
Chapter 5

Experimental Results

(Implementation)

In this chapter, the coscheduling mechanisms are analyzed and compared by means

of results obtained experimentally. The experimentation was performed in a non-

dedicated Linux Cluster made up of eight PVM-Linux PCs with the following

characteristics: 350Mhz Pentium II processor, 128 MB of RAM and 512 KB of

cache. All of them are connected through a 100Mbps bandwidth Ethernet network

and a minimal latency in the order of 0.1 ms.

The choice of the above experimental environment was not arbitrary. We

are interested in commodity Clusters, made up of commercial hardware, that are

widely used in actual LANs. The choice of Linux and PVM has been already

explained in chapter 1. Furthermore, the open source feature of Linux and PVM

simplified the implementation of the different coscheduling techniques that are

analyzed in this chapter.

The evaluation of the different implemented coscheduling models was per-

formed by using three kinds of distributed application:

• The EP, IS, MG, FT, CG, BT and SP kernel benchmarks from the NAS

parallel benchmarks suite ([56],[57]). These are explained in section 5.1.1.

• The COMMS1, COMMS2 and SYNCH1 Low_Level benchmarks ([57]).

Explained in depth in section 5.1.2.

95



96 CHAPTER 5. EXPERIMENTAL RESULTS (IMPLEMENTATION)

• Synthetic benchmarks. Some coscheduling features (or differences) cannot

be measured by using the above mentioned benchmarks. For example, it is

very difficult (or impossible) to modify the message delivering frequency or

the message pattern of the NAS benchmarks. With this in mind, some sort

of synthetic benchmarks have been developed. So, in some situations, it was

necessary to design new synthetic benchmarks. All of them are presented

in the sections where they are used.

All these benchmarks are designed to be executed in the PVM environment. There

are versions for MPI but these were discarded because for comparing the cosche-

duling models it was necessary to always use the same applications and DCE. The

communication between remote tasks uses theRouteDirect(i.e. TCP/IP) mode

because this avoids the intermediate participation of the PVM daemon (pvmd),

and thus more accurate results can be obtained.

As mentioned above, the experiments were performed in a non-dedicated

Cluster (the kind of system we are interested in). This non-dedicated property

means that distributed applications execute jointly with the owner, local or user

workload (or simply workload). Accordingly, the way the workload was char-

acterized in this experimentation is another important point to be analyzed sepa-

rately.

All the NAS and Synthetic benchmarks were executed in 4 and 8 Cluster

nodes. The Low_Level benchmarks used 2 nodes. Almost all the benchmark

mappings was performed by assigning one forming task per processor. Every

result shown in this chapter is the arithmetic mean of five executions.

5.1 Benchmarks

A broad range of benchmarks are available and explained in the literature. The

choice of a representative set of distributed benchmarks for measuring coschedu-

ling performance in a Cluster system was the prior experimental objective of this

chapter.

Due to historical causes, most of the available benchmarks are implemented

for shared-memory multiprocessors (a MPP property), which cannot be imple-
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mented in distributed-memory environments such as Cluster systems. This kind

of benchmark was thus discarded.

As already introduced in chapter 1, the distributed applications can be coarse-

grained and fine-grained, which have respectively a low and high degree of com-

munication/synchronization. The coscheduling methods can be applied in both

kinds of applications, but as coscheduling methods attempt to minimize the wai-

ting time spent in synchronizing distributed tasks which communicate remotely,

one should expect coscheduling gains to be more significant in the fine-grained

category. Thus, a representative set of benchmarks should contain fined-grained

applications representing as large a message-pattern range as possible.

In general, the NAS Kernel Benchmarks meet the above explained necessities

and for this reason were chosen.

Another key question to be analyzed is how well the coscheduling meth-

ods behave in combination with a group of synchronization or message sending

and receiving primitives, such as: simple send and receive, barriers, etc... The

Low_Level benchmarks were chosen in doing so. They are principally intended

to measure the performance in the execution of this kind of communication prim-

itives.

5.1.1 Kernel Benchmarks

The kernel benchmarks ([56, 57]) are a set of parallel programs developed by

the NAS (Numerical Aerodynamic Simulation) program, based at NASA Ames

Research Center. Together they simulate the computation and data movement

characteristics of large scale Computational Fluid Dynamics (CFD) applications.

The motivation was to develop a set of benchmarks for the performance evaluation

of highly parallel computers.

Those benchmarks have also been widely used in distributed environments,

such as Cluster systems. They involve substantially larger computations than pre-

vious kernel benchmarks, such as the Livermore Loops [58] or Linpack [59], and

are therefore more appropriate for the evaluation of parallel machines. The use

of these benchmarks in the performance evaluation of the different coscheduling

models is certainly a validation guarantee.
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Class T Class A
Problem Memory Problem Memory

Bench. size (MBytes) size (MBytes)
EP 224 0.1 228 0.58
IS 216-

[
0..211

]
0.3 223-

[
0..219

]
39

MG 323 15 2563 112
CG 1400 3.2 14000 55
FT 643 4.7 2563 OM
BT 123 1.2 643 11.8
SP 123 1.3 643 42

Table 5.1: NAS Parallel Benchmarks. Memory: max. resident set size of each
node when the benchmark is executed in 4 nodes.OM: Out of Memory.

For each benchmark, four different classes are defined (classes T, A, B and C).

They differ in the problem size (mainly, in the size of the principal arrays). Table

5.1 shows the problem sizes (also are the input arguments) of each benchmark

as well as the resident memory used in one Cluster node. This table only shows

values for class T and A, because they are the only classes used in the experi-

mentation. Normally, the resource necessities (principally Main Memory) of the

remaining classes exceed the Cluster capabilities, and so they are not appropriate

for executing in such systems. Consequently, they were discarded.

Next, the general properties of the kernel benchmarks used are described. As

we are interested in increasing performance of fine-grained applications, the com-

munication pattern of the different benchmarks were analyzed in depth. In doing

so, PGPVM2 [75] and Paragraph [46] were used. PGPVM2 is an enhancement

package for PVM that produces trace files for posterior use with standard Para-

Graph. ParaGraph is a graphic display tool for visualizing the behavior and per-

formance of parallel programs.

The results obtained in the execution of the kernel benchmarks in a PVM-

Linux environment, which were traced with PGPVM2, are shown in different

manners. The communication pattern of the benchmarks can easily be obtained

by observing three different Graphics figures (generated with ParaGraph) and the

TIME tables. Times in the Graphics figures are much greater than when the same

applications (with also the same class and number of nodes) were executed with-
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out the PGPVM2 tracing facility (shown in the TIME tables).

• Graphics. To obtain them 4 nodes were used.

1. One of these graphs is theUtilization Gantt Chart. It shows the CPU

utilization over time (in seconds) of the different Cluster nodes where

tasks making up the applications were executed.

2. The SpaceTime Diagramillustrates the communication between the

different processes. It shows the message length (with its histogram

graph, MSG LTH, in bytes) and the elapsed time in their transmission

(in seconds).

3. Finally, the Phase Portrait graph depicts the relationship over time bet-

ween communication and processor utilization. At any time, the cur-

rent percentage utilization and the percentage of the maximum volume

of communication currently in transit together define a single point in

a two-dimensional plane. This graph is particularly useful for reveal-

ing repetitive or periodic behavior in a parallel program, which tends

to show up in the Phase Portrait as an orbit pattern.

• TIME tables: they show the total execution time and the communication

time of each benchmark in this order. Experiments were done in 4 and 8

nodes. The number of local tasks (workload) was varied between 0 and 5.

The characterization of the local workload is explained later in section 5.2.

The different NAS kernel benchmarks are introduced below. Special attention is

given to their communication features.

EP: An "embarrassingly parallel" kernel. It provides an estimate of the upper

achievable limits for floating point performance, i.e., the performance with-

out interprocessor communication. Fig. 5.1 shows the Utilization Gantt

Chart and the SpaceTime Diagram of this benchmark. It can be seen that

the benchmark is entirely CPU bound. The slave tasks only communicate

with the master task in the final part to send it their respective results.
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Figure 5.1: EP class A.

IS times (in sec.)
number of local tasks

nodes Class 0 1 2 3 4 5
4 T 0.63/0.52 1.1/0.9 1.7/1.6 2.2/2.1 2.6/2.5 2.9/2.8

A 101/86 234/206 302/259 379/325 457/390 520/440

8 T 1.6/1.36 3.5/3.4 3.4/3.3 3.2/3.1 3.8/3.7 3.9/3.7

A 84/75 194/179 235/213 267/240 302/267 332/292

Table 5.2: IS Execution/Communication times.

Figure 5.2: IS class A.
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MG times (in sec.)
number of local tasks

nodes Class 0 1 2 3 4 5
4 T 13.5/5.9 27/19 40.5/29 53/46 66/60 79/68

A 102/44 208/90 301/120 399/180 498/200 595/240

8 T 9.9/4.9 20.4/15 25/17.7 31/20.8 39/29 46/36

A 63/35 124/79 173/96 223/140 275/178 327/201

Table 5.3: MG Execution/Communication times.

Figure 5.3: MG class A.

FT times (in sec.)
number of local tasks

nodes Class 0 1 2 3 4 5
4 T 13.5/9 22/15.5 26.8/19.5 34.3/26 40.6/30.5 48.4/38.4

Table 5.4: FT Execution/Communication times.

IS: A large integer sort. This kernel performs a sorting operation (it sorts N keys

in parallel). It tests both integer computation speed and communication per-

formance. The keys are generated by a sequential key generation algorithm

which initially must be uniformly distributed in memory.



102 CHAPTER 5. EXPERIMENTAL RESULTS (IMPLEMENTATION)

Figure 5.4: FT class T.

CG times (in sec.)
number of local tasks

nodes Class 0 1 2 3 4 5
4 T 3.6/2.2 9/7.3 16/14.5 17.5/15.9 23/21.2 31/29.4

A 58/36 131/91 205/165 279/238 356/314 431/390

8 A 64.3/47 102/85 130/113 166/149 203/186 242/224

Table 5.5: CG Execution/Communication times.

BT times (in sec.)
number of local tasks

n C 0 1 2 3 4 5
4 T 40.4/14.4 99/73 149/123 197/171 249/223 305/279

A 571/199 1159/562 1702/983 2263/1439 2834/1885 3405/2370

8 A 353/173 619/420 892/654 1168/813 1456/1074 1731/1233

Table 5.6: BT Execution/Communication times.n: nodes,C: Class.

MG: A simplified 3D multi-grid kernel. It requires highly structured long dis-

tance communication and tests computation speed and both short and long

distance data communication.
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Figure 5.5: CG class T.

Figure 5.6: BT class T.
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SP times (in sec.)
number of local tasks

nodes Class 0 1 2 3 4 5
4 T 22.2/15.3 52/45 79/72 102/96 128/121 154/147

A 397/275 546/381 782/550 1018/722 1260/893 1489/1065

8 A 210/168 353/284 458/369 567/457 683/551 794/644

Table 5.7: SP Execution/Communication times.

Figure 5.7: SP class T.

FT: A 3-D partial differential equation solution using FFTs. This kernel performs

the essence of many "spectral" codes. It is a rigorous test of long-distance

communication performance.

CG: A conjugate gradient method is used to compute an approximation to the

smallest eigenvalue of a large, sparse, symmetric positive definite matrix.

This kernel is typical of unstructured grid computations in that it tests irreg-

ular long distance communication, employing unstructured matrix vector

multiplication.
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BT and SP: The SP and BT algorithms have a similar structure: each solves three

sets of decoupled systems of equations, first in the x, then in the y, and fi-

nally in the z direction. SP and BT differences are in the kind of computa-

tion used in solving these systems of equations. In both the SP and BT, the

granularity of communications is kept large and fewer messages are sent.

5.1.2 Multiprocessor Low_Level Benchmarks

The PARKBENCH suite of benchmark programs ([57]) provides low-level bench-

marks to characterize the basic communication properties of an MPP (or message

passing MIMD computer or Cluster system). From among all of these, we have

chosen the COMMS1, COMMS2 and SYNCH1 benchmarks.

The benchmarks COMMS1 and COMMS2 were used to measure the commu-

nication rate (r).

For long messages,r is approximated byr∞, defined as the asymptotic band-

width of communication which is approached as the message length tends to in-

finity. This is r ≈ r∞.

On the other hand, for short messages, the communication rate (r) is approx-

imated by
(
r∞/n1/2

)
∗n, wheren is the message length andn1/2 is the message

length required to achieve half the asymptotic rater∞. This isr ≈
(
r∞/n1/2

)
∗n.

The SYNCH1 benchmark measures the number of barrier statements that can

be executed per second as a function of the number of Cluster processors taking

part in the barrier.

5.1.2.1 Communication Benchmarks

COMMS1, or ping-pong benchmark, measures the basic communication proper-

ties of a Cluster system. A message of variable length,n (in Bytes), is sent from

the master to a slave node. The slave node receives the message in a Fortran data

array, and immediately returns it to the master.

In the COMMS2 benchmark there is a message exchange in which two nodes

simultaneously send messages to each other and return them. In this case, advan-

tage can be taken of bidirectional links, and a greater bandwidth can be obtained

than is possible with COMMS1.
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5.1.2.2 Synchronization Benchmark

SYNCH1 measures the time to execute a barrier synchronization statement as a

function of the number of processes taking part in the barrier. The practicability

of massively parallel (or distributed) computation depends on the execution per-

formance of barrier statements. The results are quoted both as a barrier time, and

as the number of barrier statements executed per second (barr/s).

5.2 Local Workload Characterization

The workload characterization was carried out by means of running an application

(namedcalcula) which performs floating point operations indefinitely. There were

no system calls inside it, and thus its execution only occupies user time (and no

system time). This way, it was possible to fix its mean CPU utilization at 99%.

We want to simulate a mixed workload formed by processes that repeatedly re-

quire CPU execution time slices of variable length. The wide range of possibilities

in the choice of this workload influenced the search for an intermediate solution.

We providedcalcula with the ability to yield the CPU (but without leaving the

RQ) after a predetermined computing phase (' 10 ms) had elapsed.

This way we do not collapse the CPU by executing local tasks. The execution

slices were selected this way to simulate the interactivity that generally character-

izes local tasks.

One variant ofcalcula (calcula2) was also implemented. As we will see, it

served to obtain and compare the execution penalties into the local tasks produced

by the coscheduling models. Unlikecalcula (which executes forever), the total

execution time in a dedicated node with the plain Linux is fixed to' 80s.

To quantify the local workload overhead introduced in the execution of one

distributed application in a determined coscheduling environment, theLocal Over-

head(LO) metric is used. The local benchmarkcalcula2will be used in doing so.

The execution time ofcalcula2 is used as a reference for comparing the added

overhead of the different coscheduling models.Local Overhead(LO) is defined

as follows:
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LO =
ETdedicated

ETnondedicated
(5.1)

whereETdedicated is the execution time spent bycalcula2 in a dedicated work-

station with the plain Linux, andETnondedicatedis the execution time ofcalcula2

when it is executed jointly with one (or various) parallel application(s) in the same

coscheduling environment.

Unlike CPU bound applications, the variable behavior of I/O bounded appli-

cations should produce excessive variation in obtaining theLocal Overhead(LO).

Thus, and in addition to the studies performed by Ferrari [54] and Kunz [55] (al-

ready commented on in section 1.1.1.4), CPU bound applications were chosen as

the kind of application to characterize the local workload.

Moreover, benefits in distributed applications will be more accurately obtained

if the local workload is CPU bound. No means to fix the load of a system can be

performed if local applications perform mainly I/O.

Bearing in mind those considerations, the workload characterization in the rest

of the experimentation is performed by using the CPU bound applicationscalcula

andcalcula2.

5.3 Explicit Coscheduling

In this section, the DTS system and the different execution modes are analyzed.

The Gain metric was used for this. This metric gives the performance of the

different models with respect to PVM and is defined as follows:

Gain=
Tpvm

Tcosched
(5.2)

whereTpvm is the execution time of one application in the original PVM-Linux en-

vironment andTcoschedis the execution time of the same application in thecosched

(STATIC, BALANCED or DISTRIBUTED) environment.
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5.3.1 IP Interval and Local Overhead

As was shown in the synchronization algorithm, the method used in synchronizing

PSandLSin the STATIC and BALANCED modes is by broadcasting a short mes-

sage to all the nodes in the Cluster. So, first of all, the cost of the synchronization

phase must be found. This cost is determined by the coscheduling skew.

The coscheduling skew(δ) is defined as the maximum out of phase between

two arbitrary nodes, formally:

δ = max(broadcast)−min(broadcast) (5.3)

wheremax(broadcast)andmin(broadcast)are the maximum and minimum time

in sending a short broadcast message. With the aid of thelmbench[60] bench-

mark, we have measured the coscheduling skew. An average value forδ = 0.1 ms

was obtained.

The next step is to determine theIP value, one of the most important DTS param-

eters. If a large enoughIP interval is chosen, for example, more than 100 ms,δ
should be insignificant in relation toIP. Thus initially, the lower bound forIP was

fixed at 100 ms.
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Figure 5.8: (a) STATIC mode results. (b) local workload overhead.

Fig. 5.8(a) shows the gain obtained in the execution in four nodes of three NAS
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benchmarks, EP, IS and MG class A, when they were executed in the DTS envi-

ronment (mode STATIC) with different workload (instances ofcalcula, 1 Light,

2 Medium and 3 Heavy) and with two differentIP periods, 100 ms and 1000 ms.

Furthermore,PS= LS= IP/2.

DTS performance increases with the local workload. This means that when

the workload increases, DTS tends to give more execution opportunities to the

distributed tasks than PVM. This was also corroborated in the simulation chapter

(see chapter 4, table 4.1, cellMRQL-EXP), where only a slightly increment of the

explicit model was observed. Here, the results are significantly better.

Performance of distributed benchmarks also increases (decreases) with the

communication (computing) requirements. This is, the obtained gain is ordered

as follows IS > MG > EP. This means that better coscheduling gains are produced

in communication intensive applications. The synchronization time spent in the

communication phases is reduced significantly in the DTS environment.

In message-passing intensive benchmarks (IS and MG), better results were

obtained forIP = 100 ms. Also, any other experiment carried out (whereIP

was varied between 100 and 1000 ms) did not improve the results obtained for

IP = 100 ms. This means that synchronization of distributed tasks must not be

delayed excessively, but doing this frequently, the added overhead overrides the

synchronization gain.

When applications are CPU bound (EP) slightly better results were obtained

for IP = 1000 ms, but they were not very significant. In this case, the gain in

performance was due to the reduction in context switching.

Obviously, the DTS gain is at the expense of introducing local workload over-

head. Fig. 5.8(b) shows the local workload overhead in the execution ofcalcula2

when it was executed together with the different benchmarks. As can be seen in

the figure, anIP of 100 ms introduces slightly more overhead in the local tasks

than anIP of 1000, due to the added overhead of increasing the context switching.

Really, IP intervals above 1000ms drop response time of the local tasks exces-

sively. On the other hand, a value ofIP below 100 ms would reduce the efficiency

of the DTS model by the addition of excessive context switching.

The local overhead introduced into local tasks also depends on the kind of

distributed application. This is, more local overhead is introduced by increasing
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the computing requirements of distributed applications. This result is very co-

herent because, message-passing intensive applications can give more execution

opportunities to the local ones in thePSinterval than compute-bound distributed

applications.

In general, for message-passing intensive distributed applications, better re-

sults were obtained whenIP = 100ms. Also, anIP = 100ms does not damaged

the response time of local applications as does anIP = 1000ms. In the case of

CPU bound applications (EP), anIP = 1000ms behaves slightly better. In further

experiments, as we are interested in reducing the waiting time of communicating

benchmarks, anIP value of 100 ms will be used.

5.3.2 DTS Modes

Fig. 5.9 summarizes the gain obtained by running the EP, IS and MG class A

benchmarks on the three different DTS modes (STATIC, BALANCED and DIS-

TRIBUTED) with respect to PVM. As before, four Cluster nodes where used.

Based on the previous experimentation, we chose anIP of 100ms. In the STATIC

mode, thePSandLSvalues werePS= 60ms andLS= 40ms respectively.
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Figure 5.9: Comparison between the three DTS modes.

From Fig. 5.9, we observe that in EP, a computing intensive benchmark, the

results obtained in the STATIC mode for a light load were worse than in PVM
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due to the additional overhead introduced by DTS (which is basically produced

by context switching), andPS, which should be increased. On the other hand,

in the heavy case, since the DTS gives more scheduling chances to distributed

applications, better results were obtained but also performance did not reach the

level of PVM.

The BALANCED mode behaved significantly better than STATIC for a light

workload. Instead, the results decreased when the workload increased. In this

case, despite the added overhead in the synchronization phase, thePS and LS

intervals were adjusted to the local workload.

In general, the DISTRIBUTED mode, works better than the other modes, and

especially in light workloads. Heavy workload also damaged distributed perfor-

mance by adjustingPSandLS (like BALANCED), but here gains are improved

by avoiding synchronization. When the system was heavily loaded, STATIC was

the most favored mode (PSwas the highest one in STATIC). This fact shows that

only the adjustment ofPSandLSin each node is necessary without any other kind

of synchronization when distributed applications are CPU bound.

For message-passing intensive applications (IS and MG), the STATIC mode

gave equal or better performance values than PVM. This gain was due to the

synchronization between periods this mode introduce. Also, for heavy workload,

it was the better mode because the PS and IS intervals remain constant.

The BALANCED mode gave the best results when the system was lightly

loaded. Both the synchronization ofPSperiods and the adjustment of its length

to the local workload significantly overtook the overhead it introduced. For heavy

workload instead, thePS(LS) period decrease (increase), thus reducing distributed

performance.

The DISTRIBUTED mode always gave lower results than BALANCED be-

cause in message-passing intensive applications thePSperiod was out of phase

(as wasLS).

In the IS and MG, synchronization is required, and as the DISTRIBUTED

mode does not provide this feature, the performance results were not as good as

in the BALANCED mode.

Globally, for high message passing applications (IS and MG), better results

were obtained when synchronization between communicating periods was applied
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(STATIC and BALANCED).

5.4 Explicit versus Implicit

In this section, various coscheduling schemes are compared. Basically, compar-

isons are made between PVM, the STATIC mode of DTS and combinations of the

HPDT and the spin-block (Implicit) techniques.

5.4.1 Implemented Environments

The next five distributed environments were created with the help of the coschedu-

ling models detailed in chapter 3 (and the respective algorithms which implement

them):

• LIN: plain Linux (and PVM) environment.

• IMP: Implicit coscheduling (spin-block technique). PVM uses two phases

in the reading of a fragment, the PVM transmission unit (see chapter 3, sec.

3.1.1.1). In the first phase, only the header of the fragment is read. In the

second, the data of the fragment is obtained. In our case, the spin-block is

only performed in the first phase. That is, Algorithm 7 (of section 3.4) is

applied only in the reading of the fragment header.

• HPDT: distributed tasks always have higher scheduling priority assigned

than the local ones. Algorithm 6 (of section 3.3) is applied.

• HPDTIMP: HPDT model. In addition, distributed tasks also perform spin-

block in the reading of the fragment header. Algorithms 6 and 7 (of sections

3.3 and 3.4 respectively) are applied.

• EXP: STATIC DTS mode. Periodically, after 80 ms theDTS Scheduler

in each node delivers a STOP signal to all the local distributed processes

and then, after 20 ms, theDTS Schedulerdelivers a CONTINUE signal to

reawaken them. That is,IP = 100 ms,PS= 80ms andLS= 20ms.
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With the help oflmbench[60], we measuredspinmax = 2∗C, whereC is the

context switch cost (see sec. 3.4.1, formula 3.5). As we will see, the benchmarks

used were IS and MG, which gave similarC values (C ' 100µs) with the same

workload (instances ofcalcula). Also, due to the low memory requirements of

calcula, no significant differences were obtained when the workload was varied.

So, in the spin-like models aspin interval of 200µs was chosen, independently of

the benchmark to be used.

5.4.2 Distributed Performance

Fig. 5.10 shows the results obtained by executing IS and MG class A in four

nodes. They were tested in the five models. The local workload was also varied

between 0 and 5.
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Figure 5.10: Execution of the NAS parallel benchmarks. (a) IS (b) MG.

Note that the behavior of the two parallel benchmarks in the overall models is

very similar.

IMP gains were only obtained for low local workload. Furthermore, IMP

scales fine and its performance tends to reach the LIN one when the local workload

is increased. In some cases (i.e. MG), the IMP model even behaved worse than

LIN when the system was heavily loaded. This model is the only one that behaves

slightly better than LIN (which can hardly be appreciated in the figures) when the
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workload is 0. The IMP benefits are in general moderate. This means that the

saving of context switching does not increase the distributed performance.

As was expected, optimal execution of the HPDT model can be observed.

EXP without local tasks is the worst model, but by increasing the workload, its

performance increases and it becomes one of the most efficient model for heavy

workloads.

The HPDTIMP case gave worse results than HPDT. The unnecessary spin-

block phase added in the HPDTIMP model only adds overhead in the reading of

PVM fragments.

5.4.3 Local Performance

The influence of the models on the local tasks was also based on theLocal Over-

head(LO) metric (as in DTS), which measures the overhead in the execution of

calcula2in the different environments (see Fig. 5.11).
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Figure 5.11:Local Overhead(LO) of local tasks.

When message-passing intensive applications are executed (IS), less negative

effects on the local tasks are produced. On the other hand, the overhead increases

with the CPU requirements of the distributed applications (i.e. MG).

In general, a great negative impact on the local task performance was produced

by the EXP model. APS interval of 80 ms (and IS=20ms) for the execution of

distributed applications caused excessive overhead in the local task. It behaved
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worse than the IMP model. In this case, the active waiting for messages does not

overtake the overhead added by the DTS into local tasks.

HPDT introduced a great slowdown in the local tasks and the HPDTIMP

model even more. The addition of spinning to HPDT only introduced additional

overhead into the local tasks.

5.5 Predictive and Dynamic

In this section, various Predictive and Dynamic models are analyzed and com-

pared. The analyzed models are:

• LIN: plain Linux (and PVM) environment.

• DYN0, DYN0.5 and DYN1: Dynamic withP (Percentage assigned only

to the past receiving frequency) equal to 0, 0.5 and 1 respectively. The

valueP=0 andP=1 represent values forP close to 0 (P'0) and 1 (P'1)

respectively.

• PRE0, PRE0.5 and PRE1: Predictive withP (percentage assigned to the

past receiving and sending frequency) equal to 0, 0.5 and 1 respectively.

Also in this caseP=0 andP=1 meansP'0 andP'1 respectively.

5.5.1 NAS Results

First of all, the behavior of various coscheduling models was analyzed. This

was accomplished by comparing execution times of the same benchmark in each

model.

Figures 5.12 and 5.13 show the results obtained for the IS class A benchmark

in 4 and 8 nodes respectively when the number of local tasks (instances ofcalcula)

was increased (form 0 to 5). Class T results are omitted because times are too low.

These figures reflect the total executing time (the figures on the left, labeled (a))

and the corresponding communication times (on the right, labeled (b)).

Note that the shapes of the execution benchmark and the communication times

are identical. This confirms that coscheduling techniques influence in the commu-

nication phases and do not affect the computing ones. So, gains in coscheduling
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Figure 5.12: IS class A, 4 nodes.

50

100

150

200

250

300

350

0 1 2 3 4 5

be
nc

h.
 ti

m
e 

(s
)

local tasks

IS Class A, 8 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

(a)

50

100

150

200

250

300

0 1 2 3 4 5

co
m

m
un

ic
at

io
n 

tim
e 

(s
)

local tasks

IS Class A, 8 nodes

LIN
DYN0
DYN0.5
DYN1
PRE0
PRE0.5
PRE1

(b)

Figure 5.13: IS class A, 8 nodes.

are obtained by reducing the waiting times in communicating and synchronizing

remote tasks.

One interesting comment about those figures is that when the Cluster is scaled,

the behavior of the coscheduling models does not vary. This means that the pre-

sented models scales well and no malfunction or performance drop is produced

when the communication traffic requirements increase. As we will see, the same

results were obtained in the rest of the experimentation.

In general, as the multiprogramming level increased, the performance of both

coscheduling models (Dynamic and Predictive) was better than the Linux (LIN)
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one. Furthermore, the Predictive results are very close to each other and consid-

erably better than the Dynamic ones.

Also, when no local applications were executed, the results between the diffe-

rent models (including Linux) were very close. This means that the coscheduling

mechanisms added almost no overhead to the system. The added overhead is not

always as low as the execution alone of IS. Really, this overhead depends on the

number of distributed applications to be jointly executed in the Cluster. This can

be observed in the next section (sec. 5.5.1.1), in Figures 5.16 and 5.17, which

show the results obtained when various NAS benchmarks were executed simulta-

neously.

When only one distributed application was executed, sometimes, the current

frequency had slightly more influence than the past one. This fact can be better

observed in the results obtained by the MG benchmark (see Fig. 5.14, where the

Class T results are also shown). Furthermore, the MG benchmark changed rapidly

between computing and communication phases, and thus the current frequency

has more influence in determining the need of the MG tasks to be coscheduled.

This fact can be observed in Figs. 5.14(b) and 5.14(d), where the coscheduling

models increase performance by increasing the weight of the current frequency.

The highest gains were obtained in the Predictive model. Predictive cosche-

duling takes both the sending and receiving messages into account, whereas Dy-

namic only considers the receiving ones, so the opportunity for promoting dis-

tributed tasks through the ready queue is greater in the Predictive than in the

Dynamic case. The necessity for coscheduling, which is closely related to the

communicating pattern of each distributed application, is more approximated by

the Predictive model.

Other results, obtained with CG, FT, BT and SP are shown in Appendix B.

Similar results were obtained for these benchmarks. In CG, BT and SP, which are

benchmarks with higher computing requirements and even more regular commu-

nication patterns than IS for example, the Predictive models, which assign more

coscheduling weight to past frequency (and especially PRE1) gave slightly better

results. Their regular behavior favors their effectiveness when these models are

applied, because those models act over the average and not the current frequency.
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Figure 5.14: MG class T and A, 4 and 8 nodes.

5.5.1.1 Executing Together

Next, the behavior of the coscheduling models is analyzed when various dis-

tributed applications are executed in various workloads. It is important to mention

that the benchmarks to be executed jointly with the workload must fit in the main

memory. If not, the page faulting mechanism (one or two orders of magnitude

slower than the network latency) would corrupt the performance results of the

coscheduling models.

First, IS class A was executed with MG class T (see Fig. 5.15) in 4 nodes.

In this case, due to the memory fitting requirement explained above, IS is class A

and MG is class T (with 600 iterations, instead of 4 as in the original benchmark).
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Figure 5.15: IS and MG, 4 nodes. (a) IS (b) MG.

Better IS results were even obtained for the Predictive case (see Fig. 5.15(a)).

This confirms the good behavior of the Predictive model with respect to Linux and

Dynamic. There were more opportunities (more chances for overtaking tasks) for

increasing the IS performance when the MG was also executed, so IS performance

increased. The MG results (Fig. 5.15(b)) are very similar because class T is not

as message-passing intensive as class A or even as IS class A, and consequently

synchronization measures provided by the Dynamic and Predictive models have

fewer opportunities to improve its performance.

Also, note that the IS behavior suffers no excessive variations with respect to

its single execution (see Figs. 5.12(a) and 5.15(a)). Once again, the low commu-

nication of MG does not influence the coscheduling of IS.

Other executions, such as CG with SP (see Fig. 5.16(a)), produced analo-

gous results for CG. In this case, PRE0.5 and PRE1 were the finest models. In

the execution of various distributed applications, PRE0.5 and PRE1 identified the

correspondents better. Also, these models obtained the best performance in SP

(see Fig. 5.16(b)), whereas the Dynamic ones behaved even worse than Linux. In

this case, the Dynamic models only favored one task, CG, with higher communi-

cation frequency (and a more regular communication pattern) than SP (see Figs

5.5 and 5.7).

More experiments (shown in Appendix B) were performed by executing IS
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Figure 5.16: CG and SP. (b) CG (b) SP.

with CG, BT and SP. Similar results were obtained in all of them. The Predictive

model always gave better results than the others. Also, the Dynamic models, as in

the execution of SP in Fig. 5.16(b), did not always coschedule all the distributed

tasks correctly.

Finally, the CG, IS and SP benchmarks were executed jointly. Fig. 5.17 shows

their execution times obtained in four nodes. CG was the most favored bench-

mark. In general, the behavior of the coscheduling models did not change. It

can be seen that the PRE0.5 and specially PRE1, obtained the best results. This

fact also confirms that when various distributed applications are executed in pa-

rallel, the need for coscheduling is better approximated by considering the past

communication frequency.

5.5.2 Low Level Results

Low Level Benchmarks were selected to measure different aspects of the remote

communication between tasks forming distributed applications. Instead of mea-

suring different distributed applications with different communication patterns,

we measured different communicating primitives. The different communication

patterns are normally formed by some sort or combination of these primitives,

so by measuring their performance in the different coscheduling models we will

approximate the behavior of the different communication patterns. As in the pre-
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Figure 5.17: CG, IS and SP. (a) CG (b) IS (b) SP.

vious section, the models used are LIN DYN0, DYN0.5, DYN1, PRE0, PRE0.5

and PRE1.

Ther∞, n1/2 andr∞/n1/2 values were collected for the Low Level benchmarks

COMMS1 and COMMS2. As was shown in section 5.1.2,r∞ approximates the

communication rate (r) for long messages. The communication rate for short

messages, is instead approximated by
(
r∞/n1/2

)
∗n. So, for short messages, the

best performance will be reached for highr∞/n1/2 values. Furthermore, asn1/2 is

the message length required to achieve half this asymptotic rate it must be as low

as possible.

Fig. 5.18 shows the results obtained in the execution of the Low Level bench-
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Figure 5.18: Low Level benchmark COMMS2.

mark COMMS2 in two nodes and in the different models: (a)r∞, (b) n1/2 and

(c) r∞/n1/2. The COMMS1 results were very similar to the COMMS2 ones, so

only COMMS2 results are shown. This fact demonstrates that the models have the

same performance when the communications are performed in only one direction

(COMMS1) and when the communication links are bidirectional (COMMS2).

In general, good results were obtained for the Predictive models, which in turn

were very close to each other. No significant differences between the Predictive

models were produced for normal sending and receiving communications.

Fig. 5.19 shows the results obtained for the SYNCH1 benchmark (also with

important improvements in the Predictive models). In the barrier processes there is
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Figure 5.19: Low Level benchmark SYNCH1.

a great quantity of all-to-all communication. In this case, PRE0 increase the prio-

rity of this kind of communication more efficiently than PRE0.5 and even more

than PRE1. Tasks making barriers send and receive asynchronous short messages,

and their efficiency depends on the rapid response from the nodes. So, as in the

MG case, where communication was more irregular than other benchmarks, the

current frequency has more influence than the past one.

5.5.3 Local Tasks Overhead

Fig. 5.20 shows the overhead introduced by the coscheduling models in the execu-

tion of calcula2together with the following NAS (class A) parallel benchmarks:

IS, MG, CG, BT and SP.

The execution time ofcalcula2 (80s) will be the reference for knowing the

added overhead when it is executed jointly with each benchmark in three different

coscheduling models: Linux, DYN0 and PRE0. Only DYN0 and PRE0 were used

because no important differences were produced when the weight assigned to the

current and past frequencies was varied.

Figure 5.20 shows how Linux always obtained the best results, and the Dy-

namic model introduced slightly less overhead than the Predictive one.

Linux obtained the best results because, unlike the other two, it does not add

extra overhead in obtaining the communication frequency and does not delay exe-

cution of the local tasks. Also, the Dynamic model performs fewer communi-

cation inquires (only receiving information is required) than the Predictive one.
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Figure 5.20: Local Overhead (LO) ofcalcula2.

The slight differences are also due to the better coscheduling performed by the

Predictive model, that, in turn, produces non-proportional local task penalties.

In any case, the coscheduling models avoid the starvation of the local tasks.

The local tasks are executed when all the PCBcounterfields of the distributed

applications reach the value 0 (they have consumed their time slices), thus an

opportunity arises for the execution of the local tasks. The coscheduling methods

advance the execution of distributed tasks (because they must be coscheduled with

their correspondents) without delaying the local ones excessively.

In the coscheduling models, as the benchmark computing requirements grow

(which in increasing order is: IS, SP, CG, MG and BT), more overhead is added

into the local task. But, as was mentioned above, this overhead is very low because

the distributed tasks must wait to be executed again when their counter values

reach 0.

Another kind of local experiment was also performed. In this case,calcula2

was modified to provide an additional feature: to fix the CPU utilization by using

system calls which suspend the benchmark for a predetermined time. Thecal-

cula2benchmark (with three different CPU utilizations: 10%, 50% and 90%) was

executed in four nodes (in the LIN and PRE0 models) jointly with two different

distributed workloads. The first distributed workload was formed by IS and CG,

and the second by EP and MG (see Fig. 5.21). As we have seen, communicating

benchmarks does not produce significant overhead into local tasks (case IS and
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Figure 5.21: Local Overhead (LO) ofcalcula2.

CG). In the second case, where the distributed workload were formed by more

CPU-bound applications (EP and MG), the local slowdown was increased.

In general, the most unfavored cases were produced when local tasks had more

computing requirements. Furthermore, from these results we can affirm that I/O

bound local applications will be scarcely affected by the Predictive model (and

also by the Dynamic one). Note that for the 10% cases, the local task does not

suffer excessive overhead. Usually, I/O applications have CPU utilizations even

under 10%, thus performance penalties should be even narrower. This fact also

justifies the choice of CPU bound applications to model the local workload.

5.5.4 Varying the Message Size

The influence of the message size in the behavior of the Predictive model was also

obtained.

Two synthetic applications, sinring and sintree, representative of two types of

communication patterns were implemented. It was necessary to develop these two

new synthetic applications due to the impossibility of changing the message size

in standard benchmarks.

Each benchmark performs the same loop repeatedly:sinring implements a

logical ring (see Figure 5.22(a)), andsintreeattends to the communication from
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Figure 5.22: benchmarks: (a)sinringand (b)sintree

one to various, and various to one (see Figure 5.22(b)). In both applications,

every forming task, in the reception of a synchronization message basically per-

forms floating point operations during a fixed period of time, this being an input

argument (1ms by default). The number of iterations of both benchmarks is also

an input argument.
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Figure 5.23: Varying the message size.

We only collected results for the Predictive models PRE0, PRE0.5 and PRE1.

As the behavior of the two synthetic benchmarks was very similar, only results

obtained forsintreeare shown. Fig. 5.23 shows the results obtained in the exe-

cution ofsintreein 4 nodes when the message size is varied between 0 and 8192
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bytes. The number of local tasks was fixed to 5.

Note that the behavior of each model is very similar and these tend toward

each other. Basically, the behavior in every model was not modified by increasing

the message sizes. That is, the time increases linearly with increasing message

size.

5.5.5 Additional Measurements

A new synthetic application, namedmaster-slaveis used here to demonstrate the

differences between the Predictive and the Dynamic model. This application will

also be used to illustrate a case where the weight of the past frequency is of more

importance than in the previous ones.

master

Node i Node j

rs_slave

r_slave

(2)
(1)

(1)

Figure 5.24:master-slavebenchmark.

Themaster-slaveapplication (see Fig. 5.24) is made up of one master and the

slaves. There are two kinds of slaves, one that only receives messages (r_slave)

and other that performs both receiving and sending messages (rs_slave). The

mapping in four Cluster nodes is performed as follows: the master is assigned to

one node, and two slaves (of different kinds) to each remaining node. The master

performs a predetermined number of iterations and then both master and the slaves

finish execution and the master reports the return time for the application. In

each iteration, the master sends a message to all the slaves. All the slaves, after

receiving the message, perform a simple floating-point computation. In addition,

thers_slavetasks reply to the master with the computation result. After receiving

all thers_slavemessages, themasterrepeats the process again.

Eachrs_slavewaits for the reception of one message from the Cluster before
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returning another message to it. Ther_slavetasks only receive messages. Note

that themaster-slaveperformance does not depend on the performance of the

r_slavetasks. To acquire maximum performance, the scheduling priority of the

r_slavetasks must not be promoted as thers_slaveone.
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Figure 5.25:master-slaveexecution times (in seconds).

Fig. 5.25 shows the good performance of the Predictive model in the execution

of themaster-slaveapplication with a local workload of five local tasks (instances

of calcula) in each node.

As was expected, the Predictive models promoted thers_slavetasks earlier

than the Dynamic ones and Linux. So, the round-trip time of each iteration was

minimized in the Predictive model and consequently major gains were reached.

Moreover,P' 0 obtained the best results because immediate response is required

for achieving performance and this model favors it. Any mean between the current

and past receiving frequency caused a drop in performance. Note thatP has more

influence in the Dynamic cases: performance decreases strongly on increasingP.

5.6 Summary

The distributed and local performance results of the different coscheduling me-

chanisms analyzed in this chapter are summarized below.
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IM (Implicit). It was the only mechanism that slightly (2% as much) improved

distributed performance in the absence of local workload.

Distributed: in general, Implicit behaves worse than the other coschedu-

ling mechanisms. Distributed performance was not increased by vary-

ing the spin interval. In real applications, even when the communi-

cation pattern is very regular, message arrival is very irregular. For

this reason, the gain was not increased forspin values above twice

the context switching cost. The Gain was very moderate and do not

exceed 5% with respect to LIN when the workload was low. How-

ever, by increasing the workload, the distributed performance tends to

reach the one provided by LIN. Slightly better results were obtained

in [19], where gains where as much 10%, but using another messaging

protocol (Active Messages).

Local: it was one of the worst model (only the EXP with highPSvalues

and HPDT gave poorer results). The spinning for arrival of messages

damaged local performance excessively. Gains obtained in distributed

performance were not proportional to the lost in local one.

HPDT (Hight-Priority Distributed Tasks). The main advantage of this mecha-

nism is its implementation in the user space.

Distributed: this mechanism always gave the best Distributed performance.

Local: the excessive overhead that it introduced into the local tasks is a

strong enough argument to discard it.

Through the experiments performed in this chapter, we demonstrated that IMP

and HPDT are not as appropriate coscheduling mechanisms for use in Cluster

computing as EXP, Predictive and Dynamic. In general, the Predictive model also

behaved better than Dynamic. Consequently, more attention to the performance of

the EXP and Predictive models (the ones presented in this project) is performed

in this summary. Discussion about the EXP and PRE models is also based on

Figures 5.26 and 5.27.
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The Figures 5.26 and 5.27 show the relation between the Gain in the dis-

tributed tasks and the Local Overhead in the execution of IS and MG class A in 4

nodes. The features of both mechanisms are:

• PRE1: Predictive model withP' 1. Here, the Gain is obtained as was de-

fined in formula 5.2 for the EXP model.Tcoschedis in this case the execution

time of the benchmark to be evaluated in the PRE1 model.

• EXP: denotes the STATIC operation mode of the Explicit (or DTS) model

with PS= 50 ms andLS= 50 ms (EXP50),PS= 60 ms andLS= 40 ms

(EXP60), andPS= 80 ms andLS= 20 ms (EXP80).
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Figure 5.26: Explicit vs. Predictive (IS). (a) Distributed Gain (b) LO.

EXP (Explicit). The main advantages of this mechanism over the implicit-control

ones (Implicit, Dynamic and Predictive) is its implementation in the user

space (as HPDT) and the ability to limit gains (slowdown) in performance

in advance for distributed (local) tasks.

Distributed: EXP, an explicit-control mechanism, gave an intermediate

performance for both distributed and local applications. In this envi-

ronment, the distributed or local performance can be tuned in function

to the execution periods assigned to the distributed (i.e.PS) and local
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Figure 5.27: Explicit vs. Predictive (MG). (a) Distributed Gain (b) LO.

(i.e. LS) tasks. Consequently, it is possible to achieve Distributed gain

very close to HPDT.

Distributed Gain always increases with the local workload and also

with increasing the period assigned to the distributed tasks (PS). Un-

like the Predictive model, the potential gain depends more on thePS

interval than on the kind of the distributed applications. However,

higher intensive communicating applications (i.e. IS) also obtained

higher performance improvements. For example, in the EXP80 model

and with 5 local tasks, IS and MG obtained improvements of 73% and

65% respectively (see Figs. 5.26(a) and 5.27(a)).

To simplify the summary no results from the BALANCED mode are

shown (also, as was commented previously the DISTRIBUTED mode

is not appropriate for message-passing intensive applications). How-

ever, note that for example, for 1 local task, thePSandLSperiods will

be adjusted to 80 ms and 20 ms respectively, thus giving similar results

to EXP80.

Local: for PS intervals higher than approximately 40 ms, the Explicit lo-

cal overhead always exceeded that of the Predictive. They grow ex-

cessively by increasing the PS intervals. Also, but with fewer nega-

tive implications, increasing the CPU requirements of the distributed



132 CHAPTER 5. EXPERIMENTAL RESULTS (IMPLEMENTATION)

tasks also increases the overhead. See for example Figures 5.26(b)

and 5.27(b). In IS, the added overhead with respect to the plain LIN

environment ranged from 12% (in EXP50) to 48% (in EXP80). In the

MG case, it ranged from 21% (in EXP50) to 66% (in EXP80).

PRE and DYN (Predictive and Dynamic). The avoidance of the expli-cit-control

mechanisms, provided by EXP for example, makes the Dynamic and Pre-

dictive models more efficient. That is, less overhead is introduced in both

distributed and local tasks. Unlike the other models, Predictive and Dy-

namic were implemented in the system space (inside the Linux o.s.).

Distributed: as in the EXP case, it is possible to reach gains very close

to HPDT. Distributed applications obtained better results in the Pre-

dictive than in the Dynamic model. In the Dynamic model, only the

consideration of the current communication (receiving) frequency was

advantageous. On the other hand, in the Predictive model, the past fre-

quency favored distributed tasks with a more regular behavior. Also it

was determinant when various distributed applications were executed

in parallel.

The distributed Gain increases with the local workload, but the slope

of the Gain function is not very pronounced. The potential Gain de-

pends not only on the communication rate, but also on the synchro-

nization requirements. Thus, in the Predictive model for example (see

Figs. 5.26(a) and 5.27(a)), the obtained Gain in MG (48% for 5 local

tasks) exceeds the IS one (28% for 5 local tasks). This fact also shows

that the need for coscheduling is more important in MG than in IS.

Local: local overhead is minimum and is very similar in both the Dynamic

and Predictive models. The local task performance decreases propor-

tionally to the CPU requirements of the distributed applications. As

more CPU requirements are needed more overhead is added into the

local tasks. For example, the slowdown introduced into the local tasks

by the DYN0 (PRE0) model with respect to LIN ranged from 3.5%

(5%) in IS to 14% (16%) in BT. IS and BT are the NAS benchmark
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with less and more computing requirements respectively. Note also

as in the PRE1 model (see Figs. 5.26(b) and 5.27(b)), IS (MG) only

added 5% (12%) more overhead than LIN.

A final conclusion to be made is that in light or medium loaded systems, Predictive

is the best coscheduling model. The Explicit model (and more specifically, the

STATIC mode) will serve instead to achieve distributed Gain in heavily loaded

systems, but at the cost of introducing an excessive overhead into local tasks.




