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Universitat Autònoma de Barcelona
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acadèmic com professional i personal al Dr. Xavier Binefa, director, soci i amic.
Aprecio enormement la seva confiança dipositada, els seus savis consells, la seva ca-
pacitat d’il·lusionar i emprendre noves aventures, la seva atenció i predisposició al
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coneixements sobre Intel·ligència Artificial.
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memòria.



iii

Finalment, el més important. A la meva famı́lia i amics per la seva paciència.
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Abstract

The majority of problems in Computer Vision do not maintain a direct relation be-
tween the stimuli provided by a general-purpose sensor and its corresponding percep-
tual category. A complex learning task must be involved in order to provide such a
connection. In fact, the basic forms of energy, and their possible combinations, are a
reduced number compared to the infinite possible perceptual categories correspond-
ing to objects, actions, relations among objects, etc. In addition, the observations
provided by a sensor correspond to a set of variables, whose number is rather larger
than desired. More specifically, in Computer Vision, the most used sensors are digital
cameras and laser scanners. Both represent objects in terms of a set of variables
that are highly correlated. For instance, given a set of different images from objects
concerning the same category, the variability in each pixel value is constrained to a
certain range, which is influenced by the rest of pixel value variations. In this sense,
feature extraction can be seen as a dimensionality reduction or coding procedure, or,
in general, as a representation in a different coordinate system.

The lines of research of this thesis are directed to the management of multiple
data sources, with straightforward applications such as within the MPEG 4 and 7
framework. More specifically, this thesis presents a set of new algorithms applied to
two different areas in Computer Vision: i) video analysis and summarization, and
ii) 3D range data. Both areas have been approached through the Generative Models
framework, where similar protocols for representing data have been employed.

Generative Models introduce a reduced number of hidden variables (Latent Vari-
ables) under the assumption of being the underlying causes that produce the observed
phenomena. Latent Variables represent the intrinsic degrees of freedom that govern
the essential structure of the observations. On the other hand, the accidental structure
of the observed data is modelled as noise through the introduction of a probabilistic
approach, which, consequently, not only provides a distance measure for posterior
recognition tasks, but also a manner of including knowledge of the domain in terms of
a priori information. The use of latent variables for dimensionality reduction has the
purpose of combating the curse of dimensionality while retaining sufficient accuracy
of representation.

The choice of an appropriate representation for the data takes a significant rel-
evance when it comes to deal with symmetries, since these usually imply that the
number of intrinsic degrees of freedom in the data distribution is lower than the co-
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ordinates used to represent it. Indeed, this means that the problem can be reduced
to a lower dimensional one. Therefore, the decomposition into basic units (model
parameters) and the change of representation, make that a complex problem can be
transformed into a manageable one. This simplification of the estimation problem has
to rely on a proper mechanism of combination of those primitives in order to give an
optimal description of the global complex model. This thesis shows how the process
that reduces dimensionality, taking into account the internal symmetries of a problem,
provides a manner of dealing with missing data and makes possible predicting new
observations. The connection between Lie’s group theory, the structural equation and
the internal symmetries present in the observed data is also pointed out.

Two main points of discussion have an essential presence in this thesis: i) the
combination of global and local information, and, ii) the complexity of a model in
terms of linearity and non-linearity.

Linear models are quite useful since their simplicity, low computational cost and
interpretability (from a geometrical point of view). However, there are situations
where the distribution of data can be more complex than a linear model can cope
with. In order to cope with global nonlinear behaviors we study the advantages
of dealing with local combinations of linear sub-models. The advantage of finite
mixtures of latent variables models is that they can place different latent variable
models in different regions of data space, where each latent variable model models
locally the data. This allows the use of simple local models (e.g. linear-normal, like
Factor Analysis or Principal Component Analysis) that build a complex global model
(piecewise linear-normal). In other words, finite mixtures of latent variable models
combine clustering with dimensionality reduction.

The probabilistic approach given to the formulation of the models presented in
this thesis permits: i) the combination of several probabilistic methods in a mixture
in a natural way, ii) comparing a method with other probabilistic methods as well as
constructing statistical tests, iii) the prediction of any variable(s) as a function of any
other variable(s) by using conditional probabilities, and iv) the natural extension to
Bayesian analysis for model comparison through the use of prior distributions as well
as the inclusion of external sources of knowledge.
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Chapter 1

Introduction

Avast majority of problems in Computer Vision and Pattern Recognition deal
with the need to find a suitable manner for representing data. This pursuit
has become the central problem in Computer Vision since its beginnings. For

a long time, one of the main motivations has been the limitations of existing com-
puter processors and the need to minimize computational costs. With the subsequent
improvement of computer processors, a wider range of possibilities has been progres-
sively presented to researchers, giving them the tools to face more ambitious tasks.
Accuracy and reliability are also relevant factors that constrain the selection process
of a specific representation.

With regards to representation selection, there are two main factors that determine
the level of difficulty and solvability of a specific problem: i) the different levels of
information that are employed, and ii) the complexity of the model which is intend
to explain the observations.

Information can be extracted from data through either local or global measure-
ments. For instance, in relation to images, we can perform pixel-based operations
(neighboring filters, statistical measurements, mathematical morphology, etc...) to
obtain local information, whereas, on the other hand, we can apply some global trans-
formation (Principal Component Analysis, Factor Analysis, Positive Matrix Factor-
ization, etc...) to the raw image data to retrieve some global information. Although
both approaches work well to a certain extent, much work done in Computer Vision
limits problems to be tackled by solely one of these two approaches.

The combination of both global and local information is the basis of the different
Computer Vision applications presented in this thesis. The scope of this thesis in-
cludes two major blocks: one dedicated to analyze sequences of images, and another
focussed on studying 3D range data. Both sections have in common the way the
different levels of information complement each other, as well as, the manner models
are built in order to solve each problem.

First, we consider the analysis of video sequences since it offers the possibility

1
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of working together with spatial and temporal information at the same time, mak-
ing problems more challenging and their solutions very interesting. This interest not
only concerns the research community, but also the industry as a whole. Content-
based video browsing and retrieval in video databases is becoming a relevant field
in Computer Vision and Multimedia. This fact goes in accordance with the increas-
ing developments in digital storage and transmission. In addition to this, the wide
range of applications in this framework, such as advertising, publishing, news and
video clips, points out the necessity for more efficient and organizing techniques. We
focus on three important subjects related to Multimedia: video segmentation, pre-
view and summarization, which make feasible a quick intuition of the evolution of a
sequence, (under low streaming cost), of higher-level perceptual structures, such as
stories, scenes or pieces of news. Moreover, analyzing and structuring video through
summarization and hyper-linking permits a continuous media to be seekable.

Another interesting and challenging area of Pattern Recognition involves 3D range
data, (distributions of 3D unorganized points obtained by means of CT and laser scan-
ners). Many interesting applications concern 3D range data: segmentation, object
recognition, perceptual organization, applications to archaeology pottery reconstruc-
tion, sherds classification, the 3D puzzle problem, etc... These applications usually
deal with broken pieces and patches which can be characterized a set of features such
as, axis of symmetry, breaking curves (3D contour), thickness, etc...

The purpose of the following sections is to introduce the Latent Variable frame-
work that provides a methodology for building models that learn patterns from obser-
vations under a probabilistic approach. Noise, similarity, and complexity (linearity
and nonlinearity) concepts arise straightforwardly from this formulation. Consid-
ering the specific forms of such factors, the most well known models are described
and located inside the latent variables’ taxonomy. Particularly, two of these models
(Principal Component Analysis and Mixtures of Principal Components) are detailed
in order to show the fundamental role of latent variable models when it comes to
reducing dimensionality. Moreover, a geometrical interpretation for these two spe-
cific models is given. The aim of this is to unveil the main motivations that lead to
employing these techniques when it comes to dealing with not only recognition and
classification, but also data visualization, and feature extraction.

One section is dedicated to explaining the Expectation-Maximization algorithm
through a variational approach for estimating parameters and latent variables for
a given set of observations. Such an approach not only proofs convergence under
some specific requirements for the likelihood function, but also yields a manner of
dealing with certain constrained problems1 thanks to the introduction of lower bound
functions.

The last section introduces the scope of this thesis, linking the previously intro-
duced methodology with the applications and algorithms that are presented in the
following chapters.

1This type of problems often are difficult to estimate with traditional Least Squares techniques
[58].
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1.1 Generative Modelling

In both video analysis and 3D range data situations, the aim is to extract as much
essential structure as possible from a data set without modelling any of its accidental
structure (e.g. noise and sampling artifacts). In this sense, data refers to both video
sequences and 3D points. For instance, these variabilities may refer to: i) the behavior
of the curvature of an axially symmetric surface represented by a distribution of
points, or to ii) video sequences regarding some specific camera movements, color,
temporal linking among different camera shots in an interview, etc... Both cases have
in common the fact that data must be modelled in order to explain the underlying
phenomena. To this end, we study the possibilities that offer Generative Models for
Pattern Recognition.

In this framework, modelling data has a twofold purpose: i) the inference of the
causes that originate such characteristic variabilities, which is a task of analyzing simi-
larities between observations that ”look” similar, and ii) the estimation of a stochastic
contribution associated to the term ”noise”.

Existing methods for modelling data fall into two categories: descriptive and gen-
erative methods. Descriptive methods characterize visual patterns by extracting some
feature statistics and imposing constraints at a ”signal” level, such as geometrical dis-
tributions, predefined features, Markov Random Fields, Minimax Entropy Learning,
Deformable Models, etc. The purposes of generative methods are instead: i) learning
features from observations and ii) capturing high-level semantics.

Both generative and descriptive methods require: i) an internal representation
for describing the observations, as well as, ii) a distance measure, which provides a
manner of determining the ownership of a certain test sample to a specific learned
pattern. Probabilistic techniques couple both representation and distance concepts
under the same framework, where it is possible modelling noise and the essential
structure of a specific pattern from the observations at the same time. Descriptive
models are built directly on original signals yielding probability densities of very
high dimensions. Operations such as inference, sampling, and estimating probability
densities are difficult to perform when dealing with high dimensional feature vectors
(curse of dimensionality).

1.2 Latent Variables

Generative models introduce a set of hidden variables (semantics) under the assump-
tion of being the underlying causes that produce observed phenomena. Usually, a
small number of these hidden (latent) variables are sufficient for describing the ob-
served phenomena. The use of latent variables for dimensionality reduction has the
purpose of combating the curse of dimensionality2 while retaining sufficient accuracy

2The term curse of the dimensionality, coined by Bellman (1961)[8], refers to the fact that, in the
absence of simplifying assumptions, the sample size needed to estimate a function of several variables
to a given degree of accuracy (i.e., to get a reasonably low-variance estimate) grows exponentially
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of representation. Operations like prediction and compression become easier and
rigorously justifiable.

Four components are necessary to build a generative model based on this causal
approach:

1. The latent variables, which represent the intrinsic degrees of freedom that
govern the essential structure of the observations. These fall into two main
categories: discrete and continuous.

2. The model parameters, which provides a compact internal representation for
the observations.

3. The structural equation, which defines how to combine the latent variables
in order to produce the observed phenomena.

4. The noise model that permits introducing a probabilistic approach to the
model, and therefore, a distance measure for posterior recognition tasks.

To build a general framework, we will consider that the latent variables aremapped
by a fixed transformation into a higher-dimension observed space (measurement proce-
dure) and noise is added there (stochastic variation). In contrast with this generative,
bottom-up point of view3, statisticians often consider latent variable models from an
explanatory, top-down point of view (Bartholomew, 1987) [7]: given the empirical
correlation between the observed variables, the mission of the latent variables is to
explain those correlations via the axiom of local independence ; i.e., given an observed
distribution, find a combination of latent distribution and noise model that approx-
imates it well. We will consider that both the observed and the latent variables are
continuous. Nevertheless, the extension to discrete variables is straightforward.

Let T ⊆ 	d be the d-dimensional data or observed space. Consider an unknown
distribution p(t) in the data space, for t ∈ T , of which we only can observe a finite
sample {t1, . . . , tN}. The latent variables are represented by a lower dimensional
space X , where dim(X ) < dim(T ).

with the number of variables. A related fact, responsible for the curse of the dimensionality, is the
empty space phenomenon (Scott and Thompson, 1983 [91]): high-dimensional spaces are inherently
sparse. For example, for a one-dimensional standard normal N(0, 1), 70% of the mass is at points
contained in a sphere of radius one standard deviation (i.e., the [−1, 1] interval), for a 10-dimensional
N(0, I), that same (hyper)sphere contains only 0.02% of the mass and one has to take a radius of
more than 3 standard deviations to contain 70%.Therefore, and contrarily to our intuition, in high-
dimensional distributions the tails are much more important than in one-dimensional ones. This
is a difficult problem in multivariate density estimation, as regions of relatively very low density
can contain a considerable part of the distribution, whereas regions of apparently high density can
be completely devoid of observations in a sample of moderate size (Silverman, 1986 [94]). The
curse of the dimensionality has the following consequence for density estimation: since most density
estimation methods are based on some local average of the neighboring observations ), in order to
find enough neighbors in high-dimensional spaces, the neighborhood has to reach out farther and
the locality is lost.

3All the observations are assumed to be caused by latent variables, that is, the observations are
assumed to be at the end of the causal chain.
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Figure 1.1: Schematic of a continuous latent variable model with a 3-dimensional
data space and a 2-dimensional space.

Therefore, a point in the latent space is generated according to a prior distribu-
tion p(x) and it is mapped onto data space T by a smooth, non-singular mapping:

f [W ] : X → T (1.1)

where W corresponds to the model’s parameters. This structural equation modelling
is a commonly used statistical method for quantifying the relationships among vari-
ables that cannot be observed directly. The overall model for the observed variables
consists of two parts; the measurement model relating the observed indicators to the
latent variables or factors, and the underlying structural model expressing a relation-
ship among the unobservable variables (fig. 1.2). The success of the model depends on
how well it can capture the structure of the phenomena underlying the observations.

Since M = f(X ,W ) is a q-dimensional manifold in T , in order to extend it to
the whole d-dimensional space, a distribution p(t | x) = p(t | f(x)) on T , called
the error or noise model. Figure 1.1 illustrates the idea of latent variable models.
Observations can be affected by many variables that may not be conveniently modelled
deterministically because they are too complex or to hard to observe, and often, belong
to categories of events that are irrelevant to the observations of interest. In these cases,
it is necessary to treat some of them as noise. In fact, high-dimensionality arises for
several reasons, including stochastic variation and the measurement process.

The joint probability density function in the product space T × X is p(t,x), and
the integration over the latent space yields the marginal distribution in data space:

p(t) =
∫
X
p(t,x)dx =

∫
X
p(t | x)p(x)dx (1.2)

This is called the fundamental equation4 of latent variable models by Bartholomew
4Equation (1.2) can also be seen as a continuous mixture model with the latent variable x ”in-

dexing” continuously the mixture component. In fact, any density function can be considered as a
mixture density where extra variables have been integrated over.
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Figure 1.2: Causal interpretation of Latent Variable Models

(1984). Thus, a model is essentially a specification of p(x) and p(t | x)-the speci-
fication of the mapping f can be absorbed into that of p(t | x) (see fig. 1.2). The
only empirical evidence available concerns p(t) through the sample {t1, . . . , tN} and
so, the only constraint on p(x) and p(t | x), apart from the need to be nonnegative
and integrate to 1, is given by eq. (1.2). In general, there are many combinations of
p(x) and p(t | x) that can satisfy (1.2) for a given p(t).
If the latent variables are to be efficient in representing faithfully the observed

variables, we should expect that, given a value for the latent variables, the values
of any group of observed variables are independent of the values of any other group
of observed variables. Otherwise, the chosen latent variables would not completely
explain the correlations between the observed variables and further latent variables
would be necessary. Thus, for all k ∈ {1, . . . , d}, the observed variables conditioned
on the latent variables (noise model), is factorial:

p(t | x) =
d∏
k=1

p(tk | x) (1.3)

That is, for some q ≤ d, the observed variables are conditionally independent given
the latent variables. This is usually called the axiom of local (or conditional)
independence (Bartholomew, 1984; Everitt, 1984). It should be noted that, rather
than an assumption, the axiom of local independence is a definition of what it means
to have fully explained the joint distribution of the observed variables in terms of the
latent ones.
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1.3 Expectation-Maximization Algorithm for Param-
eter Estimation

A latent variable model is specified by the functional forms of:

• the prior model in latent space p(x)

• the smooth mapping f : X → T from latent space to data space, i.e. the causal
relation between latent variables and observations.

• the noise model in data space p(t|x)

all of which are equipped with parameters. For the sake of notation, we write them
collectively through θ. The aim is to estimate these parameters from a finite set
of observations {t1, . . . , tN}, while inferring the latent variables at the same time.
Under the selection of a certain model, this goal means finding those parameters and
latent variables whose likelihood of explaining the observations is maximum. Given
that generative models can be approached through probability distributions, the term
”likelihood” is directly quantified by the joint probability in equation 1.2.

Usually, maximum likelihood maximization is carried out using a form of the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977 [31];McLachlan
and Krishnan, 1997 [66]), which is usually simpler than other optimization techniques
and is guaranteed to increase the log-likelihood monotonically.

In the EM approach to latent variable models, the latent variables {x}Nn=1 (one
per data point) are considered missing5. If their values were known, estimation of
the parameters θ would be straightforward by least squares. However, for a given
data point tn we do not know the value of xn that generated it. The EM algorithm
is a fixed-point fashion procedure that operates in two steps, which are repeated
alternatively until convergence:

5Depending on the model, additional missing variables may have to be introduced. For example,
the component labels for mixture models.
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Expectation Compute the sufficient statistics for the latent variables posterior dis-
tributions p(xn|tn, θ). Each observation tn has a specific way of combining the
latent variable values xn. These are inferred from each corresponding data
point tn and the parameters of the model θ. Inference occurs when computing
the values for xn that maximize the a posteriori probability of a given data
point tn and a specific instance for the model’s parameters θ.

Maximization Maximize the joint likelihood with respect to the parameters θ. At
this point, the corresponding values for the latent variables estimated in the
previous step are fixed.

The standard EM algorithm has some disadvantages:

• It is a batch algorithm. However, by interpreting EM as an alternating maxi-
mization of a negative free-energy-like function (Neal and Hinton, 1998 [69]), it
is possible to derive online EM algorithms, suitable for online learning (e.g. in
sequential tasks, where the data come one at a time). In this thesis, we present
an online EM algorithm for video segmentation and hyper-linking.

• Its slow convergence after the first few steps, which are usually quite effective.
Also, the greater the proportion of missing information, the slower the rate
of convergence of EM (Dempster et al., 1977, [31]). However, methods for
accelerating it are available; see, for example, McLachlan and Krishnan (1997)
[66] and references therein.

Despite these shortcomings, EM usually remains the best choice for parameter esti-
mation thanks to its reliability. For a general choice of prior in latent space, mapping
between latent and data space and noise model the log-likelihood surface can have
many local maxima of varying height. In some cases, some or all of those maxima are
equivalent, in the sense that the model produces the same distribution (and therefore
the same log-likelihood value at all the maxima), i.e., the model is not identifiable.
This is often due to symmetries of the parameter space, such as permutations (e.g.
Principal Component Analysis, PCA) or general rotations of the parameters (e.g.
Factor Analysis). In those cases, the procedure to follow is to find a first maxi-
mum likelihood estimate of the parameters (in general, by some suitable optimization
method, e.g. EM, although sometimes an analytical solution is available, as for PCA)
and then possibly apply a transformation to them to take them to a canonical form
satisfying a certain criterion.

1.3.1 Variational Approach of the EM Algorithm

In this section, a variational approach of the EM algorithm is described in order
to show the mathematical origin of these ”two steps”, as well as, to demonstrate
monotonically increasing of the log-likelihood while iterating the process. Variational
methods has been used in the past few years to approximate untractable integrals
[52, 58, 16]. This framework involves introducing a set of distributions Qn(xn) that
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provide an approximation to the true posterior distributions p(xn|tn, θ). In this al-
gorithm, two main hypotheses govern the nature of the joint probability distribution
p(t1, . . . , tN |θ) for the data set {t1, . . . , tN}:

• The joint probability p(t1, . . . , tN |θ) is log-concave.

• The data set D = {t1, . . . , tN} is independent and identically distributed, i.e.:

p(t1, . . . , tN |θ) =
N∏
n=1

p(tn|θ) (1.4)

Using the second hypothesis, the logarithm of the likelihood function in equation (1.2)
can be written as follows:

L ≡ log [p(t1, . . . , tN|θ)] =
N∑
n=1

log p(tn|θ) (1.5)

Taking into account that the marginal distribution for the observations comes from
integrating the joint distribution p(tn,xn|θ) over the latent space, this latter equation
(1.5) can be expressed in the following way:

L =
N∑
n=1

log p(tn|θ) =
N∑
n=1

log
[∫

p(tn,xn|θ)dxn
]

where a set of arbitrary distributions Qn(xn) can be introduced without losing gen-
erality:

L =
N∑
n=1

log p(tn|θ) =
N∑
n=1

log
[∫

Qn(xn)
p(tn,xn|θ)
Qn(xn)

dxn

]
By means of Jensen’s inequality, a lower bound to this log-likelihood can be computed:

L =
N∑
n=1

log
[∫

Qn(xn)
p(tn,xn|θ)
Qn(xn)

dxn

]
≥

≥
N∑
n=1

[∫
Qn(xn) log

p(tn,xn|θ)
Qn(xn)

dxn

]
= F(Q, θ)

This lower bound is known as a free energy term ( Hinton 1998 [69]; Jordan 1999
[52]; Lawrence 2000 [58]), and, it corresponds to the sum of the Kullback-Leibler
divergence (of the approximatingQ-functions and the true posterior) and the marginal
log-likelihood:

F(Q, θ) =
N∑
n=1

[∫
Qn(xn) log

p(xn|tn, θ)p(tn|θ)
Qn(xn)

dxn

]
=
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Expectation Maximization

Figure 1.4: At a first step, this variational approach maximizes F(Q, θ) as a func-
tional of Q and the parameters θ, which is equivalent to minimizing the Kullback-
Leibler divergence of the approximating Q-functions with respect to the a posteriori
distribution for the latent variables. After this step, there is a second one that implies
maximizing the free energy F(Q, θ) with respect to the model’s parameters θ. This
second step takes the values for the approximating Q-functions as fixed.

=
N∑
n=1

[∫
Qn(xn) log

p(xn|tn, θ)
Qn(xn)

dxn

]
+

N∑
n=1

log p(tn|θ) =

= −
N∑
n=1

KL(Qn(xn)||p(xn|tn, θ)) +
N∑
n=1

log p(tn|θ)

Two main question arise when it comes to deal with lower/upper bounds of a function
to be optimized is:

• What are the conditions to be satisfied by the marginal distribution? The log-
likelihood p(t1, . . . , tN |θ) must have at least one finite maximum value and this
function must be log-concave.

• When a lower bound is useful? Taking into account the first issue, a lower
bound is of great utility when it concerns an iterative process of non-decreasing
updates.

The non-decreasing updating of a lower bound such as F (Q, θ) of a log-likelihood
function (satisfying the condition above) implies getting closer to the maximum value
at each step. Since such a maximum value is finite, there will be a time in the
procedure when the free energy F (Q, θ) reaches that value. Maximizing F (Q, θ) has
to be performed in two steps: i) first, with respect to the approximating Q-functions,
and, ii) second, with respect to the model’s parameters.
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In this case, the Expectation-Maximization consists of two optimization steps: one
implies finding the ”nearest”6 Q-distribution to the a posteriori probabilities for the
latent variables, and another that involves maximizing with respect to the model’s
parameters (figure 1.4):

Expectation Assume an intermediate stage with θk (k-th iteration). Now, the state-
ment ”Compute the sufficient statistics for the latent variables posterior distri-
butions p(xn|tn, θ)” can be translated into:

Qn(xn) = argmaxQ(x) [F(Q(x), θk)] (1.6)

that can be found by taking functional derivatives on F(Q, θ),

δF
δQn(xn)

=
δ

δQn(xn)

{
N∑
n′=1

[∫
Qn′(xn′) log

p(xn′ |tn′ , θk)
Qn′(xn′)

dxn′

]}
= 0

whose solution is:
Qn(xn)k+1 = p(xn|tn, θk) (1.7)

which is determined by its sufficient statistics, i.e., the expected moments.

Maximization Given the new value Qk+1 the function to be maximized w.r.t. the
model’s parameters θ is F(Qk+1, θ):

θk+1 = argmaxθ
[
F (Qk+1, θ)

]
(1.8)

Thus, after substituting the computed values for Qk+1 into F(Qk+1, θ), the
quantity to be maximized is:

θk+1 = argmaxθ

[
N∑
n=1

∫
dxnp(xn|tn, θk)p(xn, tn|θ)

]
(1.9)

Assuming that the log-likelihood p(t1, . . . , tN |θ) has at least one finite maximum
value, there is only one remaining question:

F(Qk+1, θk+1)≥F(Qk+1, θk) ≥ F(Qk, θk)?

in other words, is F(Qk+1, θ) monotonically increasing at each step? To answer this
question, log-concavity requirement on the log-likelihood log p(t1, . . . , tN |θ) must be
employed (see Appendix A).

1.4 Specific Latent Variable Models

In this section, some of the most well-known latent variable models are described
in order to show the relevant features of generative modelling taxonomy (fig. 1.5).
Three categories are employed for classification:

6In terms of the Kullback-Leibler divergence.
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Figure 1.5: Visual classification of the most well-known latent variable models.

• The noise model. For instance, a latent variable model is called normal when
both the prior in latent space and the noise model are normal.

• The structural equation, i.e., mapping. Latent variable models can be classi-
fied as linear and nonlinear according to the corresponding character of the
mapping f .

• The latent variables’ nature. The model that describes a data set can consist of
continuous, discrete latent variables or a certain combination of both types.

These three points categorize the most utilized models in Pattern Recognition. We
specially consider Principal Component Analysis (PCA) and a mixture version of
PCA in order to emphasize the main relevant issues relying on this type of modelling
data. Further in this thesis, the rest of models are considered and described taking
into account the context of specific applications.

The massive diversification of latent variable models, in the state if the art, arises
when considering continuous latent variables. These are used for obtaining a compact
description (and representation) of data. Inside this group, linear models are the most
exploited7 ones:

Factor Analysis (FA) Factor analysis (Bartholomew, 1987 [7]; Everitt, 1984) uses
a Gaussian distributed prior and noise model, and a linear mapping from data
space to latent space. The data space noise model is normal centered at f(x)
with diagonal covariance matrix. The log-likelihood has infinite equivalent max-
ima resulting from orthogonal rotation of the factors.

7Computational cost saving and interpretability are two relevant issues that lead to considering
this type of modelling.
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Independent Factor Analysis (IFA) Independent component analysis (ICA) or
blind source separation consists of recovering independent sources, i.e. sub-
spaces that should have minimum statistical dependence among features, given
only sensor observations that are unknown linear mixtures of the sources (Comon,
1989 [23]; Cardoso, 1989 [21]; Hyvärinen [42, 44, 43]).

The main difference in this case relies on the distribution considered for the
latent variable space p(x), where its sufficient statistics goes beyond second
order moments. An interesting work that helps understanding this modelling
is Independent Factor Analysis (Attias, [4]), which uses a factorial Gaussian
mixture prior distribution. In this case, discrete components on the latent
variable structure must be introduce in order to model multi-modal behaviors
on the latent space. This approach embraces the different concepts previously
introduced in the ICA framework, such as super-gaussianity, sub-gaussianity,
kurtosis, etc...

Non-Negative Matrix Factorization (NNMF) Based on the psychological and
physiological evidence for parts-based representations in the brain, Nonnega-
tive Matrix Factorization (NMF) aims at learning the parts of objects instead
of a holistic representation such as those learnt by the previously mentioned
methods. This is done by including a nonnegativity constraint that allows only
additive, not subtractive, combinations of the features. In this case, the differ-
ence with respect to the other linear techniques mainly relies on the selection
of a specific noise model in the data space p(t|x) (for instance a Poisson dis-
tribution [60, 59]). In this case, the lower bound selected in the optimization
algorithm leads to multiplicative update rules (Kivinen 1995 [56, 57],) instead
of the additive usual ones. This fact enforces variables and parameters to re-
main non-negative during the optimization process. Further in this thesis, more
details are given related to this specific type of non-negative constraints.

Regarding non-linear models, the Generative Topographic Mapping ( Bishop 1998
[13]) arose as a potential application of the GTM is visualization of high-dimensional
data:

Generative Topographic Mapping (GTM) is a non-linear latent variable model,
intended for modelling continuous, intrinsically low-dimensional probability dis-
tributions, embedded in high-dimensional spaces. It can be seen as a non-linear
form of principal component analysis or factor analysis. It also provides a
principled alternative to the self-organizing map a widely established neural
network model for unsupervised learning resolving many of its associated the-
oretical problems. Since the GTM is non-linear, the relationship between data
and its visual representation may be far from trivial. There are two principal
limitations of the basic GTM model. The computational effort required will
grow exponentially with the intrinsic dimensionality of the density model. The
other limitation is the inherent structure of the GTM, which makes it most suit-
able for modelling moderately curved probability distributions of approximately
rectangular shape. When the target distribution is very different to that, the
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aim of maintaining an ”interpretable” structure, suitable for visualizing data,
may come in conflict with the aim of providing a good density model. Inter-
pretability of high dimensional data is one of the main subjects studied in this
thesis, where an algorithm for video clustering and visualization of scene linking
is presented.

Two relevant advantages are introduced: i) the algorithm performs online clus-
tering and low dimensional embedding, and ii) it is significantly reliable for high
dimensional case.

Principal Component Analysis is studied in depth in the following section, since
it has been the most popular dimensionality reduction technique with an extensive
range of applications in Computer Vision. Many reasons support its popularity. For
instance, from a computational point of view, this technique offers a closed form
solution through Singular Value Decomposition (SVD). Moreover, its solutions are
straightforward to interpret, since it is a linear technique that can be understood in
terms of pure data rotations, and which involves a fewer number of parameters than
Factor Analysis or the other presented linear techniques.

1.4.1 Principal Component Analysis (PCA)

Historically, Principal components analysis (PCA) has been seen as ”the classical
technique” for dimension reduction. PCA has been widely used as a preprocessor
for pattern recognition applications to reduce the input dimension before building
classifiers.

PCA was first proposed by Hotelling (1933) [41] for dimension reduction. Ander-
son (1958) [1] used PCA to reduce the number of variables by eliminating linear com-
binations with small variance. Oja (1983) [71] discussed PCA and related techniques.
A closely related orthogonal expansion to PCA is the Karhunen-Loeve (K-L) [54, 65]
expansion (Watanabe 1965 [108]) which was originally conceived in the framework of
continuous second-order stochastic processes. When restricted to a finite dimensional
case and truncated after a few terms, the K-L expansion is equivalent to a PCA
expansion.

In the latent variable framework, Principal Component Analysis can be seen as a
maximum likelihood factor analysis in which the noise model is gaussian and isotropic.
This simple fact, already reported in the early factor analysis literature, seems to
have gone unnoticed until Tipping and Bishop [103] and Roweis (1998) [84] recently
rediscovered it. The approach of considering an isotropic noise model in factor analysis
had already been adopted in the Young-Whittle factor analysis model (Young, 1940
[114]; Whittle, 1952 [111] ).

According to section 1.3, a latent variable model is specified by the functional
forms of:

• the prior model in latent space p(x)
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• the smooth mapping f : X → T from latent space to data space, i.e. the causal
relation between latent variables and observations.

• the noise model in data space p(t|x)

all of which are equipped with parameters. In this particular case, PCA defines a
model for the latent space via a normal distribution:

p(x) =
1

(2π)q/2
e−

1
2xT x (1.10)

The structural equation (mapping) is defined as a linear combination of the latent
variables x:

tn =Wxn + µ+ en (1.11)

where en is a noise vector for the observation tn and {W,µ} are the parameters
corresponding to this particular mapping. Finally, the noise model for en completely
determines this latent variable model. This noise model is gaussian and isotropic8,
i.e.,

p(tn|xn) =
1

(2πσ2)d/2
exp

{
− 1
2σ2

|tn −Wxn + µ|2
}

(1.12)

The use of the fundamental equation (1.2), under these two specifications for the
latent space and the noise model, yields the following likelihood function:

p(tn) =
1

(2π)d/2|C|1/2 exp
{
−1
2
(tn − µ)TC−1(tn − µ)

}
(1.13)

where C = σ2I+WWT . At this point, two main relevant and practical issues deserve
to be mentioned when considering PCA under a probabilistic approach:

• Given a specific instance for the model parameter’s {W,µ, σ2}, this likelihood
function gives a measure of the novelty of a new data point.

• PCA can easily be extended to a mixture of such models.

Using Bayes’ theorem, the posterior distribution of the latent variables xn given the
observation tn is given by:

p(xn|tn) =
1

(2π)q/2|M |1/2 exp
{
−1
2
(xn− < xn >)TM−1(xn− < xn >)

}
(1.14)

which is defined by its sufficient statistics:

< xn > = M−1WT (tn − µ) (1.15)
< xnxTn > = M−1+ < xn >< xTn > (1.16)

8If we consider this model consisting of a diagonal covariance matrix for the noise model σ2I → Λ
instead, then Factor Analysis is recovered.
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where M = (σ2I +WTW ).

The computation of the sufficient statistics for PCA yields the first step of the EM
algorithm in order to estimate the model parameters from data. Moreover, in this
particular model, all the required integrals are easy to obtain, since this model only
involves gaussian distributions. Taking into account these facts, the model estimation
follows this two-steps procedure:

E step According to equation (1.7), this step is computed through the use of suffi-
cient statistics in equations (1.15) and (1.16).

M step According to the forms of the prior distribution in equation (1.10) and the
noise model in equation (1.12), the parameter estimation (eq. (1.8)) can be
given in a closed form solution for all:

W =

[
N∑
n=1

(tn − µ) < xn >T
][

N∑
n=1

< xnxTn >

]−1

µ =
1
N

N∑
n=1

tn

σ2 =
1
N

N∑
n=1

{
|tn − µ|2 + tr

[
WTW < xnxTn >

]
− 2(tn − µ)TW < xn >

}

These steps must be iterated until a certain degree of convergence of the log-likelihood
(eq. (1.5)). There exists a unique (although possibly degenerate, if some eigenvalues
are equal) maximum likelihood estimate closely related to the q principal compo-
nents of the data. If the sample covariance matrix S = 1

N

∑N
n=1(tn − µ)(tn − µ)T

is decomposed by Singular Value Decomposition (SVD) as S = UV UT , with V =
diag(v1, . . . , vd) containing the eigenvalues (ordered decreasingly) and U = (u1, . . . ,ud)
the associated eigenvectors, then

W = Uq(Vq − σ2I)1/2

σ2 =
1

d− q

d∑
k=q+1

vk

where Uq = (u1, . . . ,uq) and V = diag(v1, . . . , vq). Nevertheless, from a compu-
tational point of view, there are situations with very high dimensionality such as
rasterized images (O(105)). In that case, it is not feasible to store the covariance
matrix S, and, its SVD can be quite difficult to compute since O(d2) matrices are
involved in the computation. On the other hand, not all the principal directions Ud
are necessary. In fact, only the q-first are needed. Therefore, when dealing with
very high dimensional spaces, the use of the EM algorithm may be more practical.
Moreover, it only requires inversions of O(q2) matrices.
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Figure 1.6: Left: Perpendicular noise model. Right: Biased noise model.

Geometrical Interpretation of PCA

One of the main issues that comes along with Generative Models is interpretability.
Given that most of problems in Computer Vision deal with very high dimensions,
solutions are occasionally hard to interpret. In this section, a couple of examples are
introduced in order to visualize the resulting eigenvectors of a PCA solution. To this
end, both examples are based on low dimensional data:

Fitting 1D Lines Line fitting is extremely useful. In many applications, objects are
characterized by the presence of straight lines (e.g. many industrial parts have
straight edges of one form or another). In this case, we consider data points of
dimension d = 2. Since we assume that no coordinate is privileged, noise must
have the effect on both x and y coordinates. Otherwise, the model would be
biased as in figure 1.6 (right side). We model data points as being generated by
an abstract point along the line to which is added a vector perpendicular to the
line, with a length given by a zero mean, Gaussian random variable. This means
that the distance from data points to the line has a normal distribution. By
setting this up as a maximum likelihood problem, we obtain a fitting criterion
that chooses a line that minimizes the sum of distances between data points
and the line. Such a line is defined by a unit vector u indicating the line
direction, and a point µ that constrains the line to a specific position in the
data space. The latent space has dimension q = 1 and it is defined by the line.
Dimensionality reduction is performed, since all the points can be expressed as
a result of multiplying the direction vector u by a factor x (coordinate in the
latent space) plus a point µ:

tn = uxn + µ+ en (1.17)

with tn ∈ R
2 and xn ∈ R

1. The latent space coordinates can be obtained
through the orthogonal projection of each data point tn onto the line:

xn = uT (tn − µ) (1.18)
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Given these projections and the generative structural equation (1.17), a recon-
structed vector version can be obtained for each data point tn:

t̂n = uuT (tn − µ) + µ (1.19)

Literature refers to this process as a filtering process. In fact the reconstructed
vector t̂n lies on the line that generated the observations, since noise has been
removed. Thus, a concluding remark is that PCA can be used for filtering
data in order to remove identical independent distributed Gaussian
noise. In fact, this approach corresponds to the original perspective given to
PCA. The estimation of the line parameters {u, µ} can be either performed
through the previously introduced EM algorithm or by means of minimizing
the reconstruction error (i.e. minimizing the sum of perpendicular distances
between data points and the line)9:

E =
N∑
n=1

|t̂n − tn|2 =

=
N∑
n=1

|uuT (tn − µ) + µ− tn|2 =

=
N∑
n=1

{
|tn − µ|2 − (tn − µ)TuuT (tn − µ)

}
=

=
N∑
n=1

|tn − µ|2 − uT
N∑
n=1

{
(tn − µ)(tn − µ)T

}
u

In order to enforce orthonormality constraints, a Lagrange multiplier over u is
employed:

E + λ(1− uTu) (1.20)

From a Least Square Estimation (LSE) approach, the parameters of this model
can be obtained by taking derivatives w.r.t. {u, µ} and equating them to zero:

µ =
1
N

N∑
n=1

tn

and

N∑
n=1

{
(tn − µ)(tn − µ)T

}
u = λu

which turns out into an eigenvalue problem; the eigenvector with the largest
associated eigenvalue minimizes the reconstruction error. Therefore, in this
particular example, the different ingredients introduced for building a latent
variable model can be interpreted by means of a geometrical perspective:

9Both techniques lead to the same results.
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Figure 1.7: Two different views of a planar surface and its principal axes: View (a)
shows the two principal axes of bigger variance e1 and e2, and, view (b) shows the
variance with respect to the lowest variance axis e3.

• the latent space is defined by the direction vector u,
• the latent coordinates xn through the projections onto the line, and,
• the reconstruction error as the perpendicular distance to the line.

Note that these are the three points mentioned in section 1.3 and flavored by
the LSE perspective.

Fitting 2D Planes The approximation of a surface in terms of planar patches is
use further in this thesis for extracting useful geometrical information from
data ( breaking curves, 3D contours for reconstructing of an object through
assembling broken parts, etc). The first and easiest sort of surface to start with
is a planar surface described by a few number of points. This type of surfaces
can be represented by a specific set of coordinate orthogonal axes adapted to the
points spatial distribution. These are obtained by means of a linear regression
that fits a 2D plane minimizing the orthogonal distance to the mentioned plane.
A plane, actually, can be described by just two degrees of freedom that locate
any point belonging to it. These two degrees of freedom are scalar values that
measure the distance of a point along each of the axes.

The estimation of the principal axes is performing through Principal Component
Analysis as well. The result of applying PCA on set of 3D points is a set
of 3 unitary vectors and 3 scalar values. The unitary vectors are known as
eigenvectors, and the scalar values as eigenvalues. The eigenvalues give a notion
of the importance of a specific axis with respect to the others. This importance
measure is actually the variance -in statistical terms- of the data along each axis
(see fig.3.2). This means that an axis with large variance associated has the data
distributed in a larger portion of space, than another axis with lower variance
associated. In other words, when it comes to fit a plane to a planar distribution
of points, there is an axis with negligible variance (fig.3.2(b)), which determines
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the noise of the planar distribution. The larger is the amount of variance in that
direction, the lower is the likelihood of the point distribution to be a plane. PCA
algorithm is coordinate free, which means that results are adapted to the nature
of the data distribution but to the frame of reference where data is represented.
This makes the technique independent of the absolute position, which is quite
useful when dealing with pottery (pieces in general) scans.

1.4.2 Mixtures of Linear Models

Linear models are quite useful since their simplicity, low computational cost and
interpretability (from a geometrical point of view). However, there are situations
where the distribution of data can be more complex than a linear model can cope
with. For instance, a 2D surface with regions of high curvature requires a more
complex model in order to capture such a behavior. The same way a 1D sinusoidal
signal can not be well explained through one single line. In these situations, fitting
data through a linear model will produce misleading results. Regarding this latter
2D plane fitting example, there are two important issues to be considered: on one
hand, the noise in data originated from observations (scanning, etc...) and, on the
other, the error due to model assumptions. In the framework we are dealing with,
the error due to the model comes from fitting a plane to a region, and regions with
high curvature yield a high error measure in the estimates, i.e, there is a trade off
between error in the estimates and model complexity. In this particular framework,
the distinction must be performed between noise and geometrical features such as
curvature. Nevertheless, in a more general framework, complexity can also arise when
data is distributed in many clusters, which is due to considering different classes of
observations. One single projection can again lead to confusing explanations of such
behaviors, i.e. mixing many different clusters in one class. This is a typical problem
when facing classification.

The more ambitious is the task we aim to perform, the more complex the hy-
potheses to be formulated on the model. Highly complex models are much more
difficult to estimate, which means that inferring the latent variables, that describe
the variabilities in the observations, may not be a feasible task.

In these cases, it is advisable applying the finite mixtures approach, or what is the
same, focussing on small subproblems which can be studied with simpler techniques.
In most of cases, simplicity goes tied to linearity. Even though, the introduction of
non-linearity can offer the possibility of modelling a much richer family of structures,
non-linearity also brings potential problems. Since real data is typically corrupted
by noise, there is a risk that a non-linear model captures not only systematic non-
linearities in a data set, but also random artifacts due to noise. There is also a problem
related to interpreting the results obtained through non-linear models. Much simpler
and easier to understand for posterior evaluations are linear models.

In order to cope with global nonlinear behaviors we study the advantages of
dealing with local combinations of linear sub-models. Moreover, we take into account
that many problems offer the possibility of representing data through vectors. Typ-
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ically, these vectors lie on a manifold, which can be either linear or non-linear. The
underlying idea is based on geometry; a non-linear manifold can be approximated
through linear patches. Essentially, the work presented in this thesis is based on
analyzing Computer Vision problems where a combination of linear sub-models is
applied.

The advantage of finite mixtures of latent variable models is that they can place
different latent variables models in different regions of data space, where each latent
variable model models locally the data. This allows the use of simple local models
(e.g. linear-normal, like factor analysis or principal component analysis) that build a
complex global model (piecewise linear-normal). In other words, finite mixtures of
latent variable models combine clustering with dimensionality reduction.

Finite mixtures of latent variable models can be constructed in the usual way as:

p(t) =
M∑
m=1

p(m)p(t|m) (1.21)

where:

• A set of local latent subspaces Xm of dimension qm (not necessarily equal) are
defined in terms of a set of: mappings fm : Xm → T , noise models p(t|x,m),
prior distributions p(x|m) and a likelihood distribution p(t|m) given by each
fundamental equation:

p(t|m) =
∫
Xm

p(x|m)p(t|x,m)dx (1.22)

• There is a set of mixing coefficient p(m) that explain the relevance of each
sub-model among the rest inside the model.

This finite mixture model falls into the class of latent variable models taking both
discrete and continuous natures of latent variables (see fig. 1.5). In fact, the like-
lihood function p(t) for the observations is obtained by integrating (i.e. summating)
over the latent variables (discrete and continuous) as before:

p(t) =
M∑
m=1

∫
Xm

p(t,x,m) =
M∑
m=1

∫
Xm

p(m)p(x|m)p(t|x,m) (1.23)

The parameter estimation can be performed through the variational approach in-
troduced for the EM algorithm. No additional problems arise in this particular case;
we just have to take into account that we are dealing with discrete and continuous
variables. Taking into account the missing information framework presented in sec-
tion 1.3, there are now two issues to be considered: not only the latent coordinates
xn have to be inferred for a particular data point tn, but also the index m of the
mixture component that generated it:
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E step This requires the computation of the posterior probabilities p(m|tn) and
p(xn|m, tn):

p(m|tn) =
p(m)p(tn|m)∑M

m′=1 p(m′)p(tn|m′)

Regarding the inference of p(xn|m, tn), we proceed as in section 1.3 computing
the sufficient statistics for each sub-model.

M step This results in several update equations for the parameters. The update
equations for the mixing proportions are independent of the type of latent vari-
able model used:

p(m)t+1 =
1
N

N∑
n=1

p(m|tn)tp(m)t

The equations for the rest of the parameters (from the individual latent variable
models) depend on the specific functional form of p(tn|xn,m) and p(xn|m), but
often they are averages of the usual statistics weighted by p(m|tn) and computed
in a specific order.

Some examples of mixtures of linear models can be found in the literature: Ghahra-
mani [85] and Hinton (1997) [39] construct a mixture of Factor Analyzers, later Tip-
ping and Bishop (1999) [103] define mixtures of Principal Component Analyzers (a
particular form of mixtures of factor analyzers). In general, mixtures of latent vari-
able models whose distribution in data space p(t) results in a Gaussian mixture (such
as mixtures of factor analyzers or PCAs) have two advantages over usual mixtures of
Gaussian distributions:

• Each component latent variable model locally models both the (linear) mapping
and the noise, rather than just the covariance.

• They use fewer parameters per component, e.g. d(q + 1) for a factor analyzer
versus d(d + 1)/2 for a Gaussian (of course, q should not be too small for the
model to remain good).

A mixture of diagonal Gaussians and a mixture of spherical Gaussians can be seen, as
limit cases, as a mixture of factor analyzers with zero factors per component model
and a mixture of principal component analyzers with zero principal components per
component model, respectively. Thus, Gaussian mixtures explain the data by assum-
ing that it its exclusively due to noise-without any underlying (linear) structure.

1.5 Discussion

The methodology presented in this thesis has the purpose of finding information by
learning a flexible model from observations. This sort of algorithms may not explain
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the physical underlying phenomena that produce the observed data, but they have
the advantage of simulating the observed behavior without knowledge of the domain.
Since many variables and complex relations among them can affect observations,
the construction and estimation of a physically-derived model can be impractical
tasks. Enormous difficulties materialize when the purpose consists in distinguishing
categories of events that are irrelevant to the observations of interest. The distance,
in terms of suitability, between generative models and physical models notably
increases when dealing with high dimensional data. In fact, high-dimensionality arises
for several reasons, such as stochastic variations and the measurement process.

Many fields in science encounter such problems. Particularly in Computer Vi-
sion, the collection of features that can be obtained from images usually suffers from
noise and, in most cases, from high-dimensionality. Nevertheless, interesting results
on recognition and classification can be obtained without the necessity of explaining
observations through the Image Formation process. Of course, this decision is al-
ways governed by the specific purpose of each problem. It is not surprising therefore
that Latent Variable models have been extensively applied in diverse fields such as
psychometrics10 and ”natural sciences” (e.g. in botany, biology, geology or engineer-
ing). Those different science areas have in common that explaining their observed
phenomena through the roots of physics (quantum phenomena, particle physics, etc)
is neither practical nor suitable.

This type of problems can be faced through Generative Models, since they offer: i)
dimensionality reduction, and ii) stochastic noise modelling. In addition to this, it is
worth noting that the probabilistic approach given to the formulation yields not only
a manner of modelling noise, but also a way of including knowledge of the domain in
terms of a priori information (prior distributions). In this sense, practical methods
to explain observations can be enriched through additional information that we may
possess from external sources of knowledge (for instance, shape and time continuity,
boundaries, etc).

Two main points of discussion have an essential presence in this thesis: i) the
combination of global and local information, and ii) the complexity of a model in
terms of linearity and non-linearity.

The way information can be combined mainly relies on the feature selection pro-
cess, i.e., the collection of variables that form the observed space. Infinite possibilities
arise from this particular point. This fact mostly determines the optimality and relia-
bility of the set of potential solutions for a given problem, and, it is often a matter of
fine cuisine, where creativity plays a fundamental role. For instance, information can
be extracted from a set of measurements on the pixels of an image (pixel based op-
erations), from global transformations to the raw image data, from considering many

10Historically, the idea of latent variables arose primarily from psychometrics, beginning with the g
factor of Spearman (1904) [96] and continuing with other psychologists such as Thomson , Thurstone
and Burt , who were investigating the mental ability of children as suggested by the correlation and
covariance matrices from cognitive tests variables. This eventually led to the development of Factor
Analysis. Bartholomew (1987) [7] gives more historical details and references. In fact, Factor Analysis
has been applied to a number of ”natural science” problems as well as other kinds of latent variable
models recently developed, such as the application of GTM or of ICA.
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Figure 1.8: Global and local connotations.

images at the same time, filter responses, geometric measurements, etc.

Global and local concepts correspond to space and time in our field. Regarding
to the spatial distribution of information, two essential aspects must be considered:
global and local connotations can be related either to the vicinity of pixels in an image
or to the proximity of feature vectors in the observed space (see fig. 1.8). This thesis
shows problems that possess one or both aspects of locality when it comes to extract
information from raw data. An interesting situation, where both conceptions blend
into a single one, is 3D range data, where pixel locations are 3D coordinates11 and
feature vectors in the observed space can be the same 3D coordinates as well. In the
following chapter, a deeper analysis of this phenomenon is introduced as an example of
soft-dimensionality reduction. In fact, 3D geometry is particularly useful in order to
understand and visualize some features of the introduced density distribution-based
techniques.

The complexity of a model comes from the particular specification of each of the
four ingredients needed for building a certain Generative Model: the latent variables,
the model parameters, the structural equation, and the noise model. Regarding to
these components, a taxonomy has been presented in previous section 1.4. From
an algorithmic point of view, complexity in this case translates into the linear and
non-linear concepts, which often are related to the estimation process. It has been
emphasized that simplicity, interpretability, and a low computational cost are always
desirable. In this sense, linear models are more likely to hit these targets. Nonethe-
less, there are situations where a linear model cannot cope with. The origin of such

11Pixel values are binary: 1 if there is a point in a cell of the 3D space, 0 otherwise.
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situations can be: a specific model for the latent variables that is far from being Gaus-
sian (IFA, ICA), a non-linear structural equation (GTM, VQ, Mixture Models), or a
non-normal noise model (ICA, IFA, robust statistics). Inside, this group of non-linear
behaviors, we mainly focus on Mixture Models, since they have a very attractive
property: they are complex non-linear models built from simple linear models. They
in fact apply the old rule of divide-and-conquer, more explicit or less. Further, in this
thesis, we present some different ways of implementing this rule.

Another issue that deserves to be pointed out is that a probabilistic approach is
given to the formulation of the models presented in this thesis. This approach per-
mits: i) the combination of several probabilistic methods in a mixture in a natural
way, ii) comparing a method with other probabilistic methods as well as construct-
ing statistical tests, iii) the prediction of any variable(s) as a function of any
other variable(s) by using conditional probabilities, and iv) the natural extension to
Bayesian analysis for model comparison through the use of prior distributions as
well as the inclusion of external sources of knowledge.

There is a strong relation between Least Square Estimation techniques and prob-
abilistic methods (Maximum Likelihood-based). Historically, the first kind used to
precede the second one. In some way, most problems are tackled first through the idea
of minimizing some reconstruction error, however subsequently such techniques must
be recast in a probabilistic formulation if some of the properties mentioned before are
desired. For instance, Principal Component Analysis was traditionally not considered
a latent variable model. It was first thought of by Pearson (1901)[75] and developed
as a multivariate technique by Hotelling (1933)[41]. The most popular technique for
dimensionality reduction, PCA, has recently been recast in the form of a particular
kind of factor analysis thus as a latent variable model [14, 12, 85].

Selecting relevant information and building a model to explain the observations
are issues that coincide with the purpose of finding a powerful representation for each
specific problem. This is, in fact, the role of the model parameters. The choice of
an appropriate representation for data takes significant relevance when it comes to
dealing with symmetries and the modes of variation of a pattern. In this framework,
representation consist in a set of basic primitives (or perceptual units, in a semantic
approach) that transform a complex problem based on observations into a manageable
one. In addition to this, this pursuit usually implies that the number of degrees of
freedom in the data distribution is lower than the coordinates used to represent it
(dimensionality reduction). These simplifications of the estimation problem rely
on a proper mechanism of combining such primitives in order to give an optimal
description for the observations (the structural equation).

1.6 Outline of this Thesis

This thesis begins with an introduction to Latent Variables, the Expectation-Maximization
algorithm and some well-known specific latent variable models.

After this introduction, the thesis is divided in two parts. A first part is dedicated
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to Dimensionality reduction, where two examples are introduced in order to show the
connections among latent space, internal symmetries and intrinsic degrees of freedom.
Both examples illustrate the combination of global and local information with real
data. A second chapter in this part shows the advantages of using combinations of
linear models for describing non-linear behaviors of the observed 3D range data.

The second part of the thesis focuses on problems related to temporal sequences
of images. The meaning of the global and local information combination is extended
to time. Two chapters exploit this idea in order to build mosaic images from video
sequences. A third chapter, in this second part, attempts to model the internal tem-
poral symmetry of a video sequence with the purpose of extracting a certain number
of summarizing iconic representative image-like structures. In a similar methodol-
ogy, the first part of this thesis already introduced the connection between the struc-
tural equation defining the relationship between latent variables and observations and
the continuous one-parameter group. The attempt of extracting semantic units that
summarize a video sequence is also treated from an online classification approach.
This fourth chapter of the second part classifies and automatically determines the
number of classes and their corresponding representatives according to a Bayesian
cross-validation criterion.

Finally, the last chapter of the second part, analyzes periodic motions in video
sequences. The algorithm classifies the different types of periodic motions according
to their different frequencies. An analytic study is performed in order to discern when
classification is possible.

This thesis finishes with a summary and concluding remarks in order to point out
how the same protocols, when representing observations and dealing with different
levels of information, can be applied to apparently different phenomena within the
Computer Vision framework.
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Chapter 2

Dimensionality Reduction

2.1 Introduction

Latent Variable models introduce a generative model for dimensionality reduc-
tion. The aim of this chapter is to connect the presented statistical techniques
with the problems of pattern detection and recognition in Computer Vision.

It is a common fact in the Pattern Recognition community that the number of
variables used to describe observations is rather larger than desired, (for instance,
when it comes to classification, since the curse of dimensionality yields nonintuitive
effects on results). This phenomenon can be attributed to the use of general-purpose
sensor devices, which consist in transforming a certain form of energy (e.g. light,
heat, sound, etc) into stimuli. However, the representation of stimuli, in terms of
some perceptually meaningful features, is purpose-driven. Frequently, processing the
raw sensory input in order to obtain a purpose-driven perceptual categorization of
stimuli implies dealing with high dimensionality (see figure 2.1).

Consider a system with the specific purpose of recognizing a particular object
category. Our input signal can be a particular spatial distribution of pixel values
(gray/color). Either performing measurements (geometrical features) on the obtained
image, or, taking the image as a vector (by row concatenation of the pixel grid),
the result is a feature vector that represents an observation. If we proceed through
taking an image (of n width and m height) as a vector in lexicographic order (figure
2.2), the feature space will be of nm dimensions, which can be significantly high,
e.g. O(104). This means that a nearly infinite number of different images can be
represented through this system of coordinates, and, on the other hand, just a small
portion of the space is related to a certain object category.

In fact, images of natural scenes are characterized by a high degree of statistical
regularity owing to the morphological consistency of the objects. In this sense, such a
pixel-based representation is highly redundant, which means that there is a correlation
among pixel values. Given a set of different observations from objects concerning the

29
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Figure 2.1: The dimensionality reduction problem. A camera captures an image,
which is transformed into a collection of pixel values distributed on a grid. The
dimension of this problem must be reduced before processing in order to represent a
perceptual category. Otherwise, this sort of problems are often intractable.
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Figure 2.2: Vector concatenation through lexicographic ordering of an image.
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Figure 2.3: Example of hard dimensionality reduction problems. Intrinsic degrees
of freedom of a set of image observations. Variations are produced in vertical and
horizontal directions only. Therefore this set of high-dimensional observations can be
represented through few components that describe the modes of variations present
in data.

same category, the variability in each pixel value is constrained to a certain range,
which is influenced by the rest of pixel value variations.

Therefore, in a number of occasions it can be useful or even necessary to first
reduce the dimensionality of the data to a manageable size, keeping as much of the
original information as possible, and then feed the reduced-dimension (intrinsic di-
mensionality) data into the system (see figure 2.1).

More generally, whenever the intrinsic dimensionality of a data set is smaller than
the actual one, dimensionality reduction can bring an improved understanding of the
data apart from a computational advantage. Dimensionality reduction can also be
seen as a feature extraction or coding procedure, or in general as a representation in
a different coordinate system.

Dimension reduction can be categorized in three purpose-guided classes:

• Hard dimensionality reduction problems, in which the data have dimensionality
ranging from hundreds to perhaps hundreds of thousands of components, and
usually a drastic reduction (possibly of orders of magnitude) is sought. The
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Figure 2.4: Example of soft dimensionality reduction problem. A 2D surface em-
bedded into a 3D space that has 2 degrees of freedom: u and v vectors.

components are often repeated measures of a certain magnitude in different
points of space or in different instants of time (see figure 2.3).

• Soft dimensionality reduction problems, in which the data is not too high-
dimensional (less than a few tens of components), and the reduction not very
drastic. Typically, the components are observed or measured values of different
variables, which have a straightforward interpretation (geometrical features). In
addition, there are problems involving 3D range data that imply a lower intrin-
sic dimension (2D surfaces or 1D curves, see figure 2.4 and 2.6). In this chapter,
we show how a transformation of a 3D range data problem into a lower dimen-
sional representation brings a way of denoising and reconstructing surfaces from
missing data.

• Visualization problems, in this thesis, we consider a third kind of problems,
which involve either soft or hard dimension reduction. The specific purpose
of visualizing data has a particular effect (topological and topographical con-
straints) on the construction of models for reducing the number dimensions. In
this thesis, we describe a method for visualizing/summarizing relations among
shots in video sequences (hyper-linking) (see figure 2.5).

2.2 Intrinsic Degrees of Freedom

Determining the intrinsic dimensionality of a process given a sample of it is central to
the problem of dimensionality reduction. Two main categories of problems implying
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Figure 2.5: Visualization purposes of dimensionality reduction. A video sequence
is visualized in a 2D space in order to provide a system for video navigation.

dimension reduction can be described in terms of the prior knowledge of the internal
degrees of freedom:

• A priori information on symmetries regarding the distribution of data brings a
powerful assistance to build a model for explaining and predicting behaviors.
Consider a 3D data distribution generated from scanning an axially symmetric
surface. In this case, an axis of symmetry and a profile curve are sufficient for
representing such a surface. Moreover, the dimension reduction has gone from
3D to 1D (profile curve) thanks to the introduction of symmetry assumptions
(see figure 2.6). Including this kind of external knowledge to a model helps
reconstructing the surface even when considering only part of the observations.
Another example is a spherical distribution of points, where the surface can be
described just by one scalar value (radius). The variations with respect to the
generating model presented in this type of problems are taken as noise.

• In other situations, where no prior knowledge on the intrinsic dimension is given,
the possibility of under/overfitting must be taken into account. This fact has
relative importance depending on the problem goals. For instance, unsupervised
learning of clustering models for classification requires a careful analysis in order
to provide a meaningful interpretation of the different estimated classes. In
these situations, Bayesian techniques are employed in order to automatically
determine the number of necessary mixture components.

In this chapter, we show a couple of examples: one is related with object detec-
tion in images, and the other corresponds to 3D data reconstruction. Both problems



34 DIMENSIONALITY REDUCTION

1D Profile Curve

3D Space3D Space

u
(x,y,z)

Dimensionality

Reduction

1D Profile Curve

3D Space

1D Profile Curve

3D Space3D Space

u
(x,y,z)

Dimensionality

Reduction

Figure 2.6: An example of prior external knowledge on symmetries regarding
the distribution of data. Intrinsic degrees of freedom of an axially symmetric surface
embedded in a 3D space. An one-dimensional profile curve describes the surface
through the polar evolution on one axis of revolution.

pretend to show the advantages of dealing with generative models. Before present-
ing these two problems, we first analyze two interesting situations that are useful for
introducing these examples. On one hand, the curse of dimensionality concerning
recognition is studied in order to point out the advantages of modelling data though
Probabilistic PCA instead of using the Euclidean distance. On the other, some rele-
vant reasons that justify local dimensionality reduction are detailed.

2.2.1 PCA versus Euclidean Distance

In this section, a problem related with the curse of dimensionality is illustrated in
order to compare the consequences of modelling data through a spherical Gaussian
distribution and Probabilistic Principal Component Analysis.

The curse of dimensionality refers to the problems associated with multivariate
data analysis as the dimensionality increases. This sort problem mainly arises in
pattern classification1, where more than one distance measure must be compared in
order to identify to which class belongs a test pattern. In this area, interesting analyzes
on the geometry of high dimensional spaces have been performed by Bellman (1961)[8],
Silverman (1986)[94], Wegman 1990 [109] and Scott (1992)[90]. These studies are
related to the properties that are involved in the estimation of density functions, such
as the exponential growth of hyper-volumes as a function of dimensionality.

In this thesis, the problems we deal with are related to recognition, which can be
seen as a one-class classification problem. A substantial difference with respect to

1In practice, the curse of dimensionality means that, for a given sample size, there is a maximum
number of features above which the performance of our classifier will degrade rather than improve.
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Figure 2.7: Euclidean distance versus log-likelihood distance analysis.

many-classes classification problems is that no relative distances are to be compared.
However, certain relevant effects appear in high dimensional spaces depending on the
way data is modelled.

A common property of recognition systems is that they require of a decision mech-
anism to discern if a test pattern belongs to the learned model for a set of training
observations. Metric approaches base this decision on a distance measure. Intuitively,
the idea of distance quantifies how far is a test pattern from a learned model. In fact,
for several reasons2, the most well-known and exploited measure is the Euclidean
distance. One of the easiest models for recognizing one-class patterns is based on the
Euclidean distance from a data point to the sample mean, which comes from mini-
mizing the sum of squared distances of each sample to it (Least Squares Estimation
approach).

Inside the latent variable framework, this type of models can be considered as
a Principal Component Analyzers with zero principal components. In other words,
data is modelled through assuming one spherical Gaussian distribution centered in the
sample mean. In this sense, we say that no dimension reduction has been performed.

The aim of this section is to show that such a simple model may incur in false-
positives/negatives during a test process, since the distribution of data is hardly
taken into account. Consider the following 2D problem, where data has 1D intrinsic
dimension. By using PCA, we can estimate the principal direction where data lies
on, as well as, the direction of noise. In this problem, spherical Gaussian modelling
considers all directions to be equally important. In this sense when it comes to
performing a test process, some samples will be considered to belong to the learned
model. On the other hand, if we consider a model that discerns noise directions and
intrinsic dimensions, the number of false-positives/negatives will be reduced. This
example is illustrated in figure 2.7, where a test point (black dot) is considered to
belong to the learned model when assuming a spherical Gaussian distribution with

2There is a natural predisposition to explain phenomena through the intuition acquired in our
3D Euclidean world.
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Figure 2.8: Analysis of the curse of dimensionality concerning recognition. The
use of an appropriate distance measure based on dimensionality reduction defines a
volume smaller than the one generated through an Euclidean distance assumption.
When increasing dimensions this facts becomes more relevant since the volume ratio
tends to zero.

no principal components, while, it does not belong to the model that assumes just
one intrinsic degree of freedom. On the other hand, a test sample (x point in figure
2.7) can be rejected by a model based on a spherical Gaussian distribution while it is
accepted by the PCA model.

These two models differ in the estimation of the space volume that confines the
data distribution. For instance, inscribing an ellipsoid in a sphere determines the
ratio of volume that is outside the ellipsoid. When increasing dimensionality this
ratio tends to zero as an exponential decay (see figure 2.8). This means that the
likelihood of failing in recognizing a pattern increases with dimensionality.

The previous example has been introduced with the aim of intuitively showing the
contribution of the number of dimensions to the difference between the presented mod-
els. However, a more accurate analysis can be performed in order to expose the effects
of dimensionality. Consider a data set with only one principal component describing
the observations. PCA will give us two types of variance: one λmax corresponding
to the distribution of data along the principal direction, and another ε related to
noise in the rest of dimensions. In this case different methods (Bayesian approaches,
threshold, etc) can be used to determine why there is only one intrinsic dimension
that represents data. Usually, a proportion ν = 90% or more of the spectrum energy,
L =

∑d
i=1 λi, should be contained in the principal component eigenvalues. We take
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this issue into consideration for a posterior reasoning.

When considering an spherical Gaussian model, we can see that the radius of the
hyper-sphere containing the observations is the mean of the PCA eigenvalues:

r =
1
d

d∑
i=1

λi =
1
d
[λmax + (1− ν)L] (2.1)

where d is the number of dimensions. Therefore, the volume of a hyper-sphere is
proportional to:

Vs ∼ rd (2.2)

According to the energy of the power spectrum L =
∑d
i=1 λi and the proportion

ν taken by the largest eigenvalue λmax, the noise amplitude ε can be expressed as
follows:

ε =
L(1− ν)
d− 1 (2.3)

This equation assumes that noise is equally distributed on the rest of dimensions.
The volume for the ellipsoid in this case is proportional to:

Ve ∼ λmaxε
d−1 (2.4)

The proportion factor for both hyper-volumes is the same and corresponds to the
volume of a hyper-sphere of unit radius:

Vs(r = 1) =
πd

Γ(d/2 + 1)
(2.5)

Since our purpose in comparing a ratio of volumes, this dimension dependent constant
is not taken into account. The corresponding ratio Vs/Ve of the sphere volume with
respect to the ellipsoid volume is:

R =
Vs
Ve
=

rd

λmaxεd−1
(2.6)

Considering 1−ν sufficiently small and the number of dimensions d large (d−1 ≈ d),
the ratio R can be approximated to:

R ≈
[

1
dλmax

]d
λmaxεd−1

≈
(
λmax

dε

)d
(2.7)

Let us rewrite this ratio in terms of the portion of energy ν of the power spectrum L
confined in λmax:

R =

(
νL

d (1−ν)L
d−1

)d
=
(

ν

1− ν

)d
(2.8)

where ε has been substituted by its value in equation (3.10). Therefore, we can con-
clude that for ν > 1

2 the ratio between the sphere volume and the ellipsoid volume
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in high-dimensional spaces tends to infinity as an exponential function of the dimen-
sion d. Moreover, this result concurs with the previous simple reasoning of inscribing
an ellipsoid in a sphere. This fact is interpreted as follows: the number of false-
positives in the spherical Gaussian model with respect to the PCA model
increases as an exponential function of the number of dimensions d.

The same reasoning can be straightforwardly extended to more than one intrinsic
dimension:

R =
Vs
Ve
=

rd∏q
i=1 λiε

d−q =

[
1
dνL

]d
∏q
i=1 λi

(
L(1−ν)
d−q

)d−q (2.9)

Again, assuming 1− ν small and d >> q:

R =
Vs
Ve
=

(
1
dνL

)q∏q
i=1 λi

(
ν

1− ν

)d−q
≈

≈
(
1
d

)q (∑q
i=1 λi)

q∏q
i=1 λi

(
ν

1− ν

)d
where the equation νL =

∑q
i=1 λi has been employed. At this point, we can apply

the Cauchy-Schwarz inequality (
1
q

q∑
i=1

λi

)q
≥

q∏
i=1

λi (2.10)

since all the eigenvalues are λi > 0 ∀ i, such that 1 ≤ i ≤ q, in order to show that:

(
∑q
i=1 λi)

q∏q
i=1 λi

≥ qq (2.11)

Thus,
Vs
Ve
≥
(
1
d

)q
qq
(

ν

1− ν

)d
(2.12)

From this equation, it is straightforward to show that:

lim
d→+∞

Vs
Ve
≥ lim
d→+∞

(
1
d

)q
qq
(

ν

1− ν

)d
= +∞ (2.13)

for d >> q and ν >> 1
2 .

Summary

This section has described a particular type of effects that occur when dealing with
high-dimensional spaces. To this end three steps have been employed progressively
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augmenting the level of complexity. It is worthy to emphasize that all three descrip-
tions agree concerning the difference between the spherical Gaussian and the PCA
models. This reasoning requires two conditions: i) the number of dimensions is larger
than the number of internal degrees of freedom d >> q, and ii) the internal degrees
of freedom hold most of the power spectrum energy ν >> 1

2 .

Another relevant issue to point out is that: contrarily to our intuition, in high-
dimensional distributions the tails are much more important than in one-dimensional
ones [94]. This issue reinforces the statement introduced previously, (the number of
false-positives in the spherical Gaussian model with respect to the PCA model increases
as an exponential function of the number of dimensions d), since the tails of the
spherical Gaussian model will contain a significant part of the mass.

2.2.2 Local Dimension Reduction

The combination of local linear models for explaining the global complex behavior of
data is based on the following reasons:

• Taylor’s theorem: any differentiable function becomes approximately linear in
a sufficiently small region around a point (fig. 2.9(a)).

• The data manifold may actually consist of separate manifolds, which may or
may not be connected together in one piece; i.e., it may be clustered (fig. 2.9(b)).

• The intrinsic dimensionality of the data may vary along the manifold (fig.
2.9(c)).

• The intrinsic dimensionality may not vary, but the orientation may vary as one
moves along the manifold (fig. 2.9(d)).

The idea is that individual parts of a global data manifold can be estimated
through simple linear models in order to cope with the global complex structure. In
fact, using a complex global model able to represent a large number of manifolds (via
a large number of parameters has several disadvantages:

• The power of the model is wasted in those areas of the space where the manifold
is approximately linear.

• A large data set is required to fit a large number of parameters.

• Training becomes difficult because, due to the high flexibility of the model, the
error function is likely to have a lot of local minima.

Focusing on small sub-problems, a global nonlinear manifold can be learned easily,
fast and with few local minima. Moreover, the total number of parameters will be
smaller, since some constraints on the local structure are applied in terms of prior
knowledge. In this sense, local dimensionality reduction techniques require:
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Figure 2.9: (a) Linear approximation of a function around a point. (b) Cluster
distribution of data. (c) Data distribution with different local intrinsic dimensions.
(d) Mixture of tangent linear models of a curve.
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• Simple dimensionality reduction models as building blocks (typically PCA),
usually distributed around the space and each one having a limited reach (hence
the locality).

• A way to determine the dimensionality of each component.

• A responsibility assignation rule that, given a point in data space, assigns a
weight or responsibility for it to each component. This can be seen as clustering.

• A way to learn both the local models (manifold fitting) and the responsibility
assignment (clustering).

All these requirements can be handled by taking into account the probabilistic
formulation presented in section 1.4.2 concerning mixtures of local linear models.
From a probabilistic point of view, the concept of local models and responsibility
assignation is naturally expressed as a mixture (of latent variable models) and was
covered in section 1.4.2. The training criterion is then log-likelihood rather than
reconstruction error, since the probability model attempts to model the noise as well as
(and separately from) the underlying manifold. Formulating the local dimensionality
reduction problem as a mixture of distributions results in a unified view of the whole
model and its probabilistic nature brings a number of well-known advantages, in
particular the fact that typically we can derive an EM algorithm that will train all
parameters (those of the local models and those of the responsibility assignment)
at the same time, with guaranteed convergence and often in a simple way: the E
step assigns the responsibilities while the M step fits each local model. Under this
approach, the responsibility assignment is carried out by the posterior probabilities
for each mixture component. Nonetheless, this sort of computation, which has been
widely employed in the literature, can be classified into two main groups according
to the nature of the responsibilities:

• Hard: a single component receives all the responsibility and the rest receive no
responsibility at all. It is a winner-take-all approach, usually a form of vector
quantization.

• Soft: the responsibility is distributed among all components as a partition
of unity, so that when training, a given data point will result in an update
of all components; and when reducing dimensionality, the reduced-dimension
representative will be the average of the local reduced-dimension representatives
weighted by the respective responsibilities.

Usually, the suitability when using one of these two types of responsibility as-
signment relies on the specific nature and purposes of each problem. In fact, when
it comes to classification, and thus clustering, data points for which more than one
local model are significatively responsible are problematic. On the other hand, a soft
assignment provides a continuous dimensionality reduction mapping, which is quite
useful for connecting local and global approaches in terms of expected coordinates.
In this sense, recently some new techniques on relating global and local coordinates
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Figure 2.10: (a) A distance-like measure (posterior probability) is compared to each
cluster for a given point. (b) Graphical model for a soft responsibility assignment.
(c) Graphical model for a hard responsibility assignment.

have been presented with the purpose of exploratory data analysis and visualization.
For instance the Local Linear Embedding (LLE) [86] is introduced as an unsupervised
learning algorithm that computes low-dimensional, neighborhood-preserving embed-
ding of high-dimensional inputs. Unlike clustering methods for local dimensionality
reduction, LLE maps its inputs into a single global coordinate system of lower dimen-
sionality, and its optimizations do not involve local minima. Nonlinear dimensionality
reduction is also formulated using the Isomap technique [100, 101] that finds a Eu-
clidean feature-space embedding of a set of observations that preserves as closely as
possible their intrinsic metric structure.

2.3 Examples

To concrete some of the abstract concepts discussed in this chapter, we conclude with
two examples of real-data applications:

• The first problem refers to applying a probabilistic version of PCA in order to
recognize elongated structures in medical images. In fact, this is an example of
dealing with a feature vector obtained from measurements on an image. Ac-
cording to the previous concepts on dimensionality reduction types and intrinsic
degrees of freedom features, this problem can be categorized as follows:

– Class of dimensionality reduction problem: Hard, regarding section 3.1.

– A priori information on the intrinsic degrees of freedom: No. (Section
2.2).

– Global dimension reduction problem with respect to the feature vector
coordinates. (Section 2.2.2).

In terms of locality referred to the pixel-grid, (see fig. 1.8), information is ex-
tracted from neighbor pixels in order to built a feature vector. After the detec-
tion process, a global use of the information is performed based on a perceptual
organization of the detected structures in the snake framework.
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• The second problem concerns 3D surfaces reconstruction from missing range
data. This is embedded in the framework of Digital Archaeology. According to
the previous concepts on dimensionality reduction types and intrinsic degrees
of freedom features, this problem can be categorized as follows:

– Class of dimensionality reduction problem: Soft, regarding section 3.1.

– A priori information on the intrinsic degrees of freedom: Yes, symme-
tries on the generation of the type of the analyzed surfaces are exploited
in order to represent them as a 1D problem. (Section 2.2).

– Local dimension reduction problem with respect to the feature vector co-
ordinates (3D points). This problem uses a hard assignation of responsi-
bilities because of computational purposes. (Section 2.2.2).

Information is exploited at two levels: local and global. Global information is
perceived as a symmetry constraint on the possible values for the parameter
estimates. Locally, data is divided in order to fit a sub-model to each portion.

2.3.1 An Example of PCA applied to Image Analysis

Part of the work presented in this thesis, concerning object detection/recognition in
images, is focused on non-rigid vessel structures. This sort of problems have a relevant
interest since both local and global information from the image must be suitably
combined in order to obtain successful results. In fact, both aspects of information
have the following implications:

Non-rigidity is the key factor that forces considering some local information of
the structure, since the infinite number of possible global configurations of a
vessel structure do not permit employing the standard global template matching
techniques (see fig. 2.11). If we consider a cross section of the vessel structure
along the tangent direction of the curve, a valley profile of the intensity values
is obtained. In fact, all pixel locations belonging to the profile curve have this
profile property. In fact, the profiles are the minimal information common to
any linear structure, with the added value that are independent of morphological
variabilities, i.e. curvature, orientation, etc.

Continuity and smoothness are conditions to be satisfied by this type of structures.
Both assumptions concern the way global information is handled. In this par-
ticular case, these can be seen as a perceptual organization of the detected local
structures.

The summarizing idea of this technique, which combines both aspects of informa-
tion, is that: a similarity measure provided by the generative PCA model is used for
building a likelihood map that indicates which pixels are potential parts of a vessel
structure. This map behaves as a potential field for a deformable snake model in
order to track the ridge of a vessel.
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Figure 2.11: (Top) Example of a medical image with non-rigid vessel structures.
(Bottom-left corner) Cross sections along the tangent direction of the vessel structure.
(Bottom-right) Gray level profile for a pixel location.
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(a) (b)

Figure 2.12: Directions associated to (a) the lower eigenvalue indicating a flow-like
structure and larger one(b).

In this section, rather than introducing all the specifics involving the algorithm, we
focus on the construction of a representation for the observed feature vectors. Thus,
the part we are interested at this point concerns the localization of pixels belonging
to a vessel structure.

Feature Vectors

The feature vectors correspond to the transversal gray level profiles, where 40 pix-
els are considered. This direction is obtained through the computation of the local
orientation of the vessel at each pixel position. This process makes our technique
view-point rotation invariant, since the local orientation is inherent to the vessel’s
shape. More specifically, the analysis of flow like structures (e.g. elongated objects)
induces to considering the structure tensor field, which applied to an integration re-
gion ρ of the regularized image gradient ∇Iσ, measures the coherence between the
regions and the searched structure [110]:

Jρ(i, j) = Kρ ∗ (∇Iσ∇ITσ )(i, j) (ρ ≥ σ ≥ 0) (2.14)

where (i, j) are the image coordinates and Kρ is a gaussian convolution kernel. The
eigenvalues µ1,2 of the tensor (2.14) (µ1 ≥ µ2) describe the average contrast varia-
tion in the eigendirections �w1,2 (�w1⊥�w2). The eigenvector associated to the lower
eigenvalue, �w2 is the orientation of lowest fluctuation, detecting the elongated flow,
figure 2.12(a). The first eigenvector describes the directions of maximal grey-level
variance fig. 2.12(b). This fact helps constraining the degrees of freedom of in the
representation space due to orientation. In this sense, only shape variability is taken
into account.
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Intrinsic Degrees of Freedom

A reliable representation of these feature vectors must capture variabilities of shape
due to the width of the profile as well as contrast and noise. To this end, we apply
Principal Component Analysis technique in its probabilistic version, where the goals
are:

• To show how dealing with a similarity measure helps to discern if a test
sample belongs to the learned model.

• To show the modes of variation in the observations through the PC that
explain the observation.

• To point out an example of the effects of dealing with high dimensionality,
in terms of false/negative positives.

The first step is to collect a data set of examples corresponding to cross sections of
vessel structures. This process determines which are the scales to be taken into ac-
count for a posterior detection process. One of the main goals for building a suitable
representation of data is to reduce extra variabilities that can be present in the feature
vectors. For instance, in this case, a normalization process can remove variations due
to illumination contrast. Thus, from an original set presented in figure 2.13 (a), we
obtain a normalized set in figure 2.13(b) where variations are only related to the pro-
files’ shape. Moreover, we attempted to align all samples in order to avoid capturing
translations in the model representation. This fact is determinant, otherwise more
than the necessary intrinsic dimensions will be considered when building the model.

Parameters of the Model

After collecting a suitably processed data set, which takes only into account variations
due to shape, the following step is to apply the PCA algorithm. This has been
performed using the Singular Value Decomposition of the covariance matrix of the
data set. The aim is to show the idea of intrinsic dimension by means of the eigenvalues
and eigenvectors that codify the observations. The first issue that deserves to be
commented is the form of the sample mean in figure 2.14(b). This corresponds to
an ideal profile where the stochastic noise contribution has been removed. On the
other hand, the power spectrum is used to ranking the eigenvectors in terms of their
contribution to the reconstruction of a sample, in a Least Squares sense as in section
1.4.1.

In order to obtain an idea of the intrinsic dimensionality, we can analyze the
accumulated version of the normalized power spectrum in figure 2.14(c). Close to 95%
of the reconstruction power is contained in 9 Principal Components (see fig. 2.14(a)).
This yields a latent space of 9 dimensions. Looking at the shape of the first 5 PC
we can see that they mainly describe low frequency variations due to shape, such as
width. The higher order terms are related to high frequency variations. Deciding the
number of PC is a difficult task, since distinguishing noise perturbations from shape
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Figure 2.13: Some samples of the training data set. (a) Samples extracted from an
image corresponding to the cross section of a vessel. (b) Samples after normalizing
illumination. (c) Individual views of some samples.
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Figure 2.14: (a) 9 First Principal Components of the training data set. (b) Sample
mean. (c) Accumulated sum of the normalized eigenvalue spectrum. Considering 5
PC implies 90% of reconstruction reliability.



2.3. Examples 49

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

(a) (b)

Figure 2.15: (a) Negative-loglikelihood of the training data set. (b) Euclidean
distance of each sample to the mean.

variations requires a more sophisticate approach, such as a Bayesian framework that
can be found in [12].

Recognition: PCA versus Euclidean Distance

The purpose of this section is to show an example version of the discussion introduced
in section 2.2.1. We consider the negative-loglikelihood of each sample according to
the parameters of the model previously presented. This sort of distance measure
comes from the likelihood measure in equation (1.13). On the other hand, we take
into account what happens if we measure through the Euclidean distance. Both plots
are presented in figure 2.15. The aim of this is to focus on the higher error value
for each measure. These values (0.14 and 3.2) are the upper bounds of our problem.
From them, we can relatively compare both measures for a test sample. Note that
for a test sample such as the one in figure 2.16 the Euclidean distance 2.7 is below
the upper bound of the training set 3.2. In this sense, taking into account that all the
training samples have been carefully selected so that, all of them are assumed to be
vessel profiles, this profile ought to be accepted by the spherical Gaussian model, i.e.,
the model with zero PC. On the other hand, if we consider the likelihood measure
provided by the PCA model with 9 PC, this error increases up to 2.7, which is 19
times far from the upper error bound of the training set, thus, this sample would be
rejected. This fact makes relevant, the necessity of modelling data through reducing
the dimensionality of the observations.

Finally, after learning a model for the vessel profile, we can apply the distance
measure to each pixel location. In this process, the orientation vector field provided
by the structure tensor in eq. (2.14) plays a crucial role. At each pixel location, a
gray level profile of 40 pixels length is extracted. We take each pixel location in the
image as the center of the profile line. The direction of extraction is given by the
direction of maximum variance of the tensor field (e.g. the one provided by figure
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Figure 2.16: Test profile with an Euclidean distance of 2.7 and a negative-log-
likelihood of 3.9.

2.12). Afterwards, each profile is compared with the learned model, and therefore,
their corresponding distance measure is assigned to each pixel location, obtaining a
negative-loglikelihood map. In order to present a first coarse level of segmentation, a
threshold can be employed. To this end, the distance values 2 times bigger than the
upper bound (see fig. 2.15) of the training data set have been rejected.

Still, some false responses are present in the resulting threshold images. Many
reasons contribute to this fact: impulsive noise, low contrast regions, abrupt changes
of illumination, etc... Different posterior techniques can be used in order to remove
false responses. On one hand, we can use the idea introduced in our work [104].
Since, vessel present a parallel flow when applying the structure tensor (fig. 2.12),
local parallelism (local average scalar product of flow vectors) enhances areas where a
vessel is more likely to be. Moreover, a multi-scale approach for both structure tensor
and vessel profiles will give better results.

2.3.2 A 3D Range Data Example of Local Models

A completely different problem is presented in this section. The purpose is to show
the advantages of dealing with a mixture model in certain situations, where linear
models are not sufficient.

This example deals with 3D range data, where the pixel locations correspond
to 3D coordinates and the feature vectors in the observed space are the same 3D
coordinates as well. This is actually, an interesting situation where both conceptions
of locality mentioned in section 1.5 blend into a single one. In addition, 3D geometry
problems are particularly useful, since they can be understood and visualized by means
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Figure 2.17: Left column shows the original images where the recognition algorithm
has been applied. Central column shows the corresponding negative-loglikelihood
map for each pixel location. Right column corresponds to a threshold on the model’s
distance measure for each pixel location.
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of our spatial intuition. The idea of intrinsic degrees of freedom and dimensionality
reduction is clearly based on symmetries and local approximations of surfaces through
lower dimensional linear manifolds, such as planes and lines.

The interest is focused on fragments of archaeological pots. This is embedded in
the framework of Digital Archaeology and it corresponds to part of our work presented
in [113, 112, 24, 25, 72]. Many archaeological excavation sites are rich in fragments of
pots, called sherds hereafter, which are either axially symmetric3, or look as though
they might have such rotational structure but really do not, e.g., the handles of a jar
or flat sections of the surface of a plate. Two main reasons encourage the study of
this sort of pieces:

• There is an access to a priori information on the intrinsic degrees of
freedom. Axial symmetry is taken into account in order to reduce the problem
from the observed 3 dimensions to 1D space.

• The archaeological pieces correspond to broken parts of a pot, and therefore, not
all the information on the original pot is available. This fact leads to consider
reconstruction algorithms that handlemissing data and that provide a certain
level of prediction for new points.

There is great scientific and cultural interest in the archaeological community in
reconstructing these axially symmetric pots from the sherds found (see fig. 2.18). In
fact, by taking advantage of axial symmetry, the number of possible combinations
among patches, in the assembly search, is going to be reduced to a manageable one,
i.e. attaching sherds together pairwise so that the axes, the profile curves and the
break curves match.

This example presents a new technique for estimating the location and direction
of the axis in cylindrical symmetrical data distributions. These distributions are 3D
points obtained by means of CT and Laser scanners. The motivation behind this is
to provide a setting for object reconstruction working with partial surface patches.

Previous Work

Parameter estimation in surfaces of revolution has recently been analyzed by Pottmann
et al. [80, 81] from an algebraic geometry approach. In [81] authors describe a method
that gives a result as closed linear form solution provided by a Plücker coordinates
representation. In this coordinate system straight lines are represented in terms of
six-tuples satisfying two constrains that involve their elements. The basic idea is to
find the axis that generates the surface of revolution according to the following reason-
ing. If, for each point on the surface a straight line is drawn, which follows the normal
direction to the surface, all the lines have to intersect the axis of revolution (see fig.
2.19). Consequently, taking a plane perpendicular to this axis, the lines belonging to

3the intersection of the pot outer surface with a plane perpendicular to the pot axis is a circle or
nearly so.
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Figure 2.18: Constituent sherds of a cylindrical symmetric pot.

this plane will cross at a certain point. All the points on the surface that belong to
this plane have the same radius. Therefore, given a data set and their normals, the
goal is to find a straight line (axis of revolution) that minimizes the square distance
to each line. This analysis strongly depends on the computation of the normals and
noise in the observed data. However, global information, such as knowledge on profile
curve properties, is not used. For instance, one of the characteristics of a noiseless
surface is that the profile curve should have a very small thickness (tending to zero).
Local information is related to extracting local geometrical properties among neigh-
boring points in the surface. This information is in the normal directions associated
with each point on the surface.

However, what distinguishes our work is that we use all the information available
from the data, local and global, leading to a more accurate noise treatment. Given
that we are dealing with surfaces of revolution, this type of cylindrical symmetric
objects are described sufficiently by a profile curve and a location of the axis that
generates its symmetry.

The Algorithm

The main idea of this algorithm is that the intersection of a plane perpendicular
to the axis of revolution of an axially symmetric surface is a circle, the radius of
which depends of the position of the plane with respect to the axis. This functional
relation describes a profile curve in a 2D space that considers one axis to represent
the radius and another one to represent the relative projected position across the axis
of revolution.
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Figure 2.19: The extension of the normal directions to the surfaces intersect the
axis of revolution.

Given the parameters for the axis: the orientation and the position, the surface
can be represented in a 2-dimensional space. One dimension is referred to the distance
perpendicular to the axis, and the other one corresponds to the distance from a point
taken as origin along the axis. In this space, each point is mapped onto a circle in
the 3D world, each line segment is back projected into a conical surface, and for any
general one dimensional manifold we have a generic surface of revolution (see fig.2.20).

Considering this representation, if we are able to estimate the axis parameters
for an incomplete data set, then the reconstruction of the complete surface is possi-
ble using the previous mentioned back projection from 2D to 3D spaces. We term
generation to this process, since from partial data, the original surface is recovered
(see fig. 2.20 ). Moreover, the inverse process, i.e., taking the 3D data configuration
to its latent space representation (2D), can be seen as a procedure of redundance
reduction, since the data is reduced to a new representation with fewer parameters
without losing any information of the surface.

Let’s describe mathematically the projection from the 3D space onto the profile
curve space. First, assume that the axis parameters, i.e., the direction v and a point
q0 belonging to the axis, are known. So that, for any 3D point p = (x′, y′, z′, ) ∈ 	3

the projection to a point (r, z) ∈ 	2 of the latent space is given by:

p = (x′, y′, z′) −→ ω = (r, z),
{
r =

√
(p− q0)T (1− vvT )(p− q0)

z = (p− q0)Tv
(2.15)

The complexity of the surface relies on the functional relation between the radius r
and the parallel projection onto the axis z, i.e., r = r(z). The model that attempts to
estimate the axis parameters (v,q0) has to make some assumptions about the profile
curve behavior.

To this end, we propose a mixture model that considers different cross sections
along the direction of the axis of revolution. The points belonging to one slice have in
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Figure 2.20: Generative mapping from the profile curve space (latent space) to the
3D observations space (back projection from 2D to 3D).

common the same radius. Locally, data can be modelled as a circle orthogonal to the
axis of revolution (see fig. 2.21). Data partitioning can be performed by dividing the
height of the profile curve into several segments (e.g. equally distributed). This data
partitioning considers a hard assignation of the responsibilities for each data point
with respect to the different slices. For the m-th slice, the points (pm1 , . . . ,p

M
Nm
) that

are assigned to it satisfy the following implicit equation:

(xmn − xm0 )
2 + (ymn − ym0 )

2 = R2
m (2.16)

where (xmn , y
m
n ) are the XY coordinates of the point pmn . The center coordinates

(xm0 , y
m
0 ) for all m partitions are constrained, since they belong to a line, which

determined by the axis parameters (orientation and position):

xm0 = mxz
m
0 + bx

ym0 = myz
m
0 + by

}
(2.17)

These equations contain the for unknown parameters that specify the axis of revo-
lution. Two of them mx and my describe the slope of the line when it is projected
onto the xz-plane and yz-plane, respectively. The remaining two parameters define
the intersection of the line with the xy-plane at z = 0.

Using the equation of the axis (2.17) in the implicit equation (2.16) for the m-slice
will determine the system of equations that describe the generation of this mixture
model. First, let equation (2.16) be expanded:

x2 + x2
0 − 2xx0 + y2 + y2

0 − 2yy0 −R2 = 0
x2 + y2 − 2xx0 − 2yy0 = R2 − x2

0 − y2
0

x2 + y2 − 2xx0 − 2yy0 = B
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Figure 2.21: Orthogonal slices to the axis of revolution. The points belonging to a
slice have the same radius in common.

where we have skipped the n and m indexes for the sake of notation. In addition,
B = R2 − x2

0 − y2
0 has been introduced as a new parameter for linearity purposes in

the estimation algorithm. Note that, this can be performed without lost of generality
since, R2 still has one free degree of freedom of the equation B = R2 − x2

0 − y2
0 .

Subsequently, we merge both equations (2.16) and (2.17):

x2 + y2 − 2x(mxz + bx)− 2y(myz + by) = B

which can be re-written as follows:

x2 + y2

2
= [xz, x, yz, y,

1
2
]


mx
bx
my
by
B


This latter equation can be extended to a many-slices problem, where the number

of parameters increases according to the number of radii taken into account with
{B1(R2

1), . . . , BM (R
2
M )}:

x2 + y2

2
= [xz, x, yz, y, 0, 0, . . . , 0,

1
2
, 0, . . . , 0]



mx
bx
my
by
B1

B1

...
BM


where the non-zero value 1/2 indicates the mixture component that the point (x, y, z)
is assigned to. For a distribution of N points and a mixture model of M components,
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we define the following vectors and matrix:

PN×1 =



x2
1+y

2
1

2
...

x2
n+y2n

2
...

x2
N+y2N

2


and,

QN×4+M =



x1z1, x1, y1z1, y1, 0, . . . , 0, 1
2 , 0, . . . , 0

...
...

xnzn, xn, ynzn, yn, 0, . . . , 0, 0, 0, . . . , 0, 1
2 , 0

...
...

xNzN , xN , yNzN , yN , 0, . . . , 0, 1
2 , 0, 0, . . . , 0


and,

Ω4+M×1 =



mx
bx
my
by
B1

B1

...
BM


Thus, the matrix form for the structural equation is:

PN×1 =MN×(4+M)Ω(4+M)×1 + EN×1 (2.18)

where, EN×1 is a Gaussian noise vector of N independent identically distributed vari-
ables. For a given observed point pn = (xn, yn, zn) the noise distribution corresponds
to:

P (pn = (xn, yn, zn) | Ω) =
1

(
√
2πσ2)3

exp
{
− 1
2σ2

|Pn −MnΩ|2
}

(2.19)

The third ingredient are the latent variables, which in this case correspond to the
binary indices 0 or 1/2 that indicate which mixture component explains each point.
At this point, two issues deserve to be pointed out before introducing the estimation
process:

• This mixture model with hard assignations for each point with respect to the
slices constrains all the mixture components through the axis of revolution.
Therefore, rather than transforming the problem into many independent sub-
problems, we have decomposed the problem into manageable sub-problems that
are constrained to the prior knowledge imposed by axial symmetry.
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• Ideally, if we align the surface’s axis of revolution to the z axis, the slope pa-
rameters mx and my will be equal to zero. Of course, if the axis of revolution is
far from the z axis, this formulation is clearly biased, since only XY projections
are used for the computation of the radii in equation (2.16). For this reason,
it is advisable to take into account an algorithm such as Pottmann‘s in [81] for
initializing the search of the axis of revolution.

Even though the Plucker-coordinates based algorithm seems to work well, we show
in the experiments the contribution of considering global and local information in
the same formulation. Thus, the use of the Plücker coordinates solution as starting
point of our estimation algorithm can compensate the mentioned lacks in the use
of information as well as it will reduce the cost of search of the maximum of the
likelihood function.

Initialization

In order to give a graphical idea of the algebraic geometry approach4, we show in
figure (2.19) a surface with its corresponding normals and a profile curve projection
(fig. 2.19 b). Given that all the normals of a surface of revolution have to cross the
axis of symmetry, the purpose is to find the straight line that minimizes the distance
with all the linear extensions that follow the normal directions. This straight line is
considered in [81] as the axis of revolution, whose minimization scheme is a generalized
linear least squares solution. A deeper insight shows us that the recipe to perform
the solution is as follows:

Let D = {p1, . . . ,pN} the data set of N points, and Dnorm = {n1, . . . ,nN} their
corresponding normals on the surface.

1. For each couple of pk and nk (k = 1, . . . , N) compute their cross product, such
that,

rk = pk × nk

2. Form a six-tuple using the concatenation of the normals and the cross product
set:

lk = [rk,nk] ∈ 	6

3. Build the covariance matrix of the six-tuples set:

M =
N∑
k=1

lklk
T

4. Due to the unit norm constraint on the normals, authors in [81] include the
matrix B = diag{1, 1, 1, 0, 0, 0} and reduce the problem to solve the equation

det(M − λB) = 0

whose solution corresponds to the smallest general eigenvalue λ ≥ 0.
4For a further lecture, authors in [81] give a description based on projective geometry.
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5. Let φ the (General SVD) solution, then the parameters of the axisM = {v,q0}
can be computed as follows:

Let the six-tuple φ be in the form of two 3D concatenated vectors,

φ = [rφ,nφ]

then the 3D parameters solution is:

v =
rφ
| rφ |

(2.20)

q0 =
nφ × rφ
| rφ |2

(2.21)

The employed technique is based on a general singular value decomposition (GSVD)
of a rank 3 matrix [BM ]6×6, as well as, the optimal solution taken is the one that
corresponds to the smallest general eigenvalue. The relation between the six-tuple and
its 3D geometrically meaning is given by (2.20) and (2.21). These will be the starting
point for our estimation algorithm, i.e., the first projection onto the profile curve
space will be based on these results. With this beginning, we take an initial solution,
that has not taken into account the global information and the prior knowledge of
the profile curve, in order to apply an optimal adjustment that uses all the available
information in the data.

In the appendix, we show another approach to derive this formulation. It is based
on Lie Groups theory and perhaps more intuitive, since the formalism is performed
keeping the 3D geometrical intuition.

Estimation Process

After initializing the model with Pottmann‘s solution, the estimation process for the
parameters of this model is consists in two steps which are repeated until convergence:

• Align the data set to the z-axis according to the solution for the axis parameters.

• Divide data in subsets with respect to the corresponding z-values (deterministic
latent variables inference). Estimate the new axis parameters through maximum
likelihood of equation (2.19):

Ω = [M ′M ]−1M ′P (2.22)

and repeat the aligning step again.

A convergence criterium can be the noise variance σ2, or the difference between con-
secutive estimates for the axis parameters. After convergence, the original axis can
be found through estimating the Euclidean transformation (rotation + translation)
that suffered the data set from its original configuration.
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Experiments

There are still two open questions: i) How many mixture components are necessary
to describe data? and, ii) How Pottmann’s solutions differ from the slices approach?
To answer them, we show some experiments with real data.

The election of the number of mixtures has a significant influence in the shape
estimation as well as in the estimation of axis of symmetry. Regarding the idea of the
certain degree of tolerance for splitting the profile space into segments, there will be
nodes that do not need to be split up. The purpose of this is to avoid over-fitting and
the confusion noise and geometrical properties of a surface such as curvature. There
are two important issues to be considered: one hand, the noise in data originated from
observations (scanning, etc...) and, on the other, the error due to model assumptions.
Thus, this fact can lead to a misleading comprehension of the estimation results of
any piece, since the noise in the data and the uncertainty in the estimation are not
distinguished without the prior information. In particular, if we know a priori, by
some other means, the number of the degrees of freedom (mixture components) that
describe the complexity of the shape, the distinction between noise and uncertainty
in the estimation of the parameters is clarified.

In the framework we are dealing with, the error due to the model comes from
fitting a cylinder to a region, and regions with high curvature yield a high error mea-
sure in the estimates. In order to deal with the entanglement noise/error, we apply
to our technique the Minimum Description Length [83], where the aim is to evaluate
the plausibility of different alternative models explaining the same observations (dis-
tribution of points). This evaluation is performed on the Occam’s Razor Principle
which states that one should not make more assumptions than the minimum needed.

In this Bayesian framework, ”sufficiently” means a trade off between the error
measure in the estimates and the complexity of the model. It is considered more com-
plex a model that describes data with many planes, than just one plane, since many
more degrees of freedom (number of parameters) are involved. This model selection
criterion translates into the introduction of a penalty term in equation (2.19). This
penalty term comes from approximating the posterior distribution for a d-dimensional
parameter set θ̂ by a Gaussian [33], so that the evidence for a data set D under a set
of hypotheses {hi} is written as follows:

P (D|hi) ≈ P (D|θ̂, hi)P (θ̂|hi)(2π)d/2|H|−1/2

where H = ∇∇ logP (D|θ̂, hi) is a Hessian matrix which measures how peaked the
posterior is around the Maximum a Posteriori value. In other words, this measure
tells us about the uncertainty of the estimates θ̂.

Therefore, the negative logarithm of the likelihood measure for the data set has
now a penalty term concerning the variance in the estimates:

L = 1
σ2
trace ((P −MΩ)′(P −MΩ)) + log |M ′M | (2.23)

The first point that we notice is that when the number of mixture components is
increased the complexity of the shape of the object is expected to be higher. This
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piece 1 piece 2

Figure 2.22: Pieces of a cylindrical symmetric pot.

fact means that the number of degrees of freedom for the curvature is increased as
well and the model of for shape leads to a deficiency in the use of the all available
information in the data, i.e., the contribution of the global information is missed.

To perform the model selection we need to try with different mixture models and
then compute the most reliable model that explains the complexity of the shape of the
object. In the case of symmetries of revolution, the computation of a several number
of models is not so computationally expensive. Thus, a good procedure is starting
with a simple model, which contains one or two components, and then, increasing the
number of mixtures. Given the estimates of the axis for each model, the following
step is based on the comparison of the different uncertainty measures eq.(2.23). The
quantity that expresses the least uncertainty corresponds to the most reliable model
for the estimation of the axis, as well as, for the estimation of the profile curve of
the object. Notice that, when the number of mixtures is increased the use of global
information takes less relevance and the penalty term tends to infinity. This fact has
an important significance, since within the limits of the real pieces it means that we
have to analyze the uncertainty of a few number of models.

Figure 2.22 shows two small pieces that are use for comparing the presented meth-
ods. First, we note that both pieces a small in relation with their curvature. This
is a relevant fact, since they approximate to a sphere. This sort of surfaces point
out the necessity of taking into account global information. In fact, if we consider
only local information such as in Plucker coordinate method, the algorithm may give
unreliable solutions. Pottmann’s algorithm presents a singularity when dealing with
nearly spherical surfaces. We have applied our slices approach two both pieces, and
compared to the solutions provided by Plucker coordinates. Figure 2.23 shows a plot
of the 3D distribution of points for piece 1 and the estimate axis by means of our
algorithm. At the bottom of figure 2.23, a comparison between the two profile curves
is shown. The profile in blue is thinner and thus less scattered than the one provided
by the Plucker approach. The same procedure is applied for piece 2 in figure 2.24. In
this case, the solution obtained through Plucker approach is not a profile correspond-
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ing to the mentioned piece; no multiple values are given in the 3D spatial distribution
for this specific piece.

Summary

In this example, we presented a probabilistic framework that provides a setting for
the utilization of all the available information that lies in the data, in order to deter-
mine the generating axis of a surface of revolution from partial data, as well as, an
estimation of its shape. The fact that we are dealing with a distribution of points
that is governed by a specific symmetry led to consider a new representation (latent
space) where the shape of the object is only expressed in terms of its intrinsic degrees
of freedom. Considering the case of axial symmetries this representation encodes to
the profile curve of the surface.

The probabilistic formulation plays a significant role connecting the 3D world and
the latent space by means of a likelihood measure, which quantifies the adjustment
of the data to a shape model for a given instance of the axis of symmetry. In ad-
dition to this, this formulation allows the incorporation of prior information to the
model in a natural way. Both the choice of a sufficient representation and the use
of prior information are the basis of our approach. On one hand, the definition of
a suitable representation for the observations permits a concrete delimitation of the
analysis of the complexity of the data set distribution. Furthermore, when a selected
representation is sufficient, therefore the reconstruction of the complete object from
partial data is permissible (see fig. 2.25). On the other, the use of prior knowledge on
the complexity of the shape affords a connectivity between the global and the local
information and an appropriate treatment of the noise in the data.

2.4 Symmetry, Lie Groups and Dimensionality Re-
duction

This section studies a novel approach of Linear Complexes algorithm [81] based on
Lie Groups theory. The aim of this is to show a Generative Model formulation that
intrinsically takes into account the necessity for reducing the number of dimensions
when dealing with symmetries. In particular, we consider axial symmetries on 3D
range data. Lie’s group theory applied to Computer Vision is not new. In order to
get an insight into this framework, we recommend [50], where a comprehensive view
of its applications is developed.

The technique we present exploits the properties of Lie Algebras to provide a
method for integrating rotational transformations in a consistent manner. The use of
Lie Algebras gives a substantial advantage over traditional constrained methods for
determining transformations, since the intrinsic degrees of freedom are clearly defined
from the beginning of the formulation. In this framework, these degrees of freedom are
related to the parameters that govern the symmetry transformation. We focus on the
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Figure 2.23: Top: 3D point distribution corresponding to piece 1 in figure 2.22.
Bottom: Data mapped onto the profile curve space according to Pottmann‘s method
(in red) and the mixture model technique (in blue).
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Figure 2.24: Top: 3D point distribution corresponding to piece 2 in figure 2.22.
Bottom: Data mapped onto the profile curve space according to Pottmann‘s method
(in red) and the mixture model technique (in blue).
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Figure 2.25: Piece of a cylindrical symmetric pot and its reconstruction aligned to
the original data.

group of transformations in 3D space that leave the quantity x2+y2+z2 invariant, i.e.,
the group of rotations in 3 dimensions, SO(3). In fact, invariance and symmetry
are two intrinsically related concepts, since a problem admitting a symmetry group
G leads to a G-invariant representation. In physics and the Differential Equations
community this is a well-known fact5.

In our case, axial symmetry leads to a representation that is invariant with re-
spect to rotation transformations around the axis of symmetry. Therefore, taking
into account such a symmetry-invariance relationship, i.e. a specific way of reducing
dimensionality, a posterior reconstruction of the whole surface from missing data is
feasible. In other words, the process that reduces dimensionality taking into
account the internal symmetries of a problem provides a manner of dealing
with missing data and makes possible predicting new points of the surface.

There are three common ways to parameterize these 3D rotations:

• Successive rotations about three mutually orthogonal fixed axes.

• Successive about the z-axis, about the new y-axis, and then about the new
z-axis. These are called Euler angles.

• The axis-angle representation, defined in terms of an axis whose direction is
specified by a unit vector (two parameters) and a rotation about that axis (one
parameter).

For instance, the first type of parametrization is based on the following rotation
matrices:

5Noether’s first theorem, (Noether, 1918), associates a conservation law for the Euler-Lagrange
equations with every one-parameter symmetry group of the variational problem. For instance, trans-
lation invariance leads to conservation of linear momentum, rotation invariance leads to conservation
of angular momentum, and time translation invariance leads to conservation of energy. Noether’s
second theorem, of application in relativity and gauge theories, produces dependencies among the
Euler-Lagrange equations arising from infinite-dimensional variational symmetry groups.
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R1(φ1) =

 1 0 0
0 cosφ1 − sinφ1

0 sinφ1 cosφ1


R2(φ2) =

 cosφ2 0 sinφ2

0 1 0
− sinφ2 0 cosφ2


R3(φ3) =

 cosφ3 − sinφ3 0
sinφ3 cosφ3 0
0 0 1



This sort of transformations are called continuous since they are parameterized
by a set of continuous parameters (angles). Thus, for each matrix and for each
parameter φ a point (x, y, z) is mapped onto some point (x′, y′, z′). In addition, when
the parameters of the transformation tend to zero, both points become the same.

2.4.1 Infinitesimal Transformations

The purpose of this section is to obtain an approach for continuous transformations
that allows isolating the transformation parameter φ.

Consider a one parameter transformation group defined by the transformation
matrix R(φ), such that a point p = (x, y, z) is mapped onto some point p′ = (x′, y′, z′)
by the following relation:

p′ = R(φ)p

or which is the same,

p(φ) = R(φ)p

The key point to be considered is that when φ tends to zero, the associated transfor-
mation is the identity, recovering the initial point (x, y, z).

In a first approximation order, the relation between an image p = (x, y, z) and a
near one transformed p(δφ) = (x′, y′, z′) can be expressed as:

p(δφ)  p(0) + δφ
dp(φ)
dφ

∣∣∣∣
φ=0

= p(0) + δφ
dR(φ)
dφ

∣∣∣∣
φ=0

p(0)

where a matrix independent of the transformation parameter is applied on p(0):

G =
dR(φ)
dφ

∣∣∣∣
φ=0

which is referred as the infinitesimal generator (or action) of the group of transfor-
mations for R(φ). Thus, a macroscopic transformation R(φ) can be built in terms
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of concatenating infinitesimal transformations, dividing the parameter φ in M parts
and making M →∞:

p(φ) = lim
M→∞

(
1 +

φ

M
G

)M
p(0) = eφGp(0)

Note, that to derive this macroscopic transformation, we have used the property of
groups:

R(φ1 + φ2) = R(φ1)R(φ2)

In addition, the same result can be obtained considering a Taylor’s expansion of the
transformed point p(φ):

p(φ) =
∞∑
n=0

φn

n!
dnR(φ)
dφn

∣∣∣∣
φ=0

p(0) =

=
∞∑
n=0

φn

n!
Gnp(0) =

= eφGp(0)

where we have taken into consideration the mentioned property of groups, which is
used in the computation of the n-th order derivatives of R(φ):

dR(φ)
dφ

= lim
h→0

R(φ+ h)−R(φ)
h

=

= lim
h→0

R(h)R(φ)−R(φ)
h

=

=
(
lim
h→0

R(h)− 1
h

)
R(φ) =

= GR(φ)

and, thus, the n-th derivative is written as follows:

dnR(φ)
dφn

= GnR(φ)

From this formulation, we can summarize that one-parameter Lie groups correspond
to the continuous transformations R(φ) that satisfy the two following conditions:

• When the parameter value φ tends to zero the transformation R(φ) becomes
the identity:

R(φ)|φ=0 = I

• They satisfy the following differential equation:
dR(φ)
dφ

= GR(φ)

which is a consequence of the previous condition and the addition law applied
to this group of transformations, i.e., R(φ1 + φ2) = R(φ1)R(φ2).
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2.4.2 Infinitesimal Generators for SO(3)

Three parameter independent infinitesimal generators can be obtained applying the
previous conditions for Lie groups of transformations:

G1 =
dR1(φ1)
dφ1

∣∣∣∣
φ1=0

=
d

dφ1

 1 0 0
0 cosφ1 − sinφ1

0 sinφ1 cosφ1

∣∣∣∣∣∣
φ1=0

=

 0 0 0
0 0 −1
0 1 0



G2 =
dR2(φ2)
dφ2

∣∣∣∣
φ2=0

=
d

dφ2

 cosφ2 0 sinφ2

0 1 0
− sinφ2 0 cosφ2

∣∣∣∣∣∣
φ2=0

=

 0 0 1
0 0 0
−1 0 0



G3 =
dR3(φ3)
dφ3

∣∣∣∣
φ3=0

=
d

dφ3

 cosφ3 − sinφ3 0
sinφ3 cosφ3 0
0 0 1

∣∣∣∣∣∣
φ3=0

=

 0 −1 0
1 0 0
0 0 0


These generators have an interesting property defined by the Lie bracket:

[G1, G2] = G1G2 −G2G1 = G3

and more generally:

[Gi, Gj ] = εijkGk

where εijk is the Levi-Civita antisymmetric pseudo-tensor; for two indices with the
same value (e.g., i = j), then εiik = 0, and non-cyclic permutations change the sign,
±1.
These commutation relations define a ”product” of two generators which yields

the third generator. Thus, the set of generators is closed under this operation. Triple
products, which determine whether or not this composition law is associative, can be
written in a concise form using only the definition of the commutator, i.e., in the form
of an identity, without any explicit reference to the quantities involved. This yields
to the Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

For the infinitesimal generators of the rotation group each of the terms in the Jacobi
identity vanishes. Thus,

[A, [B,C]] = [[A,B], C]

so the product of these generators is associative. In the more general case, however,
products of quantities defined in terms of a commutator are not associative.
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The Lie Algebra associated with the Lie group from which the generators are
obtained consists of quantities A,B,C,... defined by

A =
∑3
i=1 aiXi B =

∑3
i=1 biXi C =

∑3
i=1 ciXi

where the ai, bi; ci,... are real coefficients and from which linear combinations
αA+ βB with real α and β can be formed. The product is given by

[A,B] = −[B,A]

and the Jacobi identity is, of course, satisfied.

2.4.3 Axial Symmetry

A rotation generated around a specific axis of revolution can be described as a trans-
formation of the following form:

p(φ) = eφA(p(0)− q0) + q0 (2.24)

where A is the infinitesimal generator of transformation and µ is a point that belongs
to the axis of revolution. Two operations have been applied to generate the new
transformed point p(φ): i) a translation provided by q0, and, a rotation ii) given by
the exponential form of the rotation matrix.

In fact, equation (2.24) is the structural equation of our generative model,
since a one dimensional latent variable φ is used to describe each point belonging to
a surface of revolution.

In addition, given that the previous mentioned generators, G1, G2 and G3, for the
SO(3) group form a basis in the associated Lie algebra, the infinitesimal generator A
can be written as a linear combination of them:

A =
3∑
i=1

viGi

where there is a straightforward relation of the components of the basis (v1, v2, v3)
and the coordinates of the direction vector of the axis of revolution where the rotation
is performed. Since the axis of revolution is defined by a vector that corresponds to
a linear combination of the basis x-plane, y-plane and z-plane, the combination of
the basis of the rotations generators corresponds to the same components. Thus, the
direction vector can be expressed as follows:

v =

 v1
v2
v3


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Therefore, the axis of revolution is determined by the components of the direction
vector v and a point q0.

On the other hand, the tangent vectors to the points of a surface of revolution can
be computed through taking the derivative with respect to the rotation parameter φ:

w(φ) =
dp(φ)
dφ

= AeφA(p(0)− q0) = A(p(φ)− q0)

And these vector, since they are locally tangent to the surface, they must be orthog-
onal to the normals of the surface os revolution:

n′w(φ) = 0 (2.25)
(2.26)

thus,

n′A(p(φ)− µ) = 0

Studying the product of the transposed normal vectors n′ and the infinitesimal
generator A, we can see that:

n′A = (n1, n2, n3)[v1G1 + v2G2 + v3G3] =

= (n1, n2, n3)

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 =

= (n× v)′

Therefore, the equation that must be satisfied for all the points belonging to a
surface of revolution with respect to an axis (v,q0) is:

(n× v)′(p(φ)− q0) = 0

and thus,

v′(p(φ)× n) + (v × µ)′n = 0

(v|v × q0)
(

p(φ)× n
n

)
= 0

The estimation of the model parameters can be performed using the same process
introduced in section 2.3.2. In this latter equation corresponds to the same equation
expressed in [81] which is used for estimating the axis direction v and location q0.
Let s = [rs,ns] the (General SVD) solution of the matrix:

M =
N∑
k=1

[pk × nk,nk]
[
pk × nk

nk

]
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which under a normalization constraint for the direction vector v, is obtained from
the following system of equations:

det(M − λB) = 0

where B = diag(1, 1, 1, 0, 0, 0). Thus, the parameters of the axisM = {v,q0} can be
computed as follows:

v =
rs
| rs |

(2.27)

q0 =
ns × rs
| rs |2

(2.28)

which are the solutions proposed by Pottmann [81].

2.4.4 Implicit Surface Parametrization

This section briefly comments an alternative method that uses the introduced ideas
in this chapter and takes advantage of dealing with global and local information at
the same time.

Given that the computation of the normal vectors of an implicit surface is straight-
forward, the equation (2.25) can be rewritten in terms of a parametrization for the
observed data set. In fact, this is a way of considering global information.

Let F (p) = 0 be an implicit form of a surface. Thus, the normal vectors, can be
achieved by:

n = ∇F (p)

and the equation satisfied by a surface of revolution is:

(a|a× µ)
(

p(φ)× n
n

)
= 0

(a|a× µ)
(

p(φ)×∇F (p)
∇F (p)

)
= 0

where p(φ) × ∇ is the infinitesimal rotator applied to the surface implicit function
F (p). If we express the function F (p) in terms of a series of monomials:

F (x, y, z) = α0 + α1x+ α2y + α3z + α4x
2 + α5xy + . . .

F (x, y, z) = Φ(x, y, z)


α0

α1

...
αd

 =

= Φ(x, y, z)B
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where Φ is a d-dimensional vector, then the normals correspond to:

n = ∇F (p) = ∇Φ(x, y, z)B

In this case, this estimation process requires a two step procedure:

• Compute the axis parameters as described before.

• Compute the surface parameters in terms of the points and the axis parameters:

[a′(p×∇Φ(x, y, z)) + (a× µ)′∇Φ(x, y, z)]B = 0
L(p, a, µ)′B = 0

In addition, the surface parameters B can be constrained to be normalized, i.e.,
B′B = 1. Thus, this problem is transformed again into a SVD problem, i.e.
find B such that:

N∑
n=1

LnL′
nB = λB

where a data set of N points has been taken into account. The optimal solution
is the eigenvector B with lowest eigenvalue λ.

These two steps are iterated until a selected degree of convergence of the error.
Note, that the estimation of the axis parameters is given by the estimation of the
surface coefficients, and the estimation of the coefficients is given by the value of the
axis parameters. Nonetheless, we consider more stable from a numerical point of
view the method that we present in section 2.3.2, since it is more constrained. As
mentioned in the introduction, dividing a problem into linear subproblems is more
controllable than a complex nonlinear problem from a numerical approach.

2.5 Discussion

This chapter has introduced the problem of dimensionality reduction as the search
for a tractable and reduced coordinate representation of a submanifold of a high di-
mensional Euclidean space. This is a problem so far not yet solved in a satisfactory
and general way. Nonetheless, certain specific features can be analyzed in order to
categorize the different types of problems that involve the necessity for reducing the
number of dimensions. This classification has been performed in terms of: i) the spe-
cific purpose for perceptual categorization, ii) the use of global and local information,
iii) the availability of prior information on the intrinsic degrees of freedom, and, iv)
the role of symmetries when reducing dimensionality.

Purpose-driven perceptual categorization. Usually, there is not a direct rela-
tion between the stimuli provided by a general-purpose sensor device and its
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corresponding perceptual category. A complex learning task must be involved
in order to provide such a connection. In fact, the basic forms of energy, and
their possible combinations, are a reduced number compared to the infinite pos-
sible perceptual categories corresponding to objects, actions, relations among
objects, etc. In addition, the observations provided by a sensor correspond to
a set of variables, whose number is rather larger than desired. More specifi-
cally, in Computer Vision, the most used sensors are digital cameras and laser
scanners. Both represent objects in terms of a set of variables that are highly
correlated. For instance, given a set of different observations from objects con-
cerning the same category, the variability in each pixel value is constrained to
a certain range, which is influenced by the rest of pixel value variations. In this
sense, dimensionality reduction can be seen as a feature extraction or coding
procedure, or in general as a representation in a different coordinate system.
Three classes of dimensionality reduction problems have been presented in terms
of the purpose that guides a problem:

• Hard dimensionality reduction problems.
• Soft dimensionality reduction problems.
• Visualization problems.

The first two points have been exemplified with one problem related to recogni-
tion in images and another corresponding to 3D range data. The purpose of the
first example was to show how a feature vector can be extracted from images
in order to define a specific category of objects, which in this case corresponded
to non-rigid vessel structures. The second one has been presented in order to
show an example of soft dimensionality reduction by means of 3D range data.
Both cases present a strong correlation among variables and observations due
to redundancy in the modes of variations in the first problem and symmetries
in the second one.
In addition, this chapter has analyzed the advantages of modelling sub-manifolds
when it comes to recognition. Many problems in Computer Vision require of
a decision mechanism to discern if a test pattern belongs to the same category
as the learned model for a set of training observations. In this area, metric
approaches base this decision on a distance measure, which is determined by the
employed model. The success of a model, in terms of recognition error, mainly
depends on how this distance measure is defined and the number of dimensions
that are involved. In this sense, one section has been focussed on the curse
of dimensionality in recognition problems. Particularly, a comparison between
PCA and the spherical Gaussian model has been performed in order to point
out the differences in terms of false-positives when increasing dimensionality.

Global and local treatment of information. Local dimensionality reduction is
an issue that takes relevance when dealing with complex behaviors of data.
The idea is that individual parts of a global data manifold can be estimated
through simple linear models in order to cope with the global complex struc-
ture. In fact, using a complex global model able to represent a large number of
manifolds (via a large number of parameters) has several disadvantages:
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• The power of the model is wasted in those areas of the space where the
manifold is approximately linear.

• A large data set is required to fit a large number of parameters.
• Training becomes difficult because, due to the high flexibility of the model,
the error function is likely to have a lot of local minima.

The formulation of a model in terms on linear local sub-models leads to
consider data partitioning and class assignation. Probabilistic mixture models
deal with classification through the use of posterior probabilities. This sort of
assignation is called soft partitioning. There are other situations where hard
clustering can be suitable due to computational reasons. In this case, a single
component receives all the responsibility and the rest receive no responsibility
at all.

Usually, the suitability when using one of these two types of responsibility as-
signment relies on the specific nature and purposes of each problem. In fact,
when it comes to classification, and thus clustering, data points for which more
than one local model are significatively responsible are problematic. On the
other hand, a soft assignment provides a continuous dimensionality reduction
mapping, which is quite useful for connecting local and global approaches in
terms of expected coordinates.

Prior information and symmetries. The presented examples have been selected
according to the access to the prior information on the intrinsic degrees of
freedom. The vessel-structure detection problem corresponds to an example
where no prior information is given on the latent space dimension.

On the other hand, the problem related to finding the axis of revolution of
a distribution of points counted on the use of prior information on the axial
symmetry. This chapter has shown that a priori information on symmetries
regarding the distribution of data brings a powerful assistance to build a model
for explaining and predicting behaviors. A straightforward association between
Generative Models and Lie’s continuous groups theory has been studied in order
to reduce dimensionality according to the symmetries in the problem. Invari-
ance and symmetry concepts have been introduced in order to show that
taking into account the internal symmetries of a problem provides a manner of
dealing with missing data and it makes possible prediction.

The selection of the two different examples presented in this chapter had the
purpose of illustrating how the mentioned points are taken into account when reducing
dimensionality. The aim was to cover the main theoretical background that has been
used in the applications presented in this thesis.




