Chapter 5

A Polynomial Fiber Description of
Motion for Video Mosaicing

This chapter is about two topics. First, given a video sequence, we introduce a
Bayesian framework, where background and moving objects are segmented into lay-
ers. The model that describes the different layer evolutions in a sequence of images
uses the results of a multi-frame optical flow estimation (MFOFE); we present a
new technique based on the fact that each pixel in the frame of reference produces a
trajectory in the mosaic absolute coordinate system. The second topic is video sum-
marization. A general moisaicing method is presented for describing the background
and the trajectories of moving objects in a sequence of frames. Combining layer
segmentation and mosaicing, we show different manners of encoding and visualizing
temporal information, where the key point is the selection of a certain object in the
images as reference in the evolution.

5.1 Introduction

ummarizing the contents of a video into a single image is a very useful tool for

video indexing and compression purposes [46, 102]. Indeed, browsing and re-

trieval by content in video data-bases are becoming a relevant field in Computer
Vision and Multimedia computing. This fact goes in accordance with the increasing
developments in digital storage and data transmission. In addition to this, the wide
range of applications in this framework, such as advertising, publishing, news and
video clips, points out the necessity for more efficient organizing techniques. In this
chapter, we focus on two important subjects in this area, movement segmentation and
video mosaicing as a summarization technique. These subjects make feasible a quick
intuition of the evolution of higher level perceptual structures, such as scenes, short
stories and panoramic view sequences [98, 93]. Algorithms for image mosaicing con-
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118A POLYNOMIAL FIBER DESCRIPTION OF MOTION FOR VIDEO MOSAICING

sist of two main steps: registration, i.e. estimating the transformation that occurred
across consecutive frames in the sequence, and mosaic construction, which implies
utilizing the previously estimated transformations in conjunction with the images to
be summarized. These two steps are intrinsically related. A good performance of the
resulting final mosaic is strongly dependent on the variety of techniques which are
applied in both steps.

The first step, transformation estimation, is usually based on optical flow estima-
tion in pairs of consecutive frames. However, when images are put in correspondence,
rather than an estimation of the relative transformation between consecutive images,
a estimation of the absolute transformation between each frame and a selected frame
of reference is more necessary. This goes in accordance with the fact that a mosaic
coordinate system has to be selected in order to locate the images of a sequence in a
mosaic structure. For this reason, in this chapter, we apply the Multi Frame Optical
Flow estimation (MFOFE) introduced in [45], since it provides a global estimation of
images transformation respect to a previously selected frame of reference. Moreover,
this technique offers a good solution to the aperture problem without assuming an
a-priori restricted model of the world or of the camera motion.

The second step, mosaic’s structure construction, utilizes the world coordinate
transformations to put images in correspondence, i.e., to estimate the overlapped
regions that are common in the images of a sequence. The presence of moving objects
in a scene gives rise to a more complex situation. In this case, background and
object motions must be separated in order to obtain an accurate registration. To this
end, we present a new technique where each pixel in the frame of reference produces
a trajectory in the mosaic absolute coordinate system. Unlike techniques which are
restricted to pairs of frames [105, 6, 88], this method performs simultaneously a global
motion segmentation across all the frames. Clustering is based on the fact that
similar trajectories will correspond to the same sort of motion (and camera operation).
Thus, we introduce a description of these paths in terms of polynomial fibers, and a
probabilistic model is developed in order to rely on a measure of similarity as well
as to have a classification mechanism which extracts the possible different classes of
motions.

The outline of this chapter is as follows: first, we introduce a description of the
features (fibers) that are used to the analysis of the relative movements among differ-
ent objects. Subsequently, a probablisitic model and an EM algorithm are presented
in order to establish the settings for classification. Section 3 shows the development
used for mosaic’s structure construction and the application of the information of the
fibers model. Finally, the chapter is concluded with the summary and conclusions.

5.2 Motion in terms of Fiber-Like Structures

The MFOFE, that is presented in [45], gives a technique to describe the absolute
transformations of each pixel in a certain frame of reference across a sequence of
images. In this section, this estimation is used to detect different relative movements
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Figure 5.1: (a) Description of a fibre in terms of absolute coordinates; it starts
in (zg,y0), and, by successive applications of the corresponding absolute velocities
Wy, the points in the fiber (2%,y}) are obtained. (b) Fiber picture in the mosaic
coordinates.

employing all the information from the sequence.

5.2.1 Settings

The starting point is to define the features that are used to the analysis of relative
movements among different objects in a sequence of F images {Iy, ..., [r}, where each
image Iy consists of N pixels. Let Iy be the absolute frame of reference and (z, yg)
the n-th pixel in this frame, thus, (x}ﬂy?) is the resulting pixel in the fth-frame of
applying the absolute velocity vector &y to (zf,yg). MFOFE allows to estimate these
absolute coordinates that correspond to this pixel in the following frames. Following
the scheme in fig. 5.1, we define a fiber S(n) for each pixel (z{,y§) in Iy as:

S(n) = [(xg7yg)77($7}€‘7y;')77717777}7‘]

where each v; is a relative velocity vector obtained through the difference of the
absolute velocities which are provided by MFOFE, i.e., ¥y = &f — &¢_1. In this
way, rather than analyzing point pixel structures, it turns out to be more robust the
analysis of fibers which are associated to each pixel in the selected frame of reference.

5.2.2 A Polynomial Surface Model

We consider the whole sequence of images as a fiber bundle. Each fiber can be
described in terms of a polynomial model as follows: let S(n) be the fiber associated
to the n-th pixel in I, therefore, the components of the velocity vectors can be fitted
to a polynomial of degree® d:

uf = aoo +awox} +any} +ai; (@) (W} + ...+ acaly})”
vf = boo + bz} +boryy + aij(x}b)i(y}l)j +...+ bOd(y}l)d

IWhen d = 0, the polynomial corresponds to a translation, d = 1 to an affine model and d = 2 to
a projective camera model of a moving plane of the fiber S(n).



120A POLYNOMIAL FIBER DESCRIPTION OF MOTION FOR VIDEO MOSAICING

where ¥ = (u}, v}) (relative velocity) is analyzed in terms of its components, and the

coordinates in the f-th frame are represented by (x;%, y;}) 2, The number of unknown

coefficients in each polynomial is r = (d+1)(d+2) Besides, the previous forms can be

written in terms of an inner product of the following vectors:

—n n o n n\i/ Mn\j ny\d nyd T
5= (Lehufe DR @D W)
& = (aoo,a0,a01,...,ado, aod)"
g = (b007b107b017" -adeabOd)T
hence, the velocities fitting can be re-written as follows:
uf = [py'a (5.1)
v = '8 (5.2)

Let U™ and V" be the column vector F' x 1 of the velocity components in the
fiber S(n), and P™ a matrix r x F of its corresponding point [absolute] coordinates,
therefore, eq. (5.1) and eq. (5.2) are extended in a matrix form:

Ut = [PM'a (5.3)

Vn _ [Pn}Tﬁ

where & and 5 are r X 1 vectors. In the following section, we introduce a probabilistic
formulation to estimate a mixture of surfaces that describe the behavior of the different
sort of movements which are present at the video sequence.

5.2.3 Probabilistic Mixture Model

Describing a fiber S(n) in terms of a set of coefficients Q = {@, §} gives us a starting
point to develop a probabilistic formulation. The idea behind this, is to provide a
model that permits a classification of different types of fibers. These classes are related
with the sort of diferent movements that are produced in the sequence. Consider egs.
(5.3) and (5.4) as the generative functions of the velocities along a fiber. Under
the assumption of independent zero-mean Gaussian distributed noise in the velocity
cc;'mponen‘cs7 the likelihood function of a fiber, for a given instance of the model (2,
is”:

po™,v" | P",Q)=PU" | P",QPV" | P",Q) (5.5)
where,
n n 1 1 n n1T - |2
P P" Q) = - - P
WP 0) = e [ |07 - [P
n n — 1 o 1 n n1T 312
PO | P9) = sl e~ |V - (PP

2Recall superscript n is related to (3, y8) in the frame of reference

3This model assumes independence between the velocity components. Due to this assumption, eq.
(5.5) can be factorized. However, the formulation of this model permits a straight forward inclusion
of correlation between the velocity components. This means a larger number of unknown parameters
to be estimated ~ O(F?2/2). The examples shown in this chapter work well under this assumption.
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When different types of movement are present in an image sequence, their fiber
representation leads to take into account more than one model. Consider that a fiber
can be explained by a set of @ models M = {Q1,...,Q¢}. In this case, the likelihood
function (5.5) corresponds to a probability that is conditioned to a certain sub-model
Q;, P(U™, V™| P™ ;). Therefore, the global likelihood function is:

Q
PU", V™| P", M) =Y P(Q)P(U", V" | P",Q) (5.6)

=1

where P(€;) is a prior distribution over the sub-model ;. Given a instance of these
sub-models, the classification of each fiber in a sequence of frames is a matter of
Maximum a Posteriori (MAP), Q; = argmax, P(Q; | U™, V™, P™) which is given by
the Bayes rule:

P(Q)PU"™, V" | P", Q)

P(Qi | U”,V",P") = )
Zi/zl P(Qy)P(U",V” | Pn7Q7L’)

(5.7)

5.2.4 EM Algorithm

The Expectation-Maximization approach is applied to this problem in order to es-
timate the models that explain the different fiber categories. This is based on the
maximization of a likelihood function of the set of fibers that are obtained from the
image sequence. Considering the approximation of independent observations among
fibers, the global likelihood function of a set of fibers S(1),...,S(N) (N is the number
of pixels in the frame of reference Ij) is written as a product of single likelihoods.
Equivalently, this maximization can be done through maximizing the log-likelihood:

L= Zlog{zp PU™, V" | P" Q )} (5.8)

When assuming that each fiber is explained by only one sub-model €2;, eq. (7.4) can
be written in terms of binary variables z;:

N
= Z Z Zni log {P(Q))P(U™, V"™ | P",Q.)} (5.9)

The EM algorithm consist of a two-step iterative procedure that converges to a local
maximum of (7.4):

e E-step: set R,; = P(Q; | U™, V™, P™") and compute the posterior expectation
of (5.9).
e M-step: for each sub-model §2;
L P(Q) =N Rui/N

—1
2. i:[zglemP"[P”]T} [Zﬁ;lRmP"U"

Qu
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These steps are iterated until a certain convergence criteria.

5.3 From video to Mosaic Representations

The previous representation of motion in terms of fibers has two straight forward
applications: 1) a motion clustering of the different regions in the reference image,
which is extended to all the images of the sequence, and 2) permits an estimation
of the global transformation that is produced in each segmented region. This second
issue allows to a priori estimate the size of the mosaic, since those transformations are
computed taking as reference a common frame for all the images. Thus, the trans-
lation contribution of global transformation of the ”furthest”* frame will determine
such a size.

Besides, in order to build the mosaic we have to select which layer is taken as
reference as well. The selection of a layer as reference will completely determine
the action that is summarized in the final mosaic. For instance, fig. 5.4 (a) shows a
mosaic, where the reference layer is the segmented background, and fig. 5.4 (b) is given
by choosing as reference the segmented foreground. The layer selection procedure is
carried out thought using the maximum a posteriori probability in eq. (5.7), which
is assigned to each fiber of the sequence. In this way, a sequence of labeled images is
produced, where each label indicates the ownership of each fiber to a certain layer.

Once the reference layer is selected, all the images in the sequence are put in
correspondence by means of the estimation of the global transformations of each
image with respect to the reference frame. This can be performed easily by fitting the
optical flow in each image (separately) using: either a 1-degree polynomial function
(affine model), or 2-degree polynomial (projective model). Figure 5.3 show a picture of
the mentioned data structure. When images are put in correspondence, each position
in such a data structure indicates those pixel that will contribute to the formation of
the final mosaic. At this point, given a instance of the data structure, the final mosaic
can be presented in two manners. First, when the labeling, which was obtained using
the fiber analysis, is utilized, the final mosaic will only take into account those pixels
that belong to the selected layer. This result is shown figures 5.4 (¢) and (d), where
(c) is a mosaic that takes a reference layer the background, and (d) the mosaic that
only considers the segmented foreground. In these two mosaic appear black areas that
indicate that the layer that has been taken as reference had no information in these
regions. In (c¢) the black region corresponds to a zone where the tree-layer was present
in the whole sequence. The second option is to consider all the pixels in the images;

4The term far, here, is taken with respect to the frame of reference.
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Figure 5.2: Three frames from a sequence of 25.
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Figure 5.3: Scheme of the data structure.

this result is shown in fig. 5.4 (a) and (b). It is worth it to comment that the pixel
that appears in the final mosaic (for each position in the data structure) is obtained
is these examples by a median computation. Our purpose is to point out that once
the introduced data structure is computed, the different resulting mosaics come from
this common structure. The only thing that differs is whether a labeling mask is used
or not, and the selected operation, such as median or average, is employed in order
to determine which pixel from the frames, that contribute to a certain location in the
data structure, is shown in that final mosaic.

In figure 5.2 we show three frames of the video sequence that has been used for
these examples. Finally, in figure 5.5 we show a mosaic, where the reference layer is
he background, which has three masks of the foreground in order to summarize the
video sequence.

5.4 Conclusions and future work

In this chapter, we presented a Bayesian method for creating mosaics from video
sequences with moving objects. Both prior and posterior information, through an
analysis in terms of fibers, are exploited in order to distinguish the significantly dif-
ferent sort of relative movements along a whole sequence. In future work, we consider
that the relation between polynomial coefficients and 3D recovery is an open inter-
esting issue to be analyzed.
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Figure 5.4: (a) Image mosaic with background as reference layer. (b) Image mosaic
with foreground as reference layer. (c) Segmented background mosaic.(d) Segmented
tree mosaic. Black color regions in (c) and (d) show those regions that the segmented
layer had no information contributions to the final mosaic during the whole sequence
of frames.
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Figure 5.5: Summarization of the movement of the tree along the sequence.
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Chapter 6

Video Summarization through
Iconic Data Structures

Representing motion into a single image has been a challenge since the beginnings
of Humanity (from cavern hunting paintings to modern art). Even children, when
drawing their parents’ car in motion, add some oriented blurring effects in order to
represent time in a single picture. Such a form of compression, from a temporal
sequence of images to a reduced set, is straightforwardly meaningful, since we are
able to reconstruct an approximation of the original temporal sequence from our ex-
perience. In this chapter, we address the video summarization problem in a Bayesian
framework in order to detect and describe the underlying temporal transformation
symmetries in a video sequence. Given a set of time correlated frames, we attempt
to extract a reduced number of image-like data structures which are semantically
meaningful and that have the ability of representing the sequence evolution. To this
end, we present a generative model which involves jointly the representation and the
evolution of appearance. Applying Linear Dynamical System theory to this problem,
we discuss how the temporal information is encoded yielding a manner of grouping
the iconic representations of the video sequence in terms of invariance. The formu-
lation of this problem is driven in terms of a probabilistic approach, which affords a
measure of perceptual similarity taking both learned appearance and time evolution
models into account. This measure provides a setting for assigning boundaries to
sequence of frames.

6.1 Introduction

rganizing, browsing and retrieval by content in video data-bases is becoming
a relevant field in Computer Vision and Multimedia Computing. This fact
goes in accordance with the increasing developments in digital storage and
transmission. In addition to this, the wide range of applications in this framework,
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such as advertising, publishing, news and video clips, points out the necessity for more
efficient organizing techniques [30, 76].

In this chapter, we focus on two important subjects in this area that are video
preview and summarization, and, which make feasible a quick intuition of the evolu-
tion, under a low streaming cost, of higher-level perceptual structures, such as stories,
scenes or pieces of news. That fact becomes relevant for low bandwidth communi-
cation systems. Expressing a video sequence in terms of a few representative images
permits a continuous media to be seekable. Besides, the summarizing ability of a story
will depend on the specific choice of key-frames set. Currently, the standard approach
for keyframes selection, as indicators of the content of video, is to choose certain im-
ages that belong to the video sequence, which usually correspond to the beginning
and the end of clips. However, considering that editors, authors and artists utilize
camera operations to communicate some specific intentions, this standard key-frame
selection may presents the risk of losing semantic information. Selecting solely one
image of the sequence to represent its temporal evolution may lack of expressiveness
in terms of summarization purposes. When more than one types of motions (due
to different frequencies, velocities, etc) are involved in the sequence, more than one
icon are necessary to represent it. For instance, figure 6.1 shows a sequence of images
where two main types of motions are involved. On one hand, the arm is rising with
a certain velocity, while, on the other, the head is turning with a different rapidity of
movement.

Figure 6.1: Semantic keyframes summarization of a sequence of images.

For this reason, our purpose is to present a compact and perceptually meaningful
representation that preserves the subjective approach, i.e. the semantics, given by
actions and camera operations in the evolution of a video sequence. The model to
extract this new set of iconic representative image -like data structures (see fig. 6.1) is
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based on an application of Linear Dynamical System and Lie’s group theories, which
are our support to define temporal symmetries and invariances. In this framework,
the temporal information is encoded in an infinitesimal generator matrix, which de-
fines different types of behaviors in the evolution of an image sequence. We use this
distinct sort of contributions to give, in addition, a grouping inside the summarized
representation.

The formulation of this problem is driven in terms of a probabilistic approach.
Appearance representation and time evolution between consecutive frames are in-
troduced in a generative model framework. First, a feature space is built through
Probabilistic Principal Component Analysis (PPCA) [15], since this technique allows
to codify images as points capturing the intrinsic degrees of freedom of the appear-
ance, and at the same time, it yields compact description preserving semantics and
perceptual similarities [106, 77, 68]. Subsequently, we present a generative dynam-
ical model for the estimation of the curve’s behavior that the sequence of images
describe in this subspace of principal features. Authors in [82] introduced previously
this dynamical model in a neural network framework. However, we embed it into a
latent variable model, providing an EM algorithm for its estimation. This fact avoids
undesirable problems such as when it comes to instantiate by hand the update steps
of gradient descents techniques. Furthermore, the presented latent variable model
allows a conjugation of both semantic and temporal representations. This affords a
measure of perceptual similarity taking both learned appearance and time evolution
sub models into account. Indeed, this probabilistic framework allows determining
whether two consecutive images are in accordance with the learned dynamical model.
This fact has an important significance when it comes to assign some boundaries to
a sequence of frames.

The outline of this chapter is as follows: first, we introduce a review on Linear
Dynamical Systems. The aim of this is to present the key points on the interpretation
of the temporal appearance codification and how this information can be extracted.
Subsequently, in section 3, an appearance probabilistic framework for time symmetry
estimation is introduced in terms of latent variable models. Section 4 shows the exper-
imental results in order to see this framework applied to real image problems. Section
5 presents the summary and conclusions. Finally, the appendix gives a detailed ex-
planation of the developed EM algorithm for the dynamical model estimation.

6.2 On underlying symmetries

Consider a sequence of frames F = {¢y, ..., ¢n } that are represented as vectors. Each
vector corresponds to an image read in lexicographic order belonging to a subset
of real numbers S C R?. Since images are obtained from a temporal sequence,
order takes significant relevance where transition between two consecutive frames
is achieved as a transformation from the previous one to the next one. Suppose that
this transformation can be parameterised by a single real number 6 € &, which gives
us a notion of time over the whole sequence. Therefore, when 6 tends to zero, the
associated transformation is the identity, recovering the initial image ¢g. In a first
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approximation order, the relation between an image ¢¢ and a near one transformed
#(00) can be expressed as: ¢(06) ~ (1 + 00G)¢pg. So, a macroscopic transformation
T(#) can be built in terms of concatenating infinitesimal transformations, dividing
the parameter 6 in M parts and making M — oc:

M
#(0) = lim (1 + (%) G’> do = ¢y (6.1)
Equation (6.1) is related with to the study of a trajectory near a fixed point in S
described by a linear dynamical system:

¢=G¢ (6.2)

The basic idea considering a trajectory in R¢, formed by a sequence of images F =
{b0, ..., N }, is to understand as a video sequence with some underlying appearance
invariance. From a geometric the point of view invariance is defined as follows:

Definition 6.2.1 Let S C R? be a set, then S is said to be invariant under the vector
field ¢ = T(9) if for any ¢o € S we have ¢(0,dy) € S for all 6 € R.

Furthermore, we can see that the information available in the temporal evolution
of a sequence of frames is encoded in the matrix G under this linear model. The goal
is to find how this information can be extracted. To this end, in the following section
we describe the geometrical meaning of that matrix G, as well as, the behavior that
follow the solutions of eq. (6.2) from the analysis of the internal structure of the linear
system.

6.2.1 Geometrical Point of View of Dynamical Systems

In order to give an intuitive idea of the behavior of the solutions in eq. (6.2), we
focus on an analysis of the orbit structure near fixed points. In eq. (6.1), a macro-
scopic transformation was built by considering a continuous process with incremental
changes in the evolution parameter 6. This type of transformations form a one-
parameter Lie group, which satisfies the following differential equation:

dT(9)
—— =GT(6

20 ()
that corresponds to a generalization of the plane rotation and translation groups. The
matrix G is called infinitessimal generator or action of the group. Lie’s group theory
applied to Computer Vision is not new. In order to get an insight into this framework,
we recommend [50], where a comprehensive view of its applications is developed.

Besides, the evolution described by (6.2) is a particular case of dynamical systems.
Indeed, it corresponds to consider a linearization a system of differential equations:

¢ =F(¢) = ¢ =DF(¢) |s0) ¢ — ¢ =G
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where G = DF() |40) with ¢ € R%. This development is carried out through
the analysis in the vicinity of a certain fixed point ¢(0) at 6 = 0. In the following
sections we show how this approximation can be assumed embedding the estimation
problem into a probabilistic framework. This fact affords a measure of likelihood that
determines whether a set of consecutive points {¢(6,)} are as a result of a certain
transformation of this type.

The Linear Dynamical Systems theory shows how to extract information of the
system by means of an eigenvector analysis of the infinitesimal generator G. The
starting point is that the R? space can be represented as a direct sum of three sub-
spaces defined in terms of a set of (generalized) eigenvectors: E® = span{es,...,es},
E* = span{esq1,...,6544} and E¢ = span{esiyi1,.-.,€s1utc}. The first set of
eigenvectors {e1,...,es} corresponds to the eigenvalues of G having negative real
part, the second set are the eigenvectors {es11,. .., €51y Whose corresponding eigen-
values have positive real part, and {€s4y+1, - - -, €stutc} correspond to the eigenvalues
of G with zero real part. These subspaces are called, stable subspace E°, unstable
subspace E" and center subspace E° respectively, and s + ¢+ u = d.

These spaces are an example of invariant subspaces, since solutions of eq. (6.2)
with initial conditions entirely contained in either E°, E* or E° must remain in that
particular subspace for all values of 6 (time) according to the definition 6.2.1.

In order to see the meaning of the eigenvalues of G, let us consider the following
example. A curve in R* is built from two 2D quadratic forms, which, in this particular
case, are an ellipse and a hyperbola (see fig. 6.2). This may be an example of
generating a real space R* from the direct sum of lower dimensional subspaces. Now,
we can see that the matrix G that generated the orbit, with some initial condition, has
two complex eigenvalues and two real ones. Indeed, under a similarity transformation
T, G can be written as follows:

0 w 0 0
B —w 0 0 0 5
G=T1 o o xn o |T
0 0 0 X

where {iw, —iw} are pure imaginary eigenvalues of G, and {\1, A2} are real values.

In this particular case, we take A; to be a real positive number, and As to be a
negative real number. From this information, we can see that the R* space is de-
composed in 3 subspaces, E° = [span{ej,es}; {iw, —iw}], E* = [span{es}; A\1] and
E? = [span{es}; Ao]. Taking ¢(0) = [21(0), 22(0), 23(0), z4(0)] as inital condition, the
parametric equation of the orbit, i.e. the solution of eq. (6.2) in this particular case
is:

¢(0) = TeMT7'¢(0) =

coswf  sinw6 0 0

—sinwf coswl 0 0
0 0 eM? 0
0 0 0 et

= T

(6.3)
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{(Eh €2, 1'3}

Figure 6.2: 3-Dimensional projections of a solution of a linear dynamical system
in 4D. Plot (b) is another view of (a), where the meaning of two (generalized)
eigenvectors is interpreted as the asymptotes of E*. Plot (f) shows the axis that
span the subspace E°, and it corresponds to the same 3D projection as (e).
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From this solution, we deduce that E¢ = span{e;, ea} (purple and black axis direc-
tions in fig. 6.2 (f)) is an invariant subspace that generates a closed orbit, E* =
span{ez} (red axis direction in fig. 6.2(b))is an invariant subspace of solutions that
decay to zero as § — —oo, and E° = span{eys} (green axis direction in fig. 6.2(d))is
the third invariant subspace of solutions that decay to zero as # — oo. For instance,
consider an initial condition like the following:

ZE1(O)
r0) = | 20
0

Therefore, orbit obtained by means of (6.3) remains in E° = span{ej,ez} for all
possible values of the time parameter 6, and that fact is in accordance with the
definition 6.2.1.

With this reference to the analysis of the solutions of linear dynamical systems, we
see that the information, which is encoded in the infinitesimal generator G, is straight
forward understandable through its eigenvalues and eigenvectors. This internal struc-
ture analysis not only allows the selection of a new representation for the images
evolution, which is based in the modes of G (eigenvectors), but also yields a manner
of grouping the different principal directions of G distinguishing the subspaces that
they span in terms of stability, i.e., E* E® and E°.

6.3 Appearance Based Framework for Time Sym-
metry Estimation

The previous example was performed in order to illustrate that a sequence of points
that follow a certain temporal evolution can be described in terms of some privileged
directions which are indicative of the behavior of the curve where they are embedded
into. The aim of this is to apply linear dynamical system theory to temporal corre-
lated sequences of images. To this end, we need to define a feature space where the
images can be represented as points. Subsequently, the goal is to have an estimation
of the evolution process of these images. The aim of this is to extract the tempo-
ral information encoded in the infinitesimal generator in order to present a reduced
number of images that are able of summarizing semantically the whole sequence.

In this section, we present a generative model which defines appearance represen-
tation and time evolution between consecutive frames. This model involves jointly
representation and evolution of appearance. In this case, temporal symmetry estima-
tion is based on the fact that images belonging to a coherent sequence are also related
by means of appearance representation.

First, the probabilistic formulation for appearance description is developed in
terms of linear generative models through Probabilistic Principal Component Analy-
sis (PPCA) [15]. Subsequently, the temporal appearance evolution is developed inside
the linear generative model with the purpose of presenting a unified framework, where
likelihood measure takes into account both appearance representation and evolution.
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6.3.1 Appearance Representation Model

First of all, we need to define a space of features where images are represented as
points. This problem involves to find a representation as a support for analyzing the
temporal evolution. To address the problem of appearance representation, authors
in [106, 77, 68] proposed Principal Component Analysis as redundancy reduction
technique in order to preserve the semantics, i.e. perceptual similarities, during the
codification process of the principal features. The idea is to find a small number of
causes that in combination are able to reconstruct the appearance representation.
These small numbers of causes are taken as the basis for the feature space. Besides,
Tipping et. al. [15] embedded PCA into a Linear Generative Model framework in
order to capture the intrinsic degrees of freedom of the object category model as well
as to give an inherent likelihood measure to the learned object category. Generative
models are a causal approach to describe the underlying phenomena that generates
the complexity of observed data (images).

One of the most common approaches for explaining a data set is to assume that

causes in linear combination:
t=Wx+pu+e

where © € R9 (our chosen reduced representation, ¢ < d) are the causes (latent
variables), W is an orthogonal matrix which rotates the data ¢, u corresponds to
the sample mean and e is some noise. This causal approach leads to define a joint
distribution p(¢, z) over visible {¢} and hidden variables {2}, the corresponding distri-
bution p(¢) (similarity measure) for the observed data is obtained by marginalization:
p(t) = [p(t|z)p(x)dz, where p(t | z) defines the causal connection between the
observations {t} and the latent variables {x}, and it is associated to the noise distri-
bution as follows:

1 1
P(Hx):WeXI’{—T‘QH—#—W@”P}

and the corresponding similarity measure given the model:

1 1 T—1

P = g o { WS )

where ¥ = WW7T + ¢2I. The prior knowledge on latent variables is expressed
in p(z). This density function takes the form of a Gaussian distribution with zero
mean and identity covariance matrix: N(0, ). Therefore, it is said that the causes
are mutually independent in terms of a second order statistics. The main goal is
to find the parameters that maximize the joint observed data distribution i.e. the
best description under the specific generative model. After considering the temporal
model, the algorithm to estimate latent variables and parameters is introduced in a
unified framework for appearance representation and evolution.

6.3.2 Appearance Temporal Evolution Model

Given a suitable basis to describe appearance, temporal symmetry can be analyzed in
terms of this representation. An image ¢ corresponds to a point z in the latent space,
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S. On the other hand, equation (6.1) can be interpreted in terms of a generative
model, where an image description in latent space x,1 is obtained making to evolve
with the action GG, and a certain quantity 6,,, a previous one z,.
Symmetry learning is based on observations, more specifically, in a sequence of ordered
images. So, is feasible to consider that observations are obtained with a certain
additive noise. The generative equation takes the following form:

z(0) = Yz (0) +r (6.4)

where r is a f-independent noise process. According to the infinitessimal approxima-
tion ¢ ~ 1+ 060G, eq. (6.4) yields:

z(0) = (1+6G)z(0)+r
Az(0) = 0Gz(0)+r (6.5)
where Az(0) = z(0) — 2(0). For the isotropic noise model case r ~ N(0, 32I), the

probability distribution over the transformations Ax-space for a given image z € S
and step parameter 6 corresponds to:

P(Az | 2,0,G,B%) =

1 1
@rp7ya P T 252
The prior distribution over the latent variables 6 is assumed to be Gaussian with

unit variance, so 8 ~ N(0,T). Therefore, the corresponding similarity measure for
temporal transformations in latent space S is obtained by marginalization:

| Az — 0Gx |2}

P(Az | 2,G, %) = / P(Ax | 2,6,G, 3%)P(6)d6 —

7(270(1\1/@ exp{féAxchlAaz} (6.6)
where C = GxzTGT + 3%1. The similarity measure eq. (6.6) evaluates the likelihood
of a transformation Az between to points,(for a given x,, to a following one 1),
respect to a learned model {G, 3%}. These points {z,,r,.1} are a representation
of two images {t,,t,+1} for a certain instance of the appearance model {W, u, o?}.
Indeed, this probabilistic framework allows determining whether two consecutive im-
ages are in accordance with the learned dynamical model. This fact has an important
significance when it comes to assign some boundaries to a sequence of frames.

6.3.3 Maximum Likelihood Estimation

At this point, the problem is centered on parameter estimation, which, in practice,
will be given by data observations. This leads to consider the problem of incomplete
data. For this purpose, Dempster et al.(1977) [31] use the EM algorithm, where
each observation ¢, (image) is associated to an unobserved state s, = {x,,0,}, and
the main goal is to determine which component generates the observation. In this
sense, the unobserved states can be seen as missing data and therefore the union of
observations t, and s, is said to be complete data, y, = (t,,s,). In this way, for a
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given set of observations {t1,...,ty} the likelihood measure to be maximized is the
Complete-log-Likelihood, i.e.:

Ly, yn | Q) =log {p(ts, .., txss1,. .. sn | Q) (6.7)

where (2 represents the model parameters.

Although both parameters and latent variables are unobserved, the difference is that
latent variables are pressumed to be instantiated once for every observation, that
is there is a latent s, for each observation t,,. Furthermore, the noise model offers
smoothness, then, this approach differs from regression-based methods, in the way
that the goal is to estimate the data density, and leading to reduce the overfitting.
The following table shows the paramaters € that are involved in the model, and the
latent variables related to s,,:

Model Generative Mapping | Parameters, 2 | sy
App, Rep. tn =Wxn +pu+epn W, o2, 1 Tn
Time Sym, | Az, = 0,Gx, + 10 G, 3 0

Following the assumption that appearance representation depends only on data
observations, the ML estimation for the appearance parameters is given in a closed
form solution as it is developed in [15]:

W =U,(Ay—*1)2R; o*=— Y )

where U, are the first q eigenvectors of the data set covariance matrix, A, is a diagonal
matrix with the corresponding first ¢ eigenvalues (\;, V1 <4 < N) and R is an
arbitrary rotation matrix.

In order to estimate the appearance dynamics we utilize an EM algorithm, which
is detailed in the Appendix A. This is basically a two steps procedure: Fxpectation
and Mazximization of a likelihood function. The FExpectation step requires a third
operation, which in the latent variable model can be added to the pair of learning
and model selection; inference. This refers to estimation of value of latent variables
sp given known parameters €2 and observations t,,.

The introduced model shows a hierarchical structure between observed images
t, and latent variables x,,6,. First, images are obtained to build the appearance
representation, and secondly, taking avantage of a reduced appearance basis, data
evolution is estimated. Inference is this framework is a simple matter of the applica-
tion of Bayes’ rule:

1. Inferring latent variables related to apperance:

_ pla)p(t] 2.9

eIt =0T )
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2. Inferring latent variables related to temporal evolution, given appearance latent
variables inferred and their corresponding transformations computed:
p(@)p(Az | 0,2,9)
p(Az | z,Q)

p(9 ‘ I,AZL',Q) = (69)

Therefore, for each image ¢, the computation of its corresponding coordinates in
latent space x,, is given by means of the Mazimum a Posteriori (MAP) in eq.(6.8):

x = argmax,, p(z’ | t,Q) (6.10)

Once, images are expressed in latent space coordinates, the computation of the best
estimated transformation parameter 6, is also done through the MAP in eq.(6.9):

0 = argmax, p(0’ | z, Az, Q) (6.11)

Under gaussian assumptions for noise models and prior knowledges, the posterior the
posterior means < z |t > and < 6 | z, Ax > correspond to the MAP for each distri-
bution. In the appendix we show the explicit forms for these posterior probabilities,
as well as, an EM algorithm for the temporal parameters estimation is introduced.

6.4 Experimental Results

In this section, we exemplify the application of the introduced appearance evolution
model to the extraction of semantically meaningful image-like data structures. Two
types of experiments are developed in this section. First, a study of the invariance
subspaces derived from the estimation of the action G of the group is performed
for periodic motions. Second, an application to summarization of video sequences is
presented.

6.4.1 Capturing Local Behaviors through Global Representa-
tions

This first experiment has the purpose of studying the subspaces obtained from the
eigenvector decomposition of the infinitesimal generator G. To this end, a synthetic
sequences of images has been constructed. Figure 6.3 shows the temporal volume of
this sequence of images. Two types of different periodic motions are present in the
sequence. Their corresponding frequencies are significantly different.

Global Representation. The synthetic sequence consists of 100 images. Two white
squares over a black background have oscillatory motions with two different
frequencies. The aim of this experiment is to show how both movements can
be locally segmented in the frame of reference thanks to the invariant subspace
analysis. While a Principal Component Analysis of the images gives a set of
appearance eigenvectors that describe de modes of variations, no segmentation
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Figure 6.3: Temporal volume representation of the synthetic image sequence with
two oscillatory motions.

between the two types of motions is performed (see figure 6.4 (f)). They are
designed to rank variations in the set of images from low to higher frequencies.
In fact, no temporal correlation is taken into account when constructing a PCA
representation.

The PCA representation has been build using 4 Principal Components, that
cope with the 70% of the total energy. Of course, more than 4 PC could have
been selected. However, according to the previous analysis of the invariant
subspaces, the aim is to divide the invariant orbits into two groups. Figure 6.4
shows the projected orbits onto pairs of Principal components. All of them,
show that there is an inherent periodicity in the evolution of the trajectories.

Invariant Subspaces. Adding temporal correlation to this analysis, we can see that
two subspaces can describe the two different motions. This study has been per-
formed by running the presented EM algorithm for estimating the infinitesimal
generator G of the temporal evolution, the corresponding one-dimensional pa-
rameter for each image. The eigenvector decomposition of the matrix G gives
two invariant subspaces. The corresponding orbits are plotted in figure 6.5.
More specifically, figure 6.5 (b) shows many repetitions of the same trajectory,
while figure 6.5 (c) shows only one trace. This is not surprising since if we look
at the temporal volume in figure 6.3, we can notice that there is one horizontal
motion with a higher frequency than the vertical one, which just presents one
oscillation.

Local Behavior Description. The image representation (through back-projection)



6.4. Experimental Results 139

@  © (0

Figure 6.4: Plot (a) shows a projection onto the two first appearance eigenvectors,
(b) onto z2,xs,(c) onto z3,z1,(d) onto zs,z4, and (e) onto x4, x1. Figure (f) shows
the 4 eigenvectors obtained from PC Analysis.

(a) N @

Figure 6.5: Representation of the latent space coordinates in terms of the invariant
subspaces obtained from diagonalizing the action of the group of transformations G.
(a) shows the four corresponding back-projected eigendirections onto the image world.
They are grouped according to invariance. Two invariant subspaces of dimension 2
each one describe the orbits in (b) and (c).
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Figure 6.6: Representation of the temporal evolution of the one dimensional pa-
rameter 6 in (a), and its Fourier Transform power spectrum in (b). Clearly, two
frequencies are significantly noticeable.

of the the two sets of eigenvectors in GG, leads to a meaningful description of the
local behaviors of the two different motions in the frame of reference. In fact,
they can be seen as masks that locally segment the regions where one of the two
motions occurs. The image pair in the top of figure 6.5 (a) shows a segmentation
of the area where the faster horizontal motion happens. Analogously, the area
in the two images of the bottom of figure 6.5 (a) describe the slower vertical
motion.

This local segmentation has been performed through a suitable global represen-
tation that takes into account both temporal evolution and invariance at the
same time.

Extracting Information from 6. The estimation of the one-dimensional param-
eter of the evolution for image also gives a notion of the two periodicities.
Transforming the temporal evolution of 6(¢) into the Fourier power spectrum
representation, we can notice that two main frequencies are remarked. The ac-
curacy when determining frequencies by means of this method, or through the
imaginary parts of the eigenvalue analysis of the matrix G depends on the re-
construction error of the selected appearance representation. Nevertheless, this
technique can be used as an estimator of potential periodic motions in video se-
quences. This fact makes feasible an enrichment on automatic video annotation
systems. Chapter 8 shows another technique to discriminate periodic motions
based on a local representation of the pixel values variations.

6.4.2 Key-Frames Extraction

In this second block of experiments, we analyze two sequences: one focus on the
evolution of an action (fig. 6.7(a)), and the other one corresponding to a camera
operation, fig. 6.8(a). The estimation process is common for both cases, first it is
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Figure 6.7: (a) Original sequence of frames. Reconstructed sequence (b) with
70.45% of reconstruction quality using 2 principal components of appearance (e) and
(f) and a 2 x 2 G matrix whose eigenvectors correspond to the images (c) and (d).
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Figure 6.8: (a) Original sequence of frames.

VIDEO SUMMARIZATION THROUGH ICONIC DATA STRUCTURES

Reconstructed sequence (b) with

88.17% of reconstruction quality using 4 principal components of appearance (e) and
a 4 x 4 G matrix whose eigenvectors correspond to the images (c) and (d).
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Figure 6.9: (a) Time step 6, inferred values for each image of the sequence fig.
6.7(a). (b) Inferred 6,, values for the sequence fig. 6.8(a)
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necessary to build the appearance representation by means of the ML for PPCA.
Afterwards, utilizing the posterior probability eq. 6.8, the new coordinates for the
images are computed though MAP. We use these new appearance representation
to estimate the dynamical model by means of the introduced EM algorithm (see
appendix). Once G is estimated we compute the iconic representation, by means
of an eigenvector analysis the infinitesimal generator. These eigenvectors are back-
projected to the image space in order to have an expression of them as images.

The first sequence, fig. 6.7 (a), is represented by a 2-dimensional appearance
eigenspace with a 70.45% of reconstruction quality. The appearance eigenvectors rep-
resented as images are shown in fig. 6.7(e) and (f). These express the variations
between the mean or prototypical appearance of the object. However, such a proto-
type is not an appropriate representative sample, since the concept of "face” is not as
much perceptible as in figs. 6.7(c),(d). Performing the estimation of the dynamical
model {G, 3%}, we have the corresponding generator of the transformation os a 2 x 2
matrix whose modes correspond to the images fig.6.7 (c),(d). They are presented
like real images, however, they are not directly obtained from the sequence, i.e., like
selecting the first frame and last one. The significant issue here is that this temporal
information can be used to reconstruct the video sequence (fig. 6.7 (b)) by means of
eq. (6.5) and using just only the 2 X 2 matrix, the appearance basis and the time step
0, of the evolution, (see fig. 6.9(a)).

The purpose of this second one sequence (fig. 6.8) is to expose that the appearance
evolution model does afford to keep perceptually the camera operation in the new
iconic representation. Given that editors, authors and artist communicates some
specific intentions with certain camera operations, we notice that this information
remains in the summarized representation. This sequence of frames (fig. 6.8(a)) has
been represented in a 4-dimensional subspace with a 88.17 % quality of reconstruction.
The 4 eigenvectors of appearance fig. 6.8(e) do not give a semantically meaningful
idea of the images evolution, actually, we can see that they point out some zones
of the image where the variations, at different scales, are produced. The temporal
evolution was estimated by a 4 x 4 matrix, whose principal directions are represented
as images in fig. 6.8 (c¢) and (d). They correspond to 2 complex (and conjugates)
eigenvalues of G. So, using the theoretical background in LDS, we deduce that they
are grouped in two classes, forming 2 invariant spaces: two vectors in fig. 6.8(c)
and the other two in fig. 6.8(d). We can see what each one of them is expressing
by focussing in the sign’s letters of the images. The two first ones, fig. 6.8(c), are
centered on a slow frequency (in time) variation, the sign is clearly readable and some
blur only appears in the images’ boundaries. The 2 second ones fig. 6.8 (b) are more
focussed in high frequency time variations. We notice that the word ”SOM” appears
at separate different distances. The term frequency is applied here to the imaginary
part of the complex eigenvalues. Actually, the frequency of the eigenvectors in fig.
6.8(c) is wy = 0.36, and the frequency of the eigenvectors in fig. 6.8 (d) is wy = 0.61.
Therefore, we note that there is a direct relation between the imaginary values of
G-eigenvalues and movement variations in the iconic representations.

It deserves to be commented that this dynamical representation has the ability
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of reconstructing the sequence with a small number of parameters: figs. 6.7 (b) and
6.8(b). This fact allows the possibility of performing video preview with a low cost of
streaming, and it is very appropriate for low bandwidth communication systems (like
a modem at home). To this end, we need the eigenvectors that span the appearance
representation, the matrix G (2 x 2 in fig. 6.7 and 4 x 4 in fig. 6.8), the reduced
coordinate of the first image, and an 1-D array of scalar values that represents the time
step evolution from image to images. Thus, utilizing eq. (6.5) as a filtering process,
the whole sequence is reconstructed. Note that our model includes an estimation of
the time step between consecutive images (see figs. 6.9 (a),(b)), what differs from
dynamical models that assume a constant time step evolution.

6.5 Summary and Conclusions

As an alternative to standard key-frames selection, in this chapter we propose a
Bayesian framework for video summarization. We address the problem of character-
izing key-frames basing partitions on appearance visual information criterion and, at
the same time, conjugating semantic and temporal representations. This fact, not
only allows embedding in a more numerical tractable framework the video retrieval,
but also yields a new approach to extract underlying information from temporal evo-
lution of sequences. A suitable selection of these basic perceptual units allows the
transformation of a continuous temporal data structure into a discrete meaningful
one, where the intention is that the semantics remains preserved. The choice of an
appropriate representation for the data takes a significant relevance when it comes to
deal with symmetries, since these usually imply that the number of intrinsic degrees
of freedom in the data distribution is lower than the coordinates used to represent
it. Indeed, this means that the problem can be reduced to a lower dimensional one.
Therefore, using both topics; the decomposition into basic units and the change of
representation, makes that a complex problem is transformed into a manageable one.
This simplification of the estimation problem has to rely on a proper mechanism of
combination of those primitives (appearance eigenvectors) in order to give an optimal
description of the global complex model.

Appendix: EM algorithm for Maximum Likelihood
Estimation

In the Expectation-Maximization (EM) algorithm for symmetry estimation, we con-
sider the latent variables 6,, to be "missing”. If their value were known, the es-
timation of G would be straightforward from equation (6.5) by applying standard
least-squares techniques. This leads to consider a joint distribution over visible and
hidden variables, then the corresponding distribution for the observed data is ob-
tained by marginalisation. Thus the goal is to find the parameters that maximize the
joint observed data distribution i.e. the best description under a specific generative
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model. Assuming that we do not know for a given transformation Az, which value
of #,, generated it, the joint distribution can be calculated through the ezpectation of
the complete data log-likelihood.

From a Bayesian point of view, Maximum Likelihood estimation requires, in gen-
eral, a two step procedure:

1. Expectation of latent variables 8,, for a given observed Ax. Posterior expectation
given observed data for the complete log-likelihood is a way of computing an
aproximation of the predictive density.

2. Maximisation of complete log-likelihood from the model parameters G, o2. This
is equivalent to minimize the expectation of the loss function under that (ap-
proximated) predictive density.

Expectation The expected complete-data log likelihood is given by:
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where the sufficient statistics of the posterior distributions correspond to:

<On> = M 'zIG"Az, (6.12)
<02> = M 4 <b,><0,> (6.13)

with M = 0% + 2T GT G,

Maximization Differentiating equation (6.12) and setting the derivatives to zero,
G and ¢? are updated as:
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These equations are iterated until the algorithm converges with a certain degree of
tolerance.



Chapter 7

Online Bayesian Video
Summarization and Linking

In this chapter, an online Bayesian formulation is presented to detect and describe
the most significant key-frames and shot boundaries of a video sequence. Visual
information is encoded in terms of a reduced number of degrees of freedom in or-
der to provide robustness to noise, gradual transitions, flashes, camera motion and
illumination changes. We present an online algorithm where images are classified
according to their appearance contents -pixel values plus shape information- in order
to obtain a structured representation from sequential information. This structured
representation is presented on a grid where nodes correspond to the location of the
representative image for each cluster. Since the estimation process takes simulta-
neously into account clustering and nodes’ locations in the representation space,
key-frames are placed considering visual similarities among neighbors. This fact not
only provides a powerful tool for video navigation but also offers an organization for
posterior higher-level analysis such as identifying pieces of news, interviews, etc.

7.1 Introduction

ich Media and content management has generated an enormous interest in

video analysis within Computer Vision and Pattern Recognition communi-

ties. It offers a novel and exciting challenge for applying and developing new
techniques in the recognition/classification framework. The addition of time to visual
information analysis presents new constraints -a huge amount of information to be
dealt with- and specific demands (such as real-time analysis) on the formulation of
feasible and reliable techniques.

In this chapter, we focus on two important subjects in this area: video segmenta-
tion and summarization, which make feasible a quick intuition of the evolution, under

147
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a low streaming cost, of higher-level perceptual structures, such as stories, scenes or
pieces of news. Shot partitioning is considered as the extraction of the basic units for
video analysis. Usually, shot boundary detection has been analyzed through feature
based techniques, such as: pairwise pixel comparison [117], which are very sensitive
to noise, color or grayscale histogram comparison [95, 115], which fails in distinguish-
ing images with very different structures but similar color distributions, analysis of
compressed streams [2, 3], and local feature based techniques [116]. However, many
problems arise when it comes to dealing with noise, shape information, camera mo-
tion, illumination change, fades, and flashes. In these cases, specific problem-oriented
techniques are applied: camera compensation [117], illumination reduction [119]. This
sort of peculiarities are also treated by combining different measures [27]: dissolve,
cut and fade measures. On the other hand, appearance based methods [38] use a
representation where visual changes are encoded with a reduced number of degrees of
freedom, and which provide more flexibility to the system in order to tolerate camera
motions or illumination changes. However, the method presented in [38] requires load-
ing the whole sequence. Offline techniques are not practical when dealing with large
pieces of video. In this sense, online solutions, combined with certain robustness to
gradual transitions and a reasonable computational complexity, are rather preferable.

To this end, we present a novel algorithm that provides an online treatment of
video analysis plus the mentioned advantages of working under a Bayesian appearance-
based framework. We address the problems of key-frame extraction and shot parti-
tioning relying on a feature space where not only pixel value distributions (grayscale
or color) are encoded but also shape information is taken into account. The algorithm
online classifies the different shots of a video sequence and automatically extracts the
most significant key-frames. Often, due to postproduction work (in commercials,
movies, etc.), there are many sequences that contain the same shot in different time
positions, that make standard algorithms to produce repeated key-frames and forcing
posterior ad hoc merging/removing techniques in order to avoid unnecessary redun-
dancies. Given that the algorithm is embedded in a Bayesian formulation, questions
such as sufficient number of key-frames to represent a video sequences or avoiding
extra key-frame detection due to flashes, are automatically solved.

The problems of key-frame extraction and shot partitioning are treated in terms
of a probabilistic unsupervised learning approach. Each frame of a video sequence is
assumed to belong to a cluster of images that are related in terms of their appearance
contents, and, each cluster has a representative image that will be used for summa-
rization purposes, i.e., a key-frame. The algorithm’s process is controlled by a tuning
parameter whose range embraces appearance representation [97, 67, 106] (such as
PCA, FA or NNMF techniques) and hard clustering (competitive learning). The goal
of the learning is to identify the latent variables (weights) and the unknown mapping
parameters (key-frames). For this purpose, we present the estimation process in the
context of the Expectation-Maximization algorithm.

The outline of the chapter is as follows: first, we describe the basis of our ap-
proach in section 2. There, the model that connects a video sequence with a 2D
graph representation is presented. We provide an EM algorithm for estimating the
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parameters of the model in two versions: offline and online. The experimental results
analyze: (i) the effects of the tuning parameter that makes the algorithm embracing
techniques compressed representation of appearance and clustering techniques, (ii)
the effectiveness of dealing with prior information in order to automatically select the
number of necessary key-frames to represent a video sequence.

7.2 The Model: Bayesian Framework

In order to describe our model, we first define the latent space were observations
(images) are represented. We consider this latent space to be a grid of M nodes
represented by a set of vectors {ci,...,cp}. Each node represents a class of images
that are similar in terms of their appearance contents. Consider a set of N images
{y1,...,¥n~n} in a vector form read in lexicographic order, and each image represen-
tation (location) on the 2D grid (latent variables) as {x1,...,xy}. For each latent
variable x,, we like to know the contribution to its generation for each node c,, in the
grid. A measure that quantifies such a contribution can be expressed in terms of a
Bayesian framework by the posterior probability P(c,, | x,). The model will provide
the similarity measure that relates the ownership of an image under a specific class.
Consider each node ¢, has a representative image w,, that summarizes the images’
appearance contents that belong to the m-class. In this sense, we can consider each
image to be a weighed combination of the summarizing representative images wy,,
where the weights correspond to the posterior probabilities P(c,, | X, ).Therefore, we
can construct a model where images and latent variables (2D points on the grid) are
related by the following mapping;:

M
Yn = Z WPl | X,) + €, (7.1)

m=1

where e,, is gaussian independent identically distributed (idd) noise A/(0,0%I). Al-
though equation (7.1) has the form of well known linear decompositions, PCA or FA,
it is worth noting that the posterior probabilities P(c,, | x,). are restricted to be
non-negative and the sum to be the unity. In the following sections, we show that the
nature of these posterior probabilities determines whether the model can be used for
performing hard clustering (key-frame extraction and shot partitioning applications)
or a compressed representation of images (dimensionality reduction). The model has
two main issues: on one hand, the estimation of the representative images w,, and
the posterior probabilities P(c,, | X,,), and on the other, the inference for the images’
location in the latent space (grid).

Noise model

First, the noise model is expressed through a Gaussian distribution for the data:
N (yn—Wh,,,c?), where W is a matrix whose columns are the vectors w,, and h,, is an
array of the posterior probabilities for the image y,,: h, = ( P(c1 | X),...,P(cym | Xn)).
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A Bayesian treatment of this model is obtained by introducing a prior distribution
over the components {wy,...,wys}. The key point is to control the effective num-
ber of sufficient parameters (number of classes). This is achieved by introducing a
prior distribution P(W | «), where « is a M-dimensional vector of hyper-parameters
{a1,...,ap}. Each hyper-parameter a,, controls one of the cluster representative
vector w,,, by means of the following distribution: P(W | ) = H%zl./\/ (Wi, )
Each hyper-parameter o, corresponds to an inverse variance. For large values of «
the corresponding w,, will tend to be small, and therefore, such component will be
neglected. These hyper-parameters behave as switchers, activating or deactivating
each component w,,. Typically, the selection for the distribution of «,, corresponds
to Laplace distributions or Gamma distributions due to their properties on ” pruning”.
We select a gamma distribution for the hyper-parameters, since it offers a tractable

analytical treatment for the estimation process: P(a) = Hﬁ;l (o, | a,b), where

he (am)aflefbam
I(a)

I, | a,b) = (7.2)

We select a = 1072 and b = 1073, which are the magnitude orders typically selected
in this framework.

Modeling the latent space

The distribution on the grid is modeled as a mixture of unimodal distributions. For
instance, one might select a mixture of Gaussians, however, the algorithm that we
present can be easily modified with another type of density functions (laplacians,
gamma, etc.). The likelihood measure for a single point in the latent space is given
by: P(xy) = E%Zl P(cm)P(%n | ¢m), where we select the conditional distributions
to have the form of Gaussian distributions: P(x,, | ¢;,) = N (2, — €, 72).

7.2.1 Parameter Estimation

In this section, we present the framework where the parameters of this model are
estimated. The estimation process has to take into account two issues at the same
time: the noise model and the density distribution in the latent space. In the estima-
tion procedure, there are two main steps communicated by a feedback process. Given
a set of images, the cluster representative images w,, and the posterior probability
vectors are computed in order to infer the location of each image on the grid. This is
done through posterior expectation of the nodes, i.e.:

M M
< Xy >= Z cmP(em | Xn) = Z cmht (7.3)
m=1 m=1

These expected locations on the grid are used as data for estimating the grid’s den-
sity distribution parameters, i.e., the variances 72,, which play an important role as

scale factors in the clusters distribution topography. In addition to this, the posterior
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probabilities are then recomputed using the Bayes’ rule. Since these probabilities con-
tribute to the re-estimation of the components w,,, now, the estimation of the noise
model parameters takes into account the topographical distribution of the clusters
in the latent space.The following table summarizes the parameters to be estimated
according to these two steps:

Model Parameters
Wi Cluster representative images
. h, Posterior Probabilities
Noise by . .
o Noise variance
m Switchers
Latent Space < Xp > Expected. location
Tm Node variance

We embed the estimation process in the framework of the Expectation-Maximization
(EM) algorithm, which is useful to find maximum likelihood parameter estimates in
problems where some variables are unobserved. In our case, posterior probabilities
and posterior location points are unobserved. The M step maximizes w.r.t. the model
parameters (W, 02, ym, Trn) and the E step maximizes it w.r.t. the distribution over
the unobserved variables (h,,, < x,, >). Typically, the algorithm consists of a set of
fixed-point type equations that are iterated until convergence. In the following sec-
tion, we show the procedure to estimate both sets of parameters and latent variables.

EM Algorithm

The maximum likelihood estimation for the noise model parameters can be equiva-
lently performed in terms of maximizing the logarithm of the joint distribution:

1 N 1 M d
Y n h"2__ m m2 =1 m_l I'(am 4
£ 2 ; B% Wh, | 3 mEZI {a [ W |~ + 5 loga ogN'(« |a,b)} (7.4)

Given an initial guess for the parameters and unobserved variables iterate:

e Expectation: Find h,, that maximizes (7.4). Given the constraints for h,
-non-negativity and normalization- we need to apply a exponentiated gradient
method [55] to ensure that the new estimates are always positive. This is done by
introducing an auxiliary function as in [31]. In order to derive this update rule,
we make use of an auxiliary function G(h,,ht,) such that G(h,,h,) = L(h,,)
and G(h,,ht,) < L(h,,) for all ht,,. For this auxiliary function, it can be seen
that F is nondecreasing after the update h’*! = arg maxy,, G(h,,h®,). So the
update rule is given by making dG (h,,, h))/dh,, = 0 on each step. An auxiliary
function for L(h,,) is constructed as,

N M
1 I
G(h,, hi) = -3 ST lya = Whi™ P =03 it log hf“ (7.5)
n=1 k=1 kn
which leads to the following update rule:
N = i gy o2 ez Ve~ W)L, ) (7.6)

S M hinexp {5% W/ (yn — Why)], }
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Note that there has been introduced a scale parameter v € [0, c0), which con-
trols the degree of change from the old estimate to the new one. This parameter
plays an important role, since its value determines whether the algorithm is per-
forming vector coding (clustering when v — oo) or appearance encoding when
v — 0 (such as PCA, FA techniques). After estimating the posterior probabili-
ties h,,, the estimation of the images positions on the grid in done by means of
eq. (7.3).

e Maximization: Given the inference of the positions on the grid x,, we can

compute the node variances: 7, = ﬁ Zﬁle Rom | Xn — Cm |2. And therefore,
the posterior probabilities under the grid model making use of the Bayes’ rule.

We define the new computed posterior probabilities as vectors ¢,, = [P(c |
Xpn),---sCp | Xp)]. These are used for computing the cluster representative
images:
N N -1
W= {Z yn%] {Z P + diag(aa, ..., anr) (7.7)
n=1 n=1
and the noise variance: 02 = 5 Zgzl | yn — W, |?, where D is the images’
dimension (y,,). Finally, the switchers are computed as follows:
D
a+ 2
Oy = ——=— 7.8

Incremental Learning

The manner the algorithm has been formulated implies that all data is necessary
in the M step. When dealing with large data sets, this sort of batch algorithms
may incur in computational memory problems. It could be more useful updating
the parameters incrementally using data points one at a time. To this end, it is
shown in [69] that, under some specific conditions, an EM algorithm can be performed
incrementally converging to a local maximum as well. First condition is that the joint
probability distribution over the observed data factorizes, and, another condition is
that the sufficient statistics can be expressed as a sum over the contribution of each
single sufficient statistics’ point. In our case, the problem is consistent with these
conditions. Therefore the update rules for each new point are:

Expectation: Compute the posterior probabilities as in eq.(7.5) an (7.3). This step
does not change.

Maximization:

1 new new 1
ﬁhN+1,m | X3 — e | _ﬁhN+1,m | XN41— Cm |?
For a given A = [22;1 ynga’n} and B = {22[:1 goncp’n] set:

Tm = Ty 4

A"V — A4 |:yN+1§0717</'e$1 - YN+180/N+1]
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B"" = B+ |pNi1PNTL — PN 1PN
Wwnew = AW [BY 4 digg(ay, ..., an)] 7t
and
[0,2}new:0,2+i |YN 1 — newgonew |2 _L |YN 1—W§0N 1 |2

Finally, the switchers v, are computed as in eq.(7.8). These two steps are iterated
for each new image y 1.

7.3 Experiments

In this section, we analyze the introduced algorithm. We specially emphasize two
facts: the effects of introducing switchers and the consequences of selecting a specific
value for the tuning parameter v. In the first case, we obtain from the switchers
the necessary number of classes to represent a video sequence. With regard to the
selection of the tuning parameter, we show how the algorithm embraces vector coding
(clustering) and appearance learning encoding.

7.3.1 Features of the tuning parameter

The aim of this experiment is to show the effects of selecting a specific value for the
tuning parameter. For this purpose, we chose the MNIST[39] data set of handwritten
digits. In this case, we select 10 w,,, components. Figure 7.1 shows two sets of images:
left one corresponds to perform the learning process using a relatively high tuning
parameter v = 3.5, and figure 7.1(b) is the result of using a low tuning parameter
v = 1. Notice that, in the first case and according to equation 7.5, for each sample
yn the posterior probabilities h,, are forced to be close to zero except one which
corresponds to the biggest one and its value is assigned to be close to the unity. This
fact forces the learning process to perform hard clustering. On the other hand, when
the tuning parameter is set to v = 1 the learning process is finding a compressed
representation for the observed data through a sparse basis. Finally, the extreme case
of v = 0 makes all the posterior probabilities to have the same value, which means
that all the basis w,, components will be the same.

7.3.2 Applications to Video Analysis

The purpose of this experiment is twofold, we address the problem of characterizing
key-frames basing partitions on appearance visual information criterion, and in addi-
tion to this, we show the use of the switchers that provide a measure for deciding how
many components (key-frames) are necessary for a given video sequence. To this end,
we chose an interview of 20 minutes (30000 frames), where there are mainly three
camera shots. Note that a priori we are not assumed to know how many shots will be
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g & 2 3

-

(a) (b)
v=23.5 v=1

Figure 7.1: Basis components w,, resulting of running our algorithm on the MNIST data
set. (a) Hard clustering corresponds to perform the learning process using a relatively high
tuning parameter v = 3.5 and (b) is the result of using a low tuning parameter v = 1.

on the interview. Therefore, we selected 5 possible classes. Since we are focused on
clustering we selected a relatively high value for the tuning parameter v = 3.5. Figure
7.2 shows the results of the algorithm’s performance under these conditions. First,
the resulting key frames are shown in fig. 7.2(a), where one of them corresponds to
a meaningless image. The switcher value corresponding this particular ”key-frame”
is the highest one (figure 7.2(b)); therefore as mentioned in section 2.2.1 it can be
neglected. In this sense, we describe this interview in terms of four key-frames that
corresponds to four different camera shots (fig. 7.2(a)). Adding time as a third
dimension to the grid, we can have in figure 7.2(c) notion of the evolution of the
sequence in terms of linking in time the four clusters. For visualization purposes we
have skimmed the total contents of sample images in this last figure 7.2(c). It took
1 hour and 24 minutes to do the computation in MATLAB; however, we believe that
the same algorithm under C++ will speed up the process at least in a factor of 3,
providing a real time solution for video indexing and annotation. In figure 7.3, we
analyze our algorithm when it comes to dealing with professionally produced mate-
rial such as commercials. The one! we analyze contains flashes, illumination changes,
and fast camera movements. Performing pixelwise comparison between consecutive
frames flashes, many images are detected as key-frames because of rapid camera or
objects movements, flashes and illumination changes. This makes the resulting sto-
ryboard to be redundant in these specific types of scenes. Adding flexibility to the
system by means of codifying appearance in terms of a few degrees of freedom, we can
detect representative images and determine their corresponding relevance (bottom of

fig 7.3(a)).

TAll  material -videos and images- can be found at the following URL
http://www.cvc.uab.es/ xevi/videos/
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Figure 7.2: (a) Cluster means, where key-frame selection can consist of picking up the
closest image to each of them.(b) Switchers. (c) Adding time to the grid space.

Figure 7.3: (a) Cluster means extracted from a commercial using our algorithm and using
pixelwise comparison (b). Note that in (a) key-frames are presented in this case by criteria
of key-frames’ relevance. The figure is read in lexicographic order.
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7.4 Conclusions

As an alternative to standard feature-based key-frames selection, in this chapter we
propose a Bayesian framework for video summarization. We address the problem of
characterizing key-frames basing partitions on appearance visual information crite-
rion. This fact, not only allows embedding in a more numerical tractable framework
the video retrieval, but also yields a new approach to extract underlying information
from temporal evolution of sequences. A suitable selection of these basic perceptual
units allows the transformation of a continuous temporal data structure into a discrete
meaningful one, where the intention is that the semantics remains preserved.



Chapter 8

Analyzing Periodic Motions in
Video Sequences

In this chapter, we present a new technique for separating different types of periodic
motions in a video sequence. We consider different motions those that have different
periodic patterns with one or many fundamental frequencies. We select the tempo-
ral Fourier Transform for each pixel to be the representation space for a sequence
of images. The classification is performed using Non-Negative Matrix Factorization
(NNMF) over the power spectra data set. The chapter we present can be applied
on a wide range of applications for video sequences analysis, such as: background
subtraction on non-static backgrounds framework, object segmentation and classifi-
cation. We point out the fact that no registration technique is applied in the method
that we introduce. Nevertheless, this method can be used as a cooperative tool for
the existing techniques based on camera motion models (motion segmentation, layer
classification, tracking of moving objects, etc).

8.1 Introduction

of Computer Vision. Many biological reasons support the idea of dealing with

this specific issue. Periodic motion detection is a strong cue for object and ac-
tion recognition in human motion perception [37, 51]. Actually, studies on recognizing
moving light displays show the ability of human perception for recognizing biological
motion [37, 51]. Even when dealing with very low resolution image sequences, humans
are capable of recognizing periodic movements [28].

The aim of finding periodicities in image sequences goes back to the beginnings

As it has been pointed out in [92, 64, 79], periodicity is striking in that it can be
detected without taking into account the structure of objects in a scene (rigid and non-
rigid objects are accounted for), and, at the same time, techniques for periodic motion

157
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detection, segmentation and classification can assist in many applications requiring
object and activity recognition and representation [63, 62, 70, 22].

Recent analyses that categorize the existing methods for periodic motion recogni-
tion and segmentation can be found in [28, 47], and can be summarized into: Fourier
based methods [79, 64, 28], Point correspondences based methods [92], Linear Dynamic
models methods [22], fitting spatio-temporal surfaces [70], and Flow-based methods
[78, 62]. Many of them use spatio-temporal alignment, background subtraction and
tracking techniques for targeting periodic patterns. The work we present in this chap-
ter is certainly compatible with these techniques, even though, for the purpose of this
chapter, they are not the main point of discussion.

8.1.1 Contribution

We present a novel technique to deal with a new and interesting problem, which can
be stated as follows: How many different types of periodic movements are in a specific
scene? Is it possible segmenting different objects from their motion when: a) there
are occlusions in the scene across time and b) the same object has disconnected parts?
Both questions have an answer when studying the global behavior of a sequence that
contains different objects moving with different periodic movements. The algorithm
we propose yields a manner for detecting in each frame : i) which pixels correspond
to a specific object? and ii) which are the fundamental frequencies that contribute to
its motion? The referenced works were about detecting periodicities and segmenting
a particular region where periodic movements occur, however no classification for
different periodic movements in the same scene was proposed.

Sequences of images with periodic motions are characterized by having some of
their pixels with a certain pattern of repetition on their values (gray, color) across
time. If the temporal length of the sequence is larger than the period of the object’s
motion, there are pixels that show a pattern of transitions with a certain frequency.
The temporal Fourier representation of each pixel location (i-row, j-column) evolution
across time is used for the analysis of this specific periodic pattern. However, there
is a certain amount of variability among temporal Fourier spectra due to two main
factors: a) the different periodic movements that occur in the scene and b) the object’s
shape (even more variability when dealing with non-rigid objects).

The technique we present can be used when dealing simultaneously with moving
objects plus moving backgrounds such as: waterfalls, waves, smoke, etc. Typically,
this sort of backgrounds are considered video textures. The main problem, in this case,
is when approaching them with either background subtraction or spatio-temporal
alignment techniques, since the collection of pixels belonging to the background do
not correspond to a pure camera transformation and they are not static in their pixel
value (gray, color). We treat the background with no particular distinction among
the rest of pixels.
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Figure 8.1: One-dimensional sequence of images and temporal signal for a specific
pixel location

8.1.2 Outline

First, we build a model for one-dimensional images in order to analyze the different
contributions of shape, motion and frame-rate to the Fourier power spectra. In section
3, we present a brief study on the reliability of periodic motion classification and power
spectrum factorization. A extended version of this analysis can be found in [73]. The
segmentation of multiple periodic moving objects in video sequences is based on the
formulation presented in section 4. The algorithm is shown in section 5. Section 6
presents a set of experiments in order to show the algorithm’s performance. Finally,
the conclusions are presented in section 7.

8.2 Periodic Motion Analysis

In this section, we justify how the fundamental frequency can be extracted from a set
of observed images. To this end, we show an example that deals with one dimensional
images. It can be directly extended to 2-D images.

Let I(x) be an one dimensional image with d pixels, where z indicates the pixel
position. The following example shows an oscillating spot of length L and amplitude
A across time. Therefore, the observation is a set of N images with the spot at
different positions (see fig.8.1). The frequency of oscillation is wy = 27 /Ty, and we
consider those cases where Ty < N. For each pixel position, there is a 1-D periodic

signal which consists of a pattern of bars with amplitude s and intra-bar separation
a.

The size of the object L and the frequency of oscillation determine the behavior
of s and a at each height x location. The oscilation model corresponds to the domain
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defined by the two following boundary signals:
fi(¢) = Acos(wot) + g (8.1)

fa(t) = Acos(wot)—g (8.2)

We can see that the length of the object for image in the sequence is f1(t) — f2(t) =
L, with L > 0. For a specific pixel position = whithin the oscillation amplitude
interval, there is a 1-D signal that corresponds to the intersection of x with each of the

two boundaries (egs. (8.1) and (8.2)): z = Acos(wot1) + £ and z = Acos(wot1) — .
Therefore, x intersects at t; and t2 yielding the bar width s =| 2 — t; |:

L _L
cos™! <I—;2)cos_1 <9:A2> (8.3)

The intra-bar separation a can be writtem in terms of (x, A, L, wp):

L L
27 — 2cos™! <36A2>—cos1 (:):A2>' (8.4)

For each pixel location x, there is a temporal periodic signal with (a, s, Ty = i—’;) Let
Q. (t) be defined as a step function defined as follows:

1
S(w7 A, L7w0) =
wo

a(z) = —
wo

if
0.(t) = { (1) eise 0<t<s(x) (8.5)
The temporal signal for a specific pixel location x can be defined as follows:
F(H) =3 Quw)(t =nTo) + ) Qua) (t — nTo — a(x)) (8.6)

Assuming a frame-rate sufficiently fast to capture the periodicity, the power spectrum
at x can be written as follows:

S(w,z) = 162 0w — won)ﬁUn(‘uoa(x))Un(wos(x)) (8.7)

where U,,(z) = [14cos(nz)]? has been defined for notation simplicity. From equations

(8.4) and (8.3) we note that U, (woa(z)) and U, (wps(z)) do not actually depend on
the fundamental frequency wgy. This implies that the power spectrum consist of the
contribution of two terms of different nature: i) one corresponding to the sampling
effect due to the fundamental frequency wp, and ii) another term corresponding to
the contribution of the pixel location x and the object’s shape parameters:

S(w,z) = 8w — won)Hn(A, L,z) (8.8)

Moreover, the discretization effect due to the number of frames in the sequence makes
equation (8.8) to be re-written approximately [73] as follows:

N—-1 To N
Sw,a)m Y Sw—k) > ow-— o Hn (2) (8.9)
k=0 n=0 0

This is just an approximation of a sum of exponentials, however, for our range
analysis we will further show that is very useful since it allows to study the influence
of H,(x) on the spectra obtained from the observations. It is worth to note that when
Ty approaches to N, i.e., the ratio % — 1, no information about the fundamental
frequency can be extracted from the observations. The corresponding spectra miss
the common property that allows to identify them as the result of the same motion
origin.
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8.3 Variance

The purpose of this section is to study the possibility of classifying different spectra
belonging to different types of periodic motions. Consider a sequence of two moving
objects with fundamental frequencies w; and ws. The resulting spectra for each pixel
position are:

z

T

N
Si(w,z) = o(w—k) S(w— —n)H}(x)
' k=0 nX—:O Ty
N-1
So(w,z) = Z(Swf—n H2( )

k

The aim of this example is to analyze the variance due to the pixel position in
comparison with the average difference between the two types of spectra. Let us call
intra-class difference to the variance due to the pixel position (and object’s shape),
and inter-class difference to the average difference between the two spectra.

A symmetrical measure that express the inter/intra-class ratio variance can be

the geometrical mean of the ratios: d(S1,S2)/ < AS; > and d(S1,S2)/ < AS2 >, which is
expressed in terms of the periods 77 and T3 as follows [73]:

Tt Ty
Rg,,s, =4 (1 + T—{;) (1 + —) (8.10)
2

The bigger is the ratio between the two periods Ty /T> the bigger is the variance
Rs,.s,, and therefore, the most distinguishable are the two types of motion. For
instance, consider T} being twice T3, therefore, Rg, s, ~ 16 times between intra-class
and inter-class. This yields to study the possibility of applying statistical techniques
to segment the different types of periodic movements that occur in an image sequence.

8.4 Segmenting Different Periodic Motions

The fact that two different motions are sampled different, the distance between them
is much bigger, than the differences due to shape and pixel location of different spectra
originated by the same periodic motion as it is shown in equation (8.10). Therefore,
the fact of factoring the power spectra does not block the possibility of segmenting
different types of periodic motions:
Ty
S(w,z) =Y Wn(w)Hn(z) ~ W(w)H(x) (8.11)
n=1
This approximation is the central point for analyzing the segmentation of periodic
motions. Since the contribution of shape has been minimized through this approxi-
mation, we can see that the method can deal with non rigid objects (no assumption
based on rigidity has been made).

An similar procedure can be performed for modelling movements with multiple
periods corresponding to the same object. In this case, factorization is assumed to
follow the approximation in equation (8.11) as well, where the discrete sampling effect
will affect to different frequencies in the spectra. The goal is to distinguish different
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types of motion, and it is ensured by the upper bounds described before. When dealing
with multiple motions, we assume that the spectrum providing from a specific pixel
location z will contain a linear superposition of the generative individual spectra. If
a sequence of images, contains more than one moving object, it is expected that at
different time values a pixel location will have information about some of them. This
fact includes occlusions among different objects. Of course, the definition of object
here embraces both types rigid and non-rigid, with means that its definition is based
on motion particularly.

For a model that assumes different periodic moving objects, the idea is that the
power spectrum at each pixel location x factorizes as follows:

q
2) =3 Wi(w) Ay () (8.12)

k=1
where ¢ different types of movements have been assumed. Further, we embed this
model into a Bayesian framework in order to select from data the number of possible
different types of motion automatically. In order to analyze the linear superposition
assumption in the spectra, we refer to the linear property of the Fourier transform, and
the fact the interferences when computing the power spectra are taken into account
in the variance analysis (intra and inter class).

The parameter estimation has to take into account the fact that S(w,x),W;(w)
and Hy(x) are non negative. To this end, we base our method on the technique
presented in [60]. The error function to minimize takes into account both the re-
construction error and a prior function over Hy(x) in order to automatically control
the effective number of sufficient parameters (number of possible moving objects ¢).
Therefore, a set of hyper-parameters {aq, ..., a4} is introduced in order to behave as
switchers; activating or deactivating the components Hy(x). For large values of ay

the corresponding component will tend to be small, and therefore, such component
will be neglected.

q
Z Hk +ZakZHk ) (8,13)

The update rules that take into account non-negativity are:

Ay(@) = Ag(a)! {w} (8.14)
where
=) Wi(w i Wi (w)H; (z) + o Z S Hi(x)t (8.15)
with the unity constrz:int: - -
Hy(x)tH! — % (8.16)
Wi(w) T = W) =g 2y S(w, ) Hy(x) (8.17)

1 Wiw) 22, Hi(x)H (2)
The computation for the noise variance o2 and the model selectors oy, can be per-
formed as follows:
q 2

2 _ Vlew 33 S, ) Z o (w) H (2 (8.18)
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and
Va
>, Hi(x)

where V,, and V,, are the number of pixel locations and frequencies respectively. The
idea, here, was to show the manner the factors are estimated avoiding masking the
procedure with extra mathematical formalisms.

8.5 Algorithm and Examples

Two sequences of images are used in order to show the performance of the algorithm.
The first one is a synthetic generated sequence with the purpose of studying the
manner the algorithm deals with occlusions. Three moving objects are in the scene:
two of them evolving according to a translational motion, and a third one according
to a zoom operation. The three moving objects have different frequencies. Figure
8.3 shows 25 frames of a 100 frames sequence - in 1 out of 4 order-. Optical flow-
based techniques are often used to estimate the motion of objects in image sequences.
The main weakness of those techniques is their reliance on texture. In this specific
sequence, we selected the objects to have no texture. Flow-based techniques, here, can
only rely on the objects’ edges since the gradient is zero almost everywhere. Moreover,
this sequence contains occlusions between two objects. This is an important point
to be taken into account, since a global approach is necessary to distinguish the
different motions. Local approaches, here, fail when trying to distinguish different
objects, since they will offer many interpretations, such as: ”just one object which
is stretching”, instead of "two objects crossing one in front of the other”. A global
approach means, here, the fact that all the frames in the sequence are considered
in order to estimate motion and segment objects. A proper study of the different
trajectories across time yields a reliable manner of labelling the different pixels in the
scene according to the different objects that are present in the sequence.

A second sequence consists of natural images with two main periodic motions: a
moving face with lower frequency than a moving hand. In this case, occlusion is also
a notable factor to be concerned when tackling this problem with local approaches.
Moreover, in this sequence, there is a third issue to be analyzed: "non-rigid objects”.
We can consider the hand to be a non-rigid object, or, more properly, an articulated
object - for the purpose it does not matter -. The fact is that, techniques based on
parametric motion estimation lack of enough flexibility to deal with the segmentation
of this moving hand (see fig. 8.2). Parametric techniques are either too restrictive or
not enough general to be applied in a variety of situations. The technique we present
is able, instead, to deal with non-rigid objects with the same approach applied in the
first sequence.

In both sequences, few first compute the time Fourier transform for each pixel
location x, and therefore, their corresponding power spectra. After, this first step, its
necessary to assign an initial guess to the number of different periodic motions, which
are supposed to be in the scene. It is recommendable to assume that there are many
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a5 = 1FE4

Figure 8.2: Top rows: Some frames (one out of five) of the face sequence. Bottom
row: Components indicating the contribution of each type of periodic movement to
each pixel location x. A large value of «y indicates negligible component.

motions in the scene, since the Bayesian approach of this algorithm will explain how
many true different motions are in the scene. For the synthetic sequence we chose 5
different motions as initial guess. In the other one we select 4 as initial guess. Having
the power spectra for each sequence, we run the estimation process described in the
previous section. After convergence, the hyper parameters oy will explain in each
case the number of sufficient different motions to be considered as shown in figures
8.3 and 8.2.

The algorithm provides a ”location mask” Hy(z) for each different detected mo-
tion. Since for each pixel location Hy(z) is normalized to the unity -eq. (8.16)- with
respect to the motion model components k, the Hy,(z) values indicate the contribution
in terms of probabilities of each single segmented motion in each pixel location. This
will allow labeling the different regions in the image frame in terms of the motions
that occurred across the sequence. The algorithm also provides the power spectra
Wi (w) for each different detected movement. Using the components separately, we
can generate synthetic video sequences with the different segmented moving objects
[73]. This segmentation is performed in space and time at the same time.

8.6 Conclusions

We have presented a technique that classifies the different periodic motions that can be
present in a video sequence. We have firstly built a model in order to show the different
effects that contribute to the temporal Fourier spectra, such as: shape, motion and
frame-rate. Moreover, we have shown a reliability analysis that justifies the power
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spectra factorization, which is the key point for a spectral classification of the different
pixels in an image sequence. This analysis permits dealing with occlusions, non-rigid
objects and quasi-periodic moving backgrounds such as video textures (waterfalls,
smoke, sea, waves etc.).
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o] = 0.1 Qo = 0.09 a3 = 0.1 Qg = 0.08 a5 = 1E3

Figure 8.3: Top rows: Some frames (one out of four) of the synthetic sequence. Bot-
tom row: Components indicating the contribution of each type of periodic movement
to each pixel location z. A large value of ayj indicates negligible component.



Chapter 9

Concluding Remarks and Future
Work

We conclude the thesis with some comments about our general approach, a discussion
of the contributions of the thesis and a suggestion for future work.

9.1 Conclusions

The contributions of this thesis consist in a set of publications of new algorithms ap-
plied to two different areas in Computer Vision: i) video analysis and summarization,
and ii) 3D range data. Both areas have been approached through the Latent Variables
framework, where similar protocols for representing data have been employed.

Probabilistic Approach. The applications introduced in this thesis are based on
a probabilistic formulation in order to model noise and including the knowledge of the
domain in terms of a priori information through prior distributions. In addition to
this, a standard methodology for estimating the parameters of the model is carried
out thanks to a probabilistic formulation of the presented problems by means of EM
algorithm.

Intrinsic Degrees of Freedom, Invariance and Symmetries. All the presented
problems have in common the way how these three concepts are combined playing a
fundamental role in the latent variable framework. From a 3D cylindrical geometry
problem, where intuition on symmetries arises significantly straightforward, to video
summarization problems, the same formulation has been applied for modelling the
underlying phenomena from observations. The connection between Lie’s group theory,
the structural equation and the internal symmetries present in the observed data has
been also pointed out.
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Local and Global Information. The way the different levels of information can
be combined from a set of observations relies on the feature selection process. The
degree of optimality and reliability of the potential solutions for a given problem
mainly depend on this combination of information. Moreover, from the presented
applications, we can conclude that the feature selection process is guided by the
constraints of each specific problem, such as non-rigidity, spatio-temporal smoothness,
continuity, etc...

Prediction. The process that reduces dimensionality tanking into account te inter-
nal symmetries of a problem, provides a manner of dealing with missing data and it
makes possible predicting new observations.

The discussed ideas (global and local information, mixtures of linear models and
representation) are exemplified through different applications, which have been col-
lected into the following topics: Dimensionality Reduction and Video Analysis and
Summarization.

9.1.1 Dimensionality Reduction

This first part begins with an explanation of the different types of dimensionality
reduction. It goes from applications based on simple linear models to problems that
require a representation through non-linear models. More specifically, these latter
problems are tackled by means of Mixture Models and the Divide-and-Conquer idea.

As a first step to introduce the potential applications of latent variable models
in Computer Vision, this part starts with one section dedicated to medical image
analysis using PCA under a probabilistic approach, which permits dealing with a
measure of similarity for detecting vessel structures in angiographies.

Detecting elongated structures using statistical snakes.

A priori global information on shape (deformable models) is combined with local
information in the image framework. In this case, the algorithm learns the gray level
profile of a vessel in the perpendicular direction to its elongated structure. Thanks
to the likelihood measure provided by the generative model, it is possible building a
likelihood map that indicates which pixels are potential parts of a vessel structure.
This map is used as a potential field for a deformable snake model in order to track
the ridge of a vessel. The challenge offered by this sort of images lies in the significant
level of impulsive noise due to x-rays. In addition to this, local variation of brightness
and contrast make the detection problem a tough task. This chapter can be seen as
an example of the combination of global and local information, in both pixel vicinity
and distribution senses. The concept of basic units as relevant information extraction
is also pointed out.
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3D Range Data

In order to approximate the idea of mixture models to our 3-dimensional intuition,
one section is dedicated to the analysis of 3D range data and its applications to ar-
chaeology pot reconstruction. The motivation here is to avoid the standard local
triangle-based techniques, since neighboring-based operations are highly expensive in
terms of computational cost. In fact, local approaches are either based on computa-
tions that require a previous data ordering -triangular meshes- [61, 49, 36] or boundary
following-like algorithms [74]. Techniques based on local computations -such as par-
tial differential equations- suffer from extreme sensitiveness to noise. We propose new
methods that are based on global computations, and, which : i) is fast in very large
data sets, #i) is robust to noise, and iii) does not need data to be organized.

1. Reconstruction of 3D axially symmetric surfaces from partial data.

Given a 3D data set which represents a partial surface patch of a larger axi-
ally symmetric object, we attempt to estimate the axis of symmetry and the
associated profile curve. Prior assumptions on the object’s shape, constrain
the presented model in terms of global information. It is assumed that data
has been generated through the evolution of a profile curve around an axis of
symmetry. The noise model is the result of considering a model that locally
approximates the surface through cylinders, which are globally constrained by
the axis of symmetry, while, at the same time, data has been corrupted during
the scanning process.

2. Finding breaking curves in 3D surfaces.

Particularly, the chapter dedicated to finding breaking curves in 3D open sur-
faces a new algorithm for Mixture Modelling, which is initialization indepen-
dent. The manner it is formulated avoids implicitly ill-conditioning problems
without being forced to add ad hoc numerical treatments. Moreover, the num-
ber of mixture components is online automatically determined from data,
i.e., the criteria for deciding how many planes are sufficient when approximating
a surface is developed in terms of the noise level in the observed data. Of course,
the introduced techniques can be applied to higher dimensional data sets.

9.1.2 Video Analysis and Summarization

The addition of time to visual information analysis presents new constraints -a huge
amount of information to be dealt with and specific demands (such as real-time anal-
ysis) on the formulation of feasible and reliable techniques.

The applications introduced in this thesis are focussed on dealing with: i) a much
larger amount of data (sometimes batch algorithms may not be appropriate), ii)
searches in a continuous media, iii) the extraction of higher level structures such as
scenes, stories and pieces of news, and, iv) making feasible a quick intuition of the
contents of a video under low streaming cost.
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Concerning the video summarization framework, two main approaches are consid-
ered in this part: key-frame selection and video mosaicing.

Video Mosaicing

Algorithms for image mosaicing consist of two main steps: registration, i.e. estimat-
ing the transformation that occurred across consecutive frames in the sequence, and
mosaic construction, which implies utilizing the previously estimated transformations
in conjunction with the images to be summarized. These two steps are intrinsically
related. A good performance of the resulting final mosaic is strongly dependent on
the variety of techniques, which are applied in both steps.

In our combination of global-local information approach, this subject is signifi-
cantly appropriate. In this sense, space and time continuity of the different motion
layers are a strong cue. Two contributions are presented in this area:

1. An appearance-based method for video registration.

We frame the multiple-image registration in a two-step iterative algorithm,
where one step takes a global representation for the image data set, and the
other one refers to locally spatial distributed information. We have address
the problem of characterizing the different types of motions that occur across a
sequence based on a visual appearance information criterion and, at the same
time, conjugating local and global representations. Linear subspace constraints
have been based on the assumption of constancy in the appearance subspace.
One of the main contributions of the appearance subspace encoding is that the
appropriate scale in each problem is captured from the images themselves. Im-
age spatio-temporal derivatives are computed by coupling linear combinations of
the PC basis. The choice of an appropriate representation for the data becomes
significant when dealing with image transformations, since these usually imply
that the number of intrinsic degrees of freedom in the data distribution is lower
than the coordinates used to represent it. This fact, not only allows embedding
the video registration in a more numerical tractable framework, but also yields
a new approach to extracting underlying information from temporal evolution
of sequences. In this case, the noise model connects the global coordinates in
the subspace representation and the parametric optical flow estimates.

2. A polynomial fiber description of motion for video mosaicing.

We present a new technique based on the fact that each pixel in the frame of
reference produces a trajectory in the mosaic absolute coordinate system. The
model that we present describes the different layer evolutions in a sequence of
images uses the results of a multi-frame optical flow estimation. Clustering is
based on the fact that similar trajectories will correspond to the same sort of
motion (and camera operation). Thus, we introduce a description of these paths
in terms of polynomial fibers, and a probabilistic model is developed in order
to rely on a measure of similarity as well as to have a classification mechanism
which extracts the possible different classes of motions.
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Key-Frame Selection

This thesis presents two contributions related to key-frame selection and online piece-
wise video partitioning and hyper linking;:

1. An EM algorithm for video summarization through iconic image-like
data structures. Our purpose is to present a compact and perceptually mean-
ingful representation that preserves the subjective approach, i.e. the semantics,
given by actions and camera operations in the evolution of a video sequence.
The model to extract this new set of iconic representative image -like data struc-
tures is based on an application of Linear Dynamical System and Lie’s group
theories, which are our support to define temporal symmetries and invariance.
In this framework, the temporal information is encoded in an infinitesimal gen-
erator matrix, which defines different types of behaviors in the evolution of an
image sequence. We use this distinct sort of contributions to give, in addition,
a grouping inside the summarized representation.

2. Online Bayesian video summarization and linking. As an alternative
to standard feature-based key-frames selection, in this chapter we propose a
Bayesian framework for video summarization. We address the problem of char-
acterizing key-frames basing partitions on appearance visual information cri-
terion. This fact, not only allows embedding in a more numerical tractable
framework the video retrieval, but also yields a new approach to extract un-
derlying information from temporal evolution of sequences. We present a novel
algorithm that provides an online treatment of video analysis plus the advan-
tages of working under a Bayesian appearance-based framework. We address
the problems of key-frame extraction and shot partitioning relying on a fea-
ture space where not only pixel value distributions (gray-scale or color) are
encoded but also shape information is taken into account. The algorithm on-
line classifies the different shots of a video sequence and automatically extracts
the most significant key-frames. Often, due to postproduction work (in com-
mercials, movies, etc.), there are many sequences that contain the same shot
in different time positions, that make standard algorithms to produce repeated
key-frames and forcing posterior ad hoc merging/removing techniques in order
to avoid unnecessary redundancies. Given that the algorithm is embedded in a
Bayesian formulation, questions such as sufficient number of key-frames to rep-
resent a video sequences or avoiding extra key-frame detection due to flashes,
are automatically solved.

Periodic Motion Detection

Apart from affine/projective transformations there is another relevant type of motion;
periodic motion, which is often suitable for segmenting objects in video sequences.
Periodic motion detection is a strong cue for object and action recognition in human
motion perception. In this case the contribution is:
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1. Analyzing periodic motions in video sequences.

We present a novel technique to deal with a new and interesting problem, which
can be stated as follows: How many different types of periodic movements
are in a specific scene? Is it possible segmenting different objects from their
motion when: a) there are occlusions in the scene across time and b) the same
object has disconnected parts? Both questions have an answer when studying
the global behavior of a sequence that contains different objects moving with
different periodic movements. The algorithm we propose yields a manner for
detecting in each frame : i) which pixels correspond to a specific object? and
ii) which are the fundamental frequencies that contribute to its motion? The
referenced works were about detecting periodicities and segmenting a particular
region where periodic movements occur, however no classification for different
periodic movements in the same scene was proposed.

Concerning the Generative Modelling methodology, several interesting issues are
studied in each contribution; from the use of constraints on the model parameters
and the use of lower bound functions, to the construction of a noise model that
suitably connects different scales of information extracted from data. Moreover, the
use of Mixtures of Linear Models is also pointed out. In some cases, constraints
on the model are directly related to some assumptions on shape. In other cases,
continuity /constancy hypotheses (in space, brightness or time, etc) are employed as
prior information from external knowledge sources. This is possible thanks to the
probabilistic framework that embeds this formulation.

9.2 Future Work

The lines of research of this thesis are directed to the fusion of multiple data sources,
with straightforward applications within the MPEG 4 framework: 3D Television, web
3D, and the corresponding 3D databases.

To this end, the role of extracting descriptors of 3D pieces according to their
symmetries is considered significantly relevant in this thesis, since compression and
a posterior fast retrieval are possible. It is a matter of future work dealing with
the different types of features that can be extracted from the Divide-and-Conquer
algorithm presented in chapter 3 in order to characterize and classify 3D fragments
from unorganized data sets. The main advantage is that the algorithm captures the
complexity of the distribution of points in terms of curvatures, it is very fast, robust to
noise and independent from initialization. For this reason, the research on algorithm
that extracts a signature from the distribution of curvatures and symmetries is a very
relevant issue for posterior storage and retrieval in 3D databases.

Following the same direction, the coefficients obtained for describing the polyno-
mial fibers in chapter 5 can provide 3D information from a video sequence. This
connection between the polynomial parameters and the 3D scene would give manner
of simultaneously segmenting and locating in the 3D world moving objects due to
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parallax.

The research on multi-parametric Lie groups for video and 3D range data is a
significant issue as well. The idea of extending the one-parameter group of continuous
transformations to a mixture model would permit analyzing symmetries at a local level
while capturing global non-linear behaviors of the transformations. Compression of
complex 3D pieces and multiple motions in video sequences would be carried out
through a local symmetry analysis.

Regarding symmetries, another interesting line of research is studying Latent
Spaces for periodic observations. This is desirable because modelling a periodic ob-
served variable with a non-periodic latent variable results in a discontinuous dimen-
sionality reduction mapping. The relation of the symmetry analysis through Lie’s
group theory and multiple-periodic motion would provide a efficient representation
for compressing video textures with quasi-periodic motions plus camera operations
and moving objects.

The ideas introduced in chapter 7 can be extended through a deeper analysis
of the resulting graphs in the latent space. Detecting periodicities and closed sub-
graphs would automatically determine the structure of a video sequence for posterior
classification purposes, i.e., pieces of news, sport events, etc.
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Appendix A

Proof of Convergence of Variational
EM Algorithm

This appendix shows the use of the log-concavity requirement for the log-likelihood
in the EM algorithm. Assuming that the log-likelihood p(D|6) of a data set D has at
least one finite maximum value, there is only a remaining question:

F(Qk+1, 0k+1)ZF(Qk+1, ek) > f(Qk, ok)‘?
in other words, is F(Q**!,0) monotonically increasing at each step? To answer

this question, log-concavity requirement on the log-likelihood log p(D|#) must be em-
ployed.

1. F(QFL 0F) > F(QF,0F): Assume that Q¥ (x) ~ Q¥ (x) + G(x)
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The problem is focussed on computing the second functional derivative of F(Q, 6%):
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1
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Therefore F(QFT1, 0F) > F(QF,6F).
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Since log P(x, D | 6) is concave :

2
0% log P(x,D | 6) <0
062 -

and Q(z) >0
Therefore:
]:(Qk-ﬁ-l’ 0k+1)2}—(Qk+17 97@) > f(Qk, Qk)

It can be shown that for log P(x, D | 6) corresponding to quadratic forms the conver-
gence goes as an exponential decay function of time (number of iterations).
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Publications

The contribution of this thesis consists in a set of publications of new algorithms ap-
plied to two different areas in Computer Vision: i) video analysis and summarization,
and ii) 3D range data. Both areas have been approached through the Latent Variable
framework, where similar protocols for representing data have been employed.

As a first step to introduce the potential applications of latent variable models in
Computer Vision, the following publications introduce and exploit the use of PCA
and mixtures of PCAs.

e X.Orriols. Models Locals Lineals per a 1’Analisi d’Imatges. CVC Tech-
nical Report 81, 1999

e X. Orriols and X. Binefa. Local Linear Models for Image Analysis. 2on
Seminari de Treball en Automatica, Robotica i Percepcio. Octubre,1999.

e Ricardo Toledo, Xavier Orriols, Petia Radeva, Xavier Binefa, Jordi Vitria, Juan
J. Villanueva. Eigensnakes for Vessel Segmentation in Angiography.
Proc. Intl. Conf. on Pattern Recognition (ICPR’2000). Barcelona, Spain,
September 2000.

e X. Orriols, R. Toledo, X. Binefa, P. Radeva, J. Vitria, J.J. Villanueva. Prob-
abilistic Saliency Approach for Elongated Structure Detection using
Deformable Models. Proc. Intl. Conf. on Pattern Recognition (ICPR’2000).
Barcelona, Spain

e R. Toledo, X. Orriols, X. Binefa, P. Radeva, J. Vitria, J. Villanueva. Tracking
Elongated Structures using Statistical Snakes. In Computer Vision and
Pattern Recognition, 2000

Novel algorithms and applications of latent variable models to archaeology pot recon-
struction through 3D range data can be found:
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e X.Orriols,A. Willis, X. Binefa, D. Cooper. Bayesian Estimation of Axial
Symmetries from Partial Data, a Generative Model Approach. CVC
Tech. Rep. 49 November 2000.

e X.Orriols, X. Binefa. Finding Breaking Curves in 3D Surfaces. Ist Iberian
Conference on Pattern Recognition and Image Analysis (IbPRIA2003), June
2003, Mallorca, Spain

e Andrew Willis , Xavier Orriols , Senem Velipasalar, David B. Cooper, Xavier
Binefa. Extracting Axially Symmetric Geometry From Limited 3D
Range Data. LEMS Technical Report 192, December 2000.

e David B. Cooper, Andrew Willis, Stuart Andrews, Jill Baker, Yan Cao, Dongjin
Han, Kongbin Kang, Weixin Kong, Frederic F. Leymarie, Xavier Orriols, Eileen
L. Vote, Martha S. Joukowsky, Benjamin B. Kimia, David H. Laidlaw, David
Mumford, Senem Velipasalar. Assembling Virtual Pots from 3D Mea-
surements of their Fragments. Virtual Reality, Archaeology and Cultural
Heritage Symposium, VAST 2001, Athens, Greece.

e David B. Cooper, Andrew Willis, Stuart Andrews, Jill Baker, Yan Cao, Dongjin
Han, Kongbin Kang, Weixin Kong, Frederic F. Leymarie, Xavier Orriols, Eileen
L. Vote, Martha S. Joukowsky, Benjamin B. Kimia, David H. Laidlaw, David
Mumford, Senem Velipasalar. Bayesian Virtual Pot-Assembly from Frag-
ments as Problems in Perceptual-Grouping and Geometric-Learning.
Proc. Intl. Conf. on Pattern Recognition (ICPR’2002). Québec City, Canada.

e Andrew Willis, Xavier Orriols, David B. Cooper. Accurately Estimating
Sherd 3D Surface Geometry with Application to Pot Reconstruc-
tion. CVPR Workshop on applications of Computer Vision in Archaeology
(ACVA’08), Wisconsin, USA, June 2003

Concerning the video analysis and summarization framework, two main approaches
are considered in this part: key-frame selection and video mosaicing.

e X.Orriols, Ll. Barceld, X. Binefa. Polynomial Fiber Description of Mo-
tion for Video Mosaicing. Int. Conf on Image Processing (ICIP 2001).
Thessalonica, 2001

e X. Orriols, X. Binefa. An EM Algorithm for Video Summarization,
Generative Model Approach. Int. Conference on Computer Vision (ICCV
2001), Vancouver, 2001

e X.Orriols, L. Barceld, X. Binefa. An Appearance-Based Method for
Parametric Video Registration. Premiéres Rencontres des Sciences et Tech-
nologies de l'Information (ASTI 2001). Paris, April 2001

e X.Orriols, X. Binefa. Online Bayesian Video Summarization and Link-
ing. International Conference on Image and Video Retrieval (CIVR 2002) July
18-19, 2002, The Brunei Gallery, SOAS, Russell Square, London, UK
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e X.Orriols, X. Binefa. Analyzing Periodic Motion Classification. I1st
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA2003),
June 2003, Mallorca, Spain

e X.Orriols, X. Binefa. Classifying Periodic Motions in Video Sequences.

International Conference on Image Processing 2003 (ICIP2003), September 2003,
Barcelona, Spain
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