Chapter 5

The Operational Framework

This chapter describes an operational model of the Cooperative
Problem-Solving process for Multi-Agent Systems, and which is the
role played by the Knowledge-Modelling Framework within this pro-
cess.

5.1 Introduction

The Operational Framework describes a mapping from the concepts in the
Knowledge-Modelling Framework to concepts from Multi-Agent Systems and
Cooperative Problem Solving. Specifically, the Operational Framework describes
how a task-configuration —obtained by the Knowledge Configuration process—
can be operationalized by forming a customized team of problem solving agents
on-demand, according to stated problem requirements. Moreover, the Opera-
tional Framework describes also the communication and the coordination mecha-
nisms required by agents to carry over the Cooperative Problem-Solving process
according to a task-configuration.

The Operational Framework extends the Knowledge Modelling Framework
to develop a full-fledged Agent Capability Description Language (ACDL). The
ORCAS ACDL is used in open Multi-Agent Systems by requesters willing to
solve a problem, providers of problem solving capabilities, and middle agents
responsible for mediating between them (e.g. brokers and matchmakers).

1. Requesters use the ACDL to put a query @ describing the type of problem
to be solved, characterized by a task (the application task Tp), a collection
of domain models characterizing the application domain (Qg4y,), and other
requirements of the problem (preconditions and postconditions).

2. Providers use the ACDL to describe the tasks they can solved and the
capabilities they are equipped with.

3. Middle agents are used in open MAS to mediate between requesters and
providers. Middle agents are responsible for locating appropriate providers
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for a given request and facilitating the interaction between requester and
providers. For instance, a broker frees the requester of knowing the details
required to invoke and interact with each specific provider, so the requester
only have to know how to interact with the middle agent and not with each
potential provider.

In our approach to the Cooperative Problem Solving (CPS) process and
also in our particular implementation of an open agent platform supporting
the CPS process, the ACDL is used for the following activities: (1) in the
automatic design of agent teams at the knowledge level, as a configuration of
components (tasks, agent capabilities and domain models) satisfying stated
problem requirements; (2) to guide the team formation process according to the
configuration of components at the knowledge-level; and (3) to coordinate the
behavior of team members during the teamwork.

This chapter is divided as follows: we start with an overview of the Coopera-
tive Problem-Solving (CPS) process in §5.2; the extensions of the ORCAS KMF
to become an Agent Capability Description Language (ACDL) are described
in §5.4; the main concepts of the ORCAS team model are defined in §5.3; the
Team Formation process is described in §5.5; the ORCAS model of Teamwork is
presented next, in §5.6; and the Chapter ends with a brief discussion of some
extensions of the CPS process in §5.7 .

5.2 The Cooperative Problem-Solving process

The view on Multi-Agent Systems as decoupled networks of autonomous entities
is usually associated to a distributed model of expertise: A MAS is regarded as
a collection of specialized agents with complementary skills.

Most of the research done in the field of Cooperative Problem Solving (CPS)
(e.g. the models based in the Contract Net protocol [Smith, 1940] or derived
from the Generalized Global Planning approach [Durfee, 1988]) falls into one
or more or the stages of a general model of the Cooperative Problem-Solving
process as presented in [Wooldridge and Jennings, 1994], which consists of four
stages: recognition, team formation, planning and execution.

1. Recognition: the CPS begins when some agent recognizes the potential for
cooperative action. This recognition may come about because an agent has
a goal that it does not have either the ability or the resources to achieve
on its own, or else because the agent prefers a cooperative solution in
expectation of getting some benefit.

2. Team formation: during this stage, the agent that recognized the potential
for the cooperative action at stage (1) requests assistance. If this stage is
successful, it will end with a group of agents having some kind of nominal
commitment to collective action.
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3. Plan negotiation: during this stage, the agents proceed to negotiate a joint
plan which they believe will achieve the desired goal.

4. Execution (Team action): During this stage, the newly agreed plan of joint
action is executed by the agents, which maintain a close-knit relationship
throughout. This relationship is defined by a convention, which every
agent follows.

Actually, these four stages are iterative, in that if one stage fails, agents may
return to previous stages. Although the proposers of this model believe that
most instances of CPS exhibit these stages in some form (either explicitly or
implicitly), they stressed that the model is idealized. In other words, there are
cases that the model cannot account for [Wooldridge and Jennings, 1999].

In concordance with the proposers of this model, we think it is well suited
for a number of situations, but is not adequate for others (the reader is re-
ferred [Wooldridge and Jennings, 1994, Wooldridge and Jennings, 1999] to for a
deeper understanding of the model. Since team formation is not guided by a
preplan to achieve the overall goal, but is just a commitment to joint action,
then neither the agents joining a team (committing to carry on joint action) are
guaranteed to play one role in the team once a plan was decided at the subse-
quent planning stage, nor the resulting team assures that a global plan can be
found.

This uncertainty may be not a problem if the MAS is composed of quite
homogeneous problem solving agents with a common range of skills. In such
homogeneous (in term of functionalities) agent societies, the very same agent
could potentially occupy many different positions within a team, and thus
the possibility of forming a successful team grows up. This approach has
been adopted mostly when cooperation is defined [Norman, 1994] as acting
with others for a common purpose and a common benefit where the pur-
pose should be motivated by an intention to act together —a joint intention
[Cohen and Levesque, 1990, Levesque, 1990, Cohen and Levesque, 1991], and
resolved by a commitment to joint activity [Bratman, 1992, Jennings, 1993].

This class of cooperation relying on motivational attitudes is sometimes
called collaboration [Wilsker, 1996, Grosz and Kraus, 1996] to differentiate it
from other classes of cooperation. It is not surprising then that implemented
frameworks inspired by a collaborative approach to cooperation are usually ap-
plied in scenarios where the team-oriented agents are homogeneous and their
roles typically represent either authority relations, such as military rank, or
high-level capability descriptions [Tambe, 1997, Pynadath et al., 1999].

Moreover, if the MAS is composed of specialized agents equipped with very
specific capabilities, the following bizarre situations may happen: first, agents
that have joined the team may not be needed after the plan negotiation have
finished; second, team roles may remain unassigned after the plan negotiation;
and third, the plan can remain incomplete. In order to prevent these types of
failure (specially the second and third cases, which suppose the team is not able
to achieve the global goal at all), specialized agents should be able to reason
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about goals and plans in order to acquire team goals, to identify the roles that
contribute to the fulfillment of a team goal, and to decide whether to commit
to a particular team role. Team formation and also plan negotiation without a
initial guide on the types of tasks to be solved and the capabilities required, can
provoke an exponential grow in the number of teams and plans to be considered,
and a blow-out in communication overload as the size of the population grows
up or the complexity of the team goal increases.

Other researchers have explored the utility of using an initial plan to guide the
team formation process. The SharedPlans theory [Grosz and Kraus, 1996] and
the frameworks based on it, e.g. [Giampapa and Sycara, 2002], have emphasized
the need for a common, high-level team model that allows agents to understand
all requirements for plans that might achieve a team goal. Team plans are used
by agents to acquire goals, to identify roles and to relate individual goals to team
goals. An initiator of a cooperative activity can use an initial team plan to know
the functionalities or competencies required to achieve the overall goals.

An initial plan allows the initiator of the team formation process to know
which are the subgoals and (optionally) the actions or capabilities required to
achieve each subgoal. Therefore, the initiator can use the initial plan to guide
the team formation process [Tidhar et al., 1996]. An initial team plan allows
the initiator of the cooperative activity to contact only with the agents holding
the required capabilities, thus increasing the possibility of success, and reducing
the complexity of both the team formation and the plan negotiation processes.

Another issue concerning the CPS process and related with the idea of guided
team formation is that of problem requirements: how to design a team according
to the requirements of a specific problem, rather than selecting a plan according
to a fixed task. The CPS model in [Wooldridge and Jennings, 1999] does not ex-
plicitly address the utility of constraining the competence or behavior of a team
to satisfy stated problem requirements or comply to user preferences. Recent ini-
tiatives in MAS planning have introduced case-based [Munoz-Avila et al., 1999]
and conversational planners to build the initial plans to be adopted by a team
[Giampapa and Sycara, 2001].

Moreover, this model of the CPS process devises an internal perspective on
agents, in which the agent’s internal state is used as the basis for evaluation.
Concerning this issue, though we recognize there are well founded reasons to
adopt an internal perspective, we think a external view has also some advantages
and, in particular, it is more appropriate for open systems because it avoids
imposing a model of the agent architecture to external agent developers. We
are developing our model under this assumption, and thus we try to impose
minimal requirements on the internals of agents willing to participate in a CPS
process beyond the use of the ORCAS Knowledge Modelling Ontology. These
requirements consist basically of a shared communication language and a set
of interaction protocols enabling team action. Summarizing, we avoid imposing
neither a specific agent architecture, nor a model of cooperation based on mental
attitudes. Instead, an external view centered on the observable patterns of agent
communication and commitment is adopted here.
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Summarizing, there are some issues related to Cooperative MAS not covered
by the general model of the CPS process in [Wooldridge and Jennings, 1999]: (1)
the need for an initial plan to guide the team formation process; (2) the consider-
ation of the user preferences and specific problem requirements constraining the
composition of teams from a set of possible to a set of allowed teams; and (3) the
use of a external view centered on observable events like the illocutionary acts
rather than a internal view imposing a particular agent model or architecture.

As a result of our work upon these issues we have conceived a new model of
the CPS process that is based on the use of a Knowledge-Modelling Framework to
describe a MAS at an abstract-level, and introduces a Knowledge-Configuration
process as a mechanism to design the behavior of an agent team by building an
initial team “plan” satisfying stated problem requirements. Such initial plans
can be used to drive the team formation process and to coordinate agent behavior
during the teamwork.

Now we are going to carry out a more detailed review of the main activi-
ties involved in the CPS process —team formation, planning and execution—
in order to compare our approach to the planning based approaches that are
commonly used in cooperative MAS.

Team formation is defined as the process of selecting a group
of agents that have complimentary skills to achieve a given goal
[Tidhar et al., 1996].  Typically, team formation has been divided in two
activities: selecting a group of agents that will attempt to achieve the
team goal, and selecting a combination of actions that agents must
perform to achieve the goal [Levesque, 1990, Cohen and Levesque, 1991,
Rao and Georgeff, 1995, Grosz and Kraus, 1996, Tambe, 1997], also approached
as a plan negotiation process [Wooldridge and Jennings, 1999]. This
combination of actions is typically described as a sequence of ac-
tions or a plan [Georgeff and Lansky, 1987, Bratman, 1988, Rao et al., 1992,
Grosz and Kraus, 1993, Sonenberg et al., 1994, Grosz et al., 1999, Tate, 1998].
In many approaches there are partial plans hold by different agents that must
negotiate a given plan until consensus is reached about an agreed global plan
[Ephrati and Rosenschein, 1996]. In other approaches the plan is built by merg-
ing individual plans —like the approaches based on the SharedPlans theory,
for instance in the RETSINA teamwork model [Giampapa and Sycara, 2002],
— until all the tasks required by the global plan are assigned. While some
approaches start the selection of team members without an initial plan, other
approaches [Tidhar et al., 1996, Giampapa and Sycara, 2001] use it to drive the
team formation process, even when the planning process is distributed among
agents [Clement and Durfee, 1999].

One of the preferred approaches to represent plans in MAS is based on us-
ing some kind of hierarchical plans, like Hierarchical Task Networks (HTN)
[Erol et al., 1994, Erol, 1995]. The way in which an HTN structure decomposes
a task into subtasks is similar to the way tasks are decomposed by a task-
decomposer in the ORCAS KMF. Nevertheless, ORCAS configuration structures
are not oriented towards planning algorithms; instead, ORCAS structures are
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designed to maximize the reuse of agent capabilities by decoupling the descrip-
tion of capabilities from the application domain through the use of independent
ontologies to describe them both. In spite of these differences, ORCAS configu-
ration structures are used as recipes about the tasks (or goals) to achieve and
the capabilities (or actions) required to achieve them, and thus they play the
same role than a plan.

In ORCAS there are three types of structure concerning planning: task-
decomposition schemas (subtasks introduced by a task-decomposer and ordered
by the operational description); configuration schemas resulting of binding a
task-decomposition schema to a collection of capabilities (one capability is bound
to each subtask); and task-configurations, which are composed of interrelated
configuration schemas (see §4.4.1).

An approach to multi-agent planning is that of obtaining a global plan by
merging individual, (usually partial) plans. In ORCAS the individual plans are
partial (agents have a local view), and are represented by task-decomposers
and configuration-schemas, which are two ways of representing how to achieve a
task by decomposing it into subtasks. A configuration-schema is a more specific
representation than a task-decomposer, since the former includes the capabilities
required to solve each task, while a task-decomposer informs only about the
subtasks of a decomposition, but not about the capabilities required to achieve
them.

The role of a global team plan in ORCAS is played by a task-configuration,
since a task-configuration is used as a recipe about the actions (the capabilities)
required from team members to achieve the goals of the team (represented in
ORCAS by an application task plus some extra problem requirements).

Task-configurations obtained at the Knowledge Configuration process are
used to guide the team formation process and to coordinate team members dur-
ing the Teamwork process: an agent willing to start a cooperative activity uses
such an initial plan to know which are the tasks to be solved, which are the
capabilities to apply, and which is the knowledge to be used by the selected
capabilities. The agent responsible for coordinating the team formation process
can use the information provided by a task-configuration to select the agents
that are potential candidates to join the team (though a yellow pages service):
only agents with the required capabilities are considered, thus the number of
possible teams to be considered is reduced and the communication requirements
decrease. In addition, the Knowledge-Configuration process ensures that a task-
configuration satisfies stated problem requirements, therefore the teams that are
formed complying to a task-configuration are guaranteed to satisfy the require-
ments of the problem too.

Teamwork is the process carried out by a team of agents in order to achieve a
global team goal. In ORCAS the team goal is initially represented by the applica-
tion task and subsequently refined by a task-configuration. A task-configuration
contains a specification of tasks and subtasks to be achieved (a hierarchical task
decomposition structure), the competence required to solve those tasks (the ca-
pabilities), and the specification of the application domain (the domain-models).
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The global behavior of a team during the Teamwork process is guided by the
task-configuration, since team members commit to solve the application task by
applying the capabilities and domain-models specified in the task-configuration.

To move from the knowledge level to the operational level, we have to match
concepts from a task-configuration to agent concepts. Our proposal is to define
a one-to-one mapping between tasks in a task-configuration and roles played
within a team, that we call team-roles. There is one team-role for each task,
where each team-role contains the information an agent needs to solve a task in
the context of a team. During the execution stage of the Cooperative Problem-
Solving process, team members have to cooperate with other team mates in order
to achieve the overall goal. Specifically, we are interested here in a hierarchical,
top-down style of cooperation, since it fits well into the hierarchical structure
of a task-configuration. This style of cooperation is based on a task-delegation
mechanism.

A motivation for separating the Knowledge Configuration process from the
team formation process is to exploit the fact that the specification of agent
capabilities remains stable throughout long periods of time, whereas there are
dynamic aspects of the system or the environment that change very quickly
and are not deterministic (i.e. workload, network traffic, system failures). As a
consequence, the Knowledge Configuration process aims to explore the utility of
a configuration of capabilities in terms of their static and abstract descriptions,
keeping such aspects isolated from the the dynamic and operational aspects
involved in the CPS process (e.g. the workload of a problem solving agent),
which are managed during the Team Formation and Teamwork processes.
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Figure 5.1: The ORCAS model of the Cooperative Problem-Solving process

Figure 5.1 shows the main elements of the Cooperative Problem Solving pro-
cess and the main relations between them. The CPS process starts with a Prob-
lem Specification process in which the problem requirements and the problem
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data are supplied. The Knowledge Configuration process takes the problem re-
quirements and a library of components as input and builds a task-configuration.
The Team Formation process uses a task-configuration to form a new team
of agents satisfying the conditions established by that task-configuration (i.e.
agents commit to the conditions enforced on the tasks allocated to it, its team
roles). The outcome of the Team Formation process is a configuration of the
team expressed as a collection of interrelated team roles to be played by the
selected team members, and a group of specific agents assigned to these roles.
Finally, during the Teamwork process the new team solves the problem at hand
according to the task-configuration obtained at the Knowledge Configuration
process and a specification of the input data provided at the Problem Specifica-
tion process.

Although the CPS process as showed in Figure 5.1 seems to follow a sequen-
tial control flow, this model is just a simplification that is intended to highlight
the cornerstones of the model. Once the different subprocesses of the CPS pro-
cess have been explained we are in a better position to extend the model in order
to deal with more complex situations. Actually, we have added mechanisms for
interleaving all the stages of the Cooperative Problem-Solving process. This
feature will allow a team to be reconfigured in order to deal with dynamic con-
ditions and events encountered during the different stages of the CPS process.
Some extensions of this model are described in §
refsec:extensions.

5.3 Team model

The ORCAS team model is defined upon concepts from the Knowledge Mod-
elling Framework, specifically, ORCAS teams are defined according to an ab-
stract model of teamwork based on the structure and the meaning of a task-
configuration.

A team is a group of agents that commits to solve a problem in a cooperative
way, according to a task-configuration. A team is composed of agents that have
complimentary capabilities to achieve a global goal and are assigned to different
roles within the team. A team has the goal of solving a specific problem by
using a task-configuration as a recipe about the task to be solved (specifying the
global goal), a decomposition of the main task into subtasks, the capabilities to
be applied, and the domain knowledge required.

As explained in §4.4, the result of the Knowledge Configuration process is
a task-configuration, a hierarchical structure where nodes are triplets consisting
of a task, a capability bound to the task, and optionally some domain-model
satisfying the assumptions of the capability. In order to understand the way
a task-configuration is operationalized by a team of agents, it is necessary to
establish a mapping between the concepts involved in a task-configuration and
concepts from Multi-Agent Systems.

A task-configuration in the ORCAS team model plays the role of a team plan,
since it is used as a recipe of actions to achieve a global goal. The configured
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task represents a global team goal and a plan to achieve that goal. Specifically,
tasks represent goals and subgoals; skills represent primitive, non decompos-
able actions to achieve goals; and task decomposers play the role of sub-plans
in decomposing a task (a goal) into subtasks (subgoals). Multiple capabilities
allowed for the same task represent alternative ways of solving a problem, or
alternative ways of decomposing a problem into subproblems. In addition, a
task-configuration contain the domain models satisfying the knowledge require-
ments of the selected capabilities.

In order to map elements from the KMF to elements of agent-based team-
work, we introduce the notion of team-role. A team-role defines the functions
assigned to a position within the team. We establish a one-to-one correspon-
dence between tasks and team-roles: there is a team-role for each task within
a task-configuration. A task-configuration follows a hierarchical task decompo-
sition structure, and a team in ORCAS is based on a task-configuration; conse-
quently, teams are also organized hierarchically, as a nested structure of teams
and subteams (Figure 5.2).

Team-roles define the competence required by the different members of a
team in order to achieve a team goal. A team-role includes all the information
required to solve one of the tasks of a task-configuration, that is to say, a task,
a capability bound to it, and optionally a set of domain models required by the
selected capability. When the capability bound to a task is a task-decomposer,
a team role is defined for the task being decomposed, and a new team-role is
created for each subtask. The agent playing the role of the task-decomposer
acts as the coordinator (supervisor or leader) of the team-roles assigned to each
subtask, that are in some sense “subordinated” to the coordinator, though the
precise nature of the relationship between the task-decomposer role and its sub-
ordinated team-roles may vary according to features like the degree of agent
autonomy or the degree of openness of the MAS.

Figure 5.2 shows an example of a team modelled as a hierarchy of team-
roles that is organized as a nested structure of teams, and the straightforward
mapping of tasks and capabilities from a task-configuration to team-roles. There
is a team-role for each task in the task-configuration, and there is one team for
each task-decomposer bound to a task. Each team consist of a “coordinator”
team-role responsible for the task being decomposed, plus a set of “subordinated”
team-roles, one per subtask. In Figure 5.2, the Team-role 1 (TR1) is assigned to
the information-search task, and has to to apply the meta-search task-decomposer
capability, which introduces four subtasks. Therefore, TR1 has to coordinate the
activity of their subordinated team-roles, one for each subtasks: elaborate-query
(TR2), customize-query (TR3), retrieve (TR4) and aggregate (TR5). Moreover,
since TR5 is itself assigned to task-decomposer (aggregation), it has to play
the coordinator role to interact with their own subordinated team-roles, those
associated to their two subtasks, namely elaborate-items (TR6) and aggregate-
items (TR7).
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Figure 5.2: Model of a team as a hierarchical team-roles structure

5.3.1 Team-roles and team-components

A team-role describes the functional, operational and pragmatic aspects required
of an agent to occupy a position within a team. The basic information included
within a team-role is a task to be solved (a goal), the capability to be applied
(suitable for the goal task), and the communication elements (language and
protocols) to be used for communicating with the agent playing that team-
role. In addition, if the capability is a task-decomposer, then the team-role can
include information about team members selected for solving each subtask, the
communication elements required to delegate each subtask to the selected agent,
and optionally a group of agents to keep in reserve.
Formally, a team-role is defined as follows:

Definition 5.1 (Team-Role) A team-role is defined as a tuple
m={(R,[,T,C,M,Com, S, Ag, AR)
where
e R is a unique team-role identifier,

e [ is a unique team identifier,

T is a task,

e C is a capability,

M is a set of domain-models,
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e Com is a specification of communication requirements,

Ag is a set of selected agents,
e Ap is a set of reserve agents,
e S is a subteam, specified as a set of team-components.

The team-role identifier (R) is required to unambiguously identify the posi-
tion of a team-role in the team hierarchy. The name of the task is not enough
to identify a team-role because the task could appear multiple times within a
task-configuration. The team identifier (I) is required because one agent can
participate in multiple teams simultaneously. A team-role includes also the name
of the task to be achieved (T), the name of the capability selected (C') to solve
that task (according to a task-capability binding in the task-configuration), and
optionally a set of domain-models (M) satisfying the knowledge requirements of
the selected capability. In order to instantiate a team model with specific team-
members, a team-role includes also two slots to specify a set of agents selected
for it (Ag), and a set of reserve agents (Ag). Moreover, a team-role specifies the
communication (Com) model to be used by both the requester or coordinator
of R, and the agent assigned to R.

Finally, a team-role includes a subteam feature to be filled only when the
team-role’s capability (C) is a task-decomposer. A subteamn is specified as a
set of team-components, where each team-component holds information about a
team-roles associated to one subtask. A team-component is defined as follows:

Definition 5.2 (Team-Component) A team-component is defined as a tuple
¢§=(R,T,Ag,Ar,Com)
where

e R is a unique team-role identifier,

o T is a task

Ag is a set of selected agents
o Ap is a set of reserve agents

o Com is a specification of communication requirements

A team-component is defined for each subtask introduced by a task-
decomposer. The team-role identifier (R) determines the precise position of
the team-component in the team hierarchy. There is a set of agents selected
(Ag) to carry out the team-role, and there is a set of agents to keep in reserve
(AR) for the case that some of the selected agents fail during the Teamwork
process. Finally, a team-component includes a specification of the communica-
tion (Com) required to interact with the agent playing the team-component’s
team-role (R).
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Figure 5.3 shows an example of a team-role assigned to a task-decomposer
with two subtasks. Team-role 5 (TR5) is assigned to the Aggregate task, that
is bound to the Aggregation capability. This capability is a task-decomposer
that introduces two subtasks: Elaborate-ltems and Aggregate-ltems. Therefore,
the TR5 team-role has a subteam with two team-components, TR6 and TR7,
assigned to the Elaborate-ltems and the Aggregate-ltems tasks respectively.

/ Team-role:
Aggregate
Task: Aggregate
A fi Team-ld: Team23
[\ Arggregation Role-1d: TR5
’,-f \'\ Capability: Aggregation
/ \ Sub-team: {TC, TC’}
/ Y | —
/ \
/ \
A A @ rrmnrmnsnra i, // .
Elab. Items  Aggr. ltems ¥ o Team-component:

Team-component:

Task: Elab. lems
* Role-Id: TR6

Task: Aggr.-items
Role-ld: TR7
Communication;

Communication:

Figure 5.3: From tasks to team-roles and team-components

We note 7 and IT as a team-role and the set of all the team-roles, and £ and
= as a team-component and the set of all the team-components. We can define
now a team as a structure made of interrelated team-roles and team-components,
but first we define the subordinated relation S among team-roles as follows:

Definition 5.3 (Subordinated)
S(m,n') & 3¢ €ng | € =7
where
o m, 7' €Il are team-roles;
o w5 C = is the subteam of ™ (a set of team-components);
e & € Z is the i-th element of Tg

o ¢4 €1l is the team-role associated to &

Briefly, a team-role is subordinated to another if the first team-role is bound
to a team-component contained in the subteam of the second team-role.
Noting S* the closure of S we can now define a team as follows:
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Definition 5.4 (Team) A team is defined for a team-role and a task-
configuration

Team(n®,Conf(k)) = {r € M|S*(7°, 7) A (head(k) = 7%)}
where

o 70 €11 is a team leader’s team-role, the only team-role that is not subor-
dinated to another;

e Conf(k) is a task-configuration,
o head(k) is the root task of the task-configuration (Conf(k)),

e and T is the task assigned to the team leader’s team-role.

A team is a collection of interrelated team-roles, starting from the team-
leader 7, that is assigned to the root task of a task-configuration. The ORCAS
team model provides an abstract view of the competence required by a group
of agents to solve a global problem. Teams are instantiated during the Team
Formation process (§5.5) by selecting a set of agents to play each team-role,
and a set of agents to keep in reserve.

Team-roles are used during the Team Formation and the Teamwork processes
to interchange information among agents. During the Team Formation process,
team-roles are used as advertisements or proposals to join a team: team-roles
are used to inform potential team members of the tasks to be solved, the capa-
bilities to apply, the knowledge to use, and optionally the terms of commitment
and pragmatic issues. Team-roles can also be used by agents to send counter-
proposals during the Team Formation process. After finishing the task allocation
and the agent selection process, team-roles are used to inform agents about the
result of the process.

During the Teamwork process, team-roles are used by team members to know
every thing they need to achieve his tasks, to delegate subtasks to other agents, to
cooperate with other agents when requested, and even to rescue from unexpected
situations like agent failures preempting a task to be achieved by the selected
agent, or communication problems avoiding an agent to send or receive messages
from other team member. A team-role has the information required by an agent
to play a team-role: the name of the task to be solved, the capability to apply,
the knowledge to use, and optionally a set of team-components (a subteam)
with the information required to delegate the team-role’s subtasks to other team
members. This information includes the identifiers of subordinated team-roles
(those to whom delegate some subtask), a set of selected agents to play each
subordinated team-role and a set of agents to keep in reserve for each one, but it
does not include information about the capability that should be used by each
subordinated team-role.

A team member willing to carry out the task assigned to a team-role during
the Teamwork process has to check whether the capability to be applied is a
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task-decomposer or a skill. On the one hand, if the capability assigned to a
team-role is a skill, the agent will engage in communication with the requester.
The interaction protocol, the vocabulary and the language to be used will be
defined also within a team-role, using the communication feature, as described
in §5.4.2. On the other hand, an agent willing to apply a task-decomposer
capability has to engage in communication with a requester, just like an agent
applying a skill, but in addition the agent must know which agents are assigned
to the task-decomposer’s subtasks, so as to request them to carry out their
subtasks. The communication to be used so as to delegate a task to another
agent is also provided within a team-role structure.

However, an agent applying a task-decomposer does not need to know which
capability will be used by the different components of a sub-team, because this
information will be sent to those agents separately. In few words, each member
of the team knows what to do, which tasks to delegate and to whom, but a team
member does not know the precise way a task he delegates to another agent
will be solved by it. The last statement is not mandatory, is just a question
of information economy, but can be modified to accommodate better to specific
situations.

5.4 The ORCAS Agent Capability Description
Language

The notion of an Agent Capability Description Language (ACDL) has been in-
troduced recently [Sycara et al., 1999a] as a key element in enabling MAS in-
teroperation in open environments. An ACDL is a shared language that al-
lows heterogeneous agents to coordinate effectively across distributed networks.
Sometimes, capabilities are referred as “services” and, consequently, an ACDL
can alternatively be called an Agent Service Description Language (ASDL).

In the literature, an ACDL is defined as a language to describe both agent
advertisements and requests, and is primarily used by middle agents (e.g. brokers
and matchmakers) to pair service-requests with service-providing agents that
meet the requirements of the request [Sycara et al., 1999b, Sycara et al., 1999a].

Some desirable features for such a language are expressiveness, efficient rea-
soning and easy use:

e Faxpressiveness: the language should be expressive enough to represent
not only data and knowledge, but also the meaning of a capability. Agent
capabilities should be described at an abstract rather than implementation
level.

e Efficient reasoning: inferences on descriptions written in this language
should be supported. Automatic reasoning and comparison on the de-
scriptions should be both feasible and efficient.

e Fasy use: descriptions should not only be easy to read and understand,
but also easy to write. The language should support the specification of
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knowledge requirements (in order to link capabilities to domain knowledge)
and the use of ontologies for specifying agent capabilities in a way that
favors reuse.

Another important aspect to take into account for designing an ACDL
is the idea of enriching capability descriptions with semantic information
[Paolucci et al., 2002]. Semantic markup, which is based on the use of shared
ontologies [Guarino, 1997al, improves the matchmaking process and facilitates
interoperation.

Although the ORCAS KMF satisfies these requirements, we think an
ACDL should bring support to some activities involved in MAS interoperation
beyond the discovery of capability providers. An ACDL should facilitate the
automation of the following activities, namely discovery, execution, composition
and interoperation of capabilities:

Automatic capability discovering (matchmaking): This activity takes
the specification of a request and looks for capabilities that are able to satisfy
such request. This activity involves the automatic location of capabilities that
adhere to requested constraints, which is usually described as a matchmaking
process between the request and a library or repository of capabilities (typically
hold by a middle agent). An ACDL must allow capability providers to advertise
their capabilities to the matchmaker or yellow pages service in order to become
available for automatic capability discovery. In ORCAS the discovery of capabil-
ities satisfying a problem specification is also achieved through a matchmaking
process (§4.2.2), but the ORCAS Knowledge Configuration process goes beyond
this requirements and introduces the idea of configuring (designing) a complete
MAS-based application (a configured team) that satisfies a specification of stated
problem requirements, rather than finding appropriate providers of capabilities
suitable for a a single task. The aspects of a capability description required for
these activities are the functional descriptions described in the previous chapter:
the interface (inputs and outputs) and the competence (preconditions and post-
conditions), plus the aspects of a capability used to filter out those capabilities
which knowledge requirements are not fulfilled.

Automatic capability execution (communication): Having selected a
capability, the process of enacting or executing it. Agents should be able to in-
terpret the description of a capability to understand what input is necessary to
execute a capability, what information will be returned and which are the effects
or postconditions that will hold after applying the capability. In addition, the
requester of a capability must know the communication protocol, the communi-
cation language and the data format required by the provider of the capability
in order to sucessfully communicate with it. Summing up, an ACDL should
provide declarative descriptions of both the interfaces and the communication
requirements required for executing agent capabilities on request. In ORCAS
these aspects of a capability are partially fullfilled by the already described
functional aspects of a capability (inputs and outputs, competence, and knowl-
edge requirements), but the communication aspects (interaction protocol and
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language, and data format) has not been described yet, though we have afore-
mentioned them when talking about the communication feature of a capability
(8§4.2.1). These aspects are anticipated in the ORCAS KMF, where two features
of a capability have been earmarked for further extension of the KM-Ontology
into a fullfledged ACDL: the communication and the operational description. A
proposal for describing these features is introduced later, in §5.4.2 and §5.4.3.

Automatic capability composition (configuration): In order to achieve
more complex tasks, capabilities may be combined or aggregated to achieve com-
plex goals that existing capabilities cannot achieve alone. This process may
require a combination of matchmaking, capability selection among alternative
candidates, and verification of wether the aggregated functionality satisfies the
specification of a high-level goal. In ORCAS capabilities are composed during
the configuration of a task at the Knowledge Configuration process, using the
matching relations introduced in the Knowledge Modelling Framework (§4.2.2),
and ensuring that the resulting configuration satisfies the stated problem re-
quirements.

Automatic capability interoperation (coordination): Multiples
agents involved in solving a task by applying a composed capability to solve
a global task should interoperate between them. Sharing an agent commu-
nication language, a common vocabulary and the same interaction protocols
are necessary, but not sufficient for cooperation to succeed. In addition to
the communication aspects, interoperation among specialized agents during
teamwork has to deal with the coordination of agent activities according
to the sequencing of tasks and possible task-dependencies. In ORCAS, the
information required to coordinate agent behaviors during teamwork is provided
by the operational-description of the capabilities composing a task-configuration.

The functional description of a capability as provided in the Knowledge-
Modelling Framework (Figure 4.8) enables the automated discovery and compo-
sition of capabilities (configuration). Nonetheless, the execution of capabilities
and the interoperation of multiple agents during teamwork are not supported by
the functional description of a capability.

In order to deal with these activities, we have included two extra features to
characterize a capability: the communication and the operational description.
Since we keep the knowledge-level aspects of a capability separated from the op-
erational aspects, we avoid including them within the description of a capability
in the KMF. This decision allows the ORCAS KMF to be used across different
implementations of a MAS and even different types of computational system,
like semantic Web services.

The usual approach to overcome the interoperability problems arising in open
MAS is to assume a common language and interaction protocols, while the op-
erational aspects of a capability are assumed to be part of the own agent control
and thus, they are not declared by an agent when registering its capabilities
to a middle agent. While the former elements must be shared by a group of
agents in order to work together, open agent environments are encouraged to
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support more flexible approaches. Therefore, we think the use of declarative
descriptions of the communicative and the operational aspects of a capability
will support a more flexible architecture where cooperating agents can choose
from their repertoire of languages and protocols those that are more appropriate
at the moment.

agent

provides

Capability

described-by

Knowledge-level
Communication description
subsort-of .

How to interact with it What it does

Task
decomposer
Operational
Description

How it works

Figure 5.4: Main elements of the ORCAS ACDL concerning capabilities

Figure 5.4 shows the main elements of the ORCAS ACDL. A capability is
provided by an agent, and can be either a skill or a task-decomposer. The
knowledge-level description of a capability as provided in the Knowledge Mod-
elling Framework (§4.2.1) answers the question “what a capability does?”; that is
to say, the KMF provides a functional view of agent capabilities. When a capabil-
ity is task-decomposer, the ORCAS ACDL provides an operational-description
specifying how a task is decomposed into subtasks. In addition, the ORCAS
ACDL introduces a communication model that specifies how to interact with
an agent so as to request him to apply a capability. The communication model
describes the language and the interaction protocol supported by an agent in pro-
viding his services to other agents. In general, the same communication model
can be used for different capabilities, but some capabilities may not suit some
communication models. Therefore, communication models and capabilities are
described independently, so as to maximize reuse of both communication models
and capabilities. Nonetheless, agents keep the link between the capabilities they
provide and the communication models they support over each capability.

The functional aspects of capability are covered by the KMF, which is
focused only on those aspects required by the Knowledge-Configuration pro-
cess. Therefore, those aspects involving agent concepts, like the communica-
tion and the operational description, are subjects of the Operational Frame-
work. Specifically, they are presented as two subsections (§5.4.2 and §5.4.3)
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of the ORCAS ACDL section. concerning the agent approach (e.g. the com-
munication) have been left undefined at the KMF and are addressed at the
Operational Framework. But prior to describe these elements in detail we are
going to overview the formalism used to specify them: electronic institutions
[Esteva et al., 2001, Esteva et al., 2002b].

5.4.1 Electronic Institutions

We have stated previously (Chapter 1) our decision of adopting a social, macro-
view of Multi-Agent Systems. In particular, we adopt the formal approach
of electronic institutions [Esteva et al., 2001, Esteva et al., 2002b] to specifying
open agent societies, which is based on a computational metaphor of human
institutions.

Human institutions are places where people meet to achieve some goals fol-
lowing specific procedures, e.g. auction houses, parliaments, stock exchange
markets, etc. Intuitively, the notion of agent-mediated institution or electronic
institution proposes a sort of virtual places where agents interact according to
explicit conventions. The institution is the responsible for defining the rules of
the game, to enforce them and impose the penalties in case of violation.

An electronic institution, or e-Institution, is a “virtual place” designed to sup-
port and facilitate certain goals to be achieved by human and software agents
concurring to that place. Since these goals are achieved by means of the interac-
tion of agents, an e-institution must provide the social mediation layer required
to achieve a successful interaction: interaction protocols, shared ontologies, com-
munication languages and social behavior rules. An example of such an insti-
tution is an Auction House. An Auction House has institutional agents, those
agents (like the auctioneer) that manage the tasks required for the institution to
exist; but Auction Houses are open: they allow other agents (buyers and sellers)
to “enter” that place in order to achieve their own goals.

The main goal of the e-Institutions approach is the specification and au-
tomatic generation of infrastructures for open agent organizations. Electronic
institutions are architecturally-neutral with respect to agents, focused on the
macro-level (social view) of agents, and not in their micro-level (internal view).

We are interested on using the concepts proposed by the e-Institutions ap-
proach as a way to specify the interaction and coordination needs of teamwork
without imposing neither a specific agent architecture, nor a mentalistic theory
of cooperation . In electronic institutions, all agent interactions can be reduced
to illocutions. Therefore, accountability is expressible in terms of how illocu-
tions are constrained, or what characteristics can be predicated and tested on
illocution utterance, and on illocution reception.

A more precise definition of electronic institutions follows [IIIA, 2003]:

An electronic institution is the computational realization of a set of
explicit, possibly enforceable restrictions imposed on a collection of
dialogical agent types that concur in space and time to perform a
finite repertoire of satisfiable actions.
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This definition assumes that agents are “dialogical entities” that interact
with other agents within a multi-agent context which is relatively static in on-
tological terms. We can assume also that agents exhibit rational behavior by
engaging in dialogical exchanges, i.e. that agent interactions are systematically
linked to illocutions that are comprehensible to participants and refer to a ba-
sic shared ontology, and that the exchanges can be (externally) construed as
rational. Moreover, the institution is the real depositary of the ontology and
interaction conventions used by the participating agents.

Dialogical agents are entities that are capable of expressing illocutions and
react to illocutions addressed to them and, furthermore, only illocutions (and
the contextual effects of their associated actions, e.g. commitments to sell a
good) constitute observable agent behavior. Individual agents may have other
capabilities —perception, intentions, beliefs, etc.—, but we assume that as long
as agents interact within the institution, only illocutions are perceivable by other
agents (and the meaning and conditions of satisfaction of the associated actions
can be objectively established and accounted for within the shared context).
Moreover, agents within an institution can only utter illocutions that are consis-
tent with the “role” they are playing. Definitively, the e-Institutions approach is
social or exodeitic [Singh, 1998], focused on the macro-level view of Multi-Agent
Systems and not on any particular agent architecture.

An e-institution is modelled with the following components [Noriega, 1997,
Rodriguez-Aguilar, 1997, Esteva et al., 2001]:

1. Agent roles: Agents are the players in an electronic institution, interacting
by the exchange of speech acts, whereas roles are standardized patterns of
behavior required by agents playing part in given functional relationships.
Any agent within an electronic institution is required to adopt some role.

2. Dialogic framework: A dialogic framework determines the valid illocutions
that can be exchanged among the agents participating in an electronic in-
stitution. In dialogical institutions, agents interact through speech acts,
thus the institution establishes the acceptable speech acts by defining the
ontological elements (the vocabulary) and the agent communication lan-
guage (ACL). By sharing a dialogic framework, an electronic institution
enables heterogeneous agents to meaningfully interact with others.

3. Communication scenes: Interaction protocols are articulated through
agent group meetings called scenes. A scene defines an interaction pro-
tocol among a set of agent roles using a specific dialogic framework. A
scene is a formal specification of a pattern of structured communication
which constrains the possible patterns of dialogues that can be used by the
participating agents adopting one of the roles in the scene (agents have to
adopt some role in order to participate).

4. Performative structure: A performative structure is a network of connected
scenes that captures the relationships among scenes. The specification
of a performative structure contains a description of how the different
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agent roles can move from one scene to another. Furthermore, agents may
participate in different scenes, playing different roles at the same time, or
engage in multiple instances of the same scene simultaneously.

5. Normative rules: Agent actions may have consequences that either limit or
enlarge its subsequent acting possibilities. Such consequences are specified
through normative rules, which impose obligations to the agents and affect
their possible paths across the performative structure.

ORCAS approaches open agent organizations as virtual, agent based institu-
tions composed of heterogeneous agents playing different roles and interacting by
means of speech acts. However, while electronic institutions have been proposed
as a way to describe static or predefined organizations, we are rather inter-
ested on a more dynamic approach in which the institution is built on-the-fly by
putting existing pieces together. While tasks and capabilities where combined
during the Knowledge Configuration process to compose a task-configuration,
scenes and performative structures are combined and integrated during the Team
Formation process. The result is an electronic institution ad-hoc, which provides
the communication and the coordination elements required for a team to achieve
a global problem according to stated problem requirements.

The following subsections describe the elements required to communicate and
coordinate with other agents during the Teamwork process. We will introduce
the required notions from electronic institutions and then the way we use those
concepts in ORCAS.

5.4.2 Communication

The communication aspects of a capability describe the elements required to in-
teract with an agent providing that capability. Interaction is required, basically,
to send input data to an agent willing to execute a capability, and to receive
back the output produced by the application of a capability from another agent.
ORCAS agents are dialogical entities that communicate using speech acts or illo-
cutions; more specifically, we use elements of the electronic-institutions approach
to describe the communication aspects associated to a capability. The commu-
nication requirements of a capability are specified as scenes using some dialogic
framework. A dialogic framework contains the elements for the construction of
the communication language, expressions used within the capability communica-
tion scenes. Scenes are dialogical patterns of interactions based on the illocutions
and vocabulary defined by the dialogic framework. In ORCAS scenes are used
to describe the interaction protocols supported by an agent providing some ca-
pability. Therefore, scenes are bound to some capabilities within the context
of an agent equipped with that capability. The idea here is that of individual
agents equipped with a set of capabilities and a set of scenes supported by each
capability.

Figure 5.5 shows the Communication sort, used to describe the communi-
cation features of a capability: a set of scenes describing different interaction
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Communication
scenes — set-of Scene
dialogic-frameworks — set-of Dialogic-Framework

Figure 5.5: The Communication and Communication-scenes sorts

protocols supported by an agent, and a set of dialogic-frameworks describing the
vocabulary and the languages supported by an agent.

The following subsections describe the two elements of the electronic insti-
tutions formalism used in ORCAS to describe the communication aspects of a
capability: dialogic frameworks and scenes.

Dialogic framework

In open environments agents can be endowed with its own inner language and
ontology. In order to allow agents to successfully interact with other agents their
languages and ontologies must be put in relation. For this purpose, the electronic
institutions approach establishes that agents must share a dialogic framework
that contains the elements for the construction of the communication language
expressions that are required within the institution or within a specific scene.
By sharing a dialogic framework, heterogeneous agents can exchange knowledge
by means of illocutionary acts.

The electronic institutions formalism defines a dialogic framework as follows
[Esteva, 1997]:

Definition 5.5 (Dialogic Framework) A dialogic framework is defined as a
tuple DF = (O, L,I,R;, Rg, Rs), where

e O stands for an ontology (vocabulary);

e [ stands for a content language to express the information exchanged be-
tween agents;

e [ is the a of illocutionary particles;
e R; is a set of internal roles;
e Rp is a set of external roles;

e Rgs is a set of relationships over roles.

The dialogic framework determines the valid illocutions (I) that can be ex-
changed between the participants. In order to do so, an ontology (O) that fixes
what are the possible values for the concepts in a given domain is defined, e.g
goods, participants, locations, etc. Moreover, the dialogic framework defines
which are the roles that participating agents may play within the institution or
within a particular communication scene the dialogic framework is bound to.
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Each role defines a pattern of behavior within the institution. Roles allow to
abstract from the individuals agents participating in the electronic institution.
This feature is specially important in open environments in which the identity
of the agents that could participate in the institution is not known in advance.
Furthermore, in open environments agents may change over time, since new
agents may join the institution and agents already in the institution may come
to leave. For this reason, all the actions that can be done within an institution
are associated to roles, and not to individual agents. Intuitively we can think
of roles as agent types characterized by a set of actions allowed for that type.
For instance, within an auction, an agent playing the buyer role is capable of
submitting bids, while the agent playing the auctioneer role can offer goods at
auction. In order to take part in an electronic institution, an agent is obliged to
adopt some role(s). An agent playing a given role must conform to the pattern
of behavior attached to that particular role. However, all agents adopting a
specific role are guaranteed to have the same rights, duties and opportunities.

A dialogic framework distinguishes internal roles (R;) from external roles
(Rg). Internal roles define the roles to be played by staff agents, which are
equivalent the employees of a human institution. Those agents are in charge of
guaranteeing the correct functioning of an institution. For instance, an auction-
eer is in charge of auctioning goods following the specified protocol and the buyer
admitter is in charge of guaranteeing that only buyers satisfying the admission
conditions are allowed to participate.

Two types of agent relationships over roles can be specified, namely: su-
perclass and static separation of duties (SSD). Superclass relationships indicate
whether a role belongs to a more general class. If a role r is a superclass of
another role 7/ (r = '), then an agent playing r is enabled to play r’. However,
since agents can play several roles at the same time, role relationships stand-
ing for conflict of interests must be defined with the purpose of protecting the
institution against an agent’s malicious behavior. For instance, in an auction
house the auctioneer and the buyer roles are mutually exclusive. A static sepa-
ration of duties policy is defined to avoid two mutually exclusive roles of being
authorized to the same agent. The static separation of duties is defined as the
relation ssd C Roles x Roles. A pair (r,r') € ssd denotes that r,r’ cannot be
authorized to the same agent. See [Esteva et al., 2001] for an enumeration of
the requirements for the ssd relation and some inferred properties.

The content language (L) allows for the encoding of the knowledge to be
exchanged among agents using the vocabulary offered by the ontology. The
propositions built with the aid of the content language are embedded into an
“outer language”, the communication language(CL), which expresses the inten-
tions of the utterance by means of the illocutionary particles.

Expressions in the communication language are constructed as formulae of
the type (¢ (a; m;) (6) o 7) where ¢ is an illocutionary particle, «; is a term which
can be either an agent variable or an agent identifier, m; is a term which can
be either a role variable or a role identifier, 5 represents the addressee(s) of the
message (which can be an agent or a group of agents), o is an expression in the
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content language and T is a term which can be either a time variable or a time
constant. The CL allows to express that an illocution is addressed to an agent,
to all the agents playing a role or to all the agents in the scene.

Notice that a dialogic framework determines the ontological elements and
the valid elements for constructing expressions in the communication language.
Thus a dialogic framework must be regarded as a necessary ingredient to specify
scenes.

Using dialogic-frameworks in ORCAS: the Teamwork ontology

Given a capability C, one can think that some of the ontological elements re-
quired to interact with the agent providing C are those used to specify C, like
the signature-elements used to specify the input and the output. Nonetheless,
we have preferred to keep the knowledge-level elements away from the opera-
tional and communication aspects so as to maximize the reuse of these elements
too. In order to do that, we have decided to specify the communication of a
capability independently of other features of the capability: we specify the com-
munication aspects using generic, easy to reuse concepts, like the notion of input
and output, and not in terms of a particular type of input (a signature-element).

Since the ORCAS framework aims to maximize reuse (of both capabilities and
communication elements), thus we try to impose as few requirements as possible
to agents willing to cooperate, thus we have imposed a minimum set of concepts
to be understood by agents in order to participate in an ORCAS e-Institution.
These concepts should be shared by all the members of a team in order to coop-
erate, thus they are explicitly represented as an ontology. This ontology consist
of the previously presented notions of Team-role (§5.1) and Team-component
(85.2), plus some concepts relating the different types of messages that can be
exchanged during the Teamwork process. A basic model of communication for
teamwork includes the following type of messages:

e Perform: requests to solve the tasks associated to a specific team-role.
e Result: messages containing the results of having performed some task.

e Done: messages to confirm that some request has been achieved

Refusal: messages to inform that the requested petition won’t be carried
on.

Failure: messages to inform of some failure occurred while performing the
tasks associated to a team-role.

Figure 5.6 shows the basic concepts included in the Teamwork ontology, and
the features characterizing each concept. These concepts and their features
are defined as sorts in the Teamwork ontology, and are used within scenes to
constrain the type of messages allowed in the following way: only messages
complying with the illocutionary schemas defined by the scene are permitted.
For example, if an illocutionary schema specifies that a message should have a
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Teamwork ontology

Team-role Definition 5.1

Team-component Definition 5.2

Perform team-id:Symbol, team-role:Symbol, input-data:Signature-element
Result team-id:Symbol, team-role:Symbol, output-data:Signature-element
Done team-id:Symbol, team-role:Symbol

Refusal team-id:Symbol, team-role:Symbol, reason: Any

Failure team-id:Symbol, team-role:Symbol, error:Any

Figure 5.6: Basic Teamwork concepts

content of the type Perform, then only messages with that type of content would
be allowed. The sort Any subsumes any other sort and is used to allow further
specialization by developers, for instance, the reason for a refusal or the error
code when informing about a failure.

Capabilities should be specified independently of other capabilities in order
to maximize their reuse and facilitate their specification by third party agent
developers. In the general case, agent developers do not know a priori the tasks
that could be achieved by an agent capability, since teams are formed on-demand
according to specified problem requirements, and thus the same capability could
be used to solve different tasks (as far as the the capability is suitable for the
task, as defined by a task-capability matching relation) or the same task in the
context of a different task-decomposition. As a consequence, the team roles an
agent can play using a capability are not known in advance. Therefore, the roles
used to specify the communication scenes of a capability cannot be specified in
terms of specific team-roles.

Our approach to overcome the former difficulty is to specify the communi-
cation aspects of a capability in terms of abstract, generic roles, rather than
specific team-roles. As already explained, ORCAS teams are hierarchically or-
ganized according to task-configurations, and thus the teamwork itself can be
easily coordinated using a hierarchical communication style. There are agents
decomposing a task into subtasks and requesting other agents to solve some of
the subtasks. An agent that applies a task-decomposer capability to solve a task
is responsible for delegating subtasks to other agents, receiving the results, and
performing intermediate data processing between subtasks. In such a scenario,
we can establish an abstract communication model with two basic roles:

1. the coordinator role is adopted by an agent willing to decompose a task
into subtasks, requesting other agents to carry on the different subtasks
in an appropriate order, receiving the different results, and obtaining the
final result of the task; and

2. the operator role, one the other side, is adopted by the agent having to
perform a task on demand, using the data provided by another agent that
acts as coordinator, and having to bring the result back to the coordinator.
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Team

Rellz 1 Coordinator: TR1

Operator: TRS3
T: Information search
C: Metasearch

ICEU T: Aggregate
FIERSE)  C: Aggregation

Coordinator: TRS Coordinator: TRS
Operator: TR6 Operator: TR7

Team Team
Role 6 Role 7

T: Elaborate-items T: Aggregate-items
C: ltems-Elaboration C: Weighted-mean

Figure 5.7: Example of team-role relations and role-policy for Teamwork

The operator and the coordinator roles are defined as keeping a static sepa-
ration of duties (SSD) relationship, so as to avoid an agent to adopt both roles
simultaneously within the same scene. However, the same agent can act as coor-
dinator and operator simultaneously, but playing those roles in different scenes.
This situation occurs when a team-role is neither the root neither a leave in
the team-roles hierarchy. The agent playing such a team-role has to adopt the
operator role to communicate with the agent assigned the task-decomposer on
top of it (one level above in the team hierarchy). Nonetheless, in order to finish
its task, this agent has to communicate with other agents assigned to its own
subtasks, and adopting the coordinator role itself. Figure 5.7 shows an example
of such a situation. The agent playing Team-role 5 (TR5) has to act as operator
to communicate with TR1. Notice that TR5 (the agent playing TR5) has to
solve the task Aggregate using the input data received from TR1, and send the
result back to TR1; but in order to do that, TR5 must delegate its own subtasks
(elaborate-items and aggregate-items) to its subordinated team-roles, TR6 and
TRY7. In order to do that, TR5 has to communicate with TR6 and TR7 acting
himself as the coordinator, and TR6 and TR7 as the operator (each one in a
different scene).

Moreover, we introduce another role that is a superclass of both the coordi-
nator and the operator roles, the Problem-Solving Agent (PSA) role.

(PSA = Coordinator) A (PSA » coordinator) (5.1)
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Figure 5.8: Basic roles and role relationships

Consequently, any agent enabled playing a PSA role can play also the coor-
dinator and the operator roles (albeit never in the same scene instance). Figure
5.8 depicts the relationships among the basic ORCAS roles. The PSA role is a
superclass of both the coordinator and the operator roles, and there is a static
separation of duties between the coordinator and the operator roles.

Figure 5.9 summarizes the specification of the dialogic framework in the
ORCAS ACDL: A shared Teamwork ontology, and the coordinator and operators
as the only roles. There is a static separation of duties (SSD) between the
coordinator and the operator roles. This relation means that an agent cannot
be coordinator and operator within the same scene, since it has no sense for
an agent to communicate with himself. There are no internal roles and both
the content language and the illocutionary particles remain open (the example
shows the typical illocutions and specifies NOOS as the content-language).

ontology Teamwork-ontology
illocutionary-particles  e.g. (request inform agree refuse inform failure)
internal-roles

external-roles (coordinator operator)
social-structure (coordinator SSD operator)
content-language e.g. NOOS

Figure 5.9: Dialogic frameworks in the ORCAS ACDL

Scenes

A scene is the main element used to describe the communication features of a
capability, it describes what is commonly known as an agent interaction protocol.
The same capability can support different interaction protocols, and thus a scene
is required to specify each interaction protocol.

Recall that a scene is a conversation protocol shared by a group of agents
playing some roles. More precisely, a scene defines a generic pattern of con-
versation among roles. Any agent participating in a scene has to play one of
its roles. A scene is generic in the sense that it can be repeatedly played by
different groups of agents, in the same sense that the same theater scene can be
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performed by different actors playing the same roles.

Electronic institutions use finite state machines (FSM) to specify scenes!,
which are represented by finite, directed graphs. A scene is defined as follows in
the electronic institutions formalism [Esteva, 1997):

Definition 5.6 (Scene) A scene is a tuple:
s=(R,DF,W,wo, Wy, WA )rer, WE;)rer, ©, A\, min, Mazx)

where

e R is the set of roles of the scene;

e DF is a dialogic framework (Definition 5.5);

o W is a finite, non-empty set of scene states;

o wy € W is the initial state;

o Wy C W is the non-empty set of final states;

o (WA,)rer C W is a family of non-empty sets such that W A, stands for
the set of access states for the role r € R;

o (WE,)rer C W is a family of non-empty sets such that WE,. stands for
the set of exit states for the role r € R;

e O CW x W is a set of directed edges;

o \:© — L is a labelling function, where L can be a timeout, an illocution
scheme or an illocutions scheme and a list of constraints;

e min, Max are two functions that return respectively the minimum and
mazximum number of agents that can play a role r € R;

The nodes of the scene graph represent the different states (W) of the con-
versation, and the directed edges (©) connecting the nodes are labelled (\) with
the actions that make the scene state evolve: illocution schemes and timeouts.
The graph has a single initial state (wg, non-reachable once left) and a set of
final states (Wy) representing the different endings of the conversation (there is
no edge connecting a final state to another state).

A scene allows agents either to join it or leave it at specific states during
an ongoing conversation, depending on their role. For this purpose, the sets of
access (W A,) states and ezit states (W E,) are differentiated for each role.

Normally the correct evolution of a conversation protocol requires a certain
number of agents for each role involved in the scene. Thus, a minimum (min)

LAn account of the reasons to adopt such a formalism is found in [Esteva, 1997],
while another examples on using FSMs to specify agent conversations can be found in
[Barbuceanu and Fox, 1995, Nodine and Unruh, 1999, d’Inverno et al., 1998]
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and a mazimum (Max) number of agents per role is defined and the number of
agents playing each role has to be always between them.

The final states have to be an exit state for each role, in order to allow all
the agents to leave when the scene is finished. On the other hand, the initial
state has to be an access state for the roles whose minimum is greater than zero,
in order to start the scene.

The information exchanged between agents is expressed in the form of illo-
cution schemes from the scene dialogic framework. In order for the protocol to
be generic some details have to be abstracted. This means that state transitions
cannot be labelled by grounded illocutions. Instead, illocutions schemes must
be used, where the terms referring to agents and time are variables while the
other terms can be variables or constants.

The other element that can label an edge is a timeout. Timeouts trigger
on transitions after a given number of time units have passed since the state
was reached. This is specially important for robustness —to evolve from states
where agents dying and hence not talking any more, or where agents trying to
foot-drag the other agents by remaining silent, could block the scene execution.

In addition to defining the valid sequences of illocutions that agents can
exchange, a scene establishes the conversation context. Context is a funda-
mental aspect that humans use in order to interpret the information they
receive. The same message in different contexts may certainly have a different
meaning. Thus, a scene establishes what can be said, by who, and to whom,
and allows to specify how past interactions may affect the future evolution of
the conversation. The contextual information may restrict the valid messages
in a certain state of the conversation. For instance, imagine a scene auctioning
goods following the English auction protocol: as bids are submitted by buyers
the valid bids for them are reduced to bids greater than the last one. That is
to say, each submitted bid reduces the valid illocutions that buyers can utter,
although the scene may continue in the same state. Such contextual information
is encoded as constrains, which are used to restrict the set of values to create
new bindings of the variables in the illocution schemes, as well as the paths
that a scene conversation can follow. The reader is referred to [Esteva, 1997)
for a detailed account on the use of variables and constrains in the electronic
institutions formalism.

A scene has both a textual and a graphical representation. Figure 5.10
shows an example of an auction scene specifying a sealed-bid protocol. In this
scene the participating agents can play the auctioneer and buyer roles. The
graph depicts the states of the scene, along with the edges representing the legal
transitions between scene states which are labelled either with illocution schemes
of the communication language (according to elements defined within a dialogic
framework) or with timeouts. Notice that apart from the initial and final states,
the wl state is labelled as an access and exit state for buyers, which means that
buyers can leave and new buyers might be admitted between bidding rounds.
Variable identifiers appearing in the illocution schemes can start with either ‘7’
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(inform (?z auctioneer) (buyer) open_auction(?r))

(inform (1z auctioneer) (buyer) start_round(?good_id, ?bidding_time,
?reserve_price))

(commit (?y buyer) (\z auctioneer) bid(lgood_id, ? offer))
bidding_-time

(inform (1z auctioneer) (buyer) sold(!good_id, Tprice, Twinner))
(inform (!z auctioneer) (buyer) withdrawn(!good_id))

(inform (1z auctioneer) (buyer) end_auction(Ir))

Figure 5.10: Specification of a sealed-bid auction protocol
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or ‘I’ which is used to differentiate whether the variable can be bound to a new
value or must be substituted by its last bound value.

Using scenes in ORCAS

In the electronic institutions formalism, when a new institution is defined, there
is a global view of the system and thus it is possible to define in advance all the
roles that can be played by the participating agents. Scenes in ORCAS are used
to describe the patterns of interaction required to delegate a task to other agent,
exclusively from the point of view of the agent providing the capability required
to achieve that task. An agent providing a capability does not know in advance
the potential team-roles it can get to play using that capability. Consequently,
a scene describing the communication requirements of a capability can not be
specified in terms of team-roles. The ORCAS approach to deal with issue is to
define scenes in terms of two generic roles: the coordinator and the operator roles.
The agent applying a task-decomposer and willing to delegate some subtask
takes the coordinator role to communicate with each of the agents assigned to
a subtask within the task-decomposer, engaging in a new scene for each task
being delegated. Realize that the communication between an agent applying a
task-decomposer and an agent responsible of one subtask is necessary only both
the agents are the same; otherwise, if the agent assigned a task-decomposer were
the same assigned a subtask, then there is no need for communication for that
subtask.

coordinatol
operator

coordinato
operator

t-coordinato
toperator

coordinato
operator

(request (?z Coordinator) (?y Operator) perform(?team-role ?input))
(agree (ly Operator) (!z Coordinator) perform(!team-role linput))
(inform (ly Operator) (!z Coordinator) result(!team-role ?ouput))
(refuse (ly Operator) (Coordinator null) perform(!team-role linput))
(failure (lx Operator) (y Coordinator) perform(lteam-role linput))

T W N =

Figure 5.11: Request-Inform protocol described by a scene

Figure 5.13 shows a scene specifying a FIPA-like Request-Inform protocol
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for a capability C. There are two roles, the coordinator and the operator roles.
The coordinator role is played by the agent that has to delegate a task T to
the agent providing C' (assuming that T can be solved by C). The operator
role is played by the agent providing C. The coordinator is the initiator of
the scene, that begins with the coordinator sending a “request” message to the
operator. That message contains the identifier of the team-role to be played by
the operator, and the data to be used as input. The operator checks whether it
is assigned to that team-role, and sends either an “agree” or a “refuse” message
accordingly (if an agent is assigned to a team-role, it is supposed to agree, owing
to the commitment implicit on an agent accepting a team-role during the Team
Formation process). The operator agent holds the information required to carry
out its accepted team-roles, as that information was provided during the Team
formation process; therefore, the operator can solve the task assigned to that
team-role by applying the capability bound to it, using the data provided as
input by the coordinator, and the selected domain knowledge. If the capability
is applied to the input data successfully, then the operator sends the result to the
coordinator with an “inform” message, otherwise the operator sends a “failure”
message. There are three final states that are reached when the operator refuses
the request from the coordinator (w4), the application of the capability fails
(wb), or it ends successfully (w3).

A wide range of communication styles can be specified using scenes, from very
simple protocols involving two roles to very complex interaction protocols with
several agent roles, time-outs, transition constrains and so on, thus giving quite
expressiveness to developers. Nevertheless, using a reduced set of standardized
basic protocols is encouraged in ORCAS to maximize capability reuse. In order
to have an intuitive idea of possible styles of interaction we can consider the
basic interaction protocols defined for Web services, which are called operations
in WSDL and processes in DAML-S [The DAML-S Consortium, 2001]. There
are four basic types of “operations” according to these proposals:

o request-response operation (an atomic process with both inputs and out-
puts in DAML-S);

e one-way operation (an atomic process with inputs but no outputs);
e notification operation (an atomic process with outputs, but no inputs);

e solicit-response operation (a composite process with both outputs and in-
puts, and with the sending of outputs specified as coming before the re-
ception of inputs).

The request-response operation corresponds to the request-inform protocol
showed in Figure 5.13 as an example of a scene. The one-way and the noti-
fication operations can be specified by the same scene but with different edge
labels, as showed in Figure 5.12. Finally, the solicit-response operation requires
some minor changes in the scene; there is required a new state, wg, and a new
transition (Transition 6) from w5 with an inform message to be send by the
Coordinator to the Operator, containing the input.
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One-way operation (only input)

Tk W N =

(request (?z Coordinator) (?y Operator) perform(?team-role ?input))

(agree (ly Operator) (!z Coordinator) perform(!team-role linput))

(inform (ly Operator) (!z Coordinator) done(perform(!team-role linput))

(refuse (ly Operator) (Coordinator null) refusal(perform(!team-role linput) reason)
(failure (z Operator) (ly Coordinator) failure(perform(lteam-role linput) reason)

Notification: (only output)

(request (?z Coordinator) (?y Operator) perform(?team-role))
(agree (ly Operator) (!z Coordinator) perform(Iteam-role))
(inform (ly Operator) (!z Coordinator) result(!team-role loutput))
(refuse (ly Operator) (lxCoordinator) perform(!team-role))
(failure (!z Operator) (y Coordinator) perform(!team-role))

Tk W N~

Solicit-Response (both input and output, but input cames after the output is provided

U W N

(request (?z Coordinator) (?y Operator) perform(?team-role))
(agree (ly Operator) (lz Coordinator) perform(team-role))

(inform (ly Operator) (!z Coordinator) result(!team-role loutput))
(inform (!z Coordinator) (!x Operator) response(!team-role linput))
(refuse (ly Operator) (Coordinator null) inform(lteam-role Zinput))
(failure (!z Operator) (ly Coordinator) perform(lteam-role))

Figure 5.12: Variations and alternatives to the Request-Inform protocol

Coort Coord
op op

+Op
tCoord

Figure 5.13: Solicit-Response protocol described by a scene
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Summing-up, scenes provide a flexible and precise (not ambiguous) way of
defining interaction protocols to communicate with agents in order to delegate
tasks to other agents. Every time an agent has to delegate a task to another
in the context of a teamwork process, it has to engage in communication with
the agent assigned to the task’s team-role. This communication will follow the
specification of a scene supported by the agent providing that capability. The
decision on which specific scene is to be used between two agents is negotiated
during the Team Formation process, as explained in §5.5.

5.4.3 Operational description

The purpose of the operational description is to specify the data and control flow
among the subtasks of a task-decomposer. Control flow languages are based on
the notion of control constructs like iteration, parallelism, branching conditions
and so on. Control flow modelling has been a research area that attracted
significant interest in the last decade. Nevertheless, little consensus has been
reached as to what the essential ingredients of a control flow specification lan-
guage should be, and there are notable differences in the expressive power of
control flow specification languages [Kiepuszewski, 2002].

Since our approach is based on Knowledge Modelling frameworks we have
considered some proposals from the Knowledge Modelling community, like
KARL [Fensel et al., 1998a] and Modal Change Logic [Fensel et al., 1998b], but
we found that these proposals rely on a sequentiality assumption that is not ap-
propriate for MAS. Therefore, it seems more appropriate to use agent concepts
for describing the interaction among subtasks in order to deal with parallelism.
Such a language must capture dependency relationships, temporal relationships,
and parallelism in order to support the team configuration during the Team
Formation process, and the coordination of team mates during the Teamwork
process. In order to describe these aspects, we will continue using the concepts
on electronic institutions: specifically, we will use the notion of a performative
structure to describe the operational description of task-decomposers.

We want to increase the reusability of capabilities by describing the opera-
tional description of task-decomposers from a compositional approach, maximiz-
ing the reuse of capabilities by keeping them separated from both the tasks and
the domain models. In addition, we want to use a formalism supporting paral-
lelism and allowing for the specification of synchronization points, and multiple
task instantiation (i.e. tasks that can be played several times during the same
teamwork process).

In order to deal with these issues, the ORCAS ACDL proposes the specifi-
cation of the operational description as a task network, using the concept of a
performative structure from the electronic institutions formalism. The point is
to describe the operational description of a task-decomposer as a composition of
several scenes, where each scene corresponds to a scene describing the commu-
nication between the agents playing the coordinator and the operator roles for
that capability during the Teamwork process.
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While a scene models a particular multi-agent dialogical activity, more com-
plex activities can be specified by establishing relationships among scenes. This
issue arises when conversations are embedded in a broader context, such as, for
instance, organizations and institutions. If this is the case, it does make sense
to capture the relationships among scenes. For these purpose a performative
structure defines which are the scenes of the electronic institution and the role
flow policy among them. That is to say, how the agents can move among the
different scenes depending on their role, and when new scenes have to be started,
taking into account the relationships among the different scenes.

Performative structure

A performative structure is a network of connected scenes that captures the rela-
tionships among scenes. The specification of a performative structure contains a
description of how the different agent roles can move from one scene to another.
More formally, a performative structure is defined as follows [Esteva, 1997]:

Definition 5.7 (Performative Structure) A performative structure is a tu-
ple
PS = <S’Ta 307SQ,E,fL,fT,fg,C7M>

where

e S is a finite, non-empty set of typed scenes, where each scene is defined by
a name (Spame) and a type (Siype) (Def. 5.6);

e T is a finite and non-empty set of transitions;
e sy € S is the initial scene;
e sq € S is the final scene;

o E = ET\JEC is a set of edge identifiers where ET C S x T is a set of
edges from scenes to transitions and E€ C T x S is a set of edges from
transitions to scenes;

o fr: E— V maps each edge to an edge label V, represented as a disjunc-
tive normal form (DNF)? in which literals are pairs composed of an agent
variable and a role identifier representing an edge label;

o fr:T — T maps each transition to its type;
° fg : EO — &£ maps each edge to its type;

o C:El — CONS maps each edge to a expression representing the edge’s
constraints.

2Disjunctive Normal Form or DNF is a method of standardizing and normalizing logical
formulae. A logical formula is considered to be in DNF if and only if it is a single disjunction
of conjunctions. More simply stated, the outermost operators of the formula are all ORs, and
there is only one level of nesting allowed, which may only contain literals or conjunctions of
literals
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o 1 :S —{0,1} establishes whether a scene can be multiply instantiated at
execution time;

A performative structure contains a set of typed scenes (S). The scene type
is the specification of the scene according to Definition 5.6), thus different scenes
within a performative structure can refer to the same type of scene. There are
two scenes defined as the initial (sg) and final (sq) scenes. Relationships among
scenes are specified as transitions (T) agents must traverse in order to move
from one scene to another, and edges going from scenes to transitions (incoming
edges, ET), and from transitions to scenes (outgoing edges, £°). In order to
move from one scene to another, an agent has to progress through a transition
(direct connections between scenes are forbidden). In general, the activity rep-
resented by a performative structure can be depicted as a collection of multiple,
concurrent scenes, and agents navigating from scene to scene constrained by
transitions. A performative structure can specify also whether a scene can be
multiple instantiated or not at execution time (u).

The edges of a performative structure are labelled so as to specify which
agents can progress through an edge depending on their roles. These labels are
expressed as conjunctions and disjunctions of pairs composed of an agent variable
and a role identifier. The role identifier determines which type of agent is allowed
to follow the edge, while agent variables are used to differentiate among agents
playing the same role. For instance, an edge labelled with (z R1) A (y R2) means
that this edge can be followed only by pairs of agents where one of them is
playing the role R; and the other is playing the role Ro. On the other hand, an
edge labelled with (z Ry) V (y R2) means that any agent playing either the role
R, or the role R5 can progress through that edge. The scope of an agent variable
includes all the incoming and outgoing edges of a transition. That is to say, if
an agent reaches a transition following an incoming edge labelled with (z Ry),
it can only leave the transition by following those outgoing edges containing the
variable x in their label. However, there is a relation between the agent variables
labelling the incoming and the outgoing edges of a scene. A conjunction over a
incoming edge (from a scene to a transition) means that the agents have to leave
the scene together (and reach the transition together too), whereas a conjunction
labelling an outgoing edge (from a transition to a scene) means that the agents
must enter the target scene together, that is to say, agents must enter into the
same scene instance.

There are two types of transitions (fr) according to how agents coming from
several edges can progress through them:

e AND transitions establish synchronization points and parallelism. Agents
reaching a transition from several incoming edges have to wait for agents
coming from all the incoming edges in order to progress through the tran-
sition, and must follow all the outgoing edges where they appear (the
variables they are bound to).

e OR transitions allow agents to progress through them in an asynchronous
way and are used to define choice points. Agents reaching an OR transition
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can progress through it without waiting for other agents, and are allowed
to choose which outgoing edge to follow when leaving the transition.

- Single scene Initial scene
- Multiple scene - Final scene

D OR transition wriyry . Conjunctive edge
D. AND transition _xRilyR2 . Disjunctive edge

Figure 5.14: Graphical elements used to specify a performative structure

Figure 5.14 shows the graphical elements used to specify a performative struc-
ture: scenes, transitions and edges. There are different symbols to distinguish
the initial and final scenes from other scenes, and to differentiate whether a
scene can be multiple instantiated or not (single). Notice there are two types
of transitions, AND and OR; and two ways of labelling an edge, conjuntion and
disjuntion.

An example of a performative structure for an agoric market is shown in
Figure 5.15 (extracted from [Esteva, 1997]). The root scene is the Admission
scene, where any agent enters the institution. Buyers and sellers can move from
the Admission scene to the Agora scene, where they can try to buy and sell
goods. When a buy/sell operation is agreed, both the involved buyer and seller
together meet with an accountant agent in the Settlement scene to formalize
the operation. Finally, agents can exit the institution by reaching the Departure
scene.

Using performative structures in ORCAS

Our approach to specify the operational description of a task-decomposer is
based on performative structures, with some distinctive features.

A first feature characterizing the use of performative structures to specify
the operational description of a task-decomposer arises from the fact that the
precise team-role applying a task-decomposer is not known, because a task-
decomposer is defined for a capability, independently of any particular task that
can solved applying that capability. Our approach to overcome this problem is
the use of two generic roles, as explained in §5.4.2 and §5.4.2: the coordinator
and the operator roles. Therefore, when defining an operational description as
a performative structure, we know that the agent providing a task-decomposer
adopts the role of the coordinator, while the agents assigned to every subtask
adopt the operator role, and thus, the performative structure can be defined in
terms of these generic roles.
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Figure 5.15: Performative structure of an agora

The second feature distinguishing a performative structure in ORCAS from
the electronic institutions approach results from the decoupling of tasks and ca-
pabilities. In ORCAS, each scene within the performative structure corresponds
to an interaction protocol describing the communication required between a
task-decomposer team-role acting as a coordinator, and a subordinated team-
role acting as operator. In other words, each scene within the performative
structure refers to a task to be delegated to another agent. In ORCAS, each
task (7") is solved using a capability (C); therefore the coordinator agent has to
communicate with the agent providing C, using one of the scenes supported by
that agent (acting as operator) over C. Consequently, the specific scenes to be
used within a performative structure must be decided before starting the Team-
work process. In ORCAS this process is carried over during the Team Formation
process. The goal is to select the scenes from those supported from both the
provider and the requester of a capability. We note A¢ an agent providing C
and Ag as the set of scenes it supports over C. The provider of a capability
must play the operator role and the requester must play the coordinator role.
Both the coordinator and the operator must follow the same scene in order to
communicate, and as a consequence, the scene must be chosen out of the scenes
supported by both agents (the intersection of two set of scenes, the scenes sup-
ported by the coordinator, and the scenes supported by the operator).

In order to specify the operational description of a task-decomposer, we adapt
the notion of a performative structure to fit better in the ORCAS framework.
Specifically, the constraints and the edge typing functions are not used in an
operational description, the scenes are not typed (), and two scenes called
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Start and End are defined as the initial and final scenes. More formally, an
operational description in ORCAS is defined as follows [Esteva, 1997]:

Definition 5.8 (Operational description) A operational description is de-
fined for a task-decomposer D as a tuple

OD(D) = <S, T, SO’SQ7E7 fL7fT7fg7:u’>
where

e S is a set of untyped scenes named after the subtasks introduced by the
task-decomposer, plus an initial and a final scene called Start and End
respectively;

o 50 € S = Start (the initial scene);
e sq = End (the final scene);
o T is a finite and non-empty set of transitions;

o E = ET\JEC is a set of edge identifiers where ET C S x T is a set of
edges from scenes to transitions and EC C T x S is a set of edges from
transitions to scenes;

o fr: E — V maps each edge to an edge label V, represented as a disjunc-
tive normal form (DNF) over pairs composed of an agent variable and a
role identifier representing an edge label;

o fr: T — {AND,OR} maps each transition to its type;

o 1S —{0,1} establishes whether a scene can be multiply instantiated at
execution time;

Notice that the set of scenes of an operational description has no type, that
is to say, scenes are not bound to a scene specification, but they have just a
name. Moreover, scenes are named as the subtasks of the task-decomposer, plus
two scenes called Start and End.

Figure 5.16 shows an example of a performative structure specifying the op-
erational description of the Aggregation task-decomposer, which decomposes a
task into two subtasks: Elaborate-items and Aggregate-items. Therefore, the per-
formative structure has two scenes (in addition to the Start and End scenes), one
for each subtask. There are three roles involved in the performative structure,
a coordinator to be played by the agent applying the task-decomposer, and as
many operators as subtasks. In the example there are two operators, one (y)
participating in the Elaborate-items (EI) scene, and another (z) participating in
the Aggregate-ltems (AI) scene. Notice that the coordinator (z) should be the
same in both scenes, it enters first the EI scene, and can enter the Al scene only
after finishing the EI scene.
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Capability: Aggregation

‘ Performative Structure

Input

Output

Preconditions

Postconditions

Operational Description

Subtasks:
Elaborate-items
Aggregate-items--------.__._]

Figure 5.16: Task-decomposer operational description

The task-based performative structure used for specifying the operational
description of a task decomposer keeps the decoupling of tasks and capabili-
ties. This approach, which aims at maximizing capability reuse, leads to the
use of scenes based on two generic roles. And the low granularity of the two-
role scenes used as the building blocks of a performative structure, together
with the existence of the-facto standards for one-to-one interaction (e.g. the
FIPA Request-Inform protocol), are two extra features supporting the goal of
maximizing reuse.

Using performative structures to describe the operational description of a
capability enables parallelism and provides an abstract view of the coordina-
tion required for Teamwork, which can be sensibly used to improve the Team
Formation process by producing more robust teams and improving the overall
performance of the team.

We have explained the ORCAS model of the Cooperative Problem Solving
process, and the ORCAS team-model. Moreover we have introduced a formalism
to describe the communication and the operational aspects required to turn the
Knowledge Modelling Ontology into a full-fledged ACDL. Now we are in position
to focus on the two operational stages of the CPS process: Team Formation and
Teamwork.

5.5 Team Formation

Team Formation is the process of selecting a group of agents that have com-
plimentary skills to achieve a global goal (the team goal), and providing team
members with the information required to achieve the global goal in a coopera-
tive way.

Team Formation in ORCAS is guided by a task configuration. Since a task-
configuration specifies the tasks to be solved and the capabilities to apply, the
number of possible teams is reduced, making Team Formation feasible in prac-
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tice. In large systems, team selection may involve an exponential number of pos-
sible team combinations, and a blow-out in the number of interactions required
to select the members of a team [Kinny et al., 1992]. ORCAS addresses this prob-
lem by introducing the Knowledge Configuration process before Team Formation
in the Cooperative Problem-Solving process [Wooldridge and Jennings, 1999].

Our model of the Team Formation process considers three activities, namely:
task allocation, team selection and team instruction.

e During the task allocation process candidate agents are obtained for each
task, according to the requirements of a task-configuration;

e next, during the team selection process, some agents are selected for each
specific team-role, while other agents are kept in reserve for the case of
agent failure;

e finally, during the team instruction process, agents involved in the team
formation process are informed about the result of the team configuration
stage: the team roles they have to play, and the social knowledge required
to cooperate with other team-members during the Teamwork process.

Later, in Chapter 6 a particular agent infrastructure supporting the ORCAS
framework is presented. This infrastructure provides the services required from
both providers and requesters of capabilities to form customized teams of agent
on-demand. The approach there is to include institutional agents acting as
middle-agents with the capabilities required to configure tasks and coordinate
the Team Formation and the Teamwork processes. Since there are a lot of
strategies and algorithms for team formation and agent coalition formation, we
want to explain Team Formation from a more conceptual point of view, focusing
on the inputs, the outputs and the requirements of the Team Formation process,
rather than describing how the process is carried on in the ORCAS implemented
infrastructure, addressed in Chapter 6.

5.5.1 Task allocation

Task allocation is the process of selecting a group of candidate agents to form
a team, such that their aggregated competence satisfies the requirements of the
problem at hand. This process follows the task decomposition structure defined
by a task-configuration to know which are the tasks to be allocated, and looks
for candidate agents that are suitable to solve each task.

Task-allocation can be performed by a middle agent, facilitated by it, or
distributed among several agents. Since the ORCAS implemented infrastructure
aims at minimizing agent requirements and facilitate teamwork, the ORCAS
infrastructure relies upon middle agents to support both providers and requesters
of capabilities during the CPS process. Specifically, the ORCAS infrastructure
provides a kind of broker called Team-Broker, which is able to form teams on-
demand, according to a task-configuration.
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Team-Role i
Task: T
Capability: C

Team-Role i

Candidate agents

PSA: Problem Solving Agents
PSAC: PSA equipped with C

Figure 5.17: Task allocation

A team is defined as a hierarchy of team-roles derived from a task-
configuration. Each subtask within a task configuration defines a team-role
that should be played by someone, and more specifically, at least one agent
must commit to each team-role in order to complete the task allocation process.
Candidate agents are those than in addition to be equipped with the capability
required for a team-role, accepts to play that team-role.

Figure 5.17 shows the task-allocation process as a filtering process. From
the Problem-Solving Agents (PSA) available, only those equipped with a team-
role’s capability are potential candidate. At the end, only the agents accepting to
play a team-role with the specified requirements (the capability and the domain-
knowledge to use in order to solve the team-role’s task) become candidate agents.
The Task Allocation process proceeds until there are candidate agents for all the
team-roles composing a team. In the example, there are three agents equipped
with the required capability (C), which become potential candidates. In the end,
only two agents have accepted to play that team-role.

Although we avoid establishing a model of commitment based on mental at-
titudes (joint intentions, joint commitment) some model of agency is required
to implement the CPS process. Herein we will rely on a weak notion of agency,
specifically, an implicit model of commitment will be assumed. From this ap-
proach, commitment is implicit in the act of accepting a team-role proposal;
in other words, when an agent accepts a team-role proposal during the team
selection process, one assumes that the agent is committing to achieve the corre-
sponding task using the selected capability, as specified in the task-configuration.

In the ORCAS implementation of an agent infrastructure supporting the
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Team Formation process, task allocation is a responsibility of the Team Bro-
ker role. Although individual agents may be self-interested, we assume that
there is a global interest for the team to offer together a good service, and thus,
some service provided by the infrastructure to select appropriate agents appears
as an interesting feature, for instance, selecting the agents with lower workload,
or agents with a cheaper cost, depending on the preferences specified for the
problem at hand.

In the ORCAS infrastructure, a Team-Broker role is defined that is able to
obtain candidate agents by using a task configuration as the source to generate
team-roles, and sending team-role proposals to potential candidate agents. The
agents receiving a team-role proposal can autonomously decide to agree, to refuse
the proposal, or to make a counter-proposal. The Team-Broker role has to wait
until all the available agents have answered or a time-out is reached. Candidate
agents will be used to select the members of the team, as explained in the next
subsection.

5.5.2 Team selection

Team selection is the process of selecting a set of team members from the col-
lection of candidate agents obtained during the task-allocation process.

The result of the Team Selection process in ORCAS is a team-configuration,
which results of instantiating the abstract team-roles of a team model with
specific agents selected from candidate agents. A team-configuration is obtained
by selecting a group of agents, and optionally some reserve agents, for each
team-role. All agents selected and kept in reserve for some team-role become
team-members.

A team-configuration is complete when all the team-roles composing a team
(Definition 5.4) are complete:

Complete(Team(r°, Conf(k))) <= Vr € Team(n°,Conf(k)): mags # 0

where 74, is the set of agents selected to play team-role m. Otherwise
Team(m,Conf(k)) is partial. In other words, a team-configuration is complete
when there are agents selected to play all the team-roles composing a team.

Figure 5.18 shows an example of a team-configuration. In particular, this
example shows a team-configuration for a team that has to solve the Information-
search task. Some team-roles are assigned a single agent (TR1, TR2, TR5, TR6),
while other team-roles have several agents selected (TR3, TR4 and TR7), besides
some team-roles include reserve agents (TR1, TR4). In some cases, the agent
selected to apply a task-decomposer has to delegate all the subtasks to other
agents (TR1), while in other cases the task-decomposer agent is assigned some
(or all) of their own subtasks (TR5).

A second goal of team selection is to decide the scenes to be used between
agents requiring some communication. Since ORCAS teams are hierarchically
organized, every interaction occurring during the Teamwork process involves an
agent playing a task-decomposer team-role and acting as the coordinator, and



5.5. Team Formation 157

TR1
(Information
Search)

TR5
(Aggregate)

TR2
(Elaborate (Customize ;
Query) (Retrieve)

Query)

Selected Agents
Reserve Agents

Figure 5.18: Example of Team-configuration

(Elaborate-Iltems (Aggregate-ltems)

one agent playing a subordinated team-role (there is one subordinated team-role
for each subtask). The coordinator is responsible for decomposing the problem
and delegating the subtasks to the agents selected for a subordinated team-role,
distributing data to other agents, receiving back the results, and performing
intermediate data processing between subtasks.

Team selection in the ORCAS Operational Framework can use different se-
lection criteria and can be carried on according to different strategies and in-
teraction protocols. There are just a few requisites imposed by the ORCAS
operational framework to be satisfied by the Team selection process:

e Selecting at least one agent for each team-role, except when there are alter-
native team-roles, since then, an agent selected for any of the alternative
team-roles is enough.

e Selecting a scene for each team-role, such that the scene is shared by both
the agent willing to play the coordinator team-role, and the agent willing
to play the operator team-role. In other words, two agents must share a
common scene in order to communicate.

e Optionally, non-selected candidate agents can be kept as reserve agents for
the case the selected ones could not achieve their task.

In the ORCAS infrastructure, described in Chapter 6, the team selection
process is performed through an auction-like protocol driven by the Team-Broker
role.

Figure 5.19 sums up the process of choosing the communication scenes to
be used for each team-role. First of all, one or more agents are selected to play
every team-role. Secondly, a single scene is selected for every team-role. These
scenes are selected from the scenes shared by both the agent willing to act as the
operator, and the agent willing to act as the coordinator. In the example, agent



158 Chapter 5. The Operational Framework

Team-Role 1
Subteam: TR2, TR3, TR4, TR5

A

.

Team-Role 5
Selected: B
Communication:

Subteam: TR8, TR7

|

Team-Role 7

Selected: A
Communication: ? B
camm

Figure 5.19: Choosing communication scenes during the team selection process

B is selected to play the operator role (Team-Role 7), and agent A is selected to
play the coordinator role (Team-Role 5). The scene specifying the communication
between both roles is selected from the intersection of the communication scenes
supported by both agents, and is assigned to the communication slot of Team-
role 1 (the one playing the operator role).

Summarizing, the result of the Team selection process is a team-configuration,
a hierarchical structure of interrelated team-roles complying with a task-
configuration. Each team-role within a team-configuration defines the follow-
ing elements (Definition 5.1): a task to be achieved; a capability to achieve the
task; a set of agents selected to play the team-role; a set of agents to keep in
reserve; a communication scene specifying the interaction protocol; optionally,
the domain knowledge to be used by the capability; and finally, if the capability
is a task-decomposer, a team-role must include a subteam feature describing the
team-roles subordinated to this team-role (see §5.3.1), and specified as team-
components (Definition 5.2).

Although there are multiple strategies allowed by the ORCAS framework to
assign agents to team-roles (to allocate tasks to agents), there are some general
considerations to take into account.

On the one hand, agents can play more than one role in a team and thus
they can be selected to occupy several positions. Consequently, an agent playing
both a task-decomposer team-role and some of the subordinated team-roles can
reduce communication costs by performing the tasks assigned to both the task-
decomposer and the subordinated roles. However, agents may be selected taking
into account their workload, in order to balance the global performance of the
MAS, that can be performing multiple tasks in parallel.

On the other hand, the ORCAS approach aims at exploiting the information
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Figure 5.20: Representing control-flow in a performative structure

provided by the operational description of a task-decomposer to know which
are the task dependencies. This information can be used when selecting the
agents that will play each team-role, trying to increase the possibility of success
and improving the overall team performance. We consider four types of task
relationships that can be very useful during the Team Formation process, namely
sequences, choices, parallelism and multiple-instances.

In order to characterize the task relationships involving a group of alternative
(choices) or parallel tasks, we will use the term “fade-in” transition to refer to
an initial transition agents are forced to traverse before performing any of the
tasks in the group, and the term “fade-out”is used to denote the transition
agents must reach in the end, after performing any of the tasks. The fade-in
transition has outgoing edges going to the alternative/parallel tasks, and the
fade-out transition has incoming edges coming from all these tasks. We describe
below the four types of relationships considered within the ORCAS framework,
and discuss briefly the way they can be used to improve the Team Formation
process:

o Sequences (Figure 5.20.a) are defined among tasks than should be solved
one after another. Usually, two tasks should be performed sequentially
when there is some data dependencies between them (the output of one
task is the input of another task). Tasks to be performed sequentially
have an AND transition between them. Sequential tasks do not allow
parallelism, therefore it is not advantageous to select different agents to
solve them. The agent selection criteria for sequential tasks is independent
from the other tasks.

e Choices (Figure 5.20.b) are used to define alternative tasks to choose from.



160 Chapter 5. The Operational Framework

An agent faced with a set of alternative tasks can choose any of them to
progress through the performative structure. Choices are specified by a set
of alternative tasks preceded by an OR (fade-in) transition and followed
by an OR (fade-out) transition too. There are an outgoing edge from the
fade-in OR transition to each alternative task, thus an agent traversing
that transition can move to any of the following tasks by choosing one
among the outgoing edges. The OR transition after the alternative tasks
allow an agent having performed some task to progress through it without
waiting for agents performing other tasks. In general, one single agent
is sufficient to allocate a set of alternative tasks, since only one task is
strictly to proceed further. However, some times may be useful to try
several alternative tasks and then retain the result of only one task, for
instance, the first finished task. Therefore, when there are candidate agents
for several alternative tasks, it might be interesting (though not necessary)
to select agents suitable for several alternative tasks.

e Parallelism (Figure 5.20.b) means that several tasks must be performed in
parallel. Parallel tasks are represented between an AND fade-in transition,
an AND fade-out transition, and several outgoing edges connecting the
fade-in transition to every task. All the tasks between the fade-in and
fade-out must be performed in parallel. The fade-in (AND) forces agents
traversing it to follow all the outgoing edges. The fade-out transition
(AND) ensures that all the tasks to be performed in parallel have finished
to allow agents to proceed further. In order to exploit parallelism the
Team-Formation process should select different agents to perform parallel
tasks.

o Multiple instances (Figure 5.20.b) means that a task can be performed mul-
tiple times in parallel. Multiple instances are represented by overlapped
tasks within an ORCAS performative structure. For example, the Retrieve
task appears within the Meta-search task-decomposer’s operational descrip-
tion as allowing multiple-instances. This is due to the fact that Retrieve
takes a single query as input, while the previous task (Customize-Query)
produces a set of queries. For this reason the Retrieve task must be repeated
for each query produced by the Customize-query task. Since multiple in-
stances of a task may be solved in parallel, it could be beneficial to assign
several agents to that task.

5.5.3 Team instruction

Team Instruction is the process of informing each team member about all the
information they need to play their team-roles during the Teamwork process.
Team-roles have been defined in Section §5.3, and we have stated that team-
role structures are used during the Team Formation process not only to send
proposals to join a team during the task allocation process, but also to instruct
team members on the tasks they have to solve, the capabilities to apply, and all
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the information required to communicate with other team-members. Specifically,
we use team-roles to inform an agent willing to apply a task-decomposer on
which tasks to be delegated to other agents, to whom, and which communication
scenes to use. A useful distinction is established distinguish between team-roles
assigned to a skill, and team-role assigned to a task-decomposer.

Figure 5.21 shows an example of a team-role endowed with a skill. This
team-role is associated to the task Elaborate-query, and specifies that the ca-
pability Query-elaboration-with-thesaurus, which is a skill, should be applied for
solving Elaborate-query. Furthermore, that skill has to use the domain knowledge
characterized by the MeSH thesaurus domain model.

Team-Role

Task Elaborate-Query

Team-Id Team-23

Role-1d Role-2

Capability Query-elaboration-with-thesaurus
Domain-Models MeSH-Thesaurus

Figure 5.21: Team-role example for a skill

Figure 5.22 shows an example of a team-role endowed with a task-
decomposer. This team-role corresponds to the Information-search task, which
is bound to the Meta-search capability. This capability is a task-decomposer
introducing four subtasks: Elaborate-query, Customize-query, Retrieve and Aggre-
gate. Therefore, the subteam for this capability has four team-components, one
per subtask. Each team-component in the sub-team identifies both the agents
selected to solve one of the subtasks, the agents to keep in reserve for each sub-
task, together with the task and the identifier of the team-role associated to
that task. For instance, in Figure 5.22, the Red agent is selected to play the
role assigned to the Elaborate-query task, while the Green agent is kept in re-
serve. However, sometimes it is desirable to allocate the same task to several
agents. In that example there are two agents selected for the Retrieve task, Red
and Blue, because that task may be executed multiple times while applying a
meta-search capability: the task Retrieve takes a single query as input, while
other tasks that are executed previously (Elaborate-query and Customize-query)
usually output several queries; thus the task Retrieve has to be performed once
for each query. Since these multiple executions may be carried over in parallel, it
can be beneficial to distribute the multiple instances of the task among different
agents.

The information provided by a team-role to a team-member agent during the
team instruction process is used in the following way: an agent being requested
to perform a task is provided with a team-identifier and a team-role identifier,
so as to allow that agent to retrieve the information about the requested team-
role from his local knowledge base. First of all, the agent checks whether is it
committed to that team-role or not. Following, the agent finds out whether the
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Team-Role

Task Information-Search

Team-Id Team-23

Role-1d Role-1

Capability | Meta-Search

Subteam
Subtask Role-Id Selected Reserve
Elaborate-quey Role-2 Red Green
Customize-query Role-3 Red Yellow
Retrieve Role-4 Red, Blue
Aggregate Role-5 Blue Cyan

Figure 5.22: Team-role example for a task-decomposer

team-role’s capability is a skill or a task-decomposer. If the team-role capability
is a skill, then the agent applies that skill and sends the result back to the
requesting agent. Otherwise the capability is a task-decomposer, and the agent
has to check the team-role subteam to find out whether it has to delegate some
subtask to another agent. This information is provided by team-components; if a
team-component has selected agents different of himself, then the corresponding
subtask must be delegated to that agent. The communication scenes to be used
are also specified by the team-components.

To sum up, the team instruction process provides team-members with all the
information they require activity to cooperate with other team-members during
the Teamwork process.

5.6 The Teamwork process

The Teamwork process comprehends all the activities a team must carry out to
solve a problem. In ORCAS the Teamwork process aims at solving a problem
according to its requirements. In order to do that, during the Team Formation
process a group of agents have joined a team by committing to some team-roles.
The resulting team is customized for the problem at hand, since it is based on a
task-configuration satisfying the stated problem requirements. Team members
have been instructed on the tasks they have to solve (one task for each team-
role), and on the capabilities they must apply to solve each task.

Whilst the Knowledge-Configuration process operates over static information
describing agent capabilities from an abstract view, the Teamwork process has
to take into account the dynamic nature of the environment. A team solving a
problem in a real environment has to deal with events and conditions occurring
at runtime, which may difficult the achievement of the team goals, e.g. excessive
workload, agent failures or communication problems.

A team is composed of a task-coordinator playing a task-decomposer team-
role, and a sub-team. The sub-team coordinator has to apply a task-decomposer
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capability to achieve its goals. The operational description of a task-decomposer
describes the control flow over subtasks as a performative structure (§5.4.3).

The performative structure describing a task-decomposer’s operational de-
scription is specified as a network of interrelated scenes, one for each subtask.
Each scene requires at least two agents to be carried out: a coordinator, which
is played by the agent assigned to the task-decomposer team-role, and one agent
assigned to a subordinated team-role and playing the operator role. The for-
mal scenes describing the communication required to achieve each task have
been decided during the team selection process (§5.5.2). Consequently, in order
to apply a task-decomposer, the coordinator agent has to initiate the different
scenes while following the performative structure.

Elaborate Aggregate
Items (EI) Items (Al)

Figure 5.23: Teamwork model for a task-decomposer

Figure 5.23 shows the role flow policy through the performative structure
describing the operational description of a task decomposer. Specifically, this
figure shows the operational description of the Aggregation capability, which is
bound to Team-role 5 (TR5), together with the paths to be followed by the agents
selected for this team-role and the subordinated team-roles: TR6, TR7. The
Aggregation capability is a task-decomposer introducing two subtasks: Elaborate-
items (TR6) and Aggregate-items (TR7). We note AT% as the agent selected to
play Team-Role i. All the agents begin at the Start scene, and then:

1. ATE> and ATHS move from the Start scene to the Elab.ltems (EI) scene;
ATES adopts the Coordinator role (x:Coord), while ATT6 takes the Op-
erator role (y:Op). Both roles are required to perform the scene, so the

edge going from the first transition to this scene is a conjunction of them
(x:Coord, y:Op).

2. ATET moves from the Start scene to the Ag.ltems(Al) by taking the Opera-
tor role (z:0p) and waiting AT at the AND transition placed between the



164 Chapter 5. The Operational Framework

Elab.ltems scene and the Ag.ltems scene. AT%5 gets to that AND transi-
tion after playing the Coordinator role at the Elab.Iltems scene (x : Coord).
The AND transition forces the incoming agents (z : Coord,y : Op) to
synchronize before proceeding to the Ag.ltems scene. As we can see in the
picture, after crossing that transition, both agents continue playing their
previous roles, ATF5 as Coordinator, and AT%7 as Operator.

3. Agents acting as operators can leave the performative structure just af-
ter finishing the scenes they have participated in. In particular, AT S
and ATE7 can move to the End scene through an OR transition from the
Elab.ltems and the Ag.ltems scenes respectively. However, the Coordinator
role cannot abandon the performative structure until all the scenes have
finished.

Teamwork is guided by a task-decomposer performative structure. Since
some subordinated team-roles are also assigned to task-decomposers, new per-
formative structures should be initiated when an agent assigned to a task-
decomposer is requested by his coordinator. Therefore, the Teamwork process
can be modelled as a nested structure of performative structures. There is one
performative structure for each task-decomposer, starting from the top team-
role.

Customize-query Retrieve

Information search

Metasearch .- '

Elaborate-
Items

Figure 5.24: Teamwork model for a team

Figure 5.24 sums up the specification of the teamwork activity as a nested
structure of performative structures. Notice that there is a performative struc-
ture for each task-decomposer in the task-configuration and one scene describes
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the interaction protocol required to delegate one task to another agent. The
performative structures indicate which roles are required to play each scene, and
the dependencies among scenes, e.g. some scenes must be finished before start-
ing another scene, other scenes can be performed in parallel, or an scene can be
instantiated multiple times in parallel. Moreover, the agent acting as the coor-
dinator within a performative structure is as well holding the information about
the team mates assigned to its subtask, specified within its team-role subteam
(Definitions 5.1 and 5.2). The coordinator agent can initiate each scene at the
right moment by contacting the agent or agents assigned to the corresponding
team-role and following the selected scene. The agents playing some team-role
must wait until a new scene is initiated by the coordinator. Moreover, a perfor-
mative structure can include choice points that give the coordinator alternative
paths to follow. It is a design decision to develop complex task-decomposers with
many alternatives or to build many simpler decomposers with few alternatives
or no alternatives at all.

The teamwork process follows the hierarchical structure of the task-
configuration, decomposing a task into subtasks when there is a task-
decomposer, and delegating some subtasks to other team members. The team-
work process starts with the team-leader (the agent assigned to the root task
in the task-configuration) having to apply a task-decomposer. The team-leader
starts the team-work process by following the performative structure that speci-
fies the operational description of its task-decomposer. The team-leader engages
in conversations with their subordinated agents in order to delegate them the
subtasks specified in its task-decomposers. A task is delegated by following the
scene specified by a team-role, providing the input for the data to the selected
agent (as indicated by the selected agents feature of the team-role), and receiving
the result for that task.

When a subordinated agent has to apply a task-decomposer itself, it does
the same that the team-leader: delegates subtasks to selected agents and wait
for the results, aggregate the results when opportune and send the global result
to its own coordinator. The process of applying a task-decomposer follows the
performative structure. Since some of the subtasks may be bound to task-
decomposers too, a new performative structure must be carried over for each
task-decomposer. The first performative structure (the one initiated by the
team-leader) cannot finish until the new performative structures are finished.
Therefore, performative structures are nested, a performative structure cannot
finish until any performative structure under it finishes.

When a subtask is allocated to the same agent applying the task-decomposer,
the scene associated to that task in the performative structure is skipped, since
there is no need for communication. Instead, the agent solves the subtask himself
by applying the required capability, realize that communicating with himself has
no sense.

When a subtask is allocated to another agent, the agent applying a task-

decomposer initiates the scene specified in the team-component associated to
that subtask by sending the first message. For instance, if the scene specifies a
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Request-Inform protocol, then the coordinator sends a request with the following
information:

1. a team identifier;
2. a team-role identifier;

3. the input-data required by the subtasks associated to that team-role

All this information is included within an object of the sort Perform, as
defined in the Teamwork ontology 5.6.

5.7 Extensions of the Operational Framework

The Cooperative Problem Solving process already presented has some limitations
that arise when addressing runtime time dependencies among tasks and dynamic
events altering the expected outcome of the Teamwork activity.

On the one hand, two common perturbations in the CPS process came from
agent failures (i.e. an agent is unable to achieve a task) and communication
errors (e.g. a message does not get to its destination). Since Team Formation
can assign reserve agents, some times it is still feasible to resume the CPS process
after an agent failure, without reconfiguration, by requesting reserve agents to
play the associated team-role. However, sometimes there are no reserve agents to
perform the unfinished tasks, and then a reconfiguration mechanism is required
to look for agents equipped with alternative capabilities (i.e. other capabilities
suitable for the task at hand and compatible with the problem requirements if
possible).

On the other hand, some tasks may need or may benefit from information
obtained at runtime in order to be configured. A task is configured by selecting a
capability suitable for it, binding the capability to the task, and recursively con-
figuring the subtasks of the capability when it is a task-decomposer. Sometimes,
the selection of one capability or another may be improved or requires some in-
formation obtained at runtime. Therefore, the Knowledge Configuration process
should be delayed for those tasks until the required information is obtained. In
order to configure those tasks, we allow a capability to produce information to
be used by the Knowledge Configuration process, such as a new precondition
stated to be true, a new postcondition to be achieved, or a new domain model
characterizing new domain knowledge (some capabilities may generate domain
knowledge).

A more flexible CPS process is required to deal with such situations; there-
fore, we introduce some extensions to the CPS process that consist in different
ways of interleaving the Knowledge Configuration, the Team Formation and the
Teamwork processes.
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5.7.1 Interleaving Teamwork, Knowledge Configuration
and Team Formation

We consider three strategies that interleave Teamwork, Knowledge Configuration
and Team Formation, namely Reconfiguration, Delayed-Configuration and Lazy
Configuration .

Reconfiguration occurs when a task bound to a capability cannot be achieved
by neither the selected nor the reserve agents allocated to it. The purpose of
reconfiguring a task is to find another capability suitable for that task.

| MAS

Problem i Knowledge Configuration
Specification | prablem Configuration :
requirements |
Reconfiguration
| Task- :
Configuration |
Team Formation Teamwork
Problem Team+oles
data

Figure 5.25: Extended model of the Cooperative Problem Solving process

Figure 5.25 shows an extended model of the Cooperative Problem Solving
process capturing the notion of Reconfiguration. If the new capability bound to
the task is a task-decomposer, then their subtasks must be further configured.
A capability satisfying the global problem requirements is required, though a
partial satisfaction criteria can be used instead to allow the Knowledge Configu-
ration to succeed even when a fully satisfactory condition is unreachable. If the
new capability bound to the task is a skill, then the reconfiguration ends there,
otherwise the capability is a task-decomposer requiring a recursive configuration
of the new subtasks.

The Delayed-Configuration strategy is used to hold the configuration of some
task up until some event happens or some information is obtained.

Figure 5.26 shows a capability that performs a Propose-Critique-Modify
method over the Information Search task, by decomposing it into three subtasks:
P-Search (Propose-Search), C-Search (Critique-Search) and M-Search (Modify
Search). The M-Search task is decomposed by the task-decomposer Modify-
metasearch into four subtasks; the first of these tasks, Adapt-query, can be solved
by two skills: Query-generalization and Query-specialization. The selection of one
skill out of the two former skills depends on the result of the P-Search task:
on the one hand, if P-Search obtains too many results then the capability skill
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Figure 5.26: Propose-Critique-Modify Search

Query-specialization is preferred; on the other hand, if the are slender results
that are considered not enough then Query-generalization is better. Otherwise,
the number of results is considered adequate and the task M-Search is avoided.

In order to use the information obtained in runtime at the Knowledge
Configuration process, we have specified the Query-generalization and Query-
specialization capabilities as having different, incompatible postconditions:
Query-generalization includes the postcondition Generalize-query, while Query-
specialization includes the postcondition Specialize-query. There is only one capa-
bility suitable for the task C-Search, Search-assessment. Search-assessment brings
about one of the two former formulae according to whether there are too many
results for the query, or there are not enough results as to be useful. Furthermore,
if the number of results obtained for the task P-Search is considered adequate,
Search-assessment outputs a different formula expressing that condition, so as to
allow the coordinator realize the task M-Search can be omitted.

The coordinator of a task specified as requiring a Delayed-Configuration,
must be aware of the conditions in order to to interrupt and resume the Team-
work process when required, and perform the necessary actions to assure a new
Knowledge Configuration process is initiated using the new conditions bring
about in runtime. Similarly, the coordinator of a task that cannot be achieved
using the current configuration must initiate a new Knowledge Configuration
process in order to find an alternative task-configuration.

In both cases, after a new Knowledge Configuration process is over a new
Team Formation process is required to allocate the new tasks to a new team.
The resulting team acts as a subteam of the original team, taking responsibility
of the team-role corresponding to the task that has just been configured.

In addition, other situations characterized by very dynamic environments
may benefit of a systematic delayed configuration strategy, because it has no
sense to completely configure a task in advance in such a situation, or tasks
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will probably require a reconfiguration too often. We call this strategy Lazy
Configuration. The idea of the Lazy Configuration strategy is to avoid configu-
ration whilst possible, configuring a task just when it is required to be solved.
Lazy configuration is used to handle very dynamic environments that made prof-
itable to gradually configure a task whereas the Teamwork process progresses.
In our implementation of Lazy Configuration, the Knowledge Configuration pro-
cess operates by configuring every time just one level of the task decomposition
structure of a task-configuration. Using this strategy, when a task-decomposer
is bound to a task, each subtask is bound a capability, but the newly introduced
task-decomposers are not further expanded into new tasks. Once a task is con-
figured one-level deep, the Teamwork process runs until a new task-decomposer
has to be applied that introduces some new tasks to be configured, and then the
Knowledge Configuration process should be performed again following the Lazy
Configuration strategy, and so forth for each new task-decomposer going to be
applied. A variation of the Lazy Configuration strategy is the introduction of
variable deep levels during the Knowledge Configuration stage.

An interesting possibility is to perform the different activities of the CPS
process simultaneously. After starting a Knowledge Configuration process using
the Lazy Configuration strategy, perform Team Formation and Teamwork next,
but instead of stopping the Knowledge Configuration process after starting Team
Formation, continue with the Knowledge Configuration while possible, running
in parallel with the Team Formation and the Teamwork processes, in such a way
that when the Teamwork has to solve a task that is bound to a task-decomposer,
the task will be already configured. We call this strategy far-sighted strategy.

The consequence of introducing these variations is a greater flexibility of the
original model of the CPS process to handle different kind of scenarios, though
the more flexible the configuration strategy is, the more communication activity
is required.

5.7.2 Operational scenarios: dimensions and some proto-
typical scenarios

This subsection will draft a future work discussion on dimensions that may
constrain the application of the ORCAS framework, and some typical scenarios
that can fit well in the ORCAS framework.

The autonomy dimension deals with the degree of autonomy possessed by
agents. Very autonomous agents are designed for distributed control approaches
in which agents keep local control during most of the problem solving process.
In addition to decide the commitment to a team-role, autonomous agents may
prefer to decide by themselves the plans to use for achieving the goals of a team-
role, i.e. configure a task by himself, and deciding when and whom to delegate
a task. On the other hand, agents may prefer to delegate some activities of the
cooperative process to specialized agents, like brokers and matchmaker agents.
Team Formation and Teamwork strategies may adopt a wide range of strategies
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according to the degree agents keep local control during the problem solving
process. While a distributed control approach is more appropriate for dynamic
environments and real-time applications, a more centralized control is better
suited for a service-oriented model of the CPS process. The ORCAS Operational
Framework is neutral about the autonomy dimension. We are not specifying here
which agents are responsible for configuring a task or forming a team. Later,
in Chapter 6, an infrastructure for developing and deploying agents according
to this framework is presented. This infrastructure is based on the electronic
institutions approach, which adopts and external view and is based in the idea
of standardized patterns of behavior called agent roles.

Distributed control approaches may be implemented over this infrastructure
by equipping problem solving agents with the capabilities and the permissions re-
quired to play institutional roles: the Knowledge-Broker, responsible for config-
uring a task during the Knowledge Configuration process, and the Team-Broker,
responsible for selecting and instructing agents during the Team-Formation pro-
cess. Although we have initially defined the Knowledge Configuration process
and the Team Formation process as being entirely completed before moving to
the following stage, we have presented also some extensions of the Operational
Framework that allow to interleave all the processes involved in the CPS pro-
cess: Knowledge Configuration, Team Formation and Teamwork. Specifically,
the combined use of the Lazy Configuration strategy during the Knowledge
Configuration process and the adoption of the Knowledge-Broker and Team-
Broker roles by problem solving agents covers most of the existing distributed
approaches to team formation with autonomous agents.

The ORCAS implementation of an agent infrastructure (Chapter 6) aims
to support agents developed by third parties to partake in the CPS process,
and thus there are institutional agents equipped with the reasoning abilities
required to configure tasks and form teams. However, it does not imply that
control is centralized in a classical sense, it rather means that requesters and
providers are mediated by institutional agents facilitating their work. From a
service oriented or a component-based software development (CBSD) approach
(e.g. “off-the-shelf” components), providers (problem solving agents) may
be interested on cooperating with other agents and relying on institutional
agents to carry out the Knowledge Configuration process and drive the Team
Formation process. The point is that in these approaches the global interest
represented by the problem requirements or the user preferences is usually
favored against the interest of individual capability providers. The institutional
agents included in the ORCAS infrastructure bring an added value to both
the requesters and the providers of capabilities, freeing them of complex and
computationally intensive tasks like configuring a task or selecting the members
of a team. Therefore, this facility promotes a light-weight approach to agent
development, and is oriented towards compositional software development
approaches in which applications are composed rather than constructed, by
reusing existing components (agent capabilities and domain knowledge).
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The openness dimension deals with the capacity of integrating external
agents and other components (like knowledge repositories, databases and Web
services). Open agent societies allow external agents to joint the society on
runtime, on a dynamic basis, without having to recompile the system code.
Openness is also related to the maintenance, extensibility and adaptiveness of a
system, since a system can be modified or extended by incorporating or elimi-
nating agents. Open agent systems are designed to facilitate the integration of
heterogenous agents provided by different developers. However, the greater the
openness, the greater the complexity.

A main topic concerning this subject is the management of ontology mis-
matches, that is to say, allowing agents to use different ontologies and handling
the mapping required to translate concepts from one ontology to another. Con-
nectors between components can be introduced to implement ontology mappings;
like the bridges proposed in the UPML software architecture [Fensel et al., 1999].
In the current implementation of ORCAS we are using a common ontology to
avoid ontology mismatching and focus on other aspects such as the coordination
of agents. Nonetheless, the ORCAS Abstract Architecture is well suited o intro-
duce such kind of components, indeed, because of the conceptual decoupling of
tasks, capabilities and domain models. In ORCAS connectors could be inserted
between capabilities and domain-models, and between tasks and capabilities as
well. The use of connectors in ORCAS would has two dimensions: a knowledge-
level specification, which allows to match components specified with different
ontologies; and the implemented counterpart, which allows semantically (or syn-
tactically) heterogeneous agents to interoperate during the Teamwork process.

To sum up, both the configuration and the coordination of agent teams can
be distributed using the same basic model of the Cooperative Problem Solving
process. Current research on coalition formation algorithms use distributed
algorithms to deal with the combinatorial nature of this class of problems.
Optimal anytime coalition structure generation algorithms has been devised
[Shehory and Kraus, 1998, Sandholm et al., 1998, Larson and Sandholm, 2000].
Some minor modifications of the ORCAS framework are required to support
a distributed approach to the Knowledge Configuration and the Team For-
mation processes. In a distributed scenario, agents should consider both
task-dependencies and problem requirements when configuring a task. Since
independent agents have a partial view of the problem, cooperation and coordi-
nation with other agents to look for an optimal global solution would be required.

We consider now some prototypical scenarios that may fit into the ORCAS
framework for the Cooperative Problem Solving process: the Agent Factory
model, the Service Orchestration model, and the Contractual Agent Society.

The Agent Factory model is based on a notion of production factories, and
has been proposed as a design pattern by the Object Oriented Programming
(OOP) community. The idea is to assemble existing components to build cus-
tomized solutions. This model fits well with the “Off-the-Shelf” Components
approach to software development and shares some similarities with the Soft-
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ware Configuration community. Concerning agents, the Agent Factory model
can be applied to build agents or teams on-demand, according to some existing
requirements, rather than forming a team from a set of pre-existing agents. We
consider two approaches to the Agent Factory model:

e building and assembling team-specific agents from elementary components;
e instantiating and coordinating generic agent types.

In the first approach, agents can be as complex as necessary in order to
minimize the number of agents participating in a team, so as to reduce commu-
nication overhead. In the second approach, agents are pre-built, though they
can be somehow parameterizable. While the first approach favors Teamwork,
the second one speeds up Team Formation.

The Service Orchestration model refers to the activities required to select,
compose and execute several Web services to achieve a global task. The Ser-
vice Orchestration model proposed by the Semantic Web Services approach has
similar goals and shares many similarities with the ORCAS framework when com-
paring services against capabilities. Semantic Web services can be conceptually
described as capabilities in ORCAS. The DAML-S ontology defines the following
aspects of a service: a profile that brings the information needed by service-
seeking agents to determine whether the service meets its needs; an process
model on how does the service works, which should facilitate service composi-
tion and monitoring; and the grounding, which specifies the way to invoke and
interact with a service:

@ provides

presents

describedBy

How to access it
What the service
does

How it works

Figure 5.27: Service description according to DAML-S

Figure 5.27 shows the main elements of a service description according to
the DAML-S ontology [The DAML-S Consortium, 2001]. All these aspects of a
service have an equivalent in ORCAS:
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DAML-S Agent activities ORCAS ACDL

Profile Discovering (matchmaking) | Inputs, outputs and compe-
tence

Grounding Invocation and Execution Communication

Operational Composition and Interoper- | Subtasks and operational de-

model ation scription

Table 5.1: Comparison of the ORCAS ACDL and DAML-S

e The aspects playing the role of the profile are provided by the knowledge-
level description of capabilities.

e The purpose of communication of a capability is equivalent to the ground-
ing of a service.

e The operational-description addresses the same features covered by the
process model of a service.

Table 8.1 summarizes the relation between the features characterizing a ca-
pability in ORCAS, the features proposed to describe agent-enabled semantic
Web services in the DAML-S ontology [The DAML-S Consortium, 2001], and
the kind of activities these features are required for [Bansal and Vidal, 2003,
Bryson et al., 2002, Park et al., 1998, Payne et al., 2001].

Due to these similarities between the Semantic Web Services (SWS) approach
and the ORCAS framework, we think the ORCAS framework could be easily
adapted to work upon SWSs as the providers of capabilities. Moreover, the use
of agent wrappers over SWSs will allow the full integration of SWSs and agents
within the ORCAS infrastructure.

The proposed Contractual Agent Society (CAS) model [Dellarocas, 2000] re-
lies on a contractual agreement strategy for trusting agent interaction. Both
providers and requesters of a service must agree upon the conditions associated
to the provision of a service. Both the requesters and the providers have to
comply with the conditions established by the contract, moreover, the contract
specifies also the consequences of violating those conditions. The idea of using
contracts fits well with the electronic institutions approach, in fact, we are con-
sidering as future work the introduction of what we call “terms of commitment”
(Chapter 8), as a mechanism to agree upon by team members when accepting a
team-role. This feature remains for the future work. e-Commerce applications
like supply chains, auctions and e-markets are all based on contracts, therefore
these applications are good candidates to apply the ORCAS framework.

5.8 Conclusions

Starting with a general set of requirements, we have stated the operational in-
formation to attach to the knowledge-level description of capabilities in order
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to become a full-fledged Agent Capability Description Language: the commu-
nication requirements of any capability, and the operational description of task
decomposer capabilities. We have proposed electronic institutions concepts to
specify such aspects of a capability. Specifically, communication requirements
are specified as scenes —interaction protocols— and dialogic frameworks. More-
over, performative structures are used to specify the operational description of
a task-decomposer.

The ORCAS infrastructure has been designed and implemented as an elec-
tronic institution. Actually, the ORCAS infrastructure can be seen as a meta
institution where dynamic problem-solving institutions are configured on-the-fly,
according to stated problem requirements. Some elements from the electronic in-
stitution formalism have been incorporated as components of the ORCAS Agent
Capability Description Language. These elements —scenes, dialogic frameworks
and performative structures— are defined for each capability, and are composed
during the configuration of an agent team, which is done in two steps: first
a task-configuration is obtained that specifies the competence required for a
team to comply with stated problem requirements, and second, a team of agents
is formed according to the task-configuration and ensuring that all the agents
involved can interoperate by sharing a common institutional framework: com-
munication language, ontologies, and interaction protocols (scenes).



Chapter 6

The Institutional
Framework

This chapter describes an open agent infrastructure to develop and
deploy MAS according to the ORCAS framework. This infrastructure
is an electronic institution where problem solving agents meet to
form teams and solve problems on-demand, according to the ORCAS
model of the Cooperative Problem-Solving process.

6.1 Introduction

This chapter presents a particular implementation of the Knowledge Modelling
Framework and the Operational Framework as an electronic institution, which
is called the ORCAS e-Institution. The ORCAS e-Institution is an infrastructure
for developing and deploying cooperative Multi-Agent Systems that supports
both providers and requesters of capabilities along the different stages of the
CPS process.

We have already presented a model to configure a MAS at two layers: the
knowledge layer, called Knowledge Configuration, and the operational layer,
called Team Formation. Moreover, we have presented a framework for the exe-
cution stage of the CPS process, that we call Teamwork.

This chapter describes an open agent infrastructure designed to use the OR-
CAS KMF as and Agent Capability Description Language, according to the
two layers configuration model. The goal of this infrastructure is to allow the
development and deployment of open, reusable and configurable Multi-Agent
Systems:

e Open: agents can be created in multiple programming languages and in-
terface with existing legacy systems.

e Reusable: tasks and capabilities are declared in a domain-independent way
using its own domain-independent ontologies

175
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e Configurable on-demand: components (capabilities and domain knowl-
edge) are selected according to problem requirements and user preferences

During the rest of the chapter, and after a general overview of the ORCAS
e-Institution in §6.2, we are going to review its dialogic framework §6.3, perfor-
mative structure §6.4, and the communication scenes §6.5, in this order.

6.2 Overview of the ORCAS e-Institution

The ORCAS e-Institution acts as a mediation service for both clients and
providers of capabilities. Both requesters and providers of capabilities are ruled
by well defined interaction protocols (scenes), and mediated by institutional
agents that reason about application tasks, agent capabilities and problem re-
quirements using the ORCAS KMF as the Agent Capability Description Lan-
guage. The ORCAS e-Institution is used to configure a MAS for a particu-
lar problem, which involves all the stages of the Cooperative Problem Solving
process as described in the Operational Framework: Knowledge Configuration,
Team Formation and Teamwork. The configuration of the MAS includes the
Knowledge Configuration and the Team Formation process, and the result is a
customized team of agents that is tailored to solve a specific problem according
to its requirements. ORCAS teams are created and instructed to solve specific
problems by obtaining a knowledge level configuration (a task-configuration) in
terms of goals to achieve (represented as tasks), the competence (the capabilities)
required by team members to achieve those goals, and the domain knowledge
(satisfying the assumptions of the selected capabilities).

L | )

User D=i—i Problem Solving Agents
~

I ORCAS e-Institution e

Personal ”
Assistant

REQUESTERS MIDDLE AGENTS PROVIDERS

Figure 6.1: The ORCAS e-Institution as a mediation service between requesters
and providers of capabilities

The ORCAS institutional framework is based on a client-server architecture
extended with the notion of middle-agents [Decker et al., 1997b]. This model
involves three kind of agents: providers, requesters and middle agents.
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e Providers: agents providing specific capabilities to solve application tasks.
In our architecture we call them Problem-Solving Agents (PSA).

e Requester: human or software agents requesting to solve a problem. We
have included a class of agent called Personal Assistant to act on behalf of
a human user. The Personal Assistant frees users of knowing the technical
details needed to interact with other agents.

o Middle agents: agents mediating between requesters and providers. These
agents are responsible for finding providers and instructing them to solve a
problem. We consider three classes of middle agents: librarians, knowledge-
brokers and team-brokers. Librarians act like a “yellow pages” service.
They are dynamic repositories of agent capabilities, providing the link be-
tween the knowledge layer (task-configurations) and the operational layer
(agent teams). Knowledge-brokers are able to obtain configurations of the
MAS in a declarative manner, according to a problem specification. Team-
brokers deal with the operationalization of a configuration, which consist
in forming a team of problem solving agents with the capabilities required
by a task-configuration.

PA K-Broker
Knowledge
Configuration

T-Broker

Problem
specification

Teamwork

Team
Formation

Librarian

Registering &
Deregistering

Figure 6.2: ORCAS e-Institution: main agent roles and activities where they are
involved

Figure 6.2 shows the main agent roles that can be played by agents partici-
pating in the ORCAS e-Institution: Personal Assistant, Problem Solving Agent,
Knowledge-Broker, Team-Broker, and Librarian. Bidirectional arrows represent
the communication scenes where agent participate to carry out the different
stages of the CPS process: Registering/Deregistering, Problem specification,
Knowledge Configuration, Team Formation and Teamwork.
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The rest of the chapter explains in detail the ORCAS e-Institution, using the
ORCAS KMF as the ACDL and supporting all the stages of the ORCAS model of
the CPS process (Knowledge Configuration, Team Formation and Teamwork).
Since many elements of the electronic institutions formalism used within this
chapter are described in Chapter 5 (The Operational Framework), we will refer
the reader to the appropriate sections within that chapter when introducing each
element of the ORCAS e-Institution.

6.3 Dialogic Framework

The dialogic framework specifies the ontological elements and communication
language (ACL) employed during agent interactions. A dialogic framework can
be defined either globally, for the entire e-institution, or using one dialogic frame-
work per scene.

There are two kinds of agent roles in an electronic institution: external roles,
than can be played by external agents, and internal, institutional roles. In
our case, we consider as external roles the ones played by both requesters and
providers of capabilities, namely the Personal Assistant (PA) and the Problem-
Solving Agent (PSA) roles. However, middle agents are defined as internal roles,
belonging to the institution: Librarian, Knowledge-Broker and Team-Broker (T-
Broker).

There are five main agent roles in the ORCAS e-institution, namely Personal
Assistant (PA), Librarian, Knowledge-Broker, Team-Broker, Problem-Solving
Agent (PSA), plus two subroles of the PSA role: Coordinator and Operator.

1. Personal assistant (PA): An agent acting on behalf of a human user. This
agent is responsible for mediating between the user request and the services
offered by the application. The PA is able to specify problems in terms
understood by the Knowledge-Broker, that is to say using the ORCAS
KMF meta-ontology and Feature Terms as the object language. Further-
more, the PA is able to interact with the Team-Broker during the Team
Formation process, and to start the Teamwork activity once the team is
formed.

2. Librarian: This agent holds the knowledge descriptions of the reusable
components: tasks, capabilities, domain-models and ontologies. The li-
brary can be dynamically updated or extended with new component de-
scriptions by following a registering/deregistering procedure. Therefore
new agents can enter the system by registering their capabilities to the
Librarian using the ORCAS KMF as ACDL. The Librarian agent is a dy-
namic repository of ORCAS KMF components, allowing other agents or
humans to query about them. Hence, the Librarian can be used as a “yel-
low pages” service, just keeping an up-to-date record of the association
between ORCAS components and the agents that registered them. In the
ORCAS e-institution, the Librarian is queried by the Knowledge-Broker to
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know which are the components available to the Knowledge-Configuration
process.

3. Knowledge-Broker: The purpose of the Knowledge-Broker is to configure

an application for a user (represented by the PA) requesting to solve some
problem. The Knowledge-Broker uses the specification of a problem as an
input to generate a task-configuration: a structure of ORCAS components
matching the problem specification, using tasks, capabilities and domain-
models. The Knowledge-Broker is thus the responsible for performing the
Knowledge Configuration process.

4. Team-Broker: The purpose of the Team-Broker is to operationalize a task-

configuration by forming a team of problem solving agents. A team is a
group of agents committed to solve a problem together, according to a
task-configuration. A team is formed by finding and selecting agents with
the required capabilities, and instructing them to cooperate in solving a
problem together.

5. Problem-Solving Agent (PSA): This role is adopted by the agents willing

to provide some capabilities. Problem-Solving Agents can join or leave the
system dynamically, just registering or deregistering their capabilities to
the Librarian. This is a simple way to make the Librarian aware of the
capabilities available in the system at any moment.

Figure 6.3 shows the agent roles defined by the ORCAS e-Institution. Notice

how they are organized according to the two kinds of agent relationships estab-
lished by the electronic institutions formalism: SSD (dotted lines), and a partial
order relation defined as a subclass relationship (>).

Since the Knowledge Broker, the Team Broker and the Librarian roles are

institutional roles, they are preempted of being adopted by an agent playing
an external —non institutional— role. This SSD policy protects the institution
from being used by external agents to favor themselves in detriment of other
agents. This constraint reinforces the trust of external agents on the institution.

Moreover, we have defined two subclasses of the PSA role, which can thus be

adopted by any agent playing a PSA role: the Coordinator and the Operator.

e The Coordinator role is adopted by an agent playing a task-decomposer
team role and having to delegate some subtask to other agents. Dur-
ing the Teamwork process, any agent having to apply task-decomposer
must initiate the scene specified each subtasks within its team-role sub-
team. Meanwhile, the agents assigned to team-roles associated to a subtask
adopt the operator role. The coordinator is responsible for distributing
problem data and intermediate results among the operator agents, and is
responsible for coordinating them. An agent acting as coordinator follows
the performative structure that specifies the operational description of its
task-decomposer, initiates communication scenes to interoperate with its
subordinated agents, and performs any intermediate data processing when
required.
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Figure 6.3: ORCAS e-institution roles

e The Operator role is adopted by the agents willing to perform a subtask
of a task-decomposer. The agent assigned to the task-decomposer adopts
the coordinator role and is the initiator of the scenes used to interact with
every operator. The operators receive the data they require to solve their
tasks from the coordinator, perform the capabilities assigned to their tasks,
and send back the results to the coordinator.

Both the Coordinator and the Operator roles are dynamically assigned to
PSAs, that is to say, they are not assigned to an agent when it enters the in-
stitution, but during the Teamwork process. An agent playing the PSA role
switches to either the Coordinator or the Operator roles during the Teamwork
stage, according to the following rules: when an agent has to communicate with
another agent playing a subordinated role, the first agent adopt the Coordinator
role and initiates a scene in which the second agent takes the Operator role;
complementarily, if an agent has to communicate with an agent he is subordi-
nated to, he adopt the Operator role on-demand, just after receiving a message
from another agent adopting the Coordinator role.

A PSA can be playing both the Coordinator and the Operator roles simul-
taneously at different scene instances. Since a subtask may itself be bound to a
task-decomposer, the agent selected for such a subtask has to act as the Operator
with respect to the agent he is subordinated to, but before finishing that inter-
action, the same agent may partake in other scenes with its subordinated agents
as operators, and acting himself as coordinator. Figure 5.18 shows an example
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of a team where this condition will happen: the agent selected for Team-role 5
(TR5) is assigned the task Aggregate, which is a subtask subordinated to TR1
(task Information-Search); thus the agent in charge of TR5 has to play the op-
erator role with respect to the agent in charge of TR1. But while engaged in a
scene with the agent playing TR1, the agent playing TR5 has to engage a scene
acting itself as coordinator, while the agent playing TR7 acts as operator, since
TRY is assigned the task Aggregate-items, which is subordinated to TR5.

The Coordinator and the Operator role are not under a SSD relationship,
because an agent can play, as exemplified above, both roles at the same time. As
we explain later concerning Teamwork, during the Teamwork scene 6.5.4, team
members can engage new problem solving scenes when needed, adopting either
the Coordinator or the Operator role according to the subordination relations
established by the hierarchical structure of a team-configuration ?7.

(define-dialogic-framework ORCAS_e-Institution_df as
ontology = (KM-Ontology Teamwork-Ontology Brokering-Ontology)
content-language = NOOS
illocutionary-particles = (request inform accept refuse)
external-roles = (PSA PA)
internal-roles = (Librarian T-Broker K-Broker)
social-structure ((PA ssd PSA)))

Figure 6.4: ORCAS e-institution dialogical framework

Figure 6.4 shows the dialogic framework of the ORCAS e-institution. The on-
tology contains the vocabulary and the concepts used by agents to communicate
when other agents participating in the institution. Any ORCAS e-Institution
comprehends at least three ontologies, the Knowledge-Modelling Ontology, the
Brokering Ontology (describe later, in §6.5.2), and the Teamwork Ontology,
which contain all the concepts required by the different roles of the ORCAS e-
Institution to participate in the institution. Moreover, any application of the
ORCAS e-Institution adds library specific concepts that should be shared by the
agents participating in that application, like the concepts included in the ISA-
Ontology (D), which is used by the agent participating in the WIM application
(87). The content language is NOOS [Arcos, 1997], a reflective object-centered
representation language designed to support systems integrating knowledge-
modelling and learning.

In order to implement the ORCAS framework as an electronic-institution,
we have added some concepts to the Teamwork ontology which are required
by institutional agents to communicate at the different scenes of the ORCAS
e-Institution. These concepts should be understood by both the external and
the internal, institutional agents in order to interoperate. These concepts will
be introduced as needed when describing the different scenes of the ORCAS e-
Institution within this chapter. As we have introduced in Chapter 5, we use
elements of e-Institutions to specify the operational description and the commu-
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nication requirements of agent capabilities; however, these elements should be
distinguished from the ORCAS e-Institution.

On the one hand, the ORCAS infrastructure follows the original electronic
institutions formalism ([Esteva et al., 2002b]) in that is is specified as a fixed
structure of scenes (a performative structure), which are known beforehand.

On the one hand, the communication supported by an agent over a capa-
bility is specified as a scene (§5.4.2), while the the operational description of
a task-decomposer is specified as a performative structure (§5.4.3), but these,
these elements do not make up an electronic institution as conceived in the re-
ferred formalism; instead, they constitute a collection of incomplete performative
structures (recall that scenes are not typed) that are completed (by selecting the
scene types) and composed dynamically during the Teamwork process following
a nested structure. These structures can be seen as special class of electronic
institutions that we like to call dynamic e-Institutions, since they are configured
on-the-fly, according to the requirements of the problem at hand.

Actually, since the nesting of performative structures occurs within the Team-
work scene in the ORCAS e-Institution, the ORCAS e-Institution can be seen as
a meta-institution that defines the environment for the execution of dynamic,
throw-away e-Institutions. This idea introduces becomes a new topic we put off
as deserving further research (Chapter 8).

6.4 Performative structure

The performative structure of an ORCAS e-institution represents the network of
interaction scenes, together with the relationships among scenes, that describe
the paths followed by agents playing some role in the institution. The ORCAS
performative structure contains four communication scenes, plus the Start and
the End scenes, from where agents enter and exit the institution. The main
scenes of this institution are the following:

1. Registering scene: where a PSA can register its capabilities to the Librarian
in order to become available for the CPS process, as well as deregister
when leaving the institution. The registering/deregistering process keeps
the Librarian with an up-to-date description of the capabilities available
at the system at any moment.

2. Brokering scene: this scene describes the pattern of interaction needed
to obtain a task-configuration by the Knowledge Configuration process.
The participants are a PA requesting to find a task-configuration, the
Knowledge-Broker responsible for building the task-configuration, and the
Librarian, holding the current description of the capabilities available in
the system (the library of problem-solving components).

3. Team Formation scene: this scene describes the communication protocol
for selecting and instructing the members of a team. The agents involved
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are the PA, that holds the task-configuration obtained by the Knowledge-
Broker at the Brokering scene, the available Problem-Solving Agents, that
wait for team-role proposals to join a team, and the Team-Broker, respon-
sible for selecting the team members and instructing them on the way to
cooperate and coordinate with other team mates.

4. Teamwork scene: finally, once a team of agents has been formed and in-
structed to cooperate, the team-mates go to this scene to solve the problem
in a cooperative way, using the information provided to them during the
Team Formation scene by the T-Broker. The agents involved are the PA,
holding the input data for the problem at hand, and the selected team
members (PSAs).

Brolker

Figure 6.5: Performative structure of the ORCAS e-institution

Figure 6.5 shows the graphical representation of the ORCAS e-Institution per-
formative structure. In addition to the four main scenes (Registering, Brokering,
Team Formation and Teamwork) there is a root scene and an output scene as
the initial and final scenes respectively. The role-flow policy is represented by
the edge labels and transitions between scenes. Notice a PSA has to move first
to the Registering scene, and only then can a PSA move to the Team Formation
scene to wait for team-role proposals. The PA must start in the Brokering scene
to request the K-Broker for a task-configuration satisfying the requirements of
a problem; afterwards the PA moves to the Team Formation scene to request
the Team-Broker for a new team-configuration. Afterwards, the PA moves to
the Teamwork scene to request the team-leader of the recently formed team to
solve the problem. Finally, the PA provides the team-leader with the input data
for the problem at hand, and waits for the results. The different communication
scenes are described in the following section, devoting one subsection for each
scene.
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6.5 Communication scenes

This section describes the different communication scenes in the performative
structure of the ORCAS e-institution: registering and deregistering (§6.5.1), bro-
kering (§6.5.2), Team Formation (§6.5.3) and Teamwork (§6.5.4).

6.5.1 Registering scene

The Registering scene describes the communication activities used to allow the
Librarian to be aware of the agents available in the system at any moment, and
the capabilities they are equipped with.

Actually, there are two complementary activities, registering and deregis-
tering. On the one hand, PSAs willing to join the ORCAS e-Institution must
register their capabilities to the Librarian agent; on the other hand, PSAs willing
to exit the institution must inform the Librarian they are leaving, so as to allow
the Librarian update the library.

The Registering scene follows a request-inform protocol. When a PSA enters
the agent platform, it sends a “register” message with the set of capabilities
it is equipped with. The Librarian builds a table with the bindings between
capabilities and agents, and keeps it updated by tracking the registering and
deregistering activities of PSAs.

Figure 6.6 shows the registering scene specified as a request-inform protocol.
The scene starts with a PSA requesting the Librarian to register a set of ca-
pabilities (transition 1). The Librarian can then accept (transition 2) or refuse
that request. If accepted, the Librarian informs the PSA whether the requested
capabilities have been successfully registered (transition 3) or there was some
problem (transition 5).

6.5.2 Brokering scene

The purpose of the Brokering scene is to allow the PA to obtain a task-
configuration satisfying specific problem requirements. Recall that a task-
configuration is obtained through a Knowledge Configuration process (§4.4),
which takes a specification of problem requirements and a specification of the
components in the library (tasks, capabilities and domain-models) as inputs,
and produces a task-configuration as output.

There are three roles participating in the Brokering scene: the Knowledge-
Broker, the Personal-Assistant and the Librarian.

The Knowledge-Broker (K-Broker) is the role played by the agent responsi-
ble for the Knowledge Configuration process, which is implemented as a search
over the space of possible configurations, where the problem requirements are
constraints to be satisfied by the configuration.

The Personal Assistant (PA) role represents the user and deals with all the
human-computer interaction. The PA is defined as an external role, since only
the communication layer of the PA are domain-independent. In general, the
PA has a common social layer that defines the acceptable behavior of the PA
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Figure 6.6: Specification of the Registering scene

within the institution, while there is an application specific and even a user
specific layer dealing with the particularities of a specific application or user.
In the ORCAS implemented e-Institution, the domain-independent layer of the
PA is separated from the application specific details, which are implemented
separately, as as pseudo-agent that manage the graphical interfaces. There are
several interfaces, some of them are general, domain-independent, and oriented
towards expert users (e.g. the knowledge engineer), whilst others are application
specific, like those included in the WIM application to interact with the end-user
(Chapter 7). An example of a domain-independent interface is shown in Figure
4.19, while examples of domain-dependent interfaces are depicted in Figure 7.17
and Figure F.4.

Moreover, the PA role defines just the communication requirements for an
agent holding the specification of a problem to be solved so as to interact with
the rest of agents in the institution. The basic function of the PA is to me-
diate between the user and the institution so as to relieve the user of holding
any knowledge about how to locate and interoperate with other agents. Rather
than including domain-specific knowledge as part of the PA, we preferred to
implement a generic, domain-independent PA, and include domain-dependent
knowledge as part of the interface (interfaces are implemented as pseudo-agent
that can communicate with an agent using the agent communication language).
To sum up, the PA brings an added value to the application tasks by provid-
ing customization services, and domain-informed support to the decision taking
during the Problem Specification process.

The problem specification process is skipped here, since it is performed out-
side the institution; however, we assume that the PA is holding a complete
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specification of a problem to be solved, represented using the ORCAS ACDL
and the vocabulary from the application ontology (e.g. the ISA-Ontology in
WIM).

The Brokering scene begins when the PA sends a request message to the
Knowledge-Broker (K-Broker) containing a specification of problem require-
ments. The K-Broker is an agent that is able to obtain a task-configuration
satisfying specified problem requirements on-demand, out of the component
specifications hold by the Librarian.

Once the K-Broker receives a request from the PA, it asks the Librarian to get
an updated version of the components registered in the library at the moment,
searches a task-configuration satisfying the problem requirements, following one
of the three configuration strategies described in §4.4.4.

The K-Broker can ask the Librarian for the entire library at the beginning,
or it can ask the Librarian several times, requesting only those components
satisfying a matching criteria so as to retrieve only useful specifications. For
instance, when going to bind a capability to a task, the K-Broker can ask the
Librarian for just those capabilities matching that task.

The concepts required to participate by the PA and the K-Broker to par-
ticipate in the Brokering scene are included in the Brokering ontology Figure
6.7.

Problem-requirements Task-configuration
application-task: Symbol task: Id
pntologyi String inputs. Signature-element*
inputs: Signature-element™ configuration: C-Configuration
outputs: Signature-element* 1
preconditions: Formula* l
postconditions: Formula* C-configuration

o . *

don}am rr;odels. fy mb.o; . inputs: Signature-element*
configuration-options: String capability: Symbol

domain-models: Symbol*

/\

Skill-configuration ‘ TD-configuration

subtask-conf: Task-configuration*

—>» Subsort relation
—@ Part-of relation
*  Setof

Figure 6.7: Broker Ontology

The input for the Knowledge-Configuration process is a specification of prob-
lem requirements composed of a) the name of the task to be achieved, b) the
pre-conditions that are established to hold, ¢) the postconditions that have to
be hold when the task is achieved, and d) the domain-models that are available
for achieving the task. The outcome of the Knowledge-Configuration process is
a task-configuration: a tree of triplets containing a task, a capability suitable for
that task, and one or more domain models satisfying the knowledge requirements
of that capability.
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Figure 6.8 shows the interaction protocol for the Brokering scene. The scene
starts (wp) with the PA sending a message to the K-Broker. This message
(transition 1) is a request to obtain a task-configuration using the problem spec-
ification included in the content of the message. In the next state (wq), the
K-Broker can either asks the Librarian for the entire library (transitions 2, 4),
or it can ask for a partial set of tasks or capabilities satisfying some matching
criteria (transitions 3, 5). The purpose of these actions are to make the K-Broker
work with an updated version of the library during the Knowledge Configuration
process, while the use of one or another mode depends on the strategy adopted
by the K-Broker. In the first case the K-Broker gets the entire library in one
single interaction, while in the second case the K-Broker takes several steps to
obtain all the required information, but can retrieve only the information that is
strictly necessary to configure a particular task, rather than using the complete
library. The first step in the Knowledge Configuration process is to choose which
task characterizes better the problem at hand. In order to do that, the K-Broker
sends the set of tasks matching the initial problem specification to the PA (wg),
ranking those tasks according to the similarity measure defined in the context
of the Case-Based Knowledge-Configuration strategy (§4.5). The PA chooses
one task from that set and informs the K-Broker (transition 7) on the selected
task and the configuration strategy to use. After receiving the specification of
components from the Librarian, the K-Broker starts a Knowledge Configuration
process over those specifications. If the K-Broker succeeds obtaining a task-
configuration satisfying the requirements, it sends a inform message containing
the resulting task-configuration to the PA (tr. 8), and the scene ends.

Notice that the process may fail at several points, causing the scene to end
without obtaining a task-configuration. The Brokering scene (Figure 6.8) in-
cludes a second final state that is reached either when the K-Broker cannot find
a task satisfying the requirements of the problem (tr. 10), or when the K-Broker
cannot obtain a task-configuration (tr. 9).

The Knowledge-Configuration process has been described in Section §4.4.
This process is performed by the K-Broker during the Brokering scene, at state
wy. The Knowledge Configuration process is performed by the K-Broker as a
state-space search in the space of partial configurations (Section §4.4.5).

6.5.3 Team Formation scene

The Team Formation scene describes the communication required to form a
team of agents that is able to solve a problem according to a task-configuration.
During the Team Formation scene, a team structure composed of team-roles is
build according to a task-configuration, and a group of agents is selected and
instructed to play every team-role.

We have already described the Team Formation process as having three stages
(85.5): task allocation, team selection and team instruction.

During the task allocation stage, candidate agents are obtained for every
team-role. Next, team selection decides the team members to play each team-
role out of candidate agents, and keeps other candidate agents in reserve for the
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9. (W4 W6) failure (ly KB) (!z PA) partial-configuration(?task-configuration) ) () ))
10. (W1 W6) failure (ly KB) (!z PA) no-task-found)

Figure 6.8: Specification of the Brokering scene
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case of failures during Teamwork. Finally, the agents involved in the process
are informed on the result of the team selection process, and the agents selected
are instructed on the way they should coordinate with other agents during the
Teamwork process.

The Team-Broker (T-Broker) is the responsible of guiding the Team Forma-
tion process; it mediates between the PA willing to solve a problem and the PSAs
providing their capabilities and waiting for requests to join a team. The T-Broker
is able to reason about the component specifications and task-configurations, but
it is specialized in forming teams, and has specific knowledge about operational
descriptions that are useful to improve the team selection process (and so the
performance of Teamwork). Section ?? describes the constructs of an operational
description that can be used for that purpose: sequences, choices, parallelism,
choices and multiple-instances (Figure 5.20).

First, the Team-Broker obtains candidate agents willing to play some team-
role by sending team-role proposals and accounting for the agents accepting.
Agents accepting a team-role proposal are considered as committing (by dia-
logue) to play that team-role, and are consequently expected to try to achieve
the associated tasks when required during the Teamwork process. The Team-
Broker will analyze the task-configuration to know which tasks should be solved
by the team and which capabilities are required to solve each task. Using that in-
formation the Team-Broker can generate the team-model, one team-role for each
task in the task-configuration, and propose those team-roles to agents willing to
join the team.

Problem-Solving Agents (PSA) can decide autonomously whether to accept
or to refuse a team-role proposal. The Team-Broker waits until all the available
agents have answered or a time out is reached, then, the Team-Broker decides
among alternative agents for the same task which ones to select as members of
the team.

Different algorithms and strategies can be used within the Team Formation
scene to allocate tasks to candidate agents. It is possible for instance to select
agents after each team-role proposal. Another strategy is first to obtain candi-
date agents for all the team-roles, and then to select agents for all the team-roles.
Moreover, the infrastructure presented here is suitable for a wide range of se-
lection strategies that can be embodied within the Team-Broker agent. The
team selection strategy belongs to the Team-Broker internal decision-making
strategies, and not to the institutional framework.

Figure 6.9 shows the specification of the Team Formation scene. There are
three roles involved: the PA, the Team-Broker and the Problem Solving Agents.

The Team Formation scene starts at wg with the PA requesting the T-Broker
to form a new team (transition 1) given a task-configuration. Next, the T-Broker
initiates the task allocation activity by informing available agents that a new
team formation process is going to start (tr. 2).

The task-allocation and team selection processes follow an auction-like ap-
proach similar to the contract-net protocol [Smith, 1940]: team-roles are pro-
posed to PSA agents willing to join the team (transitions 3); agents have then a
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1. (W0 W1) request (?x PA) (?y TB) team-formation(?task-configuration))
2. (W1 W2) inform (ly TB) (all PSA) start-team-formation(?team-id))

3. (W2 W3) request (ly TB) (all PSA) commit(?team-role))

4. (W3 W3) accept (7z PSA) (ly TB) join-team(!team-role))

5. (W3 W3) refuse (7z PSA) (ly TB) join-team(!team-role))

6. (W3 W2) inform (ly TB) (all PSA) time-out(!team-role))

7. (W2 W4) inform (ly TB) (all PSA) start-team-configuration(?team-id))
8. (W4 W4) inform (ly TB) (?z PSA) commit(?team-role))

9. (W4 W5) inform (ly TB) (all PSA) finish-team-configuration(?team-id))
10. (W5 W6) inform (ly TB) (all PSA) finish-team-formation(?team-id))
11. (W2 W5) inform (ly TB) (all PSA) team-failure(?team-id))

Figure 6.9: Team Formation scene
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limited period of time to accept (tr. 4) of refuse the proposal (tr. 6) before the
time-out is reached (tr. 6).

If there are no candidate agents for all the team-roles, the team can not be
formed at all. After performing several attempts without succeeding, the T-
Broker informs participating agents of a team-failure (tr. 11) in order to call off
the Team Formation scene and discard the ongoing team.

If there are candidate agents for all the team-roles, the task-allocation process
succeeds and the T-Broker announces the beginning of the team selection process
(tr. 7). During the team selection process, the T-Broker has to select the agents
to play each team-role, and the agents to keep in reserve, using the information
provided by both the operational description of task-decomposers (containing
information about paralellism) and any application specific criteria considered.
After being selected to play some team-role (wy), team-members are informed
on the team-roles they are assigned to and have to commit to (tr. 8). After
finishing the team selection process, the T-Broker informs participating agents
the team-selection is finished successfully (tr. 9).

As described in §5.3.1, team-roles are used to inform team-members about
all they need to carry out a task within the team: the task to be solved, the
capability to apply, the knowledge to use, and optionally, if the capability is
a task decomposer, the information required to delegate subtasks to another
team-members.

After selecting the agents to play every team-role, the identifier of the team
and the information required to communicate with the team-leader (the top level
team-role) are sent to the PA (tr. 10), and the scene ends. The PA does not
require a complete team description because the information on each specific
team-role has been submitted to each team member during the Team Formation
scene.

6.5.4 Teamwork scene

This section describes the process of solving a problem by a team of problem
solving agents (PSAs), once the team has been formed and instructed during the
Team Formation stage, in such a way that the specified problem requirements
are met.

The already introduced scenes (Registering, Brokering and Team Formation)
are single scenes. However, the Teamwork scene is not specified by a single scene,
though there is an initial scene that is used by the PA to request the team-leader
to begin teamwork, provide the team-leader with the data for the problem and
wait for the results. Nonetheless, the teamwork activity is not reduced to this
initial scene, but will follow a nested structure of performative structures, one for
each task-decomposer team-role (§5.6). Moreover, the scenes to be used within
these performative structures are not predefined, but have been selected during
the Team Formation scene from the set of communication scenes supported
by the two agents involved in any task, one playing the Coordinator role, and
another one playing the Operator role (§5.4.2).
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The Teamwork process is initiated by the PA once the Team Formation has
succeeded. The Teamwork scene defines just the initial scene of the Teamwork
process, involving two agent roles, the PA and the PSA roles. There is a single
agent playing the PA role, while all the team-members play the PSA role. This
scene is used by the PA to send the problem data to the team-leader and get
the final result back.

The Teamwork follows a request-inform protocol; the PA sends a “request”
message to a PSA playing the team-leader team-role, (the responsible for the
root task within the corresponding task-configuration). This message contains a
team-identifier, a team-role identifier corresponding to the team-leader, and the
input data for the problem at hand.

The team-role identifier is required by the team-leader to check up whether
it is committed to that team-role, and to retrieve the information associated to
that team-role so as to carry out the task associated to it. Since a PSA can
participate in different teams at the same time, a unique team identifier is also
required to avoid ambiguity.

When a PSA receives a request from the PA, the PSA checks whether it is
committed to the team-role specified in the request. If the target PSA founds
that team-role stored in its local memory, it accepts the request, or refuses the
request in the opposite case.

Next, the PSA checks the type of capability assigned to that team-role in
order to figure whether it is a skill or a capability. According to the type of
capability assigned to a team-role a PSA can face two situations:

If the capability assigned to the team-leader’s team-role is a skill, the PSA
has just to apply that skill over the input data and give back the result to the
PA. In this situation, the team is composed of only one team-role. Therefore,
the Teamwork activity involves only one scene and two agents, one agent playing
the PA role, and another agent playing PSA role.

Otherwise, the capability is a task-decomposer, and the PSA has to consider
delegating some subtasks to other agents. This information is provided by the
team-role’s subteam, which specifies the agents selected for each subtask, as well
as the scene to be used to communicate with those agents. In this situation, a
team is composed of several team-roles, and the Teamwork activity involves
one or more performative structures describing the task decomposition control
flow, and several scenes to be played, one for each subtask to be delegated to
another agent. Recall that there is one performative structure (an operational
description) for each task-decomposer capability assigned to a team-role. The
idea is that the teamwork activity can be modelled by a electronic institution
whose primitive elements are assembled on-runtime, during the team-formation
process. Therefore, the teamwork activity follows the performative structure of
that institution, expanding to a new performative structure each time a new
task-decomposer is applied. Agents adopt the coordinator and operator roles as
required, according to whether they are attending a request from another agent
(operator) or they are applying a task-decomposer and have to delegate some
subtask to other agents (coordinator).
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As team members applying skills finish their tasks, the results are sent back
to the coordinators, which are responsible for obtaining the result for his task
using the result of the many subtasks, and propagating his own result back to
his respective coordinators, and so on, until the team-leader obtains the final
result and sends it to the PA.





