Migration on top of HPE.
This dissertation has also shown that multi-GPU systems can be programmed
like shared memory machines. The resulting code for computations with data
dependencies between GPUs is much simpler, as they access data remotely
and, therefore, do not need to perform explicit a data exchange between
GPU memories. We have analyzed the performance characteristics of current
interconnects and of the remote access mechanism. Current GPUs are able
to hide the costs of a 10% of remote memory accesses if the kernels produce
high GPU core occupancy and the accesses are spread through the whole
kernel execution. Future interconnects such as NVLink will provide much
higher bandwidths and lower latency that will allow to hide the costs of a
higher number of remote accesses. We have also measured the impact of
GPU hardware features such as caching of remote memory accesses.
In the �nal part of the thesis we have proposed AMGE, a programming frame-
work for shared memory multi-GPU systems that automatically decomposes
computation and data and distributes them across all the GPUs in the sys-
tem. AMGE further reduces the size of the host code because it is written as
if there was a single GPU in the system. We have shown that current data-
parallel programming models for GPUs such as CUDA allow for transparent
distribution of computation across GPUs. Data decomposition and distri-
bution is automatically determined by compiler analisys that discovers the
access patterns on multi-dimensional arrays, and a runtime system that also
takes into account the shape of the computation grid. AMGE automatic data
distribution avoids bad decisions made by programmers. Performance results
show linear speedups for a wide range of dense computations. Although they
might su�er from lower scalability if work is not balanced between thread
blocks, sparse computations can also bene�t from AMGE.

8.1.1 Impact

Several of the works presented in this thesis have been included in commercial
products.

• RTM: the production-grade GPU implementation of RTM used in Rep-
sol is based on our work.

• CUDA: since CUDA 4, NVIDIA is adding most of the features of the
HPE model.

130

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

• AMD: ships a limited version of the HPE model for OpenCL that has
been developed in collaboration with Multicoreware Inc. in their AMD
APP SDK.

8.2 Future work

The work presented in this dissertation opens new research lines for the
programmability of multi-GPU systems. We expect to pursue future work in
the following �elds.

8.2.1 Full system memory coherence

Current implementation in CUDA 6.0 of the multithreaded ADSM memory
model (i.e., Uni�ed Virtual Memory or UVM) is asymmetric: the CPU is
the only processor that performs coherence operations. When a kernel is
launched, the CPU ensures that all shared data is copied to the GPU mem-
ory. Therefore, data cannot be concurrently accessed from CPU/GPU (even
di�erent regions of the same allocation), which leads to the underutilization
of CPUs or GPUs in some cases.
We will explore the utilization of more advanced memory protection mech-
anisms on GPUs. For example, support for paging in the GPU will enable
lazy migration of data to the GPU memory. This will avoid transferring data
which is not accessed by the GPU kernel. Moreover, coherence operations
could be executed from the kernel code to implement more advanced pro-
tocols. Newly proposed mechanisms such as thread block preemption [88]
could also be used to save the context of the thread block that triggers the
interrupt and switching to a di�erent thread block while the page fault is
being serviced.
We also will look into pre-fetching policies to further improve performance.
Migrating one page at a time will introduce a lot of overhead (due to the costs
of triggering an interrupt and executing the page fault handling routine)
and will provide very low data transfer e�ciency (PCIe favors large data
transfers). However, due to the highly parallel nature of GPUs the set of
pages accessed at any time is potentially very large and, therefore, we believe
that traditional pre-fetching policies will not work, and novel policies will
need to be proposed.

131

8.2. FUTURE WORK

8.2.2 Hiding the costs of remote accesses

We have shown that thread block scheduling policies are key to distribute
remote accesses through the whole kernel execution. Unfortunately, current
GPUs implement a single �xed scheduling policy. Two approaches can be
taken:

• Implement a hardware-only policy that takes into account very-long-
latency operations and mixes thread blocks that use them with other
thread blocks.

• Include some hooks in the hardware that can be controlled by sys-
tem/programmers. A �rst example can be the grid dimension for which
thread blocks are scheduled in order.

The GPU memory hierarchy is not optimized to handle remote memory ac-
cesses. Currently remote accesses can only be cached in the R/O L1 cache
in each GPU core. Adding a shared L2 R/O cache would allow to reuse data
that has been previously cached by a di�erent core, further minimizing the
amount of requests to remote GPU memories. Another improvement could
be adding remote data prefetching to perform larger requests that better
utilize the PCIe interconnect.

8.2.3 Memory placement

AMGE provides automatic data placement for array-based data structures.
While this has proven to be very e�ective for dense computations, irregu-
lar workloads might assign more work to some thread blocks. Since this
work distribution is dynamic and cannot be determined at compile time,
we propose providing AMGE-aware data structures that use user-provided
metrics to determine how computation and data should be distributed across
GPUs. This could be transparent to programmers for libraries that solve spe-
ci�c problems or with annotations provided by programmers (e.g., weighting
functions).
Currently, AMGE uses the best data placement for each kernel. This can
produce data reshape if the decomposition or distribution of an array is dif-
ferent for di�erent kernels. We can speedup this reshaping by implementing
e�cient in-place array reshaping (this translates to a transpositon) like the
ones proposed in [32, 87]. Another option is to perform a compile-time esti-
mation to compare the costs of reshaping with the costs of performing remote
accesses.
Finally, thanks to GPU paging we could propose dynamic migration and
replication that adapts to any type of workload at run time.

132

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2.4 Extensions to other environments

This thesis focuses on High Performance Computing environments and work-
loads, because they currently are the most important use cases for multi-GPU
execution. However, new types of systems and applications will bene�t from
our proposals. For example, cloud computing is used to dynamically adapt
the computing resources to the demands of the workload. However, clusters
for cloud computing are typically heterogeneous as they contain nodes with
di�erent capabilities and device topologies. HPE o�ers an e�ective abstrac-
tion to virtualize GPU devices that enables GPU as a service in the cloud.
On the other hand, such systems have di�erent requirements than HPC such
as resource sharing and load balancing. We will extend AMGE to imple-
ment system-wide policies that dynamically grow/shrink the GPU resources
allocated to the di�erent applications in the node.
Another type of platform that can bene�t from our work is mobile devices,
as they integrate CPU cores and accelerators. Thanks to HPE and AMGE,
applications are able to run seamlessly on GPU systems with both integrated
or separate memory subsystems. We will compare the execution e�ciency
that can be achieved on both systems.

133

Appendix A

Publications

A.1 Conference papers

• �Automatic Parallelization of Kernels in Shared-Memory Multi-GPU
Nodes�. Javier Cabezas, Isaac Gelado, Lluís Vilanova, Thomas B.
Jablin, Nacho Navarro, Wen-mei Hwu. In Proceedings of The 29th
International Conference on Supercomputing (ICS 2015). Newport
Beach, CA. June 2015.

• �Automatic execution of single-GPU computations across multiple
GPUs�. Javier Cabezas, Isaac Gelado, Lluís Vilanova, Thomas B.
Jablin, Nacho Navarro, Wen-mei Hwu. In Proceedings of The 23rd
International Conference on Parallel Architectures and Compilation
Techniques (PACT 2014). Edmonton, Canada. August 2014. Short
Paper.

A.2 Journal papers

• �Runtime and Architecture Support for E�cient Data Exchange in
Multi-Accelerator Applications�. Javier Cabezas, Isaac Gelado, John
Stone, Nacho Navarro, David Kirk, Wen-mei Hwu. In IEEE Transac-
tions on Parallel and Distributed Computing. 2014.

• Assessing Accelerator-based HPC Reverse Time Migration. Mauri-
cio Araya-Polo, Javier Cabezas, Mauricio Hanzich, Miquel Pericàs,
Félix Rubio, Isaac Gelado, Muhammad Sha�q, Enric Morancho, Na-
cho Navarro, Eduard Ayguadé, Jose María Cela and Mateo Valero. In

135

A.3. WORKSHOPS

IEEE Transactions on Parallel and Distributed Systems (TPDS). Jan-
uary 2011.

A.3 Workshops

• �GPU-SM: Shared Memory Multi-GPU Programming�. Javier Cabezas,
Marc Jordà, Isaac Gelado, Nacho Navarro, Wen-mei Hwu. In Proceed-
ings of the 8th Workshop on General Purpose Processor Using Graphics
Processing Units. San Francisco, USA. February 2015.

• �High Performance Reverse Time Migration on GPU�. Javier Cabezas,
Isaac Gelado, Enric Morancho, Nacho Navarro and José María Cela.
In proceedings of the XIII Workshop en Sistemas Distribuidos y Par-
alelismo (Workshop on Distributed Systems and Paralelism). Santiago
de Chile, Chile. November 2009.

A.4 Side publications

• �Enabling Preemptive Multiprogramming on GPUs�. Ivan Tanasic,
Isaac Gelado, Javier Cabezas, Álex Ramírez, Nacho Navarro, Mateo
Valero. In Proceedings of the The 41st International Symposium on
Computer Architecture (ISCA 2014). Minnesota, USA. June 2014.

• �Auto-tuning of data communication on Heterogeneous Systems�. Marc
Jordà, Ivan Tanasic, Javier Cabezas, Lluís Vilanova, Isaac Gelado, Na-
cho Navarro. In Proceedings of the IEEE Seventh International Sympo-
sium on Embedded Multicore/Many-core SoCs (MCSoC 2013). Tokyo,
Japan. September 2013.

• �Comparison based sorting for systems with multiple GPUs�. Ivan
Tanasic, Lluís Vilanova, Marc Jordà, Javier Cabezas, Isaac Gelado,
Nacho Navarro, Wen-mei Hwu. In Proceedings of the 6th Workshop
on General Purpose Processor Using Graphics Processing Units. Hous-
ton, USA. March 2013.

• �An Asymmetric Distributed Shared Memory Model for Heterogeneous
Parallel Systems�. Isaac Gelado, Javier Cabezas, Nacho Navarro, John
E. Stone, Sanjay Patel and Wen-mei W. Hwu. In Proceedings of the
Fifteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XV). Pitts-
burgh, USA. March 2010.

136

APPENDIX A. PUBLICATIONS

• �Linux Kernel compaction through cold code swapping�. Dominique
Chanet, Javier Cabezas, Enric Morancho, Nacho Navarro and Koen
De Bosschere. In Transactions on High-Performance Embedded Archi-
tectures and Compilers (HiPEAC). July 2007.

• �The Cost of IPC: an Architectural Analysis�. Isaac Gelado, Javier
Cabezas, Lluís Vilanova and Nacho Navarro. In The Third Workshop
on the Interaction between Operating Systems and Computer Archi-
tecture. San Diego (California), USA. June 2007.

• �Building a Global System View for Optimization Purposes�. Ramon
Bertran, Marisa Gil, Javier Cabezas, Víctor Jiménez, Lluís Vilanova,
Enric Morancho and Nacho Navarro. In The Second Workshop on the
Interaction between Operating Systems and Computer Architecture.
pp. 18-25. Boston (Massachusetts), USA. June 2006.

137

Bibliography

[1] AMD Graphics Core Next (GCN) Architecture. Technical report,
AMD Corporation, 2012. www.amd.com/Documents/GCN_Architecture_

whitepaper.pdf.

[2] APU 101: All about AMD Fusion Accelerated Processing
Units. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/

2012/10/apu101.pdf, 2012. AMD Corporation.

[3] C++ AMP: C++ Accelerated Massive Parallelism. https://msdn.

microsoft.com/en-us/library/hh265137.aspx, 2012. Microsoft.

[4] NVIDIA GeForce GTX 680: The fastest, most e�cient
GPU ever built. Technical report, NVIDIA Corporation,
2012. http://www.geforce.com/Active/en_US/en_US/pdf/

GeForce-GTX-680-Whitepaper-FINAL.pdf.

[5] NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect,
2012. NVIDIA Corporation.

[6] High Bandwidth Memory (HBM) DRAM. https://www.jedec.org/

standards-documents/docs/jesd235, 2013. JEDEC.

[7] CUBLAS Library User Guide. http://docs.nvidia.com/cuda/cublas/
index.html, 2014. NVIDIA Corporation.

[8] CUBLAS-XT. http://docs.nvidia.com/cuda/cublas/index.html,
2014. NVIDIA Corporation.

[9] CUSP: A Library for Sparse Linear Algebra. http://cusplibrary.

github.io/, 2014. NVIDIA Research.

[10] Global Memory for ACcelerators. https://code.google.com/p/adsm/,
2014. Barcelona Supercomputing Center and University of Illinois at
Urbana-Champaign.

139

www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
https://developer.nvidia.com/gpudirect
https://www.jedec.org/standards-documents/docs/jesd235
https://www.jedec.org/standards-documents/docs/jesd235
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cublas/index.html
http://cusplibrary.github.io/
http://cusplibrary.github.io/
https://code.google.com/p/adsm/

BIBLIOGRAPHY

[11] NVBLAS. http://docs.nvidia.com/cuda/nvblas, 2014. NVIDIA Cor-
poration.

[12] NVIDIA GeForce GTX 980: Featuring Maxwell, The Most Ad-
vanced GPU Ever Made. Technical report, NVIDIA Corporation,
2014. http://international.download.nvidia.com/geforce-com/

international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF.

[13] NVIDIA NVLINK high-speed interconnect. http://www.nvidia.com/

object/nvlink.html, 2014. NVIDIA Corporation.

[14] Tegra K1 Next-Gen Mobile Processor. http://www.nvidia.com/

object/tegra-k1-processor.html, 2014.

[15] The Matrix Market Top Ten. http://math.nist.gov/MatrixMarket/

extreme.html, 2014. US National Institute of Standards and Technol-
ogy.

[16] HSA Platform System Architecture Speci�cation 1.0. http://www.

hsafoundation.com/?ddownload=4944, 2015. HSA Foundation.

[17] AccelerEyes. ArrayFire, 2012. www.arrayfire.com/docs.

[18] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie,
and Donald Yeung. The MIT Alewife Machine: Architecture and Per-
formance. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, ISCA '95, pages 2�13, New York, NY, USA,
1995. ACM.

[19] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz.
APRIL: a processor architecture for multiprocessing. In Proceedings of
the 17th Annual International Symposium on Computer Architecture.,
pages 104�114, May 1990.

[20] Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam.
Data and computation transformations for multiprocessors. In Proceed-
ings of the �fth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP '95, pages 166�178, New York, NY,
USA, 1995. ACM.

[21] Mauricio Araya-Polo, Javier Cabezas, Mauricio Hanzich, Miquel Per-
icàs, Fèlix Rubio, Isaac Gelado, Muhammad Sha�q, Enric Morancho,

140

http://docs.nvidia.com/cuda/nvblas
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/tegra-k1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html
http://math.nist.gov/MatrixMarket/extreme.html
http://math.nist.gov/MatrixMarket/extreme.html
http://www.hsafoundation.com/?ddownload=4944
http://www.hsafoundation.com/?ddownload=4944
www.arrayfire.com/docs

BIBLIOGRAPHY

Nacho Navarro, Eduard Ayguadé, José M. Cela, and Mateo Valero. As-
sessing Accelerator-Based HPC Reverse Time Migration. IEEE Trans-
actions on Parallel and Distributed Systems, 22(1):147�162, 2011.

[22] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. StarPU: A uni�ed platform for task scheduling on
heterogeneous multicore architectures. In Proceedings of the 15th In-
ternational Euro-Par Conference on Parallel Processing, Euro-Par '09,
pages 851�862, Berlin, Heidelberg, 2009. Springer-Verlag.

[23] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta,
Rafael Mayo, and Enrique S. Quintana-Ortí. An extension of the StarSs
programming model for platforms with multiple GPUs. In Proceedings
of the 15th International Euro-Par Conference on Parallel Processing,
Euro-Par '09, pages 851�862, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower, and S. Gottlieb.
Scaling Lattice QCD Beyond 100 GPUs. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, SC '11, pages 70:1�70:11, New York, NY, USA,
2011. ACM.

[25] Amnon Barak and Amnon Shiloh. The MOSIX Virtual OpenCL (VCL)
Cluster Platform. In Proceedings of the Intel European Research and
Innovation Conference, Oct 2011.

[26] Richie D. Baud, Robert H. Peterson, G. Ed Richardson, Leanne S.
French, Jim Regg, Tara Montgomery, T. Scott Williams, Carey Doyle,
and Mike Dorner. Deepwater Gulf of Mexico 2006: America's Expand-
ing Frontier. Technical Report MMS 2002-021, 2002.

[27] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, SC '09, pages 18:1�18:11, New York, NY, USA, 2009. ACM.

[28] Laura Susan Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Wha-
ley, J. Demmel, I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling,
G. Henry, and D. Walker. ScaLAPACK: a portable linear algebra li-
brary for distributed memory computers - design issues and perfor-
mance. In Proceedings of the 1996 ACM/IEEE conference on Super-
computing, SC '96, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

141

BIBLIOGRAPHY

[29] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. Simple
but E�ective Techniques for NUMA Memory Management. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems Principles,
SOSP '89, pages 19�31. ACM, 1989.

[30] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J.
Fowler, and Alan L. Cox. NUMA policies and their relation to mem-
ory architecture. In Proceedings of the fourth international conference
on Architectural support for programming languages and operating sys-
tems, ASPLOS IV, pages 212�221, New York, NY, USA, 1991. ACM.

[31] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. Brook for gpus: Stream
computing on graphics hardware. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH '04, pages 777�786, New York, NY, USA, 2004. ACM.

[32] Bryan Catanzaro, Alexander Keller, and Michael Garland. A decompo-
sition for in-place matrix transposition. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP '14, pages 193�206, New York, NY, USA, 2014. ACM.

[33] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-
Java: the new adventures of old X10. In Proceedings of the 9th Interna-
tional Conference on Principles and Practice of Programming in Java,
PPPJ '11, pages 51�61, New York, NY, USA, 2011. ACM.

[34] Philippe Charles, Christian Grotho�, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an Object-oriented Approach to Non-Uniform Clus-
ter Computing. In Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, OOPSLA '05, pages 519�538, New York, NY, USA, 2005.
ACM.

[35] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Shea�er, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In IISWC '09, pages 44�54. IEEE
Computer Society, 2009.

[36] Cray Inc. Chapel Language Speci�cation. Version 0.96, 2014. http:

//chapel.cray.com/spec/spec-0.96.pdf.

142

http://chapel.cray.com/spec/spec-0.96.pdf
http://chapel.cray.com/spec/spec-0.96.pdf

BIBLIOGRAPHY

[37] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Paral-
lel Computer Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1997.

[38] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien
Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark
Roth. Tra�c Management: A Holistic Approach to Memory Placement
on NUMA Systems. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS '13, pages 381�394. ACM, 2013.

[39] Jose Duato, Antonio José Peña, Federico Silla, Juan C. Fernández,
Rafael Mayo, and Enrique S. Quintana-Ortí. Enabling cuda accelera-
tion within virtual machines using rcuda. In Proceedings of the 18th
International Conference on High Performance Computing (HiPC),
pages 1�10, Dec 2011.

[40] Jose Duato, Antonio José Peña, Federico Silla, Rafael Mayo, and En-
rique S. Quintana-Ortí. rcuda: Reducing the number of gpu-based
accelerators in high performance clusters. In Proceedings of the Inter-
national Conference on High Performance Computing and Simulation
(HPCS), pages 224�231, June 2010.

[41] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon,
and Stephen J. Fink. Compiling a High-level Language for GPUs: (via
Language Support for Architectures and Compilers). In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI '12, pages 1�12, New York, NY,
USA, 2012. ACM.

[42] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon
Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex
Aiken, William J. Dally, and Pat Hanrahan. Sequoia: programming the
memory hierarchy. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, SC '06, New York, NY, USA, 2006. ACM.

[43] Ondrej Fialka and Martin Cadik. FFT and Convolution Performance
in Image Filtering on GPU. In Tenth International Conference on
Information Visualization, 2006., IV 2006, pages 609�614, July 2006.

[44] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson,
Jim Hardwick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily

143

BIBLIOGRAPHY

Volkov. Parallel computing experiences with CUDA. IEEE Micro,
28(4):13�27, July 2008.

[45] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho
Navarro, and Wen-mei W. Hwu. An asymmetric distributed shared
memory model for heterogeneous parallel systems. In Proceedings of the
�fteenth international conference on Architectural support for program-
ming languages and operating systems, ASPLOS XV, pages 347�358,
New York, NY, USA, 2010. ACM.

[46] Peter N. Glaskowsky. NVIDIA's Fermi: The First Complete GPU
Computing Architecture. Technical report, NVIDIA Corporation,
2009. http://www.nvidia.com/content/PDF/fermi_white_papers/P.

Glaskowsky_Nvidia’s_Fermi-The_First_Complete_GPU_Architecture.

pdf.

[47] M. Gupta and P. Banerjee. Demonstration of automatic data parti-
tioning techniques for parallelizing compilers on multicomputers. IEEE
Transactions on Parallel and Distributed Systems, 3(2):179�193, March
1992.

[48] IMPACT Group. Parboil benchmark suite. http://impact.crhc.

illinois.edu/parboil.php, 2012.

[49] Intel Corporation. Ivy Bridge Archictecture, 2011.

[50] Intel Corporation. Intel Xeon Processor E5-1600/2400/2600/4600
(E5-Product Family) Product Families. Datasheet- Volume 2, 2012.
http://www.intel.com/content/dam/www/public/us/en/documents/

datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf.

[51] Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and
David I. August. Dynamically Managed Data for CPU-GPU Architec-
tures. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO '12, pages 165�174, New York,
NY, USA, 2012. ACM.

[52] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. John-
son, Stephen R. Beard, and David I. August. Automatic CPU-GPU
communication management and optimization. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation, PLDI '11, pages 142�151, New York, NY, USA, 2011.
ACM.

144

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://impact.crhc.illinois.edu/parboil.php
http://impact.crhc.illinois.edu/parboil.php
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf

BIBLIOGRAPHY

[53] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. Introduction to the Cell Multiprocessor. IBM J. Res.
Dev., 49(4/5):589�604, July 2005.

[54] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Kather-
ine Yelick. Impact of modern memory subsystems on cache optimiza-
tions for stencil computations. In Proceedings of the 2005 workshop on
Memory system performance, pages 36�43. ACM, 2005.

[55] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt.
Gdev: First-class GPU Resource Management in the Operating Sys-
tem. In Proceedings of the 2012 USENIX Conference on Annual Tech-
nical Conference, USENIX ATC'12, pages 37�37, Berkeley, CA, USA,
2012. USENIX Association.

[56] The Khronos Group Inc. The OpenCL Speci�cation, 2013.

[57] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achiev-
ing a single compute device image in OpenCL for multiple GPUs. In
Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming, PPoPP '11, pages 277�288, New York, NY,
USA, 2011. ACM.

[58] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,
Amir Wated, and Mark Silberstein. GPUnet: Networking Abstractions
for GPU Programs. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI'14, pages 201�
216, Berkeley, CA, USA, 2014. USENIX Association.

[59] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L.
Steele, Jr., and Mary E. Zosel. The high performance Fortran handbook.
MIT Press, Cambridge, MA, USA, 1994.

[60] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency tol-
erance through multithreading in large-scale multiprocessors. In Pro-
ceedings of the International Symposium on Shared Memory Multipro-
cessing, pages 91�101. IPS Press, 1991.

[61] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke.
Transparent CPU-GPU collaboration for data-parallel kernels on het-
erogeneous systems. In Proceedings of the 22Nd International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT '13,
pages 245�256, Piscataway, NJ, USA, 2013. IEEE Press.

145

BIBLIOGRAPHY

[62] Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended OpenMP
Programming and Tuning for GPUs. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC '10, pages 1�11, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[63] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and Op-
timization. In Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP '09, pages
101�110, New York, NY, USA, 2009. ACM.

[64] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf dietrich
Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S.
Lam. The Stanford DASH multiprocessor. IEEE Computer, 25:63�79,
1992.

[65] Zoltan Majo and Thomas R. Gross. Matching memory access patterns
and data placement for NUMA systems. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO
'12, pages 230�241, New York, NY, USA, 2012. ACM.

[66] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-
directed page placement for ccNUMA via hardware-generated memory
traces. Journal of Parallel and Distributed Computing, 70(12):1204 �
1219, 2010.

[67] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metapro-
gramming. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, HWWS '02, pages 57�68, Aire-la-
Ville, Switzerland, 2002. Eurographics Association.

[68] Paulius Micikevicius. 3D �nite di�erence computation on GPUs using
CUDA. In Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, pages 79�84, New York, NY,
USA, 2009. ACM.

[69] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S.
Muller. Memory Performance and Cache Coherency E�ects on an In-
tel Nehalem Multiprocessor System. In Proceedings of the 18th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques., pages 261�270, Sept 2009.

146

BIBLIOGRAPHY

[70] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Little�eld.
Global Arrays: A portable "shared-memory" programming model for
distributed memory computers. In Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, SC '94, pages 340�349. IEEE Computer
Society Press, 1994.

[71] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D.
Polychronopoulos, Jesús Labarta, and Eduard Ayguadé. Leveraging
Transparent Data Distribution in OpenMP via User-Level Dynamic
Page Migration. In High Performance Computing, Third International
Symposium, ISHPC 2000, Tokyo, Japan, October 16-18, 2000. Pro-
ceedings, pages 415�427, 2000.

[72] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D.
Polychronopoulos, Jesús Labarta, and Eduard Ayguadé. User-level dy-
namic page migration for multiprogrammed shared-memory multipro-
cessors. In Proceedings of 2000 International Conference on Parallel
Processing, ICPP 2000, pages 95�103, 2000.

[73] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-D FFT Library
for CUDA GPUs. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC '09, pages
30:1�30:10, New York, NY, USA, 2009. ACM.

[74] NVIDIA Corporation. CUDA C Programming Guide, 2014. http:

//docs.nvidia.com/cuda/cuda-c-programming-guide/.

[75] OpenACC-Standard.org. The OpenACC Application Programming In-
terface Version 2.0, 2013.

[76] PCI-SIG. PCI Express Base 3.0 Speci�cation, 2010. https://www.

pcisig.com/specifications/pciexpress/base3/.

[77] Gabriel Rivera and Chau-Wen Tseng. Tiling Optimizations for 3D
Scienti�c Computations. In Proceedings of the 2000 ACM/IEEE Con-
ference on Supercomputing, SC '00, Washington, DC, USA, 2000. IEEE
Computer Society.

[78] Christopher J. Rossbach, Jon Currey, and Emmett Witchel. Operating
systems must support GPU abstractions. In HotOS'13, pages 32�32.
USENIX Association, 2011.

[79] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. Scaling Large-
data Computations on multi-GPU Accelerators. In Proceedings of the

147

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.pcisig.com/specifications/pciexpress/base3/
https://www.pcisig.com/specifications/pciexpress/base3/

BIBLIOGRAPHY

27th International ACM Conference on International Conference on
Supercomputing, ICS '13, pages 443�454, New York, NY, USA, 2013.
ACM.

[80] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vcuda: Gpu-accelerated
high-performance computing in virtual machines. IEEE Transactions
on Computers, 61(6):804�816, June 2012.

[81] Albert Sidelnik, Saeed Maleki, Bradford L. Chamberlain, Maria J.
Garzarán, and David Padua. Performance Portability with the Chapel
Language. Parallel and Distributed Processing Symposium, Interna-
tional, 0:582�594, 2012.

[82] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.
GPUfs: Integrating a File System with GPUs. In Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS '13, pages 485�
498, New York, NY, USA, 2013. ACM.

[83] John E. Stone, David J. Hardy, Ivan S. U�mtsev, and Klaus Schul-
ten. GPU-accelerated molecular modeling coming of age. Journal of
Molecular Graphics and Modelling, 29(2):116 � 125, 2010.

[84] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu.
Parboil: A Revised Benchmark Suite for Scienti�c and Commercial
Throughput Computing. Technical Report IMPACT-12-01, 2012.

[85] John A. Stratton, Christopher I. Rodrigues, I-Jui Sung, Li-Wen Chang,
Nasser Anssari, Geng (Daniel) Liu, Wen mei W. Hwu, and Nady Obeid.
Algorithm and data optimization techniques for scaling to massively
threaded systems. IEEE Computer, 45(8):26�32, 2012.

[86] Yonghe Sun, Fuhao Qin, Steve Checkles, and Jacques P. Leveille. 3-
D prestack Kirchho� beam migration for depth imaging. Geophysics,
65(5):1592 � 1603, 2000.

[87] I-Jui Sung, Juan Gómez-Luna, José María González-Linares, Nicolás
Guil, and Wen-Mei W. Hwu. In-place transposition of rectangular ma-
trices on accelerators. In Proceedings of the 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
'14, pages 207�218, New York, NY, USA, 2014. ACM.

148

BIBLIOGRAPHY

[88] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho
Navarro, and Mateo Valero. Enabling Preemptive Multiprogramming
on GPUs. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA '14, pages 193�204, Piscataway, NJ,
USA, 2014. IEEE Press.

[89] Ivan Tanasic, Lluís Vilanova, Marc Jordà, Javier Cabezas, Isaac
Gelado, Nacho Navarro, and Wen-mei W. Hwu. Comparison based
sorting for systems with multiple GPUs. In Proceedings of the 6th
Workshop on General Purpose Processor Using Graphics Processing
Units, GPGPU-6, pages 1�11, New York, NY, USA, 2013. ACM.

[90] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data
Parallelism to Program GPUs for General-purpose Uses. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XII, pages
325�335, New York, NY, USA, 2006. ACM.

[91] Vinod Tipparaju and Je�rey S. Vetter. GA-GPU: extending a library-
based global address space programming model for scalable hetero-
geneous computing systems. In Proceedings of the 9th conference on
Computing Frontiers, CF '12, pages 53�64, New York, NY, USA, 2012.
ACM.

[92] Jonas Tölke. Implementation of a Lattice Boltzmann kernel using the
Compute Uni�ed Device Architecture developed by NVIDIA. Comput-
ing and Visualization in Science, 13(1):29�39, 2010.

[93] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra.
Dense linear algebra solvers for multicore with GPU accelerators. In
Proceedings of the 2010 IEEE International Symposium on Parallel
Distributed Processing, IPDPS 2010, pages 1 �8, April 2010.

[94] Sean Treichler, Michael Bauer, and Alex Aiken. Language support for
dynamic, hierarchical data partitioning. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA '13, pages
495�514, New York, NY, USA, 2013. ACM.

[95] Carlos Villavieja, Vasileios Karakostas, Lluís Vilanova, Yoav Etsion,
Álex Ramirez, Avi Mendelson, Nacho Navarro, Adrián Cristal, and Os-
man S. Unsal. Didi: Mitigating the performance impact of tlb shoot-
downs using a shared tlb directory. In 2011 International Conference

149

BIBLIOGRAPHY

on Parallel Architectures and Compilation Techniques (PACT), pages
340�349, Oct 2011.

[96] Michael E Wolf and Monica S Lam. A data locality optimizing algo-
rithm. ACM Sigplan Notices, 26(6):30�44, 1991.

[97] Michael Wolfe. Implementing the PGI Accelerator Model. In Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, GPGPU '10, pages 43�50, New York, NY, USA,
2010. ACM.

[98] Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev Thakur,
Susan Coghlan, Heshan Lin, Gaojin Wen, Jue Hong, and Wu-chun
Feng. Transparent accelerator migration in a virtualized gpu envi-
ronment. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CC-
GRID '12, pages 124�131, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[99] Shucai Xiao, Pavan Balaji, Qian Zhu, Rajeev Thakur, Susan Cogh-
lan, Heshan Lin, Gaojin Wen, Jue Hong, and Wu chun Feng. Vocl:
An optimized environment for transparent virtualization of graphics
processing units. In In Proceedings of the 1st Innovative Parallel Com-
puting (InPar), 2012.

[100] Yili Zheng, Costin Iancu, Paul Hargrove, Seung-Jai Min, and Kather-
ine Yelick. Extending Uni�ed Parallel C for GPU computing. SIAM
Conference on Parallel Processing for Scienti�c Computing, 2010.

150

	Introduction
	Objectives and contributions
	Multi-GPU Reverse Time Migration
	Data sharing between the CPU and multiple GPUs
	Shared memory programming for multiple GPUs
	Transparent parallelization of GPU programs to run on multiple GPUs

	Organization

	Reference Hardware and Software Environment
	Graphics Processing Units
	Memory technologies

	Multi-GPU systems
	Interconnect
	GPU NUMA systems

	Programming models for GPU-based systems
	C for CUDA
	OpenCL

	State of the Art
	Automatic CPU/GPU memory coherence
	System support and GPU virtualization
	Automatic multi-GPU execution
	Compiler-based transparent multi-GPU execution
	Compiler-based multi-GPU code generation
	Multi-GPU libraries

	Languages for multi-GPU execution

	Guiding Example: Reverse Time Migration
	The Reverse Time Migration computation
	Seismic imaging

	RTM base implementation
	Memory
	Input/Output
	Computation

	Porting RTM to GPUs
	Data I/O schemes
	GPU kernels

	RTM implementation on other architectures
	General purpose CPUs
	Cell B.E
	FPGA

	Performance evaluation
	Summary

	Heterogeneous Multi-GPU Execution
	Programmability issues under CUDA
	RTM on multiple GPUs
	Performance considerations

	The Heterogeneous Parallel Execution model
	Multi-threaded GPU sharing
	UVAS and remote memory access
	Multi-threaded ADSM

	Performance evaluation of the HPE model
	Experimental methodology
	Benchmarks
	Inter-GPU data transfers
	Application benchmarks
	Communication with I/O devices
	Inter-node communication (MPI)

	Summary
	Impact on CUDA 4/5/6

	Shared Memory GPU Programming
	Multi-GPU NUMA systems
	Experimental methodology
	Hardware setup
	Microbenchmarks
	Multi-GPU applications

	Performance analysis of the remote access mechanism
	GPU-SM: towards shared memory multi-GPU programming
	Distributed memory vs shared memory
	Writing code for GPU-SM
	Current limitations

	Implementation and performance evaluation of GPU-SM applications
	FDTD
	Image filtering

	Summary

	Automatic Multi-GPU Execution
	AMGE overview
	An example: matrix multiplication

	Computation and data distribution
	Compiler analysis
	Run-time distribution

	AMGE implementation details
	Array data type
	Source-to-source transformations
	Run-time distribution selection policy

	Experimental methodology
	Performance evaluation
	Indexing overhead
	Multi-GPU performance
	Impact of remote accesses on performance
	Comparison with previous works
	Sparse benchmarks

	Summary

	Conclusions and Future Work
	Conclusions
	Impact

	Future work
	Full system memory coherence
	Hiding the costs of remote accesses
	Memory placement
	Extensions to other environments

	Publications
	Conference papers
	Journal papers
	Workshops
	Side publications

