Chapter 2

Semantics from low-level features

Objects, background and other elements that form a scene have their own character-
istic low-level features. A person standing in front of a camera will be the cause of
certain colors and textures that appear in the image sequence that is being created. If
that person walks, a certain motion pattern will be observed as well. Image features
carry information that characterizes the semantic concepts that caused them. This
chapter explores the semantic information that is implicitly contained in low-level
features. This information can be used for video indexing and annotation, and also
to obtain intermediate-level semantic descriptions of contents to be used for higher
level video structure analysis. Color and motion are two main low-level features
that can be used for these purposes. First, the use of color as a semantic carrier
is reviewed. Then, the semantics that can be inferred from motion information is
analyzed in the domain of news videos. Finally, different ways of combining multiple
features for the characterization of semantic concepts are reviewed as well.

2.1 Semantics from color

olor has been used as the simplest way to do object recognition and retrieval

since the introduction of color histogramming techniques for video indexing

by Swain and Ballard in [69]. A color histogram summarizes the colors of
an object. Therefore, certain information about the appearance of an object and
its identity is contained in it. A color histogram can thus be seen as a kind of
intermediate-level semantic representation of an object.

When the object that is characterized using color turns out to be the background
of the scene, a characterization of the location is obtained. For example, the images in
fig. 2.1(a,b) were shot at two different locations from the sitcom Friends: Monica’s and
Joey’s apartments. Color histograms and the x? distance were used to compute the
distance matrix shown in fig. 2.1(c), where the two clusters can be clearly noticed.
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Figure 2.1: Clustering shots by location using the color of the background.

Note that the color histograms were computed for the full images, without prior
foreground/background segmentation. This segmentation could yield much better
results, as the color histograms would only consider the appearance of the background.
For instance, figs. 2.1(d,e) show the actors that appeared in each scene, which were
manually segmented in this case. Figure 2.1(f) shows the new distance matrix after the
actors had been removed from the images. Aner developed in [3] a method for indexing
videos by location based on this idea. She used mosaics instead of simple keyframes,
so that the whole portion of background captured during a shot was considered. At
the same time, moving objects were removed from the scenes. She then performed a
color-based comparison of the mosaics.

This idea has also been used for clustering video shots in terms of their location in
order to obtain a segmentation of the story units that compose a video. This approach
is followed by Yeung and Yeo in [81]. They first cluster video shots using the method
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Color Feelings evoked in the viewer

Red Happiness, dynamism, aggressiveness, violence, power
Orange Glory, solemnity, vanity, progress

Golden yellow Richness, prosperity, happiness

Dark yellow Deception, caution

Green Calm, relax, hope

Blue Gentleness, fairness, faithfulness, virtue

Purple Melancholy, fear

Brown Relax (mostly used as background color)

Table 2.1: Feelings related to colors, as considered by semiotics.

from [80], which is based on the RGB color histogram intersection distance. Higher-
level knowledge about the production process in the domain of sitcoms is then used
to generate a Scene Transition Graph (STG). The main assumption is that repeated
shots of the same persons or same settings, alternating or interleaving with other
shots, are often deployed in many programs to convey parallel events in a scene, such
as conversations and reactions. Temporal constraints are also applied, so that if two
visually similar shots occur far apart in the time line, they may potentially belong
to different scenes. A similar approach is followed in [41] by Kender and Yeo. They
measure probable scene boundaries by calculating a short term memory-based model
of shot-to-shot coherence. The assumption that visually similar shots repeat in a
scene and the temporal constraint are also considered.

A different point of view about the semantics conveyed by color is given from
a semiotics perspective. Semiotics is concerned with unspoken messages that are
communicated to the observer by the use of visual features. For instance, warm colors
grab the attention of the viewer and convey dynamism. On the other hand, cold colors
suggest gentleness, calm, relax and faithfulness. Each color can be associated to a
set of feelings, which are summarized in table 2.1. The use of saturated colors is
considered a sign of unrealistic situations, giving a sense of fancy and joyful worlds,
and thus communicates happiness. The presence of light colors also induces the viewer
to feel calm and relax. All these observations can be used to organize a video archive
in terms of complex semantic concepts.

Two main ways of improving the performance of color descriptions for object
recognition and retrieval have been proposed and are reviewed next.

2.1.1 Invariant color representations

These works are concerned on obtaining color features that do not depend on some
specific image formation factors like lightning conditions. The choice of color space
may result in some kind of invariance. For example, some authors prefer to use the
HSV color space and drop the V component, which is directly related to luminance,
instead of the RGB space, where the three components are affected by luminance.
The HSV color space is depicted in fig. 2.2. The transformation from RGB values to
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Figure 2.2: The HSV color space.

HSV is given by the following equations:

V = max{R,G,B} (2.1)
A = V-—min{R,G, B}
S = A (2.2)
|4
5 (957 il R=A
H = {g(u%) if G=A (2.3)
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Gevers and Smeulders proposed in [26] color models that are invariant to changes
in viewing direction, object geometry, illumination and highlights. They report object
recognition results on a database of 70 objects and 500 images, and they analyze
the performance of different color models under variations of these image formation
parameters. One significant conclusion of their work is that the RGB color model has
the worst performance due to its sensitivity to varying image conditions.

A different approach is computational color constancy, which aims to obtain color
representations that depend only on spectral surface reflectances and not on the il-
lumination. Different techniques have been proposed by Brainard and Freeman [9],
Finlayson et al. [22, 21] and Funt and Finlayson [23], amongst others. Although it is
known that color constancy does not exist in the human visual system, the computa-
tional approach produces models that are closely related to the chromatic adaptation
process [19].

In the context of digital video libraries, color appearance variations can also be
caused by factors that cannot be strictly considered as image formation parameters.



2.1. Semantics from color 23

Figure 2.3: In general, for N device-dependent color profiles (DCP), we would need
N(N — 1) color space transformations (left). The ICC defines a device-independent
color space, called Profile Connection Space (PCS), so that only one transform per
device is needed (right).

The most typical case is color appearance variations due to the use of different acqui-
sition hardware, where the sensitivity of their sensors may vary. In this case, color
invariants and color constancy algorithms may not be appropriate. A more suitable
approach for this kind of variations is finding mappings between device-dependent
color spaces. The International Color Consortium (ICC) has made an effort to stan-
dardize device-dependent color profiles [37]. This standard defines a Profile Con-
nection Space (PCS), which is a device-independent color space, so that only one
transformation must be defined per input or output device. This scheme is depicted
in fig. 2.3. The ICC work has been specifically oriented to desktop publishing ap-
plications. Its application is arguable in the domain of digital video libraries, where
the source of a video may be unknown, and the footage goes through several color
transformations caused by the VCR, the frame grabber, and other hardware that may
be involved in the digitization process.

Device-dependent color appearances can be characterized by the parameters of
a set of Gaussian distributions. In this way, the intrinsic appearance of a color is
determined by the contribution of each Gaussian distribution to it. Mappings are
then defined between different device-dependent color spaces in order to keep the
intrinsic appearance of colors, that is, their identities. A device-independent color
appearance space is also defined as a normalized representation of color identities. In
this way, the ICC approach can be implemented, and only one mapping per device
must be defined. They report experimental results on applications like skin color
segmentation and image retrieval, and a comparison with color constancy approaches.
Their experiments show that the grayworld color constancy algorithm provides as
good results as their method, but with a lower computational cost. However, color
appearances are not preserved using the grayworld approach, so that it cannot be used
for the skin color segmentation application. Therefore, the conclusion is inverted: the
Gaussian mixture approach to color correction is appropriate for applications where
color appearance must be conserved, and its performance is high for image retrieval
purposes as well. The main disadvantage of this method is that a calibration pattern,
like the ones in fig. A.5, has to be acquired using the hardware that is characterized,
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and this may not always be possible. More details about the characterization of device
color spaces, and mappings between them are given in appendix A.

2.1.2 Enhanced color representations

Different extensions to color histograms have been developed. They are mainly con-
cerned on including spatial information within the summarized color representation
in order to capture the shape and distribution of the colors of the object or image.
Color histograms lack spatial information, and this can cause images with very dif-
ferent appearances to have very similar histograms. Color coherence vectors (CCV)
were defined by Pass et al. in [62]. The CCV measures the spatial coherence of the
pixels of a given color. If regions of a certain color in the image are large, then that
color has high coherence, and has low coherence otherwise. Huang et al. introduced
the color correlogram in [36]. They define the color correlogram as a table indexed
by color pairs, where the k-th entry for < 4,j > specifies the probability of finding a
pixel of color j at a distance k from a pixel of color ¢ in the image. They conclude that
such an image feature is robust in tolerating large changes in appearance of the same
scene caused by changes in viewpoint positions, changes in the background scene,
partial occlusions and camera zoom that causes radical changes in shape. The defini-
tion is basically the same as that of a cooccurrence matrix for the representation of
graylevel spatial textures. Therefore, the color correlogram is a way of characterizing
a statistical color texture.

2.2 Semantics from motion

Motion information analysis usually requires the segmentation of different moving
objects and background entities. This task is particularly challenging on its own and
is matter of deep research [4]. On the other hand, motion patterns can be represented
using temporal motion textures. Temporal motion textures extend classical grayscale
texture analysis techniques. The idea is to characterize patterns of motion along time.
These patterns, like in spatial textures, can be either statistical (windblown trees) or
structural (a person walking). In contrast, we find motion events, which are single
events that do not repeat in space or time (opening a door).

Nelson and Polana showed in [54] that certain statistical spatial and temporal
features that can be derived from approximations to the motion field have invariant
properties, and can be used to classify regional activities such as windblown trees
or chaotic fluid flow, that are characterized by complex, non-rigid motion. They
used a set of statistical features computed on the normal flow field for each texture
in order to characterize and classify the following textures: fluttering crepe paper
bands, cloth waving in the wind, motion of tree in the wind, flow of water in a
river, turbulent motion of water, uniformly expanding image produced by forward
observer motion, and uniformly rotating image produced by observer roll. Szummer
and Picard modeled temporal textures in [70] using the spatio-temporal autoregressive
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model (STAR), which expresses each pixel as a linear combination of surrounding
pixels lagged both in space and in time. This model not only provides a base for
recognition, but also for synthesis of temporal textures.

A statistical characterization of a temporal motion texture will globally consider
motion information from the whole scene, thus including global and object motions
in it. In this way, object/background segmentation is not required to represent the
motion patterns in a video shot. A representation of temporal motion textures based
on their temporal cooccurrence matrices is presented next. This method captures the
underlying motions in the scene, as well as their temporal variations.

2.2.1 Temporal motion texture modeling

In the same way a spatial texture is regarded as a particular spatial distribution of
gray level values, a temporal motion texture can be seen as a distribution of spatio-
temporal motion measures. Bouthemy and Fablet’s approach [8] is based on extending
the well-known characterization of textures using cooccurrence matrices developed by
Haralick in [35]. For a spatial texture, each value P4(i,j) in the cooccurrence matrix
P, contains the probability of finding the values ¢ and j with a spatial distance d in
the texture. The extension to spatio-temporal motion distributions is straightforward,
being P;(i,j) the probability of finding motion observations ¢ and j at a temporal
distance d, and in the same spatial position. We will consider the norm of the velocity
vectors as our observations. These observations must be considered along a significant
set of frames in order to correctly capture the temporal behavior of the texture. Thus,
the temporal cooccurrence for the pair of motion observations (4,j) at the temporal
distance d in image sequence I(x,y,t), t € [t1,t2] is defined as:

#{(z,y,t) | Vobs(x,y,t) =1, Vops(x,y,t +d) =3, t,(t+d) € [t1,1t2]}
#{(z,y,t) [ £, (t+d) € [tr,12]}

Pi(i,j) =
(2.4)
where vops (2, y,t) is the motion observation in position (z,y) and time ¢.

A reduced set of statistical descriptors can then be obtained from a cooccurrence
matrix in order to obtain a reduced and meaningful characterization of the underlying
temporal texture. Bouthemy and Fablet report two sets of these descriptors:

1. Entropy, inverse difference moment, acceleration, kurtosis and difference kurto-
sis.

2. Average, variance, Dirac, angular second moment (ASM) and contrast.

These descriptors are respectively defined in [17] and [8]. The second set has
the advantage that each feature has an interpretation in terms of motion perception.
The average is directly related to the amount of motion, whereas variance and Dirac
show the degree of spreading of the motion distribution. The ASM measures the
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temporal coherence of motion and contrast is related to the average acceleration.
These descriptors are mathematically defined as:

Average: A =3, . iPa(i, j)

Variance: g2 = Z(i,j) (i — A)?Py(i,5)

Dirac: § = A? /o>

Angular Second Moment: ASM = E(i,j) Py(i,j)?

Contrast: Cont = Z(i,j) (i — 5)2Pa(i, )

In order to compute the cooccurrence matrix, motion observations must be quan-
tized. The norm of the velocity vectors at each spatial location is considered. Note
that the orientation component of velocity is dropped. Quantization is a delicate
step, as the dynamic range of motion observations has to be taken into account. This
range is domain-dependant, and in the case of news videos the maximum motion
found is commonly small. In this case, 16 quantization levels within the range [0,3]
is a suitable value, so that cooccurrence matrices P; will be sized 16 x 16.

It is important to note that the accuracy needed when computing velocity vector
fields is not necessarily high. Noise and computation errors at this level will not have a
significant effect on the final descriptors that will characterize a temporal texture. We
used an accurate algorithm for optical flow computation by Black and Anandan [6],
which embeds previous common approaches within a robust estimation framework.
This approach takes into account possible violations of the data conservation and
spatial coherence constraints on image motion. These constraints are necessary to
make optical flow computation a well-posed problem, but can lead to estimation
errors when they are not completely fulfilled. However, tests performed using a simple
correlation method for optical flow estimation show that the final descriptors obtained
are practically the same.

2.2.2 Semantic classification based on temporal motion tex-
ture

We have seen that the automatic detection of anchors in news videos plays a key role
in order to obtain their high-level semantic structure. Besides, special correspondents
and people relevant to the piece of news, i.e. politicians or other celebrities, are
significant in the indexing and annotation senses. This section is focused on finding
shots of individuals using motion information, considering that these shots appear as
close-ups and medium shots as they are defined by film-making terminology [28]. The
difference between a close-up and a medium shot is basically defined by the distance
from the camera to the subject matter. Considering a person shot, a close-up will
show mainly his/her face or head, while a medium shot would include head, chest
and arms. Examples are shown in fig. 2.4.
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Figure 2.4: Close-ups and medium shots containing individuals.

Peker et al. observed in [63] two main facts that can be used as heuristics for
detecting close-ups: low coherence of motion along time and relatively large motions.
Both facts are due to the short distance between the camera and the object. The
following observations on the motion-related descriptors obtained from our data set
are common for close-up shots with significant motion:

e relatively high average measure, expressing large motions,
e high variance and Dirac, expressing sparsity of motion cooccurrences,
e low ASM, showing low temporal coherence of motion,

e and high contrast, which is related to a high average acceleration given by
sudden motions.

These observations are fully consistent with the previously discussed heuristics,
as they are expressing the presence of non-coherent significant motions. However,
medium shots do not fulfill these requirements, as they are basically shots with very
little motion due to the bigger distance between camera and object. Both kinds of
shots should be included in a class of “1-person shots”.

Feature descriptors were computed on 342 shots from a set of news videos, thus
obtaining a representation of the original data in a 5-dimensional feature space. 152
of them were labeled as “l-person shots” and 190 were labeled as “other”. Principal
Component Analysis on this data showed up high correlations, as over 99% of the
total variance of the original data was kept in a 2-dimensional subspace spanned by
their principal axis. The highest coefficients in the linear combination correspond to
variance and contrast features. Coefficients for average are lower, and those corre-
sponding to Dirac and ASM are practically 0. Besides, this dimensionality reduction
will allow us to spatially observe and analyze the data distributions.

Given the different classes C,, defined by our classification problem (“l-person
shot” vs. “other”), their distributions in feature space can be modeled as likelihood
functions P(z|C),) in order to use a Bayesian classifier in the experiments. In this
framework, a shot is assigned to the class C; that satisfies:

P(Cilz) > P(Cjlx), VC; # C; (2.5)

where z is the vector of feature descriptors of the shot and P(Cy|x) is defined by
Bayes’ rule as:
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P(x|Cr)P(Cy)

P(Cula) = =75

(2.6)

For this particular classification problem, the two classes defined stand for whether
a shot contains a person speaking to the camera or not (“l-person shots” and “oth-
ers”). Figure 2.4 shows the wide variety of camera shot distances and orientations
that were considered as “l-person shots” in the experiments. To cope with complex
distributions, the probability density of each class P(z|C),) is assumed to follow a
Gaussian mixture model. A key parameter of this kind of distributions is the number
of Gaussian components in it. The number of components is automatically selected
using a Minimum Description Length (MDL) criterion. The other parameters of each
distribution are estimated from data using the EM algorithm. The prior probabilities
for each class P(C,) can either be assigned all the same value, assuming no prior
knowledge, or be computed from the relative frequency of each class, so that the
most observed class is the most probable. Finally, the unconditional probability of
observation z is given by:

P(z) =Y P(x|Cn)P(Cy) (2.7)
Vn

The classifier can be directly applied to the samples in the original 5-dimensional
feature space. However, PCA suggested a high correlation between features in the
original space, so that either the original feature space or the one spanned by their
principal components can be used. The second one is preferred in order to reduce the
computational cost and to obtain better estimates of the Gaussian mixture distribu-
tion parameters. Figure 2.5 shows the distribution of the samples of the two classes
in this subspace. The contour plots correspond to the Gaussian mixture estimates for
each data set. We can see that the class of “l-person shots” is mainly concentrated
in a very definite region of space, but two Gaussian components where still required
in order to properly characterize this class. This is in keeping with the fact that
close-ups and medium shots, which have different motion characteristics, have been
considered in the same class. Note that most of the shots were medium shots, which
means that the Gaussian component of the mixture that corresponds to medium shots
has higher density. On the other hand, the elements of the “others” class are much
more sparse.

The common strategy for evaluating the performance of a classifier is based on
defining a training and a test data sets, which are respectively used to estimate the
parameters of each class distributions and to evaluate them. However, in some cases,
there are not enough data samples available to divide them into populated data
sets that will allow us to obtain good parameter estimates and significant evaluation
measures. In these cases, the leave-one-out strategy is known to provide results as
significant as those obtained using dense training and test data sets, at the cost of
a very computationally expensive process. Classification results obtained using this
strategy are shown as a confusion matrix in table 2.2. The total correct classification
rate obtained was 77.63%.
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Figure 2.5: Gaussian mixture distributions for the classes “l-person shots” and
“other shots”.

Classified as
1-person shot Other Total

1-person shots 128 24 152
Others 55 135 190

Table 2.2: Confusion matrix of the “l-person shots” classifier.

Most misclassifications are due to wrongly assigning shots to the “l-person shots”
class. Some of them are shown in fig. 2.6. However, it is interesting to note that
many of them are medium shots of two or three people, known in film-making as
two-shots and three-shots. Their motion activity pattern is basically the same as in a
single-person medium shot. This was the case in 21 out of 55 misclassifications. We
can also observe close-up shots where the subject matter is not a person, like a hand
writing on a paper or a waving flag. Figure 2.6 also shows a close-up into a crowd.
The motion texture patterns found in these shots are certainly very similar to the
ones in the class of “l-person shots”, as they basically depend on the distance from
the camera to the object, and not on the type of object itself. The rest of misclassified
elements of the class “others” show a general low motion activity pattern, so that they
can be mistaken as medium shots when only motion-based features are considered.
After these observations, the correct classification rate obtained can be considered
successful.
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Figure 2.6: “Other shots” wrongly classified as “l1-person shots”.

2.2.3 Discussion

Temporal motion textures provide semantically meaningful information about the
visual contents in the shot. The initial approach in this section aimed to classify
one-person shots using a representation of their temporal motion texture based on
temporal motion cooccurrences. However, experimental results show that the set of
features selected for classification are mainly related to the type of shot, basically
close-up, medium or long shot, and not to the specific subject matter that is filmed.
The high correlation found between the features used suggests that some of them
could be superfluous. Other descriptors computed on cooccurrence matrix values
could also work as hidden variables, providing meaningful information related to non-
obvious characteristics of data. This work suggests that other semantically meaningful
interpretations of motion-related descriptors can be found. For instance, detecting
panoramic view shots and zooms can be useful for annotation purposes.

A motion-based approach has clear limitations. Similar motion patterns can be
caused by different semantic concepts or events. The Bayesian framework used for
classification allows us to overcome this limitation by embedding information from
additional visual cues, like color and texture.

2.3 Other low-level features

2.3.1 Texture

Spatial textures have also been used to characterize semantic concepts. Picard and
Minka use textural information in [64] to assist the user during the annotation process.
In their system, the user provides a semantic label to one or several image regions
and the label is automatically propagated to other visually similar regions of the
image, in terms of their texture. The system knows several texture models and has
the ability to choose the one that best explains the regions selected by the user,
or even to create new explanations by combining models. The user can also provide
negative examples to correct misclassifications and obtain more accurate explanations
of semantic concepts. They show examples from their experiments using the following
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semantic labels: sky, grass, building, car, street and leaves. These concepts can thus
be semantically characterized using textural information.

2.3.2 Orientation

Specific features extracted from textural information also characterize particular se-
mantics of contents. For example, Gorkani and Picard use texture orientation in [31]
to characterize “city/suburb” shots. Buildings, roads and other man-made structures
found in city shots cause the presence of well defined orientations, particularly verti-
cal and horizontal, while the orientations in nature scenes seem to be more random.
Typical city and nature scenes are shown in fig. 2.7.

Following the same idea that city scenes can be characterized by the presence of
man-made objects and structures, Vailaya et al. also deal with the classification of city
vs. landscape images in [74]. Under this particular semantic classification problem,
they evaluate the discriminative power of different low-level features, including color
histogram, color coherence vector, DCT coefficients, edge direction histogram and
edge direction coherence vector. They conclude that edge direction-based features
have the most discriminative power. This conclusion could be expected a priori, as
the main characteristic of man-made objects and structures is the presence of salient
orientations, which are not represented by color-based features.

Orientation can also be considered from the semiotic point of view. Scenes shot
with slanted slopes convey action, happiness and unreality, while horizontal and ver-
tical slopes communicate calm. Dominant orientations are obtained using a modified
Hough transform. In this case, the gradient magnitude is considered, so that lines
with higher contrast will be enhanced in the transformed space of line parameters.
This extension yields better results than the original Hough transform in terms of
dominant orientations, as shown in fig. 2.8.

2.4 Combining multiple features

In the previous sections of this chapter, we have seen that different intermediate-
level semantics can be attached to different low-level features. These relationships
are summarized in table 2.3. It is reasonable to think that a combination of multiple
low-level features will provide a better characterization of contents semantics than
single-feature descriptions.

Several ways to combine information from multiple image features can be found
in the literature. A first approach is to define a combined similarity measure, instead
of a combined representation. This is the approach followed by Naphade et al. in
[52]. They compute histograms for the following visual features: color, edge direction,
motion magnitude and motion direction. They also consider audio features to obtain
an audio-visual description of contents. Then, a “distortion” or distance measure is
defined for each audio and visual feature. Finally, a weight is assigned to each distance
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(b) Nature scenes.

Figure 2.7: Typical city (a) and nature (b) images. Man-made objects and struc-
tures present in city scenes show well defined orientations, while the orientations in
nature scenes are more random.
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Figure 2.8: Examples of the Hough transform extended with gradient informa-
tion. From left to right: original images, edge images (thresholded gradient), original
Hough transform, and modified Hough transform.

33

Low-level feature

Intermediate-level semantics

Color

Motion

Spatial Texture

Orientation

e Information about the appearance of an object, and thus
its identity, is summarized in a color histogram.

e When the object is the background, color provides infor-
mation about location of the scene.

e Semiotics associates colors with emotions conveyed to the
viewer. Saturation, intensity and temperature also have
emotional contents.

e Type of shot: close-up, medium shot, long shot, ...

e Camera operation: pan, zoom, ...

e Temporal motion textures can lead to the representation
of complex concepts like “crowd”.

e Representation of concepts like sky, grass, leaves, build-
ing, car, street.

e Complex concepts like “city vs. landscape”.
e Semiotics associates slanted shots to dynamism and un-
realistic scenes, and vertical/horizontal shots to calm.

Table 2.3: Summary of intermediate-level semantics that can be obtained from
low-level visual features.
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by the user in order to obtain the final “distortion”, which is defined as:

4

Do = 3" di(1 — (k) (23)

k=1

where dj, and w(k) are, respectively, the distance measure and the user-assigned
weight for feature k. In this way, the user can define the significance of each fea-
ture in his/her query. For instance, if audio alone is used, clips that have explo-
sion/gunshots/crashing followed by screams can be retrieved. With equal weights
to audio and color, and the same query clip, clips with explosions and screams are
returned. In this case, color imposes a more restrictive constraint and filters out clips
with gunshots and crashings, given that they are visually different to explosions. An
important advantage of this approach is that relevance feedback can be implemented
by adjusting the weights according to the positive and negative examples provided by
the user. Naphade et al. developed a weight updating strategy in [53].

Combining multiple features in the same similarity measure can be like putting
peaches and melons in the same balance. For this reason, some authors try to use
information from multiple features avoiding joining them. Ngo et al. implement in
[55] a two-level hierarchical clustering of video shots, where color features are used
at the top level, and motion at the bottom level. From table 2.3, their top level is
clustering shots by their location or the objects in the scene, while at the bottom level
they group by shot type, camera operation, or both. Vailaya et al. follow a similar
approach in [73]. They define a semantic ontology for the hierarchical classification of
vacation images, which is shown in fig. 2.9. A different classifier, based on different
image features, is then used at each level of the hierarchy. The features involved in
each classifier are summarized in table 2.4.

Szummer and Picard combine color and texture in [71] to face the problem of
Indoor vs. Outdoor image classification in a similar fashion. Instead of combining
features in the representation or in the similarity measure, they combine the output
of multiple classifiers, one for each feature, using the majority function.

Information from multiple features can also be directly combined in the represen-
tation. Pass and Zabih propose the joint histogram in [61]. Each entry in a joint
histogram contains the number of pixels in the image that are described by a particu-
lar combination of feature values. Therefore, a joint histogram is a multi-dimensional
histogram, with one dimension (or more !) for each feature. The largest set of features
considered in their work contains color, edge density, texturedness, gradient magni-
tude, and rank. This set of features yields a 7-dimensional joint histogram. The size
of the data structure grows exponentially with the number of features. They report
results with 4 to 5 quantization levels. However, if we had to consider 16 quantization
levels per feature, the joint histogram would have 268,435,456 elements. The authors
have considered this issue, and they report an average sparseness of 93% in the largest
joint histograms. The problem is not only storage requirements, but also the time re-
quired for comparisons. On the other hand, there is not a way to know what features

LColor represented in the RGB color space yields 3 dimensions for one feature.
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Figure 2.9: Hierarchical classification of vacation images by Vailaya et al. in [73].

Classification problem Image features
Indoor vs. Outdoor Spatial color and intensity distributions
City vs. Landscape Distribution of edges

Sunset vs. Forest vs. Mountain  Global color distributions and saturation values

Table 2.4: Image features used in the different classification problems posed by
Vailaya et al. in [73].

are more significant for the representation of some particular contents. In this way,
irrelevant features could be discarded and removed from the representation, so that
both storage size and comparison time would be reduced.

2.5 Summary

This chapter has analyzed the intermediate-level semantics that can be associated
to different low-level image features. Color and motion are two main features that
convey useful information for obtaining a higher level structure of the videos. Color
histograms, and other extensions like the CCV, summarize the visual appearance of
objects. When this object is the background of the scene, we obtain information about
the location that, in most cases, is very relevant to group shots into story units. On
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the other hand, basic motion observations provide information about the type of shot
(close-up, ...) and camera operation (zooming, ...), which can also be used as input to
a high-level reasoning system for video structure analysis. Other image features like
texture and orientation also provide relevant information for this purpose. The use of
combined information from multiple low-level image features can lead to more robust
and useful semantic descriptions of contents. However, the combination of features
is difficult. Some methods require user intervention to specify the relevance of each
feature, and naive combinations turn into very demanding representations in terms
of storage size and comparison time.





