Chapter 3

Object Recognition Using Local
Features

Object recognition has been one of the most active areas of computer vision and
pattern recognition. But, despite this, it is widely known that there are several
drawbacks when implementing the most famous recognition techniques because they
can not deal with the large variety of possible object configurations and background
situations. Under the typical scenario of object recognition, this chapter introduces
some novelties that somehow improve previous classical techniques. A standard object
recognition scheme is shown in figure (3.1). It must be said that this scheme is very
elemental and most of the techniques presented in the previous chapter can easily be
described in terms of the steps of this scheme.

Data Preprocessing: We start assuming that our objects are described in terms of
pixels. These set of pixels in an image have some special meaning for us because
we previously assume that some of them belong to an object. In contrast to these
pixels, the remaining ones in the image belong to background and we are not
interested in them. The data preprocessing step consists of all those operations
that we can do with the image pixels that help us to extract information from
the scene relevant for object recognition. As examples, we can delete image
pixels corresponding to the background if we previously know that these pixels
obey to some specific rule (i.e. black background). Also, in this step we can
include all those operations that we can perform in an image in order to extract
relevant and interesting points (keypoints) or some relevant information that
can help us in subsequent steps.

Feature extraction/selection: In the previous chapter we reviewed several fea-
tures that can be extracted from images in order to obtain relevant object rep-
resentations. At this step, we will select an appropiate set of features depending
on the images we have since they can suffer from a large variety of variations
(illumination changes, occlusions, changes in object shape, etc). Once we se-
lected an appropiate set of local features to apply to our objects, we will use
the preprocessed image from the previous step as the starting point of this step.
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Data preprocessing and feature extraction are two related steps that need to be
thought at the same time since some features can only be extracted if our data
is correctly preprocessed. As a result of this step, we generate a set of data
vectors (also said feature vectors) for the next step. These data vectors contain
all the data needed for further analysis and, in theory, they have to contain
enough information to identify our objects.

Classifier Training: Given a set of data vectors (feature vectors) extracted from
images containing the objects we want to identify, this step consists of obtaining
a classifier that best characterizes our objects. Of course, depending on the
features used to extract information we would need a different classifier. This
classifier can be based on the relationship of data vectors, can be based on
probability density functions that best describe our data or can be based on more
complex criteria. Training model directly depend on the classification scheme.
For example, if we use a k-nn (nearest neighbor) to classify new vectors we do
not need to build a training classifier because we will only need to compare a
testing vector with the whole set of training vectors without building a complex
training model.

Testing: Once a training classifier is built from training data, the obtained classifier
should be tested with new unseen data vectors in order to verify that it has
learnt our objects. The point is to find a classifier that is able to recognize the
same objects used in the learning step and, at the same time, a classifier that also
deals with new unseen instances of the same objects. There are different ways
to test a training classifier, but the most common way is to perform an analysis
with unseen data which generates a set of the recognition rates. After this, we
will take these recognition rates to produce a decision about the classifier and
we will decide its acceptance or not.

One of the main problems of this scheme is that once we have extracted a rele-
vant set of data vectors using a specific set of descriptors, we usually have a high-
dimensional representation. That is, our data vectors are represented using a lot of
components. Is it good or bad? In terms of object recognition, the more data we have
about the objects, the easier it will be to distinguish them from others. But, in terms
of computational time and resources, the more data we have about our objects, more
complex models will be created. Here is where we have to find a tradeoff between the
amount of data and computational requirements. In object recognition, we simply
need the simplest model that guarantees a minimal recognition performance that is
established a priori.

This high dimensional scheme could produce the well-known problem of curse of
dimensionality [11]. The properties of high dimensional spaces often appear coun-
terintuitive because of our experience with the physical world in a low-dimensional
space. The main problem is that data representations in high dimensional spaces
have a larger amount of surface area for a given volume than data representations
in low-dimensional spaces [28]. In our particular scheme, the complexity of working
with a high dimensional space can be alleviated if we can reduce the dimensionality of
the problem. For the class of large problems where the benefits/efficiency of a vector
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Figure 3.1: A standard object recognition scheme.

space model becomes critical, we often desire some form of compression (compaction)
of the original data. Compression is advisable for two reasons. First, we wish to
reduce the amount of physical disk space required to store data. Second, and often
both more important and more difficult to implement, the memory required in per-
forming computations on the original (uncompressed) data set prevent us from being
able to explore the data. Furthermore, by reducing the dimensionality we are able to
partially solve the curse of dimensionality.

One of the main aims of this chapter is the analysis of those techniques that can
be used as linear transformations of data. Here, we want to analyze how a given set of
data vectors can be transformed into another set of data vectors without losing a huge
amount of information and improving the performance of the initial representation.
Also, since all the data vectors that we will use are defined in a high dimensional
space, we are interested in those linear transformations of data that can also reduce
the dimensionality of the problem and alleviate the curse of dimensionality problem.

Unsupervised learning algorithms such as those we will study in this chapter are
helpful for modeling low dimensional pattern structures present in high dimensional
data. Linear transformations account for most of the feature extraction performed
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in practice. Examples of spread out multivariate linear transformations are the Dis-
crete Fourier transform, signal convolutions (linear filters), wavelets, Principal Com-
ponent Analysis, Factor Analysis, Independent Component Analysis, Non-negative
Matrix Factorization, Canonical Correlation Analysis, Linear Discriminant Analysis,
etc. There are many reasons to restrict ourselves to linear mappings, mainly their
simplicity. Along this thesis we will restrict ourselves to linear transformations for
features extraction and/or representation, focusing on the Principal Component Anal-
ysis (PCA), Non-negative Matrix Factorization (NMF) and Independent Component
Analysis (ICA).

This chapter and the whole thesis are totally focused on the recognition of objects
using local features. Due to this fact, we briefly explain the reasons of this choice
with a practical example which demonstrates that local data representations perform
better than global ones without using additional information of objects. Then, we
introduce the first unsupervised learning technique, the Principal Component Anal-
ysis (PCA). Principal Component Analysis is a widely used technique mainly chosen
for reducing dimensionality of arbitrary data. Since PCA provides a reduced space,
object recognition techniques can be applied on such a subspace and the complexity
of high-dimensional spaces is reduced. It turns out that there are other techniques
besides PCA to obtain reduced spaces. One example is the Non-negative Matrix
Factorization (NMF) that is also introduced in this chapter. NMF pursues the same
objectives as PCA, but assuming that the input data is positive defined. NMF has
been introduced in the computer vision community as a technique that can extract
positive descriptions of data but there are not studies showing what is the performance
of this technique with respect to PCA. Under this new point of view, we tested the
abilities of NMF to represent local color histograms and other positive representa-
tions. We also introduced a new technique called Weighted non-Negative Matrix
Factorization (WNMF) which performs better than NMF in certain circumstances.
Different object databases and case studies have been evaluated using PCA, NMF
and WNMF. Each of these three linear algorithms are based on a set of particular
assumptions. PCA assumes a Gaussian distribution of the original data, NMF and
WNMF assume a Poisson distribution. So that, we explore these different sources
of information in order to find different ways to combine these techniques. Also, we
compare different classification frameworks to be used with them: (i) Reconstruction
distances, (ii) a parametric model and (iii) a non-parametric model (k-nn). These
classification techniques are all valid for recognition purposes. In the non-parametric
classification framework, we used the k nearest neighbor technique [44]. So that, we
also evaluated these algorithms with different metric distances in order to find the
best combination of method and metric distance.

PCA, NMF and WNMF are three unsupervised algorithms which are based on
linear transformations of data. They obtain subspaces which describe the original
data and each technique assumes its own assumptions. Independent Component
Analysis (ICA) is also presented in this framework because it is directly based on a
linear transformation of data. However, ICA produces a statistical independent space
which can be used to estimate probability density functions. We present ICA as a
technique to estimate probability density functions in reduced subspaces which are
previously obtained using PCA. Finally, since object recognition is performed with
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sets of object classes, we present a new framework using ICA for such a problem.
We extend ICA to work with different object classes. This extension is called: Class-
Conditional Independent Component Analysis (CC-ICA). Then, an example using
ICA to estimate probability density functions to classify between different object
classes is presented.

3.1 Example with Local Features

As mentioned in chapter 2 several approaches have recently proposed the use of lo-
cal window representations as a reliable solution to occlusions, complex backgrounds,
scale changes, illumination changes, and different viewpoints or orientations [37, 110,
121, 123] within the problem of object recognition. When lighting conditions do not
change severely, or color normalization methods can be used, the color distribution
of an object is a simple kind of sensor data that has demonstrated to be an effi-
cient signature for object-recognition in the appearance-based framework (see section
(2.1.3)).

Data histograms are the most used positive representations in the computer vision
literature. One can find histograms representing color [56, 137] or multidimensional
receptive fields [120] or a mixture of different features [87]. Thus, it seems clear that
histograms are relevant signatures for object recognition. In this section, we want to
experimentally show the advantages of using a local approach with respect to a global
one using local color histograms. It is clear that taking global histograms of objects,
we are able to perform a reliable object classification if objects are not affected by
ambient conditions or do not have occlusions but we will see that a local approach is
even better.

Our database is composed of a set of 100 pharmaceutical products taken under
6 arbitrary positions. Figure (C.1) shows the entire object database. It can be seen
that some of pharmaceutical products are very similar in terms of visual appearance
because they have the same color tonalities. This fact explains an important number
of misclassifications when we perform object recognition and classification with these
products.

Part of this work is based on extracting perceptually relevant information of ob-
jects. In this sense, a common strategy to recognize an object in an image is to
locate points where is probable to find discriminant features. For example, the hu-
man face consists of regions such as the eyes, nose, etc. These features assure a low
misclassification rate. Such features can be selected by the system designer or can
be chosen automatically. In our case, we are interested in detecting generic salient
object features where to analyze local color distributions.

As noted in section (2.2), we used the Harris keypoint detector in our framework
in order to find perceptually interesting points of our objects. Figure (3.2) shows
all the interesting points (shown as grayvalues) of a pharmaceutical product which
is also taken in other different poses. In this case, we detect 4538 local interesting
points whose eigenvalues are greater than a predefined threshold (see section (2.2)).
By extracting the local maxima of the eigenvalues (see section 2.2), the number of
keypoints is reduced significantly to 22. These local maxima are shown in figure
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(3.2.b) as white crosses. The other instances of the same product, figure (3.2.c) to
(3.2.f) show that the local maxima are nearly the same.

()

Figure 3.2: (a) A sample object image. (b) Gray values represent all the interesting
points. White crosses represent local maxima. (c,d,e,f) Different instances of the
same product of (a) taken in different poses and their interesting points.

Once we have selected a set of keypoints we extract the salient features, in our case
local color histograms. Since we find desirable to be able to capture the objects at
any rotation angle, the extracted local color histograms should be invariant to this.
Extracting the histogram from a circular mask in the neighborhood of a keypoint
minimizes the rotational effects that the image can suffer. Figure (3.3) shows which
region is taken, given a set of detected keypoints.

Figure 3.3: Given a set of detected keypoints, a circular region around each key-
point is used to extract its local color histogram representation achieving rotational
invariance. It can be seen that the non homogeneous regions are used to identify an
object.

For this specific application we reduced the number of local color histograms of
objects because not all of them are really necessary. The Harris method assures that
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all the local color histograms will be extracted from an image and these histograms
will correspond to non homogeneous regions with edges, corners, lines, etc. But for
classification purposes, not all of them are useful to identify objects. Furthermore, our
object database is composed of similar objects or different objects but with specific
local regions with the same color tonalities. These regions, of course, would lead to
produce some difficulties when we try to recognize or classify objects. We reduced the
number of this problematic points using a technique described by Ohba and Ikeuchi
[99]. Using the Principal Component Analysis (PCA) to obtain an eigenspace of all
the training set of points, we eliminate all those local color histograms that, once
projected in this eigenspace, are very similar. PCA will be explained later in section
3.2 and, as we will see, it consists of finding a subspace representation that minimizes
the mean squared error (MSE). It turns out that we eliminate some noise using this
subspace representation and also, at the same time, we find a representation with less
dimensions. Using this subspace representation and given two training histograms
H, and H, and their respective projections in the subspace h; and hs, we use the Lo
distance in the eigenspace (see section (2.1.3)). If this measure is less than a certain
threshold, then these two histograms H; and H» are removed from the training set
because we assume that are conflictive and can produce some confusions since they
belong to two different pharmaceutical products.

Each pharmaceutical product of the object database is composed of 6 instances
taken under different poses. We randomly select 2 instances for the training set and 4
for the testing set. We performed different series of experimental tests. The first one
is to consider a global histogram of the whole image including the background. We
should note that all images contain a pharmaceutical product and a black background.
Also, we have tested the same technique but removing the background (since it is a
black background this is an easy step). Up to this point, we can state that recognition
based on global histograms performs very bad since we obtain recognition rates of
48.75% and 57% for both cases as seen in table (3.1). As predicted before, the main
cause of this result is that a number of our objects present very similar color regions
(i.e. large white regions are pervasive in the design of pharmaceutical product boxes!).

As a first step to local histogram analysis, we have extracted a set of local color
histograms from each object as described before and we grouped all of them in a
single histogram. That is, we obtained the mean color histogram from each object
but only considering those regions that are relevant (i.e. homogeneous regions are
not considered). Using this representation, we obtain a global representation of the
interesting parts of the object. As seen in table (3.1) the recognition rate considering
a mean color histogram of an object is 67%.

It seems clear that using a global histogram approach of objects can not be taken as
a robust technique because we obtain low recognition rates. Here is where we see the
need of introducing a local approach to improve the performance of our method. Given
an object H and its set of L detected keypoints H = [hy, hs,...h], with L = 100.
We create an eigenspace for all local color histograms for all the pharmaceutical
products and we remove all the possible conflictive histograms as explained before
(in the preprocessing phase). After this, once we have a test object, we obtain its
representative local color histograms, we project all of them in the eigenspace found
in the training phase and we compare the projected local color histograms (called
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eigenhistograms in the literature [147]). In order to compare two projected histograms
in an eigenspace, we use the Lo distance. Object recognition is then based on a voting
scheme. Fach testing local color histogram votes for the most similar histogram in the
database (for the object that contains the most similar training histogram). Thus, an
object is recognized when its vote counter is the maximum among all the database
objects.

Apart from considering a voting mechanism as described before, we also introduced
a Bayesian approach in order to consider the a priori knowledge about histogram
distribution of models. If we have K possible classes C*, a Bayesian approach can be
used to classify a set of local color histograms hy, ... hy assigning the most probable
target class C7 that describes the testing instance

CT = argmax, p(C*|Hy,...Hy) =pH,,...,H|C*)p(C*) (3.1)

Since these terms can not be estimated from our training data, we use the naive Bayes
classifier that makes our task easier

CT = argmax, p(C*) H p(H;|C*) (3.2)

and we estimate p(H;|C*) by summing the contribution from a mixture of m Gaus-
sians

p(Hi|C*) =) wiG(H; — pi; 54| C) (3.3)
i—1

where this expression assumes that each sample is the center of a Gaussian and
we use a kernel method for choosing the parameters. The kernel method positions
Gaussians at all the samples in the distribution. In our case, the parameters are

m =N, w; = %, g = hj and &; = [m]ﬁ [131], where D is the number
of dimensions of our data. In all the experiments we have considered equiprobable
priors.

We should note that the voting scheme is a local technique implemented in the
subspace created during the training stage. This is done due to the high dimensional
data of the original space (512 dimensions). In the testing stage we should search
for the most similar training local color histogram. But this operation implies to
compare the whole training local color histograms with this new unseen histogram.
That is, this requires a prohibitive amount of computational resources if our database
is composed of a huge number of pharmaceutical products. Working in the subspace
representation, this operation is carried out faster because it is a low dimensional
space. However, the Bayesian approach is used in the original space since we estimate
a possible model that fits our data and is faster than the previous approach. Using
this Bayesian approach, as we will see later on this thesis (see section 3.6), has another
problem and is the estimation of a probability density function in a high dimensional
space and this produces bad estimations for certain cases (specially when we do not
have enough training samples to represent a certain pharmaceutical product).

As reflected in table (3.1), local approaches perform better than global ones. It
must be said that removing the black background of all images greatly simplifies the
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Method Recognition rate
Global Histograms (NNL2 - with background) 58.75%
Global Histograms (NNL2 - no background) 57%
Mean Histogram (NNL2 - no background) 67%
Local voting scheme (NNL2 in eigenspace) 75.25%
Local Bayesian scheme (original space) 78.75%

Table 3.1: Experimental comparison between global and local techniques when
recognizing a set of 100 pharmaceutical products. These results show the effectiveness
of local approaches versus global ones. Notation: NNL2- Nearest Neighbor using L»
metric distance.

complexity of the global representation and the performance of the method increases.
After this, considering all those local color histograms from the relevant structures of
our pharmaceutical products (not considering the homogeneous regions) implies to im-
prove the global results. The outperformance obtained using a mean color histogram
is due to the fact that we do not take into account those zones of the pharmaceutical
products that are homogeneous and do not contain relevant information. Finally, we
see that local approaches perform better than global ones with a significant amount
of difference. A nearest neighbor technique using L, in the subspace performs rea-
sonably good and the Bayesian approach applied in the original space of local color
histograms performs a little bit better.

Even the good performance of local based techniques, there is a problem using
these representations. If we increase the amount of pharmaceutical products, these
techniques increase considerably the overhead needed to give an answer to the final
user. It is clear that using a voting scheme we should store the whole training database
in order to find the nearest neighbors. But this implies to have a prohibitive amount
of local storage. Using a Bayesian scheme, we only need to obtain a probabilistic
model for each new pharmaceutical product and it seems to be a better solution to
this problem. Even a Bayesian approach can be applied to solve such a problem, we
must say that working in a high dimensional space means to estimate a probability
density function that, in certain objects, can not be reliable. Why not? Because
certain objects are described using a few interesting local histograms (maybe 50)
and we are estimating a probability density function in a high dimensional space of
512. Then, this means to have too few observations to estimate a reliable probability
density function. This drawback has been exposed at the beginning of this chapter
where we talked about the curse of dimensionality problem. Later on this thesis we
will present the Independent Component Analysis (see section (3.6.1)) and we will
propose a solution for this problem.

3.2 Data Representation using PCA

The above explained experiment where we experimented with local color histograms
shows how we can use the Principal Component Analysis (PCA). The appearance-
based visual learning of objects and scenes is commonly realized using Principal Com-
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ponent Analysis. PCA is a classic technique in statistical data analysis, feature ex-
traction, and data compression. The roots of PCA can be found in the early work
of Pearson [104] and its first application shortly after in a classic paper by Spearman
[133]. In the latter, the author considered data that consisted of school performance
rankings corresponding to schoolchildren and determined a single linear combination
of the data such that it explained for the maximum amount of variation in the re-
sults, claiming to have found a general factor of intelligence. After this, PCA was
first formulated by Hotelling [59] in 1933 and since then it has been used in various
applications in many areas.

Principal component analysis is a linear transformation from a high-dimensional
input space to a low-dimensional feature space, which among all linear transformations
guarantees the best possible representation of the high-dimensional input vectors in
the low-dimensional feature space. It rotates the coordinate frame in a data-driven
way, such that the variability of the input data can be efficiently described using only
a small number of basis vectors.

PCA produces very good results, if the high-dimensional input vectors are cor-
related. This means that they contain redundant information. PCA removes the
redundancy by decorrelating the input vectors; the new coordinates of the input
vectors (principal components) are uncorrelated. As a consequence, the correlated
high-dimensional input vectors can be efficiently represented as the uncorrelated low-
dimensional vectors of principal components making PCA a very powerful tool for
data compression.

The detailed formulation and description of PCA is found in appendix A.

3.3 Data Representation using NMF

In some computer vision problems extracted feature vectors are inherently non-negative.
A typical example is the set of pixels that describe an image patch extracted from an
interesting point of an object. If PCA is used to describe a non-negative data vector,
the PCA bases would contain negative values, making it impossible to interpret the
bases themselves. Since it is very natural to describe feature vectors using positive
representations such as pixels or histograms, it is very interesting to think in a sub-
space description of data only using positive constraints. In the literature, there is
a model observing this situation, the Non-negative Matrix Factorization (NMF) [79].
This model is a linear representation that minimizes the mean squared error (MSE
criterion) as PCA but using non-negativity constraints. As seen later, the main and
maybe the most important consequence of these non-negative constraints is that we
obtain a parts-based representation. It is for that reason that we introduce NMF as
a new alternative to the typical PCA model in order to find positive representations
of subspaces that are related to positive space domains (pixels values or histograms).
In this section, we present the original Non-negative Matrix Factorization (NMF).
NMF can be expressed using different approaches. For example, we can use an eu-
clidean distance algorithm or we can use a divergence algorithm. In fact, these two
approaches try to minimize the error obtained by different models but, at the end,
the solutions are very close [157]. After this, we explain how to project new unseen
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data vectors and we present a graphical example where we show the main objective
of NMF.

3.3.1 Non-negative Matrix Factorization

Each learning algorithm has its own assumptions that bias generalization over partic-
ular problems and thus restrict the scope of applications. For instance, PCA assumes
an interesting subspace should orthogonally span maximum variance directions or,
equivalently, have low mean reconstruction error. Via these assumptions, PCA results
in a popular technique useful for general dimensionality reduction, data compression,
etc. Another consequence of these assumptions is that, through a global treatment
of the input, PCA provides a holistic representation.

Could we think of a similar technique but for positive data? There is a model with
such a situation and is called Non-negative Matrix Factorization (NMF) [79], and
the main consequence of the non-negativity constraints is that only non-subtractive
combinations of data are allowed. This ensures that the components are combined
to form a whole in a non-subtractive manner. For this reason, NMF yields a parts-
based representation opposed to the holistic representation obtained through other
methods such as PCA [79]. Localized features offer several advantages in the context
of object recognition, including stability to local deformations, lighting variations and
partial occlusions. In addition there exists psychological and physiological evidence
favouring a parts-based representation in the brain [84, 101, 150]. Notice also, that
NMEF is of straight application in several problems related to visual recognition where
the features are naturally non-negative (pixel intensities, histogram values, etc.) and
where non-negative components have a direct interpretation. For instance, if PCA
were applied to a number of sample histogram, the PCA bases would contain negative
values, making it impossible to interpret the bases themselves as histograms.

Given a non-negative matrix X of size m x n, NMF algorithm seeks to find non-
negative factors W and H such that

X ~X=WH, where W e R™*" and H € R"" (3.4)

Intuitively, we think of W as the matrix containing the NMF bases and H as the
matrix containing the accompanying coefficients (weights).

We also desire that the resulting factorization require less storage than the original
data set. If an m x n matrix can be thought of as requiring mn units of storage, NMF
produces factors W and H requiring r(m + n) units of storage. The reasonable
assumption of keeping the precision of NMF factors equal to the precision of the
original matrix ensures that storage will be reduced whenever the number of basis

vectors, r, is chosen such that:
nm
r<

m+n (3:5)

In practice, r is usually chosen such that r < min(m,n) and its selection is analogous
to choosing the desired rank in rank reduction problems' or the dimensionality of the

L Actually, the problem of choosing r for NMF is very difficult in contrast to choose a desired rank
in traditional rank reduction techniques.
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subspace created by PCA as seen in section 3.2. To see this we write the factorizations
in terms of the columns of X and H:

zj = &j = Whj, where z; € R™ hj eR" for j=1,...,n (3.6)

Using this representation, we see that the left factor W contains a basis used for the
linear approximation of X. The right factor H is a coefficient matrix used to add up
combinations of the basis vectors in W. The non-negative constraint on W allows us
to visualize the basis columns in the same manner as the columns in the original data
matrix. This is the first benefit of NMF versus alternative factorization methods where
the basis vectors conatain negative components that prevent similar visualization. If
our data X are image collections, this basis consists of r representative images stored
in the columns of W.

The elements of H may be thought of as (non-negative) coefficients used to weigh
the linear combination of basis vectors used to approximate each column in X. The
non-negative restriction on these coefficients result in the additive nature of NMF. For
many types of data (see for example: houses and facial images in [79], handwriting
samples in [77], and music tones in [70]), the additive property of NMF has been
shown to result in bases that represent components of the original data (i.e. - doors
and eyes, curves of letters and notes in a chord).

The non-negativity constraints on both W and H do not come without a cost.
From a rank reduction standpoint, NMF is more computationally demanding and
produces lower quality approximations when compared with other traditional alter-
natives. Non-negative matrix factorizations can be very difficult to compute. Lee and
Seung have suggested an approach similar to that used in Expectation-Maximization
(EM) algorithms (see [38]). This approach seeks to iteratively update the factorization
based on a given objective function. We now introduce the two traditional objective
functions that produce the NMF algorithms used in the literature. Both algorithms
introduced here each seek to minimize a different objective function (distance mea-
sure) and each of these objective functions could be minimized with several different
iterative procedures. The particular update strategies given here are shown because
of their implementation ease and because they have been proven to monotonically
decrease their respective objective function (see [79]).

3.3.2 Euclidean Distance Algorithm

First, we consider the Euclidean distance between each column of X and its approx-
imation X = WH. For computational purposes, we will use the sum of the squared
distances between each column vector x; in the original data matrix and its approxi-
mation 9; ~ Wh;. Using this distance measure, we arrive at the following objective
function:

2
n m n T
OnmF, (W.H) = Z llz; — Wh|| = || X — WHJ| = ZZ (Xij - ZWilHlj>
i=1 =1

i=1 j=1

(3.7

In doing NMF using the Euclidean distance algorithm, we wish to find the factors W
and H that minimize the objective fucntion ONypp, (W, H). The lower bound of this
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objective function is zero and will only be attained when a strict equality X = WH is
obtained. There are many ways to minimize this objective function, however, because
of the lack of convexity in both variables W and H, we can, at best, expect to achieve
only local minima [79].

Thus far, researchers in this area have chosen to balance algorithm complexity
and convergence speed by using the following update procedure:

(WTX)aj

Haj < Haji(WTWH)j (38)
XH?),
Wia < Wi 7(\(7VHH)Tl; (3.9)
a

When written this way, it is evident that the update consists of multiplying the
current factors by a measure of the quality of the current approximation. Under this
updates, the Euclidean distance objective function ©N)F, has been proven [80] to
be monotonically decreasing:

@NMFE (W(t+1), H(H_l)) < @NMFE (W(t),H(t)) fort=0,1,... (3.10)

3.3.3 Divergence Algorithm

The second objective function that is commonly used in practice is called the diver-
gence, or entropy, measure:

m n
. Xij
0 W, H) = Div(X|[WH) = X;ilo Tij—X»-+WH~>

NAE (W, D) = DI (KIWHD) = 337 (%, lomgr X, + WH,

=1 j=1

(3.11)
The objective function @NMFD (W,H) is not a distance measure because, strictly
speaking, it is not symmetric in X and WH. Further motivation behind this objec-
tive function can be seen when the columns of X and the columns of the approximation
WH sum to 1. In this case, ONpp, (W, H) reduced to the Kullback-Leibler infor-
mation measure used in probability theory [80]. This objective function is related
to the likelihood of generating the columns in X from the bases W and encoding
coefficients H.
Again, as in the previous Euclidean distance algorithm, this objective function
equals its lower bound of zero only when we have strict equality, X = WH. To
balance complexity and speed, the following update rules are commonly used:

X,
Haj — HajZWia(‘ViIi]]:)ij
i
, . LH , 12
Wi W,GZ(WH)” ai (3.12)
j £

w;

W - —
ia Zj Wja



78 OBJECT RECOGNITION USING LOCAL FEATURES

Lee and Seung have proven in [80] that this algorithm monotonically decreases the
objective function ON\F

@NMFD (W(t+1),H(t+1)) < @NMFD (W(t),H(t)) fort=0,1,... (3.13)

We should point out that the divergence algorithm has some interesting properties
that should be mentioned because they will be used in this thesis. The objective
function defined in equation (3.11) can be expanded as:

m n

r
ONprp, (W, H) =D <X,-jlogxij — Xijlog» Wi Hy; — Xi5 + WH,-]) (3.14)
=1

i=1 j=1 =

and as we can appreciate, term X;; refers to the original data and always is a constant
value. So that, it is very common to rewrite the objective function as:

m n

ONprp, (W.H) = D> (Xijlog(WH); — (WH);) (3.15)

i=1 j=1

When the objective function is written under this form, NMF can also be stated as
a problem of likelihood maximization but with the assumption that X is drawn from
a Poisson distribution with mean WH [80]. In this case, the distribution therefore
takes the form: .
P(Xij|(WH);j) = e~ (WH (WH),”

XU'

Now, if we take the logarithm of both sides, we can derive to such a formulation:

(3.16)

log(P(X;;|(WH);;)) = Xjjlog(WH);; — WH;; — log(X;;!) (3.17)

As we want to find out a good approximation of matrix X, the term log(X;;!)
can be dropped because it is a function of X only, and makes no difference when
optimizing with respect to W and H. As can be seen, we have arrived to formulate
expression (3.15). As all elements from all matrices (indexes ij) are conditionally
independent, we can formulate expression (3.17) as a summation over ij as reflected
in expression (3.15). Expression (3.17) takes the form of a yloge — « function and it
is very easy to verify that the maximum of ylogz —  with respect to z is at z =y,
so maximizing the objective function should tend to make X ~ WH.

3.3.4 Graphical Example of NMF

We have generated a set of synthetic vectors to show how NMF is able to obtain the
basis functions used to make up the original set. Using 3 Gaussian basis functions
that can be seen in figure (3.4.a), we have created a set of 10 samples by weighting
the original bases (see figure (3.5)).

Taking each generated vector of figure (3.5), we have created a 1000 dimensional
histogram dividing the horizontal axis in 1000 partitions. Thus, each bin of this
histogram contains the value of the corresponding vertical axis. Applying NMF over
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Figure 3.4: (a) 3 original basis functions used to make up the set of 10 training
vectors used in our experiment. (b) to (f) are the different basis functions obtained
after applying the NMF method with different configurations of the parameter r.
If we expect to find a small amount of bases (r = 1,2), the obtained bases are
combinations of the global behaviours of the sample data. If we only want 3 basis
functions (r = 3), the obtained bases are exactly the same as the original ones (a).
Furthermore, if we want to extract a large amount of basis functions (r = 4,5), the
extracted basis functions are combinations of the specific behaviours of the sample

data.
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Figure 3.5: 10 differents samples created by weighting the 3 Gaussian functions
defined in figure (3.4.a). As it can be seen, these samples contain mixed behaviours
from the original data vectors.

this set of 10 1000 dimensional histograms and expecting to have a visual idea of
the obtained r bases, the results are shown in figure (3.4). We can compare figure
(3.4.a) with the extracted bases and since we have created this synthetic problem
using 3 Gaussian functions, when we apply NMF with r» = 3 (see figure (3.4.d), the
obtained histograms of matrix W are nearly the same used for generating our original
histograms.

In pattern recognition, the extraction of meaningful features from input signals is
one of the most important problems. The synthetic problem exposed here in order to
have a visual idea of what is doing NMF with our data can be seen under this point
of view: We only know a set of samples and we want to know the intrinsic features
used to create these samples. That is, when we tried to obtain r = 3 bases, we have
discovered the real bases used to generate our data. But, in computer vision, since
data is obtained from real world conditions and the number of bases is not clear, the
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problem is more complicated.

In the literature one might find an application of NMF which is applied to Munsell
color spectra [21]. In [21] they applied NMF to color spectra, an inherently non-
negative data set, to investigate which and how many color categories are revealed
and compared with other classical color categories. They applied NMF with a set of
Munsell colors and they evaluated which colors are represented in the obtained bases.
This application can be seen as a an analogy with the experiment we performed in
this section as we recovered the original bases that were used to create the observed
samples.

3.3.5 Projection of Unseen Vectors

The two previous explained NMF approaches to obtain non-negative factorizations of
data is a guarantee that provide us with a stable solution (probably a local minimum
solution). But up to this point we find that there is not a method to project new
unseen data vectors using the set of bases W. Usually, once we have a linear projection
matrix, each time that a new unseen vector should be projected we can use the
following expression

y =W lx (3.18)

where W is the data matrix containing the bases of NMF. Here, the main problem
is that the inverse of a positive matrix results in a matrix with positive and negative
values. Inverting this matrix infringes the non-negativity constraint imposed by NMF.
To overcome this drawback the projected vectors are found by running the same
iterative update rules. Firstly, we use the input vector X with the new unseen vectors
and then, we fix the bases (matrix W) to the ones obtained in the training step. After
this, we initialize matrix H with random positive values and we iterate our update
rules trying to obtain a good solution of the problem. Using this approach, the
resulting weights are always non-negative.

3.4 Data Representation using WNMF

Some data distributions can be slanted and may be not uniformly distributed. Local
representations usually produce this kind of distributions. This problem is mentioned
in [21] where they used NMF to recover basis functions of Munsell colors. But since
Munsell colors do not have a well-balanced calibrated distribution, in terms of the
color names, lightness, and saturation, basis functions of NMF contained repetitions.
The original work of NMF [79] where they worked with faces, they had also this
problem: several versions of ears and eyes emerge in several NMF bases. In order
to reduce the effect of data that is not uniformly distributed, we introduce the use
of a new technique, the Weighted Non-negative Matrix Factorization (WNMF). This
technique is mainly based on the typical NMF but with a weight matrix that helps to
reduce the redundancy of NMF when applied to data that is not uniformly distributed.
Since we introduce this weighted version of NMF, we compare both techniques. We
chose a local problem where data is expressed in terms of local color histograms and
we compared the performance of both NMF and WNMF techniques in terms of their
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reconstruction abilities. With this example, we see that WNMF is well suited to
local data representations but only when the subspace dimension is correctly chosen.
Finally, we compare both techniques in terms of the required number of iterations in
order to find which technique is faster.

3.4.1 Weighted Non-negative Matrix Factorization

One of the main disadvantages of NMF arises when applied to local representations
because this data is not uniformly distributed. In the field of visual object recognition,
the earlier systems were focused on holistic object representations, the object as a
whole. This approach has been successfully used in different applications such as face
recognition or robot positioning, being its main advantage the ability to perform fast
and reliably at low spatial resolutions and without any kind of prior knowledge. Still,
there are some problems that prove difficult to solve for these kind of representations,
like partial object occlusions and severe lighting changes. As mentioned in chapter 2,
several approaches have recently been proposed using local window representations
as reliable solutions to occlusions, complex backgrounds, scale changes, illumination
changes and different viewpoints or orientations. This local perspective of a problem
relies on domain specific knowledge to address the problem such as what to look
for in an object and where that feature should be. This allows for a richer class
representation and, consequently, a model that can be used to focus on more complex
situations. Local models, representing a more specific and possibly less complex part
of the object usually have high levels of redundancy among classes. Nevertheless this
redundancy is dealt when the combination of parts is performed, it might present a
problem to certain unsupervised learning techniques. Since NMF is a unsupervised
learning technique that tries to represent our sample data using a fixed amount (r) of
bases (W), redundant local samples generate redundant bases. This situation does
not arise with PCA due to the assumption of basis orthogonality. Such assumption is
not possible within the NMF context since it would clearly break the nonnegativity
constraints. Since we realized about this problem and we did a slight modification
of NMF that, through the introduction of a sample weight matrix, we minimize the
problem of generating redundant bases W. We call this approach Weighted Non-
negative Matrix Factorization (WNMF) and we performed several experiments in
different contexts to illustrate its advantages over the classical approach.

The main reason NMF finds redundant bases in local representations is the fact
this approach extracts several feature vectors from each object instead of a single data
vector. Feature vectors can be redundant and strong similarities can exist among
them. These similarities are not taken into account in the classical NMF approach:
several identical feature vectors have more weight in the cost function than a few
strongly different vectors and possibly relevant for the representation samples. We
try to solve this problem by introducing a weight on each of the input samples, giving
more weight to those vectors with low probability of appearing in the original dataset.
Since we know that vectors with high probability of appearing in the dataset would
be favoured by NMF, giving more weight to the other ones would tend to reduce
redundancy in the model. This weighted model can be seen as the result of right-
multiplying both sides of the factorization with a n x n diagonal weight matrix Q and
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to estimate the bases and encodings for the new factorization model,
XQ ~ WHQ where W € R™*", He R™*" and Q € ™" (3.19)

and the diagonal elements g; of matrix Q correspond to the weight of sample vectors
x;, with 1 < i < n. Now, with this new weight matrix, the modified objective function
takes the form:
n m
OwNMF, (W.H) =D _q; ) (Xijlog(q;(WH);;) — (WH);) (3.20)
j=1 =1

By considering that Q is a diagonal matrix, then ¢; = @);;. Comparing both objective
functions from expressions (3.15) and (3.20) we can see that are nearly the same and
the main difference between them is that we have included a weight for each sample

vector. In this particular case, expression (3.20) comes out if we assume, again, a
Poisson distribution of mean WHQ. Now, the distribution is expressed as follows

(WHQ)(XQ)”

P((XQ)i;|(WHQ);j) = e~ (WHQ: XQ).

(3.21)

and if we take the logarithms of both sides,

log(P((XQ)i;|(WHQ)i;)) = (XQ)i;log(WHQ);; —(WHQ) ;5 —10g((XQ)35!) (3.22)
Then, this expression can be rewritten as follows

m n

Z Z XijQjlog(Qy;(WH) ;) — Q;;(WH)y;) (3.23)

i=1 j=1

So that, considering that Q is a diagonal matrix and Q;; = g;, we arrive to the
expression defined in (3.20). We have to note that Q is a constant matrix, so that,
the therm log((XQ);;) can be dropped.

Now, the iterative update rules to obtain the new factored matrices subject to this
new objective function are defined by:

H,j <« HajZWiaW (3.24)

Wia <+ WMZ WH » (3.25)
Wza

W, 3.26

o AL (3.26)

These new update rules are easily derived from those defined in expression (3.12).
Expression (3.12) can be rewritten in terms of two new matrices X' and H' that are
defined as X' = XQ and H' = HQ. Now, the update rule concerning to W;, can be

written as: .

Xy,
Wia < sz WH,) — ! (3.27)
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so0, considering that X' = XQ and H' = HQ, this expression leads to this new one:

XijQjj
Wia — W,'a XJ: WHanjj (328)

So, the update rule concerning to W is nearly the same as in the usual NMF but
considering the weight matrix Q as

Wza — Wza Z WH) anjj (329)
With the update rule concerning to the matrix H we see that expression

J < HY Z Wiq el — WH, (3.30)

and replacing H' = HQ and X' = XQ, we easily find that

XijQjj

(WH);;Q;; (3:31)

HojQjj + HajQjj Yy Wia
i
Thus, update rule of matrix H remains exactly the same as in expression (3.12)
because all ();; terms vanish.

3.4.2 Weight Matrix Selection

Once we derived all the whole set of update rules for the weighted version of NMF,
we should know how to select the weight factors to build up matrix Q. As explained
before, classical NMF finds a redundant representation when the sample data is ex-
tracted from a local representation because it is a non-uniformly distribution of data.
Then, we introduced the fact to give more weight to those vectors with low probability
of appearing in the data set.

If we assume that we have a data set of n vectors (z; for j = 1,...n) and we
assume that we know how to obtain the probability of a given vector to belong to the
data set: p(z;|M) where M is a model of our data set. Then we are able to know the
probability of each sample vector to belong to the whole data set as

pi=pla;|M) j=1,..n (3.32)

So that, each sample vector z; has its corresponding estimated probability to belong

to the data set using a certain model. Then we invert these probabilities p;- = 1%'
2

Once having the inverted probabilities to give more importance to the less frequent

sample vectors, we obtain the weights as

q; = np;
;=
Z?:l p;

We have to note that this is one possible way to obtain the weights to give more im-
portance to the less frequent sample vectors and other possibilities can be considered.

(3.33)



3.4. Data Representation using WNMF 85

In computational learning, the fact to give more importance to those vectors with
low probability of appearance in the data set is not very common. Usually, the most
important vectors are those that are only needed to obtain a good model of the whole
data set. This is a different situation, with the usual NMF we find that matrix W
contains redundant information (repeated bases in our case) and this is due to the
fact that we are initializing our model with random values leading to converge to a
stable solution through a minimization process. Here, the solution is local and since
our data is extracted from a local representation, redundancy is also present in the
original data.

3.4.3 Comparison of NMF versus WNMF

In this section, we present a graphical example that shows the performance obtained
by both NMF and WNMF techniques. In the previous section, we mentioned that
using NMF with local data representations tends to obtain redundant bases in matrix
W and here we show what we meant by redundancy in this context.

We have selected 5 different color newspapers (see figure (3.6)) each of them con-
taining particular local characteristics. Having 10 instances of each newspaper, we
have divided all of them using a predefined grid obtaining a large amount of local
regions (200 per image). Each local region is represented using the combination of
one 8-bin histogram per spectral band (resulting dimensionality is 512) and all of
them are used as input in the learning process of the NMF matrices (W and H).
Because of the initial random conditions of the algorithm, we have initialized both
approaches with the same random matrices, for accurate comparison. The selection
of the weights (matrix Q) in the WNMF approach is performed using a leave one
out technique that tests the probability of finding the corresponding histogram in
the whole original set of histograms. Once we have estimated matrix W for both
approaches, other local color histograms were projected. These additional histograms
were extracted from the same objects but using a different grid. Finally, the recon-
struction error of both approaches was compared using expression (3.7). Notice that,
since NMF lacks restrictions, reconstruction error on the training set should be less
than for WNMF. What we are actually measuring here is how well the reconstruction
generalizes to a test set. This experiment was performed for a different number of
bases r = 30, 35,40,45,50,55. Results are shown in figure (3.7) where we can see
the evolution of the reconstruction error of the testing set against the number of it-
erations. We have to note that for the training stage, we learned our models using
approximately 400 iterations of the algorithm, until it stabilized. For the test stage
(the projection) we only made 50 iterations. Observing the figure we can deduce that
much less iterations were needed until stabilization.

As noted in expression (3.5) the number of desired bases r is generally chosen so
that (n+m)r < nm where m is the dimension (512 in this particular case) and n the
size of the dataset (10.000 in this particular case). With this rule, we can choose up
to r = 487 bases. In figure (3.7), we obtain that WNMF cannot outperform NMF if it
does not have a sufficient number of bases to represent specific tonalities (remember
that our features are color histograms). If we consider r > 40 bases we have the
opposite behaviour. To illustrate this situation we trained both models with a variable
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Figure 3.6: Five different color newspapers each of them containing some charac-
terstic local regions.

number of bases from 20 up to 200 in steps of 5 and a fixed number of iterations (50).
Results are shown in figure (3.8) in terms of the number of bases against the difference
between reconstruction errors. The WNMF error was subtracted to the NMF error
S0 a positive value indicates a superior performance of the first.

Figure (3.8) confirms that with few bases, NMF generalizes better than its weighted
version. Having a large amount of training vectors, NMF seeks the best bases that
represent all this space and will unlikely generate redundant bases. Instead, WNMF
gives more weight to specific color regions which might not be relevant in terms of
reconstruction error, but that would be surely avoid redundancy with an increased
number of bases. This is also confirmed. We observe that, depending on the variabil-
ity of the input data NMF will start to generate redundant bases at some point in
which simultaneously WNMF will improve its performance. In our specific problem,
this point is found when r = 40 and it is useful to know this number if we have to
choose the best representation for a given problem. This situation, in which WNMF
outperforms NMF in reconstruction apparently is a contradiction with the fact that
NMF is a direct attemp to minimize the reconstruction error. Reasons for this result
should be found in the fact that the optimization landscape for our problem is non-
convex, so both methods are likely to fall in local minima of the objective function.
Since, from a theoretical standpoint, the only difference between both techniques is in
the gradient directions and step, we can affirm that WNMF provides a better initial-
ization for gradient descent, and consequently a local minimum nearer to the optimal
solution.

Taking advantage of the nonnegativity of the solution we can also visualize the
results: the basis vectors are themselves color histograms. From these histograms we
can generate artificial images with the adequate proportion of colors. We chose the
number of bases as 45 and generated such images for both approaches. The results are
shown in figure (3.9). In both approaches we can already see the main characteristic
of NMF: a specialized representation. This translates in sparse histograms: each
basis vector accounts for a few colors, generally only one or maybe the combination
of two colors. The differences between both approaches can also be observed. In the
NMEF bases there exist several repeated histograms. Notably white which is present
alone, as well as mixed with other colors. This is understandable since white is the
predominant color in the newspapers used for learning our representation. WNMF
avoids this problem, localizing white in a single basis and diminishing its presence in
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Figure 3.7: NMF (light line) and WNMF (solid line) reconstruction error against
iterations on the test data. Using a small number of bases r = 30, 35,40 from (a)
to (¢), NMF outperforms WNMF. When r = 45,50,55 from (d) to (f), WNMF
outperforms NMF.

other bases. Also, WNMEF contains 5 different green tonalities against 2 of the classical
approach. This kind of specialization is more likely to provide a better discrimination
among objects, i.e. if a newspaper (or ad, maybe) is associated with a particular
green tonality, it will be simpler to discriminate it from other newspapers (ads).
Appendix B presents a full detailed set of experiments comparing NMF and
WNMF under different frameworks. The above graphical comparison between NMF
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Figure 3.8: WNMF error subtracted to the NMF error against r, the number of
bases of the factorization.

and WNMF has been used as a good example to distinguish the performance of
WNMEF in front of the classical NMF but other experiments should be carried out in
order to do a final statement about the improvement of WNMF with respect to NMF.
In appendix B, two different experiments related to the performance of WNMF with
respect to NMF are exposed. The first experiment evaluates the performance of the
Weighted version of NMF with respect the classical approach in the context of object
recognition of natural patch classes. A second experiment evaluates the reconstruc-
tion error of WNMF and NMF in order to evaluate which technique performs faster
in terms of the number of iterations.

3.5 Empirical Analysis of Linear Transformations
using Local Features

Linear transformations of data produce a linear mapping of one high dimensional
space to a low dimensional one (subspace). This linear mapping helps in reproducing
the original data in a compact manner and the computational costs required to deal
with the subspace are lower. We presented 3 linear techniques that are commonly
used for obtaining reduced subspaces: Principal Component Analysis, Non-negative
Matrix Factorization and its weighted version. However, it remains to know how we
can use these techniques to classify new unseen instances of objects. In this section,
we will show 3 different techniques that can be used to perform it. These methods
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(b) 45 Histogram obtained using WNMF

Figure 3.9: Histogram bases obtained using (a) NMF and (b) WNMF. Note that
the number of histogram bases containing the white color are reduced using WNMF
and that WNMF contains 5 different histogram bases with green tonalities against 2
green tonalities of the classical NMF.

are:

1. Reconstruction distances: All techniques are based on finding a subspace
description that minimizes the mean squared error (MSE). NMF/WNMF use
only positive restrictions but PCA uses positive and negative ones. The first
approach to be used in this context is: how well these techniques reproduce the
original space? and the first measure to be used in this particular case is the
reconstruction distance.
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2. Parametric model: NMF and PCA are based on different assumptions. PCA
comes out if we assume that the original data distribution is modeled using a
Gaussian distribution. In contrast to this, NMF/WNMEF are based on a Poisson
distribution of data. Here, we want to perform classification using a parametric
model of the original data distribution. However, we are only using the projected
data. So that, we try to estimate the original parametric distribution using the
projected coefficients.

3. Non-parametric model: The last, and the most common way to classify new
unseen instances of objects is to use the projected coeflicients of the subspace.
Taking as a reference the projected coefficients, a usual technique to be used
is the k-nearest neighbors. That is, given a test vector and a set of training
vectors previously stored in the system, we search for the most similar training
neighbor in the projected space and the new unseen data vector is classified
according to this information.

These classification methods are compared using a set of local color histograms
extracted from the corel image database. Some of the image samples of this image
database are shown in section (C.2). For the non-parametric case, we evaluated
several image databases: handwritten digits and face images.

3.5.1 Classification using Reconstruction Distances

In the PCA context (see appendix A), the reconstructed version of a projected vector
is given by expression (A.18). Then, if we compare the original data vector and the
reconstructed one, we will have an error measure as seen in expression (A.22). So
that, PCA is based on finding a linear combination of the first k£ principal components
(k is chosen by us) that best approximates the original data vector. Then, expression
(A.22) evaluates the quality of this approximation.

In the NMF context (see section 3.3.2), the reconstructed version of a projected
vector is given by X = WH (when we iterate the same algorithm keeping W constant
as explained in section (3.3.5)). Then, if we compare the original data vector with
the reconstructed one (see expression (3.7)), we will also have a way to evaluate the
quality of this approximation.

In this section we present an experimental test which compares PCA and NMF
reconstruction abilities in terms of these reconstruction distances. It is clear that PCA
should be better than NMF since NMF pursues the same objectives as PCA but in a
restricted manner (only using positive data). However, we will see that we can take
into account the different nature of NMF to merge both methods using reconstruction
distances. A multiclass (10 classes) problem is exposed and we will see that NMF is
well suited for certain classes and PCA for other ones. Then, we will analyze whether
it is possible to guess a priori which technique (PCA, NMF or WNMF) represents
better a certain data class. To do this, we will extract a set of statistics about our
data classes. Then, we will analyze whether we can find a connection between the
performance of each method and the extracted statistics (elongation of class).

We used the corel image database. 10 data classes are extracted as explained in
appendix (C.2) and each data class is composed of a set of local color histograms.
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Class Name Error Mean | Error Variance

Tree 0.5194 0.0231
Rocky Mountains 0.6041 0.0262
Grass 0.6165 0.0401
Snow Mountains 0.6312 0.0398
Leaves 0.7020 0.0329
Water 0.7568 0.0402
Clouds 0.8125 0.0415

Ice 0.8136 0.0514

Sand 0.8480 0.0456

Sky 1.1450 0.0874

Table 3.2: Ordered list of data classes according to the mean error using the eu-
clidean distance in the original space of local color histograms. Here, all vectors of
a given class are compared with the other ones of the same class. The first class
(Trees) is the most compact class and the last one (Sky) is the most dispersed one.
This experiment has been done using 1000 local color histograms per class randomly
selected from the whole database.

Then, as relevant statistics, we believe that the measure of dispersion of our data in
the original space of color histograms should be of relevant importance. We chose the
measure of dispersion of our data classes because as stated before, PCA is optimal in
terms of the reconstruction error since it provides a subspace representation with low
mean reconstruction error. But the problem of PCA is that assumes data gaussianity,
so that, some data classes with no Gaussian behaviour may not be correctly classified
using PCA. The measure of dispersion is somehow a measure of how elongated and
how compact is our data class in the original space. NMF tries to find a subspace
representation without orthogonality but assuming only positive data and this restric-
tion implies to have a higher reconstruction error with respect to PCA. However, this
does not mean that this non negative representation is not useful for recognition or
classification.

In order to evaluate the level of compactness of a specific class, we used the
euclidean metric (L3) between the elements of each data class. Since PCA is optimal
in terms when obtaining the minimum mean squared error (MSE), L, is the best
metric distance to be used with PCA. Given a data class, say Clouds we evaluate
how all the local color histograms of this class are related between them, so that, we
obtain a measure as

ACompact = 3 3 4a(Vlouds: Vlonds)  Vird € ClassClouds: 174 (3:34)
i

Where Vélass is element 7 of data class Class. It is expected that this measure of error
gives us an idea of how each data class is distributed in the original 512 dimensional
space of local color histograms. Table (3.2) shows the level of compactness of each
data class in terms of the mean error and the mean variance.

By analyzing table (3.2) we are able to have an idea of the compactness of our
data classes in the original space. Now, we know that the Sky class is a very dispersed
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Class Name Eigenvalue analysis

Tree 0.146
Rocky Mountains 0.195
Grass 0.209
Snow Mountains 0.219
Leaves 0.262
Water 0.306
Clouds 0.350

Ice 0.356

Sand 0.382

Sky 0.698

Table 3.3: Ordered list of data classes according to the sum of the eigenvalues of
the corresponding covariance matrices of each data class. The first class of this table
denotes a data class with low eigenvalues indicating a compact class. This ordered
list is the same as the one presented in table (3.2).

class and the Tree class is the most compact one. Here, we use the term compact class
in the sense that all the local color histograms of a class are concentrated in a specific
region or not. We can also obtain this level of compactness analyzing the covariance
matrix of data. Eigenvalues of the covariance matrix can help us to give an idea of
the elongation of each axis of our data.

Since one of our techniques to evaluate is PCA, with this technique we are explicitly
assuming that our data is a Gaussian in the original space. So that, if we assume
that our data is modeled using a Gaussian distribution, eigenvalues of the covariance
matrix will be a clear indicator of the elongation of each axis. We averaged all the
eigenvalues of each data class and the results are shown in table (3.3) where we see
that we obtain the same ordered list that the one presented in the previous table
(3.2).

We are assuming that a dispersed class is the same as to consider a class with
several local behaviours. This could be true or not and it does not depend on the
level of compactness but if we have a data class that is dispersed in the original space
it is expected that we have a complex class and maybe it could not be represented
using a Gaussian. Since PCA is based on assuming that our data can be represented
using a Gaussian, it would be expected that PCA can not be used properly and maybe
other techniques can be used.

For image classification, we take 1000 local color histograms per class randomly
selected from the whole database. 1000 data vectors have been used for training our
models and 1000 data vectors for testing. So that, we learn 10 models using PCA
and 10 models using NMF. We choose to use 60 dimensions to represent each class.
Once we have a given class and both models representing this class, we decided to use
the euclidean distance between the original data and the reconstructed data. That
is, the reconstruction error. As expected, PCA is optimal in terms of this error (in
average) but this does not mean that NMF can improve the representation of certain
vectors (maybe those vectors far away from the general behaviour of the class). To
know this, we compare the reconstruction error obtained using PCA and NMF for
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Class Name Mean error (PCA) | Mean error (NMF) | PCA > NMF

Grass 0.40 5.16 904

Tree 1.45 3.63 765

Sand 2.14 13.67 717

Ice 0.46 5.88 692
Rocky Mountains 8.32 21.65 683
Leaves 10.76 21.61 578
Water 6.34 22.47 563
Snow Mountains 3.74 14.47 541
Clouds 4.85 18.34 522

Sky 9.34 43.59 439

Table 3.4: Reconstruction error using PCA and NMF. Second and third columns
show the mean error of the retroprojected histograms using PCA and NMF respec-
tively. It can be seen that PCA can always represent the original data better than
NMF in global terms but the fourth column shows the number of local color his-
tograms that are better represented with PCA. This table is sorted according to the
number reflected in the fourth column, so that, the grass class contains a large num-
ber of local vectors that are better represented using PCA than NMF and the sky
class contains more vectors that are better represented using NMF than PCA.

each particular data class. Table (3.4) shows this experiment where it is clear that
for some classes, the reconstruction error provided by NMF is better than the one
provided by PCA when we consider each vector alone.

From table (3.4) we can state that the most dispersed class, the Sky class, can be
better represented with NMF than PCA. The rest of data classes are better repre-
sented using PCA. But it has to be noted that it is difficult to predict which is the
best representation for a given data class since we do not know whether the data class
is Gaussian or not. Furthermore, we should not that table (3.4) shows the behaviour
of each data class with respect its own data, i.e. the grass model can represent better
the grass data when we use PCA instead of NMF, but, this does not mean that this
model is good for classification since maybe it can not be used for discrimination
purposes (classification against other data classes).

Here, we can observe that the behaviour of both techniques, PCA and NMF
is different depending on the data class. Since we have differences between these
techniques it seems natural to think that in terms of recognition these differences can
be exploited somehow in order to take into account the advantages of both techniques
at the same time. This is what we want to evaluate in the following.

The first classification experiment compares both PCA and NMF in terms of
recognition rates. Given a new local color histogram that we want to classify and we
know that belongs to one of our ten data classes, we project it in all the 10 models
learned with PCA and NMF and we choose the model that better represents the
original local color histogram. To compare the performances of boths methods, we
show the confusion matrices obtained after classification in tables (3.5) and (3.6).

These two tables (3.5) and (3.6) can be understood as follows: Taking as a ref-
erence the table (3.5), given 1000 local color testing histograms of each data class
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Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 244 1 358 0 4 32 325 18 0 18
Grass 0 927 0 14 0 33 0 0 26 0
Ice 17 0 854 0 0 3 90 10 2 24
Leaves 0 250 31 662 0 10 0 0 31 16
Rocky 26 47 29 0 285 363 35 29 155 31
Sand 21 26 22 0 25 874 7 0 23 2
Sky 18 0 351 0 0 16 563 25 0 27
Snow 89 0 411 0 3 33 160 218 5 81
Tree 1 207 3 20 14 39 1 2 687 26
‘Water 19 10 439 1 3 37 131 13 18 329
Total Recognition Rate: 56.43 %

Table 3.5: Confusion matrix obtained using the PCA technique in a 60 dimensional
subspace and using the euclidean distance of the retroprojected vectors.

Model Model Model Model Model Model = Model Model = Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 433 2 141 0 7 33 217 110 0 57
Grass 0 788 0 53 15 28 0 0 116 0
Ice 115 3 552 1 5 1 89 119 3 112
Leaves 5 87 18 793 5 15 2 8 62 5
Rocky 22 24 17 0 405 285 33 71 131 12
Sand 42 10 8 0 116 786 2 12 22 2
Sky 213 6 160 1 8 13 371 54 0 174
Snow 112 0 196 0 17 15 82 458 3 117
Tree 0 68 2 30 58 21 1 1 808 11
Water 28 3 163 7 34 12 46 79 33 595
Total Recognition Rate: 59.89 %

Table 3.6: Confusion matrix obtained using the NMF technique in a 60 dimensional
subspace and using the euclidean distance of the retroprojected vectors.

(i.e. clouds), 244 local color histograms are classified as clouds, 1 vector as grass, 358
vectors as Ice, and so on. If we compare both confusion matrices, the best technique
is the one that has higher values in the diagonal. It can be seen that clouds are better
classified using NMF than using PCA, but grass is better classified using PCA than
using NMF. At the end, NMF performs better than PCA since it has a total recog-
nition rate of 59.89% in front of a recognition rate of 56.43% of the PCA. Our goal is
to find a good model in the sense that it has to be able to represent the elements of
its own data class without classifying elements of other classes to belong to its class.

In order to find a good model, we should analyze the confusion matrices in a
vertical way. With this analysis, we will be able to know the best model for each
kind of data and this is very interesting since we can select the best models of both
algorithms and create a mixture of models according to the level of classification
achieved using the testing data set. If we want to know which is the best model for
each kind of data, we define a measure that weighs the correct classification results
(diagonal entries of the confusion matrices) and the bad classification results in a
vertical way. The measure selected to evaluate this behaviour is defined as:

Vectors correctly classified of CLASS
Number of vectors of other classes classified as CLASS

QCLASS = (3.35)

Using this acrass as a reference, we evaluated both techniques (PCA and NMF)
taking into account each data class and the results are the ones presented in table
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(3.7).

PCA__ NMF
aClounds | 1-2775  0.8063
QCrass | 17135 3.8818
aee | 05195 0.7830
O eaves | 1891  8.6196

ORocky | 5-819 152
agand | 15442  1.8582
agky | 0-7517  0.7860
ASpow | 2-2474  1.0088
OTyee | 2.6423  2.1838
OWater | 1-4622  1.2143

Table 3.7: This table shows the acLass for each data class with respect to the
reduction technique used (PCA or NMF). In bold face we can appreciate which
technique performs better for all data classes.

Table (3.7) reflects that Grass, Ice, Sand and Sky classes are better classified
using NMF than using PCA but all the other data classes are better classified using
PCA. Now, it seems interesting to merge both classifiers but only considering the best
models for each particular data class. Taking as a reference the best technique for
each data class as reflected in table (3.7), we use NMF to represent Grass, Ice, Sand
and Sky data classes and PCA for all the other ones. The confusion matrix obtained
for this particular case is shown in table (3.8).

Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 464 1 182 0 10 32 201 60 1 49
Grass 0 783 0 61 22 19 0 0 113 2
Ice 59 0 674 1 1 0 109 45 4 107
Leaves 2 81 7 825 7 6 0 1 44 27
Rocky 44 18 9 0 433 204 30 36 177 49
Sand 69 8 10 0 116 744 1 2 42 8
Sky 62 3 261 0 1 17 543 50 1 62
Snow 213 0 256 0 13 6 47 324 6 135
Tree 2 56 1 36 24 8 0 2 838 33
‘Water 55 4 185 2 17 12 39 67 27 592
Total Recognition Rate: 62.20 %

Table 3.8: Confusion Matrix for the combined PCA and NMF technique in 60D
using the euclidean distance of the retroprojected vectors. Grass, Ice, Sand and Sky
models are represented with a NMF model and the rest of classes are represented
using the PCA technique.

As noted in table (3.8), recognition rates increase from 56.43% and 59.89% to
62.20% with this combined method.

Another approach to take into account when merging both methods is to consider
a hierarchical point of view. That is, since it seems natural that some classes are more
related to some other ones, we can try to create a classifier specialized to discriminate
conflictive data classes in a hierarchical point of view. Since we are working on color
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histograms, we can previously know which data classes are conflictive, i.e. data classes
with blue tonalities would be conflictive since they can share some blue tonalities.
Tables (3.9) and (3.10) show the number of times that a given test vector is bad
classified. Analyzing these two tables, we would be able to know which data classes
are conflictive and we can use specialized models.

Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves  Rocky Sand Sky Snow Tree Water
Clouds 0 4 513 2 24 58 560 172 10 85
Grass 0 0 0 14 12 34 0 0 31 0
Ice 32 2 0 0 6 4 93 29 6 39
Leaves 20 271 45 0 27 36 14 15 100 40
Rocky 104 104 94 25 0 425 98 122 202 126
Sand 42 30 32 0 43 0 27 17 32 18
Sky 99 7 376 2 15 22 0 100 5 51
Snow 377 7 538 2 41 67 435 0 30 198
Tree 7 231 14 46 33 74 4 11 0 36
Water 181 34 527 9 61 57 344 217 46 0

Table 3.9: This matrix reflects all the testing vectors that are bad classified using
PCA. When an original data vector is classified to belong to another data class, the
matrix reflects this error with its corresponding value.

Model Model Model Model Model Model  Model Model  Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 0 10 248 10 46 57 302 270 22 136
Grass 4 0 2 63 46 42 3 2 151 3
Ice 201 8 0 7 21 14 143 231 16 141
Leaves 23 108 38 0 45 40 17 35 105 35
Rocky 101 58 78 13 0 324 68 155 167 78
Sand 66 26 34 12 160 0 21 71 65 26
Sky 377 33 320 26 36 45 0 246 26 351
Snow 220 4 292 5 51 37 156 0 20 182
Tree 5 89 8 42 74 33 4 16 0 17
Water 184 47 263 45 96 52 109 250 86 0

Table 3.10: This matrix reflects all the testing vectors that are bad classified using
NMF. When an original data vector is classified to belong to another data class, the
matrix reflects this error with its corresponding value.

Tables (3.9) and (3.10) are interpreted as follows: if a local vector to be tested that
we previously know that belongs to the class clouds, for example, has a reconstruction
distance using a model that is lower than the reconstruction distance using its own
model (clouds), we add one error to the model because it is a conflictive model.
Analyzing matrices of tables (3.9) and (3.10) we can state that Clouds, Ice, Sky,
Snow and Water classes are really difficult to separate because they contain a high
level of misclassifications. The main idea now is to create a classifier that works only
using blue tonalities, so that, we will have a more specialized classifier. So, if we firstly
classify our data vectors as to belong to a blue tonality against a green/brown tonality,
we find a general classifier that can be refined for further classification tasks. Again,
we can combine at each level of this hierarchical representation the best technique
(PCA or NMF). Assuming this new architecture, we find that the best configuration
is the one shown in figure (3.10).

Figure (3.10) shows the optimal hierarchical representation used to classify new
testing vectors. The best technique to use (PCA or NMF) is depicted under the name
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Cloud Grass Ice Leaves Rocky Sand Sky Snow Tree Water
NMF PCA PCA PCA PCA PCA NMF NMF PCA NMF

/\

Cloud Ice Sky Snhow Water Grass Leaves Rocky Sand Tree
NMF PCA NMF PCA PCA NMF PCA PCA NMF PCA
Cloud Sky Ice Snow Water Grass Leaves Rocky Sand Tree
NF NMF PCA NMF NNF PCA NMF PCA
Cloud Sky /\S#ow Grass Leaves /\SAand
Ice Water Rocky Tree
PCA NMF NMF \Nn:F
Icmter Roc‘lg Tree

Figure 3.10: Optimal hierarchical representation in order to classify the original 10
data classes. Given a node in the tree and having a local color histogram to classify
between the right or the left leaves, we obtain the reconstruction distance of this
vector and we choose the leaf that contains the lower reconstruction distance. Under
the name of each data class, we have the name of the technique used to represent the
data.

of each data class and as it can be seen, depending on the data classes that we want
to discriminate, the technique can change and this behaviour can be extracted from
the matrices shown in tables (3.9) and (3.10). Now, the new confusion matrix using
this hierarchical representation is shown in table (3.11).

Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves  Rocky Sand Sky Snow Tree Water
Clouds 370 1 160 0 16 32 202 167 1 51
Grass 0 795 0 51 26 18 0 0 110 0
Ice 91 2 625 0 2 2 90 T 3 108
Leaves 0 91 22 809 6 6 0 8 49 9
Rocky 12 20 14 0 507 209 24 64 140 10
Sand 13 9 12 0 148 780 3 5 27 3
Sky 50 2 131 0 8 9 618 94 1 87
Snow 93 0 243 0 31 14 41 517 7 54
Tree 0 61 3 33 66 8 0 2 822 5
‘Water 19 4 173 7 35 15 26 122 39 560
Total Recognition Rate: 64.03 %

Table 3.11: Confusion Matrix for the combined hierarchical PCA and NMF tech-
nique in 60D using the euclidean distance of the retroprojected vectors.

Up to this point, we can state that the combination of PCA and NMF techniques
using a hierarchical scheme performs better than the other classifiers. Since we have
extracted our initial local color histograms from images, we can use the neighbor-
hood information of each local color histogram to correct some of the classification
results obtained up to now. For example, if we decide to classify a cloud region, it is
straightforward to think that a cloud region is surrounded by other cloud regions. So
that, assuming this information can help us to improve the initial recognition results.
Figure (3.11) shows an image of the database with its corresponding labeled regions.
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(a) Original image

Sky | Sky | Sky | Sky |Cloud| Sky | Sky | Sky |Cloud|Cloud
Sky | Sky | Sky | Sky |Cloud|Cloud CloudCloud|Cloud|Cloud

Sky | sky | sky | sky |CloudCloud|CloudCloud Sky [Cloud

Sky | Sky | Sky | Sky Cloud/Cloud(Cloud(Cloud
Sky | Sky RockyRocky Cloud CloudCloud|Cloud
Grass|Grass Tree Tree
Grass Tree

Grass|Grass|Grass

Grass|Grass|Grass|Grass|Grass|Grass|Grass |Grass|Grass|Grass

Grass|Grass|Grass|Grass|Grass|Grass|Grass|Grass|Grass|Grass

(b) 100 local regions labeled according to our data classes.

Figure 3.11: An image of the database that is divided into 10 x 10 = 100 local
regions and its corresponding labeled regions.

In order to take into account the neighborhood information, we propose two easy
techniques to consider the local neighborhood of a certain zone to correct possible
misclassifications. We named these two easy techniques as: Highest neighborhood and
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Mean neighborhood.

e Highest neighborhood: Let us assume that we only have two models (X
and Y) and we are using the same technique as described before: We want to
classify a local vector as the model that reconstructs the vector with the minimal
reconstruction distance. Table (3.12) shows two tables describing an imaginary
scenario with some reconstruction distances obtained for our two models (X and
Y). Following the assumptions mentioned in this present work, the classification
results obtained for this particular situation are the ones presented in table
(3.12.c). The problem of this classification approach is that some local regions
can be classified completely different with respect to the whole neighborhood.
For example, we can find a water region surrounded by sky regions and, of
course, the probability of being a water region knowing that the rest of the
neighborhood is composed of sky regions is very low.

Knowing this, the first solution is to take a local color histogram and perform
a classification as the most probable entity from its neighborhood. That is,
evaluate the neighborhood of a color histogram and classify the vector as the
most frequent entity of the neighborhood. For example, if we have a water
region but all the neighborhood is composed of sky regions, classify the water
region as sky. Table (3.13) shows the classification results for our imaginary
situation of table (3.12).

e Mean neighborhood: Previous method assumes that we have a final classifi-
cation decision for each local vector and according to this classification we want
to correct some of the misclassifications. Instead of this, we can also work with
the reconstructed distances. For example, if one local vector is classified differ-
ent from the rest of its neighborhood, it means that its reconstruction distance
is below than the rest. Taking the reconstruction distances of all the neighbor-
hood vectors can help us to make a final decision about the entity of the local
region. So that, given a local region and its neighborhood, we can use all the
neighborhood reconstruction distances and obtain an averaged value to be used
for the final decision. Table (3.12) is converted to the values of table (3.14).

0.1103|07]01 0.8 107]04]05 X[X]Y X
041]02|09]01 06 |03]08]|0.6 X[ XY |X
06103 |01]0.2 05104103 0.7 Y | X | X | X
0906|0303 08 105]02]|0.6 Y| Y |Y X

(a) Model X (b) Model Y (c) Classification

Table 3.12: (a) and (b) are two imaginary situations of two models X and Y with
their corresponding reconstruction distances. (c) Reflects the classification results
considering the minimal reconstruction distances of both models X and Y of (a) and
(b). Each local region is classified without taking into account its neighborhood.

In order to test these two new methods we should work with the whole database
of color histograms instead of a random subset of them since we want to evaluate the
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X XXX
X XXX
7-X|Y | X]|X
Y Y| X | X

Table 3.13: Classification results considering the most frequent model appeared in
the neighborhood of each local region. These results are based on table (3.12). In
this example, there is one ambiguous region labeled as 7 that has 3 local regions with
model X and 3 with model Y. In this particular case of having the same number
of models in the neighborhood, we can classify the local region as the model that
has the minimal distance by summing its reconstructed distances. Model X sums
0.4+ 0.2+ 0.3 = 0.9 and model Y sums 0.5 + 0.8 + 0.5 = 1.8, so, this ambiguous
region is labeled as model X.

0.25 | 0.43 | 0.38 | 0.45 0.6 0.6 | 0.55 | 0.57 X[ X|X|X
032 | 04 | 0.32 | 0.35 0.55 | 0.53 | 0.52 | 0.55 XXX |X
0.5 | 0.47 | 0.33 | 0.32 0.52 | 0.48 | 0.48 | 0.53 X[ X|X|X
0.6 | 0.47 | 0.3 | 0.22 0.55 | 0.45 | 045 | 0.45 Y|Y | X|X

(a) Model X (b) Model Y (c) Classification

Table 3.14: (a) and (b) are the mean of the neighborhood reconstruction distances
of each local region. These two tables are the result of considering the neighborhood
of each model of table (3.12). (c) Shows the final classification results considering
the tables of (a) and (b).

neighborhood of each local color histogram. Now, the following results are obtained
taking into account the whole database of 50864 local regions. Results are shown in
table (3.15).

Model Direct Neighboorhood  Neighboorhood Neighboorhood
Representation Implementation Mean Highest Highest + Mean
PCA 55.6 60.79 56.54 61.46
NMF 59.5 63.44 61.94 64.57
PCA + NMF Mixed 63.12 67.36 65.18 69.21
PCA + NMF Tree 64.87 NO SENSE 67.54 NO SENSE

Table 3.15: Experimental results using the whole database of 50864 testing vec-
tors. It can be seen that the best configuration is achieved using a PCA + NMF
mixed representation in conjunction with both neighborhood techniques obtaining a
recognition rate of 69.21%. The particular case of using a hierarchical representation
in conjunction with the neighborhood mean technique produces an error because we
obtain the result of 55.6% (the same as using the PCA). This is due because in the
hierarchical representation, all classes are represented at some level of the tree by
the PCA model and this model leads to represent vectors with lower reconstruction
distances. So, if we combine the reconstruction distances obtained by PCA using
the neighborhood mean technique, this leads to obtain the same results as using the
PCA technique.

Table (3.15) shows the improvement achieved using both neighborhood techniques.
In this table, column direct implementation refers to the direct implementation of all



3.5. Empirical Analysis of Linear Transformations using Local Features 101

the four destribed methods. Column neighborhood mean refers to the implementation
of all the algorithms when considering the mean of the neighborhood distances using
eight-connectivity. Column Highest neighborhood refers to the technique that consid-
ers the most frequent class of the neighborhood of a local region. The last column
considers the junction of both neighborhood techniques and it seems that we obtain
the best recognition results.

3.5.2 Classification using a Parametric Model

The previous experiment compares PCA and NMF in terms of the distance from
feature space (DFFS) as explained in section (A.3). This methodology is valid because
both techniques reduce the dimensionality of the problem in terms of the L, norm.
NMF uses only positive restrictions and PCA uses positive and negative values. As
said, PCA assumes that the whole set of data vectors are described by a Gaussian
distribution in the original space. However, NMF assumes that data is described
using a Poisson distribution. Here is where we want to introduce the fact that both
models can be described using a probabilistic point of view and both models can be
compared in terms of probabilities.

In section (A.3) we show that PCA can be explained in terms of a Gaussian
assumption. More precisely, expression (A.35) describes a good estimator of the
probability density function of the original data space using the projected coefficients.
This estimator is found by assuming that the original distribution is described by a
Gaussian model. In contrast to this, NMF assumes a Poisson distribution and the
probability density funcion is the one of expression (3.16). In this section, we explore
how to merge PCA and NMF using these probability density function estimators. We
repeat the same experiment as in the previous section. Additionally, we introduce
the WNMF approach.

Table (3.16) shows the confusion matrix for PCA using a 60 dimensional subspace
representation but this time using a probabilistic approach. As seen, comparing re-
sults with table (3.5), we obtain a slight improvement from 56.43% to 57.41%. Also, in
table (3.17) we show the results obtained when we consider the probabilistic approach
of NMF using a 60 dimensional subspace representation. Now, the improvement ob-
tained using the probabilistic approach of NMF is better than the one obtained with
PCA, from 59.89% to 62.11%. Finally, a first experiment with WNMF has been done
using the probabilistic approach and we obtain a final recognition rate of 62.89%.
This result can be seen in table (3.18).

As in the previous experiment, tables (3.16,3.17,3.18) show that there are some
techniques that perform better for certain classes. So that, we try to combine these
three techniques using the probabilistic approach in order to evaluate the final perfor-
mance. In order to select the best technique for each data model, we use the definition
of acpass defined in expression (3.35) and the results are shown in table (3.19).

Comparing table (3.7) with table (3.19) we observe that nearly all the data classes
that were represented using PCA are also represented with PCA. The other data
classes, the ones represented with NMF, now, some of them are chosen to be repre-
sented with WNMF.

From all these experiments we can conclude stating that WNMF performs better



102 OBJECT RECOGNITION USING LOCAL FEATURES
Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 251 1 354 0 4 31 323 18 0 18
Grass 0 945 0 8 0 29 0 0 18 0
Ice 12 0 896 0 0 3 68 3 2 16
Leaves 0 245 31 668 0 10 0 0 31 15
Rocky 24 44 29 0 293 360 35 29 155 31
Sand 24 28 23 0 27 865 8 0 23 2
Sky 18 0 342 0 0 16 574 23 0 27
Snow 92 0 413 0 3 33 162 211 5 81
Tree 1 202 3 20 14 32 1 2 700 25
‘Water 19 10 433 1 3 37 128 13 18 338
Total Recognition Rate: 57.41 %

Table 3.16: Confusion matrix obtained using the PCA technique in a 60 dimensional
subspace. This is the probabilistic approach of PCA.

Model Model = Model Model Model = Model Model Model Model Model
Clouds Grass Ice Leaves  Rocky Sand Sky Snow Tree Water
Clouds| 376 1 228 0 11 30 218 97 0 39
Grass 0 860 0 19 1 21 0 0 99 0
Ice 49 1 752 0 1 1 65 69 4 58
Leaves 0 148 15 779 2 3 0 0 43 10
Rocky 28 30 15 2 389 298 20 39 155 24
Sand 15 14 13 3 56 857 10 5 23 4
Sky 76 2 228 1 111 14 453 71 0 44
Snow 141 0 281 0 21 23 60 430 1 43
Tree 0 91 3 22 9 20 0 0 836 19
Water 31 4 290 2 13 21 75 61 24 479
Total Recognition Rate: 62.11 %

Table 3.17: Confusion matrix obtained using the NMF technique in a 60 dimensional
subspace. This is the probabilistic approach of NMF.

Model Model Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 520 1 136 0 10 54 168 53 0 58
Grass 0 823 0 32 9 28 0 0 108 0
Ice 215 1 560 0 7 2 106 51 2 56
Leaves 0 66 6 851 4 3 0 6 50 14
Rocky 23 20 17 2 589 179 20 46 87 17
Sand 21 12 1 0 158 T 5 6 17 3
Sky 136 0 195 0 7 19 377 48 0 218
Snow 210 0 177 0 16 22 29 483 0 63
Tree 0 145 1 39 42 9 0 1 737 26
‘Water 45 3 175 7 25 15 72 60 26 572
Total Recognition Rate: 62.89 %

Table 3.18: Confusion matrix obtained using the WNMF technique in a 60 dimen-
sional subspace. This is the probabilistic approach of WNMF.

than NMF. Also, a probabilistic scheme of all PCA, NMF and WNMF techniques
is better than a direct approach based on reconstruction distances. Why is better
to consider a probabilistic approach? We believe that is due to the fact that with
a classification scheme based on reconstruction distances, it is not possible to take
into account the internal structure of data. Since PCA assumes gaussianity and
NMF/WNMEF a Poisson distribution, the probabilistic approach considers more in-
formation related to the internal distribution of data of each technique and helps to
classify vectors.



3.5. Empirical Analysis of Linear Transformations using Local Features

PCA  NMF __ WNMF

aClouds | 1-3210  1.1058  0.8000
QGrass | 17830 2.9553  3.3185
e | 05504  0.7008  0.7909
Oleaves | 23.0345 15.8979  10.6375
QRocky | 5-7451  1.7280 21187
agand | 15699  1.9884  2.3474
aggy | 07917  1.0112  0.9425
agpow | 2.3977  1.2573  1.7823
OTree | 2.7778  2.3954  2.5414
OWater | 15721  1.9875 12571
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Table 3.19: 455 defined in expression (3.35) per each technique. Bold face indi-
cates the best technique of each class.

Model Model  Model Model Model Model Model  Model Model Model
Clouds Grass Ice Leaves Rocky Sand Sky Snow Tree Water
Clouds 517 1 169 0 8 25 175 57 1 47
Grass 0 825 0 53 19 15 0 0 86 2
Ice 53 0 707 1 1 0 100 41 4 93
Leaves 2 73 7 849 7 6 0 1 36 19
Rocky 37 17 9 0 476 186 28 35 167 45
Sand 55 7 10 0 87 801 1 2 29 8
Sky 57 3 236 0 1 17 582 46 1 57
Snow 198 0 242 0 13 6 42 370 6 123
Tree 2 39 1 24 15 7 0 2 890 20
Water 43 4 149 2 15 12 34 60 25 656
Total Recognition Rate: 66.73 %

Table 3.20: Confusion Matrix for the combined classifier (PCA, NMF and WNMF)
in 60D using a probabilistic approach.

Model Model = Model Model Model Model Model Model Model Model
Clouds Grass Ice Leaves  Rocky Sand Sky Snow Tree Water
Clouds 559 1 146 0 8 22 163 53 1 47
Grass 0 813 0 55 20 15 0 0 95 2
Ice 49 0 734 1 1 0 84 41 4 86
Leaves 2 62 6 871 7 5 0 1 31 15
Rocky 36 17 9 0 537 155 27 32 148 39
Sand 49 7 7 0 78 822 1 2 26 8
Sky 52 3 205 0 1 16 645 35 1 42
Snow 179 0 219 0 13 6 41 431 6 105
Tree 2 34 1 22 14 7 0 2 901 17
Water 39 4 121 2 15 12 25 47 25 710
Total Recognition Rate: 70.23 %

Table 3.21: Confusion Matrix for the optimal hierarchical classifier (PCA, NMF
and WNMF) in 60D using a probabilistic approach.

3.5.3 Classification using a Nonparametric Model

As a nonparametric model, we used the k-nearest neighbours (k-nn) approach [44].
This approach is mainly based on finding k£ neighbors for a given vector. Then, we as-
sign to this vector the class label majoritary among its k-nearest neighbors. k-nearest
neighbors (k-nn) [44] has for long been probably the most intuitive classification rule





