
Chapter 3

Multiple feature temporal modeling

of visual contents

Most representations of contents used for video retrieval and high-level structuring are
based on keyframes, and thus disregard the temporal component of video. However,
image features can change their positions and values along a sequence of images.
Sometimes, features can show temporal patterns, like in the case of temporal textures
that were discussed in the previous chapter. These patterns can be found not only
in motion features, but also in color and other visual cues. For instance, consider
the images from fig. 3.1, which were taken from a sequence that shows a warning
traffic light blinking. One out of every twenty images is shown. If we represented
this sequence with one single keyframe, the blinking behavior would not be captured.
Even two keyframes, for the “lit” and “unlit” states, would not represent the sequence
correctly. In this case, the complete evolution of the color feature along the image
sequence must be taken into account by the representation of contents, which leads
us to modeling the behavior of features as temporal processes. In this chapter, a
novel way of representing visual contents in video as temporal processes is presented.
This way of modeling contents will allow us to combine multiple features in the same
representation, as well as to evaluate their significance and the degree of dependency
between them.

3.1 Markov chains

O
ne of the simplest ways to describe a temporal process is a first order dis-
crete Markov chain (MC). A discrete MC is a sequence X of ordered random
variables Xt, t ∈ [1, m], taking values in a state space S = {1, . . . , n}, which

fulfills the Markov property:

P (Xt|Xt−1, . . . , X1) = P (Xt|Xt−1) (3.1)
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Figure 3.1: One out of every twenty images of a warning traffic light blinking.

The PDF of a MC is given by:

P (X) = P (X1)

m
∏

t=2

P (Xt|Xt−1) (3.2)

Figure 3.2(a) shows a graphical representation of this Markovian model. A MC
is fully characterized by a n2-matrix of state transition probabilities T , where Tij =
P (Xt = j|Xt−1 = i). Given the definition of a MC, T has the following properties:

Tij ≥ 0, ∀(i, j) ∈ S2 (3.3)

∑

j∈S

Tij = 1, ∀i ∈ S (3.4)

The likelihood of a realization x = {x1, . . . , xm}, xi ∈ S, of a MC with respect to
a MC model Ψ is given by:

P (x|Ψ) = P (x1|Ψ)

m
∏

t=2

P (xt|xt−1, Ψ) (3.5)

To simplify, we will omit the conditioning of the probabilities to the model Ψ,
unless it may lead to confusion. The likelihood can also be expressed in terms of
temporal cooccurrences:

P (x) = P (x1)
∏

(i,j)∈S2

T
Cij|x

ij (3.6)

where Cij|x is the number of times that state j follows state i in x, i.e. the temporal
cooccurrence of states i and j. We can take logarithms for simplicity and efficiency:

P (x) = P (x1) exp





∑

(i,j)∈S2

Cij|x log Tij



 (3.7)

Equation (3.7) is the formulation of the MC likelihood as a Gibbs distribution
with clique potentials Vij = log Tij , as used by Fablet et al. in [18]. Note that
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Figure 3.2: Graphical representations of the models discussed in the text, with 4
time steps unfolded.
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the likelihood tends to 0 when the length of the chain grows. This fact causes an
obvious computational problem for long chains, but also implies that the likelihoods
of chains with different lengths cannot be directly compared. However, the temporal
cooccurrences can be normalized, so that they would consider a chain of length 1, for
instance. Given the cooccurrences Cij|x of states i and j in consecutive time steps in
the chain x, we can express eq. (3.7) in terms of a normalized cooccurrence matrix
C̄, whose elements are:

C̄ij|x =
Cij|x

∑

(i,j)∈S2 Cij|x
, ∀(i, j) ∈ S2 (3.8)

These cooccurrences belong to a chain of length
∑

(i,j)∈S2 C̄ij|x = 1. Note that
the normalized cooccurrence matrix is the joint distribution of Xt and Xt−1. Given
a realization x:

P (Xt = j, Xt−1 = i|X = x) = C̄ij|x (3.9)

The likelihood of a length-normalized realization of a MC is then given by:

P (x) = P (x1)
C̄i|x exp





∑

(i,j)∈S2

C̄ij|x log Tij



 (3.10)

where C̄i|x =
∑

j∈S C̄ij|x. That is, the frequency of state i in the observed chain x as
in a histogram.

A second computational issue arises in the presence of observation noise. If there
is a null transition probability in the model, a single noisy observation can make
the whole likelihood of the realization drop to zero. A trivial example clarifies this
statement. Let us consider a 2-state MC with transition probabilities P (0|0) = 1
and P (1|0) = 0, and a noiseless realization of this chain with C̄00 = 1 and C̄01 = 0.
The likelihood in this case is 1. Consider now noisy observations with C̄00 = .99 and
C̄01 = .01. The likelihood drops to 0. A solution to this problem is to introduce
noise in the model itself, so that in our example we may have P (0|0) = .99 and
P (1|0) = .01. The likelihood with noiseless observations in this case is .99, and with
the noisy ones it only drops to .9455. Therefore, the model is much more robust to
noisy observations.

For the estimation of parameters, given that the probabilistic model of a MC is
defined as a fully-observed directed graphical model (i.e., there are no hidden vari-
ables), the maximum likelihood transition probabilities are directly obtained from an
observation x as normalized frequencies (see appendix B for further details):

T̂ij =
Cij|x

∑

j∈S Cij|x
, ∀i ∈ S (3.11)
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Xt , Xt−1 Xt−1 =ON Xt−1 =OFF
Xt =ON 49/75 1/75
Xt =OFF 1/75 24/75

Table 3.1: Joint probabilities for the blinking light example.

Xt Xt−1 Xt−1 =ON Xt−1 =OFF
Xt =ON 0.98 0.02
Xt =OFF 0.04 0.96

Table 3.2: Transition probability matrix for the blinking light example.

A MC is the particular case of a 1-dimensional causal Markov random field (MRF).
In order to apply this model to the representation of visual contents in a video se-
quence, we consider the video as a 3-dimensional MRF. Given a sequence of L images
of size M × N , the set of sites of the MRF is Xuvt, (u, v, t) ∈ M × N × L. The state
of each site is given by the quantization of a scalar measure on a particular image
feature. The set of cliques is formed by every pair of sites with the same spatial
position and consecutive time instants:

C = {(It(x, y), It−1(x, y)), ∀(x, y, t)} (3.12)

where It(x, y) is the pixel located at (x, y) at time t in image sequence I. Figure
3.2(b) shows the graphical model associated to this MRF. There is a random variable
Xt(x, y) attached to each pixel It(x, y). Therefore, the PDF of the MRF X is:

P (X) =
∏

x,y

P (X1(X, y))

L
∏

t=2

P (Xt(x, y)|Xt−1(x, y)) (3.13)

In this way, a global model of the temporal behavior of the feature in the sequence
of images is obtained.

As an example of visual contents representation using this MC/MRF model, let
us go back to the blinking light sequence from fig. 3.1. The sequence of images has
the following characteristics:

• The light remains in the ON state for 2 seconds.

• The light is OFF during 1 second.

• The sequence was captured at 25 fps.

If only the image region occupied by the light is represented, the joint probabilities
of Xt and Xt−1, and the corresponding transition probability matrix would be as
shown in tables 3.1 and 3.2, respectively.



42 MULTIPLE FEATURE TEMPORAL MODELING OF VISUAL CONTENTS

3.2 Measuring similarity of shots

The foundation of these Markovian models allows us to define measures of the simi-
larity or the difference between two models Ψ1 and Ψ2 in terms of their probability
distributions. Particularly, a dissimilarity measure can be defined as a likelihood ratio
between the two models:

LR(Ψ1||Ψ2) =
P (xΨ1 |Ψ1)

P (xΨ1 |Ψ2)
(3.14)

where xΨ1 is a sample from the distribution P (X |Ψ1). In practice, the same obser-
vations used for estimating the parameters of Ψ1 are used to compute the likelihood
ratio. Ψ1 is formed by the maximum likelihood parameters for the observation xΨ1 .
Therefore, P (xΨ1 |Ψ2) will always be smaller than P (xΨ1 |Ψ1), except for the case
where Ψ1 and Ψ2 are exactly the same model. The likelihood ratio is in the range
[1,∞]. A similarity measure in the range [0, 1] can then be obtained by inverting the
likelihood ratio:

LR(Ψ1||Ψ2)
−1 =

P (xΨ1 |Ψ2)

P (xΨ1 |Ψ1)
(3.15)

Note that the likelihood ratio is not symmetric. For many applications, a symmet-
ric similarity measure is needed. This can be obtained by combining the two opposed
ratios:

SLR(Ψ1, Ψ2) =

[

1

2
(LR(Ψ1||Ψ2) + LR(Ψ2||Ψ1))

]−1

(3.16)

Taking the logarithm of the likelihood ratio, we obtain the relative entropy between
the two models, also known as cross entropy or Kullback-Leibler Divergenge (KLD):

KLD(Ψ1||Ψ2) = log
P (xΨ1 |Ψ1)

P (xΨ1 |Ψ2)
(3.17)

KLD is a measure of the loss of accuracy to represent the observation xΨ1 using
the distribution with parameters Ψ2 instead of the real distribution given by the
parameterization Ψ1. The KLD is greater than 0, and 0 when the two distributions
are exactly the same. Again, it is not symmetric. A symmetric version can be obtained
in a similar way as with the likelihood ratio:

SKLD(Ψ1, Ψ2) =
1

2
(KLD(Ψ1||Ψ2) + KLD(Ψ2||Ψ1) (3.18)

Depending on the application, we can be interested on using likelihood ratios,
KLD’s or their symmetric versions to evaluate the similarity or dissimilarity of two
shots represented as a Markovian process.
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3.3 Coupling Markov chains to combine multiple

features

Given a set F formed by f features, the goal is to combine their information into one
unique temporal model. Having multiple features means that multiple observations
(one per feature) are available at each site of the 3-dimensional MRF, i.e. at each
pixel in the image sequence. Therefore, we can consider a set of MC’s/MRF’s X =
{X1, . . . , Xf}, one for each feature, with their own state spaces Si, ∀i ∈ [1, f ], and
couple them.

A first approach to couple multiple MC’s is to consider that the chains attached
to different features are independent. The graphical model is depicted in fig. 3.2(c).
The PDF that represents this simple way of coupling is:

P (X) = P (X1, . . . , Xf ) =
∏

i∈F

P (X i) (3.19)

where X i is the sequence of random variables associated to feature i, and P (X i) is
given by eq. (3.2). The main drawback of this approach is that the assumption of
independence between features is not always true. A more realistic approach must
consider possible dependencies and interactions that may exist between them.

In order to take into account these dependencies, the model shown in fig. 3.2(d)
can be considered. This model is a single MC with a new state space S∗ that is the
Cartesian product of the state spaces of the features involved:

S∗ = S1 × . . . × Sf (3.20)

In this case, all the features are tightly coupled. Therefore, this can be considered
the optimal way of representing dependencies between them. However, the main dis-
advantage of this model is its computational cost. If the same number of quantization
levels is assumed for all feature state spaces, the size of the transition matrix will be
n2f . For n = 16 states, f = 2 features and double precision floating point elements,
the transition probability matrix has size 512 KB. For f = 3, it grows up to 128 MB,
which is completely unaffordable in terms of storage size and computation time.

Given that the Cartesian-product model can be considered the optimal way of
representing features between dependencies, it can be used as a starting point to
obtain other models with less cost by assuming independencies between the random
variables involved. First, we can assume independence between the features at the
same time instant, while they still depend on all the features at the previous time. This
assumption is expressed by the following factorization of the transition probabilities:

P (X1
t , . . . , Xf

t |X
1
t−1, . . . , X

f
t−1) =

∏

i∈F

P (X i
t |X

1
t−1, . . . , X

f
t−1) (3.21)

The joint PDF for chains of length m is then given by:
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P (X) = P (X1
1 , . . . , Xf

1 )

m
∏

t=2

P (X1
t , . . . , Xf

t |X
1
t−1, . . . , X

f
t−1) (3.22)

=
∏

i∈F

P (X i
1)

m
∏

t=2

P (X i
t |X

1
t−1, . . . , X

f
t−1) (3.23)

This new model, depicted in fig. 3.2(e), is called Coupled Markov Chains (CMC).
In this case, the size of the transition probability matrix is fnf+1. For n = 16,
f = 2 and double precision, the size is 64 KB. For f = 3, it is 192 KB, which
is 4 times smaller than the Cartesian product model with f = 2. The problem is
to know whether these reductions of the cost in time and space turn into a loss of
representation accuracy.

3.4 Structure learning

The problem of structure learning consists of finding the optimal configuration of a
model with respect to some criteria. In our case, the structure of the model is given
by the dependencies between the random variables involved. These dependencies
are represented by directed links in a graph where the nodes are the variables. Our
problem is how to decide what links can be removed, that is, what variables are
independent from each other.

The single MC is the simplest model with dependencies between variables. Given
this model structure and its likelihood from eq. (3.10), the log-likelihood of a length-
normalized observation is given by:

L{P (x)} =
∑

(i,j)∈S2

C̄j,i|x log Tij (3.24)

For simplicity, the following notation will be used in this section:

P (j, i) = P (Xt = j, Xt−1 = i) (3.25)

P (j|i) = P (Xt = j|Xt−1 = i) (3.26)

P (i) = P (Xt = i) (3.27)

Remembering that the normalized cooccurrence matrix of a realization x is actu-
ally a joint distribution C̄ij|x = P (Xt = j, Xt−1 = i|X = x), the log-likelihood can be
rewritten as follows:

L{P (x)} =
∑

(i,j)∈S2

P (j, i|x) log P (j|i) (3.28)
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When the observation x is the same that we used to estimate the parameters of the
model, eq. (3.28) is minus the conditional entropy of Xt given Xt−1, H [P (Xt|Xt−1)].
We will omit the conditioning on x from P (j, i|x), as this fact will be assumed from
now on unless it may lead to confusion. The conditional entropy is a measure of
the amount of information that knowledge about the conditioning variable provides
about a certain random variable. Let us consider the case where this knowledge
about the conditioning variable is not available. We have a new set of transition
probabilities P ′(Xt|Xt−1), where Xt does not depend on the value of Xt−1, so that
P ′(Xt|Xt−1) = P (Xt). The log-likelihood for this new distribution is measured as:

L{P ′(x)} =
∑

(i,j)∈S2

P (j, i) log P ′(j|i) (3.29)

=
∑

i∈S

P (i) log P (i) (3.30)

We know that P (Xt) may contain less information about the random variable
Xt because we do not have the knowledge about a second random variable (Xt−1)
that may be important. We can compute this loss of information of the simplified
distribution P ′(X) with respect to the true distribution P (X) as a difference of their
log-likelihoods, or entropies:

D(P ||P ′) = L{P (X)} − L{P ′(X)} (3.31)

= −H [P (Xt|Xt−1)] + H [P (Xt)] (3.32)

If the loss of information of P ′(X) with respect to P (X) is close to zero, then the
two distributions are very similar and there was no real dependency of Xt on Xt−1.
In that case, considering the temporal dependencies is not necessary, which can be
graphically expressed as the removal of the link from Xt−1 to Xt. A simple manip-
ulation of this expression leads us to the definition of relative entropy (also known
as cross entropy or Kullback Leibler distance). Relative entropy is a measure of the
distance between distributions that has been used for structure learning in Bayesian
networks [40]. It measures the loss of information of a probability distribution with
respect to the true distribution, and is defined in our case as:

D(P ||P ′) =
∑

(i,j)∈S2

P (j, i) log
P (j|i)

P (j)
(3.33)

Equation (3.33) is the loss of information when we represent a sequence using a
simple histogram, instead of considering a first-order temporal dependency.

Going back to the Cartesian product and the CMC model structures, let us con-
sider their respective conditional entropies. The case of f = 2 will be considered for
simplicity:
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H [P (X1
t , X2

t |X
1
t−1, X

2
t−1)] = −

∑

i,j,k,l

P (i, j, k, l) logP (i, j|k, l) (3.34)

H [P ′(X1
t , X2

t |X
1
t−1, X

2
t−1)] = −

∑

i,j,k,l

P (i, j, k, l) log [P (i|k, l)P (j|k, l)] (3.35)

where the indexes i, j, k, l are attached to the random variables X1
t , X2

t , X1
t−1, X

2
t−1,

respectively. The relative entropy of the CMC structure with respect to the Cartesian
product structure is:

D(P ||P ′) =
∑

i,j,k,l

P (i, j, k, l) log
P (i, j|k, l)

P (i|k, l)P (j|k, l)
(3.36)

which is the definition of conditional mutual information of X1
t and X2

t given X1
t−1

and X2
t−1. Equation (3.36) provides a measure of the amount of information lost

by the assumption of independence that turns the Cartesian product model structure
into the CMC structure, and thus the loss of accuracy in representing the relationships
between image features. Equation (3.36) also lets us obtain the optimal transition
probabilities for the CMC structure in terms of minimal mutual information with
respect to the Cartesian product structure:

P̂ (i|k, l) =

∑

j P (i, j, k, l)
∑

i

∑

j P (i, j, k, l)
(3.37)

P̂ (j|k, l) =

∑

i P (i, j, k, l)
∑

j

∑

i P (i, j, k, l)
(3.38)

Details are given in appendix C.

Further independencies can be assumed on the CMC model, which are graphically
represented by removing links from the structure in fig. 3.2(e). Every independency
assumption turns into a reduction of the cost in time and space of the model. Table
3.3 summarizes the model structures that are considered in this work, and shows
the size of the transition probability matrix for 2 features and different number of
quantization levels (states).

A space of feasible model structures can be built as a directed graph, where the
nodes are model structures, and the links represent independency assumptions. Rel-
ative entropy as a measure of information loss has some properties that will allow us
to search this space of feasible model structures more efficiently:

Property 1 Chain rule: The length of the path from P to P ′′′ is the sum of partial
paths, and does not depend on what link is removed first.

Let us consider the following distributions from fig. 3.3 (top and middle-left):
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Structure Graphical model Size n = 16 n = 8 n = 4

Cartesian product (CP)
Xt,YtXt-1,Yt-1

n4 65536 4096 256

Full CMC (FC)

XtXt-1

YtYt-1 2n3 8192 1024 128

Partial CMC (PC)

XtXt-1

YtYt-1

XtXt-1

YtYt-1 n3 + n2 4352 576 80

Independent chains (I)

XtXt-1

YtYt-1 2n2 512 128 32

Partial temporal (PT)

XtXt-1

Yt

Xt

YtYt-1 n2 + n 272 72 20

Histograms (H)

Xt

Yt 2n 32 16 8

Table 3.3: Cost of different model structures with 2 features.
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P (X, Y, Z) = P (X |Y, Z)P (Y )P (Z) (3.39)

P ′(X, Y, Z) = P (X |Y )P (Y )P (Z) (3.40)

P ′′(X, Y, Z) = P (X |Z)P (Y )P (Z) (3.41)

P ′′′(X, Y, Z) = P (X)P (Y )P (Z) (3.42)

In this case, the loss of information of P ′′′(X, Y, Z) w.r.t. P (X, Y, Z) is:

D(P ||P ′) =
∑

x,y,z

P (x, y, z) log
P (x|y, z)

P (x|y)

=
∑

x,y,z

P (x, y, z) log
P (x|y, z)P (x|y)

P (x|y)P (x)

=
∑

x,y,z

P (x, y, z)

[

log
P (x|y, z)

P (x|y)
+ log

P (x|y)

P (x)

]

=
∑

x,y,z

P (x, y, z) log
P (x|y, z)

P (x|y)
+
∑

x,y,z

P (x, y, z) log
P (x|y)

P (x)

= D(P ||P ′) + D(P ′||P ′′′) (3.43)

In the same way, using P (x|z) instead of P (x|y), we reach:

D(P ||P ′′′) = D(P ||P ′′) + D(P ′′||P ′′′) (3.44)

Given that relative entropies are always positive or zero, this also means that the
loss of information due to successive link removal increases monotonically.�

Property 2 Locality: For multiple chains, the total relative entropy is the sum of
local relative entropies.

Given that our structures are always defined by directed acyclic graphs (DAG’s),
the relative entropies between them can be computed locally. Consider the CMC
and the independent MC’s models from fig. 3.4, with their respective probability
distributions PC and PI . The relative entropy between them is:

D(PC ||PI) =
∑

i,j,k,l

P (i, j, k, l) log
P (i|k, l)P (j|k, l)

P (i|k)P (j|l)

=
∑

i,k,l

P (i, k, l) log
P (i|k, l)

P (i|k)
+

+
∑

j,k,l

P (j, k, l) log
P (j|k, l)

P (j|l)
(3.45)
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Figure 3.3: Example of the process of removing dependencies between variables
(links) from the structure. First, X depends on Y and Z (top). When one link is
removed, X only depends on one variable, either Y (left) or Z (right). Finally, X is
completely independent (bottom).

XtXt-1

YtYt-1

XtXt-1

YtYt-1

(a) CMC structure. (b) Independent MC structure.

Figure 3.4: Model structures used to illustrate the locality property.

where the indexes i, j, k, l are attached to the random variables Xt, Yt, Xt−1, Yt−1,
respectively.�

Costs can be attached to the links of the graph of feasible structures in terms of
the loss of information given by the relative entropy between model structures. Given
that relative entropy is a subtraction of two entropies, costs can also be attached to
the nodes in terms of the amount of information that the models contain, as given by
their entropies, and then compute relative entropies from them. Depending on the
number of feasible model structures considered, this can turn into a reduction of the
computation needed to obtain the costs of the paths in the space of structures. Let
us suppose that all the links in the model are allowed to be removed, and the original
structure has L links. In that case, the number of feasible structures (nodes in the
space of structures) would be:

Nnodes =

L
∑

i=0

(

L

i

)

= 2L (3.46)



50 MULTIPLE FEATURE TEMPORAL MODELING OF VISUAL CONTENTS
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Figure 3.5: Number of nodes and links of the space of feasible model structures, as
a function of the number of links in the original model structure.

However, the number of links in the graph of feasible structures would be:

Nlinks =

L
∑

i=0

(L − i)

(

L

i

)

= L2L−1 (3.47)

Figure 3.5 shows the number of nodes and links of the space of feasible model
structures as a function of the number of links in the original model structure. For 2
or more links in the original structure, it is more convenient to compute conditional
entropies as costs for the nodes instead of relative entropies for the links. However, we
must note that the properties of relative entropy can allow us to save computations
as well.

Different criteria can be used to decide when a reduced structure is the optimal
with respect to the true one. We can specify an acceptance threshold on the relative
entropy that will determine the loss of information that we want to afford. Given
that, after the chain rule property, the loss of information increases monotonically
with the length of the path in the space of structures, once the threshold is exceeded
the rest of the path can be automatically discarded.
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Sequence name Domain Number of shots

News Newscast 121
Soccer Sports 232
Friends Sit-com 205

Table 3.4: Details of the video sequences used in the content-based video retrieval
experiments.

3.5 Information loss in practice

This section shows the practical side of the theory developed so far in this chapter.
For this purpose, the loss of information of the model structures discussed in previous
sections has been computed using test video sequences from different domains. Table
3.4 shows details of these sequences.

Video shots were described using one color and one motion feature. The color
feature was the Hue component of the HSV color space. This measure represents the
identity of the color. The motion feature was the normal flow. The normal flow is
the projection of the optical flow in the direction of the gradient, and thus provides a
measure of the amount of motion. Given the image intensity function I, the normal
velocity at pixel p is given by:

vn(p) =
−It

||∇I(p)||
(3.48)

where It is the temporal derivative of the intensity function I, which can be approxi-
mated by a simple finite difference. Fablet et al. [18] defined a more reliable measure,
by averaging the normal velocity over a small window with weights in terms of the
gradient:

vobs(p) =

∑

q∈W(p) ||∇I(q)||2|vn(q)|

max
(

G2,
∑

q∈W(p) ||∇I(q)||2
) (3.49)

where W(p) is a small window centered on p and G2 is a predetermined constant
related to the noise level in uniform areas. Both color and motion features were
quantized into 16 possible states.

Previously in this chapter, we have stated that the Cartesian product structure
can be considered as the optimal way of representing the possible causal dependencies
between features (color and motion in this case) that may exist. From the Cartesian
product structure, successive independency assumptions were considered in order to
generate the space of feasible structures shown in fig. 3.6. The costs shown in this
figure correspond to averaging over the shots of the Friends test sequence. In the
case of partial models, either in the coupled or in the temporal sense, we differentiate
between the best and the worst partial structure. The best structure is the one with
the lowest loss of information, and vice versa. Note that being the best or the worst



52 MULTIPLE FEATURE TEMPORAL MODELING OF VISUAL CONTENTS

partial structure is decided for each different shot.

Figure 3.7 shows the average loss of information of the different model structures
over all the shots of the different domains from the test sequences. The three domains
of video contents that are considered are shown in this plot, in order to perceive possi-
ble differences in the behavior of the structures. In general, we observe that the most
important loss of information appears when temporal links within the same feature
are removed. Particularly, in the Friends and the Soccer sequences the temporal in-
formation of one of the features (color in some shots, motion in some others) is even
more relevant than the temporal information of the other. In the News sequence,
the temporal information of both features appears to be equally relevant. In any
case, the information provided by the crossed links is less relevant than the temporal
information within the same features. However, a significant loss of information can
be noticed, especially in the News sequence. Particularly, this happens when the shot
contains objects with different color and motion features than the rest of the scene,
like the wavy flag shown in fig. 3.8(a). In this case, information about the relationship
between the white and blue colors in the flag and its wavy motion is contained in the
crossed links. Another example is shown in fig. 3.8(b), where the motion of Phoebe
laughing is related to her skin and hair colors, which are very different to the rest of
the scene. It is also important to note that the loss of information of the fully coupled
structure with respect to the Cartesian is very small despite the large reduction in
storage size.

A significant conclusion reached after the previous observations is that the ac-
cumulation of static image descriptors along the sequence is not a good approach
to representing dynamic contents. For instance, an accumulated color histogram will
clearly not capture the behavior of the blinking light from fig. 3.1. A simple MC using
color observations will provide much more information about the blinking behavior.

Figure 3.9 allows us to better observe this behavior and the differences between
the domains. In this case, the average amount of information that the different
model structures contain about our test video data in terms of average likelihoods is
shown. We can see that the amount of information drops from the fully coupled to
the independent chains structures faster in the Friends and the News sequences than
in the Soccer sequence.

3.6 Information loss vs. Contents representation

accuracy

The goal of the experiments shown in this section is to analyze the effect of the loss
of information caused by the use of a simplified model structure on its accuracy to
represent visual contents from videos. For this purpose, content-based video shot
retrieval experiments have been conducted on the same test sequences and model
configurations used above. The likelihood ratio from eq. (3.14) was used as dissimi-
larity measure. The results have been compared to the measures of information loss
computed from the theory in the previous section.
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Figure 3.6: Space of feasible model structures considering two features, and the
paths between them defined by successive independency assumptions. More config-
urations exist, but are not considered here. The costs correspond to the Friends
sequence. Model structure identifiers are taken from table 3.3.
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Figure 3.7: Loss of information of different model structures with respect to the
Cartesian product structure given by relative entropies, and averaged over all the
shots of the test sequences. Model structure identifiers are taken from table 3.3.

(a) Wavy flag.

(b) Laughing Phoebe.

Figure 3.8: Images from shots where the crossed links between color and motion
features are very significant for representing their relationship in the scene.
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Figure 3.9: Amount of information of different model structures given by their
likelihoods, and averaged over all the shots of the test sequences. Model structure
identifiers are taken from table 3.3.

In order to evaluate the quality of the retrieval, we use a measure based on the
classical precision:

Precision =
Ncorrect

Nretrieved

(3.50)

where Ncorrect is the number of correct results within the Nretrieved shots retrieved.
Correct shots are determined by the retrieval results obtained using the Cartesian
product structure, given that it has been considered as the optimal way of representing
contents. When Nretrieved is relatively large with respect to the total number of shots
in the database (Ntotal), the precision is not meaningful by itself. Even a random
selection of shots in the database would have a high precision. It is more meaningful
to measure the improvement of the precision over the precision of a random selection.
This measure is given by Cohen’s κ statistic:

κ =
Precision − Precisionrandom

1 − Precisionrandom

(3.51)

where Precisionrandom is the expected value of precision when the results are selected
randomly, and is given by (see appendix D):

Precisionrandom =

M
∑

K=max(0,2M−N)

K

M
P (K) (3.52)

where M = Nretrieved and N = Ntotal.
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Figure 3.10: Evaluation of retrieval using different model structures with our three
test videos. The ground-truth is the retrieval results using the Cartesian product
model structure. The measure is given as the improvement of precision over a random
selection of shots. Measures are taken for Nretrieved = {1..12, 50, 100, 150, 200}.
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Figure 3.10: (Continued).

Figure 3.10 shows the κ statistic of the precision for different values of Nretrieved

in the three videos used in our experiments. The results are averages using the leave-
one-out method for all the shots in the database. The results obtained are consistent
with the previously computed loss of information. That is, the higher loss of infor-
mation of the structure, the less accurate retrieval results are obtained. Particularly,
results show that the fully coupled structure is a very good approximation of the ideal
Cartesian product structure (over 90% of correct clips retrieved in all cases). Also,
the performance of the simple histograms is very low, which means that the temporal
evolution of features is relevant for describing visual contents that may have dynamic
behaviors. Therefore, accumulating static image descriptors through several images
in a sequence is not an appropriate approach to represent temporal sequences.

It is important to observe that the loss of performance of simplified model struc-
tures is directly related to their loss of information about the original data. For
instance, note the large difference of performance in the Friends sequence between
the partial temporal structure and the histograms in fig. 3.10(top), which is related
to the large loss of information between those structures shown in figs. 3.7 and 3.9.
This similarity between the relative differences in performance and the loss of infor-
mation can also be noticed in the News and the Soccer sequence. We cannot establish
a numerical or analytical relationship, but there is an obvious qualitative dependency
between them.
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3.7 Characterization of “activity”

Figure 3.9 lets us observe an important fact. The average likelihoods, i.e. amount
of information, of different domains of video contents have different energy levels.
Initially, this energy level seems to be related to the amount of activity in the videos.
The Friends sequence is mainly shot using close-ups and medium shots for the di-
alogues, which are the main resource in sit-coms. Close-ups and camera operation
are very common resources used to communicate high activity, particularly in Latin-
American soap-operas. On the other hand, the Soccer sequence is mainly composed
by wide-angle shots that follow the progress of the game. Activity is really significant
only when a goal is scored. Besides, sit-coms offer a larger variety of colors, due to the
use of different settings and clothing. In the case of soccer, the color is mainly green
from the playing field, and the colors of the team jerseys do not change during the
game. A higher variety of colors combined with closer camera shots convey a higher
sense of activity to the viewer (this is probably the reason why watching soccer can be
boring if the viewer is not emotionally involved with one of the teams). The domain
of News is a mixture of both. There are close-ups for interviews, panoramic views
to illustrate events, and a relatively assorted set of colors. A measure of activity can
provide one more intermediate-level descriptor, which is at the same time implicit in
the CMC representation.

In order to assess the relationship between the average amount of information con-
tained in the CMC models and the average activity of the videos, we have conducted
experiments in a different domain of video contents: movie trailers. An instance of
this domain is specifically produced to convey a feeling about the movie, so that the
target audience will be teased to watch it. Therefore, the trailer of an action movie
will have lots of action, and thus activity, while the activity of a trailer from a roman-
tic movie will be much lower. Moreover, it is easy to obtain ground-truth about the
semantic categorization of movies from different Internet sites like the Internet Movie
Database (IMDb) [38] and Movies.com [50].

The shots of 32 movie trailers were modeled using CMC’s as described in previous
sections. The same features and quantization levels that generated the plot from fig.
3.9 were used in this case. The measure of activity was computed as the average
likelihood for all the shots of the trailer. Results are shown in table 3.5. Activity goes
from lower (top) to higher (bottom). The semantic categories assigned by IMDb and
Movies.com are also specified in columns 2 and 3, respectively. We can almost draw
a clear line between the movies in the categories Drama/Comedy/Romance, whose
activity is low, and the movies in Action/Adventure/Thriller, with higher activity.
It is also interesting to observe how different trailers of the same movie are intended
to tease different target audiences. This is the case of Star Wars Episode 2 and its
trailers subtitled Breathing, Forbidden Love, Clone War and Mystery. The trailers
with higher activity mainly show action scenes from the movie, while the trailers with
lower activity show romantic and dramatic situations.

Vasconcelos and Lippman also addressed in [76] the genre classification problem
using measures of activity and shot length. Semiotics also relates shot length to a
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Movie title IMDb categories Movies.com categories Activity

1. The lady and the duke Drama Drama, historical 1,3941
2. Never again Comedy, romance Comedy, romance 1,8863
3. Signs Sci-Fi, drama, thriller, fantasy Thriller, supernatural 1,9559
4. The importance of being earnest Drama, comedy, romance Comedy, historical 1,9619
5. Chelsea walls Drama Drama 2,0144
6. The Bourne identity Action, thriller Spy, thriller 2,0381
7. About a boy Drama, comedy Comedy, romance 2,0661
8. The son of the bride Drama, comedy Drama, comedy 2,0663
9. Star Wars Ep. 2: Attack of the clones (Breathing) Sci-Fi, adventure, action Sci-Fi, action 2,0900
10. Happy times Drama, comedy Comedy, romance 2,0931
11. Cherish Drama, comedy, thriller Crime, romance 2,1234
12. One hour photo Thriller Thriller 2,1445
13. Austin Powers in Goldmember Comedy Comedy 2,1675
14. CQ Drama Comedy, drama 2,2005
15. Cinema paradiso Drama, romance Foreign, drama 2,3654
16. Spirit: stallion of the cimarron Animation, western, family Animated, western 2,4039
17. Halloween resurrection Horror, thriller Horror, thriller 2,4569
18. Star Wars Ep. 2: Attack of the clones (Forbidden love) Sci-Fi, adventure, action Sci-Fi, action 2,4605
19. Star Wars Ep. 2: Attack of the clones (Clone war) Sci-Fi, adventure, action Sci-Fi, action 2,4611
20. Spy kids 2 Adventure, family Children’s, fantasy 2,6405
21. Undercover brother Action, comedy Comedy, martial arts 2,6546
22. Reign of fire Sci-Fi, action Action, fantasy 2,6901
23. Men in black II Sci-Fi, fantasy, action, comedy Sci-Fi, action 2,6985
24. The believer Drama Drama, biography 2,7547
25. Unfaithful Drama, thriller Thriller, erotic 2,8097
26. Spider-man Action, fantasy, sci-fi, adventure, romance, thriller Action, fantasy 2,8907
27. Star Wars Ep. 2: Attack of the clones (Mystery) Sci-Fi, adventure, action Sci-Fi, action 2,9824
28. The sum of all fears Drama, action, adventure, thriller Action, thriller 3,0496
29. Die another day Action Action, spy 3,0889
30. Enough Drama, thriller, action Thriller, crime 3,1002
31. Insomnia Crime, thriller Crime, thriller 3,1228
32. Minority report Sci-Fi, thriller, action Sci-Fi, action 3,1520

Table 3.5: Activity of trailers from different movies. High activity is asso-
ciated to action, adventure and thriller, while low activity is mainly associated
to drama, comedy and romance. The classes Drama/Comedy/Romance and Ac-
tion/Adventure/Thriller can be practically separated.
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Figure 3.11: Plot of shot length vs. activity of the movie trailers from table 3.5.

sense of dynamism and action. They classified movie trailers into three categories:
Romance/Comedy, Action and Other. Considering also shot length in our set of
movie trailers from table 3.5, their distribution in this new 2-feature space is shown
in fig. 3.11. Movies in other IMDb/Movies.com categories (animation, western)
or containing a mixture of our classes (drama AND thriller) have been attached to
the class Others. We observe that shot length is not contributing positively to the
separability of the classes Action/Adventure/Thriller and Drama/Comedy/Romance.
This was also noticeable in the work by Vasconcelos and Lippman, when they used
tangent distance to compute their activity measure. In that case, the lines they draw
to separate their classes are almost vertical, which means that the shot length axis
contains little additional information. Shot length is significant in the case of trailer
number 6 “The Bourne Identity”, an Action/Thriller movie whose trailer has low
activity measure, but also the lowest average shot length. In this particular case, shot
length provides the clue for a correct classification.

3.8 Summary

This chapter has introduced a novel way of representing visual contents in video.
Image sequences are modeled as temporal processes using Markov chains/Markov
random fields. Sites are associated to pixels, and low-level image features like color
or motion are observed at each site. Multiple features are combined into the same
representation by coupling their associated Markov chains. In this work, the Carte-
sian product state space model has been considered as the optimal way of coupling
multiple features. However, when the number of features grows, the storage size and
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processing time of these models becomes prohibitive. Independencies between the
random variables involved in the model can be assumed in order to reduce its cost.
Relative entropy has been used as a measure that allows us to evaluate the amount of
information lost in the representation due to these independency assumptions, which
has led us to develop a method to automatically determine the best model structure
in terms of minimum information loss. Experiments have been conducted to establish
a relationship between the loss of information of simplified model structures and their
accuracy to represent visual contents in terms of content-based video retrieval. After
the experiments, we reach the following conclusions:

• The CMC model structure is an accurate approximation to the Cartesian prod-
uct structure, and its cost is enormously reduced.

• The largest loss of information occurs when the temporal dependency within the
same feature is removed. Therefore, it is not a good approach to represent visual
contents with dynamic behaviors by accumulating static image descriptions of
the images in the sequence.

• The crossed links between features are important when there are elements in
the scene with a clear dependency between them, like in the examples of the
wavy flag and laughing Phoebe.

• For content-based video retrieval, the higher loss of information of the model
structure we are using, the less accurate retrieval results are obtained.

• The loss of performance of simplified model structures is directly related to their
loss of information about the data that they are representing.

• The amount of information contained in the CMC model structure gives a mea-
sure of the activity of the shot. Important semantic information like genre can
be inferred from the activity of a video.
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Chapter 4

Semantic analysis of video contents

using coupled Markov chains

This chapter is focused on the application of the multiple feature temporal models
developed in the previous chapter. In the same way a color histogram summarizes
certain information about the appearance of an object, and in this way captures some
of its semantics, the CMC-based representation is a summary of multiple low-level im-
age features, their temporal behaviors, and the possible relationships of dependency
that may exist between them. Thus, the intermediate-level semantics captured by
this modeling must be even more relevant for higher level video structure analy-
sis than simply using color summaries. Particularly, the CMC representation can
be used to obtain an intermediate-level semantically meaningful clustering of video
shots that will help us to extract higher level structures by defining simple rules in
the particular case of news videos. This chapter also deals with object localization
in image sequences and shot boundary detection.

4.1 Object detection in video

O
bject detection in video sequences has a fundamental importance for indexing
and annotation. Unconstrained video is a particularly challenging domain
where very few assumptions about the objects and the scene can be done.

Clutter, occlusions and all kind of variations of the objects can be found.

Current approaches deal with video frames as static images and apply static ob-
ject detection techniques on them. Appearance-based approaches (like Murase and
Nayar in [51]) have been proposed instead of model-based in order to obtain more
general and easily trainable systems. Many different features have been used to rep-
resent the appearance of objects. Viola and Jones have developed in [78] a real-time
object detection system with automatic feature selection. Different solutions have
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been proposed to deal with partial occlusions and cluttered backgrounds. Authors
like Sali and Ullman [67] use a representation based on the appearance of the parts
of the objects. Selinger and Nelson address in [68] the question of how much the
performance of appearance-based methods can be improved in the presence of clutter
and occlusion.

It seems clear that a combination of image features provides a better characteri-
zation of objects than a single feature on its own. In terms of object localization in
image sequences, Mel combines color, shape and texture information in [49], and Pa-
pageorgiou et al. introduce motion information to segment people in video sequences
in [59], yet they still follow the paradigm of static images. All these approaches to
object detection in video disregard the temporal component. However, we already
know that many objects show a characteristic dynamic behavior of their image fea-
tures. Temporal textures like water or tree leaves have very particular motion patterns
along time. The color of the blinking traffic light from chapter 3 changes from black
to orange, and back. These behaviors can not be recognized in a single static image.
Papageorgiou and Poggio [60] used dynamical information about the object by ex-
tending the static image approach through a set of consecutive frames. However, they
do not exploit the 3-D space and time information structure of the video sequence.
The previous chapter has shown that accumulating static image descriptors does not
provide a proper representation of temporal processes.

In this section, we deal with the detection and localization of talking heads in
news videos, which are relevant for indexing and annotation purposes. However, it is
important to note that the method is not specifically designed as a face detector, but
it provides a general framework for object detection in video.

4.1.1 CMC models for object detection and localization

For simplicity in the application of the CMC models for object detection and localiza-
tion, in order to avoid additional processing of the image sequence, the experiments
shown in this section are restricted to objects that only show local motions, and not
global motions due to camera operation, for instance. Thanks to this constraint, we
make sure that the model is only capturing dynamic characteristics produced by the
object. Talking heads in news videos, and particularly news anchors, obey this con-
straint and will be the focus of this work. In the general case where global image
transformations may exist in the sequence, the images should be registered and thus
compensated for global motions.

The process of object localization is performed in three steps shown in fig. 4.1.
First, the parameters of the model Ψ0 that represents the target object are computed
from a training sequence that only contains the object to be represented. Then,
the test sequence is spatially divided into n rectangular blocks and the parameters
of the temporal model are computed for each block, obtaining models Ψ1, . . . , Ψn.
Finally, the similarity between these models and Ψ0 is computed using their symmetric
likelihood ratio from eq. (3.16).
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Figure 4.1: Object detection process in video sequences using temporal behavior
models.

The choice of features depends on the application. In this case, talking heads have
two main characteristics:

• the presence of a limited range of hues due to the color of the face,

• and a limited range of motions due to the distance to the camera.

The type of shot in terms of relative distance of the subject matter to the camera
has been shown to be captured by motion descriptors in temporal models (see chapter
2). In our experiments, we will use the hue component of the HSV color space and
the normal flow as scalar measures of the features, and will be handled as described
in the previous chapter.

4.1.2 Experiments and discussion

The goal of our first test is to assess the need of a coupled color and motion model
to describe the temporal behavior of the features instead of a simpler independent
features model, or even single feature models. The training sequence (fig. 4.2(a))
was generated by spatially cropping a shot that was used as test sequence as well
(fig. 4.2(b)). The test sequence was divided into 64 blocks. Figure 4.2(e) shows the
similarity between the training sequence and each test block using the independent
features model. We can observe the contribution of each individual feature to the
model. Color (fig. 4.2(c)) is much more meaningful than motion (fig. 4.2(d)). The
motion of the head is very subtle and is confused with the static background. The
blocks of the test image where there is visible skin on the head have a significant
similarity to the model. However, other parts of the scene also have high similar-
ity caused by the black regions of the hair, background and jacket in the training
sequence. Furthermore, skin color is likely to be found in objects other than heads.

When both features are coupled (fig 4.2(f)) the model becomes more robust. It
captures subtle motions associated to skin and dark colors. The maximal similarities
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(a) Training sequence (b) Test sequence

(c) Single feature (color) (d) Single feature (motion)

(e) Independent features (f) Coupled features

Figure 4.2: Similarity between the training sequence and the blocks of the test
sequence using single feature, independent features, and coupled models. Higher
similarities in (c) through (f) are encoded with whiter patches.
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are found in the chin/mouth and forehead/hair blocks of the test sequence, where the
normal flow is more evident and couples better with color information. Note that the
dissimilarity between different regions is much more evident using this model. Many
different objects can share similar colors or motion patterns. However, it is unlikely to
find different objects that share the same color, motion, and dependency relationship
between them.

The scale of the blocks of the test sequence is an important issue. A large scale
(fewer blocks) provides a better estimation of the parameters of the model for each
block. A small scale allows a better location of the object in the image, although the
estimation of the parameters is less accurate and we may have only partial information
about the object (e.g. only the chin and mouth instead of the whole head). Figure 4.3
shows the similarity between the training sequence and the blocks of the test sequence
at different scales. The similarity is consistent from larger to smaller scales, which
allows us to define a coarse-to-fine strategy to locate the object in the image with
fewer computations. Furthermore, we observe that the similarity in the best block
is significantly higher in the scales that produce blocks with the closest size to the
object in the training sequence. In our example, the most suitable scale is between
2× 2 and 4× 4. On the other hand, small scales are useful to know what parts of the
object are the most representative in the model. In this case, these parts correspond
to chin, mouth and hair.

Figure 4.4 shows examples of detection and location of the talking head of the an-
chorman under different variations of scale, position and color acquisition conditions.
The first test sequence shows a special case where the head is always between at least
two blocks. The symmetry of the head makes both blocks have a high similarity,
although they only contain a half of the object. In the second one, a change in scale
affects the motion measure. The true motion becomes smaller in the image when the
object gets farther from the camera. This sequence was also digitized using different
color acquisition parameters that cause a variation in the skin color of the face.

Although a certain variation is allowed, the model trained using a single sequence
does not generalize to other objects of the same class, that is, to other talking heads.
We can train the model with more than one sequence by accumulating their cooccur-
rence matrices before parameter estimation. In this way, larger variations are allowed
in test sequences, which also mean that non-object blocks get more similar to the
training sequences as well. When the model is trained using several sequences with
significant variations, a wider range of bins in the cumulative cooccurrence matrix
become non-zero. Therefore, there is a slightly higher chance of confusion between
positive and negative examples. Figure 4.5 shows that the average similarities of the
best block in positive and negative examples get closer when the model accepts larger
variations of the object (the scale was fixed at 4 × 4). The discriminability between
positives and negatives is higher with the specific model.
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(a) 2 × 2 (0.934) (b) 4 × 4 (0.932)

(c) 8 × 8 (0.860) (d) 16 × 16 (0.733)

Figure 4.3: Similarity between the training sequence and different sizes of the blocks
of the test sequence using the coupled model. The similarity in the best block is shown
in brackets. The best similarity (whitest patch) is given at the most suitable scale.
The training and test sequences are the same as in fig. 4.2.

(a) Test sequences. (b) Similarities at selected scales. (c) Object location.

Figure 4.4: Detection and location of the anchorman with variations in scale and
color acquisition conditions.
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(a) One training sequence (b) Two training sequences

Figure 4.5: Probability distribution of the similarity measure in the best blocks of
positive (dashed) and negative (solid) examples using (a) one sequence for training,
and (b) two sequences in order to consider more variations of the object. The two
training sequences have different sizes and color saturation due to different acquisition
conditions. The similarity of the best block in the test sequences to the training
sequence(s) is in the x axis. The similarity between the two training sequences was
0.798.
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4.2 Shot boundary detection

Shot boundary detection is the basic first step for indexing and organizing digital
video assets. In the review of prior work on shot boundary detection from chapter 1,
we have identified two main issues of commonly used approaches:

• The selection of a fixed predefined threshold is difficult, and it usually does not
exist.

• The frame-to-frame comparison approach works well for sharp cuts, but it is
not appropriate for gradual transitions.

During the process of obtaining the CMC-based representation of video shots, the
same procedure can be used to obtain shot boundaries. This method has several
advantages. It allows us to combine multiple features in the same representation.
Also, information from all the frames since the beginning of the shot is kept in the
representation, instead of using a simple frame-to-frame comparison. Finally, an
adaptive threshold that only depends on the distance measures obtained during the
process is defined, so that a fixed threshold is avoided. The CMC-based shot boundary
detector can also be used as a stand-alone process, in case the representation of shot
contents is not needed.

4.2.1 Using the CMC representation to detect shot boundaries

A change of shot is characterized by a change of the contents in the images (either
sudden or gradual). Given the representation of visual contents in an image sequence
briefly discussed above, we can define a shot segmentation scheme that checks the
consistency of the transition into a new image with respect to the images already
contained in the representation. That is, we can compute how well the observations
attached to the next step in the image sequence fit a probability distribution obtained
from the previous images. This can be expressed as:

Dt+1 = P (It → It+1|I1 → I2 → I3 · · · It−2 → It−1 → It) (4.1)

where Ii → Ij represents image feature transitions between images i and j of the
sequence. If the transition from It to It+1 fits the probability distribution, then it
is included in the representation. Otherwise, a shot change is detected. The KLD
measure from eq. (3.17) can be used by defining the observations from the image
sequences xΨ1 = {It, It+1} and xΨ2 = {I1, . . . , It}, and computing the parameters Ψ1

and Ψ2 of their corresponding distributions. Using KLD has the advantage that more
images can be considered in the sequence to be compared in order to obtain better
estimates of the parameters. In this way, the observation xΨ1 can include not only
the transitions It → It+1, but also the transitions It+1 → It+2, and so on.

The main advantages of the CMC-based approach with respect to most shot seg-
mentation algorithms found in the literature are:
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1. It is not based on the degree of correlation between adjacent frames. The
contents of all the images from the beginning of the shot are considered in the
representation.

2. Multiple features can easily be integrated in the representation in order to obtain
a more robust detection.

Besides all the disadvantages that can be enumerated when a fixed pre-defined
threshold is used, the selection of a detection threshold is particularly difficult in this
case. The probability distribution that represents the images in the shot gets more
accurate as the number of images considered grows. When the number of observations
is large, a better estimation of the parameters is obtained. At the beginning of the
shot, we may have a less accurate estimation and the distances computed can be
higher than when the estimation is correct. For this reason, a fixed threshold can
not be used in order to detect shot boundaries and we have defined an adaptive
threshold. If we compute the mean µ and standard deviation σ of the distribution
of distance measures from the beginning of the shot, µ will tend to a value that
depends on the contents, and σ will tend to 0, as the distribution representing video
contents gets more accurate. The adaptive threshold can be established, for instance,
at thr = µ + 3σ, so that distance values that do not correspond to expected values
will be detected. Note that this threshold only depends on the contents, and that no
model is defined on, for example, shot duration like in other approaches found in the
literature [76].

4.2.2 Experimental results

Experiments have been focused on a short sequence of 2000 frames from a news video.
This sequence was particularly selected in order to analyze two main things:

1. the selection of a fixed pre-defined detection threshold vs. the use of an adaptive
one,

2. the improvement achieved by coupling multiple image features in the model
with respect to the use of individual features alone.

The interest of this test sequence is found in the variety of transition effects in it:
8 cuts and 5 gradual transitions (4 wipes and 1 dissolve). The location and type of
these transitions are detailed in table 4.1. Besides, there are two complex computer-
generated sequences that mark the beginning and the end of the news summary (see
fig. 4.8(a)).

The image features considered in these experiments were color and motion. Many
shot segmentation methods have been based on these two features. As always along
this thesis, the color feature is the hue component from the HSV color model, while the
motion feature is the normal flow. Each feature is computed for every non-overlapping
16 × 16 image block. In this case, both features were quantized in 8 levels.
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Frame number Transition

246 Cut
374 Cut
568 Wipe
671 Cut
727 Cut
767 Wipe
850 Cut
938 Cut
964 Wipe
1154 Cut
1187 Wipe
1405 Dissolve
1527 Cut

Table 4.1: Location and type of the shot transitions in our test sequence.

The problems of a fixed pre-defined detection threshold are shown in fig. 4.6.
The plots show the distance measure defined combining eqs. (3.17) and (4.1) as
a solid line, and the threshold value as a dashed line. All plots in this test were
obtained using the coupled motion and color model. When the threshold selected is
too high (thr = 4 in fig. 4.6(a)), false positive detections are avoided, but some actual
transitions are missed. Particularly, wipes around frames 568, 767 and 964 were not
detected. Moreover, the cut at frame 938 was not detected either. On the other
hand, when the threshold is too low (thr = 2 in fig. 4.6(b)), gradual transitions can
be correctly detected, but we obtain 20 false positive detections. Furthermore, the
cut at frame 938 is still not detected. This means that the threshold should be even
lower, and more false positive detections would be reported. We can conclude that
a fixed threshold is very difficult to define, and in many cases there will not exist an
appropriate threshold. The results obtained with the adaptive threshold are shown
in fig. 4.7. All the transitions in the sequence were correctly reported, with only 3
false positive detections at frames 1158, 1191 and 1482. Note that the probability
distribution representing shot contents is initialized every time a shot boundary is
detected. For this reason, a fixed threshold may report several detections during a
gradual transition. The adaptive threshold minimizes these false detections because
it depends on the distance measures, so that the threshold is high when distances are
high too.

One of the computer-generated shots in the sequence spans from frame 1 to 245
(1 of every 40 frames are shown in fig. 4.8(a)). Figures 4.8(b) and (c) show detection
results using single-feature motion and color models respectively. These plots are
very noisy, especially with color. Several false positive detections are reported during
the shot (2 with motion, 3 with color). On the other hand, when both features are
coupled (fig. 4.8(d)), the plot is much smoother and no false positives are reported.
Errors caused by one feature are compensated by the other one. Both features thus



4.2. Shot boundary detection 73

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

Frame number

(a) thr = 4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

Frame number

(b) thr = 2

Figure 4.6: Selection of a fixed detection threshold. A high threshold (a) misses
some boundaries, while a low one (b) reports too many false detections. The threshold
is shown as a dashed line.
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Figure 4.7: Shot segmentation results using the coupled model of motion and color
features and the adaptive threshold, shown as a dashed line.

Feature Correct Missed False Precision Recall

Motion 11 2 22 .33 .85
Color 13 0 21 .38 1

Coupled 13 0 3 .81 1

Table 4.2: Summary of results using single-feature and multiple-feature models on
our short test sequence.

cooperate in order to better determine when a real shot boundary is found and the
behavior of both color and motion change, and also when we are still in the same shot
and one of the features may have changed but the other keeps the same behavior.
Considering the full video sequence, the results summarized in table 4.2 are obtained.
Single-feature models have good recall, i.e. most actual transitions are correctly
detected. However, they are quite unstable in the sense that the variations in the
distance measures are too significant and many false positive detections are reported.
That is, their precision is low. The combination of multiple features in the model
shows higher precision. In other words, the detection is more robust and less noisy.

4.2.3 Summary of shot boundary detection using CMC

The CMC-based method for shot boundary detection has two main advantages over
other algorithms specifically designed for this purpose:
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(a) Frames from a complex computer-generated shot.
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(b) Motion feature.
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(c) Color feature.

Figure 4.8: (a) Frames from a complex computer-generated sequence (frames 1-245
of our test sequence). (b) Motion and (c) color features individually do a poor job
and report false positives. (d) When they are coupled, one compensates the errors
of the other. The adaptive threshold is shown as a dashed line.
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(d) Coupled features.

Figure 4.8: (Continued).

1. Multiple image features can be easily combined in the same representation, thus
providing a more robust detection of shot boundaries.

2. Information from all the images since the beginning of the shot is kept in the
representation, so that not only adjacent frames are compared.

Using a particularly selected test sequence that contains a variety of shot tran-
sitions and complex computer-generated shots, experimental results lead us to the
following conclusions:

• The selection of a fixed pre-defined detection threshold is usually difficult, and
many times it is not appropriate for the video contents subject to analysis.

• An adaptive threshold that depends on the distance values that are computed
is more appropriate in order to allow the method to work correctly on different
video contents.

• The combination of different image features in the same model provides a more
robust representation than each of them individually. Color and motion fea-
tures cooperate in order to better detect actual shot boundaries and avoid false
detections.

• Both abrupt and gradual transitions are detected by this method with high
recall and precision.
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4.3 Intermediate-level semantic clustering of shots

This section analyzes how the CMC representation of shot contents can extract com-
plex characteristics of the scene using very simple image features. The experiments
detailed next are based on the analysis of unsupervised clusterings of the shots of a
video. Considering the low-level image features used in the representation, hypothe-
ses on how the shots should cluster together can be formulated, and compared to the
results obtained. Experiments will be conducted on two different video domains:

• Sports: The Soccer sequence is 1,100 frames long, and has 10 shots.

• News: The News sequence contains 73 shots and over 24,000 frames.

After the review and analysis from chapter 2 about intermediate-level semantics
from low-level features, color and motion will be used as reference low-level image
features, due to the amount of semantics they convey. Again, color will be represented
by the Hue component from the HSV color space and motion by the normal flow.

The symmetric KLD dissimilarity measure from eq. (3.18) will be used to build
the clusters. The initial clusters contain single shots and they are successively merged
following a minimum distance (or dissimilarity) criterion. The distance between two
clusters C∞ and C∈ is given by:

D(C1, C2) = max{SKLD(Ψi, Ψj), ∀Ψi ∈ C1, Ψj ∈ C2} (4.2)

The result of this hierarchical clustering is naturally represented by a binary tree,
where the leaves are associated to shots, and inner nodes contain the distance between
the two clusters it joins, and possibly other useful measures.

4.3.1 Analysis of the Soccer sequence

In this video sequence, a model that only considers color is useless in practice. Most of
the shots show a large green surface, so that we would basically characterize whether
the target matter is on the playing field or not. Motion models provide more infor-
mation. A model of motion of the shots basically characterizes the type of shot, i.e.
close-up, medium, long, and so on. In this way, different types of shots are clustered
together. Mainly, global views of the plays vs. medium shots of the players in different
situations of the game are characterized (see fig. 4.9(a)). The combination of color
and motion information adds valuable information in order to accurately represent
these situations, as shown in fig. 4.9(b). In this case, three different classes can be
differentiated: wide angle shots that follow game play, player close-ups and player-
action shots. This semantic information can be used to obtain higher level structures
of the game, to annotate game plays, or to trigger other processes like face recognition
to know the identity of players in a close-up, or even jersey number recognition.
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(a) Clustering using motion MC model. The clusters are based on the type of shot.
Wide angle and player shots are differentiated.

(b) Clustering using motion and color CMC models. We can differentiate three
classes: wide angle shots, player close-ups and player-action shots.

Figure 4.9: Clustering of the Soccer sequence using different models and the level
of visual contents they can characterize.

Note that a domain-dependent pre-processing of the images could be applied de-
pending on what kind of information we want to characterize. For instance, camera
operation can be considered as a source of noise for the motion observations. Assum-
ing that the dominant motion is caused by the camera, we may want to compensate
the images for global motion. In this way, we would expect to obtain a better charac-
terization of the activity of the objects in the scenes. However, it may be interesting
to include the camera operation component in the model, depending on the domain
and its application. In the Soccer sequence, one may also consider that the dominant
green color of the field is a source of noise for the color observation. It is easy to
isolate green pixels and disregard their corresponding observations.
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(a) Cluster of “talking heads”.

(b) Cluster of “crowds”.

Figure 4.10: Clusters from the News sequence using only motion information.

4.3.2 Analysis of the News sequence

In this sequence, we can also expect a model of motion of the shots to characterize
the type of shot. A motion model also captures any motion particularities that the
objects in the scene may have. For instance, recalling chapter 2, a talking head
has a motion pattern characterized by a dominant subtle motion with sudden fast
movements, both in random directions. Figure 4.10 shows two interesting clusters
obtained using only motion information. The first one is a cluster of “talking heads”,
while the second one has mainly grouped shots of “crowds”. Also, note that cluster
distances in these two clusters are small, which means that the clusters are compact
and thus the semantic concept is well defined. Therefore, although motion is basically
associated to the type of shot, the higher capacity for representing contents of the
CMC models, in front of the simple temporal motion cooccurrences used in chapter
2, can capture finer structure in the temporal motion patterns that leads to a better
characterization of more complex concepts like “talking heads”, “crowds” or “sports”
only using motion information.

On the other hand, color provides very significant information about location of
the scene, e.g. a studio, a street outdoors or a conference room. Anchor shots have
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(b) Cluster of “anchor shots”.

(b) Cluster of “correspondents and testimonies”.

Figure 4.11: Shots clustered by both activity (motion) and location (color) using
the CMC model.

very particular colors due to their studio location, so that the single feature model
is enough to characterize them. The CMC model couples the contribution of both
features. New semantic classes emerge by the combination of the motion activity and
the location components. The more generic class of “talking heads” is partitioned by
location, so we can differentiate between “studio anchor shots” and a new category
that includes “correspondents and testimonies” within the same news segment and
location. That is, motion gives the clue to know that a talking head is in the scene
and color provides information about the location. These two clusters are shown in
fig. 4.11. Moreover, the combination of both features adds information about how
the skin color of a head moves when the head is talking, so that visual contents are
more accurately represented.

Other semantically interesting clusters can be found in the tree obtained from the
News sequence. For example, the cluster shown in fig. 4.12 has grouped shots from
the Sports section of the news program, which contain the reactions of soccer players
when they score a goal. These clusters show the ability of the CMC representation
to capture the semantics of contents.
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Figure 4.12: Cluster of soccer player reactions when they score a goal, found in the
Sports section of the News sequence.

4.4 High-level structuring of news videos

In chapter 1, news videos were shown as an example of how the high-level semantic
structure of a video can be automatically obtained using intermediate-level seman-
tics and domain knowledge. An analysis of the news domain led us to two main
observations about its typical production model:

• News items begin with an anchor shot.

• Footage from news items is re-used in the summary at the beginning of the
program.

These facts allow us to automatically obtain the structure shown in fig. 1.1, once
information about anchor shots and shot similarities is available. The identification
of anchor shots will allow us to segment news items. Then, the footage from the
summary found at the beginning of the video can be matched to the shots in these
already segmented news items. Temporal information is inherent to the shots and is
obtained during shot segmentation, so that it will be available through all the process.

The hierarchical intermediate-level semantic clusterings from the previous section
contain enough information to obtain the structure of a news video using the previous
rules. Anchor shots are very characteristic in news videos. They appear a relatively
high number of times (compared to the rest of the shots in the newscast), and their
image features are always very similar, like the color of the background (even in
the case of different newscasters) and the characteristic motion of a talking head.
Therefore, we can expect anchor shots to form a compact cluster with a relatively
large number of elements in it. The compactness of a cluster is inversely proportional
to the maximum distance between its elements. We thus define the following measure:

d(Ci) =
|Ci|

max{SKLD(Ψi, Ψj), ∀Ψi, Ψj ∈ Ci}
(4.3)

which is the density of the cluster Ci. Note that the maximum distance is already
computed during the clustering process. A compact cluster with a large number of
elements will have a high density.

The same clustering will be useful to associate shots from the summary (ToC)
with shots from their corresponding news items. If the shots come from the same
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video footage, they will be almost identical, or at least very similar (maybe with
different lengths, for example). Therefore, they will be joined in very early stages of
the clustering process, so that we can look for shots with the following characteristics:

1. very low distance between them,

2. one of the shots is found at the beginning of the temporal sequence of shots in
the news video, and the other one belongs to a news item (previously identified
using anchor shots).

4.4.1 Results and discussion

We have selected a full news program from a Spanish station to evaluate our proposal.
The video is 50,119 frames long (33 mins. and 24 secs.), and has 651 shots. It follows
the typical structure of a summary at the beginning and news items starting with
anchor shots.

Once the shots have been segmented and represented using the CMC model that
combines color and motion, the semantic clustering was obtained as in the previous
section. Cluster densities were then computed for all the nodes of the tree using eq.
(4.3). Figure 4.13 shows different clusters obtained in this tree. In this case, inner
nodes show the density of the clusters formed by the elements under them, instead
of the distance between the two clusters joined at that point. This particular news
program has two different anchors, one for Sports news, and one for the rest. Their
shots are clustered together in the two clusters shown in figs. 4.13 (a) and (b). The
densities of these clusters (and also of their subclusters) are high compared to other
clusters that group together more disparate shots, like in fig. 4.13 (c). The average
cluster density through the whole tree is 62.52. It is important to note that in this
tree only 11 nodes have more than 3 shots under it and a density over 200, and only
4 nodes have more than 10 shots and density over 200. These 4 nodes are subclusters
in the cluster of main anchor shots (fig. 4.13 (a)).

The clustering also allows us to link elements from the ToC to their corresponding
news items. Figure 4.14 shows shots from the ToC and their most similar shots in
the whole video. We know that the shots in the left belong to the ToC because their
timestamps are from the beginning of the video, and the shots in the middle belong
to news items because they have been already segmented. On the right side, we show
the parts of the clustering tree where these shots are joined, and their symmetric KLD
measure. For a better notion of the goodness of these distances, note that the average
symmetric KLD through the whole tree is 0.74. In this case, semantic information is
not necessary, as only visual similarity between shots is considered. The clusterings
obtained using CMC models thus establish two kinds of similarity:

• Visual similarity, based on raw similarities of low-level image features.

• Semantic similarity, based on the semantics conveyed by low-level features,
which combined characterize semantic concepts.
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(a) Cluster of main anchor shots.

Figure 4.13: Some clusters from a news video. Inner nodes show the density of the
clusters (and subclusters). The average cluster density in the full tree is 62.52.
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(b) Cluster of sports anchor shots.

(c) Arbitrary clusters.

Figure 4.13: (Continued).
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ToC shot News item shot Clustering

Figure 4.14: Some shots from the ToC (left) also used in their corresponding news
items (middle). They can be located in the clustering tree with a very low symmetric
KLD (right). The average symmetric KLD in the full tree is 0.74.
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We have used very simple rules for extracting the structure of a news video. The
first rule may fail when the newscaster interviews another person. In this case, the
alternating shot structure of an interview can be detected with the same methods
used so far. The shots of the interviewee would form a separate compact cluster in
the tree. A set of interlaced shots from two different compact clusters would represent
an interview. There are several other clusters that can help to better identify and
automatically annotate the structure of news videos. Some examples are shown in
fig. 4.15:

• Global studio shots provide information about the change of section. The case
from fig. 4.15(a) shows both the main and the sports newscasters. In this way,
the Sports section can be identified.

• Dual connections are often established with foreign correspondents in order to
interact with them. In these cases, the screen is partitioned into two regions, one
for the local newscaster and one for the correspondent, like the frames shown
in fig. 4.15(b).

• Shots of the same or different events of the same sport cluster together. In
Spain, most of the time for Sports news is devoted to soccer, as shown in fig.
4.15(c). Characterizing soccer shots can also lead to the automatic identification
of the Sports section. In other countries, baseball, basketball or cricket would
do the same job.

4.5 Summary

This chapter has shown the ability of the CMC modeling of video contents to capture
intermediate-level semantics from very simple low-level color and motion features. As
a generalization and extension of histogramming techniques, the CMC model can be
used for object detection and localization in video, which is made much more robust
by combining multiple features and taking advantage of their dynamical behavior.
In the process of obtaining the high level semantic structure of videos, the CMC
representation offers an intermediate-level semantically meaningful clustering of shots,
which allows us to automatically extract higher level structures using very simple rules
about the domain. Its application to the domain of News videos has been proved
successful, and with many more possibilities than the ones exploited here. A robust
shot boundary detector appears in the same process of computing model parameters
for the shots of the video. In this way, the whole process is unified and there is
no need to apply a shot segmentation algorithm prior to the representation of their
contents. The CMC representation using color and motion provides an intermediate-
level semantic description of contents, given that it contains information about:

• Objects, their identity, relative size and motion.

• Camera operation given by global motion.
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(a) Global studio shots.

(b) Dual connections with correspondents.

(c) Footage from sports news, mainly soccer in Spain.

Figure 4.15: Clusters that may help to better identify and automatically annotate
the structure of news videos.
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• Temporal relationships between elements of the scene.

• Type of shot provided by motion information.

• Location provided by background colors.

• Global sense of activity.

Besides, other intermediate-level semantic concepts like “crowds” or “talking heads”,
which can further be classified into “anchor shots” and “correspondents and intervie-
wees”, are also characterized by this model and can be very helpful for automatic
annotation of videos, particularly in the domain of News.




