Chapter 4

Higher-Order Dependencies

4.1 Introduction

A fundamental problem of computer vision is to detect and recognize objects from
cluttered backgrounds. The task can be especially difficult when objects cannot be
easily segmented because their edges are merged with the contours of background
elements and their texture and color cannot be used for segmentation. In this con-
text, the most successful object recognition approaches are based on the coupling
of local image measurements with global knowledge of the object shape. If we as-
sume that such process must rely on statistical properties of the image, the statistical
characterization of local visual features constitutes its first step.

The human visual system has shown a high proficiency at recognizing complex
objects in cluttered backgrounds [84]. Recent experiments have shown that this char-
acteristic includes perfect recognition capabilities even without accurate segmentation
[15]. It has been argued that this fact is based, among other reasons, on the ability
of unsupervised statistical learning of higher-order spatial structures [42] and the use
of visual features of intermediate complexity [143].

Regarding computer vision, the dominant approach during the last years for de-
signing object recognition systems has been the appearance-based approach. This
approach, based on the statistical modeling of raw image data, has shown good per-
formance in a variety of problems, but it requires the segmentation of the object and
its performance is very limited in the presence of occlusion or cluttered backgrounds.
One possible solution to this problem is the use of a bottom-up approach based on
feedforward conjunctive feature detectors [87]. Depending on the application we can
use different image features: local color histograms [18], local Gaussian derivatives
[120] and geometric invariant features derived from them [123], etc. But in all these
cases we must face a common problem: how to learn from data a suitable model for
recognition. In most cases, it has been assumed that simple statistical descriptors
like histograms [137] or Gaussian models [90] are a sufficient model for recognition.
In other cases, more complex statistical models have been proposed [153].

In chapter 2, we evaluated different local feature descriptors which are usually
used for current recognition approaches. In section 2.3 we presented several methods

143

144 HIGHER-ORDER DEPENDENCIES

which make use of local descriptors to perform object recognition. And as seen, we
have categorized all these local approaches into 3 different categories: (i) Feature
based schemes, (ii) Higher-order schemes and (iii) Parts-based schemes. The main
difference between these three categories is the spatial relationship among features.
Thus, when we do not take into account the geometrical relationship among local
features, a moderately noncomplex framework is obtained. As seen in chapter 2, the
main problem of this kind of object representations is the potential ambiguity. Higher-
order schemes appeared in order to solve this ambiguity by introducing information
about the spatial relationship among local feature. However, a higher-order scheme
produces a more complex framework. Finally, a parts-based scheme is considered
when a subset of local features is grouped and they form an entity with a particular
behaviour. Of course, a parts-based scheme contains high-level information about
local features and this produces a highly complex framework.

In chapter 3 we have analyzed different object representation methods. Some of
them adapted only to local positive data representations and some of them adapted
to negative and non-negative data representations. Thus, chapter 3 contains feature
based schemes since no information about spatial geometry and arrangement among
local features is considered. Furthermore, experiments of chapter 3 have been done
in closed environments where we do not have cluttered scenes or real occlusions (we
only evaluated objects with artificial occlusions). In contrast to this, in this chap-
ter we propose a novel local appearance modeling method for object detection and
recognition in cluttered scenes. The approach is mainly based on modeling the joint
distribution of local feature vectors at multiple salient points. The initial intractabil-
ity of this distribution can be managed by factorizing it. In this way, the estimation of
the statistical properties of the object image is reduced to the estimation of a number
of low dimensional density functions that represent higher order dependencies among
local features.

In section 4.2 we describe the general methodology for obtaining a reliable esti-
mation of the joint distribution of local feature vectors at multiple salient points. We
define the concept of k-tuple in order to represent the local appearance of the object
at k different points as well as the statistical dependencies among them. We show
how Independent Component Analysis (ICA) [64] (or section 3.6.1) can be used to
transform local feature vectors to a new representation space that allows a reliable
estimation of the k-tuples density function by factorizing it. Recognition is then per-
formed using the Maximum a posteriori criterium. However, this method can be used
for modeling a small set of objects, but degrades when we are interested in recognizing
a large set of objects (or an object with very different appearances). In this case the
best approach is to consider a specific model for each object (including its different
appearances). For this case we introduce Class-Conditional ICA (see section 3.6.2) in
order to be able of comparing among different models.

In section 4.3 we have tested our method in a closed environment where we rec-
ognize objects taken under different points of view (COIL-100 [97] database) and
with different levels of handmade occlusions. Furthermore, our technique is also gen-
eralizable to real, complex and cluttered environments and we present some results
of object detection in these scenarios with promising results. Finally, a very large
statistically significant test (using the MNIST database) is used to illustrate the gen-

4.2. Methodology 145

erality of feature representations in our scheme as well as explicitly demonstrating
the advantage of modeling higher-order statistics using factorized joint distributions.

4.2 Methodology

We propose to model an object as a collection of local visual features. This choice
is motivated by the need of getting a maximally invariant object description with
respect to partial occlusion or nearby clutter. Features must be computed on the
(a priori) most discriminative points of the object. In our implementation, we used
the Harris operator [55] to detect interest points. We have used two kinds of visual
features to represent objects: local color distributions [137] and the first 9 differential
invariant jets [73] at each point. Using these features results in a local appearance
model which is not only invariant to in-plane rotation (and translation) but is also
robust with respect to partial occlusions as we shall see later. We must emphasize
however that our methodology is not restricted to color and differential invariant jets
and can be used for any local set of features, for example, curvature, edge-intensity,
texture moments or even shape descriptors (see section 4.3.5).

Let ¢ be an index corresponding to an interesting point in the image. Let x;
denote the feature vector of dimension n extracted at location i. Let T; = {x;} a
set of features found in an image or region j. We will follow a Bayesian model-based
object recognition strategy, so that we will assign a sample object T} to a particular
class M; using the probability of misclassification as an error measure. It is well
known that the solution to this problem is to assign T; to the class that maximizes
the posterior probability. This is called the Maximum a Posteriori or MAP solution.
Using the Bayes rule we can formulate the posterior probability in terms of quantities
which are easier to estimate, and the MAP solution takes the form:

Cumap = arg_y max{P(T;|M;)P(M;)} (4.1)

where P(M;) is usually called the prior probability, P(T;|M;) is referred to as the
class-conditional probability or, when seen as a function of the parameters, the likeli-
hood.

For the class-conditional density in equation (4.1), it is intractable to model de-
pendencies among all x;’s (even if correspondence is solved), yet to completely ignore
these dependencies is to severely limit the modeling power of the probability densi-
ties. Objects frequently distinguish themselves not by individual regions (or parts),
but by the relative location and comparative appearance of these regions. A tractable
compromise between these two modeling extremes (which does not require correspon-
dence) is to model the joint density of all k-tuples X = (x!,...,x*)’s in T}, that is, of
the features that are elements of a possible subset of cardinality k of T} (with k < n
and k << I) [91]. We can consider all possible k-tuples or just a subset of them that
fulfills a given condition.

4.2.1 Joint Distribution of k-tuples

Given a model object that is represented by I n-dimensional feature vectors, instead
of modeling the total joint likelihood of x1,x2,...xy, which is an (I x n)-dimensional

146 HIGHER-ORDER DEPENDENCIES

distribution, we assume that the alternative distribution of all k-tuples is a good
approximation. But for a given k-tuple, its joint density function, P(x!,...,x*) is a
(k x n)-dimensional distribution, which is still intractable. For example, in the case
of using multi-dimensional histograms as an approximation of the joint distribution
of image features with 20 histogram bins along each dimension, such a framework
would require 20¥*™) bins [91]. A possible solution to this problem is to factorize
this distribution into a product of low-dimensional distributions. We can achieve this
factorization by transforming x into a new feature vector s whose components are
(mostly) independent, and this transformation can be computed using Independent
Component Analysis (ICA).

4.2.2 Density Factorization with ICA

ICA originated in the context of blind source separation [32, 67] to separate ”inde-
pendent causes” of a complex signal or mixture. The ICA of a n dimensional random
vector x is the linear transform which minimizes the statistical dependence between
its components. This representation in terms of independence proves useful in an
important number of applications such as data analysis and compression, blind de-
convolution, denoising, etc. Assuming the random vector we wish to represent through
ICA has no noise, the ICA model can be expressed as

W(x—X)=s (4.2)

where x corresponds to the random vector representing our data, X its mean, s
is the random vector of independent components with dimension m < n, and W
is the filter or projection matrix. This model can be also presented in terms of A,
the pseudoinverse of W, called the mizture matrix. If the components of x are
independent, at most one is Gaussian, and their densities are not reduced to a point-
like mass, it can be proved that W is completely determined [64].

In practice, the estimation of W can be performed through the optimization of
several objective functions such as likelihood, network entropy or mutual information
[64]. Since mutual information is the Kullback-Leibler difference between a distribu-
tion and its marginal densities, we are obtaining a representation that best approxi-
mates (in the sense of Kullback-Leibler) the following rule [20]:

P(x1,22,...2,) = |det W|P(s1, $2,...5p) ~ |det W] H P(s;) (4.3)

j=1

The original high-dimensional distribution is now factorized into a product of n one-
dimensional distributions, with only small distortions expected.

In our case, by using ICA and given a set of feature vectors x, we can learn the
following linear mapping;:

(x —X%)=As (4.4)

Under this mapping the density function of a feature vector P(x) can be approxi-
mated by a product of n 1-dimensional density functions P(s), and if we consider the

4.2. Methodology 147

distribution of a set of feature vectors which correspond to a k tuple,
n
P(x',...,x*) =wP(s!,...,s" rw H P(s}, . ,s;?) (4.5)
=1

where w is a normalizing constant. After factorization, we must estimate n k-
dimensional density functions, and this becomes manageable if k is small, e.g., k = 2
or 3.

This factorization can be better understood from the point of view of a graphi-
cal model [14]. Figure (4.1) is a graphical model showing the dependencies between
a pair of 3-dimensional data points x!,x2. The joint distribution over all nodes is
6-dimensional and all nodes are (potentially) interdependent. The basic approach to-
wards obtaining a tractable distribution is to remove intra-component dependencies
(vertical and diagonal links) leaving only inter-component dependencies (horizontal
links). Ideally, a perfect ICA transform results in the graphical model shown in the
right diagram where the s;,s, and s3 only have pair-wise inter-component depen-
dencies. Therefore, the resulting factorization can be modeled by using parametric
or non parametric k£ dimensional density models, as for example Gaussian mixture
models.

Figure 4.1: Graphical models: (a) fully-connected graph denoting no independence
assumptions (b) the ICA-factorized model with pair-wise only dependencies.

Factorization of expression (4.5) can be seen under the point of view of graphical
models. In figure (4.1) we see how intra-component dependencies are removed using
an ICA transformation leaving only inter-component dependencies (horizontal links).
Graphical model of figure (4.1.b) is the same as the one presented in figure (4.2.a).
Graphical models are a mixture of graph theory and probability theory and offer an
elegant formalism in which problems can be formulated and conditional relationships
evaluated. We have an undirected graphical model (figure (4.2.a)) and we need to
know the conditional relationships between its elements in order to provide a joint
probability density function. A possible graphical model with conditional probabili-
ties is shown in figure (4.2.b). Each arrow indicates the direction of causation. If we

148 HIGHER-ORDER DEPENDENCIES

only consider nodes A and B of figure (4.2), the undirected graphical model is equiv-
alent to a joint density of P(A, B) and the directed graphical model is equivalent to
P(B|A)P(A). Arrows can be used in the other way round and the joint density would
be equivalent to P(A|B)P(B).

So that, if we have the graphical model of figure (4.2.b) and we want to know
the joint density of all variables P(A, B,C, D, E, F) there is a theorem in graphical
models that,

P(all variables) = H P(v;|Pa(v;)) (4.6)

where v; is each variable of the graphical model, and Pa(v;) means the parents of
node v;. For example, in figure (4.2.b), the father of node B is A but A has no
father. As seen, this expression only takes into account probabilities where each node
is conditioned on its parents. If we apply expression (4.6) with the graphical model
of figure (4.2.b), we find that

P(A,B,C,D,E,F) = P(B|A)P(A)P(D|C)P(C)P(F|E)P(E)
= P(A,B)P(C,D)P(E,F) (4.7)
Now, we see that expression (4.5) is the same as the one obtained using graphical

models (expression (4.7)). Thus, we have used graphical models to explain expression
(4.5).

564
554

(a) Undirected graphical model. (b) Directed graphical model.

Figure 4.2: Two graphical models. (a) Undirected graphical model corresponding
to the graphical model of figure (4.1.b). (b) A directed version of the graphical model
in (a) where we can use conditional probabilities and the arrow indicates the direction
of causation.

A general scheme of our methodology is shown in figure (4.3). In this figure we
have an object and its corresponding keypoints. Then, we extract a set of k£ = 3
tuples and we use ICA to obtain a reduced space. Then, m mixture of Gaussians in
a k dimensional space are used to model joint distributions of k& = 3 tuples.

Finally, we should note that since we have a large collection of objects, we will
use the Class-Conditional ICA introduced in section 3.6.2 to compare different ICA
spaces.

"S[OPOUI DINIXIUI URTS
-snex) pue)T Sulsn uoreziioyoej L)suep o[dnj-y Ioj weiderp wolsL§ :g¢°H 2an3rg

149

Mojlanyd o e % Cojledng d=(palgol=mdn g

o o
47
[
Wl &
Rt AL uauodwod 2)dng 514
SAUNECILL LEISSNED

sjulodAay woll
CO_“_.DM._“_.Km m_O_ 3“_. mﬂv\.‘. w auodwoy «__m—w__mamz:_

uauodl.u{/: srinyfuoask g

uoljoeixs julodAsy

4.2. Methodology

150 HIGHER-ORDER DEPENDENCIES

4.3 Experimental Results

Our experiments are based on extracting local information from a set of interest
points using the well-known Harris operator [55, 124] and modeling possible high-
order dependencies of local features. In the first experiment we extracted the first
9 differential invariant jets [73] at each point as the corresponding feature vector z.
Using these jets as our feature vectors results in a local appearance model which
is not only invariant to in-plane rotation (and translation) but is also robust with
respect to partial occlusions as we shall see later. We must emphasize however that
our methodology is not restricted to differential invariant jets and can in principal be
used for any local set of features, for example, color, curvature, edge-intensity, texture
moments or even shape descriptors (see section 4.3.6). We then performed ICA to
get m < 9 independent components for the feature vectors (jets). In our experiments,
we considered the set of £ = 1,2,3 order tuples, resulting in a set of 1D, 2D and
3D Gaussian mixture models which were used to model 1-tuple, 2-tuple and 3-tuple
joint component densities. Initial experiments were done using multi-dimensional
histograms as a non-parametric approximation of the joint distribution of tuples but
results were not as satisfactory as parametric mixture models. Once an ICA space is
defined, we used the definition of class-conditional ICA of Equation (3.73) in order to
perform object classification.

4.3.1 From Histograms to Mixture Models

A simple and direct method to estimate a joint distribution of k-tuples is through
the use of histogram representations. As seen in section 2.1.3, histograms have been
widely used as a first approximation of a probability density function. So that, rep-
resenting k = 2 tuples and using 32 histogram bins, we require of about 32°*2 bins.
Such a representation of 32?%2 bins is very expensive in terms of computational costs.
Also, if we assume a histogram based representation our model might not be extended
to higher-order models such as k = 3 or £ = 4 because the computational costs re-
quired for these representations would be tremendous. In order to deal with these
representations, we used PCA to reduce the dimensionality of the problem and ICA
to obtain ”independent” vectors. Such dimensionality reduction produces a tractable
space in terms of computational costs. Thus, our principal need is to determine a
correct subspace dimension (dimension m) in terms of reducing the original data vec-
tors (dimension n) preserving the maximum amount of information. We conducted
an experiment in order to find a correct ICA dimension which preserves the data
of the original space and obtains the best performance in terms of recognition and
detection. Here, we should note that we first apply PCA to reduce the dimensionality
of the original space and then we apply ICA to obtain its independence. However, we
apply PCA and ICA at the same time and we use the term ICA dimension instead
of PCA dimension.

Our experimental results are mainly based on the COIL100 object database. In
order to evaluate which ICA dimension performs good in our framework, we used
20 objects from the Columbia Object Image Library (COIL) and we constructed an
artificial situation where objects are transformed by pose change, a planar rotation

4.3. Experimental Results 151

and followed by 50% occlusion. We tested our method under this set of unfavourable
conditions and we present our initial results in figure (4.4) where the raw output for
object ”piggy bank” can be seen.

(a) 20 Objects (b) Testing artificial objects (c) Likelihood map

Figure 4.4: Synthetic ”cluttered” scene and a detection example. (a) The synthetic
test image of 20 objects from COIL; (b) The rotated and occluded version of (a);
(¢) The likelihood map for detecting ”piggy bank” in (b). The white dots are the
interest points and high-likelihood points are highlighted.

Objects of figure (4.4.a) have been used in order to determine which ICA dimension
perfoms better in our framework. We evaluated from m = 1 to m = 9 Independent
Components of our feature vectors (9 dimensional feature jets). As said before, PCA is
used for dimensionality reduction and after we apply ICA to obtain independence. For
the original n = 9 dimensional jets, histogram factorization along feature components
is not a valid solution since the independence assumption on the differential invariant
jets does not hold in general. ICA is introduced to obtain a factored model but we
can obtain a reduced space lower than n = 9 dimensions. Detection performance
was measured by the average rank of the accumulated regional likelihood for the
object model (the ground truth object location was used in this particular case).
Figure (4.5) depicts the clear improvement introduced by ICA with respect to the
use of the original jets in one particular case. This experiment demonstrates that our
nine dimensional data vectors can be represented using only 3 dimensional projected
vectors obtained using PCA and ICA. And we have seen that this new representation
is able to obtain 100% in terms of recognition rates. Since our nine dimensional data
vectors are obtained from nine invariant jets, we think that the intrinsic dimension
of our problem is 3 because the invariant jets are built by different convolution filters
and they might contain repeated and redundant information. Results of figure (4.5)
are presented in terms of ranks where, for example, rank one means that a target
object was correctly classified at first place. Rank two means that a target object
was correctly classified at second position. So that, figure (4.5) contains the average
detection rank according to the ICA dimension used.

Experimental results are based on a training and a testing set. Each object model
is trained only using one instance per object. For testing purposes, we have generated

152 HIGHER-ORDER DEPENDENCIES

20 Objects
3 T T T T

Average rank of the target object

1 2 3 4 5 6 7 8 9 10
1-9: ICA on Jets, 10: Original Jets

Figure 4.5: The average detection rank of 20 objects of figure (4.4.a) using different
Independent Components (m=1,2,... 9) versus original n = 9 dimensional jets (shown
as the rightmost bar). Dataset used in this particular example: COIL 20 objects.

a testing set consisting of four new instances of each object captured from other points
of view (each testing instance of the object is rotated 5 degrees in azimuth apart from
the other). Thus, the following experiments will show different recognition rates.
Tables containing these results can be understood as follows: row 1 with label Instance
1 is the training instance used to create each object model and from row 2 to row 5
are four new testing instances of each object — each of them rotated by 5 degrees
from the previous instance. Then, we introduce a new row containing a percentage
for the training set with label Train and a label Test which indicates the recognition
rate obtained with the testing set

We want to compare the performance of our method using the original data vectors
with respect to the reduced data vectors obtained using an ICA transformation. To do
this, we took the first 20 objects of the COIL100 and we compared both performances
with the training and testing datasets. We took one instance per object and we created
our object models using a k = 2 tuple histogram representation. We took four new
object instances each of them rotated by 5 degrees from the previous instance to build
up our testing dataset. We calculate a set of keypoints per object and we extract k = 2
tuples. From all the possible £ = 2 tuples, we have selected those tuples which their
two keypoints are closer (the distance between them is less than 25 pixels, see section
4.3.5). Objects contain about 100 keypoints and the number of possible k = 2 tuples

4.3. Experimental Results 153

is extremely huge (about 5000 tuples). So that, using tuples with closest keypoints
we reduced this huge number of tuples to 1000. Choosing tuples with the closest
keypoints produces a robust technique that can naturally deal with different levels
of occlusions (see section 4.3.5). The original space composed of the responses of 9
invariant jets is modeled using one histogram per dimension. Since we are modeling
k = 2 tuples, each histogram is bidimensional. In this particular experiment, 32
histogram bins are used for each dimensional histogram (9 histograms). Thus, each
histogram requires of 322 = 1024 bins. In the previous experiment, we found that a
correct ICA dimension is m = 3. Thus, we reduced the n = 9 dimensional feature
vectors to an ICA dimension of m = 3. Then, we used 3 histograms to model each
m = 3 subspace dimension. Results of these two approaches are shown in table (4.1)
where we can also see the effect of increasing the tuple order (from k& =1 to k = 3).

9D k tuples 3D k tuples

Instances | k=1 | k=2 | k=3 || k= k=2 k=3
Instance 1 3 17 20 16 20 20
Instance 2 1 4 4 8 7 6
Instance 3 1 4 4 6 5 2
Instance 4 1 4 5 4 5 4
Instance 5 1 4 3 6 4 3

Train 15% 85% 100% 80% 100% 100%

Test 5% 20% 20% 30% | 26.256% | 18.75%

Table 4.1: Recognition rates when we consider the original 9D invariant jets with
independence assumption and the independent 3D ICA projected vectors. First
instance is used for training, and 4 new instances are used for testing.

Table (4.1) reflects two differents behaviours: (i) Results obtained using 9 dimen-
sional jets are poor, (ii) Even working with independent distributions, recognition
results are not very convincing. As expected, it is clear that if we work in the origi-
nal space of 9 dimensional vectors and if we assume statistical independence between
vectors, we are implicitly assuming a bad framework for object recognition. It is
clear that the original space is not independent and results should be poor. When
we introduce an ICA transformation, recognition rates are slightly increased but only
when recognition is done using the same training instance. Under new unseen object
instances of the learned objects, our method fails and it does not reflect robustness
under unlearned instances. Table (4.1) also reflects a k = 3 tuple model but its results
are worse than the k = 2 tuple model. From table (4.1), when we increase the order of
our tuples (k), recognition results are automatically diminished. This bad behaviour
has been deeply analyzed in order to find a justification. For this, we have found that
our tuple distributions are graphically represented as shown in figure (4.6).

Figure (4.6) shows three tuple distributions that are difficult to model. As seen
in this figure, points are not concentrated in specific regions and they are not orga-
nized as an homogeneous cloud of elements. This spatial organization difficults its
modelization. Figure (4.6.a) shows a big region that concentrates a large number of
points and two different tails. Figure (4.6.b) also reflects a similar behaviour. How-
ever, figure (4.6.c) reflects an equally distributed region of points. These 3 figures

154 HIGHER-ORDER DEPENDENCIES

b [20]. Tuple: [2], Dimensiar: [1], Symmetric b [20]. Tuple: [2], Dimension: [2], Symmetric

a
O
woix
% wx %
[PrRa———
xm ok K
S KGO

W aece 0N OO0 X
% e orx % wec

P =TT - L

m00cm
PR p———

5 ORI

s
e

P T
pa———
-

z

=T

¥ Wik
e W R R Hhor
ErkadEd b
Bk cH Hdk » W

P
x %4 &

(c) Dimension 3.

Figure 4.6: Three 2 dimensional spaces representing the tuple space of one object.

show that the spatial configuration of points corresponding to our tuple space is very
important. Thus, this is the main reason that histograms are not well suited to model
these highly complex tuple spaces. As we will see later, this particular spatial con-
figuration of points in conjunction with a histogram representation is the reason that
our higher-order model of k = 3 tuples does not improve the k = 2 case.

Since histogram representations need to tune a bunch of internal parameters and
we have highly complex spatial distributions of points, we used another representation
more adaptive. If we try to represent these spaces with histograms, one possible
solution would be to increase the number of histogram bins in order to capture tails
or complex point distributions. Then, we will obtain a histogram resolution where
we do not lose information. Instead of increasing the number of histogram bins we
decided to use a mixture of Gaussians to represent this space. The main reason to
introduce a mixture of Gaussians is that we will need less computational space to store
our models. Also, another important reason is that our data distributions contain a
great diversity of behaviours (big regions, tails, sparse regions, etc.), so that, each of

4.3. Experimental Results 155

them can be captured using a Gaussian or a combination of them.

5 Mixtures 10 Mixtures
3D k tuples 3D k tuples
Instances k=1 k=2 k=3 k=1|k=2 k=3
Instance 1 20 17 16 20 19 18
Instance 2 13 14 14 14 14 15
Instance 3 11 14 15 10 13 14
Instance 4 12 12 12 9 11 12
Instance 5 9 10 12 7 10 12
Train 100% 85% 80% 100% | 95% 90%
Test 56.25% | 62.5% | 66.25% 50% 60% | 66.25%

Table 4.2: Recognition rates when we consider a mixture of Gaussians. Experiments
use 3 independent components that were obtained using an ICA transformation. We
present a mixture of Gaussians using 5 and 10 Gaussians.

In table (4.2) we expose a comparison of 2 different Gaussian mixture models.
We used 5 and 10 Gaussians to model all tuple spaces (from k = 1 to k = 3) and
results are significantly better than the ones presented in table (4.1). We should note
that a £k = 2 tuple model produces data redundancy because we have to consider
two tuples (x!,x?) and (x2,x') where x! and x? are two feature vectors which are
extracted from two keypoints of an object. However, a k = 3 tuple model introduces
a major degree of data redundancy because we have to consider 6 tuples (all pos-
sible combinations between 3 local keypoints): (x!,x%,x3), (x!,x3,x?), (x2,x!,x3),
(x2,x3,x1), (x3,x2,x!) and (x®,x!,x?). Thus, we are modeling symmetric data and
the amount of data redundancy that can be generated with a & = 3 tuple model is
extremely important. Then, we will have problems to learn these data distributions
using Gaussian mixture models. To avoid this data redundancy and increase the
speed of the learning process, we decided to learn our joint distributions using a fixed
order of the elements of each tuple. If we are able to assign an order to each element
of a tuple, we will have a simpler tuple point instead of 6 (in a k = 3 tuple model)
and it will be easier to learn the whole tuple space. Since our extracted keypoints
are obtained using the well-known Harris operator [55] and it is based on the first
order Gaussian derivatives, we are able to determine the order of the keypoints of a
tuple. Given a specific keypoint in an image, if G, is the first Gaussian derivative
extracted from this keypoint along x axis, Gy the first Gaussian derivative extracted
from the same keypoint along the y axis and G, is the second order Gaussian deriva-
tive extracted from the same keypoint along x and y axes, then we are able to obtain
avalue 7 = G2 x G — G7%,. 7 usually reflects whether a keypoint is located in an
homogeneous region or in an abrupted region because it is based on the Gaussian
derivatives [123]. So that, each keypoint in an image will have its corresponding 7
value which will be used to determine the specific order of the elements of a given
tuple. Now, our joint distributions contain less tuples and they should be easier to
learn.

The three joint distributions presented in figure (4.6) are also shown in figure
(4.7) assuming that tuples are sorted according to the above explained method. In

156 HIGHER-ORDER DEPENDENCIES

this particular case, the number of k£ = 2 tuples is reduced significantly. Table (4.3)
shows the recognition results obtained using tuples with ordered keypoints. If we
compare results of tables (4.2) and (4.3) we see that results do not change significantly.
However, in the last case, we learned the Gaussian mixture models faster than using
unordered tuples.

Obj [2a], IC 2]

050
oo
gui=s)

L)
@

ocmmme o0® o

38 -3 28 -2 -8 -1 -08 [0s 1 18 -3 -2 -1 o 1 2 3 a

(c) Dimension 3.

Figure 4.7: Three 2 dimensional spaces representing one of the objects of the
database where keypoints of tuples are ordered. We also show how a mixture of
Gaussians can be adapted to our tuple distributions.

Using a mixture of Gaussians to model joint distributions imply that we should
be aware of the number of components (Gaussians). Thus, a highly complex joint
distribution would require more Gaussian components than a noncomplex joint dis-
tribution. In our case, this is very important because our data distributions are not
easy to model (see figure (4.7)) and if we choose an inappropiate number of Gaussians
we will generate an incorrect model. As example of this important fact, we present
the tuples of one object with respect to the tuples of another object. Figure (4.9)
shows two tuple spaces merged in one space. One tuple space is modeled using a
mixture of Gaussians. We are able to appreciate that there are several tuples which

4.3. Experimental Results 157

5 Mixtures 10 Mixtures
3D k tuples 3D k tuples
Instances | k=1 k=2 k=3 k=1 k=2 k=3
Instance 1 20 19 19 20 20 20
Instance 2 13 13 15 11 13 14
Instance 3 13 13 14 12 12 13
Instance 4 12 12 13 8 10 12
Instance 5 10 11 11 9 8 13
Train 100% 95% 95% 100% 100% 100%
Test 60% | 61.256% | 66.25% 50% | 53.75% | 65%

Table 4.3: Recognition rates when we consider a mixture of Gaussians. Experiments
use 3 independent components which were obtained using an ICA transformation.
We present a mixture of Gaussians using 5 and 10 Gaussians. This experiments
contains ordered tuples.

share common regions but they belong to different objects. Thus, there are inter-
secting regions between both objects. Of course, this behaviour is justified because
both objects have similar local appearance regions leading to generate similar or even
identical tuples. We present in figure (4.8) the two objects which have been used to
extract the above presented tuple spaces (figure (4.9)). Now, we see that both objects
are similar in terms of local appearance and this fact produces intersecting regions in
their joint distributions.

cetaphi!

(a) Object 1. (b) Object 2.

Figure 4.8: Two objects of our database. These two objects are similar in terms of
local appearance and their respective tuple spaces are shown in figure (4.9).

As seen, our objects contain local appearance regions which might difficult the
learning of Gaussian mixture models. The central problem of using a mixture of
Gaussians as a model is, of course, the choice of the number of components (also
known as ”model-order selection”). In our experiments, we used an adaptive mixture
model based on the Minimum Description Length (MDL) [139] optimality criterion
used to fit the data in each case with the ”right” number of components. Results using
the MDL criterion are presented in table (4.4). This table shows that a MDL criterion
to choose the number of Gaussians definitely enhances the recognition performance,

158 HIGHER-ORDER DEPENDENCIES

O [20]. 1€ [1], Int.Okj [15] O [20]. 1€ [2], Int.Okj [15]

oo o B oBdam o

1

WK

,\,.mm
X e xxw x
oo g
ooe
o

- -5 -4 -3 -z -1 [1 2 -6 -4 -2] 2 4 6 8 3

(a) Dimension 1.

=y e g

-2 RY -1 -05 [

(c) Dimension 3.

Figure 4.9: Three joint distributions of tuples of two objects corresponding to each
m = 3 independent components. One of the objects is modeled using a mixture of
Gaussians (circles) that is also seen in figure (4.7). Crosses represent tuples of the
non-modeled object. We see a high level of intersection between these two tuple
spaces.

undoubtedly through an increase in accuracy in modeling the joint distributions.

Even though results from table (4.4) show an enhancement with respect to all pre-
vious results, we can not state that our technique is robust because the best obtained
performance is about 71.25%. Analyzing our object database we found that nearly all
errors are localized when we compare one homogeneous object with a complex one.
Since our method is based on the extraction of keypoints, an homogeneous object
contains less keypoints than an object with abrupted regions. Thus, these objects
contain less tuples and our mixture of Gaussians can not generalize from a reduced
set of keypoints. A possible solution to this problem is to fix a number of keypoints
per object in order to force a minimum number of keypoints for homogeneous objects
(i.e. at least 50 keypoints per object). If we consider at least 50 keypoints per object,
recognition results are increased as shown in table (4.5).

4.3. Experimental Results 159

MDL Estimation
3D k tuples

Instances k=1 k=2 k=3
Instance 1 20 20 20
Instance 2 13 14 16
Instance 3 12 12 14
Instance 4 10 11 14
Instance 5 11 10 13

Train 100% 100% 100%

Test 57.5% | 58.75% | 71.25%

Table 4.4: Recognition rates when the number of Gaussians is estimated using the
Minimum Description Length (MDL).

MDL Estimation MDL Estimation
3D k tuples 3D k tuples
Instances k=1 k=2 k=3 k=2 k=3
Instance 1 20 20 20 20 20
Instance 2 14 15 16 16 18
Instance 3 13 14 15 14 16
Instance 4 12 13 15 13 15
Instance 5 11 12 14 13 14
Train 100% 100% 100% 100% 100%
Test 62.5% | 67.5% | 75.0% 70% 78.75%

Table 4.5: Recognition rates when the number of Gaussians is estimated using the
Minimum Description Length (MDL) and homogeneous objects contain a significant
number of keypoints (at least 50 keypoints per object). The 3 columns in the left
show results obtained using the product of probabilities, and the 2 columns in the
right show results when a voting scheme is used.

The first left-most 3 columns of table (4.5) show how results are slighty improved
when we force to obtain more keypoints with homogeneous objects. We have also
experimentally tested that we can improve classification results using a voting scheme
instead of using the usual product of probabilities as seen in equation (4.5). Objects
are usually described using 100 keypoints approximately and we can work with about
2000 k£ = 2 tuples or 20000 k£ = 3 tuples. Since we have a large amount of tuples
in both cases, we can classify an object according to the number of tuples that are
correctly classified. Thus, introducing a voting scheme where each tuple votes for
one candidate training object, we can avoid some effects derived from the mixture
of Gaussians model. A model based on a mixture of Gaussians can suffer from an
overflow of probabilities since some covariance matrices can be very narrow (see figure
(4.9)). Thus, this scheme might generate a very high probability value that can be
propagated over other tuples of the model and the final probability of the object
can be severely affected. A voting scheme reduces this effect because each tuple
is treated independently. Using this voting scheme, each training object will have
its corresponding counter and when all testing tuples have voted we will choose the
most voted training object as the candidate for the classification. The two right-most

160 HIGHER-ORDER DEPENDENCIES

columus of table (4.5) show classification results when we consider this voting scheme.
We have to take in mind that a voting scheme can only be used when we have a fixed
number of training objects and the number of tuples of a test object is high.

4.3.2 Appearance + Color Models

Previous section shows results using appearance information (9 invariant jets) but
the final performance seems not to be very convincing. In this section we want to
introduce more information in our appearance model in order to improve appearance
based results. Furthermore, we introduce more objects in our analysis. In this sec-
tion, experiments are based on 100 objects from the Columbia Object Image Library
(COIL-100) [97]. We repeated the same experiment of the previous section but using
100 objects and we find that appearance-based models (ie. using monochrome-based
invariant jets) are not very satisfactory (see table (4.6)) therefore we introduced a
hybrid appearance/color model by introducing the mean color of each normalized
channel (R,G,B) obtained from a circular region defined around each interest point.
Although color histograms [137] can also be used, given the local nature of the repre-
sentation, we limited it to the main dominant color in the surrounding region. Recog-
nition rates using k = 1 tuples using appearance, color and a hybrid appearance/color
model are presented in table (4.6).

k =1 tuples
Appearance | Color | Appearance + | Appearance +
(3D) (3D) Color (3D) Color (4D)

Instance 1 85 31 93 89
Instance 2 38 25 52 66
Instance 3 33 23 50 55
Instance 4 28 18 49 57
Instance 5 28 17 42 52

Train 85% 31% 93% 89%

Test 31.75% 20.75% 48.25% 57.5%

Table 4.6: Recognition rates with 100 objects using k = 1 tuples and considering
all the possible models. All spaces are modeled using a mixture of 10 Gaussians.

As noted in Table (4.6), feature vectors of the appearance model (first column of
results) are reduced from a n = 9 dimensional space to a m = 3 dimensional ICA space
since this ICA dimension is the best one as seen in the previous experiment (see figure
(4.5)). In light of the previous experiments (see figure (4.5)), we strongly believe that
our 9-dimensional jets have an intrinsic dimensionality of 3 components. The addition
of (dominant) color introduces essentially one degree of freedom (information) to the
model and we would expect that m = 4 dimensional ICA spaces would be the best
(as in fact they were found to be). In Table (4.6) we present recognition results
considering a projected ICA space of 4 dimensions. Since considering k£ = 1 tuples
is the same as evaluating the probability of a single point to appear in one object
model, recognition results are poor. Tables (4.7) and (4.8) show recognition rates
when considering higher-order models with £ = 2 and k& = 3 tuples.

4.3. Experimental Results

k = 2 tuples
Appearance | Color | Appearance + | Appearance +
(3D) Color (3D) Color (4D)

Instance 1 98 54 99 99
Instance 2 44 32 70 73
Instance 3 33 30 68 71
Instance 4 28 33 58 63
Instance 5 29 29 62 64

Train 98% 54% 99% 99%

Test 33.5% 31% 64.5% 67.75%

161

Table 4.7: Recognition rates with 100 objects using k = 2 tuples and considering
all the possible models. All spaces are modeled using a mixture of 10 Gaussians.

k = 3 tuples
Appearance | Color | Appearance + | Appearance +
(3D) Color (3D) Color (4D)

Instance 1 100 83 100 100
Instance 2 53 68 69 85
Instance 3 42 63 67 81
Instance 4 41 60 64 78
Instance 5 36 58 58 74

Train 100% 83% 100% 100%

Test 43% 62.25% 64.5% 79.50%

Table 4.8: Recognition rates with 100 objects using k = 3 tuples. All spaces are
modeled using a mixture of 10 Gaussians.

It is quite clear as seen in tables (4.6), (4.7), and (4.8), that as the number of
interest points per tuple is increased and hence more mutual information about the
local appearance jets are modeled, the recognition rates are improved.

4.3.3 Incorporating Local Geometry

When considering k = 3 tuples, we can also take into account the geometry of a tuple
— i.e. how the three points in a tuple are arranged spatially and use this information
to perhaps increase our recognition capacity. Rank ordering the interest points in a
tuple as (p1, p2, p3), we can use the following geometrical descriptors:!

e Distance Li2: Distance between keypoint p; and keypoint po.
e Distance Li3: Distance between keypoint p; and keypoint ps.
e Angle a: Angle between the connecting line p;, po and the connecting line py, ps.

However, a feature space using these three geometric descriptors alone (Lia, L3,
cos(w)), results in a rather poor recognition rate of 50%. We thus conclude that

IKeypoints are ordered according to the output of the Harris operator, which is proportional to
the principal curvatures of the intensity surface.[55]

162 HIGHER-ORDER DEPENDENCIES

geometry information alone is not sufficient for recognition. However, tuple geometry
might help to disambiguate confusing appearance-based cases and therefore it helps
to create a hybrid appearance/geometry mixture model.

Since the combined color and appearance model was found to be the best in pre-
vious experiments, we use this model as a first step classifier in our experiments
and then used the geometric model as a second step classifier to resolve any possi-
ble ambiguities found by the first classifier. Table (4.9) shows the recognition rates
when considering this new two-stage classifier design. We can see that the resulting
(two-stage) recognition rates are better than those obtained with the (single stage)
appearance/color model alone (see table (4.8)).

Classifier 1: Appearance + Color Model (4D)
Classifier 2: Geometry Model
No MDL estimation MDL estimation
Instance 1 100 100
Instance 2 88 96
Instance 3 86 94
Instance 4 81 91
Instance 5 77 86
Train 100% 100%
Test 83% 91.75%

Table 4.9: Recognition rates with 100 objects using k = 3 tuples. This table reflects
a two-stage classifier: the first for the appearance/color model and the second for the
geometry model. First column is an appearance/color model using a mixture of 10
Gaussians and the geometry model used 2 Gaussians. Second column uses a MDL
estimator.

Comparing both columns of table (4.9), we see that MDL has definitely enhanced
the recognition performance of our system, undoubtedly through an increase in accu-
racy in modeling the joint distributions.

4.3.4 Invariance to Partial Occlusion

As an illustration of our object classification framework, a representative visual ex-
ample is shown in figure (4.10) where different likelihood detection maps (based on
joint density functions) are shown when the particular object model of figure (4.10.a)
is the search target. Note that the hybrid appearance/color model correctly localizes
the target object from among the 20 object candidates arranged in the test image.
Object detection and classification techniques should be robust under the presence
of occlusions. Since our technique is based on local tuples obtained from a set of
interest points, occlusions should be easy to deal with. In this particular case, we
occluded parts of the test objects using various quadrants assuming that the rest of
the object would be sufficient to recover the original identity. Results are presented in
table (4.10) where we use a first step classifier model based on appearance and color
information and a second step classifier based on geometry, both using the MDL
criterion to set the number of Gaussians. Graphical results can be seen in figure
(4.11) and taking as a reference figure (4.10) we see that objects with occlusions can

4.3. Experimental Results 163

(b) Database (c) Appearance

3

(d) Color (e) Appearance + Color

Figure 4.10: Likelihood maps (c), (d) and (e) of different models for the input
image (b) when using object (a) as the search target. Note: We are only showing the
first 20 objects of COIL-100.

also be detected.

Table (4.10) shows that when one quadrant is missing, recognition rates are ac-
ceptable since we obtain an average rate of 75%. When two quadrants are missing,
recognition rates decrease to an average of 52% but this is still a good trade-off be-
tween the level of occlusion and recognition rates. We should take into account that
we are testing object instances that are not previously learned (ie. images taken from
other points of view).

We also evaluated our approach in real laboratory scenes where deformable objects
can appear under various configurations, poses and occlusions. Figure (4.12) shows
the objects and images used for this experiment. Two different objects with similar
colors but different shapes were learned in order to detect them in a complex environ-

164 HIGHER-ORDER DEPENDENCIES

(b) Database (c) Appearance

(d) Color (e) Appearance + Color

Figure 4.11: Experiment with occlusions. Likelihood maps (c), (d) and (e) of
different models for the input image (b) when using object (a) as the search target.
Note: We are only showing the first 20 objects of COIL-100.

ment. As noted in this figure (4.12), objects can be difficult to recognize since they
contain different levels of occlusions and can be seen under different poses. Despite
these difficulties, objects are correctly detected indicating a good level of robustness
of our system.

Finally, we have also tested our system with real and cluttered scenes where objects
can be affected by different natural factors. This is the case presented in figure (4.13)
which shows the modeling and subsequent detection of the US Pentagon building
before and after the September 11 terrorist attack. Figure (4.13.a) presents a real
image of a pentagon building and figure (4.13.b) shows the extracted building used
for our learning and modeling. Figure (4.13.c) depicts a test image which was taken
after the bombing debris was cleared away by the cleanup crew (leaving a whole

4.3. Experimental Results 165

Occlusions considered

Q1 Q2 Q3 Q4 Q1+ Q2+ Qs+ Qi+
Q2 Q3 Qa Q1
Instance 1 100 100 100 100 94 97 92 93
Instance 2 83 83 70 80 60 55 62 54
Instance 3 80 82 67 82 55 51 49 49
Instance 4 75 74 59 76 57 57 54 58
Instance 5 71 65 65 67 51 48 45 54
Train 100% 100% 100% 100% 94% 97% 92% 93%
Test 77.25% | 6% | 65.25% | 76.25% | 55.75% | 52.75% | 52.5% | 53.75%

Table 4.10: Recognition rates with 100 objects using k& = 3 tuples and various
occlusions according to different quadrants (Q1,Q2,Q3 and @Q4) and combinations of
two quadrants.

section of the building missing). This test image was also taken at a different time
of day and under different weather conditions. Figure (4.13.d) shows the graphical
likelihood map thresholded and multiplied by the original test image in order to
visualize the detected region (where the model likelihood is very high). We can see
that our hybrid color/appearance model (which is quite general in formulation) is
found to be satisfactory for such satellite/aerial imagery.

4.3.5 Tuple Selection

Image from figure (4.13) depicts a pentagon building that is composed of several
keypoints. In this particular case, the object is composed of nearly 250 keypoints.
All possible k = 3 tuples that we can generate from 250 keypoints is extremely huge
(like 250 x 249 x 248 = 15438000 if redundancy is present in tuples). We can not
use a mixture of Gaussians or other techniques to learn from this huge dataset. We
should say that the experiment of figure (4.13) has been done using only a subset
of the possible £ = 3 tuples. In case of using a technique to model this space, it
would be very expensive in terms of computational costs. Previous experiments have
been done taking in mind that not all the generated tuples from one object are really
necessary. Our idea is to select a subset of the generated tuples in order to find a
representative set of tuple candidates and learn a Gaussian mixture model to obtain
a good representation of the natural object. In the particular case of dealing with a
natural object as the pentagon object building and in order to be able to manage with
partial and natural occlusions, tuples must be carefully selected. Thus, we defined
a tuple radial threshold (R:n,) and we only consider those tuples that the distance
between each keypoint of the tuple with respect to the middle point of tuple (the
middle point of a tuple is obtained considering the three keypoints of the tuple) is
lower than Ryp,., a certain threshold previously fixed. This idea is represented in
figure (4.14) where we can see three local features (x!, x? and x*) and the middle
point of the tuple. The middle point of a tuple is obtained considering the spatial
location of all three keypoints of the tuple. When all the three distances (R;, Ry and
R3) between each local feature and the middle point are lower than Ry, the tuple
is considered for training. As can be seen, this idea comes out in order to consider

166 HIGHER-ORDER DEPENDENCIES

(d)

Figure 4.12: Two objects (a) and (b) with similar colors but differing in shape used
to train our models. First column (c) contains 4 testing images where the two learned
objects are present under different occlusions and poses. Columns (d) and (e) show
the detection maps for objects (a) and (b), respectively.

tuples with close keypoints and mantain the object structure.

Now, in figure (4.15) we present different likelihood maps obtained from the pen-
tagon object building when considering different radial thresholds for the tuple selec-
tion. Our pentagon object used for learning is about 120 x 120 pixels and, as seen
in figure (4.13), it consists of several structured parts but repeated along the object.
After obtaining all the pentagon keypoints, we have considered a set of learning tuples
limited to a radial threshold of 25, 30, 35, 40 and 45 pixels in order to mantain the
structure of the object. Results are shown in figure (4.15) where we can appreciate
that low radial thresholds produce bad detection maps and high radial thresholds
produce good (or acceptable) detection maps. However, the number of training tu-

4.3. Experimental Results 167

(©) | (@)

Figure 4.13: (a) Satellite image of the US Pentagon building (prior to 9/11/01). (b)
extracted building region used for learning. (c) a new test image of the same region
taken after 9/11/01 under different natural conditions and with the damaged portion
of the building missing (removed after site cleanup). (d) the highest probability
target area of the test image given our local appearance model of (b). (Note: All
images have been rescaled for display purposes.)

ples when we use high radial thresholds are really huge and our adaptive Gaussian
mixture model needs a considerable amount of computational resources. Since our
method is tested with an object with a missing part, detection maps obtained are
understandable in the sense that a part of the pentagon building might not be recog-
nized properly. When using a Ry, = 25 pixels, results are not acceptable since the
object is not correctly detected and a lot of external regions are considered as the
pentagon. But, when using Ry, = 40 pixels, pentagon is correctly detected and only
a few external regions are considered as being part of the object. Note that the best
detected pentagon shown in figure (4.15) using Ry = 40 pixels is shown in figure
(4.13).

Finally, we present a last experiment where we also show how our technique can
be successfully applied to detect objects in semi-cluttered scenes. Figure (4.16) shows
a complex scene where a toy object appears three times and each instance of the
object is captured under a different pose. As with the pentagon object, the goal is
to learn the toy object from one instance and detect the other instances. The toy

168 HIGHER-ORDER DEPENDENCIES

Figure 4.14: Given a tuple (xl7 x2, x3), we obtain the middle point using the spatial

location of each keypoint. When the three distances between each keypoint and the
middle point (R1, Rz and R3) are lower than a predefined radial value (R,), this
tuple is considered for learning.

instance used for learning is shown in figure (4.16.a). As it can be seen, this object
instance has been extracted from the complex scene and we have manually removed
all the background.

The toy object contains 99 keypoints and depending on the radial area (Ryp,) of
influence, we can work with large number of k = 3 tuples. A first detection test was
performed in order to obtain the likelihood maps of the complex scene when trying to
detect the learned object. Figure (4.17) shows the likelihood maps obtained using 3
different models. As seen in figure (4.17.a), appearance model is not a good candidate
for this specific task because there are a lot of regions that do not belong to the learned
object that are detected as belonging to the original toy object. Color model seems to
obtain good results but only detecting the same instance of the object that has been
previously learned and it seems that it is not able to generalize to other object poses.
The combined appearance and color model demonstrates that is able to detect the
three instances of the learned object but, as seen in figure (4.17.c), the inferior part of
the object is not perfectly detected. This behaviour is completely justified by the fact
that we have learned our object against a black background and the inferior part of the
object is small and homogeneous meaning that the number of keypoints of this zone
is relatively small and not really meaningful. We have experimentally demonstrated
that the combined appearance and color model is the best for this specific problem.
So that, we take this particular framework to show different likelihood maps of this
scene when we modify the radial tuple threshold (Ryp,) that is used to control the
number of k£ = 3 tuples. Figure (4.18) shows different likelihood maps that have been
generated according to different values of the radial tuple threshold (Rip).

It is clear that when the radial tuple threshold (R;p,) is increased, we are taking
into account new relations between keypoints in an object. So that, it is expected that
Ry = oo should provide the best results in terms of object recognition and detection.

4.3. Experimental Results

(a)

(b)

(c)

Ryinr = 35 pixels

!

(d) Rinr = 40 pixels

s,

(e) Rny = 45 pixels

Figure 4.15: Detection maps corresponding to different radial thresholds (from

Riny = 25 to Ryny = 45 pixels).

169

However, if we assume the whole set of tuples our problem becomes computationally
expensive. But, one of the advantages of using only a subset of the total number

170 HIGHER-ORDER DEPENDENCIES

(a) Toy object (b) Toy scene

(c) Toy scene with keypoints

Figure 4.16: Toy example used to test our technique in cluttered scenes. Having a
complex scene as shown in (b), we have extracted a toy object as shown in (a). Note
that this toy object appears in (b) three times. One instance is the same instance as
in (a), another instance of the object appears occluded and there is another instance
where the object has a completely different pose. Interesting points of this scene are
reflected in (c). Size of toy object is 100 x 140 pixels.

of k = 3 tuples is that our method is indirectly robust to partial occlusions. If we
consider the whole set of tuples, we will have a holistic representation of the local
behaviours of all keypoints of an object. So that, in this case and having an image
with occlusions, recognition and detection will be difficult to manage. In order to be
robust under occlusions, tuples do not have to be randomly selected. They have to
be selected in order to preserve the spatial compactness of an object, so that, tuples
with close keypoints should be used for object recognition and detection task.

4.3.6 Modeling Higher-Order Dependencies

We next apply our object recognition scheme in a totally different context in order to
demonstrate (1) how to integrate mutiple instances of objects into a single model, (2)
that our scheme can be used with other kinds of features and data representations
and (3) that increasing the tuple order does in fact lead to improved performance. In
this experiment, we chose the MNIST [76] (see appendix C.4) digit database because
it contains a huge number of training and testing samples (60,000 training samples
and 10,000 testing samples), so we can statistically verify that incrementing the order

4.3. Experimental Results 171

(a) Appearance

(b) Color

(c¢) Appearance + Color

Figure 4.17: Likelihood maps obtained when we try to search for the object defined
in figure (4.16.a) when using a radial tuple threshold of Ry, = 25 pixels. As seen, the
color and appearance model can detect all the three instances of the learned object
under different object poses.

of our models will lead to better recognition rates. We must note that our scheme is
not especially adapted to work with the MNIST database (which for one thing, is not
even in color and has little in the way of appearance texture) rather it is a general

172 HIGHER-ORDER DEPENDENCIES

(¢) Rinr = 30 pixels. (d) Rinr = 35 pixels.

Figure 4.18: Different likelihood maps that have been thresholded in order to visu-
ally perceive what parts of the scene are detected. These likelihood maps have been
obtained according to the radial tuple threshold (R¢s,) considered in each particular
case.

technique for use in complex and cluttered scenes with the presence of occlusions.
Our main goal here is to explore how increasing tuple order affects to the recognition
rates using a well-known and large database.

In particular, features were extracted from hand-written MNIST digits using the
same technique as in [12] where they obtain a set of shape histograms for each digit.
In our case, each digit is represented by a set of 75 points sampled from the shape
contour (75 pixel locations sampled from the output of the Canny dectector). Having
75 pixel locations, we have represented each location using a shape histogram (exactly
the same as in [12]), so that each digit is represented by 75 shape histograms of 60
dimensions. In order to find the “right” ICA dimension to reduce our feature vectors,
we did a k-NN (with k=5) based classification using the original shape histograms
taking a reduced set of training and testing samples (200 training samples per each
digit and the first 5,000 testing samples) using the x? test statistic (as in [12]) as a
distance metric. Also, a k-NN (with k=5) based classification was done using the ICA
projected feature vectors between m = 5 to m = 50 ICA dimensions with the same
training and testing sets as before using the L; norm as a metric distance in order to
evaluate which is the ICA dimension that preserves the same recognition rates of the
original space. The dimension found by the experiments to be the most suitable one
to be used with our ICA scheme was 25, which was used thereafter.

We have tested two different approaches: (1) learn an adaptive mixture model
per each training instance and (2) learn an adaptive mixture model per each digit
class. Our factored k¥ = 2 and k£ = 3 high-order models generate a huge number of
tuples. In this particular case, when using & = 2 tuples, we generate an order of

4.3. Experimental Results 173

5,000 tuples per each digit and when using &k = 3 tuples, 100,000 possible tuples
are generated. We have not tested higher order dependencies because the number
of possible tuples is really huge. Thus, having a huge number of tuples, we had to
choose a reduced number of them in order to train our factored models in a reasonable
period of time. In the previous section, we selected tuples composed of neighbor
keypoints to build k& = 3 tuples. Here, we have tested three different approaches: (1)
a random selection of tuples, (2) tuples composed of neighbor keypoints and (3) tuples
composed of distant keypoints. We have selected tuples composed of distant keypoints
because MNIST digits are homogeneous representations and the information extracted
from neighbor keypoints is almost the same. Thus, two neighbor keypoints contain
almost the same local information. This is due because digits do not contain changes
in texture or color and the neighborhood of two close keypoints does not change
significantly. It is clear that since digits do not contain natural occlusions, tuples
composed of distant keypoints can be used. So that, shape histograms extracted
from two neighbor keypoints do not contain relevant changes as the shape histograms
extracted from two distant keypoints.

Our tuple random selection method consists of randomly selecting 1,000 k£ = 2
tuples and 5,000 k& = 3 tuples to learn our adaptive Gaussian mixture models. When
creating tuples composed of neighbor keypoints, we take the 1,000 k£ = 2 tuples and
5,000 k£ = 3 tuples with the closest keypoints. Finally, when selecting tuples with
distant keypoints, we take the 1,000 &k = 2 tuples and 5,000 & = 3 tuples with the most
distant keypoints. For our experimental tests, we used 500 training samples per each
digit (5,000 in total) and all the testing MNIST set (10,000 digits). Experimental
results are shown in table (4.11) where we can clearly see that incrementing the
order of our models leads to an improvement in the recognition rates. Interestingly
enough, we note also that there seems to be little difference between the two different
approaches of handling multiple training instances: using one model/instance vs. one
model/class.

k tuples 1 Model / Instance | 1 Model / Class

k =1 tuples 74.23% 71.85%
Random 83.14% 82.03%

k = 2 tuples Near 78.36% 75.47%
Distant 85.09% 83.71%

Random 91.57% 91.13%

k = 3 tuples Near 88.67% 87.92%
Distant 93.03% 91.85%

Table 4.11: Experiments done using 500 digits per each class as training and 10, 000
testing digits. First column of results indicates that each training digit instance is
represented using one joint distribution (a total of 5,000 training models) and second
column indicates that each class is represented using only one model (10 training
models in total). Recognition rates are represented according to the tuple order and
tuple selection technique used.

Each training instance can be modeled using one joint distribution. This is what
is reflected in the first column of table (4.11). If we take all the tuples of a given
class, i.e. tuples of digit 2, and we create a model using all this set of tuples, we

174 HIGHER-ORDER DEPENDENCIES

are considering a model per class. This is what is reflected in the second column of
table (4.11). As seen in table (4.11) it is better to use a model for each training digit
instance instead of using a model for the whole set of tuples of a given class. But there
is not a big difference in terms of recognition rates. Table (4.11) also shows what is
the effect of using different keypoints to create candidate tuples for learning. It seems
clear that for this particular experiment using digits, the selection of tuples based on
the neighbor keypoints is not very appropiated. We believe that the reason of this
behaviour is due to the fact that the shape contexts between two neighbor keypoints
is nearly the same and they do not contain relevant information. In contrast to this,
if we take into account one tuple built from three distant keypoints, shape contexts
are totally different and they can help to build a robust classifier. Thus, this is the
reason that recognition rates based on tuples built from distant keypoints are higher
than all the other cases.

Using the nearest neighbor classifier (k-NN with k=3) in the original space of shape
histograms with the y? test statistic, we obtain a recognition rate of 75.87%. We do
not use any kind of point matching technique between our features as in [12] and it
should be obvious that our method is not well-suited to the MNIST database (that
is not the point here) but we do notice the improvement of our factored distribution
models from k& = 1 to £k = 3. We should emphasize that even though we do not
achieve the best reported recognition rates for the MNIST, our factored models with
k = 3 are not only significantly better than k£ = 1 but also better than using k-NN in
the original space of shape histograms (a recognition rate of 75.87%).

With this last experiment we can make the following observations: (1) Our tech-
nique can be extended to different data representations but in doing so, because it is
a general technique, we can not expect it to obtain the best recognition rates, (2) by
incrementing the order of our factored models, recognition rates can almost certainly
be expected to improve, (3) our technique might be more suited to complex and clut-
tered scenes than to recognition of objects in closed object databases such as MNIST
or COIL-100.

4.4 Conclusions

The contribution in this chapter is related with the previous chapter in the sense we
present a technique which works with local features. However, spatial arrangement
of local features is taken into account as well as the local information of each local
feature. In this sense, a novel probabilistic modeling scheme was proposed based
on factorization of high-dimensional distributions of local image features using In-
dependent Component Analysis (ICA). We define the concept of k-tuple in order to
represent the local appearance of an object at k different keypoints.

This chapter has been presented as an evolution of several experimental tests
in order to find an optimal configuration of the method. We started modeling our
joint distributions of image features using histogram representations. We realized
that our joint distributions of £ tuples form a complex space which is difficult to be
modeled using histogram representations. Then, a parametric model is introduced
to improve initial histogram representation. So that, our factored distributions were

4.4. Conclusions 175

modeled using Gaussian mixture models based on the Minimum Description Length
optimality criterion to fit our data, obtaining satisfactory results.

Our framework was tested using local appearance and local color information as
well as using geometry information between local image features of tuples. An hybrid
classifier based on all these local image features achieves the best recognition results.
COIL-100 object database was tested with and without occlusions. And once we tuned
the internal parameters of the model using the well-known COIL-100 object database,
we did more experiments with complex and cluttered scenes in order to demonstrate
that this technique is adapted to object detection and localization tasks in natural
environments. We experimented with real scenes containing objects of different shapes
and colors and detection results are satisfactory. Also, we experimented with an
aerial image of the pentagon object where different natural factors are considered: (i)
test image was taken under a different time of day, (ii) test image was taken under
different weather conditions, (iii) the pentagon object has a missing portion due to
the September 11 terrorist attack. Even all these natural factors, our method is able
to detect the pentagon building. Finally, an image containing several instances of
a toy object is tested to evaluate its robustness to several pose configurations. As
a result of these experimental tests under several natural environments, our method
performs very good in object detection.

Our method is based on k-tuples reflecting high-order dependencies between k
points in an object. However, the number of tuples can be extremely huge, so that,
we propose a first attempt to select the most important tuples. A final experiment
with the MNIST digit database was performed in order to evaluate different tuple
selection methods. We tried (i) a random selection of tuples, (ii) tuples composed of
neighbor keypoints and (iii) tuples composed of distant keypoints. Objects composed
of textured regions as objects from COIL100, pentagon object or toy objects, extracted
tuples should be composed of neighbor keypoints in order to mantain the object
structure. However, objects that do not suffer occlusions and do not contain changes in
texture (as MNIST digits) are better represented using tuples with distant keypoints.
Since k tuples are composed of k keypoints, if these k keypoints are selected from the
neighborhood and no relevant changes are manifested between these neighbors points,
the joint distribution is not discriminant. In this experiment, we have joined all the
tuples of a given class into a single model. Then, results are compared with joint
distributions which use a model per each object instance. A single model per object
instance is the best choice in front of using a model per class. This last experiment
also shows a statistical improvement of increasing the high-order dependencies of our
factored distributions and demonstrates that our technique can be adapted to a wide
variety of computer vision problems.

176 HIGHER-ORDER DEPENDENCIES

