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Abstract

English

The A-polynomial of a knot in S? is a two variable polynomial obtained by projecting
the SL,C-character variety of the knot-group to the character variety of its peripheral sub-
group. It distinguishes the unknot and detects some boundary slopes of essential surfaces
in knot exteriors.

The notion of A-polynomial has been generalized to 3-manifolds with non-connected
toric boundaries; if M is a 3-manifold bounded by n tori, this produces an algebraic subset
E(M) of C* called the eigenvalue variety of M. It has dimension at most n and still
detects systems of boundary slopes of surfaces in M.

The eigenvalue variety of M always contains a part ¢"¢(M) arising from reducible
characters and with maximal dimension. If M is hyperbolic, (M) contains another top-
dimensional component; for which 3-manifolds is this true remains an open question.

In this thesis, this matter is studied for two families of 3-manifolds with toric bound-
aries and, via two very different technics, we provide a positive answer for both cases.

On the one hand, we study Brunnian links in S3, links in the standard 3-sphere for
which any strict sublink is trivial. Using special properties of these links and stability
under certain Dehn fillings we prove that, if M is the exterior of a Brunnian link different
from the trivial link or the Hopf link, then &(A/) admits a top-dimensional component
different from @*4(M). This is achieved generalizing the technic applied to knots in S?,
using Kronheimer-Mrowka theorem.

On the other hand, we consider a family of link-manifolds, exteriors of links in integer-
homology spheres. Link-manifolds are equipped with standard peripheral systems of
meridians and longitudes and are stable under splicing, gluing two link-manifolds along
respective boundary components, identifying the meridian of each side to the longitude of
the other. This yields a well-defined notion of forus decomposition and a link-manifold
is called a graph link-manifold if there exists such a decomposition for which each piece
is Seifert-fibred. Discarding trivial cases, we prove that all graph link-manifolds produce
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v ABSTRACT

another top-dimensional component in their eigenvalue variety.

For this second proof, we propose a further generalization of the eigenvalue variety that
also takes into account internal tori and this is introduced in the broader context of abelian
trees of groups. A tree of group is called abelian if all its edge groups are commutative; in
that case, we define the eigenvalue variety of an abelian tree of groups, an algebraic variety
compatible with two natural operations on trees: merging and contraction. This enables to
study the eigenvalue variety of a link-manifold through the eigenvalue varieties of its torus
splittings. Combining general results on eigenvalue varieties of abelian trees of groups
with combinatorial descriptions of graph link-manifolds, we construct top-dimensional
components in their eigenvalue varieties.
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Francais

Le A-polyndme d’un noeud dans S? est un polyndme a deux variables obtenu en pro-
jetant la variété des SL,C-caracteres de I’extérieur du noeud sur la variété de caracteres du
groupe périphérique. Il distingue le noeud trivial et détecte certaines pentes aux bords de
surfaces essentielles des extérieurs de noeud.

La notion de A-polynome a été généralisée aux 3-variétés a bord torique non connexe ;
une 3-variété M bordée par n tores produit un sous-espace algebrique &( M) de C*" appelé
variété des valeurs propres de M. Sa dimension est inférieure ou égale a n et (M ) détecte
également des systemes de pentes aux bords de surfaces essentielles dans M.

La variété des valeurs propres de M contient toujours un sous-ensemble 4 (M) pro-
duit par les caracteres réductibles, et de dimension maximale. Si M est hyperbolique,
(M) contient une autre composante de dimension maximale; pour quelles autres 3-
variétes est-ce le cas reste une question ouverte.

Dans cette these, nous étudions cette question pour deux familles de 3-variétés a bords
toriques et, via deux techniques distinctes, apportons une réponse positive dans ces deux
cas.

Dans un premier temps, nous étudions les entrelacs Brunniens dans S, entrelacs pour
lesquels tout sous-entrelacs strict est trivial. Certaines propriétés de ces entrelacs, et leur
stabilité par certains remplissages de Dehn nous permettent de prouver que, si M est I’exté-
rieur d’un entrelacs Brunnien non trivial et différent de I’entrelacs de Hopf, (M) contient
une composante de dimension maximale différente de €™4(A/). Ce résultat est obtenu en
généralisant la technique préalablement utilisée pour les noeuds dans S? grice au théoréme
de Kronheimer-Mrowka.

D’autre part, nous considérons une famille de variétés-entrelacs, variétés obtenues
comme extérieurs d’entrelacs dans des spheres d’homologie entiére. Les variétés-entrelacs
possedent des systemes périphériques standard de méridiens et longitudes et sont stables
par splicing, le recollement de deux variétés-entrelacs le long de tores périphériques en
identifiant le méridien de chaque coté avec la longitude opposée. Ceci induit une notion de
décomposition torique de variété-entrelacs et une telle variété est dite graphée si elle ad-
met une décomposition torique ol toutes les pieces sont fibrées de Seifert. Nous montrons
que, mis-a-part les cas triviaux, toutes les variétés-entrelacs graphées produisent une autre
composante de dimension maximale dans leur variétés des valeurs propres.

Pour cette seconde preuve, nous présentons une nouvelle généralisation de la variété
des valeurs propres, qui prend également en compte les tores intérieurs, que nous intro-
duisons dans le contexte plus général des arbres abéliens de groupes. Un arbre de groupe
est appelé abélien si tous les groupes d’aréte sont commutatifs ; dans ce cas, nous définis-
sions la variété des valeurs propres d’un arbre abélien de groupe, une variété algébrique
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compatible avec deux opérations naturelles sur les arbres : la fusion et la contraction. Ceci
permet d’étudier la variété des valeurs propres d’une variété-entrelacs a travers les variétés
des valeurs propres de ses décompositions toriques. En combinant des résultats généraux
sur les variétés des valeurs propres d’arbres abéliens de groupe et les descriptions combi-
natoires des variétés-entrelacs graphées, nous contruisons des composantes de dimension
maximale dans leur variétés des valeur propres.
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Catala

L’ A-polinomi d’un nus en S? és un poliomi de dues variables obtingut projectant la
varietat de SL,C-caracters de 1’exterior del nus sobre la varietat de caracters del grup peri-
feric. Distingeix el nus trivial i detecta alguns pendents a la vora de superficies essencials
dels exteriors de nus.

El concepte de A-polinomi va ser generalitzat a les 3-varietats amb vores toriques no
connexes; una 3-varietat M/ amb n tors de vora produeix un sub-espai algebraic &(A/) de
C?" anomenat varietat de valors propis de M. Té dimensié maximal n i (M) també
detecta sistemes de pendents a les vores de superficies essencials en M.

La varietat de valors propis de M sempre conté una part €*°4(M/), de dimensi6é ma-
ximal, produida pels caracters reductibles. Si M és hiperbolica, (M) conté una altra
component de dimensio maximal; saber quines altres 3-varietats compleixen aixo encara
és una pregunta oberta.

En aquesta tesi, estudiem aquest assumpte per dues families de 3-varietats amb vores
toriques i, amb dues tecniques diferents, aportem una resposta positiva en ambdds casos.

Primerament, estudiem els enllacos Brunnians en S*, enllacos per els quals tot sub-
enllac estricte és trivial. Algunes propietats d’aquests enllagos i llur estabilitat sota alguns
ompliments de Dehn permet mostrar que, si M és I’exterior d’un enlla¢ Brunnia no trivial
i diferent de I’enllag de Hopf, &(M) conté una component de dimensié maximal diferent
de &™d(M). Aquest resultat s’obté generalitzant la técnica préviament utilitzada per els
nusos en S? fent servir el teorema de Kronheimer-Mrowka.

Per altre banda, considerem una familia de varietats-enllag, varietats obtingudes com
exteriors d’enllacos en esferes d’homologia entera. Les varietats-enllag tenen sistemes
periferics estandards de meridans 1 longituds 1 son estables per splicing, |’enganxament de
dues varietats-enllag al llarg de tors periferics, identificant el meridia de cada costat amb la
longitud oposada. El splicing indueix una noci6 de descomposicio torica per les varietats-
enlla¢ i anomenem grafejades les varietats-enllag que admeten una descomposicié torica
per la qual totes les peces son fibrades de Seifert. Mostrem que, excloent els casos trivials,
totes les varietats-enllac grafejades produeixen una altre component de dimensié maximal
en les seves varietats de valors propis.

Per aquesta segona demostracid, presentem una nova generalitzacié de la varietat de
valors propis, que també té€ en compte tors interns, i que presentem en el context més ge-
neral d’arbres abelians de grups. Un arbre de grup és abelia quan tots els grups de arestes
s6n commutatius; en aquest cas, definim la varietat de valors propis d’un arbre abelia de
grup, una varietat algebraica compatible amb dues operacions naturales sobre els arbres: la
fusid 1 la contraccid. Aixo permet estudiar la varietat de valors propis d’una varietat-enllag
mitjangant les varietats de valors propis de les seves descomposicions toriques. Combinant
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resultats generals sobre varietats de valors propis d’arbres abelians de grup i les descrip-
cions combinatories de les varietats-enlla¢ grafejades, construim components de dimensio
maximal en les seves varietats de valors propis.
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Introduction

Overview

The A-polynomial of a knot in S? is a two variable polynomial constructed projecting
the SL,C-character variety of the knot-group to the character variety of its peripheral sub-
group. It was first introduced by Daryl Cooper, Marc Culler, Henri Gillet, Darren Long
and Peter Shalen in [CCG™94], where it is also proved that the A-polynomial of any knot
contains the A-polynomial of the unknot as a factor. The A-polynomial of a knot is said
to be non-trivial if it contains other factors and Cooper, Culler, Gillet, Long and Shalen
also proved in the same [CCG™94] that hyperbolic knots and non-trivial torus knots al-
ways have a non-trivial A-polynomial. This was later proved to be true for all non-trivial
knots by Nathan Dunfield and Stavros Garoufalidis in [DG04], and independently by Steve
Boyer and Xingru Zhang in [BZ05]; both proofs use a theorem by Peter Kronheimer and
Tomasz Mrowka in [KMO04] on Dehn-fillings and representations in SUs.

A remarkable application of the A-polynomial is its hability to detect Culler-Shalen
slopes on the boundary of the knot exterior. In [CS83] Marc Culler and Peter Shalen
had developped a technic to obtain splittings of groups from ideal points of their SL,C
character varieties which, when applied to 3-manifolds, also produces essential surfaces.
In case of a knot exterior, those surfaces intersect the boundary along a finite set of slopes
— Culler-Shalen slopes — and Cooper et al. proved in [CCG™94] that slopes of the Newton
polygon of the A-polynomial of the knot are Culler-Shalen slopes of its exterior.

The notion of A-polynomial can be generalized to 3-manifolds with connected toric
boundary by specifying a peripheral system (a base of m1;0M — 7 M). Stimulated by the
work of Alan Lash! in [Las93], it was then extended” to manifolds with non-connected
boundaries by Stephan Tillmann®. In his PhD thesis [Til02] and the subsequent article
[Til05], Tillmann presents the eigenvalue variety (M) associated to a 3-manifold M with

'who I deeply thank for giving me access to his PhD manuscript
21°d like to thank Steve Boyer for this information
3who I’d also like to thank for the insight he provided me on this topic when we met
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Xiv INTRODUCTION

toric boundary. If M has k boundary tori, the associated eigenvalue variety &()) is an
algebraic subspace of C?* essentially corresponding to the peripheral eigenvalues taken by
representations (or equivalently, characters) of 7 M in SL,;C, and a similar construction
can also be made using PSL,C characters.

Under these assumptions, Tillmann showed in [Til02] that the possible dimension for
components of (M) is at most k; any component of the character variety of M produc-
ing a k-dimensional component in the eigenvalue variety will be called here peripherally
maximal. In the same way as any A-polynomial is divisible by the A-polynomial of the
unknot, any eigenvalue variety &() ) contains a component &*¢( /) corresponding to re-
ducible characters. A component in the character variety of M will be called peripherally
abelian if the corresponding subset in €( M) is contained in €™4(M); otherwise we call it
peripherally non-abelian. The component of reducible characters is peripherally maximal
and we shall search for peripherally maximal and non-abelian components. If M is hy-
perbolic, its character variety contains a distinguished component X, called the geometric
component, containing the character of a discrete faithful representation. Using William
Thurston’s results of [Thu02], Tillmann proved that the geometric component is periph-
erally maximal and non-abelian, generalizing the result of [CCG™94]on hyperbolic knots.
However, which 3-manifolds produce a peripherally maximal and non-abelian component,
or merely whether non-trivial links in S* do, remain open questions.

In this thesis, we answer this matter for two specific cases. These two results are
mutually independant and obtained using very different technics.

First, we consider Brunnian links in S3, links for which any strict sublink is trivial.
Using results of Brian Mangum and Theodore Stanford from [MS01], we push further the
technic used for knots by Boyer-Zhang and Dunfield-Garoufalidis and obtain the following
Theorem 1 on the SLyC-character variety of exteriors of Brunnian links:

Theorem 1. Let L be a Brunnian link in'S® and let M denote its exterior, then X2 (M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

Then, we escape the standard 3-sphere to consider links in integer-homology spheres;
if M is an integer-homology sphere and L is a link in M, the exterior of L in M is called
a link-manifold* and denoted by M. Moreover, it is called a graph link-manifold if it can
be split along essential tori such that each piece of the splitting is Seifert-fibred. Study-
ing thoroughly the PSL,C-character varieties of Seifert-fibred manifolds and the merging
equations associated to the splitting we prove Theorem 2:

“the term link-manifold is sometimes used for any 3-manifolds with toric boundary; here it will only be
used for exteriors of links in integer-homology sphere.
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Theorem 2. For any non-abelian graph link-manifold M with boundary, there exist a
peripherally maximal and non-abelian component in X 52 (M ).

For this second result we need a further generalization of Tillmann’s eigenvalue variety
which also takes into account internal tori. This new construction is not proper to link-
manifolds and is presented in the context of abelian trees of groups. We consider graph
of groups as in Jean-Pierre Serre’s [SB77]° with a slight modification: trees here contain
arrows, like edges but connected to a unique vertex with the other end being free; this
enables to define tree-merging by gluing two trees along chosen arrows on each side and
this pairing is compatible with Serre’s contraction of trees, with the suitable modifications
to include arrows.

The SL>C or PSL,C character varieties of abelian groups are essentially determined
by the eigenvalues of the generators. Considering a tree of groups (G, ), with all the arrow
and edge groups abelian — an abelian tree of group — we define an algebraic space Fg ()
by projecting the character variety of the group 7 on the different character varieties of the
edge and arrow groups and then pulling back at the eigenvalue level in some C**. This
space Eg(7) is the eigenvalue-variety associated to the abelian tree of group G, its defining
ideal in C[Y;*' ... Y] will be denoted by Ag(7) and called the A-ideal associated to G.

An interesting feature of this new construction is its compatibility with two natural
operations on tree of groups mentioned above: merging and contraction. This compati-
bility permits to study an eigenvalue-variety through the eigenvalue-varieties associated to
contraction or subtrees of the original tree. So far, G is not necessarily a torus splitting of
a link-manifold; however, even in this wider context, we can apply part of Culler-Shalen
construction of [CS83] to derive splittings of 7 from ideal points of Fg(7), as well as a
criterion to identify wich elements in the edge or arrow groups are in a vertex group of the
new Culler-Shalen splitting.

This construction naturally applies to link-manifolds decomposed along tori; the edge
groups correspond to splitting tori, the arrow groups are the peripheral subgroups, and the
vertex groups are given by the pieces of the toric decomposition. In particular, considering
a trivial decomposition, the corresponding tree has a single vertex and arrows correspond-
ing to the peripheral tori, and we get back Tillmann’s eigenvalue-variety as presented
earlier. Even if this whole construction is not fully used for the Brunnian links case, we
present a unified definition for all the eigenvalue-varieties that we will consider here. It
is only for the case of graph link-manifolds that F/g-varieties for non-trivial splittings will
really prove themselves useful.

After this brief overview, and before entering the main matter, we follow with a more
detailed description of the content of each chapter.

3See [Ser03] for an english version.
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Trees, characters and links

The first chapter of this thesis is a presentation of all the main concepts and notations
we will need in order to properly introduce the Fg-variety. As a central piece of the
definition, we start with tree of groups, setting notations we will use hereafter. As already
mentioned, our trees have arrows, and we present the small modifications produced by this
extension. We can split a tree of groups along an edge, which becomes two arrows in the
two trees obtained after splitting. Symmetrically, given two trees and chosing two arrows
with isomorphic groups, we can also merge the trees along the respective arrows to obtain
a new, well-defined, tree of groups. In both cases we will write

G=G"x G

when Gt and G~ are obtained splitting G along e, and when G is obtained by merging
Gt and G~ along a™ and a~. The second natural operation that we will consider on our
trees is the contraction of a tree, and the binding® decomposition they produce. With the
suitable modifications to include arrows, this is quite similar to the contraction of trees as
defined by Serre in [SB77].

Let G be a tree of groups, &, a subset of edges of G, and I" the collection of connected
trees obtained by splitting G along the edges of &; we will write

G=(G,>=10)

where G/, is obtained by contracting each I' onto a single vertex, keeping all the arrows
of I' N G — so the tree G and its contraction G/, have the same arrow-set. The edge set of
G/ is £/ = & and the family I is indexed by the vertex set V,. of G,.. With a similar
symmetry to splitting/merging presented above, G is also thought as reconstructed from
G/, by expanding each vertex of G,,. as the corresponding tree in the collection I', and we
say that G is obtained by binding the family I over the tree G/,..

We then recall the definition of the character variety of a group; using the contravariant
properties of the character variety, a splitting of a group over a tree produces various
algebraic maps between character varieties. This is all introduced in the second part of
Chapter 1, together with important concepts and notations for studying character varieties
of groups split over a tree.

Finally, we close our first chapter with a quick review on link-manifolds. With [EN85]
as a reference for this matter, we recall how standard peripheral systems are obtained
and how two link-manifolds can be spliced along respective boundary components. This

Sthe term binding as well as the operator (>>=) are borrowed from monad theory and functional pro-
gramming lexicon. See for example [Mar10] for more details.
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produces a well-defined notion of torus splitting, creating splitting trees for the underlying
fundamental group. In particular, the splicing of two link-manifolds is compatible with
the merging of trees as defined earlier, so a torus splitting of a spliced link-manifold is the
merging of the corresonding trees.

E-varieties

The second chapter presents the construction of the Eg-variety associated to an abelian
tree of groups. The SLy;C or PSL,C character variety of an abelian group H with h
generators has a natural affine structure in C*" denoted by £(H). Given an abelian tree of
groups (G, ), the projection of X (7) on all the edge and arrow groups of G defines the Eg-
variety of 7, Eg(7). This algebraic space is defined by an ideal in some C[Y;*!, ... Y],
that we call the A-ideal of the abelian tree G, and denote by Ag (7). The results concerning
the naturality over splitting/merging and contraction/binding naturally follow from the
underlying structures. First, we show that, for an abelian tree of groups (G, 7), if G can be
split as

G=¢g" atpqa” G-

then there’s a natural map

Eg(m) = Eg+(7") x Eg-(m")
E(e)
and we give a sufficient criterion for belonging to the image. Iterating this result enables
to examine the behaviour of the Fg-variety under contraction and binding. This is the
purpose of Theorem 3:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G, >=1T)
of the tree G produces two regular maps as in the following diagram

Eg(m)—"=TLey,, Er.(m) (1)
!
EQ/F (7'(')

such that, for any edge v' =v of £, in G,,, if e is sent to YN in G for some arrows a'
e

and a in ',y and T, respectively, then

(g'u’)a’ = (gv)a ()
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Moreover, for any (f’u)vev/r in HvEV/ Er,(my), if for every edge v' =v of G, equation
I

(2) is satisfied and not all coordinates of (§,), are £1 (1 in PSLyC) then (fv)vev/r lies in

the image of ir.

This key-result illustrates how we can globally study Eg I (7) by using a finer decom-
position G, while Eg(7) itself might be obtained merging the Er -varieties of the different
pieces.

Before focusing on link-manifolds, we present how the Eg-variety relates to Culler-
Shalen construction, in a quite similar way as the A-polynomial or Tillmann’s eigenvalue-
variety do. The first part of Culler-Shalen construction produces a splitting tree for a group
7 derived from an ideal point of the character variety X (7). Then, as Tillmann did for his
eigenvalue-varieties, we can use the logarithmic-limit set of Eg(7) to capture its ideal
points and lift them into X (7). Moreover, we also get a characterization that determines
which edge/arrow elements of the original splitting G become vertex elements in the new
Culler-Shalen splitting.

More precisely, if Eg(7) is an algebraic subset of C*V, its logarithmic-limit set Fg () __
is a finite union of rational convex spherical polytopes in S¥~! C R¥. For each edge or
arrow e of G, we can fix a basis B, of the edge or arrow group H.. Each p of B, determines
coordinates m,, in Eg(m), u, in Eg(m)_ and m, in C[Eg(7)], enabling the definition of a
pairing:

((): Hex Eg(m),, — R
(s (Wde) = 2 em, Pty

Then we obtain the following Theorem 4, a generalization of Tillmann’s Lemma 11 of
[Til05] to the broader context of abelian trees of groups:

Theorem 4. For any rational point ., of Eg(m) ., there exist a splitting of T such that,
for any edge or arrow e, and any h in H,,

h is in a vertex group <= h-& =0

When applied to torus splittings of link-manifolds, Culler-Shalen construction will
produce essential surfaces, and this new criterion will precisely track down how these
surfaces cross or interesect the edge or arrow tori. This is detailed in the rest of this
chapter where we refine these general considerations in the specific case of link-manifolds
and torus splittings. In that case, the edge and arrow groups H, are all isomorphic to Z?
and the spaces E(H.) will be denoted by F/(T,) where T, is the corresponding torus.

First, a special attention is dedicated to the peripheral E-variety, obtained considering
a trivial tree with a single vertex and only arrows; as already pointed out, it is equivalent to
Tillmann’s eigenvalue-variety of [Til05], but the peripheral E-variety of a link-manifold
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M, will be denoted here as Ey(M). We restate some previously known results, re-
proving the most relevant ones within our new context. This includes the computation of
the component corresponding to reducible characters — given by the first homology, hence
the linking numbers — or the study of the peripheral F-varieties of a link-manifold before
and after 1/¢-Dehn surgery. As Tillmann showed, there is a dimensional upper bound for
the components E of Ey(My) given by the number of components of the link:

dim £ < |L]

and this dimension is attained for the components of reducible characters and for the
geometric component of hyperbolic link-manifolds. We re-expose this result here and
also give a new interpretation of strongly geometric cusp isolation in terms of peripheral
eigenvalue-variety. Following Walter Neumann and Alan Reid in [NR93], if L™ LI L™ is
a partition of cusps of a hyperbolic 3-manifold, L™ is said to be strongly geometrically
isolated from L~ if, after performing any integral Dehn-fillings replacing the cusps of L™
by geodesics (Vx+)x+cr+, any deformation on the cusps of L~ leaves the geometry of
the v+ invariant. We prove that this can be read in the part of the peripheral eigenvalue-
variety corresponding to the geometric component X of the character variety:

Theorem 5. Let M;, be a hyperbolic link-manifold and L L1 L™ a partition of L.
Then L™ is strongly geometrically isolated from L~ if and only if Ey9(X,) splits as a
product B+ x E= with E* in [[ o+ E(Tx) and E~ in [[ o - E(Tk).

Besides hyperbolic link-manifolds, we would expect the Ey-variety of generic link-
manifolds to admit a component of non-abelian characters whith the maximal dimension,
which raises Question 1:

Question 1. For which link-manifolds M;, does X (M) admit peripherally maximal and
non-abelian components?

We will try to address this problem using Fg-varieties associated to torus splittings. In
particular, given a torus splitting of M}, over a tree G, a double application of Theorem 3
produces Proposition 3 which relates the Fg-variety of M, to E(M}) and the peripheral
E-varieties of the vertex link-manifolds.

The peripheral E-variety corresponds to the trivial splitting of a group, with one ver-
tex and only arrows. In the last section of Chapter 2 we study the Eg-varieties for non-
trivial torus splittings of link-manifolds. We present the direct corollary of Theorem 3
for toric splittings of link-manifolds in the form of Corollary 3; finally, we briefly study
the case of the Eg_ -variety, associated to the J.S.J-dual graph of a link-manifold. The
J S J-decomposition can be thought as a maximal toric decomposition of the underlying
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link-manifold, and we explain how the Eg , may also be considered as the maximal Eg-
variety that may be constructed for M.

The next two chapters aim at answering Question 1 for two specific cases; first, in
Chapter 3, we study Brunnian links in S?, links for wich all strict sublinks are trivial. Then,
Chapter 4 focuses on graph link-manifolds, with the property that all the J.S.J-pieces are
Seifert-fibred. Those chapters both make use of Chapters 1 and 2 but are mutually inde-
pendant. As a matter of fact, if general results on the Eg-varieties are used in Chapter 4,
we adopt a much more classical point of view in Chapter 3.

Eigenvalue-variety of Brunnian links

If L is a Brunnian link in S3, we can perform 1/¢ surgery on any component to produce
anew link in S3. Using finer results of Mangum-Stanford from [MS01], we can precise this
stability under Dehn-fillings. Indeed, a corollary of Mangum-Stanford work implies that
a non-trivial 1/g-Dehn-filling on a non-trivial Brunnian link always produces a non-trivial
Brunnian link. This enables us to apply Kronheimer-Mrowka Theorem of [KMO04] and
construct irreducible representations associated to a suitable infinite family of integers,
indexed by the components of the link. If L has 3 components or more, all the /inking
numbers are () and a special attention has to be drawn on Brunnian links with 2 components
and nonzero linking number, for which the computation is a little harder, and the result
slightly weaker.

After examining both cases, we finally obtain our first result on the Fy-variety of Brun-
nian links in S3:

Theorem 1. Let L be a Brunnian link in S* and let M denote its exterior, then X5“2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

This completely answers Question 1 for Brunnian links. However, we do not use
here Eg-varieties for non-trivial splittings G but only the peripheral E-variety. Remarking
that splicing Brunnian links maintains the Brunnian property, we succintly explain how to
describe F-varieties of links obtained via Brunnian trees. Nonetheless, we do not carry out
these considerations any further here, as we will apply the same ideas in the next chapter
but in a quite different context.
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Eg-varieties of graph link-manifolds

In the final chapter, we focus on graph link-manifolds, exterior of links obtained by it-
erated splicing with Seifert-fibred link-manifolds. The combinatorial description of Seifert
fibrings, such as Allen Hatcher’s of [Hat10], produces presentations of the fundamental
groups of Seifert-fibred manifolds. We will describe graph link-manifolds using splice
diagrams as in [EN85]; these are trees with arrows and a new type of edges, ended by
nodes (@), representing singular fibres of the fibring. All the edges and arrows are labeled
with integers representing orders in the corresponding underlying fibrings. An example of
splice diagram is presented in Figure 1.

Splice diagrams enable a quite precise description of the Es-variety of the link exte-
rior. The labels of the splice diagram determine the linking numbers, which permits to
fully describe the component of reducible characters with the standard arguments. In or-
der to address Question 1 for this case, we want to construct components of irreducible
characters.

First, we study Seifert-fibred link-manifolds. In this case, the splice diagram of M|,
has one vertex, arrows indexed by L, and nodes indexed by the singular fibres C' of the
fibring. We obtain the following result for PSL,C-characters:

Theorem 6. The group m M}, admits irreducible representations in PSLyC if and only if
LI+ |C| >3
and, in that case, the peripheral A-ideal corresponding to irreducible characters is
A™(Mp) = (mg®RIg% — 1, K C L) 3)

where o and o are coefficients computed from the labels of the splice diagram. We also
present a similar result for SL,C, which gives a full answer to Question 1 for Seifert-fibred
manifolds, both for character varieties in SL,C and PSL,C.

The rest of this chapter is dedicated to graph manifolds constructed over non-trivial
trees. However, the combinatorics involved increases quite rapidly, making it difficult to
express precise statements in this introduction. We use Theorem 3 on the splice diagram
and different contractions depending on our interests. Without entering into details, this
enables us to obtain our final result for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold M| with boundary, there exist a
peripherally maximal and non-abelian component in X 52 (M).

Finally, we briefly outline how one could use the very same technics introduced here, to
completely describe all the components of all the £/g-varieties of a graph link-manifold M ;
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although it would not determine the character variety, such a description would provide
extensive information on all the Culler-Shalen splittings of M. The high complexity
makes a precise description of all cases hardly manageable; we succintly explain, how,
with enough scrutiny, one could study all the possible Er(m) for subtrees of the splice
diagram, and then use Theorem 3 to determine all the possible components of the different
Eg-varieties.

After this brief presentation, we will now start with Chapter 1 and few recalls on link-
manifolds, character varieties, and trees.
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Chapter 1

Trees, characters and links

This introductive chapter aims at presenting some few classic objects and results that
will be used later; first, we start recalling few properties of amalgamated products and
splitting trees as in Serre’s [Ser03]. The only new feature here is the addition of arrows,
enabling to split and merge trees .

Next, we briefly present some notions of Algebraic Invariant Theory and we recall the
notions of representation and character variety of finitely generated groups. Then, we
describe how splittings of groups reflect on the character varieties and we give a quick
summary of Culler-Shalen theory, using the SL,C character variety of 3-manifolds to pro-
duce essential surfaces.

Although the E-varieties that we will define in Chapter 2 could be constructed for
generic 3-manifolds, we will restrict to exteriors of links in integer homology spheres.
Hence, we follow with some results on knot and link manifolds, using [EN85] as a refer-
ence for this matter and finally close Section 1.3 with few considerations on torus splittings
and JSJ decomposition of link manifolds.

1.1 Trees, arrows and splittings

In this section we recall the notions of pullback and pushouts in categories. Iterating
pushouts yields amalgamating trees as in Serre’s [Ser03]. We recall few aspects of this
theory here, more precisely trees of groups and splitting trees. Besides few changes in
notation, the only difference with [Ser03] is the presence of arrows in the trees, like edges
attached to only one vertex.
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1.1.1 Pushout, pullback

This section simply recalls the concepts of pullback and pushout in category theory.
Even if we will mainly use these to take amalgamated products of groups and fibre prod-
ucts of algebraic varieties, we recall these notions in their broader aspects.

Let C be a category.

Definition 1.1.1 ((Co)Span). A (co)span in C is a pair of morphisms with same (co)domain.
A span will be denoted by

ot oo
Tt —C =7

and a cospan by
vtz sy
The pushout of a span is the co-limit of the corresponding diagram:

Definition 1.1.2 (Pushout of a span). The pushout of a span 7 S0 dsa

cospan 7" SN PR satisfying the universal property corresponding to following
commutative diagram:

so iy o, =1_ o _ and for any cospan W*LGLW* , 1f
fropy=[f_op_
then there exist a unique morphism
[ =G

such that

foir=fi
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Lemma 1.1.1. If the pushout 7" BRI exists, the object m* is unique and will
be denoted by

7 =g PP
c

Example 1.1.1. The category Grp of groups with group morphisms admits pushouts, the
amalgamated product. If each 7= has a presentation, 7+ = (G* | RF), 7" has a presen-
tation:

™ ={(GTUGT|RTUR Uy, (0)p_(6)", 6§€0)
In that case, the pushout will be denoted by m #+ é@— 7~ or mt xc 7w if the morphisms

can be inferred.

Example 1.1.2. The category of commutative rings with ring maps admits pushouts given

+ —
by the tensor product and the quotient. For a ring span A™ & N2 A, we have
ATNAT = At @ A
N N
= AT® A /K
where K is the ideal of AT @ A~ /K defined by
K={(p"(2)a" ®a” — a"®¢ (z)a”, z € N, a* € AF)
Symmetrically, a cospan can admit a universal span called the pullback:

J+

Definition 1.1.3 (Pullback of a cospan). The pullback of a cospan Y+ —— Z J v s

aspan YT Ly Py satisfying the universal property described in the following

commutative diagram:
4
v
TN =
/s N
%4 N
Y+ Y~

N A

Z

$0 j4+ o py = j_ o p_ and for any span Y*LVLY*,if

Jyofyr=j-of-
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then there exist a unique

f: VoY
such that

prof=fs

Lemma 1.1.2. If the pullback Y &y 2y exists, the object Y™ is unique and

will be denoted by
Y* =Yt Iitxi- Yy~
z

or YT X Y~ if the morphisms can be inferred.
Z

Example 1.1.3. The category of algebraic affine spaces admits pullbacks where, for a
cospan Y SEASING/ S Ve of regular maps,

YoV ={y"y ) e YT )Y [jaly") = j-(y7)}
In this case the pullback is also called fibred product.

Iterating these constructions will produce trees; we recall few definitions following
Serre’s [Ser03] with an additional feature, arrows, to facilitate more explicit surgery on
trees.

1.1.2 Trees with arrows

As usual, a tree is a connected, simply-connected graph. We’ll denote by Gy ¢) a tree
G with vertex set )V and edge set £. An edge e of £ between vertices v’ and v of VV will be

denoted by v/ v .

Definition 1.1.4 (Tree with arrows). A tree with arrows is a tree G(y ¢) and a set ? called
arrows with an attaching map ? — V. An arrow a attached to the vertex v will be denoted
by v-% .

We denote by £ the union of edges and arrows & U ? and Q(ng) the tree G with the
additional arrows.

Remark 1.1.4. A tree in the sense of Serre is a tree with arrows and empty arrow set.

From now on, all trees have a (possibly empty) arrow set.
Arrows on trees enable to split/merge trees by identifying edges with pairs of arrows
as in the following definition.
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s + — . + a’
Definition 1.1.5. Let G W+ ET) and G V-5 be two trees with arrows and let v™ — and

v~ 25 be two arrows of ?* and ?‘ respectively; we denote by
Gt at Deqa* G~
the tree G obtained by merging a™ and a~ into and edge e defined as follows:
e the vertex setis YVt LUV~
e theedgesetisET LUE U{vt Zv }
o the arrow setis (£ \ {at}) U (€~ \ {a~})

We say that (G, G™) is obtained by splitting G at e. This pairing is compatible with
the contraction of trees of Serre, with the suitable modifications to include arrows.

Definition 1.1.6 (Contraction of a tree with arrows). Let G, g be a tree with arrows. Let
& be a subset of £ and I' = (I';);¢; the collection of trees obtained by splitting G on the
edges of &,.

The contraction of G along I is the tree G, obtained by retracting each I'; in G into a
single vertex. The vertex set V. of G, is in bijection with I so the collection I" will be
denoted by (I'y)vev, . Similarly, the edge set £, of G/,. is in bijection with &.

Each edge v' v of £, comes from an edge in G and corresponds to two arrows in
I',, and T',, attached to the vertices according to their configurations in G. All the other
arrows of each I, are attached to the corresponding vertex v of V, . in G,

Remark 1.1.5. A tree G and any of its contraction always have the same arrow-set.

If G is a tree and G, is a contraction of G, we can think of G as being obtained from
G/, by expanding each vertex v of V), into the tree I',. Given a tree G’, one may assign
a tree ', to each vertex of v, with a pair of distinguished , to construct a tree G such that

g =6,
Definition 1.1.7 (Binding decomposition). We will write

G=(G">=T0)
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when ¢’ = G /- 1s the contraction of G along the collection I' and this will be called a
binding decomposition ' of G.

The contraction as defined in Definition 1.1.6 is compatible with the merging defined
in Definition 1.1.5.

LetGt = (gjﬁ >=T")and G~ = (Q/_Fi >=T") be two trees and let v" 2% and

v~ 25 be two arrows of G and G~ respectively. Let G be the tree Gt ¢ X% G~ as in
e

Definition 1.1.5.
The vertices v+ and v~ belong to trees I',+ and I',- in the respective collections I'*"
and I'~; the tree T+ X% T, is a subtree of G and the family

D= (P \ Ty ) U\ Ty U (T 00 Ty )

is a partition in subtrees of G.

Lemma 1.1.3. With these notations, we have:

_ o+ atpgaT o—
Gp=9,, "M G

€

We close this section presenting two natural binding decompositions that exist for ev-
ery trees.
First, any tree G decomposes as

G=(x>=0G)

where * is the tree § /; With a single vertex and all the arrows of G. This decomposition
contracts all the tree onto a single vertex.

Definition 1.1.8. The binding decomposition (¥ >= G) of a tree G is called the trivial
binding decomposition.

On the other hand, let 7 = {7, v € V} be the collection of vertices of G with arrows
attached for each adjacent edge or arrow in G. We have the binding decompostion

g:(g>>:T})

which is essentially identical to G.

!'In an informal type theory (see [Unil3]), if Tree, denotes the type of trees with vertices of type a, the
tree G has type Treey, the tree G, . has type Treey /o and the collection I' is a map V,. — Treey. This
is similar to the binding operator for a monad m in functional programming languages (see [Marl0] for
example):

(L>»=_):ma—=(a—>mb)—>mb

and we chose to use the same name and notation here.



1.1. TREES, ARROWS AND SPLITTINGS 7

Definition 1.1.9. The binding decomposition (G >>= 7) of atree G is called the identical
binding decomposition.

1.1.3 Trees of groups

In this section, we present the notion of tree of groups as in Serre’s [Ser03], slightly
modified to include tree with arrows, and using the notations that we have introduced so
far.

Any tree G, g) defines a category Cg with objects V U & U ? and the following mor-
phisms:

e for each arrow v -~ a morphism a — v

e foreachedge v/ =v aspan v/ +—ec——uv.

Definition 1.1.10 (Tree of groups). A tree of groups is a tree G and a functor 7 from Cg to
the category (Grp, <) of groups with monomorphisms.

In other words, the tree Gy, g is equipped with groups 7, Ce, and C, for each vertex
v, each edge e and each arrow a, respectively, and with injective morphisms:

e ¢.,:Cc— myand ¢, : C. — m, for each edge v = v
e o, : C, — m, for each arrow v .

Let (G, 7) be a tree of groups, we want to form the group obtained amalgamating all the
groups 7, along the edge groups C.. As in [Ser03], this is the direct limit in the category
(Grp, =):

Definition 1.1.11. The fundamental group of a tree of groups (G, ) is the group
TG = hg Ty
Ce

In other words, there exist injective morphisms i, : m, — 7g for each vertex v of G
satisfying

1y O Spev/ = 1y O Pe,

for any edge v’ =v and such that, for any group H and any collection of morphisms

fo:my = H,if fyope, = f, 0., for each edge v = v of G, then there exist a unique
f : mg — H such that f, = f o1, for each vertex v of G.
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Remark 1.1.6. For each arrow a of G, the group (), injects in mg by composition of ¢, and
Ty

By naturality of the construction, tree of groups covariantly transport the merging op-
erator into amalgamated products:

Lemma 1.1.4. For any tree of group (G, ), if G splits as G+ a*pqa” G-, then
Tg = TG, *C. Tg_

Corollary 1.1.5. Let (G, ) be a tree of groups. For any connected subtree G' of G, the
pair (G', g,) is a tree of group and the fundamental group of G' injects in the fundamental

group of G.
Finally, we present how tree of groups transport binding decompostion.

Lemma 1.1.6. Let (G, ) be a tree of groups with a binding decomposition
G=(G,>=1)

The functor T induces by restriction a tree of group on each ', for v in V... It also defines
a tree of group structure on G . defining, for any vinV,,

Ty — 7T1"v

By Lemma 1.1.4 and Lemma 1.1.6, the family of edge and arrow groups is preserved
by merging and binding. Therefore, any predicate on the edge and arrow groups will be
preserved by those operations.

Definition 1.1.12 (Abelian tree of groups). A tree of groups is called abelian if all the
edge and arrow groups are abelian.

Remark 1.1.7. Similarly, we could define cyclic tree of groups, free tree of groups, free
abelian tree of groups, etc...when all the edge and arrow groups are cyclic, free, free
abelian, etc. ..

1.1.4 Splitting trees

Given a fixed group 7*, we consider the differents tree of goups with fundamental
group 7.

Definition 1.1.13. Let 7* be a group. A splitting tree for 7 is a tree of groups (G, 7)
whose fundamental group is isomorphic to 7*.



1.2. REPRESENTATION AND CHARACTER VARIETY 9

As one could expect, most results on trees of groups have their counterpart for splitting
trees. Using Lemma 1.1.4 and Lemma 1.1.6, the notion of splitting tree is natural for the
inclusion and bindings:

Proposition 1.1.7. Let 7+« C —>—> 7~ be a span and and let (G*, ) and (G, )
be two respective splittings of ™ and 7. If there exist two arrows a™ of G such that
Tex = C and o+ = 4 then

G =G" "X G-

+

is a splitting tree for v* = % .

Corollary 1.1.8. Let ™ be group with a splitting tree G. Any subtree of G is a splitting
tree of a subgroup of T*.

Remark 1.1.8. In general, not all subgroups can appear as fundamental groups of subtrees
of a given splitting tree.

Proposition 1.1.9. Let * be a group with a splitting tree G = (G,. >=T). Then G, is
a splitting tree for ™™ and each 1, is a splitting tree for the corresponding vertex group.

Now, following Definition 1.1.12, we use the same naming convention:

Definition 1.1.14. A splitting (G, 7) of a group is called an abelian splitting if all the edge
and arrow groups are abelian.

Remark 1.1.9. Similarly, we could define cyclic splittings, free splittings, free abelian
splittings, etc. .. when all the edge and arrow groups are cyclic, free, free abelian, etc. ..

1.2 Representation and character variety

Before defining character varieties, we need few tools from algebraic geometry.

1.2.1 Algebraic groups & Invariant theory

Let’s review some useful results on algebraic groups and invariant theory. More details
can be found in [PV94].

Definition 1.2.1. An algebraic group is an algebraic variety with a group structure such
that the multiplication and inversion are regular functions.
A map of algebraic groups is a group homomorphism that is also a regular map.
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Definition 1.2.2. Let GG be an algebraic group and Z an algebraic set.

An algebraic action of G over Z is a morphism from G to the group of birregular
self-maps of Z. For an algebraic action o, we’ll denote by o, the corresponding birregular
self-map.

Example 1.2.1. Any algebraic group G acts on itself by conjugation via

Kgo 10— 909 90"
We will always refer to this action for an algebraic group acting on itself.

Let GG be an algebraic group and Z and algebraic set. The quotient of Z by an algebraic
action of GG may not be an algebraic set. We need the notion of algebraic quotient.

An algebraic action o of GG over Z produces, by composition, an action on the ring of
regular functions C[Z] via, for any ¢ in G,

o ClZ] - C[Z]
f — foagfl

Definition 1.2.3. Let G be an algebraic group acting on an algebraic set Z.
The ring of G-invariant functions of Z is the subring of C[Z], denoted by C[Z]%, of
regular functions invariant under all o,,* for g € G

ClZ1°={feClZ]|Vg€G, o, °f = f}

For any algebraic space V, aregular map f : Z — V is G-invariant if P o f is G-invariant
for any P in C[V].

Example 1.2.2. If G is linear (i.e. a subgroup of GL,,C), the trace function tr : G — C
is G-invariant for the conjugation action.

Example 1.2.3. The trace function of square

tro: PSL,C — C
A — tr(A4?%)

is PSLsC-invariant on PSL,C.
Example 1.2.4. The square of the trace function

tr?: PSL,C — C
A = (tr(A))?

is also a PSLyC-invariant on PSL,C.
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Remark 1.2.5. The two functions tr, and tr? differ only by a constant; for any A in PSL,C,
tr(A?) = (tr(A))* — 2

We want to define the algebraic quotient of Z by G such that its ring of regular func-
tions is C[Z]“. To be able to do this, we need an additional hypothesis on G.

Definition 1.2.4. A group G is called reductive if for any finite dimensional rational rep-
resentation p : G — GL(V'), any G-invariant subspace of V' admits a complementary
G-invariant subspace in V.

Example 1.2.6. As explained in [PV94], the Zariski closure of a compact (in the classic
topology) subgroup K of GL,C is reductive. For example, GL,(C), SL,(C), O,(C),
SO, (C) and Sp,(C) are reductive.

Lemma 1.2.1. [PV94] Let G be an algebraic group acting on an algebraic variety Z. If
G is reductive, then the ring of G-invariant C[Z]% is finitely generated.

Moreover, let Y be an other algebraic space with a G-action. For any regular G-
invariant map f Y — Z, if f*(C[Z]) = C[Y], then

For a reductive algebraic group G acting on Z, we can therefore define the following:

Definition 1.2.5. The algebraic set X such that C[X] = C[Z] is called the algebraic
quotient of Z by G and will be denoted

X=27Z/G
There exist a surjective G-invariant map ¢ : Z — Z//G, such that, for any algebraic
space V, and for any regular map f : Z — V/, f factors by ¢ in the following diagram if
and only if f is G-invariant.
7% 7//G

f

~
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1.2.2 Representation & character variety

Definition 1.2.6. Let G be an algebraic group and 7 a finitely generated group. The
representation variety of 7 in G is the set

RY(7) = Hom(m, G).

Since 7 is finitely generated, R“(7) inherits the algebraic structure of G. Any finitely
generated presentation m = (7q,...,7,|K) of 7 provides an algebraic description of
RE(r) as the subset of G which satisfy the equations induced by K.

For any morphisms ¢ : G — G’ and ¢ : 7 — 7, we have the following commutative

diagram of regular maps between representation varieties:

RE (1)~ RG(x")

5| | W

RG/(TI') 7 RG/(ﬂJ)
where p*p =poypandd,p=00p

In particular, any two finitely generated presentations of the same group 7 produce
birregularly equivalent algebraic structures on R (), so the algebraic structure of the
representation variety is independent of the particular choice of presentation.

The conjugation action « of G on itself produces, via k,, in diagram (1.1), an algebraic
action of G on R%(r). For any p in R®(7) and g in G, we’ll denote by p? the conjugated
representation Ky-1,p.

If G is reductive, we can define the character variety of 7 in G

Definition 1.2.7. The space X“(7) = RY(r)//G is called the character variety of 7 in
G.

We denote by ¢ : R%(7) — X () the natural projection map.

Remark 1.2.7. Two conjugated representations always have the same image by ¢ but the
converse is not true in general.

As explained in Appendix A, any G-invariant regular function 7 on G produces, for any
7 in 7, aregular function 7, on X () by evaluation. In particular, for G = SL,C or PSL,C,
we’ll denote by I, the functions 7., associated to tr in SL,C and try : £4 — tr(A?) in
PSL,C. Any character y of X5%2C () or XT5L2C(7) is determined by the function

C
IW(X)

X: ™ —
vo—
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and the projection map ¢ can be thought as the map
t: RYm) — XY(r)
P = Xy = 7))

hence the name character variety.
The next lemma illustrates the functoriality of the character variety:

Lemma 1.2.2. For any morphisms 0 : G — G’ and ¢ : 7' — 7, diagram (1.1) extends to
the corresponding character varieties to form the following commutative diagram:

RE(rr) RE(7") (1.2)

R (m) R (')

Example 1.2.8 (Abelianization). Let’s fix an algebraic reductive group G. We’ll write R
and X for R and X©.

Any finitely generated group w admits an abelianization ™ given by the exact se-
quence

1 70, 7] m—L—s qab 1

For~y in m, we’ll denote by [7] the abelianization of y, p(y). By Lemma 1.2.2, the morphism
p : ® — 7 produces the following commutative diagram:

R(n**) 2 R(r) (1.3)
X(7%) —— X (n)
Definition 1.2.8. For any finitely generated group m we define
R*(m) = p"(R(r™))
X*(7) = p*(R(r™)) = t(R*™ (7))
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Since 7 is finitely generated, ™" is isomorphic to some 7" ® D;_, Z,,. Therefore, any
pin R*®(m) is given by n + s elements of G, (m;)}_,, and (c;);_,, such that

o [m;,my] = [my,ci] =[ci,cr] = 1foralli,j, k
o ¢ =1foralli

and for any vy in m, if [y] = (a1, ..., apn, b1, ..., bs),

ply) = mit e

In other words, R*® () is isomorphic to abelian families of n + s elements of G with the s
last ones having torsion «; for 1 < i < s.

If G is linear, a representation p produces an action of 7 over a finite-dimensional
C-vector space V. In this context, we have the following definition:

Definition 1.2.9. A representation is reducible if there exist a non trivial proper subspace
of V, stable under the action of 7 produced by p. Otherwise, p is said to be irreducible.
Similarly, a character  is irreducible if there exist p irreducible in 1y and y is
reducible if all such representations are.
We write R™4(r), R™ (), X™4(7) and X" (r) for the respective subspaces of R()
and X ().

1.2.3 Amalgams, splittings and character varieties

In this section, we study some properties of the character varieties of amalgamated

products and trees of groups introduced in Section 1.1.

Let 7* be the amalgamated product of the span 7+ & ¢ =, 7~ . The commuta-

tive diagram
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produces contravariantly a commutative diagram on the representation varieties:

R(C) (1.4)
R(7r+2\ /R(ﬂ')
Ry

with a natural identification:

R(m) = {(p4,p-) € R(x") x R(x7) | py 0 4 = p- 0 o in R(C)}
In other words, R transforms amalgamated products into fibred products:

R(xt x 77 ) =R(x") x R(x") (1.5)
c R(C)

In this situation, for any p in R(r), if p, and p_ denote the corresponding representations
in R(7m*) and R(7 ™), we write

p=ps X po
C

The commutative diagram (1.4) can be pushed down via ¢ to produce the following
commutative diagram:

R(C) (1.6)
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Where the vertical and horizontal arrows are ¢ and the other ones are pull-backs of the
original group morphisms.

However, it is not always true that a pair of characters in X (7") x X (7~) with the
same image under ¢, and ¢_ produces a character in X (7*). Indeed, a pair (x,, x_) of
such characters would only ensure the existence of two representations py and p_ such
that t(py o ) = t(p_ o p_) in X(C) but, by remark 1.2.7 this is generally not sufficient
to find a pair a representations that coincide in R(C). If t 71 (o *x4) (or t71(p_*x_)) is
exactly the orbit under conjugation of p, o . (resp. p_ o ¢_) then we may find g in G
so that ¢ *(p+9) = ¢_*(p—). In that case, p/, = p% and p_ agree on C and we can form
p=p s"+l>049"— p—. The character y = t(p) satisfies the expected equations.

X = X+
it = x-

Moreover, let x be a character of X (7*), then (i, *x,i_"x) does not completely deter-
mine y: let p be a representation in ¢~'() with image p, and p_ in R(7") and R(7")
respectively. Then, for any non trivial centralizer g of p(C) in G (if it exists),

Pt ¢ P— 9
P+ é (p-)
defines a new representation p, in R(7*). Although the new character x, = t(p,) satisfies
it"Xg = 147X, x s in general different from x, in X (7*).
It follows that, unlike representation varieties, character varieties do not convert amal-
gamated products into fibred products. However, by commutativity of diagram (1.6), the
universal property of the fibred product yields a regular map

X(r*) = X(71) X?C) X(m7)

Iterating amalgamated products yields trees of groups and splitting trees as in Sec-
tion 1.1. We introduce here some notations for that case.

Let 7 be a finitely generated group with a splitting tree G. For each vertex v of G,
there exist an injective morphism ¢, : m, — m. By diagram (1.2), a splitting of 7 over §
produces, for any vertex v of G, a regular map

i X(m) = X(m)

Any property on a character in X (7) can then be studied on the different pieces X (7,);
for example:
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Definition 1.2.10 (Everywhere abelian characters). Let G be a splitting tree for 7. For any
x in X (7), we say that  is everywhere abelian if, i,*y is in X" (r,) for all the vertices v

of G.
If G is linear, we also define the following:

Definition 1.2.11 (Everywhere (ir)reducible characters). Let G be a splitting tree for 7.
A character y in X () is everywhere irreducible (resp. everywhere reducible), if, for all
vertices v of G, i,*x is in X" (mr,) (resp. X*4(m,)).

Remark 1.2.9. Any reducible character is everywhere reducible and any everywhere ir-
reducible character is irreducible. In particular, any character irreducible on at least one
piece is irreducible.

More generally, let V denote the set of vertices of G, then any irreducible component
X of X () defines a map
nx @V — {irr,red}

where 1y (v) = irr if 4, X contains irreducible characters of X (7,) and nx(v) = red if
1, X contains only reducible characters.

Definition 1.2.12 (Type of component). For any component X of X (7), nx is called the
type of X.

Remark 1.2.10. By Definitions 1.2.10 and 1.2.11, a component is everywhere irreducible
or resp. everywhere reducible if it has constant type.

It is then quite natural to ask the following Question:
Question 2. Given a group 7 and a splitting tree G with vertex set V, what maps
n:V — {irr,red}
can appear as types of components of X (m)?

Types of components may be studied using binding decompositions (see Definitions 1.1.6
and 1.1.7).

Definition 1.2.13. Given a type 7, a binding decomposition (G,, >= T') of G is called
compatible with ) if, for any vertex v of G/, ) is constant on the tree I',,.

Remark 1.2.11. Obviously, the identical decomposition (G >= 7) (see Definition 1.1.9)
is compatible with any type 7.

On the other hand, the trivial decomposition (x >>= G) of a tree (see Definition 1.1.8)
is only compatible with constant types.



18 CHAPTER 1. TREES, CHARACTERS AND LINKS

Proposition 1. For any irreducible component X of X (r), there exist a binding decom-
position
G=(G,>=1)

which is compatible with nx and such that, for any binding decomposition (G,., >=1")
of G, if the decomposition is compatible with nx, then there exist a collection I of subtrees
of G' =G, such that

g/F = g;F//

Proof. We can construct G,,. defining the edge set £, in §.

Let X be an irreducible component of X (7); it defines a map n : V — {irr,red} as
in Definition 1.2.12 corresponding to whether 7, " X contains irreducible characters or not.
Let & be the subset of edges of G between vertices of different types:

Eo={vZv e&|nK)=ir, nv) =red}

By Definition 1.1.6, this produces a binding decomposition G = (G, >=I") with edge
set £, = &p; by construction, any internal edge of I, connects vertices with the same type
on X, so the binding decomposition G = (G,. >=TI") is compatible with 7.

Finally, for any binding decomposition (G, , >= I") of G, compatible with 7y, the
treeG' =@ /-, Must contain at least all the edges of & so we can split G’ along &, as before
and we obtain

g/F = g;ru

for a collection I'” of subtrees of G’. O

1.2.4 Culler-Shalen theory

Culler-Shalen theory produces splittings of groups (and essential surfaces) from the
SLyC-character variety of a group (the fundamental group of a 3-manifold). All the details
can be found in [CS83] and we recall here the two fundamental results that we will use.

In this section X (7) is the SLoC-character variety and, for any + in 7, I, is the regular
function of C[X (7)] associated to the evaluation of tr at .

By Theorems 2.1.2. and 2.2.1. of [CS83] we have the follwing result:

Theorem 1.2.3. Let 7 be a finitely generated group. For any discrete, rank 1 valuation w
on C[X (m)], there exist a splitting of T such that, for any v in 7, y is in a vertex group if
and only if
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This result is achieved using Bass-Serre theory of [SB77]. It is worth noting that, if the
valuation is associated to an ideal point of X (), w([,) must be negative for some ~ in ,
so the corresponding splitting is non-trivial.

The splitting of fundamental groups of 3-manifolds can produce essential surfaces. We
will not re-expose the construction here, all the details can be found in [CS83] and produce
the following proposition:

Proposition 1.2.4 (Proposition 2.3.1 in [CS83]). Let N be a compact, orientable 3-manifold.
For any non-trivial splitting of m N there exists a non-empty system S = S1 U ... S, of
incompressible and non boundary-parallel surfaces in N with the following properties:

e forany S in S, Im(m S — 7 N) is contained in an edge group
e for any piece W of N \ S, Im(mW — w1 N) is contained in a vertex group.

Moreover, if K is a subcomplex of ON such that Im(m1 K — 71 N) is contained in a vertex
group for each component K of K, we may take S disjoint from K.

Combining Theorem 1.2.3 and Proposition 1.2.4 enables the detection of essential and
non boundary-parallel surfaces from discrete rank 1 valuations on the character variety of
exteriors of 3-manifolds.

1.3 Links in integer homology spheres

Let’s now review some few facts about exteriors of knots and links in integer homol-
ogy 3-spheres.

1.3.1 Knot-manifolds

Definition 1.3.1 (Knot-manifold). Let M denote an integer-homology sphere. A knot K
in M is an oriented embedded circle. The exterior of K in M is the complement of the
interior of a tubular neighbourhood of K:

Mg =M\ N(K).
The manifold M is called a knot-manifold.

Let M be a knot-manifold. The boundary of M is a torus T’ which splits M into two
integer-homology solid tori My and N(K') and there exist oriented simple closed curves
14, A on 1" such that
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o 1 generates Hy (M, Z) and is nullhomologous in N (K)
e ) is nullhomologous in M and homologous to K in H;(N(K),Z)

e < i, A >= 1, where <, > denotes the algebraic intersection on 7.

Definition 1.3.2 (Standard peripheral system). The pair u, A is called a standard periph-
eral system for T'. The simple closed curve p (resp. ) is called a meridian (resp. longi-
tude) of T'. A meridian-longitude pair gives a basis for homology of the boundary:

H(T,Z) = Ty ® T

Let My and M’y be two knot-manifolds with respective boundary 7" and 7" and
standard peripheral systems (u,\) and (', \'). Let M™* denote the closed 3-manifold
obtained by gluing My and M’k along their boundaries, via the orientation-reversing
homeomorphism identifying p with X\ and A with p/'.

Definition 1.3.3 (Splicing along knots). The manifold M* is an integer-homology sphere
called the splice of M and M’ .. The original tori 7" and 7" are identified with a single
torus S in M* and we write:

M* =M K’qu M.

On the other hand, let M/* be an integer-homology sphere and .S an embedded torus in
M~. Because M* is an integer-homology sphere, S is separating and splits M* into two
integer-homology solid tori W and W’. There exist simple closed curves A and X’ on S
such that A (resp. \’) is nullhomologous in W (resp. W') and < A\, M >= 1.

Let M denote the integer-homology sphere obtained by gluing a solid torus S! x D?
on W, gluing {1} x 9D along X'. Let K denote the core S' x {0} in M, K is a knot in M
and IV identifies with M.

Symmetrically, W’ can be identified with a knot manifold M. The pair (X', ) is a
standard peripheral system for My and (A, \') a standard peripheral system for M’ .

Definition 1.3.4 (Desplicing along a torus). With these notations, M™* is exactly the spliced
integer-homology sphere M’ K'zﬂK M.

The pair (Mg, M'k/) is well-defined up to changing the both orientations of K and
K. Tt is called the desplicing of M* along S.

The inclusion of .S as T"and 7" in My and M’ g, respectively, produces the following
group morphisms:
Q: 72 — m My
A= A K
D 17574
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O 77 = mM g
A= ke
Noo—= A\
and applying Seifert-van Kampen Theorem we obtain:
Proposition 1.3.1 (Fundamental group of spliced integer-homology sphere). Let M* be
a spliced integer-homology sphere M’ K/EﬂK M. The fundamental group of M™ is the

amalgamated product of the span
7T1M/K/ <SO—,ZQ L)T('lMK .
Let M be a knot-manifold and (p, ¢) be a pair of coprime integers.
Definition 1.3.5. The Dehn-filling of My with slope p/q is the manifold obtained by

gluing a solid torus S! x D? on M, identifying {1} x 9D? with the slope pP 9. Tt will
be denoted by My (p/q).

The fundamental group of My (p/q) is the quotient of 7 My by the normal closure
((1PA9)). Taking the abelianization we have:

Lemma 1.3.2. The manifold My (p/q) is an integer-homology sphere if and only if p =
+1.

1.3.2 Link-manifold

Link-manifolds are obtained removing several disjoint knots in an integer-homology
sphere.

Definition 1.3.6 (Link-manifold). Let M denote an integer homology sphere. A link L in
M is a disjoint union of knots L = K UI... U K|z. We denote by M|, the exterior of L in
M: .
M, =M\ | | N(K).
KCL

The manifold M, is called a link-manifold.

Remark 1.3.1. Knot and link manifolds are not necessarily irreducible.

The boundary of a link-manifold M7, is a disjoint union of tori T for K C L. Each
component K of L determines a standard meridian-longitude system (u s, Ax) for Tk.
For any components K, K’ of L, there exist a unique integer « such that

>\K = UK in Hl(MK/,Z).
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Definition 1.3.7. The integer « is called the linking number of K and K’ in M and is
denoted by lk(K, K').

Remark 1.3.2. The linking number is symmetric: for any components K, K’ of L,
Ik(K,K') =1k(K' K).

The homology of M, is given by

Hy(My,Z) = € Zpx

KCL
and, for any component K of L, the longitude of 7T is characterized by the following
equation in Hy (M, Z):
A= Y IR(E K ). (1.7)
K'CL\{K}

Let M, and M';, be two link-manifolds. Let K and K’ be components of L and L/,
so L = KU Lyand L' = K' U L{. The splicing of M and M’k produces the integer-
homology sphere M* = M’ ¥ /ZGK M and the union of components of L, and L, identify

with a link L* in M™.

Definition 1.3.8 (Splicing link-manifolds). With these notations, M *« is a link-manifold,
called the splice of M, and M’ along K and K’. As before, the tori T and T identify
with a single torus S in M* .« and we write:

* / K'\ K
Mg = My, %005 My,

For any component J of L, a standard peripheral system for 7); in M}, is a standard
peripheral system for 17; in M* .. The linking numbers in M, M’ and M* satisfy the
following proposition:

Proposition 1.3.3. Let M, and M’/ be two link-manifolds and M* ~ = M ig) K ’EﬂK My,

for some components K and K' of L and L' respectively. Let Ik, k' and lk* denote the
respective linking numbers in M, M' and M*. For any components J and J' of L* we
have:

o Uk*(J, J") = lk(J,.J")if J,J € L,
o Ik*(J,J) =1k'(J, J) if J,J' € L,
o Ik*(J,J") = Ik(J, K)IK'(K', J") if ] € Land J' € L.
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Proof. For any component J of L* N L, we have in H, (M, Z):

A= Z Uk(J, Ko) e,
KoCL\{J}

The gluing identifies y;c with Axs and in Hy (M’ Z):

A= > k(KT

J'CL\{K"}

s0, in Hy(M*p«,Z):

A=Y k(L Ko, + k(LK) Y (K T ).
KoCL\{J,K} J'CL\{K"}

Therefore, using equation 1.7, we recover [k* with the formulae of Proposition 1.3.3. [

Let M* 1« be a link-manifold; let S be an embedded torus in M* ;. and let (M, M’ /)
be the desplicing of M* along S. The torus S separates L* into a disjoint union of sublinks
Ly C Mg, Ly C M’k and this produces two links L = K LI Ly and L' = K' LI Ly in M
and M', respectively, so that M* . is the splicing of M} and M';, along K and K'.

Definition 1.3.9 (Desplicing of a link-manifold). The pair (M, M';/) is called the de-
splicing of M* . along S.

Let M}, be a link-manifold. Let L’ be a sublink of L and, for each component K’ of
L', let (pk, qx+) be pair of coprime integers. We’ll denote the family (pg/, i) k'c 1 by
(pr,qrs)- As in Definition 1.3.5 we can fill M}, along the components K’ of L':

Definition 1.3.10 (Dehn-filling). The Dehn-filling of M|, along L', with slopes p.+/qr/,
is the manifold obtained from M by gluing, on each (1) g1/, a solid torus St x D?,
identifying {1} x 9D? with the slope 55’ A\ 95"

It will be denoted by M (L' : pr/qr:)-

Let M, be a link-manifold with L = L U K. A Dehn-filling on K with slope 1/0 is
equivalent to removing the component /K. Moreover, by Lemma 1.3.2,if p = 1, M (1/q)
is an integer-homology sphere M/’. In that case, M (K : 1/q) is the exterior of a link L,
in M’ whose components naturally identifies with the components of L.

Let (17, N})scr, denote the new standard peripheral system of L, in M’ and let
lk,(J, J') denote the linking number in M.
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Proposition 1.3.4. For J in L, (py,\;) and (p/;, X}) satisfy the following relations in

Hy(Ty):
A (18)
Ny o= A+ qlk(K,J)uy (1.9)
and for any J,J" in L,,
lko(J, J") = 1k(J,J) — qlk(K,J)Ik(K,J) (1.10)

Proof. The homology of My is @, ;7 and the homology of M’y is isomorphic to
the quotient Hy(Mp)/(ux + ¢ Ak = 0).

By construction meridians of L, identifies with meridians of L, in M/’. For any com-
ponent J of L, Ay = >~ ;i ; Ik(J, J') py so, in Hi(M'r,),

Ar = Zlk‘(J,J')uJ/

J'£J
= k(K J) pc+ > k(LT
J'4JK
= —qUk(K, )+ Y k(] J)py
J AT K
= —qUk(K,J) Y (K, J )+ Y k()
J'£K J#JK
= —qIk(K, )y + > (k(J,J) = q (K, J) (K, )
J+K,J
so, for any J in L,
J+K,J

Therefore, in the new peripheral system of L, in M', X, = X\ j+q lk(K, J)?1; and for J, J'
in L, the new linking numbers are given by lk,(J, J') = lk(J,J') — q k(K. J) k(K. J").
O

It follows that, if K as linking number zero with all other components, the standard
peripheral systems and the linking number pairing remain unchanged.
We define the following:
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Definition 1.3.11. A link L in an integer-homology sphere is homologically trivial (HT)
if the linking number of any two components of L is zero.

By Proposition 1.3.4, the family of HT-links is stable under 1/¢-Dehn-fillings. More
precisely:

Proposition 1.3.5. Let M be an integer-homology sphere and let L = K L Ly be a link in
M for q in Z, let L, denote the link obtained by 1/q-Dehn-filling along K. Then, if L is
homologically trivial, so is L, and the peripheral system is unchanged.

Proof. This is a direct consequence of Proposition 1.3.4. 0

1.3.3 Torus splittings

Let M, denote a link-manifold.

For any embedded torus S in M}, we can desplice M}, along S and form two link-
manifolds M+ and M~ -. For any family S of embedded tori in M, applying this to
some torus .S in S gives a partition of &

S={StusStus

where ST and S~ are embedded tori in M T+ and M~ -, respectively.
Applying this process to ST in M+ and S~ in M~ -, it follows that any family of
embedded tori S produces a tree decomposition of M where

e cach vertex is a connected component of M, \ N(S),

e cach edge is a torus of S.

Definition 1.3.12 (Torus splitting). This process is called a torus splitting of M. The
manifolds associated to the vertices are called the pieces of the splitting.
The associated tree is called the dual graph of the splitting and a splitting tree of M.

Remark 1.3.3. The dual graph is a tree because any embedded torus in M, is separating.

Remark 1.3.4. We may represent components of L by arrows in the dual graph and obtain
a splitting trees with arrows as in Section 1.1. Unless stated otherwise, we will always
assume the splitting trees of a link-manifold contains all the arrows of the components
of L.

Let M7, be a link-manifold with a splitting tree I'. Any edge v' = v of T, splits I into
two trees I't and '~ (where the edge e becomes two arroheads in '™ and I'™). Then, let
(M*p+, M~ 1) be the link-manifolds obtained by desplicing M, along S.. The following
lemma is a direct consequence of the definitions:
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Lemma 1.3.6. The trees I'" and '~ are splitting trees for M* 1+ and M~ -.

Proposition 1.3.7. If all the edge are essential tori in M, a splitting tree G of M, pro-
duces a splitting tree of m; M |, over G with vertex groups m M° . and edge groups 7.

Finally, the J.S.J-decomposition of Jaco, Shalen and Johannson produces, for link-
manifold s, a toric splitting that may be considered, in a way, maximal.

Definition 1.3.13. A 3-manifold is called irreducible if any embedded 2-sphere bounds
3-ball.

Let M ;, be an irreducible link-manifold. Let 7 denote the family of J.SJ-tori of M ;
by definition, 7 splits M}, into a family (N, ),cy (the JS.J-pieces) such that each N, is
either hyperbolic or Seifert-fibred. Desplicing along each .J.S.J-torus shows that each NN,
is itself some link-manifold M. and M, is obtained by iterated splicing.

The dual graph of the JSJ decomposition is the tree G ; obtained from:

e avertex v € V for each JS.J-piece M" ..

e anedge v' =v € & foreach JSJ-torus S'in J suchthat, M, = M*p, K*quK’ M~
with M" ¢ M+ and M* C M~.

The JSJ decomposition induces a splitting of 7, M, over the tree G 7 with edge group
72 and vertex group m; MV ..

Definition 1.3.14 (Graph link-manifold). A link-manifold M, is called a graph manifold
if it is irreducible and all its J S J-pieces are Seifert-fibred.



Chapter 2

FE-varieties

The A-polynomial of a knot was first describe by Cooper, Culler, Gillet, Long and
Shalen in [CCG"94]. It is a polynomial in 2 variables m and ¢ whose zero-set corre-
sponds to eigenvalues of p(u) and p(\) for p in the SL,C representation variety of the
knot exterior. It was then naturally generalized to links in S® by Tillmann in [Til02, Til05].

In this chapter, we give a more generic construction which generalizes both these
objects, the eigenvalue-varieties associated to an abelian splitting of a finitely generated
group 7.

It is also constructed from the SL,C or PSL,C character varieties, using the special
properties of their abelian subgroups and the algebraic structure of the C* character variety.
Applying this construction the trivial splitting of the fundamental group of a link-manifold
yields precisely Tillmann’s eigenvalue-varieties as in [Til02, Til05].

In addition, the generalization presented here is compatible with the natural operations
of merging, splitting and binding on splitting trees (see Section 1.1).

The SL,C or PSL,C character variety of an abelian group H has a natural affine struc-
ture in C*”" denoted by E(H). Given an abelian tree of groups (G, ), the projection of
X () on all the edge and arrow groups of G defines the Eg-variety of 7, Eg(w). This alge-
braic space defines the A-ideal of the abelian tree G, Ag(m). The main feature of this new
construction is the compatibility with the natural operations on trees of groups: merging,
splitting, contraction and binding.

We show first that the Fg-variety is natural under merging (see Definition 1.1.5) in the
following sense:

Lemma 1. Let G be a tree of groups. For any splitting Gt * X% G~ of the tree G, there

exist an injective regular map

Eg(m)—— Eg+(nt) E(>I<{ | Eg-(m7) 2.1

27
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Moreover, for any (§7 x £7)in Eg+(n™) x Eg-—(m"), if not all the coordinates of &,
3

e e

are 1 (or 1 if working in PSLyC), then there exist £ in Eg(m) with image £ X £
&

e

Then, we consider a binding decomposition (G I >= ') of G as in Definition 1.1.7.
The naturality of the construction enables us to prove the following Theorem 3 for binding
decompositions:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G;. >=1T)
of the tree G produces two regular maps as in the following diagram

Eg(m)—"=Tl,ey,, Er,(m) (1
!
EQ/F <7T>

such that, for any edge v' v of £ in G, if e is sent to YN in G for some arrows a'
e

and a in I'y and T, respectively, then

<£v’>a’ = (gv)a 2)

Moreover, for any (fv)vev/F in HUEV/ Er,(m,), if for every edge v' = v of G, equation
r

(2) is satisfied and not all coordinates of (&), are £1 (1 in PSLyC) then (fu)vev/F lies in

the image of ir.

It follows from Theorem 3 that the eigenvalue-varieties might be a useful contruction
in to understand the decomposition of character varieties induced by splitting trees.

Next, we present the logarithmic-limit set of the eigenvalue-varieties, Ey (m)_ and
how it is related with Culler-Shalen theory (presented in Section 1.2.4). The logarithmic
limit set is an object from tropical geometry which encodes, in a way, ideal points of alge-
braic varieties in C**; the application to Eg-varieties and Culler-Shalen’s Theorem 1.2.3,
produces a relation between Culler-Shalen splittings of groups and the logarithmic-limit
set of Eg(m). After introducing all the relevant notations we obtain the following:

Theorem 4. For any rational point ., of Eg() ., there exist a splitting of 7 such that,
for any edge or arrow e, and any h in H,,

h is in a vertex group <= h-& =0
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As we shall see, Theorem 4 applied to the trivial splitting of a link-manifold is equiv-
alent to Tillmann’s Lemma 11 of [Til05].

After that, we inspect in more details how this construction applies to torus splittings
of link-manifolds. Standard peripheral systems give a canonical description of the tori
subgroups (using adjacent pieces for internal tori), wich induces natural coordinates for the
eigenvalue-variety; after presenting how Theorems 3 and 4 translate in standard peripheral
systems, we will study more in details the case for trivial splittings, to follow with generic
ones.

In particular, we will inspect how Theorem 3 applies to different generic or canonical
cases.

First, we study the peripheral eigenvalue-variety, E5(M), associated to the trivial
splitting of a link-manifold. In this case, we obtain the eigenvalue-variety of Tillmann, as
presented in [Til02, Til05]. We recall some important properties, most of them already
present in [Til05], sometimes in a different form.

We start computing the component of reducible characters and obtain Proposition 2:

Proposition 2. The component of reducible characters in the peripheral eigenvalue-variety
of a link-manifold M7, is given by

.Ared(ML) = <[K - H mK/ilk(K’K,)7 K C L> (22)

K'#£K

We follow considering the relation with Hatchers boundary curve space of [Hat82],
using Theorem 4 and Proposition 1.2.4 with a dimensional bound on the logarithmic-limit
set. This implies that the peripheral eigenvalue-variety of a link-manifold have dimension
lower than the number of components of the link (as in [Til02, Til05]). The components
of reducible characters achieve this bound and a natural question is to look out for other
components of maximal dimension in the peripheral eigenvalue-variety:

Question 1. For which link-manifolds M, does X (M) admit peripherally maximal and
non-abelian components?

Later, Chapters 3 and 4 will attempt to give partial answers to this question.

It is now a classic fact that, by Thurston’s results of [Thu02], link-manifolds whose
interior admit a hyperbolic structure give a positive answer to Question 1. We re-expose
this result here, and also show how the eigenvalue-variety can be used to detect more subtle
properties, such as strong geometric isolation of hyperbolic cusps as defined in [NR93];
if L™ LU L~ is a disjoint subset of cusps of a hyperbolic 3-manifold, we say that L™ is
strongly geometrically isolated from L~ if, after performing any integral Dehn-fillings
allong geodesics (Vx+)x+cr+, any deformation on the cusps of L~ leaves the geometry
of the i+ invariant. We obtain the following characterization:
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Theorem 5. Letr M, be a hyperbolic link-manifold and L LI L™ a partition of L.
Then L™ is strongly geometrically isolated from L~ if and only if Ey(X,) splits as a
product E* x E~ with E* in [[;cc,+ E(Tk) and E~ in [ [ ;- E(Tk).

Then, we study the relations between the peripheral eigenvalue-variety of a link-manifold
M, and the different peripheral eigenvalue-varieties after 1/¢ Dehn-filling on a component
K of L (see Definition 1.3.10). In the eigenvalue-variety coordinates, the Dehn-surgery
equation ux Ax? = 1 becomes a regular function

5(1 = mK[Kq —-1e€ C[Ea(ML)]

On the other hand, the boundary of the Dehn-filled manifold is the subset (Tx+) .k of
the boundary of the original manifold, inducing a projection p between the eigenvalue-
varieties. After imposing the equation 6, = 0 on Ey(M), the projection by p should
correspond to pieces of Fy(Mp(K : 1/q)). However, the surgery shifts the standard
peripheral systems according to Proposition 1.3.4 and this needs to be taken into account
to obtain Fy(M (K : 1/q)) in standard peripheral coordinates; all together, this enables
us to obtain Theorem 7:

Theorem 7. With these notations, for any link L = Ly K in an integer-homology sphere
M, and for any integer q,

Eo(ML(K :1/q)) C ®,%V(d,)

where V' (8,) is the zero set of 0, in Ey(My), O, is the projection p composed with the
self-map of E(H,) given, on each factor E(T;) cr,, by the 2 x 2 block:

1 0
qlk(J,K)? 1
and * is the exponential action of Mao(Z) on C** (see Definition 2.1.3).

Finally, we inspect how Theorem 3 applies to the peripheral eigenvalue-varieties.
Given a splitting tree of M, the peripheral eigenvalue-variety relates with the different pe-
ripheral eigenvalue-varieties of the vertex link-manifolds. Let £g (M) be the eigenvalue-
variety associated to a splitting tree G, and let V denote the vertex set of §.

Proposition 3. For any torus splitting tree G of M, there exist two maps in the following
diagram

Eg(Mp)—"— [Toey Eo(MV10) (2.3)
d
Es(My)

such that
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e p is the projections induced by the inclusion of OM, as arrows in G

e for any point (£Y),cy in the image of i, and for any edge v' v of G connecting
some components K' and K of L"" and L, respectively, the corresponding coordi-

nates of ("),

(§”/)K/ - (TTLK/,gK/) and (fv)K = (mK,EK)
satisfy the gluing condition:
mg = EK’
EK = Mg

(2.4)

Finally, for any (&,) in [],c,, Eo(M? v), such that, for any edge v' = v,
e cquation (2.4) is satisfied,
o (i and Uy are not both equal to =1 (1 if working in PSL,C)

then there exist £ in Eg(Mp) with i*¢ = (£").

So the peripheral eigenvalue-varieties of the vertex submanifolds can, in a way, be
glued together to construct the peripheral eigenvalue-variety.

To conclude this chapter, we apply the same considerations on two more cases; first,
we inspect how Theorem 3 applies for generic torus splittings of link-manifolds. An appli-
cation of Theorem 3 produces Corollary 3, a more generic version of Proposition 3. Then,
we present the eigenvalue-variety associated to the JS.J-decomposition of a link-manifold
M7, and its dual graph G;. The .J.S.J-decomposition can be considered a maximal toric
decomposition, and, applying Theorem 3 in that case gives Proposition 4, wich shows that
Eg,(Mp) is a kind of maximal eigenvalue-variety, acting similar to an initial object for
the different F/g-varieties of the link-manifold M.

2.1 FEg-varieties, Ag-ideals

Let’s start with the C* character variety, which will enable us to define our eigenvalue-
varieties.

2.1.1 The space Hom(mw, C*)

In this section, we will study the elementary, but fundamental, case of R® and X©.
Recall that C* is algebraic with C[C*] = C[Y,Y!]. Since C* is abelian, the conju-
gation action is trivial; moreover, for any finitely generated group , any p of R (7)
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factors through 72°. It follows that the four algebraic spaces of diagram (1.3) are equal to
Hom(7, C*):

RY (7) = R (7**) = X% (72**) = X® (7) = Hom(7,C*)
Therefore, it is sufficient to describe X" (H) for finitely generated abelian groups H.
Lemma 2.1.1. Let H = 2" & @;_, Z,, be a finitely generated abelian group, then

Hom(H,C*) 2 C*" x Huai
i=1

where U,, denotes the set of o roots of unity.
Proof. This is a simple consequence of the three following elementary facts:

e Hom(Z,C*) = C*

e Hom(Z,,C*) = U, forany o € Z

e Hom(H" @ H~,C*) 2 Hom(H*,C*) x Hom(H~, C*) for any abelian groups H ™"

and H~.
O

Definition 2.1.1. For H = Z" & @;_, Z,,, we’ll denote by E(H) the set

E(H) =C™ x f[uai
=1

From now on, for any finitely generated group m, we identify points £ of E(7*") with
morphisms ¢ of Hom(w, C*).

Let 7 be a finitely generated group with 7 = Z"&@;_, Z,,. Under the identification
E(7**) = Hom(r, C*), we have:

Lemma 2.1.2. For any ¢ in Hom(w, C*) and any ~y in 7, if
h/] = (ala”-aanablw“abs) € 7Tab 22”@@2%
i=1

and
S

SON&: (mla--->mn7y17'-'ays) € E(ﬂ—ab) =C" x HZ/{ai
=1
then
(‘p(’y) :ml ...mzhyll)l ...y:s E (C
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Therefore, it makes sense to define the following:

Definition 2.1.2. For ¢ in E(7*") and 7 in 7,

0 = (v) forp ~ €

Example 2.1.1. The space E(Z?) is C* x C*. For any ¢ = (m,{) in E(Z?) and [] =

(p,q) € 22,
5[’7} — mPye

For any ¢ in Hom(w,C*), o' : 2 — ¢(2)"" and % : 2 — ¢(z) define other mor-
phisms from 7 to C*. If £ € E(7) corresponds to ¢ we denote by ! (resp. ) for the
points of E(7%) corresponding to ¢! (resp, P).

Finally, since U, is finite, E(H) is a finite number of copies of E(H ™), the torsion-
free part of H. Therefore, most algebraic properties won’t depend on the torsion part and,
from now on, we will often restrict to free abelian groups.

Applying Definition 2.1.2 to a free abelian groups defines a pairing

1

(%) : 7" x C*" — C*
a = (a;...,ap)

— m* =m" . ..my*
m = (my,...,my,)

This can be generalized to define the tropical action of M,, ,,(Z) over C*". For a matrix A

of M, .(Z),

1,1 a1n
A= :
Qp 1 Qpn
and a vector £ of C*",
my
mpy

Definition 2.1.3. We define A x £ in C*? as the vector:
g

Ax&E= |
g

where A, ..., A, denote the lines of the matrix A.
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Remark 2.1.2. If we denote by (-) the linear pairing M, ,(Z) x C* — CP, it forms with
the pairing (x) a commutative diagram

Cr—A s r

exp exp

C*n m C*p

where exp is the componentwise exponential map and A is any matrix of M, ,,(Z).

Finally, we close this section introducing a last operator which will enable us to go
from C* to SL,C and PSL,C. From now on, we work with G = SL,C or G = PSL,C so
X and R will denote the corresponding character and representation varieties; the distinc-
tion between SL,C and PSL,C will be only done when relevant.

We define the two following morphisms from C*, to SLyC and PSL,C,

A: C —  SLC
0

z —
0 27!

A: C — PSL,C
¢ 0] with(Z==2

z = i_() Cil_

By diagram (1.2), the group morphism A : C* — (G induces a regular map
A, : BE(7) — X(m)

By construction, all characters obtained this way are abelian. However, if we consider
edges and arrow groups of an abelian splitting of 7, we can use this construction to capture
more information about X (7). This is the purpose of the next section.

2.1.2 Eigenvalue-varieties associated to abelian splittings

Given a group 7 split over a tree G, we construct an object which witnesses the restric-
tion on the edges and arrows of the character variety. Since the main goal is to study toric
splittings of link manifolds, we can consider abelian splittings (where the edge and arrow
groups are abelian), enabling the use of Section 2.1.1 to describe the character varieties of
edge and arrow groups.
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Let 7 be a finitely generated group with an abelian splitting over a tree Gy, ¢). For e in

&, we denote the edge or arrow group by H, instead of C. as in Section 1.1 to emphasize
the fact that they are abelian. We will denote by Hg the union of edges and arrow groups:

Hg =| | He
ecE
First, we extend the notation of Definition 2.1.1.

Definition 2.1.4. We’ll denote by F/(Hg) and X (Hg) the spaces

E(Hg) = [ [ E(H.) = E (®,czH.)

ecf
X(Hg) = [ X(He) # X (&czHe)
ec€
and by dg the regular map, product of A, on each component:

dg : E(Hg) — X (Hg)
§= (56)«36? - (A*fe)ee?

On the other hand, each inclusion of edge or arrow group . : H. — 7 produces an
algebraic map

ie" : X(m) — X(H,)

and we’ll denote by ig* the product map

ig*: X(m)
X

X(Hg)

—
- (ie*X>e€f

We can represent this in the following diagram:

E(Hg) (2.5)

|

X(7) = X (o)

We define the corresponding Fg-variety as the Zariski closure of the pre-image by dg
of the image of ig":
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Definition 2.1.5 (Eg-variety). The eigenvalue-variety (or E-variety) of m associated to
the splitting G is the space FEg(m) defined by

Eg(m) = dg™(ig" X (m)) C E(Hg).
For any subspace X of X (7), we define Eg(X) as the subspace dg ' (ig* X ) of Eg().

Remark 2.1.3. By definition, for any component X C X (), there’s a strict closed subset
F of Eg(X) such that, for any £ = (&y,...,&,) in E(Hg),

EECEGX)\F <= IxeX|Veck&, i x=ALin X(H,)

Definition 2.1.6. The union of the smallest such F' for each component X is called the
forbidden set of the eigenvalue-variety.

Remark 2.1.4. A change of basis for the groups of H changes the eigenvalue-variety via
the corresponding tropical action (see Definition 2.1.3) on each factor E(H).

Recall that, for v in 7, I, : X(7) — C denotes evaluation function at -y, associated to
tr if G = SLyC or try for G = PSLyC. The following lemma relates () and £ for «y in
H;:

je

Lemma 2.1.3. If x € X(7) and £ € Eg(m) satisfy
iy x = dyéin X(H)
then, for any H in 'H and any vy in H,
Lix)=¢+¢7

Proof. Since tr(A(z)) = z+ 2! = try(A(z)) in both SL,C and PSL,C, the construction
of g gives the relation of Lemma 2.1.3. [

Example 2.1.5. For example, if the edge or arrow group H, is equal to 72, we can use
Example 2.1.1; as before, E(H) = C** and, for any x in X (), ifig*x = Ay(m, () in
X (H), then, for any 6 = pu+ g\ in H, Lemma 2.1.3 gives:

Is(x) = mPlt+m™P™1

On each component F(H,) of E(Hg), Zs acts by inversion £ — £~'. For any £ in
E(H,), A = A&7 1 in X(H). This makes Fg(X) stable under the product action of

75! on E(Hg):
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Proposition 2.1.4. For any component X of X (), Eg(X) is stable under the componen-
twise action of Z,'¢' given by (&,€) — & on each factor E(H,).

Finally, as an algebraic subset of E(Hg), each Eg(X) is defined by an ideal of C[E(Hg)).
These ideals can be obtained directly from C[X (7)] reversing diagram (2.5) into maps be-
tween the rings of regular functions:

@[X(f{g)] 9, CLX ()] (2.6)
C[E(Hg)]

and, for any component X of X (), i3, restricts to
iglx, : C[X(Hg)] = C[X]
The defining ideals of Fg(m) and Eg(X) are given gy Diagram (2.6):
Definition 2.1.7. The Ag-ideal of m is the defining ideal of Fg(m) given by:
Ag(m) = \/dg" (Ker ig,)

Similarly, for any component X of X (7), Ag(X) is the defining ideal of Eg(X):

Ag(X) = \/dg" (Ker ig|,.,)

2.1.3 Naturality under splitting, merging and contracting

We will now inspect how the F-varieties behave under the cannonical operations on
tree of groups: splitting/merging (see Definition 1.1.5) and contracting/binding (see Defi-
nition 1.1.6).

Lemma 1. Let G be a tree of groups. For any splitting Gt “" X%~ G~ of the tree G, there

exist an injective regular map

Eg(m)—— Eg+(m™) E(>I<{ ) Eg-(77) (2.1)

Moreover, for any (§7 x £7)in Eg+(n") x Eg-(mw"), if not all the coordinates of &,

e e

are 1 (or 1 if working in PSLyC), then there exist £ in Eg(m) with image £ x €.
&

e
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Proof. Let G be a tree of groups and an edge e with G = G+ ¢" X% G~. Let H, H* and

H~ denote the respective collections of edge and arrow groups of G, G* and G~. The
family H splits into a partition

H=H"\{a"HUH \{a"})U{e}

and this partition induces projections between the X and E varieties of H to H™ and H ™,
so we get the following commutative diagram:

X () (2.7)
| ™
X (7 t) X(H) X(7)
T
E(H) _
/ \ _ _
X(H')+— E(H™) E(H)—— X(H)
T
l
X(H.)

By Definition 2.1.5 the pair (p*, p~) restricts to an injective map
Eg(m) = Eg+(n") x Eg-(n")
such that p,+ o p* = p,- o p~ so it factors as a map

Eg(m)—— Eg+ (") x Eg-(77)
E(H.)

For the second part of Lemma 1, let ({7 x £7) be an element of the fibred product

Eg+(m) x FEg-(m7).
E(He)
First, let’s assume that ™ and ¢~ are outside the forbidden sets of Eg+(7w") and

Eg-(m™); there exist x™ and x~ in X (7") and X (7~) such that

Ay &5 = g "X T
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by the fibre product equation, (T, = &~ ,- = & € E(H,) and, if not all the coordinates
of & are 1 (or 1 if working in PSL,C) the character y. = dy & € X (H.) is non central.
Therefore, there exist p* in t~1(x*) such that

pilHai = A

so the pair (p™, p~) factors as p = py x p_in R(m). Let y be the corresponding character
H,

t(p) in X (), p¥x = x* so there existeg such that d»& = iy, and, by diagram (2.7), &
has image £ x £

Since the property on the coordinates of &, is open, we can take the Zariski closure
outside the forbidden sets of Eg+(7") and Eg- (7~) to conclude the proof of Lemma 1.
O

If G is a tree of group with a binding decomposition (G,. >= T'), the edge set £,
of G/, is a subset of the edge set of G and I' is obtained from iterated mergings of the
trees I, for v in V,... Using the naturality of the construction and Lemma 1, we obtain the
following Theorem 3:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G, >=1T)
of the tree G produces two regular maps as in the following diagram

Eg(m)—"= [Ley,, Er.(m) (1)
!
EQ/F (ﬂ-)

such that, for any edge v' =v of £ in G, if e is sent to Y} in G for some arrows a'
e

and a in I', and T, respectively, then
(51}’)@’ = (gv)a ()

Moreover, for any (5”)”6‘% in HUEV/ Er,(m,), if for every edge v' < v of G, equation
r

(2) is satisfied and not all coordinates of (&,), are £1 (1 in PSLyC) then (fu)vev/F lies in

the image of ir.

Proof. Let G be an abelian tree of groups with a binding decomposition (G, >= T').
Let H (resp. H,. and H, for v in V) denote the family of edge and arrow groups of G,



40 CHAPTER 2. E-VARIETIES

(resp. G/, I', for v in Vr). By definition of the binding decomposition, there exist natural

inclusions H,. C ‘H and UUEV/ ‘H, C H which induce two algebraic maps
T

p : E(H)— E(H,)andir : E(H) = [[ E(H.)

veY

These inclusions also produce maps between the character varieties of the families H,
H,. and H,. By Lemma 1.1.6, each v in V), also yields a groups morphism 7, — m,
producing an algebraic map X (7) — [ [, X (7).

All together, we obtain the following diagram of algebraic maps :

E(H,) ¢ BE(H) "= T],cr E(H,) 2.8)

so the maps p and i restric to maps
p: By(m) — Ey, ()

and
ir: By(m)—— I,y En, ()

as expected.

For the rest of Theorem 3, we can inductively apply Lemma 1 on the edges of G,,.. The
fibre product equation at each edge gives equation (2) and the reconstruction criterion is
obtained by splitting G, along an edge and using Lemma 1 by induction on each part. [

2.1.4 Logarithmic-limit set and Culler-Shalen splittings of groups

Using eigenvalue-varieties in conjunction with Culler-Shalen theory will enable to de-
tect how essential surfaces intersect with toric decomposition of link manifolds. The first
part of Culler-Shalen theory produces group splittings from discrete valuations on the char-
acter variety. Applying this to an abelian tree of groups G, we can use the F-variety Fg ()
to detect when elements of edge and arrow groups of G become vertex elements in the new
Culler-Shalen splitting of 7. This generalizes, for Eg-variety of abelian trees of groups,
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the boundary-slopes-detection results known for the A-polynomial as in [CCG94] and
Tillmann’s eigenvalue-variety as in [Til02, Til05].

This will be done using the logarithmic-limit set; first let’s recall some definitions and
few properties. The details can be found in [Til02, Til05], and, more extensively in [Ber71]
and [BG86].

Let V be a subvariety of C*™. We denote by C[Y*] the ring C[Y™,... Y] of
regular functions of C*™. For v in Z™, we denote by Y the monomial of C[Y%],

Yo=Y Yo

Any regular function of C[Y*] is written f = > ;. aoY® where a, is 0 except for a
finite number of m-tuples, called the support of f.
Let A C C[Y*] be the defining ideal of V.

Definition 2.1.8. The logarithmic limit set of V' is the subset V,, of S™~! defined by the
three following equivalent constructions:

e V. is the limit set in S™~! of the following subset of the unit ball in R™:

(10g|yi‘> s ,log\ym\) reV
V14220 (logly])?

e 1 is the set of m-tuples (—v(Y;), ..., —v(Y,,)) for all real-valued valuations v on
ClV] = C[Y*]/A, normalized so that >_", v(¥;)? = 1

e 1 is the intersection of all the spherical duals of Newton polytopes of non-zero
elements of A.

Remark 2.1.6. The Newton polytope of a non-zero polynomial is the convex hull of its
support and the spherical dual of a bounded convex polytope P in R™ is the set of unit
vectors v such that sup,.p v - p is achieved for more than one point p in P.

Remark 2.1.7. In particular, if m = 2 and V' is a curve defined by a polynomial f, the
Newton polytope of f is the classical Newton polygon and V, is the set of normal vectors
to the edges of the Newton polygon.

Remark 2.1.8. Under the identification S™* = (R™ \ {0})/(v ~ rv, r € R%), the
logarithmic limit set also identifies with a positive cone in R™.

By the remark 2.1.7, the logarithmic limit set of a curve in C*? is a set of points on S'.
More generally, the results of Bergman, Bieri and Groves in [Ber71] and [BG86] imply
the following theorem of [Til02, Til05]:
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Theorem 2.1.5 (Bergman, Bieri-Groves). Let V' be an algebraic variety in C*™. Then, its
logarithmic limit set is a finite union of rational convex spherical polytopes.
Moreover, let dimV,, be the maximal (real) dimension of such a polytope, then

dimV,, = dimV —1

The following curve-finding lemma of [Til02, Til05] will enable the use of Culler-
Shalen theory with eigenvalue-varieties:

Lemma 2.1.6 (Lemma 6. of [Til05]). Let V' be an algebraic variety in C*"". Then any
point of V., with rational coordinates belongs to the logarithmic limit set C, of a curve

CinV.

Now, let G be an abelian tree of groups and Eg(7) the associated E-variety. For any
edge or arrow e in £, E(H,) is a subset of some C*™. Since the torsion part of H, will be
sent to 0 in the logarithmic-limit set, we can assume that all the edge and arrow groups are
free abelian. Then, F(Hg) = C*" where r is the sum > . of all the ranks r. of H, for e
in &, and the logarithmic-limit set of E () is a subset of the unit sphere in R”.

For each edge or arrow e in H,, let 3, be a basis of H,, so H = GaueBe uZi; we write
coordinates of £(H.) as (m,,),cp, and Ey () have coordinates ((1m,,),eB. ).cz- The ideal
Ag () lies in the ring

Clmg] = Cl((m,*) 5. )ocs]

and the logarithmic limit set £, () has coordinates ((u,).cB. ).cz-
Remark 2.1.9. The stability of Eg(m) under the Z,"-action induces a similar stability for
Eg(m).. The action by inversion becomes an action (u,,), — (—u,), on each R".

For each eadge or arrow e, there’s a natural bilinear pairing from H, x R" to R: for
any h =% hupin H,and u = (u,), in R"™

h-u:Zhuuu
o

and this pairing naturally extends to H, x R" ignoring the other coordinates.
We can now state Theorem 4:

Theorem 4. For any rational point ., of Eg() ., there exist a splitting of T such that,
for any edge or arrow e, and any h in H.,

h is in a vertex group <= h-&, =0
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Proof. As stated earlier, this result is quite similar to the boundary-slope detection lemma
of Tillmann. However, the proof we present here is slightly different and uses a more
direct approach, using Lemma 2.1.3 to relate valuations on C[X (#g)] and C[E(Hg)].

Let {0 = ((uu)ueB.)ecz be a rational point of Ey (7). Since { has rational coor-
dinates, there exist a positive integer r such that ((ru,),). are coprime integers. In other
words, for each 11, ru,, is an integer and there exist J,, in Z such that

Z Z dpuy, =1
ecE MEBe

By the curve-finding Lemma 2.1.6, £, is in the logarithmic limit set of a curve C' in
E4 /(7). By the second description of the logarithmic limit set, £, corresponds to a nor-
malized valuation v on C[C] via u,, = —v(m,,). Renormalizing v with 7 gives a valuation
rv on C[C] such that

e cach rv(m,,) is an integer

® Hee? HueBe Tv(mﬂiéu) =1

so v is a discrete rank 1 valuation on C[C].
The curve C'in Eg(m) C E(Hg) lifts to X () in the following diagram

E(Hg) (2.5)

|

X(7) o X (Fo)

and there exist a curve D in X (7) such that dg(C') = ig*D. The ring C[D] is a finitely
generated extension of C[C] and there exist a positive integer 7’ and a discrete, rank 1
valuation w on C[D] such that w = r'rv on C[C].

Then, Culler-Shalen Theorem 1.2.3 produces a splitting of 7 with the property that, for
any + in 7, -y is contained in a vertex group if and only if w(Z,) > 0.

For any Y € X (7) and & € Eg(7), if ig*x = dg¢ then, for any e in € and h in H,.,

[h(X) = geh + 5eih

It follows that, in the diagram

CIX (Hg)] == C[X ()] (2.6)



44 CHAPTER 2. E-VARIETIES

ifth=>" i h,p € H, we have the following identification:
I, = Hm#h“ + Hmu‘h“
b p

and therefore,
w(ly) >0 — r'rv(Hm“h“) =0
1
In other words, h is in a vertex group if and only if

r'rv(H muh“) =0
I
= o([[mS) =0
I

= > hwm,)=0
o
<~ h-{.=0

which concludes the proof of Theorem 4. [

When applied to a graph with a single vertex and all the arrow groups are Z2, The-
orem 4 is essentially equivalent to Tillmann’s Lemma 11 of [Til05]. However, with this
extended generalization, the Fg-variety procures more information, relating Culler-Shalen
splittings with the orginal structure of tree of groups. The edge elements detected by The-
orem 4 identify how the Culler-Shalen splitting traverses the original edge groups in G.

2.1.5 Application to torus splittings

Let M}, be a link-manifold. By Proposition 1.3.7, a torus splitting of M}, produces a
splitting of its fundamental group, over the dual tree G, where edge and arrow groups are
the fundamental groups of tori. We will apply here the results on abelian trees of groups to
such torus splittings of link-manifolds, all of which will be detailed in the next sections of
the chapter. In that case, we can also use the second part of Culler-Shalen construction to
produce essential surfaces, and, with Theorem 4, detect how such surfaces cross the edge
and arrow tori of G.

The link structure of M, gives a natural basis for 717" for each edge or arrow torus 7';
for each arrow torus, it is given by a meridian and a longitude, and fore each edge torus,
by longitudes of the two adjacent pieces. We fix a torus splitting G of M and we will
denote by 7 the family Hg of edge and arrow groups of G.
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The basis give a canonical description of E(7) as C*2I71. We denote the coordinates
in E(T) by (mg, 1) for arrow tori and ({1, {7/) for edges v' = v corresponding to the
splicing 7'XT . The associated elements of C[E(7)] will be denoted by (mg, ) and

([r, [7) respectively.
Remark 2.1.10. The elements my and [ are invertible in C[E(T)].
The general diagram (2.5) takes the following form:

E(T) (2.9)

|r

X (My) — X(T)

On each component E(T) of E(T), Z, acts by inversion ¢ — £, and for any torus 7’
and any ¢ in E(T), A.§ = A& in X(T). By Proposition 2.1.4, Eg(X) is stable under
the product action of Z,"! on E(T):

Corollary 2.1.7. For any component X of X (M), Eg(X) is stable under the following
action of Lo\ for any e = (eq)rer in 2,71 = {£117],

e (&r)rer = (& )rer

Now, the second part of Culler-Shalen construction, Proposition 1.2.4, will produce
essential surfaces in Mj,. Using Theorem 4, we can detect how they intersect the tori of
T.

First, let’s recall the construction of the projective lamination space PL(T ) of a family
of tori 7, defined in [Thu02]. We follow the construction made in [Hat82] for the special
case of tori.

For any torus 7" with a given basis, an oriented isotopy class of a closed curve on T'
determines a pair of integers (p, ¢); forgetting orientation produces coordinates in Z?/+,
which is not (0, 0) if the curve doesn’t bound a disc on 7.

Let 7 = {Ti,...,T,,} be a collection of tori. A system of closed curves on each T},
not all bounding discs, produces a system of coordinates in (Z*/+)™ \ {0}.

If we identify any such system C with any number of parallel copies of it, we obtain
coefficients in the space

(2 /)" \{0})/{v ~ nv, n € Zo)

This is the same as (Q*/+)™ \ {0}/(v ~ rv, r € Q) and taking the completion gives
the so-called projective lamination space:
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Definition 2.1.9. Let 7 = {7}, ..., T,,} be a collection of tori. The projective lamination
space of T is the (2m — 1)-dimensional sphere:

PL(T) = (R*/£)™ \ {0})/{v ~ rv) = §" 1 /Z,"

If 7T is a collection of tori in a 3-manifold NNV, any essential surface S in N defines a
curve system [S]7 in PL(7T) whose coordinates are the intersection between S and each
torus 7" of 7.

Back to a torus splitting G of M, the logarithmic limit set of Eg(M}) is a rational
polytope in the unit sphere of R?7! with coordinates (w7, vy)per. By the symmetry un-
der the ng-action of Corollary 2.1.7, Ey (M), is invariant under the ng-action of
Remark 2.1.9:

e - (ur,vr)rer = (e7UT, ETVT)TCT
Therefore, any &, in Eg(X ). defines a class [£,.] in S?™ 71 /Z,™ = PL(T).

Then, applying Theorem 4 with Culler-Shalen Proposition 1.2.4, we obtain the follow-
ing result:

Corollary 1. Let My, be a link-manifold with a torus splitting over G. For any point £, in
Eg(My,),, with rational coordinates, there exist an essential surface in My, such that

[STr = @([¢])

where P is given by the diagonal of m blocks [_01 é] .

Remark 2.1.11. The operator ® takes the orthogonal on each factor R? corresponding to
each torus of 7 to obtain [S]7 - (up,vy) = 0 as in Theorem 4. This is similar to the
situation encountered with knots where we have

logarithmic limit set <+ normal to Newton polygon (see Remark 2.1.7)
boundary slopes <> edges of Newton polygon (see [CCGT94])

so, with this vocabulary we would have:
boundary slopes <+ normal to logarithmic limit set

Proof. From a rational point £, of Eg(M},)__, Theorem 4 gives a splitting of m; M, where
elements of 717 that belong to vertex groups are orthogonal to (£ )7.

Then, Culler-Shalen Proposition 1.2.4 produces an essential surface S in M, such that,
for any piece W of My \ S, Im(m W — m M) is a vertex group.
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For any 7" in T, let 07 = (pr,qr) € PL(T) representing S N T. There’s a parallel
of 67 on T that belongs to a piece of My, \ S so dr belongs to a vertex group and, by
Theorem 4,

Or -+ (€oo)7 =0

If (£oo)r = (ur,vr), 61 (§oo)T = PrusT+qruT S0, Up to projectivisation, this is equivalent
in PL(T) to:
[Slr = (—vr,ur) = ([(§x)7])

This is true on each torus 7" of 7 so, in PL(T),

ST = @([¢])
O

In the case of a tree with a single vertex, Fig(M},) is the eigenvalue-variety as defined
by Tillmann in [Til02, Til05]. The graph G has only arrows and all the groups correspond
to boundary tori. The correponding FE-variety will be called the peripheral eigenvalue-
variety and will be studied more thoroughly in the next section.

After that, we will study generic torus splitting and how Theorem 3 applies when all
edge and arrow groups are tori. We will see that, under contraction and bindings, the
peripheral eigenvalue-variety acts as a kind of terminal object, whereas, the JSJ tree
produces an algebraic space similar to an initial objects for the different Eg-varieties of a
link-manifold Mj,.

2.2 Peripheral eigenvalue-variety

The application of Definition 2.1.5 to the trivial splitting of a 3-manifold gives the
eigenvalue-variety defined by Tillman in [Til02, Til05]. All the arrows correspond to
boundary tori, and we call it, here, the peripheral eigenvalue-variety of the link-manifold
M;y.

Definition 2.2.1. Let M}, be a link manifold. The eigenvalue-variety associated to the
trivial splitting of M}, will be called the peripheral eigenvalue-variety of M. It will be
denoted by Ey(M).

Coordinates of Ey(M,) are given by the standard peripheral basis and will be denoted
by (mg, {k)kcr in C*?IE | We’ll denote by C[m, [] the coordinate ring of F(0M):

Clm, ] = C[(mg, k) xcr]
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If L has only one component so it is a knot K, E5(Mk) is a curve in C*2, the zero-set
of the so-called A-polynomial of the knot as defined by Cooper, Culler, Gillet, Long and
Shalen in [CCG™94]. For this reason, the ideals Ay (M) and Ay(X), defining E5(M)
and Ey(X) for X in X (M) (see Definition 2.1.7), will simply be denoted by .A(M,) and
A(X); they are ideals of in the ring C[m, [], called the .A-ideals of M.

Most of the results of this section already appear, sometimes in a different form, in
Tillman’s work [Til02, Til05].

2.2.1 Component of reducible characters

Before giving more results on the peripheral eigenvalue-variety we can easily compute
the component corresponding to reducible characters.

Let E54(M7},) denote the subset Ey(X™4(M,)) of E5(M},) corresponding to reducible
characters of M. Let A™(M}) be the corresponding defining ideal.

For G = SL,;C or PSL,C, reducible characters are characters of abelian represen-
tations: for any reducible character , there exist an upper-triangular representation p in
t~1y; then, the diagonal of p defines a representation p’ and there exist o in Hom (M, C*)
such that p/ = A o ¢.

Therefore, Ei*d(M}) is isomorphic to E(Hy(My,7)) = C**. It is generated by
the images of the meridians and the equations for the longitudes are given by the linking
numbers of L:

Proposition 2. The component of reducible characters in the peripheral eigenvalue-variety
of a link-manifold M, is given by

A (M) = <[K — [ mu*E K C L> (2.2)

K'#K
Proof. By equation 1.7 each longitude is given in H,(My,Z) = @, Zjix by
)\K = Z lk(K, K/)ILLK/
K'#K
It follows that, for any ¢ in Hom(7 M, C*),
o) = T ).

K'#K

With the Z,!"! action of Corollary 2.1.7, this gives the following equations in C[Exd(M})):

VK CL, lx= [] mpHHr) (2.10)
K'#£K
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Conversely, any point £ = (mg, (i) gcr € E(OM}) satisfying equation (2.10) may define
a morphism ¢ of Hom(m My, C*) satisfying, on each component &,

o(pk) = mg

and
p(Ak) =k

so A, is a reducible character of X (M) with pre-image £. Therefore, the ideal defining
E5d(My) is given by:

.Ared(ML) = <[K - H mK/:Hk(K’K,), K C L> (22)
K'#£K
[l

Remark 2.2.1. Proposition 2 generalizes the fact that the A-polynomial of a knot in an
homology sphere always has a factor [ — 1.

Then, a simple computation using the first description of the logarithmic-limit set (see
Definition 2.1.8) yields the following equations for E5(My,)_:

Corollary 2. The logarithmic limit set of Ex4(M}) is the intersection in RA! of S2LI-1
with the | L|-dimensional subspace defined by

VK CLuvgk=%+ Y kK Kug
K'#+K

From now on, we will try to focus on components of E(M7,) different from E54(Mp).
For a matter of convenience we define the following:

Definition 2.2.2. A component X in X (M}) is called peripherally non-abelian if
Ep(X) # Eg(My)

Peripherally non-abelian components contain irreducible characters but the converse is
not always true. As the following two examples show, there exist link-manifolds M, and
irreducible characters x in X (M) such that

do'(ia*x) C E54(My)
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Example 2.2.2. Characters of X (M) may be irreducible but still have pre-image in
EX4(My). For example, if K is a knot in an integer-homology sphere M and the manifold
obtained by Dehn-filling along the longitude, My (K : 0/1), admits irreducible charac-
ters. By the surgery relation, any irreducible representation of mi My (K : 0/1) trivializes
the longitude. The inclusion My C My (K : 0/1) yields an algebraic map

X(Mic(K £ 0/1)) = X (M)

and any irreducible character of X (M (K : 0/1)) produces an irreducible character x
in X(Mg) with
do ™" (ia"x) C B (Mk)

Example 2.2.3. Let U, be the trivial link with n components in S®. The fundamental
group of Sy, is the free group F,, so, if n > 2, X(S3y,,) contains irreducible characters.
However; since all the longitudes are nullhomotope in S, , they are trivial under any
representation of m1S3y,,. Therefore, although X (S*y,) contains irreducible characters,

Ey(S’u,) = Ex*(S*u,)

2.2.2 Dimensional bound, hyperbolic link-manifolds

Let M/, be a link-manifold. Culler-Shalen theory on X (M}) produces essential in-
compressible J-incompressible surfaces. The points of PL(OM],) corresponding to in-
tersections [S]gns, of essential incompressible 0-incompressible surfaces in M, with its
boundary are called boundary slope of M. The set of boundary slopes will be denoted by

By Corollary 1, as in Tillmann’s Lemma 11 of [Til05], rational points of Ey(M})
produce points in BE(My). On the other hand, by Hatcher’s Theorem of [Hat82], the
closure of BE(M ) is a polyhedron with dimension at most |L| — 1 in PL(OM). Put
together with Bergman, Bieri-Groves Theorem 2.1.5, we obtain a dimensional bound for
the components of Ey( M) in C**2;

Theorem 2.2.1. Let M, be a link-manifold. For any component X in X (M),
dimFEs(X) < |L]
This leads us to define the following:

Definition 2.2.3 (Peripherally maximal components). A component X of the character
variety X (M) will be called peripherally maximal if dim E(X) = |L|.
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Remark 2.2.4. By Proposition 2, the components of Ey(M}) corresponding to reducible
characters are peripherally maximal.

Most of the following sections will be dedicated to answer the following question:

Question 1. For which link-manifolds M;, does X (M) admit peripherally maximal and
non-abelian components?

Remark 2.2.5. For knots, Question 1 is equivalent to whether the A-polynomial of a knot
admits a component different from [ — 1. This is known to be true for non trivial knots in
S? and has been proved by Dunfield-Garoufalidis in [DG04] and Boyer-Zhang in [BZ05].

Remark 2.2.6. The exterior of the trivial link S3;; (see example 2.2.3) does not admit any
peripherally maximal and non-abelian component.

Hyperbolic knots were the first example for which non-triviality of the A-polynomial
was established. This was due to Thurston’s results on deformation of holonomy for hy-
perbolic manifolds with cusps (see [Thu02]). As observed by Tillman in [Til02, Til05],
this result remains true for hyperbolic link-manifolds.

Theorem 2.2.2. Let M, be a link-manifold admitting an hyperbolic structure and let x
be the character in X (M) of a lift of the holonomy. Then the component X, containing
Xo (the geometric component) is peripherally maximal and non-abelian.

More precisely, for any family of coprime integers (pr, Qi ) k1, the functions

(M Ik ) kcr
are algebraically free in C[Ey(Xy)].

Proof. The proof is quite similar to the one found in [Til05]. We follow the same idea,
using notations of [NZ85] which will use for the next Theorem 5.

Let M|, be an hyperbolic link-manifold. Let (pk, gk ) k1 be a family of coprime inte-
gers and Yk = px ik + qx Ak the corresponding system of simple closed curves on OM7.
By Thurston’s results, there exists a local biholomorphism between a neighbourhood of
(0,...,0) in C/*l and a neighbourhood of y; in X,. Moreover, let v = (v )1 denote
Thurston’s local parameters and Y, the associated character, for each boundary torus 7%,

L (x,) = 2c0sh =~

For each y,, let {, = (mg, {x)kcr denote the corresponding point in Ey(Xj), the defini-
tion of g yields

VK
mpPE ™ = exp -
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Since v are local parameters, this forces the functions (m P [x7%) k1 to be algebraically
free in C[E5(Xo)]. Therefore, X is peripherally maximal, and applying this to the longi-
tudinal system vx = Ax shows that X, is also peripherally non-abelian. [

Boundary components of an hyperbolic link-manifold correspond to geometric cusps.
Neumann-Reid results on cusp-rigidity in [NR93] include a characterization of cusp-isolation
through deformation of the holonomy character. We recall the following definition of
[NR93]:

Definition 2.2.4. Let L™ LI L~ be a disjoint subset of cusps of a hyperbolic 3-manifold.
We say that L™ is strongly geometrically isolated from L~ if, after performing any integral
Dehn-fillings allong geodesics (Yx+)x+cr+, any deformation on the cusps of L~ leaves
the geometry of the yx+ invariant.

Then, using Theorem 4.3 of [NR93], we can give a characterization of strong geometric
isolation in terms of the variety Fjy(Xj).

Theorem 5. Let M}, be a hyperbolic link-manifold and L™ U L~ a partition of L.
Then L is strongly geometrically isolated from L~ if and only if Ey(X,) splits as a
product E* x E= with E* in[[;cc;+ E(Tx) and E~ in [[ o, - E(Tk).

Proof. As stated before, the proof relies on Theorem 4.3 of [NR93] which relates strong
geometric isolation with Thurston’s deformation parameters of [Thu02]. More details can
be found in [NZ85] and we follow up with the same notation.

Let M be an hyperbolic link-manifold. As in the proof of Theorem 2.2.2 with px /qx =
1/0, let v = (vi)gcr denote local parameters around Y, in X corresponding to the
meridian system ((x)kcr-

Thurston constructs holomorphic functions 7 () for each component K such that

e cach 7(0,...,0) is the modulus of Tk in the geometry of M,

e for any character x, with parameters v,

(Xy) = ZCosh%(

VKTK (2)
2

1

KK

I,.(x,) = 2cosh

Then, as above, the corresponding point &, = (mg, {x)kcr is given by

Vg
mg = exp7

v v
(g = exp K7 (V)
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Let L™ LU L~ be a partition of L, by Theorem 4.3 of [NR93], L* is strongly geometri-
cally isolated from L~ if and only if the functions 7 for K in L™ only depend on v for
K in L. Since strong geometric isolation is symmetric (Theorem 3 of [NR93]), 7 for K
in L~ only depends on v for K in L~. Therefore, around &, = (1,1,...,1,1), Ey(Xo)
splits as a product in C2E % ¢ and, by algebraicity, Es(Xy) is also a product. [

2.2.3 Peripheral eigenvalue-variety and Dehn-fillings
Let L be a link in an integer-homology sphere M, and let K be a component of L, so
L=KUL

For any integer ¢, the Dehn-filled manifold M (K : 1/q) can be identified with the exterior
of a link L, in the integer-homology sphere M (1/q) (see Definitions 1.3.5 and 1.3.10).
Moreover, there is a natural inclusion

Qg My — ML(K :1/q)
which induces by Diagram (1.2) a regular map
i X(ML(K :1/q)) = X(Myg)

A component J of L, can be identified with a component K’ of L, and the map i,
identifies the boundary of M (K : 1/q) with (Tx+) 2k in OM,. This enables to describe
a relation between the respective peripheral eigenvalue-varieties of M, and M (K : 1/q).
Let H denote the boundary of M}, and let 7, denote the boundary of M, (K : 1/q), so

HZqu_ITK

and there are natural projections p that complete Diagram (2.5) into the following commu-
tative diagram:

X (M (K < 1/9)) —= X (My) 2.11)

ia*J/ lld*

X (M) e X(H)

o] Jao

E(H,) «+——F—— E(H)
By the surgery relation, for any y in the image of ¢, and for any ¢ in E(H), if
dag = i@*X in X(H)
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then the coordinates of ¢ at the component K satisfy
mrlr? =1
Let §, denote the regular function on Ey(M ) given by
0g = mplg? —1
then, in the peripheral eigenvalue-variety of M,
do ™ (ip(Im(i,*))) C V(8,)

The new standard peripheral system is given by Proposition 1.3.4 and depends, for each
component .J of L,, on the linking number [k(J, K) in M. Moreover, by Remark 2.1.4,
this is reflected by a tropical action on the eigenvalue-variety. Joining all this together,
we obtain the following theorem for peripheral eigenvalue-varieties of Dehn-filled link-
manifolds:

Theorem 7. With these notations, for any link L = Ly K in an integer-homology sphere
M, and for any integer q,

Eo(ML(K :1/q)) C ®,%V(d,)

where V' (8,) is the zero set of 0, in Ey(My), ®, is the projection p composed with the
self-map of E(H,) given, on each factor E(T) cr,, by the 2 x 2 block:

1 0
qlk(J,K)* 1
and * is the exponential action of My 2(Z) on C*? (see Definition 2.1.3).

Proof. Having set the notations, the proof is straightforward. By commutativity of Dia-
gram 2.11,

X (ML(IE 1/g) —= X (ffL) (2.11)
X (M) ——— X (H)

o] Jao

E(Hy) «——F—— E(H)
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the projection p : E(H) — E(H,) restricts to the respective eigenvalue-varieties:
p: Eg(Mp) — Ep(M(K : 1/q))

For any representation p in R(M(K : 1/q)), p(uxAx?) = 1 and we denote by J, the
regular function of C[Ey (M )]:

5q = mK[Kq —1
s0, as stated earlier, the surgery equation implies precisely that
P~ Eo(ML(K : 1/q)) C V(5,)

Now, for any J in L,, let K’ be the corresponding component of L, in M. The coor-
dinates at J in Es(Mp(K : 1/q)) are (my, ), given by the standard peripheral system
(g, Ay) of Ty in Mg (1/q). On the other hand, in Ey(M}), the coordinates at K’ are
(mK/, gK’) giVCIl by (,UK” )\K’> on TKI in M.

By Proposition 1.3.4, the two peripheral systems satisfy:

Ky = Hr’
)\,] = )\K:—O—qlk(K’,K)QuK/

where [k(K’, K) is the linking number of the components K and K’ in M. Therefore,
since K’ and J represent the same components of L, lk(K’', K) = [k(J, K), and we
obtain the equation

my = Mg
;= mg
Let P; denote the matrix
_— 1 0
T qlk(J,K)? 1
we obtain the following equation on each factor E(7):
my . mgr
[ =i
Let @, be the selfmap of E(#,) equal to Py* on each factor E(7’;); ®, changes the basis
according to the 1/¢-Dehn-filling at T and we finally obtain
Eo(My (K : 1/g)) C @, % V(8,)
O

Remark 2.2.7. 1f the link is homologically trivial (all the linking numbers are 0, see Defi-
nition 1.3.11), ®, is just the projection on the remaining coordinates.
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2.2.4 Torus splittings and peripheral /-variety

Let My, be a link-manifold with a torus splitting tree G. Let )V denote the set of ver-
tices of G, all the arrows of G are attached to some vertex v of }V and all the edges v' = v
correspond to splicing between components of L* and Lv. This gives a relation between

Eg(M7}), Es(My) and the different peripheral eigenvalue-varieties of the vertex subman-
ifolds, Es(MV ) for vin V.

Proposition 3. For any torus splitting tree G of M, there exist two maps in the following
diagram

Eg(Mp) "= T1,ep Ea(M¥1) (2.3)
a
Es(Myp)

such that

e p is the projections induced by the inclusion of M, as arrows in G

e for any point (£¥),ey in the image of i, and for any edge V' =v of G connecting
some components K' and K of L"" and L, respectively, the corresponding coordi-

nates of (),
(" )k = (mge, lier) and (§")k = (M, Ux)
satisfy the gluing condition:
mg = KK/
ey mK/

» (2.4)

Finally, for any (&,) in [],cy, Ea(M? v), such that, for any edge v' =v,
e cquation (2.4) is satisfied,
o (i and U are not both equal to +1 (1 if working in PSL,;C)

then there exist £ in Eg(Mp) with i*§ = (£V).

Proof. Let G be a splitting tree of a link-manifold M. We will use Theorem 3 for two
specific binding decomposition of G that will give the result of Proposition 3. Those are
the two decompositions of G given by Definition 1.1.8 and Definition 1.1.9.

We use the notation of Section 1.1. Let * be the tree with one vertex and the same
arrows as G as in Definition 1.1.8, G trivially decomposes as

G=(x>=0G)
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and Fy(M7}) is non other than the eigenvalue-variety associated to the trivial splitting * of
M,. Therefore, Theorem 3 gives an epic algebraic map

p Eg(Mp)— Eg(My)

On the other hand, let 7 = {7, v € V} be the family of vertices of G with an arrow at
each v for each arrow or edge adjacent to v in G. Each Ey(M" ) is the eigenvalue-variety
associated to the tree (7)U€V and the identical binding decomposition (Definition 1.1.9))
of G gives

G=(G>=YV)

Then, Theorem 3 gives a monic algebraic map
1: E’H(ML)(_> HUEV Ea(MULv)

so we obtain diagram 2.3:

By(Mp) "= T e Ea(M¥1) (2.3)
|
Eo(My)

which gives the first part of Proposition 3.
The rest, is, again, a consequence of Theorem 3 in the special case of link-manifolds
and torus splittings. [

In other words for any link-manifold My, and any splitting tree G, the associated
eigenvalue-variety projects onto the peripheral eigenvalue-variety and is contained in the
product of the peripheral eigenvalue-varieties of each vertex. This makes Ey(M,) act like
a terminal objects for all the Eg-varieties of M, associated to torus splittings G.

2.3 E-varieties associated to non-trivial splittings

Finally, we conclude this chapter with few considerations on eigenvalue-varieties of
link-manifolds associated to non-trivial torus splittings.
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2.3.1 Generic splittings

Let M be a link-manifold with a splitting tree G; as seen in Section 2.2, Fg(M})
always surjects onto the peripheral eigenvalue-variety. Moreover, as in Corollary 1, coor-
dinates corresponding to internal edges give, in the logarithmic limit set, intersections of
essential surfaces with internal tori in M.

Besides that, as in Proposition 3, Theorem 3 takes a special form for torus splittings of
link-manifolds.

Let (G/. >= T) be a binding decomposition of G. For any vertex v of V,, I, is a
subtree of G, giving a torus splitting of a link-manifold M ;r, embedded in M.

With these notations, Theorem 3 produces the following corollary:

Corollary 3. For any binding decomposition (G,. >=T) of G, there exist two maps:

Eg(M)——TLev, Er.(M"pr.) (2.12)
d
Eg, (Mp)

such that p is the projection on the corresponding factors of 5_/F C & and, for any edge

v'=v of G, if e corresponds to the splicing YN for arrows o' and a of Ty and T,
e

mg, = EK(L/
P m, (2.13)

a

where K, and K, are the corresponding components of L'+ and L'*.

Finally, let (&,)vev,, be a point of HUGV/F Er, (M"Y r,). If, for any edge v' =v of
G/ with e gs above, Equation (2.13) is satisfied, and not both {;, and { K, are trivial,
then (&,) isein the image of ir.

Proof. This is just an application of Theorem 3, using the special coordinates given by the

meridian-longitude systems of the underlying link-manifolds as in the proof of Proposi-
tion 3. ]

23.2 JSJ(0)-eigenvalue-variety

Finally, if My is a link-manifold, the family of JSJ tori provides another canonical
family of embedded tori in M.

Let J denote the family of JSJ tori of M}, and G the corresponding splitting tree
(with all the arrows); we also denote by gg the graph G 7 without any arrow.
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Definition 2.3.1. The eigenvalue-variety Ego (M) is called the JS.J-eigenvalue-variety
of My, and denoted by E;(M}). It has natural coordinates in C**!, given by (X, X) for
each edge v/ = v in the JS.J-dual graph of M.

As the peripheral eigenvalue-variety detects boundary slopes of M|, the logarithmic
limit set of Ego (M},) contains information on how Culler-Shalen essential surfaces inter-
sect the J S J-tori, i.e. how they cross from one J.S.J-piece to another.

Now, if we consider the full J.SJ-dual graph G ; the corresponding eigenvalue-variety
contains informations from both Ey(Mp) and E7(M).

Definition 2.3.2. The eigenvalue-variety Eg (M) will be denoted by E s, 5(M;) and

called the .J.S J-peripheral (or JSJO) eigenvalue-variety of M . It has natural coordinates
in C*2171+2L]

By Proposition 3 applied to G 7, there’s a monic algebraic map
Egro(Mp)——Tl,ey Eo(M"Lv)

where each MV . is either hyperbolic or Seifert-fibred.

In Chapter 4, we will study the case where all the pieces are Seifert-fibred (so M, is
a graph manifold). Using a combinatorial description of Seifert-fibred link-manifolds, we
can describe each Fy(M"v) and then, use the gluing criterion of Proposition 3 to describe
some components of Fy(My).

In the opposite case where all the pieces are hyperbolic, any essential torus in the
interior of M, can be isotoped to a torus of 7. It follows that, for any splitting tree G of
M, there exist a collection I of subtrees of G such that G; = (G >= T"). Therefore,
applying Corollary 3, we get:

Proposition 4. Let M be a link-manifold with all its JSJ pieces hyperbolic. For any
splitting tree G of M, the associated eigenvalue-variety Eg(M| ) admits an epic algebraic
map

P Egpo(My) — Eg(My)

So, in the same way as generic eigenvalue-varieties surject onto the peripheral eigenvalue-
variety (see Proposition 3), in that case, the .J.S.J0 eigenvalue-variety surjects onto generic
eigenvalue-varieties and acts as an initial object for the different g varieties of the link-
manifold M.
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Chapter 3

Eigenvalue-variety of Brunnian links

In this chapter, we give an answer to Question 1 for Brunnian links in S®. The main
result here is the following Theorem 1 that will be proved at the end of the chapter:

Theorem 1. Let L be a Brunnian link in'S® and let M denote its exterior, then X5“2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

The proof of this Theorem relies on the same arguments as Boyer-Zhang and Dunfield-
Garoufalids proofs of the non-triviality of the A-polynomial of a knot in [BZ05] and
[DGO4] respectively. With a deep analysis of the peripheral eigenvalue-variety of Brun-
nian links in S® and Dehn-fillings on such links, we show that sufficiently many Dehn-
fillings on the link exterior admit irreducible characters, and that these characters span a
top-dimensional component of irreducible characters in the peripheral eigenvalue-variety.

First, we start recalling the definition of a Brunnian link in S® and review some few
properties. We recall some stability properties under Dehn-fillings using [MS01] and sim-
ilar properties under splicing are deduced using [EN85].

Most Brunnian links are homologically trivial (see Definition 1.3.11) and the proof
of Theorem 1 is slightly easier in this case. It is studied first and we define a particular
subset X, of the character variety of the link exterior, using suitable Dehn-fillings and
Kronheimer-Mrowka Theorem of [KMO04].

We obtain the following result for homologically trivial Brunnian links:

Theorem 8. Let L be a non trivial HT'B-link and M its exterior. The family of longitudinal
trace (I, )kcr is algebraically free in C[X k).

In particular, this implies the existence of a peripherally maximal and non-abelian
component in X i, for homologically trivial brunnian links.

61
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The case of Brunnian 2-links with nonzero linking number is taken care of with a simi-
lar argument; we prove that, besisdes the Hopf-link, all these links also admit peripherally
maximal non-abelian components so we finally obtain Theorem 1.

We finally close this chapter with few considerations on non-trivial splittings. Using
the stability of Brunnian links in S® under splicing we can form new links over Brun-
nian trees. We briefly outline how the use of Proposition 3 might enable to describe the
FE-varieties obtained for those links. The same ideas, will be used in the next chapter to
describe E-varieties of graph link-manifolds.

In all this chapter, M denotes the exterior of a Brunnian link in S3.

3.1 Brunnian links in S°

Let L be a link in S? with exterior M. If K is an unknotted component of L, the Dehn-
filling of S3 with slope 1 /q is still S3. Therefore, as in Proposition 1.3.4, if L = K LI Ly,
M (K :1/q) identifies with the exterior of a link L, in S*.

By Proposition 1.3.5, homologically trivial links are stable under such Dehn-fillings.
As the following theorem shows, even if all the components are unknotted, a 1/¢-surgery
on a component generally turns the other components into non-trivial knots:

Theorem 3.1.1 (Theorem 3.1 in [Mat92]). Let L = {K, J} be a link in S?, K a knot, D
an essential disk with J = 0D. There exists an integer n such that the exterior of the knot
J(K;1/n) remains boundary-compressible after 1/n Dehn surgery on K if and only if K
is the trivial knot in S® and L is one of the two links L, or L, of figure 3.1. Moreover, for
Ly, J(K : 1/n) remains trivial for every n, and for Lo, only the knot J(K : 1) is trivial.

(D)

(a) £ (b) Lo
Figure 3.1 — Forbidden links
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An other 1/g-Dehn-filling would then produce a non-trivial integer-homology sphere
and escape the scope of links in S?. In order to remain in the standard 3-sphere we will
need some additional property on the link:

Definition 3.1.1. A link L in S? is Brunnian if any proper sublink of L is trivial.
Remark 3.1.1. Any knot is considered Brunnian; for links with more components we have:

e the components of a Brunnian link with 2 components or more are individually
unknotted.

e any Brunnian link with 3 or more components is homologically trivial.

We intend to use Dehn surgeries on exteriors of Brunnian links to produce irreducible
characters; the following section recalls some results of Mangum ans Stanford in [MS01]
that will enable us to use Kronheimer-Mrowka Theorem in Section 3.2.2.

3.1.1 Dehn-fillings on Brunnian links

If L is the trivial link, any 1/¢-surgery produces the trivial link again. We can use this
to show that the family of Brunnian links is stable under 1/¢-Dehn-fillings:

Lemma 3.1.2. Let L be a Brunnian link with 2 components or more. For any component
K C L and for any q in Z, the link L, obtained by 1/q-Dehn-filling along K is also
Brunnian.

Proof. 1f L has two components L, is a knot in S and there’s nothing to prove.
Let L = K L Lg be alink such that L has at least two components; then L is HT so the
peripheral systems are unchanged by the surgery. It follows that, for any K’ in L, = Ly,

M(K :1/q)(K': 1/0) = M(K": 1/0)(K : 1/q)

Since L is Brunnian, M (K’ : 1/0) is the trivial link and, therefore, so is M (K’ : 1/0)(K :
1/q). In other words, removing any component K’ of L, produces the trivial link, so L, is
Brunnian. U

In [MSO01], Mangum and Stanford studied when Dehn-fillings on a Brunnian link can
produce the trivial link. To keep the peripheral systems unchanged they restrict themselves
to links that are both Brunnian and homologically trivial, discarding links with 2 unknotted
components and non-zero linking number.

Definition 3.1.2 (HTB links). A link L in S? is HTB if it is both homologically trivial and
Brunnian.
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Then, combining Proposition 1.3.5 and Lemma 3.1.2, we obtain the following stability
lemma for H'TB-links:

Lemma 3.1.3. Let L be an HT'B-link. For any component K of L and q in Z, the link L,
obtained by 1/q-Dehn-filling along K is also HTB.

This stability is used in [MSO01] to prove the following theorem about Dehn-fillings on
HTB-links:

Theorem 3.1.4 (Theorem 2 in [MSO1]). Let L be an n-components HTB-link with exterior

M. Suppose that there exist slopes r; = p;/q;, with q; # 0 for all i, and such that
M(ry,...,ry) = S3 Then L is trivial.

As explained in [MSO1], this result implies that non-trivial 1/¢ Dehn-fillings on non-
trivial HT'B-links can never produce the trivial link:

Corollary 3.1.5. Let L be a non-trivial HTB-link with 2 components or more. For any
component K of L and for any integer ¢ # 0, the link L, obtained by 1/q-Dehn-filling
along K is a non-trivial HTB-link.

Proof. As explained in [MSO1], if M (x, ..., *,1/q) is the trivial link, then M (1,...,1,1/q)
is S? so, by Theorem 3.1.4, L must be trivial. OJ

Remark 3.1.2. For 2-components links, this corollary is a particular case of the more gen-
eral Theorem 3.1.1 of Mathieu cited earlier.

3.1.2 Splicing of Brunnian links

Let K and K’ be two unknots in S%, then the splicing S* X" S? is again S. It follows

that if L = Ly U K and L' = L{, U K’ are two links in S* with unknotted components K
and K', S*;, KpK' §3 r identifies with the exterior of a link L* in S3. This is a special

case of splicing link-manifolds (see Definition 1.3.8) and the link L* will be denoted by
Lo KK Ly,

As explained in [ENS85], if L is the trivial link or the Hopf link, the splicing takes
special forms:

Lemma 3.1.6. Let L = Ly U K and L' = L, U K’ be two links in S>.
o If L is the unknot (so Ly = ()), Lo "M% L) = L.

e If I/ is the Hopf link (see Figure 3.2), Ly *XX' L = L.
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Figure 3.2 — The Hopf link

e If I is the trivial link (so L} is also trivial), Ly XX L) = Lo U L},

Proof. We give a rapid sketch of the proof; details can be found in [EN85].

Splicing with the unknot is equivalent to filling the component along the meridian,
hence removing the component.

In the Hopf-link, each meridian is a longitude for the other component. Therefore,
splicing a component of L with the Hopf-link just leaves L unchanged.

Finally, if L is the trivial link, S, %%’ §3 1, is the connected sum of S, A 'S?

and S? 1, which is simply the exterior of Ly U L. [

Proposition 3.1.7. For any Brunnian links L = K |l Ly and L' = K' U L{, in S, the link
Lo X" L is also Brunnian.

Proof. Let L = K U Lgand L' = K’ U Lj be two Brunnian links in S* and let L* be the
result of the splicing Lo XXX L7

Let J be a component of L*. By Lemma 3.1.6, the link L* \ J is the result of splicing
L* with the unknot along J. Any component J of L*, identifies with a component of L
or Lj; without loss of generality we may assume that .J is a component of L.

Since the splicing is associative, this is equivalent to splicing L with the unknot along
J and, then, splicing the resulting link with L/, along K and K’. Because L is Brunnian,
the result of the first splicing is the trivial link, and by Lemma 3.1.6, the result of the
second splicing is again the trivial link in S?.

In other words, forgetting any component of L* produces the trivial link so any strict
sublink of L* is trivial and L* is Brunnian. 0

In the next section, we will prove Theorem 8. The statement of this theorem is quite
similar to Theorem 2.2.2 on the character variety of hyperbolic link-manifolds. However,
Proposition 3.1.7 shows that not all Brunnian links are hyperbolic and Theorem 8 also
applies for manifolds with non-trivial J.S.J-decomposition.
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3.2 A peripherally maximal component for HTB-links

In this section, L denotes a non-trivial HTB-link and M its exterior.

3.2.1 Reducible characters of HTB-links

By Proposition 2 of Section 3.3.1, the peripheral eigenvalue-variety of the exterior of
a HTB-link is particularly simple:

Proposition 3.2.1. Let L be a HTB-link in S® and M it exterior; the peripheral eigenvalue-
variety of reducible characters is given in C[m, ] by:

AU M) = (Ix — 1, K C L)
Proof. All the linking numbers are 0. [l

In particular, any component in X (M) on which I}, is not constant for some longitude
Ak will be peripherally non-abelian.

There’s not much more to say about the reducible characters of HT'B-links and we will
now focus on irreducible characters.

3.2.2 Kronheimer-Mrowka characters

First, let’s recall Kronheimer-Mrowka Theorem of [KIMO04].

Theorem 3.2.2 (Kronheimer-Mrowka Theorem, [KMO04]). Let K be a non-trivial knot in
S3, and let Y, be the 3-manifold obtained by Dehn surgery on K with surgery-coefficient
r € Q. If |r| < 2, then mY, is not cyclic. In fact, there is a homomorphism p : mY, —
SUs with non-cyclic image.

Remark 3.2.1. As explained in [DGO04], the representation p obtained this way is irre-
ducible.

By Section 3.1.1, non-trivial 1/¢g-Dehn-fillings on non trivial HTB-links produce non-
trivial HTB-links with the peripheral system unchanged. Repeating this process on all but
one components produces a non-trivial knot on which we can use Kronheimer-Mrowka
Theorem to produce irreducible representations:

Corollary 3.2.3. Let L be a non trivial HTB-link in S® and let M denote its exterior. For
any family of integers ¢ = (qx)kcL in Z\ let M, denote the homology sphere obtained
by 1/qx Dehn-filling on each boundary Tk. Then,



3.2. A PERIPHERALLY MAXIMAL COMPONENT FOR HTB-LINKS 67

e if g = 0 for some K in L, M, = S*
e otherwise, there exist an irreducible representation

Py 7T1]\4g — SUs.

For any ¢ in (Z \ {0})/*], Corollary 3.2.3 provides an irreducible representation p,
in Hom(m; My, SU,) whose restriction to 7, M is an irreducible representation of R(M)

(considering SU,; C SLyC). We denote by x, the corresponding character in X M.

Definition 3.2.1 (Kronheimer-Mrowka character). Any such y, is called a Kronheimer-
Mrowka character of M.

We now consider all the possible Kronheimer-Mrowka characters:

Definition 3.2.2 (Kronheimer-Mrowka components). Let M denote the exterior of a non-
trivial HTB-link L in S?; the Kronheimer-Mrowka components of M in X (M), denoted
by X ks, is the Zariski closure in X (M) of the set of Kronheimer-Mrowka characters:

Xiw =A{xgq € (Z\{0})"} € X (M).

Remark 3.2.2. The space of Kronheimer-Mrowka characters X ), may contain more than
one algebraic component.

For any sublink L' of L and for any ¢ in (Z \ {0})" let M, denote the manifold
obtained by Dehn-fillings along L’ with slopes 1/q. It is the exterior of a non-trivial
Brunnian link in S* and the natural inclusion

M%Mg

induces an algebraic map on the representation and character varieties with the following
commutative diagram:

R(M,) — R(M) 3.1)

|
X(My) — X(M)
Therefore, the Kronheimer-Mrowka components of M contain all the Kronheimer-Mrowka
components X x5/ (M,) for any sublink L' of L and coefficients (qx) s in (Z\ {0})F1.
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3.2.3 Peripheral maximality

In [BZ05] and [DGO04], Boyer-Zhang and Dunfield-Garoufalidis, respectively, use
Kronheimer-Mrowka Theorem to prove that the A-polynomial detects the unknot. Follow-
ing the same ideas, we will use Corollary 3.2.3 to show that for any non trivial HTB-link,
the Kronheimer-Mrowka set of characters X, contains peripherally maximal and non-
abelian component. More precisely we will show that there is a component X of Xy,
such that the family (1, ) k¢, is algebraically free in C[X]. To achieve this, we will need
the following lemma which will allow us to separate the different Kronheimer-Mrowka
characters.

Lemma 2. For any Kronheimer-Mrowka character x, and for any component K of L,
L (X), Dygax (X), and I, (x) are not £2.

Proof. Let x, be a Kronheimer-Mrowka character and p an irreducible representation of
w1 M to SU, with character Xg-

If I, (x) = £2, I),.»(x) = 2 for any integer p so I),.ax () = £2. Moreover, the
only parabolic elements of SU; are £1d so, if Iux (x) = £2, p(Ak)? = £Id so, by the
surgery relation, p(ux) = £ld and I, (x) = £2.

Therefore, if 1,,, () is not equal to £2, then neither are I, 4« (x) and I, (x).

Finally, let’s assume that [, (x) = £2, so p(ux) = £Id. Then, modulo +1d, p fac-
tors through the surgeries (T : 1/0) and (7 : 1/q;) for J # K. By Corollary 3.2.3, the
latter surgery instructions on M produce S* so p must be trivial modulo £Id. Therefore,
p(mM,) C {£Id} and p cannot be irreducible, a contradiction.

Therefore, trp(uy) # £2 for all components K of L. Since p factors through the
surgery (Tx : 1/qk), p(pr) = p(Ak) ™% so trp(AFE) = trp(uk) is also different from
+2. If Iy, (x) = &2, then so does I,» for any integer p, so I (x) is also different from
+2. [

This lemma will allow us to prove the following Theorem 8:

Theorem 8. Let L be a non trivial HTB-link and M its exterior. The family of longitudinal
trace (I, )kcr is algebraically free in C[X g ).

Proof. We will show that, if I, denotes the longitudinal map from X (M) to C/*!;

L: X(M) -  CH
X = (Dy(X))kce

then I)(Xx ) = ClP so (I, ) ey is algebraically free in C[X g p/].

We will prove Theorem 8 by induction on the number of components of L. The idea is
to construct infinitely many subspaces of Xk, which project on different hypersurfaces
by 1 A
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Base case For links with one component, knots, the proof is essentially equivalent to
the ones found in [DG04] and [BZ05] to prove that the A-polynomial distinguishes the
unknot. Since the same ideas will be used for the induction step, we re-present this proof
here. The fundamental idea in [DG04] and [BZ05] is the same, but the technics to separate
the Kronheimer-Mrowka characters differ slightly; we use here the Boyer-Zhang point-of-
view which will be more easily adaptable to the induction step.

Let K be a non trivial knot in S®. Let M denote the exterior of K with boundary T
and peripheral system (u, A). For any ¢ in Z, let M, denote the homology sphere obtained
by 1/q surgery on T'. By Kronheimer Mrowka’s theorem, for any ¢ # 0, there exist an
irreducible representation

pq : MMy — SU,.

Let x, denote the character of p, in X (M). We will show the following lemma:
Lemma 3.2.4. I, takes infinitely many values on {x,,q € Z \ {0}}.

Proof of Lemma 3.2.4. For any q # 0, let x, denote a Kronheimer-Mrowka character of
M with surgery instruction 1/gq. By Lemma 2, I,,(x,) # =£2 so for any irreducible
representation p, in t~'y,, p,()\) is diagonalizable so, up to conjugation:

— 6‘1 0
-y &)
and, by the surgery relation,
(1) = ¢, 0
pq /“L - 0 gqq
For any ¢ # 0, the set
{peZ|lwixy) =+2} ={peZ|{,"==+1}.

is an ideal d,Z, d, > 0.
For any ¢, ¢ > 0, if I(x,) = I,(x,) then, p, satisfies both surgery relations so

pa(pA?) =1d = p,(pA7)
and, p,(\)@~9 = Id. Therefore,
IA(Xq) = IA(Xq’) = q/ —qc qu~ (3.2)

For any ¢ # 0, Lemma 2 implies that 1 (and ¢) is not in d,Z so d, # 1. Moreover, for
any ¢ such that d, = 0, we have:

Vq #q, In(xq) # IN(Xq)-
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If the set {¢ € Z | d, = 0} is infinite, I, takes infinitely many values on {x,, ¢ € Z} and
Lemma 3.2.4 is proved.

Otherwise, there exist NV such that for any ¢ > N, d, > 2. Let (¢;);en denote a family
of integers such that

e o= N
e forany jinN, ¢;41 > ¢;and ¢;11 € (V_, dg, 2.
Then, the following fact concludes the proof of Lemma 3.2.4:

Vi< j, [)\(qu‘> 7£ [/\(XQj)'

Indeed, for any j in N, let’s assume that I5(x,,) = Ix(x,,) for some i < j. By equation
(3.2), this would imply that ¢; — ¢; € d,,Z; by construction, ¢; € dg,Z so this would imply
q¢i € dg,7Z, a contradiction. O

Since [, takes infintely many values on X, it contains a curve on which 7 is non-
constant, which concludes the base case for the proof of Theorem 8.

Induction step Now, let L be a non trivial HT'B-link, and let’s assume that Theorem 8
is true for all non trivial HTB-links with || — 1 components; we denote its exterior by M
and OM by the collection of tori (T) jcr.

Let K be a component of L so L = K U Ly; for any ¢ # 0, M, = M (T : 1/q) is the
exterior of a non-trivial HTB-link with |Ly| = |L| — 1 components, while My = M (T :
1/0) is the (|L| — 1)-trivial link in S®.

For any ¢ # 0, we have the following commutative diagram of algebraic maps:

*

X (M)~ X (M) (3.3)

I)\Lol J/IA

ClE-1  CIE

where Iy, is the map (Iy,)szx so Iy = (I, , Ir,). We can apply the induction hypoth-
esis to M, and find a component X, of X/(M,) on which I, is an open map. We
identify X, with its image in X (M).

For any ¢ in Z \ {0}, the family (/,,)cr, is algebraically free in C[X,] so I)(X,)
contains an hypersurface H,. We will show the the collection (H,),.o contains infinitely
many different hypersurfaces.
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As for the base case, for ¢ # 0 we define the ideal of Z :
{p ez | ]/\IIO(‘Xq = Zi:2} = qu

For any Kronheimer-Mrowka character x of My, I, (x) and Iys (x) are different from =2
by Lemma 2 so 1 and ¢ are not in d,Z.

As for the base case, the family (d,),.o permits to distinguish the different hypersur-
faces H,:

Lemma 3.2.5. Forany q,q inZ \ {0},
H,CHy = q—q €d,Z.
Proof of Lemma 3.2.5. For any ¢ in Z \ {0}, I =2.

e k| x,
Assume that H, C H, then, up to restriction to a Zariski-dense set, for any x in X,
I(x) = I,(x’) for some X’ in X . Since I, determines completely x on T, this implies

that I uicad (X) = £2 = I AT (x). Therefore, since the triple

IMKA% (X)a I

HE

az () Lya-an (X)
satisfies the relation
X+ Y+ 22— XYZ—-4=0
we have, then, I/\(fé_ql) (x) = £2.
This is true on a Zariski-dense set of X, so, by algebraicity, ¢ — ¢’ € d,Z. [

The end of the proof is the same as for the base case. We construct a family (H,),cocz\ 0}
of infinitely many distinct hypersurfaces of I,(X (M)) so, by algebraicity, I,(X (M)) is
Zariski-dense in C*/,

For any ¢ # 0, if d, = 0 then H, # H, for all ¢'. Therefore, if d, = 0 for infinitely
many ¢, (H,),.0 contains infinitely many different hypersurfaces.

Otherwise, there exist NV in N such that d, > 2 for ¢ > N. Let (g;);en be a family
integers such that

e go>N

e forany jinN, ;41 > ¢;and ;41 € (V_, dy,
The same argument as in the base case shows that, for i < j, H, # H,. Therefore,
(H,,)ien is a family of infinite many distinct hypersurfaces in 1, (X (M)).

Finally, [, (X (M)) contains infinitely many distinct hypersufaces, so, by algebraicity,
it must be all C!Ll; therefore, the functions (I, )xcy, are algebraically free on C[X /],
which concludes the induction step of Theorem 8.

O
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Corollary 4. The Kronheimer-Mrowka component of a non-trivial HTB-link is peripher-
ally maximal and non-abelian.

Proof. Each [ satisfies [ + [ ' = I, so, if the functions (I, )xc . are algebraically
free on a component X of X/, the family ([x) 1, is algebraically free on C[Es(Xo)].
O

3.3 Brunnian 2-links with nonzero linking number

In this section L = K LI K’ is a Brunnian 2-link in S* with linking number o # 0 and
M 1is its exterior.

3.3.1 Reducible characters

As before, the component of reducible characters in the peripheral eigenvalue-variety
is given by Proposition 2. In the special case of a link of a 2-link with nonzero linking
number @ we have:

Proposition 3.3.1. The peripheral eigenvalue-variety of reducible characters is given in
C*4 by
A M)y = ([ —w'* I —m*) x (Im'* —1,Im* — 1)

This will be enough to detect peripherally non-abelian components of the character
variety.

3.3.2 Another peripherally maximal component

For two-components Brunnian links with non-zero linking number the peripheral sys-
tem is changed after 1/¢-Dehn-filling and Corollary 3.2.3 doesn’t apply. Moreover, the
Hopf link is a Brunnian 2-link but its exterior has abelian fundamental group and therefore
admits no irreducible character. However, by Mathieu’s Theorem 3.1.1, besides the Hopf
link, for |¢| > 1, a 1/g-Dehn-filling always produces a non-trivial knot in S®.

Let L = K U K’ be a Brunnian link with linking number o« # 0, exterior M, and
peripheral system (u, \), (1/, \'). After 1/¢-Dehn-filling along T, K becomes a knot
K, and the new longitude for K, is A\, = X + ga?u (see Proposition 1.3.4). To apply
Kronheimer-Mrowka Theorem on K, we have to use the new peripheral system. More-
over, Dehn-filling on both components now depends on the order of the surgeries on the
boundary tori.
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Let M, denote the exterior of K,. We cannot exactly apply the ideas of Theorem 8,
however, considering the peripheral trace maps in C* and C? respectively:

Iops - X(M) — C*

X = (L), I, L (X), In (X))
Ion, : X(M,) — C?

X = (L), L)

we obtain the following commutative diagram

X (M,) — X (M) (3.4)

[anl lIaM

Cle——C*
and we get:

Lemma 3.3.2. For any |q| > 1 there is a curve of irreducible characters Cj in X (M,)
such that oy, (C!) is a curve D), in C*

Proof. Forany qinZ\{—1,0,1}, M, is the exterior of a non trivial knot in S® and there is
a curve C, in X™ (M,) on which I, is open. For any character x of C} with I (x) # 2,
there exist £, and m in C* such that

° [Aq(X> =Ly + gqi1

1

o« L,O)=m+m"

and, since A\, = A + gy, then
LX) = €um™1 4 0, mae”
so the image of C} by Iyy, is also a curve D in C2. O

The closure of i,"Cy, contains a curve C, in X (M) such that Iy, (C,) is a curve D,
in C* whose projection on the first two coordinates is D;. Characters of C; satisfy the
surgery relation so I, xa|, = 2 and, as in the HTB case, we can define

{p €Z \ {_1707 1} | I)\/p|cq = j:Q} = qu
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Then, as before, ¢ ¢ d,Z and, for ¢,q¢' in Z, D, = D, implies that ¢ — ¢’ € d,Z. As
in the induction step of the proof of Theorem 8, we can construct an infinite family of
distinct curves in Iy (X (M)) so there must be a component of irreducible characters
whose image by /), has dimension 2 in C*.

Therefore, E5(M) admits a component of dimension 2, different from EX4(M), so
we have:

Lemma 3. Except for the Hopf-link, the character variety of a Brunnian 2-links with
nonzero linking numbers admit a peripherally maximal and non-abelian component.

In conclusion, we have the following theorem for Brunnian links in S:

Theorem 1. Let L be a Brunnian link in S* and let M denote its exterior, then X52C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

Proof. The exteriors of the unknot and the Hopf-link don’t admit any irreducible charac-
ters so all the characters are peripherally abelian.

The exterior of the n-trivial link with n > 2 is the free group with n generators. In that
case, m; M admits irreducible characters but, since the longitudes are nullhomotope, any
such character is peripherally abelian.

By remark 3.1.1, the other cases correspond to Corollary 4 and Lemma 3. [l

We close this chapter with few observations on the links and E-varieties obtained by
splicing Brunnian links.

3.4 Brunnian trees

By Proposition 3.1.7, if L™ = L U K" and L~ = Ly U K~ are two Brunnian links
in S3, the splicing
+ —
SgL* — SSLS K NK S3La

is the exterior of another Brunnian link in S®. We can iterate this process along trees, as
Serre for trees of groups, to obtain links described by brunnian trees.

Let G be a tree with arrows. Let’s consider the identical binding decomposition (see
Definition 1.1.9) of G,

g:(g>>:7)
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Definition 3.4.1. A Brunnjan tree over G is a collection of a Brunnian link in S3, L, for
each vertex v of G, with | € (7')| components; each congonent of LV is identified with the

an arrow in € (') for each graph ¥ in the collection V.

By the observations made above, a Brunnian tree (G, L) defines a Brunnian link LY
in S* by splicing according to the edge-data. By Mangum-Stanford results of [MSO1], if
none of the links LV is trivial, the link L¢ is also non trivial. Since the splicing with the
Hopf link leaves the original link unchanged, we also assume none of the L is the Hopf
link.

This is a special case of toric splitting of link-manifolds; the fundamental group of the
exterior of LY is precisely the one from the tree of groups contructed over G, assigning
the fundamental group of the exterior of L” to each vertex of G. We can then apply
Proposition 3 to the tree G, and obtain the diagram:

Eg(S?10) =TT e Ea(SP10) (3.5)
d
Ea(SSLQ)

where, by Theorem 1, E5(S?;¢) and each E5(S*1.) contains a component of non-abelian
characters with maximal dimension. One could push these observations further and try
to apply the merging criterion and study the different components of F5(S?;¢) appearing
while gluing different components of [, .., Fa(S*Lv).

However, we will not go any further in the direction here. In the next chaper, we apply
a similar idea in a different case, graph link-manifolds. These are also construct over trees
as in Definition 3.4.1, but using Seifert-fibred link-manifolds instead of Brunnian links in
S3. This provides a combinatorial description of the fundamental groups which will enable
us to quite fully describe the Eg-varieties in that case.
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Chapter 4

Eg-varieties of graph link-manifolds

In this chapter, we study a case opposite, in a way, to the Brunnian links that we
studied in the previous chapter; here, we apply the theory of Eg-varieties to irreducible
link exteriors for which all the JSJ pieces admit a Seifert fibration, so-called graph link-
manifolds,. In that case, the linking numbers are usually non-zero, and grow rapidly with
the complexity of the JSJ tree. We describe graph link-manifolds using splice diagrams
as in Eisenbud-Neumann’s [EN85]. The splice diagram is a refinement of the JSJ tree
using a description of the Seifert fibration of each piece. Such a generic splice diagram is
presented in the following Figure 4.1.

77
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Fl

F4

Figure 4.1 — A generic splice diagram

Splice diagrams determine the fundamental group and we can use them to describe
eigenvalue-varieties.
We study first the graph links with trivial J.S.J decomposition. The exterior of such a

link admits a Seifert fibration which extends to the ambient sphere with the components

of the link as fibres.
Let M, be a Seifert-fibred link-manifold, and let C' denote the singular fibres of M that

are not components of L. We represent M, by a tree with one central vertex connected to
a node for each point of C, and an arrow for each component of L. Each arrow/node is
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labeled with the order of the corresponding fibre in M, as in Figure 4.2.

Figure 4.2 — A Seifert splice diagram

We also use the following notation; for any subset D of L U C, oy is the product of oy
for d € D and a is is the product of oy for d € D.

The splice diagram enables the description of all the components of the peripheral
eigenvalue-variety. We obtain, first, Proposition 5 for the component of reducible charac-
ters:

Proposition 5. The component EXY(My) is given by the following ideal of Clm, |

ac

Ad(My) = <IK | JI mxtonewsr) [ Kc L> 4.1

K'CI\{K}

On the other hand, irreducible representations of Seifert-fibred manifolds are, essen-
tially, representations of the base orbifold. Using this fact, we obtain Theorem 6 for the
PSL,C peripheral eigenvalue-variety; let M}, be a Seifert-fibred link-manifold with splice
diagram represented in Figure 4.2.

Theorem 6. The group m My, admits irreducible representations in PSLyC if and only if
LI+ |C| >3
and, in that case, the peripheral A-ideal corresponding to irreducible characters is
AT (Mp) = (mg% < —1, K C L) (3)

Using a similar approach on SLy;C, we then obtain the almost identical Theorem 9
for the SL,C peripheral eigenvalue-variety. The main notable difference is that, when
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the regular Seifert-fibre is trivialized by any irreducible PSL,C-representation, it can be
+1d in SLy;C. This enables us to give a complete answer to Question 1 for Seifert-fibred
link-manifolds and, besides the obvious counter-example, all Seifert-fibred link manifolds
admit a peripherally maximal and non-abelian component in their character variety.

The final step is to study generic graph link-manifolds (with connected splice dia-
gram). The complexity of the combinatorics increases dramatically with the subjacent
tree but we can still express some results on the peripheral eigenvalue-varieties of graph
link-manifolds. First, with the same formula as Eisenbud-Neumann, we compute the link-
ing numbers and use Proposition 2 to describe the component of reducible characters.

For any two components K and K in a graph link, let K—K' denotes the unique path
between the arrows K and K’ in the JSJ tree. The linking number (k(K, K') is equal to
the product of coefficients adjacent but not on the path K—K” in the splice diagram; we
denote it by ;= and obtain Proposition 6 for the peripheral .A-ideal corresponding to
reducible characters:

Proposition 6. Let My be a graph link-manifold. The peripheral eigenvalue-variety cor-
responding to reducible characters is given by the ideal:

A (M) = <IK - 11 m}tff@, K C L> (4.2)

K'CI\K

Now, given a graph link-manifold, one may try to find components of characters with
a given type in {irr, red} (See Definition 1.2.12) on each vertex v of the dual tree (for the
JSJ tree, or any other splitting tree). The complexity of the combinatorics involved makes
it quite difficult to express precise statements for generic types and splittings. However,
using the results on naturality of the Ejg-varieties under the natural splitting-trees opera-
tions (Lemma 1 and Theorem 3 of Chapter 2 and their applications to torus splittings of
link-manifolds), we can reduce the complexity and obtain interesting results.

This is the purpose of the last two sections of this chapter, where we study two specific
cases; nonetheless, the notations involved remain too heavy to enable stating precise re-
sults in this introduction. We may however outline the main ideas presented in these final
sections.

First, we study components of everywhere irreducible (irreducible on all the JSJ
pieces, see Definition 1.2.11). Using Theorem 6 on each piece we obtain, in Theorem 10,
a criterion for the existence of everywhere irreducible PSL;C-characters and the equa-
tions of the resulting peripheral .A-ideal. In particular, if they exist, such components are
peripherally maximal and non-abelian.

In the last section, we study components of characters which are irreducible on one
piece and reducible everywhere else. We can combine Proposition 6 and Theorem 6
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with the generic splitting-gluing theorems for eigenvalue-varieties and obtain Theorem 11,
again a criterion for the existence of such components. Finally, we show that this criterion
applies to all graph manifolds with non-abelian fundamental group, which procures an
answer to Question 1 for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold M|, with boundary, there exist a
peripherally maximal and non-abelian component in XT5%2C(M).

Finally, we close this chapter with a very brief overview on how the very same technics
could be used to completely describe the E-varieties of any graph link-manifold.

In this chapter, M denotes an integer-homology sphere and )/}, the exterior of a link
L in M (see Section 1.3.2).

4.1 Seifert-fibred link-manifolds

First, let’s start with the fundamental pieces of graph manifolds, Seifert-fibred link-
manifolds.

4.1.1 Seifert fibrations and splice diagrams

Let My, denote a Seifert-fibred link-manifold. For any component K of L, there may
be two cases:

e all the meridians are transverse to the fibre; in that case, the Seifert-fibration of M,
extends to M, and K is a fibre.

e a meridian is parallel to the fibre; because M is an integer-homology sphere this can
occur for at most one component of L. In that case, M has no singular fibres and
the longitudes of L \ K are all parallel to the fibre, so M, is a keychain-link in S3.

Let’s assume first that no meridian is parallel to the fibre, so the fibration of M, extends
to M with L as a collection of fibres. These are links in Seifert-fibred integer-homology
sphere which were combinatorially described by Seifert in [Sei33] and we recall this de-
scription following [EN85]. As we shall see, keychain links naturally appear as degener-
ated cases of this description.

Let C' denote the set of singular fibres of M, with orders (a.).cc (S0 || > 2). Let
(k) ko1, denote the orders of the fibers K in the induced fibration of M. Assuming that
all the meridians are tranverse to the fibre, each and ok is nonzero; it is equal to 1 if K
is a regular fibre in the fibration of M.
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Let n = | L| denote the number of components of L and r = |C'| the number of singular
fibres of M. Let L denote the collection L LI C of fibers in M. Ttis a link in M with n +7r
components and the link-manifold M7 is a Seifert link-manifold with no singular fibres.
Since M is an integer-homology sphere the base orbifold is planar and M7 is the product
of a circle and a 2-sphere with n + r discs removed, S, x S'. B

The boundary of S, 1, x S! may be indexed by the components of L and we order these
components so that L = K; U --- U K, whith K; C Lfor1 < <nand K; C C for
n+1 <14 < n+r. For each component J of L, let s; denote the boundary curve of S,
dual to the fibre J. The s, are sections of the fibration of M; and we denote by ¢ the S!

fibre. The boundary of M7 consists of tori Ty for J C L with
Hl(TJ, Z) = ZSJ P Zt.

The homology group H; (M5, Z) is the sublattice of Z"*"+! = | ; Zs; ® Zt = Ls,
oo @ LSy B Zt such that
o

There exist a family of integers () scr, such that M, (resp. M) is obtained by «; /Bs-
Dehn-filling — in the basis (s;,t) — on the components .J of C' (resp. all components of

L).
We’ll denote by o (resp. () the family (as) ;-7 (resp. (8);-7)-

Proposition 4.1.1 (Seifert, See Hatcher [Hat10]). With these notations, the fundamental
group of a Seifert-fibred M, is given by:

mMp = (s1,...,8n, 1, Cr t | L, 840], [E, il cf‘itﬁi, S1cSpClCr) 4.3)
The homology of M is the kernel in Z"*"*+! of the matrix
[a; 0 0 By ]
0 : )
Ans= | a; B (4.4)
: 0 :
0 s 0 Ay 6n+7"
1 1 10

For any sublink L' of L we define:

aypr = ||C¥J

JcL’
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and

g =z = T s

JZL

Remark 4.1.1. For any sublink L’ of E, apap = aj.

A simple computation shows that det A, s = — > ;7 8sa; and, since M is an
integer-homology sphere, this determinant must be +1. Up to changing the orientation
of ¢ we can assume:

> Braz=1. (4.5)

Allowing vy = 0 for some J C L in Equation (4.5) forces 3; and all the others
(ayr) 7 to be equal to £1, which yields a keychain-link in S* discussed above. We
also allow this degenerated case and, from now on, Seifert-fibred link-manifolds will be
described using family of integers (s, 87) ;7 and satisfying Equation (4.5).

Let’s set a little more notation. For any sublink L' of L we define:

Br = Z 5JOéL/\J

JcL'!

and

/BL\L/ - Z /BJaLluJ

JgL!

Remark 4.1.2. With these notations, for any sublink L’ of E, equation (4.5) can be rewritten

as:
o —a

det |:5L/ BL, :| ﬁL,OéL/ + /BLIO{L/ =1.

Proposition 4.1.2 (Eisenbud-Neumann [EN85)). A standard peripheral system for My, is
given, for any component J of L, by the following system in H,(T;,Z):

g = agsy+ Bt
Ay = —OszJ-l-ﬁjt

and, for any components J, J' of L, lk(J, J') = a575-

Proof. The integer-homology sphere M is obtained from M by Dehn-filling along the
slopes s’ 87 for each boundary torus 7'y of L. It follows that a;s; + 3t is a meridian
for J in M;,.
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Since 87a 5+ a7 = 1, the curve —a7s; + 35t has intersection 1 with 1;. Moreover,
in Hy(Mp,Z), )7 55 = 0 so we have the following homological equalities:

—OéjSJ—i-ﬁjt = Qa7 Z Sy + Z ﬁ]/@ﬁt
J'CI\J J'CI\J

= E Qg0 S + ﬁj/aﬁt
JICINS

= Z OCJ/|_|7 (OéJ/SJ/—FﬁJ/t)

J'CINJ

And, since ayrsy 4+ Byt is 0 for J' in C, and p for J' in L we have:

—azsy+ Bt = Z Qg 4.6)
JICINS

Therefore, —a7s; + (5t represents a curve on 7; nullhomologous in M; so it is the
longitude A\, in H,(7,Z); by Equation (1.7), the last Equation (4.6) shows that, for any
pair J, J of L, lk(J,J') = a5 O

Definition 4.1.1. For any component .J of L we denote by P; the peripheral matrix:

ey —ay
= L@J ﬁfJ]

Remark 4.1.3. For each boundary component T of M}, the peripheral matrix Py gives
the coordinates of yix and Ax in the basis (s, t) of m Tk.

We represent M, with a diagram consisting in:
- acentral vertex Q
- for each c in C, an edge from Q labeled by a., ending with a node @
- an arrow labeled by ok for each component K of L.
Definition 4.1.2 (Splice diagram (1)). This presentation is called a splice diagram for M.

Example 4.1.4. The splice diagram of a generic Seifert-fibred manifold is represented in
Figure 4.3.
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Figure 4.3 — A Seifert splice diagram

Example 4.1.5. The splice diagram of a p, q-torus knot in S* is represented in Figure 4.4.

Figure 4.4 — A p, g-torus knot

In the following sections, we compute the components of the peripheral eigenvalue-
varieties of Seifert-fibred link-manifolds. The splice diagram of M, determines the linking
numbers so it determines E54(M); we will see that it also determines components of

irreducible characters.

4.1.2 Reducible characters of Seifert-fibred link-manifolds

As usual, the component of reducible characters is given by the linking numbers. In
the case of a Seifert-fibred link-manifold M, they are given by Proposition 4.1.2; if the
splice diagram of M, is
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then each longitude A\ is given in H (M}, 7Z) by

Ak = Z A MK
K'CI\{K}

where o 7, = [ 17\ (i 5y - With the notation introduced earlier,

e «¢ denotes the product of orders of the singular fibres:

cc=Toe= T[ o

cel KCI\L
e ap\(x, k) 18 the product of the arrowhead coefficients other than K and K "

OI\{K,K'} = H ay
JCI\{K,K'}

Since a¢ divides any oz, and does not depend on the particular choice K or K', we

can refactor the equations and obtain the following:

Proposition 5. The component EX4(M}) is given by the following ideal of Clm, |

ac

A5 (M) = <IK - I metomes ] K C L> “.1

K'CL\{K}

‘We will now focus on irreducible characters of Seifert-fibred link-manifolds. First, we
need to make a small detour to study characters of planar orbifolds.



4.1. SEIFERT-FIBRED LINK-MANIFOLDS 87

4.1.3 Characters of planar orbifolds

For any positive integer n, let S,, denote standard 2-sphere with n discs removed:
SRIS2\D17...,DH.

The boundary of S,, consists in n circles s; ..., s, and m S, is isomorphic to the free
group with rank n — 1:

mSn = (S1,.. ., S | Hsizl).
i=1

Lemma 4.1.3. There exist an irreducible representation of mS,, in SLyC or PSL,C if and
only ifn > 3.

In that case, there exist a Zariski-open set U of C" such that for any u, ..., u, in U,
there exist an irreducible character x in X (S,,) such that for any 1 <1i < n,

ISiX = Uy

Moreover, let Uy denote the Zariski open set C\ {—2,2} (or Uy = C\ {2} in PSL,C),
then, for n > 4, we can assume that U contains (Uy)".

Proof. Forn < 2, S, has abelian fundamental group so it admits no irreducible represen-
tation.

The rest of the proof is by induction on n > 3.

For n = 3, it is known that, for the free group Fo = (a,b

), the map

XoC(Fy) — C°
X — ([a(X)ajb(X)vjab(X))

is a birregular map between C? and X5™2C(F},). Moreover, with this coordinates,

SLoC

X red (FZ) — V(fred)
where 4 is the polynomial of Q[z, y, z|:
fred(z,y,2) =a? + > + 2% —ayz — 4

Using the work of Michael Heusener and Joan Porti in [HP04], a similar statement can
be made for XT52C(F,). As Example 4.4 of [HP04] shows, there’s a polynomial P in
Q[U, V, W, Z] such that

XPSLQ(C(FQ) = {(Iaa ]by Iaba Iab*1> c C4|P([aa [bv Iaba [abfl) = 0}
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and the reducible part is given by another polynomial f™¢.

In the presentation of 7, S3, s; = a, s = b, and s3 = b~'a~!, so, in either cases, the
map I, = (I,,, I,,, I,) projects X" (Fy) on a the Zariski open set of C3; this complete the
proof for n = 3.

For any n > 4, consider a circle s in S, splitting S? into to discs DT, D™, containing
respectively sq, ..., 5,2 and S,_1,S,.

Let BT and B~ denote the corresponding pieces of S,, so

OBt =51 U...Us,_ols,

0B~ =s_ls,_1 s,

and S,, can be obtained from B and B~ identifying s, with s_'. We can apply Lemma 4.1.3
to B and B~ and obtain U™ and U~ in C"~! and C3. For any (uy, ..., u,,v) in C**!
such that

® U, ..., Upo,vEUT
® U Up_1,U, € U™
there exist irreducible characters ™ and x~ in X (B™) and X (B~) such that
o forall1 <i<b—2, I ;xT =
o I, xt=v
o [, x =
o forn—1<i<n,I,x =u

Without loss of generality, we can assume that v # +2 (or 2 in PSL;C) so there exist
irreducible representations p, € t~'x" and p_ € ¢t 'y _ such that p,(s.) = p_(s_)"".
This produces an irreducible representation of S,, with traces u; on all the s;.

Moreover, U~ is C* \ V(f™4) and U™ is either C3 \ V(f™4) (if n = 4) or contains
(Up)™ ! by induction hypothesis. In either case, this can be done for any uy,. .., u, in
(Up)™ and this completes the proof. O

For any positive integers n, r and family « in (Z)", we can form the orbifold
Spla) =Sp(an, ..., ap)

obtained from S, by gluing discs along s;" forn +1 <i <n+r.
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The fundamental group of S,,(«) is isomorphic to

n+r
(31,...,3n+r]s?izlforn<i§n+r,H3i:1>
i=1

For any family « of Z" and any positive integer k, we denote by suppy(«) the subset of
indices:

suppp(a) ={i € [1...7] | |ou| > k}.

s0 i € suppg(«) if s; has order at least k in m.S,, ().

Lemma 4.1.4. The orbifold S,,(«) admits irreducible representations in PSLyC if and
only if n + suppy(«) > 3. In that case, there exist a Zariski-open set of C" on which, for
any i, . .., un, there exist an irreducible character x in X™ (S, («)) with squared trace
Uu; on s;.

Proof. If n + supps () < 2, any representation in of m S, («) in PSLyC is abelian.
Otherwise, for each n < @ < n + r, let k; be an integer coprime to 2a; and we

set u; = 2cos <27T%>; it is different from 2 whenever |o;| is different from 1. When

|a;| = 1, the corresponding section becomes trivial and we assume that |«;| > 2 for all 4,
so supps(«) = r. We can apply Lemma 4.1.3 to S, and there is a Zariski open set in C"
on which, for any (ug, ..., u,), there exist x’ in X" (S,..) such that I,,x’ = u; for each
1<i<n+r.

.k

For each n < i < n + r, let (; denote the root of unity ™ i and z; = (;*. Each I, ' is
equal to z; + 2,7 # 2, so there exist p in =1\’ such that p(s;) = A(z;) = + {% C'OI}
Therefore p(s;)* = +1d and any p in ¢t~'’ factors by the gluing along s{".

It follows that X’ is in the image of X (S, («)) — X(S,.,) and there exist x in
X (S, («)) with the expected properties. O

For representations in SLoC, conic points of order 2 must have image +Id and are
also central; we need sufficiently many boundary components or points with order greater
than 2 to have irreducible representations. With a similar argument, we have the following
result for SL,C characters:

Proposition 4.1.5. The orbifold S,,(«) admits irreducible representations in SL,C if and
only if n + supps(«) > 3. In that case, there exist a Zariski-open set of C" on which, for
any uy, . . . , Uy, there exist an irreducible character x in X'™ (S, («)) with trace u; on s;.
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4.1.4 FEy-variety of Seifert-fibred link-manifolds

The fibre is central in the fundamental group of a Seifert-fibred link-manifold. There-
fore, any irreducible representation in PSL,C must trivialize the fibre and factor as a rep-
resentation of the base orbifold; we can use the results of the previous Section 4.1.3 to
describe irreducible characters of Seifert-fibred link-manifold.

Let My be a Seifert-fibred link-manifold with splice diagram represented in Figure
4.5.

Theorem 6. The group m My, admits irreducible representations in PSLyC if and only if
LI+ |C| >3
and, in that case, the peripheral A-ideal corresponding to irreducible characters is
AT(Mp) = (mg% ™ —1, K C L) 3)

Proof. First, if |[L| + |C| < 2, the fundamental group of M is abelian so RFS%2C (M)
contains no irreducible representation.

Let’s now assume that |L| + |C| > 3. Let ¢ denote the regular fibre of the Seifert-
fibration of M ; since itis central in 1 M, any irreducible representation p in RPSL2C (Mp)
must trivialize ¢. It follows that any such representation factors as a representation of the
base orbifold of M, a 2-sphere with |C/| conic points of orders .. and | L| discs removed.

By Proposition 4.1.4, such irreducible representation exist if and only if |L| + |C| > 3
and, in that case, the traces on the removed discs can be chosen freely in a Zariski open
set of C/Zl. In other words there’s a Zariki open set of c* on which, for any () kcr,
there exist an irreducible representation p in R™%2€(S|1, () such that, for any K in L,

tr(p(sg)) = Tx + 25

Figure 4.5 — A Seifert-fibred link-manifold
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Any such representation pulls back to a representation of my M, trivial on ¢. For each
boundary torus T the peripheral matrix gives the following relations between p(sk),

p(t), p(ux) and p(Ag):

p(t) = pur)*&p(A )
plsr) = plux) % p(Ase)~* 7

and since p(t) = 1 we obtain the following equations:

plug) = p(sg)*x
oK) = plsk) 8

The previous Equations (4.7) and (4.8) give the following equalities for the eigenvalues
of p:

B,
T = mKKﬁKﬁK
mg = a3~

an

K

and, we obtain the following equations:
my KL% = 1 for each component K

Let A denote the ideal (mg“&[** — 1, K C L) of C[m,[]. We just showed that
E¥T(Mp) C V(A) and, reversing the calculation, there exist a Zariski-dense set of V (A)
corresponding to irreducible characters of X (M ); this makes A the defining ideal of
EXT(M7p) so, finally,

A (Mp) = (mgR < —1, K C L) 3)
O

Remark 4.1.6. The result of Theorem 6 generalizes the result of Tillmann in [Til05] stating
that the APS¥2C_polynomial of a (p, ¢) torus knots in S? is

Ag, (m,[) =mP -1

For representations in SL,C, it is quite similar. In that case the centrality of the fibre
t implies that p(t) = £Id in SLyC and there are two sets of components, depending on
whether p(t) = Id or p(t) = —Id. We denote by X (M), X~ (M), E (ML), E5 (M)
the corresponding sets in the character and eigenvalue-variety. Naturally, we denote by
A*(M}) the defining ideals of E3 (M)
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Theorem 9. Let M be a Seifert-fibred link-manifold with splice diagram represented in
Figure 4.5.
The variety of characters X~ (M) is non empty if and only if

|L| +|C| >3

and, in that case,
A™(Mp) = (mgRIg*% +1, K C L) 4.9)

On the other hand, the variety of characters X (M) is non empty if and only if
IL|+|C'| >3
where C' is the set of singular fibres of order greater than 2. In that case,
AT(Mp) = (mg®k[°C —1, K C L) (4.10)

Remark 4.1.7. Since the orders are pairwise coprime, there’s at most one singular fibre of
order 2 in the Seifert fibration of M.

Proof. This is essentially the same proof as in Theorem 6.
The only difference is for X (M}); if p(t) = Id, conic points of order 2 must have

central image in SL,C and, thus, must be put apart to create irreducible representations.
O]

Remark 4.1.8. As before, the result of Theorem 9 generalizes the result of Tillman in
[Til05] stating that the AS*2C-polynomial of a (p, q) torus knots in S is

mPal+ 1 if [p| = 2 or |g| = 2
(mPY+ 1)(mP[— 1) otherwise

AKp’q(m, [) = {

4.2 Graph link-manifolds

Using splitting-gluing properties of eigenvalue-varieties, we can apply the results of
Section 4.1 to describe the peripheral eigenvalue-variety of graph link-manifold (or at
least, some components).
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4.2.1 Splice diagrams for graph link-manifolds

Let My, be a graph link-manifold. We follow [EN85], with our notations, to present
the splice diagrams describing graph link-manifolds. We merge the description of each
piece given by Definition 4.1.2 and the J.SJ tree to obtain a combinatorial description of
the graph link-manifold.

Definition 4.2.1 (Splice diagram (2)). A splice diagram 1" for M, is obtained from the
JSJ tree G5 of My by adding, on each vertex v, the arrowheads and fibre edges of the
splice diagram of the Seifert-fibred manifold A" v, with the corrsponding labels.

Any edge is called internal if it corresponds to a J.S.J-torus (so it is neither an arrow
or a fibre edge).

Example 4.2.1. A graph link-manifold with JSJ tree O——0O is the splice of two Seifert-
fibred link-manifolds and is represented by the splice diagram of Figure 4.6.

Qe

Qg

Figure 4.6 — A graph manifold with two pieces

Remark 4.2.2. If the link-manifold M, splits as a connected sum, the resulting splice
diagram is disconnected.
From now on, we will always assume that the splice diagrams are connected.

For any path v in I', any vertex v in I', and any component K of L¥ we write:
e v € v if v is a vertex on the path ~.

e K € v if the corresponding edge in I is on the path ~.

We define the following coefficients:

O./,YZHO(K

Key
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wr=TI I ei= TTTL

VEY JCLv VEY JCLv
Jéy

Remark 4.2.3. For a path v, az is the product of the coefficient adjacent to  but not on it.

Lemma 4.2.1. The coefficients o, and o5 are multiplicative:

Let y be a path in T, let e be an internal edge on v and let M+ and M~ - be the
desplicing of My, along the JSJ-torus S.. The path  splits into two paths v* and v~ in
the splice diagrams of M ™+ and M~ |- respectively and we have

Oy = iyt Oy and oy = 30~

Proof. Let~ be apathinI'. By definition, c,, is the product of the coefficients of the edges
in . If splitting I" along an edge of v gives two paths v* and v~, the edges in 7 is the
union of edges in v and edges in vy~ so, taking products,

Oz7 = Ozﬂﬁ Oz,yf

On the other hand, a,a5 = HU@ HJCZ; a so, by the same argument, o, o5 is multi-
plicative and so is o. O

Example 4.2.4. Let M, be the graph link-manifold represented in Figure 4.7. The four
vertices represented are numberd from 1 to 4; I'' and T'* are splice diagrams representing
other pieces of Mj. Let v be the path represented by double edges, then, with these
notations,

_ 1.1 2 2 3 3
Ly = 0 QGO 00

and

_ o 1.1.1.1.1 2 2 2 2 2 3 3 3
Q5 = Q300500 Q0500 O Ol O Ol Oy

We can use the previous Lemma 4.2.1 to compute the linking numbers in a graph
link-manifold:

Proposition 4.2.2 (Eisenbud-Neumann [EN85]). Let M;, be a graph link-manifold with
splice diagram T'. For any pair of components K, K' of L,

(K, K') = o

KK’

where K—K' is the unique geodesic path in I between the corresponding arrowheads K
and K'.
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Ay ai
1
3
T Qg
3
1 a3
Qg
at 1
5 624
1
Oé4 )
Oél )
1 a% ay
Oé3 )
@ 2
6 a2 )
a3
2
a? 3
5 2
ay
F4
4
6%
5 4
ag
4
Qo
4 4
Qy ag

Figure 4.7 — A path in a splice diagram

Proof. Combining propositions 1.3.3 and 4.1.2 with Lemma 4.2.1 we prove this by induc-

tion on the length of v = K—K".
If both components are in the same node, [k(K, K') = oz, = as.

Otherwise, y contains an edge e; desplicing along S, gives M = M*+ K +24K M-

and, by Proposition 1.3.3:

k(K K') = Ik (K, Kk~ (K, K').
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On the other hand, the path v splits as v© = K—K ™ and v~ = K~ —K'. We can apply
the induction hypothesis to L1 U K+ in M+ and L~ U K~ in M ~; with Lemma 4.2.1 we
obtain:

(K, K') = aza= = agz.

]

Let M|, be a graph link-manifold with splice diagram I'. Let )V and £ denote the vertex
and edge sets of I'. For any vertex v in V, M" . is a Seifert-fibred link-manifold and there
is a natural partition of L":

LV — Lav L LS(v)

where L% = L' N L and Lf™) are components of L* spliced along Seifert-fibred neigh-
bours of v in the tree I'.

Let v <o be anedge in T, and let K and K’ be the respective components of L£(®)
and L) corresponding to the splicing at edge e. Around the edge e, I" can be represented

by the diagram in Figure 4.8, where each | I'% | represents a connected component of the
tree '\ {v',v}.

Qc

S'eLEN\K |  SELEON\K

Figure 4.8 — Anedge in I
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Definition 4.2.2 (Determinant of an internal edge [EN85]). With the notations of Figure
4.8, the determinant of e is the integer defined by:

det(e) = agraxg — agog.

Proposition 4.2.3 ([ENS85]). Let t, and t,, be the regular fibres of the respective Seifert
fibrations of M" 1. and M"' v- The algebraic intersection of t,, and t,, on the torus S, in
My, is given by

< by, t, >= det(e) # 0.
Proof. The gluing homeomorphism at S, identifies pxs with A and \gs with pg. The
peripheral matrices Py and Pk give, in the basis (A, A ) of Se:

tq_)’ — )\K/aK/ )\Kalf(\/
ty = A ORAgOK

and therefore,
<ty ty, >= agrag — agop = det(e).

If det(e) vanished for some edge v = v in &, ¢, and t, would be parallel on S, and the
piece M’ LY\K K ’qu M? o\ of I would be Seifert-fibred, in contradiction with the fact

that S, is a JJSJ-torus. ]

Definition 4.2.3. For any vertex v in V, and any positive integer d, we’ll denote by £(v),
the subset of edges adjacent to v with determinant +d.

4.2.2 Reducible characters of graph link-manifolds

As several times before, the peripheral eigenvalue-variety corresponding to reducible
characters is given by linking numbers. By Proposition 4.2.2, these are given by the coef-
ficients on the splice diagram; using the same notation we obtain:

Proposition 6. Let M, be a graph link-manifold. The peripheral eigenvalue-variety cor-
responding to reducible characters is given by the ideal:

A (M) = <IK - 11 m}tff@, K C L> (4.2)

K'CI\K

Since reducible characters are everywhere reducible, we could also use Proposition 4.2.2
to compute AZ? (M) and, using Corollary 3, the ideals A4 (M) for any tree G obtained
by contraction of the JSJ tree G;. We shall not make these calculations here, and focus
now on irreducible representations.
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4.2.3 Everywhere irreducible characters

Theorem 10. Let M, be a graph-link manifold with splice diagram I; let V and £ denote
the vertex and edge sets of I'.

With the notation introduced in Section 4.2.1, there exist an everywhere-irreducible
representation in R¥S¥2C(M}) if and only if, for any v in V,

L2+ |C°| + |LEW| = L5 > 3

In that case, there exist a component Xo in X 52C(M}) of everywhere-irreducible char-
acters and for any such component X, Ey(X) is the |L|-dimensional algebraic manifold
VT given in C*IH| by the following ideal:

<mKC“}%[Ka?< —1lL,veV, KcL?”C L> (4.11)

Proof. First, if ' has a unique vertex, M, is Seifert-fibred and Theorem 10 is equivalent
to Theorem 6.

The next step for the proof of Theorem 10 is to inspect the splicing condition on an in-
ternal edge of the splice diagram I'. As in the proof of Theorem 6, everywhere-irreducible
representations will trivialize all the fibres, so the splicing conditions should only involve
the sections of the fiberings on each side of the edge.

Any edge v =wv of & splits ' into two trees I'" and I'~ containing v’ and v respec-
tively. This is represented in the diagram of Figure 4.8, with T'* and v’ on the left side of e
and I'~ and v on the right. Let M+ ;+ and M~ ;- be the manifolds obtained by desplicing
M, along S,; these are graph manifolds over I't and '~ respectively. The link L™ (resp.
L7™) can be written L U K’ (resp. L, L K) such that the splicing is done along K’ and K
in L and LV and we have:

/ —
Mp=M",+ 05 M~ -
0 Se 0

We will use the following lemma for the splicing of everywhere-irreducible represen-
tations at e:

Lemma 4.2.4. Two everywhere-irreducible representations, p € RFS2C(M™T 1) and p' €
RYSL2C(M =) agree with the splicing at S, if and only if

p(sg) K TR = 1
(BK/aK—l—BI?,aE,) (4'12)

p'(skr) = plsk)”
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Proof of Lemma 4.2.4. The splicing identifies the longitude of each side with the meridian
of the other side so, using the peripheral matrices of 7 and Tk we have in m M :

SKaKthK = SK’_aﬁtv’ﬁ}?’

_aktvﬁf( — OéK/tvﬁK/

SK SK/
and since p and p/ trivialize the respective fibres t, and t¢,,, the images by p and p’ must
satisfy.

aK ./

plsk)™ p/(si)"® = 1
p(si) % p ()™ = 1

Finally, since ax' 87 + Brrazm = 1, the system (4.13) is equivalent to (4.12):

(4.13)

plsge)em ok = i

P (skr) = plsg)”Prrertipew)

A reverse calculation shows that any pair of everywhere-irreducible representations
satisfying equations (4.12) will produce an everywhere-irreducible representation for M,
which concludes the proof of Lemma 4.2.4. [

It follows that, for any everywhere-irreducible representation p of RPS“2C (M) and for
any internal edge e, the restriction p|_has torsion aga g — agazs = det(e).
Therefore, let e be an internal edge in I':

e if |det(e)| = 1, p should be trivial on S, and everywhere-irreducible representations
exist if and only if they exist for M+ prand M-

e otherwise, for any z € C\ {—1,0,1} with 224l = 1 any two everywhere-
irreducible characters M "+ and M~ - with

w(XT) = 242

1 (BK’QK+BI’(7‘1I’(7)

_ _ (4.14)
L,,(x7) = w+tw , W=z
will produce an everywhere-irreducible character of M.

Applying this criterion to all the internal edges of I', there must exist irreducible represen-
tations for each M" ., je), which, by Theorem 6 is equivalent to

L2+ [C7] + [LEC)] — [LEN] = 3.
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By construction, the traces on the sections of the remaining components can be chosen
freely. As in the proof of Theorem 6, the equations of the corresponding component in the
eigenvalue-variety are,

Yo eV, VK C L% C L, mgklx% =1 (4.15)

so the corresponding ideal is
<mK“¥?[KQ3’< “lLveV, KCL”C L> @.11)
O]

If they exist, everywhere-irreducible components are peripherally maximal and non-
abelian so we obtain:

Corollary 5. Let My, be a graph link-manifold. If, for each vertex v of the dual tree,
L7+ [C°) 4 |LEW — | L5 > 3
then XPSL2C (M) admits a peripherally maximal and non-abelian component.

The Ejy-variety of everywhere-irreducible characters splits in [], -, E(Tk) as the
product of the curves m &% = 1 for each boundary component. Each of these

curves has a natural parametrization by x g, the eigenvalue-variety of the section sy:

mg = il?KO%

KK = IKQK

Using the same approach, a similar result might be obained for SL,C. Everywhere-
irreducible representations in SL,C send all the fibres to +1d. If the splice diagram has m
vertices, there are 2" possible combinations for the image of the fibres; each combination
produces a system similar to (4.12) at each edge e and we can then use Theorem 9 to
conclude on the existence of compatible irreducible representations on each piece. We will
not go on with these calculation here so this concludes our study of everywhere-irreducible
characters.

In the next section, we consider another type of characters, irreducible on one vertex
and abelian everywhere else.
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4.2.4 A family of peripherally maximal components

We will now consider components of characters that are irreducible on only one vertex,
and abelian everywhere else. Let v be a vertex of I, represented in I' by the diagram of
Figure 4.9.

KeLEw) ™. S JeLdv

) o

Figure 4.9 — A vertex in I

For any K in LE("), the tree I'} defines a graph link-manifold M’y spliced with MV .
along K and a component K’ of L'.
For any representation p of w1 M, if p o is abelian, it has the form A o ¢ for some
™ I

@ in H'(M'p,,C*). It follows that p is determined by the images of the meridians; the
images of the longitudes are given by the linking numbers:
VJ/ C L/, p()\J/) — H p(ﬂj”)lk(J/’J”)
J//#J/
The following two situations can occur:
e [k(K',J) = 0 for all component J" of L' \ {K'}. In that case, p(Ag/) = Id
for any abelian representation of 71 M’/ so, back in M";., p must trivialize px.

This happens, in particular, if K’ is the only component of L’ (if '}, contains no
arrowhead in I").

e otherwise, for any m/, ¢ in C* there exist a morphism ¢ of H'(M’y,, C*) such that

!/

plpk) = m
e(Ar) = ¢



102 CHAPTER 4. Eg-VARIETIES OF GRAPH LINK-MANIFOLDS

With these notations we consider a new Seifert-fibred link-manifold obtained from v:

Definition 4.2.4. The isolation of v in I is the Seifert-fibred link manifold M"Y 2 obtained

from the diagram of Figure 4.9 by replacing each | '} | by

- an node @ if [k(K', J') = 0 for all component J' of L' \ { K"},
- an arrowhead — otherwise.

In other words, the diagram of Figure 4.9 becomes Figure 4.10, where the heads [l for
K in Lf™) are arrow heads — or nodes @ depending on the linking number conditions in

each I'}.

KeLE® ™, JeLov

Figure 4.10 — Isolation of a vertex

Remark 4.2.5. Depending on the splice diagram, the isolation of v may become abelian.

Example 4.2.6. On the cable link represented in Figure 4.11, the isolation of v produces
the diagram of Figure 4.12 which reduces to a solid torus.
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Figure 4.11 — A cable link

Figure 4.12 — Isolation of v in Figure 4.11

Isolations give a criterion for the existence of representations irreducible on one piece
and abelian everywhere else:

Theorem 11. Let M}, be a graph link-manifold with splice diagram . For any vertex v of
[, there exist a representation p in RPSL?C(m M) such that

{ the restriction of p to m M}, is irreducible } (4.16)

p is abelian on all the other vertices

if and only if the isolation of v in I" has non-abelian fundamental group.
In that case, there exist a peripherally maximal and non-abelian component X in
X (ML) with the properties (4.16).

Proof. Let My, be a graph link-manifold with splice diagram I'. Let v be a vertex of I’
such that the isolation of v, M ”Lov, has non-abelian fundamental group. By Theorem 6,

R(M ”Lov) contains irreducible representations.
Let p¥ be such a representation. Let K be a component of L) and I'}. a tree spliced
to v at K as in Figure 4.9. Let M’/ be the link-manifold represented by I'%.. Let’s index

the components of L' as Ky, ..., K,, where the splicing is done along K, in M';,. We
wish to extend p® to MV . KX¥%o M’/ via an abelian representation on M';,.
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First, let’s assume that [k( K, K;) = 0 for any 1 < ¢ < n. Any abelian representation
of M’y trivializes Ak, and by definition of the isolation, K is filled along pix in M ULOv’
Since p" is irreducible, it trivializes the fibre ¢, and the following relations hold:

1 = p'(pk) = p"(sk)™
p’(Ax) = p'(sk) K

It follows that p” (g ) is diagonalizable (of finite order, same as p”(sg)). Let {x be an
eigenvalue of p’(A\k).

For any my, ..., m,, there exist ¢’ in Hom(m M',, C*) such that ¢/(uk,) = m; for
1 < i < nand ¢(ug,) = lk. Then, as usual, ¢’ defines a diagonal representation
p' of M’y and, we can conjugate it so that p/'(ug,) = p'(Ak). Since p'(Ag,) = 1 =
(k). p/ and p¥ are compatible with the splicing so they define a representation of
R(M? . KxEo M'1,) satisfying the expected properties.

On the other hand, let’s assume that K has non-zero linking number with an other
component of L' so K becomes an arrowhead in M ”Lov. Without loss of generality, we can

assume that pv is diagonalizable on T, and there exist A in PSLyC such that p*(ug) =
AA(mg)A " and p*(A\g) = AA (L) A™Y with mg@& 05K = 1.
The equations in C**" = {(m, £;), 1 <i < n}:

n

glk(Ko,Ki)

Vi<i<n, l; = s Hmzk(Kj,Ki)

J
i=t
JF
n
lk(Ko,K;
My — Hml ( 0 1)
i=1

span an n — 1-dimensional subspace V{,, . ¢,) in C**". Any ¢ in Vimy ¢x) defines a mor-
phism ¢’ of 71y M’y in C*. This morphism defines a diagonal representation p’ and Ap’ A~1
is compatible with pv for the splicing M. XX%o M’;, and provides the expected exten-

sion of p*. The spaces (Vim tx)) img & ec2x 1) SPan an n-dimensional space in C**" of
morphisms compatible with irreducible representations of m M ”Lou.

Therefore, provided M “Lov is not abelian, we can extend irreducible representations of
M ”Lov to 7 M, with abelian representations on each M’;,. By construction, for each

M, the extension spans an algebraic space with dimension |L’| — 1 in the corresponding
part of the eigenvalue-variety. Therefore, the representations obtained this way span an
| L|-dimensional algebraic manifold in the eigenvalue-variety Ey( M ). O

Remark 4.2.7. For any vertex v, if | L% 4+ |C*?| > 3, the isolation of v is never abelian.
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Finally, we show that, if M} is not abelian, the condition of Theorem 11 is always
satisfied for at least one vertex of I'. In fact, it will always be satisfied for a leaf of the
splice diagram.

Recall that a vertex of a tree is called a leaf if it has only one one adjacent vertex in the
tree. In that case, the isolation can only take two forms so we can easily apply the criterion
of Theorem 11.

Let v be a leaf in I" as represented in Figure 4.13. The isolation of v depends on the

Figure 4.13 — Aleafin I’

linking number of px = Ay with eventual boundary components of T'). = T\ {v}. Itis
either MV . or M" o\ k.

By Proposition 4.2.2, for any component .J of L in '}, the linking number between
K" and J is zero if and only if there’s a 0 coefficient adjacent to the path between K’ and
the arrowhead J in I',.

The following lemma shows that, if M|, is a non-abelian graph link-manifold M with
boundary, there exist a leaf which remains unchanged by isolation.

Lemma 4. Let I" be the splice diagram of a non-abelian graph link-manifold M with
boundary. There exist a path from a leaf v of I to a boundary component with no adjacent

0inT\ {v}

Proof. A vertex has at most one 0 coefficient and it is either on an arrow or an internal
edge. We will construct the path starting from an arrow and following any internal edge
labelled by O until we reach a leaf.



106 CHAPTER 4. Eg-VARIETIES OF GRAPH LINK-MANIFOLDS

First, let’s assume that I' contains no arrowhead with a 0 coefficient. From an ar-
rowhead K of I', we build a path following any possible edge labelled with O that we
encounter. Since [ is finite, this path must end to a leaf of I' and, by construction, can
contain no adjacent 0.

Otherwise, let’s start from an arrow labelled with 0. As before, we follow any encoun-
tered edge labelled with 0. If, at any point, the path reaches a non-leaf vertex containing
an arrow labelled by 0, we start again from this arrow, following any internal edge that was
not on the original path; such edge must exist or the vertex would be a leaf. Then, again,
this process must reach a leaf and the obtained path contains no adjacent 0. [

So, finally, we obtain the following result for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold M|, with boundary, there exist a
peripherally maximal and non-abelian component in X752 (M).

Proof. Let v be leaf obtained from Lemma 4. By construction, M. is unchanged under
isolation. Since it is not abelian, Theorem 11 ensures the existence of a component in
Ey(M;p) with maximal dimension. O

Example 4.2.8. In the previous example of Figure 4.11,

we can only isolate the left leaf (corresponding to a p, q-torus knot) to create a curve of
irreducible characters on the remaining boundary.

4.3 General components

We close this chapter with few considerations on generic components of the Fy-variety
of a graph link-manifold, or the Eg-varieties for contractions G of the splice diagram.

Applying Proposition 1 to the splice diagram of a graph link-manifold M}, any com-
ponent X of X (M) determines a binding decomposition (G >=T") of the JSJ tree G 7
where, for each vertex v of the contracted tree G, i,* X is either everywhere irreducible or
everywhere reducible for the splitting I',,.
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An extensive study of the 2/7| possible binding decompositions of G 7, corresponding
to all the subsets of edges of G, should enable a complete characterisation of all the
possible components in the F ;g ;5-variety. For any subset of £ — 1 edges of £, we obtain a
partition of G into k trees, wich produces 2 combinations (or 3* in SL,C) of everywhere
abelian or everywhere irreducible components on each subtree. These are 2 x 317! (or
2 x 41'in SL,C) possible combinations to inspect.

Then, on each subtree, Proposition 6 and Theorem 10 provide the equations for the
possible peripheral eigenvalue-varieties. Examining all the possible combinations, the
merging criterion of Theorem 3 should provide a condition of existence for any component
with a given type 7, as well as the corresponding Ag , -ideals equations.

Once Ejgj5(My) is obtained, Theorem 3 would then describe all the possible Eg-
varieties for contractions G of G 7.
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Appendix A

Regular functions on character varieties

A.1 Regular functions

Let GG be a reductive algebraic group and 7 a finitely generated group.

Any regular function f € C[G] produces a family of regular functions (f,) e, in
C[R%(m)] via f,(p) = f(p(7)). As the following Lemma A.1.1 shows, these actually
generate the whole ring of regular functions.

For any algebraic space V/, for any family ( f;),c, of regular functions on V, we denote
by C[(f;);jes] the subring of C[V] of polynomial combinations of any finite collection

fjl’ e 7fjn'
Lemma A.1.1.
C[R®(m)] = C[(f)rer, fecic)

Proof. From the observations made above, C[(f,) ex, recic)) € C[RY()]; we show that
C[(fy)~er, fecic] distinguishes points of R (7r) and, therefore, is the whole ring of regular
functions.

Let p and p’ be two representations such that

VfeC[G], Vyem f(p) = f,(0)
By definition of f.,

Vyem VfeC[G] flp(7) = f(K'(7))
Since, by definition, C[G] distinguishes points of G, this implies
Vyem p(y)=0(7)
sop=/p O

109
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If f is G-invariant, each f,, is also G-invariant and factors as a function f.,, € C[X%(7)].
For example, using the characters of examples 1.2.2 to 1.2.4 we can define the follow-
ing functions:

Definition A.1.1. If G is linear, we denote by (7, ). <. the family of functions in C[X(7r)]
induced by the function tr of C[G //G]. For any + in 7 and y in X% (7r),

7,(x) = tr(p(7)) forany pint 'y
Definition A.1.2. For any 7 in T,
I’y . XPSLQ(C(T[_) g,

is the regular map corresponding to the PSL,C-invariant function f = trs; in other words,
L, (x) = tr(p(7)?) for any pin t~"x.

Definition A.1.3. For any ~ in T,
g, XPC(n) —» C

is the regular map corresponding to the PSL,C-invariant function f = tr?; it is character-
ized by the equation, J,(x) = (tr(p(v)))? for any p in t~'y.

Remark A.1.1. The two regular functions /., and J, on X 5%2C(r) only differ by a con-
stant. In C[XP5M2C(7)] we have:

Vyem L =J,—2

Remark A.1.2. When working with G = PSL,C, the functions tr? and J, are often used
as canonical character (see, for example, [BZ98] or [HP04]). However, we shall prefer the
use of try and I, which reflect more directly the behaviour of tr and 7., for G = SL,C.

A.2 Generating the ring C[ X (7)]

The association, for f in C[G]Y, f ~~ (f,),ex, produces two subalgebras of C[X “()]:

C[(T'v)wew] - C[(fv)feC[G]Q vew] - C[XG(W)] (A.1)

For most linear algebraic groups, these tree algebras are equal. Indeed, the following
theorem is a consequence of Theorems 3, 5 and 8 of [Sik13].
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Theorem A.2.1. If G is special linear, symplectic, orthogonal, or odd special orthogonal,
Cl(7y)rex] = C[X (7)]
If G is even special orthogonal,

(C[(Tw)ver] & C[(fv)feC[G}G, ’}’Eﬂ’] = (C[XG(W)]
Proof. See [Sik13]. ]

The group G' = PSL,C is not a linear group. However, as explained for instance in
[HPO04], the action of PSL,C on the Lie algebra s[,C gives an isomorphism

Ad : PSL,C — SO3C

such that tr(Ad(A)) = tra(A) + 1 = tr?(A) — 1; by Theorem A.2.1 we have:
Corollary A.2.2. For G = PSLsC,

C[(I'y)vew] = C[(J'y)vew} = C[(fv)feC[G]G, 'y€7r] = C[XG(W)]

Where 1, and J, are the regular functions of definitions A.1.2 and A.1.3, respectively
associated to trs and tr>.

Remark A.2.1. When G is linear, an alternative construction of X consists in defining
XY%(7) such that
CIXE(m)] = C[(7y)ex]

For example, this is the Culler-Shalen construction of X52C given in [CS83]. By Theo-
rem A.2.1, this is generally (but not always) equivalent.

If C[(fy) feciere, vex) = C[X ()], points of X () are characterized by G-invariants
functions G: for any ¥, x' in X“(7),

x=x < VfeClGI° Vyem f,(x) = f,(X)

Moreover, if there exist 6 in C[G]“ such that C[(0,),ex] = C[XY(7)], then each x in
XY(7) can naturally be identified with the function

X: ™ - C
v 97(9()

hence the name character of .
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A.3 Polynomials in the SL,C character varieties

In this section, X denotes, X°2C, the SL,C character variety.

Let F,, be the free group with n generators denoted by ay, ..., a,, R(F,) is its repre-
sentation variety Hom(F,,, SLyC) and X (F,,) its character variety. For any representation
pof R(F,) and 7 in F,, we recall the definition of the trace function:

,: R(F,) — C
p — trp(v).

The ring of functions of X (F,), C[X(F,)] is generated by the functions 7., v € F,,
by Theorem A.2.1; in the case of SL,C, the trace relation

VA, B € SLyC, tr(AB) + tr(A™'B) = tr(A)tr(B) (A.2)
enables to specify a finite generating family of C[X (F,,)]:

Proposition A.3.1. For any subset I = {iy < ... < i;} of N,,, let T/ denote the regular
function T = Ta, i, of CIX(F,,)|; then for any ~y in F,,, there is a polynomial in 2" — 1
variables P, € C[(Y7)cn, | such that

™ = Py((71)rew,,)-

Proof. The complete proof can be found in [CS83] and is mainly algorithmic, using rela-
tion (A.2) do decrease a well-chosen height on the elements of F,,. O

Remark A.3.1. The polynomial P, of Proposition A.3.1 is in general not unique.
Example A.3.2. For exemple

o T =722

® T3 =T, — 3T,

o T =1t —4r2 -2

® Ty =Ta® + T2 + Tap® — TaToTap — 2

There is in general no formula giving the polynomials P, for a given word . However,
in this section, we will proceed to compute the polynomials P, for the elements v =
af'...a%, for n-uple o = (v, ..., a,) € Z".

For n € N, let O,, denote the ring

O, = C[(YI)ICNn]

with the following convention:
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e V=2
e for singletons of N,,, we will use the notation Y, = Y.
On the other and, for n € N, let X,, denote the ring
X, = C[X(F,)]
By Theorem A.2.1, C[X (F,,)] = C[r,, v € F,] so we can define a ring-map

p: O, = X,
Y — 11

and, by Proposition A.3.1, p is epic. Given 7y in IF,,, we want to find P, such that 7, =
p(Py) in X,.

Example A.3.3 (n = 1). Forn =1, F; = (a| ) = Z. Applying (A.2) with B = A" we
obtain
tr(A™) — tr(A)tr(A™) + (A" =0

so, in O = C[Y], we should expect the relation
Pa'rH»l — YPaTL + Panfl = O (A3)

with P, =Y and P, = 2, this completely determines P, for all v in ;.
We define the two families of polynomials in C[Y]:

Definition A.3.1. Let U,, and V}, denote the sequences of polynomials in C[Y'] defined by:

Uy = 0,U; =1
Vo= 1LV =20

(A.4)
and the recursive relation
Qni1 —YQ,+Qn 1 =0,forneZ (A.5)
forboth@ =Uand Q = V.
Any family P, of polynomials in O satisfying (A.3) is given by
P, =RV, + AU,

in particular, the polynomials P,» are given in O by
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Proposition 7. Let P, = 2V,, + YU, in C[Y|; then, for any n in Z, p(P,) = 7a» in X(F1).
Remark A.3.4. With the convention Y = 2, this can also be written

Let F,, = (a1,...,ay|) be the free group with rank n. For any « in Z", let a® be the
element of F,,:

QO

a
a“ =ai" - a,

We will show that Proposition 7 can be generalized for words a® in F,,; that is, for any «
in Z", we give an explicit expression for P, in O,, such that

p(Pa) = Tgo

Theorem 12. For any a = (y,...,q,) € Z" and any subset I of N,,, let r! be the

polynomial of O,,:
Ti = H Uak (Yk> H Vak (Yk)
kel kg1

Then, the polynomial P, defined by
Pu=)_maVi
ICN
satisfies
p(Pa) = Tao
We will prove that p(P,) = 74« for all & € ZN" by induction on
lla|| = Maz{|a;|,i € N, }.

We need to set a few more notation first. For any 7 in N,,, we denote by ¢; the vector
of Z™:
g; =(0,...,0,1,0,...,0)

where the 1 is at index i.
Lemma 5. For any v in " and any 1 in N, Then we have the following identities:
Togo+ei — Ta;Tae + Teo—e; = 0in X, (A.6)
Pyie, — Y Po+ P, ., = in0O, (A.7)
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Proof. For the identity Equation (A.6) we simply use relation (A.2) and the fact that
tr(AB) = tr(BA) for any matrices A and B. For any oy, .. ., o, of Z»,

T ay o+l ap = T @41 ap o1+l
a;’..a; ...an it1 -antagt..ay
= Ta. T %+l _an o aj — T & a a;—1
a n 1 7 i+1 an 1 i
ita; 7 an™ay .y itl antag . ay
= Tq, T, g an — T aj o;—1 a
ila;t..a; . an a; ..a; b Caap”

The second equation, on the other hand, is a consequence of the recursive relation
(Equation (A.5)) satisfied by U and V. For any subset / of N,,, the definition of 7/ implies

that
I

7104—4—51-

— Yirg + 7”£+2a¢ =0
and, taking the sum over the subsets of N,, this gives
Poye; = YiPa + Payae, =0
which completes the proof of Lemma 5 [
These identities will enable the recursion to prove Theorem 12.

Proof of Theorem 12. For «in Z", we denote by ||«/|| its [, norm:
|l = Maz{|as],i € Ny}

First, if ||a|| = 0, all the coordinates «; are zero. In that case 7,0 = g = 2 in X,,. On
the other hand, 7} = 0 for any non-empty subset I of N,, and rg = 1. Therefore, Py = 2
in O,, and p(Fy) = Tpo.

Then, assume that ||«|| = 1, so all the coordinates are in {—1,0, 1}. By Lemma 5, we
can assume that all the coordinates are in {0,1}. Let A denote the subset of indices for
which «a has nonzero coefficient, with the notations of Proposition A.3.1,

Taa = TA ln Xn

On the other hand, for any / C N,,,

Té = H Uak (Yk) H Vak (Y;v)

kel kel
where each «y, is either 0 or 1. With the initial conditions of U and V' (Equation (A.4)) we

obtain:
B 1, if/=A
Ta =
0, otherwise
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Taking the sum of 7! Y7 over I C N,, simply leaves P, = Y} as expected.
Finally, assume that ||«|| > 2 and that p(Ps) = 7,6 for any vector 8 with ||3|| < [|«/].
Let ¢ be an index such that |o;| = ||c]].

e First, let assume that o; > 0 and |o;| < || for j # i. Then ||a — ;|| < ||e|| and
l|ae — 2¢4|| < |||| so we we have:
p(P,) = p(Y;P, ., — P, o.)byLemma5

= p(Y;)p(Pafal) - p(PanEi)
= TaTa—e; — Ta—2¢; DYy Induction hypothesis

= T4 by Lemma 5

e Then, if o; < 0 and |o;| < || for j # 4, we can use the same argument with o + ¢,
and o + 2¢; to conclude.

e Finally, if ||«|| is attained for more than one coordinates, we can apply the same
argument on each of these coordinates until ||«|| decreases and conclude using the
induction hypothesis.

This completes the proof of Theorem 12 so, for any « in Z",

p(Pa) = Taqo-
]

Remark A.3.5. All the polynomials P, have degree 1 in the variables Y; when [ is not a
singleton of N,,.

Remark A.3.6. Observing that r,r = 0 if a; = 0 for some ¢ € [, the same formula can be
extended to free groups with countable generators and sequences of integeres o with finite
support.

Let Fyy denote the free group with generators (a,, )ney. For any  in Z™) we define

a an
a —||0Ln
neN

this product is finite since « has finite support and we can also define, for / C N,

Té = H Ua, (Yn) H Ve, (Yn)

nel n¢&l
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where, for the same reason, both products are finite. The observation above implies that
rl = 01if I is not contained in the support of « so the sum

P,=> rly;
ICN

is also finite. Then, by Theorem 12, for any a in ZM),
p(Pn) = Tae in C[X (Fy)]

Theorem 12 can be used to describe maps between character varieties.

Example A.3.7. Let 7 be a finited generated group with generators ay, . . ., a, and let Fy
be the free group with two generators x and y. For any n-uple of integers, oy, ..., 0, ..., Qy,
the map

a1, 4%
r — aj a,

ap+1 . .. a"/
y = ay,ky a,,

defines a group morphism ¥y — m and an ring map
CIX(Fy)] = C[X(m)]
The character variety of F is C3 with
C[X (F2)] = Clry, 7y, Ty

On the other hand, C| X (m)] is a quotient of C| X (F,,)| and C[(Y7)1cn, |- With these nota-
tions, the ring map is given by the following polynomials:

e — Po,((Y1))
Ty = Fo,((Y1))
Toy — Pal((Y1))

where o, and o, are the n-uples

a; = (oq,...,0p,0,...,0)

ay, = (0,...,0,0p41,...,0p)
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Appendix B

Examples of peripheral
eigenvalue-varieties

In this chapter we present the results of computation of peripheral SL,C-eigenvalue-
varieties for few link exteriors in S*. We took a straightforward approach to compute the
equations from the fundamental group, at cost of a high complexity. The computation is
done in three steps

1. Compute a presentation of the fundamental group and peripheral systems using
Snappy [CDW].

2. Use Culler-Shalen algorithm from Proposition A.3.1 (see [CS83] for the details) to
compute some polynomial equations induced by the presentation. This was done in
GAP [Thel2].

3. Eleminate the undesired variables with Macaulay 2 (M2) [GS] to obtain the equa-
tions of the [y-variety.

These three steps are combined with a small program written in Haskell [Mar10].
Let 7 be a finitely presented group, 7 = (ay, ..., a, | w € W). The character variety
of 7 is the closed subset of X (F,,) such that

Vwe WV <i<m, T, =2, Tyuw = Ta, (B.1)

With the notations of Appendix A.3, we describe X (F,,) as a subset of CV with N =
2™ — 1 given by the functions 7,, for subsets I of [1...m]. Then, using Culler-Shalen
algorithm, we compute each polyonmial P, and F,,,, to obtain the defining equations of
the character variety X (7).

119
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For each peripheral system pr, Ay, we add variables mr, ¢ and the equations

m2 — P, (Y)mr+1 = 0
Gz — Py, (Y)lr +1 =0 (B.2)
m20% — Py, (YV)mply +1 = 0

where each P, ., P\,, P, 1s also computed using Culler-Shalen algorithm.

Finally, eliminating the variables Y71, . .. Yy produces an ideal in C[m, [| corresponding
to the expected Ay-ideal.

Unfortunately, the elimination algorithm uses a lot of memory and, although this pro-

cess should work for any link, the computation terminated only for a handful of examples.

B.1 Code

We reproduce here the most relevant parts of the code; the full source can be found at
http://hub.darcs.net/arbol/E-variety.

B.1.1 Free groups

If 7 is a group with n generators, X (7) will be computed as a closed subset of X (F,,);
let O,, denote the ring C[(Y7)cn,] as in Appendix A.3; The representation variety of the
free group F,, is (SLyC)" so

R(F,) = {a;,b;,c;,d; | a;d; — bjc; = 1}

and if M; denote the matrix {? Zl] for 1 < i < n, C[X(F,)] is given by the kernel of

the ring map
Yi — tr(HieI M;)

We use GAP to generate the equations and M2 to perform the computation of the
kernel. The following GAP code generates the determinant equations for C[R(F),)]:

Pn:=[1..n];
x:=[1..m];
a:=[1..n];
b:=[1..n];
c:=[1..n];
d:=[1..n];


http://hub.darcs.net/arbol/E-variety

B.1. CODE

for i in Pn do

ali] :=Indeterminate (Rationals,i);
b[i] :=Indeterminate (Rationals, i+n);
cl[i] :=Indeterminate (Rationals, i+2#*n);
d[i] :=Indeterminate (Rationals,i+3*n);
od;
M:=[1..n];
for i in Pn do
M[i]:=[[al[i],b[1]], [c[i],dl1i]]];
od;
D:=[1..n];
for i in D do
D[i] :=Determinant (M[1i])-1;
od;

and the next one generates the list of traces tr(] [, M;):

CPn:=Combinations (Pn) ;
m:=Length (CPn) ;
R:=[1..m-17;
for i in R do
I:=CPn[i+1];
li:=[1..Length(I)];
for 3 in 1i do
1i[3]:=M[I[F]];
od;
R[i]:=Trace (Product (11i));
od;

121

Finally, setting re1lsDet and imTrace as the list of determinant relations and traces

computed above the following piece of M2 code computes the kernel of ¢ in O,,:

R = A/ideal (relsDet);
t = map (R,B, imTrace);
K = kernel t;
XFree = B / K;

Although this should theoritically work for any n, the computation could not terminate
for n > 4; the character variety X (F3) was already known and is given by one polynomial
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equation in seven variables. With the following convention:

1 = Y

To = §QLQ

r3 = )QLZM

Ty = Y{1,3} (B.3)
5 = Yy

Tg = Y{z,s}

17 = Yy

we obtain the polynomial:
T1X3T5L7 — T1X2X5 — L3L4Ts5 — T1X3L6 T Lalale — XaX3Ly — L1X4T7 — T5TeXl7+
ri+ay+ad+af +al+al+ai—4

B.1.2 Polynomial equations

Once X (F,,) is computed, we need the equations defining X (7) induced by the rela-
tors of the presentation. To compute these polynomials, we implemented Culler-Shalen
algorithm using GAP. Given a word W in F,, and if x is an array of 2" variables', the
following fonction computes a polynomial Pol in O,, such that p(Pol) = 7 in C[F,].
We omit the definition of the combIndex function which simply determines the desired
index in x for a given subset [ of [1...n].

sl2CPol:=function (W, X, n)
local S,W1l,W2,nS,1i,Pol, Jj,W3,W4;

x [Length(x) ] :=2;
Pol:=0;
nS:=NumberSyllables (W) ;
if

(ForAll([1..nS],i—>
ExponentSyllable (W,i)=1))
and
(ForAll([1l..nS-1],i->
GeneratorSyllable (W, i+1)-GeneratorSyllable (W, i)>0))
then
S:=[1..nS];
for i in [1l..nS] do

Ithe last entry of x will be set to 2, representing Tag
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S[i] :=GeneratorSyllable (W,1i);

od;
Pol:=x[combIndex (S,n)];
elif
ForAny ([2..nS],i—>
GeneratorSyllable(W,i) - GeneratorSyllable(W,1)=0)
then
i:=1;

repeat i:=1i+1;
until GeneratorSyllable(W,1i) - GeneratorSyllable(wW,1)=0;
W1l:=SubSyllables(W,1,i-1);W2:=SubSyllables (W,1i,nS);
Pol:=s12CPol (Wl,x,n)*sl2CPol (W2,x,n)-s12CPol (W1"-1%xW2,x,n);
elif
ForAll ([1..nS],i->
ExponentSyllable (W, i)=1)

then
i:=0;
repeat i:=i+1;
until GeneratorSyllable(W,i+1l) - GeneratorSyllable(W,i) < 0;
3:=0;

repeat j:=7j+1;
until GeneratorSyllable (W, j) - GeneratorSyllable(W,i+1l) > 0;
W1l:=SubSyllables (W,1,3j-1);
W2 :=SubSyllables (W, j,1i);
W3:=SubSyllables (W, i+1,1i+1);
W4 :=SubSyllables (W, i+2,nS);
Pol:=s12CPol (W3xW2,x,n) *s1l2CPol (Wl+xW4,x,n) -
s1l2CPol (W2, x,n) *s1l2CPol (W1+xW3"-1xW4,x,n) +
S12CPol (W1xW3"—-1+«W2+«W4,x,n) ;

elif
not ExponentSyllable(W,1)=1
then
W1 :=Subword (W, 2, Length (W) ) ;
S:=[ 1;

S[1l] :=GeneratorSyllable(W,1);
Pol:=x[combIndex (S,n)]+*sl1l2CPol (W1, x,n)
sl2CPol (Subword (W, 1,1) "-1+«Wl,x,n);
else
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Pol:=s12CPol (Subword (W, 2, Length (W) ) *Subword (W, 1,1), x,n) ;
fi;
return Pol;
end;

Given a link-manifold N with m N = (ay,...,a, | w € W) and a peripheral system
(i1, A\r)rcan as words in F,,, we use the previous code to output the settings for the
algebraic computations performed later in M2. These are four lists of polynomials in O,,,
Relations, Meridians, Longitudes, Products, such that Relations is the
list of polynomials P, — 2 and F,,,, — P,, for each relator w and generator a, and the three
others are the list of peripheral polynomials P, P, and P, », for each peripheral torus
T.

B.1.3 Character variety and peripheral A-ideal

For the final step of the computation, we use M2 to perform the algebraic computa-
tions. The ring B is the ring O, [mr, [7] and, using the settings described in the previous
section, the following simple M2 code computes the components of the character variety
and list of corresponding Ay-ideals.

X = B / ideal (Relations|Freeldeal);
dCV = decompose (ideal X);
nCV = #dCV;
dX = for i from 0 to (nCv-1)
list (B/dCV_1i);

periPolyElim = (m,p) —-> m*"2-pxmt+l;

periElimList for i from 0 to (nP-1)
list (
periPolyElim (Evariables_ (2xi) ,Meridians_1i),
periPolyElim(Evariables_ (2%xi+1),Longitudes_1i),
periPolyElim(Evariables_ (2%1) *Evariables_ (2xi+1),Products_1i)
) i
periElimIdeal = ideal periElimList;

dY = for 1 from 0 to (nCv-1)
list (dCV_i + periElimIdeal);
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dEvar = for i1 from 0O to (nCv-1)
list (B / eliminate (Xvariables,dY_1));

So, after execution, dEvar is the list of ideals A5 (X ) for each component X of X (7).
In the next section, we present few Ay-ideals obtained for different links using the
algorithm described above. Links are named following the Thistlethwaite Link Table (see
[BNMa]) or their common name if the have one (Hopf link, Whitehead link, etc...).
For each example, we also give the equations of the character variety in the coordinates
T1,...x@n_1) where n is the number of generators in the presentation we consider. For
n = 2 the convention is

* 1 =Yy
® Ty = Y{1,2}
* 13 =Yy

and, for n = 3, we follow the notations of Equation (B.3).

B.2 Computed examples

B.2.1 Hopf link

The peripheral eigenvalue-variety of the Hopf link is easily computable by hand since
the fundamental group of its exterior is Z? where each longitude is a meridian of the other
component.

We tested the algorithm with the following presentation and peripheral system (ob-
tained with SnapPy):

Generators:
a,b
Relators:
abAB
[("a", "Ab"), ("Ab’, ’"a’')]

which gives, as expected, the following equation for the character variety:

2, .2, 2
x] + x5 + x5 — r1709703 — 4



126 APPENDIX B. EXAMPLES OF PERIPHERAL EIGENVALUE-VARIETIES

and produces the following decomposition for the .45-ideal of the Hopf link:
AHOpf = <L1 — Mg, Ml — L2> X <L1M2 — 1,M1L2 — 1>

which are the components of reducible characters of a 2-components link with linking
number 1.

B.2.2 Link l4al

The link 14al is Seifert-fibred so, again, we could compute the Ay-ideal using the
results Section 4.1.
We use the following presentation and peripheral system:

Generators:
a,b
Relators:
aBBADbDb
[("Ba’, ’"baBa’), ('A’", "AAbb’)]

We obtain two components in the character variety; the component of reducible charac-
ters is given by the same equation as the one obtained above for the Hopf-link, and the
component of irreducible characters is simply given by (x3).

The As-ideal is then given by:

A — (M2 4 Ly, M? — Ly) X (LyM2 — 1, M?Ly — 1) x (M2 + Ly, M? + Ly)

The first two components correspond to reducible representations (linking number 2)
while the last ideal is produced by the component of irreducible characters, with the fibre
sent to —Id.

B.2.3 3-keychain link

Keychain links are the one obtained from the unknot by adding components parallel to
the meridian (so the Hopf link is the 2-keychain link). One could use the Seifert fibration to
describe the eigenvalue variety but we used it to test our algorithm on some 3-components
link. It is the only 3-components links for which the computation terminated.

The presentation and peripheral system given by SnapPy is:
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Generators:
a,b,c
Relators:
aBADb
bCBc
(¢'s”, ca), ¢cr, 'B"), (A", 'B")]

We obtain in Clzy, . .., z7] three ideals for the character variety. The first component
(reducible components) is much more complicated than for 2-generated groups; it is given
by twelve equations that we do not reproduce here?. On the other hand, the two compo-
nents of irreducible representations, sending the fibre (here, the first meridian) to 4-1d are
much simpler and given by

(w5 — 2, =21 + 22, T — T7, —T3 + 24) X (T5 + 2,21 + Xa, Tg + T7, T3 + Ty)
We obtain the four Ay-ideals for the reducible characters:

<L2 — Lg, M1L3 — 1, L1M2M3 — >
(Ly — L3, —MyMs + Ly, My — Lg)
<M1 — LQ, L2L3 — 1, L1M3 — M2>
(My — L3, LoL3 — 1, Ly My — Ms3)

and two for the irreducible characters:

<L3_17L2_17M1_1>
(L3 +1,Ly + 1, M; + 1)

The previous examples of As-ideals could have been computed by hand, using the
particular simple presentation of their fundamental groups and peripheral systems. As the
following examples show, the complexity of the peripheral .A-ideals grows quite rapidly.

B.2.4 Whitehead link

The eigenvalue variety had already been computed by Tillmann in [Til02]. We present
here the equations obtained using our algorithm.
The presentation and peripheral system obtained with SnapPy is:

’they are available at http: //hub.darcs.net/arbol/E-variety/Test/key3
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Generators:
a,b
Relators:
abAAAbbABaaaBB
[ ("AAb', ’"AAbaBBab’), ('Ba’, ’'BaBabAAAba’)]

and the component of irreducible characters is given by
——x?1§-+»x%x2x3-+-x?-+»2x11€ — Xox3 — 2271
This produces the following A5-ideal:
AV = (L, —1,L; — 1) x A"

where A™ is given by the four generators:
MZL M2 — MEM3ZLy + MZLiLo — L1 MZ2Ly — M+ M3 — Ly + Ly

MALy Lo+ Ly M2 Ly—2M2M2L3— Ly M2 — M? Lo+ 2M2 M2 Ly+2M? Ly L3 — 2L M2 L2+
L3MZ2 = 2M2Ly Ly + M2L2 — 2M2Ly + 2MZ Lo + M2 — M2 — 2Ly Ly + 2L + L, — L,

M M3 Ly — M} My Ly — My Ly + M? M3 Ly — M7 M3 4 My — Ly M3 Ly + M7 L3 — Ly M3 +
M2L,

M2MSLy — M2MELy — M$ + LyMELy + Ly Mg — M2MZ2Ly — MLy + LyMZL2 +
LiMZLy + M2Ly — M2Ly — L2

B.2.5 Linkl6al

The peripheral eigenvalue variety of this link had, to our knowledge, never been com-
puted. SnapPy provides the following presentation and peripheral system:

Generators:
a,b
Relators:
aBAABabbbaBAbaabABBBADb
[ ("bba’, ’'BAbaabABabba’), ('AB’, ’'ABABabABBRBAbaB’) ]
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In this example, we obtain two components in the character variety (besides the component
of reducible characters). One is given by

2, .2 2
]+ x5 + x5 — 17273 — 3

and the other, the geometric component, is the zero-set of the polynomial

2 2 3
T1XoT3 — T1T3 — T3 — T1X2 + T3

This produces four ideals for the peripheral eigenvalue variety; two of reducible char-
acters (linking number 2), and one for each other component. Although the first other
component is quite simple, the last one is considerably more complicated.

AG = (LM = 1, MLy — 1) x (=M + Ly, M = Ly) x (Ly = 1,1 — 1) x A’

where A, is generated by the seven following polynomials:
MEL\MZ — MEM3ZLy + MELyLy — LyM3ZLy — M? + M2 — Ly + Ly

— Ly MSI2— MAMZL3+2M2MALS + 2L MS Lo+ 2MAM2L2 — AM2MAL2 + ML L3+
2Ly MAL3 — 3MEMZLA — Ly M§ — MPMZ Ly + 2M2M{ Ly — 2Ly MAL2 + 2M2M2L3 +
BM2Ly LA —3L  M2LA+ L2ME — MALyLo— 2L MALy—2MAL2+6 M2 M2L2—2MAL2 —
OM2Li L3 + 2L M2L3 + 2MALy — 6M2M2Ly + L2M2Ly + AMSLy — 3M2L 12 +
2Ly MEL3— M2L3+ MZL3+ M2M3E — M3 +2M?Ly Ly — 4Ly M3 Lo+ 2M32 L3 — 3L, L3 +
3L4+ LiM2 + M?Ly — 2M2Lo + 2L, L2 — 213 + Ly Ly — L2

MOSL2Lo+2L  MSL2 — 3M2MALS — 2MS Ly Ly — AL MS Ly + 2M*L2L2 + 6M2MAL2 +
LAMALE — 3L MELS + 2L, MS + MSLy — 2MAL2Ly — 3M2MELy — 2L2MEL, —
AMAL L2 + 2L MAL2 + 3M2L2L3 + 6 M2M2L3 — 3L2M2L3 — L2M2 + AMAL Ly +
SLiMMLy + MPLE — AM2LALE — 12M2M2L2 + AL2M2L% + 3MAL2 — 6M2L, L3 +
6L M2L3 — L3M2 + M2L2Ly + 6M2M2Ly — 2L2M2Ly — 6M2Ly + 5M2L, L2 —
ALy MZL2 —2M2L3 +3MZL3 — M} + M3 +4M2Ly Ly + 2L, M3 Lo+ 6 M2 L2 — 3L2L2 —
12M2L3 + 3L L3 — 3M2Ly + LiM2 — AM2Ly + 4L2Ly + 6M2Ly + 2L, L% — 613 —
2L% — 3L, Ly + 5L3

MEMIL2— M2MSL3 — MEMy Ly + MEMS Lo —2M{EM2 L2+ 2M2MFL2+2M} M2 Ly —
SMEMF Lo+ MS Lo+ MEMY — MY+ Ly My Lo+ M}L3 —3MEMZLE+ My L+ Ly My —
MLy +3MEMZLy — 3M3Ly + LiM2L3 — MEL3 + LyM32Ly + M2L3 — 2M212
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— MOMZL2 + M2MSL2 + MSMZ Ly — M2MS Ly + MSLy L2 + 2L MS L2 — 3M2 M2 L3 +
MLy Lo — AL MSLy — 2MAM2L2 + 5M2MAL2 — 3L, MALS + 3M2M2LA + 2L, MS —
OMSLy + 3MAMZLy — 2M2M2Ly — MSLy + 3L MALE — 3M2MZL3 — 3MZL L3 +
3L MZLA — MPM2 — 2L3M} + MS + 2L, M3 Ly + 3MPL2 — 5MZMZL2 + 2MIL2 +
3M2LyL3 — 3L M2L3 — 3M*Ly + TM2M2Ly — 3L2M2Ly — AM2Ly + 3M2L, L3 —
2Ly M2L2 + 2M2L3 — 2M2MZ — L2M2 + 2M{ — 3M2Ly Ly + 6L, M2Ly — 2M2L2 +
3LyL3 — 3L4 — 2L M2 + 2M2 Ly — 3Ly L3 + 3L3 — 2M? + 2M2 — 2L, + 2L,

MM Ly — M{My Ly — MM Ly — MM — My MZ Ly — MMy Ly — MM + My —
LiMyLy — MPMZGL5 — Ly My + My Ly — M M3 Lo + My Ly — LiM3 L3 — Ly M3 Ly —
MZ2L2 = M2Ly + M2Ly + L2

MOMELy—2MO M2 Loy — MAME+ MO Ly —2MAM2 Lo — MM} Lo — MALE— M2MZL2—
LiMZL% — M2M2 + M} — 2L, M2Ly — LiM2 — M2Ly + 2M2Lo + L2
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