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Abstract

English

The A-polynomial of a knot in S3 is a two variable polynomial obtained by projecting
the SL2C-character variety of the knot-group to the character variety of its peripheral sub-
group. It distinguishes the unknot and detects some boundary slopes of essential surfaces
in knot exteriors.

The notion of A-polynomial has been generalized to 3-manifolds with non-connected
toric boundaries; ifM is a 3-manifold bounded by n tori, this produces an algebraic subset
E(M) of C2n called the eigenvalue variety of M . It has dimension at most n and still
detects systems of boundary slopes of surfaces in M .

The eigenvalue variety of M always contains a part Ered(M) arising from reducible
characters and with maximal dimension. If M is hyperbolic, E(M) contains another top-
dimensional component; for which 3-manifolds is this true remains an open question.

In this thesis, this matter is studied for two families of 3-manifolds with toric bound-
aries and, via two very different technics, we provide a positive answer for both cases.

On the one hand, we study Brunnian links in S3, links in the standard 3-sphere for
which any strict sublink is trivial. Using special properties of these links and stability
under certain Dehn fillings we prove that, if M is the exterior of a Brunnian link different
from the trivial link or the Hopf link, then E(M) admits a top-dimensional component
different from Ered(M). This is achieved generalizing the technic applied to knots in S3,
using Kronheimer-Mrowka theorem.

On the other hand, we consider a family of link-manifolds, exteriors of links in integer-
homology spheres. Link-manifolds are equipped with standard peripheral systems of
meridians and longitudes and are stable under splicing, gluing two link-manifolds along
respective boundary components, identifying the meridian of each side to the longitude of
the other. This yields a well-defined notion of torus decomposition and a link-manifold
is called a graph link-manifold if there exists such a decomposition for which each piece
is Seifert-fibred. Discarding trivial cases, we prove that all graph link-manifolds produce
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iv ABSTRACT

another top-dimensional component in their eigenvalue variety.
For this second proof, we propose a further generalization of the eigenvalue variety that

also takes into account internal tori and this is introduced in the broader context of abelian
trees of groups. A tree of group is called abelian if all its edge groups are commutative; in
that case, we define the eigenvalue variety of an abelian tree of groups, an algebraic variety
compatible with two natural operations on trees: merging and contraction. This enables to
study the eigenvalue variety of a link-manifold through the eigenvalue varieties of its torus
splittings. Combining general results on eigenvalue varieties of abelian trees of groups
with combinatorial descriptions of graph link-manifolds, we construct top-dimensional
components in their eigenvalue varieties.
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Français

Le A-polynôme d’un noeud dans S3 est un polynôme à deux variables obtenu en pro-
jetant la variété des SL2C-caractères de l’extérieur du noeud sur la variété de caractères du
groupe périphérique. Il distingue le noeud trivial et détecte certaines pentes aux bords de
surfaces essentielles des extérieurs de noeud.

La notion de A-polynôme a été généralisée aux 3-variétés à bord torique non connexe ;
une 3-variétéM bordée par n tores produit un sous-espace algebrique E(M) deC2n appelé
variété des valeurs propres deM . Sa dimension est inférieure ou égale à n et E(M) détecte
également des systèmes de pentes aux bords de surfaces essentielles dans M .

La variété des valeurs propres de M contient toujours un sous-ensemble Ered(M) pro-
duit par les caractères réductibles, et de dimension maximale. Si M est hyperbolique,
E(M) contient une autre composante de dimension maximale ; pour quelles autres 3-
variétes est-ce le cas reste une question ouverte.

Dans cette thèse, nous étudions cette question pour deux familles de 3-variétés à bords
toriques et, via deux techniques distinctes, apportons une réponse positive dans ces deux
cas.

Dans un premier temps, nous étudions les entrelacs Brunniens dans S3, entrelacs pour
lesquels tout sous-entrelacs strict est trivial. Certaines propriétés de ces entrelacs, et leur
stabilité par certains remplissages de Dehn nous permettent de prouver que, siM est l’exté-
rieur d’un entrelacs Brunnien non trivial et différent de l’entrelacs de Hopf, E(M) contient
une composante de dimension maximale différente de Ered(M). Ce résultat est obtenu en
généralisant la technique préalablement utilisée pour les noeuds dans S3 grâce au théorème
de Kronheimer-Mrowka.

D’autre part, nous considérons une famille de variétés-entrelacs, variétés obtenues
comme extérieurs d’entrelacs dans des sphères d’homologie entière. Les variétés-entrelacs
possèdent des systèmes périphériques standard de méridiens et longitudes et sont stables
par splicing, le recollement de deux variétés-entrelacs le long de tores périphériques en
identifiant le méridien de chaque coté avec la longitude opposée. Ceci induit une notion de
décomposition torique de variété-entrelacs et une telle variété est dite graphée si elle ad-
met une décomposition torique où toutes les pièces sont fibrées de Seifert. Nous montrons
que, mis-à-part les cas triviaux, toutes les variétés-entrelacs graphées produisent une autre
composante de dimension maximale dans leur variétés des valeurs propres.

Pour cette seconde preuve, nous présentons une nouvelle généralisation de la variété
des valeurs propres, qui prend également en compte les tores intérieurs, que nous intro-
duisons dans le contexte plus général des arbres abéliens de groupes. Un arbre de groupe
est appelé abélien si tous les groupes d’arête sont commutatifs ; dans ce cas, nous définis-
sions la variété des valeurs propres d’un arbre abélien de groupe, une variété algébrique
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compatible avec deux opérations naturelles sur les arbres : la fusion et la contraction. Ceci
permet d’étudier la variété des valeurs propres d’une variété-entrelacs à travers les variétés
des valeurs propres de ses décompositions toriques. En combinant des résultats généraux
sur les variétés des valeurs propres d’arbres abéliens de groupe et les descriptions combi-
natoires des variétés-entrelacs graphées, nous contruisons des composantes de dimension
maximale dans leur variétés des valeur propres.
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Català

L’A-polinomi d’un nus en S3 és un poliomi de dues variables obtingut projectant la
varietat de SL2C-caràcters de l’exterior del nus sobre la varietat de caràcters del grup peri-
fèric. Distingeix el nus trivial i detecta alguns pendents a la vora de superfícies essencials
dels exteriors de nus.

El concepte de A-polinomi va ser generalitzat a les 3-varietats amb vores tòriques no
connexes; una 3-varietat M amb n tors de vora produeix un sub-espai algebraic E(M) de
C2n anomenat varietat de valors propis de M . Té dimensió maximal n i E(M) també
detecta sistemes de pendents a les vores de superfícies essencials en M .

La varietat de valors propis de M sempre conté una part Ered(M), de dimensió ma-
ximal, produïda pels caràcters reductibles. Si M és hiperbòlica, E(M) conté una altra
component de dimensió maximal; saber quines altres 3-varietats compleixen això encara
és una pregunta oberta.

En aquesta tesi, estudiem aquest assumpte per dues famílies de 3-varietats amb vores
tòriques i, amb dues tècniques diferents, aportem una resposta positiva en ambdós casos.

Primerament, estudiem els enllaços Brunnians en S3, enllaços per els quals tot sub-
enllaç estricte és trivial. Algunes propietats d’aquests enllaços i llur estabilitat sota alguns
ompliments de Dehn permet mostrar que, si M és l’exterior d’un enllaç Brunnià no trivial
i diferent de l’enllaç de Hopf, E(M) conté una component de dimensió maximal diferent
de Ered(M). Aquest resultat s’obté generalitzant la tècnica prèviament utilitzada per els
nusos en S3 fent servir el teorema de Kronheimer-Mrowka.

Per altre banda, considerem una família de varietats-enllaç, varietats obtingudes com
exteriors d’enllaços en esferes d’homologia entera. Les varietats-enllaç tenen sistemes
perifèrics estàndards de meridans i longituds i són estables per splicing, l’enganxament de
dues varietats-enllaç al llarg de tors perifèrics, identificant el meridià de cada costat amb la
longitud oposada. El splicing indueix una noció de descomposició tòrica per les varietats-
enllaç i anomenem grafejades les varietats-enllaç que admeten una descomposició tòrica
per la qual totes les peces són fibrades de Seifert. Mostrem que, excloent els casos trivials,
totes les varietats-enllaç grafejades produeixen una altre component de dimensió maximal
en les seves varietats de valors propis.

Per aquesta segona demostració, presentem una nova generalització de la varietat de
valors propis, que també té en compte tors interns, i que presentem en el context més ge-
neral d’arbres abelians de grups. Un arbre de grup és abelià quan tots els grups de arestes
són commutatius; en aquest cas, definim la varietat de valors propis d’un arbre abelià de
grup, una varietat algebraica compatible amb dues operacions naturales sobre els arbres: la
fusió i la contracció. Això permet estudiar la varietat de valors propis d’una varietat-enllaç
mitjançant les varietats de valors propis de les seves descomposicions tòriques. Combinant



viii ABSTRACT

resultats generals sobre varietats de valors propis d’arbres abelians de grup i les descrip-
cions combinatòries de les varietats-enllaç grafejades, construïm components de dimensió
maximal en les seves varietats de valors propis.
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Introduction

Overview

The A-polynomial of a knot in S3 is a two variable polynomial constructed projecting
the SL2C-character variety of the knot-group to the character variety of its peripheral sub-
group. It was first introduced by Daryl Cooper, Marc Culler, Henri Gillet, Darren Long
and Peter Shalen in [CCG+94], where it is also proved that the A-polynomial of any knot
contains the A-polynomial of the unknot as a factor. The A-polynomial of a knot is said
to be non-trivial if it contains other factors and Cooper, Culler, Gillet, Long and Shalen
also proved in the same [CCG+94] that hyperbolic knots and non-trivial torus knots al-
ways have a non-trivial A-polynomial. This was later proved to be true for all non-trivial
knots by Nathan Dunfield and Stavros Garoufalidis in [DG04], and independently by Steve
Boyer and Xingru Zhang in [BZ05]; both proofs use a theorem by Peter Kronheimer and
Tomasz Mrowka in [KM04] on Dehn-fillings and representations in SU2.

A remarkable application of the A-polynomial is its hability to detect Culler-Shalen
slopes on the boundary of the knot exterior. In [CS83] Marc Culler and Peter Shalen
had developped a technic to obtain splittings of groups from ideal points of their SL2C
character varieties which, when applied to 3-manifolds, also produces essential surfaces.
In case of a knot exterior, those surfaces intersect the boundary along a finite set of slopes
– Culler-Shalen slopes – and Cooper et al. proved in [CCG+94] that slopes of the Newton
polygon of the A-polynomial of the knot are Culler-Shalen slopes of its exterior.

The notion of A-polynomial can be generalized to 3-manifolds with connected toric
boundary by specifying a peripheral system (a base of π1∂M ↪→ π1M ). Stimulated by the
work of Alan Lash1 in [Las93], it was then extended2 to manifolds with non-connected
boundaries by Stephan Tillmann3. In his PhD thesis [Til02] and the subsequent article
[Til05], Tillmann presents the eigenvalue variety E(M) associated to a 3-manifoldM with

1who I deeply thank for giving me access to his PhD manuscript
2I’d like to thank Steve Boyer for this information
3who I’d also like to thank for the insight he provided me on this topic when we met

xiii



xiv INTRODUCTION

toric boundary. If M has k boundary tori, the associated eigenvalue variety E(M) is an
algebraic subspace of C2k essentially corresponding to the peripheral eigenvalues taken by
representations (or equivalently, characters) of π1M in SL2C, and a similar construction
can also be made using PSL2C characters.

Under these assumptions, Tillmann showed in [Til02] that the possible dimension for
components of E(M) is at most k; any component of the character variety of M produc-
ing a k-dimensional component in the eigenvalue variety will be called here peripherally
maximal. In the same way as any A-polynomial is divisible by the A-polynomial of the
unknot, any eigenvalue variety E(M) contains a component Ered(M) corresponding to re-
ducible characters. A component in the character variety of M will be called peripherally
abelian if the corresponding subset in E(M) is contained in Ered(M); otherwise we call it
peripherally non-abelian. The component of reducible characters is peripherally maximal
and we shall search for peripherally maximal and non-abelian components. If M is hy-
perbolic, its character variety contains a distinguished component X0 called the geometric
component, containing the character of a discrete faithful representation. Using William
Thurston’s results of [Thu02], Tillmann proved that the geometric component is periph-
erally maximal and non-abelian, generalizing the result of [CCG+94]on hyperbolic knots.
However, which 3-manifolds produce a peripherally maximal and non-abelian component,
or merely whether non-trivial links in S3 do, remain open questions.

In this thesis, we answer this matter for two specific cases. These two results are
mutually independant and obtained using very different technics.

First, we consider Brunnian links in S3, links for which any strict sublink is trivial.
Using results of Brian Mangum and Theodore Stanford from [MS01], we push further the
technic used for knots by Boyer-Zhang and Dunfield-Garoufalidis and obtain the following
Theorem 1 on the SL2C-character variety of exteriors of Brunnian links:

Theorem 1. Let L be a Brunnian link in S3 and let M denote its exterior, then XSL2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

Then, we escape the standard 3-sphere to consider links in integer-homology spheres;
if M is an integer-homology sphere and L is a link in M , the exterior of L in M is called
a link-manifold4 and denoted by ML. Moreover, it is called a graph link-manifold if it can
be split along essential tori such that each piece of the splitting is Seifert-fibred. Study-
ing thoroughly the PSL2C-character varieties of Seifert-fibred manifolds and the merging
equations associated to the splitting we prove Theorem 2:

4the term link-manifold is sometimes used for any 3-manifolds with toric boundary; here it will only be
used for exteriors of links in integer-homology sphere.
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Theorem 2. For any non-abelian graph link-manifold ML with boundary, there exist a
peripherally maximal and non-abelian component in XPSL2C(ML).

For this second result we need a further generalization of Tillmann’s eigenvalue variety
which also takes into account internal tori. This new construction is not proper to link-
manifolds and is presented in the context of abelian trees of groups. We consider graph
of groups as in Jean-Pierre Serre’s [SB77]5 with a slight modification: trees here contain
arrows, like edges but connected to a unique vertex with the other end being free; this
enables to define tree-merging by gluing two trees along chosen arrows on each side and
this pairing is compatible with Serre’s contraction of trees, with the suitable modifications
to include arrows.

The SL2C or PSL2C character varieties of abelian groups are essentially determined
by the eigenvalues of the generators. Considering a tree of groups (G, π), with all the arrow
and edge groups abelian – an abelian tree of group – we define an algebraic space EG(π)
by projecting the character variety of the group π on the different character varieties of the
edge and arrow groups and then pulling back at the eigenvalue level in some C∗N . This
spaceEG(π) is the eigenvalue-variety associated to the abelian tree of group G; its defining
ideal in C[Y ±1

1 . . . Y ±1
N ] will be denoted by AG(π) and called the A-ideal associated to G.

An interesting feature of this new construction is its compatibility with two natural
operations on tree of groups mentioned above: merging and contraction. This compati-
bility permits to study an eigenvalue-variety through the eigenvalue-varieties associated to
contraction or subtrees of the original tree. So far, G is not necessarily a torus splitting of
a link-manifold; however, even in this wider context, we can apply part of Culler-Shalen
construction of [CS83] to derive splittings of π from ideal points of EG(π), as well as a
criterion to identify wich elements in the edge or arrow groups are in a vertex group of the
new Culler-Shalen splitting.

This construction naturally applies to link-manifolds decomposed along tori; the edge
groups correspond to splitting tori, the arrow groups are the peripheral subgroups, and the
vertex groups are given by the pieces of the toric decomposition. In particular, considering
a trivial decomposition, the corresponding tree has a single vertex and arrows correspond-
ing to the peripheral tori, and we get back Tillmann’s eigenvalue-variety as presented
earlier. Even if this whole construction is not fully used for the Brunnian links case, we
present a unified definition for all the eigenvalue-varieties that we will consider here. It
is only for the case of graph link-manifolds that EG-varieties for non-trivial splittings will
really prove themselves useful.

After this brief overview, and before entering the main matter, we follow with a more
detailed description of the content of each chapter.

5See [Ser03] for an english version.
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Trees, characters and links
The first chapter of this thesis is a presentation of all the main concepts and notations

we will need in order to properly introduce the EG-variety. As a central piece of the
definition, we start with tree of groups, setting notations we will use hereafter. As already
mentioned, our trees have arrows, and we present the small modifications produced by this
extension. We can split a tree of groups along an edge, which becomes two arrows in the
two trees obtained after splitting. Symmetrically, given two trees and chosing two arrows
with isomorphic groups, we can also merge the trees along the respective arrows to obtain
a new, well-defined, tree of groups. In both cases we will write

G = G+ a+

1a−

e
G−

when G+ and G− are obtained splitting G along e, and when G is obtained by merging
G+ and G− along a+ and a−. The second natural operation that we will consider on our
trees is the contraction of a tree, and the binding6 decomposition they produce. With the
suitable modifications to include arrows, this is quite similar to the contraction of trees as
defined by Serre in [SB77].

Let G be a tree of groups, E0 a subset of edges of G, and Γ the collection of connected
trees obtained by splitting G along the edges of E0; we will write

G = (G/Γ
�= Γ)

where G/Γ
is obtained by contracting each Γ onto a single vertex, keeping all the arrows

of Γ ∩ G – so the tree G and its contraction G/Γ
have the same arrow-set. The edge set of

G/Γ
is E/Γ

∼= E0 and the family Γ is indexed by the vertex set V/Γ
of G/Γ

. With a similar
symmetry to splitting/merging presented above, G is also thought as reconstructed from
G/Γ

by expanding each vertex of G/Γ
as the corresponding tree in the collection Γ, and we

say that G is obtained by binding the family Γ over the tree G/Γ
.

We then recall the definition of the character variety of a group; using the contravariant
properties of the character variety, a splitting of a group over a tree produces various
algebraic maps between character varieties. This is all introduced in the second part of
Chapter 1, together with important concepts and notations for studying character varieties
of groups split over a tree.

Finally, we close our first chapter with a quick review on link-manifolds. With [EN85]
as a reference for this matter, we recall how standard peripheral systems are obtained
and how two link-manifolds can be spliced along respective boundary components. This

6the term binding as well as the operator (�=) are borrowed from monad theory and functional pro-
gramming lexicon. See for example [Mar10] for more details.
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produces a well-defined notion of torus splitting, creating splitting trees for the underlying
fundamental group. In particular, the splicing of two link-manifolds is compatible with
the merging of trees as defined earlier, so a torus splitting of a spliced link-manifold is the
merging of the corresonding trees.

E-varieties
The second chapter presents the construction of theEG-variety associated to an abelian

tree of groups. The SL2C or PSL2C character variety of an abelian group H with h
generators has a natural affine structure in C∗h denoted by E(H). Given an abelian tree of
groups (G, π), the projection ofX(π) on all the edge and arrow groups of G defines theEG-
variety of π, EG(π). This algebraic space is defined by an ideal in some C[Y ±1

1 , . . . , Y ±1
N ],

that we call theA-ideal of the abelian tree G, and denote byAG(π). The results concerning
the naturality over splitting/merging and contraction/binding naturally follow from the
underlying structures. First, we show that, for an abelian tree of groups (G, π), if G can be
split as

G = G+ a+

1a−

e
G−

then there’s a natural map

EG(π)→ EG+(π+) ×
E(πe)

EG−(π−)

and we give a sufficient criterion for belonging to the image. Iterating this result enables
to examine the behaviour of the EG-variety under contraction and binding. This is the
purpose of Theorem 3:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G/Γ
�= Γ)

of the tree G produces two regular maps as in the following diagram

EG(π) �
� iΓ //

p

����

∏
v∈V/Γ

EΓv(πv)

EG/Γ (π)

(1)

such that, for any edge v′ e v of E/Γ
in G/Γ

, if e is sent to a′1a

e
in G for some arrows a′

and a in Γv′ and Γv respectively, then

(ξv′)a′ = (ξv)a (2)
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Moreover, for any (ξv)v∈V/Γ in
∏

v∈V/Γ
EΓv(πv), if for every edge v′

e
v of G/Γ

, equation
(2) is satisfied and not all coordinates of (ξv)a are ±1 (1 in PSL2C) then (ξv)v∈V/Γ lies in
the image of iΓ.

This key-result illustrates how we can globally study EG/Γ (π) by using a finer decom-
position G, while EG(π) itself might be obtained merging the EΓv -varieties of the different
pieces.

Before focusing on link-manifolds, we present how the EG-variety relates to Culler-
Shalen construction, in a quite similar way as the A-polynomial or Tillmann’s eigenvalue-
variety do. The first part of Culler-Shalen construction produces a splitting tree for a group
π derived from an ideal point of the character variety X(π). Then, as Tillmann did for his
eigenvalue-varieties, we can use the logarithmic-limit set of EG(π) to capture its ideal
points and lift them into X(π). Moreover, we also get a characterization that determines
which edge/arrow elements of the original splitting G become vertex elements in the new
Culler-Shalen splitting.

More precisely, ifEG(π) is an algebraic subset ofC∗N , its logarithmic-limit setEG(π)∞
is a finite union of rational convex spherical polytopes in SN−1 ⊂ RN . For each edge or
arrow e of G, we can fix a basis Be of the edge or arrow groupHe. Each µ of Be determines
coordinates mµ in EG(π), uµ in EG(π)∞ and mµ in C[EG(π)], enabling the definition of a
pairing:

(·) : He × EG(π)∞ → R
((hµ)µ, (uµ)µ,e) →

∑
µ∈Be hµuµ

Then we obtain the following Theorem 4, a generalization of Tillmann’s Lemma 11 of
[Til05] to the broader context of abelian trees of groups:

Theorem 4. For any rational point ξ∞ of EG(π)∞, there exist a splitting of π such that,
for any edge or arrow e, and any h in He,

h is in a vertex group ⇐⇒ h · ξ∞ = 0

When applied to torus splittings of link-manifolds, Culler-Shalen construction will
produce essential surfaces, and this new criterion will precisely track down how these
surfaces cross or interesect the edge or arrow tori. This is detailed in the rest of this
chapter where we refine these general considerations in the specific case of link-manifolds
and torus splittings. In that case, the edge and arrow groups He are all isomorphic to Z2

and the spaces E(He) will be denoted by E(Te) where Te is the corresponding torus.
First, a special attention is dedicated to the peripheral E-variety, obtained considering

a trivial tree with a single vertex and only arrows; as already pointed out, it is equivalent to
Tillmann’s eigenvalue-variety of [Til05], but the peripheral E-variety of a link-manifold
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ML will be denoted here as E∂(ML). We restate some previously known results, re-
proving the most relevant ones within our new context. This includes the computation of
the component corresponding to reducible characters – given by the first homology, hence
the linking numbers – or the study of the peripheral E-varieties of a link-manifold before
and after 1/q-Dehn surgery. As Tillmann showed, there is a dimensional upper bound for
the components E of E∂(ML) given by the number of components of the link:

dim E ≤ |L|

and this dimension is attained for the components of reducible characters and for the
geometric component of hyperbolic link-manifolds. We re-expose this result here and
also give a new interpretation of strongly geometric cusp isolation in terms of peripheral
eigenvalue-variety. Following Walter Neumann and Alan Reid in [NR93], if L+ t L− is
a partition of cusps of a hyperbolic 3-manifold, L+ is said to be strongly geometrically
isolated from L− if, after performing any integral Dehn-fillings replacing the cusps of L+

by geodesics (γK+)K+⊂L+ , any deformation on the cusps of L− leaves the geometry of
the γK+ invariant. We prove that this can be read in the part of the peripheral eigenvalue-
variety corresponding to the geometric component X0 of the character variety:

Theorem 5. Let ML be a hyperbolic link-manifold and L+ t L− a partition of L.
Then L+ is strongly geometrically isolated from L− if and only if E∂(X0) splits as a

product E+ × E− with E+ in
∏

K⊂L+ E(TK) and E− in
∏

K⊂L− E(TK).

Besides hyperbolic link-manifolds, we would expect the E∂-variety of generic link-
manifolds to admit a component of non-abelian characters whith the maximal dimension,
which raises Question 1:

Question 1. For which link-manifolds ML does X(ML) admit peripherally maximal and
non-abelian components?

We will try to address this problem using EG-varieties associated to torus splittings. In
particular, given a torus splitting of ML over a tree G, a double application of Theorem 3
produces Proposition 3 which relates the EG-variety of ML to E∂(ML) and the peripheral
E-varieties of the vertex link-manifolds.

The peripheral E-variety corresponds to the trivial splitting of a group, with one ver-
tex and only arrows. In the last section of Chapter 2 we study the EG-varieties for non-
trivial torus splittings of link-manifolds. We present the direct corollary of Theorem 3
for toric splittings of link-manifolds in the form of Corollary 3; finally, we briefly study
the case of the EGJ -variety, associated to the JSJ-dual graph of a link-manifold. The
JSJ-decomposition can be thought as a maximal toric decomposition of the underlying
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link-manifold, and we explain how the EGJ may also be considered as the maximal EG-
variety that may be constructed for ML.

The next two chapters aim at answering Question 1 for two specific cases; first, in
Chapter 3, we study Brunnian links in S3, links for wich all strict sublinks are trivial. Then,
Chapter 4 focuses on graph link-manifolds, with the property that all the JSJ-pieces are
Seifert-fibred. Those chapters both make use of Chapters 1 and 2 but are mutually inde-
pendant. As a matter of fact, if general results on the EG-varieties are used in Chapter 4,
we adopt a much more classical point of view in Chapter 3.

Eigenvalue-variety of Brunnian links

If L is a Brunnian link in S3, we can perform 1/q surgery on any component to produce
a new link in S3. Using finer results of Mangum-Stanford from [MS01], we can precise this
stability under Dehn-fillings. Indeed, a corollary of Mangum-Stanford work implies that
a non-trivial 1/q-Dehn-filling on a non-trivial Brunnian link always produces a non-trivial
Brunnian link. This enables us to apply Kronheimer-Mrowka Theorem of [KM04] and
construct irreducible representations associated to a suitable infinite family of integers,
indexed by the components of the link. If L has 3 components or more, all the linking
numbers are 0 and a special attention has to be drawn on Brunnian links with 2 components
and nonzero linking number, for which the computation is a little harder, and the result
slightly weaker.

After examining both cases, we finally obtain our first result on theE∂-variety of Brun-
nian links in S3:

Theorem 1. Let L be a Brunnian link in S3 and let M denote its exterior, then XSL2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

This completely answers Question 1 for Brunnian links. However, we do not use
here EG-varieties for non-trivial splittings G but only the peripheral E-variety. Remarking
that splicing Brunnian links maintains the Brunnian property, we succintly explain how to
describeE-varieties of links obtained via Brunnian trees. Nonetheless, we do not carry out
these considerations any further here, as we will apply the same ideas in the next chapter
but in a quite different context.
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EG-varieties of graph link-manifolds
In the final chapter, we focus on graph link-manifolds, exterior of links obtained by it-

erated splicing with Seifert-fibred link-manifolds. The combinatorial description of Seifert
fibrings, such as Allen Hatcher’s of [Hat10], produces presentations of the fundamental
groups of Seifert-fibred manifolds. We will describe graph link-manifolds using splice
diagrams as in [EN85]; these are trees with arrows and a new type of edges, ended by
nodes ( ), representing singular fibres of the fibring. All the edges and arrows are labeled
with integers representing orders in the corresponding underlying fibrings. An example of
splice diagram is presented in Figure 1.

Splice diagrams enable a quite precise description of the E∂-variety of the link exte-
rior. The labels of the splice diagram determine the linking numbers, which permits to
fully describe the component of reducible characters with the standard arguments. In or-
der to address Question 1 for this case, we want to construct components of irreducible
characters.

First, we study Seifert-fibred link-manifolds. In this case, the splice diagram of ML

has one vertex, arrows indexed by L, and nodes indexed by the singular fibres C of the
fibring. We obtain the following result for PSL2C-characters:

Theorem 6. The group π1ML admits irreducible representations in PSL2C if and only if

|L|+ |C| ≥ 3

and, in that case, the peripheral A-ideal corresponding to irreducible characters is

Airr(ML) = 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 (3)

where αK̂ and αK are coefficients computed from the labels of the splice diagram. We also
present a similar result for SL2C, which gives a full answer to Question 1 for Seifert-fibred
manifolds, both for character varieties in SL2C and PSL2C.

The rest of this chapter is dedicated to graph manifolds constructed over non-trivial
trees. However, the combinatorics involved increases quite rapidly, making it difficult to
express precise statements in this introduction. We use Theorem 3 on the splice diagram
and different contractions depending on our interests. Without entering into details, this
enables us to obtain our final result for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold ML with boundary, there exist a
peripherally maximal and non-abelian component in XPSL2C(ML).

Finally, we briefly outline how one could use the very same technics introduced here, to
completely describe all the components of all theEG-varieties of a graph link-manifoldML;
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although it would not determine the character variety, such a description would provide
extensive information on all the Culler-Shalen splittings of ML. The high complexity
makes a precise description of all cases hardly manageable; we succintly explain, how,
with enough scrutiny, one could study all the possible EΓ(π) for subtrees of the splice
diagram, and then use Theorem 3 to determine all the possible components of the different
EG-varieties.

After this brief presentation, we will now start with Chapter 1 and few recalls on link-
manifolds, character varieties, and trees.
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Chapter 1

Trees, characters and links

This introductive chapter aims at presenting some few classic objects and results that
will be used later; first, we start recalling few properties of amalgamated products and
splitting trees as in Serre’s [Ser03]. The only new feature here is the addition of arrows,
enabling to split and merge trees .

Next, we briefly present some notions of Algebraic Invariant Theory and we recall the
notions of representation and character variety of finitely generated groups. Then, we
describe how splittings of groups reflect on the character varieties and we give a quick
summary of Culler-Shalen theory, using the SL2C character variety of 3-manifolds to pro-
duce essential surfaces.

Although the E-varieties that we will define in Chapter 2 could be constructed for
generic 3-manifolds, we will restrict to exteriors of links in integer homology spheres.
Hence, we follow with some results on knot and link manifolds, using [EN85] as a refer-
ence for this matter and finally close Section 1.3 with few considerations on torus splittings
and JSJ decomposition of link manifolds.

1.1 Trees, arrows and splittings

In this section we recall the notions of pullback and pushouts in categories. Iterating
pushouts yields amalgamating trees as in Serre’s [Ser03]. We recall few aspects of this
theory here, more precisely trees of groups and splitting trees. Besides few changes in
notation, the only difference with [Ser03] is the presence of arrows in the trees, like edges
attached to only one vertex.

1
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1.1.1 Pushout, pullback
This section simply recalls the concepts of pullback and pushout in category theory.

Even if we will mainly use these to take amalgamated products of groups and fibre prod-
ucts of algebraic varieties, we recall these notions in their broader aspects.

Let C be a category.

Definition 1.1.1 ((Co)Span). A (co)span in C is a pair of morphisms with same (co)domain.
A span will be denoted by

π+ C
ϕ+
oo

ϕ−
// π−

and a cospan by

Y + j+
// Z Y −

j−
oo .

The pushout of a span is the co-limit of the corresponding diagram:

Definition 1.1.2 (Pushout of a span). The pushout of a span π+ C
ϕ+
oo

ϕ−
// π− is a

cospan π+ i+
// π? π−

i−
oo satisfying the universal property corresponding to following

commutative diagram:
C

ϕ+

}}

ϕ−

!!

π+

i+ !!

##

π−

i−}}

{{

π?

��

G

so i+ ◦ ϕ+ = i− ◦ ϕ− and for any cospan π+ f+
// G π−

f−
oo , if

f+ ◦ ϕ+ = f− ◦ ϕ−

then there exist a unique morphism

f : π? → G

such that
f ◦ i± = f±
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Lemma 1.1.1. If the pushout π+ i+
// π? π−

i−
oo exists, the object π? is unique and will

be denoted by
π? = π+ ϕ+1ϕ−

C
π−

Example 1.1.1. The category Grp of groups with group morphisms admits pushouts, the
amalgamated product. If each π± has a presentation, π± = 〈G± | R±〉, π? has a presen-
tation:

π? = 〈G+ tG−|R+ tR− t ϕ+(δ)ϕ−(δ)−1, δ ∈ C〉
In that case, the pushout will be denoted by π+ ϕ+∗ϕ−

C
π− or π+ ∗C π− if the morphisms

can be inferred.

Example 1.1.2. The category of commutative rings with ring maps admits pushouts given

by the tensor product and the quotient. For a ring span A+ N
ϕ+
oo

ϕ−
// A− , we have

A+ 1
N
A− = A+ ⊗

N
A−

= A+ ⊗ A−/K

where K is the ideal of A+ ⊗ A−/K defined by

K = 〈ϕ+(x)a+ ⊗ a− − a+ ⊗ ϕ−(x)a−, x ∈ N, a± ∈ A±〉

Symmetrically, a cospan can admit a universal span called the pullback:

Definition 1.1.3 (Pullback of a cospan). The pullback of a cospan Y + j+
// Z Y −

j−
oo is

a span Y + Y ?p+
oo

p−
// Y − satisfying the universal property described in the following

commutative diagram:
V



 ��

��

Y ?

p+

}}

p−

!!

Y +

j+
!!

Y −

j−
}}

Z

so j+ ◦ p+ = j− ◦ p− and for any span Y + V
f+
oo

f−
// Y − , if

j+ ◦ f+ = j− ◦ f−
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then there exist a unique
f : V → Y ?

such that
p± ◦ f = f±

Lemma 1.1.2. If the pullback Y + Y ?p+
oo

p−
// Y − exists, the object Y ? is unique and

will be denoted by
Y ? = Y + j+×j−

Z
Y −

or Y + ×
Z
Y − if the morphisms can be inferred.

Example 1.1.3. The category of algebraic affine spaces admits pullbacks where, for a

cospan Y + j+
// Z Y −

j−
oo of regular maps,

Y + ×
Z
Y − = {(y+, y−) ∈ Y + × Y − | j+(y+) = j−(y−)}

In this case the pullback is also called fibred product.

Iterating these constructions will produce trees; we recall few definitions following
Serre’s [Ser03] with an additional feature, arrows, to facilitate more explicit surgery on
trees.

1.1.2 Trees with arrows
As usual, a tree is a connected, simply-connected graph. We’ll denote by G(V,E) a tree

G with vertex set V and edge set E . An edge e of E between vertices v′ and v of V will be
denoted by v′

e
v .

Definition 1.1.4 (Tree with arrows). A tree with arrows is a tree G(V,E) and a set
−→
E called

arrows with an attaching map
−→
E → V . An arrow a attached to the vertex v will be denoted

by v a // .
We denote by E the union of edges and arrows E t

−→
E and G(V,E) the tree G with the

additional arrows.

Remark 1.1.4. A tree in the sense of Serre is a tree with arrows and empty arrow set.

From now on, all trees have a (possibly empty) arrow set.
Arrows on trees enable to split/merge trees by identifying edges with pairs of arrows

as in the following definition.
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Definition 1.1.5. Let G+

(V+,E+)
and G−

(V−,E−)
be two trees with arrows and let v+ a+

// and

v− a− // be two arrows of
−→
E + and

−→
E − respectively; we denote by

G+ a+

1a−

e
G−

the tree G obtained by merging a+ and a− into and edge e defined as follows:

• the vertex set is V+ t V−

• the edge set is E+ t E− t { v+ e
v− }

• the arrow set is (
−→
E + \ {a+}) t (

−→
E − \ {a−})

We say that (G+,G−) is obtained by splitting G at e. This pairing is compatible with
the contraction of trees of Serre, with the suitable modifications to include arrows.

Definition 1.1.6 (Contraction of a tree with arrows). Let G(V,E) be a tree with arrows. Let
E0 be a subset of E and Γ = (Γi)i∈I the collection of trees obtained by splitting G on the
edges of E0.

The contraction of G along Γ is the tree G/Γ
obtained by retracting each Γi in G into a

single vertex. The vertex set V/Γ
of G/Γ

is in bijection with I so the collection Γ will be
denoted by (Γv)v∈V/Γ . Similarly, the edge set E/Γ

of G/Γ
is in bijection with E0.

Each edge v′
e
v of E/Γ

comes from an edge in G and corresponds to two arrows in
Γv′ and Γv, attached to the vertices according to their configurations in G. All the other
arrows of each Γv are attached to the corresponding vertex v of V/Γ

in G/Γ
.

Remark 1.1.5. A tree G and any of its contraction always have the same arrow-set.

If G is a tree and G/Γ
is a contraction of G, we can think of G as being obtained from

G/Γ
by expanding each vertex v of V/Γ

into the tree Γv. Given a tree G ′, one may assign
a tree Γv to each vertex of v, with a pair of distinguished , to construct a tree G such that
G ′ = G/Γ

.

Definition 1.1.7 (Binding decomposition). We will write

G = (G ′ �= Γ)
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when G ′ = G/Γ
is the contraction of G along the collection Γ and this will be called a

binding decomposition 1 of G.

The contraction as defined in Definition 1.1.6 is compatible with the merging defined
in Definition 1.1.5.

Let G+ = (G+
/Γ+
�= Γ+) and G− = (G−/Γ−

�= Γ−) be two trees and let v+ a+
// and

v− a− // be two arrows of G+ and G− respectively. Let G be the tree G+ a+
1a−

e
G− as in

Definition 1.1.5.
The vertices v+ and v− belong to trees Γu+ and Γu− in the respective collections Γ+

and Γ−; the tree Γu+
a+

1a−

e
Γu− is a subtree of G and the family

Γ = (Γ+ \ Γu+) t (Γ+ \ Γu+) t (Γu+
a+

1a−

e
Γu−)

is a partition in subtrees of G.

Lemma 1.1.3. With these notations, we have:

G/Γ
= G+

/Γ+

a+

1a−

e
G−/Γ−

We close this section presenting two natural binding decompositions that exist for ev-
ery trees.

First, any tree G decomposes as

G = (∗ �= G)

where ∗ is the tree G/G with a single vertex and all the arrows of G. This decomposition
contracts all the tree onto a single vertex.

Definition 1.1.8. The binding decomposition (∗ �= G) of a tree G is called the trivial
binding decomposition.

On the other hand, let
−→
V = {−→v , v ∈ V} be the collection of vertices of G with arrows

attached for each adjacent edge or arrow in G. We have the binding decompostion

G = (G �=
−→
V )

which is essentially identical to G.
1 In an informal type theory (see [Uni13]), if Treea denotes the type of trees with vertices of type a, the

tree G has type TreeV , the tree G/Γ
has type TreeV/Γ

and the collection Γ is a map V/Γ
→ TreeV . This

is similar to the binding operator for a monad m in functional programming languages (see [Mar10] for
example):

(_�= _) : m a→ (a→ m b)→ m b

and we chose to use the same name and notation here.



1.1. TREES, ARROWS AND SPLITTINGS 7

Definition 1.1.9. The binding decomposition (G �=
−→
V ) of a tree G is called the identical

binding decomposition.

1.1.3 Trees of groups
In this section, we present the notion of tree of groups as in Serre’s [Ser03], slightly

modified to include tree with arrows, and using the notations that we have introduced so
far.

Any tree G(V,E) defines a category CG with objects V t E t
−→
E and the following mor-

phisms:

• for each arrow v
a // a morphism a→ v

• for each edge v′ e v a span v′ eoo // v .

Definition 1.1.10 (Tree of groups). A tree of groups is a tree G and a functor π from CG to
the category (Grp, ↪→) of groups with monomorphisms.

In other words, the tree G(V,E) is equipped with groups πv, Ce, and Ca for each vertex
v, each edge e and each arrow a, respectively, and with injective morphisms:

• ϕev′ : Ce → πv′ and ϕev : Ce → πv for each edge v′
e
v

• ϕa : Ca → πv for each arrow v a // .

Let (G, π) be a tree of groups, we want to form the group obtained amalgamating all the
groups πv along the edge groups Ce. As in [Ser03], this is the direct limit in the category
(Grp, ↪→):

Definition 1.1.11. The fundamental group of a tree of groups (G, π) is the group

πG = lim−→
Ce

πv

In other words, there exist injective morphisms iv : πv → πG for each vertex v of G
satisfying

iv′ ◦ ϕev′ = iv ◦ ϕev

for any edge v′
e
v and such that, for any group H and any collection of morphisms

fv : πv → H , if fv′ ◦ ϕev′ = fv ◦ ϕev for each edge v′
e
v of G, then there exist a unique

f : πG → H such that fv = f ◦ iv for each vertex v of G.
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Remark 1.1.6. For each arrow a of G, the group Ca injects in πG by composition of ϕa and
iv.

By naturality of the construction, tree of groups covariantly transport the merging op-
erator into amalgamated products:

Lemma 1.1.4. For any tree of group (G, π), if G splits as G+ a+
1a−

e
G−, then

πG = πG+ ∗Ce πG−

Corollary 1.1.5. Let (G, π) be a tree of groups. For any connected subtree G ′ of G, the
pair (G ′, π|G′ ) is a tree of group and the fundamental group of G ′ injects in the fundamental
group of G.

Finally, we present how tree of groups transport binding decompostion.

Lemma 1.1.6. Let (G, π) be a tree of groups with a binding decomposition

G = (G/Γ
�= Γ)

The functor π induces by restriction a tree of group on each Γv for v in V/Γ
. It also defines

a tree of group structure on G/Γ
defining, for any v in V/Γ

,

πv = πΓv

By Lemma 1.1.4 and Lemma 1.1.6, the family of edge and arrow groups is preserved
by merging and binding. Therefore, any predicate on the edge and arrow groups will be
preserved by those operations.

Definition 1.1.12 (Abelian tree of groups). A tree of groups is called abelian if all the
edge and arrow groups are abelian.

Remark 1.1.7. Similarly, we could define cyclic tree of groups, free tree of groups, free
abelian tree of groups, etc. . . when all the edge and arrow groups are cyclic, free, free
abelian, etc. . .

1.1.4 Splitting trees
Given a fixed group π?, we consider the differents tree of goups with fundamental

group π?.

Definition 1.1.13. Let π? be a group. A splitting tree for π? is a tree of groups (G, π)
whose fundamental group is isomorphic to π?.
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As one could expect, most results on trees of groups have their counterpart for splitting
trees. Using Lemma 1.1.4 and Lemma 1.1.6, the notion of splitting tree is natural for the
inclusion and bindings:

Proposition 1.1.7. Let π+ C
ϕ+
oo

ϕ−
// π− be a span and and let (G+, π) and (G−, π)

be two respective splittings of π+ and π−. If there exist two arrows a± of G± such that
πa± = C and ϕa± = ϕ± then

G? = G+ a+

1a− G−

is a splitting tree for π? = π+ ∗
C
π−.

Corollary 1.1.8. Let π? be group with a splitting tree G. Any subtree of G is a splitting
tree of a subgroup of π?.

Remark 1.1.8. In general, not all subgroups can appear as fundamental groups of subtrees
of a given splitting tree.

Proposition 1.1.9. Let π? be a group with a splitting tree G = (G/Γ
�= Γ). Then G/Γ

is
a splitting tree for π? and each Γv is a splitting tree for the corresponding vertex group.

Now, following Definition 1.1.12, we use the same naming convention:

Definition 1.1.14. A splitting (G, π) of a group is called an abelian splitting if all the edge
and arrow groups are abelian.

Remark 1.1.9. Similarly, we could define cyclic splittings, free splittings, free abelian
splittings, etc. . . when all the edge and arrow groups are cyclic, free, free abelian, etc. . .

1.2 Representation and character variety
Before defining character varieties, we need few tools from algebraic geometry.

1.2.1 Algebraic groups & Invariant theory
Let’s review some useful results on algebraic groups and invariant theory. More details

can be found in [PV94].

Definition 1.2.1. An algebraic group is an algebraic variety with a group structure such
that the multiplication and inversion are regular functions.

A map of algebraic groups is a group homomorphism that is also a regular map.
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Definition 1.2.2. Let G be an algebraic group and Z an algebraic set.
An algebraic action of G over Z is a morphism from G to the group of birregular

self-maps of Z. For an algebraic action σ, we’ll denote by σg the corresponding birregular
self-map.

Example 1.2.1. Any algebraic group G acts on itself by conjugation via

κg0 : g → g0 g g
−1
0

We will always refer to this action for an algebraic group acting on itself.

LetG be an algebraic group and Z and algebraic set. The quotient of Z by an algebraic
action of G may not be an algebraic set. We need the notion of algebraic quotient.

An algebraic action σ of G over Z produces, by composition, an action on the ring of
regular functions C[Z] via, for any g in G,

σg
∗ : C[Z] → C[Z]

f → f ◦ σg−1

Definition 1.2.3. Let G be an algebraic group acting on an algebraic set Z.
The ring of G-invariant functions of Z is the subring of C[Z], denoted by C[Z]G, of

regular functions invariant under all σg∗ for g ∈ G:

C[Z]G = {f ∈ C[Z] | ∀ g ∈ G, σg∗f = f}

For any algebraic space V , a regular map f : Z → V is G-invariant if P ◦f is G-invariant
for any P in C[V ].

Example 1.2.2. If G is linear (i.e. a subgroup of GLnC), the trace function tr : G → C
is G-invariant for the conjugation action.

Example 1.2.3. The trace function of square

tr2 : PSL2C → C
A → tr(A2)

is PSL2C-invariant on PSL2C.

Example 1.2.4. The square of the trace function

tr2 : PSL2C → C
A → (tr(A))2

is also a PSL2C-invariant on PSL2C.
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Remark 1.2.5. The two functions tr2 and tr2 differ only by a constant; for anyA in PSL2C,

tr(A2) = (tr(A))2 − 2

We want to define the algebraic quotient of Z by G such that its ring of regular func-
tions is C[Z]G. To be able to do this, we need an additional hypothesis on G.

Definition 1.2.4. A group G is called reductive if for any finite dimensional rational rep-
resentation ρ : G → GL(V ), any G-invariant subspace of V admits a complementary
G-invariant subspace in V .

Example 1.2.6. As explained in [PV94], the Zariski closure of a compact (in the classic
topology) subgroup K of GLnC is reductive. For example, GLn(C), SLn(C), On(C),
SOn(C) and Spn(C) are reductive.

Lemma 1.2.1. [PV94] Let G be an algebraic group acting on an algebraic variety Z. If
G is reductive, then the ring of G-invariant C[Z]G is finitely generated.

Moreover, let Y be an other algebraic space with a G-action. For any regular G-
invariant map f : Y → Z, if f ∗(C[Z]) = C[Y ], then

f ∗(C[Z]G) = C[Y ]G

For a reductive algebraic group G acting on Z, we can therefore define the following:

Definition 1.2.5. The algebraic set X such that C[X] = C[Z]G is called the algebraic
quotient of Z by G and will be denoted

X = Z//G

There exist a surjective G-invariant map t : Z → Z//G, such that, for any algebraic
space V , and for any regular map f : Z → V , f factors by t in the following diagram if
and only if f is G-invariant.

Z

f
""

t // // Z//G

��

V
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1.2.2 Representation & character variety
Definition 1.2.6. Let G be an algebraic group and π a finitely generated group. The
representation variety of π in G is the set

RG(π) = Hom(π,G).

Since π is finitely generated, RG(π) inherits the algebraic structure of G. Any finitely
generated presentation π ∼= 〈γ1, . . . , γn|K〉 of π provides an algebraic description of
RG(π) as the subset of Gn which satisfy the equations induced by K.

For any morphisms δ : G → G′ and ϕ : π′ → π, we have the following commutative
diagram of regular maps between representation varieties:

RG(π)
ϕ∗
//

δ∗
��

RG(π′)

δ∗
��

RG′(π)
ϕ∗
// RG′(π′)

where ϕ∗ρ = ρ ◦ ϕ and δ∗ρ = δ ◦ ρ

(1.1)

In particular, any two finitely generated presentations of the same group π produce
birregularly equivalent algebraic structures on RG(π), so the algebraic structure of the
representation variety is independent of the particular choice of presentation.

The conjugation action κ ofG on itself produces, via κg∗ in diagram (1.1), an algebraic
action of G on RG(π). For any ρ in RG(π) and g in G, we’ll denote by ρg the conjugated
representation κg−1∗ρ.

If G is reductive, we can define the character variety of π in G:

Definition 1.2.7. The space XG(π) = RG(π)//G is called the character variety of π in
G.

We denote by t : RG(π)→ XG(π) the natural projection map.

Remark 1.2.7. Two conjugated representations always have the same image by t but the
converse is not true in general.

As explained in Appendix A, anyG-invariant regular function τ onG produces, for any
γ in π, a regular function τγ onX(π) by evaluation. In particular, forG = SL2C or PSL2C,
we’ll denote by Iγ the functions τγ associated to tr in SL2C and tr2 : ±A → tr(A2) in
PSL2C. Any character χ of XSL2C(π) or XPSL2C(π) is determined by the function

χ̂ : π → C
γ → Iγ(χ)
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and the projection map t can be thought as the map

t : RG(π) → XG(π)
ρ → χρ : γ → τ(ρ(γ))

hence the name character variety.
The next lemma illustrates the functoriality of the character variety:

Lemma 1.2.2. For any morphisms δ : G→ G′ and ϕ : π′ → π, diagram (1.1) extends to
the corresponding character varieties to form the following commutative diagram:

RG(π)

��

//

t
%%

RG(π′)

��

t
yy

XG(π)

δ∗

��

ϕ∗
// XG(π′)

δ∗

��

XG′(π)
ϕ∗
// XG′(π′)

RG′(π) //

t
::

RG′(π′)

t
ee

(1.2)

Example 1.2.8 (Abelianization). Let’s fix an algebraic reductive group G. We’ll write R
and X for RG and XG.

Any finitely generated group π admits an abelianization πab given by the exact se-
quence

1 // [π, π] // π
p
// πab // 1

For γ in π, we’ll denote by [γ] the abelianization of γ, p(γ). By Lemma 1.2.2, the morphism
p : π → πab produces the following commutative diagram:

R(πab)
p∗
//

t
��

R(π)

t
��

X(πab)
p∗
// X(π)

(1.3)

Definition 1.2.8. For any finitely generated group π we define

Rab(π) = p∗(R(πab))

Xab(π) = p∗(R(πab)) = t(Rab(π))
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Since π is finitely generated, πab is isomorphic to some Zn⊕
⊕s

i=1 Zαi . Therefore, any
ρ in Rab(π) is given by n+ s elements of G, (mj)

n
j=1, and (ci)

s
i=1, such that

• [mj,mk] = [mj, ci] = [ci, ck] = 1 for all i, j, k

• cαii = 1 for all i

and for any γ in π, if [γ] = (a1, . . . , an, b1, . . . , bs),

ρ(γ) = ma1
1 · · ·man

n c
b1
1 · · · cbss

In other words, Rab(π) is isomorphic to abelian families of n+ s elements of G with the s
last ones having torsion αi for 1 ≤ i ≤ s.

If G is linear, a representation ρ produces an action of π over a finite-dimensional
C-vector space V . In this context, we have the following definition:

Definition 1.2.9. A representation is reducible if there exist a non trivial proper subspace
of V , stable under the action of π produced by ρ. Otherwise, ρ is said to be irreducible.

Similarly, a character χ is irreducible if there exist ρ irreducible in t−1χ and χ is
reducible if all such representations are.

We write Rred(π), Rirr(π), Xred(π) and X irr(π) for the respective subspaces of R(π)
and X(π).

1.2.3 Amalgams, splittings and character varieties

In this section, we study some properties of the character varieties of amalgamated
products and trees of groups introduced in Section 1.1.

Let π? be the amalgamated product of the span π+ C
ϕ+
oo

ϕ−
// π− . The commuta-

tive diagram

C
ϕ+

}}

ϕ−

!!

π+

i+ !!

π−

i−}}

π?
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produces contravariantly a commutative diagram on the representation varieties:

R(C)

R(π+)

ϕ+
∗

::

R(π−)

ϕ−∗
dd

R(π?)

i+∗

dd

i−∗

::

(1.4)

with a natural identification:

R(π?) ∼= {(ρ+, ρ−) ∈ R(π+)×R(π−) | ρ+ ◦ ϕ+ = ρ− ◦ ϕ− in R(C)}

In other words, R transforms amalgamated products into fibred products:

R(π+ ∗
C
π−) = R(π+) ×

R(C)
R(π−) (1.5)

In this situation, for any ρ in R(π), if ρ+ and ρ− denote the corresponding representations
in R(π+) and R(π−), we write

ρ = ρ+
ϕ+×ϕ−

C
ρ−

The commutative diagram (1.4) can be pushed down via t to produce the following
commutative diagram:

R(C)

��

X(C)

R(π+) //

::

X(π+)

::

X(π−)

dd

R(π−)

dd

oo

X(π?)

dd ::

R(π?)

OO

dd ::

(1.6)
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Where the vertical and horizontal arrows are t and the other ones are pull-backs of the
original group morphisms.

However, it is not always true that a pair of characters in X(π+) × X(π−) with the
same image under ϕ+ and ϕ− produces a character in X(π?). Indeed, a pair (χ+, χ−) of
such characters would only ensure the existence of two representations ρ+ and ρ− such
that t(ρ+ ◦ ϕ+) = t(ρ− ◦ ϕ−) in X(C) but, by remark 1.2.7 this is generally not sufficient
to find a pair a representations that coincide in R(C). If t−1(ϕ+

∗χ+) (or t−1(ϕ−
∗χ−)) is

exactly the orbit under conjugation of ρ+ ◦ ϕ+ (resp. ρ− ◦ ϕ−) then we may find g in G
so that ϕ+

∗(ρ+
g) = ϕ−

∗(ρ−). In that case, ρ′+ = ρg+ and ρ− agree on C and we can form
ρ = ρ′+

ϕ+1ϕ−

C
ρ−. The character χ = t(ρ) satisfies the expected equations.

i+
∗χ = χ+

i−
∗χ = χ−

Moreover, let χ be a character of X(π?), then (i+
∗χ, i−

∗χ) does not completely deter-
mine χ: let ρ be a representation in t−1(χ) with image ρ+ and ρ− in R(π+) and R(π−)
respectively. Then, for any non trivial centralizer g of ρ(C) in G (if it exists),

ρ+
ϕ+×ϕ−

C
(ρ−)g

defines a new representation ρg in R(π?). Although the new character χg = t(ρg) satisfies
i±
∗χg = i±

∗χ, χ is in general different from χg in X(π?).
It follows that, unlike representation varieties, character varieties do not convert amal-

gamated products into fibred products. However, by commutativity of diagram (1.6), the
universal property of the fibred product yields a regular map

X(π?)→ X(π+) ×
X(C)

X(π−)

Iterating amalgamated products yields trees of groups and splitting trees as in Sec-
tion 1.1. We introduce here some notations for that case.

Let π be a finitely generated group with a splitting tree G. For each vertex v of G,
there exist an injective morphism iv : πv → π. By diagram (1.2), a splitting of π over G
produces, for any vertex v of G, a regular map

iv
∗ : X(π)→ X(πv)

Any property on a character in X(π) can then be studied on the different pieces X(πv);
for example:
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Definition 1.2.10 (Everywhere abelian characters). Let G be a splitting tree for π. For any
χ in X(π), we say that χ is everywhere abelian if, iv∗χ is in Xab(πv) for all the vertices v
of G.

If G is linear, we also define the following:

Definition 1.2.11 (Everywhere (ir)reducible characters). Let G be a splitting tree for π.
A character χ in X(π) is everywhere irreducible (resp. everywhere reducible), if, for all
vertices v of G, iv∗χ is in X irr(πv) (resp. Xred(πv)).

Remark 1.2.9. Any reducible character is everywhere reducible and any everywhere ir-
reducible character is irreducible. In particular, any character irreducible on at least one
piece is irreducible.

More generally, let V denote the set of vertices of G, then any irreducible component
X of X(π) defines a map

ηX : V → {irr, red}
where ηX(v) = irr if iv∗X contains irreducible characters of X(πv) and ηX(v) = red if
iv
∗X contains only reducible characters.

Definition 1.2.12 (Type of component). For any component X of X(π), ηX is called the
type of X .

Remark 1.2.10. By Definitions 1.2.10 and 1.2.11, a component is everywhere irreducible
or resp. everywhere reducible if it has constant type.

It is then quite natural to ask the following Question:

Question 2. Given a group π and a splitting tree G with vertex set V , what maps

η : V → {irr, red}

can appear as types of components of X(π)?

Types of components may be studied using binding decompositions (see Definitions 1.1.6
and 1.1.7).

Definition 1.2.13. Given a type η, a binding decomposition (G/Γ
�= Γ) of G is called

compatible with η if, for any vertex v of G/Γ
, η is constant on the tree Γv.

Remark 1.2.11. Obviously, the identical decomposition (G �=
−→
V ) (see Definition 1.1.9)

is compatible with any type η.
On the other hand, the trivial decomposition (∗ �= G) of a tree (see Definition 1.1.8)

is only compatible with constant types.
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Proposition 1. For any irreducible component X of X(π), there exist a binding decom-
position

G = (G/Γ
�= Γ)

which is compatible with ηX and such that, for any binding decomposition (G/Γ′
�= Γ′)

of G, if the decomposition is compatible with ηX , then there exist a collection Γ′′ of subtrees
of G ′ = G/Γ′

such that
G/Γ

= G ′/Γ′′

Proof. We can construct G/Γ
defining the edge set E/Γ

in G.
Let X be an irreducible component of X(π); it defines a map η : V → {irr, red} as

in Definition 1.2.12 corresponding to whether iv∗X contains irreducible characters or not.
Let E0 be the subset of edges of G between vertices of different types:

E0 = { v′ e v ∈ E | η(v′) = irr, η(v) = red}

By Definition 1.1.6, this produces a binding decomposition G = (G/Γ
�= Γ) with edge

set E/Γ
= E0; by construction, any internal edge of Γv connects vertices with the same type

on X , so the binding decomposition G = (G/Γ
�= Γ) is compatible with η.

Finally, for any binding decomposition (G/Γ′
�= Γ′) of G, compatible with ηX , the

tree G ′ = G/Γ′
must contain at least all the edges of E0 so we can split G ′ along E0 as before

and we obtain
G/Γ

= G ′/Γ′′

for a collection Γ′′ of subtrees of G ′.

1.2.4 Culler-Shalen theory
Culler-Shalen theory produces splittings of groups (and essential surfaces) from the

SL2C-character variety of a group (the fundamental group of a 3-manifold). All the details
can be found in [CS83] and we recall here the two fundamental results that we will use.

In this section X(π) is the SL2C-character variety and, for any γ in π, Iγ is the regular
function of C[X(π)] associated to the evaluation of tr at γ.

By Theorems 2.1.2. and 2.2.1. of [CS83] we have the follwing result:

Theorem 1.2.3. Let π be a finitely generated group. For any discrete, rank 1 valuation w
on C[X(π)], there exist a splitting of π such that, for any γ in π, γ is in a vertex group if
and only if

w(Iγ) ≥ 0
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This result is achieved using Bass-Serre theory of [SB77]. It is worth noting that, if the
valuation is associated to an ideal point of X(π), w(Iγ) must be negative for some γ in π,
so the corresponding splitting is non-trivial.

The splitting of fundamental groups of 3-manifolds can produce essential surfaces. We
will not re-expose the construction here, all the details can be found in [CS83] and produce
the following proposition:

Proposition 1.2.4 (Proposition 2.3.1 in [CS83]). LetN be a compact, orientable 3-manifold.
For any non-trivial splitting of π1N there exists a non-empty system S = S1 t . . . Sm of
incompressible and non boundary-parallel surfaces in N with the following properties:

• for any S in S, Im(π1S → π1N) is contained in an edge group

• for any piece W of N \ S , Im(π1W → π1N) is contained in a vertex group.

Moreover, if K is a subcomplex of ∂N such that Im(π1K → π1N) is contained in a vertex
group for each component K of K, we may take S disjoint from K.

Combining Theorem 1.2.3 and Proposition 1.2.4 enables the detection of essential and
non boundary-parallel surfaces from discrete rank 1 valuations on the character variety of
exteriors of 3-manifolds.

1.3 Links in integer homology spheres
Let’s now review some few facts about exteriors of knots and links in integer homol-

ogy 3-spheres.

1.3.1 Knot-manifolds
Definition 1.3.1 (Knot-manifold). Let M denote an integer-homology sphere. A knot K
in M is an oriented embedded circle. The exterior of K in M is the complement of the
interior of a tubular neighbourhood of K:

MK = M \
◦

N(K).

The manifold MK is called a knot-manifold.

LetMK be a knot-manifold. The boundary ofMK is a torus T which splitsM into two
integer-homology solid tori MK and N(K) and there exist oriented simple closed curves
µ, λ on T such that
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• µ generates H1(MK ,Z) and is nullhomologous in N(K)

• λ is nullhomologous in MK and homologous to K in H1(N(K),Z)

• < µ, λ >= 1, where < , > denotes the algebraic intersection on T .

Definition 1.3.2 (Standard peripheral system). The pair µ, λ is called a standard periph-
eral system for T . The simple closed curve µ (resp. λ) is called a meridian (resp. longi-
tude) of T . A meridian-longitude pair gives a basis for homology of the boundary:

H1(T,Z) = Zµ⊕ Zλ.

Let MK and M ′
K′ be two knot-manifolds with respective boundary T and T ′ and

standard peripheral systems (µ, λ) and (µ′, λ′). Let M? denote the closed 3-manifold
obtained by gluing MK and M ′

K′ along their boundaries, via the orientation-reversing
homeomorphism identifying µ with λ′ and λ with µ′.

Definition 1.3.3 (Splicing along knots). The manifold M? is an integer-homology sphere
called the splice of MK and M ′

K′ . The original tori T and T ′ are identified with a single
torus S in M? and we write:

M? = M ′ K′1K

S
M.

On the other hand, let M? be an integer-homology sphere and S an embedded torus in
M?. Because M? is an integer-homology sphere, S is separating and splits M? into two
integer-homology solid tori W and W ′. There exist simple closed curves λ and λ′ on S
such that λ (resp. λ′) is nullhomologous in W (resp. W ′) and < λ, λ′ >= 1.

Let M denote the integer-homology sphere obtained by gluing a solid torus S1 × D2

on W , gluing {1}× ∂D along λ′. Let K denote the core S1×{0} in M , K is a knot in M
and W identifies with MK .

Symmetrically, W ′ can be identified with a knot manifold M ′
K′ . The pair (λ′, λ) is a

standard peripheral system for MK and (λ, λ′) a standard peripheral system for M ′
K′ .

Definition 1.3.4 (Desplicing along a torus). With these notations,M? is exactly the spliced
integer-homology sphere M ′ K′1K

S
M .

The pair (MK ,M
′
K′) is well-defined up to changing the both orientations of K and

K ′. It is called the desplicing of M? along S.

The inclusion of S as T and T ′ in MK and M ′
K′ , respectively, produces the following

group morphisms:

ϕ : Z2 → π1MK

λ → λK

λ′ → µK



1.3. LINKS IN INTEGER HOMOLOGY SPHERES 21

ϕ′ : Z2 → π1M
′
K′

λ → µK′

λ′ → λK′

and applying Seifert-van Kampen Theorem we obtain:

Proposition 1.3.1 (Fundamental group of spliced integer-homology sphere). Let M? be
a spliced integer-homology sphere M ′ K′1K

S
M . The fundamental group of M? is the

amalgamated product of the span

π1M
′
K′ Z2ϕ′
oo

ϕ
// π1MK .

Let MK be a knot-manifold and (p, q) be a pair of coprime integers.

Definition 1.3.5. The Dehn-filling of MK with slope p/q is the manifold obtained by
gluing a solid torus S1 × D2 on ∂M , identifying {1} × ∂D2 with the slope µpλq. It will
be denoted by MK(p/q).

The fundamental group of MK(p/q) is the quotient of π1MK by the normal closure
〈〈µpλq〉〉. Taking the abelianization we have:

Lemma 1.3.2. The manifold MK(p/q) is an integer-homology sphere if and only if p =
±1.

1.3.2 Link-manifold
Link-manifolds are obtained removing several disjoint knots in an integer-homology

sphere.

Definition 1.3.6 (Link-manifold). Let M denote an integer homology sphere. A link L in
M is a disjoint union of knots L = K1 t . . .tK|L|. We denote by ML the exterior of L in
M :

ML = M \
⊔
K⊂L

◦
N(K).

The manifold ML is called a link-manifold.

Remark 1.3.1. Knot and link manifolds are not necessarily irreducible.
The boundary of a link-manifold ML is a disjoint union of tori TK for K ⊂ L. Each

component K of L determines a standard meridian-longitude system (µK , λK) for TK .
For any components K, K ′ of L, there exist a unique integer α such that

λK = αµK′ in H1(MK′ ,Z).
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Definition 1.3.7. The integer α is called the linking number of K and K ′ in M and is
denoted by lk(K,K ′).

Remark 1.3.2. The linking number is symmetric: for any components K, K ′ of L,

lk(K,K ′) = lk(K ′, K).

The homology of ML is given by

H1(ML,Z) =
⊕
K⊂L

ZµK

and, for any component K of L, the longitude of TK is characterized by the following
equation in H1(ML,Z):

λK =
∑

K′⊂L\{K}

lk(K,K ′)µK′ . (1.7)

Let ML and M ′
L′ be two link-manifolds. Let K and K ′ be components of L and L′,

so L = K t L0 and L′ = K ′ t L′0. The splicing of MK and M ′
K′ produces the integer-

homology sphereM? = M ′ K′1K

S
M and the union of components of L0 and L′0 identify

with a link L? in M?.

Definition 1.3.8 (Splicing link-manifolds). With these notations, M?
L? is a link-manifold,

called the splice of ML and M ′
L′ along K and K ′. As before, the tori TK′ and TK identify

with a single torus S in M?
L? and we write:

M?
L? = M ′

L′0
K′1K

S
ML0

For any component J of L0, a standard peripheral system for TJ in ML is a standard
peripheral system for TJ in M?

L? . The linking numbers in M , M ′ and M? satisfy the
following proposition:

Proposition 1.3.3. LetML andM ′
L′ be two link-manifolds andM?

L? = M ′
L′0

K′1K

S
ML0

for some components K and K ′ of L and L′ respectively. Let lk, lk′ and lk? denote the
respective linking numbers in M , M ′ and M?. For any components J and J ′ of L? we
have:

• lk?(J, J ′) = lk(J, J ′) if J, J ′ ∈ L,

• lk?(J, J ′) = lk′(J, J ′) if J, J ′ ∈ L′,

• lk?(J, J ′) = lk(J,K)lk′(K ′, J ′) if J ∈ L and J ′ ∈ L′.
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Proof. For any component J of L∗ ∩ L, we have in H1(ML,Z):

λJ =
∑

K0⊂L\{J}

lk(J,K0)µK0

The gluing identifies µK with λK′ and in H1(M ′
L′ ,Z):

λK′ =
∑

J ′⊂L′\{K′}

lk(K ′, J ′)µJ ′ .

so, in H1(M?
L? ,Z):

λJ =
∑

K0⊂L\{J,K}

lk(J,K0)µK0 + lk(J,K)
∑

J ′⊂L′\{K′}

lk(K ′, J ′)µJ ′ .

Therefore, using equation 1.7, we recover lk? with the formulae of Proposition 1.3.3.

LetM?
L? be a link-manifold; let S be an embedded torus inM?

L? and let (MK ,M
′
K′)

be the desplicing ofM? along S. The torus S separates L? into a disjoint union of sublinks
L0 ⊂ MK , L′0 ⊂ M ′

K′ and this produces two links L = K t L0 and L′ = K ′ t L0 in M
and M ′, respectively, so that M?

L? is the splicing of ML and M ′
L′ along K and K ′.

Definition 1.3.9 (Desplicing of a link-manifold). The pair (ML,M
′
L′) is called the de-

splicing of M?
L? along S.

Let ML be a link-manifold. Let L′ be a sublink of L and, for each component K ′ of
L′, let (pK′ , qK′) be pair of coprime integers. We’ll denote the family (pK′ , qK′)K′⊂L′ by
(pL′ , qL′). As in Definition 1.3.5 we can fill ML along the components K ′ of L′:

Definition 1.3.10 (Dehn-filling). The Dehn-filling of ML, along L′, with slopes pL′/qL′ ,
is the manifold obtained from ML by gluing, on each (TK′)K′⊂L′ , a solid torus S1 × D2,
identifying {1} × ∂D2 with the slope µK′pK′λK′qK′ .

It will be denoted by ML(L′ : pL′/qL′).

Let ML be a link-manifold with L = L0 tK. A Dehn-filling on K with slope 1/0 is
equivalent to removing the component K. Moreover, by Lemma 1.3.2, if p = 1, MK(1/q)
is an integer-homology sphere M ′. In that case, ML(K : 1/q) is the exterior of a link Lq
in M ′ whose components naturally identifies with the components of L0.

Let (µ′J , λ
′
J)J⊂Lq denote the new standard peripheral system of Lq in M ′ and let

lkq(J, J
′) denote the linking number in M ′.
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Proposition 1.3.4. For J in Lq, (µJ , λJ) and (µ′J , λ
′
J) satisfy the following relations in

H1(TJ):

µ′J = µJ (1.8)
λ′J = λJ + q lk(K, J)2µJ (1.9)

and for any J, J ′ in Lq,

lkq(J, J
′) = lk(J, J ′)− q lk(K, J) lk(K, J ′) (1.10)

Proof. The homology of ML is
⊕

J⊂L µJZ and the homology of M ′
Lq is isomorphic to

the quotient H1(ML)/〈µK + q λK = 0〉.
By construction meridians of L0 identifies with meridians of Lq in M ′. For any com-

ponent J of L, λJ =
∑

J ′ 6=J lk(J, J ′) µJ ′ so, in H1(M ′
Lq),

λJ =
∑
J ′ 6=J

lk(J, J ′)µJ ′

= lk(K, J) µK +
∑

J ′ 6=J,K

lk(J, J ′) µJ ′

= −q lk(K, J)λK +
∑

J ′ 6=J,K

lk(J, J ′)µJ ′

= −q lk(K, J)
∑
J ′′ 6=K

lk(K, J ′′)µJ ′′ +
∑

J ′ 6=J,K

lk(J, J ′) µJ ′

= −q lk(K, J)2µJ +
∑

J ′ 6=K,J

(lk(J, J ′)− q lk(K, J) lk(K, J ′))µJ ′

so, for any J in Lq

λJ + q lk(K, J)2µJ =
∑

J ′ 6=K,J

(lk(J, J ′)− q lk(K, J) lk(K, J ′))µJ ′ (1.11)

Therefore, in the new peripheral system ofLq inM ′, λ′J = λJ+q lk(K, J)2µJ and for J, J ′

in Lq the new linking numbers are given by lkq(J, J ′) = lk(J, J ′)− q lk(K, J) lk(K, J ′).

It follows that, if K as linking number zero with all other components, the standard
peripheral systems and the linking number pairing remain unchanged.

We define the following:
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Definition 1.3.11. A link L in an integer-homology sphere is homologically trivial (HT)
if the linking number of any two components of L is zero.

By Proposition 1.3.4, the family of HT-links is stable under 1/q-Dehn-fillings. More
precisely:

Proposition 1.3.5. Let M be an integer-homology sphere and let L = K tL0 be a link in
M ; for q in Z, let Lq denote the link obtained by 1/q-Dehn-filling along K. Then, if L is
homologically trivial, so is Lq, and the peripheral system is unchanged.

Proof. This is a direct consequence of Proposition 1.3.4.

1.3.3 Torus splittings
Let ML denote a link-manifold.
For any embedded torus S in ML, we can desplice ML along S and form two link-

manifolds M+
L+ and M−

L− . For any family S of embedded tori in ML, applying this to
some torus S in S gives a partition of S

S = {S} t S+ t S−

where S+ and S− are embedded tori in M+
L+ and M−

L− , respectively.
Applying this process to S+ in M+

L+ and S− in M−
L− , it follows that any family of

embedded tori S produces a tree decomposition of ML where

• each vertex is a connected component of ML \N(S),

• each edge is a torus of S.

Definition 1.3.12 (Torus splitting). This process is called a torus splitting of ML. The
manifolds associated to the vertices are called the pieces of the splitting.

The associated tree is called the dual graph of the splitting and a splitting tree of ML.

Remark 1.3.3. The dual graph is a tree because any embedded torus in ML is separating.

Remark 1.3.4. We may represent components of L by arrows in the dual graph and obtain
a splitting trees with arrows as in Section 1.1. Unless stated otherwise, we will always
assume the splitting trees of a link-manifold contains all the arrows of the components
of L.

Let ML be a link-manifold with a splitting tree Γ. Any edge v′ e v of Γ, splits Γ into
two trees Γ+ and Γ− (where the edge e becomes two arroheads in Γ+ and Γ−). Then, let
(M+

L+ ,M−
L−) be the link-manifolds obtained by desplicingML along Se. The following

lemma is a direct consequence of the definitions:
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Lemma 1.3.6. The trees Γ+ and Γ− are splitting trees for M+
L+ and M−

L− .

Proposition 1.3.7. If all the edge are essential tori in ML, a splitting tree G of ML pro-
duces a splitting tree of π1M L over G with vertex groups π1M

v
Lv and edge groups Z2.

Finally, the JSJ-decomposition of Jaco, Shalen and Johannson produces, for link-
manifold s, a toric splitting that may be considered, in a way, maximal.

Definition 1.3.13. A 3-manifold is called irreducible if any embedded 2-sphere bounds
3-ball.

Let M L be an irreducible link-manifold. Let J denote the family of JSJ-tori of ML;
by definition, J splits ML into a family (Nv)v∈V (the JSJ-pieces) such that each Nv is
either hyperbolic or Seifert-fibred. Desplicing along each JSJ-torus shows that each Nv

is itself some link-manifold M v
Lv and ML is obtained by iterated splicing.

The dual graph of the JSJ decomposition is the tree GJ obtained from:

• a vertex v ∈ V for each JSJ-piece M v
Lv .

• an edge v′ e v ∈ E for each JSJ-torus S inJ such that,ML = M+
L+

K+
1K−

S
M−

L−

with M v′ ⊂M+ and M v ⊂M−.

The JSJ decomposition induces a splitting of π1ML over the tree GJ with edge group
Z2 and vertex group π1M

v
Lv .

Definition 1.3.14 (Graph link-manifold). A link-manifold ML is called a graph manifold
if it is irreducible and all its JSJ-pieces are Seifert-fibred.



Chapter 2

E-varieties

The A-polynomial of a knot was first describe by Cooper, Culler, Gillet, Long and
Shalen in [CCG+94]. It is a polynomial in 2 variables m and ` whose zero-set corre-
sponds to eigenvalues of ρ(µ) and ρ(λ) for ρ in the SL2C representation variety of the
knot exterior. It was then naturally generalized to links in S3 by Tillmann in [Til02, Til05].

In this chapter, we give a more generic construction which generalizes both these
objects, the eigenvalue-varieties associated to an abelian splitting of a finitely generated
group π.

It is also constructed from the SL2C or PSL2C character varieties, using the special
properties of their abelian subgroups and the algebraic structure of theC∗ character variety.
Applying this construction the trivial splitting of the fundamental group of a link-manifold
yields precisely Tillmann’s eigenvalue-varieties as in [Til02, Til05].

In addition, the generalization presented here is compatible with the natural operations
of merging, splitting and binding on splitting trees (see Section 1.1).

The SL2C or PSL2C character variety of an abelian group H has a natural affine struc-
ture in C∗h denoted by E(H). Given an abelian tree of groups (G, π), the projection of
X(π) on all the edge and arrow groups of G defines the EG-variety of π, EG(π). This alge-
braic space defines theA-ideal of the abelian tree G,AG(π). The main feature of this new
construction is the compatibility with the natural operations on trees of groups: merging,
splitting, contraction and binding.

We show first that the EG-variety is natural under merging (see Definition 1.1.5) in the
following sense:

Lemma 1. Let G be a tree of groups. For any splitting G+ a+
1a−

e
G− of the tree G, there

exist an injective regular map

EG(π) �
�

// EG+(π+) ×
E(He)

EG−(π−) (2.1)

27
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Moreover, for any (ξ+ ×
ξe
ξ−) in EG+(π+) ×

E(He)
EG−(π−), if not all the coordinates of ξe

are ±1 (or 1 if working in PSL2C), then there exist ξ in EG(π) with image ξ+ ×
ξe
ξ−.

Then, we consider a binding decomposition (G/Γ
�= Γ) of G as in Definition 1.1.7.

The naturality of the construction enables us to prove the following Theorem 3 for binding
decompositions:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G/Γ
�= Γ)

of the tree G produces two regular maps as in the following diagram

EG(π) �
� iΓ //

p

����

∏
v∈V/Γ

EΓv(πv)

EG/Γ (π)

(1)

such that, for any edge v′
e
v of E/Γ

in G/Γ
, if e is sent to a′1a

e
in G for some arrows a′

and a in Γv′ and Γv respectively, then

(ξv′)a′ = (ξv)a (2)

Moreover, for any (ξv)v∈V/Γ in
∏

v∈V/Γ
EΓv(πv), if for every edge v′

e
v of G/Γ

, equation
(2) is satisfied and not all coordinates of (ξv)a are ±1 (1 in PSL2C) then (ξv)v∈V/Γ lies in
the image of iΓ.

It follows from Theorem 3 that the eigenvalue-varieties might be a useful contruction
in to understand the decomposition of character varieties induced by splitting trees.

Next, we present the logarithmic-limit set of the eigenvalue-varieties, EH(π)∞ and
how it is related with Culler-Shalen theory (presented in Section 1.2.4). The logarithmic
limit set is an object from tropical geometry which encodes, in a way, ideal points of alge-
braic varieties in C∗k; the application to EG-varieties and Culler-Shalen’s Theorem 1.2.3,
produces a relation between Culler-Shalen splittings of groups and the logarithmic-limit
set of EG(π). After introducing all the relevant notations we obtain the following:

Theorem 4. For any rational point ξ∞ of EG(π)∞, there exist a splitting of π such that,
for any edge or arrow e, and any h in He,

h is in a vertex group ⇐⇒ h · ξ∞ = 0
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As we shall see, Theorem 4 applied to the trivial splitting of a link-manifold is equiv-
alent to Tillmann’s Lemma 11 of [Til05].

After that, we inspect in more details how this construction applies to torus splittings
of link-manifolds. Standard peripheral systems give a canonical description of the tori
subgroups (using adjacent pieces for internal tori), wich induces natural coordinates for the
eigenvalue-variety; after presenting how Theorems 3 and 4 translate in standard peripheral
systems, we will study more in details the case for trivial splittings, to follow with generic
ones.

In particular, we will inspect how Theorem 3 applies to different generic or canonical
cases.

First, we study the peripheral eigenvalue-variety, E∂(ML), associated to the trivial
splitting of a link-manifold. In this case, we obtain the eigenvalue-variety of Tillmann, as
presented in [Til02, Til05]. We recall some important properties, most of them already
present in [Til05], sometimes in a different form.

We start computing the component of reducible characters and obtain Proposition 2:

Proposition 2. The component of reducible characters in the peripheral eigenvalue-variety
of a link-manifold ML is given by

Ared(ML) =

〈
lK −

∏
K′ 6=K

mK′
±lk(K,K′), K ⊂ L

〉
(2.2)

We follow considering the relation with Hatchers boundary curve space of [Hat82],
using Theorem 4 and Proposition 1.2.4 with a dimensional bound on the logarithmic-limit
set. This implies that the peripheral eigenvalue-variety of a link-manifold have dimension
lower than the number of components of the link (as in [Til02, Til05]). The components
of reducible characters achieve this bound and a natural question is to look out for other
components of maximal dimension in the peripheral eigenvalue-variety:

Question 1. For which link-manifolds ML does X(ML) admit peripherally maximal and
non-abelian components?

Later, Chapters 3 and 4 will attempt to give partial answers to this question.
It is now a classic fact that, by Thurston’s results of [Thu02], link-manifolds whose

interior admit a hyperbolic structure give a positive answer to Question 1. We re-expose
this result here, and also show how the eigenvalue-variety can be used to detect more subtle
properties, such as strong geometric isolation of hyperbolic cusps as defined in [NR93];
if L+ t L− is a disjoint subset of cusps of a hyperbolic 3-manifold, we say that L+ is
strongly geometrically isolated from L− if, after performing any integral Dehn-fillings
allong geodesics (γK+)K+⊂L+ , any deformation on the cusps of L− leaves the geometry
of the γK+ invariant. We obtain the following characterization:
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Theorem 5. Let ML be a hyperbolic link-manifold and L+ t L− a partition of L.
Then L+ is strongly geometrically isolated from L− if and only if E∂(X0) splits as a

product E+ × E− with E+ in
∏

K⊂L+ E(TK) and E− in
∏

K⊂L− E(TK).

Then, we study the relations between the peripheral eigenvalue-variety of a link-manifold
ML and the different peripheral eigenvalue-varieties after 1/q Dehn-filling on a component
K of L (see Definition 1.3.10). In the eigenvalue-variety coordinates, the Dehn-surgery
equation µKλKq = 1 becomes a regular function

δq = mK lK
q − 1 ∈ C[E∂(ML)]

On the other hand, the boundary of the Dehn-filled manifold is the subset (TK′)K′ 6=K of
the boundary of the original manifold, inducing a projection p between the eigenvalue-
varieties. After imposing the equation δq = 0 on E∂(ML), the projection by p should
correspond to pieces of E∂(ML(K : 1/q)). However, the surgery shifts the standard
peripheral systems according to Proposition 1.3.4 and this needs to be taken into account
to obtain E∂(ML(K : 1/q)) in standard peripheral coordinates; all together, this enables
us to obtain Theorem 7:

Theorem 7. With these notations, for any link L = L0tK in an integer-homology sphere
M , and for any integer q,

E∂(ML(K : 1/q)) ⊂ Φq ? V (δq)

where V (δq) is the zero set of δq in E∂(ML), Φq is the projection p composed with the
self-map of E(Hq) given, on each factor E(TJ)J⊂Lq , by the 2× 2 block:[

1 0
q lk(J,K)2 1

]
and ? is the exponential action ofM2,2(Z) on C∗2 (see Definition 2.1.3).

Finally, we inspect how Theorem 3 applies to the peripheral eigenvalue-varieties.
Given a splitting tree ofML, the peripheral eigenvalue-variety relates with the different pe-
ripheral eigenvalue-varieties of the vertex link-manifolds. Let EG(ML) be the eigenvalue-
variety associated to a splitting tree G, and let V denote the vertex set of G.

Proposition 3. For any torus splitting tree G of ML, there exist two maps in the following
diagram

EG(ML) �
� i∗ //

p
����

∏
v∈V E∂(M

v
Lv)

E∂(ML)

(2.3)

such that
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• p is the projections induced by the inclusion of ∂ML as arrows in G

• for any point (ξv)v∈V in the image of i, and for any edge v′ e v of G connecting
some components K ′ and K of Lv

′
and Lv, respectively, the corresponding coordi-

nates of (ξv),
(ξv

′
)K′ = (mK′ , `K′) and (ξv)K = (mK , `K)

satisfy the gluing condition:
mK = `K′
`K = mK′

(2.4)

Finally, for any (ξv) in
∏

v∈V E∂(M
v
Lv), such that, for any edge v′

e
v ,

• equation (2.4) is satisfied,

• `K and `K′ are not both equal to ±1 (1 if working in PSL2C)

then there exist ξ in EG(ML) with i∗ξ = (ξv).

So the peripheral eigenvalue-varieties of the vertex submanifolds can, in a way, be
glued together to construct the peripheral eigenvalue-variety.

To conclude this chapter, we apply the same considerations on two more cases; first,
we inspect how Theorem 3 applies for generic torus splittings of link-manifolds. An appli-
cation of Theorem 3 produces Corollary 3, a more generic version of Proposition 3. Then,
we present the eigenvalue-variety associated to the JSJ-decomposition of a link-manifold
ML and its dual graph GJ . The JSJ-decomposition can be considered a maximal toric
decomposition, and, applying Theorem 3 in that case gives Proposition 4, wich shows that
EGJ (ML) is a kind of maximal eigenvalue-variety, acting similar to an initial object for
the different EG-varieties of the link-manifold ML.

2.1 EG-varieties, AG-ideals
Let’s start with the C∗ character variety, which will enable us to define our eigenvalue-

varieties.

2.1.1 The space Hom(π,C∗)
In this section, we will study the elementary, but fundamental, case of RC∗ and XC∗ .

Recall that C∗ is algebraic with C[C∗] = C[Y, Y −1]. Since C∗ is abelian, the conju-
gation action is trivial; moreover, for any finitely generated group π, any ρ of RC∗(π)
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factors through πab. It follows that the four algebraic spaces of diagram (1.3) are equal to
Hom(π,C∗):

RC
∗
(π) = RC

∗
(πab) = XC∗(πab) = XC∗(π) = Hom(π,C∗)

Therefore, it is sufficient to describe XC∗(H) for finitely generated abelian groups H .

Lemma 2.1.1. Let H = Zn ⊕
⊕s

i=1 Zαi be a finitely generated abelian group, then

Hom(H,C∗) ∼= C∗n ×
s∏
i=1

Uαi

where Uα denotes the set of αth roots of unity.

Proof. This is a simple consequence of the three following elementary facts:

• Hom(Z,C∗) ∼= C∗

• Hom(Zα,C∗) ∼= Uα for any α ∈ Z

• Hom(H+⊕H−,C∗) ∼= Hom(H+,C∗)×Hom(H−,C∗) for any abelian groups H+

and H−.

Definition 2.1.1. For H = Zn ⊕
⊕s

i=1 Zαi , we’ll denote by E(H) the set

E(H) = C∗n ×
s∏
i=1

Uαi

From now on, for any finitely generated group π, we identify points ξ of E(πab) with
morphisms ϕ of Hom(π,C∗).

Let π be a finitely generated group with πab = Zn⊕
⊕s

i=1 Zαi . Under the identification
E(πab) ∼= Hom(π,C∗), we have:

Lemma 2.1.2. For any ϕ in Hom(π,C∗) and any γ in π, if

[γ] = (a1, . . . , an, b1, . . . , bs) ∈ πab = Zn ⊕
s⊕
i=1

Zαi

and

ϕ ∼ ξ = (m1, . . . ,mn, y1, . . . , ys) ∈ E(πab) = C∗n ×
s∏
i=1

Uαi

then
ϕ(γ) = ma1

1 · · ·mah
n y

b1
1 · · · ybss ∈ C
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Therefore, it makes sense to define the following:

Definition 2.1.2. For ξ in E(πab) and γ in π,

ξ[γ] = ϕ(γ) for ϕ ∼ ξ

Example 2.1.1. The space E(Z2) is C∗ × C∗. For any ξ = (m, `) in E(Z2) and [γ] =
(p, q) ∈ Z2,

ξ[γ] = mp`q

For any ϕ in Hom(π,C∗), ϕ−1 : z → ϕ(z)−1 and ϕ : z → ϕ(z) define other mor-
phisms from π to C∗. If ξ ∈ E(πab) corresponds to ϕ we denote by ξ−1 (resp. ξ) for the
points of E(πab) corresponding to ϕ−1 (resp, ϕ).

Finally, since Uα is finite, E(H) is a finite number of copies of E(H free), the torsion-
free part of H . Therefore, most algebraic properties won’t depend on the torsion part and,
from now on, we will often restrict to free abelian groups.

Applying Definition 2.1.2 to a free abelian groups defines a pairing

(?) : Zn × C∗n → C∗
a = (a1 . . . , an)
m = (m1, . . . ,mn)

→ ma = m1
a1 . . .mn

an

This can be generalized to define the tropical action ofMp,n(Z) over C∗n. For a matrix A
ofMp,n(Z),

A =

a1,1 . . . a1,n
...

...
ap,1 . . . ap,n


and a vector ξ of C∗n,

ξ =

m1
...
mn


Definition 2.1.3. We define A ? ξ in C∗p as the vector:

A ? ξ =

ξ
A1

...
ξAp


where A1, . . . , Ap denote the lines of the matrix A.
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Remark 2.1.2. If we denote by (·) the linear pairingMp,n(Z) × Cn → Cp, it forms with
the pairing (?) a commutative diagram

Cn A· //

exp

��

Cp

exp

��

C∗n
A?

// C∗p

where exp is the componentwise exponential map and A is any matrix ofMp,n(Z).

Finally, we close this section introducing a last operator which will enable us to go
from C∗ to SL2C and PSL2C. From now on, we work with G = SL2C or G = PSL2C so
X and R will denote the corresponding character and representation varieties; the distinc-
tion between SL2C and PSL2C will be only done when relevant.

We define the two following morphisms from C∗, to SL2C and PSL2C,

∆ : C∗ → SL2C

z →
[
z 0
0 z−1

]
∆ : C∗ → PSL2C

z → ±
[
ζ 0
0 ζ−1

]
with ζ2 = z

By diagram (1.2), the group morphism ∆ : C∗ → G induces a regular map

∆∗ : E(πab)→ X(π)

By construction, all characters obtained this way are abelian. However, if we consider
edges and arrow groups of an abelian splitting of π, we can use this construction to capture
more information about X(π). This is the purpose of the next section.

2.1.2 Eigenvalue-varieties associated to abelian splittings
Given a group π split over a tree G, we construct an object which witnesses the restric-

tion on the edges and arrows of the character variety. Since the main goal is to study toric
splittings of link manifolds, we can consider abelian splittings (where the edge and arrow
groups are abelian), enabling the use of Section 2.1.1 to describe the character varieties of
edge and arrow groups.
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Let π be a finitely generated group with an abelian splitting over a tree G(V,E). For e in
E , we denote the edge or arrow group by He instead of Ce as in Section 1.1 to emphasize
the fact that they are abelian. We will denote byHG the union of edges and arrow groups:

HG =
⊔
e∈E

He

First, we extend the notation of Definition 2.1.1.

Definition 2.1.4. We’ll denote by E(HG) and X(HG) the spaces

E(HG) =
∏
e∈E

E(He) ∼= E (⊕e∈EHe)

X(HG) =
∏
e∈E

X(He) 6∼= X (⊕e∈EHe)

and by dG the regular map, product of ∆∗ on each component:

dG : E(HG) → X(HG)
ξ = (ξe)e∈E → (∆∗ξe)e∈E

On the other hand, each inclusion of edge or arrow group ie : He → π produces an
algebraic map

ie
∗ : X(π)→ X(He)

and we’ll denote by iG∗ the product map

iG
∗ : X(π) → X(HG)

χ → (ie
∗χ)e∈E

We can represent this in the following diagram:

E(HG)
dG
��

X(π)
iG
∗
// X(HG)

(2.5)

We define the corresponding EG-variety as the Zariski closure of the pre-image by dG
of the image of iG∗:
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Definition 2.1.5 (EG-variety). The eigenvalue-variety (or E-variety) of π associated to
the splitting G is the space EG(π) defined by

EG(π) = dG
−1(iG

∗X(π)) ⊂ E(HG).

For any subspace X of X(π), we define EG(X) as the subspace dG−1(iG
∗X) of EG(π).

Remark 2.1.3. By definition, for any component X ⊂ X(π), there’s a strict closed subset
F of EG(X) such that, for any ξ = (ξ1, . . . , ξm) in E(HG),

ξ ∈ EG(X) \ F ⇐⇒ ∃ χ ∈ X | ∀ e ∈ E , ie∗χ = ∆∗ξe in X(He)

Definition 2.1.6. The union of the smallest such F for each component X is called the
forbidden set of the eigenvalue-variety.

Remark 2.1.4. A change of basis for the groups of H changes the eigenvalue-variety via
the corresponding tropical action (see Definition 2.1.3) on each factor E(H).

Recall that, for γ in π, Iγ : X(π) → C denotes evaluation function at γ, associated to
tr if G = SL2C or tr2 for G = PSL2C. The following lemma relates Iγ(χ) and ξ for γ in
Hj:

Lemma 2.1.3. If χ ∈ X(π) and ξ ∈ EG(π) satisfy

iH
∗χ = dHξ in X(H)

then, for any H inH and any γ in H ,

Iγ(χ) = ξγ + ξ−γ

Proof. Since tr(∆(z)) = z+z−1 = tr2(∆(z)) in both SL2C and PSL2C, the construction
of EG gives the relation of Lemma 2.1.3.

Example 2.1.5. For example, if the edge or arrow group He is equal to Z2, we can use
Example 2.1.1; as before, E(H) = C∗2 and, for any χ in X(π), if iH∗χ = ∆∗(m, `) in
X(H), then, for any δ = pµ+ qλ in H , Lemma 2.1.3 gives:

Iδ(χ) = mp`q +m−p`−q

On each component E(He) of E(HG), Z2 acts by inversion ξ → ξ−1. For any ξ in
E(He), ∆∗ξ = ∆∗ξ

−1 in X(H). This makes EG(X) stable under the product action of
Z2
|E| on E(HG):
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Proposition 2.1.4. For any component X of X(π), EG(X) is stable under the componen-
twise action of Z2

|E| given by (ε, ξ)→ ξε on each factor E(He).

Finally, as an algebraic subset ofE(HG), eachEG(X) is defined by an ideal ofC[E(HG)].
These ideals can be obtained directly from C[X(π)] reversing diagram (2.5) into maps be-
tween the rings of regular functions:

C[X(HG)]
iG∗ //

dG
∗

��

C[X(π)]

C[E(HG)]

(2.6)

and, for any component X of X(π), iH∗ restricts to

iG|X ∗ : C[X(HG)]→ C[X]

The defining ideals of EG(π) and EG(X) are given gy Diagram (2.6):

Definition 2.1.7. The AG-ideal of π is the defining ideal of EG(π) given by:

AG(π) =
√
dG
∗(Ker iG∗)

Similarly, for any component X of X(π), AG(X) is the defining ideal of EG(X):

AG(X) =
√
dG
∗(Ker iG|X ∗)

2.1.3 Naturality under splitting, merging and contracting
We will now inspect how the E-varieties behave under the cannonical operations on

tree of groups: splitting/merging (see Definition 1.1.5) and contracting/binding (see Defi-
nition 1.1.6).

Lemma 1. Let G be a tree of groups. For any splitting G+ a+
1a−

e
G− of the tree G, there

exist an injective regular map

EG(π) �
�

// EG+(π+) ×
E(He)

EG−(π−) (2.1)

Moreover, for any (ξ+ ×
ξe
ξ−) in EG+(π+) ×

E(He)
EG−(π−), if not all the coordinates of ξe

are ±1 (or 1 if working in PSL2C), then there exist ξ in EG(π) with image ξ+ ×
ξe
ξ−.
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Proof. Let G be a tree of groups and an edge e with G = G+ a+
1a−

e
G−. Let H, H+ and

H− denote the respective collections of edge and arrow groups of G, G+ and G−. The
familyH splits into a partition

H = (H+ \ {a+}) t (H− \ {a−}) t {e}

and this partition induces projections between the X and E varieties ofH toH+ andH−,
so we get the following commutative diagram:

X(π)

��yy %%

X(π+)

��

X(H)

%%yy

X(π−)

��

E(H)

OO

p+

yy

p−

%%

X(H+)

%%

E(H+)

pa+
%%

oo E(H−)

pa−yy

// X(H−)

yy

E(He)

��

X(He)

(2.7)

By Definition 2.1.5 the pair (p+, p−) restricts to an injective map

EG(π)→ EG+(π+)× EG−(π−)

such that pa+ ◦ p+ = pa− ◦ p− so it factors as a map

EG(π) �
�

// EG+(π+) ×
E(He)

EG−(π−)

For the second part of Lemma 1, let (ξ+ ×
ξe
ξ−) be an element of the fibred product

EG+(π+) ×
E(He)

EG−(π−).

First, let’s assume that ξ+ and ξ− are outside the forbidden sets of EG+(π+) and
EG−(π−); there exist χ+ and χ− in X(π+) and X(π−) such that

dH±ξ
± = iH±

∗χ±
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by the fibre product equation, ξ+
a+ = ξ−a− = ξe ∈ E(He) and, if not all the coordinates

of ξe are±1 (or 1 if working in PSL2C) the character χe = dHeξe ∈ X(He) is non central.
Therefore, there exist ρ± in t−1(χ±) such that

ρ±|H
a±

= ∆∗ξ
±
a±

so the pair (ρ+, ρ−) factors as ρ = ρ+ ×
He
ρ− in R(π). Let χ be the corresponding character

t(ρ) in X(π), p±χ = χ± so there exist ξ such that dHξ = iH
∗χ, and, by diagram (2.7), ξ

has image ξ+ ×
ξe
ξ−.

Since the property on the coordinates of ξe is open, we can take the Zariski closure
outside the forbidden sets of EG+(π+) and EG−(π−) to conclude the proof of Lemma 1.

If G is a tree of group with a binding decomposition (G/Γ
�= Γ), the edge set E/Γ

of G/Γ
is a subset of the edge set of G and Γ is obtained from iterated mergings of the

trees Γv for v in V/Γ
. Using the naturality of the construction and Lemma 1, we obtain the

following Theorem 3:

Theorem 3. Let G be an abelian tree of goups. Any binding decomposition (G/Γ
�= Γ)

of the tree G produces two regular maps as in the following diagram

EG(π) �
� iΓ //

p

����

∏
v∈V/Γ

EΓv(πv)

EG/Γ (π)

(1)

such that, for any edge v′ e v of E/Γ
in G/Γ

, if e is sent to a′1a

e
in G for some arrows a′

and a in Γv′ and Γv respectively, then

(ξv′)a′ = (ξv)a (2)

Moreover, for any (ξv)v∈V/Γ in
∏

v∈V/Γ
EΓv(πv), if for every edge v′ e v of G/Γ

, equation
(2) is satisfied and not all coordinates of (ξv)a are ±1 (1 in PSL2C) then (ξv)v∈V/Γ lies in
the image of iΓ.

Proof. Let G be an abelian tree of groups with a binding decomposition (G/Γ
�= Γ).

Let H (resp. H/Γ
and Hv for v in V/Γ

) denote the family of edge and arrow groups of G,
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(resp. G/Γ
, Γv for v in VΓ). By definition of the binding decomposition, there exist natural

inclusionsH/Γ
⊂ H and

⋃
v∈V/Γ

Hv ⊂ H which induce two algebraic maps

p : E(H)→ E(H/Γ
) and iΓ : E(H)→

∏
v∈V

E(Hv)

These inclusions also produce maps between the character varieties of the familiesH,
H/Γ

and Hv. By Lemma 1.1.6, each v in V/Γ
also yields a groups morphism πv → π,

producing an algebraic map X(π)→
∏

v∈V X(πv).
All together, we obtain the following diagram of algebraic maps :

E(H/Γ
)

��

E(H)
p
oooo � � iΓ //

��

∏
v∈V E(Hv)

��

X(H/Γ
) X(H)oooo � � //

∏
v∈V X(Hv)

X(π) �
�

//

OOdd

∏
v∈V X(πv)

OO

(2.8)

so the maps p and iΓ restric to maps

p : EH(π) // // EH/Γ (π)

and
iΓ : EH(π) �

�
//
∏

v∈V EHv(πv)

as expected.
For the rest of Theorem 3, we can inductively apply Lemma 1 on the edges of G/Γ

. The
fibre product equation at each edge gives equation (2) and the reconstruction criterion is
obtained by splitting G/Γ

along an edge and using Lemma 1 by induction on each part.

2.1.4 Logarithmic-limit set and Culler-Shalen splittings of groups
Using eigenvalue-varieties in conjunction with Culler-Shalen theory will enable to de-

tect how essential surfaces intersect with toric decomposition of link manifolds. The first
part of Culler-Shalen theory produces group splittings from discrete valuations on the char-
acter variety. Applying this to an abelian tree of groups G, we can use the E-variety EG(π)
to detect when elements of edge and arrow groups of G become vertex elements in the new
Culler-Shalen splitting of π. This generalizes, for EG-variety of abelian trees of groups,
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the boundary-slopes-detection results known for the A-polynomial as in [CCG+94] and
Tillmann’s eigenvalue-variety as in [Til02, Til05].

This will be done using the logarithmic-limit set; first let’s recall some definitions and
few properties. The details can be found in [Til02, Til05], and, more extensively in [Ber71]
and [BG86].

Let V be a subvariety of C∗m. We denote by C[Y ±] the ring C[Y ±1
1 , . . . , Y ±1

m ] of
regular functions of C∗m. For α in Zm, we denote by Y α the monomial of C[Y ±],

Y α = Y α1
1 . . . Y αm

m

Any regular function of C[Y ±] is written f =
∑

α∈Zm aαY
α where aα is 0 except for a

finite number of m-tuples, called the support of f .
Let A ⊂ C[Y ±] be the defining ideal of V .

Definition 2.1.8. The logarithmic limit set of V is the subset V∞ of Sm−1 defined by the
three following equivalent constructions:

• V∞ is the limit set in Sm−1 of the following subset of the unit ball in Rm:{
(log|yi|, . . . , log|ym|)√

1 +
∑m

i=1(log|yi|)2
, x ∈ V

}

• V∞ is the set of m-tuples (−v(Y1), . . . ,−v(Ym)) for all real-valued valuations v on
C[V ] ∼= C[Y ±]/A, normalized so that

∑m
i=1 v(Yi)

2 = 1

• V∞ is the intersection of all the spherical duals of Newton polytopes of non-zero
elements of A.

Remark 2.1.6. The Newton polytope of a non-zero polynomial is the convex hull of its
support and the spherical dual of a bounded convex polytope P in Rm is the set of unit
vectors v such that supp∈P v · p is achieved for more than one point p in P .

Remark 2.1.7. In particular, if m = 2 and V is a curve defined by a polynomial f , the
Newton polytope of f is the classical Newton polygon and V∞ is the set of normal vectors
to the edges of the Newton polygon.

Remark 2.1.8. Under the identification Sm−1 ∼= (Rm \ {0})/〈v ∼ rv, r ∈ R∗+〉, the
logarithmic limit set also identifies with a positive cone in Rm.

By the remark 2.1.7, the logarithmic limit set of a curve in C∗2 is a set of points on S1.
More generally, the results of Bergman, Bieri and Groves in [Ber71] and [BG86] imply
the following theorem of [Til02, Til05]:
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Theorem 2.1.5 (Bergman, Bieri-Groves). Let V be an algebraic variety in C∗m. Then, its
logarithmic limit set is a finite union of rational convex spherical polytopes.

Moreover, let dimV∞ be the maximal (real) dimension of such a polytope, then

dimV∞ = dimV − 1

The following curve-finding lemma of [Til02, Til05] will enable the use of Culler-
Shalen theory with eigenvalue-varieties:

Lemma 2.1.6 (Lemma 6. of [Til05]). Let V be an algebraic variety in C∗m. Then any
point of V∞ with rational coordinates belongs to the logarithmic limit set C∞ of a curve
C in V .

Now, let G be an abelian tree of groups and EG(π) the associated E-variety. For any
edge or arrow e in E , E(He) is a subset of some C∗m. Since the torsion part of He will be
sent to 0 in the logarithmic-limit set, we can assume that all the edge and arrow groups are
free abelian. Then, E(HG) ∼= C∗r where r is the sum

∑
re of all the ranks re of He for e

in E , and the logarithmic-limit set of EG(π) is a subset of the unit sphere in Rr.
For each edge or arrow e in He, let Be be a basis of He, so H =

⊕
µ∈Be µZ; we write

coordinates of E(He) as (mµ)µ∈Be and EH(π) have coordinates ((mµ)µ∈Be)e∈E . The ideal
AG(π) lies in the ring

C[m±G ] = C[((mµ
±1)µ∈Be)e∈E ]

and the logarithmic limit set EH(π)∞ has coordinates ((uµ)µ∈Be)e∈E .

Remark 2.1.9. The stability of EG(π) under the Z2
|E|-action induces a similar stability for

EG(π)∞. The action by inversion becomes an action (uµ)µ → (−uµ)µ on each Rre .

For each eadge or arrow e, there’s a natural bilinear pairing from He × Rre to R: for
any h =

∑
µ hµµ in H , and u = (uµ)µ in Rre

h · u =
∑
µ

hµuµ

and this pairing naturally extends to He × Rr ignoring the other coordinates.
We can now state Theorem 4:

Theorem 4. For any rational point ξ∞ of EG(π)∞, there exist a splitting of π such that,
for any edge or arrow e, and any h in He,

h is in a vertex group ⇐⇒ h · ξ∞ = 0
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Proof. As stated earlier, this result is quite similar to the boundary-slope detection lemma
of Tillmann. However, the proof we present here is slightly different and uses a more
direct approach, using Lemma 2.1.3 to relate valuations on C[X(HG)] and C[E(HG)].

Let ξ∞ = ((uµ)µ∈Be)e∈E be a rational point of EH(π)∞. Since ξ∞ has rational coor-
dinates, there exist a positive integer r such that ((ruµ)µ)e are coprime integers. In other
words, for each µ, ruµ is an integer and there exist δµ in Z such that∑

e∈E

∑
µ∈Be

δµuµ = 1

By the curve-finding Lemma 2.1.6, ξ∞ is in the logarithmic limit set of a curve C in
EH(π). By the second description of the logarithmic limit set, ξ∞ corresponds to a nor-
malized valuation v on C[C] via uµ = −v(mµ). Renormalizing v with r gives a valuation
rv on C[C] such that

• each rv(mµ) is an integer

•
∏

e∈E
∏

µ∈Be rv(mµ
−δµ) = 1

so rv is a discrete rank 1 valuation on C[C].
The curve C in EG(π) ⊂ E(HG) lifts to X(π) in the following diagram

E(HG)
dG
��

X(π)
iG
∗
// X(HG)

(2.5)

and there exist a curve D in X(π) such that dG(C) = iG
∗D. The ring C[D] is a finitely

generated extension of C[C] and there exist a positive integer r′ and a discrete, rank 1
valuation w on C[D] such that w = r′rv on C[C].

Then, Culler-Shalen Theorem 1.2.3 produces a splitting of π with the property that, for
any γ in π, γ is contained in a vertex group if and only if w(Iγ) ≥ 0.

For any χ ∈ X(π) and ξ ∈ EG(π), if iG∗χ = dGξ then, for any e in E and h in He,

Ih(χ) = ξe
h + ξe

−h

It follows that, in the diagram

C[X(HG)]
iG∗ //

dG
∗

��

C[X(π)]

C[E(HG)]

(2.6)
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if h =
∑

µ hµµ ∈ H , we have the following identification:

Ih =
∏
µ

mµ
hµ +

∏
µ

mµ
−hµ

and therefore,
w(Ih) ≥ 0 ⇐⇒ r′rv(

∏
µ

mµ
hµ) = 0

In other words, h is in a vertex group if and only if

r′rv(
∏
µ

mµ
hµ) = 0

⇐⇒ v(
∏
µ

mµ
hµ) = 0

⇐⇒
∑
µ

hµv(mµ) = 0

⇐⇒ h · ξ∞ = 0

which concludes the proof of Theorem 4.

When applied to a graph with a single vertex and all the arrow groups are Z2, The-
orem 4 is essentially equivalent to Tillmann’s Lemma 11 of [Til05]. However, with this
extended generalization, theEG-variety procures more information, relating Culler-Shalen
splittings with the orginal structure of tree of groups. The edge elements detected by The-
orem 4 identify how the Culler-Shalen splitting traverses the original edge groups in G.

2.1.5 Application to torus splittings
Let ML be a link-manifold. By Proposition 1.3.7, a torus splitting of ML produces a

splitting of its fundamental group, over the dual tree G, where edge and arrow groups are
the fundamental groups of tori. We will apply here the results on abelian trees of groups to
such torus splittings of link-manifolds, all of which will be detailed in the next sections of
the chapter. In that case, we can also use the second part of Culler-Shalen construction to
produce essential surfaces, and, with Theorem 4, detect how such surfaces cross the edge
and arrow tori of G.

The link structure of ML gives a natural basis for π1T for each edge or arrow torus T ;
for each arrow torus, it is given by a meridian and a longitude, and fore each edge torus,
by longitudes of the two adjacent pieces. We fix a torus splitting G of ML and we will
denote by T the familyHG of edge and arrow groups of G.
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The basis give a canonical description of E(T ) as C∗2|T |. We denote the coordinates
in E(T ) by (mT , `T ) for arrow tori and (`T , `T ′) for edges v′

e
v corresponding to the

splicing T ′1T . The associated elements of C[E(T )] will be denoted by (mT , lT ) and

(lT , lT ′) respectively.

Remark 2.1.10. The elements mT and lT are invertible in C[E(T )].

The general diagram (2.5) takes the following form:

E(T )

dT
��

X(ML)
iT
∗
// X(T )

(2.9)

On each component E(T ) of E(T ), Z2 acts by inversion ξ → ξ−1, and for any torus T
and any ξ in E(T ), ∆∗ξ = ∆∗ξ

−1 in X(T ). By Proposition 2.1.4, EG(X) is stable under
the product action of Z2

|T | on E(T ):

Corollary 2.1.7. For any component X of X(ML), EG(X) is stable under the following
action of Z2

|T |: for any ε = (εT )T∈T in Z2
|T | ∼= {±1}|T |,

ε · (ξT )T∈T = (ξT
εT )T∈T

Now, the second part of Culler-Shalen construction, Proposition 1.2.4, will produce
essential surfaces in ML. Using Theorem 4, we can detect how they intersect the tori of
T .

First, let’s recall the construction of the projective lamination spacePL(T ) of a family
of tori T , defined in [Thu02]. We follow the construction made in [Hat82] for the special
case of tori.

For any torus T with a given basis, an oriented isotopy class of a closed curve on T
determines a pair of integers (p, q); forgetting orientation produces coordinates in Z2/±,
which is not (0, 0) if the curve doesn’t bound a disc on T .

Let T = {T1, . . . , Tm} be a collection of tori. A system of closed curves on each Ti,
not all bounding discs, produces a system of coordinates in (Z2/±)m \ {0}.

If we identify any such system C with any number of parallel copies of it, we obtain
coefficients in the space

((Z2/±)m \ {0})/〈v ∼ nv, n ∈ Z>0〉

This is the same as (Q2/±)m \ {0}/〈v ∼ rv, r ∈ Q>0〉 and taking the completion gives
the so-called projective lamination space:
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Definition 2.1.9. Let T = {T1, . . . , Tm} be a collection of tori. The projective lamination
space of T is the (2m− 1)-dimensional sphere:

PL(T ) = ((R2/±)m \ {0})/〈v ∼ rv〉 ∼= S2m−1/Z2
m

If T is a collection of tori in a 3-manifold N , any essential surface S in N defines a
curve system [S]T in PL(T ) whose coordinates are the intersection between S and each
torus T of T .

Back to a torus splitting G of ML, the logarithmic limit set of EG(ML) is a rational
polytope in the unit sphere of R2|T | with coordinates (uT , vT )T∈T . By the symmetry un-
der the Z2

|T |-action of Corollary 2.1.7, EH(ML)∞ is invariant under the Z2
|T |-action of

Remark 2.1.9:
ε · (uT , vT )T∈T = (εTuT , εTvT )T∈T

Therefore, any ξ∞ in EG(X)∞ defines a class [ξ∞] in S2m−1/Z2
m ∼= PL(T ).

Then, applying Theorem 4 with Culler-Shalen Proposition 1.2.4, we obtain the follow-
ing result:

Corollary 1. Let ML be a link-manifold with a torus splitting over G. For any point ξ∞ in
EG(ML)∞ with rational coordinates, there exist an essential surface in ML such that

[S]T = Φ([ξ∞])

where Φ is given by the diagonal of m blocks
[

0 1
−1 0

]
.

Remark 2.1.11. The operator Φ takes the orthogonal on each factor R2 corresponding to
each torus of T to obtain [S]T · (uT , vT ) = 0 as in Theorem 4. This is similar to the
situation encountered with knots where we have

logarithmic limit set ↔ normal to Newton polygon (see Remark 2.1.7)
boundary slopes ↔ edges of Newton polygon (see [CCG+94])

so, with this vocabulary we would have:

boundary slopes ↔ normal to logarithmic limit set

Proof. From a rational point ξ∞ of EG(ML)∞, Theorem 4 gives a splitting of π1ML where
elements of π1T that belong to vertex groups are orthogonal to (ξ∞)T .

Then, Culler-Shalen Proposition 1.2.4 produces an essential surface S inML such that,
for any piece W of ML \ S, Im(π1W → π1ML) is a vertex group.
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For any T in T , let δT = (pT , qT ) ∈ PL(T ) representing S ∩ T . There’s a parallel
of δT on T that belongs to a piece of ML \ S so δT belongs to a vertex group and, by
Theorem 4,

δT · (ξ∞)T = 0

If (ξ∞)T = (uT , vT ), δT ·(ξ∞)T = pTuT +qTvT so, up to projectivisation, this is equivalent
in PL(T ) to:

[S]T = (−vT , uT ) = Φ([(ξ∞)T ])

This is true on each torus T of T so, in PL(T ),

[S]T = Φ([ξ∞])

In the case of a tree with a single vertex, EG(ML) is the eigenvalue-variety as defined
by Tillmann in [Til02, Til05]. The graph G has only arrows and all the groups correspond
to boundary tori. The correponding E-variety will be called the peripheral eigenvalue-
variety and will be studied more thoroughly in the next section.

After that, we will study generic torus splitting and how Theorem 3 applies when all
edge and arrow groups are tori. We will see that, under contraction and bindings, the
peripheral eigenvalue-variety acts as a kind of terminal object, whereas, the JSJ tree
produces an algebraic space similar to an initial objects for the different EG-varieties of a
link-manifold ML.

2.2 Peripheral eigenvalue-variety
The application of Definition 2.1.5 to the trivial splitting of a 3-manifold gives the

eigenvalue-variety defined by Tillman in [Til02, Til05]. All the arrows correspond to
boundary tori, and we call it, here, the peripheral eigenvalue-variety of the link-manifold
ML.

Definition 2.2.1. Let ML be a link manifold. The eigenvalue-variety associated to the
trivial splitting of ML will be called the peripheral eigenvalue-variety of ML. It will be
denoted by E∂(ML).

Coordinates of E∂(ML) are given by the standard peripheral basis and will be denoted
by (mK , `K)K⊂L in C∗2|L|. We’ll denote by C[m, l] the coordinate ring of E(∂ML):

C[m, l] = C[(mK , lK)K⊂L]
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If L has only one component so it is a knot K, E∂(MK) is a curve in C∗2, the zero-set
of the so-called A-polynomial of the knot as defined by Cooper, Culler, Gillet, Long and
Shalen in [CCG+94]. For this reason, the ideals A∂(ML) and A∂(X), defining E∂(ML)
and E∂(X) for X in X(ML) (see Definition 2.1.7), will simply be denoted byA(ML) and
A(X); they are ideals of in the ring C[m, l], called the A-ideals of ML.

Most of the results of this section already appear, sometimes in a different form, in
Tillman’s work [Til02, Til05].

2.2.1 Component of reducible characters
Before giving more results on the peripheral eigenvalue-variety we can easily compute

the component corresponding to reducible characters.
LetEred

∂ (ML) denote the subsetE∂(Xred(ML)) ofE∂(ML) corresponding to reducible
characters of ML. Let Ared(ML) be the corresponding defining ideal.

For G = SL2C or PSL2C, reducible characters are characters of abelian represen-
tations: for any reducible character χ, there exist an upper-triangular representation ρ in
t−1χ; then, the diagonal of ρ defines a representation ρ′ and there existϕ in Hom(π1ML,C∗)
such that ρ′ = ∆ ◦ ϕ.

Therefore, Ered
∂ (ML) is isomorphic to E(H1(ML,Z)) ∼= C∗|L|. It is generated by

the images of the meridians and the equations for the longitudes are given by the linking
numbers of L:

Proposition 2. The component of reducible characters in the peripheral eigenvalue-variety
of a link-manifold ML is given by

Ared(ML) =

〈
lK −

∏
K′ 6=K

mK′
±lk(K,K′), K ⊂ L

〉
(2.2)

Proof. By equation 1.7 each longitude is given in H1(ML,Z) ∼=
⊕

K⊂L ZµK by

λK =
∑
K′ 6=K

lk(K,K ′)µK′

It follows that, for any ϕ in Hom(π1ML,C∗),

ϕ(λK) =
∏
K′ 6=K

ϕ(µK′)
lk(K,K′).

With theZ2
|L| action of Corollary 2.1.7, this gives the following equations inC[Ered

∂ (ML)]:

∀ K ⊂ L, lK =
∏
K′ 6=K

mK′
±lk(K,K′) (2.10)
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Conversely, any point ξ = (mK , `K)K⊂L ∈ E(∂ML) satisfying equation (2.10) may define
a morphism ϕ of Hom(π1ML,C∗) satisfying, on each component K,

ϕ(µK) = mK

and
ϕ(λK) = `K

so ∆∗ϕ is a reducible character of X(ML) with pre-image ξ. Therefore, the ideal defining
Ered
∂ (ML) is given by:

Ared(ML) =

〈
lK −

∏
K′ 6=K

mK′
±lk(K,K′), K ⊂ L

〉
(2.2)

Remark 2.2.1. Proposition 2 generalizes the fact that the A-polynomial of a knot in an
homology sphere always has a factor l− 1.

Then, a simple computation using the first description of the logarithmic-limit set (see
Definition 2.1.8) yields the following equations for Ered

∂ (ML)∞:

Corollary 2. The logarithmic limit set of Ered
∂ (ML) is the intersection in R2|L| of S2|L|−1

with the |L|-dimensional subspace defined by

∀ K ⊂ L, vK = ±
∑
K′ 6=K

lk(K ′, K)uK

From now on, we will try to focus on components ofE∂(ML) different fromEred
∂ (ML).

For a matter of convenience we define the following:

Definition 2.2.2. A component X in X(ML) is called peripherally non-abelian if

E∂(X) 6= Ered
∂ (ML)

Peripherally non-abelian components contain irreducible characters but the converse is
not always true. As the following two examples show, there exist link-manifolds ML and
irreducible characters χ in X(ML) such that

d∂
−1(i∂

∗χ) ⊂ Ered
∂ (ML)
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Example 2.2.2. Characters of X(ML) may be irreducible but still have pre-image in
Ered
∂ (ML). For example, if K is a knot in an integer-homology sphere M and the manifold

obtained by Dehn-filling along the longitude, MK(K : 0/1), admits irreducible charac-
ters. By the surgery relation, any irreducible representation of π1MK(K : 0/1) trivializes
the longitude. The inclusion MK ⊂MK(K : 0/1) yields an algebraic map

X(MK(K : 0/1))→ X(MK)

and any irreducible character of X(MK(K : 0/1)) produces an irreducible character χ
in X(MK) with

d∂
−1(i∂

∗χ) ⊂ Ered
∂ (MK)

Example 2.2.3. Let Un be the trivial link with n components in S3. The fundamental
group of S3

Un is the free group Fn so, if n ≥ 2, X(S3
Un) contains irreducible characters.

However, since all the longitudes are nullhomotope in S3
Un , they are trivial under any

representation of π1S3
Un . Therefore, although X(S3

Un) contains irreducible characters,

E∂(S3
Un) = Ered

∂ (S3
Un)

2.2.2 Dimensional bound, hyperbolic link-manifolds
Let ML be a link-manifold. Culler-Shalen theory on X(ML) produces essential in-

compressible ∂-incompressible surfaces. The points of PL(∂ML) corresponding to in-
tersections [S]∂ML

of essential incompressible ∂-incompressible surfaces in ML with its
boundary are called boundary slope of ML. The set of boundary slopes will be denoted by
BC(ML).

By Corollary 1, as in Tillmann’s Lemma 11 of [Til05], rational points of E∂(ML)
produce points in BC(ML). On the other hand, by Hatcher’s Theorem of [Hat82], the
closure of BC(ML) is a polyhedron with dimension at most |L| − 1 in PL(∂ML). Put
together with Bergman, Bieri-Groves Theorem 2.1.5, we obtain a dimensional bound for
the components of E∂(ML) in C∗2|L|:

Theorem 2.2.1. Let ML be a link-manifold. For any component X in X(ML),

dimE∂(X) ≤ |L|

This leads us to define the following:

Definition 2.2.3 (Peripherally maximal components). A component X of the character
variety X(ML) will be called peripherally maximal if dim E∂(X) = |L|.
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Remark 2.2.4. By Proposition 2, the components of E∂(ML) corresponding to reducible
characters are peripherally maximal.

Most of the following sections will be dedicated to answer the following question:

Question 1. For which link-manifolds ML does X(ML) admit peripherally maximal and
non-abelian components?

Remark 2.2.5. For knots, Question 1 is equivalent to whether the A-polynomial of a knot
admits a component different from l− 1. This is known to be true for non trivial knots in
S3 and has been proved by Dunfield-Garoufalidis in [DG04] and Boyer-Zhang in [BZ05].

Remark 2.2.6. The exterior of the trivial link S3
Un (see example 2.2.3) does not admit any

peripherally maximal and non-abelian component.

Hyperbolic knots were the first example for which non-triviality of the A-polynomial
was established. This was due to Thurston’s results on deformation of holonomy for hy-
perbolic manifolds with cusps (see [Thu02]). As observed by Tillman in [Til02, Til05],
this result remains true for hyperbolic link-manifolds.

Theorem 2.2.2. Let ML be a link-manifold admitting an hyperbolic structure and let χ0

be the character in X(ML) of a lift of the holonomy. Then the component X0 containing
χ0 (the geometric component) is peripherally maximal and non-abelian.

More precisely, for any family of coprime integers (pK , qK)K⊂L, the functions

(mK
pK lK

qK )K⊂L

are algebraically free in C[E∂(X0)].

Proof. The proof is quite similar to the one found in [Til05]. We follow the same idea,
using notations of [NZ85] which will use for the next Theorem 5.

Let ML be an hyperbolic link-manifold. Let (pK , qK)K⊂L be a family of coprime inte-
gers and γK = pKµK + qKλK the corresponding system of simple closed curves on ∂ML.
By Thurston’s results, there exists a local biholomorphism between a neighbourhood of
(0, . . . , 0) in C|L| and a neighbourhood of χ0 in X0. Moreover, let ν = (νK)K⊂L denote
Thurston’s local parameters and χν the associated character, for each boundary torus TK ,

IγK (χν) = 2cosh
νK
2

For each χν , let ξν = (mK , `K)K⊂L denote the corresponding point in E∂(X0), the defini-
tion of γK yields

mK
pK`K

qK = exp
νK
2
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Since ν are local parameters, this forces the functions (mK
pK lK

qK )K⊂L to be algebraically
free in C[E∂(X0)]. Therefore, X0 is peripherally maximal, and applying this to the longi-
tudinal system γK = λK shows that X0 is also peripherally non-abelian.

Boundary components of an hyperbolic link-manifold correspond to geometric cusps.
Neumann-Reid results on cusp-rigidity in [NR93] include a characterization of cusp-isolation
through deformation of the holonomy character. We recall the following definition of
[NR93]:

Definition 2.2.4. Let L+ t L− be a disjoint subset of cusps of a hyperbolic 3-manifold.
We say that L+ is strongly geometrically isolated from L− if, after performing any integral
Dehn-fillings allong geodesics (γK+)K+⊂L+ , any deformation on the cusps of L− leaves
the geometry of the γK+ invariant.

Then, using Theorem 4.3 of [NR93], we can give a characterization of strong geometric
isolation in terms of the variety E∂(X0).

Theorem 5. Let ML be a hyperbolic link-manifold and L+ t L− a partition of L.
Then L+ is strongly geometrically isolated from L− if and only if E∂(X0) splits as a

product E+ × E− with E+ in
∏

K⊂L+ E(TK) and E− in
∏

K⊂L− E(TK).

Proof. As stated before, the proof relies on Theorem 4.3 of [NR93] which relates strong
geometric isolation with Thurston’s deformation parameters of [Thu02]. More details can
be found in [NZ85] and we follow up with the same notation.

LetML be an hyperbolic link-manifold. As in the proof of Theorem 2.2.2 with pK/qK =
1/0, let ν = (νK)K⊂L denote local parameters around χ0 in X0 corresponding to the
meridian system (µK)K⊂L.

Thurston constructs holomorphic functions τK(ν) for each component K such that

• each τK(0, . . . , 0) is the modulus of TK in the geometry of ML

• for any character χν with parameters ν,

IµK (χν) = 2cosh
νK
2

IλK (χν) = 2cosh
νKτK(ν)

2

Then, as above, the corresponding point ξν = (mK , `K)K⊂L is given by

mK = exp
νK
2

`K = exp
νKτK(ν)

2
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Let L+ t L− be a partition of L, by Theorem 4.3 of [NR93], L+ is strongly geometri-
cally isolated from L− if and only if the functions τK for K in L+ only depend on νK for
K in L+. Since strong geometric isolation is symmetric (Theorem 3 of [NR93]), τK for K
in L− only depends on νK for K in L−. Therefore, around ξ0 = (1, 1, . . . , 1, 1), E∂(X0)

splits as a product in C∗2|L+|×C∗2|L−| and, by algebraicity, E∂(X0) is also a product.

2.2.3 Peripheral eigenvalue-variety and Dehn-fillings
Let L be a link in an integer-homology sphere M , and let K be a component of L, so

L = K t L0

For any integer q, the Dehn-filled manifoldML(K : 1/q) can be identified with the exterior
of a link Lq in the integer-homology sphere MK(1/q) (see Definitions 1.3.5 and 1.3.10).

Moreover, there is a natural inclusion

iq : ML →ML(K : 1/q)

which induces by Diagram (1.2) a regular map

iq
∗ : X(ML(K : 1/q))→ X(ML)

A component J of Lq can be identified with a component K ′ of L0, and the map iq
identifies the boundary of ML(K : 1/q) with (TK′)K′ 6=K in ∂ML. This enables to describe
a relation between the respective peripheral eigenvalue-varieties of ML and ML(K : 1/q).
LetH denote the boundary of ML and letHq denote the boundary of ML(K : 1/q), so

H = Hq t TK

and there are natural projections p that complete Diagram (2.5) into the following commu-
tative diagram:

X(ML(K : 1/q))
iq∗
//

i∂
∗

��

X(ML)

i∂
∗

��

X(Hq) X(H)
p

oo

E(Hq)

d∂

OO

E(H)p
oo

d∂

OO

(2.11)

By the surgery relation, for any χ in the image of iq∗ and for any ξ in E(H), if

d∂ξ = i∂
∗χ in X(H)
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then the coordinates of ξ at the component K satisfy

mK`K
q = 1

Let δq denote the regular function on E∂(ML) given by

δq = mK lK
q − 1

then, in the peripheral eigenvalue-variety of ML,

d∂
−1(i∂(Im(iq

∗))) ⊂ V (δq)

The new standard peripheral system is given by Proposition 1.3.4 and depends, for each
component J of Lq, on the linking number lk(J,K) in M . Moreover, by Remark 2.1.4,
this is reflected by a tropical action on the eigenvalue-variety. Joining all this together,
we obtain the following theorem for peripheral eigenvalue-varieties of Dehn-filled link-
manifolds:

Theorem 7. With these notations, for any link L = L0tK in an integer-homology sphere
M , and for any integer q,

E∂(ML(K : 1/q)) ⊂ Φq ? V (δq)

where V (δq) is the zero set of δq in E∂(ML), Φq is the projection p composed with the
self-map of E(Hq) given, on each factor E(TJ)J⊂Lq , by the 2× 2 block:[

1 0
q lk(J,K)2 1

]
and ? is the exponential action ofM2,2(Z) on C∗2 (see Definition 2.1.3).

Proof. Having set the notations, the proof is straightforward. By commutativity of Dia-
gram 2.11,

X(ML(K : 1/q))
iq∗
//

i∂
∗

��

X(ML)

i∂
∗

��

X(Hq) X(H)
p

oo

E(Hq)

d∂

OO

E(H)p
oo

d∂

OO

(2.11)
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the projection p : E(H)→ E(Hq) restricts to the respective eigenvalue-varieties:

p : E∂(ML) // // E∂(ML(K : 1/q))

For any representation ρ in R(ML(K : 1/q)), ρ(µKλK
q) = 1 and we denote by δq the

regular function of C[E∂(ML)]:

δq = mK lK
q − 1

so, as stated earlier, the surgery equation implies precisely that

p−1E∂(ML(K : 1/q)) ⊂ V (δq)

Now, for any J in Lq, let K ′ be the corresponding component of L0 in M . The coor-
dinates at J in E∂(ML(K : 1/q)) are (mJ , `J), given by the standard peripheral system
(µJ , λJ) of TJ in MK(1/q). On the other hand, in E∂(ML), the coordinates at K ′ are
(mK′ , `K′) given by (µK′ , λK′) on TK′ in M .

By Proposition 1.3.4, the two peripheral systems satisfy:

µJ = µK′

λJ = λK′ + q lk(K ′, K)2µK′

where lk(K ′, K) is the linking number of the components K and K ′ in M . Therefore,
since K ′ and J represent the same components of L, lk(K ′, K) = lk(J,K), and we
obtain the equation

mJ = mK′

`J = mK′
q lk(J,K)2

`K′

Let PJ denote the matrix

PJ =

[
1 0

q lk(J,K)2 1

]
we obtain the following equation on each factor E(TJ):[

mJ

`J

]
= PJ ?

[
mK′

`K′

]
Let Φq be the selfmap of E(Hq) equal to PJ? on each factor E(TJ); Φq changes the basis
according to the 1/q-Dehn-filling at TK and we finally obtain

E∂(ML(K : 1/q)) ⊂ Φq ? V (δq)

Remark 2.2.7. If the link is homologically trivial (all the linking numbers are 0, see Defi-
nition 1.3.11), Φq is just the projection on the remaining coordinates.
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2.2.4 Torus splittings and peripheral E-variety
Let ML be a link-manifold with a torus splitting tree G. Let V denote the set of ver-

tices of G, all the arrows of G are attached to some vertex v of V and all the edges v′ e v
correspond to splicing between components of Lv′ and Lv. This gives a relation between
EG(ML), E∂(ML) and the different peripheral eigenvalue-varieties of the vertex subman-
ifolds, E∂(M v

Lv) for v in V .

Proposition 3. For any torus splitting tree G of ML, there exist two maps in the following
diagram

EG(ML) �
� i∗ //

p
����

∏
v∈V E∂(M

v
Lv)

E∂(ML)

(2.3)

such that

• p is the projections induced by the inclusion of ∂ML as arrows in G

• for any point (ξv)v∈V in the image of i, and for any edge v′
e
v of G connecting

some components K ′ and K of Lv
′

and Lv, respectively, the corresponding coordi-
nates of (ξv),

(ξv
′
)K′ = (mK′ , `K′) and (ξv)K = (mK , `K)

satisfy the gluing condition:
mK = `K′
`K = mK′

(2.4)

Finally, for any (ξv) in
∏

v∈V E∂(M
v
Lv), such that, for any edge v′ e v ,

• equation (2.4) is satisfied,

• `K and `K′ are not both equal to ±1 (1 if working in PSL2C)

then there exist ξ in EG(ML) with i∗ξ = (ξv).

Proof. Let G be a splitting tree of a link-manifold ML. We will use Theorem 3 for two
specific binding decomposition of G that will give the result of Proposition 3. Those are
the two decompositions of G given by Definition 1.1.8 and Definition 1.1.9.

We use the notation of Section 1.1. Let ∗ be the tree with one vertex and the same
arrows as G as in Definition 1.1.8, G trivially decomposes as

G = (∗ �= G)
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and E∂(ML) is non other than the eigenvalue-variety associated to the trivial splitting ∗ of
ML. Therefore, Theorem 3 gives an epic algebraic map

p : EG(ML) // // E∂(ML)

On the other hand, let
−→
V = {−→v , v ∈ V} be the family of vertices of G with an arrow at

each v for each arrow or edge adjacent to v in G. Each E∂(M v
Lv) is the eigenvalue-variety

associated to the tree (−→v )v∈V and the identical binding decomposition (Definition 1.1.9))
of G gives

G = (G �=
−→
V )

Then, Theorem 3 gives a monic algebraic map

i : EH(ML) �
�

//
∏

v∈V E∂(M
v
Lv)

so we obtain diagram 2.3:

EH(ML) �
� i∗ //

p
����

∏
v∈V E∂(M

v
Lv)

E∂(ML)

(2.3)

which gives the first part of Proposition 3.
The rest, is, again, a consequence of Theorem 3 in the special case of link-manifolds

and torus splittings.

In other words for any link-manifold ML, and any splitting tree G, the associated
eigenvalue-variety projects onto the peripheral eigenvalue-variety and is contained in the
product of the peripheral eigenvalue-varieties of each vertex. This makes E∂(ML) act like
a terminal objects for all the EG-varieties of ML associated to torus splittings G.

2.3 E-varieties associated to non-trivial splittings

Finally, we conclude this chapter with few considerations on eigenvalue-varieties of
link-manifolds associated to non-trivial torus splittings.
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2.3.1 Generic splittings
Let ML be a link-manifold with a splitting tree G; as seen in Section 2.2, EG(ML)

always surjects onto the peripheral eigenvalue-variety. Moreover, as in Corollary 1, coor-
dinates corresponding to internal edges give, in the logarithmic limit set, intersections of
essential surfaces with internal tori in ML.

Besides that, as in Proposition 3, Theorem 3 takes a special form for torus splittings of
link-manifolds.

Let (G/Γ
�= Γ) be a binding decomposition of G. For any vertex v of V/Γ

, Γv is a
subtree of G, giving a torus splitting of a link-manifold MΓv

LΓv embedded in ML.
With these notations, Theorem 3 produces the following corollary:

Corollary 3. For any binding decomposition (G/Γ
�= Γ) of G, there exist two maps:

EG(ML) �
� iΓ //

p

����

∏
v∈V/Γ

EΓv(M
Γv
LΓv )

EG/Γ (ML)

(2.12)

such that p is the projection on the corresponding factors of E/Γ
⊂ E and, for any edge

v′ e v of G/Γ
, if e corresponds to the splicing a′1a

e
for arrows a′ and a of Γv′ and Γv,

mKa = `Ka′
`Ka = mKa′

(2.13)

where Ka′ and Ka are the corresponding components of LΓv′ and LΓv .
Finally, let (ξv)v∈V/Γ be a point of

∏
v∈V/Γ

EΓv(M
Γv
LΓv ). If, for any edge v′

e
v of

G/Γ
with a′1a

e
as above, Equation (2.13) is satisfied, and not both `Ka and `Ka′ are trivial,

then (ξv) is in the image of iΓ.

Proof. This is just an application of Theorem 3, using the special coordinates given by the
meridian-longitude systems of the underlying link-manifolds as in the proof of Proposi-
tion 3.

2.3.2 JSJ(∂)-eigenvalue-variety
Finally, if ML is a link-manifold, the family of JSJ tori provides another canonical

family of embedded tori in ML.
Let J denote the family of JSJ tori of ML, and GJ the corresponding splitting tree

(with all the arrows); we also denote by G0
J the graph GJ without any arrow.
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Definition 2.3.1. The eigenvalue-variety EG0
J

(ML) is called the JSJ-eigenvalue-variety

of ML and denoted by EJ (ML). It has natural coordinates in C∗2|J |, given by (λ, λ′) for
each edge v′

e
v in the JSJ-dual graph of ML.

As the peripheral eigenvalue-variety detects boundary slopes of ML, the logarithmic
limit set of EG0

J
(ML) contains information on how Culler-Shalen essential surfaces inter-

sect the JSJ-tori, i.e. how they cross from one JSJ-piece to another.
Now, if we consider the full JSJ-dual graph GJ the corresponding eigenvalue-variety

contains informations from both E∂(ML) and EJ (ML).

Definition 2.3.2. The eigenvalue-variety EGJ (ML) will be denoted by EJ+∂(ML) and
called the JSJ-peripheral (or JSJ∂) eigenvalue-variety ofML. It has natural coordinates
in C∗2|J |+2|L|.

By Proposition 3 applied to GJ , there’s a monic algebraic map

EJ+∂(ML) �
�

//
∏

v∈V E∂(M
v
Lv)

where each M v
Lv is either hyperbolic or Seifert-fibred.

In Chapter 4, we will study the case where all the pieces are Seifert-fibred (so ML is
a graph manifold). Using a combinatorial description of Seifert-fibred link-manifolds, we
can describe eachE∂(M v

Lv) and then, use the gluing criterion of Proposition 3 to describe
some components of E∂(ML).

In the opposite case where all the pieces are hyperbolic, any essential torus in the
interior of ML can be isotoped to a torus of J . It follows that, for any splitting tree G of
ML, there exist a collection Γ of subtrees of GJ such that GJ = (G �= Γ). Therefore,
applying Corollary 3, we get:

Proposition 4. Let ML be a link-manifold with all its JSJ pieces hyperbolic. For any
splitting tree G ofML, the associated eigenvalue-varietyEG(ML) admits an epic algebraic
map

p : EJ+∂(ML) // // EG(ML)

So, in the same way as generic eigenvalue-varieties surject onto the peripheral eigenvalue-
variety (see Proposition 3), in that case, the JSJ∂ eigenvalue-variety surjects onto generic
eigenvalue-varieties and acts as an initial object for the different EG varieties of the link-
manifold ML.
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Chapter 3

Eigenvalue-variety of Brunnian links

In this chapter, we give an answer to Question 1 for Brunnian links in S3. The main
result here is the following Theorem 1 that will be proved at the end of the chapter:

Theorem 1. Let L be a Brunnian link in S3 and let M denote its exterior, then XSL2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

The proof of this Theorem relies on the same arguments as Boyer-Zhang and Dunfield-
Garoufalids proofs of the non-triviality of the A-polynomial of a knot in [BZ05] and
[DG04] respectively. With a deep analysis of the peripheral eigenvalue-variety of Brun-
nian links in S3 and Dehn-fillings on such links, we show that sufficiently many Dehn-
fillings on the link exterior admit irreducible characters, and that these characters span a
top-dimensional component of irreducible characters in the peripheral eigenvalue-variety.

First, we start recalling the definition of a Brunnian link in S3 and review some few
properties. We recall some stability properties under Dehn-fillings using [MS01] and sim-
ilar properties under splicing are deduced using [EN85].

Most Brunnian links are homologically trivial (see Definition 1.3.11) and the proof
of Theorem 1 is slightly easier in this case. It is studied first and we define a particular
subset XKM of the character variety of the link exterior, using suitable Dehn-fillings and
Kronheimer-Mrowka Theorem of [KM04].

We obtain the following result for homologically trivial Brunnian links:

Theorem 8. Let L be a non trivial HTB-link andM its exterior. The family of longitudinal
trace (IλK )K⊂L is algebraically free in C[XKM ].

In particular, this implies the existence of a peripherally maximal and non-abelian
component in XKM for homologically trivial brunnian links.

61
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The case of Brunnian 2-links with nonzero linking number is taken care of with a simi-
lar argument; we prove that, besisdes the Hopf-link, all these links also admit peripherally
maximal non-abelian components so we finally obtain Theorem 1.

We finally close this chapter with few considerations on non-trivial splittings. Using
the stability of Brunnian links in S3 under splicing we can form new links over Brun-
nian trees. We briefly outline how the use of Proposition 3 might enable to describe the
E-varieties obtained for those links. The same ideas, will be used in the next chapter to
describe E-varieties of graph link-manifolds.

In all this chapter, M denotes the exterior of a Brunnian link in S3.

3.1 Brunnian links in S3

Let L be a link in S3 with exterior M . If K is an unknotted component of L, the Dehn-
filling of S3

K with slope 1/q is still S3. Therefore, as in Proposition 1.3.4, if L = K tL0,
M(K : 1/q) identifies with the exterior of a link Lq in S3.

By Proposition 1.3.5, homologically trivial links are stable under such Dehn-fillings.
As the following theorem shows, even if all the components are unknotted, a 1/q-surgery
on a component generally turns the other components into non-trivial knots:

Theorem 3.1.1 (Theorem 3.1 in [Mat92]). Let L = {K, J} be a link in S3, K a knot, D
an essential disk with J = ∂D. There exists an integer n such that the exterior of the knot
J(K; 1/n) remains boundary-compressible after 1/n Dehn surgery on K if and only if K
is the trivial knot in S3 and L is one of the two links L1 or L2 of figure 3.1. Moreover, for
L1, J(K : 1/n) remains trivial for every n, and for L2, only the knot J(K : 1) is trivial.

(a) L1 (b) L2

Figure 3.1 – Forbidden links
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An other 1/q-Dehn-filling would then produce a non-trivial integer-homology sphere
and escape the scope of links in S3. In order to remain in the standard 3-sphere we will
need some additional property on the link:

Definition 3.1.1. A link L in S3 is Brunnian if any proper sublink of L is trivial.

Remark 3.1.1. Any knot is considered Brunnian; for links with more components we have:

• the components of a Brunnian link with 2 components or more are individually
unknotted.

• any Brunnian link with 3 or more components is homologically trivial.

We intend to use Dehn surgeries on exteriors of Brunnian links to produce irreducible
characters; the following section recalls some results of Mangum ans Stanford in [MS01]
that will enable us to use Kronheimer-Mrowka Theorem in Section 3.2.2.

3.1.1 Dehn-fillings on Brunnian links
If L is the trivial link, any 1/q-surgery produces the trivial link again. We can use this

to show that the family of Brunnian links is stable under 1/q-Dehn-fillings:

Lemma 3.1.2. Let L be a Brunnian link with 2 components or more. For any component
K ⊂ L and for any q in Z, the link Lq obtained by 1/q-Dehn-filling along K is also
Brunnian.

Proof. If L has two components Lq is a knot in S3 and there’s nothing to prove.
Let L = KtL0 be a link such that L0 has at least two components; then L is HT so the

peripheral systems are unchanged by the surgery. It follows that, for any K ′ in Lq ∼= L0,

M(K : 1/q)(K ′ : 1/0) = M(K ′ : 1/0)(K : 1/q)

Since L is Brunnian, M(K ′ : 1/0) is the trivial link and, therefore, so is M(K ′ : 1/0)(K :
1/q). In other words, removing any component K ′ of Lq produces the trivial link, so Lq is
Brunnian.

In [MS01], Mangum and Stanford studied when Dehn-fillings on a Brunnian link can
produce the trivial link. To keep the peripheral systems unchanged they restrict themselves
to links that are both Brunnian and homologically trivial, discarding links with 2 unknotted
components and non-zero linking number.

Definition 3.1.2 (HTB links). A link L in S3 is HTB if it is both homologically trivial and
Brunnian.
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Then, combining Proposition 1.3.5 and Lemma 3.1.2, we obtain the following stability
lemma for HTB-links:

Lemma 3.1.3. Let L be an HTB-link. For any component K of L and q in Z, the link Lq
obtained by 1/q-Dehn-filling along K is also HTB.

This stability is used in [MS01] to prove the following theorem about Dehn-fillings on
HTB-links:

Theorem 3.1.4 (Theorem 2 in [MS01]). LetL be an n-components HTB-link with exterior
M . Suppose that there exist slopes ri = pi/qi, with qi 6= 0 for all i, and such that
M(r1, . . . , rn) = S3. Then L is trivial.

As explained in [MS01], this result implies that non-trivial 1/q Dehn-fillings on non-
trivial HTB-links can never produce the trivial link:

Corollary 3.1.5. Let L be a non-trivial HTB-link with 2 components or more. For any
component K of L and for any integer q 6= 0, the link Lq obtained by 1/q-Dehn-filling
along K is a non-trivial HTB-link.

Proof. As explained in [MS01], ifM(∗, . . . , ∗, 1/q) is the trivial link, thenM(1, . . . , 1, 1/q)
is S3 so, by Theorem 3.1.4, L must be trivial.

Remark 3.1.2. For 2-components links, this corollary is a particular case of the more gen-
eral Theorem 3.1.1 of Mathieu cited earlier.

3.1.2 Splicing of Brunnian links
LetK andK ′ be two unknots in S3, then the splicing S3 K1K′ S3 is again S3. It follows

that if L = L0 tK and L′ = L′0 tK ′ are two links in S3 with unknotted components K
and K ′, S3

L0
K1K′ S3

L′0
identifies with the exterior of a link L? in S3. This is a special

case of splicing link-manifolds (see Definition 1.3.8) and the link L? will be denoted by
L0

K1K′ L′0.
As explained in [EN85], if L is the trivial link or the Hopf link, the splicing takes

special forms:

Lemma 3.1.6. Let L = L0 tK and L′ = L′0 tK ′ be two links in S3.

• If L′ is the unknot (so L′0 = ∅), L0
K1K′ L′0 = L0.

• If L′ is the Hopf link (see Figure 3.2), L0
K1K′ L′0 = L.
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Figure 3.2 – The Hopf link

• If L′ is the trivial link (so L′0 is also trivial), L0
K1K′ L′0 = L0 t L′0.

Proof. We give a rapid sketch of the proof; details can be found in [EN85].
Splicing with the unknot is equivalent to filling the component along the meridian,

hence removing the component.
In the Hopf-link, each meridian is a longitude for the other component. Therefore,

splicing a component of L with the Hopf-link just leaves L unchanged.
Finally, if L′ is the trivial link, S3

L0
K1K′ S3

L′0
is the connected sum of S3

L0
K1K′ S3

and S3
L′0

which is simply the exterior of L0 t L′0.

Proposition 3.1.7. For any Brunnian links L = K t L0 and L′ = K ′ t L′0 in S3, the link
L0

K1K′ L′0 is also Brunnian.

Proof. Let L = K t L0 and L′ = K ′ t L′0 be two Brunnian links in S3 and let L? be the
result of the splicing L0

K1K′ L′0.

Let J be a component of L?. By Lemma 3.1.6, the link L? \ J is the result of splicing
L? with the unknot along J . Any component J of L?, identifies with a component of L0

or L′0; without loss of generality we may assume that J is a component of L0.
Since the splicing is associative, this is equivalent to splicing L with the unknot along

J and, then, splicing the resulting link with L′, along K and K ′. Because L is Brunnian,
the result of the first splicing is the trivial link, and by Lemma 3.1.6, the result of the
second splicing is again the trivial link in S3.

In other words, forgetting any component of L? produces the trivial link so any strict
sublink of L? is trivial and L? is Brunnian.

In the next section, we will prove Theorem 8. The statement of this theorem is quite
similar to Theorem 2.2.2 on the character variety of hyperbolic link-manifolds. However,
Proposition 3.1.7 shows that not all Brunnian links are hyperbolic and Theorem 8 also
applies for manifolds with non-trivial JSJ-decomposition.
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3.2 A peripherally maximal component for HTB-links
In this section, L denotes a non-trivial HTB-link and M its exterior.

3.2.1 Reducible characters of HTB-links
By Proposition 2 of Section 3.3.1, the peripheral eigenvalue-variety of the exterior of

a HTB-link is particularly simple:

Proposition 3.2.1. LetL be a HTB-link in S3 andM it exterior; the peripheral eigenvalue-
variety of reducible characters is given in C[m, l] by:

Ared
∂ (M) = 〈lK − 1, K ⊂ L〉

Proof. All the linking numbers are 0.

In particular, any component inX(M) on which IλK is not constant for some longitude
λK will be peripherally non-abelian.

There’s not much more to say about the reducible characters of HTB-links and we will
now focus on irreducible characters.

3.2.2 Kronheimer-Mrowka characters
First, let’s recall Kronheimer-Mrowka Theorem of [KM04].

Theorem 3.2.2 (Kronheimer-Mrowka Theorem, [KM04]). Let K be a non-trivial knot in
S3, and let Yr be the 3-manifold obtained by Dehn surgery on K with surgery-coefficient
r ∈ Q. If |r| ≤ 2, then π1Yr is not cyclic. In fact, there is a homomorphism ρ : π1Yr →
SU2 with non-cyclic image.

Remark 3.2.1. As explained in [DG04], the representation ρ obtained this way is irre-
ducible.

By Section 3.1.1, non-trivial 1/q-Dehn-fillings on non trivial HTB-links produce non-
trivial HTB-links with the peripheral system unchanged. Repeating this process on all but
one components produces a non-trivial knot on which we can use Kronheimer-Mrowka
Theorem to produce irreducible representations:

Corollary 3.2.3. Let L be a non trivial HTB-link in S3 and let M denote its exterior. For
any family of integers q = (qK)K⊂L in Z|L|, let Mq denote the homology sphere obtained
by 1/qK Dehn-filling on each boundary TK . Then,
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• if qK = 0 for some K in L, Mq = S3

• otherwise, there exist an irreducible representation

ρq : π1Mq → SU2.

For any q in (Z \ {0})|L|, Corollary 3.2.3 provides an irreducible representation ρq
in Hom(π1Mq, SU2) whose restriction to π1M is an irreducible representation of R(M)

(considering SU2 ⊂ SL2C). We denote by χq the corresponding character in X irr(M).

Definition 3.2.1 (Kronheimer-Mrowka character). Any such χq is called a Kronheimer-
Mrowka character of M .

We now consider all the possible Kronheimer-Mrowka characters:

Definition 3.2.2 (Kronheimer-Mrowka components). Let M denote the exterior of a non-
trivial HTB-link L in S3; the Kronheimer-Mrowka components of M in X(M), denoted
by XKM , is the Zariski closure in X(M) of the set of Kronheimer-Mrowka characters:

XKM = {χq, q ∈ (Z \ {0})L} ⊂ X(M).

Remark 3.2.2. The space of Kronheimer-Mrowka characters XKM may contain more than
one algebraic component.

For any sublink L′ of L and for any q in (Z \ {0})|L′| let Mq denote the manifold
obtained by Dehn-fillings along L′ with slopes 1/q. It is the exterior of a non-trivial
Brunnian link in S3 and the natural inclusion

M ↪→Mq

induces an algebraic map on the representation and character varieties with the following
commutative diagram:

R(Mq)

t
��

// R(M)

t

��

X(Mq) // X(M)

(3.1)

Therefore, the Kronheimer-Mrowka components ofM contain all the Kronheimer-Mrowka
components XKM(Mq) for any sublink L′ of L and coefficients (qK)K⊂L′ in (Z\{0})|L′|.
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3.2.3 Peripheral maximality
In [BZ05] and [DG04], Boyer-Zhang and Dunfield-Garoufalidis, respectively, use

Kronheimer-Mrowka Theorem to prove that theA-polynomial detects the unknot. Follow-
ing the same ideas, we will use Corollary 3.2.3 to show that for any non trivial HTB-link,
the Kronheimer-Mrowka set of characters XKM contains peripherally maximal and non-
abelian component. More precisely we will show that there is a component X0 of XKM

such that the family (IλK )K⊂L is algebraically free in C[X0]. To achieve this, we will need
the following lemma which will allow us to separate the different Kronheimer-Mrowka
characters.

Lemma 2. For any Kronheimer-Mrowka character χq and for any component K of L,
IµK (χ), IλKqK (χ), and IλK (χ) are not ±2.

Proof. Let χq be a Kronheimer-Mrowka character and ρ an irreducible representation of
π1M to SU2 with character χq.

If IλK (χ) = ±2, IλKp(χ) = ±2 for any integer p so IλKqK (χ) = ±2. Moreover, the
only parabolic elements of SU2 are ±Id so, if IλqKK (χ) = ±2, ρ(λK)qK = ±Id so, by the
surgery relation, ρ(µK) = ±Id and IµK (χ) = ±2.

Therefore, if IµK (χ) is not equal to ±2, then neither are IλKqK (χ) and IλK (χ).
Finally, let’s assume that IµK (χ) = ±2, so ρ(µK) = ±Id. Then, modulo ±Id, ρ fac-

tors through the surgeries (TK : 1/0) and (TJ : 1/qJ) for J 6= K. By Corollary 3.2.3, the
latter surgery instructions on M produce S3 so ρ must be trivial modulo ±Id. Therefore,
ρ(π1Mq) ⊂ {±Id} and ρ cannot be irreducible, a contradiction.

Therefore, trρ(µK) 6= ±2 for all components K of L. Since ρ factors through the
surgery (TK : 1/qK), ρ(µK) = ρ(λK)−qK so trρ(λqKK ) = trρ(µK) is also different from
±2. If IλK (χ) = ±2, then so does IλpK for any integer p, so IλK (χ) is also different from
±2.

This lemma will allow us to prove the following Theorem 8:

Theorem 8. Let L be a non trivial HTB-link andM its exterior. The family of longitudinal
trace (IλK )K⊂L is algebraically free in C[XKM ].

Proof. We will show that, if Iλ denotes the longitudinal map from X(M) to C|L|:

Iλ : X(M) → C|L|
χ → (Iλk(χ))k⊂L

then Iλ(XKM) = C|L| so (IλK )K⊂L is algebraically free in C[XKM ].
We will prove Theorem 8 by induction on the number of components of L. The idea is

to construct infinitely many subspaces of XKM which project on different hypersurfaces
by Iλ.
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Base case For links with one component, knots, the proof is essentially equivalent to
the ones found in [DG04] and [BZ05] to prove that the A-polynomial distinguishes the
unknot. Since the same ideas will be used for the induction step, we re-present this proof
here. The fundamental idea in [DG04] and [BZ05] is the same, but the technics to separate
the Kronheimer-Mrowka characters differ slightly; we use here the Boyer-Zhang point-of-
view which will be more easily adaptable to the induction step.

Let K be a non trivial knot in S3. Let M denote the exterior of K with boundary T
and peripheral system (µ, λ). For any q in Z, let Mq denote the homology sphere obtained
by 1/q surgery on T . By Kronheimer Mrowka’s theorem, for any q 6= 0, there exist an
irreducible representation

ρq : π1Mq → SU2.

Let χq denote the character of ρq in X(M). We will show the following lemma:

Lemma 3.2.4. Iλ takes infinitely many values on {χq, q ∈ Z \ {0}}.

Proof of Lemma 3.2.4. For any q 6= 0, let χq denote a Kronheimer-Mrowka character of
M with surgery instruction 1/q. By Lemma 2, IλK (χq) 6= ±2 so for any irreducible
representation ρq in t−1χq, ρq(λ) is diagonalizable so, up to conjugation:

ρq(λ) =

[
`q 0
0 `q

−1

]
and, by the surgery relation,

ρq(µ) =

[
`q
−q 0
0 `q

q

]
For any q 6= 0, the set

{p ∈ Z | Iλp(χq) = ±2} = {p ∈ Z | `qp = ±1}.

is an ideal dqZ, dq ≥ 0.
For any q, q′ > 0, if Iλ(χq) = Iλ(χq′) then, ρq satisfies both surgery relations so

ρq(µλ
q) = Id = ρq(µλ

q′)

and, ρq(λ)(q′−q) = Id. Therefore,

Iλ(χq) = Iλ(χq′) =⇒ q′ − q ∈ dqZ. (3.2)

For any q 6= 0, Lemma 2 implies that 1 (and q) is not in dqZ so dq 6= 1. Moreover, for
any q such that dq = 0, we have:

∀ q′ 6= q, Iλ(χq) 6= Iλ(χq′).
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If the set {q ∈ Z | dq = 0} is infinite, Iλ takes infinitely many values on {χq, q ∈ Z} and
Lemma 3.2.4 is proved.

Otherwise, there exist N such that for any q ≥ N , dq ≥ 2. Let (qi)i∈N denote a family
of integers such that

• q0 ≥ N

• for any j in N, qj+1 ≥ qj and qj+1 ∈
⋂j
i=1 dqjZ.

Then, the following fact concludes the proof of Lemma 3.2.4:

∀ i < j, Iλ(χqi) 6= Iλ(χqj).

Indeed, for any j in N, let’s assume that Iλ(χqi) = Iλ(χqj) for some i < j. By equation
(3.2), this would imply that qj − qi ∈ dqiZ; by construction, qj ∈ dqiZ so this would imply
qi ∈ dqiZ, a contradiction.

Since Iλ takes infintely many values on XKM , it contains a curve on which Iλ is non-
constant, which concludes the base case for the proof of Theorem 8.

Induction step Now, let L be a non trivial HTB-link, and let’s assume that Theorem 8
is true for all non trivial HTB-links with |L| − 1 components; we denote its exterior by M
and ∂M by the collection of tori (TJ)J⊂L.

Let K be a component of L so L = K t L0; for any q 6= 0, Mq = M(TK : 1/q) is the
exterior of a non-trivial HTB-link with |L0| = |L| − 1 components, while M0 = M(TK :
1/0) is the (|L| − 1)-trivial link in S3.

For any q 6= 0, we have the following commutative diagram of algebraic maps:

X(Mq)
i∗q
//

IλL0
��

X(M)

Iλ
��

C|L|−1 C|L|oo

(3.3)

where IλL0
is the map (IλJ )J 6=K so Iλ = (IλL0

, IλK ). We can apply the induction hypoth-
esis to Mq and find a component Xq of XKM(Mq) on which IλL0

is an open map. We
identify Xq with its image in X(M).

For any q in Z \ {0}, the family (IλJ )J⊂L0 is algebraically free in C[Xq] so Iλ(Xq)
contains an hypersurface Hq. We will show the the collection (Hq)q 6=0 contains infinitely
many different hypersurfaces.
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As for the base case, for q 6= 0 we define the ideal of Z :

{p ∈ Z | IλpK |Xq ≡ ±2} = dqZ.

For any Kronheimer-Mrowka character χ ofMq, IλK (χ) and IλqK (χ) are different from±2
by Lemma 2 so 1 and q are not in dqZ.

As for the base case, the family (dq)q 6=0 permits to distinguish the different hypersur-
faces Hq:

Lemma 3.2.5. For any q, q′ in Z \ {0},

Hq ⊂ Hq′ =⇒ q − q′ ∈ dqZ.

Proof of Lemma 3.2.5. For any q in Z \ {0}, IµKλqK |Xq = 2.
Assume that Hq ⊂ Hq′ , then, up to restriction to a Zariski-dense set, for any χ in Xq,

Iλ(χ) = Iλ(χ
′) for some χ′ inXq′ . Since IλK determines completely χ on TK , this implies

that IµKλqK (χ) = ±2 = I
µKλ

q′
K

(χ). Therefore, since the triple

IµKλqK (χ), I
µKλ

q′
K

(χ), I
λ

(q−q′)
K

(χ)

satisfies the relation
X2 + Y 2 + Z2 −XY Z − 4 = 0

we have, then, I
λ

(q−q′)
K

(χ) = ±2.
This is true on a Zariski-dense set of Xq so, by algebraicity, q − q′ ∈ dqZ.

The end of the proof is the same as for the base case. We construct a family (Hq)q∈Q⊂Z\{0}
of infinitely many distinct hypersurfaces of Iλ(X(M)) so, by algebraicity, Iλ(X(M)) is
Zariski-dense in C|L|.

For any q 6= 0, if dq = 0 then Hq 6= Hq′ for all q′. Therefore, if dq = 0 for infinitely
many q, (Hq)q 6=0 contains infinitely many different hypersurfaces.

Otherwise, there exist N in N such that dq ≥ 2 for q ≥ N . Let (qi)i∈N be a family
integers such that

• q0 ≥ N

• for any j in N, qj+1 ≥ qj and qj+1 ∈
⋂j
i=1 dqj .

The same argument as in the base case shows that, for i < j, Hqi 6= Hqj . Therefore,
(Hqi)i∈N is a family of infinite many distinct hypersurfaces in Iλ(X(M)).

Finally, Iλ(X(M)) contains infinitely many distinct hypersufaces, so, by algebraicity,
it must be all C|L|; therefore, the functions (IλK )K⊂L are algebraically free on C[XKM ],
which concludes the induction step of Theorem 8.
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Corollary 4. The Kronheimer-Mrowka component of a non-trivial HTB-link is peripher-
ally maximal and non-abelian.

Proof. Each lK satisfies lK + lK
−1 = IλK so, if the functions (IλK )K⊂L are algebraically

free on a component X0 of XKM , the family (lK)K⊂L is algebraically free on C[E∂(X0)].

3.3 Brunnian 2-links with nonzero linking number
In this section L = K tK ′ is a Brunnian 2-link in S3 with linking number α 6= 0 and

M is its exterior.

3.3.1 Reducible characters
As before, the component of reducible characters in the peripheral eigenvalue-variety

is given by Proposition 2. In the special case of a link of a 2-link with nonzero linking
number α we have:

Proposition 3.3.1. The peripheral eigenvalue-variety of reducible characters is given in
C∗4 by

Ared(M)∂ = 〈l−m′
α
, l′ −mα〉 × 〈lm′α − 1, l′mα − 1〉

This will be enough to detect peripherally non-abelian components of the character
variety.

3.3.2 Another peripherally maximal component
For two-components Brunnian links with non-zero linking number the peripheral sys-

tem is changed after 1/q-Dehn-filling and Corollary 3.2.3 doesn’t apply. Moreover, the
Hopf link is a Brunnian 2-link but its exterior has abelian fundamental group and therefore
admits no irreducible character. However, by Mathieu’s Theorem 3.1.1, besides the Hopf
link, for |q| > 1, a 1/q-Dehn-filling always produces a non-trivial knot in S3.

Let L = K t K ′ be a Brunnian link with linking number α 6= 0, exterior M , and
peripheral system (µ, λ), (µ′, λ′). After 1/q-Dehn-filling along TK′ , K becomes a knot
Kq and the new longitude for Kq is λq = λ + qα2µ (see Proposition 1.3.4). To apply
Kronheimer-Mrowka Theorem on Kq, we have to use the new peripheral system. More-
over, Dehn-filling on both components now depends on the order of the surgeries on the
boundary tori.



3.3. BRUNNIAN 2-LINKS WITH NONZERO LINKING NUMBER 73

Let Mq denote the exterior of Kq. We cannot exactly apply the ideas of Theorem 8,
however, considering the peripheral trace maps in C4 and C2 respectively:

I∂M : X(M) → C4

χ → (Iµ(χ), Iλ(χ), Iµ′(χ), Iλ′(χ))

I∂Mq : X(Mq) → C2

χ → (Iµ(χ), Iλ(χ))

we obtain the following commutative diagram

X(Mq)
iq∗
//

I∂Mq
��

X(M)

I∂M
��

C2 C4oo

(3.4)

and we get:

Lemma 3.3.2. For any |q| > 1 there is a curve of irreducible characters C ′q in X(Mq)

such that I∂Mq(C
′
q) is a curve D′q in C2

Proof. For any q in Z\{−1, 0, 1}, Mq is the exterior of a non trivial knot in S3 and there is
a curve C ′q inX irr(Mq) on which Iλq is open. For any character χ of C ′q with Iλq(χ) 6= ±2,
there exist `q and m in C∗ such that

• Iλq(χ) = `q + `q
−1

• Iµ(χ) = m+m−1

and, since λq = λ+ qα2µ, then

Iλ(χ) = `qm
−qα2

+ `q
−1mqα2

so the image of C ′q by I∂Mq is also a curve D′q in C2.

The closure of iq∗C ′q contains a curve Cq in X(M) such that I∂M(Cq) is a curve Dq

in C4 whose projection on the first two coordinates is D′q. Characters of Cq satisfy the
surgery relation so Iµ′λ′q |Cq ≡ 2 and, as in the HTB case, we can define

{p ∈ Z \ {−1, 0, 1} | Iλ′p|Cq ≡ ±2} = dqZ.



74 CHAPTER 3. EIGENVALUE-VARIETY OF BRUNNIAN LINKS

Then, as before, q 6∈ dqZ and, for q, q′ in Z, Dq = Dq′ , implies that q − q′ ∈ dqZ. As
in the induction step of the proof of Theorem 8, we can construct an infinite family of
distinct curves in I∂M(X(M)) so there must be a component of irreducible characters
whose image by I∂M has dimension 2 in C4.

Therefore, E∂(M) admits a component of dimension 2, different from Ered
∂ (M), so

we have:

Lemma 3. Except for the Hopf-link, the character variety of a Brunnian 2-links with
nonzero linking numbers admit a peripherally maximal and non-abelian component.

In conclusion, we have the following theorem for Brunnian links in S3:

Theorem 1. Let L be a Brunnian link in S3 and let M denote its exterior, then XSL2C(M)
admits a peripherally maximal and non-abelian component if and only if L is neither the
trivial link or the Hopf-link.

Proof. The exteriors of the unknot and the Hopf-link don’t admit any irreducible charac-
ters so all the characters are peripherally abelian.

The exterior of the n-trivial link with n ≥ 2 is the free group with n generators. In that
case, π1M admits irreducible characters but, since the longitudes are nullhomotope, any
such character is peripherally abelian.

By remark 3.1.1, the other cases correspond to Corollary 4 and Lemma 3.

We close this chapter with few observations on the links and E-varieties obtained by
splicing Brunnian links.

3.4 Brunnian trees
By Proposition 3.1.7, if L+ = L+

0 tK+ and L− = L−0 tK− are two Brunnian links
in S3, the splicing

S3
L? = S3

L+
0

K+

1K− S3
L−0

is the exterior of another Brunnian link in S3. We can iterate this process along trees, as
Serre for trees of groups, to obtain links described by brunnian trees.

Let G be a tree with arrows. Let’s consider the identical binding decomposition (see
Definition 1.1.9) of G,

G = (G �=
−→
V )
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Definition 3.4.1. A Brunnian tree over G is a collection of a Brunnian link in S3, Lv, for
each vertex v of G, with |

−→
E (−→v )| components; each component of Lv is identified with the

an arrow in
−→
E (−→v ) for each graph −→v in the collection

−→
V .

By the observations made above, a Brunnian tree (G, L) defines a Brunnian link LG

in S3 by splicing according to the edge-data. By Mangum-Stanford results of [MS01], if
none of the links Lv is trivial, the link LG is also non trivial. Since the splicing with the
Hopf link leaves the original link unchanged, we also assume none of the Lv is the Hopf
link.

This is a special case of toric splitting of link-manifolds; the fundamental group of the
exterior of LG is precisely the one from the tree of groups contructed over G, assigning
the fundamental group of the exterior of Lv to each vertex of G. We can then apply
Proposition 3 to the tree G, and obtain the diagram:

EG(S3
LG)
� � i∗ //

p
����

∏
v∈V E∂(S3

Lv)

E∂(S3
LG)

(3.5)

where, by Theorem 1, E∂(S3
LG) and each E∂(S3

Lv) contains a component of non-abelian
characters with maximal dimension. One could push these observations further and try
to apply the merging criterion and study the different components of E∂(S3

LG) appearing
while gluing different components of

∏
v∈V E∂(S3

Lv).
However, we will not go any further in the direction here. In the next chaper, we apply

a similar idea in a different case, graph link-manifolds. These are also construct over trees
as in Definition 3.4.1, but using Seifert-fibred link-manifolds instead of Brunnian links in
S3. This provides a combinatorial description of the fundamental groups which will enable
us to quite fully describe the EG-varieties in that case.
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Chapter 4

EG-varieties of graph link-manifolds

In this chapter, we study a case opposite, in a way, to the Brunnian links that we
studied in the previous chapter; here, we apply the theory of EG-varieties to irreducible
link exteriors for which all the JSJ pieces admit a Seifert fibration, so-called graph link-
manifolds,. In that case, the linking numbers are usually non-zero, and grow rapidly with
the complexity of the JSJ tree. We describe graph link-manifolds using splice diagrams
as in Eisenbud-Neumann’s [EN85]. The splice diagram is a refinement of the JSJ tree
using a description of the Seifert fibration of each piece. Such a generic splice diagram is
presented in the following Figure 4.1.

77
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α3
5α3

4

α1
6

Γ1

α1
7

α3
1

77

α3
2

''
α3

3

α2
1

α1
5

α1
1

α2
6

α1
4

xx α1
3

��

α1
2

��

α2
7

α2
2

α2
5

��

α2
4

��

α2
3

α4
5

Γ4

α4
2

α4
1

HH

α4
4 α4

3

Figure 4.1 – A generic splice diagram

Splice diagrams determine the fundamental group and we can use them to describe
eigenvalue-varieties.

We study first the graph links with trivial JSJ decomposition. The exterior of such a
link admits a Seifert fibration which extends to the ambient sphere with the components
of the link as fibres.

LetML be a Seifert-fibred link-manifold, and letC denote the singular fibres ofM that
are not components of L. We represent ML by a tree with one central vertex connected to
a node for each point of C, and an arrow for each component of L. Each arrow/node is
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labeled with the order of the corresponding fibre in M , as in Figure 4.2.

c∈C

αc αc′

αK

��

αK′

��

K∈L

Figure 4.2 – A Seifert splice diagram

We also use the following notation; for any subset D of LtC, αD is the product of αd
for d ∈ D and αD̂ is is the product of αd for d 6∈ D.

The splice diagram enables the description of all the components of the peripheral
eigenvalue-variety. We obtain, first, Proposition 5 for the component of reducible charac-
ters:

Proposition 5. The component Ered
∂ (ML) is given by the following ideal of C[m, l]:

Ared
∂ (ML) =

〈
lK −

 ∏
K′⊂L\{K}

mK′
±αL\{K,K′}

αC

, K ⊂ L

〉
(4.1)

On the other hand, irreducible representations of Seifert-fibred manifolds are, essen-
tially, representations of the base orbifold. Using this fact, we obtain Theorem 6 for the
PSL2C peripheral eigenvalue-variety; let ML be a Seifert-fibred link-manifold with splice
diagram represented in Figure 4.2.

Theorem 6. The group π1ML admits irreducible representations in PSL2C if and only if

|L|+ |C| ≥ 3

and, in that case, the peripheral A-ideal corresponding to irreducible characters is

Airr(ML) = 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 (3)

Using a similar approach on SL2C, we then obtain the almost identical Theorem 9
for the SL2C peripheral eigenvalue-variety. The main notable difference is that, when
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the regular Seifert-fibre is trivialized by any irreducible PSL2C-representation, it can be
±Id in SL2C. This enables us to give a complete answer to Question 1 for Seifert-fibred
link-manifolds and, besides the obvious counter-example, all Seifert-fibred link manifolds
admit a peripherally maximal and non-abelian component in their character variety.

The final step is to study generic graph link-manifolds (with connected splice dia-
gram). The complexity of the combinatorics increases dramatically with the subjacent
tree but we can still express some results on the peripheral eigenvalue-varieties of graph
link-manifolds. First, with the same formula as Eisenbud-Neumann, we compute the link-
ing numbers and use Proposition 2 to describe the component of reducible characters.

For any two components K and K ′ in a graph link, let K−K ′ denotes the unique path
between the arrows K and K ′ in the JSJ tree. The linking number lk(K,K ′) is equal to
the product of coefficients adjacent but not on the path K−K ′ in the splice diagram; we
denote it by α

K̂−K′ and obtain Proposition 6 for the peripheral A-ideal corresponding to
reducible characters:

Proposition 6. Let ML be a graph link-manifold. The peripheral eigenvalue-variety cor-
responding to reducible characters is given by the ideal:

Ared(ML) =

〈
lK −

∏
K′⊂L\K

m
±α

K̂−K′
K′ , K ⊂ L

〉
(4.2)

Now, given a graph link-manifold, one may try to find components of characters with
a given type in {irr, red} (See Definition 1.2.12) on each vertex v of the dual tree (for the
JSJ tree, or any other splitting tree). The complexity of the combinatorics involved makes
it quite difficult to express precise statements for generic types and splittings. However,
using the results on naturality of the EG-varieties under the natural splitting-trees opera-
tions (Lemma 1 and Theorem 3 of Chapter 2 and their applications to torus splittings of
link-manifolds), we can reduce the complexity and obtain interesting results.

This is the purpose of the last two sections of this chapter, where we study two specific
cases; nonetheless, the notations involved remain too heavy to enable stating precise re-
sults in this introduction. We may however outline the main ideas presented in these final
sections.

First, we study components of everywhere irreducible (irreducible on all the JSJ
pieces, see Definition 1.2.11). Using Theorem 6 on each piece we obtain, in Theorem 10,
a criterion for the existence of everywhere irreducible PSL2C-characters and the equa-
tions of the resulting peripheral A-ideal. In particular, if they exist, such components are
peripherally maximal and non-abelian.

In the last section, we study components of characters which are irreducible on one
piece and reducible everywhere else. We can combine Proposition 6 and Theorem 6
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with the generic splitting-gluing theorems for eigenvalue-varieties and obtain Theorem 11,
again a criterion for the existence of such components. Finally, we show that this criterion
applies to all graph manifolds with non-abelian fundamental group, which procures an
answer to Question 1 for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold ML with boundary, there exist a
peripherally maximal and non-abelian component in XPSL2C(ML).

Finally, we close this chapter with a very brief overview on how the very same technics
could be used to completely describe the E-varieties of any graph link-manifold.

In this chapter, M denotes an integer-homology sphere andML the exterior of a link
L in M (see Section 1.3.2).

4.1 Seifert-fibred link-manifolds
First, let’s start with the fundamental pieces of graph manifolds, Seifert-fibred link-

manifolds.

4.1.1 Seifert fibrations and splice diagrams
Let ML denote a Seifert-fibred link-manifold. For any component K of L, there may

be two cases:

• all the meridians are transverse to the fibre; in that case, the Seifert-fibration of ML

extends to ML\K and K is a fibre.

• a meridian is parallel to the fibre; because M is an integer-homology sphere this can
occur for at most one component of L. In that case, ML has no singular fibres and
the longitudes of L \K are all parallel to the fibre, so ML is a keychain-link in S3.

Let’s assume first that no meridian is parallel to the fibre, so the fibration ofML extends
to M with L as a collection of fibres. These are links in Seifert-fibred integer-homology
sphere which were combinatorially described by Seifert in [Sei33] and we recall this de-
scription following [EN85]. As we shall see, keychain links naturally appear as degener-
ated cases of this description.

Let C denote the set of singular fibres of ML, with orders (αc)c∈C (so |αc| ≥ 2). Let
(αK)K⊂L denote the orders of the fibers K in the induced fibration of M . Assuming that
all the meridians are tranverse to the fibre, each and αK is nonzero; it is equal to ±1 if K
is a regular fibre in the fibration of M .
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Let n = |L| denote the number of components of L and r = |C| the number of singular
fibres of ML. Let L̃ denote the collection LtC of fibers in M . It is a link in M with n+ r
components and the link-manifold ML̃ is a Seifert link-manifold with no singular fibres.
Since M is an integer-homology sphere the base orbifold is planar and ML̃ is the product
of a circle and a 2-sphere with n+ r discs removed, Sn+r × S1.

The boundary of Sn+r×S1 may be indexed by the components of L̃ and we order these
components so that L̃ = K1 t · · · tKn+r whith Ki ⊂ L for 1 ≤ i ≤ n and Ki ⊂ C for
n+ 1 ≤ i ≤ n+ r. For each component J of L̃, let sJ denote the boundary curve of Sn+r

dual to the fibre J . The sJ are sections of the fibration of ML̃ and we denote by t the S1

fibre. The boundary of ML̃ consists of tori TJ for J ⊂ L̃ with

H1(TJ ,Z) = ZsJ ⊕ Zt.

The homology group H1(ML̃,Z) is the sublattice of Zn+r+1 ∼=
⊕

J⊂L̃ ZsJ ⊕ Zt = Zs1 ⊕
· · · ⊕ Zsn+r ⊕ Zt such that ∑

J⊂L̃

sJ = 0

There exist a family of integers (βJ)J⊂L̃ such thatML (resp. M ) is obtained by αJ/βJ -
Dehn-filling – in the basis (sJ , t) – on the components J of C (resp. all components of
L̃).

We’ll denote by α (resp. β) the family (αJ)J⊂L̃ (resp. (βJ)J⊂L̃).

Proposition 4.1.1 (Seifert, See Hatcher [Hat10]). With these notations, the fundamental
group of a Seifert-fibred ML is given by:

π1ML = 〈s1, . . . , sn, c1, . . . , cr, t | [t, si], [t, ci], cαii tβi , s1 · · · snc1 · · · cr〉 (4.3)

The homology of M is the kernel in Zn+r+1 of the matrix

Aα,β =



α1 0 . . . . . . 0 β1

0
. . . . . . ...

...
... . . . αJ

. . . ... βJ
... . . . . . . 0

...
0 . . . . . . 0 αn+r βn+r

1 . . . 1 . . . 1 0


(4.4)

For any sublink L′ of L̃ we define:

αL′ =
∏
J⊂L′

αJ
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and
αL̂′ = αL̃′\L′ =

∏
J 6⊂L′

αJ .

Remark 4.1.1. For any sublink L′ of L̃, αL′αL̂′ = αL̃.

A simple computation shows that detAα,β = −
∑

J⊂L̃ βJαĴ and, since M is an
integer-homology sphere, this determinant must be ±1. Up to changing the orientation
of t we can assume: ∑

J⊂L̃

βJαĴ = 1. (4.5)

Allowing αJ = 0 for some J ⊂ L in Equation (4.5) forces βJ and all the others
(αJ ′)J ′⊂L̃ to be equal to ±1, which yields a keychain-link in S3 discussed above. We
also allow this degenerated case and, from now on, Seifert-fibred link-manifolds will be
described using family of integers (αJ , βJ)J⊂L̃ and satisfying Equation (4.5).

Let’s set a little more notation. For any sublink L′ of L̃ we define:

βL′ =
∑
J⊂L′

βJαL′\J

and
βL̂′ = βL̃\L′ =

∑
J 6⊂L′

βJαL̂′tJ

Remark 4.1.2. With these notations, for any sublinkL′ of L̃, equation (4.5) can be rewritten
as:

det

[
αL′ −αL̂′
βL′ βL̂′

]
= βL̂′αL′ + βL′αL̂′ = 1.

Proposition 4.1.2 (Eisenbud-Neumann [EN85]). A standard peripheral system for ML is
given, for any component J of L, by the following system in H1(TJ ,Z):

µJ = αJsJ + βJt

λJ = −αĴsJ + βĴt

and, for any components J, J ′ of L, lk(J, J ′) = α
ĴtJ ′ .

Proof. The integer-homology sphere M is obtained from ML by Dehn-filling along the
slopes sαJJ tβJ for each boundary torus TJ of L. It follows that αJsJ + βJt is a meridian
for J in ML.
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Since βĴαJ +βJαĴ = 1, the curve−αĴsJ +βĴt has intersection 1 with µJ . Moreover,
in H1(ML,Z),

∑
J⊂L̃ sJ = 0 so we have the following homological equalities:

−αĴsJ + βĴt = αĴ

∑
J ′⊂L̃\J

sJ ′ +
∑

J ′⊂L̃\J

βJ ′αĴtJ ′t

=
∑

J ′⊂L̃\J

α
ĴtJ ′αJ ′sJ ′ + βJ ′αĴtJ ′t

=
∑

J ′⊂L̃\J

α
ĴtJ ′ (αJ ′sJ ′ + βJ ′t)

And, since αJ ′sJ ′ + βJ ′t is 0 for J ′ in C, and µJ ′ for J ′ in L we have:

− αĴsJ + βĴt =
∑

J ′⊂L\J

α
ĴtJ ′µJ ′ (4.6)

Therefore, −αĴsJ + βĴt represents a curve on TJ nullhomologous in MJ so it is the
longitude λJ in H1(TJ ,Z); by Equation (1.7), the last Equation (4.6) shows that, for any
pair J, J ′ of L, lk(J, J ′) = α

ĴtJ ′ .

Definition 4.1.1. For any component J of L̃ we denote by PJ the peripheral matrix:

PJ =

[
αJ −αĴ
βJ βĴ

]
Remark 4.1.3. For each boundary component TK of ML, the peripheral matrix PK gives
the coordinates of µK and λK in the basis (sK , t) of π1TK .

We represent ML with a diagram consisting in:

- a central vertex

- for each c in C, an edge from , labeled by αc, ending with a node

- an arrow labeled by αK for each component K of L.

Definition 4.1.2 (Splice diagram (1)). This presentation is called a splice diagram forML.

Example 4.1.4. The splice diagram of a generic Seifert-fibred manifold is represented in
Figure 4.3.



4.1. SEIFERT-FIBRED LINK-MANIFOLDS 85

c∈C

αc αc′

αK

��

αK′

��

K∈L

Figure 4.3 – A Seifert splice diagram

Example 4.1.5. The splice diagram of a p, q-torus knot in S3 is represented in Figure 4.4.

p

1
//

q

Figure 4.4 – A p, q-torus knot

In the following sections, we compute the components of the peripheral eigenvalue-
varieties of Seifert-fibred link-manifolds. The splice diagram ofML determines the linking
numbers so it determines Ered

∂ (ML); we will see that it also determines components of
irreducible characters.

4.1.2 Reducible characters of Seifert-fibred link-manifolds

As usual, the component of reducible characters is given by the linking numbers. In
the case of a Seifert-fibred link-manifold ML, they are given by Proposition 4.1.2; if the
splice diagram of ML is
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c∈C

αc αc′

αK

��

αK′

��

K∈L

then each longitude λK is given in H1(ML,Z) by

λK =
∑

K′⊂L\{K}

α
K̂tK′µK′

where α
K̂tK′ =

∏
J⊂L̃\{K,K′} αJ . With the notation introduced earlier,

• αC denotes the product of orders of the singular fibres:

αC =
∏
c∈C

αc =
∏

K⊂L̃\L

αK

• αL\{K,K′} is the product of the arrowhead coefficients other than K and K ′:

αL\{K,K′} =
∏

J⊂L\{K,K′}

αJ

Since αC divides any α
K̂tK′ and does not depend on the particular choice K or K ′, we

can refactor the equations and obtain the following:

Proposition 5. The component Ered
∂ (ML) is given by the following ideal of C[m, l]:

Ared
∂ (ML) =

〈
lK −

 ∏
K′⊂L\{K}

mK′
±αL\{K,K′}

αC

, K ⊂ L

〉
(4.1)

We will now focus on irreducible characters of Seifert-fibred link-manifolds. First, we
need to make a small detour to study characters of planar orbifolds.



4.1. SEIFERT-FIBRED LINK-MANIFOLDS 87

4.1.3 Characters of planar orbifolds
For any positive integer n, let Sn denote standard 2-sphere with n discs removed:

Sn = S2 \D1, . . . , Dn.

The boundary of Sn consists in n circles s1 . . . , sn and π1Sn is isomorphic to the free
group with rank n− 1:

π1Sn ∼= 〈s1, . . . , sn |
s∏
i=1

si = 1〉.

Lemma 4.1.3. There exist an irreducible representation of π1Sn in SL2C or PSL2C if and
only if n ≥ 3.

In that case, there exist a Zariski-open set U of Cn such that for any u1, . . . , un in U ,
there exist an irreducible character χ in X(Sn) such that for any 1 ≤ i ≤ n,

Isiχ = ui

Moreover, let U0 denote the Zariski open set C \ {−2, 2} (or U0 = C \ {2} in PSL2C),
then, for n ≥ 4, we can assume that U contains (U0)n.

Proof. For n ≤ 2, Sn has abelian fundamental group so it admits no irreducible represen-
tation.

The rest of the proof is by induction on n ≥ 3.
For n = 3, it is known that, for the free group F2 = 〈a, b | 〉, the map

XSL2C(F2) → C3

χ → (Ia(χ), Ib(χ), Iab(χ))

is a birregular map between C3 and XSL2C(F2). Moreover, with this coordinates,

X
SL2C
red (F2) = V (f red)

where f red is the polynomial of Q[x, y, z]:

f red(x, y, z) = x2 + y2 + z2 − xyz − 4

Using the work of Michael Heusener and Joan Porti in [HP04], a similar statement can
be made for XPSL2C(F2). As Example 4.4 of [HP04] shows, there’s a polynomial P in
Q[U, V,W,Z] such that

XPSL2C(F2) ∼= {(Ia, Ib, Iab, Iab−1) ∈ C4|P (Ia, Ib, Iab, Iab−1) = 0}
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and the reducible part is given by another polynomial f red.
In the presentation of π1S3, s1 = a, s2 = b, and s3 = b−1a−1, so, in either cases, the

map Is = (Is1 , Is2 , Is3) projects X irr(F2) on a the Zariski open set of C3; this complete the
proof for n = 3.

For any n ≥ 4, consider a circle s in Sn splitting S2 into to discs D+, D−, containing
respectively s1, . . . , sn−2 and sn−1,sn.

Let B+ and B− denote the corresponding pieces of Sn so

∂B+ = s1 t . . . t sn−2 t s+

∂B− = s− t sn−1 t sn
and Sn can be obtained fromB+ andB− identifying s+ with s−1

− . We can apply Lemma 4.1.3
to B+ and B− and obtain U+ and U− in Cn−1 and C3. For any (u1, . . . , un, v) in Cn+1

such that

• u1, . . . , un−2, v ∈ U+

• v, un−1, un ∈ U−

there exist irreducible characters χ+ and χ− in X(B+) and X(B−) such that

• for all 1 ≤ i ≤ b− 2, Isiχ
+ = ui

• Is+χ+ = v

• Is−χ− = v

• for n− 1 ≤ i ≤ n, Isiχ
− = ui

Without loss of generality, we can assume that v 6= ±2 (or 2 in PSL2C) so there exist
irreducible representations ρ+ ∈ t−1χ+ and ρ− ∈ t−1χ− such that ρ+(s+) = ρ−(s−)−1.
This produces an irreducible representation of Sn with traces ui on all the si.

Moreover, U− is C3 \ V (f red) and U+ is either C3 \ V (f red) (if n = 4) or contains
(U0)n−1 by induction hypothesis. In either case, this can be done for any u1, . . . , un in
(U0)n and this completes the proof.

For any positive integers n, r and family α in (Z)r, we can form the orbifold

Sn(α) = Sn(α1, . . . , αr)

obtained from Sn+r by gluing discs along sαii for n+ 1 ≤ i ≤ n+ r.
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The fundamental group of Sn(α) is isomorphic to

〈s1, . . . , sn+r | sαii = 1 for n < i ≤ n+ r,

n+r∏
i=1

si = 1〉

For any family α of Zr and any positive integer k, we denote by suppk(α) the subset of
indices:

suppk(α) = {i ∈ [1 . . . r] | |αi| ≥ k}.

so i ∈ suppk(α) if si has order at least k in π1Sn(α).

Lemma 4.1.4. The orbifold Sn(α) admits irreducible representations in PSL2C if and
only if n + supp2(α) ≥ 3. In that case, there exist a Zariski-open set of Cn on which, for
any u1, . . . , un, there exist an irreducible character χ in X irr(Sn(α)) with squared trace
ui on si.

Proof. If n+ supp2(α) ≤ 2, any representation in of π1Sn(α) in PSL2C is abelian.
Otherwise, for each n < i ≤ n + r, let ki be an integer coprime to 2αi and we

set ui = 2cos
(

2π ki
αi

)
; it is different from 2 whenever |αi| is different from 1. When

|αi| = 1, the corresponding section becomes trivial and we assume that |αi| ≥ 2 for all i,
so supp2(α) = r. We can apply Lemma 4.1.3 to Sn+r and there is a Zariski open set in Cn
on which, for any (u1, . . . , un), there exist χ′ in X irr(Sn+r) such that Isiχ

′ = ui for each
1 ≤ i ≤ n+ r.

For each n < i ≤ n+ r, let ζi denote the root of unity eπi
ki
αi and zi = ζi

2. Each Isiχ
′ is

equal to zi + zi
−1 6= 2, so there exist ρ in t−1χ′ such that ρ(si) = ∆(zi) = ±

[
ζi 0
0 ζi

−1

]
.

Therefore ρ(si)
αi = ±Id and any ρ in t−1χ′ factors by the gluing along sαii .

It follows that χ′ is in the image of X(Sn(α)) ↪→ X(Sn+r) and there exist χ in
X(Sn(α)) with the expected properties.

For representations in SL2C, conic points of order 2 must have image ±Id and are
also central; we need sufficiently many boundary components or points with order greater
than 2 to have irreducible representations. With a similar argument, we have the following
result for SL2C characters:

Proposition 4.1.5. The orbifold Sn(α) admits irreducible representations in SL2C if and
only if n + supp3(α) ≥ 3. In that case, there exist a Zariski-open set of Cn on which, for
any u1, . . . , un, there exist an irreducible character χ in X irr(Sn(α)) with trace ui on si.
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4.1.4 E∂-variety of Seifert-fibred link-manifolds
The fibre is central in the fundamental group of a Seifert-fibred link-manifold. There-

fore, any irreducible representation in PSL2C must trivialize the fibre and factor as a rep-
resentation of the base orbifold; we can use the results of the previous Section 4.1.3 to
describe irreducible characters of Seifert-fibred link-manifold.

Let ML be a Seifert-fibred link-manifold with splice diagram represented in Figure
4.5.

Theorem 6. The group π1ML admits irreducible representations in PSL2C if and only if

|L|+ |C| ≥ 3

and, in that case, the peripheral A-ideal corresponding to irreducible characters is

Airr(ML) = 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 (3)

Proof. First, if |L| + |C| ≤ 2, the fundamental group of ML is abelian so RPSL2C(ML)
contains no irreducible representation.

Let’s now assume that |L| + |C| ≥ 3. Let t denote the regular fibre of the Seifert-
fibration ofML; since it is central in π1ML, any irreducible representation ρ inRPSL2C(ML)
must trivialize t. It follows that any such representation factors as a representation of the
base orbifold of ML, a 2-sphere with |C| conic points of orders αc and |L| discs removed.

By Proposition 4.1.4, such irreducible representation exist if and only if |L|+ |C| ≥ 3
and, in that case, the traces on the removed discs can be chosen freely in a Zariski open
set of C|L|. In other words there’s a Zariki open set of C∗|L| on which, for any (xK)K⊂L,
there exist an irreducible representation ρ in RPSL2C(S|L|(α)) such that, for any K in L,

tr(ρ(sK)) = xK + x−1
K .

c∈C

αc αc′

αK

��

αK′

��

K∈L

Figure 4.5 – A Seifert-fibred link-manifold
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Any such representation pulls back to a representation of π1ML, trivial on t. For each
boundary torus TK the peripheral matrix gives the following relations between ρ(sK),
ρ(t), ρ(µK) and ρ(λK):

ρ(t) = ρ(µK)αK̂ρ(λK)αK

ρ(sK) = ρ(µK)βK̂ρ(λK)−βK
(4.7)

and since ρ(t) = 1 we obtain the following equations:

ρ(µK) = ρ(sK)αK

ρ(λK) = ρ(sK)αK̂
(4.8)

The previous Equations (4.7) and (4.8) give the following equalities for the eigenvalues
of ρ:

xK = m
β
K̂
K `−βKK

mK = xαKK
`K = x

α
K̂
K

and, we obtain the following equations:

mK
α
K̂`K

αK = 1 for each component K

Let A denote the ideal 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 of C[m, l]. We just showed that
Eirr
∂ (ML) ⊂ V (A) and, reversing the calculation, there exist a Zariski-dense set of V (A)

corresponding to irreducible characters of X(ML); this makes A the defining ideal of
Eirr
∂ (ML) so, finally,

Airr(ML) = 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 (3)

Remark 4.1.6. The result of Theorem 6 generalizes the result of Tillmann in [Til05] stating
that the APSL2C-polynomial of a (p, q) torus knots in S3 is

AKp,q(m, l) = mpql− 1

For representations in SL2C, it is quite similar. In that case the centrality of the fibre
t implies that ρ(t) = ±Id in SL2C and there are two sets of components, depending on
whether ρ(t) = Id or ρ(t) = −Id. We denote by X+(ML), X−(ML), E+

∂ (ML), E−∂ (ML)
the corresponding sets in the character and eigenvalue-variety. Naturally, we denote by
A±(ML) the defining ideals of E±∂ (ML).
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Theorem 9. Let ML be a Seifert-fibred link-manifold with splice diagram represented in
Figure 4.5.

The variety of characters X−(ML) is non empty if and only if

|L|+ |C| ≥ 3

and, in that case,
A−(ML) = 〈mK

α
K̂ lK

αK + 1, K ⊂ L〉 (4.9)

On the other hand, the variety of characters X+(ML) is non empty if and only if

|L|+ |C ′| ≥ 3

where C ′ is the set of singular fibres of order greater than 2. In that case,

A+(ML) = 〈mK
α
K̂ lK

αK − 1, K ⊂ L〉 (4.10)

Remark 4.1.7. Since the orders are pairwise coprime, there’s at most one singular fibre of
order 2 in the Seifert fibration of ML.

Proof. This is essentially the same proof as in Theorem 6.
The only difference is for X+(ML); if ρ(t) = Id, conic points of order 2 must have

central image in SL2C and, thus, must be put apart to create irreducible representations.

Remark 4.1.8. As before, the result of Theorem 9 generalizes the result of Tillman in
[Til05] stating that the ASL2C-polynomial of a (p, q) torus knots in S3 is

AKp,q(m, l) =

{
mpql + 1 if |p| = 2 or |q| = 2

(mpql + 1)(mpql− 1) otherwise

4.2 Graph link-manifolds

Using splitting-gluing properties of eigenvalue-varieties, we can apply the results of
Section 4.1 to describe the peripheral eigenvalue-variety of graph link-manifold (or at
least, some components).
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4.2.1 Splice diagrams for graph link-manifolds
Let ML be a graph link-manifold. We follow [EN85], with our notations, to present

the splice diagrams describing graph link-manifolds. We merge the description of each
piece given by Definition 4.1.2 and the JSJ tree to obtain a combinatorial description of
the graph link-manifold.

Definition 4.2.1 (Splice diagram (2)). A splice diagram Γ for ML is obtained from the
JSJ tree GJ of ML by adding, on each vertex v, the arrowheads and fibre edges of the
splice diagram of the Seifert-fibred manifold M v

Lv , with the corrsponding labels.
Any edge is called internal if it corresponds to a JSJ-torus (so it is neither an arrow

or a fibre edge).

Example 4.2.1. A graph link-manifold with JSJ tree is the splice of two Seifert-
fibred link-manifolds and is represented by the splice diagram of Figure 4.6.

c′∈C′ c∈C

αK′ αK

αc′

αJ′

�� ��

αc

��

αJ

��

J ′∈L′0 J∈L0

Figure 4.6 – A graph manifold with two pieces

Remark 4.2.2. If the link-manifold ML splits as a connected sum, the resulting splice
diagram is disconnected.

From now on, we will always assume that the splice diagrams are connected.
For any path γ in Γ, any vertex v in Γ, and any component K of L̃v we write:

• v ∈ γ if v is a vertex on the path γ.

• K ∈ γ if the corresponding edge in Γ is on the path γ.

We define the following coefficients:

αγ =
∏
K∈γ

αK
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αγ̂ =
∏
v∈γ

∏
J⊂L̃v
J 6∈γ

αvJ =
1

αγ

∏
v∈γ

∏
J⊂L̃v

αvJ .

Remark 4.2.3. For a path γ, αγ̂ is the product of the coefficient adjacent to γ but not on it.

Lemma 4.2.1. The coefficients αγ and αγ̂ are multiplicative:
Let γ be a path in Γ, let e be an internal edge on γ and let M+

L+ and M−
L− be the

desplicing of ML along the JSJ-torus Se. The path γ splits into two paths γ+ and γ− in
the splice diagrams of M+

L+ and M−
L− respectively and we have

αγ = αγ+αγ− and αγ̂ = α
γ̂+αγ̂−

Proof. Let γ be a path in Γ. By definition, αγ is the product of the coefficients of the edges
in γ. If splitting Γ along an edge of γ gives two paths γ+ and γ−, the edges in γ is the
union of edges in γ+ and edges in γ− so, taking products,

αγ = αγ+αγ−

On the other hand, αγαγ̂ =
∏

v∈γ
∏

J⊂L̃v α
v
J so, by the same argument, αγαγ̂ is multi-

plicative and so is αγ̂ .

Example 4.2.4. Let ML be the graph link-manifold represented in Figure 4.7. The four
vertices represented are numberd from 1 to 4; Γ1 and Γ4 are splice diagrams representing
other pieces of ML. Let γ be the path represented by double edges, then, with these
notations,

αγ = α1
4α

1
1 α

2
6α

2
1 α

3
3α

3
2

and
αγ̂ = α1

2α
1
3α

1
5α

1
6α

1
7 α

2
2α

2
3α

2
4α

2
5α

2
7 α

3
1α

3
4α

3
5

We can use the previous Lemma 4.2.1 to compute the linking numbers in a graph
link-manifold:

Proposition 4.2.2 (Eisenbud-Neumann [EN85]). Let ML be a graph link-manifold with
splice diagram Γ. For any pair of components K,K ′ of L,

lk(K,K ′) = α
K̂−K′

where K−K ′ is the unique geodesic path in Γ between the corresponding arrowheads K
and K ′.
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α3
5α3

4

α1
6

Γ1

α1
7

α3
1

77

α3
2

#+
α3

3

α2
1

α1
5

α1
1

α2
6

α1
4

t| α1
3

��

α1
2

��

α2
7

α2
2

α2
5

��

α2
4

��

α2
3

α4
5

Γ4

α4
2

α4
1

HH

α4
4 α4

3

Figure 4.7 – A path in a splice diagram

Proof. Combining propositions 1.3.3 and 4.1.2 with Lemma 4.2.1 we prove this by induc-
tion on the length of γ = K−K ′.

If both components are in the same node, lk(K,K ′) = α
K̂tK′ = αγ̂ .

Otherwise, γ contains an edge e; desplicing along Se givesML = M+
L+

K+
1K−

Se
M−

L−

and, by Proposition 1.3.3:

lk(K,K ′) = lk+(K,K+)lk−(K−, K ′).
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On the other hand, the path γ splits as γ+ = K−K+ and γ− = K−−K ′. We can apply
the induction hypothesis to L+ tK+ in M+ and L− tK− in M−; with Lemma 4.2.1 we
obtain:

lk(K,K ′) = α
γ̂+αγ̂− = α

K̂−K′ .

Let ML be a graph link-manifold with splice diagram Γ. Let V and E denote the vertex
and edge sets of Γ. For any vertex v in V , M v

Lv is a Seifert-fibred link-manifold and there
is a natural partition of Lv:

Lv = L∂v t LE(v)

where L∂v = Lv ∩ L and LE(v) are components of Lv spliced along Seifert-fibred neigh-
bours of v in the tree Γ.

Let v′ e v be an edge in Γ, and let K and K ′ be the respective components of LE(v)

and LE(v′) corresponding to the splicing at edge e. Around the edge e, Γ can be represented
by the diagram in Figure 4.8, where each ΓvS represents a connected component of the
tree Γ \ {v′, v}.

c′∈C′ c∈C

S∈LE(v)\K
αK′ αK

e

αc′

αJ′

����

αS′

αc

��

αJ

��

αS

Γv
′

S′

S′∈LE(v′)\K′

ΓvS

J ′∈L∂v′ J∈L∂v

Figure 4.8 – An edge in Γ
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Definition 4.2.2 (Determinant of an internal edge [EN85]). With the notations of Figure
4.8, the determinant of e is the integer defined by:

det(e) = αK′αK − αK̂′αK̂ .

Proposition 4.2.3 ([EN85]). Let tv and tv′ be the regular fibres of the respective Seifert
fibrations of M v

Lv and M v′

Lv′ . The algebraic intersection of tv and tv′ on the torus Se in
ML is given by

< tv′ , tv >= det(e) 6= 0.

Proof. The gluing homeomorphism at Se identifies µK′ with λK and λK′ with µK . The
peripheral matrices PK and PK′ give, in the basis (λK′ , λK) of Se:

tv′ = λK′
αK′λK

α
K̂′

tv = λK′
α
K̂λK

αK

and therefore,
< tv′ , tv >= αK′αK − αK̂′αK̂ = det(e).

If det(e) vanished for some edge v′ e v in E , tv′ and tv would be parallel on Se and the
piece M v′

Lv′\K′
K′1K

Se
M v

Lv\K of Γ would be Seifert-fibred, in contradiction with the fact

that Se is a JSJ-torus.

Definition 4.2.3. For any vertex v in V , and any positive integer d, we’ll denote by E(v)d
the subset of edges adjacent to v with determinant ±d.

4.2.2 Reducible characters of graph link-manifolds
As several times before, the peripheral eigenvalue-variety corresponding to reducible

characters is given by linking numbers. By Proposition 4.2.2, these are given by the coef-
ficients on the splice diagram; using the same notation we obtain:

Proposition 6. Let ML be a graph link-manifold. The peripheral eigenvalue-variety cor-
responding to reducible characters is given by the ideal:

Ared(ML) =

〈
lK −

∏
K′⊂L\K

m
±α

K̂−K′
K′ , K ⊂ L

〉
(4.2)

Since reducible characters are everywhere reducible, we could also use Proposition 4.2.2
to computeAred

GJ (ML) and, using Corollary 3, the idealsAred
G (ML) for any tree G obtained

by contraction of the JSJ tree GJ . We shall not make these calculations here, and focus
now on irreducible representations.
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4.2.3 Everywhere irreducible characters

Theorem 10. Let ML be a graph-link manifold with splice diagram Γ; let V and E denote
the vertex and edge sets of Γ.

With the notation introduced in Section 4.2.1, there exist an everywhere-irreducible
representation in RPSL2C(ML) if and only if, for any v in V ,

|L∂v|+ |Cv|+ |LE(v)| − |LE(v)1| ≥ 3

In that case, there exist a component X0 in XPSL2C(ML) of everywhere-irreducible char-
acters and for any such component X , E∂(X) is the |L|-dimensional algebraic manifold
V Γ given in C2|L| by the following ideal:〈

mK
αv
K̂ lK

αvK − 1, v ∈ V , K ⊂ L∂v ⊂ L
〉

(4.11)

Proof. First, if Γ has a unique vertex, ML is Seifert-fibred and Theorem 10 is equivalent
to Theorem 6.

The next step for the proof of Theorem 10 is to inspect the splicing condition on an in-
ternal edge of the splice diagram Γ. As in the proof of Theorem 6, everywhere-irreducible
representations will trivialize all the fibres, so the splicing conditions should only involve
the sections of the fiberings on each side of the edge.

Any edge v′ e v of E splits Γ into two trees Γ+ and Γ− containing v′ and v respec-
tively. This is represented in the diagram of Figure 4.8, with Γ+ and v′ on the left side of e
and Γ− and v on the right. Let M+

L+ and M−
L− be the manifolds obtained by desplicing

ML along Se; these are graph manifolds over Γ+ and Γ− respectively. The link L+ (resp.
L−) can be written L+

0 tK ′ (resp. L−0 tK) such that the splicing is done along K ′ and K
in Lv′ and Lv and we have:

ML = M+
L+

0

K′1K

Se
M−

L−0

We will use the following lemma for the splicing of everywhere-irreducible represen-
tations at e:

Lemma 4.2.4. Two everywhere-irreducible representations, ρ ∈ RPSL2C(M+
L+) and ρ′ ∈

RPSL2C(M−
L−) agree with the splicing at Se if and only if

ρ(sK)αKαK′−αK̂αK̂′ = 1

ρ′(sK′) = ρ(sK)−(βK′αK+β
K̂′
α
K̂′

) (4.12)
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Proof of Lemma 4.2.4. The splicing identifies the longitude of each side with the meridian
of the other side so, using the peripheral matrices of TK and TK′ we have in π1ML:

sK
αK tv

βK = sK′
−α

K̂′ tv′
β
K̂′

sK
−α

K̂ tv
β
K̂ = sK′

αK′ tv
βK′

and since ρ and ρ′ trivialize the respective fibres tv and tv′ , the images by ρ and ρ′ must
satisfy.

ρ(sK)αKρ′(sK′)
α
K̂′ = 1

ρ(sK)αK̂ρ′(sK′)
αK′ = 1

(4.13)

Finally, since αK′βK̂′ + βK′αK̂′ = 1, the system (4.13) is equivalent to (4.12):

ρ(sK)αKαK′−αK̂αK̂′ = 1

ρ′(sK′) = ρ(sK)−(βK′αK+β
K̂′
α
K̂′

)

A reverse calculation shows that any pair of everywhere-irreducible representations
satisfying equations (4.12) will produce an everywhere-irreducible representation for ML,
which concludes the proof of Lemma 4.2.4.

It follows that, for any everywhere-irreducible representation ρ ofRPSL2C(ML) and for
any internal edge e, the restriction ρ|Se has torsion αKαK′ − αK̂αK̂′ = det(e).

Therefore, let e be an internal edge in Γ:

• if | det(e)| = 1, ρ should be trivial on Se and everywhere-irreducible representations
exist if and only if they exist for M+

L+
0

and M−
L−0

.

• otherwise, for any z ∈ C \ {−1, 0, 1} with z2| det(e)| = 1, any two everywhere-
irreducible characters M+

L+ and M−
L− with

IsK (χ+) = z + z−1

IsK′ (χ
−) = w + w−1 , w = z(βK′αK+β

K̂′
α
K̂′

) (4.14)

will produce an everywhere-irreducible character of ML.

Applying this criterion to all the internal edges of Γ, there must exist irreducible represen-
tations for each M v

Lv\LE(v)1 which, by Theorem 6 is equivalent to

|L∂v|+ |Cv|+ |LE(v)| − |LE(v)1| ≥ 3.
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By construction, the traces on the sections of the remaining components can be chosen
freely. As in the proof of Theorem 6, the equations of the corresponding component in the
eigenvalue-variety are,

∀v ∈ V , ∀K ⊂ L∂v ⊂ L, mK
αv
K̂`K

αvK = 1 (4.15)

so the corresponding ideal is〈
mK

αv
K̂ lK

αvK − 1, v ∈ V , K ⊂ L∂v ⊂ L
〉

(4.11)

If they exist, everywhere-irreducible components are peripherally maximal and non-
abelian so we obtain:

Corollary 5. Let ML be a graph link-manifold. If, for each vertex v of the dual tree,

|L∂v|+ |Cv|+ |LE(v)| − |LE(v)1| ≥ 3

then XPSL2C(ML) admits a peripherally maximal and non-abelian component.

The E∂-variety of everywhere-irreducible characters splits in
∏

K⊂LE(TK) as the
product of the curves mK

αv
K̂`K

αvK = 1 for each boundary component. Each of these
curves has a natural parametrization by xK , the eigenvalue-variety of the section sK :

mK = xK
αk

`K = xK
α
K̂

Using the same approach, a similar result might be obained for SL2C. Everywhere-
irreducible representations in SL2C send all the fibres to ±Id. If the splice diagram has m
vertices, there are 2m possible combinations for the image of the fibres; each combination
produces a system similar to (4.12) at each edge e and we can then use Theorem 9 to
conclude on the existence of compatible irreducible representations on each piece. We will
not go on with these calculation here so this concludes our study of everywhere-irreducible
characters.

In the next section, we consider another type of characters, irreducible on one vertex
and abelian everywhere else.



4.2. GRAPH LINK-MANIFOLDS 101

4.2.4 A family of peripherally maximal components
We will now consider components of characters that are irreducible on only one vertex,

and abelian everywhere else. Let v be a vertex of Γ, represented in Γ by the diagram of
Figure 4.9.

c∈Cv

αK

αc

��

αJ
//

J∈L∂v

ΓvK

K∈LE(v)

Figure 4.9 – A vertex in Γ

For any K in LE(v), the tree ΓvK defines a graph link-manifold M ′
L′ spliced with M v

Lv

along K and a component K ′ of L′.
For any representation ρ of π1ML, if ρ|π1M

′
L′

is abelian, it has the form ∆ ◦ϕ for some
ϕ in H1(M ′

L′ ,C∗). It follows that ρ is determined by the images of the meridians; the
images of the longitudes are given by the linking numbers:

∀ J ′ ⊂ L′, ρ(λJ ′) =
∏
J ′′ 6=J ′

ρ(µJ ′′)
lk(J ′,J ′′)

The following two situations can occur:

• lk(K ′, J ′) = 0 for all component J ′ of L′ \ {K ′}. In that case, ρ(λK′) = Id
for any abelian representation of π1M

′
L′ so, back in M v

Lv , ρ must trivialize µK .
This happens, in particular, if K ′ is the only component of L′ (if ΓvK contains no
arrowhead in Γ).

• otherwise, for any m′, `′ in C∗ there exist a morphism ϕ of H1(M ′
L′ ,C∗) such that

ϕ(µK′) = m′

ϕ(λK′) = `′
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With these notations we consider a new Seifert-fibred link-manifold obtained from v:

Definition 4.2.4. The isolation of v in Γ is the Seifert-fibred link manifold M v ◦
Lv

obtained

from the diagram of Figure 4.9 by replacing each ΓvK by

- an node if lk(K ′, J ′) = 0 for all component J ′ of L′ \ {K ′},

- an arrowhead→ otherwise.

In other words, the diagram of Figure 4.9 becomes Figure 4.10, where the heads for
K in LE(v) are arrow heads→ or nodes depending on the linking number conditions in
each ΓvK .

c∈Cv

αK

αc

��

αJ
//

J∈L∂vK∈LE(v)

Figure 4.10 – Isolation of a vertex

Remark 4.2.5. Depending on the splice diagram, the isolation of v may become abelian.

Example 4.2.6. On the cable link represented in Figure 4.11, the isolation of v produces
the diagram of Figure 4.12 which reduces to a solid torus.
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1 1

p

q

r

1
//

ΓvK

``

v

@@

Figure 4.11 – A cable link

1
r

1 //

Figure 4.12 – Isolation of v in Figure 4.11

Isolations give a criterion for the existence of representations irreducible on one piece
and abelian everywhere else:

Theorem 11. Let ML be a graph link-manifold with splice diagram Γ. For any vertex v of
Γ, there exist a representation ρ in RPSL2C(π1ML) such that{

the restriction of ρ to π1M
v
Lv is irreducible

ρ is abelian on all the other vertices

}
(4.16)

if and only if the isolation of v in Γ has non-abelian fundamental group.
In that case, there exist a peripherally maximal and non-abelian component X in

X(ML) with the properties (4.16).

Proof. Let ML be a graph link-manifold with splice diagram Γ. Let v be a vertex of Γ
such that the isolation of v, M v ◦

Lv
, has non-abelian fundamental group. By Theorem 6,

R(M v ◦
Lv

) contains irreducible representations.

Let ρv be such a representation. Let K be a component of LE(v) and ΓvK a tree spliced
to v at K as in Figure 4.9. Let M ′

L′ be the link-manifold represented by ΓvK . Let’s index
the components of L′ as K0, . . . , Kn, where the splicing is done along K0 in M ′

L′ . We
wish to extend ρv to M v

Lv
K1K0 M ′

L′ via an abelian representation on M ′
L′ .
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First, let’s assume that lk(K0, Ki) = 0 for any 1 ≤ i ≤ n. Any abelian representation
of M ′

L′ trivializes λK0 and by definition of the isolation, K is filled along µK in M v ◦
Lv

.
Since ρv is irreducible, it trivializes the fibre tv and the following relations hold:

1 = ρv(µK) = ρv(sK)αK

ρv(λK) = ρv(sK)−αK̂

It follows that ρv(λK) is diagonalizable (of finite order, same as ρv(sK)). Let `K be an
eigenvalue of ρv(λK).

For any m1, . . . ,mn, there exist ϕ′ in Hom(π1M
′
L′ ,C∗) such that ϕ′(µKi) = mi for

1 ≤ i ≤ n and ϕ′(µK0) = `K . Then, as usual, ϕ′ defines a diagonal representation
ρ′ of M ′

L′ and, we can conjugate it so that ρ′(µK0) = ρv(λK). Since ρ′(λK0) = 1 =
ρv(µK), ρ′ and ρv are compatible with the splicing so they define a representation of
R(M v

Lv
K1K0 M ′

L′) satisfying the expected properties.
On the other hand, let’s assume that K0 has non-zero linking number with an other

component of L′ so K becomes an arrowhead in M v ◦
Lv

. Without loss of generality, we can
assume that ρv is diagonalizable on TK , and there exist A in PSL2C such that ρv(µK) =
A∆(mK)A−1 and ρv(λK) = A∆(`K)A−1 with mK

α
K̂`K

αK = 1.
The equations in C∗2n = {(mi, `i), 1 ≤ i ≤ n}:

∀ 1 ≤ i ≤ n, `i = `
lk(K0,Ki)
K

n∏
j=1

j 6=i

m
lk(Kj ,Ki)
j

mK =
n∏
i=1

m
lk(K0,Ki)
i

span an n − 1-dimensional subspace V(mK ,`K) in C∗2n. Any ξ′ in V(mK ,`K) defines a mor-
phism ϕ′ of π1M

′
L′ inC∗. This morphism defines a diagonal representation ρ′ andAρ′A−1

is compatible with ρv for the splicing M v
Lv

K1K0 M ′
L′ and provides the expected exten-

sion of ρv. The spaces (V(mK ,`K))〈mKαK̂ `KαK=1〉 span an n-dimensional space in C∗2n of
morphisms compatible with irreducible representations of π1M

v ◦
Lv

.
Therefore, provided M v ◦

Lv
is not abelian, we can extend irreducible representations of

π1M
v ◦
Lv

to π1ML with abelian representations on each M ′
L′ . By construction, for each

M ′
L′ , the extension spans an algebraic space with dimension |L′|− 1 in the corresponding

part of the eigenvalue-variety. Therefore, the representations obtained this way span an
|L|-dimensional algebraic manifold in the eigenvalue-variety E∂(ML).

Remark 4.2.7. For any vertex v, if |L∂v|+ |Cv| ≥ 3, the isolation of v is never abelian.
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Finally, we show that, if ML is not abelian, the condition of Theorem 11 is always
satisfied for at least one vertex of Γ. In fact, it will always be satisfied for a leaf of the
splice diagram.

Recall that a vertex of a tree is called a leaf if it has only one one adjacent vertex in the
tree. In that case, the isolation can only take two forms so we can easily apply the criterion
of Theorem 11.

Let v be a leaf in Γ as represented in Figure 4.13. The isolation of v depends on the

c∈Cv

αK

α′
K′

αc

��

αJ
//

J∈L∂v

ΓvK

Figure 4.13 – A leaf in Γ

linking number of µK = λK′ with eventual boundary components of ΓvK = Γ \ {v}. It is
either M v

Lv or M v
Lv\K .

By Proposition 4.2.2, for any component J of L in ΓvK , the linking number between
K ′ and J is zero if and only if there’s a 0 coefficient adjacent to the path between K ′ and
the arrowhead J in ΓvK .

The following lemma shows that, if ML is a non-abelian graph link-manifold ML with
boundary, there exist a leaf which remains unchanged by isolation.

Lemma 4. Let Γ be the splice diagram of a non-abelian graph link-manifold ML with
boundary. There exist a path from a leaf v of Γ to a boundary component with no adjacent
0 in Γ \ {v}.

Proof. A vertex has at most one 0 coefficient and it is either on an arrow or an internal
edge. We will construct the path starting from an arrow and following any internal edge
labelled by 0 until we reach a leaf.
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First, let’s assume that Γ contains no arrowhead with a 0 coefficient. From an ar-
rowhead K of Γ, we build a path following any possible edge labelled with 0 that we
encounter. Since Γ is finite, this path must end to a leaf of Γ and, by construction, can
contain no adjacent 0.

Otherwise, let’s start from an arrow labelled with 0. As before, we follow any encoun-
tered edge labelled with 0. If, at any point, the path reaches a non-leaf vertex containing
an arrow labelled by 0, we start again from this arrow, following any internal edge that was
not on the original path; such edge must exist or the vertex would be a leaf. Then, again,
this process must reach a leaf and the obtained path contains no adjacent 0.

So, finally, we obtain the following result for graph link-manifolds:

Theorem 2. For any non-abelian graph link-manifold ML with boundary, there exist a
peripherally maximal and non-abelian component in XPSL2C(ML).

Proof. Let v be leaf obtained from Lemma 4. By construction, M v
Lv is unchanged under

isolation. Since it is not abelian, Theorem 11 ensures the existence of a component in
E∂(ML) with maximal dimension.

Example 4.2.8. In the previous example of Figure 4.11,

1 1

p

q

r

1
//

ΓvK

``

v

@@

we can only isolate the left leaf (corresponding to a p, q-torus knot) to create a curve of
irreducible characters on the remaining boundary.

4.3 General components
We close this chapter with few considerations on generic components of theE∂-variety

of a graph link-manifold, or the EG-varieties for contractions G of the splice diagram.
Applying Proposition 1 to the splice diagram of a graph link-manifold ML, any com-

ponent X of X(ML) determines a binding decomposition (G �= Γ) of the JSJ tree GJ
where, for each vertex v of the contracted tree G, iv∗X is either everywhere irreducible or
everywhere reducible for the splitting Γv.
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An extensive study of the 2|J | possible binding decompositions of GJ , corresponding
to all the subsets of edges of GJ , should enable a complete characterisation of all the
possible components in the EJSJ∂-variety. For any subset of k− 1 edges of E , we obtain a
partition of G into k trees, wich produces 2k combinations (or 3k in SL2C) of everywhere
abelian or everywhere irreducible components on each subtree. These are 2 × 3|J | (or
2× 4|J | in SL2C) possible combinations to inspect.

Then, on each subtree, Proposition 6 and Theorem 10 provide the equations for the
possible peripheral eigenvalue-varieties. Examining all the possible combinations, the
merging criterion of Theorem 3 should provide a condition of existence for any component
with a given type η, as well as the corresponding AGJ -ideals equations.

Once EJSJ∂(ML) is obtained, Theorem 3 would then describe all the possible EG-
varieties for contractions G of GJ .
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Appendix A

Regular functions on character varieties

A.1 Regular functions
Let G be a reductive algebraic group and π a finitely generated group.
Any regular function f ∈ C[G] produces a family of regular functions (fγ)γ∈π in

C[RG(π)] via fγ(ρ) = f(ρ(γ)). As the following Lemma A.1.1 shows, these actually
generate the whole ring of regular functions.

For any algebraic space V , for any family (fj)j∈J of regular functions on V , we denote
by C[(fj)j∈J ] the subring of C[V ] of polynomial combinations of any finite collection
fj1 , . . . , fjn .

Lemma A.1.1.
C[RG(π)] = C[(fγ)γ∈π, f∈C[G]]

Proof. From the observations made above, C[(fγ)γ∈π, f∈C[G]] ⊂ C[RG(π)]; we show that
C[(fγ)γ∈π, f∈C[G]] distinguishes points ofRG(π) and, therefore, is the whole ring of regular
functions.

Let ρ and ρ′ be two representations such that

∀ f ∈ C[G], ∀ γ ∈ π, fγ(ρ) = fγ(ρ
′)

By definition of fγ ,

∀ γ ∈ π, ∀ f ∈ C[G], f(ρ(γ)) = f(ρ′(γ))

Since, by definition, C[G] distinguishes points of G, this implies

∀ γ ∈ π, ρ(γ) = ρ′(γ)

so ρ = ρ′

109
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If f isG-invariant, each fγ is alsoG-invariant and factors as a function fγ ∈ C[XG(π)].
For example, using the characters of examples 1.2.2 to 1.2.4 we can define the follow-

ing functions:

Definition A.1.1. IfG is linear, we denote by (τγ)γ∈π the family of functions in C[XG(π)]
induced by the function tr of C[G//G]. For any γ in π and χ in XG(π),

τγ(χ) = tr(ρ(γ)) for any ρ in t−1χ

Definition A.1.2. For any γ in π,

Iγ : XPSL2C(π)→ C

is the regular map corresponding to the PSL2C-invariant function f = tr2; in other words,
Iγ(χ) = tr(ρ(γ)2) for any ρ in t−1χ.

Definition A.1.3. For any γ in π,

Jγ : XPSL2C(π)→ C

is the regular map corresponding to the PSL2C-invariant function f = tr2; it is character-
ized by the equation, Jγ(χ) = (tr(ρ(γ)))2 for any ρ in t−1χ.

Remark A.1.1. The two regular functions Iγ and Jγ on XPSL2C(π) only differ by a con-
stant. In C[XPSL2C(π)] we have:

∀ γ ∈ π, Iγ = Jγ − 2

Remark A.1.2. When working with G = PSL2C, the functions tr2 and Jγ are often used
as canonical character (see, for example, [BZ98] or [HP04]). However, we shall prefer the
use of tr2 and Iγ , which reflect more directly the behaviour of tr and τγ for G = SL2C.

A.2 Generating the ring C[X(π)]

The association, for f inC[G]G, f  (fγ)γ∈π, produces two subalgebras ofC[XG(π)]:

C[(τγ)γ∈π] ⊂ C[(fγ)f∈C[G]G, γ∈π] ⊂ C[XG(π)] (A.1)

For most linear algebraic groups, these tree algebras are equal. Indeed, the following
theorem is a consequence of Theorems 3, 5 and 8 of [Sik13].
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Theorem A.2.1. If G is special linear, symplectic, orthogonal, or odd special orthogonal,

C[(τγ)γ∈π] = C[X(π)]

If G is even special orthogonal,

C[(τγ)γ∈π]  C[(fγ)f∈C[G]G, γ∈π] = C[XG(π)]

Proof. See [Sik13].

The group G = PSL2C is not a linear group. However, as explained for instance in
[HP04], the action of PSL2C on the Lie algebra sl2C gives an isomorphism

Ad : PSL2C→ SO3C

such that tr(Ad(A)) = tr2(A) + 1 = tr2(A)− 1; by Theorem A.2.1 we have:

Corollary A.2.2. For G = PSL2C,

C[(Iγ)γ∈π] = C[(Jγ)γ∈π] = C[(fγ)f∈C[G]G, γ∈π] = C[XG(π)]

Where Iγ and Jγ are the regular functions of definitions A.1.2 and A.1.3, respectively
associated to tr2 and tr2.

Remark A.2.1. When G is linear, an alternative construction of XG consists in defining
XG(π) such that

C[XG(π)] = C[(τγ)γ∈π]

For example, this is the Culler-Shalen construction of XSL2C given in [CS83]. By Theo-
rem A.2.1, this is generally (but not always) equivalent.

If C[(fγ)f∈C[G]G, γ∈π] = C[XG(π)], points of XG(π) are characterized by G-invariants
functions G: for any χ, χ′ in XG(π),

χ = χ′ ⇐⇒ ∀f ∈ C[G]G, ∀γ ∈ π, fγ(χ) = fγ(χ
′)

Moreover, if there exist θ in C[G]G such that C[(θγ)γ∈π] = C[XG(π)], then each χ in
XG(π) can naturally be identified with the function

χ̂ : π → C
γ → θγ(χ)

hence the name character of π.
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A.3 Polynomials in the SL2C character varieties
In this section, X denotes, XSL2C, the SL2C character variety.
Let Fn be the free group with n generators denoted by a1, . . . , an, R(Fn) is its repre-

sentation variety Hom(Fn, SL2C) and X(Fn) its character variety. For any representation
ρ of R(Fn) and γ in Fn we recall the definition of the trace function:

τγ : R(Fn) → C
ρ → trρ(γ).

The ring of functions of X(Fn), C[X(Fn)] is generated by the functions τγ, γ ∈ Fn
by Theorem A.2.1; in the case of SL2C, the trace relation

∀A,B ∈ SL2C, tr(AB) + tr(A−1B) = tr(A)tr(B) (A.2)

enables to specify a finite generating family of C[X(Fn)]:

Proposition A.3.1. For any subset I = {i1 < . . . < ij} of Nn, let τI denote the regular
function τI = τai1 ...aij of C[X(Fn)]; then for any γ in Fn, there is a polynomial in 2n − 1

variables Pγ ∈ C[(YI)I⊂Nn ] such that

τγ = Pγ((τI)I⊂Nn).

Proof. The complete proof can be found in [CS83] and is mainly algorithmic, using rela-
tion (A.2) do decrease a well-chosen height on the elements of Fn.

Remark A.3.1. The polynomial Pγ of Proposition A.3.1 is in general not unique.

Example A.3.2. For exemple

• τa2 = τa
2 − 2

• τa3 = τa
3 − 3τa

• τa4 = τa
4 − 4τa

2 − 2

• τ[a,b] = τa
2 + τb

2 + τab
2 − τaτbτab − 2

There is in general no formula giving the polynomials Pγ for a given word γ. However,
in this section, we will proceed to compute the polynomials Pγ for the elements γ =
aα1

1 . . . aαnn , for n-uple α = (α1, . . . , αn) ∈ Zn.
For n ∈ N, let On denote the ring

On = C[(YI)I⊂Nn ]

with the following convention:
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• Y∅ = 2

• for singletons of Nn, we will use the notation Yk = Y{k}.

On the other and, for n ∈ N, let Xn denote the ring

Xn = C[X(Fn)]

By Theorem A.2.1, C[X(Fn)] = C[τγ, γ ∈ Fn] so we can define a ring-map

p : On → Xn
YI → τI

and, by Proposition A.3.1, p is epic. Given γ in Fn, we want to find Pγ such that τγ =
p(Pγ) in Xn.

Example A.3.3 (n = 1). For n = 1, F1 = 〈a| 〉 ∼= Z. Applying (A.2) with B = An we
obtain

tr(An+1)− tr(A)tr(An) + tr(An−1) = 0

so, in O1 = C[Y ], we should expect the relation

Pan+1 − Y Pan + Pan−1 = 0 (A.3)

with Pa = Y and P1 = 2, this completely determines Pγ for all γ in F1.
We define the two families of polynomials in C[Y ]:

Definition A.3.1. Let Un and Vn denote the sequences of polynomials in C[Y ] defined by:

U0 = 0, U1 = 1
V0 = 1, V1 = 0

(A.4)

and the recursive relation

Qn+1 − Y Qn +Qn−1 = 0, for n ∈ Z (A.5)

for both Q = U and Q = V .

Any family Pn of polynomials in O1 satisfying (A.3) is given by

Pn = P0Vn + P1Un

in particular, the polynomials Pan are given in O1 by
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Proposition 7. Let Pn = 2Vn +Y Un in C[Y ]; then, for any n in Z, p(Pn) = τan in X(F1).

Remark A.3.4. With the convention Y∅ = 2, this can also be written

Pn = Y∅Vn + Y Un

Let Fn = 〈a1, . . . , an|〉 be the free group with rank n. For any α in Zn, let aα be the
element of Fn:

aα = aα1
1 · · · aαnn

We will show that Proposition 7 can be generalized for words aα in Fn; that is, for any α
in Zn, we give an explicit expression for Pα in On such that

p(Pα) = τaα

Theorem 12. For any α = (α1, . . . , αn) ∈ Zn and any subset I of Nn, let rIα be the
polynomial of On:

rIα =
∏
k∈I

Uαk(Yk)
∏
k 6∈I

Vαk(Yk)

Then, the polynomial Pα defined by

Pα =
∑
I⊂N

rIα YI

satisfies
p(Pα) = τaα

We will prove that p(Pα) = τaα for all α ∈ ZNn by induction on

||α|| = Max{|αi|, i ∈ Nn}.

We need to set a few more notation first. For any i in Nn, we denote by εi the vector
of Zn:

εi = (0, . . . , 0, 1, 0, . . . , 0)

where the 1 is at index i.

Lemma 5. For any α in Zn and any i in N, Then we have the following identities:

τaα+εi − τaiτaα + τaα−εi = 0 in Xn (A.6)

Pα+εi − YiPα + Pα−εi = in On (A.7)
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Proof. For the identity Equation (A.6) we simply use relation (A.2) and the fact that
tr(AB) = tr(BA) for any matrices A and B. For any α1, . . . , αn of ZNn ,

τ
a
α1
1 ...a

αi+1
i ...aαnn

= τ
a
αi+1
i+1 ...aαnn a

α1
1 ...a

αi+1
i

= τaiτaαi+1
i+1 ...aαnn a

α1
1 ...a

αi
i
− τ

a
αi+1
i+1 ...aαnn a

α1
1 ...a

αi−1
i

= τaiτaα1
1 ...a

αi
i ...aαnn

− τ
a
α1
1 ...a

αi−1
i ...aαnn

The second equation, on the other hand, is a consequence of the recursive relation
(Equation (A.5)) satisfied by U and V . For any subset I of Nn, the definition of rIα implies
that

rIα+εi
− YirIα + rIα+2εi

= 0

and, taking the sum over the subsets of Nn this gives

Pα+εi − YiPα + Pα+2εi = 0

which completes the proof of Lemma 5

These identities will enable the recursion to prove Theorem 12.

Proof of Theorem 12. For α in Zn, we denote by ||α|| its l∞ norm:

||α|| = Max{|αi|, i ∈ Nn}

First, if ||α|| = 0, all the coordinates αi are zero. In that case τaα = τid = 2 in Xn. On
the other hand, rI0 = 0 for any non-empty subset I of Nn and r∅0 = 1. Therefore, P0 = 2
in On and p(P0) = τa0 .

Then, assume that ||α|| = 1, so all the coordinates are in {−1, 0, 1}. By Lemma 5, we
can assume that all the coordinates are in {0, 1}. Let A denote the subset of indices for
which α has nonzero coefficient, with the notations of Proposition A.3.1,

τaα = τA in Xn

On the other hand, for any I ⊂ Nn,

rIα =
∏
k∈I

Uαk(Yk)
∏
k 6∈I

Vαk(Yk)

where each αk is either 0 or 1. With the initial conditions of U and V (Equation (A.4)) we
obtain:

rIα =

{
1, if I = A

0, otherwise
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Taking the sum of rIαYI over I ⊂ Nn simply leaves Pα = YA as expected.
Finally, assume that ||α|| ≥ 2 and that p(Pβ) = τaβ for any vector β with ||β|| < ||α||.

Let i be an index such that |αi| = ||α||.

• First, let assume that αi > 0 and |αj| < |αi| for j 6= i. Then ||α − εi|| < ||α|| and
||α− 2εi|| < ||α|| so we we have:

p(Pα) = p(YiPα−εi − Pα−2εi) by Lemma 5
= p(Yi)p(Pα−εi)− p(Pα−2εi)

= τaiτα−εi − τα−2εi by induction hypothesis
= τaα by Lemma 5

• Then, if αi < 0 and |αj| < |αi| for j 6= i, we can use the same argument with α+ εi
and α + 2εi to conclude.

• Finally, if ||α|| is attained for more than one coordinates, we can apply the same
argument on each of these coordinates until ||α|| decreases and conclude using the
induction hypothesis.

This completes the proof of Theorem 12 so, for any α in Zn,

p(Pα) = τaα .

Remark A.3.5. All the polynomials Pα have degree 1 in the variables YI when I is not a
singleton of Nn.

Remark A.3.6. Observing that rαI = 0 if αi = 0 for some i ∈ I , the same formula can be
extended to free groups with countable generators and sequences of integeres α with finite
support.

Let FN denote the free group with generators (an)n∈N. For any α in Z(N) we define

aα =
∏
n∈N

aαnn

this product is finite since α has finite support and we can also define, for I ⊂ N,

rIα =
∏
n∈I

Uαn(Yn)
∏
n6∈I

Vαn(Yn)
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where, for the same reason, both products are finite. The observation above implies that
rIα = 0 if I is not contained in the support of α so the sum

Pα =
∑
I⊂N

rIαYI

is also finite. Then, by Theorem 12, for any α in Z(N),

p(Pα) = τaα in C[X(FN)]

Theorem 12 can be used to describe maps between character varieties.

Example A.3.7. Let π be a finited generated group with generators a1, . . . , an and let F2

be the free group with two generators x and y. For any n-uple of integers, α1, . . . , αp, . . . , αn,
the map

x → aα1
1 · · · aαpp

y → a
αp+1

p+1 · · · aαnn

defines a group morphism F2 → π and an ring map

C[X(F2)]→ C[X(π)]

The character variety of F2 is C3 with

C[X(F2)] = C[τx, τy, τxy]

On the other hand, C[X(π)] is a quotient of C[X(Fn)] and C[(YI)I⊂Nn ]. With these nota-
tions, the ring map is given by the following polynomials:

τx → Pαx((YI))

τy → Pαy((YI))

τxy → Pα((YI))

where αx and αy are the n-uples

αx = (α1, . . . , αp, 0, . . . , 0)

αy = (0, . . . , 0, αp+1, . . . , αn)
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Appendix B

Examples of peripheral
eigenvalue-varieties

In this chapter we present the results of computation of peripheral SL2C-eigenvalue-
varieties for few link exteriors in S3. We took a straightforward approach to compute the
equations from the fundamental group, at cost of a high complexity. The computation is
done in three steps

1. Compute a presentation of the fundamental group and peripheral systems using
Snappy [CDW].

2. Use Culler-Shalen algorithm from Proposition A.3.1 (see [CS83] for the details) to
compute some polynomial equations induced by the presentation. This was done in
GAP [The12].

3. Eleminate the undesired variables with Macaulay 2 (M2) [GS] to obtain the equa-
tions of the E∂-variety.

These three steps are combined with a small program written in Haskell [Mar10].
Let π be a finitely presented group, π = 〈a1, . . . , am | w ∈ W 〉. The character variety

of π is the closed subset of X(Fm) such that

∀w ∈ W,∀1 ≤ i ≤ m, τw = 2, τaiw = τai (B.1)

With the notations of Appendix A.3, we describe X(Fm) as a subset of CN with N =
2m − 1 given by the functions τaI for subsets I of [1 . . .m]. Then, using Culler-Shalen
algorithm, we compute each polyonmial Pw and Paiw to obtain the defining equations of
the character variety X(π).

119
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For each peripheral system µT , λT , we add variables mT , `T and the equations

m2
T − PµT (Y )mT + 1 = 0
`2
T − PλT (Y )`T + 1 = 0

m2
T `

2
T − PµTλT (Y )mT `T + 1 = 0

(B.2)

where each PµT , PλT , PµTλT is also computed using Culler-Shalen algorithm.
Finally, eliminating the variables Y1, . . . YN produces an ideal in C[m, l] corresponding

to the expected A∂-ideal.
Unfortunately, the elimination algorithm uses a lot of memory and, although this pro-

cess should work for any link, the computation terminated only for a handful of examples.

B.1 Code
We reproduce here the most relevant parts of the code; the full source can be found at

http://hub.darcs.net/arbol/E-variety.

B.1.1 Free groups
If π is a group with n generators, X(π) will be computed as a closed subset of X(Fn);

let On denote the ring C[(YI)I⊂Nn ] as in Appendix A.3; The representation variety of the
free group Fn is (SL2C)n so

R(Fn) = {ai, bi, ci, di | aidi − bici = 1}

and if Mi denote the matrix
[
ai bi
ci di

]
for 1 ≤ i ≤ n, C[X(Fn)] is given by the kernel of

the ring map
t : On → C[R(Fn)]

YI → tr(
∏

i∈IMi)

We use GAP to generate the equations and M2 to perform the computation of the
kernel. The following GAP code generates the determinant equations for C[R(Fn)]:

Pn:=[1..n];
x:=[1..m];
a:=[1..n];
b:=[1..n];
c:=[1..n];
d:=[1..n];

http://hub.darcs.net/arbol/E-variety
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for i in Pn do
a[i]:=Indeterminate(Rationals,i);
b[i]:=Indeterminate(Rationals,i+n);
c[i]:=Indeterminate(Rationals,i+2*n);
d[i]:=Indeterminate(Rationals,i+3*n);
od;

M:=[1..n];
for i in Pn do

M[i]:=[[a[i],b[i]],[c[i],d[i]]];
od;
D:=[1..n];
for i in D do

D[i]:=Determinant(M[i])-1;
od;

and the next one generates the list of traces tr(
∏

I⊂NnMi):

CPn:=Combinations(Pn);
m:=Length(CPn);
R:=[1..m-1];
for i in R do

I:=CPn[i+1];
li:=[1..Length(I)];
for j in li do

li[j]:=M[I[j]];
od;

R[i]:=Trace(Product(li));
od;

Finally, setting relsDet and imTrace as the list of determinant relations and traces
computed above the following piece of M2 code computes the kernel of t in On:

R = A/ideal(relsDet);
t = map(R,B,imTrace);
K = kernel t;
XFree = B / K;

Although this should theoritically work for any n, the computation could not terminate
for n ≥ 4; the character variety X(F3) was already known and is given by one polynomial
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equation in seven variables. With the following convention:

x1 = Y{1}
x2 = Y{1,2}
x3 = Y{1,2,3}
x4 = Y{1,3}
x5 = Y{2}
x6 = Y{2,3}
x7 = Y{3}

(B.3)

we obtain the polynomial:
x1x3x5x7 − x1x2x5 − x3x4x5 − x1x3x6 + x2x4x6 − x2x3x7 − x1x4x7 − x5x6x7+
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + x2

7 − 4

B.1.2 Polynomial equations
Once X(Fn) is computed, we need the equations defining X(π) induced by the rela-

tors of the presentation. To compute these polynomials, we implemented Culler-Shalen
algorithm using GAP. Given a word W in Fn and if x is an array of 2n variables1, the
following fonction computes a polynomial Pol in On such that p(Pol) = τW in C[Fn].
We omit the definition of the combIndex function which simply determines the desired
index in x for a given subset I of [1 . . . n].

sl2CPol:=function(W,x,n)
local S,W1,W2,nS,i,Pol,j,W3,W4;
x[Length(x)]:=2;
Pol:=0;
nS:=NumberSyllables(W);
if

(ForAll([1..nS],i->
ExponentSyllable(W,i)=1))

and
(ForAll([1..nS-1],i->
GeneratorSyllable(W,i+1)-GeneratorSyllable(W,i)>0))

then
S:=[1..nS];
for i in [1..nS] do

1the last entry of x will be set to 2, representing τa∅
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S[i]:=GeneratorSyllable(W,i);
od;
Pol:=x[combIndex(S,n)];

elif
ForAny([2..nS],i->

GeneratorSyllable(W,i) - GeneratorSyllable(W,1)=0)
then

i:=1;
repeat i:=i+1;

until GeneratorSyllable(W,i) - GeneratorSyllable(W,1)=0;
W1:=SubSyllables(W,1,i-1);W2:=SubSyllables(W,i,nS);
Pol:=sl2CPol(W1,x,n)*sl2CPol(W2,x,n)-sl2CPol(W1^-1*W2,x,n);

elif
ForAll ([1..nS],i->

ExponentSyllable(W,i)=1)
then

i:=0;
repeat i:=i+1;

until GeneratorSyllable(W,i+1) - GeneratorSyllable(W,i) < 0;
j:=0;
repeat j:=j+1;

until GeneratorSyllable(W,j) - GeneratorSyllable(W,i+1) > 0;
W1:=SubSyllables(W,1,j-1);
W2:=SubSyllables(W,j,i);
W3:=SubSyllables(W,i+1,i+1);
W4:=SubSyllables(W,i+2,nS);
Pol:=sl2CPol(W3*W2,x,n)*sl2CPol(W1*W4,x,n) -

sl2CPol(W2,x,n)*sl2CPol(W1*W3^-1*W4,x,n) +
sl2CPol(W1*W3^-1*W2*W4,x,n);

elif
not ExponentSyllable(W,1)=1

then
W1:=Subword(W,2,Length(W));
S:=[ ];
S[1]:=GeneratorSyllable(W,1);
Pol:=x[combIndex(S,n)]*sl2CPol(W1,x,n) -

sl2CPol(Subword(W,1,1)^-1*W1,x,n);
else
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Pol:=sl2CPol(Subword(W,2,Length(W))*Subword(W,1,1),x,n);
fi;
return Pol;

end;

Given a link-manifold N with π1N = 〈a1, . . . , an | w ∈ W 〉 and a peripheral system
(µT , λT )T⊂∂N as words in Fn, we use the previous code to output the settings for the
algebraic computations performed later in M2. These are four lists of polynomials in On,
Relations, Meridians, Longitudes, Products, such that Relations is the
list of polynomials Pw−2 and Paiw−Pai for each relator w and generator ai and the three
others are the list of peripheral polynomials PµT , PλT and PµTλT for each peripheral torus
T .

B.1.3 Character variety and peripheral A-ideal
For the final step of the computation, we use M2 to perform the algebraic computa-

tions. The ring B is the ring On[mT , lT ] and, using the settings described in the previous
section, the following simple M2 code computes the components of the character variety
and list of corresponding A∂-ideals.

X = B / ideal (Relations|FreeIdeal);
dCV = decompose (ideal X);
nCV = #dCV;
dX = for i from 0 to (nCV-1)
list(B/dCV_i);

periPolyElim = (m,p) -> m^2-p*m+1;

periElimList = for i from 0 to (nP-1)
list(

periPolyElim(Evariables_(2*i),Meridians_i),
periPolyElim(Evariables_(2*i+1),Longitudes_i),
periPolyElim(Evariables_(2*i)*Evariables_(2*i+1),Products_i)
);

periElimIdeal = ideal periElimList;

dY = for i from 0 to (nCV-1)
list(dCV_i + periElimIdeal);
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dEvar = for i from 0 to (nCV-1)
list(B / eliminate(Xvariables,dY_i));

So, after execution, dEvar is the list of ideals A∂(X) for each component X of X(π).
In the next section, we present few A∂-ideals obtained for different links using the

algorithm described above. Links are named following the Thistlethwaite Link Table (see
[BNMa]) or their common name if the have one (Hopf link, Whitehead link, etc...).

For each example, we also give the equations of the character variety in the coordinates
x1, . . . x(2n−1) where n is the number of generators in the presentation we consider. For
n = 2 the convention is

• x1 = Y{1}

• x2 = Y{1,2}

• x3 = Y{2}

and, for n = 3, we follow the notations of Equation (B.3).

B.2 Computed examples

B.2.1 Hopf link
The peripheral eigenvalue-variety of the Hopf link is easily computable by hand since

the fundamental group of its exterior is Z2 where each longitude is a meridian of the other
component.

We tested the algorithm with the following presentation and peripheral system (ob-
tained with SnapPy):

Generators:
a,b

Relators:
abAB

[(’a’, ’Ab’), (’Ab’, ’a’)]

which gives, as expected, the following equation for the character variety:

x2
1 + x2

2 + x2
3 − x1x2x3 − 4
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and produces the following decomposition for the A∂-ideal of the Hopf link:

AHopf = 〈L1 −M2,M1 − L2〉 × 〈L1M2 − 1,M1L2 − 1〉

which are the components of reducible characters of a 2-components link with linking
number 1.

B.2.2 Link l4a1

The link l4a1 is Seifert-fibred so, again, we could compute the A∂-ideal using the
results Section 4.1.

We use the following presentation and peripheral system:

Generators:
a,b

Relators:
aBBAbb

[(’Ba’, ’baBa’), (’A’, ’AAbb’)]

We obtain two components in the character variety; the component of reducible charac-
ters is given by the same equation as the one obtained above for the Hopf-link, and the
component of irreducible characters is simply given by 〈x3〉.

The A∂-ideal is then given by:

Al4a1 = 〈−M2
2 + L1,M

2
1 − L2〉 × 〈L1M

2
2 − 1,M2

1L2 − 1〉 × 〈M2
2 + L2,M

2
1 + L1〉

The first two components correspond to reducible representations (linking number 2)
while the last ideal is produced by the component of irreducible characters, with the fibre
sent to −Id.

B.2.3 3-keychain link

Keychain links are the one obtained from the unknot by adding components parallel to
the meridian (so the Hopf link is the 2-keychain link). One could use the Seifert fibration to
describe the eigenvalue variety but we used it to test our algorithm on some 3-components
link. It is the only 3-components links for which the computation terminated.

The presentation and peripheral system given by SnapPy is:
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Generators:
a,b,c

Relators:
aBAb
bCBc

[(’B’, ’CA’), (’C’, ’B’), (’A’, ’B’)]

We obtain in C[x1, . . . , x7] three ideals for the character variety. The first component
(reducible components) is much more complicated than for 2-generated groups; it is given
by twelve equations that we do not reproduce here2. On the other hand, the two compo-
nents of irreducible representations, sending the fibre (here, the first meridian) to ±Id are
much simpler and given by

〈x5 − 2,−x1 + x2, x6 − x7,−x3 + x4〉 × 〈x5 + 2, x1 + x2, x6 + x7, x3 + x4〉

We obtain the four A∂-ideals for the reducible characters:

〈L2 − L3,M1L3 − 1, L1M2M3 − 1〉
〈L2 − L3,−M2M3 + L1,M1 − L3〉
〈M1 − L2, L2L3 − 1, L1M3 −M2〉
〈M1 − L3, L2L3 − 1, L1M2 −M3〉

and two for the irreducible characters:

〈L3 − 1, L2 − 1,M1 − 1〉
〈L3 + 1, L2 + 1,M1 + 1〉

The previous examples of A∂-ideals could have been computed by hand, using the
particular simple presentation of their fundamental groups and peripheral systems. As the
following examples show, the complexity of the peripheral A-ideals grows quite rapidly.

B.2.4 Whitehead link

The eigenvalue variety had already been computed by Tillmann in [Til02]. We present
here the equations obtained using our algorithm.

The presentation and peripheral system obtained with SnapPy is:

2they are available at http://hub.darcs.net/arbol/E-variety/Test/key3

http://hub.darcs.net/arbol/E-variety/Test/key3
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Generators:
a,b

Relators:
abAAAbbABaaaBB

[(’AAb’, ’AAbaBBab’), (’Ba’, ’BaBabAAAba’)]

and the component of irreducible characters is given by

−x3
1x

2
3 + x2

1x2x3 + x3
1 + 2x1x

2
3 − x2x3 − 2x1

This produces the following A∂-ideal:

AW = 〈L2 − 1, L1 − 1〉 × Airr

where Airr is given by the four generators:
M2

1L1M
2
2 −M2

1M
2
2L2 +M2

1L1L2 − L1M
2
2L2 −M2

1 +M2
2 − L1 + L2

M4
1L1L2+L1M

4
2L2−2M2

1M
2
2L

2
2−L1M

4
2−M4

1L2+2M2
1M

2
2L2+2M2

1L1L
2
2−2L1M

2
2L

2
2+

L2
1M

2
2 − 2M2

1L1L2 +M2
1L

2
2 − 2M2

1L2 + 2M2
2L2 +M2

1 −M2
2 − 2L1L2 + 2L2

2 +L1 −L2

M4
1M

2
2L2−M2

1M
4
2L2−M4

1L2 +M2
1M

2
2L2−M2

1M
2
2 +M4

2 −L1M
2
2L2 +M2

1L
2
2−L1M

2
2 +

M2
2L2

M2
1M

6
2L2 −M2

1M
4
2L2 −M6

2 + L1M
4
2L2 + L1M

4
2 −M2

1M
2
2L2 −M4

2L2 + L1M
2
2L

2
2 +

L1M
2
2L2 +M2

1L2 −M2
2L2 − L2

2

B.2.5 Link l6a1

The peripheral eigenvalue variety of this link had, to our knowledge, never been com-
puted. SnapPy provides the following presentation and peripheral system:

Generators:
a,b

Relators:
aBAABabbbaBAbaabABBBAb

[(’bba’, ’BAbaabABabba’), (’AB’, ’ABABabABBBAbaB’)]
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In this example, we obtain two components in the character variety (besides the component
of reducible characters). One is given by

x2
1 + x2

2 + x2
3 − x1x2x3 − 3

and the other, the geometric component, is the zero-set of the polynomial

x1x2x
2
3 − x2

1x3 − x3
3 − x1x2 + x3

This produces four ideals for the peripheral eigenvalue variety; two of reducible char-
acters (linking number 2), and one for each other component. Although the first other
component is quite simple, the last one is considerably more complicated.

Al6a1
∂ = 〈L1M

2
2 − 1,M2

1L2 − 1〉 × 〈−M2
2 + L1,M

2
1 − L2〉 × 〈L2 − 1, L1 − 1〉 × A0

where A0 is generated by the seven following polynomials:
M2

1L1M
2
2 −M2

1M
2
2L2 +M2

1L1L2 − L1M
2
2L2 −M2

1 +M2
2 − L1 + L2

−L1M
6
2L

2
2−M4

1M
2
2L

3
2 +2M2

1M
4
2L

3
2 +2L1M

6
2L2 +2M4

1M
2
2L

2
2−4M2

1M
4
2L

2
2 +M4

1L1L
3
2 +

2L1M
4
2L

3
2 − 3M2

1M
2
2L

4
2 −L1M

6
2 −M4

1M
2
2L2 + 2M2

1M
4
2L2 − 2L1M

4
2L

2
2 + 2M2

1M
2
2L

3
2 +

3M2
1L1L

4
2−3L1M

2
2L

4
2+L2

1M
4
2−M4

1L1L2−2L1M
4
2L2−2M4

1L
2
2+6M2

1M
2
2L

2
2−2M4

2L
2
2−

2M2
1L1L

3
2 + 2L1M

2
2L

3
2 + 2M4

1L2 − 6M2
1M

2
2L2 + L2

1M
2
2L2 + 4M4

2L2 − 3M2
1L1L

2
2 +

2L1M
2
2L

2
2−M2

1L
3
2 +M2

2L
3
2 +M2

1M
2
2 −M4

2 +2M2
1L1L2−4L1M

2
2L2 +2M2

2L
2
2−3L1L

3
2 +

3L4
2 + L1M

2
2 +M2

1L2 − 2M2
2L2 + 2L1L

2
2 − 2L3

2 + L1L2 − L2
2

M6
1L

2
1L2 +2L1M

6
2L

2
2−3M2

1M
4
2L

3
2−2M6

1L1L2−4L1M
6
2L2 +2M4

1L
2
1L

2
2 +6M2

1M
4
2L

2
2 +

L2
1M

4
2L

2
2 − 3L1M

4
2L

3
2 + 2L1M

6
2 + M6

1L2 − 2M4
1L

2
1L2 − 3M2

1M
4
2L2 − 2L2

1M
4
2L2 −

4M4
1L1L

2
2 + 2L1M

4
2L

2
2 + 3M2

1L
2
1L

3
2 + 6M2

1M
2
2L

3
2 − 3L2

1M
2
2L

3
2 − L2

1M
4
2 + 4M4

1L1L2 +
5L1M

4
2L2 + M4

1L
2
2 − 4M2

1L
2
1L

2
2 − 12M2

1M
2
2L

2
2 + 4L2

1M
2
2L

2
2 + 3M4

2L
2
2 − 6M2

1L1L
3
2 +

6L1M
2
2L

3
2 − L3

1M
2
2 + M2

1L
2
1L2 + 6M2

1M
2
2L2 − 2L2

1M
2
2L2 − 6M4

2L2 + 5M2
1L1L

2
2 −

4L1M
2
2L

2
2−2M2

1L
3
2 +3M2

2L
3
2−M4

1 +M4
2 +4M2

1L1L2 +2L1M
2
2L2 +6M2

1L
2
2−3L2

1L
2
2−

12M2
2L

2
2 + 3L1L

3
2 − 3M2

1L1 + L1M
2
2 − 4M2

1L2 + 4L2
1L2 + 6M2

2L2 + 2L1L
2
2 − 6L3

2 −
2L2

1 − 3L1L2 + 5L2
2

M4
1M

4
2L

2
2−M2

1M
6
2L

2
2−M4

1M
4
2L2 +M2

1M
6
2L2−2M4

1M
2
2L

2
2 +2M2

1M
4
2L

2
2 +2M4

1M
2
2L2−

3M2
1M

4
2L2 +M6

2L2 +M2
1M

4
2 −M6

2 +L1M
4
2L2 +M4

1L
2
2−3M2

1M
2
2L

2
2 +M4

2L
2
2 +L1M

4
2 −

M4
1L2 + 3M2

1M
2
2L2 − 3M4

2L2 + L1M
2
2L

2
2 −M2

1L
3
2 + L1M

2
2L2 +M2

1L
2
2 − 2M2

2L
2
2
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−M6
1M

2
2L

2
2 +M2

1M
6
2L

2
2 +M6

1M
2
2L2−M2

1M
6
2L2 +M6

1L1L
2
2 + 2L1M

6
2L

2
2−3M2

1M
4
2L

3
2 +

M6
1L1L2− 4L1M

6
2L2− 2M4

1M
2
2L

2
2 + 5M2

1M
4
2L

2
2− 3L1M

4
2L

3
2 + 3M2

1M
2
2L

4
2 + 2L1M

6
2 −

2M6
1L2 + 3M4

1M
2
2L2 − 2M2

1M
4
2L2 −M6

2L2 + 3L1M
4
2L

2
2 − 3M2

1M
2
2L

3
2 − 3M2

1L1L
4
2 +

3L1M
2
2L

4
2 −M4

1M
2
2 − 2L2

1M
4
2 + M6

2 + 2L1M
4
2L2 + 3M4

1L
2
2 − 5M2

1M
2
2L

2
2 + 2M4

2L
2
2 +

3M2
1L1L

3
2 − 3L1M

2
2L

3
2 − 3M4

1L2 + 7M2
1M

2
2L2 − 3L2

1M
2
2L2 − 4M4

2L2 + 3M2
1L1L

2
2 −

2L1M
2
2L

2
2 + 2M2

1L
3
2 − 2M2

1M
2
2 − L2

1M
2
2 + 2M4

2 − 3M2
1L1L2 + 6L1M

2
2L2 − 2M2

2L
2
2 +

3L1L
3
2 − 3L4

2 − 2L1M
2
2 + 2M2

2L2 − 3L1L
2
2 + 3L3

2 − 2M2
1 + 2M2

2 − 2L1 + 2L2

M4
1M

6
2L2−M4

1M
4
2L2−M2

1M
6
2L2−M2

1M
6
2 −M4

1M
2
2L2−M2

1M
4
2L2−M2

1M
4
2 +M6

2 −
L1M

4
2L2 −M2

1M
2
2L

2
2 − L1M

4
2 + M4

1L2 −M2
1M

2
2L2 + M4

2L2 − L1M
2
2L

2
2 − L1M

2
2L2 −

M2
1L

2
2 −M2

1L2 +M2
2L2 + L2

2

M6
1M

4
2L2−2M6

1M
2
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