Chapter 6

Intravascular Ultrasound Tissue
Characterization Analysis

The goal of automatic tissue characterization is to identify the different kind plaques
in IVUS images. This process requires two tasks: identification of what the plaque is
and labelling of the different areas of the plaque. Figure 6.1 illustrates roughly the
procedure of supervised tissue characterization. The IVUS image 6.1.a is preprocessed
and sent to the automatic tissue characterization system. Figure 6.1.c shows the first
step, the accurate location of the lumen-plaque border and the adventitia border.
Between both lies the plaque, which is the region of interest to be classified. Figure
6.1.d exemplifies the tissue characterization process. We are focussed on the plaque,
and try to find and label areas corresponding to different plaques. In the figure, light
gray areas are soft plaque, white areas are fibrotic plaque and dark gray areas are
calcium plaque. At the end of the process we obtain the tissue characterized IVUS
(figure 6.1.e) to be used by the physicians. These results have been used to validate
against the manually segmented plaque regions (figure 6.1.b).

This chapter illustrates the work in IVUS image analysis and tissue character-
ization. The layout of the chapter is the following: The first section is concerned
with plaque discrimination. This means that our goal is to find the characteristic
structures in the IVUS images in order to obtain an accurate approximation of the
location of the plaque. The second section shows the complexity of the problem of
tissue characterization from the point of view of a classical classification and describes
a full framework for IVUS analysis.

6.1 IVUS structure analysis

The main structures in IVUS images are two: The first one is the intima border. The
intima border is the line that separates the blood pool (also known as lumen) and
the tissue. This border is usually well defined in IVUS images since it is an abrupt
transition from erratic small structures (representing the blood) and well defined
and high-echoreflective elongated structures (usually plaque and artery wall). An
example of this structure is shown in figure 6.2. The other important structure is the
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Figure 6.1: The tissue characterization process can be done manually by physi-
cians (a)-(b) or by an automatic process (a)-(c)-(d)-(e). (c¢) Segmentation of the
lumen-plaque border and adventitia border. (d) Pre-processed image of the plaque
characterization. (e) Final IVUS tissue characterization.

adventitia border. The adventitia border defines the separation between deposited
materials (such as fibrous, lipidic or calcium sediments) and the artery wall. Figure
6.2 shows an example of this structure. Our goal is to find and accurate location of
both since, the area between both is what we know as plaque.

The segmentation of the plaque is a really important step before tissue character-
ization, as has been shown in [43] [44] [45] [19] [20].

The main reference in IVUS structure analysis is Sonka et al. [43]. In the paper,
the process of segmentation relies on a manual definition of a region of interest. Using
that region of interest a Sobel-like edge operator with neighborhoods of 5 x5 and 7x 7
is applied. Once we have these features extracted, the problem of identification of
the vessel wall and plaque border is solved by finding the optimal path in a two-
dimensional graph. The key of the graph searching is to find the appropriate cost
functions. In the paper, the author proposes different cost functions depending on
whether the lumen-plaque border or the adventitia border is desired.
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Figure 6.2: Characteristic structures in IVUS images.

6.1.1 Segmentation of the plaque (I): Intima segmentation

Having in mind the tissue classification goal of the process, [19] [20] try to find a
segmentation of the the lumen-plaque border as well as to find an overall approxi-
mation to the tissue area independent of what kind tissue it is. The method consists
on selecting a suitable feature space and a classifier. We have focussed our work in
texture feature spaces since the same feature space can be used later for particular
tissue discrimination in the plaque area. Thus, the first step is to train a classifier for
general tissue discrimination.

The classification step is performed using a fast classifier, either boosting methods
or maximum likelihood classification. The result of this step is a series of unconnected
areas that are related to tissues. In order to find the exact location of the lumen-
plaque border, a fast parametric snake is let to deform over the unrelated areas.[46]
The snake performs a double task: first, it finds a continuous boundary between blood
and plaque. The second task is that it ensures an interpolation and a fill-in process in
regions where tissue is not located or not reliable (such as areas with reverberations
due to the guide-wire, etc). The intima border detection process described in the
former lines is illustrated in figure 6.3.

To validate our approach we have used 10 sequences from 3 different patients.
The training step has been done using 4 sequences of 2 patients (different from the
validation patients). We have used the following feature spaces:

e Scale-space Filter Bank (Derivatives of Gaussian). The scale parameter varies
with the following values: ¢ = 0.5,1,2,4,8. For each scale, a set of direc-
tional derivatives is extracted. Particularly, this set is 9" = [9y, oo, O3, 02y, O30,
98,035, 03y, 0335], where the subindex points the direction of the partial deriva-
tive in degrees.

e Co-occurrence matrices measures. The measures have been obtained using a
quantization in 256 gray levels, neighborhoods of N=(5,8) pixels of radius and
relative distance between the center of the neighborhood and the computed
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Figure 6.3: Tissue classification.
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Feature space

Mean Error

Maximum Error

Wayvelets

Co-occurrence measures

Derivative of Gaussian
Cumulative moments
Local Binary Patterns

0.24 £ 0.04
0.66 = 0.09
0.17 £ 0.03
0.17 + 0.04
0.08 + 0.06

0.61 £ 0.10
1.34 £ 0.13
0.60 £ 0.13
0.43 + 0.09
0.35 £+ 0.10

Table 6.1: Maximum and mean errors of each of the methods in mm.
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pixel of D=(2,3). We have also used four orientations for creating each matrix

at each distance and each neighborhood radius.

e Wavelets Family. Different experiments with these features pointed out the best
performance in our problem of biorthonormal 1.5 with neighborhood radius of

N=9 pixels.

e Cumulative moments up to degree (k,1) = (9,9) have been used in neighbor-

hoods of N=(3,5)

e Local Binary Patterns have been used with neighborhoods of N={1,2,3} differ-

ent radius.

Table 6.1 shows the maximum and mean errors (in millimeters) of the performance
of our method when compared to physicians manual segmentation. The comparison
have been done computing the relative distance in millimeters between each of the
points of the physicians segmentation to the boundaries provided by our segmentation.

In the table we can see that Local Binary Patterns feature space with maximum
likelihood has the best performance with a really low error rate. These results improve
the reported intima border detection rates in literature up to date. It must be noted
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Figure 6.4: Regression line for two different patients.

Abscise shows the auto-

matic positioning of the borderline. Ordinate shows the physicians positioning of the

borderline.
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that the error measures are greatly hurt by bad classification results originated if we
are unable to remove all the artifacts effects (such as guide-wire reflections, or echoes
from the catheter wrapping). Some methods are more sensitive to this kind of artifacts
than others. This fact is observed comparing cumulative moments with scale-space
filter banks and co-occurrence matrix measures. Cumulative moments show more
robustness to artifacts than the other methods, this fact is enhanced by the help of
the needed post-processing step due to the random noise of the classification results
when using this method. However, when the image is free from artifacts these three
methods perform similar. We must note that the method is fully automatic once the
texture model is build. The snake parameters used are o = 0.3 and [ = 0.3; these
weights stands for the parameters associated to tension and rigidity respectively. We
have used a cubic B-Spline implementation of snakes. The area operators remove thin
lines with horizontal orientation and speckle noise of less than 5 pixels of area.

Figure 6.4 show two regression lines comparing the accuracy of physicians location
of the intima border and the automatic location for the same border using local binary
patterns. As can be seen the correlation coefficient, r, is over 0.96.

100 1001
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Figure 6.5: Regression line for the adventitia border location of two different pa-
tients. Abscise shows the automatic positioning of the borderline. Ordinate shows
the physicians positioning of the borderline.

6.1.2 Segmentation of the plaque (II): Adventitia segmenta-
tion

The problem of adventitia segmentation is one of the most difficult problems when
dealing with IVUS images, and still remains open for the scientific community. How-
ever, in order to have an approximation of the adventitia location we propose to use
contextual information once the intima has been found.

The first step in our approach is to define the most likely area for the adventitia
to be found. In order to do this we reuse the tissue classification obtained in the
intima segmentation process. This segmentation defines the whole tissue area in the
IVUS image, and therefore, can be used to define a external borderline to delimit
the adventitia search procedure. We use a deformable model to find the external
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Mean error | Max error | Regression val | Median
Error (mm.) | 0.20 £ 0.14 0.68 0.937 0.14

Table 6.2: Error rate in millimeters of the adventitia location compared with physi-
cians segmentation.

borderline of the tissue.

The approximation we propose uses a 5 x 5 Sobel-like operator over a smoothed
version of the IVUS image. The borders found using the former filter are cleaned. A
certain value is given to each border according to the likelihood of being adventitia.
This value is purely empirical and based on context. After that we let a deformable
model adapt to the features extracted. This snake is initialized between the intima
and the external tissue border.

Figure 6.5 show two regression lines comparing the accuracy of physicians location
of the adventitia border and the automatic location for the same border using our
scheme. As we can observe there is a really good correlation between the physicians
segmentation and the automatic segmentation.

()

Figure 6.6: Examples of the adventitia segmentation. In dark gray a physician
segmentation. In black automatic segmentation. (a) Original image. (b) Automatic
segmentation of (a). (c) Original Image. (d) Automatic segmentation of (c).
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Table 6.2 shows the mean, maximum and median error rates of the methodology
used to locate the adventitia border. Though the figures show a good behavior of the
method (the mean error of 0.2 mm. correspond to 5 pixels of the image) it must be
further improved to reduce false positive adventitia locations. In this sense, working in
a third dimension would be profitable since false positives due to spurious structures
would not have continuity and therefore would be distinguishable from the adventitia
border.

Figure 6.6 shows two examples of the adventitia location. Figures 6.6.a and 6.6.c
are the original images, while figures 6.6.b and 6.6.d are the comparison between the
automatic segmentation (displayed in black) and the physicians segmentation (in dark

gray).

6.2 Tissue characterization

This section is divided in two different subsections. The first one is concerned with
the problem of tissue characterization in a general framework. An objective database
using physicians categorization of isolated tissues has been built and used for general
analysis of the textural features discrimination using a boosting framework. The
second subsection describes the final methodology used for plaque characterization in
non-isolated regions (we exploit tissue correlation between adjacent regions) taking
into account also computational time issues.

6.2.1 Pairwise general texture-based tissue discrimination

The assessment of pairwise plaque classification process is presented in this section.
First, the database building and experimental settings are introduced. Then, a dis-
crimination classification reference for methodology comparison is shown. After the
reference, we are explaining the multiple pair-wise problems and the results of their
classification. We finish this section showing the characteristic curves of the behavior
of the AdaBoost process.

Experimental settings and database building

One of the main problems in the IVUS scientific community is the lack of a standard
reference set for validation of the IVUS tissue classification. Regarding this matter,
we have devoted a great amount of time in collaboration with expert physicians to
create a database with ten thousand samples of each of the four tissues acknowledged
by experts, soft tissue, fibrous tissue, mixed tissue and calcium. Those samples have
been extracted from 20 different patients, using a Clearview device from Boston Sci-
entifics Corp. and a 40 MHz Atlantis catheter. Using this database, several texture
descriptors have been selected.
Particularly, we have chosen

e Derivatives of gaussian filter bank, up to the third derivative. A five level
multi-resolution framework is used, with scales {0.2,0.5,1,2,4}. For each scale,
a set of directional derivatives is extracted. Particularly, this set is 9" =
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Feature Set Computational Complexity | Discriminative Power
Filter bank High High
Co-occurrence set High High
LBP Low High
Cumulative Moments Low Average

Table 6.3: Computational complexity and performance for each set.

(00, g0, O3, 02y, 0%, O3, O35, Oy, O355], where the subindex points the direction
of the partial derivative in degrees. To this set we also include the zero-derivative
image, that is a smoothed version at the corresponding level of the original im-
age.

e A set of descriptors of the co-occurrence matrices at angles {0,45,90, 135} with
neighborhoods of 11 x 11 pixels and distance for the co-occurrence pair of D = 2
and a 17 x 17 pixels neighborhood with a distance of D = 3.

e A tissue description set based on local binary patterns and local variance, using
radius 1 with 8 samples, radius 2 with 16 samples and radius 3 with 24 samples.

e A feature space based on cumulative moments, with moments up to (9,9).

All these feature spaces are well-known and well-suited spaces for texture descrip-
tion. They usually differ from each other in terms of computational complexity and
discriminative power. Table 6.3 shows the performance of each feature set. Note that
the filter bank and co-occurrence matrix descriptors approach have high discrimi-
native power and high computational complexity. On the other hand, local binary
patterns and cumulative moments are fast but their discriminative power is lower.

Regarding the Adaboost procedure, we use a composition of 500 classifiers in the
original feature space for each description set.

Discrimination Reference

To compare the performance of the boosting method we have selected a well-known
classifier, Fisher Linear Discriminant Analysis. The results of this classifier are our
ground-truth, to which we refer in order to compare the results of the Adaboost
technique.

Plaque pair BOF | COOC25 | COOC38 | LBP | MOM
Fibrous vs Calcium | 35.18% 24.55% 23.84% 48.53% | 46.43%
Soft vs Calcium 25.30% 10.07% 9.94% 42.97% | 44.10%

Mixed vs Calcium | 29.64% 18.51% 17.83% 46.55% | 46.14%
Soft vs Fibrous 34.83% 35.81% 34.57% 48.46% | 47.67%
Fibrous vs Mixed 44.56% 47.68% 49.84% 49.91% | 49.70%
Soft vs Mixed 42.73% 40.30% 49.36% 46.94% | 47.87%

Table 6.4: Error rate for each plaque pair, using the different tissue descriptors.
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Table 6.4 shows the test error rate for each pair of plaques. Having a look at the
figures, the table reveals that there are some sets with a great amount of overlapping
samples. This is particularly true in the discrimination between mixed tissue and soft
or fibrous tissue, since mixed tissue implies an ill-defined mixture of both fibrous and
soft tissues. We can also see that some feature spaces tend to perform better for our
problem than others. In fact, co-occurrence matrices descriptors (COOC25, COOC38)
and derivatives of gaussian filter bank (BOF), outperform clearly the low complexity
descriptors, Local Binary Patterns (LBP) and cumulative MOMents (MOM). This
means that both feature spaces, describe better the tissue properties than the other
two families of descriptors. However, this fact could have been easily predicted from
table 6.3, since there is always a trade-off between complexity and performance.

The Fibrous vs Calcium problem

The characterization of the calcium tissue seems to be the less difficult one since the
calcium tissue has a very high echo-reflectivity and homogeneity. On the other hand,
fibrous plaque is also high reflective, but have much more rugosity.

Feature Set | Initial Error | Final Error
BOF 33.13% 13.09%
CO0OC25 20.90% 13.74% (a)
C0o0C38 20.67% 11.04% —
LBP 24.76% 21.81%
MOM 43.62% 38.04% el

(b)

Figure 6.7: Examples of the fibrous tissue (a) and the calcium plaque (b).

Figure 6.7 shows an example of the fibrous plaque (fig.6.7.a) and the calcium
plaque (fig.6.7.b) . The table from figure 6.7 shows the results for this test. As
expected the initial error in the overall feature space of the best performing sets and
the error using discriminant analysis are quite close to each other. However, the
Adaboost procedure refines the classification thus increasing the recognition rates to
an average of 88%. Unexpectedly, LBP has a relative good performance, close to 80%,
making it an ideal candidate if we aim for fast processing.

The Soft vs Calcium problem

This problem is by far the most simple one since the plaques we are distinguishing
are the more different kind of plaques. In particular, the soft tissue has low echo-
reflectivity and high granularity, while the calcium plaque is just the opposite.
Figure 6.8 shows an example of the fibrous plaque (fig.6.8.a) and the calcium
plaque (fig.6.8.b) . The former statement is confirmed by the table shown in figure 6.8,
that shows the figures for the error rate in this problem. Again, the recognition rate
of the high complexity spaces is pretty high, and further increased by the AdaBoost
process, up to an average over 95%. Three important remarks can be made looking
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Feature Set | Initial Error | Final Error
BOF 17.75% 5.80%
CO0C25 9.81% 7.27% (a)
CO0C38 8.88% 4.29% e |
LBP 15.31% 14.68%
MOM 45.49% 33.00% el o

(b)

Figure 6.8: Examples of the soft tissue (a) and the calcium plaque (b).

at the figures. First, there is a huge improvement in performance using derivatives
of gaussian, of about 12%. Second, LBP still has pretty good results: over 85%.
Third, and the most surprising, MOM still performs bad in this stage. Looking at the
reference table 6.4 we can see that there is a huge improvement in LBP performance
and BOF performance. LBP lowers its error rate by 30% and BOF lowers its error
rate by 20%.

The Mixed vs Calcium problem

Since the behavior of the soft and fibrous plaque against calcium tissue is fairly good,
we expect this problem to be an ”average” of the above ones.

Feature Set | Initial Error | Final Error -
BOF 26.29% 9.79%
CO0C25 16.36% 12.44% (a)
CO0C38 15.91% 7.46% -q
LBP 20.54% 19.15%
MOM 44.16% 35.75% .

(b)

Figure 6.9: Examples of the mixed tissue (a) and the calcium plaque (b).

Figure 6.9 shows an example of the mixed plaque (fig.6.9.a) and the calcium plaque
(fig.6.9.b) . Certainly, this is what happens, the results are not as good as the soft
versus calcium problem, (see table in figure 6.9) but are better than the fibrous versus
calcium one. This is logical if we recall that the mixed tissue is a combination of both
fibrous tissue and lipid tissue in an interleaved way. At this stage, we have clearly a
good vision of what is the performance of each feature space as well as the influence
of the adaboost process in the problem. BOF and COOC38 performs the best after
adaboost, granting high recognition rates. COOC25 seems to perform the worst of
the trio formed by the high complexity classifiers. If we compare this results to the
ones obtained using FLD, BOF lowers its error rate by 20%, and COOC38 by 10%.
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The Soft vs Fibrous problem

One of the most interesting and less obvious problems is the soft vs fibrous problem.
In this case, both plaques have a good amount of texture involved in them (high
granularity), although, there is a difference in the reflectivity of the transducer pulse.

Feature Set | Initial Error | Final Error -
BOF 28.63% 26.41%
CO0OC25 27.58% 27.53% (a)
CO0OC38 26.57% 25.98%
LBP 31.62% 30.93% -
MOM 44.41% 38.43% i
(b)

Figure 6.10: Examples of the soft tissue (a) and the fibrous plaque (b).

Figure 6.10 shows an example of soft plaque (fig.6.10.a) and fibrous plaque (fig.6.10.b)

. Table in figure 6.10 shows the performance of the AdaBoost procedure when applied
to this problem. We can conclude from the figures, that in this case, the AdaBoost
process does not help much. This fact, seems to show that the way data is distributed
in the feature spaces is clearly entwined. This fact hinders the process of the com-
bination of classifiers, since, presumingly, each weak classifier is focusing on a really
low amount of misclassified data. In this case, the comparison of the results with the
reference of Fisher, improves the recognition rate by 10%.

The Fibrous vs Mixed problem

This problem and the soft vs mixed problems are by far the most complex ones. The
fibrous and the mixed plaques really resemble each other in terms of local distribution
features. The difference between both is simply the spatial overall distribution of the
tissues. Most of the methods we have tried are purely local, and therefore are destined
to fail in this problem. In fact, we have seen that the mixed label is also the most
disagreed of the plaques among the experts labelling. However, we also attach the
results for these two problems.

Feature Set | Initial Error | Final Error
BOF 37.74% 36.28% -
CO0C25 39.99% 37.33% (a)
CO0OC38 39.40% 35.65%
LBP 41.31% 40.90% -
MOM 43.42% 40.92%
(b)

Figure 6.11: Examples of fibrous tissue (a) and mixed plaque (b).
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Figure 6.11 shows an example of fibrous plaque (fig.6.11.a) and mixed plaque
(fig.6.11.b). Table in figure 6.11 shows the error rates for this problem.

The Soft vs Mixed problem

In the same way than the former case, the soft versus mixed plaque problem is ill-
posed from the local texture point of view.

Feature Set | Initial Error | Final Error
BOF 40.44% 37.36%
CO0C25 37.72% 33.09%
CO0C38 35.42% 29.29%
LBP 39.35% 39.01%
MOM 46.45% 41.26%

(b)

Figure 6.12: Examples of the soft tissue (a) and the mixed plaque (b).

Figure 6.11 shows an example of soft plaque (fig.6.11.a) and mixed plaque (fig.6.11.b).
Table in figure 6.12 shows the results for this case. It is remarkable the fact that
COOC38 is able to distinguish both plaques with an average recognition rate of over
70%. This is due to the fact that COOC38 use a 17 x 17 neighborhood and there-
fore is susceptible to pick up the spatial distribution of the entwined fibrous and soft
plaques.

The fibrous vs. mixed and soft vs. mixed using linear discriminant analysis can
not be made, since the results show that the decision is nearly random (recognition
rates of about 55%). However, using AdaBoost the problem seems to have a weak
solution, that is, a solution of nearly 70% of recognition. This is quite evident as
mixed plaque is formed by mixing soft and fibrous plaques.

Characteristic curves

As stated in the AdaBoost description section, the error rate of the weak classifiers
increases at each iteration (every time we add a classifier) due to the fact that it
has to classify the previously erroneous classified data (the errors of the combination
of weak classifiers up to this moment). The other characteristic of this process is
that the overall error rate on the training data tends to zero as the number of weak
classifiers increases. This fact does not imply that the test classification error also
tends to zero. In fact, it has been shown, and we will see in the figures, that it can
worsens or keep nearly constant.

Figure 6.13 shows some examples of the characteristic behavior of the AdaBoost
process. Figures 6.13.a and 6.13.b refer to the behavior of the derivatives of gaussian
in front of the soft-calcium and mixed-calcium problems respectively. Figure 6.13.c
shows the error curves for the accumulation moments in front of the fibrous-calcium
problem. Figure 6.13.d shows the aforementioned constant behavior of the test error
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Figure 6.13: Examples of the characteristic curves for the AdaBoost process. (a)
BOF in soft-calcium problem. (b) BOF in mixed-calcium problem. (¢) MOM in
fibrous-calcium problem. (d) COOC25 in soft-fibrous problem. (e) COOC38 in soft-
calcium problem. (f) COOC38 in soft-mixed problem.
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rate although the training error rate clearly decreases. This figure refers to the co-
occurrence (2,5) when characterizing soft versus fibrous plaque. Figures 6.13.e and
6.13.f show co-occurrence matrix descriptors for parameters (3,8) in front of the
problems soft-calcium and soft-mixed plaque, respectively.

Full classification using pairwise discrimination

From the classified tissue pairs we can use a winner takes all approach for full clas-
sification performance. This approach classifies the plaque according to the majority
of votes for each pair. In our experiments there has been no draw instances.

Method | Soft RR | Fibrous RR | Calcium RR | Error
CO0C38 | 74.15% 59.20% 85.79% 23.85%
CO0C25 | 72.51% 58.16% 85.68% 27.88%
BOF 75.15% 59.68% 84.38% 29.04%
LBP 73.03% 47.63% 71.48% 35.62%
MOM 43.06% 41.28% 51.26% 52.98%

Table 6.5: Recognition rate for each method and mean error using pairwise classi-
fication.

Table 6.5 shows the recognition rate using this approach, as well as the mean error
derived from this method. As we have observed in the single pairs, the tendency of
the performance using each feature space remains the same. Co-occurrence matrix
measures outperforms the rest of the methodologies. We can argue that the lack of
good results using cumulative moments and local binary patterns comes from the
small spatial support they use to extract the features. In summary, the results seems
to point out that high performance is related to the size of the neighboring area used
to extract texture features.

Discussion

The first conclusion that arises from the experiments is the beneficial influence that
the AdaBoost procedure has in the classification of the plaque, thus, rendering it to
a very good classifier if we aim for plaque characterization.

Regarding the feature spaces, co-occurrence matrices descriptors performs better
than the rest, closely followed by the bank of filters approach. Local binary patterns
is the third in recognition rate.

Several aspects have to be taken into account when judging the results. First
of all, regarding the database: the data included in the database is widely variable
representing different plaque appearance by different patients cases. Analyzing the
plaques, we saw that different plaques from different patients can be quite different
among each other, although they are grouped under the same label. It is surprising
how some plaques labelled as different can resemble to each other. This fact also
seems to point out that more information must be taken into account when dealing
with plaque characterization. We observed that physicians heavily rely on the context
information, and the location of the plaque. Therefore, the results presented here are
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Figure 6.14: Illustration of how the local classification of tissue can be deceiving.

useful as a guideline of the performance of the classifiers but they are by no means a
criterion to avoid the less accurate feature descriptors.

Figure 6.15: Adaboost overtraining and fake-plaque effect. a) Original image b) 50
classifiers ¢) 500 classifiers

In particular, we can see from the study that MOM based classifiers lead to low
recognition rates. While it provides not so good results as a feature space, we have
seen that using contextual information most of the misclassified data can be seen as
speckle noise caused by the decision of the classifier. That means that in the context
of an IVUS image, the misclassified data points are scattered and can be re-classified
taking into account neighboring plaques, since more of then are in isolated groups of
two or three pixels. If this is done, accurate results can be extracted from them. This
reinforces the idea shown at the previous paragraph, the analysis of the contextual
information can easily improve the recognition rate of the methods.

Figure 6.14 shows an example of how the local information can not be enough
for a good classification. In fact, if we look at the top images, we can see that both
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images are quite similar and we probably will classify them as some kind of plaque,
in particular as fibrous plaque. However if we look at the original images we can see
that one is in fact a tissue plaque, but the other it is not a tissue, it is part of the
blood pool (lumen), although with very similar appearance.

The effect of the previous casuistic can lead to undesirable situations such as the
one showed in figure 6.15. This figure is a simplification of the tissue problem. In
particular, this is a blood versus tissue classification, but it will serve to easily under-
stand some concepts. The figure is an example of two effects. On one hand, the final
recognition rate is low because of the fake-plaque effect, as mentioned in the former
paragraph. On the other hand, this is a classical example of an overtrained classi-
fier. Figure 6.15.b shows the classifier results in a middle stage of learning. Figure
6.15.c shows the final result. As we can see, as the blood is relatively different from
the blood expected, and because the last group of classifiers added in the AdaBoost
process are more focused on very few samples of the training data, they can degrade
the final classification result if the particularities of the training data do not coincide
with the ones of the test set.

In summary, AdaBoost is a very high performance classifier, the results show that
plaque characterization based only on texture can not be made accurately if we want
recognition rates over 85%. Furthermore, the most different kind of tissue, calcium
is easily identified even without context information, with an overall accuracy of over
95%. However, mixed plaques are really difficult to distinguish. This points out that
if we want to classify mixed plaques texture descriptors alone are not suitable for the
task.

The ” fake-plaque” effect opens the possibility to create a new kind of classification
process that takes into account the particular test set to infer context information and
therefore adapt the classification process to the particularities of the test set.

6.2.2 Full framework for Tissue characterization

Despite the results using the database for non-contextual aided tissue characterization,
we have deepened in the identification of the different kind of plaques by developing
a strategy for fast and accurate automatic plaque recognition using information from
the whole image.

We begin the process of tissue characterization taking the IVUS image and trans-
forming it to cartesian coordinates (figure 6.16.a). Once the cartesian transformation
is done, artifacts are removed from the image (figure 6.16.b). There are three main
artifacts in an IVUS image: the transducer wrapping, that creates a first halo at the
center of the image (in the cartesian image the echo is shown at the top of the im-
age); the guide-wire effect, that produces an echo reverberation near the transducer
wrapping; and the calibration grid, which are markers at a fixed location that allow
the physicians to evaluate quantitatively the morphology and the lesions in the vessel.
With the artifacts removed, we proceed to identify intima and adventitia using the
process described in the former section. At this point, we have the plaque located and
we are concerned with tissue identification (figure 6.16.c). The tissue classification
process is divided in three stages: First, the soft-hard classification (figure 6.16.d and
figure 6.16.e), in which the soft plaque, the hard plaque and calcium are separated.
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Feature space Qualitative speed | Qualitative performance
Co-occurrence measures Slow Good
Gabor space Slow Acceptable
Wavelets Fast Poor
Derivative of Gaussian Slow Acceptable
Cumulative moments Fast Good
Local Binary Patterns Fast Good

Table 6.6: Descriptive table of the discriminative power of each feature space using
k-nearest neighbors.

In the second stage, the calcium is separated from the hard plaque (figure 6.16.f and
figure 6.16.g). At the last stage, the information is fused and the characterization is
completed. We will refer later to this diagram to explain some parts of the process.

Recall that the plaque is the area comprised between the intima and the adventitia.
With both borders located we can focus in the tissue of that area. For such task, a
three stages scheme is used. First, a classification of the soft plaque is performed. This
process discriminates between soft plaque and the rest, fibrotic plaque and calcium.
The second stage, is the identification of calcium based on finding shadowed areas
after the plaque. The last stage is the integration of all the information to produce
the final characterization.

To evaluate the results, a classification of over 200 full-tissue regions from 20
different patients has been performed. The training set is a subset of two thirds of
the overall data determined using bootstrapping strategy. The rest of the data has
been used as test set. Previously, different physicians have determined and delineated
plaque regions in each full-tissue image.

Regarding the first stage of the process, a classification is performed on the feature
space. At this point, a feature space and a classifier must be selected. To help to chose
which feature space and which classifier to use, we try each of the feature spaces with
a general purpose classifier, the k-nearest neighbors method. Regardless the classifier
used, the information provided at the output of the system is a raw classification.
Using these data we can further process it to obtain clear borders of the soft and the
mixed plaques.

Figure 6.17 shows the performance of K-NN method applied to several feature
spaces. Observing the images, we realize that scale-space processes, DOGs, Gabor fil-
ters and wavelets, have poor to acceptable discrimination power, and therefore are not
suitable for the task of tissue discrimination. On the other hand, statistic-based fea-
ture spaces and structure feature spaces have acceptable to good performances. The
following table 6.6 details the conclusions arisen from the experiment. The qualitative
speed nomenclature (fast/slow) indicates the viability of the feature space technique
to be included in a real time or near-real time process. Note that the images displayed
are pixel-based classification results and have no further ”cleaning” processing.

Up to this point we have worked with raw classification data, which is sensible
to classification noise. Therefore a ”cleaning” procedure can be used to incorporate
local spatial information in the classification process. Different processes can be ap-
plied to achieve this goal, two possible approaches are region based area filtering and
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Figure 6.16: Tissue characterization diagram
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Figure 6.17: Tissue raw classification data using 7-Nearest Neighbors. (a) Original
image in cartesian coordinates. (b) Expert manual classification of tissue. (c¢) Co-
occurrence feature space. (d) Gabor feature space. (e) Wavelets feature space. (f)
Derivative of Gaussian feature space. (g) Cumulative Moments feature space. (h)
Local Binary Patterns feature space.

classification by density filtering. In a region based area filtering the less significant
regions in terms of size are removed from the classification. On the other hand, the
other method relies on keeping the regions that have high density of classification
responses. As the classification exclusively aims to distinguish between soft and hard
plaque, a separate module is added to separate hard plaque from calcium.

Table 6.7 and table 6.8 show the error rates for RAW data (RAW Error) and
Post-processed data taking into account neighboring information and density of re-
sponses (Post Error). It is also shown the percentages of false positives (FP) and
false negatives (FIN) for both errors. The false positives and false negatives are in-
cluded as they gives information of the possible geometry of the samples in the feature
space.

The result of the classification of the test data using all feature spaces and 7- near-
est neighbors classifier is shown in table 6.7. Observing the RAW data error rate, the
best overall feature spaces are co-occurrence matrix, local binary patterns, derivatives
of gaussian and accumulation local moments. These results are confirmed looking at
the post-processing error rate and ratifies the qualitative evaluation shown in table
6.6, where we observe that the same feature spaces are the ones that perform best.
Analyzing each of the feature spaces in terms of false positive and false negative rates,
we can deduce that: Co-occurrence feature space has good discrimination power, hav-
ing a ”symmetric” nature that is both FP and FN rates are comparable. In the same
sense, we can deduce that the overlapping of both classes is similar. Derivatives of
gaussian’s filter space has tendency to over-classify hard plaque. The classes in the
feature space are not very well defined as hard-plaque must have a higher scatter
than the soft-plaque. Gabor filter’s bank gives a good description of both classes
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Feature space | RAW Error FP FN | Post Error FP FN
Co-occurrence 22.36 10.91 11.45 10.88 4.19 6.68
DOG 27.81 23.51  4.95 16.29 16.67 0.04
Gabor 35.26 18.86 17.22 16.26 16.49 0.07
Wavelets 45.05 20.52 24.90 31.78 24.40 7.68
Moments 31.72 16.42 15.30 12.17 11.36  0.81
LBP 25.67 9.67 16.23 3.45 2.67 0.81

Table 6.7: Feature space performance using K-Nearest Neighbor.

Feature space | RAW Error FP FN | Post Error FP FN
Co-occurrence 40.88 34.66  6.20 12.91 12.10 0.81
Moments 35.50 20.34 16.16 13.83 13.02  0.81
LBP 26.37 5.76  20.85 6.93 1.52 547

Table 6.8: Feature space performance using ML and FLD if necessary.

as they have similar false rates. However, both classes are very overlapped giving a
hard time to the classification process. Wavelets overlapping of classes in the feature
space is extremely high, therefore it describes bad each of the classes. Accumulation
local moments have similar description power than Gabor filter’s bank, however the
different responses from both allow a much better post-processing in Accumulation
Local Moments. This fact allows us to suppose that the classification error points in
the image domain are much more scattered and with very few local density. Local
Binary Patterns have good descriptive power as well as giving a more sparse pattern
in false positives and negatives in the image domain.

To further develop our discussion we will only take the three best post-processed
data performing feature spaces: Co-occurrence matrix measures, Accumulation Local
Moments and Local Binary Patterns. Up to this point we have neither taken into
account complexity of the methods nor time issues. However, these are critical pa-
rameters in real applications, thus, we considerate them in our following discussions.

Once the feature space is selected, the next decision is to find the most suitable
classifier taking into account our problem constraints, if any. If we are concerned
with speed issues, simple but powerful classifiers are required. Due to the high di-
mensionality of two of the feature spaces selected (co-occurrence matrix measures
have about 24 features per distance and accumulation local moments have 81 fea-
tures) a dimensionality reduction step is desired. Principal component analysis is the
first obvious choice, but due to the great amount of overlapping data the results are
worse than using Fisher’s linear discriminant analysis which is focalized in finding the
most discriminative axes for our given set of data.

The result of this experiment is shown in table 6.8. We use Maximum Likelihood
combined with a Fisher Linear Discriminant Analysis reduction. As Local Binary
Patterns do not need dimensionality reduction due to the small amount of features
computed (3 features), the comparison with this method is done by just classifying
with the maximum likelihood method. As expected, the raw results are much worse
with this kind of classifier. COM measures take the worse part doubling its error
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Ensemble num. | RAW Error FP FN | Post Error FP FN

Base error 34.86 28.20 6.98 41.94 40.33 1.10
Ensemble of 5 c. 29.38 16.32 13.32 33.17 31.87 1.10
Ensemble of 10 c. 31.44 7.36  23.37 13.92 5.22 T7.76

Table 6.9: Error rates using boosting methods with ML with the accumulation local
moments space.

ratio. However, LBP, though it has also worse error ratio with ML, manages to be
the most discriminative of the three methods. This fact is also shown in the post-
processing, where LBP still have the lower error ratio. COM measures regain their
discrimination power after the post-processing.

Therefore, using one of the fastest classifiers, maximum likelihood, one achieve a
classification ratio over 87%. If the selected feature space is LBP, the scheme is the
fastest possible scheme as LBP are computationally efficient and low time consuming
as well as the ML classifier is without dimensionality reduction. This scheme is really
well suited for real-time or near-real-time applications due to both time efficiency and
reliability in the classification. This is, however, by no means the only near-real-time
configuration available since accumulative local moments are computationally as fast
as local binary patterns. However, the FLD dimensionality reduction hinders the
process. To overcome this problem, other classifiers can be used. The necessity to
find reliable and fast classifiers lead us to boosting techniques.

Figure 6.18: Boosting procedure for tissue characterization at different stages of
its progress. (a) Expected hand classification by an expert. (b) First stage of the
boosting procedure. (c) Ensemble of five classifiers classification. (d) Ensemble of
ten classifiers classification.

Boosting techniques allow a fast and simple classification procedure to improve
its performance as well as maintaining part of its speed. To illustrate this fact figure
6.18 shows the evolution of the classification when more classifiers are added to the
strong classifier.

The error rates at different stages of the process are also shown in table 6.9.
These results are computed using a ML method as a weak classifier on the ALM
space. The numbers show how the error rate is improving, and, though the raw
classification error rate is nearly immutable, we can observe that there is a great
change in the classification data points distribution in the image domain since the
false positive and negative rates drastically change. The post processing error rate
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gives better description of what is happening. The disposition of the error points in
the classification image is more sparse and unrelated to their neighborhood, allowing
better post processing and classification rates. In this case, the classification rate is
over 92% with a classifier as fast as applying ten times a threshold. Therefore, using
accumulation local moments and boosting techniques we have another fast and highly
accurate scheme for real-time or near-real-time tissue characterization.

Once soft and hard plaque are distinguished, we proceed to identify what part of
the hard plaque corresponds to calcium. One can argue why not to include a third
class in the previous classifier. The reason we prefer not to do so is because experts’
identification of calcium plaques is performed by context. Experts use the shadowing
produced by the absorbtion of the echoes, behind a high echo-reflective area, to label
a certain area as calcium. In the same way, we take the same approach. On the
other hand, the fact of including a third class only hinders the decision process and
increases the classifier complexity.

(i)

Figure 6.19: Tissue characterization results for different patients.

Therefore, the calcium identification process is made by finding the shadowing
areas behind hard plaque. Those areas are easily identified because the soft-hard
classification also provides this information (figure 6.16) since shadowing areas are
classified as non-tissue. We can see a plausible way of finding calcified areas. Figure
6.16.f shows the classification result under the adventitia border of the "hard” tissue.
We use one of the previous classified images, the soft-hard classification or the blood-
plaque classification. Figure 6.16.g shows in light gray the areas of shadowing, and
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therefore, the areas labelled as calcium.

To end the process, the last stage is devoted to recast the resulting classification
to its original polar domain by means of a simple coordinate transformation.

Figure 6.19 shows some results of the tissue characterization process. Figures
6.19.a, 6.19.c, 6.19.e, 6.19.g, 6.19.i and 6.19.k, show the original intravascular ul-
trasound images. Figures 6.19.b, 6.19.d, 6.19.f, 6.19.h, 6.19.j and 6.19.1, show the
characterization results (including full automatic intima and adventitia border loca-
tion). Soft plaque is display in light gray, fibrous plaque is shown in dark gray, and
white is used for calcium formations. Regarding the time issues, the full process is
performed in 4 seconds using a PIV@Q3GHz with 1Gb RAM. This time includes the
intima and adventitia location as well as tissue characterization. Tissue characteriza-
tion is performed in less than 0.5 seconds.

At this point, one logical question arises to the reader: How is it possible that
the first part of this section stated that co-occurrence matrix measures are the best
performing at tissue discrimination and on the second part the author defends the
local binary patterns technique? The answer is quite simple. When analyzing the iso-
lated tissues, co-occurrence matrices measures shines because they have high spatial
support. As we have shown, texture descriptor with higher local support performs
better when deciding if an area is classified as a certain type. On the other hand, local
binary patterns and cumulative moments are confined to smaller neighborhoods since
they exploit very local features. However, this same reasoning is true for the poorer
performance of co-occurrence matrices in accurate intima location and non-isolated
tissue. In those scenarios the method tends to overextend its influence by classifying
neighboring pixels of a certain area as belonging to majority of the class represented
in that area. As a result, though co-occurrence matrices measures have good dis-
criminative power, the comparison in accuracy with the physicians segmentation is
degraded due to the response width of the method.
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Conclusions and Future lines

This work has shown several tools for pattern recognition in computer vision, ranging
from high-level interpretation and classification fusion with generative snakes, math-
ematical techniques involved in the new formulation for geometric deformable models
that we have called Stop and Go formulation, to pure theoretical classification pro-
cesses to address semi-supervision and particularization by combining supervised and
unsupervised processes in the same framework, Supervised Clustering Hybrid Compe-
tition Scheme.

We have also attacked the problem of medical image analysis, using classical tools
in a first instance and after that designing a new framework for near-real time auto-
matic tissue characterization and IVUS structure analysis.

The following lines detail the conclusions for each of the lines of work described
in this document:

1. Generative snakes have been proposed as a tool for integration of the classifi-
cation and high-level interpretation of the image. This technique relies on the
availability of a generative model representing the region of interest and uses
this information to create an external energy based on the likelihood map that
can be used with suitable modification for guiding a deformable model. In the
parametric deformable model context, the modifications include a regulariza-
tion of the vector field defined by the gradient of the external energy and a
two-class likelihood map enhancement. In the geometric context, a topological
enhancement of the likelihood map replaces the regularization scheme.

We argue that using the likelihood map instead of a heuristic potential field
makes the snake more selective and suitable to the application domain. To
this purpose, a texture modelling and a color modelling process has been used
to compute the likelihood map. Dimensionality reduction has been applied
if necessary to the feature space to make the problem more computationally
feasible. In particular, we use Fisher Linear Discriminant Analysis and mixture
modelling. The likelihood map is enhanced and its contours are extracted and
regularized to assure good performance of the statistic snake. Robustness of
our generative snakes is shown by means of a wide range of test images from
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different domains.

We have also introduced a new geodesic snake model Stop and Go for a more
efficient convergence to shapes. The formulation bases on restricting the regular-
izing term to the last stages of the snake deformation by decoupling the conver-
gence from the regularity. This decoupling has several advantages over existent
geodesic formulations. On one hand, the numeric scheme is more efficient since
it admits arbitrary large time increments, except for the last regularizing steps.
On the other hand, we build a robust vector field ensuring convergence but, at
the same time, snake stabilization. Convergence is achieved by defining sepa-
rately an dynamic attractive term and an image feature based repulsive one. We
also introduce likelihood maps to decouple as well as to define the STOP term
of the external potential vector field. By using likelihood maps as an external
force the particular version of Stop and Go presented in the paper is suited for
feature space-based image segmentation (texture, motion, color schemes).

We have compared our scheme to current geometric snakes in terms of com-
putational efficiency and accuracy. The results clearly shows that our method
outperforms geodesic snakes in terms of speed of convergence and adaptability
to concave regions. Besides, the final models of shapes obtained are smoother
than the ones that simple region based scheme yields. Results on real images
illustrate the applicability of likelihood maps in different feature spaces.

In the classification theory field, a new hybrid technique that combines super-
vised and unsupervised knowledge has been introduced. This technique exploits
the structure of the data set to be classified and adds this constraint to a classical
supervised classification based on generative models. In fact, both techniques,
supervised and unsupervised, compete to attract each of the test data points.

This work shows how the method can be used to perform semi-supervised clas-
sification by setting the labelled data as inputs in the supervised half of the
method, while keeping unlabelled data to adapt using the unsupervised half.

Particularization has also been addressed. The particularization problem is an
emerging problem in some fields that has been very much overlooked by the gen-
eral classification community. In this sense, we have proposed our technique as
an improvement when compared to classical generative classifiers in face of par-
ticularization problems. We can see that our scheme will have high performance
in low dispersion structured coherent test data sets.

We have applied our scheme in two different databases: MNIST and UCI with
very promising results. The particularization problem has also been validated
using the writer’s test in the MNIST database.

As the last conclusion point, we have used the tools and knowledge provided by
the former techniques to address intravascular ultrasound image analysis and
tissue characterization. This work is motivated by the necessity of the physicians
for studying the vascular diseases using IVUS images. However, this task is
complex and suffers from multiple drawbacks (slow manual process subject to
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7.1

subjectivity interpretation. Therefore, automatic plaque characterization is a
highly desirable tool.

Nevertheless, automatic tissue characterization is a problem of high complexity.
First of all, it is needed a unique description of the tissues to be classified.
This is done by the feature extraction process. In our problem, most of these
suitable descriptors are based on texture. Thus, an study of several feature
spaces is done, to conclude with some enlightening results. On the other hand,
the classification of the feature data is a critical step. Different approaches
to the classification problem are described and proposed as candidates in our
framework.

At the end, a full segmentation and plaque identification is introduced. As
a conclusion, two real-time or near-real-time approaches have been proposed:
The first approach combines local binary patterns with maximum likelihood
methods. The second approach uses accumulation local moments and boosting
techniques.

Future Lines

Much has been done in this work and much still remains to be done in this matters.
In particular we recall the following future lines:

1

A better location of boundaries in natural scenes can be useful. In this sense
other likelihood map enhancers can be of interest.

An exhaustive comparison of the performance of generative Stop and Go snakes
to the most popular texture and color-based techniques could be of great interest
for the community.

The SCHCS method is defined for a multidimensional two class problem, the
multi-class formulation is still a difficult problem and should be solved.

Intravascular image analysis is still an open box of troubles. Though the pro-
posed method alleviates some of them, several still remains. Probably the most
notable one is the adventitia border location.

Texture based only tissue characterization in IVUS image is a difficult problem.
One of the causes lies in the way how the data is obtained. In this sense, access
and processing of raw data instead of the processed data displayed in the IVUS
image is highly desirable and should be taken into account.
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