
Chapter 6

Conclusions and Future Work

6.1 Conclusions

Bearing in mind the need to coschedule distributed applications in Clusters or

NOWs when they are executed jointly with local workload, two coscheduling

techniques have been presented in this project. One of them follows an explicit-

control trend and the other belongs to the implicit-control category. Their per-

formance was measured and compared with other coscheduling techniques of the

literature. Experiments were performed by simulation and in a real PVM-LINUX

Cluster, the system where they were implemented. As a consequence of imple-

menting all the studied techniques in the same Cluster, when comparing them very

interesting conclusions arise.

The proposed coscheduling methods behave well for various kinds of message

passing distributed applications. But as one may expect, coscheduling effects

were mainly located in their respective synchronization phases and in the message

receiving and sending exchange procedures.

6.1.1 Explicit-control Coscheduling

First of all, an Explicit coscheduling mechanism was designed and implemented

in a real Cluster. As in gang scheduling, it allows guarantees to be made for the

performance of distributed applications. This was accomplished by assigning two

respective execution intervals to distributed (and local) applications. In doing so,

135

136 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the Cluster resources are entirely dedicated for regular an uninterrupted periods

of time to distributed (local) tasks. This ensures the progress of distributed ap-

plications but of course, some performance penalties are introduced in the local

tasks.

Two models were designed to achieve the speedup of message-passing inten-

sive distributed applications (STATIC and BALANCED). They were based on

synchronizing the parallel and local execution periods. Basically, performance

improvements in communicating/synchronizing distributed applications exceeded

the overhead introduced in the VM by the processes and mechanisms which im-

plemented it. Furthermore, one model (BALANCED) adjusted these periods to

the mean local workload. This also caused performance achievement of message-

passing intensive applications.

For non-communicating distributed applications, that is, CPU bound distributed

applications, no need to synchronize these periods was required. Synchronization

only added unnecessary overhead to both distributed and local applications. In the

DISTRIBUTED mode, the periods in each node were adjusted to its correspon-

ding local workload.

With the proposed explicit-control scheme not only was it possible to increase

performance of fine grained distributed applications but it was also possible to

increase performance of the CPU-bound ones. The ability of such a mechanism

to select the mode it will work in, is an advantage over the implicit-control ones.

Also, by gathering information about the distributed applications it should be pos-

sible to set the most efficient coscheduling mode.

In explicit-control coscheduling, fault tolerance is a problem. Due to the cen-

tralized nature of this technique, the possibility ofmastercrashes should be taken

into account. If the environment were distributed, that is, if the master work were

distributed between all the component nodes of the Cluster, then the controlling

communication should increase, perhaps by an unacceptable amount. The syn-

chronization would also be extremely complicated. Moreover, abnormal behavior

of the explicit scheme must be considered; this will imply more extra communi-

cation and overhead.

However, explicit-control policies need not be discarded. In some situations

where for example, the system is heavily loaded, Explicit coscheduling is very

6.1. CONCLUSIONS 137

useful. Furthermore, the saturation of nodes (even only one particular node) in

the Cluster can produce negative effects on the distributed applications. It may

accordingly be beneficial to apply the Explicit model at the cost of introducing

some additional penalties in the local workload in these situations.

6.1.2 Implicit-control Coscheduling

The above mentioned explicit-control problems pointed to the development of

new implicit-control techniques.

The first coscheduling technique studied based on implicit-control, also named

“Implicit”, suspends a blocked receiving process until active waiting for messages

is exceeded by the cost of doing a context switch. While the message waiting is

performed, the CPU remains occupied doing empty loops; so local tasks (even dis-

tributed ones) cannot execute. Meanwhile, in time-sharing systems, opportunities

for executing other tasks are wasted.

A variation of Implicit coscheduling, based on the spin-block technique was

implemented and evaluated in a Linux Cluster. In general, an slightly gain was ob-

tained when the system workload was low. The spinning gain in blocking receives

did not justify the overhead introduced in both distributed and local applications.

Also, the added penalties into local tasks degraded their performance excessively.

The conclusion is that in time sharing systems, active waiting for an event to occur

(in our case blocking receive) is not a good solution.

Special attention was paid to a new “Predictive” coscheduling technique. A

model, some related performance metrics and a coscheduling algorithm for Pre-

dictive coscheduling in Cluster computing are also proposed in this thesis. This

set of metrics provides a means for obtaining on time parallel performance. The

coscheduling parameters can be set or tuned on time, while the distributed appli-

cations are executing.

When it was compared with other techniques, Predictive coscheduling gave

the best performance values in almost all the situations and specially when the

Cluster is lightly or medium loaded. This method reduced the synchronization

phases and the communicating processes significantly. The Predictive model as-

signs more scheduling priority to processes with high communication frequency.

138 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Starvation of local tasks (even distributed ones) is avoided by restricting the num-

ber of times a task can be delayed (overtaken) by another one.

The Predictive method was implemented in the system space inside the Linux

kernel. In contrast, the previous commented coscheduling models were imple-

mented in the user space, either by adding controlling processes (i.e. Explicit and

HPDT) or by modifying the PVM communication libraries (Implicit). In doing

so, it was first of all necessary to study the PVM-Linux communication mecha-

nism and the Linux Scheduler. The location where the coscheduling mechanism

must be incorporated depends basically on the features the resulting environment

must provide. Implementation in the system space provides transparency to the

final user and also the models do not depend on the DCE used (i.e. PVM or MPI).

On the contrary, user level implementations do not require the reconfigurability of

the underlying operating system.

A variation of predictive coscheduling, named Dynamic coscheduling was

also presented. Unlike the Predictive model, Dynamic coscheduling is based only

on receiving frequency. It was shown that this method did not identify the cor-

respondent processes as well as in the Predictive model, and consequently the

Dynamic mechanism worked worse.

The results obtained by executing various kernel benchmarks from the NAS

suite (with different messaging characteristics) and three PARKBENCH Low-

Level benchmarks (which measured performance in barriers and communication

in one and two directions) demonstrated that Predictive model is applicable in a

wide range of fine grained distributed applications.

The NAS kernel benchmarks allowed the different applications comprising

it to be scaled, but some particular features, such as communication frequency

or message length, cannot be tuned. Thus, it was necessary to develop various

synthetic applications for doing this. Their use allowed the good behavior of the

Predictive mechanism to be measured when the message length of a synthetic

application was varied.

Also, performance slowdown on local workload produced by the coscheduling

models was measured. Some local applications were developed for this purpose.

The slowdown is obtained by comparing the overhead introduced in the local ap-

plications when the distributed applications are executed in the plain PVM-Linux

6.1. CONCLUSIONS 139

environment and when they are executed in the different coscheduling models.

Similar penalties in local tasks were introduced by the Predictive and Dynamic

models. Predictive introduced slightly more local overhead but not in the same

proportion as the gains obtained for the distributed applications. Only a moderate

overhead was introduced into local tasks. Moreover, it was shown in the exper-

imentation that this overhead was proportional to the CPU requirements of the

distributed applications. The communication hardly affected the performance of

local applications. Thus, promoting distributed applications based on their com-

munication frequency, as the Predictive model does, is an efficient coscheduling

policy.

6.1.3 Additional Conclusions

Simulation vs. Implementation: it was not possible to find significant perfor-

mance differences between the Predictive and the Dynamic model by sim-

ulation. In the contrary, in the real experimentation, the results obtained for

these two coscheduling techniques demonstrated clearly the advantages of

the Predictive over the Dynamic model. This means that simulation can-

not totally model real environments. There are situations where the broad

range of the different events and parameters that influence the behavior of

the overall system cannot be efficiently simulated.

The motivation for making a simulator was to investigate the performance

of the presented coscheduling policies separately, avoiding effects that do

not influence the coscheduling schemes, such as, computing power, hard-

ware resource features of each Cluster node (i.e. operating system latency),

network latency, bandwidth and bottlenecks, and so on.

On the other hand, the experiments done in the real implementation cover

the influence of the above commented effects. Also, there were many sys-

tem processes and service daemons which influenced the measurements.

Certainly, it would be possible to remove system processes or services to

obtain more accurate measurements, but the interest was centered on com-

modity and non-dedicated Clusters. Usually, these kind of system deal with

such kind of processes, so it was decided to keep them in the system.

140 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

CMC Metrics: to obtain traditional metrics, such as Speedup or Efficiency, two

different executions must be performed: one in a serial (uniprocessor) and

later in the parallel or distributed system (platform to evaluate these met-

rics). The Speedup (S) is defined as:S= T1/Tn, whereT1 is the application

execution time in the serial system andTn, the execution time of the parallel

version of the application in the parallel system. Efficiency (E) is defined

as: E= S/n, wheren is the number of processors in the parallel system.

Note that since the results are obtained in the serial system, there is no need

to obtain them twice in the parallel one, but perhaps with different perfor-

mance.

Unlike traditional metrics, CMC metrics can be obtained on time, so the

distributed system parameters can be also tuned on time, while distributed

applications are being executed.

By using CMC metrics (i.e. *CoDe metrics), there is no need to wait for

the end of the distributed tasks. The problem is that these metrics do not

give absolute performance. On the other hand for example, it should be

possible to determine the good behavior of one model by comparing perfor-

mance with HPDT. It is only necessary to have a command or system call

(like the ones presented in Appendix A) which provide the ability to change

between models dynamically by setting or modifying some system cosche-

duling variables. However, to compare performance of different models will

only be advantageous for large enough distributed applications.

Tracing Mechanisms: PGPVM2, an environment which produces trace files to

be visualized with ParaGraph, was used in the analysis of the message pat-

tern of the distributed applications. Many problems or disadvantages in its

use were detected: large tracing files, too much overhead, inefficiency (or

impossibility) of tracing large distributed applications, and so on. Even the

XPVM [76] tracing environment produced poorer results. It is necessary

to develop more efficient trace system facilities with also more efficient

methodological techniques.

6.2. FUTURE WORK 141

6.2 Future Work

The performance of a good coscheduling policy can decrease drastically if mem-

ory requirements are not kept in mind. Various researchers ([80, 14, 78, 79]) have

proposed different techniques to minimize the impact of job memory requirements

on the performance of various scheduling policies. However, to our knowledge,

there is an absence of research into minimizing the impact of the memory con-

straints in an implicit-control coscheduling environment.

We are interested in proposing implicit-control coscheduling techniques with

memory considerations. That is, to coschedule distributed applications by con-

sidering dynamic allocation of memory resources due to the execution of lo-

cal/distributed jobs by using implicit information.

In a non-dedicated system, the dynamic behavior of local applications (which

consequently also varies the resident memory allocated) or a distributed job map-

ping policy without memory considerations cannot guarantee that parallel jobs

have enough resident memory as would be desirable during their execution. In

these conditions, the local scheduler must coexist with the demand-paged virtual

memory mechanism. The paging mechanism improves memory and CPU utiliza-

tion by allowing processes to run with only a subset of their code, and data to be

resident in main memory. However, the traditional benefits that paging provides

in uniprocessors, in distributed (Cluster or NOW) environments may be decreased

depending on various factors, such as the interaction between the CPU scheduling

discipline, the synchronization patterns within the application programs and the

page reference patterns of these applications [73].

A new coscheduling environment over a non-dedicated Cluster system which

also supports prevention of local-task starvation capabilities has already been pro-

posed in [81]. Such a scheme is based on reducing the number of page faults in

a non-dedicated Cluster system, giving more execution priority to the distributed

tasks with lower page faulting probability, letting them finish as soon as possible.

Thus, on their completion, the released memory will be available for the remain-

ing (local or distributed) applications. Consequently, major opportunities arise for

advancing execution of the remaining tasks. It was proved by simulation that un-

der this coscheduling environment, the impact of demand-paged virtual memory

142 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

is reduced.

Nowadays, the current technology makes it possible to acquire general pur-

pose multiprocessor workstations at low cost. On the other hand, only Clusters

made up by uniprocessor nodes where considered in the design of the CMC model

and its associated Predictive algorithm. Despite the presence of multi-processor

workstations, no consequences are produced in the CMC model, which is only

applied in the uniprocessor nodes. However, the coscheduling mechanism can

vary significantly if the model is provided with multi-processor capabilities. In

its design, it would be necessary to answer questions such as: how efficient the

assignment of more coscheduling priority to distributed processes residing in the

same node should be; how must the workload between the processors be assigned

and balanced to obtain distributed gains without damaging the local ones; and so

one. The range of coscheduling possibilities increases when considering multi-

processor capabilities. Their resolution will also occupy our attention in the fu-

ture.

Appendix A

DTS and Linux Command

DTS Console Commands

Console> help

GENERAL commands:

quit, exit: quit Console

help: get this help

hosts: list readed hostfile

ping: list active hosts

settout: <sec> set timeout in receiving answers from hosts

getloads: get loads from all active hosts

getqtms: get PS and LS from all the active hosts

stats: get all the DTS parameters

mode: [static/balanced/distributed] set or print mode

CONTROL commands:

setq: <PS> <LS> set PS and LS (µsecs)

sethostq: <host> <PS> <LS> set PS and LS in one host (µsecs)

setlint: <sec> set LI (BALANCED and DISTRIBUTED)

setqtum: <usec> set IP (µsecs)

syncsend: send a synchronization message (STATIC and BALANCED)

143

144 APPENDIX A. DTS AND LINUX COMMAND

Linux Command and System Call

Linux Command

#include<stdio.h>

#include<stdlib.h>

#include<linux/unistd.h>

_syscall3(int, cosched, int, policy, double, p);

main(int argc, char ** argv) {

if (argc != 3) {

perror("usage: $ crida policy p\n");

perror("goodby");

exit(1);

}

cosched (atoi(argv[1]),atoi(argv[2]));

printf("policy: %d, p %d \n",atoi(argv[1]),atoi(argv[2]));

}

145

System Call

The system callcoschedis implemented in the following kernel files:

/* *************** entry.S *************** */

.long SYMBOL_NAME(sys_cosched) /* 191 */

/* *************** unistd.h *************** */

#define __NR_cosched 191

/* *************** sys.c *************** */

#include<linux/unistd.h>

asmlinkage int sys_cosched(int policy, int p) {

int error= 0;

struct task_struct * p;

struct task_struct * q;

POLICY = policy; P = p;

q = &init_task;

for (p = q->next_task; p != q; p=p->next_task)

if (p->priority != 20) {

p->priority = 20;

p->counter = 0;

}

return error;

}

Appendix B

Additional Results

Simulation

The next figures show the obtained simulation results when the number of Cluster

nodes is increased (NSTATIONS=8 andNSTATIONS=16).

As in chapter 4, SCODE figures correspond to theSystemCoDe(System Cos-

cheduling Degree) comparison between the LIN, IMP, EXP, HPDT, DYN and PRE

models. The TIMES figures show theDret (Distributed return time),Dwait (Dis-

tributed waiting time),Lret (Local return time) andLwait (Local waiting time) for

the same executions.

Also a comparison of theSystemCoDewhen theMCO is varied between

MRQL−2 andMRQL+2 for the distributed and Predictive models is shown in

the MCO figures.

147

148 APPENDIX B. ADDITIONAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

Figure B.1:NSTATIONS=8, MRQL=2. (left) SCODE (right) TIMES.

149

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

Figure B.2:NSTATIONS=8, MRQL=5. (left) SCODE (right) TIMES.

150 APPENDIX B. ADDITIONAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

5

10

15

20

25

30

35

40

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

Figure B.3:NSTATIONS=16,MRQL=2. (left) SCODE (right) TIMES.

151

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.2

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.5

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

SystemCoDe

0

20

40

60

80

100

120

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.8

LIN IMP EXP HPDT DYN PRE

Dret
Dwait
Lret
Lwait

Figure B.4:NSTATIONS=16,MRQL=5. (left) SCODE (right) TIMES.

152 APPENDIX B. ADDITIONAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=2 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=8 MRQL=5 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

Figure B.5: MCO.NSTATIONS=8. (left) MRQL=2 (right)MRQL=5.

153

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.2

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.5

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=2 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 0 1 2 3 4

SystemCoDe

0

0.1

0.2

0.3

0.4

0.5

0.6

NSTATIONS=16 MRQL=5 maxm=3 pdt=0.8

DYNPRE DYNPRE DYNPRE DYNPRE DYNPRE
MCO 3 4 5 6 7

SystemCoDe

Figure B.6: MCO,NSTATIONS=16. (left)MRQL=2 (right)MRQL=5.

154 APPENDIX B. ADDITIONAL RESULTS

Implementation

NAS Benchmarks

This appendix shows additional experimentation performed with the NAS parallel

benchmarks CG, FT, BT and SP.

The FT class A memory requirements overlapped the total available main

memory, so the obtained results were discarded.

0

5

10

15

20

25

30

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

CG Class T, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

5
10
15
20
25
30
35
40
45
50

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

FT Class T, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

0

50

100

150

200

250

300

350

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

BT Class T, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

20

40

60

80

100

120

140

160

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

SP Class T, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.7: CG, FT, BT and SP. Class T, 4 Nodes.

155

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

CG Class A, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

BT Class A, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

SP Class A, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.8: CG, BT and SP. Class A, 4 Nodes.

60
80

100
120
140
160
180
200
220
240
260

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

CG Class A, 8 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

BT Class A, 8 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

200

300

400

500

600

700

800

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

SP Class A, 8 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.9: CG, BT and SP. Class A, 8 Nodes.

156 APPENDIX B. ADDITIONAL RESULTS

Executing Together Various NAS Benchmarks

Results obtained by executing simultaneously IS, CG, BT and SP.

100
150
200
250
300
350
400
450
500
550

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

IS and CG class A: IS, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

50
100
150
200
250
300
350
400
450
500

0 1 2 3 4 5
be

nc
h.

 ti
m

e
(s

)
local tasks

IS and CG class A: CG, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.10: IS and CG. (left) IS (right) CG.

150

200

250

300

350

400

450

500

550

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

IS and BT class A: IS, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

IS and BT class A: BT, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.11: IS and BT. (left) IS (right) BT.

150

200

250

300

350

400

450

500

550

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

IS and SP class A: IS, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 1 2 3 4 5

be
nc

h.
 ti

m
e

(s
)

local tasks

IS and SP class A: SP, 4 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

Figure B.12: IS and SP. (left) IS (right) SP.

Bibliography

[1] Casavant, T.L. and Khul, J. G.: A Taxonomy of Scheduling in General-

Purpose Distributed Computing Systems. IEEE Transactions on Software

Engineering, vol. 14 (2), pp. 141–154. 1988.

[2] Ousterhout, J.K.: Scheduling Techniques for Concurrent Systems. In Pro-

ceedings of the 3rd International Conference on Distributed Computing Sys-

tems, pp. 22–30. 1982.

[3] Ousterhout, J.K., Cherenson, A.R., Douglis, F., Nelson, M.N. and Welch,

B.B.: The Sprite Network Operating System. IEEE Computer, vol. 21(2),

pp. 23–26. 1988.

[4] Anderson, T., Culler, D., Patterson, D. and the Now team: A case for NOW

(Networks of Workstations). IEEE Micro, pp. 54–64. 1995.

[5] Litzkow, M., Livny, M. and Mutka, M.: Condor - A Hunter of Idle Work-

stations. In Proceedings of the 8th International Conference of Distributed

Computing Systems, pp. 104–111. 1988.

[6] Hagman, R.: Process Server: Sharing Processing Power in a Workstation

Environment. In Proceedings of the 6th International Conference on Dis-

tributed Computing Systems, pp. 260–267. 1986.

[7] Russ, S., Robinson, J., Flachs, B. and Heckel, B.: The Hector Distributed

Run-Time Environment. IEEE Transactions. on Parallel and Distributed Sys-

tems, vol. 9 (11). 1988.

157

158 BIBLIOGRAPHY

[8] Crovella, M. et al.: Multiprogramming on Multiprocessors. In Proceedings

of the 3rd IEEE Symposium on Parallel and Distributed Processing, pp. 590–

597. 1994.

[9] Gupta, A., Tucker, A. and Urushibara, S.: The impact of operating sys-

tem scheduling policies and synchronization methods on the performance of

parallel applications. In ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pp. 120–132. 1991. Available from

http://xenon.stanford.edu/~tucker/papers/sigmetrics.ps.

[10] Chandra, R., Scott, D., Verghese, B., Gupta, A. and Rosenblum., M.: Sche-

duling and page migration for multiprocessor compute servers. In Procee-

dings of the 6th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pp. 12–24. 1994.

[11] Feitelson, D.G. and Rudolph, L.: Gang Scheduling performance benefits for

fine-grain Synchronization. Journal of Parallel and Distributed Computing,

vol. 16 (4), pp. 306–318. 1992.

[12] Feitelson, D.G. and Rudolph, L.: Coscheduling Based on Runtime Identifi-

cation of Activity Working Sets”. International Journal on Parallel Program-

ming, vol. 23 (2). 1995.

[13] Feitelson, D.G.: A Survey of Scheduling in Multiprogrammed Parallel Sys-

tems. Research Report RC 19790 (87657), IBM T. J. Watson Research Cen-

ter. 1994.

[14] Feitelson, D.G.: “Memory Usage in the LANL CM-5 Workload”. Job Sche-

duling Strategies for Parallel Processing. LNCS, vol. 1291, pp. 78–94. 1997.

[15] Polze, A.: How to Partition a Workstation. In Proceedings of the IASTED

International Conference Parallel and Distributed Computing and Systems.

1996.

[16] Arpaci, R.H., Dusseau, A.C., Vahdat, A.M., Liu, L.T., Anderson, T.E.

and Patterson, D.A.: The Interaction of Parallel and Sequential Work-

BIBLIOGRAPHY 159

loads on a Network of Workstations. In Proceedings of the ACM SIGMET-

RICS’95/PERFORMANCE’95, pp. 267–278. 1995.

[17] Arpaci-Dusseau, A.C., Culler, D.E. and Mainwaring, A.M.: Scheduling with

Implicit Information in Distributed Systems. In Proceedings of the ACM

SIGMETRICS’98/PERFORMANCE’98. 1998.

[18] Dusseau, A.C., Arpaci, R. H. and Culler, D. E.: Effective Distributed Sche-

duling of Parallel Workloads. In Proceedings of the ACM SIGMETRICS’96.

1996.

[19] Wong, Frederick C., Arpaci-Dusseau, Andrea C., Culler and David E.:

Building MPI for Multi-programming Systems Using Implicit Information.

6th European PVM/MPI User’s Group Meeting. LNCS, vol. 1697, pp. 215–

222. 1999.

[20] Poovendran, R., Keleher, P. and Baras, J.S.: A Decision Process Analysis

of Implicit Co-scheduling. In Proceedings of the IEEE International Parallel

and Distributed Computing Symposium. Cancun (Mexico). 2000.

[21] Anglano, C.: A Comparative Evaluation of Implicit Coscheduling Strategies

for Networks of Workstation. In Proceedings of the 9th International Sympo-

sium on High Performance Distributed Computing (HPDC). Pittsburgh, PA.

2000.

[22] Anglano, C.: A Fair and Effective Scheduling Strategy for Workstation Clus-

ters. In Proceedings of the 2nd IEEE International Conference on Cluster

Computing. Chemnitz (Germany). 2000.

[23] Petrini, F. and Feng, W.: Buffered Coscheduling: A New Methodol-

ogy for Multitasking Parallel Jobs on Distributed Systems. In Proceedings

of the International Parallel and Distributed Processing Symposium 2000,

IPDPS’2000. Cancun (Mexico). 2000.

[24] von Eicken, T., Culler, D. E., Goldstein, S. C. and Schauser, K. E.: Active

Messages: a Mechanism for Integrated Communication and Computation.

In Proceedings of the 19th ISCA, pp. 256–266. 1992.

160 BIBLIOGRAPHY

[25] Culler, D. E., Karp, R. M., Patterson, D. A., Sahay, A., Schauser, K. E.,

Santos, E., Subramonian, R. and von Eicken, T.: LogP: Towards a Realistic

Model of Parallel Computation. In Proceedings of the 4th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pp. 262–

273. 1993.

[26] Martin, R. P., Vahdat, A. M., Culler, D. E. and Anderson, T. E.: Effects of

Communication Latency, Overhead, and Bandwidth in a Cluster Architec-

ture. In Proceedings of the 24th Annual International Symposium on Com-

puter Architecture, pp. 85-97. 1997.

[27] Gropp, W., Lusk, E., Doss, N. and Skjellum, A.: A High-Performance,

Portable Implementation of the (MPI) Message Passing Interface Standard.

Parallel Computing, vol. 22 (6) pp. 789–828. 1996.

[28] Sobalvarro, P.G. and Weihl, W.E..: Demand-based Coscheduling of Parallel

Jobs on Multiprogrammed Multiprocessors. In Proceedings of the IPPS’95

Workshop on Job Scheduling Strategies for Parallel Processing, pp. 63–75.

1995.

[29] Sobalvarro, P.G., Pakin, S., Weihl, W. E. and Chien, A. A.: Dynamic Cos-

cheduling on Workstation Clusters. In Proceedings of the IPPS’98 Workshop

on Job Scheduling Strategies for Parallel Processing. 1998.

[30] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam,

V.: PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Net-

worked Parallel Computing. MIT Press. 1994.

[31] Geist, G.A, Kohl, J.A., Papadopoulos, P.M.: PVM and MPI: A Comparison

of Features. Calculateurs Paralleles, vol. 8(2), pp. 137–150. 1996.

[32] Message Passing Interface Forum: MPI: A Message-Passing Interface Stan-

dard. www-unix.mcs.anl.gov/mpi. 1995.

[33] Message Passing Interface Forum: MPI-2: Extensions to the Message-

Passing Interface. www-unix.mcs.anl.gov/mpi. 1997.

BIBLIOGRAPHY 161

[34] Buyya, R.: High Performance Cluster Computing: Architecture and Sys-

tems, vol. 1. Prentice Hall. 1999.

[35] Buyya, R.: High Performance Cluster Computing: Programming and Appli-

cations, vol. 2. Prentice Hall. 1999.

[36] Tanenbaum, A.S.: Structured Computer Organization (4th ed.). Prentice

Hall.1999.

[37] Solsona, F., Giné, F., Hernández, P. and Luque, E.: Synchronization methods

in distributed processing. In Proceedings of the 7th IASTED International

Conference. Applied Informatics (AI’99), pp. 471–473. 1999.

[38] Solsona, F., Giné, F., Molina, F., Hernández, P. and Luque, E.: Implementing

and Analysing an Effective Explicit Coscheduling Algorithm on a NOW. 4th

VECPAR Conference (VECPAR’2000). LNCS, vol. 1981, pp. 75–88. Porto

(Portugal). 2000.

[39] Solsona, F., Giné, F., Hernández, P. and Luque, E.: Implementing Explicit

and Implicit Coscheduling in a PVM Environment. 6th International Euro-

Par Conference (Europar’2000). LNCS, vol. 1900, pp. 1165–1170. Munich

(Germany). 2000.

[40] Solsona, F., Giné, F., Lérida, J. LL., F., Hernández, P. and Luque, E.: Monito:

a Communication Monitoring Tool for a PVM-Linux Environment. 7th Eu-

ropean PVM/MPI User’s Group Meeting. LNCS, vol. 1908, pp. 233–241.

Balatonfüred (Hungary). 2000.

[41] Solsona, F., Giné, F., Hernández, P. y Luque, E.: CMC: A Coscheduling

Model for non-Dedicated Cluster Computing. In Proceedings of the Inter-

national Parallel and Distributed Processing Symposium (IPDPS’2001). San

Francisco. 2001.

[42] Solsona, F., Giné, F., Hernández, P. y Luque, E.: Coscheduling Poli-

cies: Simulation Vs Implementation. In Proceedings of 5th World Multi-

Conference on Systemics, Cybernetics and Informatics (SCI’2001), vol. XV,

pp. 579–584. Orlando (Florida). 2001.

162 BIBLIOGRAPHY

[43] Solsona, F., Giné, F., Hernández, P. y Luque, E.: Predictive Coscheduling

Implementation in a non-dedicated Linux Cluster. 7th International Euro-

Par Conference (Europar’2001). LNCS, vol. 2150, pp. 732–741. Manchester

(UK). 2001.

[44] Kohl, J.A. and Geist, A.: XPVM 1.0 User’s Guide. Technical Report

ORNL/TM-12981, Computer Science and Mathematics Division, Oak

Ridge National Laboratory. 1995.

[45] Yan, J.C., Schmidt, M. and Schulbach, C.: The Automated Instrumentation

and Monitoring Systems (AIMS) - Version 3.2 User’s Guide. NAS Technical

Report NAS-97-001. 1997.

[46] Heath, M.T. and Etheridge, J.A.: Visualizing performance of parallel pro-

grams. IEEE Software, vol. 8 (5), pp. 29–39. 1991.

[47] Information Networks Division. HP Co.: Netperf: A Network Performance

Benchmark. http://www.netperf.org/netperf/NetperfPage.html. 1996.

[48] Miller, B.P., Hollingsworth, J.K. and Callaghan, M.D.: Environments and

Tools for Parallel Scientific Computing. J.J. Dongarra and B. Tourencheau

(eds.), SIAM Press. 1994.

[49] Du, X. and Zhang, X.: Coordinating Parallel Processes on Networks of

Workstations. Journal of Parallel and Distributed Computing, vol. 46 (2),

pp. 125–135. 1997.

[50] Zhang, X. and Yan, Y.: Modeling and Characterizing Parallel Computing

Performance on Heterogeneous Networks of Workstations. In Proceedings

of the 7th IEEE Symposium on Parallel and Distributed Processing, pp. 25–

34. 1995.

[51] Atallah, M.J.; Lock, C.; Marinescu, D.C.; Siegel, H.J.; Casavant, T.L.: Co-

scheduling compute-intensive tasks on a network of workstations: models

and algorithms. In Proceedings of the 11th International Conference on Dis-

tributed Computing Systems, pp. 344 –352. 1991.

BIBLIOGRAPHY 163

[52] Atallah, M.J., Black, C., Marinescu, D.C., Siegel, H.J. and Casavant, T.L.:

Models and Algorithms for Co-Scheduling Compute-Intensive Tasks on a

Network of Workstations. Journal of Parallel and Distributed Computing,

vol. 16, pp. 319–327 (Special Issue on Scheduling and Load-Balancing).

1992.

[53] Devarakonda, M.V. and Iyer, R.K.: Predictability of Process Resource Us-

age: A Measurement-Based Study on UNIX. IEEE Trans. on Software En-

gineering, vol. SE-15(12), pp. 1579-1586. 1989.

[54] Ferrari, D. and Zhou, S.: An Empirical Investigation of Load Indices for

Load Balancing Applications. In Proceedings of Performance ’87, 12th In-

ternational Symposium on Computer Performance Modeling, Measurement,

and Evaluation. Amsterdam. pp. 515–528. 1987.

[55] Kunz, T.: The Influence of Different Workload descriptions on a Heuristic

Load Balancing Scheme. IEEE Trans. on Software Engineering, vol. SE-

17(7), pp. 725-730. 1991.

[56] Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fa-

toohi, R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon,

H., Venkatakrishnan, V. and Weeratunga, S.: The NAS Parallel Benchmarks.

Tech. Report RNR-94-007. 1994.

[57] Parkbench Committee. http://www.netlib.org/parkbench.

[58] McMahon, F.H.: The Livermore Fortran Kernels: A Computer Test Of The

Numerical Performance Range. Lawrence Livermore National Laboratory,

Livermore, California, UCRL-53745. 1986.

[59] Dongarra, J.J.: Performance of Various Computers Using Standard Linear

Equations Software. University of Tennessee. Computer Science Technical

Report CS-89-85. 2002

[60] Mc. Voy, L. and Staelin, C.: lmbench: Portable tools for performance analy-

sis. Silicon Graphics Inc. ftp://ftp.sgi.com/pub/lmbench.tgz. 1997.

164 BIBLIOGRAPHY

[61] The Beowulf Project. http://www.beowulf.org.

[62] Linux Documentation Project. http://www.linuxdoc.org.

[63] Beck, M., Böhme, H., Dziadzka, M., Kunitz, U., Magnus, R. and Verworner,

D.: LINUX Kernel Internals. Addison-Wesley. 1996.

[64] Carretero, J., García, F., De Miguel, P. y Pérez, F.: Sistemas Operativos. Una

Visión Aplicada. McGraw-Hill. 2001.

[65] Tackett, J. and Gunter, D.: Utilizando Linux (2a ed.). Prentice Hall. 1996.

[66] Card, R., Dumas, E., Mével, F. : The Linux Kernel Book. Wiley. 1998.

[67] Tanenbaum, A.S.: Operating Systems. Design and Implementation. Prentice

Hall. 1987.

[68] Stevens, W.R.: Unix Network Programming. Prentice Hall. 1990.

[69] Postel, J.: RFC 768 - User Data Protocol. 1980.

[70] Postel, J.: RFC 793 - Transmission Control Protocol: Protocol Specification.

1981.

[71] Postel, J.: RFC 791 - Internet Protocol: Protocol Specification. 1981.

[72] Pakin, S., Lauria, M., and Chien, A.A.: High Performance Messaging on

Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of

the Supercomputing’95. 1995.

[73] Burger, D.C., Hyder, R.S., Miller. B.P. and Wood, D.A.: Paging Tradeoffs in

Distributed-Shared-Memory Multiprocessors. Journal of Supercomputing,

vol. 10(1), pp. 87–104, 1996.

[74] Baker, M.: Cluster Computing White Paper. IEEE Computer Soci-

ety Task Force on Cluster Computing. http://www.dcs.port.ac.uk/~mab/

tfcc/WhitePaper/final-paper.pdf. 2000.

BIBLIOGRAPHY 165

[75] Bizard, S., Dalhem, S., Veigneau, S., Topol, B., Sunderam, V., Alund,

A.: PGPVM: Performance Visualization Support for PVM (version 2.0).

http://phalanstere.univ-mlv.fr/~sv/PGPVM2.

[76] Kohl, J.A. and Geist, G.A.: XPVM 1.0 User’s Guide. Technical Re-

port ORNL/TM-12981, Computer Science and Mathematics Division, Oak

Ridge National Laboratory. 1995.

[77] Junius, M., Steppler, M., Büter, M. Pesch, D. et al.: CNCL: Communi-

cation Networks Class Library. ftp://ftp.comnets.rwth-aachen.de/pub/ com-

nets/CNCL.

[78] Setia, S., Squillante, M.S. and Naik., V.: The Impact of Job Memory Re-

quirements on Gang-Scheduling Performance. Performance Evaluation Re-

view. 1999.

[79] Setia, S.: The Interaction between Memory Allocation and Adaptive Par-

titioning in Message Passing Multicomputers. In Proceedings of the IPPS

Workshop on Job Scheduling Strategies for Parallel Processing. 1995.

[80] Batat, A. and Feitelson, D.G.: Gang Scheduling with Memory Considera-

tions. In Proceedings of the 14th International Parallel and Distributed Pro-

cessing Symposium, pp. 109–114. 2000.

[81] Giné, F., Solsona, F., Hernández, P. and Luque, E.: Coscheduling Under

Memory Constraints in a NOW Environment. 7th Workshop on Job Schedu-

ling Strategies for Parallel Processing. LNCS, vol. 2221 pp. 41–65. 2000.

[82] Giné, F., Solsona, F., Hernández, P. and Luque, E.: MemTo: A Memory

Monitoring Tool for a Linux Cluster. 8th European PVM/MPI User’s Group

Meeting. LNCS, vol. 2131, pp. 225–232. Santorini/Thera (Greece). 2001.

