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Universitat Autònoma de Barcelona
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Universitat Autònoma de Barcelona.
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A la meva familia



v

“Un hombre sabio adecua su creencia a la evidencia”
David Hume, Investigación sobre el conocimiento humano.

De acuerdo, que hable del amor y de la muerte, pero expresandose
en terminos de matemáticas superiores, sobre todo los del álgebra de tensores. (...)
-Estas loco. Sobre el amor en el lenguaje matemático?
Pero se callo enseguida: el electrobardo se puso a recitar:

Un ciberneta joven potencias extremas
Estudiaba, y grupos unimodulares
De ciberias, en largas tardes estivales
Sin vivir del Amor grandes teoremas.

Huye...! Huye, Laplace que llenas mis d́ıas!
Tus versores, vectores que sorben mis noches!
A mi contraimagen! Los dulces reproches
Oir de mi amante, oh alma queŕıas.
(...)

“El Electrobardo de Trul.”
Stanislaw Lem. La Cibeŕıada.

”No. Try not. Do. Or do not. There is no try.” - Yoda
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Resum

A mesura que la tecnologia avança, van apareixent nous dispositius que es po-
den integrar a la nostra vida diària. Alguns d’aquests dispositius incorporen petites
càmeres que es poden utilitzar en aplicacions que donin valor afegit als nous sistemes
encastats. En aquest context, s’ha generat un gran interès en el desenvolupament de
sistemes automàtics d’aprenentatge i classificació mitjançant càmeres i mètodes de
visió per computador. Una de les aplicacions més destacades en aquest camp és el re-
coneixement de cares. Les tècniques de reconeixement facial han estat històricament
aplicades a sistemes de seguretat i control d’accés, com a mètode alternatiu de ver-
ificació de la identitat en sistemes biomètrics no intrusius. Aquest fet ha despertat
l’interès dels fabricants de nous dispositius mòbils dotats de camera per a substituir
el sistema d’autentificació basat en pins, requerint alts percentatges d’encert. Més
recentment, han aparegut altres aplicacions que fan ús de classificació automàtica
d’imatges facials, com ara el reconeixement de gènere en aplicacions de publicitat
reactiva, o el reconeixement d’expressions facials en el disseny d’interf́ıcies d’usuari
avançades.

Tradicionalment, els mètodes basats en l’aparença han obtingut els millors resul-
tats en el problema de la classificació de cares. Normalment s’acostuma a tractar
cada imatge com un vector d’alta dimensionalitat que conté tots els pixels de la cara,
i posteriorment s’aplica un procés d’aprenentatge d’un classificador en l’espai definit
per les cares d’entrenament. Un dels problemes que sorgeixen en aquest model, és
el que s’anomena “maledicció de la dimensionalitat” (curse of dimensionality), que
provoca que es necessiti un número inabastable d’imatges d’entrenament per mode-
lar els paràmetres del classificador. Per tal de mitigar aquest problema, s’utilitzen
mètodes d’extracció de caracteŕıstiques que redueixen considerablement la dimension-
alitat del problema. Per altra banda, l’extracció de caracteŕıstiques permet alhora
redüır la redundància inherent en les dades visuals, eliminar part del soroll present en
imatges naturals i, el més important, permet aprendre caracteŕıstiques discriminants
en les imatges, per tal que la posterior etapa de classificació sigui més efectiva, fent-la
més robusta davant de canvis en la il.luminació i oclusions parcials.

En la primera part d’aquesta tesi, s’introdueixen els sistemes de combinació de
classificadors per a derivar una nova famı́lia de tècniques d’extracció de caracteŕıstiques.
S’han introdüıt 3 noves tècniques d’extracció de caracteŕıstiques que utilitzen l’algorisme
de l’Adaboost per a generar una projecció lineal que extreu caracteŕıstiques dis-

v



vi RESUM

criminants donat un conjunt de dades d’entrenament. A diferència de les tècniques
clàssiques d’extracció de caracteŕıstiques que es poden trobar en la bibliografia, el
principal avantatge de les tècniques introdüıdes és el fet que no fan cap assumpció en
les dades a classificar. A més, a la part experimental que valida els mètodes proposats,
es pot concloure que la famı́lia de tècniques que es presenten és especialment adequada
per a dades de alta dimensionalitat, com és el cas dels problemes de classificació de
cares.

En la major part dels treballs passats referents a classificació de cares, es fa servir
únicament la informació interna per a aprendre el classificador. Descartant la infor-
mació localitzada al cabell, front, i ambdues zones laterals. Per altra banda, s’han
publicat estudis psicològics que destaquen que el sistema visual humà dóna una gran
importància a les caracteŕıstiques externes. A la segona part d’aquesta tesi es planteja
un sistema per modelar computacionalment la informació externa d’imatges facials,
per tal de poder-hi aplicar les mateixes tècniques de classificació que s’apliquen a la
informació interna. El principal problema que presenten les caracteŕıstiques externes
d’imatges facials és l’absència absoluta d’alineació entre els pixels que les formen.
Donada la gran diversitat que es pot originar en els diferent estils de cabell i pentinat,
el mateix pixel (i per tant coordenada en un vector de caracteŕıstiques) no significa
el mateix entre imatges d’individus diferents. En aquesta tesi s’introdueix un algo-
ritme per a extreure caracteŕıstiques externes de cares mitjançant l’adaptació d’un
algorisme “Top-down” utilitzat en el camp de la segmentació d’imatges. Donats un
conjunt d’imatges prou diverses d’entrenament, se n’extreuen petits fragments de les
caracteŕıstiques externes de manera que es cobreixi al màxim possible tots els possi-
bles pentinats que puguin aparèixer. El conjunt de petits fragments escollit es el que
constitueix el model après de les caracteŕıstiques externes. El problema d’extracció de
les caracteŕıstiques externes d’una nova imatge es converteix doncs en trobar la millor
manera de recobrir la nova imatge amb els fragments del model. Per a realitzar aque-
sta tasca s’ha fet servir l’algorisme NMF, que proporciona una representació “sparse”
de les dades, de manera que només alguns fragments del model romanen actius en
cada reconstrucció (aquells més adequats a la persona que s’analitza). La sortida de
l’algorisme és un vector de caracteŕıstiques amb el pes que té cada fragment del model
en el procés de reconstrucció, de manera que els problemes d’alineament queden inher-
entment resolts. Els experiments realitzats amb la nova tècnica introduida mostren
uns resultats molt prometedors per a l’aplicació de les caracteŕıstiques externes en la
classificació d’imatges facials.

Finalment, es conclou la tesi mostrant alguns possibles mètodes de combinació de
les caracteŕıstiques internes i externes en classificació de cares, on es pot apreciar que
hi ha una millora dels resultats causats per l’aportació extra d’informació per part de
les caracteŕıstiques externes, especialment en imatges on apareixen oclusions parcials
o canvis sobtats en la illuminació.



Abstract

As technology evolves, it allows the development of new electronic devices that
can be embedded in our everyday life. Some of these devices incorporate small cam-
eras that can be used in applications to become an added value for the new embedded
systems. In this context, the development of automatic learning and classification sys-
tems using cameras and computer vision methods has become the focus of attention.
One of the most important applications on this field is face recognition. Face recog-
nition techniques have been historically applied to surveillance systems and access
control, as an alternative method to identity verification in non intrusive biometric
systems. Manufacturers of new mobile devices equipped with cameras have started to
test the replacement of the actual pin based identifying methods for face verification,
requiring high accuracies. And recently, new applications using face classification
have arised, such as gender recognition in reactive publicity, or gesture recognition on
the design of user-friendly interfaces.

Traditionally, appearance based methods have reached the best results in face
classification problems. Normally, each image is treated as a high dimensional vector
containing all the pixel values, and then a classifier is trained on the subspace defined
by the training faces. This model usually suffers from the “curse of dimensionality”
problem, that consists on the need of an extremely large number of training samples
to properly learn the parameters of a probabilistic classifier. In order to mitigate
this problem, we use feature extraction methods that considerably reduce the data
dimensionality. On the other hand, feature extraction techniques allow also to reduce
the inherent redundancy of visual data, and also eliminates part of the noise present
in natural images. Moreover, feature extraction allows to learn invariant discriminant
characteristics in images, in order to improve the posterior classification step, being
more robust against illumination changes and partial occlusions.

In the first part of this thesis, we introduce the classifier combination methods in
order to derive a new family of feature extraction techniques. Actually, three new
feature extraction methods have been introduced using the Adaboost algorithm to
generate a linear projection that extracts discriminant features given a data training
set. Opposite to classic feature extraction techniques found in the bibliography, we do
not make any statistical assumption on the data to classify. Moreover, we conclude in
the experimental validation of the proposed methods that they are specially suitable
for high dimensional data, as is the case of face classification.

In the most part of previous face classification works, only the internal informa-
tion is used to learn the classifier, discarding the information located hair, forehead,

vii



viii ABSTRACT

and both lateral zones. On the other hand some psychological studies suggest that
human visual system gives a lot of importance to external features in the recognition
problems. In the second part of this thesis we introduce a system to computationally
model the external information of facial images, in order to apply the same classifica-
tion techniques applied to the internal ones. The main problem of external features
in facial images is the lack of alignment among the pixels that compose the image.
Given the extreme diversity originated from different subjects and hair-styles, the
same pixel (the same coordinate in the feature vector) does not mean the same in
images from different subjects. In this thesis we introduce an algorithm to extract
external features adapting a Top-down segmentation algorithm. Given a training set
of diverse enough images, we extract small fragments from the external zones, in such
a way that we can cover the maximum diversity of hair-styles that can appear. The
set of small fragments constitutes the learned model of external features. Therefore,
the external feature extraction problem of a new unseen images is simplified to finding
the optimal cover of the image using fragments from the model. To achieve this goal
we have used the NMF (non negative matrix factorization algorithm), that yields an
sparse representation of the data, in such a way that only a small subset of the frag-
ments are active at each reconstruction (those more appropriate to cover the person
under analysis). The output of the algorithm is a feature vector with the weight of
each model fragment in the reconstruction process, so alignment problems become
inherently solved. The experiments performed using this technique show encouraging
results in order to be applied in face classification problems.

Finally, we conclude this thesis showing some possible methods to combine internal
and external features in face classification, where it can be observed that there is an
improvement on the results due to contribution of the information from the external
features, specially in images with occlusions or changes in the illumination.
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Chapter 1

Introduction

The evolution of the available computational resources accelerates every year,
making feasible new applications dealing with face classification. Simultaneously,
the amount of space and energy needed by actual computers decreases, allowing a
progressive integration in our everyday life. Examples of applications that make use
of face classification are face recognition applied to surveillance systems, gender and
ethnicity recognition applied to reactive marketing and gesture recognition in user
friendly interfaces.

Today one of the most challenging applications of computer vision is to integrate
visual systems in uncontrolled environments, for improving our quality of life. The
final step of this progressive integration should be a world where technologies become
completely indistinguishable from the environment, making the computers disappear.
This new paradigm is known as ubiquitous computing [183] and includes several areas
of computer science: networking, sensors, video, operative systems, etc. Face classi-
fication systems will be a piece of this global model, yielding important information
about identity, gender, or human interaction.

The topic of face recognition has been studied in a lot of disciplines: psychologists,
computer vision and cognitive researchers, plastic surgeons, police force and justice
agents have studied this problematic under their own point of view. Nevertheless, it
seems that human visual system has solved this problem, with some limitations [178,
46]. Although it is not the goal of this thesis to imitate the natural face recognition
process, a brief overview of some relevant aspects of human face recognition will be
given in this introductory section.

The first question arising is: learn the humans to recognize faces, or are face
recognition strategies “hard-wired” in human brain? In this context, Johnston and
Ellis [71] showed that babies with less than 10 minutes of life show stronger preferences
for face patterns than for any other kinds. In 48 hours, babies can recognize their
mothers face, and in 10 weeks face patterns are the stimulus where babies pay more
attention. Then the face recognition capabilities are increasingly improved until they

1



2 INTRODUCTION

Figure 1.1: The “Thatcher illusion” made by Thompson [169], the expression of
the face with its eyes and mouth inverted changes from ’pleasant’ to ’grotesque’ as
the stimulus is rotated from 180 to 0.

reach the age of twelve years old approximately. Also the experiments performed
under gesture and expression changes show that children under 11 years old are more
influenced by salient features than adults, that use a more structural strategy.

Also it has been shown that humans recognize easier subjects from their same race
[167], so the learning of face recognition seems to be own-race biased by subjects seen
by each person during his whole life. Also it has been shown that face recognition of
negative and rotated images is difficult for the human visual system [57] (decreasing
more than 10% the accuracy). In another work by Thompson [169] the “Thatcher
illusion” was introduced in order to show that we do not have the same capability
when measuring the spatial relations between facial features in rotated images. Figure
1.1 shows an example of this illusion, looking at both face upside-down, they seem
both real faces, but when the images are rotated back 180, the second one becomes
grotesque. Therefore, perhaps strategies that are useful for general object recogni-
tion are not the best ones for face recognition, that should be studied using specific
techniques.

In addition it has been shown that motion can be useful for face recognition, given
that motion acts as an additional cue to the visual system to extract 3D structure of
faces [54]. Actually, some studies performed on patients injured in the brain suggests
that there are completely separate modules in the human brain dedicated to face
classification tasks [45, 46]. They studied perceptual responses from patients with
prosopagnosia. People suffering this perceptual illness are not able to recognize faces,
although they can recognize the remaining objects as usual.

Other studies made by psychology researchers show an interesting perceptual phe-
nomenon: humans recognize faster caricatures than original face images [55, 133]. A
computational model exploiting this fact has been introduced in [129].

On the other hand, it has been shown that humans are able to recognize gender
with high accuracy rates (more than 95%). Some studies [187] show that the time
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Figure 1.2: Face classification scheme followed in this work. Face images are normal-
ized and converted to a D-dimensional data vector. A feature extraction is performed
according to a model on the internal and external part of the faces, and the sample
is finally classified according to the joint feature set.

to identify a face as familiar and to determine its gender is completely independent.
This fact suggest that there is an independence between these two face classification
tasks in the human visual system, as if they were separate modules.

In this thesis we will deal with computational face classification systems, which is
far from being a solved problem. The first question to be answered is which will be
the scheme used in an automatic face classification problem. As in the human visual
system, the starting point is a set of features observed from the real world. Only the
interesting parts from the observations are captured and processed in the classification
stage, where the final decision about the observed sample is taken. The extraction of
the best features for classification is performed according to a model of the problem
previously learned. Figure 1.2 illustrates the whole process. According to the global
scheme proposed, the immediate question to answer is: which is the most suitable
feature extraction technique to classify face images? Depending on the application
and the classifier used, the results can vary considerably. In this introductory chapter
a brief overview of some common feature extraction techniques on face classification
problems will be performed. In the next chapters, a new feature extraction technique
specially suitable for high dimensional subspaces will be introduced.
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Figure 1.3: The Presidential Illusion [154, 155]. In both cases the internal features
have been artificially altered to highlight the importance of the external information
for face classification. At first sight, four different persons are wrongly distinguished
from the image due to the external information.

The most common approach to feature extraction for face classification is to use the
internal information of each face image. Nevertheless, it can be shown that external
information present on face images can also help in many classification tasks, such
as in gender or face recognition. In Figure 1.3 an example of the influence of the
external features on face classification is shown, ”the Presidential Illusion” [154, 155].
The internal features correspond to only one person on each picture, while the external
features remain unchanged. Given the popularity of the subjects, at first sight, four
different people are distinguished from the pictures.

External features can be defined as the part of a face image that contains the head,
ears, hair and chin. In Figure 1.4 an example of external an internal information from
face images is shown. As can be seen, in the internal case, is relatively straightforward
to perform a previous normalization on the face images given that the position of
the eyes can be used to put in correspondence faces acquired in different conditions
(scale, rotations), and apply direct bottom-up classification schemes. Perhaps the
main reason to justify the small use of external information in the most used face
classification applications is the lack of alignment and its extreme diverse nature.
Nevertheless, it has been proven that external features can be useful for classification
tasks. I. Jarudi and P.Sinha [68] showed that the external features can be even more
important than the internal when dealing with low resolution images. In the second
part of this thesis, a complete scheme to extract the external features of face images
will be introduced. Also a study of the importance of the added external information
to the classic internal approach will be presented.

1.1 Face Classification

Face classification in visual pattern recognition can be defined as the problem of
assigning some predefined labels to an image or subpart of the image that contains one
or more faces. Actually, face classification can be divided into different subproblems
depending on the concrete goal and the semantics of the class labels:
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(a) (b)

Figure 1.4: (a) Internal part of face images. (b) Example of the zones where external
features are extracted

• Face detection, where the goal is to detect the presence of faces in natural
images, and accurately locate their position in complex uncontrolled environ-
ments. According to Yang et al.[97] face detection schemes can be classified
in 4 different categories, although some methods can belong to more than one
category:

1. Knowledge-based methods, where some rules or common knowledge about
face images and relationships between features are encoded. Kotropoulos
and Pitas followed this approach using projection profiles to locate the face
[32].

2. Feature invariant approaches, where the idea is to detect the facial features
first, such as eyes, mouth, eye-brows and group them into candidate faces
[88].

3. Template matching methods, where there is a predefined face pattern that
is correlated with the image. Point Distribution Models (PDM) have been
used for this purpose [83]

4. Appearance-based methods, where the goal is to train a classifier that
learns the features of the faces from a training set with face and non
face images. Many classic techniques such as Principal Component Anal-
ysis [76], Gaussian mixture models [110], Neural Networks [164], Hidden
Markov Models [144], Support Vector Machines [117], and Probabilistic
Models [110] have been applied in this approach.

• Face recognition, where the goal is to assign a label from a predefined set to a
located face image. Many methods of face recognition have also been proposed.
Basically they can be divided into holistic template matching based methods,
geometrical local feature based methods, and hybrid schemes [188]:
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– The holistic methods use the whole image as a raw input to the learning
process. Examples of this techniques are Principal Component Analysis
[76], Independent Component Analysis [112], or Support Vector Machines
[91] applied to face recognition.

– In the feature based schemes some structural features are extracted, eyes,
mouth, and their local appearance, position or relative relationship are
used for training the classifier. The most successful technique is the Elastic
Bunch Graph Matching [184] where they use Gabor wavelets to extract the
basic features for the graph matching scheme.

– Hybrid methods try to use the best of the holistic and feature-based ap-
proaches combining local features and the whole face to recognize. An
example of hybrid methods is the use of eigenfeatures [124], which extends
the idea of eigenfaces to specific regions of the face such as mouth, nose,
or eyes.

Among the holistic methods, appearance-based methods are the most successful.
They are commonly implemented following these steps:

1. Image Preprocessing [101], where usually a illumination correction is per-
formed, followed by the localization of some parts of the face for geometrical
alignment that makes the feature-based approaches more accurate.

2. Feature Extraction. Dimensionality reduction techniques have shown im-
portant advantages in some pattern recognition tasks and face processing
is not an exception. Principal Component Analysis is perhaps one of the
most spread dimensionality reduction techniques ([76] and [173]) in face
classification.

3. Feature Classification. Once the proper features are extracted, any classi-
fier can be applied.

Most of these methods have been successfully used in artificial environments,
but do not perform well in many real world situations as several independent
tests have documented [128].

• Face verification, where the identity of the subject is given, and the prob-
lem is to ensure its truthfulness. Face verification can be seen as a subtype of
face recognition, where the amount of information available is greater. Never-
theless the accuracy required on face verification applications (such as secure
identification for access control) is larger than in face recognition problems.

• Gender recognition, where male or female label is assigned to each face image.
Humans are able to distinguish the gender from face images with high accuracy.
In fact, some psychological studies [3] have shown that we are able to achieve
accuracies close to 96%, using images where the additional information of the
hair has been eliminated. Different approaches can be found in the literature,
which can be divided in two groups: geometry-based and appearance-based
classification techniques.
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– In the first case, a set of features extracted from each image is used to train
a classifier, for example some kind of distance (between eyes, eyebrows,
etc..), or size (face, mouth and nose size,etc...). Brunelli et al. [27] used
a set of 16 geometric features per image to train two hyper basis function
networks, and achieved accuracies of 79% in a database composed of 168
training images. In another work of Burton [3], discriminant analysis was
used over a set of 73 features (such as distances between key points, rations
and angles formed by the key points, etc..), achieving a 85% of accuracy.

– In the appearance-based models the classifier is trained using the whole im-
age instead of using some geometric extracted features. In an experiment
performed in Burton et al. ([24]), human subjects were asked to identify
the gender of a set of pictures of faces and a set of 3-D laser-scanned repre-
sentations of the same faces. The results showed that it was more difficult
to discriminate between classes in the 3-D images, what suggest that fea-
tures like global skin texture are very important in the gender recognition
process. In a similar way another experiment was performed using the face
pictures and the inverted pictures. The accuracy in the inverted pictures
decreased significantly. Perhaps the most representative appearance-based
method is the eigenface approach, Abdi et al. [60] trained a perceptron
classifier using PCA-based features of the input images, achieving a per-
formance of the 91.8%. Cottrell et al. [35] used a two layer neural network
approach, where each face image was compressed in the first layer of the
network, and classified in the second layer. They obtained an accuracy of
63% using only 64 training images. In a similar work of Golomb et al. [6]
a system named SEXNET was used with a 91.9% accuracy. They used
a neural network with 40 units to encode (compress) the 900 dimensional
face image, and then they used two layers of 40 hidden units to classify
the encodings. Tamura et al. [142] also used a neural network to iden-
tify sex achieving accuracies close to 90% even using reduced 8× 8 central
face images. Gutta et al. [141] proposed an hybrid approach using RBF
networks and inductive decision trees achieving an accuracy of 96%. And
Moghaddam et al. [5] obtained the best performance on gender recogni-
tion achieving 96.6% on a large face database (1755 faces), using SVM with
RBF kernels.

• Ethnicity recognition, where the goal is to identify the human race of sub-
jects.

In this thesis, we will develop different techniques to solve some of these problems,
although we will often refer to the general concept of face classification instead of
distinguishing an specific one. The concrete applications will be useful to benchmark
the proposed algorithms.
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1.2 Feature Extraction

Each object that needs to be classified can be described by a set of characteristics
called features. Features can be numerical (pressure, weight, speed, ... ) or symbolic
(material, profession, eye color, ...). In statistical pattern recognition we will only
deal with numeric features. We consider each object x as a feature vector x =
[x1, . . . , xD]T in a D-dimensional space, which is composed by the gray-level intensity
of each pixel. Actually, the feature extraction process begins in the CCD of the
acquisition devices. The measurements performed by sensor are quantized to a specific
domain, and converted to pixel values.

Usually, in face classification schemes, a previous normalization step is needed to
improve the accuracy. Faces acquired in natural environments suffer from problems of
registration, partial illumination and gesture effects. In this thesis, a face alignment
procedure has been performed in all the experiments:

• First the central position of each eye is selected, and images are rotated and
scaled according to the inter-eye distance.

• A illumination correction is performed on each sample. Different normalization
schemes have been used. The most simple approach is to remove the mean of
each sample (related to global illumination), and divide by the variance on each
pixel. More powerful normalization tools based on ridges and valleys have been
developed [129]. In figure 1.5 and example of this local light normalization is
shown.

• Finally the region of interest of each image is cropped according to the eye
position in such a way that distance between eyes remains stable within subjects,
and each thumbnail is reshaped to the final feature vector.

From now on, we will consider that faces have been properly acquired, normalized,
and aligned constituting a data set X = [xT

1 ,xT
2 , . . . ,xT

N ], where each feature vector
x belongs to <D. Usually feature vectors that encode raw pixels from face images
lay in high dimensional subspaces. This fact implies a tremendous increase in the
computational cost to process each feature vector. Besides high dimensional spaces
suffer from a problem known as the curse of dimensionality [130], which exponentially
relates the amount of observations needed to model a single object with the dimen-
sionality of the feature vectors representing it. This turns out to need a huge amount
of data samples to estimate a good functional to identify it. Also, high dimensional
spaces suffer from undesirable properties ([175, 51]) such as that almost every point
lies on the distribution boundary (almost each point is closer to an edge than to
another point), or that large neighborhoods are needed to enclose a small fraction
of data points. On the other hand, it has been observed that there exists data re-
dundancy in high dimensional vectors. Moreover, depending on the application, an
efficient feature extraction can be beneficial for classification purposes, achieving a
more accurate parameter estimation. Different dimensionality reduction techniques
have been proposed in the literature to eliminate data redundancy. When the goal
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(a) Original image. (b) Filtered image.

Figure 1.5: (a) Original image with partial illumination on the left side. (b) Illumi-
nation correction using gaussian filtering to extract the ridges and valleys from face
images.

of the learning technique is to discover the structure of the data vectors without any
prior information on class membership, it is known as unsupervised feature extraction.
On the other hand, in supervised feature extraction, the algorithm uses the labels of
the data to learn the new features. Therefore, for each original feature vector xi there
is a class label cj ∈ {1, . . . , K} ∀j = 1, . . . N associated. Supervised techniques can
also learn class-invariant characteristics, or maximize some separability criteria, that
improve the results of a predefined classifier.

Algorithms for feature extraction algorithms can be classified into linear and non
linear. In this section a brief overview of feature extraction techniques and its appli-
cation to face classification will be performed.

1.2.1 Unsupervised Linear Feature Extraction

Linear feature extraction techniques, in the most general formulation, can be
expressed in terms of a linear projection from the original D-dimensional subspace to
an M -dimensional one (usually M < D).

s = Ax (1.1)

where A is an M × D projection matrix, and s the new extracted feature vector.
According to the literature, the dimensionality reduction techniques can be classified
in two categories: feature selection and feature extraction. In the feature selection



10 INTRODUCTION

[69, 120] approach only a subset from the original feature vector is preserved. In
feature extraction a projection matrix is used to combine the original features into
the extracted. In this thesis, we will consider the feature selection as a special case of
linear feature extraction where the selected features have coefficient 1 in the projection
matrix A, and 0 in the other features.

Principal Component Analysis

The basic idea of Principal Component Analysis (PCA) was first introduced by
Pearson [73] in 1901, and it’s also known as Karhunen-Loeve expansion and Hotelling
Transform [63]. The first practical application of the algorithm appeared 3 years later,
when Spearman [161] argued that a general factor of intelligence of its students could
be obtained by a single linear combination of their school performance rankings.
Later, in 1990, one of the first applications using PCA in face classification was
performed by Kirby [76]. One year later, in 1991, Turk and Pentland introduced the
notion of eigenfaces for classification, they used PCA to build a set of bases, and
represented each face as a linear combinations of these bases.

The goal of any linear transformation applied to feature extraction is to find the
set of vectors that span a new reduced subspace minimizing some specific criteria.
Principal Component Analysis minimizes the mean square error (MSE) between the
original and the projected data points. In addition, it has been shown that the linear
transformation preserves the maximum variance in the projected space.

Suppose that we have the matrix X = [xT
1 ,xT

2 , . . . ,xT
N ] where each column is

a D-dimensional training sample x. We look for the linear transformation A that
minimizes the mean square error criteria defined as [132]:

J =
N∑

n=1

‖xn − (Axn)AT ‖2 (1.2)

To illustratively see how this projection can be obtained, an example in a 1-dimensional
space will be shown. Without loss of generality, we suppose that the training column
vectors x have mean 0. If it is not the case, new vectors x̂ can be computed, and used
instead:

x̂n = xn −m (1.3)

where m is the mean

m =
1
n

N∑
n=1

xn (1.4)

Supposing that only the best representation of each data point in a single line must
be found, the goal will be to find the unitary vector e that defines the direction of
that line.

x = ce (1.5)
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where c0, c1, . . . cN is the set of scalar coefficients in the direction of e. According to
the mean square error measure, the criteria to be minimized is:

J(c0, c1, . . . cN , e) =
N∑

n=1

‖xn − cne‖2 =
N∑

n=1

c2
n‖e‖2 − 2

N∑
n=1

cnexn +
N∑

n=1

x2
n (1.6)

The value of the scalar coefficients ck can be calculated by differentiating J with
respect to each coefficient, and equaling it to zero. As can be seen each coefficient
will be:

cn = exn (1.7)

The next step is to calculate the direction e that bests reconstructs the data. Substi-
tuting the coefficients cn for it’s value from 1.7 in 1.6

J(e) =
N∑

n=1

c2
n− 2

N∑
n=1

c2
n +

N∑
n=1

x2
n = −

N∑
n=1

(exn)2 +
N∑

n=1

x2
n = −

N∑
n=1

eT xnxT
ne+

N∑
n=1

x2
n

(1.8)
and defining the scatter matrix Sc as:

Sc =
N∑

n=1

xnxT
n (1.9)

the eq. 1.8 becomes:

J(e) = −eT Sce +
N∑

n=1

x2
n (1.10)

The vector e which minimizes eq. 1.10 is the vector that maximizes −eT Sce. To find
it the method of Lagrange multipliers can be used, subject to the constraint ‖e‖ = 1.
Using λ as a Lagrange multiplier, the equation to differentiate with respect to e is:

u = eT Sce− λ(eT e− 1) (1.11)

∂u

∂e
= 2Sce− 2λe (1.12)

And after making it equal to zero to reach the maximum, we obtain Sce = λe. The
vector e that fulfils this equation must be an eigenvector of the scatter matrix Sc. In
fact we can see that e must be the eigenvector with largest eigenvalue λ, because the
maximum of eT Sce = λeT e = λ is needed.

Using a similar process we can extend it to find M-dimensional spaces. In general,
the PCA projection matrix from a D to an M-dimensional space can be found by
estimating the M eigenvectors with largest eigenvalue of the covariance matrix of the
data. The set of coefficients c are called the principal components.

Another interpretation of PCA can be considered in terms of finding the directions
of maximum variance. The eigenvectors of the covariance matrix define the set of the
orthogonal axis with maximum variance, while the eigenvalues define the variances
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Figure 1.6: PCA axis for an artificial 2D-Gaussian data set.

along this axis. This fact is illustrated in figure 1.6, where data sampled from a 2-
dimensional Gaussian is plotted, the axis of the distribution coincide with the PCA
eigenvectors, and the variance is directly related to the eigenvalues.

In all the feature extraction techniques there is a loss of information. To measure
the amount of variance preserved using only the M first PCA components, the ratio
between the preserved variance and the original can be computed by adding the first
M eigenvalues and dividing it by the trace of the scatter matrix:

R = 100 ∗
∑D

d=1 λm

trace(Sc)
(1.13)

Usually, before performing the feature extraction a percentage of the variance to
be preserved is defined, and the eigenvalues of the scatter matrix Sc are ordered
λ1 > λ2 > . . . λn, and selected according to this percentage.

Although there is a loss of information using PCA, the technique has been proven
to be effective in face classification, often improving the results of the classifiers in
the original spaces. This is due to the fact that PCA reduces the dimensionality
by eliminating the directions of small variance, which are commonly associated to
noise. Therefore, PCA eliminates the noisy components of data in the dimensionality
reduction process.

Another important characteristic of PCA projection is that the features extracted
are always mutually uncorrelated, and in the case of gaussian data the features are
independent. An application of this fact is the data whitening, and it is often used as
a preprocessing step in many classification tasks to provide invariance to scale in the
features. Given the matrices V = diag{√λ1, . . . ,

√
λD} with the M largest eigenval-

ues, and A the PCA linear projection, the data vector x is whitened performing the
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(a) (b)

Figure 1.7: (a) Orignal images with lateral illumination (b) Normalized images
using the mutual information.

transform:
y = V

−1
2 A(x− x) (1.14)

where x is the sample mean of the vectors xi. Projecting the data using the matrix
V
−1
2 A, the dimensionality is reduced and also the data become uncorrelated and have

unit variance.

Principal Component Analysis is possibly one of the most used techniques in fea-
ture extraction, and multiple improvements over the classic algorithm have appeared,
such as weighted PCA [157], probabilistic PCA [170], kernel PCA [108], or Robust
PCA [82].

Bart and Ullman [8] used the Principal Component Analysis algorithm for a new
class-based image normalization method. In their approach they use the mutual
information to identify and select the most relevant components instead of taking
into account the correspondent eigenvalues. They defined the mutual information
between each class and the feature strength as:

Iθ(C, F ) =
K∑

c=1

p(C = c, F = f)log
p(C = c, F = f)

p(C = c)p(F = f)
(1.15)

where the strength is a discrete representation of each feature from the PCA algorithm
using the threshold θ, and c is the class of each sample. The algorithm discards
the non-informative components, those that provide less information about the class
membership of the sample, preserving the ones that have higher mutual information.
Figure 1.7 shows an illumination normalization example extracted from [8], with two
samples from the ARFace database with strong lateral illumination. The normalized
images are obtained reconstructing using only 82 preserved components (with larger
mutual information). As can be seen the normalization obtained is very accurate.

Eigenfaces example

Face recognition applications are an important field where PCA projections have
been specially used. The first application for characterization of human faces was
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done in [76], and one year later Turk and Pentland (see [173]) developed a real-
time system to locate, track and recognize human faces. They extracted the most
significant features in terms of variation, which were called eigenfaces. Each image
was represented as a weighted sum of this set of bases, and only these weights were
compared to recognize each face.

In Figure 1.8 the first 100 eigenfaces of a set of 500 face images extracted from
the AR Face database [100] are shown. Using only 100 eigenfaces a 91.83 % of the
input variance was preserved. It has been shown that the first eigenfaces are strongly
related to illumination and low frequencies, while the larger ones are related to high
frequencies. As can be seen in Figure 1.9, the most part of the variance is preserved
using a small subset of the first eigenfaces. We also show how using only the first
100 bases, we are able to reconstruct a very similar face to the original one. The
figure shows also how the reconstruction is affected when the dimensionality of the
subspace is reduced. Using only 10 or 5 eigenfaces, the recognition of the person
becomes unfeasible.

In a more recent application to face recognition, Moghaddam et al. [111, 110],
used the PCA algorithm to divide the <D space into two complementary subspaces
using the basis defined by the M eigenvectors of largest eigenvalue, and the residual
of the PCA expansion. They defined a similarity measure based on the Bayes rule on
intra-personal and extra-personal variations, achieving a 10% gain in performance in
the 1996 FERET competition.

In this thesis the basic PCA algorithm has often been used as a benchmark to
compare with the feature extraction techniques proposed.

Independent Component Analysis

The main limitation of Principal Component Analysis lies on the gaussianity as-
sumption made on the distribution of the input data. PCA computes the axis of
maximum variance of the input data taking into account only the covariance matrix
of the training vectors, remaining completely blind to high order statistics. Indepen-
dent component analysis (ICA) overcomes this drawback by finding the axis where
the projected vectors are statistically independent ([65]).

Independent component analysis is a technique originally developed to solve the
problem of separating a set of signals which have been mixed in a linear way (Blind
Source Separation). The most relevant assumption made by ICA to solve it is that
signals are produced by mixing independent sources. The general formulation is:

x = Bs (1.16)

where x is the observed random vector, s are the latent components, and B is the
mixing matrix, which are both completely unknown and must be estimated assuming
only statistical independence on the mixture components. Usually the mixture matrix
is assumed to be square, although it is not strictly necessary. Different approaches
can be followed to obtain the solution to the ICA problem: maximum likelihood
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(a)

(b)

Figure 1.8: (a) The mean face image of a training set made up of 500 face images.
(b) The 100 first eigenfaces of the same training set.
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Figure 1.9: (a) Percentage of variance preserved (b) Example of face used in the
data set (c) Result of reconstructing this face using the first 100 coefficients obtained
from the PCA projection (d) The same as (c) but using only 75 coefficients (e) 50
coefficients (f) 10 coefficients (g) and only 5 coefficients.
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Figure 1.10: Example of the axis found using PCA and ICA in a uniformly dis-
tributed data

estimation of the parameters (see chapter 9 of [65] for further details), by maximizing
the non-gaussianity of the independent components [65], or by minimizing the mutual
information [33]. In Figure 1.10, we can see the axis found by ICA and PCA, in a
2-dimensional uniformly distributed data [37]. PCA founds the axis that maximize
the variance, but the projections in those axis are still mixed, on the other hand ICA
is able to find the projections of the independent components.

Feature extraction using ICA has been successfully applied in face classification
tasks. Bartlett et al.[9] combined two different ICA architectures for a face recogni-
tion problem, obtaining better performances than using PCA. In addition, as there
are different algorithms for solving the ICA problem, different results can be obtained
depending on the option chosen. Draper et al.[26] successfully used the ICA algo-
rithm to face classification tasks, they compared the FastICA [66] and the Infomax
[10] algorithms with PCA in a face identification and a facial expression recognition
problem using the FERET database, and they concluded that the best accuracies in
face identification are obtained using FastICA, while Infomax algorithm performed
better for facial action recognition.

Non negative matrix factorization

The PCA transformation is only constrained by minimizing the reconstruction
error, and it obtains global holistic bases to represent objects. Lee and Seung [86]
designed a new algorithm called non Negative Matrix Factorization (NMF), based on
adding a positivity constraint. Both the basis matrix B and the coefficients S of the
factorization are forced to be non negative. As in computer vision we usually work
with positive data descriptions (pixel values) it seems plausible to use the positive
data instead of PCA or ICA representations. Moreover, the NMF finds a parts-
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based representation of the objects that shares similarity with biological systems
[93, 121, 182]. This fact implies important advantages when dealing with occlusions
and perturbations that affect to specific locations of the objects (local changes in
illumination).

NMF also tries to minimize the mean square error criteria as PCA, but the key
point in the non negative matrix factorization is the use of the non negativity con-
strains applied to the set of bases and to the coefficients that represent each vector
in the reduced space. This non negativity constraint provides sparse bases due to the
fact that the weighted combination of the bases is always additive, so bases can not
have big portions active because once a big portion of an image is used as a base, it
can not be removed (due to the constraint of additivity).

The NMF algorithm takes a matrix X of N D-dimensional vectors (all of them
nonnegative). The goal is to find a good approximation of X as:

Xij ≈ (B ∗ S)ij =
D∑

d=1

BidSdj (1.17)

where the D ×M matrix B contains the set of bases, and the M ×N S matrix are
the weights corresponding on each base per each vector. The estimation of the matrix
factorization is performed optimizing an objective ([87]) function defined as:

F =
N∑

i=1

M∑

j=1

[Xij log(BS)ij − (BS)ij ] (1.18)

Which can be viewed as the likelihood of generating the images X from the bases
B and the weights S. But due to the non negativity constraint, it is not possible to
find the analytical solution to this expression. A gradient ascent can be used to solve
it iteratively. The optimization of this function can be achieved using the iterative
rules:

Bij ← Bij

∑

d

Xid

(BS)id
Sjd (1.19)

Bij ← Bij∑
k Bkj

(1.20)

Sjd ← Sjd

∑

i

Bij
Xid

(BS)id
(1.21)

One problem that arises from the non negative nature of the technique is the projec-
tion of the new unseen samples. The NMF algorithm uses additions of non negative
bases, so the problem of projecting new unseen vectors must be faced carefully. In
the general linear dimensionality reduction approach, each time that a new unseen
vector must be projected we perform:

S = AX (1.22)

where A in the NMF case is the inverse matrix of the NMF bases B. Nevertheless, the
resulting projection matrix computed in this way can have negative values, infringing
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the non negativity constraint. To overcome this drawback the projected vectors are
found by running a few steps of the iterative algorithm, using as a input matrix X
the new unseen vectors, and fixing the bases to the ones found in the training step
(only the new weight coefficients are learned). The resulting weights are always non
negative, and the algorithm converges after a few iterations, usually 50-100 depending
on the dimensionality.

In most of the cases the additive parts based bases found by the NMF algorithm are
not necessary localized. Stan Li et al. [90] proposed a variation of the algorithm called
local non negative matrix Factorization, for learning more localized parts based bases.
To reach this goal, three new constraints are added to the non negativity constraint
of classic NMF.

First the matrices U and V are defined as U = BT B and V = SST both M ×M ,
and the new constraints added are:

1. The number of bases required to present X should be minimized. The bases
should not be further decomposed in more components. This can be achieved
by minimizing

∑
i Uii.

2. It’s necessary minimize the redundancy between bases, this can be achieved by
minimizing

∑
i 6=j Uij making the basis as orthogonal as possible.

3. The components giving the most important information should be favored. This
can be achieved by maximizing

∑
i Vii.

The final update rules using the new restrictions become (see [90] for more details):

Bij ←
Bij

∑
n Xin

SjnP
k BikSkn∑

n Sjn
(1.23)

Bij ← Bij∑
k Bkj

(1.24)

Sij ←
√

Sij

∑

d

Xdj
Bdi∑

k(BdkSkj)
(1.25)

In Figure 1.11 an example of bases found using 500 face images is shown. LNMF
is able to find more localized bases. We can see how some bases capture specific
characteristics of faces, such as eyebrows, mouth, chin. This fact is very useful when
dealing with occlusions. In general, NMF based algorithms perform worse than PCA
and the other techniques used in classification experiments, but usually it is possible to
obtain the bests results in occlusion problems, because they only affect some specific
bases due to its sparse nature.

On the other hand, the reconstruction error of NMF is close to the one obtained
using PCA, but using the LNMF algorithm, the reconstruction results are very poor.
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(a) (b)

Figure 1.11: Example of 49 bases found on a 500 faces image data set. (a) Bases
found using NMF (b) Bases found using LNMF. In the second case the bases vectors
are more localized.

LNMF provides worse reconstructed faces, even using more iterations in the conver-
gence process. In Figure 1.12 this problem is illustrated, 500 faces were used to learn
49 NMF and 49 local NMF bases, a large amount of the discriminant visual features
is lost using the LNMF algorithm.

The NMF algorithm has been used in face recognition [86] due to the robustness
against partial occlusions. Chen et al. [186], used the algorithm for feature extraction
in a face detection application using Adaboost. Guillamet et al. [42, 58] introduced
a weighted version of the algorithm to focus the calculation on some specific samples
using a set of weights. Later in this thesis, in chapter 2, we show a face detection
scheme that uses the weighted NMF algorithm combined with boosting, in order to
reach an adaptive feature extraction that improves the results obtained using a fixed
feature extraction.

1.2.2 Supervised Linear Feature Extraction

The feature extraction techniques previously presented, perform a linear trans-
formation that minimizes a reconstruction criteria, under some constraints. But the
best features to reconstruct the original samples are not always the best features for
classification. In Figure 1.13 a toy example in a 2-dimensional space is shown. Pro-
jecting the data on the axis of maximum variance is not the best feature extraction
option for classification, while the second direction separates perfectly the data. In
visual object recognition, when often data samples lie on high dimensional subspaces,
the discriminant features can be a small subset of the original ones. For example,
suppose a manuscript digit recognition problem, where the digits ”0” and ”8” must
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(a) (b) (c)

Figure 1.12: Example of the reconstruction error using LNMF and NMF. (a) Some
faces of the original 500 data set.(b) Faces reconstructed from the weights and the 49
bases found using NMF. (c) Faces reconstructed from the weights and the 49 bases
found using LNMF.

be classified. The best way to separate both classes should be to learn features based
on the small portion of the center of each digit from the training samples, but unsu-
pervised techniques would not give too much importance to this discriminative fact.
Feature extraction techniques can benefit from prior knowledge of class membership
of the training samples. Alternative approaches for supervised linear feature extrac-
tion have been proposed based upon different criteria and assumptions made on the
training data. In this section a brief review of the discriminant analysis techniques
used in this thesis will be performed. First the classic Fisher Linear Discriminant
Analysis technique (FLD) will be introduced, to show later how its nonparametric
extension [53] can solve the main drawbacks of FLD:

• Gaussian assumption on the class distribution of the input data.

• And a limitation of the final dimension in the projected subspaces.

Then a modification of the classic NDA proposed by Bressan ([23] and [103]) which
improves the nearest neighbor classification will be shown. Finally, a recent discrim-
inant analysis technique based on the Chernoff criterion will be explained.

Fisher Discriminant Analysis

The goal of discriminant analysis is to find the features that best separate the
different classes maximizing the criterion J :

J = tr(SBSW ) (1.26)

where the matrices SB and SW , generally represent the scatter of sample vectors
between different classes and within a class respectively. It has been shown [39, 52]
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Figure 1.13: Toy example where two classes are plotted. The axis of maximum
variance are not the axis most suitable for classification.

that the M ×D linear transform that satisfies:

Â = arg max
AT SW A=I

tr(AT SBA) (1.27)

optimizes the separability measure J . This problem has an analytical solution based
on the eigenvectors of the scatter matrices. The algorithm presented in table 1.1
obtains this solution [52]. The most widely spread approach for defining the within
and between class scatter matrices is the one that makes use of only up to second
order statistics of the data. This was done in a classic paper by Fisher [48] and the
technique is referred to as Fisher Discriminant Analysis (FLD). In FLD the within
class scatter matrix is usually computed as a weighted sum of the class-conditional
sample covariance matrices. If equiprobable priors are assumed for classes ck, k =
1, . . . , K then

SW =
1
K

K∑

k=1

Σk (1.28)

where Σk is the class-conditional covariance matrix, estimated from the sample set.
The between class-scatter matrix is defined as,

SB =
1
K

K∑

k=1

(µk − µ0)(µk − µ0)T (1.29)

where µk is the class-conditional sample mean and µ0 is the unconditional (global)
sample mean.
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Table 1.1: General algorithm for solving the discriminability optimization problem
stated in equation (1.27) given the scatter matrices SB and SW .

1. Given X the matrix containing data samples placed as N D-dimensional columns,
SW the within class scatter matrix, and M maximum dimension of discriminant
space,

2. Compute eigenvectors and eigenvalues for SW . Make Φ the matrix with the eigen-
vectors placed as columns and Λ the diagonal matrix with only the nonzero eigen-
values in the diagonal. MW is the number of non-zero eigenvalues.

3. Whiten the data with respect to SW , to obtain MW dimensional whitened data,

Z = Λ−1/2ΦT X

4. Compute SB on the whitened data.

5. Compute eigenvectors and eigenvalues for SB and make Ψ the matrix with the
eigenvectors placed as columns and sorted by decreasing eigenvalue.

6. Preserve only the first MB = min{MW ,M, rank(SB)} columns, ΨM =
{ψ1, . . . , ψMW

} (those corresponding to the MB largest eigenvalues).

7. The resulting optimal transformation is Â = ΨM
T Λ−1/2ΦT and the projected

data, Y = ÂX = ΨT
MZ

Notice the rank of SB is K − 1, so the number of extracted features is, at most,
one less than the number of classes. The problem can be artificially solved increasing
the number of classes using clustering algorithms. Also notice the parametric nature
of the scatter matrix. The solution provided by FLD is blind beyond second-order
statistics. So we cannot expect the FLD method to accurately indicate which features
should be extracted to preserve any complex classification structure, for example in
multimodal class distributions, where a Gaussian is assumed for the whole class.

Nonparametric Discriminant Analysis

In [53] Fukunaga and Mantock present a nonparametric method for discriminant
analysis (NDA) in an attempt to overcome the limitations of FLD. In nonparametric
discriminant analysis the between-class scatter SB is of nonparametric nature. This
scatter matrix is generally full rank, thus loosening the bound on extracted feature
dimensionality. Also, there is no gaussian assumption on the class distribution of
the input data, only some gaussian behavior is assumed in the distribution of the
distances between points of different classes, which is a more relaxed condition. Now
this technique will be briefly described, and it’s extensively detailed in [52].
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(a) Two Gaussian classes (b) One Gaussian and one bimodal class

Figure 1.14: First directions of NDA (solid line) and FLD (dashed line) projections,
for two artificial datasets. Observe the results in the right-hand figure, where the FLD
assumptions are not met.

In NDA, the between-class scatter matrix is obtained as an average of N local
covariance matrices, one for each point in the data set. This is done as follows. Let
x be a data point in X with class label cj . Denote by xdifferent the subset of the k
nearest neighbors of x among the data points in X with class labels different from cj .
We calculate the “local” between-class matrix for x as

∆x
B =

1
k − 1

∑

z∈xdifferent

(z− x)(z− x)T (1.30)

The estimate of the between-class scatter matrix SB is found as the average of the
local matrices

SB =
1
N

∑

z∈X

∆z
B (1.31)

Using k = 1, the subset xdifferent contains only one element, zdifferent
x , and

SB =
1
N

∑

x∈X

(x− zdifferent
x )(x− zdifferent

x )T . (1.32)

A parametric form is chosen for the within-class scatter matrix SW , defined as in
1.28. Figure (1.14) illustrates the differences between NDA and FLD in two artificial
datasets, one with Gaussian classes where results are similar, and one where FLD
assumptions are not met. For the second case, the bimodality of one of the classes
displaces the class mean introducing errors in the estimate of the parametric version
of SB . The nonparametric version is not affected by this situation, and classes are
more separable in the projection found.
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(a) (b) (c)

Figure 1.15: Example where the whitening has been performed using a parametric
form of the within class scatter matric (b) and a non parametric one (c) using a toy
data set (a) composed by 2 classes

M. Bressan and Vitrià [22] introduced also a non parametric form of the within-
class scatter matrix SW , which is expected to provide features which work well with
the nearest neighbor classifier. They propose to use

SW =
1
N

∑

z∈X

∆z
W (1.33)

where ∆x
W is calculated from the set of k nearest neighbors of x, xsame, from the same

class label cj .

∆x
W =

1
k − 1

∑
z∈xsame

(z− x)(z− x)T (1.34)

For k = 1,

SW =
1
N

∑

x∈X

(x− zsame
x )(x− zsame

x )T . (1.35)

In this thesis we use the local approximations of both SB and SW , as in [22].The
influence of the new within-class scatter matrix can be seen in the whitening step.
The non parametric form of SW , normalizes the data according to the distances of
each point to the nearest neighbors of the same class as can be seen in Figure 1.15.
There is no gaussian assumption in the distribution of the points of the same class, in
fact, the assumption now is in the distribution of the distances between the nearest
neighbors of points of the same class, which is less restrictive.

Heteroscedastic LDA (Chernoff)

Recently Loog and Duin [95] extended the LDA criterion for the case of Gaus-
sian classes with different covariance matrices (heteroscedastic data). They replace
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the criterion (1.26) with the Chernoff criterion which is expected to be superior for
heteroscedastic data. Their experiments show encouraging results.

Let m1 and m2 be the estimated means of the two classes, p1 and p2 be the
estimated prior probabilities (p2 = 1−p1), and S1 and S2 be the respective covariance
matrices. For simplicity of notation, denote by S the within-class covariance matrix
SW calculated as S = p1S1 + p2S2. The criterion matrix is again M = S−1

W SB where
SB is calculated as

SB = p1 p2 S
1
2

(
S−

1
2 (m1 −m2)(m1 −m2)T S−

1
2

− 1
p2

log
(
S−

1
2 S1S−

1
2

)
− 1

p1
log

(
S−

1
2 S2S−

1
2

))
S

1
2 (1.36)

Here a function f (logarithm or power) of a matrix A is calculated in the following
way. Let VDV−1 be the eigenvalue decomposition of A, i.e., V is the matrix of
eigenvectors and D is a diagonal matrix with the eigenvalues on the leading diagonal.
The function is applied to the eigenvalues and the results are placed at the leading
diagonal of a diagonal matrix, denoted f(D). Then f(A) = V f(D)V−1.

For equal covariance matrices S1 = S2 = S, the Chernoff matrix SB in (1.36) is
the same as the matrix SB of FLD.

Figure 1.16 shows four two-class problems and the projections obtained through
FLD, NDA and Chernoff. In subplots (a) and (c) both classes have Gaussian distribu-
tion, with the same covariance matrices. The Chernoff and FLD projections overlap,
and NDA also yields a similar projection. On the other hand, in (b) and (d) only
one of the two classes is Gaussian. The bimodality of one of the classes displaces the
class mean introducing errors in the estimate of the parametric version of SB in FLD.
NDA and Chernoff are not affected by this for small noise levels. Also notice that
Chernoff seems to tolerate noise better than NDA. Subplot (d) shows that the projec-
tion selected by NDA is affected by noise on the y-axis while the Chernoff projection
is not.

In face classification, many variants of linear discriminant analysis have appeared.
Swets and Weng [165] compared the performance of principal component analysis
and FLD in a face recognition. Belhumeur et al. [119], proposed a system called
fisherfaces, to find the invariant features against strong changes in the illumination
in a face recognition problem. In [104] the modified NDA technique combined with
the nearest neighbor classifier has been used in a gender recognition experiment.

1.2.3 Nonlinear Feature Extraction

Some data sets lie on high dimensional non linear manifolds that can not be
properly learned using linear projections. For example: let’s suppose that we have a
face, and a camera recording the face and moving itself around the x axis. The result
will be a large amount of frames with the face of the person captured under different
points of view. Each face image will be a high dimensional data point, but in fact,
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Figure 1.16: Examples of FLD, NDA and Chernoff for Gaussian ((a) and (c)) and
non-Gaussian ((b) and (d)) classes for two levels of noise on the y-axis.
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Figure 1.17: Example of the 2-dimensional plot made using a non linear dimen-
sionality reduction technique (the locally linear embedding) on a set of face images
captured under different points of view of the camera. It can be observed a relation-
ship between the face orientation and the situation of each point in the 2D mapping.

we could consider that the data lies in very low dimensional subspace, because if we
have the first face picture, there is only one degree of freedom in the generation of the
other face images (the camera movement around the x axis). So the goal will be to
try to find the nonlinear projections that can provide us the underlying manifold of
the data. Two important non linear techniques have recently appeared to overcome
this problem: Isomap and Locally Linear Embedding (LLE). Both techniques try to
find the underlying non linear structure of the data, preserving the neighborhood of
each data sample. In Figure 1.17, the example of a 2-dimensional LLE embedding on
the face images is shown. The original image is plotted near each point, to show the
relationship between face orientation and the new axis found.

In this section the Multidimensional Scaling (MDS) algorithm will be introduced,
as a necessary step in the Isomap technique, that introduces the nonlinear behavior.
Then the LLE algorithm will be shown, emphasizing the improvements made in the
projections of unseen vectors and the supervised extensions of the algorithm.

Multidimensional Scaling

Multidimensional scaling is a non linear dimensionality reduction technique fo-
cused on displaying the structure of distances intra data in a low dimensional plot
[113]. It has its origins in psychometrics where a similar idea was used to understand
the way how similarities are perceived in subjects such as distances between colors
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or olfaction senses. Also it has been used to obtain 2D plots of abstract psycholog-
ically related concepts [67], such as to see a spatially distribution of people working
on different job. MDS has also been applied to sociology, econometrics and political
sciences. The term MDS was first proposed by Torgerson [172], and later used in
works from Kruskal [77], Young and Guttman [113].

The main goal of MDS is to represent a set of N D-dimensional input data points
in a low dimensional space using some dissimilarity measure between each data point.
The algorithm can be divided in two steps:

1. First the dissimilarity measure between each data point is computed. Usually,
the most used measure is the Euclidean distance, but sometimes it does not
capture the real dissimilarities between high dimensional points, for example
in cases where there are different scales per each axis or when dealing with
discrete or specific symbolic data. So other different distances can be used
such as Mahalanobis distance, or more complex measures to model de intrinsic
geometry of nonlinear manifolds.

2. Compute the MDS using the matrix NxN which contains the dissimilarity mea-
sure between each pair of points.

Depending on the nature of the dissimilarities the computation of the coordinates
in the low dimensional space in the second step can be performed analytically or
optimizing a loss function. When the dissimilarities between each pair of points
are proportional to its distances, the MDS dimensionality reduction is called metric
MDS, and has an analytic solution known as classical scaling ([171]), which is shown
in table 1.2. Otherwise the embedding is called non-metric MDS, and it must be
solved minimizing a loss function [113, 78].

In the Figure 1.18 we show an example of the projected points belonging to 2
classes (800 different numbers extracted from the MNIST database [84]) to a 2-
dimensional space using the MDS projection. As it is shown, the resulting points
are not completely separable in this low dimensional space.

Isomap

The isomap algorithm, proposed by Tenenbaum et al.([168]), tries to find the
underlaying non linear manifold of the input data, using as a base method the clas-
sic MDS algorithm, but changing the dissimilarity measure to a very nonlinear one:
geodesic distances. Once this geodesic distances are computed a MDS step is per-
formed, and the resulting embedding is able to encode the real degrees of variance of
the input data.

A geodesic distance between two data points is defined using the shortest path
between both points. This path is constructed using a graph where each node is
a data sample, and there is an edge with the Euclidean distance associated between
each data point and its nearest neighbors. The geodesic distance is defined as the sum
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Table 1.2: MDS classic algorithm

.

The MDS algorithm takes as inputs a matrix X = [X1, . . . , XN ] which are N
D-dimensional points, and the matrix D with the dissimilarities between points.

1. Compute the matrix A as A = − 1
2d2

ij , where dij is the dissimilarity between the
points i and j.

2. A new matrix B is computed as B = HAH, where the matrix H is defined as
H = Id− 1

N O, O is a N ×N ones matrix, and Id is the N ×N identity matrix.

3. Compute the matrix V with the N eigenvectors of B with their corresponding
eigenvalues Λ = λ1, . . . , λN , so B = VΛVT .

4. It can be shown ([113]) that there are N−D zero eigenvalues in Λ. The D remaining
eigenvectors must be ordered according to their eigenvalue, obtaining the matrix
Λr = λ1, . . . , λD and Vr = [v1, . . . , vD].

5. The final coordinates can be computed as:

X = VrΛ
1
2
r (1.37)

of the distances associated to the edges that connect the shortest path between each
point. Therefore, geodesic distances are better adapted to the underlaying manifold,
in comparison with Euclidean distance, because it must border the real structure of
the data instead of going straight across the manifold structure. In Figure 1.19 an
example of geodesic compared to Euclidean distance between two points in a parabolic
data set is shown. The geodesic distance models better the underlaying manifold of
the data, therefore it seems more suitable to use it in the classic MDS algorithm.
In the Figure 1.20 the same example using the MNIST handwritten digits used in
Figure 1.18 is plotted. It can be seen how the final projections using this real data
set are quite similar, although isomap improves separability between the two classes.

Locally Linear Embedding

In a similar way as isomap, the locally Linear Embedding algorithm (LLE) [166]
finds a non linear mapping from a high dimensional space to a low dimensional one. To
reach this objective, LLE takes into account the restriction that neighborhood points
in the high dimensional space must remain in the same neighborhood in the low
dimensional space, and placed in a similar relative spatial situation. The algorithm
does not change the local structure of the nearest neighbors of each point.

LLE can be considered a locally linear method, because it takes into account the
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Figure 1.18: A 2-dimensional MDS projection example using Euclidean distance of a
reduced data set comprising 800 characters of the MNIST database which correspond
to 2 different data classes (numbers 4 and 7).

Figure 1.19: Example of data points generated in a 3-dimensional space according
to the equation (x, y, 1 − x2). It can be seen the difference between considering the
classic Euclidean distances (path in blue) and the geodesic distances (path in green),
which can be used to capture the underlaying manifold of the data.
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Figure 1.20: Isomap embedding of the same data set used in figure 1.18

local geometry of each point, but only the K nearest neighbors for each point are
used, making the algorithm globally nonlinear, and enabling to capture the geometric
properties of nonlinear manifolds. This characteristic also allows to work with very
sparse matrices making the algorithm computationally efficient, and allowing to work
with more points than other techniques (such as isomap).

The algorithm takes as inputs N D-dimensional training points x1,...,N and can
be divided in 3 steps:

1. In the first step, the K nearest neighbors of each point are found. The most
common used distance is the Euclidean. Nevertheless, other distance metrics
can be used, and the selection of the neighbors can be not homogeneous. For
example the points within an envelope of certain radius can be selected as
candidate neighbors.

2. In the second step the local geometry of the input data is captured, using a set of
coefficients W per each point, corresponding to the weights that best reconstruct
the vector from its K nearest neighbors (usually using the Euclidean distance).
So the weights Wnk must minimize the error reconstruction equation:

ε(W) =
N∑

n=1

|xn −
K∑

k=1

Wnkxnk
|2 (1.38)

where xnk
indicates the K nearest neighbors of the sample xn. To find the

weights that minimize this equation, a least-squares problem must be solved.
See [74] for more details.

3. In the last step the coordinates of each point in the low dimensional space



1.2. Feature Extraction 33

Figure 1.21: Schematic view of the locally linear embedding algorithm, where the
three important steps are shown: the location of the nearest neighbors of each point,
the computation of the weights that encode its local properties, and the low dimen-
sional embedding.

M ¿ D are computed as the vectors yn that best minimize the equation:

θ(y) =
∑

|yi −
∑

Wnkynk
|2 (1.39)

The weights found during the previous stage are constant, and the goal is to
find the low dimensional outputs yn that best reconstruct each vector using its
K nearest neighbors and the weights of the second step, which capture the local
geometric properties of each point in the original space. So the equation to find
the output vectors is independent of the input vectors x in the final step. To
efficiently find the vectors yn an eigenvector problem must be solved. A new
sparse matrix M is defined as:

Mij = δij −Wij −Wji +
K∑

k=1

WkiWkj (1.40)

It can be proved that the output vectors yn are the M + 1 eigenvectors of the
matrix M associated to the lowest eigenvalues (see [74, 166] for more details).

An important drawback of the LLE technique is the difficulty to project new unseen
vectors u to the low dimensional subspace. Parametric and non parametric models
have been used to solve it (see [74, 166]). In [103], we proposed the use of a multi layer
perceptron neural network approach to learn the nonlinear mapping and solve the
regression problem. The idea is to run the LLE algorithm with a set X of N training
vectors (so the network must have N inputs), in order to obtain their projection Y
in the low dimensional space. Then we train the MLP using X as inputs and Y
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Figure 1.22: 2-dimensional reduction of faces using LLE. Original faces are plotted
near each reduced point. Triangles stand for female subjects and dots for male
subjects. As can be observed some characteristics as global illumination are captured
by LLE embedding. On the other hand other features such as beard (on the up-right
corner), or ethnicity are also captured in the spatial distribution of the faces.
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as desired outputs. As a previous step all the vectors must be normalized to the
range [-1,1]. The intrinsic characteristics of the neural network can depend on the
problem, but in our experiments made with face images we have realized that a MLP
with 2 hidden layers (with 15 and 10 neurons each one) is enough to capture the
nonlinear dimensionality reduction. The projection of new input vectors in the low
dimensional space is then straightforward, running a forward step in the MLP to
obtain the reduced vector. Another approach to project the new unseen vectors is
to use the same principle used in the standard training algorithm, but for individual
points ([38]). Given an unseen sample u, its K nearest neighbors from the training set
are found. Then the reconstruction weights for the point are computed (minimizing
the equation 1.38). The final coordinates yu, are computed as:

yu =
K∑

i=1

WiYN(i)) (1.41)

where YN(i) are the coordinates of the nearest neighbor i in the reduced space cor-
responding to the nearest neighbor i in the high dimensional space. In experiments
performed with face images, we have seen that the clouds of points representing each
class in a 2-dimensional subspace remain stable after projection new unseen vectors.
Okun et al.[116] developed a modification of the LLE algorithm by adding to the
algorithm information of class membership of the training points, called supervised
locally linear embedding (SLLE). The difference between the supervised algorithm
and the original one relies on the selection of the neighbors, in the first step. While
LLE looks for the K nearest neighbors of each point, supervised LLE looks for the
nearest neighbors that belong to the same class of the point. So the weights com-
puted in the second step encode the best way to reconstruct each point from its
nearest neighbors of the same class. The rest of the algorithm remains the same as
the original LLE. In the Figure 1.23 it can be seen how the supervised locally linear
embedding allows a separation of the 100% of the training data points, concentring
them in to distant clouds. If new test points are projected, this perfect separation is
not possible, although there is still a very good separation between classes.

1.3 Statistical Face Classification

Feature extraction techniques provide an appropriate starting point for the second
step: classification of the feature vectors or assigning a label to each new unseen
example. In face classification a large amount of classifiers have been used in the
literature, with different degree of success depending on the application. In this
section a brief overview of some classification schemes used in this thesis will be
performed.
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(a)

(b)

Figure 1.23: (a) 2-Dimensional embedding using supervised LLE of the same data
set used in figure 1.18. (b) The projection of new unseen test vectors, black points
are the projections of vectors of the same class as the blue ones, while green points
belong to the same class as red points. The points remain separable, but the clouds
are not as far as the clouds used in the training.
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1.3.1 Bayes Decision Theory

Theoretically, the best classifier must be the one that minimizes the number of
possible mislabelings, and this classifier is known as the optimal Bayes classifier. The
classification is performed as follows: given a new feature vector x, and the set of
classes {c1, . . . , cK}, the posterior or a posteriori probability P (C|x) is computed for
each class cj . Then the label assigned to the vector is the one that has maximum
probability [132]. This is known as the Maximum a Posteriori decision rule (MAP):

cMAP = argmaxi=1...KP (ci|x) (1.42)

The P (ci|x) are unknown, but can be computed using the Bayes rule:

P (c|x) =
P (x|c)P (c)

P (x)
(1.43)

The denominator of 1.43 does not depend on the class label, so the class labels can
be computed directly from:

cMAP = argmaxi=1...KP (x|ci)P (ci) (1.44)

where P (ci) is the prior probability, and p(x|ci) is the class conditional probability.
The prior probabilities are usually calculated using some a priori knowledge about the
frequency of the classes, while class conditional probabilities are directly estimated
from a training set. When there is no knowledge about the class priors and are all
considered equally probable, then eq. 1.44 becomes:

cMAP = argmaxi=1...LP (x|ci) (1.45)

and it is called Maximum Likelihood (ML) decision rule, and it is directly related
to Mahalanobis distance metric to the class means when gaussian distributions are
assumed.

Although the Bayesian classifier is considered theoretically the best possible classi-
fier, it has an important drawback, it assumes that the class conditional probabilities
are known or can be perfectly estimated from the training set, and usually this as-
sumption does not hold in high dimensional data.

Probably the most spread density function to estimate the conditional probabilities
is the normal distribution, denoted by p(x|ci) = N(µi,Σi):

p(x|ci) =
1

(2π)
n
2
√
|Σi|

exp[−1
2
(x− µi)T Σ−1

i (x− µi)] (1.46)

where µi ∈ <D is the mean of the vectors of the class i and Σi is the D×D covariance
matrix. The choice of the normal distribution to model the class densities is made
assuming that there is a ideal prototype object (the mean), and the rest are small
”distortions” of it. The parameters of the distribution can be estimated using the
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Figure 1.24: Example of Bayes error for two normal distributions. The optimal
separability is marked with the black vertical line, and the error region is plotted in
gray.

maximum likelihood technique [132], it can be shown that µi and Σi are represented
by the population mean µ̂ and sample covariance matrix Σ̂ respectively.

µ̂ =
1
N

N∑

i=1

xi (1.47)

Σ̂ =
1
N

N∑

i=1

(x− µ̂)(x− µ̂)T (1.48)

The error of a any classification rule is defined as the probability of assigning a
certain sample to the wrong class. The error of the Bayes classifier C∗ is defined as
[96]:

Pe(C∗) = 1−
cK∑

ci=1

∫

<∗i
p(ci)p(x|ci)dx (1.49)

where <∗i is the classification region for the class i. In figure 1.24 an example with
two normal densities is plotted. Given the optimal decision boundary (in black), the
Bayes error is the area defined in gray. In practice, the Bayes probabilities are almost
never known, so it is not possible to analytically calculate the error in real problems.
Nevertheless, the Bayes error can be useful when designing new classifiers, to evalu-
ate its expected performance. An interesting consideration to take into account is the
behavior of the classification error when a feature extraction step is previously per-
formed. It has been shown that for any transformation s = Ax, the Bayes error will
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be greater or equal than with the original data [22]. This result can seem contradic-
tory with the introduction of feature extraction in pattern recognition problems, given
that even the best feature extraction algorithm will not improve the final error, and
often will make it worse. But this affirmation is only true if we know the probability
distributions on the original space, what never holds in practice, so the parameters
of the distributions must be estimated from training samples. As face classification
always implies to work with high dimensional samples, an accurate estimation of the
distributions becomes a difficult problem (curse of dimensionality). Therefore, in this
context, the feature extraction allows a better estimation of the distributions on the
reduced space, and improves the global performance of the classifier. Also feature
extraction can focus the attention on class discriminability, obtaining more accurate
specific classifiers.

Parameter Estimation

The class-conditional distributions of eq.1.44 are in general unknown, so they must
be estimated from the training data. Different likelihood estimation methods have
been defined. In a first approximation the estimation methods can be divided in
parametric and non parametric [12].

Parametric methods are based on assuming a certain distribution function de-
fined by a set of parameters. A typical example of parametric techniques is the
assumption of gaussian distribution. To estimate the parameters of the distribution
given the training data X the maximum likelihood (ML) algorithm is used [132].
The ML technique defines the likelihood function depending on the set parameters
θ = θ1, θ2, . . . , θn. Therefore, the goal is to find the parameters θML that maximize:

p(X|θ) = p(x1,x2, . . . ,xN|θ) (1.50)

Usually independence assumption between the measurements xi is assumed, and the
log likelihood is used instead of 1.50, obtaining:

ln(p(X|θ)) = ln(
N∏

n=1

p(xn|θ)) =
N∑

n=1

ln(p(xn|θ)) (1.51)

The parameters needed can be found by differentiating the log likelihood function
and solving the equations ∂

∂θi
ln(p(X|θ)) = 0. Frequently the solutions must be found

using numeric procedures such as Newton’s method or the Expectation Maximization
algorithm [2]. The main drawback of parametric methods is that often data samples
do not perfectly fit on predefined likelihood functions, even when a perfect estimation
is performed.

In nonparametric methods, the density function is not specified in advance, and
only the training data is used to estimate the class-distributions. One of the most
simple methods is to use the frequential probability of each training sample. A quan-
tization is performed on each feature, dividing the range in bins. Then the probability
is calculated depending on the number of points that fall in each bin. Given the bin
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Bi, with volume Vi, N the total number of samples, and Ni the number of samples
falling on each bin, the probability of the value x to fall in Bi is:

p(x) =
Ni

ViN
(1.52)

The main problem of this approach is that the total number of bins grows exponen-
tially with the dimensionality of the data, so the number of training samples needed
to model the probabilities grows also exponentially (curse of dimensionality).

Another non parametric approximation is the Parzen window approach [122].
This method sums the contribution of a predefined kernel function H(x,xn, h) on
each sample xn, where h defines the width of the neighborhood, and V the volume.

p(x) =
1
N

N∑
n=1

1
V (h, D)

H(x,xn, h) (1.53)

Different kernel functions can be used, such as Gaussian or hypercube (Parzen) ker-
nels. The advantage of kernel methods, is the smoothness with respect to the direct
bin approach, where there appear discontinuities on the points close to the boundaries
of the bins.

Another different approach is not to fix the volume of the bins, and fix the number
of samples falling on this bin, it is known as the k-nearest neighbor approach (K-NN).
This method can be considered a likelihood estimator and a classifier itself, and it
will be explained in a further section.

1.3.2 Linear Discriminant Classifier

The Linear Discriminant Classifier (LDC) is a parametric technique derived from
the Bayes classifier assuming normally distributed classes with equal covariance ma-
trices. The function fi(x) is defined for each class:

fi(x) = log(P (ci)p(x|ci)), i = 1, . . . , K (1.54)

where p(ci) and p(x|ci) are prior and the class conditional probabilities. Assuming
that the classes are normally distributed, with class mean µi and the same covariance
matrix Σ, p(x|ci) = N(µi, Σ) we obtain [96]:

fi(x) = log(P (ci))− 1
2
µT

i Σ−1µi + µT
i Σ−1x = wi0 + WT

i x (1.55)

where fi is the discriminant function. The parameters µi and Σi are estimated from
the training data, and the data samples will not be normally distributed in practice,
so the final error will differ from the optimal Bayesian error.

1.3.3 Quadratic Classifier

The Quadratic classifier (QDC) assumes classes normally distributed, but the
covariance matrix is different on each class. Substituting in eq.1.54 using the class
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covariance Σi, the final discriminative function obtained is [96]:

fi(x) = wi0 + wT
i x + xT Wix (1.56)

where
wi0 = log(P (ci))− 1

2
µT

i Σ−1
i µi − 1

2
log(|Σi|) (1.57)

wi = Σ−1
i µi (1.58)

Wi = −1
2
Σ−1

i (1.59)

And the parameters Σi and µi are directly estimated from the training samples.
Sometimes the inversion of the covariance matrices Σi poses a problem when the
matrices are singular. This situation happens when the number of training samples is
smaller than the data dimensionality, and can be solved applying regularization. The
method consists in averaging the covariance matrices for each class with the global
covariance matrix.

Σ̃i(α) = (1− α)Σi + αΣ (1.60)

When α = 1, the QDC classifier becomes the LDC, and λ = 0 means that no regu-
larization has been used.

1.3.4 Naive Bayes Classifier

The naive Bayes classifier [132] is a modification of the optimal Bayes classifier
where statistical independence is assumed on the features, so the conditional density
can be marginalized as the product of the unidimensional densities of each feature:

P (x|ci) =
D∏

d=1

p(xd|ci)∀i = 1 . . . L. (1.61)

Then the MAP rule is followed using the P (x|ci) calculated using the naive assump-
tion. Although the independence assumption is not realistic on the most cases, the
naive approach has been used in many applications of text classification [114, 106]
and information retrieval [89], and real world problems such as statistical diagnosis
[61]. Domingos and Pazzani [44] performed a complete study using 28 databases from
the UCI repository, where they showed that naive Bayes classifier outperform the
Bayesian classifier with full density estimation, among other classifiers.

When the independence assumption holds, the naive Bayes approach is the best
classifier we can get for linearly separable data. But even when no independence
assumptions can be performed on the data, some preprocessing on the feature vectors
can be performed to improve the results. Bressan et al. [41, 21] introduced an
algorithm based on projecting the data using ICA before applying the naive Bayes
decision rule. In the projected space, the assumptions made in the naive model are
more realistic, and the performance of the classifier is improved.
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1.3.5 k-Nearest Neighbor Classifier

The k-nearest neighbor classifier is based on selecting a set of labelled prototypes
for each class, and the classification of new samples is performed using a measure
of similarity between the new example and the prototypes. Given a set of P =
{p1, . . . ,pv} labelled prototypes and their labels l(pi), the k prototypes which are
closer to a new input vector x according to the similarity measure are selected, an the
most represented label among the k nearest neighbors is assigned to the sample x. If
the method is viewed under the likelihood estimation point of view, the pdf estimated
is:

p(x) =
k

NV
(1.62)

where k is the number of prototypes used, N the number of samples and V is the
volume that contains the k nearest neighbors. Considering Nvi the number of elements
in V of the set P that belong to the class ci, we obtain a class-conditional density:

p(x|ci) =
Nvi

NiV
(1.63)

where Ni is the total number of elements from class ci. Applying the posterior prob-
abilities, we obtain:

p(ci|x) =
p(x|ci)p(ci)

p(x)
=

Nvi

NiV
Ni

N
k

NV

≈ Nvi

k
(1.64)

So the minimum Bayesian error is achieved by assigning to x the class with maximum
1.64. Therefore the class assigned is the one that has more representants in the volume
defined by the k nearest neighbors. Two important results can be derived, first the
k-nn error is optimal (equal to the Bayesian error) when k →∞, V → 0 nd k

N → 0.
And second, when the 1-NN rule is used, the error is upper bounded by twice the
Bayes error P1−nn ≤ 2Pe [36].

The k-nearest neighbor classifier is one of the most simple classifiers, and it has
been proven to be very robust in many pattern classification tasks. When the number
of training samples is large, the computational needs of the algorithm can increase
considerably. Prototype selection algorithms have been proven to be very efficient
in these cases, drastically reducing the sample size, with small impact on the final
accuracies.

1.3.6 Support Vector Machines

Support Vector Machines (SVM) have been used on many face classification prob-
lems achieving interesting results: Moghaddam and Yang applied SVM to gender
recognition [5], they used their approach on low resolution images, where hair infor-
mation has been eliminated. Their experimental results with SVM outperform the
classic pattern recognition techniques.
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In addition, Osuna et. al successfully used SVM on a face detection problem [117],
in their work, they introduced a decomposition algorithm specially suitable for dealing
with large sets of data, given that face detection usually involves a large set of face
candidates. They iteratively decompose the problem in subproblems and combine
them adjusting the margins. With this approach they could solve a face detection
problem composed by more than 50000 data points.

The roots of SVM are located in the Statistical Learning Theory developed by
Vladimir Vapnik at AT&T Bell Laboratories. SVMs are based on the principle of
structural risk minimization, and can be applied both to classification and regression
purposes. The main characteristic of SVM technique is the fact that it generalizes well
when classifying new unseen data. In this section the basis of simple linear SVM will
be shown, then a kernel extension of the method where data is previously projected
to a high dimensional space will also be exposed. For more details on the algorithm,
see [109, 31, 160, 28].

Given a set of training samples xj with labels cj ∈ {1,−1} the SVM method tries
to find the hyperplane that best separates the data points and maximizes the distance
between points from both classes to the hyperplane (the margin). The discriminant
hyperplane is defined by:

f(xi) = wxi + w0 (1.65)

where w and w0 are the parameters of the hyperplane. A new unseen sample will be
classified depending on:

(wxi) + w0 ≥ +1 when ci = 1. (1.66)

(wxi) + w0 ≤ −1 when ci = −1. (1.67)

which can be merged on:

ci[(wxi) + w0] ≤ 1 i = 1, . . . , N (1.68)

The minimum distance between the hyperplane and the closest point is called margin,
so the optimal hyperplane will be the one that maximizes the margin γ with the
closest point. This property is strongly related to the generalization capabilities of
the algorithm, the largest the margin, the most separable will be both classes.

The optimal hyperplane is defined by a set of vectors, called support vectors.
The number of vectors necessary to find the hyperplane is an indicator of the class
separability of the problem. Vapnik showed that the generalization error is related
to the number of support vectors. Moreover, Vapnik [176, 177] introduced an upper
bound on the generalization error, although this bound is not easily computable in
practice, it offers interesting insights for new theoretical developments ([109]). Figure
1.25 shows a synthetic example of two separable classes, where the most important
parameters are shown.

Analytically, to find the hyperplane that maximizes the margin, the following
expression must be minimized [31]:

min
1
2
||w||2 (1.69)
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Figure 1.25: Synthetic example of two separable classes. The central line defines
the optimal hyperplane defined by the support vectors sown in filled markers. Also
the maximum margin is illustrated.

for both w and w0, subject to

ci[(wxi) + w0] ≤ 1 i = 1, . . . , N (1.70)

To find the analytic solution to this problem quadratic programming techniques can
be applied. Nevertheless, when the dimensionality of the data is moderately large,
the problem must be formulated using the Lagrangian dual form [163].

max(min L(w, w0, α)) (1.71)

where

L(w, w0, α) =
1
2
||w||2 −

N∑

i=1

αi(ci[(wxi) + w0]− 1) (1.72)

The dual formulation can be performed following the Kuhn-Tucker theorem, given
that both the cost functions and constrictions are convex functions (see [31] for more
details).

Sometimes it is not possible to find the optimal hyperplane, because the class
distribution does not allow full separability (there are some points that do not fulfil
eq.1.70). To solve this problem a set of positive margin variables ξi (i = 1, . . . , N)
are defined to model the distance to the limit of the margin of each class for each non
separable point:

ci[(wxi) + w0] ≤ 1− ξi (1.73)
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Therefore, the minimization problem becomes:

min
C

N

N∑

i=1

ξi
1
2
||w||2 (1.74)

for both w and w0, subject to the restriction of eq.1.73, and C is a large enough con-
stant defined by the user. The hyperplane solution is called soft margin hyperplane.
As in the previous case, the solution for high dimensional subspaces can be found
using the dual formulation [175, 31].

Kernel SVM

Using this formulation, the optimal hyperplane is defined on the original space, so
only linearly separable problems can be solved. One solution to extend the SVM algo-
rithm is to map the training data to a new feature space φ : X −→ F , using a mapping
function (“kernel trick”). The functions interesting are those which correspond to a
dot product on the feature space F [160]:

k(x,y) = (φ(x) · φ(y)) (1.75)

where k(x,y) is the mapping that depends on the user choice. The kernels are con-
structed satisfying the Mercer theorem [131, 176, 34]. The kernel function can be
linear and non linear. The most commonly used are:

• Linear Kernel: It is equivalent to the linear SVM as explained above.

k(x, y) = x · y (1.76)

• Polynomial Kernel: with parameter d, the degree of the polynomial, and r is
a parameter defined by the user depending on the application.

k(x, y) = (x · y + r)d (1.77)

• Radial Basis Functions (RBF): with parameter σ defining the radius.

k(x, y) = exp(
‖x− y‖2

σ2
) (1.78)

• Sigmoid Kernels: With parameter θ

k(x, y) = tanh((x · y) + θ) (1.79)

• Other kernels: Some other kernels also have been used in pattern recognition,
such as neural networks based kernels, spline based kernels, and kernels based
on the Fourier transform.

Figure 1.26 shows an example where after projecting the data in a higher dimen-
sional space it becomes linearly separable. The main problem using nonlinear SVM
is the proper selection of the parameters of the kernel. The accuracies obtained are
very sensible to these parameters and usually a trial and error method is the best way
of tuning the algorithm.
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Figure 1.26: Example extracted from [109]. Data is projected to a 3D space using
the mapping (x1, x2) → (z1, z2, z3) = (x2

1,
√

2x1x2, x
2
2)), where it becomes linearly

separable.

1.3.7 Classifier Combination

In this section a brief overview of the classifier combination techniques will be
presented, although in the next chapter the different strategies will be explained in
depth. By classifier combination we denote the fact of training multiple classifiers to
obtain a more powerful decision rule. A simple taxonomy of the building ensembles
of classifiers can be established depending on the approach followed on the individual
classifiers [96]:

1. Use different combining rules.

2. Combine classifiers of different nature.

3. Use different feature sets on the classifiers.

4. Use different data subsets for each classifier.

In this work we will focus on the last proposal, where methods such as boosting and
bagging have been successfully applied in many pattern recognition tasks. Another
popular combining technique, belonging to the third taxonomy is the random space
methods (RSM).

Bagging

Bagging was proposed by L.Breiman [19], and it is based on randomly selecting
samples from the training set. A classifier is trained on each subset, and the classi-
fication results are combined using some rule such as majority voting, or averaging
the results. Bagging has been proven to be efficient on small training sets and in
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presence of outliers, that can be isolated in some subsets, having less influence in the
final voting results.

Bagging was successfully used on a gender recognition problem [104] using frontal
face images from the AR Face database [100] and XM2VTS [105]. Different feature
extraction techniques were used and the NN rule was applied for classification. The
bagged combination of classifiers using NDA feature extraction outperformed the
other techniques considerably (see Table 1.3). Also the improvement of using the
bagged NDA algorithm against a single NDA feature extraction should be noticed.

Table 1.3: Gender recognition accuracies on the AR Face and XM2VTS databases
using different feature extraction techniques.

Algorithm Accuracy

NN 86.28

PCA 86.57

SVM 90.95

FLD 81.30

LLE 76.27

SLLE 87.12

NDA 90.56

Bagged NDA 91.76

Boosting

Boosting methods are inspired on an algorithm called Hedge(β) [50]. According
to Freund and Schapire [49], the base algorithm consists in sequentially training a set
of weak classifiers, and the final decision rule is constructed as a linear combination of
the results of the partial classifiers. In the first step the weak classifier is learned using
a training set. According to the classification performance, a set of weights for each
learning sample are adjusted. In the next step the new classifier is trained taking into
account the weights of the previous step, giving more importance to the misclassified
samples. At each step the classifiers are more focused on the most difficult samples,
and the final combination is hoped to achieve 0 training error quickly.

Two different versions of boosting have been proposed in the literature: with
resampling and reweighting, depending on the how the information encoded on the
weights is used on the training set. In the next chapter the different implementations
of the boosting models will be explained in detail, as it is the base of the feature
extraction algorithm proposed in this thesis.

In face classification problems, one of the most successful applications of boosting
was performed by Viola and Jones [181, 180], were they used the Adaboost algorithm
on a large subset of features to solve a face detection problem.
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Random Subspace Methods

The RSM technique is a combining method [62] where the original feature space is
sampled and only M < D features are used for training the classifiers. An ensemble
of classifiers is built using the M-dimensional data set, and the final decision rule is
a simple majority voting. RSM is specially suitable for problems where the number
of samples available is relatively smaller than the dimensionality of the data, or in
problems where there is a strong redundancy on the feature set.

1.4 Example: Online Face Detection and Classifica-
tion Application

In this section a brief description of a complete face classification system that il-
lustrates some of the introductory methods exposed on this chapter will be explained.
The final face recognition application was running on the principal stairs of the Com-
puter Vision Center for 6 weeks [102], and consist of:

• A face detector based on boosting of naive Bayesian classifiers.

• A feature extraction step performed using the NDA algorithm

• A face recognition phase using the nearest neighbor classifier with the extracted
features.

Figure 1.27 illustrates the main steps of the global application.

1.4.1 Face detector

The face detector uses a boosting cascade of naive Bayes (NB) classifiers. In a
first step a feature extraction based on ridges and valleys (see [1] for more details)
is performed on the image. This representation has been shown to be more robust
against changes in illumination [129]. A threshold on the resulting filtered images is
applied, assigning the value 1 when a pixel is on a ridge, −1 when a pixel is situated
on a valley, and 0 otherwise, Figure 1.4.1 shows some filtered images from faces
and non faces. To convert this ternary representation into a binary one, the filtered
image is separated into two representations where we put to 1 the pixels where there
is a ridge/valley and 0 otherwise. Both representations have been vectorized and
concatenated, so at the end the filtered image becomes a binary vector with double
dimensionality.

From each original video frame image of 576×768 pixels, the set of candidate sub
images to contain a face is generated as follows: the image is first resized to 288×384
to avoid the effect of interlacing, then a set of sliding windows of 32 × 24 pixels is
generated for each frame, in such a way that all the possible sub-windows from the
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Figure 1.27: Scheme of the global application, where first a face detection is applied,
then a feature extraction process over a normalized face image is performed, and
finally the classification is done using the Nearest Neighbor classifier.

image are obtained. The center of the sliding window is considered every two pixels.
The process is repeated at 4 different scales, each time the image is re-scaled by a
factor of 1.25. Four scales have been shown to be enough for our application, detecting
faces up to 64× 64 pixels. Each sub image is classified as face or non face according
the cascade described below.

As a face image can appear in more than one sliding window or in multiple scales,
a merging step has been added to avoid multiple detections of the same face. We
compute the overlap among each sliding window with a detected face in close positions
(overlapping more than 80% of their surface). We keep the one that is closer to the
mean of the overlapping windows (taking into account the center).

The proposed classifier for the sub images extracted makes use of the Adaboost
algorithm, where the chosen weak classifier is the naive Bayes. In particular we have
assumed a Bernoulli distribution on the data [20], given that only the binary filtered
samples are used. For each target image xi we decide that it is a face following the
MAP rule p(xi|CFaces) > p(xi|CNonFaces). To estimate the conditional probabilities
for the faces we use:

p(x|CFaces) =
D∏

d=1

pxd

d q1−xd

d (1.80)

where xd is d-th pixel of the image and pd is the probability of finding a 1 in the pixel
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Figure 1.28: Example of ridges and valleys detection for a subset of face and non
face images.

d, and qd the probability of finding a 0 in the pixel d (pd = 1− qd). This probabilities
p and q can be estimated directly from the training samples by finding the frequencies
of the ones and zeros of the face vectors. In a similar way the conditional probabilities
for the non faces are:

p(x|CNonFaces) =
D∏

d=1

p̃xd

d q̃1−xd

d (1.81)

where p̃ and q̃ are obtained as p and q but using the non face instead of the face
samples.

Face detection requires high detection rates (higher than 90%) and very low false
positive rates (lower than 0.00001%) in order to be useful, given that there is a large
amount of sub images in any video frame to be analyzed. In order to get this kind
of false positive rates Viola and Jones [181] proposed the use of boosted classifiers
in a cascade architecture where each classifier was specialized in classifying a specific
subset of non faces while they keep high detection rates. We have also followed a
similar approach using the NB as a base classifier.

A single NB classifier was trained using 6500 images, with 1500 faces extracted
from different public face databases (we have used the XM2VTS [105] and the first
image of each subject from the AR Face database [100]) and 5000 non face images.
The classification results using a large set of 28000 images (26000 non faces and 2000
faces taken from the same databases) show a global error performance of 2.45% and
only a 0.83% false positive rate in the first cascade level. This classification results
were still poor for a face detection task, so a full cascade consisting of 32 additional
levels (as described in [180]) were added. In the first level less than 1% of the images
are considered faces, discarding the rest. Each new level is a more specialized classifier.
The final detection rate is close to the 94%, while we obtain one false positive every
100000 samples.

In figure 1.29, we show some examples of images wrongly classified by the detector.
Some twisted and blurry faces are confused, and also some natural images which
present a structure very similar to a face are also misclassified. Also we have tested the
face detector using the CMU test database [139] (with 483 labelled faces), obtaining
94.2% of detection rate and just 82 false positives. Notice that these results are similar
to the most common techniques used in the state of the art, although our detector is
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Figure 1.29: Examples of false negative and false positive images obtained in the
boosting scheme. The structure of the false positives is similar to face images (with
valleys in the eyes and nose zones).

more simple, which allows us to use it in a real environment. A complete comparative
can be found in [97], where it can be seen that the best technique achieves 98% of
detection rate, but also obtains a large amount of false detections (12758). Other
techniques such Fisher Linear Discriminant achieve just 74 false detections, although
the detection rate decreases (93.6%). Our purpose achieves detection rates close to
the other techniques, keeping a reasonable false detection rate, and allowing a fast
implementation.

1.4.2 Face Recognition in an Uncontrolled Environment

The final application consist in a face recognition scheme in a non controlled
environment. A Sony EVI D-31 camera was installed looking at a staircase in the
Computer Vision Center. This camera was connected to a VCR and four hours of
recordings at peek hours were gathered each day, for a total lapse of 6 weeks. The
face detector was applied to these videos and the detected images saved and manually
labelled. From the approximately 80 different people detected in all tapes, only those
47 with more than 30 detected faces were included in the gallery. The total number
of faces for these 47 subjects was 4176, approximately 88 faces per subject.

The modified NDA representation was used for real-time recognition in an uncon-
trolled environment. The real time requisite has justified the election of a feature
extraction algorithm (to reduce the amount of data storage) in the verification step.
Also the face detector is restricted to faces with small rotations (less than 10 degrees),
although the set up of the real application allows the capture of enough frontal views
of each person to train the NDA.

Feature extraction and face recognition

For the recognition engine we considered a scheme based on a linear projection
using the NDA algorithm followed by a nearest neighbor classification. Recognition
was performed on the 32× 32 faces in the original frame. This is illustrated in Figure
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1.30. In Figure 1.30 (a) some detected faces from a video sequence are shown. Figure
1.30 (b) shows these same faces after the normalization.

As a previous step, we have computed a Principal Component Analysis projection
matrix using a huge face data set, and the data vectors have been projected to a 224-
dimensional subspace that preserves approximately the 97% of the variance, prior
to learning the NDA representation. Then 128 NDA components were preserved.
Classification was performed using the 5 nearest neighbors average voting.

All the parameters from this scheme (PCA and NDA dimensionality, number of
nearest neighbors and classifier combination policy) were set by cross-validating the
training set.

(a)

(b)

Figure 1.30: Example of some faces used in the face recognition experiment, before
and after normalization.

Experimental results

To evaluate the performance of our classifier, a 10-fold cross validation on the
faces was used. For this experiment, classification accuracy was 96.83%. We also did
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a supervised cross-validation so no samples from the same day were at the same time
in training and test sets. Results were very similar, yielding a 95.9% accuracy.

Recognition was also evaluated online, recording the recognition results and video
to manually evaluate the online classification accuracy. Recognition rate for approx-
imately 2000 test images belonging to the 47 subjects in the gallery was 92.2%. In
this experiment, we also observed that the classifier would greatly benefit from tem-
poral integration which, at the moment, was not implemented. The frame rate of
the application with all three engines working and this gallery of 47 subjects was ap-
proximately 15 fps. Also prototype selection techniques applied to the NN classifier
could be applied to speed up the system. Figure 1.31 shows two frames taken directly
from the working application. A first frame illustrates the environment in which the
experiment took place, and the second frame illustrates the recognizer at work.

(a)

(b)

Figure 1.31: Frames extracted from the human ID at distance application in the
Computer Vision Center.
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1.5 Conclusions

In this introductory chapter an overview of the face classification problematic has
been presented. The global scheme for face classification is divided in two parts:
feature extraction and classification.

The feature extraction can be performed taking into account two independent
face parts: the external and the internal information. A brief overview of the classic
internal feature extraction techniques has been performed, leaving the external feature
extraction for further chapters. Feature extraction yields important advantages on
face classification tasks:

• Feature extraction allows to learn invariant characteristics to separate data into
classes, highlighting discriminative information, and obtaining representations
more suitable for classification, reducing the noise present in any natural image.

• As it has been shown, the problem of the curse of dimensionality complicates
the estimation of the class densities for training the classifier. Feature extraction
eliminates redundancy on the data, reducing the dimensionality and improving
the parameter estimation.

• A most compact representation of the data is obtained, reducing the dimen-
sionality of the original images we also reduce the storage and computational
needs.

In the second part of this introduction an overview of different classifiers has been
performed. We use as a base classifier the optimal Bayes classifier. It has been shown
that the Bayes classifier minimizes the probability of missclassification, in this terms
it is considerated theoretically the best classification method. The results of any
classifier are upper bounded by the bayesian, nevertheless, the estimation of the class
conditional distributions is complicated in high dimensional subspaces (as it is the
case of face images) unless the proper feature extraction is performed. Depending on
the assumptions performed on the data, different classifiers can be derived from the
original Bayes decision theory, such as the linear, quadratic, or the nearest neighbor
classifier.

Moreover, a brief overview of more recent classification methods based on com-
bining weak classifiers has been performed. This methods are the base of the feature
extraction technique proposed on this thesis. Also an example of a real face classi-
fication application is shown, where an efficient real time face detector based on the
Adaboost algorithm is used, combined with a NDA-based feature extractor and the
nearest neighbor classification rule. Despite of its simplicity, the performance of the
whole system is close to the state of the art methods.
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1.6 Contributions and Outline of the Thesis

The main contributions of this thesis can be divided in two parts: (i) feature
extraction using the internal features of face images, (ii) feature extraction of external
features and a framework for integrating internal and external information in face
classification problems.

• In the first part we propose different feature extraction techniques based on
applying dimensionality reduction on the vectors that contain the features rep-
resenting each face (typically the grey scale values of the image pixels). Usually,
prior to the feature extraction, face images are put into correspondence taking
into account the center pixel of each eye, and normalized to mitigate the effects
of changes in illumination. Some of the most used statistical pattern recognition
techniques for feature extraction applied to face classification are introduced in
this chapter. Also a brief review of some of the existing classification techniques
in the literature is shown.

In chapter 2 we summarize different classifier combination schemes that underlie
the main purpose of this work for feature extraction: Bagging algorithm is
introduced, and the Adaboost algorithm is discussed to develop the internal
feature extraction exposed in chapter 3. We propose a novel linear feature
extraction algorithm based on combining different projection vectors which are
selected using Adaboost. Although the technique was initially designed to solve
a gender recognition problem, we show in chapter 3 an evaluation using general
databases from the UCI ([13]), concluding that the algorithm can outperform
other linear discriminant techniques provided that the dimensionality of the
original data set is large enough.

• In chapter 4 we show a framework for extracting external features from face
images. We make use of an existing patch-based segmentation algorithm [15]
to build a model of the external features of face images. The main difficulty of
extracting external features is to put in correspondence the same parts between
different subjects. Sizes, location and scale can hugely vary depending on the
subject, making the normalization used in the internal features completely insuf-
ficient for the external case. In order to build a feature vector to apply standard
classification techniques we use a model based on small fragments extracted from
a predefined set of training people. Given a general enough fragment model,
we can approximate each person external features by a linear combination of
the fragments from the model. Two different algorithms have been used in our
approach to obtain the final coefficients that are used as external features: the
normalized correlation and the Non-negative Matrix Factorization algorithm.

In the same chapter we propose methods for combining the external and internal
information for face classification, showing that there can be an improvement in
the classification accuracies with respect to the ones obtained using the classic
pattern recognition techniques on the internal part of faces.



56 INTRODUCTION

Finally, chapter 5 summarizes the main contributions of this thesis, and shows the
future lines of this work.



Chapter 2

Classifier Combination Algorithms

2.1 Introduction

Usually, in problems where data lays on high dimensional subspaces or when the
amount of samples available is reduced, it is difficult to built a good single classifier,
because the estimation of the parameters is poorly performed. Different approaches
can be followed to improve the performance of a weak classifier. In this chapter,
combination strategies will be studied for this purpose. In combination strategies
many weak classifiers are constructed instead of a single one, and a more powerful
decision rule is constructed by combining them. The term “weak classifier” has been
used to refer low complexity classifiers, unstable classifiers, or just badly performing
classifiers [159]. Along this thesis, we will consider that a classifier is weak when it
has poor performance, but with accuracy strictly higher than 0.5 for the binary case
(in general 1/K for K-class problems).

Multiple methods have been proposed for combining weak classifiers, here we will
describe some of the most popular: bagging and boosting. In this chapter the bagging
technique will be introduced, and the boosting methods will be explained in depth.
The Adaboost algorithm will be presented, given that it is the base algorithm of the
feature extraction technique proposed in the next chapter. Moreover, a modification
of the original Adaboost algorithm will be shown, where the classifier generation is
performed jointly with the feature extraction. We will show 2 experiments dealing
with visual data where the proposed technique yields lower classification errors, using
less boosting steps.

2.2 Bagging

The term bagging was firstly introduced by L.Breiman [19] as an acronym of
Boostrap AGGregatING. The idea is to generate random boostrap replicates from

57
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the training set, construct a classifier on each subset, and then combine them using
the simple majority vote rule. The complete algorithm is shown in table 2.1. The
weak classifier used in bagging should be sensible to the training samples, in such a
way that small variations on the training set should produce large changes on the
classifier obtained. Otherwise the diversity of the classifiers will be low, and the
combined results will not outperform the individual weak classifiers. Bagging is a

Table 2.1: Bagging algorithm.

1. In the training process.
For t = 1,2, . . . T do:

• Build a random subset Xt taking randomly selected samples from the original
training set.

• Train a classifier Ct using the subset Xt.

• Add the classifier Ct to the ensemble.

2. In classification process.
Build the final decision rule by combining the results of the classifiers. The class
with maximum number of votes is chosen for each sample.

parallel algorithm in the training and exploitation phases, given that the results from
the previous steps do not influence the next ones. Moreover, the algorithm is specially
useful in problems with misleading examples, that appear only on a few subsets and
reduce its influence on the final classification rule.

Bagging has often been used with decision trees, so majority voting is usually the
most used combination rule. Nevertheless, when applying statistical classifiers other
combining rules can be used [158]:

• Classify according to the posteriori probabilities using the output of the dis-
criminant function.

P (cj |x) = sigmoid(Ct(x)) =
1

1 + exp(−Ct(x))
(2.1)

Two approaches can be followed using the posteriori probabilities: take the
class from the classifier with maximum probability, or take the mean of the
probabilities of the T classifiers.

• Combine using the average of the outputs of the base classifiers:

R(x) =
1
T

T∑
t

Ct(x) (2.2)

where Ct(x) is the output of the discriminant function of the classifier at the
step t.
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Skurichina [158] proposed a modified bagging algorithm called “nice” bagging, where
only the nice base classifiers where averaged. The nice classifiers are those which
have training error lower than performing the classification on the whole set (not
bootstrapped). The nice bagging classifier achieves, in general, just slightly better
results than ordinary bagging, although it is a more stable bagging version.

2.3 Boosting

Boosting has been traditionally used as a way to produce an accurate classifier
by combining weak and inaccurate classifiers [96] trained in a serialized way. Taking
as input a set of samples represented by a finite set of features, the algorithm incre-
mentally builds the final classifier by adding at each step a new weak classifier. This
process is leaded increasing the importance of the misclassified samples at previous
steps. A set of weights are adjusted for this purpose according to the classification
results. The algorithm is repeated a fixed amount of times, and the final decision rule
is constructed weighting the weak classifiers at each step.

2.3.1 Adaboost

Adaboost (ADAptive BOOSTing) algorithm has been considered the best method
[147, 49] for boosting. Boosting algorithms are inspired by a learning algorithm called
Hedge(β) [50]. This algorithm uses an ensemble of classifiers C = {C1, ..., CT } to
decide the label of each sample zj . The importance or classification ability of each
classifier on the ensemble is not known a priori, therefore the algorithm finds a set
of weights w = [w1, . . . , wT ] that encode the importance of a classifier given their
classification performance. The algorithm runs N steps, using one training sample at
each step. The weights are usually uniformly initialized, and are adjusted according
to the classification results of the previous step. Weights from classifiers that made a
correct prediction on the previous step are increased, as the algorithm tries to improve
the global prediction. The algorithm returns a weight distribution for the classifiers
that minimizes the cumulative loss of the predictions. In table 2.2 the complete
algorithm is shown. Further details on the algorithm can be found at [50, 96].

Adaboost algorithm also runs a predefined number of steps to sequentially train
a weak classifier Ci at each step, yielding an ensemble C = {C1, ..., CT } as output.
In Adaboost, the weights encode the importance of each training sample (instead
of the classifiers), and at each round a classifier is trained focusing on the most
“difficult” training samples (those misclassified in previous steps). Contrary to the
Hedge(β) algorithm the parameter β is not fixed, but rather changes at each iteration
according to the current error εt. Given the more refined analysis and choice of β
in the Adaboost algorithm, the error bound on ε (error of the combined classifiers)
obtained is significantly superior [50].

In the literature, two different approaches can be found depending on how the
weights are used in the generation of the next step classifier:
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Table 2.2: Hedge(β) algorithm.

Given:

• The matrix {X} = {x1, . . . ,xN} of data samples

• C = {C1, . . . , CT } the T classifiers for the ensemble.

1. Initialize the parameters

• Pick β ∈ [0, 1]

• Set the weights w1 = [w1, . . . , wT ], w1
i ∈ [0, 1],

PT
i=1 w1

i = 1.

• Set Λ = 0 (cumulative loss)

• Set λi = 0, i = 1, . . . , T (individual loss)

2. For every xj , j = 1, . . . , N

• Calculate the distribution by

pj
i =

wj
iPT

k=1 wj
k

, i = 1, . . . , T. (2.3)

• Find the T individual losses (lji = 1 if Ci misclassifies xj and lji =0 if Ci classifies xj

correctly, i = 1, . . . , T ).

• Update the cumulative loss

Λ ← Λ +

TX
i=1

pj
i l

j
i (2.4)

• Update the individual losses
λi ← λi + lji (2.5)

• Update the weights
wj+1

i = wj
i βl

j
i

(2.6)

3. Calculate the return Λ, λi, and pN+1
i ,i = 1, . . . , T .

• Reweighting using weak classifiers that directly accommodate weights.

• Resampling the training set according to the distribution defined by the weights
[18]. Therefore the most difficult samples should appear with more likelihood in
the next classifier training. This variant is known as arcing, acronym of “adap-
tive resampling and combining” or arc-fs (in honor to Freund and Schapire).
The combination of the classifiers in arcing is usually performed assigning to
the object the class with maximum number of votes, instead of a weighted
majority voting.

In table 2.3 the general Adaboost algorithm with resampling for the multiclass
case is shown. In addition, some strategies have been developed to avoid solving
directly the multiclass problem using Adaboost. Perhaps one of the most important



2.3. Boosting 61

approaches is the use of error output correcting codes (ECOC). In this strategy, the
multiclass problem is converted to multiple two class problems by grouping the classes.
A binary codeword is assigned to each class, where 1 indicates that the class belongs
to the subgroup and 0 otherwise (the number of bits of the codeword is equal to the
number of subgroups made). The classification is performed by finding the codeword
with lower Hamming distance between the classifier outputs (one for each subgroup)
and the possible codewords. Detailed implementations of multiclass extensions of
Adaboost can be found in [146, 43]

Table 2.3: Adaboost.M1 algorithm.

Given the training samples x1,x2, . . . ,xN

1. Initialize the weight vector w1 = [w1, . . . , wN ] to w1
i ∈ [0, 1] and

PN
i=1 w1

i = 1(usually
w1

j = 1
N

)

2. For t = 1, 2, . . . T do:

(a) Resample the training data X obtaining a subset Z.

(b) Build a classifier Ct using the training set Z.

(c) Calculate the weight ensemble error:

εt =

NX
i=1

wt
i l

i
t (2.7)

where lit = 1 if Ct misclassifies zi, and lit = 0 otherwise.

(d) If εt = 0 or εt ≥ 0.5 reinitialize the weights.

(e) Else, calculate βt as:

βt =
εt

1− εt
, where εt ∈ [0, 0.5] (2.8)

(f) Update the individual weights

wt+1
i =

wt
iβ

(1−lit)
tPN

k=1 wt
kβ

(1−lkt )
t

(2.9)

3. Return as an output the classifiers C1, . . . , CT and the β1, . . . , βT The classification of
new samples is performed by computing the support for each class ci, and taking the class
with maximum support:

φc(xi) =
X

Ct(x)=ci

ln(
1

βt
) (2.10)

Adaboost algorithm can reach fastly training error close to 0. In this context,
Freund and Schapire [50] introduced a theorem that sets an upper bound on the
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Figure 2.1: Training and testing errors using Adaboost on a two Gaussian classes
problem.

training error using Adaboost:

ε < 2T
T∏

i=1

√
εi(1− εi) (2.11)

Where T is the number of weak classifiers on the ensemble, ε its training error,
and εi, i = 1, . . . , T the weighted training errors of the weak classifiers at each step.
According to this theorem, as Adaboost weak classifiers have error strictly εi < 0.5,
the error ε decreases as the number of weak classifiers T is increased. The proof of
this theorem for the two-class case is shown in the appendix B, in addition in [96, 50]
the proof for the multi-class case can be found.

Furthermore, some experiments performed with Adaboost showed a surprising
and unexpected phenomena: the testing error does not increase when the number
of classifiers used on the combination becomes larger [145]. Moreover, the testing
error decreases even after the training error becomes 0. This fact, contradicts the
Occam’s razor principle, one of the most important in machine learning theory, which
states that to reach low testing errors, the classifier must be as “simple” as possible.
In theory, the difference between training and testing errors should increase with
the complexity of the classifier. In Figure 2.1 the training and testing errors using
Adaboost as a function of the number of weak classifiers used on a two class Gaussian
problem in a 30-dimensional space are shown. The covariance matrices for the classes
are the identity matrices. The mean for the first class is [0, 0, . . . , 0]T , and the mean
for the second class is [0.2, 0, 2, . . . , 0.2]T . Augmenting the complexity of the classifier
(adding more boosting steps) does not produce increasing the testing error. Contrary,
after reaching 0 training error the testing error continues decreasing.

The explanations for this phenomenon use the margin theory. The margin term
comes from statistical learning methods [176], where algorithms such as support vector
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machines using kernel functions try to maximize the margin to obtain classifiers with
low generalization error [34]. Both boosting and SVM find a linear classifier on a high
dimensional space, although they are computationally different. While SVM apply
kernels to compute the classifiers on the whole high dimensional spaces, boosting
explores one coordinate at each time.

Using a confidence measure of the classification φ(x), the margin can be defined
as the difference between the weight confidence assigned to a correct label and the
maximal weight assigned to any single incorrect label:

ma(x) = φc(x)−maxi 6=c{φ(x)} (2.12)

where c is the known class of x and
∑K

i=1 φ(x) = 1. The margin is a number in
the range [−1, 1], that is positive if the object is correctly classified, and negative
otherwise. Large values of margin are interpreted as very “confident” correct classi-
fications, while small margins are interpreted as unstable classifications. Therefore,
maximizing the margins should involve lower testing error.

Schapire et al. [145] also presented a theoretical upper bound on the testing error
that do not depend on the number of classifiers used. The bound is improved when
the margin is large on the training set, in essence the theorem states that for any
δ > 0 and θ > 0 with probability at least 1− δ over the choice of the training set X,
any ensemble of classifiers satisfy:

PD ≤ P (training margin ≤ θ) + O(
1√
N

(
log N log | C |

θ2
+

1
δ
)

1
2 ) (2.13)

where PD is the probability that the ensemble makes an error labelling a sample x, C
is the finite set of base classifiers, P (training margin ≤ θ) is the probability that the
margin of a random point from the training set does not exceed θ, and N the number
of samples.

2.4 Boosted Adaptive Features

In this chapter we propose to add another adaptive layer to the Adaboost algo-
rithm. Instead of using a fixed set of features to represent each sample, we propose
to readapt at each round the feature extraction to the most difficult samples. Using
this approach the training and test errors decrease faster, and the accuracies of the
ensemble are higher. To perform the adaptive feature extraction different techniques
can be taken into account depending on the used criteria, optimization of the class
separation, and the assumptions made on the data. In our case, we have chosen a
variant of the non negative matrix factorization (NMF) algorithm as a feature ex-
tractor, given that we assume that our proposal will deal only with visual data in
problems of object recognition. The NMF algorithm has been shown to yield a parts
based representation of the data, what makes the technique specially suited for visual
pattern recognition problems [86], where usually the high dimensional data vectors
can be represented as a linear combination of a sparse set of basis. Nevertheless, the
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NMF technique is not appropriate for low dimensional problems, where it is difficult
to distinguish parts from objects. Other feature extraction algorithms could be used
depending on the final application.

One of the most successful applications of Adaboost learning in face classification
can be the object recognition scheme proposed by Viola and Jones [180]. In their
first implementation they used Haar-like basis functions to extract simple features
from face and non face images for a face detection problem. Later they extended
their work to multi-view face detection [72]. In this work they realized that the set
of filters used in the first approximation was not enough to detect non-frontal faces,
so they extended it adding filters for diagonal structures. In both cases, given the
training samples, the features extracted were fixed during the learning process. In this
chapter we propose a method for embedding the feature extraction into the Adaboost
algorithm, in such a way that at each time the feature extraction is adapted to the
classification problem.

The origin of the features has often been neglected in classification. Usually fea-
tures are assumed to be a fixed set that exists regardless of the objects to classify.
Nevertheless some studies have shown that humans are able to learn new features to
discriminate better new objects. Schyns and Rodet made an experiment using three
categories of Martian cells [150], one of them characterized by the feature X, another
one by the feature Y and the third by both XY. They experimented with people
divided in two groups. The first group learned first how to discriminate the objects
based on the features X and Y, and then learned the objects XY. The second group
learned first the type of objects based on the XY features, and then the ones based
on the features X and Y. The results of the experiment showed that the members of
the second group learned three features and did not realize that the third one (XY)
was a composition of X and Y, while the members of the first group were able to
categorize all the examples using the features X and Y. This study emphasizes that
new features are learned during the process and these resulting features are highly
related to the process of recognition followed.

In fact, the use of a fixed set of features upper bounds the amount of objects to
recognize to a finite set, the features and combinations between features [125]. It
seems logic to think that we must be able to evolve our feature set depending on the
recognition problems that we need to solve if we live in a changing environment.

2.4.1 Sparse Feature Extraction

In the original NMF algorithm [86], the projection matrix is found under positivity
constraints. This approach usually leads sparse bases and coefficients, and makes the
technique specially suitable for computer vision problems such as object recognition,
where usually local changes on the illumination and partial occlusions can mislead
the classifier.

In addition, some studies have found physiological evidences about a parts-based
representation of data in the brain of mammals [121, 93]. Wachsmuth et al. [182]
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Figure 2.2: Examples of the 3 features that categorize the 3 classes X, Y and XY
in the Schyns experiment [150].

investigate the response of cells from the temporal cortex of the macaque to the
stimuli of a sight of a human body. The percentage of cells responding to the sight of
an entire body (42%), to the sight of head alone (72%) and body alone (28%) shows
that there is parts-based representation of complex objects in the brain. Moreover,
they found that the majority (90%) of the cells respond selectively depending on the
perspective view. It seems natural to think that natural evolution has discovered
efficient cortical coding strategies for representing visual information. In this context,
sparse representations have many advantages in terms of fault-tolerance and low-
power consumption potential that can inspire computational systems [92] applied to
cognitive systems and robotics.

2.4.2 Weighted Non Negative Matrix Factorization

When the NMF algorithm as shown in the introductory chapter is used in training
sets that are far from a uniform distribution, often it appears a redundancy in the
bases B. To solve this problem, Guillamet et al. [42, 40] introduced a weighted
version of the NMF algorithm. The weights were used to give more importance to
the samples that appear less frequently. It has been shown [59] that the weighted
approach reduces the redundancy of the bases.

The formulation taking into account this weights adds a diagonal matrix W N×N
in both sides of the factorization model:

XW ≈ (BSW) (2.14)

Where each element of the diagonal of W is the weight of its correspondent training
sample. All the weights are normalized to sum 1. The addition of the weights modifies
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the objective function to minimize. Two different objective functions have been used
in the literature to find the iterative rules [86]:

• Minimizing the Euclidean distance between the vector samples from X and the
approximation X̂ = BS. The object function to minimize is:

D = (B,S) =
∑

j=1

‖ Xj −BSj ‖=
D∑

i=1

N∑

j=1

(Xij −
M∑

l=1

BilSlj) (2.15)

• Minimizing the Kullback-Leibler divergence measure Div(X ‖ BS). The itera-
tive rules that solve this problem have been stated in the introductory chapter:

Bij ← Bij

∑

d

Xid

(BS)id
Sjd (2.16)

Bij ← Bij∑
k Bkj

(2.17)

Sjd ← Sjd

∑

i

Bij
Xid

(BS)id
(2.18)

Using the last approach, and taking the diagonal wd = Wdd, the objective function
modified to accommodate weights becomes:

D = (B,S) =
N∑

j=1

wj

D∑

i=1

(Xij log (wj(BS)ij − (BS)ij) (2.19)

Considering X′ = XW S′ = SW and substituting in Eq.2.16-2.18, the following
iterative rules are obtained for solving the WNMF factorization:

Bij ← Bij

∑

d

WdXid

(BS)id
Sjd (2.20)

Bij ← Bij∑
k Bkj

(2.21)

Sjd ← Sjd

∑

i

Bij
Xid

(BS)id
(2.22)

Notice that S remains the same, as the weight term appears only once in both in the
numerator and denominator in the rule [59].
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Table 2.4: Adaptive Adaboost algorithm with WNMF feature extraction.

Given the training samples x1, x2, . . .xN

1. Initialize the weight vector to 1 ∀ Wi=1,..N .

2. For t = 1, 2, . . . T do:

(a) Resample the training data X according their actual weights, obtaining the samples
Xt.

(b) Perform the WNMF feature extraction, obtaining the bases B and the coefficients
St using the weights W, and the samples Xt.

(c) Train a classifier Ct(St).

(d) Project the samples X using the bases B, obtaining the coefficients S.

(e) Classify the samples S using Ct.

(f) Compute the probability of the classification error taking into account the weights
as follows:

εt =
1

N

NX
i=1

Wt
iξ

t
i (2.23)

where

ξt
i =

�
1, if xi was wrongly classified in the step s
0, otherwise

(g) Compute ζt as :

ζt =
1

2
log
�1− εt

εt

�
(2.24)

(h) If εt < 0.5 set Wt+1
i = Wt

i exp(ζtξ
t
i ) for each training vector i, and then normalize

the weights in such a way that
PN

i=1 Wt+1
i = n.

Otherwise restart the algorithm

3. Finally the classifiers obtained are combined using a weighted majority voting using the
coefficients ζt that encode a measure of the error in each step. The final decision rule for
each new test vector is:

O(x) =
X

t

ζtLt > 0 (2.25)

where L is the label obtained in the classifier Ct, L ∈ (−1, 1).

2.4.3 Boosting WNMF

In the modified version of the Adaboost, we do not assume that each sample is
represented by a fixed set of features. Instead, we will use the best possible set of fea-
tures to represent the samples at each step (according to the most difficult examples).
We have modified the Adaboost algorithm to learn both the optimal combination of
features and the weak classifiers. The resulting scheme is an open model that allows
us to deal with problems where data can be variable such as the systematic presence
of occlusions, changes in the objects appearance, or pose variations. The modified
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algorithm includes the feature extraction into the Adaboost, using the WNMF tech-
nique. The table 2.4 summarizes the algorithm. The main difference with respect to
Adaboost is the WNMF performed at 2.b. The WNMF is trained using the Adaboost
weights of the selected samples. This focuses the feature extraction in the most dif-
ficult examples, which have larger Adaboost weight W. The classifier at each step
is trained using the proper feature extraction. The Adaboost base version for our
proposal uses the resampling variant, and it is based on the two-class Adaboost de-
scribed on [159]. The used weak classifier Ct is a single layer perceptron. Other weak
classifiers could have been considered, such as a linear classifier or a single threshold.

2.5 Experiments

The main goal of the method introduced in this chapter is focused on visual recog-
nition problems, this fact justifies the election of the NMF algorithm for the feature
extraction task. Two different experiments with visual data have been performed
to show that including the feature extraction into the boosting scheme improves its
accuracy: a face detection problem and a benchmark using the MNIST database.

2.5.1 Face Detection

For the face detection problem we have used a scheme similar to the one proposed
in [181]. We have used 4000 images with faces extracted from two public databases
(AR face [100] and XM2VTS [105]) and 25000 non face images extracted from natural
images. The results shown are an average of a 5-fold cross validation, using a training
set of 1000 faces and 4000 non faces randomly chosen from the original set. We
have trained the adaptive Adaboost shown in 2.4 using similar settings as the ones
described on the introductory chapter: sliding windows of 32 × 24 pixels have been
generated from each image (labels for the face images where acquired manually), the
center of the sliding window was moved 2 pixels each time. The classifier makes 300
rounds of boosting using the WNMF feature extraction, with 60 bases B at each
round. With this set up, we have obtained 1.07% of faces wrongly classified (false
negatives), and just 0.2% of non faces classified as a face (false positives). These
results outperform the ones obtained on the face detection and classification example
in the first chapter, where we obtained 2.45% of false negatives and 0.83% of false
positives rates on each individual classifier. Nevertheless the computational needs
of the adaptive approach make the algorithm unfeasible for a real time application.
Projecting the data points using the WNMF algorithm takes more than one second,
so a cascade of adaptive boosted classifiers can not be built for real time face detection
as done following the Bayesian example. Figure 2.3 shows an example of faces an non
face images used in the training and the bases found in one iteration of the WNMF
algorithm.

The goal of the experiment was to show how an adaptive feature extraction in the
boosting scheme can increase the final accuracy. For this purpose we have trained the
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(a) (b)

Figure 2.3: (a) Examples of face and non face images used in training. (b) Examples
of sparse bases obtained using the weighted NMF algorithm.

same Adaboost scheme using a fixed set of features instead. Features for each sample
where learned outside the algorithm (by applying classic NMF only once). The rest
of the settings were the same as used in the adaptive experiment. In the figure 2.4
we plot the accuracies for the face and non-face images as a function of the boosting
steps. Dotted lines show the accuracies using the adaptive scheme. As can be seen
the best results are achieved using the adaptive scheme, from 30 boosting steps on.

2.5.2 Digit Classification

In this experiment we have used the manuscript digits of the MNIST database
[84]. We have trained a classifier for each of the 10 digits. Each training set was made
using 1800 digits from one class and 1800 from the others. The rest of the MNIST
digits were for testing. Figure 2.5 shows some examples of digits and 72 NMF bases
generated using the training set. As can be seen bases are sparse an localized on
specific parts of the digits. We have performed 5-fold cross validation and the results
shown are an average of the accuracies of the 10 digits. As can be seen in the figure
2.6 the Adaptive approach reaches better accuracies than using fixed features even
using a few Adaboost rounds.

In this experiment a new comparison using the adaptive approach with a simple
NMF feature extraction technique has been added. The algorithm keeps adapting the
feature set to the missclassified samples, given that the NMF is performed on data
that has been resampled from the training set according to the Adaboost weights. But
we do not use the WNMF approach for this case. It can be seen that when enough
boosting steps are performed, both algorithms converge to the same accuracy. The
difference between both approaches is that using the WNMF we achieve the accuracies
faster, using less Adaboost iterations. This is due to the increase of the adaptability
achieved using the weights inside the feature extraction algorithm.
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(a)

(b)

Figure 2.4: Comparison of the accuracies obtained as a function of the boosting
steps performed for the face images (a) and non face images (b).

2.6 Conclusions

In this chapter a review of two successful classifier combination strategies has
been performed: Bagging and Boosting. The Adaboost algorithm used in the feature
extraction methodology proposed in the next chapter has been introduced. Adaboost
has been shown to obtain an ensemble of classifiers that achieves a faster decrease of
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(a) (b)

Figure 2.5: (a) Examples from different digits of the MNIST (b) Bases obtained
using one training set.

Figure 2.6: Comparison of the accuracies obtained as a function of the boosting
steps performed for the MNIST database.

the training error. Actually, there is a theoretic bound on the training error, which
should be reduced as more weak classifiers are added in the ensemble. Furthermore,
there exist a theoretic bound on the testing error obtained from the margin theory.

A modification of the Adaboost algorithm where the feature extraction is intro-
duced into the original algorithm has also been introduced. A weighted modification
of the non negative matrix factorization algorithm has been used to perform the
feature extraction focusing on the misclassified samples from previous steps. The ex-
perimental results on two independent data sets (a face detection and a manuscript
digit recognition problems) show that the introduction of the feature extraction into
the Adaboost algorithm achieves better final accuracies than classic Adaboost with
fixed features.

The NMF algorithm has been proved to be specially robust in computer vision



72 CLASSIFIER COMBINATION ALGORITHMS

problems where there are partial occlusions or local changes in the illumination, and
has performed satisfactorily due to its straightforward integration into the boosting
algorithm. Nevertheless, other more general feature extraction techniques could be
analysed in future works, such as weighted Principal Component Analysis, or Inde-
pendent Component Analysis. The main drawback of the NMF (and its weighted
extension) is the time consuming projection step in the classification stage, given
that the best algorithm known is iterative. The computationally intensive WNMF
projection step has made the algorithm unviable for the real time face detection ap-
plication, even when we have seen off line that accuracies obtained are sensible higher
than the Bayesian model used.



Chapter 3

Internal Face Feature Extraction by
Ensemble-based Methods

3.1 Introduction

The goal of feature extraction is to make evident interesting patterns from high
dimensional data, in order to be used for classification of new unseen examples. Given
their simplicity, linear transformations are the most used feature extraction techniques
in practice. Different examples of linear transformations have been shown in previous
chapters: Principal Component Analysis, Independent Component Analysis, Non
Negative Matrix Factorization, as unsupervised methods, and the Linear Discriminant
Methods as supervised. Both the supervised and unsupervised techniques shown
make some kind of assumption on the data in the feature extraction task (positivity,
specific class distribution, gaussianity,...). In this chapter, a new feature extraction
technique for 2-class problems that makes no assumptions on the data distributions
is proposed. The linear projection is incrementally found taking into account the
classification errors of the training samples. This is achieved using an Adaboost-
based algorithm that performs the selection of simple 1-Dimensional projections to
build the final linear transformation.

In fact, the proposed feature extraction method is a general core algorithm from
which a family of techniques can be derived depending on the generation of the indi-
vidual 1-Dimensional projections. Three different extensions will be proposed in this
chapter, the first one uses random projections, the second uses simple local determin-
istic projections, and the last one extends the fisher criterion to linear transformations
of arbitrary dimension. In the next section an introduction to general feature extrac-
tion techniques using ensembles of classifiers will be performed. Then the detailed
base algorithm will be exposed. In addition, a complete experimental test on the
presented methods will be shown. The proposed methods are specially suitable for
high dimensional subspaces (typical from face classification tasks) where often general

73
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assumptions do not hold. Nevertheless, some experiments have been also performed
on low dimensional data sets, extracted from the UCI repository.

3.2 Linear Feature Extraction

Feature extraction techniques try to find a subspace of dimensionality M in the
original space of dimensionality D (usually M < D). In the case of linear transfor-
mations we have:

s = Ax (3.1)

where A is the M × D projection matrix and s the extracted features. And if the
projection matrix A is invertible, data can be reconstructed by:

x = Bs (3.2)

where B=A−1. The equation 3.2 can be viewed as the approximation of each original
data vector by a weighted sum of the basis B

In classifier combination schemes, usually the extracted features are used to con-
struct multiple base classifiers to be used as an ensemble in classification tasks. We
propose now to reverse the problem; that is, we will use the ensemble to extract fea-
tures. The technique proposed is restricted to the two class problems, although we
plan in future works an extension to the multi class case.

3.2.1 Previous Works on Feature Extraction Using Adaboost

The main contribution of this chapter is the use of Adaboost for linear feature
extraction. Before explaining in detail the method proposed, a brief overview of some
ensemble-based feature extraction algorithms used in the literature will be performed.
Although our linear propose differs from the methods used in the past, some common
ideas have been used from these previous works.

A feature selection method using Adaboost is proposed by Long and Vega in [94].
The authors use decision stumps as base classifiers so that each tree in the ensemble
consists of a root and two leaves. The split at the root is done on a single feature,
different for each classifier. At each step the selected feature is removed from the set
of candidates for the next classifier. This method has been applied for microarray
data where there is a large number of features and a small number of samples. The
method can achieve two important goals, first the feature selection was performed
on gene information, so finding the small subset of genes that classifies the data can
inspire new research on the field, and also the diagnosis becomes cheaper as only a
few measures must be performed.

Athitsos et al. [4], introduced the BoostMap multidimensional embedding in re-
trieval problems. They formulated the embedding process as a combination of simple
1-Dimensional embeddings that preserve information of proximity structure. They
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transform the simple embeddings in classifier problems, and apply Adaboost for find-
ing the best combination of the embeddings on the training data. Finally, data sam-
ples are classified using a weighted Manhattan distance obtained from the embedding.

Sirlantzis et al. [156] suggested a fusion scheme performing a 2 stage classification
where first a n-tuple based classifier is used to extract intermediate features that
are the input to train the second stage classifiers. The classification is performed
combining the feature extraction resulting from the first stage. In a similar way, our
proposal uses simple 1-Dimensional projections as individual classifiers to perform the
feature extraction task. In a way, all ensemble methods can be viewed as “feature
extractors”. We can regard each classifier in the ensemble as a feature extractor,
taking the original features as its inputs and producing a class label as the extracted
feature. The combination of these extracted features can be perceived as the classifier
in the new feature space.

3.3 Linear Feature Extraction using Adaboost

Assume that we use linear classifiers as the base classifiers in the ensemble to solve
a two-class problem. Instead of thresholding the output of each classifier and taking
the class label to be the output, we use the value computed as the linear combination
to be our extracted feature. While any ensemble method can be applied for this
feature extraction, here we chose Adaboost which has been declared to be “the best
off-the-shelf” ensemble method [18].

As explained in the introductory chapter, linear discriminant analysis techniques
tend to maximize a criteria under some assumptions on the data samples. Our pro-
posed feature extraction technique makes no assumptions on the statistical distribu-
tion of the data, and it is not restricted to the case of orthogonal transformations.
We propose to find the projection matrix incrementally, using a modified Adaboost
algorithm. The original Adaboost algorithm [147, 49] (explained in detail in chapter
2) is based on incrementally building a set of classifiers that are combined in more
powerful decision rule. At each boosting step a new classifier is generated, and the
training samples are reweighted according to the classification results. The weights
are used to generate the next step classifier. In our proposal at each boosting step
we generate projection vectors (candidate linear features) and select the best one to
be the extracted feature for this step. To evaluate a candidate feature, we build a
classifier on it. The values of the feature are calculated for the training data and
an optimal threshold is found minimizing the number of misclassified training sam-
ples. The weighted error is calculated using the weights for the data points at the
present Adaboost step. The output of the algorithm is a projection matrix W, that
accumulates the different selected projections during the boosting process. Table 3.1
summarizes the generic algorithm.

Depending on the generation and the selection of the projections in 3(a) from
table 3.1 at each boosting step, different methods can be derived from the general
idea. In this thesis three variants of the algorithm are proposed.
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Table 3.1: A generic learning algorithm for boosted discriminant projections.

1. Given are the matrix X containing data samples xi, and the vector y with the corresponding
labels yi ∈ {−1, 1} (i = 1 . . . N)

2. Initialize a set of weights: Wi(1) = 1
N

.

3. For t = 1 . . . M :

(a) Generate P projections from the original space to an 1−dimensional subspace.

(b) For p = 1 . . . P

i. Project the training data into the 1−dimensional space using projection p.

ii. Learn the threshold that best separates the samples into two classes, thereby
constructing hypothesis ht,p (ht,p(xi) ∈ {−1, 1}, ∀xi ∈ X). Denote by lt,p(xi)
the loss incurred in labeling xi by ht,p. The loss is lt,p(xi) = 1 if a misclassifi-
cation occurs and lt,p(xi) = 0, otherwise.

iii. Compute the weighted error for the projection as:

Errp =

NX
i=1

Wi(t)lt,p(xi). (3.3)

(c) Find the projection, m, with the minimum error, i.e., Errm = minP
p=1 Errp. Classify

the training set using m.

(d) Calculate the weight for classifier t, βt, as:

βt =
Errm

1− Errm
(3.4)

(e) Update the data weights:

Wi(t + 1) = Wi(t)β
(1−lt,m(xi))
t , i = 1, . . . , N. (3.5)

(f) Normalize the weights so that W (t + 1) is a distribution.

Wi(t + 1) ← Wi(t + 1)P
j Wj(t + 1)

(3.6)

(g) Store m as the t-th projection in the projection matrix W.

4. Output the projection matrix W, built using the vectors selected at each boosting step as
columns.
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3.3.1 Random Boosted Discriminant Projections (RBDP)

Maybe the simplest way of generating 1−dimensional projections from the data
is to randomly select pairs of points, one point from each class, and take the vector
between the two as the candidate projection. It is hoped that the difference vector
between points from different classes can have more discriminative information than
using direct random vectors for the projection. Using a large enough set of candidate
projections generated in this way, we can use Adaboost weights to select the projection
with the smallest weighted error. In the general algorithm shown in table 3.1 the
random generation explained above is implemented as 3(a). The parameters of the
algorithm which need to be picked in advance are: M , the number of classifiers in the
ensemble (desired number of projections); and P , the size of the “projection pool”
(how many candidate-projections are generated at each step of Adaboost).

The calculation of the optimal threshold for projection p in 3.(b).(ii) follows the
steps below. Let p = [p1, p2, . . . , pD]T be the coefficient vector for projection p.
First, calculate yi = pT xi, i = 1, . . . , N . Second, sort the yi’s. Third, calculate the
classification error for all the values of the threshold in the middle between every two
consecutive yi’s. Fourth, choose and retain the threshold with the minimum error.

Note that there is no need for calculating the final hypothesis in this Adaboost
version because the information needed at the end is only the projection matrix W.

3.3.2 Local Boosted Discriminant Projections (LBDP)

Another approach to feature extraction using Adaboost is to build a set of pro-
jections in a deterministic way. We implement 3(a) in Table 3.1 by the following
steps:

1. For each point xi find the nearest neighbor from the same class, zsame, and the
nearest neighbor from the opposite class, zdifferent.

2. The points xi, zsame and zdifferent define a plane, γ, in the initial space of
dimensionality D. We propose that the linear projection that we are looking
for lies in γ. The transformation matrix A2×D is found using xi, zsame and
zdifferent. We construct vectors v and w, v,w ∈ γ, as

v = [v1, v2]T = xi − zsame

w = [w1, w2]T = xi − zdifferent. (3.7)

These vectors can be perceived as local descriptors for the within and between
class distances. To illustrate the calculations, consider the following example
for D = 3. Let xi = [0, 0, 0]T , zsame = [1, 3, 6]T , and zdifferent = [5, 1,−2]T . The
transformation matrix is

A =
[

0.9129 0.1826 −0.3651
0.1474 0.4423 0.8847

]
.
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The projections of the three points on the plane γ, as well as vectors v and w
are shown in Figure 3.1.
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Figure 3.1: Projections of xi, zsame and zdifferent on γ. Vectors v and w are shown.
The solid line indicates the direction of the optimal projection p.

3. In the 2-D subspace, γ, we are looking for a direction vector pi such that the
projections of xi and zsame on pi are close to one another (distance a in Figure
3.1) while the projection of zdifferent on pi is as far away from xi as possible
(distance b in Figure 3.1). Assuming that pi has unit length, the distance
between the projections of xi and zsame on pi is

|pT
i xi − pT

i zsame| = |pT
i v|. (3.8)

Therefore a possible criterion function to maximize is

max
{(

pT
i w

)2 − (
pT

i v
)2

}
. (3.9)

The four solutions of (3.9) for pi = [p1, p2]T are

p1 = ±
√

1− (p2)2,

p2 =

√√√√√1
2


1± w2

2 − v2
2 − w2

1 + v2
1√

4 (w1w2 − v1v2)
2 + (w2

2 − v2
2 − w2

1 + v2
1)2


. (3.10)
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For each x we take the solution that maximizes (3.9). Then we project back pi in
the original D-dimensional space using A−1. The analytic solutions of Equation
3.10 are obtained by deriving the objective function 3.9, in the Appendix C a
complete proof of the solution can be found.

In Figure 3.2 we show an example on a 3-Dimensional space and the projection
on the plane γ where the projection p that maximizes the separation is found.

Note that the pool of candidate projections for LBDP consists of N projections
and can be calculated in advance, before running Adaboost.

3.3.3 Boosted Fisher Projections (BFP)

The third variant that we propose is to use more than two points to compute the
projection at each boosting step. The P projections in 3.(a) are generated as follows:

1. Sample K points from each class according to the distribution defined by the
Adaboost weights at the current step.

2. Perform Fisher Linear Discriminant Analysis (FLD) on the selected samples to
obtain the projection that best separates the data.

We expect BFP to be more robust than RBDP because more points are involved
in the calculation of each projection. Thus the projections in BFP are expected to be
more accurate but more similar to one another compared to these in RBDP.

The classic Fisher Linear Discriminant Analysis technique has one important limi-
tation: the final dimensionality is upper bounded by the number of classes. The BFP
technique proposed overcomes this limitation obtaining projection matrices to arbi-
trary dimensionality, that can be even larger than the original space (dimensionality
augmentation instead of dimensionality reduction).

We note that contrary to the previous feature extraction methods explained in
chapter 1, we do not start with a criterion function to optimize but use heuristics
which have proven to work for classifiers. It is not straightforward to find an explicit
expression of the three criteria behind the three variants, especially when there is a
random component involved.

Figure 3.3 shows 4 examples on two-class problems using the RBDP, LBDP and
BFP methods, where there are gaussian and multimodal classes, and small/large
noise presence. First, as it can be expected, the projections obtained by RBDP are
almost arbitrary as seen in the four plots. This random behavior is due to the fact
that only one single projection is computed, so the weights engine of the Adaboost
has not taken part in the feature extraction. On the other hand, the BFP algorithm
extracts a single feature using the classic FLD. If the number of points from each class
participating in the calculation, K is chosen so that all points are used, BFP is exactly
equivalent to FLD. In our example K = 100 which explains both the similarities and
differences between BFP and FLD. Finally, LBDP finds a good projection in all four
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(a)

(b)

Figure 3.2: (a) 3-dimensional points xi, zsame and zdifferent and the plane where we
restrict the solution. (b) 2-dimensional space where the directions p are found.

cases because it picks empirically the best projection out of N candidates. These
findings are not unexpected as the strength of the proposed methods is supposed
to come from applying Adaboost for constructing a collection of projections. This
fact suggest that the techniques proposed are most suitable for high dimensional
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subspaces, where the dimensionality reduction process can take several Adaboost
rounds. In the experiments performed in the next section this fact will be empirically
proved, specially for the case of visual problems such as face classification.
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Figure 3.3: Examples of RBDP, LBDP and BFP for Gaussian ((a) and (c)) and
non-Gaussian ((b) and (d)) classes for two levels of noise on the y-axis.

3.4 Experiments

The main goal of this section is to evaluate the performance of the feature ex-
traction techniques proposed, and find in which cases are most suitable than classic
discriminant analysis techniques. The experiments are performed on standard pattern
recognition databases extracted from the UCI repository, synthetic data and face data.
We compare the performance of the proposed feature extraction techniques with the
methods based on classic discriminant analysis described in the introductory chapter.



82INTERNAL FACE FEATURE EXTRACTION BY ENSEMBLE-BASED METHODS

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 3.4: Scatter of a two dimensional projection of the 8-D banana shaped
dataset.

Other comparative studies between classic discriminant analysis techniques can be
found in [107]. Therefore, in our experimental study we compare Fisher discriminant
analysis (FLD), the nonparametric discriminant analysis (NDA), the discriminant
analysis using the Chernoff criterion (Chernoff), and the three techniques proposed
here: the random boosted discriminant projections (RBDP), the local boosted dis-
criminant projections (LBDP), and the boosted Fisher projections (BFP).

We have tested the six methods with 11 data sets, 8 of them taken from the UCI
machine learning repository [13]. We also have generated two synthetic data sets in
a similar way as done in [158]:

• 8-D Banana shape. In the space of the first two features, the two classes are
uniformly distributed along two concentric arcs with radii r1 = 0.125 and r2 =
0.375, respectively. Gaussian noise with unit variance is added to each class. The
remaining eight features have Gaussian distribution with mean 0 and variance
0.1. Figure 3.4 shows an scatter plot of the first two features.

• 500-D Gaussian data: This set consists of two Gaussian classes. The covariance
matrices for the classes are the identity matrices. The mean for the first class
is [0, 0, . . . , 0]T , and the mean for the second class is [0.1, 0, 1, . . . , 0.1]T .

The last data set is extracted from the AR Face database [100], and the goal is to
solve a gender recognition problem, showing that Adaboost-based feature extraction
techniques are most suitable for face classification given that faces are usually rep-
resented as high dimensional vectors. We have taken 500 examples from male and
female face images, each image represented as a 2964-dimensional vector. Figure 3.5
shows and example with male and female images used in the experiment.

In Table 3.2 the most important characteristics of the 11 data sets are explained in
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Figure 3.5: Example of face images taken from the AR Face database for the gender
recognition problem.

detail. To perform the experiments some functions from the PRTOOLS 3.1.7 toolbox
[140] have been used. Our comparative study uses four different classifiers in the
space of the extracted features:

• Linear classifier, which assumes normal distribution of the classes and equal
covariance matrices. To avoid computational problems due to the appearance
of nearly singular covariance matrices (when the number of training examples is
smaller than the data dimensionality), we have set the regularization parameter
to 0.5.

• Quadratic classifier, also assuming normal distributions but with arbitrary co-
variance matrices. The regularization parameter has been set to 0.5.

• The 1-nearest neighbor classifier.

• Support Vector Machines classifier (SVM), using radial basis functions (with
parameters σ = 1, and cost C = 1).

3.4.1 Experimental Protocol

For each data set we performed one hundred times the experiment described below:

1. First the data set is randomly split into training data and testing data, using
90% of the samples for training and the rest for testing.

2. Following [95], we transform the data using PCA. We compute a PCA projection
matrix using the training samples. We select the eigenvectors corresponding to
eigenvalues larger than 10−7. The training and testing vectors are projected
using the same PCA projection matrix.

3. Next we find a projection matrix using each of the six feature extraction algo-
rithms.
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Table 3.2: The 11 data sets used in the experiments. We show the database name,
dimensionality D, the number of features preserved after the PCA was performed, the
total number of samples available (after removing the samples with missing values), and
the Sparseness of the data (number of data points/dimensionality). The two last data
sets are separated to indicate that they have considerably larger dimensionality.

Database Label Feat. F. PCA Samples Sparseness

BUPA Liver disorder (a) 6 6 345 57.50
Wisconsin diagnostic breast cancer (b) 30 7 569 81.28

8−D Banana shaped data (c) 8 8 500 62.50
Wisconsin breast cancer (d) 9 9 666 74.00
Cleveland heart disease (e) 13 13 297 22.84

German database (f) 24 24 1000 41.67
Ionosphere database (g) 34 33 351 10.63

Sonar signals database (h) 60 59 208 3.52
SPECTF heart (i) 44 44 349 7.93

500−D Gaussian (j) 500 449 500 1.11
AR Face database (k) 2964 453 500 1.10

Table 3.3: Maximum number of different projections, M , for the six compared feature
extraction techniques (D is the initial dimensionality of the original data, N1 and N2 are
the sample sizes for the two classes (N = N1 + N2) and K is the number of samples
from each class used for a projection construction in BFP).

Method FLD NDA Chernoff RBDP LBDP BFP

Maximum M 1 D D N1N2 N
(
N1
K

)(
N2
K

)

4. For each feature extraction algorithm we train the four classifiers (linear, quadratic,
nearest neighbor and SVM) on the space of extracted features. We store the
accuracies on the training and the testing sets for each possible dimension up
to M = 40. For example, FLD allows for one feature only whereas in RBDP
there can be N1N2 different projections, where N1 and N2 are the number of
samples from classes C1 and C2, respectively (N = N1 + N2). Table 3.3 shows
the maximum number of different projections that each of the six compared
techniques can extract.

The results from the experiments are shown in Tables 3.4-3.7. These are computed as
follows: for each feature extraction algorithm and each classifier, we find the number
of extracted features M tr for which the training error is minimum. Then using this
dimensionality we take its corresponding error on the testing results. The final error
rates and optimal dimensionality shown in the tables are the means of the one hundred
runs.
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Table 3.4: MCE results with the Linear classifier
DB FLD NDA Chernoff

(a) 0.317* ±1.6−2 (1.0) 0.355 ±1.8−2 (4.8) 0.349 ±1.6−2 (5.1)
(b) 0.052* ±0.6−2 (1.0) 0.093 ±0.7−2 (3.7) 0.189 ±1.0−2 (6.2)
(c) 0.154 ±0.9−2 (1.0) 0.156 ±0.9−2 (3.9) 0.512 ±1.8−2 (2.9)
(d) 0.041 ±0.5−2 (1.0) 0.044 ±0.5−2 (3.6) 0.061 ±1.4−2 (6.0)
(e) 0.167* ±1.3−2 (1.0) 0.239 ±1.6−2 (5.6) 0.386 ±2.9−2 (5.2)
(f) 0.131 ±1.1−2 (1.0) 0.136 ±1.0−2 (19.4) 0.291 ±1.9−2 (2.0)
(g) 0.235* ±0.8−2 (1.0) 0.277 ±0.8−2 (18.5) 0.312 ±1.1−2 (1.0)
(h) 0.251 ±1.9−2 (1.0) 0.260 ±1.9−2 (30.8) 0.474 ±1.9−2 (1.3)
(i) 0.234 ±1.3−2 (1.0) 0.240 ±1.4−2 (35.1) 0.302 ±1.9−2 (4.5)

(j) 0.491 ±1.2−2 (1.0) 0.402 ±1.3−2 (36.0) 0.542 ±1.2−2 (6.0)
(k) 0.448 ±1.4−2 (1.0) 0.085 ±0.8−2 (24.3) 0.518 ±1.6−2 (5.9)

Rank 2.73 3.82 5.91

DB RBDP LBDP BFP

(a) 0.343 ±1.5−2 (4.5) 0.341 ±1.6−2 (4.8) 0.334 ±1.7−2 (3.5)
(b) 0.117 ±0.7−2 (4.7) 0.114 ±0.8−2 (3.2) 0.059 ±0.6−2 (3.4)
(c) 0.152 ±0.9−2 (1.3) 0.151* ±0.9−2 (5.1) 0.162 ±1.0−2 (4.2)
(d) 0.040 ±0.5−2 (5.5) 0.040 ±0.5−2 (4.6) 0.040* ±0.5−2 (4.0)
(e) 0.293 ±1.5−2 (5.5) 0.292 ±1.6−2 (6.3) 0.173 ±1.4−2 (6.2)
(f) 0.141 ±1.2−2 (21.0) 0.141 ±1.1−2 (19.7) 0.129* ±1.1−2 (19.9)
(g) 0.294 ±0.9−2 (5.5) 0.294 ±0.9−2 (13.7) 0.272 ±1.0−2 (2.8)
(h) 0.244 ±1.7−2 (23.9) 0.237* ±1.7−2 (29.0) 0.292 ±2.0−2 (9.2)
(i) 0.201* ±1.4−2 (16.3) 0.206 ±1.4−2 (24.3) 0.225 ±1.5−2 (23.3)

(j) 0.297 ±1.1−2 (37.8) 0.306 ±1.2−2 (36.8) 0.278* ±1.2−2 (30.7)
(k) 0.097 ±0.9−2 (28.8) 0.091 ±0.8−2 (28.5) 0.025* ±0.4−2 (6.4)

Rank 3.36 2.91 2.27
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Table 3.5: MCE results with the Quadratic classifier
DB FLD NDA Chernoff

(a) 0.363* ±1.6−2 (1.0) 0.427 ±1.6−2 (3.5) 0.385 ±1.8−2 (3.1)
(b) 0.055* ±0.6−2 (1.0) 0.099 ±0.6−2 (2.5) 0.158 ±0.9−2 (4.8)
(c) 0.154 ±0.9−2 (1.0) 0.156 ±0.9−2 (3.7) 0.503 ±1.7−2 (3.1)
(d) 0.030 ±0.4−2 (1.0) 0.033 ±0.4−2 (2.0) 0.047 ±0.7−2 (3.2)
(e) 0.168* ±1.3−2 (1.0) 0.230 ±1.5−2 (11.4) 0.378 ±2.8−2 (5.3)
(f) 0.130 ±1.1−2 (1.0) 0.091 ±0.9−2 (15.2) 0.263 ±3.4−2 (4.6)
(g) 0.234* ±0.8−2 (1.0) 0.284 ±0.8−2 (21.5) 0.328 ±1.2−2 (2.3)
(h) 0.251 ±1.9−2 (1.0) 0.210 ±1.7−2 (30.9) 0.505 ±2.1−2 (5.2)
(i) 0.254 ±1.3−2 (1.0) 0.220 ±1.5−2 (31.4) 0.214 ±3.1−2 (8.3)

(j) 0.491 ±1.2−2 (1.0) 0.480 ±1.4−2 (25.1) 0.506 ±1.4−2 (17.2)
(k) 0.448 ±1.4−2 (1.0) 0.049 ±0.6−2 (30.7) 0.428 ±1.6−2 (18.0)

Rank 3.00 3.82 5.27

DB RBDP LBDP BFP

(a) 0.399 ±1.8−2 (1.6) 0.399 ±1.9−2 (1.5) 0.364 ±1.6−2 (2.0)
(b) 0.074 ±0.5−2 (2.6) 0.068 ±0.6−2 (1.9) 0.057 ±0.5−2 (2.2)
(c) 0.149* ±0.9−2 (1.5) 0.149 ±0.9−2 (5.3) 0.164 ±1.0−2 (4.0)
(d) 0.029* ±0.4−2 (1.1) 0.031 ±0.4−2 (2.5) 0.031 ±0.4−2 (2.6)
(e) 0.315 ±1.6−2 (5.0) 0.313 ±1.6−2 (6.5) 0.181 ±1.5−2 (8.2)
(f) 0.084 ±0.9−2 (15.7) 0.061* ±0.8−2 (23.1) 0.068 ±0.9−2 (7.8)
(g) 0.299 ±0.8−2 (8.1) 0.291 ±0.8−2 (11.4) 0.272 ±0.9−2 (3.5)
(h) 0.204 ±1.8−2 (22.0) 0.172* ±1.6−2 (32.3) 0.300 ±2.0−2 (7.7)
(i) 0.265 ±1.5−2 (2.0) 0.291 ±1.5−2 (3.0) 0.214* ±1.3−2 (9.3)

(j) 0.314 ±1.2−2 (38.8) 0.362 ±1.3−2 (38.5) 0.278* ±1.2−2 (27.0)
(k) 0.092 ±0.9−2 (31.5) 0.083 ±0.8−2 (27.6) 0.025* ±0.4−2 (5.7)

Rank 3.36 3.09 2.45
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Table 3.6: MCE results with the Nearest Neighbor classifier

DB FLD NDA Chernoff

(a) 0.414 ±1.8−2 (1.0) 0.370* ±1.7−2 (4.0) 0.442 ±1.5−2 (1.0)
(b) 0.082 ±0.7−2 (1.0) 0.045* ±0.5−2 (5.9) 0.392 ±1.3−2 (1.0)
(c) 0.192 ±1.0−2 (1.0) 0.023* ±0.4−2 (4.2) 0.498 ±1.3−2 (1.9)
(d) 0.041* ±0.5−2 (1.0) 0.045 ±0.5−2 (4.5) 0.074 ±1.1−2 (1.0)
(e) 0.229* ±1.6−2 (1.0) 0.285 ±1.6−2 (7.7) 0.452 ±2.0−2 (1.7)
(f) 0.170 ±1.2−2 (1.0) 0.123 ±1.1−2 (11.5) 0.385 ±2.0−2 (7.9)
(g) 0.314* ±0.9−2 (1.0) 0.315 ±0.9−2 (12.2) 0.399 ±1.1−2 (2.9)
(h) 0.267 ±2.0−2 (1.0) 0.175 ±1.4−2 (18.9) 0.483 ±2.3−2 (5.2)
(i) 0.143 ±1.3−2 (1.0) 0.130 ±1.1−2 (21.0) 0.185 ±2.8−2 (4.8)

(j) 0.419 ±1.2−2 (1.0) 0.469 ±1.3−2 (4.8) 0.517 ±1.3−2 (27.2)
(k) 0.033 ±0.5−2 (1.0) 0.040 ±0.6−2 (9.3) 0.431 ±1.4−2 (16.5)

Rank 3.27 2.64 6.00

DB RBDP LBDP BFP

(a) 0.384 ±1.5−2 (3.2) 0.397 ±1.5−2 (2.0) 0.372 ±1.6−2 (4.3)
(b) 0.091 ±0.7−2 (4.0) 0.081 ±0.6−2 (1.7) 0.070 ±0.6−2 (4.9)
(c) 0.030 ±0.5−2 (5.2) 0.029 ±0.4−2 (4.2) 0.152 ±1.2−2 (5.7)
(d) 0.041 ±0.5−2 (3.7) 0.048 ±0.5−2 (1.5) 0.044 ±0.5−2 (4.1)
(e) 0.417 ±1.5−2 (3.2) 0.397 ±1.6−2 (1.2) 0.245 ±1.5−2 (4.7)
(f) 0.116 ±1.1−2 (11.4) 0.125 ±1.0−2 (11.6) 0.105* ±1.0−2 (6.1)
(g) 0.394 ±1.0−2 (7.4) 0.386 ±1.1−2 (1.5) 0.314 ±0.9−2 (14.3)
(h) 0.180 ±1.6−2 (15.3) 0.161* ±1.5−2 (23.8) 0.365 ±2.1−2 (4.5)
(i) 0.114 ±1.2−2 (8.3) 0.108* ±1.2−2 (3.9) 0.134 ±1.1−2 (8.8)

(j) 0.399 ±1.3−2 (25.5) 0.451 ±1.5−2 (26.1) 0.289* ±1.1−2 (34.9)
(k) 0.057 ±0.7−2 (28.2) 0.040 ±0.6−2 (30.4) 0.022* ±0.4−2 (6.8)

Rank 3.36 3.27 2.45
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Table 3.7: MCE results with the Support Vector Machines Classifier
DB FLD NDA Chernoff

(a) 0.324 ±1.6−2 (1.0) 0.273 ±1.3−2 (3.1) 0.344 ±1.4−2 (2.2)
(b) 0.056 ±0.6−2 (1.0) 0.041 ±0.5−2 (3.7) 0.068 ±0.6−2 (3.9)
(c) 0.152 ±1.0−2 (1.0) 0.024 ±0.4−2 (2.3) 0.208 ±1.4−2 (7.7)
(d) 0.028 ±0.4−2 (1.0) 0.027 ±0.4−2 (1.3) 0.034 ±0.5−2 (2.6)
(e) 0.165 ±1.4−2 (1.0) 0.221 ±1.4−2 (2.6) 0.231 ±1.6−2 (8.1)
(f) 0.225* ±0.7−2 (1.0) 0.272 ±0.8−2 (3.2) 0.256 ±0.8−2 (15.1)
(g) 0.130 ±1.1−2 (1.0) 0.097 ±0.9−2 (4.2) 0.049* ±0.6−2 (17.3)
(h) 0.268 ±1.6−2 (1.0) 0.226 ±1.7−2 (2.1) 0.470 ±2.2−2 (1.0)
(i) 0.248 ±2.2−2 (1.0) 0.057 ±1.2−2 (5.5) 0.057 ±3.1−2 (4.6)

(j) 0.505 ±1.2−2 (1.0) 0.435 ±1.0−2 (5.7) 0.423 ±1.8−2 (7.4)
(k) 0.142 ±1.6−2 (1.0) 0.139 ±0.8−2 (23.2) 0.122 ±1.4−2 (12.3)

Rank 4.82 3.09 3.36

DB RBDP LBDP BFP

(a) 0.383 ±1.4−2 (1.4) 0.340 ±1.4−2 (1.8) 0.271* ±1.4−2 (3.2)
(b) 0.370 ±1.3−2 (1.0) 0.088 ±1.4−2 (1.0) 0.038* ±0.5−2 (2.9)
(c) 0.132 ±1.2−2 (1.5) 0.020* ±0.4−2 (2.3) 0.106 ±0.8−2 (4.7)
(d) 0.042 ±0.5−2 (1.0) 0.028 ±0.4−2 (1.7) 0.025* ±0.4−2 (1.8)
(e) 0.448 ±1.8−2 (1.4) 0.354 ±1.6−2 (1.5) 0.145* ±1.3−2 (2.5)
(f) 0.294 ±0.9−2 (1.9) 0.278 ±0.9−2 (2.7) 0.248 ±1.0−2 (3.1)
(g) 0.088 ±0.8−2 (3.7) 0.054 ±0.6−2 (9.0) 0.082 ±0.9−2 (2.9)
(h) 0.105 ±1.3−2 (12.3) 0.101* ±1.3−2 (15.0) 0.329 ±1.6−2 (1.5)
(i) 0.058 ±1.1−2 (1.4) 0.059 ±1.1−2 (2.9) 0.055* ±1.2−2 (4.9)

(j) 0.446 ±1.1−2 (17.5) 0.377* ±0.9−2 (23.1) 0.442 ±0.9−2 (31.6)
(k) 0.058* ±1.3−2 (17.8) 0.064 ±1.4−2 (33.0) 0.114 ±1.3−2 (12.7)

Rank 3.27 3.73 2.73
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3.4.2 Experimental Results

Tables 3.4-3.7 show the mean classification error (MCE) for each database, and
the mean optimal dimensionality in the brackets. Also we have marked in bold and
with an ‘*’ the method that achieves the minimum MCE for each database. We have
also computed the 95% confidence interval for each MCE value, and have marked in
bold the MCE of the methods whose confidence intervals overlap with the interval for
the best method.

Since the values of MCE are not directly comparable across the data sets and the
classifiers, in order to have a measure of overall performance, we calculated the ranks
for the 6 compared methods. Each row in Tables 3.4-3.7 is arranged in ascending
order of MCE and ranks are assigned to the methods. The method with the smallest
MCE obtains rank 1 (best) and the method with the largest MCE obtains rank 6
(worst) for the particular data set and classifier. For example, the first row in Table
3.4 corresponds to the BUPA liver disorder data classified in the space of extracted
features by the linear discriminant classifier. FLD gets rank 1 (smallest MCE=0.317),
LBDP gets rank 2, etc., and NDA gets rank 6. The ranks for each method were then
averaged across the 11 data sets and are shown at the bottom of the respective table.

In general, for the four classifiers, we observed that as dimensionality of the data in-
creases, the ensemble based methods perform better than the other methods. Among
the three ensemble algorithms, BFP achieved best overall result for all four classifiers.

As expected, for the nearest neighbor classifier, NDA is either the best or not
significantly different from the best method in 8 of the 11 databases. In fact, NDA is
specially designed to achieve low errors using NN. However, the performance of NDA
is considerably worse for the Linear and Quadratic Classifiers.

Two tendencies can be observed from Tables 3.4-3.7: when the dimensionality
of the data is high, the methods based on Adaboost perform better in almost all
databases and classifiers. However when original data is low dimensional, FLD often
achieves the best result, despite using only a single dimension.

The MCEs are in generally lower using the SVM classifier. The Chernoff technique
ranks much better with SVM than with any of the other three classifiers.

We found that the higher the dimensionality is, the clearer becomes the advantage
of the ensemble feature extraction. This is demonstrated in data sets (j) and (k). The
BFP is significantly better than all the other methods except for RBDP with the linear
classifier (Table 3.4). The overall ranks suggest that BFP is the most successful one
among the examined feature extraction techniques. We conjecture that the random
component combined with the weighting mechanism of Adaboost are responsible for
the good performance of the ensemble feature extraction methods in high dimensional
spaces.

The second best method is FLD which shows that for many cases the simple
classical methods might be the best solution. Disappointingly, Chernoff was the worst
of the methods compared here. While it is optimal for heteroscedastic data, other
data distributions appear to be a challenge for this method. In the reference where
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Chernoff method was advocated [95], regularization via special parameter was not
considered. The pre-processing through PCA ensures that the covariance matrices
are not singular and thus no further regularization has been suggested. Here we used
the Matlab implementation of Chernoff mapping found in PRTOOLS 3.1.7 [140]. This
implementation does not provide for a regularization parameter either.

We assume that Adaboost based feature extraction techniques perform better on
high dimensional databases. Nevertheless, the sparseness of the data could also be the
reason of this good performance. To examine the relationship between the sparseness
of the data and the feature extraction methods we plotted the mean classification
error (MCE) against logarithm of the sparseness. Figure 3.6 shows the graphs for the
two most successful feature extraction methods, Fisher’s Linear Discriminant(dashed
line) and the proposed variant of Adaboost feature extraction, BFP (solid line). The
left subplot gives the results for the linear classifier and the right subplot gives the
results with SVM.

The graphs show that sparseness is not strongly related to classification error nor
is it a reliable guide as to which type of feature extraction method should be preferred.
For data with large dimensionality (low value of the sparseness index), we found that
the ensemble feature extraction gives lower classification error (subplot (a)). On the
other hand, the features selected by BFP are more useful for SVM for data sets in
the middle range of sparseness (subplot (b)). For large values of the sparseness index
the results are almost identical for both classifiers. This gives us ground to propose
that the simple Fisher’s linear discriminant may be sufficient when the ratio data
size to dimensionality is large. On the other hand, it has been shown that when the
dimensionality of the data is large, Adaboost based feature extraction obtains the
best performance.

BFP has two parameters to be tuned, the number of samples K, taken from each
class at each step, and the number of projections P , from which we choose at each
step. In all our experiments these parameters were set to K = 100, and P = 1.
We believe that the proposed methods are not critically sensitive to the choice of
these parameters. A sensitivity study with respect to K and P is a possible future
direction, but it seems that these parameters should be tuned for the specific problem.
Nevertheless, the methods proposed seem to be robust to a wide range of choice of
these parameters.

In addition, an experimental study of the accuracy evolution as a function of the di-
mensionality reduction in the Adaboost-based feature extraction has been performed.
We have used the LBDP technique in this experiment, given that it does not involve
any random factor. Two typical visual databases have been used: a face database on
a gender recognition problem, and the MNIST manuscript digit database, where two
similar digits have been selected for the discriminative task (numbers 1 and 7).

The face database was taken from the AR Face and the XM2VS databases [105],
an consists of 2500 images instead of only 500 (we just leave out images with strong
occlusions). The resulting data set has strong changes in illumination making nec-
essary a previous normalization with respect to the mean and variance. Figure 3.7
shows some samples of faces and manuscript digits used in the experiment. The ex-
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Figure 3.6: Classification error versus data sparseness for the best feature extraction
methods: FLD and BFP (a) Using the linear classifier (b) Using the SVM classifier.

periments shown have been performed splitting the training set on 5 independent
subsets and following a 5-fold cross-validation scheme. The plots shown are a mean
of the 5 iterations.
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(a) Original faces and their normalized version

(b)Some digits of the MNIST database.

Figure 3.7: Examples of the male and female images used in the experiments, (a)
taken from the AR face database, and the XM2VTS. The normalized version of the
faces is also shown. (b) Also samples from the MNIST are plotted.

Figure 3.8 shows the accuracies obtained on both databases, using the NN classifier
and two distance metrics (Euclidean and L1). The LBDP method is compared with
classic Fisher Discriminant Analysis and the non parametric discriminant analysis
(using 1 and 5 internal nearest neighbors to find the optimal projection). As it can be
seen, LBDP technique outperforms the other techniques when more than 20 features
are extracted, achieving a maximum accuracy of 89% in the face case and 98% on
the digit classification case. In the plot, the results using the nearest neighbor on
the original space are plotted as a horizontal line as a reference. Notice that in these
cases feature extraction is justified given that we achieve better accuracies, working
on low dimensional subspaces.
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Figure 3.8: Accuracies obtained in the Gender Recognition and the MNIST tests as
a function of the dimensionality reduction (number of features extracted using each
method).

3.5 Conclusions and Future Directions

Three linear feature extraction methods based on Adaboost have been proposed.
The main algorithm does not require making any assumption on the data distribution.
At each boosting step we select from a pool of linear projections the one that minimizes
the weighted error. Different algorithms can be derived from this idea depending on
how the projections are selected within an Adaboost step.

Experiments were performed on 9 real and 2 artificial data sets. It seems that
high dimensional data sets are the best target for the boosted techniques, compared
to the three methods based on eigenvector decomposition. For this reason the feature
extraction techniques proposed seem to be specially suitable for face classification
tasks, where often we deal with high dimensional data.

The method developed in this thesis is now restricted to two class problems, and
has been successfully applied to gender recognition. Other applications could be
found, such as face verification, where usually the amount of data available from the
same subject is too small to be modelled by classic parametric techniques.

Although there are specific methods to automatically convert two class classifiers
in multi class classifiers, one important extension of the methods proposed could
be its application to the multiclass case. There is a variety of possibilities for such
extensions. These include (but are not limited to)

• Using a straightforward extension of Adaboost such as Adaboost.M1

• Using a variant of Adaboost based on error correcting codes (ECOC) preserving
the most important projections obtained for each two-class classifier.
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Along with the possibilities coming from Adaboost, there are multiple choices to
be made arising from the specifics of the projection generation in 3.(a) in Table 3.1.
For example, in LBDP, we need to select one point from the same class as xi, and
one point from the “opposite” class. When there are more than one opposite classes,
different paths can be followed:

• use the closest point from any other opposite class,

• take the mean of the nearest neighbors of the opposite classes, or

• just randomly select a class and take the closest vector from this class.

The range of options is large and it can be an interesting future research direction as
there is no obvious guide to see what is best.

Different choices of individual 1−dimensional projections at each step can lead to
different unexplored variants of the method with different accuracy. An interesting
open question is developing a guideline towards a more systematic choice of projection
generation at step 3.(a) in Table 3.1. Along this thesis different options have been
analysed. The influence of the diversity in the projections found has been studied
for this purpose. A version of the algorithm proposed where the projection was
selected maximizing the diversity between the current feature extraction and the
classification results using the new added projection has been developed. The final
projection matrix found did not improve the results obtained using “classic” Adaboost
projection selection according to the classification error. Therefore, finding a measure
of the quality of the projections added at each boosting step is another interesting
future direction.

An important advantage of the techniques proposed is that the upper bound on
the final dimensionality from classic FLD is solved. Moreover, the BFP method could
extract more features than the present on the original data set, achieving dimension-
ality augmentation instead of reduction. A carefully study on the classification per-
formance using dimensionality augmentation is another feature direction that arises
from the methods suggested.



Chapter 4

External Face Feature Extraction

4.1 Introduction

In previous chapters feature extraction techniques applied to internal face feature
extraction have been discussed. Nevertheless, the internal information is not the only
source of information available from face images, although it is the most used on
computational face classification systems.

Traditionally, classification techniques using the internal part of face images have
been seen as a non intrusive method for face verification and identification, substi-
tuting the use of passwords (data that a subject knows) for some measure of the
characteristics of the subject (data that is part from the subject). Face verification
on biometrics is a subject of continuous development, and the recognition rates are
increasing as new research is done. However, the performance of current verification
systems is close to 90% [128], what seems to be still far from classic non biometric
systems of identification. In addition, most of the tests are performed in controlled
environments, where usually images are taken indoor, and the number of subjects to
verify is limited. Therefore, recognition from outdoor imagery remains a challenge
research, and applications to general secure identification systems in uncontrolled
environments are still evolving.

Usually, as face classification methods found in the literature deal with security ap-
plications, they focus the attention of their algorithms in the internal features of facial
images, such as mouth, eyes and nose. External features (hair, forehead, chin, ears)
have often been ignored. This fact has been justified because external features present
a lack of temporal stability and can be easily changed, and applications related to
security using biometrics need to focus on features difficult to imitate. Nevertheless,
as technology evolves, new electronic devices are developed, which are everyday com-
putationally more powerful, and which can include small cameras. The capabilities of
the new embedded systems can be augmented with facial classification technologies
not oriented to security. Applications such as user profiling, intelligent environments,

95



96 EXTERNAL FACE FEATURE EXTRACTION

Figure 4.1: Internal and external features of a face. In both cases the information
is useful for recognizing the subject at first sight.

reactive publicity, where the user does not make efforts to mislead the classifier are
emerging. In this context, non security applications can take benefit from external
information for face classification. Figure 4.1 shows a simple example of the impor-
tance of external information on face classification, depending on the subject, the face
recognition becomes easier looking at the external information than using the internal
one.

Formally we could define the external information of face images as the region that
covers up to the hair of the subject (including ears, forehead, and chin), omitting the
eyes mouth and nose. Nevertheless, in this thesis only the lateral and upper regions of
the face will be used, rejecting the information located in the chin. Figure 4.2 shows
an example with the zones where the external information is extracted.

The use of internal information from faces has been deeply studied, and there
exist a plethora of normalization algorithms to extract internal information. Usually
the most used method is to align each face image according to the inter eye distance,
obtaining a final D-dimensional vector where each value is related to a pixel from the
internal region. In the use of the external information, two problems related to the
feature extraction immediately arise:

• External information does not have the same size in different subjects, given
that the hair volume can differ considerably between subjects. Pixel values at
certain position do not mean the same depending on the sample.

• There is a lack of alignment on the features, given that there are no points of
reference between samples from different subjects, or even between the same
subject with different hairstyle.

Commonly the extraction of internal information is faced using bottom-up tech-
niques. In the case of external features, this strategy is not suitable due to the prob-
lems mentioned above. We propose to follow a top-down procedure to extract external
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Figure 4.2: Example of the three face zones where we extract relevant external face
features. Also, the internal and original image are shown

information instead. We have followed a segmentation-based [16] algorithm to build
a model of the external information completely off line. Then each face image is re-
constructed according to the model and some predefined restrictions, yielding a final
feature vector encoding the external information in a non topographic way, perfectly
aligned between samples, and independent of the size of the external information.

In this chapter the global framework to extract external information from face
images will be presented, solving the alignment and extraction problems. In the next
section the use of external feature extraction is introduced reviewing some previous
works on the literature. Then the segmentation based method is explained in detail.
Finally some experiments using different face databases are shown, dealing with differ-
ent problems of face classification (gender, verification,...). Also simple combination
strategies between internal and external features are shown. Finally, the chapter is
concluded with some future works that can improve the proposed method.

4.2 Previous Works on External Feature Extraction

Jarudi and Sinha [68] showed that the external features of face images (defined as
hair and jaw-line) can act as an important cue to the identity judgments in the hu-
man visual system. In their experiments with thirty subjects ranging in age from 18
to 38 they obtained a 40% accuracy in face recognition using only external features.
Also, they introduced the well known “Presidential illusion” images [154, 155] (shown
in the introductory chapter) to illustrate that the contribution of external features
is extremely important in face recognition, and this importance depends on different
factors, such as the prior knowledge from the subject to identify. The internal features
of both pair of faces are exactly the same, while human visual system easily identifies
the two persons at first sight. We have also build a similar visual illusion using two
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Renaissance portraits (see Figure 4.3), where at first sight two different women can
be distinguished. Nevertheless, in both portraits the internal features are the same.
Bruce et al. [25] studied this fact, concluding that external features can be even more
important than internal ones for the recognition of unfamiliar faces. On the other
hand, according to Ellis et al. [47] the role of internal features increases when the
degree of familiarity with the person is increased. In addition, it has been shown
[68] that the importance of internal and external features differs depending on the
resolution of the image. External information is more effective than internal in low
resolution images. Figure 4.4 shows an example of an image acquired by a security
camera, where the low resolution of the internal features makes unviable the recogni-
tion process. Studies performed by Pascalis et al. [123] on 4-day born infants show
that external features play an important role in face recognition. New born babies
are able to recognize the face of their mother in normal conditions. Nevertheless, in
their study they show that babies were unable to recognize their mother when she
was wearing a scarf covering the hair. In addition, Campbell et al. [29] showed that
the use of external features differs from adults and children. Adults tend to use eyes,
nose and mouth to identify people, while children tend to use more hair, jaw and
ears. They found that the shift from external to internal features is produced when
the child is 10-11 years old, and is clearly noticeable in children above 15 years old.

In this chapter the contribution of the external features applied to face classifica-
tion will be showed in three independent problems:

• A gender recognition problem.

• A face recognition problem.

• A face verification problem.

4.3 Extraction of External Information

The main difficulty when extracting external face information is the impossibility
of applying classical feature extraction techniques given the lack of alignment of the
input images. In the internal feature extraction, face images can be aligned according
to the eye positions, and samples are scaled to have the same sizes. Each internal
face image is represented as a D-dimensional feature vector, where each coordinate
corresponds to the same facial characteristic. Therefore, direct bottom-up algorithms
can be applied to the feature extraction process, as stated in the previous chapters.

Nevertheless, the diverse nature of the external information makes this approach
unfeasible. Hair volume differs between subjects, so direct transformations such as
PCA or FLD can not be directly applied. In this chapter a top-down algorithm based
on constructing a global model for the external information of face images will be
presented. The final features used for classification will be extracted according to the
selected model.
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Figure 4.3: Example of two Renaissance portraits, where the internal features from
the first princess have been substituted by the internal features of the second one.
At first sight two different women are distinguished.

Figure 4.4: An example of an image where the internal features are acquired in low
resolution. The image corresponds to a video sequence captured in Maine airport,
and the subject is Mohammad Atta [68]. Internal features are not robust enough in
low resolution images.

The developed method to obtain the model of the external features is based on a
segmentation algorithm proposed by Borenstein et al. [16, 14]. The idea is to extract
some object parts from a large set of object examples and use a selection of these parts
as a model. We call this set of fragments the Building Blocks of our object. Then,
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given a new unseen image, we find the subset of these parts that best reconstructs it
and we use this representation to classify.

There are three different steps that should be distinguished in the original algo-
rithm:

• Learning from the training examples the optimal set of fragments that con-
stitute the model. This step is performed off line, and it is usually the most
computationally intensive.

• Reconstruct a new unseen object image according to the fragments from the
model that best fit with the image.

• Encode the object appearance using the selected fragments yielding a new
aligned feature vector.

In the next sections the three steps of this approach will be developed in detail
for the case of external face image information.

4.3.1 Learning the Building Blocks Model

The learning model algorithm receives as an input a training set C with repre-
sentative face images (with visible and diverse enough external features). Using this
training set, all possible sub images from each sample of predefined sizes are gener-
ated. For computational optimization, the sub images are taken from specific zones
of the image, assuming that the face detector yields the coordinates of the internal
features it is straightforward to find the surrounding areas where external informa-
tion is located. A large enough margin is left between the coordinates of the eyes and
the end of the external features region. Each sub image will be initially a candidate
fragment Fi for the final model.

Given C and a large set of non face images C the goal is to find the fragments
more representative of the external information of faces. In order to select which
fragments will constitute the best model, the following selection criterion is applied:
those fragments that can be found with high probability in face images but with
low probability in non face images will be selected as building blocks. To determine
wether a given fragment Fi is similar to a part p of an image I, we need to define
a criterion of matching. As done in [7], we use the normalized cross-correlation as
measure:

NCC(p, Fi) =
1
N

∑
x,y(p(x, y)− p)(Fi(x, y)− Fi)

σpσFi

(4.1)

where N is the number of pixels in Fi, p and Fi are the means of p and Fi

respectively, and σp and σFi are their standard deviations.



4.3. Extraction of External Information 101

Table 4.1: Building Blocks learning algorithm.

The algorithm takes as input:

• The face images set C,

• The set C of non face images

• The possible sizes of the fragments to analyze Si ∈ {S1 . . . Ss},
• The maximum number of fragments K that will be considered as building blocks, and

• The predefined threshold of false positives α.

1. For each fragment size Si

• Extract all the possible sub images Fi of size Si from the set C using a sliding
window procedure.

• Add each sub image to the candidate fragments set.

• Calculate and store the normalized correlation between each candidate fragment Fi

and each image from C and C.

2. Compute the threshold θi for each fragment Fi that allows at most an α false positive
ratio from the training set, p(NCCi(C) > θi) ≤ α.

3. Compute the probability (frequency) of each fragment to describe elements from class C
using the threshold θi, p(NCCi(C) > θi).

4. Select the K fragments with highest value p(NCCi(C) > θi).

For each fragment Fi the maximum values of the normalized cross-correlation be-
tween Fi and each possible sub image p of I ∈ C, NCCi(C), and in C, NCCi(C), are
computed. Given the number of false positives α that can be tolerated for a fragment
in C we can compute a threshold value θi in order to assure that p(NCCi(C) > θi) ≤
α. This value can be used for determining if a given fragment is present in an unseen
image.

Finally, the K fragments with highest p(NCCi(C) > θi) are selected, therefore
the fragments with highest probability to appear in the face set, and not to appear
in the non face set [16]. The complete algorithm is detailed in Table 4.1.

Ullman et al. [151, 143, 174] proposed a variation of the fragment selection for
specific classification purposes. They used the mutual information between the frag-
ments and the classes to select the optimal set of fragments, realizing empirically that
the most informative fragments are typically those which are of intermediate size.
In [179] Vidal-Naquet and Ullman introduced the segmentation algorithm for object
recognition, by performing linear classification on the informative features extracted
using the mutual information criterion. Their comparative study shows that features
extracted using the building blocks model can outperform the classic generic feature
extraction methods (wavelet features were used in their comparison).

As we need the model to extract the best external features possible to posterior
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(a)

(b)

Figure 4.5: Example of reconstruction of the external information using the linear
combination defined by the fragments basis. First the original image is shown, (a)
from the zones marked we find the Fragments from the model that best fit on the
image, (b) a reconstruction using the NMF algorithm is performed achieving the
coefficients that weight the importance of each fragment from the model. Finally the
resulting image from the linear combination of the fragments is shown.

classification, a geometrical constraint about the location of the fragments to ensure
enough diversity on the fragments has been heuristically imposed in the selection
process. Otherwise, the selected fragments could be concentrated in a small region
of the face, achieving a poor global reconstruction. More concretely, we have divided
the fragments of the model in three categories: fragments belonging to the frontal
part, from the left side, and from the right side.

The selection according the best probabilities is performed inside these categories,
assuring that there will be the same amount of fragments in the model from each of
these parts. Figure 4.5 shows an example of the three regions where fragments are
located (a) to obtain the external fragments that best reconstruct the image (b).
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4.3.2 Extraction of the External Features from Unseen Images

Once the fragment-based model of the external features for the face case is learned,
and supposing that the face detector has located a face in an image (internal features),
we can extract the external face features by covering the surrounding of the face area
with the set of building blocks. To achieve this goal a function NC(I, Fi) is defined
as the pixel coordinates where the maximum NCC(p, Fi) for all the possible sub
images p ∈ I is reached. Therefore, for each building block the place where the
normalized cross-correlation value is maximum is computed, and then, the optimal
covering is defined as an additive composition of the fragments that yields an optimal
reconstruction of the surroundings of the detected internal face features.

To find the optimal cover, the original top-down segmentation method [16] uses an
iterative algorithm based on optimizing a combined weighted criterion that considers:

• The quality and reliability of the fragments, which are measured as the com-
bination of the factor matching si, defined as a weighted sum of the maximum
normalized correlation and a measure of edge matching (to avoid background
noise) [17], and the probability of finding a fragment on an object and not
anywhere else: ∑

i

= si
p(NCCi(C) > θi|C)

p(NCCi(C) > θi|NC)
(4.2)

• The consistency of the cover, defined as a measure of overlapping between the
fragments. The final fragment selection must consistently cover the surface of
the object, avoiding only local coverings. For this purpose the consistency term
penalizes the overlapping between each new fragment and the current cover.

The iterative algorithm improves the criterion at each step adding new fragments
to the cover, and there is a trade off between the quality of the fragment added and
the amount of new surface covered. The algorithm typically converges after a small
number of iterations.

In the method proposed in this thesis, there is an extra alignment requirement
on the feature extraction, given that our purpose is not completely focused on the
segmentation. The main goal is to perform a feature extraction from external features
that can be used as a feature vector in traditional face classifiers, even if the whole
region is not properly covered by the fragment set (the segmentation is not the final
goal).

In our case the external feature extraction is performed following three steps:

• Given a new unseen image x, the normalized correlation between the fragments
composing the model and the area of the image that surrounds a face are com-
puted. Also the position of the maximum correlation NC(I, Fi) is stored for
each fragment.

• Using the optimal position for each fragment, a set of basis vectors B are con-
structed as follows: for each fragment an image of the same size as the original
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image is generated with the fragment set at the optimal position (obtained in
the first step), and the rest of the pixels set to 0.

• Given B, we find the coefficients S that best approximate the linear transform:

x ' BS (4.3)

To calculate the set of coefficients S we use a variant of the Non Negative Matrix
Factorization (NMF) algorithm [86]. The NMF algorithm has been designed to si-
multaneously compute B and S, but in our case we fix B, and the only unknown
variable is S. We have chosen the NMF algorithm because it fulfills the three con-
straints inherent to this problem:

• The combination of coefficients must be additive, given that each fragment
contributes to the reconstruction of the external features.

• The reconstruction error of the image external features using the fragments of
the model must be minimized, and it has been shown that NMF minimizes the
reconstruction error [87].

• The fragment set is diverse, given that is extracted from different subjects in
order to model the variability of the problem. Therefore, only a small part of
the fragments from the general model can be useful to reconstruct a specific
face. This fact implies that the coefficients S must be sparse, and only a small
part of the fragments of the model should be activated for each face.

We have followed an implementation of the NMF algorithm similar as done in [64],
fixing the bases matrix B. This implementation has the advantage that the sparseness
coefficient can be adjusted, in order to allow or restrict the amount of fragments that
take part on the reconstruction. In our experiments the sparseness coefficient was fixed
to 0.7. Figures 4.5 (b) and 4.6 illustrate the reconstruction of the external features
from the image given the fragment basis. In Figure 4.6 (b), the reconstructed external
features are shown with the original internal features inserted (in the last picture).
Notice that the NMF algorithm recovers a good approximation of the external features
from a set of 600 fragments where only a small part are active (see the sparse bar
plot of the coefficients in part (a)). Also, it must be pointed out that the image
X to reconstruct is not exactly the original face image (see the second picture in
Figure 4.6(b)), the central part of the face has been set to 0. The main reason to
this alteration of the original face image is to focus the NMF algorithm to optimize
only the external part of the faces. As can be observed from the algorithm proposed,
the basis B are fixed and placed all on the optimal external position of the faces,
so it is hoped that there will be no samples in B with active pixels in the central
part. Fixing the central part of X to 0, improves the iterative gradient scaling of
the NMF algorithm, achieving faster convergence. Typically, with this modification
the algorithm converges in less than 50 steps, given that only the coefficients S must
be adjusted. Figure 4.7 shows the NMF reconstruction error as a function of the
iterations, and as can be seen the error is stabilized after 50 iterations. The same
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Figure 4.6: Example of reconstruction of the external information using the lin-
ear combination defined by the building blocks basis. (a) First the reconstruction
process using the NMF algorithm is shown: the corresponding basis obtained from
the Building Blocks set, a graphic with the weights of each fragment from the model
and the resulting image from the linear combination of the building blocks. In (b)
there is the original image, the external face feature zones of the image used for the
NMF algorithm, the obtained reconstruction and finally an image where the original
internal features of the face have been added to the reconstruction.

study should be performed depending on the database where the experiments are
performed. Nevertheless, our empiric studies using two different facial databases
show that 30-50 iterations are enough.

4.4 Face Classification Using External Features: Ex-
periments

The main question that naturally arises after the external feature extraction meth-
ods has been proposed is: Are the external features useful for face classification prob-
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Figure 4.7: Plot of the reconstruction error of the NMF projection as a function of
the number of iterations.

lems? As it has been shown in the introductory section, humans use the external
information to classify, and in some circumstances the external features are even more
important than the internal ones. Nevertheless the computational model proposed
needs a validation using public face databases. In this section the external feature
extraction method proposed is used on three face classification problems: Gender
Recognition, Face Recognition and Face Verification. Two different face databases
have been used for this purpose: the AR Face Database, and the IEEE Face Recogni-
tion Grand Challenge Workshop face database, FRGC, (see appendix D.3 for a more
detailed description of the databases).

4.4.1 Gender Recognition

In this experiment the performance of the external feature extraction is analysed
on a gender recognition experiment designed for the FRGC database. As there is
no baseline comparison on the FRGC still image database, we have selected five
classification algorithms in our study:

• Support Vector Machines Classifier (SVM). An implementation extracted from
the OSU SVM Classifier Matlab Toolbox has been used 1, setting the parameters
σ = 1 and cost function C = 1. The best result on gender recognition up to our
knowledge was obtained using SVM. Moghaddam et al. [5] achieved a 96.6%
recognition rate using a large face database (1755 faces of the FERET face
database), and applying SVM with Radial Basis Functions.

• The 1-nearest neighbor classifier (NN).
1The toolbox can be downloaded from http : //www.ece.osu.edu/ ∼ maj/osu svm/
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• The linear classifier (Lin) assuming normal distribution of the classes and equal
covariance matrices. A regularization parameter r = 0.5 has been added to
avoid numeric problems when the inverse of a covariance matrix that is nearly
singular must be computed.

• The quadratic classifier (Quad) with also a regularization parameter r = 0.5.

• The maximum entropy classifier (ME), based on the implementation of Nigam
et al. [75]. The constraint functions have been designed as follows:

fi,c(w, c̃) =
{

wi if c̃ = c
0 if c̃ 6= c

∀i = 1 : K, where c, c̃ ∈ C = {male, female} and wi is the i-th coordinate of
the encoded face w.

Experimental protocol

In the first step, a generic model to represent external features from face images
is constructed by following these steps:

• A set of 80 face images from the FRGC database has been used (40 male and 40
female images) to extract the fragments. These images have not been considered
anymore in the experiment to ensure that the reconstruction of an image never
makes use of fragments extracted from itself (or from the same person).

• 100 natural images (with no faces) extracted from the web have been selected
for the C set.

• Since the coordinates of the eyes were known, we have automatically extracted
the set of fragments from each image to construct the set of candidate fragments.

• We run the selection algorithm explained in the previous section, using the
following parameters α = 0.1 and K = 600.

All the images of the experiment have been previously resized to a common size.
The distance between the eyes in the final images was 16 pixels and the total size of
the images was 81× 77.

The accuracies of the method have been computed in all cases as the mean of 100
repetitions (using a cross-validation strategy) of the following experimental protocol:

• The general FRGC experimental data set proposed on this experiment has been
split in a training set containing the 90% of the samples and a test set with the
remaining 10% ( 2400 images and 240 images, respectively). Samples from
the same person appear only in one data set, to avoid face recognition instead
of gender and the presence of male and female samples on each set has been
balanced.
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Figure 4.8: Examples of non valid images, where external features cannot be reliably
extracted.

Table 4.2: Results achieved in the Test set (percentage), using the Maximum En-
tropy classifier, Support Vector Machines, Nearest Neighbor, Linear and Quadratic
classifier. The 95% confidence intervals for each method are also provided.

Algorithm ME SVM NN Lin. Quad.
Accuracy 83.24 94.19 92.83 88.75 88.32
Interval ±0.43 ±0.27 ±0.26 ±0.37 ±0.38

• 50 iterations of the NMF algorithm are performed yielding the set of coefficients
used for classification.

It should be pointed out that the FRGC experiment description includes a larger
set of face images. Nevertheless, some of the original samples have not enough space
between the eyes and the top of the images. This fact avoids an automatic processing
of the feature extraction algorithm, and usually no external features can be extracted
from the most important regions of these images. In addition, there are some subjects
with important occlusions that can not be addressed by the algorithm. Figure 4.8
shows some examples of images that have been manually discarded.

Experimental results

The mean results after 100 rounds of classification of the 5 classifiers are shown
in table 4.2. The 95% confidence interval is also shown for each classifier. The best
classification accuracy is obtained using SVM, achieving a 94.19%. Nearest neighbor is
the second best technique (92.83). The confidence intervals from linear and quadratic
classifiers overlap, showing no real differences in performance. These results, when
compared to the best (up to our knowledge) gender classification algorithms using
internal face features demonstrate that external face features can be reliably used for
classifying face images. Figure 4.9 shows some examples of misclassified faces.
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Figure 4.9: Some examples of misclassified faces in the gender recognition problem.

4.4.2 Face Recognition

In the face recognition experiment the same subset of the FRGC database has
been used, composed by a set of samples from 275 different subjects having uniform
(grey) background. The external features have also been extracted using the scheme
presented in this chapter, using the same subset of training samples (40 male and 40
female images that do not appear any more in the classification tests), and images were
previously aligned according to the inter-eye distance (16 pixels). The parameters α
and K have been also set to 0.1 and 600 respectively.

The face recognition experiment is organized as follows:

• For each subject, we have randomly selected 10 images, generating the training
set.

• The testing set is build using the remaining images from each subject.

• The experiment is repeated 100 times, and at each round the random split is
performed.

• The nearest neighbor has been used to classify the samples. Nevertheless, as
the amount of classes is high, the second, third, fourth, and fifth nearest class
are computed, considering in this last case that a vector is correctly classified if
it has the correct label in one of the five nearest classes.

The mean accuracy of the 100 rounds is shown on Table 4.3. As it can be observed
there is a great improvement considering the 2 nearest classes, while increasing more
the tolerance does not modify significantly the accuracies.
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Table 4.3: Recognition rates (and confidence intervals) obtained by the Nearest
Neighbor classifier (NN) applied to the external information encoded on the NMF
coefficients.

1 NClass 2 NClass 3 NClass 4 NClass 5 NClass
Accuracy NN 43.3 66.32 68.31 69.3 71.9

Interval ±0.22 ±0.31 ±0.30 ±0.26 ±0.25

4.4.3 Face Verification

Finally, the last face classification experiment is a face verification problem. Con-
trary to the face recognition case, the number of classes in face verification is limited
to 2. Therefore the problem is specially suitable for adding an extra discriminant
layer to the method. In this experiment, we have also added a discriminative fea-
ture extraction step on the NMF coefficients encoding the external information. The
Adaboost-based feature extraction technique presented in chapter 3 has been used
for this purpose. Although the technique has been validated on a large database set
in previous chapters, only an application to gender recognition has been shown. In
special, the RBDP technique has been used. The choice of these technique over the
BFP (more accurate in the experiments performed on the general databases) is justi-
fied given that the amount of samples to model each person is extremely reduced, and
the scatter matrices for the intra class variability in BFP would be poorly estimated.
The RBDP does not need any assumption and can be used in data sets of arbitrary
size.

The experiment has been performed following the settings shown in the previous
gender and face recognition problems. A total set of 600 NMF coefficients encoding
the external information of each image (previously preprocessed as explained) are
used as the input to the discriminant feature extractor. The experiment has been
repeated 150 times, and each time a different person has been verified according to
the following protocol:

• At each round a subject is randomly selected from the data set.

• Then 10 face images from the person are also randomly selected to be the
training set.

• The non used faces from the same person and the remaining data set are used
for testing.

• The nearest neighbors between the testing and the training vectors are com-
puted. Also the 5 nearest classes are computed.

Table 4.4 shows the mean accuracies obtained from the 150 rounds. The results
shown are the direct nearest neighbor on the 600 NMF features, and applying the
Adaboost-based feature extraction to the NMF coefficients. The optimal dimension-
ality for the discriminant feature extraction is also shown. As can be seen, the feature
extraction improves significantly the direct nearest neighbor on the original space.
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Table 4.4: In the first line there are the verification results obtained by the Nearest
Neighbor classifier (NN) applied to the NMF codification of the external features,
considering from the first to the fifth nearest class. Second line shows the best
accuracy obtained using the Nearest Neighbor classifier on the extracted features
(Boosted FE). The last line specifies the corresponding optimal dimensionality.

1 NClass 2 NClass 3 NClass 4 NClass 5 NClass
Rate NN 43.3 53.3 66.0 69.3 74.7

Rate Boosted FE 56.0 66.7 71.6 73.8 76.6
Dim 315 302 220 180 387
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Figure 4.10: Mean accuracy as a function of the extracted features for the face
verification case. The obtained result using directly the NN classifier is also indicated.

This fact is specially noticeable when the nearest or the second nearest class are used.
As more error tolerance is allowed (considering correctly verified faces up to the 5
nearest classes) the advantages of the discriminant algorithm are reduced. Also it
should be noticed that in addition to the increase in the accuracies, the discriminant
feature extraction achieves an important dimensionality reduction, which is compu-
tationally important when dealing with the nearest neighbor classifier.

Figure 4.10 shows the accuracies as a function of the dimensionality reduction in
the discriminant feature extraction step. The straight line shows the accuracy of the
NN on the original space. As can be seen, in subspaces of dimensionality larger than
100 the accuracies obtained using the RBDP algorithm outperform the NN in the
original space.
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4.5 Combining the Internal and External Informa-
tion

In the previous section, the main question was wether the computational external
feature extraction scheme proposed in this thesis can be useful for face classifica-
tion. The experiments performed on face classification show that external features
encode enough information. Nevertheless, the accuracies obtained are still slightly
lower than classification techniques using only internal information. This fact seems
reasonable, given that external appearance is more variable than the internal one.
However, the natural continuation of the proposed method could be its use in global
face classification scheme together with the internal information, in such a way that
now the question to answer is: Can the addition of the external features improve the
accuracies obtained using only internal information?

Figure 4.11: Samples with male and female images taken from the AR Face
database. Internal and external regions are marked.

In this section, a scheme for combining internal and external face information
is presented. Moreover, some experiments to show wether there is an improvement
adding the external information on a gender recognition problem will be shown. For
this purpose, the AR Face database has been used. Images from the database have
been aligned, and resized according to the inter-eye distance as performed in previous
experiments. The central part of 36 × 33 pixels from each image has been used as
internal feature set and the external features have been extracted following the NMF
scheme presented in this chapter. Figure 4.11 shows some samples from the AR Face
database, with the external and internal zones marked.

Once we have obtained the internal (pixel values) and external features (NMF
coefficients) for each image, we need to combine this information to perform the
classification. Perhaps the easiest combination rule is concatenating the features
originated in the internal and external feature extraction. Chang et al [30] used this
method to combine information from face and ear images on a biometric subject
identification problem. Then the standard classification algorithms can be applied
over the joint feature set. In the experimental section, the NN classifier has been
used for this purpose.
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Another possibility is to consider the joint feature set as a source information
vector, treating each feature (internal and external) as an knowledge source. The
maximum entropy (ME) principle can be used for this purpose. In the previous sec-
tion, a classification algorithm using the ME has been used for classification, however
the capabilities of the algorithm include also a natural model to combine information
from different sources. Moreover, the algorithm is specially suitable for combining
information sources of different nature, as it is the case of external and external fea-
tures of face images. In the next section the ME algorithm used as a combination
rule in the experiments will be explained in detail, and finally a comparison of the
performance of the internal and the combination of internal and external features of
face images will be shown,

4.5.1 Maximum Entropy

The maximum entropy principle used in this thesis is based on a work by Rosenfeld
[135] where a single model is constructed capturing all the information of different
knowledge sources in statistical language modelling problems. Each feature is treated
as a source of information that originates a constraint, and the intersection of all
the constraints can yield a probability function consistent with all the information
sources. To find the probability distribution function, only one restriction is imposed,
the function chosen must be the one with highest entropy, so given the knowledge
functions, no other additional assumptions are performed on the data [70, 79]. Nigam
et al. [75] exemplify the ME principle in a text classification problem as follows:

“...consider a four-way text classification task where we are told only that on
average 40% of documents with the word “professor” in them are in the faculty class.
Intuitively, when given a document with “professor” in it, we would say it has a 40%
chance of being a faculty document, and a 20% chance for each of the other three
classes. If a document does not have “professor” we would guess the uniform class
distribution, 25% each...”

Then main problem is to estimate the probability distribution subject to the con-
strains given by the labelled data sources, which characterize the class expectations.
To solve it we followed the approach of [75],where the probability function is defined
by an exponential family. Let X = [x1,x2, . . . ,xN ] be the learning data set, and
xt = (d1, ..., dD) is an encoded face obtained using both internal and external fea-
tures. Let be also C = {0, 1} the two possible classes of gender. The goal is to learn
the conditional distribution P (c|x), ∀c ∈ C.

The constraint function is defined as follows:

fi,c(x, c) =
{

di if c = c
0 if c 6= c

∀i = 1 : D and c ∈ C, where di is the i-th coordinate of the encoded face x.
Thus, it is stipulated that the learned conditional distribution P (c|x) must have the
property:
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1
N

∑
x,c

fi,c(x, c(x)) =
∑
x

P (x)
∑

c

P (c|x)fi,c(x, c) (4.4)

and if equiprobability for the distribution P (d) is assumed, then:

1
N

∑
x,c

fi,c(x, c(x)) =
1
N

∑
x

∑
c

P (c|x)fi,c(x, c) (4.5)

It is guaranteed that a unique distribution exists that has maximum entropy.
Moreover, it can be shown that the distribution is always of the exponential form:

P (c|x) =
1

Z(x)
exp(

∑

i,c

λi,cfi,c(x, c)) (4.6)

where λi,c are the parameters to be estimated and Z(x) is the normalizing factor
to ensure a probability distribution. So the problem is reduced to find the optimal
parameters λi,c given the training feature vectors. The improved iterative scaling
algorithm (IIS) finds this solution performing a hillclimbing given the constraints
[75].

Improved Iterative Scaling Algorithm

The IIS algorithm [162, 11] performs a hillclimbing in the parameter log likelihood
space. Given the model defined by Λ (the λi,c), the log likelihood is defined as:

l(Λ|X) = log
∏

x∈X

PΛ(c(x)|x) =
∑

x∈X

∑

i

λi,cfi,c(x, c(x))−
∑

x∈X

log
∑

c

exp
∑

i

λi,cfi,c(x, c)

(4.7)
The idea is to iteratively improve the parameters λ by setting Λ = Λ + ∆ in such
a way that the likelihood is improved l(Λ + ∆|X) − l(Λ|X) > 0. A function B that
bounds this expression is defined as:

B = 1 +
∑

x∈X

(
∑

i

δi,cfi,c(x, c(x)))−
∑

c

PΛ(c|x)exp(f ](x, c)δi,c

∑

i

fi,c(x, c)
f ](x, c)

) (4.8)

where δi,c are the increments added to λi at each iteration, and f ] =
∑

i fi,c(x, c).
And differentiating B to find maxima:

∂B

∂δi,c
=

∑

x∈X

(fi,c(x, c(x))−
∑

c

PΛ(c|x)fi,c(x, c)exp(δi,cf
](x, c))) (4.9)

Equaling the derivative to 0 and solving the equation, we can obtain the increments δi,c

that should be added to the parameters Λ at each iteration. The complete algorithm
is shown in table 4.5.
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Table 4.5: Improved Iterative Scaling Algorithm.

The algorithm takes as input the training vectors X, the correspondent classes ci (i = 1 : N),
and the feature functions fi,c.

• Initialize the parameters λi,c to 0.

• Iterate:

– Calculate the expected classes given the current set of parameters λi,c (using equa-
tion 4.6).

– For each parameter λi,c

∗ Set ∂B
∂δi,c

= 0

∗ Solve it for δi,c

∗ Set λi,c = λi,c + δi,c

The algorithm yields the adjusted set of parameters λi,c that can be used to predict the label of
a new unseen feature vector.

The algorithm iteratively finds the solutions, and although it converges fastly,
typically in our experiments we have added a fixed maximum number of iterations
(set to 50).

4.5.2 Experiments

In this section we evaluate the combination of internal and external features using
the publicly available AR Face database [100] on a gender recognition problem. A set
of 2210 images has been selected from the database, discarding subjects with missing
images and balancing the presence of male an females. Data has been randomly split
in a training and a testing set, in such a way that the 90% of the data has been
used for training and the 10% for testing. The splitting has been performed taking
into account the person identity, so all samples from the same person must be in
only one set to avoid person recognition instead of gender recognition. As in previous
experiments, the process has been repeated 100 times, and the results shown in Tables
4.6 and 4.7 are the mean accuracy of the 100 iterations. The 95% confidence intervals
are also computed.

As a prior step to the tests, images from the database were aligned according to
the eye position, and sub sampled to 134 × 139 pixels. The internal features were
selected by taking the 36× 33 central part of the sampled images, keeping the center
pixel of each eye aligned. A previous mean-variance normalization was performed to
reduce the effects of global illumination. To extract the external features we have
randomly chosen 20 images from each class (using only frontal faces), and 40 natural
images with no faces. With these images we have learned the model fragments as
described in this chapter. Several parameters were fixed empirically cross validating
the training set at this step. We fixed the threshold α = 0.1, and we took fragments of
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Table 4.6: Results achieved using only internal, external, and a combination of internal-
external features.

NN ME
Internal Features 81.5± 0.3 80.4± 0.63
External Features 64.4± 0.4 82.8± 0.57

Combination 87.8± 0.4 84.8± 1.0

size 18× 18 and 22× 22. In a previous processing step, fragments with less than 10%
of its surface corresponding to a face were discarded. Then, only 600 fragments were
preserved after the learning process, according to their best probability. In addition,
the number of fragments belonging to each contour part has been again balanced
(head and both laterals). Two classifiers have been used in our tests, the nearest
neighbor (NN) classifier using Euclidean distance, and the maximum entropy (ME).
The experiments were performed on the data sets with only the internal features (1188
pixel values), using only the external features (600 NMF coefficients), and the join
feature set (1788 internal and external features). In Table 4.6 we show the accuracies
obtained with both classifiers.

We have chosen the SVM classifier as detailed in [5] to be the base classifier to
compare our proposal, as it is considered one of the best techniques of the state of
the art up to our knowledge (they achieve a 96.6% of correct classification using the
internal information of samples from the FERET database). The SVM with RBF
kernel on our full data (with occlusions and strong changes in illumination) yield a
85.5% classification rate while nearest neighbor classifier achieves 81.5%.

The NN rule with a combination of external and internal information improves
considerably the results using only internal features, achieving the best results 87.5%.
It can be seen that the accuracy of the NN applied to the external information alone
is relatively poor, nevertheless combining both internal and external information the
results are improved, so there is not a complete overlap on the modelling capacity of
both techniques.

Using the ME approach the accuracies obtained are inferior to the SVM. Neverthe-
less, it must be pointed out that ME algorithm achieves interesting results using only
external features, suggesting that they can be a good source for extra information on
the combined scheme.

To see the importance of the internal and external information in detail, a second
experiment has been performed (shown in Table 4.7). In this experiment the subsets
from the AR Face database are tested separately. In the first row the image type is
indicated (from A01-A13), and a sample from the same person is plotted, so we test
both classifiers on the 13 variants of the face database (with gesture, occlusions and
illumination). We show the accuracies of each case and the confidence intervals below.
The best accuracy is marked with an ’*’, and the methods whose confidence intervals
overlap with the best results are shown in boldface. As can be seen, in almost all the
cases the best accuracies are obtained using combining internal and external features.
Notice that the extra information of the external features is specially important on
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the data sets with occlusions (sets A08-A13), where sunglasses and scarf degrade the
internal information considerably.

Also, as the size of the subsets is smaller than in the first experiment, the per-
formance of the NN classifier is slightly worse than ME, being ranked in 4 of the 13
sets as the best classifier. In addition, as can be observed in only 3 data sets the
internal features are slightly better than using the combined feature set, this sets are
characterized by strong lateral illumination. This suggests that the results could be
improved using some kind of normalization in the building block model.
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4.6 Summary and Conclusions

This chapter is focused on developing feature extraction algorithms for face clas-
sification. In previous chapters a family of feature extraction techniques has been
proposed, always dealing with internal information of face images. In this chapter
we have shown that some face classification problems can take benefit of the external
features, specially in non controlled environments where partial occlusions caused by
objects or changes in pose often appear. This fact has been previously highlighted
by several psychological studies, therefore, we propose a computational framework to
use the external features of faces in face classification. We have adapted a top down
segmentation based algorithm for extracting external features from face images and
a natural way of obtaining the sparse set of coefficients that encode the importance
of each fragment from the model. The resulting scheme solves the main problems of
external feature extraction:

• It generates an aligned feature set, in such a way that direct classic classification
algorithms can be applied to the registered features.

• It deals in a natural way with the diversity inherent to the external information
of faces (specially in hair zones)

We have tested this technique on two standard benchmark face databases, in
three different face classification problems: gender recognition, face recognition and
face verification. In a first attempt, the goal was to prove that our computational
model to extract external information encodes useful information for classifying faces.
We showed that accuracies close to the state of art methods can be obtained using
the NMF coefficients that constitute our extracted features. The second step has
been to show that there is an improvement in the accuracies with respect to using
only internal information. Two different approaches have been proposed to combine
internal and external feature extraction: use a concatenation of both feature sets and
apply classic classifiers, or use the Maximum Entropy principle to derive a classifier
using the joint features as a set of constraints. An empirical study of both cases in
a database with occlusions and strong changes in illumination shows that external
information contribute significantly to the recognition.

Nevertheless, there is still some future work to be done. The experiments in the
gender recognition problem show that the fragment model could benefit from using
some kind of normalization on the fragments in the model generation. In particular,
problems modelling local illumination of lateral external zones have been detected.
Techniques based on ridges and valleys detection could be useful for data normaliza-
tion prior to the fragment extraction. Also, the construction of the building blocs
model could be improved. Although the cross correlation seems to be a good simi-
larity measure, more sophisticate matching methods should be included to be more
robust to non uniform cluttered backgrounds. The selection process could also be
improved, by now the fragments with larger probability to appear in face images and
not to appear on non face image are selected, some measure of diversity of the frag-
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ment set could be added to model a larger rank of hairstyles. Mutual Information
based techniques are being studied for this purpose.

Moreover other combination techniques could be applied to the internal and ex-
ternal features. For example Adaboost for feature selection [180] could be studied
when the number of features become larger. The use of ensembles on the joint feature
set seems to be a natural continuation of the combination of internal and external
information.

The computational resources needed are also a drawback, although the most com-
putational time consuming part is the generation of the model. Nevertheless, this
step must be performed once, off line and can be easy parallelized. The great com-
putational resources needed are due to the exhaustive search of fragments performed
to generate the model. Several optimizations can be performed at this stage: (i) In
our case, we propose to take benefit of face detection schemes, which can allow us
to know in advance the approximate position of each part of the face, therefore, the
correlations in the search of the optimal position for each fragment are reduced to
smaller regions of the image (left, right an upper parts). (ii) Also the sliding windows
step used to extract all the possible sub images could be increased, in order to take
fragments each 2 or 3 pixels (having less overlapping between fragments).

The exploitation time of the algorithm once the fragment model is constructed, is
not considerably high. The whole testing algorithm takes 2 seconds per image to be
classified on a Pentium 4-2.4Ghz, using Matlab 6.0 program on Windows-NT being
the most time consuming part the correlation of each fragment from the model with
the image and the NMF projection. Both steps could be seriously optimized in C
code, allowing the algorithm to be run in nearly realtime.



Chapter 5

Concluding Remarks

5.1 Conclusions

This thesis is focused on designing specific feature extraction techniques for face
classification. More concretely, only linear feature extraction techniques are studied
in depth along this work. Feature extraction has been studied in previous works as a
way to solve the main problems when dealing with face classification:

• Face images are treated as high dimensional vectors. This fact implies the curse
of dimensionality problem, that complicates the parameter estimation of the
classifiers. Using feature extraction usually a dimensionality reduction is also
achieved improving the classifier estimation.

• Usually face images have noise, which can mislead the classifier. Feature extrac-
tion can eliminate noise and redundancy on the data, reducing also the storage
and computational needs.

• Faces acquired in natural environments can suffer from changes in the illumina-
tion. Feature extraction can learn invariant characteristics between samples of
the same subject, obtaining more robust classifiers.

Most of the feature extraction techniques found in the literature are based on making
some kind of assumption on the input data: Principal Component Analysis (PCA)
performs gaussian assumptions on data distribution, NMF assumes positivity con-
straints and Fisher Linear Discriminant Analysis also performs class gaussian assump-
tions. In this thesis we have tried to relate the feature extraction process with the
classifier used. The essential algorithm used is the Adaboost. Although it was origi-
nally designed to be a classifier, we have adapted it to perform the feature extraction
process.

The Adaboost algorithm has been extensively used as a way to combine weak clas-
sifiers in a more powerful decision rule. It performs a set of rounds, where each time

121
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a classifier is built. A set of weights is adjusted according to the classification results
of the training samples, in such a way that the classifier learnt in the next round is
more focused on the miss classified samples. As it has been defined in the original
algorithm, the learning process of the classifier uses a fixed set of features correspond-
ing to each sample. In this thesis we have introduced the feature extraction process
inside the Adaboost algorithm, therefore at each step samples are represented by a
different set of features, which are extracted focusing on the most difficult samples.
The following contributions have been performed:

• We have designed an Adaboost algorithm where a feature extraction process is
performed at each boosting step. The WNMF (Weighted Non Negative Matrix
Factorization) algorithm has been used for this purpose. The weight vector
encodes the most difficult samples where the feature extraction will be focused,
and are shared with the Adaboost algorithm.

• We analyse our purpose in two different problems, a face detection and a
manuscript digit recognition problem. The accuracies on both problems are
better using our adaptive scheme, and are achieved in less boosting steps.

The main contribution of this thesis is a discriminant feature extraction method
for two-class problems also based on the Adaboost algorithm. Once we have seen the
usefulness of the Adaboost for classifying using the features extracted, we propose to
reverse the problem, we use the Adaboost to extract the features. The method finds
a set of simple 1-Dimensional projections at each step, selecting the one that achieves
better classification rates on the training data. At each boosting step the weights
are adjusted encoding the most difficult samples to classify, leading the extraction of
the next 1-D projection. The final projection matrix is build incrementally concate-
nating the 1-D projections obtained at each step. In fact, we have built a family of
feature extractors based on the Adaboost algorithm, depending on how the 1-D linear
projections are constructed:

• Random Boosted Discriminant Projections: The most straightforward
approach to build the 1-D dimensional projection vectors was to randomly
choose pairs of points from each class, and use the vectors between each pair as
a candidate projection. The best projection is selected at each step from a pool
of candidates according to the classification results of the training samples.

• Local Boosted Discriminant Projections: In this case we build the pro-
jections in a deterministic way. Each point and its nearest neighbors from the
same and opposite class define a plane where we can find a projection where the
distance to the opposite class is maximized and the distance to the same class
minimized. The obtained projections model the local structure of the training
data, and are selected within the Adaboost to built the final projection matrix.

• Boosted Fisher Projections: In the last variant proposed we take more than
two points to find the linear projection at each step, a training subset is resam-
pled according to the Adaboost weights, and the projection is learned using the
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classic Fisher Discriminant Analysis algorithm. As in the previous approaches
the projections are also selected within the Adaboost algorithm. This feature
extraction method proposed is similar to the original FLD, nevertheless the
main drawback for two class problems of the classic technique is solved given
that the final dimensionality is not upper bounded by the number of classes.

Once we introduced the Adaboost-based linear feature extraction techniques,
we have performed a complete experimental study using standard machine learn-
ing databases. We can conclude from the experiments that the technique is specially
suitable for high dimensional data sets, where outperforms the classic discriminant
algorithms. More concretely, we have applied the technique to a gender recognition
problem, achieving the best accuracies even in low dimensional subspaces. Never-
theless the methods proposed can be used in any pattern recognition problem where
features from high dimensional samples must be extracted.

On the other hand we do not restrict ourselves to the classic approach finding
features for face classification only from the internal part of face images. In the
last chapter of this thesis we have proposed a new computational scheme to extract
features from the external part of the face (head, hair, ears), and we show its utility
in face classification problems.

Psychological studies show that external features from face images play an im-
portant role in the human visual system. Automatic Face Classification applications
could take benefit of this fact. Nevertheless, dealing with external features poses a
new problematic, completely different to the internal one. Some of the drawbacks to
be solved when using external features from face images are:

• External features are very diverse between different subjects, and even between
the same subject with different hairstyle. Moreover, there is a huge variation on
the number of pixels (or initial features) covering the external features between
subjects.

• There is a lack of alignment of the pixel values given that no points of reference
can be used (such as eyes on the internal information). The same pixel position
does not mean the same in different subjects.

An important contribution of this thesis is the introduction of a methodology for
extracting external features from face images for classification purposes, solving the
main problems cited above. The main contributions can be summarized as:

• Use a top down algorithm to construct a model of the external features of
face images. We have proposed to adapt a segmentation algorithm, based on
building a set of fragments which can reconstruct new unseen external parts of
faces. Fragments are automatically extracted from training faces, and should
model the space of the external information of faces. The more diverse are the
training samples that are used to build the model, the better reconstruction of
new images is achieved.
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• Apply the model learned to face images, obtaining a representation suitable for
classification. Each fragment can be seen as a base of the external features, in
such a way that each face (only its external part) can be reconstructed as an
additive combination of the base fragments. To reach it, we have used the NMF
algorithm, obtaining the set of weights that encode the external information of
faces images, as a weighted additive combination of the base fragments. The
use of the NMF approach on the constructed fragment-bases has two important
advantages:

– The resulting features are aligned, given that each feature will be the weight
of the fragment on the reconstruction of the external information. More-
over there will be the same number of features for each sample (the number
of selected fragments defines the length of the feature vector).

– The NMF algorithm yields an sparse representation of data, so only a few
fragments are used in a reconstruction. This fact allows to reconstruct each
external region using only a small set of fragments (those really useful),
while the fragments that are not similar to the specific face remain inactive.

Also we have introduced the idea of combining both internal and external informa-
tion for face classification, in order to achieve better accuracies with the joint strategy.
Two basic methods have been proposed:

• Concatenate the feature vectors and apply classic classifiers to the joint feature
set. A previous feature selection/extraction could be followed on the joint fea-
ture set, such as the Adaboost based feature extraction proposed on this work.
This approach has been followed on a face verification problem, achieving inter-
esting results.

• Use the Maximum Entropy principle, specially suitable for classifying data from
different sources.

An experimental study of the use of external features has also been presented. First
we have shown that external features can be useful for classification by themselves.
Then we have evaluated the performance of the joint feature set (both internal and
external features), improving the separate accuracies, specially when occlusions are
present in the images.

5.2 Future Work

This thesis has opened issues in the field of feature extraction for face classification,
that can be subject of further research. Among others, it seems interesting to explore
the following main future research directions:
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5.2.1 Linear Feature Extraction Using Adaboost

In chapter 3, we showed that the Adaboost-based feature extraction is useful on
high dimensional subspaces. The family of methods proposed has been tested on
different databases showing promising results, nevertheless, the general method can
still be extended in several directions.

• The most important extension of the method is its use on multi class problems.
The range of options is large and it can be an interesting future research direction
as there is no obvious guide to see what is best. Here we suggest two options
to perform this extension, although multiple sub paths can be followed in both
cases:

– Directly use the Adaboost.M1 extension for the multi class case. This
option would imply the redefinition of the 1-dimensional projections. In
the two class case we build a projection vector using the class sample and its
nearest neighbor from the opposite class, when more classes are considered,
several options can be followed as “opposite class”: (i) Take the nearest
point class as the “opposite” (ii) Take the class that has the nearest mean
(iii) Randomly select the nearest class. All this possible choices may have
advantages an drawbacks, so an empiric testing as the one made in chapter
3 should be performed in order to choose the proper multi class extension.

– A more straightforward approach could be followed by merging the feature
extraction and classification steps. There exist techniques to extend two
class classifiers to multi class, for example applying a pairwise rule, or
using Error Correcting Codes (ECOC). Another possibility is to apply the
ECOC strategy and then keep a projection matrix build using the principal
projection vectors found in each dichotomy.

• In addition, we have considered to include a diversity measure in the choice
of the projections at each step. Even when there is a random component in
the generation of the 1-D projections, it can be possible to obtain certain re-
dundancy in the projection matrix. As has been shown [96, 80] diverse base
classifiers favor the ensemble accuracies, although it is not clear which diversity
measure is most suitable in our case. We suggest to average the classification
results with some diversity measure considering the results of previous projec-
tions, and select the 1-D projection according to this weighted criterion at each
step. An empiric evaluation of different diversity measures could be performed
to see wether there is an improvement on the classification results.

• In this thesis three different approaches for finding the simple 1-D projections
have been proposed, use random projections, local discriminant projections,
and global Fisher projections. Nevertheless, finding the best way of generating
the single projections at each step is not a solved problem. Actually, there
are multiple choices for this task that could improve the results obtained in this
thesis. In particular, we plan as a feature work introduce the margin criterion in
the 1-D projection generation. In a similar way as done in the LBDP method,
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we could find the projection that given a data point, maximizes the margin
between this point and its opposite class.

5.2.2 Extraction of External Features from Face Images

The model proposed for external feature extraction has reached certain success
modelling both laterals and upper head from face images, nevertheless there are still
several open issues to be solved, moreover, the work performed on this thesis could
be considered quite preliminary, in the sense that many improvements can be done.

• Psychological experiments performed on humans show that the chin region has
great interest in face classification. Moreover, in the specific case of gender
recognition, it seems logic to suppose that adding chin fragments to the model
would improve considerable the accuracies, given the presence of beard in male
images. An extension of the proposed framework to model chin regions would
improve the capabilities of the scheme. This extension requires absolutely differ-
ent choices on the similarity measures used, given that cross correlation lacks of
the precision necessary to locate and align the fragments at their most suitable
position. Moreover, it seems difficult to segment the internal chin region from
the background (neck or clothing). A priory information from the face detector
(such as eye position) could be used for this purpose, followed by a ridges and
valleys detection (characteristics from this region).

• The building blocks construction directly takes fragments from face images. We
believe that a more neutral blocks representation could be obtained if some
kind of filtering were applied to original training images. For example, we
could perform an anisotropic diffusion on the training set before extracting the
fragment, in order to obtain a database less sensible to noise.

• The matching criterion used (normalized cross correlation) could be improved,
in order to make it more robust against local changes in illumination. A weighted
matching measure using both the correlation and some measure of edges (based
on firsts derivatives) would benefit the fragment detection and location [16].

• The fragment selection criterion proposed takes into account only the likelihoods
of appearance of the fragment on the face and non face sets. Nevertheless,
posterior classification stages would benefit from a more diverse fragment set.
For example, fragments of upper-lateral parts of the head are very common
(specially in male images), and have large likelihood to be selected, yielding a
redundant fragment set. Instead of selecting the most probable fragments, we
could select the fragments that maximize some measure of mutual information
within the model.

• On the other hand, in certain problems it could be interesting to introduce
a discriminant criterion on the fragments selection. Instead of selecting the
fragments that best model the face (set C) external features against non faces
(set C), we could use two different sets according to the problem. For example
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in gender recognition, a set C with male and C with female images could be
used to learn the fragments, therefore the final building blocks set would model
the most common external characteristics presents in males and not in females.
This approach could be only useful in two class problems where classes are
known a priori, renouncing to model generic faces.

• Although the method proposed for external feature extraction seems to be suc-
cessful in the experiments performed, the combining issue is still not completely
solved. By now, the direct concatenation of features (internal and external) is
used, as a previous step for the classifier (using NN or a more sophisticated
Maximum Entropy algorithm). We believe that the combination rule could be
improved by:

– Applying and intermediate feature selection/extraction on the joint feature
set, in order to add some discriminant criterion on the final feature set used
by the classifier. Experiments performed on face verification suggest that a
previous linear combination of the internal and external features increases
the classification rates.

– Considering the use of classifier ensembles to combine internal and exter-
nal information, in such a way that the combined feature extraction and
the classification steps could be merged in the same method. The most
straightforward way to use ensembles to combine both feature sets is to
apply the Adaboost algorithm considering each feature independently and
train a simple classifier (decision stumps) at each boosting step on each
one. The Adaboost could be used both for feature combining, selection
([180]) and classification.
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Appendix A

Notation

In general, the following notation has been used: Bold face are used for matrices
and vectors, subscripts indicate number within a vector. In the following table the
most commonly used notation used in this thesis is shown.

D: Dimensionality of the original space
N: Number of vectors
X = [xT

1 ,xT
2 , . . . ,xT

N ]: Data set X D ×N
xi: i-th value of the vector x
K: number of classes
cj : class of the j-th element cj ∈ {1, . . . , L}∀j = 1, . . . N
M: dimensionality of the reduced space
V: Diagonal matrix diag(sqrt(λ1), . . . , sqrt(λD))
S: M ×N extracted features matrix
A: M ×D linear projection matrix
B: D ×M basis matrix
zsame: Nearest neighbor of the same class
zdifferent: Nearest neighbor from another class
SW : Within class scatter matrix
SB : Between class scatter matrix
T: Predefined number of the Adaboost steps
Ct : Classifier at the step t of the Adaboost
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Appendix B

Adaboost convergence proof

In this appendix the proof of the upper bound on the training error of the Adaboost
algorithm enunciated in chapter 2 is reproduced [50]. The proof has been extracted
from [96] changing only some notation aspects, and refers only to the two class case.
The extension to the multi class case can be found in the provided reference.

Theorem Supposing a two class problem {c1, c2}, and denoting ε the ensemble
training error and let εi i = 1, . . . , T be the weighted training errors of the classifiers
in C then:

ε < 2T
T∏

i=1

√
εi(1− εi) (B.1)

Therefore, as εi < 0.5, the ensemble error decreases as the number of classifiers T is
increased.

The following Lemma is needed in the proof:
Lemma Let a ≥ 0 and r ∈ [0, 1]. Then

ar ≥ 1− (1− a)r (B.2)

The proof of this Lemma can be found in [96].
Proof The proof of the theorem is divided in two parts. In part 1, the relationship

between ε and βi calculated within the Adaboost algorithm is shown, and in part 2,
the upper bound is minimized by finding appropriate values of βi. The theorem
becomes proved when the optimal βi is substituted in the bound in part 1.

Proof, Part 1. The weighted error of the first classifier is:

ε1 =
N∑

j=1

w1
j l1j (B.3)

where l1j is the classification result for an object zj in the training set Z using the
classifier C1, l1j = 1 if zj is misclassified and 0 otherwise. The value of β1 is calculated
from ε1. In this first part of the proof the goal is to derive βi as a function of
εi minimizing the ensemble error ε. The weights are adjusted for the second step
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according to:

w2
j =

w1
j β

(1−l1j )

1∑N
k=1 w1

kβ(1−l1k)
(B.4)

denoting the normalizing coefficient at step i by Di

Di =
N∑

k=1

wi
kβ

(1−lik)
i (B.5)

Then the second classifier is trained, and the new error ε2 becomes:

ε2 =
N∑

j=1

w2
j l2j (B.6)

β2 is calculated and the new weights for the third step are

w3
j =

w2
j β

(1−l2j )

2∑N
k=1 w2

kβ
(1−l2k)
2

=
w1

j β
(1−l1j )

1 β
(1−l2j )

2

D1D2
(B.7)

We can generalize the formula for the weights depending on the boosting step as:

wt+1
j = w1

j

t∏

i=1

β
(1−lij)

i

Di
(B.8)

Denote by Z(−) the subset of elements of Z that are misclassified by the ensemble.
The ensemble error, weighted by the initial data weights w1

j is

ε =
∑

zj∈Z(−)

w1
j (B.9)

Given that the wi for the correctly classified samples is 0. If we assign equal initial
weights of 1/N to the objects, ε is the proportion of misclassifications on Z made by
the ensemble.

Since at each step, the sum of the weights in our algorithm equals one, we can
write:

1 =
N∑

j=1

wT+1
j ≥

∑

zj∈Z(−)

wT+1
j =

∑

zj∈Z(−)

w1
j

T∏

i=1

β
(1−lij)

i

Di
(B.10)

For the ensemble to commit an error in the labelling of some zj , the sum of the
weighted votes for the wrong class must be larger than the sum for the correct label.
Recall that lij is 1 if Di misclassifies zj . Then

T∑

i=1

lij ln(
1
βi

) ≥
T∑

i=1

(1− lij) ln(
1
βi

) (B.11)
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Taking exponent on both sides.

T∏

i=1

β
−lij
i ≥

T∏

i=1

β
−(1−lij)

i (B.12)

Multiplying by
∏

i βi on both sides (
∏

i βi > 0),

T∏

i=1

β
1−lij
i ≥

T∏

i=1

βi

T∏

i=1

β
−(1−lij)

i (B.13)

since βi is always positive
T∏

i=1

β
2(1−lij)

i ≥
T∏

i=1

βi (B.14)

Taking the square root on both sides

T∏

i=1

β
(1−lij)

i ≥
T∏

i=1

β
1/2
i (B.15)

And from B.10,

1 ≥
∑

zj∈z(−)

w1
j

T∏

i=1

β
(1−lij)

i

Di
≥ (

∑

zj∈z(−)

w1
j )

T∏

i=1

β
1
2
i

Di
= ε

T∏

i=1

β
1
2
i

Di
(B.16)

Solving for ε,

ε ≤
T∏

i=1

Di

β
1
2
i

(B.17)

Using the Lemma B.2,

Di =
N∑

k=1

wi
kβ

(1−lik)
i ≤

N∑

k=1

wi
k(1− (1− βi)(1− lik))

=
N∑

k=1

wi
k(βi + lik − βil

i
k))

= βi

N∑

k=1

wi
k +

N∑

k=1

wi
klik − βi

N∑

k=1

wi
klik

= βi + εi − βiεi = 1− (1− βi)(1− εi) (B.18)

And combining B.17 and B.18,

ε ≤
T∏

i=1

1− (1− βi)(1− εi)√
βi

(B.19)
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Proof, Part 2. The goal is to find the values of βi that minimize the bound of ε in Eq.
B.19. Denoting the right side of Eq. B.19 by εmax, and taking the first derivative
with respect to βi:

∂εmax

∂βi
=

βi(1− εi)− εi

2βi

√
βi

×K (B.20)

where K is a constant. Setting ∂εmax/∂βi = 0, and solving for βi we obtain:

βi =
εi

1− εi
(B.21)

The second derivative of εmax at βi = εi/1− εi is

∂2εmax

∂2βi
= (1− εi)

( εi

1− εi

)3/2

×K ≥ 0 (B.22)

And it can be shown that the constant is positive at βi = εi/(1 − εi), i = 1, . . . , T .
Therefore the solution for βi is a maximum of εmax. Finally the theorem is proven
by substituting Eq.B.21 in B.19

ε < 2T
T∏

i=1

√
εi(1− εi) (B.23)

This theorem proves that the Adaboost weighted training error decreases as new
boosting steps are added. Nevertheless, it has been shown that Adaboost achieves
very good generalization errors. Testing error usually keeps decreasing as new weak
classifiers are added, even when the training error has been reduced to 0 [145].



Appendix C

Boosted Discriminant Projections:
maximization criterion

In this appendix the obtention of the solution of find the optimal projection pi

on each step of the Local Boosted Discriminant Projections (LBDP) algorithm from
chapter 3 is explained 1. Given the data points v and w laying on the plane γ, we
look for the direction pi that maximizes:

max
{(

pT
i w

)2 − (
pT

i v
)2

}
. (C.1)

The function has four possible solutions, that have the form:

p1 = ±
√

1− (p2)2,

p2 =

√√√√√1
2


1± w2

2 − v2
2 − w2

1 + v2
1√

4 (w1w2 − v1v2)
2 + (w2

2 − v2
2 − w2

1 + v2
1)2


. (C.2)

The solution can be found taking the p = [p1, p2] that maximizes C.1

C.1 Proof

The criterion function to maximize is:

J = max
{(

pT
i w

)2 − (
pT

i v
)2

}
. (C.3)

subject to the restriction:

‖p‖ = 1 (C.4)

1Author would like to thank Dra. Ludmila I. Kuncheva her help in building this proof.

135



136BOOSTED DISCRIMINANT PROJECTIONS: MAXIMIZATION CRITERION

developing the criterion:

J = max
{(

pT
i w

)2 − (
pT

i v
)2

}

= (p1w1 + p2w2)2 − (p1v1 + p2v2)2

= p2
1w

2
1 + 2p1p2w1w2 + p2

2w
2
2 − p2

1v
2
1 − 2p1p2v1v2 − p2

2v
2
2

= p2
1(w

2
1 − v2

2) + 2p1p2(w1w2 − v1v2) + p2
2(w

2
2 − v2

2)

considering p2
1 + p2

2 = 1 ⇒ p1 =
√

1− p2
2, then

J = (1− p2
2)(w

2
1 − v2

1) + 2p2

√
1− p2

2(w1w2 − v1v2) + p2
2(w

2
2 − v2

2)

= (w2
1 − v2

1) + p2
2(w

2
2 + v2

1 − w2
1 − v2

2) + 2p2

√
1− p2

2(w1w2 − v1v2)

Differentiating the criterion J :

∂J
∂p2

= 2p2(w2
2 + v2

1 − v2
2 − w2

1) + 2
√

1− p2
2(w1w2 − v1v2) + 2p2

2(w1w2 − v1v2)
−2p2

2
√

1− p2
2

=
[
2p2

√
1− p2

2(w
2
2 + v2

1 − v2
2 − w2

1) + 2(w1w2 − v1v2)− 4p2
2(w1w2 − v1v2)

]
/
√

1− p2
2

And making ∂J
∂p2

= 0 we obtain:

p2

√
1− p2

2(w
2
2 + v2

1 − v2
2 − w2

1) = 2p2
2(w1w2 − v1v2)− (w1w2 − v1v2)

= (2p2
2 − 1)(w1w2 − v1v2)

Taking the square of each side:

p2
2(1− p2

2)(w
2
2 + v2

1 − v2
2 − w2

1)
2 = (2p2

2 − 1)2(w1w2 − v1v2)2

And renaming (w2
2 + v2

1 − v2
2 − w2

1)
2 = A, (w1w2 − v1v2)2 = B and t = p2

2:

t(1− t)A = (2t− 1)2B
At−At2 − 4Bt2 + 4Bt−B = 0

(4B + A)t2 − (4B + A)t + B = 0

And solving the equation we obtain:
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t1,2 =
(4B + A)±

√
(4B + A)2 − 4B(4B + A)
2(4B + A)

(C.5)

t1,2 =
(4B + A)±

√
(4B + A)A

2(4B + A)
(C.6)

t1,2 =
1
2

(
1±

√
A

(4B + A)

)
(C.7)

(C.8)

And recovering p2 = ±√t, A, and B we obtain:

p2 = ±

√√√√1
2

(
1±

√
A

(4B + A)

)
(C.9)

p2 =

√√√√1
2

(
1± w2

2 + v2
1 − v2

2 − w2
1√

(4(w1w2 − v1v2)2 + (w2
2 + v2

1 − v2
2 − w2

1)2)

)
(C.10)

(C.11)
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Appendix D

Databases

D.1 Face Databases

In this thesis different databases have been used to test the proposed methods,
and compare them with other published works. The main part of the experiments has
been performed on face databases. Nevertheless, the validation of the Adaboost-based
feature extraction method required the use of general machine learning databases.

The main face databases used throughout the thesis are:

• AR Face database. Database composed of 26 samples from 126 distinct sub-
jects (70 men and 56 women) [100]. Images were acquired in two different
sessions in a 2-week interval, and 13 different acquisition conditions were im-
posed on each session, changing the illumination and the occlusions suffered by
the subject.

• FERET database. The FERET database has been acquired under a program
sponsored by the United States Department of Defense through the Defense
Advanced Products Agency (DARPA). It contains a total of 14051 facial images
collected from 994 subjects at various angles, over the course of 15 sessions
between 1993 and 1996.

• FRGC. A subset of this database has been used in some of the experiments
in chapter 4 dealing with external feature extraction. The database has been
acquired to be the base experiment for: The IEEE Workshop on the Face Recog-
nition Grand Challenge Experiments. The database consists of still high quality
36842 face images, and 4000 3D images.

• XM2VTS. Acquired in the University of Surrey, UK. It contains four recordings
of 295 subjects taken over a period of four months [105].

• CMU dataset. Collected by the Face Detection Project in the Carnegie Mel-
lon, is one of the standard benchmark databases for evaluating face detection
algorithms [136].
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• Faces from other databases have been collected to learn the generic PCA pro-
jection in the face classification application from chapter 1. These faces have
been extracted from:

– The ORL face database, acquired at the AT&T Laboratories, and consist-
ing of ten images from 40 distinct subjects. Images were taken at different
times, varying the lighting, facial expressions (open and closed eyes, smiling
and serious), and facial details (glasses and no glasses). Images were taken
against a dark homogeneous background with the subjects in an upright,
frontal position.

– CMU Pose Illumination Expression (PIE) database, acquired in the Carnegie
Mellon University. It contains a total of 41,368 images taken from 68 indi-
viduals [153]. The subjects were imaged in the CMU 3D Room using a set
of 13 synchronized high-quality color cameras and 21 flashes. The resulting
images are 640x480 in size, with 24-bit color resolution. Each subject was
recorded under the following conditions: expression (neutral face, smile,
eyes closed), illumination (no flashes, one flash firing, room lights on/off),
and talking.

– The University of Oulu Physics-Based Face Database, consisting of 16
frontal views from 125 faces, acquired in different camera calibration and
illumination conditions (Horizon, Incandescent, Fluorescent and Daylight
illuminant).

– The Yale Face Database, containing 165 grayscale images from 15 individ-
uals. There are 11 images per subject, one per different facial expression or
configuration: center-light, with glasses, happy, left-light, with no glasses,
normal, right-light, sad, sleepy, surprised, and wink.

In addition, along this work we have generated our own face databases using a
video grabber connected to a TV signal to train our face detector.

D.1.1 AR Face Database

This face database was created by Aleix Martinez and Robert Benavente in the
Computer Vision Center (CVC) at the Universitat Autonoma de Barcelona. It con-
tains over 4,000 color images corresponding to 126 people’s faces (70 men and 56
women). The database is organized as follows:

• Faces were acquired in controlled conditions in two different sessions separated
by 2 weeks.

• For each subject and each session 13 different images were acquired in different
conditions: one frontal image, 3 images with facial expressions (smiling, anger
and screaming), 3 images with different extra light conditions (left light on,
right light on, and both lights on), 3 images with the subject wearing sunglasses
(simple sunglasses, sunglasses with extra left light illumination, and sunglasses
with extra right illumination), and 3 images wearing scarf (simple frontal scarf,
wearing scarf and extra left illumination, and scarf and extra right illumination).
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• No restrictions were imposed on wear, clothing, make-up, hair style and use of
glasses.

(a) Frontal image

(d) Gesture images

(c) Illuminated images

(d) Sunglass occlusions

(e) Scarf occlusions

Figure D.1: Example of the 13 images taken from the same subject during the first
session extracted from the AR Face Database.
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(a) Frontal image

(d) Gesture images

(c) Illuminated images

(d) Sunglass occlusions

(e) Scarf occlusions

Figure D.2: Example of the 13 images taken from the same subject during the
second session extracted from the AR Face Database. As it can be observed hair
style changes from one session to other.

Figures D.1-D.2 show an example of a subject from the AR Face database in both
sessions. The AR Face is one of the best databases to benchmark algorithms claimed
to be robust to occlusions and changes in illumination, and also, given that there
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is a delay of 14 days between each session, there is certain diversity in the hairstyle
between samples of the same subject.

Figure D.3: Examples of male images from the AR Face database inscribed in an
ellipse used in internal feature face classification.
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Figure D.4: Examples of female images from the AR Face database inscribed in an
ellipse used in internal feature face classification.

In the experiments performed using the internal features, usually a black ellipse has
been added to the faces in order to mitigate the background biasing effects. Figures
D.3-D.4 show examples of male and female images used for this purpose in this thesis.
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D.1.2 FERET Database

The FERET database has been acquired under a program sponsored by the United
States Department of Defense in the Department of Defense’s Counterdrug Technol-
ogy Development Program through the Defense Advanced Products Agency (DARPA)
[127, 118, 134, 126], from 1993 to 1997. It was designed to develop automatic face
recognition capabilities that could be employed to assist security, intelligence and
law enforcement personnel in the performance of their duties. The acquisition was
directed by Dr. Harry Wechsler at George Mason University.

It contains a total of 14051 facial images collected from 994 subjects at various
angles, in 15 sessions, an stored as 8-bit grey images. In addition to the database,
a protocol for evaluating face classification methods in frontal an different pose face
sets is provided. Some of the samples from the FERET database were used on the
Face Recognition Vendor Test 2000. We would like to thank to the NIST technical
agent the chance to receive a copy of the FERET database for future research in our
group 1. Figure D.5 shows some samples of the FERET database.

D.1.3 Face Recognition Grand Challenge Database

The FRGC database is a large corpus of data and a set of challenge problems to
be used as a benchmark for the special IEEE Workshop on Face Recognition Grand
Challenge Experiments, that takes place in conjunction with the IEEE Conference
in Computer Vision and Pattern Recognition 2005. The database consists of three-
dimensional (3D) images, and high resolution controlled and uncontrolled still images.
The data is divided into training and validation partitions, with the standard still-
image training partition consisting of 12,800 images, and the validation partition
consisting of 16,028 controlled still images, 8,014 uncontrolled stills, and 4,007 3D
scans. The FRGC corpus supports a broad range of research in face recognition that
includes developing high resolution still and 3D algorithms, comparison of human
and machine performance, and also allows a XML based framework to design and
reproduce new experiments on face recognition.

Figures D.6-D.7 show some samples extracted from the FRGC database. Notice
that images are acquired with different global background illumination. In addition,
there is a huge ethnicity variation between the database subjects. Images have been
rotated in order to center and align the center pixels of the eyes.

D.1.4 XM2VTS

The XM2VTSDB set is a multi-modal face database consisting of still images,
audio and video recordings. The XM2VTSDB contains four images of 295 volunteers
taken over a period of four months. Each recording contains a speaking head shot and
a rotating head shot. The database has been captured at the Centre for Vision, Speech
and Signal Processing, University of Surrey. Figures D.8-D.9 show some examples of
male and female subjects from the XM2VTS database.

1For all documents and papers that report on research that uses the Color FERET database, the
use of the Color FERET database will be acknowledged as follows: “Portions of the research in this
paper use the Color FERET database of facial images collected under the FERET program”
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During each session frontal faces were acquired, and also a sequence showing the
subject rotating the head from left to right, up to down, and returning to the center
has been captured. Also a high-precision 3D model of the subjects head was built
using an active stereo system provided by the Turing Institute.

The XM2VTS database defines also a standard protocol [105], called Lausane
protocol, to report experiments dealing with face authentication. The database is
divided in training, testing and evaluation sets. The exact composition of these sets
is publicly known.

D.1.5 CMU dataset

This data set is an standard database to benchmark face detection algorithms
[139]. Images have been collected at the Carnegie Mellon University (by Henry A.
Rowley, Shumeet Baluja, and Takeo Kanade) [138, 137, 148, 149] and MIT (by Kah-
Kay Sung and Tomaso Poggio). There are 130 images with 507 frontal faces (the
location of the faces is provided with the database). Some examples of images from
the CMU database are shown in Figure D.10.

D.2 MNIST

The MNIST database [84, 85] consists of 70000 images of handwritten digits,
divided in a training set of 60000 examples and a testing set of 10000 examples. The
digit images are part of a larger set available from NIST. The samples are black
and white images size-normalized to 28 × 28 pixels. The database is suitable for
researchers who want to test learning techniques and pattern recognition methods
on real-world data while spending minimal efforts on preprocessing and formatting.
Figures D.11-D.12 show some examples of the database.

D.3 UCI Repository

The UCI machine learning repository [13] is a set of databases compiled by Depart-
ment of Information and Computer Sciences of the University of California, Irvine.
Most of the databases of the repository have been donated by machine learning re-
searchers for empirical analysis of new propsed algorithms. In this thesis the following
databases have been used:

• BUPA Liver disorder: The database has been donated by Richard S. Forsyth
from BUPA Medical Research Ltd. It consist of 345 instances with 6 numeric
attributes and a class label (1 or 2).

• Wisconsin diagnostic breast cancer: This breast cancer database was obtained
from the University of Wisconsin Hospitals, Madison from Dr. William H.
Wolberg [99, 185, 115, 98]. It has 569 samples with 30 features and a class
label.

• Wisconsin breast cancer obtained from the same university. It consist of 666
samples with 9 features.
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• Cleveland heart disease: This database contains data concerning heart-disease
diagnosis donated from four locations by: Andras Janosi, from Hungarian In-
stitute of Cardiology, Budapest, William Steinbrunn from University Hospital,
Zurich, Switzerland, Matthias Pfisterer, University Hospital, Basel, Switzer-
land, and Robert Detrano V.A. Medical Center, Long Beach and Cleveland
Clinic Foundation. The original database consists of 297 samples with 76 at-
tributes, although only 13 of them are used for ML experiments (also the class
label is provided).

• German database: It consists of 1000 samples with 24 features, with credit
data provided by Professor Dr.Hans Hofmann from the Hamburg University.
Symbolic attributes have been converted to numeric ones previously by the
Strathclyde University.

• Ionosphere database: This dataset was donated by Vince Sigillito [152] from
the Applied Physics Laboratory, Johns Hopkins University. It consists of 351
samples with 34 attributes and the class label.

• Sonar signals database: This database was used by Gorman and Sejnowski in
their study of the classification of sonar signals using a neural network [56]. It
has 208 samples with 60 attributes and the class label.

• SPECTF heart: This database has been donated by Krzysztof J. Cios, Lukasz A.
Kurgan from the University of Colorado at Denver [81], and describes diagnosis
of cardiac Single Proton Emission Computed Tomography (SPECT) images. It
consist of 349 samples with 44 attributes with the class label.
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Figure D.5: Some thumbnails from the central part of frontal face examples from
the FERET Database. Non uniform backgrounds and different global illumination
conditions were present in the database.
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Figure D.6: Examples of male images from the FRGC face database.
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Figure D.7: Examples of female images from the FRGC face database.
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Figure D.8: Examples of male images from the XM2VTS face database.
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Figure D.9: Examples of female images from the XM2VTS face database.
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Figure D.10: Examples of images for face detection from the CMU database.
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Figure D.11: Examples of some digits (0-4) from the MNIST database.
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Figure D.12: Examples of some digits (5-9) from the MNIST database.
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Appendix E

Publications

The basis and an overview of classic feature extraction algorithms have been pre-
viously analysed in my master’s thesis:

• David Masip and Jordi Vitrià. Dimensionality Reduction Techniques Applied to
Nearest Neighbor Classification. CVC Tech.Rep. #072. Centre de Visó per Com-
putador. July 2003.

The first experimental applications of classic feature extraction techniques to face
classification were published in:

• David Masip, Jordi Vitrià. An Experimental Comparision of Dimensionality Re-
duction for Face Verification Methods, 1st Iberian Conference on Pattern Recog-
nition and Image Analysis (published in Lecture Notes in Computer Science 2652,
F.J.Perales, A.Campilho, N.Prez, A.Sanfeliu (Eds.), Pattern Recognition and Image
Analysis, June 2003, pp. 530-537). Springer-Verlag Berlin Heidelberg.

where different feature extraction (Linear and Non linear) were used in a face verifi-
cation problem on natural and uncontrolled environments. The techniques were also
applied to the field of gender recognition in:

• D.Masip, J.Vitrià. On the Feature Extraction for Gender Recognition Using the
Nearest Neighbor Approach. International Journal of Intelligent Systems, vol. 20,
n.5, pp. 561-576. 2005.

• D. Masip, J. Vitrià, On the Nearest Neighbor Approach for Gender Recognition.
Catalan Conference on Artificial Intelligence, 2003.

• D.Masip, J.Vitrià. On feature extraction for gender recognition using the nearest
neighbor approach, in I.Aguiló, Ll.Valverde, M.T.Escrig (eds), Artificial Intelligence
Research and Development, IOS Press, Amsterdam, 2003, pp. 178-188.

The modification on the Adaboost algorithm from chapter 2 where a feature ex-
traction step has been introduced inside the boosting has been published in:
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• D.Masip, J.Vitrià. Object recognition using boosted adaptive features. Accepted
for oral presentation at ECOVISION: Early Cognitive Vision Workshop, Sabhal Mor
Ostaig, Scotland, 28.5. - 1.6.2004.

• D.Masip, J.Vitrià. Adaptive Feature Extraction for Adaboost Learning in Visual
Pattern Recognition. Submitted to Pattern Recognition Letters.

The online face detection and Classification Application introduced on chapter 1
appears in:

• D.Masip, M.Bressan, J.Vitrià. Classifier combination applied to real time face de-
tection and classification. AVR2004, Barcelona, February 3-4, 2004. Also in A.Grau,
V.Puig, ”Recerca en Automàtica, Visió i Robòtica”. Any 2004, pp. 345-353, Ed.
UPC, ISBN 84-7653-844-8, 2004.

• D.Masip, J.Vitrià. Real Time Face Detection and Verification for Uncontrolled Envi-
ronments. Second COST 275 Workshop Biometrics on the Internet: Fundamentals,
Advances and Applications, pp 55-58 . Vigo (Spain), March 25-26, 2004.

A comparison of the results of the face detection part using the Bayesian approach
and the adaptive boosting for the face detection is also published in:

• D.Masip, M.Bressan, J.Vitrià. Feature extraction for real time face detection and
classification. Accepted for publication in EURASIP Journal on Applied Signal
Processing.
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a description of the global family of methods for feature extraction using Adaboost,
and experimental results using different standard pattern recognition databases and
classifiers. This work is published in:

• David Masip, Ludmila I. Kuncheva and Jordi Vitrià, Ensemble-based method for
linear feature extraction for two class problems, Accepted for publication in Pattern
Analysis and Applications journal.

Finally, the use of external features for face classification as stated on chapter 4,
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and External Features. Submitted to the tenth IEEE International Conference on
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