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Abstract

The past several decades have witnessed a major evolution in medical imaging techniques, making
medical images become commonplace in healthcare systems and an integral part of a patient medical
record. Among the existing medical imaging modalities, X-ray imaging is one of the most popular
technologies due to its low cost, high resolution and excellent capability to penetrate deep within
tissue. In particular, X-ray angiographies —which use minimally invasive catheterization— and X-
ray imaging are widely used to identify irregularities in the vascular system. X-ray angiography
images can be classified into two types: general X-ray angiography (GXA) images, which present
blood vessels in several body parts like arms, legs, foots, etc.; and coronary angiogram video squences
(CAVSs), which only focus on coronary vessel trees for diagnosing cardiovascular diseases. Because of
the differences in functions, these two types of images have different features: GXA images normally
have high spatial resolutions (the width and height sizes) but low temporal resolution (the number

of frames), while CAVSs usually have lower spatial resolutions but higher temporal resolution.

Due to the increasing number of medical studies using X-ray angiography images and the need
to store and share them, compression of these images is becoming critical. Lossy compression has
the advantage of high data reduction capability, but it is rarely accepted by medical communities
because of the modification of data that may affect the diagnosis process. Lossless compression
guarantees perfect reconstruction of the medical signal, but results in low compression ratios. Diag-
nostically lossless compression is becoming the preferred choice, as it provides an optimal trade-off
between compression performance and diagnostic accuracy. In diagnostically lossless compression,
the clinically relevant data is encoded without any loss while the irrelevant data is encoded with
loss. In this scenario, identifying and distinguishing the clinically relevant from the clinically irrele-
vant data in medical images is the first and usually most important stage in diagnostically lossless

compression methods.

In this thesis, two diagnostically lossless compression strategies are developed. The first one is
proposed for GXA images. The second one if proposed for CAVSs. For GXA images, the clinically
relevant focal area in each frame is first identified; and then a background-suppression approach is
employed to increase the data redundancy of the images and hence improve the compression perfor-
mance. For CAVSs, a frame-identification procedure is implemented to recognise the diagnostically
unimportant frames that do not contain visible vessel structures; then, lossy compression is applied

to these frames, and lossless compression is applied to the other frames.
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Several compression techniques have been investigated for both types of images, including the
DICOM-compliant standards JPEG2000, JPEG-LS and H.264/AVC, and the latest advanced video
compression standard HEVC. For JPEG2000, multicomponent-transform and progressive lossy-to-
lossless coding are also tested. Experimental results suggest that both the focal-area-identification
and frame-identification processes are automatic in computation and accurate in clinically relevant
data identification. Regarding the compression performance, for GXA images, when compared to
the case of coding with no background-suppression, the diagnostically lossless compression method
achieves average bit-stream reductions of as much as 34% and improvements on the reconstruction
quality of up to 20 dB-SNR for progressive decoding; for CAVSs, the frame-identification followed
by selective lossy & lossless compression strategy achieves bit-stream reductions of more than 19%

on average as compared to lossless compression.
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Chapter 1

Introduction

1.1 Motivation

Medical images have become commonplace in healthcare systems and an integral part
of a patient medical record. It is hard nowadays to imagine how diagnosis could be
accomplished without medical images. There exist several medical imaging modali-
ties that allow studying the functionality and anatomy of the human body in a non-
or minimally- invasive manner, including X-ray imaging, ultrasonography, magnetic
resonance and radionuclide [1]. Since the world-wide growth of the ageing population,
the vascular system diseases (e.g., coarctation of the aorta, arteriosclerosis, etc.) are
the main risks for human health today [2, 3]. Angiography, which uses catheteriza-
tion with a particular “contrast agent”, was developed and is now one of the most
popular existing imaging modalities. Angiography images help improve the diagnosis
of vascular system diseases. Among the different angiography-combined modalities,
X-ray angiography using organic iodine compounds as the “contrast agent” remains
the gold standard for identification of underlying blood vessels, due to its low cost,
high resolution and excellent capability to penetrate deep within tissue [4].

X-ray angiography images can be divided into two categories: images aiming only
at the coronary vessel trees, called Coronary Angiogram Video Sequences (CAVSs);
and images aiming at the other parts of the human body like arms, legs, feet, etc.,

called General X-ray Angiography (GXA) images. A huge number of medical studies
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2 CHAPTER 1. INTRODUCTION

using X-ray angiography are processed in today’s world. For instance, the Ameri-
can College of Cardiology National Cardiovascular Data Registry, which collects data
from over 80% of the hospitals in the United States, has reported more than 12 million
coronary angiography and percutaneous coronary intervention procedures performed
from 1998 to 2011 [5], and this figure is only expected to grow. Recent advances
in telemedicine require that X-ray angiography images be efficiently transmitted over
networks of limited bandwidth. Moreover, a recent trend towards facilitating the gen-
eral public on-line access to their own medical records has also become of significant
interest to major companies and healthcare institutions [6]. Considering the usually
large file size of X-ray angiography images, this medical data hence poses heavy de-
mands on storage and transmission resources, which makes the compression of these

images become critical.

Regarding compression strategies, lossy compression can achieve a high compres-
sion ratio but it is rarely accepted by the medical community [7]; the lossless com-
pression obtains perfect reconstruction for medical data, but it yields low compression
ratios. In this scenario, diagnostically lossless compression, which compresses the clin-
ically relevant data without any loss and encodes the irrelevant data with loss, turns
out to be an optimal solution dealing with medical data to get high compression
performance while maintaining diagnostic accuracy. Regarding compression tech-
niques, those which are compatible with the Digital Imaging and Communications in
Medicine (DICOM) standard [8] and its associated Picture Archiving and Communi-
cation Systems (PACS) [9] are preferred; they include JPEG2000 [10], JPEG-LS [11]
and H.264/AVC [12]. The latest HEVC [13] coding technique is also investigated

because of its competitive compression ability.

This thesis started in September 2011 studying the state-of-the-art diagnostically
lossless compression strategies for X-ray angiography images. From September 2011
to July 2013, the research focused on developing the compression strategies for GXA
images. After this research was successfully finished, our research shifted to the
compression of CAVSs, which was implemented during September 2013 and April
2015. Based on the different features of GXA images and CAVSs, we developed

two main strategies. The first one is Background suppression, which uses image
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segmentation to separate the Region Of Interest (ROI) and the clinically irrelevant
background areas in each single frame of the GXA image, and suppresses the data
in background areas to improve the compression performance. The second one is
Frame identification, which distinguishes the clinically relevant and irrelevant frames,

in order to exploit further the extra data redundancy in the temporal domain of the
CAVS.

1.2 X-ray angiography images

a) Image01

—

d) Image04 e) Image05 f) Image06

Figure 1.1: Sample frames of three different GXA images (row 1) and three CAVSs (row
2).

As previously mentioned, X-ray angiography images can be categorized into two
types: GXA images and CAVSs. Both types of images employ the catheterization

process with organic iodine compounds as the “contrast agent”. The X-ray imaging
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projector is used to record the flow of the injected “contrast agent” through the blood

vessels over a specific period of time, obtaining a collection of frames. Examples of

several frames from different GXA images and CAVSs are presented in Figure 1.1.

Because of the differences in functions, GXA images and CAVSs have several

distinguishable features:

(1)

Number of frames: as coronary vessels are closer to the heart with a fast blood
flow speed, CAVSs usually use a high CineRate! (i.e., a low FrameTime?) to
trace the coronay vessel trees over several heart cycles, resulting in a large
number of frames. On the other hand, GXA images are normally acquired using
a lower CineRate (i.e., a higher FrameTime) with less imaging time because of
the slower flow speed of blood, which generates less frames. We present the

values of CinRate, FrameTime and the number of frames for our experimental
corpus of GXA images and CAVSs in Table 1.1.

Spatial resolution: regarding the 2-dimensional spatial resolution of each single
frame, GXA images usually have higher width and height sizes than CAVSs,
in order to contain a big body region (e.g., one foot). For the tested data in

Table 1.1, for instance, the area size of a GXA frame is 4 times bigger than that
of a CAVS frame.

Proportion of background areas: both GXA images and CAVSs have background
(BG) areas that do not contain any medical related information. These BG
areas are derived from the geometric masks applied during the imaging process
for presentation purposes in order to reject any of the pixels located outside of
ROI [14]. As shown in Figure 1.1 and Table 1.1, GXA images normally have
higher proportion of BG areas than CAVSs.

Table 1.1 lists the mentioned data of our experimental image corpus. The image

corpus includes 60 GXA images and 72 CAVSs. More details of the experimental

data are introduced in sections 2.2 and 3.2

'DICOM Tag: (0018,0040). Description: Number of frames per second.
2DICOM Tag: (0018,1063). Description: Nominal time (in msec) per individual frame. Note

that: FrameTime =

1000 msec
CineRate *
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Table 1.1: Information of GXA images and CAVSs

Image type (Number CineRate Frame Spatial resolution background
of images) (FrameTime) Number (width x height) area in %
4~1 2~ 29 9.80% ~ 59.47%
GXA Images (60) (250 msec ~ 1000 msec) | (in average 7.63) 1024 > 1024 (in average 28.82%)
15 41 ~ 151 6.34% ~ 9.20%
CAVSs (72) (66.67 msec) (in average 79.07) 512 512 (in average 7.34%)

1.3 Medical Image Compression

During the last two decades, because of the rapid development and wide use of dig-
ital medical image data, PACS and its associated DICOM standard were developed
to facilitate the storage and exchange of medical images and videos within medical
centers and hospitals.

Both the DICOM standard and the definition of PACS are briefly introduced
below. The image compression techniques and strategies applied on medical images

are also introduced here.

1.3.1 DICOM standard and PACS
DICOM

DICOM was first developed by the American College of Radiology (ACR) and Na-
tional Electrical Manufacturers Association (NEMA) in 1985, in order to unify the
output formats of medical images generated by the imaging machines from differ-
ent manufacturers. The latest version of DICOM is “The DICOM Standard 2015b”,
which is presently under the management from the Medical Imaging & Technology
Alliance - a division of NEMA [§].

DICOM standard now comprises 20 main parts, covering guidelines from file
formats definition to network communication protocols. Among these parts, the
“DICOM Part 5: Data Structures and Encoding” specifies the compressed formats
allowed in the standard, including: JPEG [15], Run Length Encoding [16], JPEG-
LS [11], JPEG2000 [10], MPEG-2 [17], and H.264/AVC [18]. JPEG2000, JPEG-LS

and H.264/AVC are chosen in our experiments due to their unique advantages, which
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are indicated in the following section 1.3.2; moreover, the latest HEVC technique is

also applied in our proposals, and is also briefly introduced in section 1.3.2.

PACS

PACS is developed for providing economical storage and efficient access of various
medical image records of different modalities and remote locations. A PACS system
is primarily comprised of four components: image acquisition modules for obtaining
input medical images, data management workstations for displaying and processing
these images, storage infrastructures for archiving the images and the related medical
reports, and a secured transmission network for connecting another PACS and sharing
the medical data [9, 19]. Note that, DICOM is the universal format used in PACS

image storage and transfer [19].

1.3.2 Image compression techniques

The global generation of digital multimedia data (including images and videos) has
never ceased, which is posing an increasing pressure to the finite worldwide storage
and transmission capacity. Hence, various advanced image compression techniques
were proposed during the last two decades. Among these techniques, several have been
accepted by the DICOM standard, helping medical centers and hospitals accomplish
the compression of this legally and diagnostically sensitive data [20]. We would like to
introduce the following four image compression techniques and their unique features.

All these four techniques are employed in the experiments of this thesis.

JPEG2000

Thanks in part to JPEG [15], a compression technique for still images based on
Discrete Cosine Transform (DCT), developed by members from the International
Telecommunication Union (ITU) and the International Organization for Standard-
ization (ISO) during the beginning of 1990s, Internet nowadays is full of images.
However, JPEG compression misses several features that are required in some pro-

fessional fields (e.g., the random codestream access and processing feature needed in



1.5.

MEDICAL IMAGE COMPRESSION 7

telemedicine over networks of limited bandwidth). Thus, JPEG2000 [10], a new cod-
ing system for still images with more features was built in the end of 1990s. JPEG2000
is based on discrete wavelet transform (DWT) and uses Embedded Block Coding with
Optimized Truncation of the embedded bitstreams (EBCOT) [21] algorithm as the

basic encoding engine. Several significant features of JPEG2000 are listed here:

)

Superior low bit-rate performance: compared to the JPEG standard, JPEG2000
achieves a superior reconstruction performance at low bit-rates, which is useful

for the image transmission through a network with limited bandwidth.

Region-of-Interest Coding: images normally contains some areas more impor-
tant than the others. The Region-of-Interest Coding feature is developed for
this case, where the important areas are encoded with high quality and the rest
with lower quality. This feature is widely used in medical image compression

for achieving the diagnostically lossless compression.

Scalability and bitstream parsing: this feature allows JPEG2000 to decode the
image with different resolutions or qualities, which enables the image retrieval

without decoding the whole image.

Progressive transmission by pixel accuracy and resolution: this feature allows
the image to be reconstructed with increasing pixel accuracy or spatial resolu-

tion.

For more details of the architecture and features of JPEG2000 standard, please
refer to [22] and [23].

Available implementation software for JPEG2000 standard Part 1 (ISO/IEC 15444-
1) include: Kakadu [24] and BOI [25]; both are used in the experimental part of the

thesis.

JPEG-LS

JPEG-LS [11] uses LOCO-I (LOw COmplexity LOssless COmpression for Images) [26]

algorithm as its core encoding engine to achieve lossless and near-lossless compression
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for still images. The advantage of LOCO-I algorithm is that it attains compression
ratios similar or superior to those state-of-the-art techniques based on arithmetic
coding (e.g., JPEG2000 lossless compression), but with a much lower computing
complexity level [27].

The LOCO-I algorithm was developed at Hewlett-Packard Laboratories. LOCO-
I/JPEG-LS implementation is available in Hewlett-Packard Labs webpage [28].

H.264/AVC

H.264/AVC [18] video coding standard was developed about 10 years ago to replace
the even older MPEG-2 video coding standard (also known as H.262). It uses block-
based DCT and motion-compensation as the basic processes to encode the video
contents [29]. Today H.264/AVC is the most commonly used format for recording,
encoding and transferring video data. The following highlighted features are included

in H.264/AVC for achieving an enhanced coding efficiency [12]:

1) H.264/AVC supports more selection of motion compensation block sizes and

shapes than any previous standard.

2) The motion-compensated prediction signal can be weighted and offset with val-
ues specified by the encoder, which makes the encoder more flexible for various

compression purposes.

3) Small block-size transform is used in H.264/AVC, which reduces the “ringing”

artifacts.

4) The advanced entropy coding method — arithmetic coding — is included in
H.264/AVC to get improved compression performance compared to the pre-

vious standards.

For more of the advanced features of H.264/AVC standard, please refer to [12].
The reference software of H.264/AVC is available at [30].
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HEVC

The appearance of videos with beyond-HD formats (e.g., 4k x 2k or 8k x 4k resolu-
tion) and the expectation of growing popularity of these formats have made H.264/AVC
less efficient than before. Also, the increasing popularity of mobile devices and tablet
PCs that have limited computing capability also calls for a new well-designed video
coding standard that supports parallel processing.

HEVC (High Efficiency Video Coding) is a directly succeeding project of H.264/AVC
video coding standard [13]. It has been developed to be compatible with all the exist-
ing applications of H.264/AVC, but can also address the aforementioned two issues:

the increased video resolution and the use of parallel processing architectures. Com-
pared to H.264/AVC, the highlighted features of HEVC include [31]:

1) HEVC supports more block sizes (from 64 x 64 to 8 x 8 pixels), and square or
rectangular (non-square) prediction and transform units. The usage of larger
block sizes benefits the compression of videos with HD or beyond-HD resolu-

tions, since larger smooth regions are contained in these videos.

2) Several mechanisms are applied in HEVC for supporting parallel encoding and

decoding, including tiles and wavefront parallel processing (WPP).

3) More intra-prediction modes are supported in HEVC.

4) More integer transforms are supported, with size from 32 x 32 to 4 x 4 and

shapes of Square Or even nomn-square.

For detailed comparison between HEVC and H.264/AVC, and the compression
performance of HEVC, please refer to [31] and [13].

The reference software of HEVC is available at [32], which includes a detailed soft-
ware manual and several ready-to-use configuration profiles (e.g., Intra main, Random

Access and Random Access main RExt, which are employed in the thesis).
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1.3.3 Medical image compression strategies

In the past 5 years, many proposals using various compression strategies were pre-
sented for different types of medical images: a segmentation and JPEG2000 compres-
sion combined strategy was proposed for X-ray computed tomography (CT) images
in [33]; a similar idea was used in [34] for medical ultrasound images, where the par-
ticular fan-shaped ROI was first extracted, and the lossy compression with different
quantization values was applied to the ROI and non-ROI, respectively; in [35], the
authors discussed the influence of noise-filtering process in JPEG2000 compression of
X-ray CT images, and a correlation modeling strategy for coding this type of 3-D im-
ages was developed in [36]; the lossless compression for DNA microarray images using
DICOM-compliant JPEG2000 technique was researched in [37], and distortion met-
rics for lossy compression of the DNA microarray images were also investigated [38];
in [39] the lossless compression of medical images using HEVC method was analysed,
which was then applied to digital pathology images in [40] and [41].

Regarding the compression strategies for X-ray angiography images, several con-

tributions were presented during the last decade:

1) In [42] the angiography image was first split into equal size macroblocks; those
blocks containing vessel parts were then detected through standard deviation
computing, and a block-based adaptive quantization strategy using H.264/AVC

technique was applied to the image.

2) [43] proposed a wavelet-based contourlet transform compression method. ROI
was first identified through motion detection approach. The coefficients results
from contourlet transform were then combined with the ROI results, gaining
more data redundancy by removing the low-level contourlet coefficients belong-

ing to non-ROI areas.

3) [44] introduced a wavelet based ROI compression strategy. The ROI was also
defined by motion detection approach, which only gave a coarse vessel region

and could miss the tiny but important vessel branches area.
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4) Similar to [44], in [45], a segmentation process was also applied to separate ROI
and non-ROI areas in angiography images. The ROI areas were compressed
without loss but the non-ROI areas were lossy compressed. The method of [45]
has the same shortage as [44], i.e., the segmentation of ROI is not accurate,

which could wrongly consider some tiny vessels as non-ROI.

The methods of [42] and [43] are lossy compression approaches, which the medical
community is usually reluctant to deal with. The proposed methods in [44] and [45],
and also the methods of [33] and [34] all belong to diagnostically lossless compression

strategies, which have inspired the contributions in this thesis.

1.4 Thesis contribution and organization

The main contributions of this thesis are the two diagnostically lossless compres-
sion strategies (i.e., the Background Suppression strategy and Frame Identification
strategy) developed for the GXA images and CAVSs, respectively. The former con-
tribution has originated one conference paper [46] and one journal paper (currently
under review) [47], and the latter contribution has originated another journal paper
(currently under review too) [48].

Chapter 2 introduces the Background Suppression strategy in details. Experimen-
tal results using 60 GXA images are also included in Chapter 2 for evaluating not only
the ROI segmentation performance, but also the improved compression performance.

In Chapter 3, all stages of the Frame Identification strategy are presented. Suffi-
cient experimental results are also provided to prove the high accuracy of the identi-
fication process, and to show the compression benefits of this strategy.

Finally, Chapter 4 concludes this thesis and indicates the future works after this

research.
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Chapter 2

Background suppression strategy

for GXA compression

General X-ray angiography (GXA) images are widely used to identify irregularities
in the vascular system. Because of their high spatial and time resolutions and the in-
creasing amount of X-ray angio images generated, coding of these images is becoming
essential.

This chapter proposes a diagnostically lossless coding method based on auto-
matic segmentation of the focal area using ray-casting and a-shapes. The diagnosti-
cally relevant ROI is first identified by exploiting the inherent symmetrical features
of the GXA images. The background is then suppressed and the resulting images
are encoded using lossless and progressive lossy-to-lossless coding methods, includ-
ing JPEG-LS, JPEG2000, H.264/AVC and HEVC. Experimental results on a large
set of GXA images suggest that the proposed method correctly identifies the ROI.
When compared to the case of coding with no background suppression, the method
achieves average bit-stream reductions of as much as 34% and improvements on the
reconstruction quality of up to 20 dB-SNR for progressive decoding.

The chapter is organized as follows: our proposed compression strategy is de-
scribed in Section 2.1. Section 2.2 presents an extensive experimental evaluation for
the cases of diagnostically lossless and progressive lossy-to-lossless coding. This sec-

tion also discusses, in collaboration with physicians from Hospital Fundacié Mutua

13
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de Terrassa, Spain, the accuracy of the proposed segmentation technique. Section 2.3

concludes this chapter.

2.1 Proposed coding scheme

The proposed coding method is based on the fact that improvements in coding effi-
ciency may be achieved by exploiting some of the inherent symmetrical features of
medical images [49, 50]. For example, in GXA images, there are usually two dis-
tinguishable areas: the ROI, depicting skeleton and tissues, and the BG, depicting
non-clinically relevant information, as shown in Figure 2.1. Note that in these sample
frames, the ROI is located in the center of the image (i.e., the focal area) and the BG
features radially symmetrical properties around the ROI. Based on this observation,
we focus on exploiting these symmetrical features to attain automatic segmentation

and thus increase coding efficiency.

a) Image01 b) Image02 c¢) Image03

Figure 2.1: Sample frames of three different GXA images.

Our method, as illustrated in Figure 3.2, consists of two main stages, the first
stage deals with automatic ROI segmentation, while the second stage focuses on data
coding. The automatic ROI segmentation is based on ray-casting and a-shapes, which
provide a high level of accuracy with low computational complexity. After segmenta-
tion, our method suppresses the BG from the image to increase data redundancy. In

the second stage, the method employs lossless or progressive lossy-to-lossless (PLL)
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coding on the BG-suppressed image. In the following sections, we describe in more

detail these two stages.

Segmentation stage

P EERES Boundary Boundary
op| FrCprocessing *:-} approximation -b-) refinement =

step
Averaged step Boundary pixels step
GXA Image fr'unc* . '5 P
b ame image

> BG suppression step - Y <«
1 Mask

Coding stage

: PLL / Lossless compression g
The encoded image <= on the BG-suppressed image -

BG-suppressed
image

Figure 2.2: Block diagram of the proposed diagnostically lossless coding method.

2.1.1 Segmentation Stage

The segmentation stage comprises four steps: 1) preprocessing; 2) boundary approx-

imation; 3) boundary refinement; and 4) BG suppression.

Preprocessing step

This step reduces the amount of noise in the data and exploits correlations among
frames. GXA images contain random noise introduced by unblocked secondary radi-
ation, poor film-developing and handling, or by the digitization process [51], which
may affect the segmentation accuracy. To reduce this random noise, several tech-
niques may be employed, such as neighbor average filtering [52], median filtering [53],
non-local means [54] and 3D block matching [55]. It is highly desirable, however, to
minimize the blurring effect that these common techniques have on the edge informa-
tion, as edges are a prominent feature for ROI identification. To this end, we employ
anisotropic diffusion filtering in each frame as it is capable to efficiently reduce noise

while preserving edge information [56].
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Since GXA images commonly consist of several frames that are usually highly
correlated, a simple averaging operation may be used after noise reduction to gener-
ate a single frame that preserves the boundary between the ROI and BG. Here, we
employ an averaging operation defined as I,,4(z,y) = (Z?Zl If(x,y))/F, where F'
is the number of frames in the GXA image, and I;(z,y) and I,,4(x,y) denote the
intensity value of the spatial position (z,y) in frame f and the average frame I,,,,
respectively. By employing this simple averaging operation, we reduce the computa-
tional complexity of subsequent steps since segmentation can now be performed on

the average frame and the results be used to identify the ROI in each frame.

Boundary approximation step

This second step computes a coarse approximation of the location of the boundary
between the ROI and BG on the average frame /,,, by employing ray-casting and
the image (pixel intensity) profiles computed along a set of rays [57]. Let P denote
the center of .4, R,(P,6,) denote ray n projected from P towards the periphery at
an angle 0, (see Figure 2.3(a)), and A,, denote the image profile along ray R, (P,0,)
computed using nearest-neighbor interpolation (see Figure 2.3(b)). The image profile
A,, provides information about important intensity changes along the ray R, (P,0,),
which may be used to locate the position of the boundary between the ROI and BG.
Due to the symmetrical properties of the ROI, important intensity changes along
ray R,(P,0,) usually occur at a very similar Euclidean distance from P as in ray
R,(P, 0, + ). We call such two rays, R,(P,0,) and R, (P, 6, + ), symmetrical rays.
Figure 2.3(a) illustrates this concept by depicting rays R;(P,6;) and Ry(P,6,), and
their symmetrical rays R;(P,0; + ) and Rs(P,0s + 7). Figure 2.3(b)-(c) plots the
corresponding image profiles Ay, A1, and Ay, Ay, .. Note that the first significant
intensity changes along the image profile plot, moving from the periphery towards P,
usually happen at the boundary between ROI and BG and therefore, may be used to
approximate the location of this boundary.

Nevertheless, in many cases, the intensity values of ROI and BG tend to be very
similar in the boundary region for some of the rays, making it challenging to approxi-

mate the boundary location by simply analyzing the image profile along such rays. To
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Figure 2.3: (a) Two pairs of symmetrical rays projected from P (red dot): Ri(P,0;),
Ri(P,0; + ), and Ra(P,62) and Ry(P,02 4+ m); (b)- (c) the corresponding image profiles.

overcome this, we exploit the radially symmetrical properties of ROIs and estimate
the location of the boundary along a challenging ray by using the location of the first
significant intensity change along the corresponding symmetrical ray. This idea is
illustrated in Figure 2.4. We follow the next procedure and criterion to identify the

significant intensity changes and determine the location of the boundary along a pair
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of symmetrical rays:

Intensity value

g

-~ Aq along Ry(P,84)

— Ay, along Ry(P,0,+m)
®G 100 200 300 400 500 600 700
Euclidian distance from P

Figure 2.4: Sample case where the boundary is hard to locate in the intensity profile of one
ray (solid ray) but it is easy to detect in the corresponding symmetrical ray (dashed ray).

1. For each pair of symmetrical rays, R, (P,0,) and R, (P, 6, + ), we compute the

corresponding image profiles, A, and A, .

2. For each pair A, and A, .., we compute the corresponding intensity-change
sets, denoted by C,, and C,, ., respectively. An intensity-change set stores the
largest intensity change within a small window w;. Figure 2.5 depicts a sample

computation of C),.

3. We compute the maximum value M = maz{C,, C,,,,} and threshold T' = M xt,
where 0 <t < 1.

4. In the intensity-change set where M is found, we search for the first element

larger than 7', denoted by B,, (or Byix).

5. We estimate B, (or B,) in Cy4, (or C,) by searching for the largest element
within a window of size wy centered in C,,[B,] (or C,,[B+x]) (see Figure 2.6).
Positions A, [B,] and A, .[Bn+x] correspond to the position of the boundary
along rays R, (P,0,) and R, (P,0, + 7), respectively.

6. We repeat steps 1-5 for all pairs of symmetrical rays.
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Section 2.2 reports on the values for parameters ¢, w; and ws that result in the

best performance for the data set used in the experimental evaluation.

‘8 [il2]2]21212|g2]72]

n

Figure 2.5: Example of an image profile A,, and the corresponding intensity-change set C,,
computed with a window of width w; = 3.

Cnm[Bn"u]
Cn+7[ ‘
Ci8) CjB,.)
— w, ——

Figure 2.6: Sample estimation of B,: By is used to determine B, in C, by searching for
the largest element within a window of size wy centered in C,[By4r].

Boundary refinement step

The previous step results in a set of locations that approximates the position of
the boundary between the ROI and BG. Figure 2.7(a)-(b) show examples of such
locations, depicted as white pixels over a black background, for an average frame I,,,.
Note that these pixels only provide a coarse approximation of the overall boundary,
for instance in the zoom area in Figure 2.7(b) we can see that several pixels are

cluttered in a small area and disconnected with the other pixels. In order to refine the
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boundary location and compute a closed contour, we link these pixels by employing
a-shapes [58]. The objective is to create a closed contour that accurately describes
the boundary between ROI and BG, so that this contour can be used to create a

binary mask.

@@
@@

(© () (0

Figure 2.7: (a)-(b) Boundary points for I,,, of Image02 depicted in Figure 2.1. (c)-(d)
Points (red squares) where an edge can be traced for a closed disk with r = -1/a. (e) Inner
and outer contours computed with a = 0.01.

Let us define a disk of radius r = 1/, such that if @ > 0, we obtain a closed disk;
if @« = 0, we obtain a closed half-plane; and if o < 0, we obtain the closure of the
complement of a closed disk. Let us assume that the set of pixels corresponding to
the boundary location forms a set of points on a plane, where the location of each
pixel ¢ denotes the location of point P; in the point set. Based on this assumption,

we compute a closed contour as follows:

1. For each point P; in the point set, we create a vertex V.

2. We create an edge between two vertices V; and V; whenever there exists a disk
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of radius 1/« containing the entire point set and which has the property that P;
and P; lie on the disk boundary.

After employing a-shapes we obtain a closed contour with less distortion than
those generated by simple morphological operations like closing or dilation. Fig-
ure 2.7(c) shows those points —squared in red in the figure— where an edge can be
traced for a closed disk of radius r = —1/a, with a = 0.01. Note that such small r
values may result in additional closed contours inside the set of boundary points (see
Figure 2.7(e)). In such cases, we select the outermost contour as the ROI boundary

to ensure that the whole ROI is inside the contour.

BG suppression step

After computing the closed contour between the ROI and BG, we compute a binary
mask by setting the intensity values of those points inside the contour to 1 (ROI) and
those outside the contour to 0 (BG). We then achieve BG suppression by applying a
logical AND operation between this mask and each frame of the GXA image, which
sets the BG to zero. There is no need to transmit this mask. Mask results and

BG-suppressed images are reported in Section 2.2.

2.1.2 Coding Stage

In this work, we focus on four coding techniques, JPEG-LS, JPEG2000, H.264/AVC
and HEVC. All of them support lossless coding and provide excellent coding per-
formance. Note that only JPEG-LS, JPEG2000 and H.264/AVC are included in
DICOM. We are particularly interested in JPEG2000 as this coding standard offers
a richer set of coding features than any other lossless coding method. These fea-
tures include scalability by resolution and quality and the capability to exploit data
redundancies among frames of GXA images through the use of a multi-component
transform.

It is important to mention that BG-suppressed frames of GXA images usually
contain sharp boundaries between BG and ROI that may generate a large amount

of high frequencies responses during the spatial wavelet transform (WT) process
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of JPEG2000, penalizing the coding performance. The shape-adaptive version of
JPEG2000 (SA-JPEG2000) [59] is designed to overcome this issue. SA-JPEG2000
modifies the spatial WT and bit-plane encoder of JPEG2000 so that only the ROI
data is processed, without the need to encode the BG. SA-JPEG2000 also allows
for the use of multi-component transforms but requires that the binary mask used
to identify the ROI be encoded and transmitted. SA-JPEG2000 may then provide
a theoretical optimal coding performance for ROI coding using JPEG2000. In our
evaluation results we consider SA-JPEG2000 as the benchmark coding method.

2.2 Experimental results

We performed extensive performance evaluations to verify the accuracy and advan-
tages of our proposed method. In particular, we carried out two different sets of
evaluations aimed at assessing: a) the segmentation stage, and b) the coding stage,
which includes diagnostically lossless and PLL coding.

Our test data set comprises 60 GXA images of various frames, each frame with
a resolution of 1024x1024 pixels of 12 bits of unsigned precision. All the images
were routinely acquired at Hospital Mttua de Terrassa, Spain [60], with a Siemens
AXIOM-Artis [61] system using organic iodine compounds as the X-ray “contrast

agent”.

2.2.1 Evaluation of Segmentation accuracy

We first compare our segmentation technique to several edge-based and region-based
segmentation methods. In general, edge-based methods use exclusively edge infor-
mation to identify the ROI, while region-based methods use texture, intensity or
statistical features extracted from the image.

In order to detect the boundary using our technique, we cast rays every 0.1 deg
(0.0017 rad) and use a window of w; = 10, we = 50 with ¢ = 0.7 to compute threshold
T. We employ a value of a = 0.01 to create disks with radius 7 = -1/a. Note that

the ray-casting angle interval and « value are determined based on the size of the
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Figure 2.8: (a) Average frame of one GXA image; the corresponding edge detection results
by using (b) Canny edge detector, (c) Sobel edge detector, (d) orthogonal projection method,
and (e) our proposed boundary detection technique; and the corresponding binary masks
computed using (f) Active Contour WE, (g) BC Level Set, (h) Adaptive SRG, (i) MC
Watershed and (j) our proposed segmentation technique.

frames and the trade off between boundary refinement accuracy and computational
complexity. A small w; value is used to find sharp intensity changes, while a large
wy value is used to increase the probability of locating the symmetrically boundary;,
as shown in Figure 2.6. Our extensive evaluations indicate that these values result in
the best performance for all images in the test data set.

Figure 2.8(a)-(e) show one average frame and its visual segmentation results using
several edge-based methods; specifically Canny edge detector [62], Sobel edge detec-
tor [63], orthogonal projection [64] and our proposed boundary detection technique.
It is important to mention that the average frame in Figure 2.8(a) is one of the most
challenging average frames in our test data set. It can be seen that the first three
methods detect several edges that are not part of the boundary between the ROI
and BG. Moreover, in several cases, they fail to detect all the edges describing the
boundary. Our proposed technique detects only the true boundary points, which can

be used to generate more accurate binary masks.
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Figure 2.8(f)-(j) show the binary masks for the average frame in Figure 2.8(a)
computed using state-of-the-art region-based methods. These methods are: Active
Contour Without Edges (Active Contour WE) [65], Bias Correction Level Set (BC
Level Set) [66], Adaptive Seeded Region Growing (Adaptive SRG) [67], and Marker-
Controlled Watershed (MC Watershed) [68].

In Active Contour WE, the deformation process of the curve does not depend on
the gradient of the image as in classical active contour models; instead, it depends on
the difference of intensities inside and outside the contour, making these curves less
sensitive to noise and the initial curve position. In our experiments, we set the most
outside square boundary of I,,, as the initial curve. Figure 2.8(f) shows the result
of Active contour WE, which fails to correctly detect the ROI boundary in those
regions where the intensities between BG and ROI are very similar. BC' Level Set is a
region-based method capable of dealing with intensities inhomogeneities while using
the well-known level-set formulation [66, 69] based segmentation process. Adaptive
SRG combines Otsu’s thresholding method [70] and regular SRG [71], avoiding the
“trial-and-error” threshold selection of SRG, which is commonly done with human su-
pervision. In our experiments, for BC Level Set the initial curve is the most outside
square boundary of I,,,, while for Adaptive SRG the initial seeds are a selection of
pixels belonging to the four corners of 1,,,. Figure 2.8(g) and (h) show results for BC
Level Set and Adaptive SRG, both methods miss-classify dark bones and tissues areas
as being part of the BG. MC Watershed is based on watershed transform; it employs
predefined background-region marker pixels and foreground-region marker pixels to
solve the embedded “over-segmentation” problem of regular watershed methods. Fig-
ure 2.8(i) shows the result of MC Watershed. It is important to mention that in our
experiments, after an extensive search to define good background-region markers, we
were able to segment correctly 27 of the 60 images, which accounts for less than 50%

of the images.

For all the methods tested, the corresponding parameters were adjusted according
to the values recommended by the authors and according to our evaluations in order

to provide the most accurate segmentation results.

With the aim of providing quantitative results, we quantify the segmentation
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accuracy of Active Contour WE, BC Level Set, Adaptive SRG, MC Watershed and
our proposal by comparing their results to the manual segmentation performed with
the help of physicians from Hospital Mutua de Terrassa (Spain), using the following
Dice Similarity Coefficient (DSC) [72]:

2 x XISV WM ROI(z,y) x P__ROI(x,y))

y=0

#M__ROI + #P_ROI(z,y) !

DSC = (2.1)

where M ROI and P__ROI represent the binary masks detected, respectively, manu-
ally and automatically; #M ROI and #P_ROI denotes the number of ROI samples
in M ROI and in P ROI, and X and Y are the number of rows and columns of the
image. Note that DSC € [0, 1], and higher DSC indicates higher similarity between
M ROI and P ROI, therefore indicates higher segmentation accuracy. The mean
and the standard deviation (Std) values of DSC are presented in Table 2.1 for the
60 GXA images. It can be seen from these results that the proposed method has not
only the most accurate segmentation results (highest mean DSC'), but also the most

consistent performance (lowest Std of DSC).

Table 2.1: Segmentation quantitative results. Mean and Std values of the DSC for all
60 images for Active Contour WE, BC Level Set, Adaptive SRG, MC Watershed and the
proposed method.

H H Active Contour WE ‘ BC Level Set ‘ Adaptive SRG ‘ MC Watershed ‘ Proposed H

Mean 0.96 0.87 0.89 0.93 0.99
Std 0.029 0.081 0.12 0.082 0.0025

Figure 2.9 shows the BG-suppressed average frames for twelve different GXA
images, with the boundary between ROI and BG enhanced in red. Note that our
proposal distinguishes the ROI from the BG with high accuracy. For the rest of the

images in the test data set, the results are equivalent.
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Figure 2.9: Average frames for 12 different GXA images after BG suppression. The bound-
ary (closed contour) between ROI and BG, as detected using a-shapes, is enhanced in
red.

2.2.2 Evaluation of Compression performance

We compare several lossless coding methods after applying our segmentation tech-
nique to the case of no BG suppression. To better understand the relationship between
the amount of BG and the coding performance, the 60 tested images are divided into
various subsets according to the amount of BG (in %). Our evaluations include
lossless coding and PLL coding. The later is important in interactive telemedicine

applications to access and display GXA images over channels of various capacities.

We first compare lossless JPEG2000, JPEG-LS, H.264/AVC and HEVC to the
case of coding after BG suppression using our segmentation technique, denoted by

BGS-JPEG2000, BGS-JPEG-LS, BGS-H.264/AVC and BGS-HEVC, respectively. In
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order to obtain a theoretical optimal rate for JPEG2000, SA-JPEG2000 is applied
on the BG-suppressed images. We employ 5 levels of 5/3 reversible spatial WT
and codeblocks of size 64x64 for JPEG2000 and SA-JPEG2000, using the BOI [25]
software. For JPEG-LS, the reset interval to 64 and the line-interleaved mode for
multi-component images are used within the HP implementation of JPEG-LS [28].
For H.264/AVC, the reference software JM 16.2 [73] is used, with FRExt Profile "High
4:4:4" selected for Intra coding and QP and QP Offsets set to 0. For HEVC, the ref-
erence software HM 16.2 [74] is used. Three coding modes of HEVC are tested: Intra
mode, using the Intra main profile; Random Access (RA) mode, using the Random
Access profile and RExt mode, which uses HM 16.2 software with the SCM 3.0 exten-
sion and the Random Access main RExt profile. For all these three modes, QP was
set to 0 and both TransquantBypassEnableFlag and CUTransquantBypassFlagForce
are set to 1, and in RExt mode, CostMode is set to lossless. Note that, in order to
comply with the profiles used in H.264/AVC and HEVC, all GXA frames are coded
using the colour space YUV 4:4:4 and YUV 4:0:0, respectively.
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Table 2.2 reports the average coding results, in bits per pixel (bpp), for each
image subset and for the whole test data set. When no BG suppression is used,
the entire image is losslessly encoded. These results indicate that by employing BG
suppression the coding performance improves by more than 28%, on average, for all
coding methods compared to the case of no BG suppression. H.264/AVC does not
achieve as good coding performance as the other coding methods for the GXA images.
BGS-HEVC RExt attains the best coding performance, followed by BGS-JPEG-LS.
BGS-JPEG2000 gets a similar coding performance as BGS-HEVC and BGS-JPEG-
LS, while allowing accessing the coded data in a progressive manner. Note that
SA-JPEG2000 is, on average, 0.1 bps better than BGS-JPEG2000 even though it
requires that the ROI binary mask be encoded and included in the bit-stream. This
improvement is mainly due to skipping all of the BG samples during spatial WT and
bitplane coding.

As video coding standards H.264/AVC and HEVC are developed with also exploit-
ing the redundancy among frames, we also compare the lossless coding performance
when the redundancy among frames is exploited through different multi-component
transforms included in Part-2 of JPEG2000 [75], namely Reversible Haar Trans-
form (RHAAR), Reversible Karhunen Loeve Transform (RKLT)[76], 5/3 Reversible
Wavelet Transform (RWT) and Differential Pulse Code Modulation (DPCM) [77].
Although JPEG-LS does not include any multi-component transformation, we also
introduce the use of a multi-component transform in JPEG-LS to provide a fair com-
parison. For RHAAR and RWT, the number of decomposition levels along frames
is determined by min(5, [log, F'|). For RKLT, the side information is encoded with
LZMA and included in the final bit-rate. Table 2.3 reports the average coding re-
sults for the same image subsets in Table 2.2 when multi-component transforms are
employed. It is easy to see that JPEG2000 and JPEG-LS with multi-component
transforms get closer or even better coding performance than HEVC, for X-ray an-
gio images. BGS-RKLT-JPEG-LS yields, on average, the best coding performance,
closely followed by SA-RKLT-JPEG2000, and both are slightly better than BGS-
HEVC RExt, while SA-RKLT-JPEG2000 also supports PLL coding.
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For progressive coding, we only compare DICOM-compliant methods that support
PLL coding. Figure 2.10 shows the rate-distortion performances for BGS-RKLT-
JPEG2000, BGS-RHAAR-JPEG2000, BGS-RWT-JPEG2000, BGS-JPEG2000 and
JPEG2000 for three images with various amounts of BG.

The rate-distortion performances are evaluated in terms of the Signal-to-Noise
Ratio (SNR), which is defined as 10log,, MLSZ‘E The mean-squared error (MSE) is
computed as %%% Z? ¥ Z;(If(l‘, y)—ff(:v, y))?, where I;(z,y) and ff(a:, y) denote,
respectively, the original frame and the recovered frame, and o2 denotes the variance of
the original image. The distortion gains between JPEG2000 and the BG-suppression
strategies vary according to the amount of BG, and are up to 4dB, 10dB and 20dB
for images with a BG percentage of 10.40%, 31.31% and 58.97%, respectively. Note
that, when multi-component transforms are used, the best results are achieved by
BGS-RKLT-JPEG2000, and the distortion gain compared to BGS-JPEG2000 is on
average bdB.

Figure 2.11 depicts a region of two sample frames decoded at 0.01 bpp after
JPEG2000 and BGS-RKLT-JPEG2000 PLL coding. It can be observed that the
visual quality attained by the latter is better. This is a useful feature that can be
exploited in situations where physicians need to access and analyze GXA images in
limited bandwidth network environments, e.g., using mobile phones.

To summarize, background suppression helps achieving significant bit-rate savings,
and while JPEG-LS with RKLT multi-component is the best lossless coding technique
for the tested images, JPEG2000 with RKLT multi-component transform becomes the

best alternative when different types of scalability are needed.

2.2.3 Computational complexity

At last, the computational complexity of the proposed strategy is also provided. The
segmentation stage has been implemented and run with MATLAB R2012a. The
software used in the coding stage is indicated in Section 2.2.2. This experiment ran

on an Intel Core i5 CPU 650 (3.20GHz x 4) with 8Gb.

The segmentation stage of this strategy in average takes 15.68 seconds per frame
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Figure 2.10: Rate-distortion performance for BGS-RKLT-JPEG2000, BGS-RHAAR-
JPEG2000, BGS-RWT-JPEG2000, BGS-JPEG2000 and JPEG2000 for three GXA images
with different BG amounts.

for the GXA image, while the coding stage in average takes 0.0639, 0.23, 10.69, 5.31,
35.62 and 37.23 seconds per frame for JPEG2000, JPEG-LS, H.264/AVC, HEVC-
Intra, HEVC-RA and HEVC-RA-RExt, respectively. The computing time for the
coding stage are computed without using the multi-component transforms. Note
that the segmentation stage is usually applied off-line and is not programmed to

yield fast real-time execution.

From the results above, the time increment of the segmentation stage amounts
99.59%, 98.55%, 59.46%, 74.70%, 30.57% and 29.64% of the total implementation
time when the GXA images are encoded with, respectively, JPEG2000, JPEG-LS,
H.264/AVC and HEVC (in three modes).
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Figure 2.11: (a) Two sample frames decoded at 0.01 bpp after PLL coding using (b)
JPEG2000 and (c) BGS-RKLT-JPEG2000. A zoomed-in region of the ROI is presented
to show visual differences.

2.3 Chapter Summary

In this chapter, we present a two-staged diagnostically lossless coding method for
GXA images. The first stage performs automatic segmentation by employing ray-
casting and a-shapes to distinguish the clinically relevant ROI from the BG. The
second stage performs lossless or progressive lossy-to-lossless coding on the BG-
suppressed images by using JPEG-LS, JPEG2000, H.264/AVC and HEVC.
Experimental results suggest that our segmentation technique identifies the ROI
with an average Dice Similarity Coefficient of 0.99 with respect to manual segmenta-
tion. When combined with lossless coding methods, our proposed method improves

coding performance, on average, by more than 28% and up to 34% compared to the
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case of no BG suppression. JPEG-LS technique with multi-component transform
has the best coding results, closely followed by JPEG2000 with multi-component
transform and HEVC. In addition, evaluations of JPEG2000 with multi-component
transform and progressive lossy-to-lossless coding also indicate that, by employing
BG suppression, significant improvements on the reconstruction quality of the images
may be attained at all bit-rates. Computational complexity evaluation shows that
the proposed segmentation process takes at most 99.59% and at least 29.64% of the
entire implementation time, depending on the coding techniques used in the coding
stage. The increment time from the proposed segmentation process is usually applied

off-line, hence it should not affect the whole real-time coding efficiency.



Chapter 3

Frame identification strategy for

CAVSs compression

Coronary angiogram video sequences (CAVSs) have become one of the most important
instruments for diagnosing cardiovascular diseases. Because of the increasing number
of studies using CAVSs and the need to store and share them, the compression of
these sequences is becoming critical.

In this chapter, we propose a new diagnostically lossless compression strategy
based on frame identification for CAVSs. Our proposal automatically identifies the
irrelevant and relevant data in the third dimension of the CAVS, distinguishing the
frames according to the “contrast agent” flow motion phases. Once the identification
is performed, any compression technique could be applied to the irrelevant and the
relevant frames, encoding them, respectively, with and without loss. HEVC [13] and
JPEG2000 [10] are the compression techniques evaluated, because JPEG2000 is one of
the compression standards included in DICOM, and also because of its competitive
coding performance and rich capabilities; and for HEVC, because it is the latest
advanced video compression standard.

Experimental results on a large set of CAVSs suggest that the proposed strategy
correctly identifies the last irrelevant frame in each CAVS, with an accuracy of 1
frame as compared to manual identification, and achieves bit-stream reductions of

more than 19% on average as compared to lossless compression. Assuming that all

35
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the frames in a CAVS must be compressed, the proposed methodology may suppose a
computational complexity increment due to the identification process. This increment
is proportional to the amount of frames to be processed in the identification stage.
The rest of the chapter is organized as follows: the proposed frame identifica-
tion and diagnostically lossless compression strategy are described in Section 3.1.
Section 3.2 validates our proposal in terms of frame classification and compression

performance. Section 3.3 concludes this work.
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Figure 3.1: A CAVS showing the irrelevant and relevant frames and the 4 phases of the
contrast agent flow.

3.1 Proposed Compression Strategy

A CAVS comprises a collection of X-ray projection frames describing the flow of an
injected “contrast agent” through the coronary vessel tree over several heart cycles.
It is common that CAVS frames are manually labelled pursuant to the four phases
of the contrast agent flow motion: pre-perfusion, where only the catheter is visible;
inflow, where the contrast agent is visible in the coronary vessels but it has not yet
reached all the vessel branches; complete state, where the entire vessel tree is visible;
and washout, where the perfusion is finished and the contrast agent starts leaving the

coronary arteries [78]. In 1997, Prince et al. [79] explored the idea of identifying the
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Figure 3.2: Block diagram of the proposed diagnostically lossless compression strategy.

relevant frames during the imaging process of MR angiography evaluating the inten-
sity gradient. Later, a similar idea was investigated for CAVSs in [80], not during the
imaging process but during the post-imaging process. In the paper [80], the authors
claim that the frames showing the coronary vessel tree (i.e., the frames in the complete
state) are used by doctors for pre-intervention diagnosis and as a roadmap during the
intervention. The pre-perfusion frames are thus not considered diagnostically rele-
vant. The consideration of relevant or irrelevant frames for the diagnosis and to serve
as a roadmap during intervention is also undertaken by cardiologists [81]. Figure 3.1
depicts an example of the relation between the four phases and the irrelevant and
relevant frames.

The block diagram of the proposed strategy is illustrated in Figure 3.2. The pro-
posal comprises two stages: Frame identification, enhanced in dark grey, and Selective
lossy & lossless compression, enhanced in light grey. Both stages are respectively de-
scribed in detail in Sections 3.1.1 and 3.1.2.

3.1.1 Frame identification

The first stage is aimed to distinguish relevant frames from irrelevant frames. To

identify these two types of frames, the last irrelevant frame is used as a delimiter.
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This frame can be identified by evaluating the change of vessel structure along all
frames. In order to localize this specific frame, this stage includes two steps: 1)

Vessel enhancement and 2) Significant vessel structure change detection.

Vessel enhancement

CAVS frames usually have low contrast and non-uniform tissues background, which
makes it difficult to detect the vessels directly. To tackle this issue, some contri-
butions have been presented [82], [80], [83]. [82] uses the eigenvalue analysis of the
Hessian matrix and multi-scale filtering approach to enhance the vessels and sup-
press the background. [80] first employs the morphological top hat filter to equalize
the background and then a combination of first- and second-order derivatives to fi-
nally enhance the vascular structures. Finally, [83] applies an isotropic undecimated
wavelet transform to generate one smooth residual image and several wavelet level
images containing the high-frequency data representing details and edges of the orig-
inal image; then the sum of the second and third wavelet level images is computed as

the final vessel enhanced image.

All these three enhancement methods have been tested with our CAVSs. The
parameters were adjusted according to the values recommended by the authors and
according to our evaluations in order to provide the best enhancement results for the

corpora used in this manuscript.

Figure 3.3 depicts an original frame and the same frame after applying the vessel
enhancement techniques discussed above. From this figure, it is easy to conclude
that [82] attains a higher contrast ratio and a cleaner background than [80] and [83],
which makes it simpler to evaluate the changes of vessel structures in each frame. [82]
is thus the method used for vessel enhancement in our proposal. Note that, in the
following Section 3.2.1, the identification results based on these three enhancement

methods are also provided, in order to further prove the advantage of the method [82].
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Catheter

(d)

Figure 3.3: Vessel enhancement comparison results for a sample CAVS frame. (a) Original
frame, (b) [82], (c¢) [80], and (d) [83].

Significant vessel structure change detection

After computing the vessel enhancement, the intensity of the sample frames is nor-
malized to the range [0, 1]. Pixels belonging to the catheter, the vessels, the muscular
tissue and the focal spot edges (those curves close to the corners) have intensities
close or equal to 1. Except for the vessels, all the other elements appear in all frames
with similar proportions and can be considered constant. Therefore, variations in
intensities are attributed to the vessels. This allows tracking the vessel changes, and
consequently classifying the frames by using the sum of intensities in each frame.

This sum is stored into an array S as follows: S[n] = Y F,[z], where F,[z] repre-

sents the intensity of pixel x of the nth enhanced frame. Fig. 3.4 plots S[n| for all



CHAPTER 3. FRAME IDENTIFICATION STRATEGY FOR CAVSS
40 COMPRESSION

28000 T v v ¥ v v v v T

Frame! 51 Frame 80
26000
(Complete 7 (Whut)
state)

24000 p

22000

Frame 11 Frame 31
(Pre-perfusion) (Inflow)
T J v s

18000 nIRS s

20000

S(n)

16000

14000

12000 g

10000 2 2 2 2 2 2 2 2 2
0 10 20 30 40 50 60 70 80 90 100

n

Figure 3.4: Plot of S[n| (sum of pixel intensities) for all enhanced frames of a CAVS. Four
enhanced frames corresponding to the four different phases are emphasized in the blue
points.

frames of a single CAVS. Different frames corresponding to the different contrast flow
motion phases are depicted: framell for pre-perfusion, frame31 for inflow, framebl
for complete state, and frame80 for washout. It is worth noting that there exists a
relationship between S[n] and the four phases. Let us remind that relevant frames
start roughly when the inflow phase occurs, which corresponds to the first sharp rise
in the plot of S[n].

The following operations are used to detect the first sharp rise in S[n]:

1. An order 5 one-dimensional median filter is first applied to S to remove small

irregular changes, yielding S’.

2. An array of rise-increments, denoted as IN, is then computed using a sliding

window whose width W is adapted to the length of S’; i.e., W=round(V/w),
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Figure 3.5: Example of an S’ and its corresponding intensity-rise array IN computed with
a sliding window of width W = 5.

w > 0, where V is the length of S’. In each sliding window, the rise-increment

of the last frame, IN[n], is computed as follows:

(a) S'[Nmaz], the frame with the largest sum of intensities in that sliding win-

dow is found;

(b) S'[Mmin, the frame with the lowest sum of intensities and to the left of

S [Nmaz) in that sliding window is found;
(¢) IN[n] = S"Mmaz] — S [minl;

(d) the sliding window slides one position at a time to the right.

3. Let max;y be the largest rise-increment in the array S’ and let threshold T
be T=tx maxyy, with 0<¢t<1. Then, n’ is the position of the first frame with
IN[n'] > T, which corresponds to the first sharp rise in S’. n’ is thus identified
as the last irrelevant frame in the CAVS.

The procedure described in step 2 above is graphically illustrated in Fig. 3.5,
with S'[nmae] and S'[n,:,] enhanced in yellow and green, for some example sliding

windows.

In our proposal, parameters w and t are set by users. The values for these param-

eters are dealt with in section 3.2.
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3.1.2 Selective lossy & lossless compression

As shown in Fig. 3.2, after the frames in CAVSs have been successfully identified, any
compression technique could be applied to the irrelevant and relevant frames, coding
them with and without loss, respectively. HEVC and JPEG2000 are employed as both
yield competitive coding performance for video compression and both support lossy
and lossless coding. And it is worth noting that JPEG2000 as this coding standard
offers a richer set of coding features than any other lossless coding method, including

resolution, quality scalability and compatibility with DICOM.

3.2 Experimental results

Our proposal is evaluated through two different sets of experiments: A) Frame Iden-
tification Accuracy and B) Selective Lossy € Lossless Compression Performance. For
both experiments, 72 X-ray CAVSs of various numbers of frames have been used.
Each frame has a resolution of 512 x 512 pixels with 12 bits of unsigned precision.
All of them were routinely acquired at Hospital Mutua de Terrassa, with a Siemens
AXIOM-Artis [61] system using organic iodine compounds as the X-ray “contrast
agent”. The cardiologists at Hospital Mutua de Terrassa have identified the irrelevant
frames manually; the number of irrelevant frames is referred to as n”. Fig. 3.6 depicts
the number of total frames (solid green) for each CAVS, the index of the last irrele-
vant frame (solid blue) identified manually, and the proportion of these pre-perfusion
frames (solid yellow) in each CAVS.

3.2.1 Identification error

To appraise the accuracy of the identification stage in detecting the last irrelevant
frame, an identification error is computed as E=n’-n"  where n’ and n” are the frame
indexes identified automatically and manually, respectively. Proportion of the identi-
fication error in each CAVS is also provided as P = W, where N denotes the
total number of frames of a CAVS. Fig. 3.7 depicts F and P for all 72 test sequences.

The parameters used during the frame identification procedure are set to w=15 and
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Figure 3.6: The number of frames for the 72 CAVSs used, the index of the last irrelevant
frame (n”") obtained by manual frame-classification and the proportion of these pre-perfusion
frames in each CAVS.

t=0.5. Note that for most of the CAVSs we tested, changing this parameter setting
in a certain range does not alter the accuracy of the frame identification results too
much; and the parameters we are using are found to provide the most accurate clas-
sification results compared to manual identification. By using the adaptive window
size, we achieve better identification results than the case of setting a fix window size
(e.g., W =5, which is the average value of the adaptive window sizes we used). From
these results, we can see that our automatic identification procedure identifies the
last irrelevant frame with high accuracy. The average of the absolute identification
error is below 1 frame, with a maximum error of 4 frames, and the percentage of the
absolute identification error is about 1.18%. Notice that when E (or P)is positive,
relevant data is encoded with loss; while for negative error values, irrelevant data is
encoded losslessly. However, it is worth noting that, according to the cardiologists,
these small errors are negligible during the diagnosis, since a small error during the

identification is insignificant compared to the number of frames in each CAVS.

The percentage of the identification error with using [80] and [83] are also com-
puted and depicted together with the ones of [82] in Figure 3.8. The parameters
w = 15 and t = 0.5 are used for all the three enhancement methods. From Figure 3.8,

we can see that [82] obtains the highest accuracy, followed by [83] and then [80]. That
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also proves our selection of using [82] as the enhancement method (even it is the old-
est one), as using [80] and [83], the accuracy in “significant vessel structure change”

detection to correctly identify the relevant frames is penalized.
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Figure 3.7: Identification error (solid red) of automatic versus manual identification of the
first irrelevant frame, and the proportion of this error (solid green) with respect to the frame
number in each CAVS.
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Figure 3.8: Identification error in % using [82], [80] and [83] as enhancement vessel methods.
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3.2.2 Compression performance

This second set of experiments evaluates the compression performance of full-lossless,
that encodes the irrelevant frames without loss; selective lossy € lossless, which en-
codes the irrelevant frames in a lossy mode. In addition we have included results com-
bining [46] (BGS) with full-lossless, and [46] with selective lossy & lossless, named
BGS+full-lossless and BGS+selective lossy & lossless, respectively. Note that, in all
strategies the relevant frames are all encoded without loss.

The coding techniques compared are the current standards for image and video
coding, JPEG2000 and HEVC. For lossless JPEG2000, the parameters are: 5 levels
of 5/3 reversible spatial wavelet transform, single quality layer, and codeblocks of
size 64x64 with no precincts. For lossy JPEG2000, the parameters are the same ex-
cept for the use of the 9/7 irreversible spatial wavelet transform and Qstep=1/4096".
JPEG2000 experiments have been performed with Kakadu v7.4 [24] implementation.
Three coding modes of HEVC are tested: Intra mode (HEVC-Intra), using the Intra
main profile; Random Access mode (HEVC-RA), using the Random Access profile
and RExt mode (HEVC-RA-RExt). For all these three modes, in lossless compres-
sion, QP was set to 0 and both TransquantBypassEnableFlag and CUTransquantBy-
passFlagForce are set to 1, and in RExt mode, CostMode is set to lossless; in lossy
compression, these parameters are set back as default but QP was kept as 0 to achieve
the slightest loss. Note that, in order to comply with the profiles used in HEVC, all
CAVS frames are coded using the colour space YUV 4:0:0. HEVC experiments have
been computed with the reference implementation [74]. All the compression rates are
given in bits per sample (bps).

Figure 3.9 depicts the average compression results achieved for full-lossless, se-
lective lossy & lossless, BGS-+full-lossless and BGS+-selective lossy & lossless, when
JPEG2000 and the three different configurations of HEVC are used. For all coding
techniques, considering the full-lossless as the reference strategy, the selective lossy
& lossless achieves improvements between 0.75 to above 2 bps (which depends on the

proportion of pre-perfusion frames), in average, this improvement reaches 1.25 bps;

LQstep is the step size defined during the quantization process in JPEG2000. A large step size
translates into more loss.
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Figure 3.9: Average compression results for the 72 CAVSs, using full-lossless, selective lossy
& lossless, BGS+full-lossless, and BGS+selective lossy & lossless compression strategies,
with JPEG2000 and HEVC (three modes) techniques.

when BGS is combined with selective lossy & lossless, the results are still improved

but with smaller benefits.

In addition, we assess the image quality in terms of Signal-to-Noise Ratio (SNR)
and Structural Similarity Index Measure (SSIM) [84], for the irrelevant frames for
lossy-lossless when JPEG2000 and HEVC-RA-RExt are employed. Figure 3.10 il-
lustrates the image quality results for JPEG2000 and HEVC-RA-RExt results for
all 72 CAVSs. The average SNR of the irrelevant frames is about, 47.80 dB and
50.48 dB, respectively; while for SSIM it is 0.9970 and 0.9982, respectively. The
team of cardiologists at Hospital Mutua de Terrassa [81] has visually evaluated the
irrelevant decompressed frames compressed with JPEG2000 and HEVC-RA-RExt. In
both cases, cardiologists have indicated that visual differences are not appreciable.
For instance, Figure 3.11 depicts a zoomed area of an irrelevant frame of an original
image, a decompressed frame after employing the lossy-lossless for JPEG2000 and
HEVC-RA-RExt 2.

2These three CAVS frames in full resolution can be downloaded from http://www.gici.uab.
cat/GiciApps/Frame_Visual_Evaluation.tar.gz for visual evaluation.


http://www.gici.uab.cat/GiciApps/Frame_Visual_Evaluation.tar.gz
http://www.gici.uab.cat/GiciApps/Frame_Visual_Evaluation.tar.gz
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Figure 3.10: Quality of the the irrelevant frames. Results are reported for the 72 CAVSs
using lossy-lossless for JPEG2000 and HEVC-RA-RExt.

3.2.3 Computational complexity

Finally, we evaluated the impact of the identification stage in terms of computational
time. The software and hardware environments are similar to the ones used in Sec-
tion 2.2.3, i.e., MATLAB R2012a is used for frame identification; the compression
software are indicated in Section 3.2.2; and all of the experiments ran on an Intel
Core i5 CPU 650 (3.20GHz x 4) with 8Gb.

The segmentation stage of the proposal in Chapter 2 takes 0.073 seconds per frame
for the CAVS, while the methodology presented here needs 17.58 seconds per frame,
about 240 times slower. This increment is mainly produced by the vessel enhancement
technique, for which we used [82]. Note that this technique is usually applied off-line
and is not programmed to yield fast real-time execution.

The consumed time for the compression stage varies depending on the technique,
needing 0.013, 1.76, 10.69 and 11.26 seconds per frame for JPEG2000, HEVC-Intra,
HEVC-RA and HEVC-RA-RExt, respectively. All the computational times are given
on average for the whole corpus.

In summary, the identification stage in our current proposal would amount to
99.92%, 90.89%, 62.18% and 60.95% of the total execution time when the images
are encoded with, respectively, JPEG2000, HEVC-Intra, HEVC-RA and HEVC-RA-
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Figure 3.11: (a) One original pre-perfusion frame, (b) a zoomed area from (a), (c)-(d) the
zoomed area after selective lossy & lossless compression with JPEG2000 and HEVC-RA-
RExt, respectively.

RExt.

3.3 Chapter Summary

Coronary angiogram video sequences (CAVSs) are used in medical centers for Cardio-
vascular Diseases diagnosis, the number one cause of death globally. These sequences
need be stored for medical records and shared for remote telediagnosis. Cardiologists
manually identify the clinically irrelevant frames in these CAVSs, which correspond

to the initial frames where only the catheter is visible or the contrast agent introduced
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into the vessels is imperceptible.

We proposed an automatic method to identify the last irrelevant frame, avoiding
the need for the cardiologist manual classification. We then further proposed a di-
agnostically lossless compression approach, where the irrelevant frames are encoded
with loss and the relevant frames without loss. Our proposal employs JPEG2000 and
HEVC as the compression techniques. Experimental results suggest that the frame
identification correctly distinguishes the diagnostically irrelevant from the relevant
frames with high accuracy, and improves the compression performance, on average,
by more than 19% and 12% compared to lossless JPEG2000 and HEVC compression,
respectively. Computational complexity evaluation indicates the identification stage
of the current proposal is slower than the segmentation methodology of Chapter 2.
However, this technique is usually applied off-line, thus does not affect the efficiency
of the following compression stage. At last, all the experimental results have been

supervised and validated by the cardiologist unit of Hospital Mutua de Terrassa.
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Chapter 4

Conclusions

4.1 Summary

Medical Image Compression

Because of the global trend of ageing population, vascular system diseases have be-
come the main risk for human health today. Angiography using X-ray imaging and
catheterisation with particular “contrast agents” remain the gold standard for the
diagnosis of vascular system diseases. For distinct medical examination purposes,
there are two main types of X-ray angiography images: Coronary Angiogram Video
sequences (CAVSs) and General X-ray Angiography (GXA) images. The former one
only targets to detect the irregularities present in coronary vessel trees, while the
latter one serves for observing the blood vessel diseases of the other body parts like
feet, legs, arms, etc.

Considering the increasing amount of X-ray angiography images generated and the
large file sizes of the images (the maximum file size of one single CAVS or GXA im-
age may reach 140MB), the Picture Archiving and Communications Systems (PACS)
associated with the Digital Imaging and Communications in Medicine (DICOM) stan-
dard are used in hospitals and medical centers to handle this medical data. Compres-
sion is an invaluable tool to reduce the data size and hence benefit the storage and

transmission of medical images.

o1
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Medical image compression methods could be classified into three types: 1) lossy
compression methods, which achieve high compression ratios but introduce distortion
to the diagnostically sensitive data and thus may affect the subsequent diagnosis
accuracy; 2) lossless compression methods, which enable a perfect reconstruction of
the decoded image and usually have a lower data-reduction capability than lossy
methods; and 3) diagnostically lossless compression methods, developed to avoid the
shortages of both lossy and lossless methods, which obtain higher compression ratios
than lossless methods while guaranteeing the perfect reconstruction of those regions
in the image that are used for diagnostic purposes. In this thesis, we introduce two
diagnostically lossless compression methods for the two different main types of X-ray

angiography images, GXA images and CAVSs.

Clinically relevant data identification

Diagnostically lossless compression improves the compression performance through
the exploitation of data redundancy that exists in clinically irrelevant areas of the
images. Lossy compression is applied to the clinically irrelevant areas and lossless
compression to the diagnostically relevant areas. Due to this basic concept, the
process of distinguishing the clinically relevant and irrelevant data in the images
plays a pivotal role in diagnostically lossless compression methods.

Based on the different features of GXA images and CAVSs, we developed two
approaches to accomplish the clinically relevant data identification: 1) Background-
suppression, which uses segmentation methods to separate the Region of Interest
(ROI) and the background (BG) areas in each 2-dimensional GXA frame; and 2)
Frame-identification, which recognizes the clinically irrelevant and relevant frames in
the third dimension of CAVSs.

Advanced compression techniques

The two proposed diagnostically lossless compression strategies are both comprised
of two stages: the clinically relevant data identification stage and the compression

stage. These two stages are implemented independently, i.e., different compression
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techniques could be employed in the compression stage, without affecting the perfor-

mance of the previous identification performance.

Several compression formats that are accepted in DICOM are tested in our propos-
als, including JPEG2000, JPEG-LS and H.264/AVC. The latest video coding stan-
dard HEVC, which has been shown to attain important compression gains compared

to previous standards, is also applied in the proposals.

Experimental results

For GXA images, after separating the ROI and the background areas, the data in
BG areas are suppressed to improve the compression performances; and for CAVSs,
after the diagnostically relevant and irrelevant frames are identified, a selective lossy
& lossless compression method is used to achieve compression improvements. In
both strategies, several compression techniques are employed, including the DICOM-
compliant JPEG2000, JPEG-LS, H.264/AVC, and the latest video coding standard
HEVC.

Experimental results suggest that both strategies are automatic and accurate in
diagnostically relevant data identification (the segmentation process of BG suppres-
sion strategy gets an average Dice Similarity Coefficient of 0.99 with respect to manual
segmentation; and the percentage of the absolute identification error in frame identi-
fication strategy is around 1.18% on average), and efficient in data compression (for
GXA images, BG suppression strategy improves the compression performance, on av-
erage, more than 28% and up to 34% compared to the case of no BG suppression; and
for CAVSs, the frame identification strategy improves the compression performance,
on average, by more than 19% and 12% compared to lossless JPEG2000 and HEVC
compression, respectively). Both strategies were developed in cooperation with the
physicians from Hospital Mitua de Terrassa, who have supervised and validated both

the identification and the compression results.
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Future Work

Blood vessels and their neighbourhood areas of X-ray angiography images contain

the most important information for diagnosis purpose. The future work may focus on

the diagnostically lossless compression strategies based on the vessel segmentation.

Following this idea, several works may be done:

1)

Search for an accurate vessel segmentation method. One method under our con-
sideration now is [85]. Compared to the Frangi method [82], [85] obtains more
precise Hessian eigenvalue analysis in noisy environment and detect smaller and

thinner vessels by using a directional filter bank.

Develop a hierarchical compression strategy. Based on the vessel segmentation
results, a three levels compression strategy may be applied, i.e., background
suppression for the most peripheral areas, lossy compression for the tissue areas
and lossless compression for the blood vessels and their neighbourhood areas.
And regarding the compression techniques, JPEG2000, JPEG-LS, H.264/AVC
and HEVC could be employed. For JPEG2000 and JPEG-LS, multi-component
transform may also be combined into the compression to further improve the

compression performance.

Another idea of the hierarchical compression strategy may be background sup-
pression + visual lossless modelling + lossless compression, i.e., different from
the method in 2), we could use visual lossless modelling to deal with the tis-
sue areas, which could give a higher visual quality of these areas, compared to

directly lossy compression.

A distortion metric could be developed to evaluate the compression performance

of the hierarchical compression strategy.

Another main work could be the computational complexity optimization. After

assessing the computing time of our proposal, the time devoted to the identification

stage normally amounts to more than 50% of the whole compression time. One way

to reduce the computing time would be to replace the use of MATLAB platform with
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other efficient programming languages, e.g., Java and Python. Yet another choice

could be running the implementation in GPU, which is under early research in [86].
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Appendix A

Acronyms

ACR American College of Radiology

BGS Background Suppression

CAVS Coronary Angiogram Video Squence

CT Computed Tomography

DCT Discrete Cosine Transform

DICOM Digital Imaging and Communications in Medicine
DPCM Differential Pulse Code Modulation

DSC Dice Similarity Coefficient

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimized Truncation of the embedded bit-
streams

GXA General X-ray Angiography

HEVC High Efficiency Video Coding

ISO International Organization for Standardization
ITU International Telecommunication Union

LOCO-I LOw COmplexity LOssless COmpression for Images
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MSE Mean-Squared Error

NEMA National Electrical Manufacturers Association
PACS Picture Archiving and Communications Systems
PLL Progressive Lossy-to-Lossless

RHAAR Reversible Haar

RKLT Reversible Karhunen Loeve Transform

ROI Region of Interest

RWT Reversible Wavelet Transform

SNR Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

WT Wavelet Transform

ACRONYMS
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