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Figure 3.9: Two points of view of a range open surface in (a) and (b)where the num-
ber of points is 26436. Breaking curve points detected in (c) and (d) corresponding
views. Computational cost analysis in (e). ε-Histogram in (f).
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Figure 3.10: Two points of view of a range open surface in (a) and (b)where the
number of points is 18495. Breaking curve points detected in (c) and (d) correspond-
ing views. Computational cost analysis in (e). ε-Histogram in (f).
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Figure 3.11: Two points of view of a range open surface in (a) and (b)where the
number of points is 12072. Breaking curve points detected in (c) and (d) correspond-
ing views. Computational cost analysis in (e). ε-Histogram in (f). 12072
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Chapter 4

Appearance Constrained Brightness
Constancy

Many sequences of images present two different sorts of motions; one is related to
camera operations (panning, tilting, zooming, etc...), and the other type corresponds
to movements of certain objects in the scene. In this chapter, we focus on motions
that can be described as stochastic stationary processes. In nature, the latter type
appear in a huge variety of scenes: the motion of the leaves on a tree when the
wind blows, waterfalls, flames, etc... For these types of sequences, we will show the
two main problems that arise when dealing with camera motion estimation: i) local
spatio-temporal measurements are not sufficient, and ii) a certain degree of rank
among the different types of pixel value variations across a sequence is necessary.
We present an appearance based framework which involves both global and local
information extracted from the images themselves. We show how a proper encoding
for the images’ appearance allows constraining the Brightness Constancy equation
in order to minimize the stochastic motion contributions when estimating camera
transformations.

4.1 Introduction

Asequence of images provides a mixture of different perceptual levels of vi-
sual motion information. Either the selection or rejection of a certain level of
motion perception, as well as a particular combination of them, are usually

guided by some specific purpose, such as camera motion estimation. These levels are
not only related to spatial scales of observation but also to temporal scales. Two main
levels of motion perception can be distinguished as local or global spatio-temporal in-
formation. For instance, consider a scene where a camera moving around the top of
a tree on a windy day is capturing the motion of the leaves on the tree. One might

101
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take a look at a small region of the camera’s field of view (e.g. just around one leaf)
without being able to explain the camera transformation across the sequence. On the
other hand, one might just consider a pair of frames of the sequences, and there will
also be no chance of estimating the camera motion, since there is an entanglement of
different types and levels of motion; the wind making the leaves move randomly at a
certain spatio-temporal scale while the camera is also moving at the same time. Both
situations correspond to a local analysis of the motion perception: the first being in
space and the second being in time. These can be interpreted as a spatio-temporal
extension of the aperture problem.
The idea of exploring sequences with stationary stochastic motions has lead to

a new fruitful and challenging area in Computer Vision: video textures. Modelling,
recognition and synthesis for video textures have been implemented from different
approaches [99, 32, 89, 35]. However, as Fitzgibbon [35] recently noticed, a significant
problem arises in non-rigid stochastic scenes when it comes to dealing with camera
motions -translations, rotations, etc. Image sequences subject to this condition are
challenging, and moreover, complicated when approaching this problem by means of
standard registration techniques. The key point is that stochastic variations can be
present in a large number of pixels in each image. Techniques based on 2D paramet-
ric alignment between pairs of frames [107, 5, 87, 10, 53] do not capture temporal
scale across the sequence evolution, therefore, non-rigidity will appear as a significant
amount of noise causing disastrous effects on the final registration. Robust estimation
techniques [17, 18, 5] are reliable when treating noise and moving objects as outly-
ers, however, the ratio of pixels affected by the stochastic process can be over the
breakdown point. Note that some global information across time is necessary in order
to be capable of decomposing the sequence into these two components (camera and
stochastic) in a reliable way. This is not possible with just a pair of frames in order to
determine the decomposition of their relative transformation into a camera operation
and a stochastic motion. Two main problems arise when it comes to dealing with
camera operation estimation and stationary stochastic processes at the same time:

• Local spatio-temporal measurements are not sufficient.

• We need to re-consider the idea of image time derivative, since image difference
does not give a degree of significance among the different types of pixel value
variations. In other words, what is the relevant information that contributes to
estimate a camera transformation?

The purpose of this chapter is to point out the need for a combination of both
local and global analyzes when dealing with camera motion estimation in sequences
that combine stochastic stationary motions and camera operations. To this end, we
present a computationally effective technique that uses the fact that images sharing
the same plane geometry are also sharing appearance information under a certain
camera transformation. A constraint in terms of the images’ appearance is given
to the optical flow constraint equation, -also known as the Brightness Constancy
assumption. Previously, the authors of [19] introduced the notion of subspace con-
stancy assumption, where visual prior information is exploited in order to build a
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views+affine transformation model for object recognition. Their starting point was
that the training set had to be carefully selected with the aim of capturing just ap-
pearance variabilities; that is to say, the training set was assumed to be absent of
camera (or motion) transformations. Once the learning step was performed, the test
process was based on the computation of the affine parameters and the subspace co-
efficients that map the region in the focus of attention onto the closest learned image.
However, in this chapter, the topic that we deal with has as input data the images of
a sequence that include camera (or motion) transformations. Our framework is based
on the assumption that there is a time scale τ such that stochastic motions contribute
less to the total appearance variation than camera transformations. In other words,
when having a global view of the sequence, we are able to have a notion of the camera
motion. Such a global view involves taking enough frames (τ < number of frames)
in order to capture the time scale. Our results reveal that in this type of sequence,
what is really important is the selection of the number of frames (time scale τ) to
be analyzed rather than the amount of fluctuations in a single pair of images. From
a computational point of view, it is worth noting that the optimization steps are re-
duced to linear least squares problems, and the solution turns out to be in a closed
form for each iteration. Moreover, the framework we present allows the introduction
of a Bayesian formulation for model selection.
First, the chapter presents the motivation for a proper encoding of image se-

quences. Subsequently, the formulation of the Brightness Constancy (BC) assumption
in terms of the appearance representation is developed yielding an appearance con-
strained BC equation for motion estimation. Later, the formulation of a parametric
model for camera transformation is presented in order to show the connection between
the appearance constrained BC and parametric models. Finally, the experiments have
the purpose of exposing the contributions of our approach such as: capturing a proper
scale from images themselves, camera motion estimation and reliability analysis for
the estimates.

4.2 Appearance Framework

4.2.1 Image Representation

A technique is necessary that distinguishes both types of variations and which, there-
fore, takes into account their significance in terms of amplitudes and temporal scales
of observation. We can see that the problem is focused mainly on finding a proper
encoding for the underlying appearance of images. To address the problem of ap-
pearance representation, the authors in [106, 77, 68] proposed Principal Component
Analysis as a redundancy reduction technique during the codification process of the
principal features. The idea is to express the images of a sequence in terms of an
energy ordered basis, where the first components contain the information relative to
camera transformation (as in fig. 4.1). Thus, the contribution of fluctuations -due to
stochastic processes- is minimum during the registration process. This idea is based
on the following condition:
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Image 1 Image 2 Image 3 Image 4 Image 5

Eigen 1 Eigen 2 Eigen 3 Eigen 4 Eigen 5

Figure 4.1: Decomposition of 5 images (top row) into an orthogonal eigen basis
(bottom row) which has been ordered in terms of decreasing variance (left to right).

We deal with sequences of images that have a certain time scale τ such that their
maximum appearance variation among them is due to camera transformations.

Figure 4.1 shows five images of a sequence. Even though most of the pixels in each
image correspond to regions where the motion is according to a stationary stochastic
process (due to the wind during the capture process), the eigen-decomposition shows
that the first components tell us about the camera motion. These components are
obtained by taking the Singular Value Decomposition for this set of images. Repre-
senting these images in terms of a few number of these Principal Components (PC),
we drastically reduce the complexity added by the stochastic motion of the leaves.
This new representation is performed as a linear projection P onto the subspace of
appearance that the selected set of images share [106, 77, 68]. Considering an image
I(�x) as an intensity function for a certain domain D of pixel locations �x ∈ D, this lin-
ear projection P generates a response at each pixel location �x as a linear combination
of a reduced number q of principal components {W1(�x), . . . ,Wq(�x)}:

P : I(�x)→ IP(�x) =
q∑
k=1

Wk(�x)ak (4.1)

where ak are the coefficients that combine the components Wk(�x) in order to obtain
the reconstructed intensity IP(�x) at the pixel location �x. By virtue of orthogonality
for the PC, each coefficient ak is computed as follows:

ak =
∑
#x∈D

Wk(�x)I(�x)

We use this topographic �x-dependent notation in order to be consistent with the
formulation for the camera transformation estimation. Choosing the number of PC q
is an issue considered in the experiments that we present; it has to be small enough to
avoid the stochastic fluctuations, and, big enough to capture accurately the camera
motion estimation.
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4.2.2 Projected Brightness Constancy Assumption

Having a suitable image representation that allows ranking the different types of vari-
ations produced in a sequence, we are able to constrain the Brightness Constancy
Assumption in terms of appearance.
Consider two images I ′(�x) and I(�x) which are related by some geometrical dis-

placement1 F (differentiable map) between pixel positions:

F : �x→ �x′ = �x+ �u(�x)

Therefore, the intensity values of these two images are related through:

I ′(�x) = I(�x′)

Applying the displacement F between pixel locations, the latter equation is written
as:

I ′(�x) = I(�x+ �u(�x)) (4.2)

When the transformation F can be assumed infinitesimal, equation (4.2) can be writ-
ten in a first-order approximation form, which corresponds applying a brightness
constancy assumption to the images transformation:

I(�x+ �u(�x)) ≈ I(�x) + �u(�x).∇I(�x) (4.3)

Here, the aim is to give a constraint to the equation (4.3) for a given representation of
the images’ appearance. To this end, we need to project the images to the subspace
where stochastic fluctuations can be neglected, i.e., P :Image → Projection,

I ′(�x) → I ′P(�x) =
q∑
k=1

Wk(�x)bk

I(�x) → IP(�x) =
q∑
k=1

Wk(�x)ak

Combining equations (4.2) and (4.3):

q∑
k=1

Wk(�x)bk =
q∑
k=1

Wk(�x)ak + �u(�x).∇
q∑
k=1

Wk(�x)ak

and defining the projected temporal derivative and projected gradient as follows:

∂I(�x)
∂t

⇒ δI(�x)
δt

≡
q∑
k=1

Wk(�x)(bk − ak)

∇I(�x)⇒ ∇̃I(�x) ≡
q∑
k=1

ak∇Wk(�x)

1Also known as diffeomorphism.
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therefore, we obtain the appearance subspace constrained brightness constancy equa-
tion:

δI(�x)
δt

− �u(�x).∇̃I(�x) = 0 (4.4)

We can see that these new re-definitions of temporal derivative and gradient operator
act according to the information encoded in each principal component Wk(�x). One
would prefer to capture just one specific type of variation that has occurred across
the sequence evolution. Our results show that camera motion information can be
obtained with a good degree of reliability when a suitable number of frames (time
scale) and an appropriate number of principal components have been selected.

4.2.3 Parametric Model for Affine Camera Motion Estimation

Direct computations from image spatio-temporal derivatives have been used exten-
sively for parametric optical flow estimation. The aim of this section is to show briefly
the connection between these new suitably re-defined spatio-temporal derivatives and
a parametric model for the infinitesimal displacements. This allows the chapter to be
self-contained. We use the affine model as an example to estimate the motion param-
eters in terms of appearance subspace constraints. However, more complex models2

can easily be used following the same method; this depends on the requirements of
the scenes that are analyzed.
For affine transformations, the instantaneous motion �u(�x) as a function of pixel

location �x = (x, y) is written as:

�u(�x) =
[
1 x y 0 0 0
0 0 0 1 x y

]


θ1
θ2
θ3
θ4
θ5
θ6

 (4.5)

To simplify, let us name the location matrix as M(�x) and the parameter vector as �θ,
so that the previous equation can be written in a compact form: �u(�x) =M(�x)�θ. Now,
we apply this model to equation (4.4), and the resulting least-squares minimization
functional is:

E(�θ) =
∑
#x

| δI(�x)
δt

− ∇̃I(�x)TM(�x)�θ |2 (4.6)

The minimum value of E(�θ) w.r.t. �θ is found setting derivatives to zero ∂E(#θ)

∂#θ
= 0 and

solving:
A�θ = �b

where,

A ≡
[∑
#x

M(�x)T ∇̃I(�x)∇̃I(�x)TM(�x)
]
|6×6 (4.7)

2But not more difficult.
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and,

�b ≡
[∑
#x

M(�x)T ∇̃I(�x)δI(�x)
δt

]
|6×1

The solution for �θ is found by inverting A: �θ = A−1�b. The matrix A and the vector
�b can be written in terms of these components as follows:

A =
q∑
i=1

q∑
j=1

aiaj

[∑
#x

M(�x)T∇Wi(�x)∇Wj(�x)TM(�x)

]

�b =
q∑
i=1

q∑
j=1

ai(bj − aj)

[∑
#x

M(�x)TWj(�x)∇Wi(�x)

]

From these two equations, we realize that there are two weighting issues contributing
to the parameter estimation:

• The contribution of each pixel to the error measurement is not only local, since
local spatial and temporal derivatives are computed from the principal compo-
nents Wk(�x), which encode global information. Thus, a suitable selection of the
number of principal components will minimize the contribution of stationary
stochastic motions in the sequence.

• The coefficients (ai, aj , bj) also determine the weight for each projected image
in each principal component. Each coefficient ai tells us about a distance mea-
surement -in its associated principal component direction- between a projected
image and the subspace origin. Therefore, the larger the distance, the more it
contributes to the information encoded in that specific component to the param-
eter estimation. On the other hand, note that the projected temporal derivative
is computed by the difference between the components of each projected image,
i.e., (bj−aj). This means that even though images might differ due to stochastic
motions, we are able to minimize those kind of contributions.

4.3 Experimental Results

In this section, we describe our approach to estimating affine camera motions in se-
quences with stationary stochastic motions. Our aim is to show the contribution of
a compact representation of appearance to image registration. We first analyze the
behavior of the projected spatio-temporal derivatives as well as their contribution to
the estimation of camera transformations. The selection of a time scale (number
of frames) and a specific number of principal components are also issues to be con-
sidered here. In addition, computational aspects are also commented: (i) the fact
that a coarse-to-fine framework is not necessary, since the proper scale is captured
by the representation in terms of Principal Components; (ii) the decomposition of
this non-linear registration problem into two linear sub-problems (PCA + parameter
estimation).
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| I1 − I2 | | I2 − I3 | | I3 − I4 | | I4 − I5 |

| P(I1 − I2) | | P(I2 − I3) | | P(I3 − I4) | | P(I4 − I5) |

Figure 4.2: Image absolute difference between consecutive images: top row between
pixel values, bottom row between coefficients in PC subspace.

4.3.1 Projected Spatio-Temporal Derivatives

Our first experiment has the purpose of showing the contribution of a compact rep-
resentation to camera transformation estimation. We consider here a scene where
stationary stochastic motions are significantly present in each image transformation.
With regard to figure 4.1, we can see the decomposition of five consecutive frames
into an orthogonal basis that have been obtained by the PCA of the original images.
Each component has an associated scalar value (variance) that gives us a notion of the
significance w.r.t. the other components when reconstructing each image. The first
component indicates the direction of maximum variance for the images distribution
in the subspace representation, -w.r.t. the origin of the images representation space-
the second component to the second maximum variance direction and so forth. We
can see that the last components concentrate locally these variations. Consider the
following; we select the two first PC for building the appearance subspace. Figure
4.2 shows the consequences of this selection; whereas a pixel-based image difference
(top row) takes into account any pixel value variation, there is no distinction among
the different levels of information that are encoded in the evolution of the sequence.
However, a suitable representation of this sequence in terms of PC minimizes the con-
tribution of higher frequency spatio-temporal terms (bottom row), since these local
details were not taken into account in the two first Principal Components.

In this sense, the projected spatial derivatives are also an interesting issue. In
this framework, they are built by linearly combining the appearance gradient basis
∇Wi(�x) (figure 4.3). We can see the comparison between the standard gradient -in
this case we have taken a [1,−1] like operator- and the one performed by means of



4.3. Experimental Results 109

∂xW1(�x) ∂yW1(�x) ∂xW2(�x) ∂yW2(�x)

Figure 4.3: Gradient basis for projected spatial derivatives: (two first columns) first
component, (two second columns) second component.

∇xI1(�x) P(∇xI1(�x)) Residue x ∇yI1(�x) P(∇yI1(�x)) Residue y

Figure 4.4: Gradient Vs projected gradient.

the PC basis in figure 4.4. Note that the ”standard” gradient information relies on
the operator that has been selected (gaussian scale-dependent filter, etc). However,
in our framework, the point is that global information (PC encoding) is capturing the
appropriate scale from the images themselves. This fact has a significant implication
when implementing a registration algorithm, since no coarse-to-fine techniques are
necessary.

4.3.2 Registration of scenes with camera + stochastic motions

We now combine a description of the algorithm and the results for a sequence of
50 frames and another of 30. We have selected an interval of 5 frames as a time
scale, and 2 PC for the appearance representation for both sequences. Given that the
translation dominates the camera transformation, a significant amount of occlusions
in the border would appear if we took a larger interval; we need an interval that is big
enough to capture the time scale for a camera motion, and small enough to avoid oc-
clusion effects. Of course, this selection is sequence dependent, and, a more accurate
approach should take into account that the partition of the sequence into intervals
should be non-uniform. This is considered in the next section where we perform an
analysis in terms of the reliability of the parameter estimates.
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For each interval, the process is based on the following steps:

1. Find the Principal Components Wi(�x) of the images through SVD of the
images as in [106, 77, 68].

2. Estimate the transformation parameters �θ solving the least squares min-
imization of equation (4.6) taking into account that the spatio-temporal
derivatives that are involved are now the projected spatio-temporal deriva-
tives.

3. Update �θ and register the images using the new estimates �θ and repeat
step 1 using this new set of images as input.

Repeat these three step until a certain degree of tolerance of the error function (4.6)
(usually 5-10 iterations). Note that this error measurement can not be zero for the
type of sequences that we are considering in this chapter (due to stochastic motions).
It is worth emphasizing that steps 1 and 2 of this process are performed by solving
systems of linear equations with closed form solutions.
This process has to be performed for each interval. The resulting estimates are

parameters of the relative transformations between consecutive images, however it is
easy to build the global transformation parameters for a specific absolute coordinate
system by means of the composition rule for affine matrices. The results3 for this
sequence are shown in figures 4.5 and 5.4.

Figure 4.5: Two registered frames of the sequence. (See video 1
:”video1original.mpeg” and ”registvideo1.avi”).

4.3.3 Reliability Analysis for the Estimates

As previously mentioned, the selection of the number of frames, the number of PC for
the appearance subspace and the number of iterations all play an important role in
the final result. An unsuitable selection of them may contribute to an error propaga-
tion when composing the transformation parameters in order to frame the registered

3See attached videos.
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Figure 4.6: Two registered frames of the sequence. (See video 2
:”video2original.mpeg” and ”registvideo2.avi”).

images in an absolute coordinate system. To overcome this problem, we propose two
methods. The first involves performing the computation using a sliding interval, i.e.
(1, 2, 3, 4, 5) → (2, 3, 4, 5, 6) → (3, 4, 5, 6, 7) . . ., and take only the transformation pa-
rameters from the first to the second in each window , i.e. �θ12, �θ23, �θ34, . . ., instead of
partitioning the sequence into intervals. This technique obviously has a higher com-
putational cost and in most cases is not necessary. The second method is developed
in this section in order to demonstrate the contributions of a proper representation
for the images of a sequence.

Influence of the Control Parameters

The approach of this analysis is based on the application of a Bayesian model com-
parison technique. The goal is to compute the uncertainty of the parameters under
a specific model. The models that we are comparing differ in the selection of control
parameters: number of frames and number of PC. It’s easy to show [34] that this
uncertainty is obtained from the Hessian of a specific error function. In our case, the
error function is obtained from equation (4.6), and its Hessian corresponds to equation
(4.7). The inverse of the determinant of this Hessian matrix measures how uncertain

δ�θ the maximum likelihood ML estimate �̂θ is. First, we have taken 10 frames from
the sequence that is related to the images in figure 4.5. The aim here is to compute
what the most reliable selection of the number of PC for a fixed number of frames is.
To this end, we have computed the ML estimates �̂θ at different numbers of PC: from
1 to 10 PC. In figure 4.7(a) we show the uncertainty δ�θ for each ML estimate �θ as a
function of the number of PC that have been taken into account in the registration
algorithm. For this sequence, a small number of PC (less than 4) does not capture all
the relevant information from the images, therefore, the uncertainty is significantly
high. On the other hand, when the number of PC tends towards the number of im-
ages (q → 10) the uncertainty of the ML estimates increases, since within this limit
there is no difference between the brightness constancy assumption and the projected
BC. In this sequence, the optimal number corresponds to 4 PC, which evolve from a
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First 4 Eigen Vectors for the Original Sequence - 10 Non-registered Images -

First 4 Eigen Vectors for the Registered Sequence - 10 Images -

Figure 4.7: (a) Uncertainty of the ML estimates as a function of the selected number
of PC basis. (b)Uncertainty of the ML estimates as a function of the selected number
of frames (time scale). We have taken the first 10 frames of the sequence of 50 images
(see fig. 4.5) and computed their first 4 eigen vectors before registration (first row)
and after registration (last row). The first ones capture the variance due to camera
transformation, and, the last ones due to the motion of the leaves.
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first state shown in fig.4.7(first row of images) to a final state in fig. 4.7(bottom row)
after convergence (10 iterations). The first state shows that the variations are due to
camera transformations (in this specific case mainly translation) and the final state
correspond to different scales of the motion of the leaves.
In figure 4.7(b) we show the uncertainty as a function of the number of frames that

were taken into account for the registration algorithm. Note that when the number
of frames is small the uncertainty is high since no time scale for the camera trans-
formations is captured. When the number of frames increases, the occlusion effects
appear. The optimal selection for the number of images is 19.

Bootstrap for Local Standard Deviation Analysis

The second issue we have studied is a local analysis of the uncertainty for a given fixed
set of control parameters (time scale and PC). Our starting point is the functional
in equation (4.6): E(�θ) =

∑
#x | δtI(�x)− ∇̃I(�x)TM(�x)�θ |2, which uniformly sums the

errors over all the pixel locations. In this case, the issue is focussed on the contribution
of each pixel to the uncertainty of the estimates. To this end, the idea is to generate
a large number of data sets, such that each set contains a random distribution of
the original pixel locations. All the data sets contain the same number of pixels
as the original one but with different distributions. This means that, in each set,
some pixels may contribute to the error function more than once, and some others
may not. Therefore, we estimate the parameters for each specific data set by means
of minimizing eq. (4.6). Given that we are working with a large number of data
sets, we are able to obtain a sample mean for the parameter estimates < �θ > and a
measurement of their uncertainty. This is actually a numerical way of computing the
Hessian that was mentioned previously. However, we are here interested on making
computations using all the estimates obtained from the new virtual data sets.
We have taken the sequence of 10 images corresponding to the top row in figure

4.8, and we are now interested on the camera transformation estimation between the
first and the second frame �θ12. Each image has dimensions 360× 288. To build each
virtual data set of pixel locations we select a random set of pixel locations that belong
to the domain [1, 360] × [1, 288]; and the total number of random pixels is the same
as in the original image, i.e. 360 × 288. Note that some pixels may appear more
than once and some others may not, this means that the contribution to the error
functional of each pixel location �x is now weighted by the number of times ω(�x) that
has been taken into account:

E(�θ12) =
∑
#x

ω(�x) | δtI(�x)− ∇̃I(�x)TM(�x)�θ12 |2

Now the estimation of �θ12 proceeds as in the algorithm described before. Therefore
we obtain for each virtual set a parameter vector �θi12. We have generated 500 vir-
tual data sets and run the estimation process with this particular weighing issue for
all of them obtaining a set of 500 parameter vectors: {�θ1

12, . . . ,
�θi12, . . . ,

�θ500
12 }. Using

each parameter vector, we register image 2. Now we are dealing with a set of 500
registered images. Next, we have computed the standard deviation of the correspond-
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Figure 4.8: First, second and last frames of the sequence (top row). (See video
3 :”video3original.mpeg” and ”registvideo3.avi”). (a) Standard deviation map cor-
responding to a local bootstrap analysis for our algorithm. (b) Standard deviation
map obtained from a bootstrap analysis of a standard 2-frame parametric alignment
technique.

ing 500 pixel values at each pixel location. This yields a map showing a reliability
distribution as a function of each position in the image. Pixel locations with bigger
standard deviation correspond to positions with a less reliable contribution to the
camera motion estimation. Therefore, we have repeated a similar experiment using
a standard 2-frame parametric alignment technique. Note that in our algorithm we
have been using the information encoded in the sequence of ten images to perform
the registration between the first and the second frame. On the other hand, for
the standard 2-frame parametric technique, we used just two images. This should
be taken into account when interpreting the results of this experiment. We notice
too that there is a significant difference in the distribution of the standard deviation
maps (figs. 4.8(a) and 4.8(b)). In case (b) variations concentrate on regions where
the motion of leaves was entangled with the motion of the camera. Higher amounts
of variation tell us about the areas in the image where the camera motion estimation
is less reliable. This fact is due to the lack of global temporal information (∼ time
scale) in the standard parametric technique.
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4.4 Conclusions

As an alternative to standard 2D registration techniques, in this chapter we have
proposed an appearance based framework for video stabilization. We have addressed
the problem of characterizing the different types of motions that occur across a se-
quence based on a visual appearance information criterion and, at the same time,
conjugating local and global representations. Linear subspace constraints have been
based on the assumption of constancy in the appearance subspace. One of the main
contributions of the appearance subspace encoding is that the appropriate scale in
each problem is captured from the images themselves. Image spatio-temporal deriva-
tives are computed by coupling linear combinations of the PC basis. The choice of an
appropriate representation for the data becomes significant when dealing with image
transformations, since these usually imply that the number of intrinsic degrees of free-
dom in the data distribution is lower than the coordinates used to represent it. This
fact, not only allows embedding the video registration in a more numerical tractable
framework, but also yields a new approach to extracting underlying information from
temporal evolution of sequences.
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