Chapter 2

Precedents

Vision is fundamentally a dynamic process. For example, if we have a question like:
what does it mean, to see?, The most easy answer would be: to know what is where
by looking [40]. Thus, vision is the process of discovering from images what is present
in the world, and where it is. And this is possible because images of natural scenes,
unlike random collections of pixels, are characterized by a high degree of statistical
regularity. For instance, pixel values in a given neighborhood tend to be highly
correlated owing to the morphological consistency of objects. Thus, a pixel-wise
representation of objects obtained from a camera is highly redundant.

But vision has some problematic aspects of description in general. As example,
structural descriptions which are considered the ultimate goal of vision has some
problems such as:

1. Can we describe using a natural language all the things that can be seen in an
image? In applying language to vision, it should exist an universal language in
order to denote ”things” in images. For example, do all the people agree about a
painting? The painting can be seen as an image and people can represent ”our”
eyes. Thus, can we expect that our eyes agree about what they see? In view of
this indeterminacy, one obviously can not expect a one-to-one correspondence
between the image and any of its verbal descriptions. Up to this point, we can
think that a picture is worth much more than a thousand of words. In this
sense, we do not have enough names (nor sentences) for all the things that can
be found in an image.

2. The first problem is usually solved creating a list of possible objects that can
appear in images that is, to settle for seeing only certain things: those that
match our concepts. In other words, we only will search for all these things that
we know and expect that would appear in our images. Thus, we presuppose the
existence of clearly delimited entities, which need to be detected and labeled.
Assuming this kind of restriction, our vision strategy becomes poor since we are
looking for "known” objects that are members of some a priori set.

3. When we form the description of an image in terms of a restricted set of objects
we should solve some indeterminancies lurking behind the decision of which

9

10 PRECEDENTS

object should a given pixel be attributed. Here is where we see the need of the
technical issue of image segmentation, which is known in computer vision to be
an extremely challenging task. Image segmentation is the task which discards
pixels belonging to non-objects (objects or ”things” that we do not know a
priori) in order to make easy the recognition process. But, what happens when
we have two objects together, i.e. one in front of the other? what happens with
the pixels that reside in the border zone of both objects?

4. Assuming that pixels of interesting objects can be segmented, it remains an
important source of difficulties when we try to group pixels together. The
distributed nature of the information is very important since it takes part in
relevant grouping decisions. Several times, the ultimate interpretation of an
image fragment does not depends on its immediate context but can depend on
the entire image. There are several approaches which focus on the identification
of a single object using a model-based recognition process without taking into
account possible holistic circumstances of the whole scene.

The general problem of visual recognition is too broad and underconstrained to
be addressed comprehensively by today’s artificial systems. Therefore, the following
three subproblems have been identified in the literature that are more easily addressed
separately by specialized solutions:

e Specific Object Recognition. In a typical scenario, a test image depicts
exactly one target object (with or without occlusion and/or clutter). The task
is to recognize that object as one of several specific objects [94, 120, 87], i.e. a
particular toy or a particular landmark. The appearance or shape of the objects
in the database are precisely known.

e Generic Object Classification. The scenario is the same as in Specific Object
Recognition, but here the task is to label the target object as belonging to one of
several known object categories or classes [160]. The individual objects within
a class may vary in appearance. A class ("car”, ”"chair”) can be defined in
various ways, i.e. by object prototypes, by abstract description, or by models
containing enough detail to discriminate between classes, but not enough to
distinguish between objects within a class.

e Object Detection. Test images contain various items and typically show
natural (indoor or outdoor) scenes. The task is to localize regions of the image
that depicts instances of a target object or class of objects, i.e. faces or people [2].
Object detection is closely related to fundamental problems in image retrieval
[111].

The requirements and difficulties differ between these subproblems. Therefore,
many existing recognition systems are designed to solve only one of them. Moreover,
some practical recognition problems further specialize these categories. For example,
face recognition [142] is a distinct subcategory of specific object recognition that must
cope with gross non-rigid transformations that are hard to model mathematically.
Other practical recognition problems are often addressed in related ways. For exam-
ple, Weng [154] treat indoor landmark recognition as a simplified object recognition

11

problem without generalization across size or pose. Riseman [112] represent outdoor
landmarks by line models and recognize them by many-to-many model matching in
two and three dimensions. Very few promisings attempts have been made to develop
systems that are applicable to more than one of these subproblems. Among these,
most systems employ features that explicitly allow certain image variations [96].

For visual recognition, two major classes of techniques can be identified:

e Model-based. This kind of techniques employ geometric models of the target
objects for feature extraction or alignment [112].

e Appearance-based. This kind of techniques are related to the appearance of
objects in an image. That is, they are related directly to the pixels of an image.
They are also called model-free methods since they extract features or extract
information from images without explicitly model shape properties of the target
objects. Various types of features have been employed and some of them will
be explained in the following sections.

Hybrid techniques have also been proposed in which appearance-based methods served
as indexing mechanisms to reduce the number of candidate object models [71]. In
fact, it appears that this was historically the primary motivation for appearance-
based methods. Only later was their full potential discovered, and systems began
to emerge that omitted the model-matching phase and relied on appearance-based
methods alone.

The human visual system is remarkable. It routinely solves a wide variety of vi-
sual tasks with such reliability and deceiving ease that belittles their actual difficulty.
These spectacular capabilities appear to rest on at least two foundations. First, the
human brain devotes enormous computational resources to vision: about half of our
brain is more or less directly involved in processing visual information [68]. Second,
essential visual skills are learned in a long process that extends throughout the first
years of an individual’s life. At the lowest level, the formation of receptive fields of
neurons along the early visual pathway is likely influenced by retinal stimulations.
Some visual functions do not develop at all without adequate perceptual stimulation
within a sensitive period during maturation, i.e. stereo vision [4]. Higher-order visual
functions such as pattern discrimination capabilities are also subject to a develop-
mental schedule [49]:

e Neonates can distinguish certain patterns, apparently based on statistical fea-
tures such as spatial intensity variance or contour density [118].

e Infants begin to note simple coarse-level geometric relationships, but perform
poorly in the presence of distracting cues. They do not consistently pay atten-
tion to contours and shapes [117].

e At the age of about two years, children begin to discover fine-grained details
and higher-order geometric relationships. However, attention is still limited to
"salient” features [141].

e Over much of childhood, humans learn to discover distinctive features even if
they are overshadowed by more salient distractors.

12 PRECEDENTS

There is growing evidence that even adults learn new features when faced with
a novel recognition task [128]. But despite this evidence of visual feature learning
in humans, little is known about the mechanisms of visual learning. At least, recent
neurophysiological and psychological studies have shed some light on what the features
represent [151]. And it is interesting to see that the bulk of the evidence points to
view-specific appearance-based representations in terms of local features. And few
definitive statements can be made about the spatial extent of the features used by
the visual brain. Nevertheless, it has been shown that even for the recognition of
faces (often cited as a prime example of holistic representations) local features play a
major role.

It seems clear that local approaches which make use of local features as a first step
to object recognition and/or classification are commonly used in front of holistic ones.
This is due to the ability of local approaches to inherently solve some of the practical
problems of computer vision: occlusions, lighting conditions, changes in viewpoint,
etc. However, once a set of local features has been extracted from images it is required
some knowledge that groups them into a human concept. For example, figure (2.1)
contains two ”faces” but if we pay some attention to figures (2.1.a) and (2.1.b) we
will see that they do not correspond to real faces. Both images contain local features
that belong to the face class but the spatial configuration of these local features is an
important issue in order to label images. Thus, if we rotate both images, we obtain
figures (2.1.c) and (2.1.d) where we check that figures (2.1.a) and (2.1.b) correspond
to unreal faces.

As seen in figure (2.1) if we work with local representations, it is possible to find
images where all the local object detectors respond positively but the image does
not contain any known object. This problem is known as the binding problem [88].
The binding problem is one of the most persistent worries in the class of architecture
where objects in images are based on banks of features detectors, often called receptive
fields, each of which is sensitive to some localized spatial configuration of image cues
but invariant to one or more spatial transformations of its preferred stimulus. These
systems where the goal is to extract useful invariant features suffer the potential for
ambiguity in visual representations (the binding problem). A spatial binding problem
arises, for example, when each detector in the visual representation reports only the
presence of some elemental object attribute but not its spatial location (or, more
generally, its pose). Under these unfavorable conditions, an object is hallucinated
(i.e, detected when not actually present) whenever all of its elemental features are
present in the visual field, even when embedded piecemeal in improper configurations
within a scattered coalition of distractor objects.

One approach to the binding problem is to build a separate, full-order conjunc-
tive detector for every possible view (e.g., spatial pose, state of occlusion, distortion,
degradation) of every possible object, and then for each object provide a huge dis-
junction that pools over all of the views of that object. Some possible solutions to the
binding problem include (1) strategies for image preprocessing designed to segment
scenes into regions containing individual objects, thus reducing the clutter load con-
fronting the visual representation, and (2) explicit normalization procedures to reduce
pose uncertainty (e.g., centering, scaling, warping), thereby reducing the invariance
load that must be sustained by the individual receptive fields. Both strategies reduce

13

Figure 2.1: (a) and (b) are two images that seem to contain ”regular” faces. (c)
and (d) correspond to the rotated images of (a) and (b) and we see that they are not
real face images. Here we see the importance of the spatial layout of local features.
This example has been extracted from [108].

the probability that any given object’s feature set will be activated by a spurious
collection of features drawn from other objects. In any case, we should be aware of
this problem in our object representation if we want to reduce possible mismatches.
This chapter introduces a relevant set of local features that can be used to represent
local information from images. All methods described here have been used extensively

14 PRECEDENTS

to describe local attributes of images. We will pay more attention to color features
since our research is mainly focused on local color representations. Once a set of
feasible local features is exposed we will discuss the topic of topology and location of
local features. Finally, when we have described what information should be extracted
from specific regions in images we will relate possible methodologies to perform object
recognition and/or classification. Thus, we will describe how methods have worked
with local features in the last years. We analyze some of the most well-known methods
concerned with object recognition using local features and fast matching methods.

2.1 Local Features

We start from the assumption that images contain objects and a certain subset of
pixels of images belong to an object which we want to identify. The human visual
system easily recognizes a wide variety of stimuli, including rigid, articulated, and
entirely non-rigid 2D and 3D objects, faces, statistical or fractal objects, surface tex-
tures, and views of complex natural scenes, while displaying remarkable insensitivity
to changes in viewpoint, partial occlusion and clutter. But why the human visual
system can recognize this huge number of objects so well and so fast? One possible
answer is that our visual system is organized as a feedforward feature-extracting hier-
archy that builds progressively more complex and viewpoint-invariant features useful
for identifying objects, where invariance over a group of transformations is achieved
by summing over viewpoint-specific elemental representations [106]. According to
this view, and in correspondence with the axioms of statistical pattern recognition,
visual object recognition in the brain is the process of mapping retinal ”pixels” into a
feature space that is better suited (than pixels) to the viewpoint invariant classifica-
tion and identification problems faced by visual animals. Within this feature space,
represented by the activity of neurons at the top of the hierarchy, the similarity of
one object view to another is given by a simple distance calculation ; recognition of
an input is achieved by finding the identity or class of the most similar training view
previously stored in memory.

It seems clear that feature dimensions should be chosen such that large changes in
object pose produce relatively small variations in feature space, while small changes
in object ”quality” (shape, texture, color, etc) produce relatively large variations in
feature space. Here is where we see that we need a useful feature space, that is,
features should be relatively sensitive to object quality but relatively insensitive to
an object’s pose or configuration.

So that, the choice of the used features is critical and depends on such factors as
the considered object classes, the sensor characteristics, the contexts and the task.
Generally, there exists a tradeoff between precision and generality of the features.
Even though researchers are aware of the difficulties, the choice is most often made
by hand and arbitrarily. However, we might expect that our visual features should
be able to cope with non-rigid object transformations, or to cope with occlusion and
clutter. But one of the most important things is that visual features should be able
to maximize object discrimination. Thus, one possible solution to this is the use of
multiple visual cues. Also, we want to richly represent objects of many different types,

2.1. Local Features 15

so that, our visual features should be aware of this fact.
This feature based viewpoint presents several limitations since it is a bottom-up
approach. As example of possible problems we have that:

1. Feature-space methods are essentially template-matching methods and so re-
quire an intractable number of templates to cope with inputs that have been
rotated, scaled, partly occluded, non-rigidly transformed, or presented under
varying lighting conditions,

2. Feature-space approaches lack a top-down component essential for resolving
featural ambiguities present in real images,

3. Feature-space methods do not scale well to high dimensions (i.e. large num-
bers of features), either because (i) it is not practical to learn or otherwise
assemble a sufficiently large number of sufficiently useful features, (ii) too many
dimensions of noise necessarily overwhelm too few dimensions of signal, or (iii)
high-dimensional methods are computationally intractable or require too much
data.

However, the conjecture that a feature space approach based on feedforward
receptive-field-style computations could account for the prodigious recognition capaci-
ties of the primate brain as yet lacks direct support in the modeling literature: existing
approaches have generally involved one or more assumptions that place them squarely
outside the biological ”paradigm” for general-purpose visual recognition, such as (i)
use of small object corpus (typically no more than a few dozen objects), (ii) limited
range of object types (e.g. faces or rigid volumetric objects), (iii) feature compu-
tations not amenable to receptive-field-style computations (e.g. use of sophisticated
geometric invariants), and/or (iv) strong viewpoint assumptions, or corresponding
explicit image pre-normalization operations (typical in OCR and face recognition).

We should take in mind that a feature space describes ”WHAT” we are searching
for inside images and this is a very important step before we start to create a new
visual technique to represent or recognize objects.

Here we describe a set of local feature descriptors that are commonly used in
computer vision, some of them are directly related to image features (color, texture,
edges or motion) and others are based on more structured information as histograms,
filters or contours that are basically based on the local neighborhood of a given region
of an image (usually centered around important ”points” in the image [25, 55, 124]).

2.1.1 Gaussian Derivatives

This section introduces local characteristics based on Gaussian derivatives. Gaussian
derivatives are widely used in the literature and well understood [45, 46, 73, 110].
By using Gaussian derivatives we can explicitly select the scale. Additionally, we
can ”steer” the derivative to arbitrary orientations: it is possible to calculate the nth
order Gaussian derivative of the orientation ¢ based on a linear combination of a
finite number of nth order derivatives. This section describes Gaussian derivatives
in general, develops the equivariance property to scale and finally summarizes the
”steerability” to image plane rotation.

16 PRECEDENTS

Given the Gaussian distribution G?(x,y) (we are not considering the scale factor
for notational convenience) :

224y?

G (z,y) = e 22 (2.1)

the first order derivative in the z-direction is given by:

x
G;(.’L‘,y) = —FGO—(Z’,y) (22)
More generally the first order derivative in direction ¥ = (cos¢ sing)? is given by:
o 8 a

In the same way, the nth order Gaussian derivative in direction @ = (cos¢ sing)’

is defined by:

n

o 8 (o2

Usually, up to third order Gaussian derivatives are used. If we define the z-axis
parallel to the vector # = (1 0)¥, which corresponds to ¢ = 0°. The y-axis is defined
by ¢ = 90° and is therefore parallel to @ = (0 1)”. The derivatives in z— and
y—direction are given by:

T

Gilz,y) = Giglz,y)=-—5G"(z,y) (2.5)
(o8 (o y (o

Gy (m,y) = G1,900 (m,y) = _FG (.’L’,y) (26)

Based on the first order derivatives one can define the magnitude Mag(z,y) and the
direction Dir(z,y) of the first derivative:

Mag(z,y) = \/(G%(w,y))“r(GZ(w,y))z (2.7)
Dir(z,y) = arctan% (2.8)

These two measures that are based on the first order derivatives are usually used in
computer vision to represent the neighborhood of a given point in the image, (z,y),
that for some reason is interesting for us.

Three second order derivatives are given by:

ey = (G- 6wy 29)
Gry(zy) = (i—zi)G"(:r:,y) (2.10)
G = (G- 6 @) (211)

2.1. Local Features 17

And based on the first and second order derivatives one can define rotation invariant
characteristics as:

Lap(z,y) = G, (2,y)+ Gy, (z,y) (2.12)
G12(z,y) = G9,(G2)° +2G2,GIGT + G5, (GS)? (2.13)

Lap(z,y) is the well known Laplacian operator. The second local characteristic is
called G12 since it is based on first and second order derivatives. Operator G12 was
introduced by Koenderink [72] as a rotation (image-plane rotation) invariant filter
and has been used by Schmid and Mohr [123, 122] for object recognition.

Finally, we show the four third order Gaussian derivatives that are given by:

Gree(@,y) = (i—f—i—Z)G"(m,y) (2.14)
Gfa) = (L= Tha () 215)
Gryy(z,y) = (%—J%Z)G"(w,y) (2.16)
Goa) = (2o 2.17)

Equivariance of Gaussian derivatives to Scale

Gaussian derivatives are a set of local characteristics that can be calculated at an
arbitrary scale. This is an interesting property of Gaussian filters and other families
of filters as for example Gabor filters (see section 2.1.2). In the following we introduce
the equivariance property of Gaussian derivatives to scale.

Given a two-dimensional function p(z,y) and its scaled version f(x,y) = p(sx, sy)
we know from analysis:

flz,y) = plsz,sy) (2.18)
Sof(ey) = saoplsasy) (219)
82 ’ 8”

@f(m,y) = 8”%1)(896,81/) (2.20)

Following the above equations, the nth order derivative of the function f can be
calculated on the basis of the nth order derivative of p(sz,sy). This calculation
assumes exact knowledge of the function p. In computer vision the exact knowledge
of p cannot in general be assumed. By using Gaussian derivatives the nth order
derivative of p(sz,sy) can be calculated on the basis of the p(z,y). In the following
we show this property for the first order derivative. The first order derivative of f is
defined as:

2) = G5, 9) * fa,9) (2:21)

18 PRECEDENTS

where GZ(z,y) is the Gaussian derivative (see equation 2.5) and « is the convolution
operator. Therefore we obtain (together with equation 2.19):

% (z,y) = s%p(sx,sy) (2.22)
= sGI(x,y) *p(sz, sy) (2.23)
= sG7(z,y) *p(z,y) (2.24)

The equation shows that we can calculate the first order derivative of f on the basis
of the first order derivative of p(z,y), which we call the adaption of the Gaussian
derivative to scale. In a similar way one obtains an equation for the adaptation of the
nth order derivative to scale:
n
S F) = "G (2,9) * (e y) (225)

Following this equation, one can calculate the nth order derivative of a function
f(z,y) directly from the basis of function p(x,y) (when f is a scaled version of p:
f(z,y) = p(sz,sy)). In order to employ this property the scale factor s must be
known, which cannot in general be assumed. Usually we calculate the derivative for
different values of s. Additionally, one has to adapt the support for the calculation
of the nth order derivative of p. This is expressed by the adaptation of the standard
deviation os of the Gaussian filter.

We call the adaption of the Gaussian derivatives to scale changes by the factor
s the equivariance property of the Gaussian derivatives to scale. More generally we
call any local characteristic equivariant to a particular change, whenever there exist
a certain parameter which is directly connected with this change.

As expected, the equivariance to scale is not only true for characteristics based on
Gaussian derivatives. The same property holds, for example, for Gabor filters due to
their Gaussian envelope. Gabor filters are introduced in section 2.1.2.

Steerability of Gaussian Derivatives to Immage Plane Rotation

In order to calculate the filter response (for example for a Gaussian filter) at an
arbitrary orientation ¢ the corresponding version of the filter can be calculated. If
the orientation is not known beforehand or if one of the filter responses of many
different orientations have to be calculated, it is very time consuming to calculate
every time the corresponding version of the filter. Therefore it is desirable to define
a finite set of basis filters and an interpolation rule, which allows us to calculate the
filter response based only on the response of the basis set. For the first order Gaussian
derivative there exists a well known linear interpolation rule [46]:

GT y = cosdGy + singGy (2.26)

In order to formalize this property, Freeman and Adelson [46] start with a two-
dimensional function F(z,y) and define FY(x,y) as the version of F(z,y) rotated
by the angle 8. A function F(x,y) steers when it can be written as a sum of rotated
versions of itself:

FOz,y) = Y k(@)% (a,y) (2.27)

=1

2.1. Local Features 19

This equation is known as the steering constraint. J corresponds to the number of
interpolation functions k;(6), the F% form the finite basis set of oriented functions.
Two important questions arise: how many interpolation functions are needed and
how to obtain the interpolation functions. In order to formulate two theorems, the

function F(z,y) is rewritten in polar coordinates r = \/(z? + y2) and p = arg(z, y):
N
F(r,p)= Y ap(r)e™ (2.28)
n=—N

A first theorem [46] states that the steering constraint 2.27 holds for functions expand-
able in the form of 2.28 if and only if the interpolation functions k;(¢) are solutions

1 1 1 .1 k()

et e itz il ka ()
= . L .) (2.29)

eZI‘V(f) ei&el ei]\.f92 . .' ei]\’f@] kJ.((Zﬁ)

By fixing 6; the interpolation functions are given as solutions of equation 2.29. A
second theorem [46] states that the minimal number of interpolation functions is T,
whereas T' is the number of nonzero coefficients a,(r) in equation 2.28. Therefore the
theoretical answers to the two questions are known: how many interpolation functions
are needed and how the interpolation functions are defined.

The two theorems can be applied to Gaussian derivatives. First of all (following
the second theorem) the minimal number of interpolation functions for the nth order
Gaussian derivative is n 4+ 1. The interpolation functions themselves depend on the
chosen ;. These angles of the basis filters should be chosen so that the response of
the interpolation is robut with respect to noise. An appropiate choice is therefore to
distribute the angles equally between 0° and 180°. (Another choice for the ; may be
motivated by the desire to obtain separable filters for & and y. See for details [46].)

Besides the well known interpolation functions for the first order Gaussian deriva-
tives (see equation 2.26: 6, = 0°, 8 = 90°,k1(¢) = cos(¢),k2(p) = sin(¢p)) the fol-
lowing interpolation functions are obtained for the second order Gaussian derivatives
(using 61 = 0°, 62 = 60° and 63 = 120°):

k; () 1+ 2COS(§(¢ =) for j=1,2,3 (2.30)

56 = Kki()G3 g0 + k2(B)G3 600 + k3(0)G3 1200 (2.31)

And finally, the following interpolation functions are obtained for the third order
Gaussian derivatives (using 8; = 0°, 8, = 45°, 65 = 90° and 6, = 135°):
2cos(¢ — ;) + 2cos(3(p — 65))

ki(g) = 1 for j =1,2,3,4 (2.32)

50 = ki(@)G300 + k2(9)GS a50 + k3(9)G3 g0 + ka(9)GT 1350 (2:33)

Figure (2.2) shows up to fourth-order Gaussian derivatives that usually are used
in computer vision.

20 PRECEDENTS

Figure 2.2: 14 oriented Gaussian derivative basis filters of up to the fourth-order
and the initial Gaussian. From top to down: a Gaussian ; 2 first order Gaussian
derivatives; 3 second order Gaussian derivatives ; 4 third order Gaussian derivatives
and 5 fourth order Gaussian derivatives. Bright regions denote positive magnitude
while darker regions denote negative magnitude.

2.1.2 Gabor Filters

Gabor filters are local compact filters tuned to a spatial frequency band. Gabor filters
are defined by modulating a Gaussian window with a cosine and an imaginary sine,
giving an even and an odd filter pair [48]. The output of a Gabor filter may be
represented as a complex number with a real and an imaginary part. This complex
number can be expressed in polar coordinates as magnitude and direction.

A Gabor filter pair is compact in both space and frequency domains. Usually, one
can use the two-dimensional formulation of the Gabor functions used by Daugman
[35]:

_ﬂ.((m*wo)z_i_(y*yo)z) .
g(z,y) =e o 57) g=2mi(uo(z=20)+v0(y—y0)) (2.34)

where (zg, yo) are the central coordinates of the filter, (a, §) are the standard deviation
used to determine the width and the length, and (ug,v) specify the modulation in
z and y directions, which has the spatial frequency wy = /ug + vZ and direction
6o = arctan(vg/up). The Fourier domain transfer function G(u,v) is given by:

G(u, 1)) — 6—ﬂ((u—uo)2a2+(v—vo)2ﬂ2)e—2ﬂi(zo(u—uo)+yo(v—vo)) (235)

The main advantage of the Gabor filters is that one can freely choose the frequency
(and therefore the scale) as well as the bandwidth of the filter.

For the design of a 1D Gabor filter, Westelius [156] proposes the tuning of the
standard deviation a and the spatial frequency ug. These two parameters determine

2.1. Local Features 21

the size and bandwidth of the filter. Given a certain spatial frequency ug, Westelius
chooses the radius of the frequency support so that the frequency function is suffi-
ciently low at u = 0 (DC component). Therefore he defines the ratio between the DC
component and the maximum value which should be smaller than a previously se-
lected threshold Ppc. To generalize this ratio to 2D Gabor filters one can set a = f3.
The ratio is then given by (for (zo,y0) = (0,0)):

G(0,0) V=InPpc

<Ppc=>a> ——
G(UO,’Uo) - - \/E’LUO

Both the spatial support and the frequency support of an ideal Gabor function are
infinite. To define a digital filter we must sample the function and limit its spatial
support. The limit of the spatial size is chosen such that the amplitude of the filter
is lower than a threshold P.,; for all positions outside the limit. The spatial radius

R = /72 + 12 of the filter is then:

v —InP,
|| g(rw,ry) || <Pt = R>a Nl cyt
Il 9(0,0) || v

One should notice that the chosen radius R affects the DC' component of the signal.
Therefore the DC component should be checked after truncation of the filter support.

By using Euler’s equation (e'*® = cos(wx) + isin(wx)) we can rewrite equation
2.34 in polar form:

(2.36)

(2.37)

g(x,y) = Re(g(z,y)) + Im(g(z,y)) (2.38)

_,T((w—aczo)2+(y—yzo)2)
Re(g(z,y)) = cos(=2m(uo(z — wo) + vo(y — yo)))e B ’ (2.39)
N 7ﬂ((w—w20>2+(y—y20)2)
Im(g(z,y)) = isin(=27(uo(z — zo) +vo(y —yo)))e * /(240
The real part Re(g(z,y)) can be interpreted as a second order derivative and the
imaginary part Im(g(z,y)) can be interpreted as a first order derivative (both in
direction of y). Figure (2.3) shows a typical Gabor filter bank (the real part of the

filter).

2.1.3 Color Features
Color Histograms

In computer vision, one of the most common features used as a color signature is
color histograms. Swain and Ballard [137] have initially proposed this scheme where
each object is represented by its color histogram (an approximation of its color dis-
tribution). Originally, this color histogram technique was used to represent a whole
object but it is clear that we can use this technique under a local point of view as
seen in the literature [19, 52]. In the first approach, objects are identified in an image
by matching a color histogram from a region of the image with a color histogram
from a sample of the object (several histogram matching techniques are presented

22 PRECEDENTS

Figure 2.3: A typical Gabor filter bank. The real part (see equation 2.39) of the
filters is shown. This particular filter bank contains 6 different orientations and 4
different scales.

thereafter). Additionally, the use of color histograms for recognition does not assume
segmentation of an object nor an explicit geometric model. An object is described
only by its color histogram. Color histograms have been shown to be remarkably ro-
bust to changes in the object’s orientation, changes of the scale of the object, partial
occlusion or changes of the viewing position. Even changes in the shape of an object
do not necessarily degrade the performance of the method. However, the major draw-
back of this method is its sensitivity to the color and intensity of the light source.
Furthermore, not all objects can be described by color alone. Thus, color histograms
could be inappropiate for many recognition problems. For the Swain and Ballard
algorithm, it can be seen that robustness to scale and rotation are provided by the
use of color. Robustness to changes in viewing angle and to partial occlusion are due
to the use of histogram matching. Thus it is natural to exploit the power of histogram
matching to perform recognition based on histograms of local shape properties. The
most general method to measure such properties is the use of a vector of linear local
neighborhood operations, or receptive fields [110, 120].

One possible solution in order to reduce the sensitivity to illumination changes,
as proposed by Swain and Ballard is to use a color constancy algorithm prior to
histogramming. In this particular case, several authors have improved the original
approach in order to reduce the sensitivity to illumination intensity changes. The
two most successful approaches have been proposed by Healey and Slater [56] and
Funt and Finlayson [47]. Healey and Slater calculate moment invariants of the entire
color histogram. The invariants are based on the finite dimensional linear color model,

2.1. Local Features 23

which allows the modeling of illumination intensity changes by a linear transformation
between color histograms. Even though the experimental results [56] are convincing
the method is global in the sense that the intensity change is assumed to be constant
over the entire image. This makes the approach inappropiate in many situations.
Funt and Finlayson [47] use derivatives of the logarithms of the color channels in
order to provide illumination invariant features. The underlying assumption is a
local constant illumination. The color invariants are based on an approximative color
model (coefficient model) which allows us to calculate color invariants locally. Even
though the underlying model is a simplification these invariants perform best when
compared with other color invariants as for example proposed by Nagao [95]. The
main advantage of the proposed invariants is that they can be calculated locally and
do not assume a uniform illumination change in the entire image.

It seems clear that before obtaining color histograms from images, we must know,
at least, the color space to be used. Knowing which is the best color space for our final
purpose, we also must have an idea of the precision (quantization steps). One common
color space used in the literature is the hue-saturation-value (HSV) [27]. Other studies
using color histograms work directly on the red-green-blue (RGB) color space [19]. In
fact and depending on the lighting conditions of the scene, it does not matter which
color space we use. For example, if we know a priori that our scenes are controlled
and the impact of lighting changes is minimal, we are free to choose the color space.
But, as seen in the literature [27], HSV is attractive in theory. It is considered more
suitable since it separates the color components (HS) from the luminance component
(V) and is less sensitive to illumination changes. Also, distances in the HSV space
correspond to perceptual differences in color in a more consistent way than in the
RGB space.

A color histogram is a vector where each entry stores the number of pixels of a
given color in the image. In order to work with images of different sizes, histograms
are normalized and the colors of the image are mapped into a discrete colorspace
containing n colors. Typically images are represented in the RGB colorspace, using a
few of the most significant bits per color channel to discretize the space. Usually, one
can find 8 x 8 x 8 color histograms [19, 51] where each 8 means a partition of each color
channel into 8 bins. Thus, using this representation, one can represent an image using
8 x 8 x 8 = 512 values. The number of bins is chosen a priori and reflects the precision
required for our task. Once a color histogram is defined in a three dimensional space
(8 x 8 x 8), it is very usual to map this three dimensional representation into a one
dimensional one (512 dimensional vector) in order to make it more understandable
in terms of the statistical techniques that will be applied after. Figure (2.4) shows
the histogram obtained considering a gray image where the horizontal axis represents
gray pixels and the vertical axis their frequency in the image. A typical application
where one can use color histograms is in the context of skin detection. Figure (2.5)
shows a typical RGB distribution of pixels corresponding to skin pixels that usually
are modeled using color histograms for fast skin-detection applications.

If we represent a histogram by H = {h;} where h; is the number of pixels in
an image that have a color value in the interval indexed by i = (R;, G;, B;) (we are
assuming a RGB color space), one can define a set of histogram matching distances
in order to compare two histograms (H,K). Several measures have been proposed

24 PRECEDENTS

1000 - | | | | | | | -
300 ¢ -
800 + -
00+ -
BOO | -
200 F -

Ml

300
200

o dz B4 386 128 160 132 Z224
Intensity

Frequency

100

Figure 2.4: Intensity histogram of a gray image. The horizontal axis correspond to
the gray level and the vertical axis reflects its frequency.

for the dissimilarity between two histograms. One can divide these measures into
two categories. The bin-by-bin dissimilarity measures that only compare contents of
corresponding histogram bins, that is, they compare h; and k; for all ¢, but not h;
and k; for i # j. And the cross-bin measures that also contain terms that compare
non-corresponding bins. As we will explain later, cross-bin distances make use of a
ground distance d;;, defined as the distance between the representative features for
bin 7 and bin j. Typical bin-by-bin dissimilarity measures are:

e Minkowski-form distance

1/r
dr,(H,K) = (ZV%’ - kil”> (2.41)

This dissimilarity measure considers L; and Lo, two typical distance measures.
The L; distance is often used for computing dissimilarity between color images
[137] but it also has been shown in other studies like [136] where image retrieval
based on L; results in many false negatives.

e Histogram Intersection
Zi min(h,-, k,)
2 ki

The histogram intersection was introduced by Swain and Ballard [137] and it
is attractive because its ability to handle partial matches when the areas of

dn(H,K)=1- (2.42)

2.1. Local Features 25

250
200

150

Blue

100

a0

Green 0o Red

Figure 2.5: Distribution of points corresponding to skin pixels in the RGB space.
Such distribution of pixels is usually modeled using color histograms for fast skin-
detection purposes (real time applications).

the two histograms are different. It is shown in [137] that when the areas of
the two histograms are equal, the histogram intersection is equivalent to the
(normalized) L; distance measure.

The intuitive motivation for this measurement is the calculation of the common
part (the intersection) of two histograms H and K. An advantage of this mea-
surement is that it explicitly neglects background pixels, which may occur in
the test histogram K but do not occur in the database histogram H. This mea-
surement is computational inexpensive since it is based on simple operations for
each histogram cell. Furthermore, the complexity is linear with the number of
histogram cells (dimensionality of the feature vector).

In the original work of Swain and Ballard [137] it is claimed the need for a sparse
color distribution in the histogram in order to distinguish different objects. For
example, a sparse distribution can be achieved by using high dimensional his-
tograms. It is clear that a tradeoff between the ability to discriminate objects
and stability with respect to perturbations becomes an important issue. A
second inconvenience of the intersection is that all histogram cells are treated
equally and should therefore be equally probable. In some particular applica-
tions of histograms [120] it is more convenient to use an appropiate scaling of
the different histogram cells using some a priori knowledge.

e Kullback-Leibler divergence and Jeffrey divergence

26

PRECEDENTS

The Kullback-Leibler (K-L) divergence [74] is defined as
h;
dxr(H,K) = Z hilogk—i (2.43)

From the information theory point of view, the K-L divergence has the property
that it measures how inefficient on average it would be to code one histogram
using the other as the code-book [34]. However, the K-L divergence is non-
symmetric and is sensitive to histogram binning. The empirically derived Jeffrey
divergence is a modification of the K-L divergence that is numerically stable,
symmetric and robust with respect to noise and the size of histogram bins [109].
It is defined as:

hi ki

dj(H,K) = ; (h,logmi + k,logmi> (2.44)
where m; = #
x2— statistics
The formal statistical method for determining if two distributions differ is the
x2—test. Starting from the null hypothesis that two data sets (histograms) are
drawn from the same population (for example measurements of the same object)
the goal is to disprove the hypothesis. Disproving the hypothesis proves that
the histograms are drawn from different distributions. Failing to disprove the
null hypothesis only shows that the two histograms are consistent and could be
drawn from the same population. Therefore, the y2—test is a consistency test
for two histograms.

X2 —statistics is a common measure used for the calculation of ”dissimilarity”

between two histograms [27, 53, 120]. Two different ways of calculation of

the x?—statistics are considered here . The first - dy2 (H,K) - assumes exact
knowledge of the model histogram K:

(hi — ki)*

10 =y L

: [
i

(2.45)

A second calculation - d,2 (H, K) - compares two observed histograms (neither
is theoretically derived). This second x2—statistics is more appropiate in the

context of object recognition, since we typically do not assume exact knowledge
of the model histogram K. d,2 (H, K) is defined by:

hi — k;)?
dye (H,K)=Y" % (2.46)

As we will see later in this thesis and as can be seen in other studies, this
x?—statistics provide better recognition results for most cases than other mea-
surements. We should take in mind that neither of the x?—statistics is a metric
since the triangulation inequality is not satisfied. In order to see this we can
consider the degenerate case of one-cell histograms A = (a) and C = (¢). For

2.1. Local Features 27

any one-cell histogram B = (b) with a < b < ¢ the following inequality holds
(which is the opposite of the usual triangular inequality of a metric):

dXib (A,B) + dxfc (B,C) < dyz (4,0) (2.47)

These dissimilarity definitions can be appropriate in different areas. For example, the
Kullback-Leibler divergence is justified by information theory and the y2—statistics
by statistics. However, these measures do not necessarily match perceptual similar-
ity well. The major drawback of these measures is that they account only for the
correspondence between bins with the same index, and do not use information across
bins. Another drawback of bin-by-bin dissimilarity measures is their sensitivity to bin
size. A binning that is too coarse will not have sufficient discriminative power, while
a binning that is too fine will place similar features in different bins which will never
be matched.

Here we enumerate some of the most important cross-bin dissimilarity measures.
These measures can only be applied when a ground distance that matches perceptual
dissimilarity is available for each histogram bin. Thus, incorporating this information
into the dissimilarity measure results in perceptually more meaningful dissimilarity
measures. These measures are:

e Quadratic-form distance
This distance was suggested for color based retrieval in [98] as:

da(H,K) = /(b) TA(h ~ k) (2.48)

where h and k are vectors that list all the entries in H and K. That is, a
unidimensional vector representing the whole set of features.

Cross-bin information is incorporated via a similarity matrix A = [a;;] where
a;; denotes similarity between bins ¢ and j. Here ¢ and j are scalar indices into
the bins.

According to the recommendation found in [98] one can use a;; = 1 — d;j/dmaz
where d;; is the ground distance between bins ¢ and j of the histogram, and
dmaz = max(d;;). Although in general the quadratic-form is not a true distance,
it can be shown that with this choice of A, the quadratic-form is indeed a
distance.

The quadratic-form distance does not enforce a one-to-one correspondence be-
tween mass elements in the two histograms. The same mass in a given bin of
the first histogram is simultaneously made to correspond to masses contained
in different bins of the other histogram. In [136] it was shown that using the
quadratic-form distance in image retrieval results in false positives, because it
tends to overestimate the mutual similarity of color distributions without a
pronounced mode.

A special case of the quadratic-form distance is when we use A as the identity
matrix. This particular case generates the sum of squared distances (SSD):

dssp(H,K) = |> (hi — k;)? (2.49)

(3

28

PRECEDENTS

This sum of squared distances is the same as the Ly distance metric presented in
equation (2.41). And another well-known quadratic-form distance that is com-
monly used in the computer vision community is the mahalanobis distance. A
sensible choice of matrix A is the inverse of the covariance matrix of histogram
cells, modeling the significance of each cell and the dependencies between dif-
ferent cells. When different cells of the histogram are mutually independent
only the diagonal elements of the matrix A are nonzero and we obtain the
Mahalanobis distance:

B — k)2
dMaha(H: K) = Z # (250)
i i
where 7? is the variance of the histogram cell 4.
Match distance
dy (H,K) =Y |hi — kil (2.51)
i

where iy = 3 j<i lj is the cumulative histogram of {h;}, and similarly for {;}.

The match distance [130, 155] between two one-dimensional histograms is de-
fined as the L; distance between their corresponding cumulative histograms.
For one-dimensional histograms with equal areas, this distance is a special case
of the EMD which we present later with the important difference that the match
distance cannot handle partial matches. Also, the match distance does not ex-
tend to higher dimensions because the relation j <1i is not a total ordering in
more than one dimension, and the resulting arbitrariness causes problems.

Kolmogorov-Smirnov distance

dis(H, K) = max;(|h; — ki]) (2.52)

Again, h; and k; are cumulative histograms.

The Kolmogorov-Smirnov distance is a common statistical measure for unbinned
distributions. Similarly to the match distance, it is defined only for one dimen-
sion.

Parameter-based distances

These methods first compute a small set of parameters from the histograms, ei-
ther explicitly or implicitly, and then compare these parameters. For instance, in
[136] the distance between distributions is computed as the sum of the weighted
distances of the distributions’ first three moments. It is unclear how to tune
the weights of the different moments. Moreover, the resulting measure is not
a metric distance. In [83], textures are compared based on measures of their
periodicity, directionality, and randomness, while in [86] texture distances are
defined by comparing their means and standard deviations in a weighted-L;
sense.

2.1. Local Features 29

e The Earth Mover’s Distance (EMD)
This thesis uses the earth mover’s distance (EMD) in some of the experiments,
so that, we will explain this distance measure in detail.

First of all, we defined a histogram in previous section as deriving from a fixed
partitioning of the domain of a distribution. Of course, even if bin sizes are fixed,
they can be different in different parts of the underlying feature space. Even so,
however, for some images often only a small fraction of the bins contain signif-
icant information, while most others are hardly populated. A finely quantized
histogram is highly inefficient in this case. On the other hand, for images that
contain a large amount of information, a coarsely quantized histogram would be
inadequate. Similar problems arise even when adaptive histograms are used. In
brief, because histograms are fixed-size structures, they cannot achieve a good
balance between expressiveness and efficiency.

In the context of EMD, a signature {s; = (mj,w;)}, on the other hand, rep-
resents a set of feature clusters. Each cluster is represented by its mean (or
mode) mj, and by the fraction w; of pixels that belong to that cluster. The
integer subscript j ranges from one to a value that varies with the complexity
of the particular image. While j is simply an integer, the representative m;
is a d-dimensional vector. The size of the clusters in the feature space should
be limited and not exceed the extent of what is perceived at the same, of very
similar, feature.

The main important point here, is that the definition of cluster is open and
a histogram {h;} can be viewed as a signature {s; = (m;,w;)} in which the
vectors i index a set of clusters defined by a fixed a priori partitioning of the
underlying space. If vector i maps to cluster j, the point myj is the central value
in bin i of the histogram, and w; is equal to h;.

Intuitively, given two distributions, one can be seen as a mass of earth properly
spread in space, the other as a collection of holes in that same space. Then,
the EMD measures the least amount of work needed to fill the holes with earth.
Here, a unit of work corresponds to transporting one unit of earth by one unit
of ground distance. The distance measure between weight locations is known
as the ground distance.

The ground distance between two single perceptual features can be found by psy-
chophysical experiments. For example, perceptual color spaces were devised in
which the Euclidean distance between two single colors approximately matches
human perception of the difference between those colors. This becomes more
complicated when sets of features, rather than single colors, are being compared.
The EMD appeared in order to become a general metric between signatures for
image retrieval making use of a ground distance between signatures.

Computing the EMD is based on a solution to the well-known transportation
problem [58]. Suppose that several suppliers, each with a given amount of goods,
are required to supply several consumers, each with a given limited capacity.
For each supplier-consumer pair, the cost of transporting a single unit of goods
is given. The transportation problem is then to find a least-expensive flow of

30

PRECEDENTS

goods from the suppliers to the consumers that satisfies the consumers’ demand.
Signature matching can be naturally cast as a transportation problem by defin-
ing one signature as the supplier and the other as the consumer, and by setting
the cost for a supplier-consumer pair to equal the ground distance between an
element in the first signature and an element in the second. Intuitively, the solu-
tion is then the minimum amount of ”work” required to transform one signature
into the other.

This can be formalized as the following linear programming problem: Let
P = (p1,w1),...,(pm,wp,,) be the first signature with m clusters, where p;
is the cluster representative and wy, is the weight of the cluster; so that @ =
(q1,wg,),---,(gn,wy,) the second signature with n clusters; and D = [d;;] the
ground distance matrix where d;; is the ground distance between clusters p; and
gj. We want to find a flow F = [f;;], with f;; the flow between p; and g;, that
minimizes the overall cost

Work(P,Q,F) = > > " dij fi; (2.53)

i=1 j=1
subject to the following constraints:

fi > 0 1<i<m1<j<n (2.54)

i:fij < wy, 1<i<m (2.55)
j=1
> i
i=1
m n m n
sz” = min pri7zwqj (2.57)
=1 j=1

i=1 j=1

1<j<n (2.56)

IN
§

Counstraint (2.54) allows moving ”supplies” from P to () and not vice versa.
Counstraint (2.55) limits the amount of supplies that can be sent by the clusters
in P to their weights. Constraint (2.56) limits the clusters in @ to receive
no more supplies than their weights; and contraint (2.57) forces to move the
maximum amount of supplies possible. This amount is usually called total flow.
Once the transportation problem is solved, and we have found the optimal flow
F, the earth mover’s distance is defined as the work normalized by the total

flow: m "
_ Zi:l Ej:l dij fij
iy 2 fig
Tne normalization factor is the total weight of the smaller signature, because of
constraint (2.57). This factor is needed when the two signatures have different
total weight, in order to avoid favoring smaller signatures. In general, the ground

distance d;; can be any distance and will be chosen according to the problem
at hand.

EMD(P, Q)

(2.58)

2.1. Local Features 31

Thus, the EMD naturally extends the notion of a distance between single el-
ements to that of a distance between sets, or distributions, of elements. The
advantages of the EMD over previous definitions of distribution distances should
be apparent. First, the EMD applies to signatures, which subsume histograms
as explained before. The greater compactness and flexibility of signatures is
in itself an advantage, and having a distance measure that can handle these
variable-size structures is important. Second, the cost of moving ”earth” re-
flects the notion of nearness properly, without the quantization problems of
most current measures. Even for histograms, in fact, items from neighboring
bins now contribute similar costs, as appropiate. Third, the EMD allows for
partial matches in a very natural way. This is important, for instance, in order
to deal with occlusions and clutter in image retrieval applications, and when
matching only parts of an image. Fourth, if the ground distance is a metric and
the total weights of two signatures are equal, the EMD is a true metric, which
allows endowing image spaces with a metric structure. A proof of this is given
in [31, 116, 115]

It should be noted that EMD seems a good distance metric to be used when
comparing different histogram bins, but we have to take in mind that this dis-
tance requires a high computational cost. The implementation that we have
used in this thesis is the one that we can find in http://robotics.stanford.
edu/"rubner/

Additional dissimilarity measures for image retrieval are evaluated and compared
in [109]. But up to this point and as seen in the above mentioned measures, not all the
measures are metric. Though it seems that the distance functions should be a metric,
recent research in computer vision and cognitive science, however, suggest that human
perceptual judgment about visual similarity are inherently non-metric, i.e., they may
not obey the triangle inequality or may not be symmetric. Some non-metric similarity
measures are also suggested for image classification in [66]

Once the color histogram representation scheme was introduced by Swain and
Ballard, other approaches have been presented in order to solve some of the problems
of the original technique. For example, several schemes for using spatial information
about colors to improve upon the histogram method have been proposed recently.
One common approach is to divide images into subregions and impose positional
constraints on the image comparison (image partitioning). Another approach is to
augment histograms with local spatial properties (histogram refinement).

Smith and Chang [132] partition an image into binary color sets. They first select
all colors that are ”sufficiently” present in a region. The colors for a region are
represented by a binary color set that is computed using histogram backprojection
[137]. The binary color sets and their location information constitute the feature.
Stricker and Dimai [135] divide the image into five partially overlapping regions and
compute the first three moments of the color distributions in each image. They
compute moments for each color channel in the HSV colorspace, where pixels close
to the border of the image have less weight. The distance between two regions is a
weighted sum of the differences in each of the three moments. The distance between
two images is the sum of the distance between the center regions, plus (for each of the

32 PRECEDENTS

four side regions) the minimum distance of that region to the corresponding region
in the other image, when rotated by 0, 90, 180 or 270 degrees. Because the regions
overlap, their method is insensitive to small rotations and translations. They also
explicitly handle a limited set of rotations.

Pass and Zabih [103] use another approach. They partition histogram bins by
the spatial coherence of pixels. A pixel is coherent if it is a part of some ”sizeable”
similar-colored region, and incoherent otherwise. A color coherence vector (CCV)
represents this classification for each color in the image. CCVs are fast to compute
and appear to perform better than histograms. The notion of CCV is also extended
in [103], by using additional feature(s) to further refine the CCV-refined histogram.
One such extension uses the center of the image (the centermost 75% of the pixels
are defined as the ”center”) as the additional feature. The enhanced CCV is called
CCV with successive refinement (CCV/C) and performs better than CCV.

Hsu et al. [61] attemps to capture the spatial arrangement of the different colors in
the image. The image is partioned into rectangular regions using maximum entropy,
where each regions is predominantly a single color. The similarity between two images
is the degree of overlap between regions of the same color. Hsu presents results from
a database with 260 images, which show that their approach can give better results
than color histograms. While the authors do not report running times, it appears that
Hsu’s method requires substantial computation, particularly the partioning algorithm.
Additionally, Hsu’s algorithm is affected by changes in orientation and position. Their
method could be extended to be independent of these effects, at the cost of still greater
overhead.

We can also find another important approach to improve initial color histograms.
Correlograms are graphs (or tables) showing how autocorrelation changes with dis-
tance [62]. Traditionally the distance meant the time distance between pairs of ob-
servations. But in this particular case, spatial analysts adapted the idea to spatial
distance, and in [62] they adapt the idea to spatial distance of color pixels in an
image. A color correlogram expresses how the spatial correlation of color changes
with distance. A color histogram captures only the color distribution in an image
and does not include any spatial information. Thus, the correlogram is one kind of
spatial extension of the histogram. In [62] several applications of correlograms are
analyzed. They investigate the applicability of correlograms to tasks such as image
subregion querying, object localization, cut detection, and image classification. They
also propose the correlogram intersection method for the image subregion querying
problem and show that this approach yields significantly better results than the tradi-
tional histogram intersection method. The histogram backprojection approach used
for the localization problem in [137] has serious drawbacks. In [62] it is presented a
discussion about all the disadvantages and they introduce the idea of correlogram cor-
rection. They also show that it is possible to locate objects in images more accurately
by using local color spatial information in addition to histogram backprojection using
correlograms. In the context of video, they try to help video parsing and browsing
using correlograms to compare video frames and detect cuts by looking for adjacent
frames that are very different. And once again, they show that using correlograms as
feature vectors yields superior results compared to using histograms.

2.1. Local Features 33

2.1.4 Contour Features

Under the name of contour features we want to include all the set of features that
we can extract from the neighborhood of a given point in an object. As examples of
these features, one can find curves, junctions of two curve segments, convex regions or
ellipses. This repertoire of features is obtained when we already know that a specific
point in an object is relevant for us and we want to know how we can model its
neighborhood. Usually, these kind of features define various geometric arrangements
of intensity edges and it is very common to make use of low level features (straight,
circular and/or elliptical segments of intensity edges) and group them to obtain higher-
level features.

Edge Detection

Canny’s method [25] is used to identify image pixels that represent intensity edges.
These edges are then grouped to form continuous curve segments, each representing a
portion of edge that is fit reasonably well by a straight line, circular arc, or elliptical
arc. These curve segments are usually chosen because they can describe many edges
well, they can be detected in a stable manner and they represent edges at a level of
abstraction that makes them useful for forming higher-level features such as junctions
and convex regions.

Grouping Edges to Form Curve Segments

Once a set of edges is obtained, they can be grouped to form curve segments. One of
the methods to be used at this specific point is the method of Leonardis [81]. Using
this method, grouping occurs in two phases. In the first phase, a large number of
curve segments candidates are recovered by subdividing the image into an array of
”seed” windows and then ”growing” curve segments, starting separately from the
edges contained in each window. The group of edges in a seed window are initially fit
by a straight line segment using least squares estimation. If an acceptable fit having a
sufficiently low error residual is obtained, the group is enlarged by seeking additional
edges lying near the endpoints of the line segment. This fit-and-extend process is
repeated as long as acceptable fits and additional edges are found. Once the line fit
error becomes too large or additional edges cannot be found near the line endpoints,
the process switches to circular arcs, which are fit using a least squares formulation.
Finally, when circular arcs no longer provide good fits, general conics are fit by solving
a generalized eigenvalue problem [138] of the various forms of conic obtained by this
method, only single lines, circular arcs, and elliptical arcs are obtained. Among
all the acceptable fits obtained during the fit-and-extend process begun from one
seed window, the largest line segment, circular arc, and elliptical arc are recorded as
candidates.

In the second phase, some of the candidates are selected to become features while
the rest are discarded. Initially, all candidates are considered unselected. Selection
is then performed by evaluating each unselected candidate, selecting that scoring
highest, and repeating this process until no remaining candidate achieves a positive
score. One measure used to score candidates is derived from the minimum description

34 PRECEDENTS

length principle so that it favours candidates that group many edges, fit their edges
well, and requires few parameters (i.e., preferring straight lines over circular arcs, and
circular arcs over elliptical arcs). The measure also considers pairwise interactions
among candidates so that a candidate’s score is lowered if some of the edges it groups
have already been gropued by another candidate already selected.

This edge grouping method has several qualities that make it a good choice to
be selected for this purpose. This method produces curve segments that bridge the
small gaps often found in edges detected under near-threshold conditions. It produces
a mix of straight, circular, and elliptical segments while choosing the nearly simplest
combination adequate in each situation. Weights of the various factors used in scoring
candidates can be adjusted to achieve a desired balance between coarse descriptions
with few segments, and accurate ones that may break complex curves into many
segments. And finally, the method has a high degree of parallelism since with an
appropiate hardware it is possible to process each seed window concurrently.

Of course, there are other methods to extract curve segmentations [85, 107, 113].
Once edges and curve segments are found in an image, they can be combined and
grouped to obtain higher-level features but this is not the point in this thesis and
we do not explain how to obtain this set of features. See [107] for more information
about this aspect. We show in figure (2.6) a graphical example extracted from [107]
where we show some features (curve segments and parallel curve segments) that can
be extracted from a real object.

Figure 2.6: Example of features that can be extracted from an image. (a) Image
with an object used to extract its features, (b) Curve segments extracted from the
object in (a), (c) L-junctions and parallel curve segments extracted from the object
in (a). This graphical example has been extracted from [107].

2.1.5 Local Invariants

In this section we want to explain a set of features that can be extracted from images
and they can be considered local invariants. The term local invariant means that the

2.1. Local Features 35

image can suffer a transformation such as a rotation, and features keep having the
same value under this image transformation. There are features that are invariant to
rotations and there are some other ones that can be invariant to changes in the scale.
Here we present some of the features used in the literature that are considered local
invariants and extensively used in several schemes.

Usually, when we want to obtain invariance under rotations it is common to use
Gaussian derivatives (see section 2.1.1) which locally describe an image. Furthermore,
Gaussian derivatives can be combined in order to obtain differential invariants [73]
which are then inserted into a multi-scale framework in order to deal with scale
changes. Therefore the characterisation is invariant to similarity transformations
which are additionally quasi-invariant to 3D projections (see [13]).

The image in a neighborhood of a point can be described by the set of its deriva-
tives. Their stable computation is achieved by convolution with Gaussian derivatives
(see section 2.1.1). In the computer vision field, this set of derivatives has been named
local jet by Koenderink [73]. The local jet of order N at a point (z,y) for image I and
scale o is defined by:

JN[I](:v,y,a) ={L? , (z,9)|(z,y) € ;0 €eRT;n=0,...N} (2.59)

11,---In

where L{ . (z,y) is the convolution of image I with the Gaussian derivatives
G?, i (z,y) and iy € {z,y} (see notation in section 2.1.1). The o of the Gaussian
function determines the quantity of smoothing. This ¢ also coincides with a definition
of scale-space which will be important if we want to use a multi-scale approach in
order to cope with scale changes. In computer vision, ¢ is referred to as the size of
the Gaussian.

In order to obtain invariance under 2D image rotations, differential invariants are
computed from the local jet. Differential invariants have been studied theoretically
by Koenderink [73] and Romeny et al. [140, 45]. A complete set of invariants can be
computed that locally characterises the signal of an image. The set of invariants can
be computed up to any order but, usually, up to third order is enough. This set is
stacked in a vector, denoted by V. Notice that the first component of V' represents
the average luminance, the second component the square of the gradient magnitude
and the fourth the Laplacian,

L
L;L;
L;;
V[0..8] = Li;Lj; (2.60)
€ij(Ljpi Li Ly Ly — Ljg Ly Ly Ly)
Lii;L;LiL — LijrKiL; Ly
—€;jLjrLi Ly Ly
LkaLzLJLk

with L; being the elements of the "local jet” and €;; the 2D antisymmetric Epsilon
tensor defined by €15 = —e21 = 1 and €11 = €25 = 0. We should note that expression
(2.60) is given in tensorial notation (the so-called Einstein summation convention).

36 PRECEDENTS

To be insensitive to scale changes the vector of invariants has to be calculated at
several scales. A methodology to obtain such a multi-scale representation of a signal
has been proposed in [72].

For a function f, a scale change a can be described by a simple change of variables,
f(z) = g(u) where g(u) = g(u(z)) = g(az). For the nth derivatives of f, we obtain
fM(z) = a"g™(u). Theoretical invariants are then easy to derive, for example
1))]

f) ()
However, in the case of a discrete representation of the function, as for an image

in our case, derivatives are related by:

is such an invariant.

—+oo —+oo
/ L(2)Gi ;. (7,0)dE = o” / (@G o (Goa)dd (2.61)
—00 — 00

with G, . 4, being the derivatives of the Gaussian.

Equation (2.61) shows that the size of the Gaussian has to be adjusted which
implies a change of the calculation support. At it is impossible to compute invariants
at all scales, scale quantisation is necessary for a multi-scale approach. Often a half-
octave quantisation is used. But, of course, the scale quantisation depends only on

the final application and should be selected according to this.

2.1.6 Eigenfeatures

In this section we want to introduce the term eigenfeatures that is referred to all those
feature vectors that are the result of applying the Principal Component Analysis tech-
nique. As we will explain later (see section 3.2), the Principal Component Analysis
(PCA) technique is used to reduce the dimensionality of a given problem and, at the
same time, keeping the maximum amount of the original information in the reduced
space.

Instead of working with a feature vector that usually is represented in a high
dimensional space one might need real time when performs some object recognition
task. In the particular case of working in high dimensional spaces and requiring
real time object recognition, it is quite impossible to achieve this goal. Turk and
Pentland [142] used Principal Component Analysis (PCA) to describe face patterns
in a low dimensional appearance space. Murase and Nayar [93] have shown real time
recognition of complex 3D objects based on PCA of geometrical shape of objects.
As seen in these papers and in other ones in the literature, the PCA approach is
very appropiate for real time applications because of the low cost of the recognition
algorithms.

The point of this section is not to explain the Principal Component Analysis tech-
nique but to show different applications of this technique with some feature vectors
that are usually used in computer vision. In section 3.2 we can find the definition of
PCA and the mathematical derivations of it. The name eigenfeatures comes out from
the fact that the PCA is based on the main eigenvectors of the covariance matrix of
the original data to represent a low dimensional space. For example, if our feature
vectors are color histograms, in the literature, the projected vectors, are referred to
eigenhistograms [147, 19]. If our feature vectors are faces, the projected vectors are
called eigenfaces [142].

