
Chapter 5

Conclusions

T
he high-level semantic structure of video can be automatically parsed using
domain-specific knowledge. This knowledge can be expressed in many ways,
but always based on semantic concepts. This intermediate-level semantics is

usually obtained in terms of the requirements and constraints imposed by the domain.
The CMC-based representation of visual contents in video developed in this thesis pro-
vides intermediate-level semantics without considering domain knowledge. Semanti-
cally meaningful clusterings can be automatically obtained, so that only higher level
knowledge must be described and applied in order to obtain the semantic structure
of the video.

Common approaches to video structure analysis have been based on representing
shots by one or several keyframes and computing low-level and intermediate-level
descriptors of their contents. Then, semantically meaningful clusterings are obtained
using specifically tailored shot similarity measures based on their descriptions. One
main advantage of the CMC approach over other representations of visual contents in
video is that shot contents are seen as temporal processes, thus information from all
the images of the shot is considered. Also, natural similarity measures are provided
by the probabilistic framework.

The CMC approach to contents representation can summarize the contribution
of several features, as well as their possible relationships and dependencies. We have
presented a method to obtain the optimal coupling structure in terms of minimum
cost and minimum loss of information, which has been proven to be directly related
to the accuracy of the representation. This method also tells us that an approach to
representing the contents of an image sequence based on accumulating static image
descriptions is not appropriate. The temporal behavior of low-level features is highly
informational.

During this thesis, we have seen that color and motion are two major contributors
to obtain intermediate-level semantics. Color provides information about objects, lo-
cation and even emotional aspects attached to contents. On the other hand, motion
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provides information about the type of shot in terms of relative distance of the camera
to the subject matter, camera operation and more complex concepts like crowds or
talking heads. The combination of color and motion information in a CMC based rep-
resentation of shots provides intermediate-level semantics about objects (identity, size
and motion), camera operation, location, type of shot, temporal relationships between
elements of the scene, and global activity (understood as the “amount of action”).
More complex semantic concepts emerge from the combination of this intermediate-
level information, like the already mentioned “crowds” and “talking heads”, which
can be sub-classified into “anchor shots” and “correspondents and interviewees” in the
domain of News. This information is not only useful for high-level structure analysis,
but also for automatic or assisted video indexing and annotation.

The representation capabilities of the CMC approach have been shown for the
Sports (soccer) and News domains. In the latter, its high-level structure has been
obtained by defining very simple rules about the domain. During the process of com-
puting shot representations, shot boundaries are detected as well. Therefore, the same
CMC representation integrates all the steps of the process up to the intermediate-level
semantic clustering of shots.

5.1 Other contributions

The main contribution of this thesis is the CMC-based modelig for representing visual
contents in video sequences, and its application to news structure extraction, shot
boundary detection, object localization and video retrieval. Other contributions also
presented in this dissertation are the following:

CECA algorithm: The CECA algorithm for shot boundary detection combines
color and edges information to obtain a more robust shot detector than usual
approaches, in terms of high precision and recall for both abrupt and gradual
transitions.

AudiCom: AudiCom is a system for the automatic recognition of video segments in
a longer stream, which has been applied to TV commercials monitoring. It is
an example of keyframe-based representation of shot contents.

GMM-based color correction: Mappings between different device-dependent color
appearances are defined in terms of the parameters of Gaussian distributions.
This method implicitly defines an intermediate normalized color appearance
space.

Semiotic analysis: Semiotics provides semantic information about the use of low-
level features to convey emotional aspects of video contents and production.
Color, motion, orientations and other features are attached to semantic con-
cepts, which can be exploited from the machine vision standpoint.

Semantics from motion: Color has been considered one of the main semantic car-
riers. The semantics conveyed by low-level motion information have been an-
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alyzed in order to evaluate what kind of information can be obtained from it,
and its usefulness in terms of intermediate-level semantics.

5.2 Future work

The work developed in this thesis can be continued and extended in different ways.
First of all, through the entire thesis we have considered that the set of cliques of
the 3D MRF associated to the pixels of an image sequence is formed by every pair of
sites with the same spatial position and consecutive time instants. However, we could
also consider the motion of the pixels. The pixel located at (x, y) in image It may be
found at a different position (x′, y′) in image It+1 due to global or local motion. In
this case, the transition from the states at It(x, y) → It+1(x

′, y′) should be considered
instead of It(x, y) → It+1(x, y). In this way, we would not only obtain a summary
of the temporal behavior of low-level features, but we would also keep track of their
actual changes along time. However, this would require an accurate estimation of a
dense optical flow field, which is costly and difficult to obtain.

Global motion can be sometimes very useful, as it provides information about cam-
era operation and activity. However, the motion generated by the actions performed
by objects and other important foreground elements can be blurred or misleading due
to the presence of global motion. Global motion compensation prior to the compu-
tation of CMC model parameters will eliminate camera operation information from
the representation, but may let us obtain more accurate representations of actions in
terms of local motions. In this way, the action classification problem could be faced.

Color and motion features have been used in this work, as they are known to
convey very meaningful semantic information. Other features like texture and shape
should also be analyzed in order to identify possible relationships to intermediate-level
semantic concepts. In terms of performance, MPEG compression standards are based
on the computation of DCT coefficients, which are related to luminance and chroma,
and motion vectors. These already computed features could be used to quickly ob-
tain the CMC representation of shots and directly analyze MPEG-compressed videos.
Also, the combination of more than 2 features might provide more robust and infor-
mative representations of shot contents.

Simple rules defined using domain knowledge can take us from semantically de-
scribed shots to the structural “story unit” level. A story unit is a scene, a play or a
news item, depending on the domain. There are other levels on top of story units in
the hierarchical structure of videos. They can be called news sections (local, interna-
tional, sports, ...) or game periods. To reach this level of abstraction, more complex
knowledge is required. This knowledge may also take advantage of intermediate-level
semantics, thus adding one more term to the first equation of this dissertation:

Video structure = Domain knowledge + Story units + Interm.-level semantics.
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Appendix A

Video color correction using

Gaussian mixture models

T
his appendix gives details about the characterization of device color spaces
and the definition of mappings between different device colors using Gaussian
mixture models.

A.1 Color appearance modeling and mapping

Considering the case of single Gaussian distributions, there is an affine transformation
that can be expressed in terms of their means µ1, µ2 and the spectral decomposition
of their covariance matrices Σ1, Σ2. The eigenvalues λij of Σi are the variances of
each distribution along their principal axes, which are given by their corresponding
eigenvectors eij . Using these parameters, the final transformation matrix A is given
by a composition of translation (T), rotation (R) and scaling (S) matrices:

A = T−1
2 R−1

2 S−1
2 S1R1T1 (A.1)

where Ti, Ri and Si are expressed in terms of µi, eij and λij respectively. Figure
A.1 shows the transformation process. Note that the intermediate Gaussian G(0, I)
plays the role of device-independent color space. Therefore, we only need to store
the transformation matrix AD = SDRDTD from device D to the intermediate space,
and the direct color transformation between two devices D1 and D2 would be given
by A = A−1

D2
AD1

.

The main problem is finding the right assignment between the axes of both distri-
butions. We assume that the ratios between the variances of the different axes are kept
under different sensors. Therefore, the principal eigenvectors of the distributions have
the same ordering. On the other hand, each principal axis can be expressed either by
an eigenvector or by its opposite direction. This could lead to a 180-degree rotation
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Figure A.1: Transformation of a data set in order to obtain a different Gaussian
distribution.

on one of the axis of the distribution and colors would not be mapped correctly. As
long as we know the correspondence of axes between both distributions, we can avoid
these situations by heading corresponding eigenvectors for the same direction.

The extension to the case {G(µ
(1)
i , Σ

(1)
i ), ..., G(µ

(n)
i , Σ

(n)
i )} of n Gaussians in each

mixture, where G(µ
(j)
i , Σ

(j)
i ) denotes the jth Gaussian component of the model for

device i, requires that:

• a unique correspondence between the Gaussian components of both mixtures
exists,

• and spatial relationships between mixture components in RGB space are kept
in all distributions.

The full transformation is then expressed by the set of matrices {A1, ...,An} that
transform each component of the mixture. Given a RGB color x = (r, g, b, 1)T to
be mapped, the transformation matrix corresponding to the maximum probability
component of the mixture should be applied:

x′ = Ajx, j = arg max
k=1..n

P (G(µ
(k)
1 , Σ

(k)
1 )|x) (A.2)

where P (G(µ
(k)
1 , Σ

(k)
1 )|x) is the posterior probability of the kth mixture component,

given the sample x, computed using Bayes rule as:

P (G(µ
(k)
1 , Σ

(k)
1 )|x) =

P (x|G(µ
(k)
1 , Σ

(k)
1 ))P (G(µ

(k)
1 , Σ

(k)
1 ))

∑n

k=1 P (x|G(µ
(k)
1 , Σ

(k)
1 ))P (G(µ

(k)
1 , Σ

(k)
1 ))

(A.3)

Assuming the same prior probability for each Gaussian component, j is also ob-

tained by maximizing their likelihood P (x|G(µ
(k)
1 , Σ

(k)
1 )).
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(a) Gradient. (b) Step effect. (c) Smooth transition.

Figure A.2: (a) Grayscale (top) and color (bottom) gradients. (b) Step effects ap-
pear when they are mapped using MAP classification in the transformation. (c)
Smooth transitions are obtained when different transformations are combined in
terms of their probabilities.

However, a significant step effect may appear in edges and color gradients due
to the loss of continuity produced by the maximum a posteriori (MAP) classifier in
eq. (A.2), which may assign different transformations to nearby colors. This effect is
shown in grayscale and color gradients in fig. A.2(b). In order to obtain a smooth
transition between the different mappings applied in various regions of the color space,
the contribution of the different parts of the transformation should be combined taking
into account their probability of being applied:

x′ =
n
∑

j=1

P (G(µ
(j)
1 , Σ

(j)
1 )|x)Ajx (A.4)

Figure A.2(c) shows the smoothness of the transition between different transforma-
tions that are applied to the various regions of the color space. The mapping defined
by eq. (A.4) is intended to preserve the intrinsic appearance of colors. Each color
concept contributes to the transformation with its representativity of the particular
color that is being considered.

The final transformation requires the computation of n 3-dimensional Gaussian
probabilities and n 4× 4 matrix products. The implementation as a look-up table or
using simple specific hardware can be considered in order to allow real time processing
in current home multimedia systems.
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A.2 Examples of device color mappings

As an example of the proposed color mapping strategy, the simple case of mapping
the color appearance of an image acquired using two different combinations of video
devices, which we shall call A and B, is considered. The variation of the image
gamut given by different devices can be visually assessed in fig. A.3(a), showing a
noticeable non-linear distortion along the RGB color space, as seen in fig. A.3(b).
Each distribution of colors was parameterized by a mixture of two Gaussians (figs.
A.3(c) and A.3(d)), whose parameters were estimated from the data sets using the
EM algorithm [15]. In this case, the correspondence between the components of both
mixtures is straightforward. Note that the spatial relationships between the Gaussians
are kept in both distributions as well, so that all requirements needed to obtain the
transformation are fulfilled.

The transformation matrices that map the color appearance of the image acquired
using B as if it had been acquired using A were obtained and applied as defined in eq.
(A.4). The results are shown in fig. A.4, where it can be seen that the corrected image
from device B has acquired the color appearance of device A. The transformation does
not give exact results due to other device imperfections, like signal noise and image
misalignment. However, the color appearance obtained is perceptually the same.

The extension of the GMM color mapping strategy to the general device gamut
case requires modeling the distribution of all possible colors generated in RGB space
that can be obtained using a particular combination of video devices. This distri-
bution can be automatically learned from a pattern like the ones shown in fig. A.5,
which encodes the means and covariance matrices of a predefined mixture of Gaus-
sians specifically designed to fill up the whole color space. Both requirements of the
multiple Gaussians transformation are implicitly fulfilled by computing the parame-
ters of each component from its corresponding region in the pattern. In this way, a
parametric model of the color distribution generated by a particular device is obtained
by acquiring this pattern.

The number and location of the mixture components are not imposed by the
method, whenever the joint distribution considers all possible colors that can be
generated by a device. The non-linearities of the transformations are better captured
using as many Gaussians as possible, which also increases the computational cost of
the mapping. Different configurations may suit different color imaging applications.
However, we are trying to consider the most general-purpose case. Note that the
number and location of these basic colors are chosen following a spatial criterion,
in order to cover as much as possible from the RGB space. Commonly used color
calibration patterns like the Macbeth ColorChecker provide an arbitrary number of
color patches chosen by their spectral nature instead [48], which is not our goal as
we are not characterizing the spectral responses of sensors. We show examples using
different configurations:

1. 1 component in the middle of the RGB space (model for gray) and 8 equally
spaced components in the periphery (models for black, white, red, green, blue,
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(a) The same image acquired using devices A and B.

(b) The distribution of their colors in RGB space.

(c) Gaussian mixture fit to (b) (left).

(d) Gaussian mixture fit to (b) (right).

Figure A.3: The same image acquired using different video devices shows a signifi-
cant non-linear variation of its color distribution.
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(a) Transformed image from B to A. (b) Transformed distribution of colors.

(c) Gaussian mixture fit to (b).

Figure A.4: Result of applying the transformation between the distributions in fig.
A.3.

Figure A.5: Patterns encoding the parameters of the mixture of 9 (left) and 27
(right) Gaussians that will encode device-dependent color appearances. Flat regions
encode Gaussian means, and noisy regions encode their covariance matrices.
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(a) Original image acquired using devices A and B.

(b) Images from (a) mapped using configuration 1 (9 Gaussians).

(c) Images from (a) mapped using configuration 2 (27 Gaussians).

Figure A.6: Image color appearance transformations using global models with dif-
ferent configurations.

cyan, yellow and magenta), encoded by the pattern in fig. A.5(left),

2. a 3 × 3 × 3 grid of equally spaced components, encoded by the pattern in fig.
A.5(right).

Corrections using the first one showed some unnatural colors, which can be noticed
in fig. A.6(b). On the other hand, the higher representation capability of the second
configuration gave much better results, as can be seen in fig. A.6(c). This way of
defining device gamut mappings allows us to obtain color appearances as given by
different devices without prior knowledge about its final distribution in RGB space.

A.3 Comparison with other color correction meth-

ods

The GMM approach has been compared to known color normalization algorithms.
The comparison was performed in the context of AudiCom. This system uses a
keyframe representation of video shots, which are compared to those in a database
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of TV commercials. Therefore, the problem is posed as a matching of still images.
Principal Component Analysis (PCA) of the keyframes was used to obtain a low-
dimensional representation space, where matching was performed by minimum Eu-
clidean distance.

Many color normalization methods that allow color image independence from dif-
ferent image formation factors have been developed in the computer vision literature.
Amongst these factors, the one that seems to be more suitable to the variation pro-
duced by the change of video acquisition device is the color variation of the illuminant.
In this sense, we have considered color constancy algorithms that allow independence
from the illuminant color following a diagonal model. Diagonal models consist of a
single scale factor per color channel, and have been shown to work almost as well as
full 3 × 3 linear models [20].

The grayworld algorithm takes its name from the assumption that the average
color in all images is an ideal or canonical gray. The scale factors are Rg/R̄, Gg/Ḡ,
and Bg/B̄, where (Rg, Gg, Bg) is the canonical gray RGB value and (R̄, Ḡ, B̄) is the
average color of the image. Following this approach, the white-patch retinex algorithm
scales the colors of the image with respect to the canonical white. The scale factors
in this case are Rw/Rmax, Gw/Gmax, and Bw/Bmax, where (Rw, Gw, Bw) is the
canonical white and (Rmax, Gmax, Bmax) are the largest values in each color channel
of the image.

The comprehensive color image normalization (CCN) by Finlayson et al. [22] has
also been considered in this work as a different approach to color normalization. This
algorithm removes image dependency on lighting geometry and illuminant color, by
applying functions R and C defined as:

R(I)i,j =
Ii,j

∑3
k=1 Ii,k

(A.5)

C(I)i,j =
N/3Ii,j
∑N

k=1 Ik,j

(A.6)

where I is an N × 3 image matrix, whose columns contain the intensity of the image
pixels in the 3 RGB color channels. The normalization procedure is defined as an
iterative process until no change is detected in the image:

1. I0 = I

2. Do Ii+1 = C(R(Ii)) until Ii+1 = Ii

Note that R removes image dependency on the intensity of the illuminant and C
is equivalent to the grayworld correction, thus giving an illuminant color independent
image.

The database used was composed of 220 keyframes acquired from two different
music videos using a professional JVC BR-S822E VCR and a miroVideo DC30 Plus
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Figure A.7: Hardly discriminable images in the database.

Figure A.8: Non-exact matches between test (left) and database (right) images.

video digitizer card. The keyframes were automatically extracted from the video
stream using the shot segmentation capabilities of AudiCom. Due to the way music
videos are edited, some sets of hardly discriminable keyframes, which actually corre-
spond to different shots, are found in the database. Two of these sets are shown in
fig. A.7.

Test images were acquired from the same video-clips using a home Mitsubishi
M1000 VCR and a Matrox Marvel G200 TV video acquisition card. It is interesting
to note that the automatic keyframe selection process may give a slightly different
number of keyframes, and even in different positions, depending on CPU and other
resources usage, which lead to variations between test and database images like the
ones shown in fig. A.8. We decided to keep these non-exact matches because they
may happen in the real application as well. The final test set was composed of 183
images.

The results of applying appearance based recognition of the test keyframes with
respect to the ones in the database using the color normalization schemes considered
in this work are shown in fig. A.9. Nothing denotes doing no normalization at all,
while GMM stands for Gaussian mixture models color normalization.

The rate obtained using GMM color normalization is always higher than with
no normalization process. It is important to note that the highest recognition rate
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Figure A.9: Appearance based recognition rates as a function of the number of
dimensions of the representation space, after applying different color normalization
algorithms.

Original GMM normalized

Hist. Inters. 6.56% 40.98%
PCA 3 eigens 7.1% 51.91%
PCA 10 eigens 50.81% 92.89%
PCA 30 eigens 79.78% 94.53%
PCA 50 eigens 81.96% 93.44%

Table A.1: Recognition rates obtained using histogram intersection and different
configurations of appearance based coding.

obtained without normalization was 81.9%, which is hardly acceptable in common
recognition applications. On the other hand, the maximum rate obtained using GMM
normalization reached a fairly good 94.5%. Moreover, the use of this color normaliza-
tion allows rates close to the maximum to be reached keeping 10 eigenvectors, which
means preserving only 53.27% of the total variance of the original image set. There-
fore, our color normalization makes the global color appearance of test images to be
much more similar to their corresponding ones in the database than if no normaliza-
tion is applied.

These results are also compared in table A.1 to the ones obtained using color
histogram intersection. The nature of the images in the database (see fig. A.7) let us
anticipate bad results using this method. In fact, only 3 components in the appearance
based representation are needed to outperform it. However, there is an impressive
increase in the recognition rate when the GMM color normalization is applied.

Some result images obtained using the 30 components PCA representation are
also shown in fig. A.10. The most interesting cases of hardly discriminable keyframes
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Figure A.10: Recognition results. Keyframes to be recognized (left), and the results
without (middle) and with (right) GMM color normalization.

and non-exact matching are given in the third and four rows, respectively.

On the other hand, comparing the performance obtained using the GMM normal-
ization and the other approaches considered, results show that the grayworld color
constancy algorithm reaches almost identical recognition rates as the GMM approach.
This algorithm seems to be very well suited to the color variation caused by the change
of device in our experiments. The whitepatch retinex approach slightly improves the
recognition performance with respect to doing no normalization at all, but the rates
obtained (less than 90%) are not enough for most common applications. The poor
performance provided by the CCN algorithm is quite surprising, considering that one
of its steps is equivalent to the grayworld algorithm. These results show that not
all color normalization algorithms that work well in the presence of illuminant color
variations can give as good results when color variation is caused by the change of
video acquisition device.

We want to stress the idea that the GMM approach preserves the underlying
colors of the scene contents, as it is a color appearance-based normalization. To
show this, we have applied the method to skin color segmentation. In this case, skin
color samples for training are taken from one particular device, while test images are
acquired using a second device. Results can be seen in fig. A.11. The concept of skin
color is preserved under the GMM-based transformations, while it may vary from one
image to the others when the grayworld, whitepatch or CCN algorithms are used.
These algorithms fully depend on the specific image that is being normalized, while
the GMM approach is defined by device characteristics. The normalization applied
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(a) Image from training device. (b) Image from test device.

(c) Skin segmentation of (a). (d) Skin segmentation of (b).

(e) Color adapted image (b). (f) Skin segmentation of (e).

Figure A.11: Example application of the GMM color mapping to skin color seg-
mentation.

in this way is the same for every image acquired using a particular device. This fact
makes the GMM approach to be more suitable to be used in a general digital video
libraries framework.

A.4 Summary

The GMM approach to the characterization and mapping of device-dependent color
spaces has the advantages:

• The characterization of device-dependent color spaces is parametric and model
parameters are easily estimated using a particular calibration pattern.

• Color appearance mappings are defined in order to keep the intrinsic appearance
of colors, i.e. their identity. A perceptual color space is not required, so that
the mappings can be defined in the RGB space.

• The final mapping obtained is non-linear. Different mappings are applied to
different regions of the color space, with smooth transitions between them.
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• Luminance and chroma components do not need to be processed separately.
Axes of the color space are not assumed to be independent.

• Only one mapping per device is required, using the concept of an intermediate
normalized color appearance space.

Experiments show that the GMM approach is suitable for appearance-based image
retrieval. Unlike other color normalization methods, the GMM approach keeps the
underlying identity of colors, as shown in the skin color segmentation application.



106 VIDEO COLOR CORRECTION USING GAUSSIAN MIXTURE MODELS



Appendix B

ML parameter estimation for a fully

observed MC

T
his appendix shows how to estimate the maximum likelihood (ML) parameters
of a fully observed Markov chain, i.e. its transition probabilities. Maximizing
the log-likelihood, the likelihood is maximized as well. From eq. (3.6), the

log-likelihood of a MC is:

L{P (x)} = log P (x1) +
∑

(i,j)∈S2

Cij|x log Tij (B.1)

Taking the derivatives of the log-likelihood with respect to Tij :

∂L{P (x)}

∂Tij

= Cij|x
1

Tij

(B.2)

The final Tij ’s must fulfill that
∑

j∈S Tij = 1, as it is a conditional probability
distribution. This constraint can be forced adding Lagrangian multipliers:

λ





∑

j∈S

Tij − 1



 = 0 (B.3)

Taking derivatives with respect to Tij :

∂

∂Tij

= λ (B.4)

Combining eqs. (B.2) and (B.4), and equaling to 0:
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Cij|x

Tij

+ λ = 0 (B.5)

Tij =
Cij|x

λ
(B.6)

Since λ must normalize the conditional probabilities, the final ML parameters are
given by:

T̂ij =
Cij|x

∑

j∈S Cij|x
(B.7)

which is a normalization of temporal cooccurrences.



Appendix C

Optimal transition probabilities for

the CMC structure

T
his appendix shows how to compute the optimal transition probabilities for
the CMC structure with respect to the Cartesian product (CP) structure in
terms of minimum mutual information. The mutual information of the CMC

with respect to the CP structure is:

D(P ||P ′) =
∑

i,j,k,l

P (i, j, k, l) log
P (i, j|k, l)

P (i|k, l)P (j|k, l)
(C.1)

where P and P ′ are the probability distributions associated to the CMC and the CP
structures, respectively. Taking the derivatives with respect to each P (i|k, l) (and
P (j|k, l)):

∂D(P ||P ′)

∂P (i|k, l)
=

∂

∂P (i|k, l)

∑

i,j,k,l

P (i, j, k, l) log
P (i, j|k, l)

P (i|k, l)P (j|k, l)

=
∂

∂P (i|k, l)

∑

i,j,k,l

P (i, j, k, l) [log P (i, j|k, l) − log P (i|k, l)− log P (j|k, l)]

=
∂

∂P (i|k, l)
−
∑

j

P (i, j, k, l) log P (i|k, l)

=

∑

j P (i, j, k, l)

P (i|k, l)
(C.2)

The conditional distribution P (X1
t |X

1
t−1, X

2
t−1) must fulfill the following con-

straint:
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∑

i

P (i|k, l) = 1, ∀(k, l) (C.3)

which can be forced adding Lagrange multipliers:

λ

(

∑

i

P (i|k, l) − 1

)

= 0 (C.4)

Taking derivatives with respect to P (i|k, l), we obtain:

∂

∂P (i|k, l)
λ

(

∑

i

P (i|k, l) − 1

)

= λ (C.5)

Combining eqs. (C.2) and (C.5), and equaling to 0, we obtain the minimum
mutual information transition probabilities for the CMC structure, with respect to
the Cartesian product structure:

∑

j P (i, j, k, l)

P (i|k, l)
+ λ = 0 (C.6)

P (i|k, l) =
−
∑

j P (i, j, k, l)

λ
(C.7)

Since λ must normalize the probabilities, the final transition probabilities are given
by:

P̂ (i|k, l) =

∑

j P (i, j, k, l)
∑

i

∑

j P (i, j, k, l)
(C.8)

which are the usual transition probabilities computed as frequencies from training
data. From the Cartesian product probabilities, these can be obtained by projecting
and re-normalizing.

Equivalently, the optimal transition probabilities for P (X2
t |X

1
t−1, X

2
t−1) are given

by:

P̂ (j|k, l) =

∑

i P (i, j, k, l)
∑

j

∑

i P (i, j, k, l)
(C.9)



Appendix D

Expected precision of retrieval with

a random selection

T
his appendix shows how to compute the expected precision of content-based
video retrieval when the results are selected randomly. Given the total number
of shots in the repository (N), the total number of shots retrieved (M), and

the number of correct shots retrieved (K), we ask for the probability of randomly
selecting K correct shots within the M shots retrieved. In other words, from all the
possible permutations of the total N elements, how many have the correct K elements
within a set of M .

There are
(

M
K

)

combinations of K elements within a set of M . The rest of correct

answers (M −K) will be within the remaining M −N elements, with
(

M−N
M−K

)

possible
combinations. Furthermore, there are M !(N − M)! different orderings of the correct
and incorrect results. Altogether, the probability of randomly selecting K correct
answers within the M shots retrieved is:

P (K) =

(

M
K

)(

N−M
M−K

)

M !(N − M)!

N !
(D.1)

=

(

M

K

)(

N−M

M−K

)

(

N
M

) (D.2)

K will usually run from 0 to M , as M is the number of true correct results.
Therefore, given the usual definition of precision:

Pr =
K

M
(D.3)

the expected precision with a random selection of the results would be:

111



112 EXPECTED PRECISION OF RETRIEVAL WITH A RANDOM SELECTION

Prrandom =
M
∑

K=0

K

M
P (K) (D.4)

However, the case where M > N − M must be taken into account. If there are
M true correct results and M > N − M , there will always be at least M − (N − M)
correct shots retrieved, even with a random selection. Therefore, K will run from
max(0, 2M − N) to M , and the final expected precision is:

Prrandom =

M
∑

K=max(0,2M−N)

K

M
P (K) (D.5)



Appendix E

Publications

A
udiCom is a complete system for monitoring and logging TV commercials.
This system is presented in chapter 1 as an example of representing shots by
their keyframes, thus turning video segment identification into a still image

matching problem. This matching was first addressed using color histograms.

• Juan M. Sánchez and Xavier Binefa. Automatic digital TV commercial

recognition. In Proc. VIII National Symposium on Pattern Recognition and
Image Analysis, volume 1, pages 313–320, Bilbao, Spain, May 1999.

• Juan M. Sánchez and Xavier Binefa. Audicom: a video analysis system for

auditing commercial broadcasts. In Proc. IEEE Intl. Conf. on Multimedia
Computing and Systems, volume 2, pages 272–276, Firenze, Italy, June 1999.

Then, the problem was addressed using appearance-based matching by PCA di-
mensionality reduction and Euclidean distance in that low-dimensional space. This a
priori simple problem uncovered the main problems found when dealing with digital
video. First, a keyframe-based representation of shots relies on the accuracy of the
prior shot boundary detection process. Chapter 1 also presents the CECA algorithm,
which combines information from color and edges to obtain a robust shot boundary
detector.

• Juan M. Sánchez, Xavier Binefa, Jordi Vitrià, and Petia Radeva. Local color

analysis for scene break detection applied to TV commercials recogni-

tion. In Proc. 3rd Intl. Conf. on Visual Information and Information Systems
VISUAL’99, pages 237–244, Amsterdam, The Netherlands, June 1999. Springer
Verlag LNCS 1614.

• Juan M. Sánchez, Xavier Binefa, and Jordi Vitrià. Shot partitioning based

recognition of TV commercials. Multimedia Tools and Applications, 18:233–
247, 2002.
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The second main problem with digital video combined with color or appearance-
based recognition is color appearance variability due to the use of different video
acquisition hardware. We developed a GMM based color correction method. It is
summarized in chapter 2 and details are given in appendix A. This technique has
been applied to appearance-based recognition of keyframes.

• Juan M. Sánchez and Xavier Binefa. Improving visual recognition using

color normalization in digital video applications. In Proc. International
Conference on Multimedia and Expo, volume II, pages 1187–1190, New York,
NY, July 2000.

These results were compared to other color normalization techniques.

• Juan M. Sánchez and Xavier Binefa. Color normalization for appearance

based recognition of video key-frames. In Proc. International Conference
on Pattern Recognition, volume 1, pages 815–818, Barcelona, Spain, September
2000.

And it also has been applied to skin color segmentation for applications like face
detection.

• Juan M. Sánchez and Xavier Binefa. Color normalization for digital video

processing. In Proc. 4th Intl. Conf. on Visual Information and Information
Systems VISUAL’2000, pages 189–199, Lyon, France, November 2000. Springer
Verlag LNCS 1929.

The entire work on GMM color correction has been gathered and extended in

• Juan M. Sánchez and Xavier Binefa. Video color correction using Gaussian

mixture models. Submitted to Pattern Recognition, 2003.

Intermediate-level semantic information must be extracted from low-level features
in order to obtain the high-level structure of a video. Our work based on semiotics
analyzes the relationships between low-level features and emotional aspects of video
production. Mentions to this work are found through the entire dissertation, and
particularly in fhapter 2.

• Juan M. Sánchez, Xavier Binefa, Jordi Vitrià, and Petia Radeva. Linking

visual cues and semantic terms under specific digital video domains.
Journal of Visual Languages and Computing, 11(3), June 2000.

This work was extended in the Master’s thesis.
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• Juan M. Sánchez. Semantic retrieval from digital libraries in the TV

commercials domain. M.Sc. Thesis, CVC Tech. Rep. 29, Centre de Visió
per Computador, Universitat Autònoma de Barcelona, September 1999.

Color is known to be an important semantic carrier. In the same way, chapter 2
presents a comprehensive analysis of the semantics conveyed by motion information.

• Juan M. Sánchez and Xavier Binefa. Semantics from motion in news

videos. In Proc. IX National Symposium on Pattern Recognition and Image
Analysis, volume 1, pages 79–84, Castellón, Spain, May 2001.

Chapter 3 presents the main contribution of this thesis: the multiple feature tem-
poral modeling of visual contents based on coupled Markov chains. This chapter is
mainly focused on the definition of the model and the development of a method for
automatic structure learning in terms of minimum cost and maximum representation
accuracy.

• Juan M. Sánchez, Xavier Binefa, and John R. Kender. Combining the rep-

resentation of multiple features in temporal models for the charac-

terization of visual contents in video. In Proc. International Conference
on Image and Video Retrieval (CIVR’2003), pages 216–226, Urbana, IL, July
2003. Springer Verlag LNCS 2728.

Different applications of the CMC modeling to the semantic analysis of videos were
presented in chapter 4. The CMC representation provides semantically meaningful
clusterings of video shots, which can be combined with simple domain knowledge to
obtain the high-level structure of News videos.

• Juan M. Sánchez, Xavier Binefa, and John R. Kender. Coupled Markov

chains for video contents characterization. In Proc. International Con-
ference on Pattern Recognition, Quebec, Canada, August 2002.

Object detection and localization in video sequences is another application of the
CMC representation.

• Juan M. Sánchez, Xavier Binefa, and John R. Kender. Multiple feature tem-

poral models for object detection in video. In Proc. IEEE International
Conference on Multimedia and Expo, Lausanne, Switzerland, August 2002.

During the process of obtaining the CMC representations of the shots of a video,
shot boundaries are detected using the same model and similarity measures. This
process can also be used as a stand-alone shot boundary detector.
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• Juan M. Sánchez and Xavier Binefa. Shot segmentation using a cou-

pled Markov chains representation of video contents. In Proc. 1st.
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’03),
pages 902–909, Mallorca, Spain, June 2003. Springer Verlag LNCS 2652.
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