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Preface

This thesis is about using small decision trees for classification and data mining. The
intuitive idea behind this thesis is that a sequence of small decision trees may perform
better than a large decision tree, reducing both training and exploitation costs.

Our experiments using decision trees started during a research stage in collaboration with
Prof. Kenneth Zeger, at the Electric and Computer Engineering Department, of the Univer-
sity of California, San Diego, and with Hewlett-Packard. Our goal was to develop a system
capable to recognize several kinds of elements present in a document such as background,
text, horizontal and vertical lines, line drawings and images. Then, each element would
be treated accordingly to its characteristics. For example, background regions would be
removed and not processed at all, while the other regions would be compressed using an
appropriate algorithm, the lossy JPEG standard operation mode for images and a lossless
method for the rest, for instance.

Our first experiments using decision trees showed that the decision trees we built were
too large and they suffered from overfitting. Then, we tried to take advantage of spatial
redundancy present in images, using a multi-resolution approach: if a large block cannot
be correctly classified, split it in four subblocks and repeat the process recursively for each
subblock, using all previous computed knowledge about such block. Blocks that could not
be processed at a given block size were labeled as mixed, so the word progressive came up:
a first low resolution version of the classified image is obtained with the first classifier, and
it is refined by the second one, the third one, etc, until a final version is obtained with the
last classifier in the ensemble.

Furthermore, the use of the progressive scheme yield to the use of smaller decision trees, as
we no longer need a complex classifier. Instead of building a large and complex classifier
for classifying the whole input training set, we only try to solve the easiest part of the

classification problem, delaying the rest for a second classifier, and so.

vii



The basic idea in this thesis is, therefore, a trade-off between cost and accuracy under a
confidence constraint. A first classification is performed at a low cost; if an element is
classified with a high confidence, it is accepted, and if not, it is rejected and a second
classification is performed, and so. It is, basically, a variation of the cascading paradigm,
where a first classifier is used to compute additional information from each input sample,
information that will be used to improve classification accuracy by a second classifier, and
SO on.

What we present in this thesis, basically, is an extension of the cascading paradigm and
an exhaustive empirical evaluation of the parameters involved in the creation of progressive
decision trees. Some basic theoretical issues related to progressive decision trees such as

system complexity, for example, are also addressed.
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Chapter 1

Introduction

Introduction: Mot obscéne

Gustave Flaubert, Le Dictionnaire des Idées Regues

Classification is, basically, the use of previously acquired knowledge. Nature uses knowledge to
maintain and to improve life quality, as decisions based on previous experiences are taken when
facing new situations. In the basic scheme of what is named intelligence, that is, the endless circle
of perception, reasoning and action (shown in Fig. 1), classification plays an important role. By
perception we mean acquiring data or information from our environment, by reasoning we mean using
this information to take decisions and, by action, we mean converting these decisions in actions that
alter our environment. Classification and, more generally, pattern recognition, involve extracting the
right information and using it appropriately. This endless circle is what we call learning. Systems
which evolve under this paradigm are considered to be intelligent, as stated in (Winston, 1992).

Humans are probably the best classification systems in nature, although humans cannot explain
the way they do pattern recognition, classification or simply learning. Knowing the way information
is stored and decisions are taken are still elusive goals. Nevertheless, the basic concept of learning is
that it may be seen as a process that constructs a framework where to put previous knowledge that
might be used to face new problems. In this thesis we deal with systems which try to automate this
process.

By machine learning (Mitchell, 1997) we understand a (probably) deterministic method or tech-
nique which allows us to put acquired knowledge into a framework in order to use it automatically.
Within the artificial intelligence paradigm, it partially involves both perception and reasoning. By
data mining (Witten and Frank, 2000) we understand about solving problems by analyzing data
relationships in such framework taking a more numerical approach. Our goal is to build appropri-
ate machine learning systems to do data mining. By appropriate we mean two things: firstly, a

high classification accuracy is needed in order that the classification system might be useful. And
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perception

reasoning

Figure 1: Intelligence as an endless sequence of activities.

secondly, robustness is desired in order that the classification system might be able to maintain
such classification accuracy for new information not used during training. When we use previous
knowledge during training we talk about supervised methods or supervised learning, and when we
try to extract information without previous knowledge we talk about unsupervised methods or un-
supervised learning. This is also known as clustering, as the classification system forms clusters or
natural groupings of the input vectors. In this thesis, we deal with supervised classification methods
only, but we also try to use clustering techniques for improving classification performance.

Fortunately (for people doing research in pattern recognition), no general classification method
exists. As stated in (Antos, Devroye and Gyorfi, 1999), one can never claim to have a universally
superior Bayes error estimation method, no matter how many simulations are performed and no
matter how large the sample sizes are. This fact is precisely described in (Duda, Hart and Stork,
2000) with the following statement':

Theorem 1.1 For any two learning algorithms g.(f|Dyn) and g2(f|Dy), f € F, the following are
true, independent of the sampling distribution and the number n of training points in the training
set D,,:

1. Uniformly averaged over all target functions f, the expected generalization error for both learn-

ing algorithms is the same.

2. For any fized training set D,,, uniformly averaged over F, no learning algorithm yields a better

I This theorem is known as the No Free Lunch theorem, as suggested by David Haussler.
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generalization error.

3. Uniformly averaged over all priors, the expected generalization error for both learning algo-

rithms is the same.

4. For any fixed training set D,,, uniformly averaged over all priors, no learning algorithm yields

a better generalization error.

Nevertheless, there is still room for research in this subject: although it is not possible to find a
perfect general learning algorithm, it is possible to tune classifiers for a given problem. As stated
in (Duda et al., 2000), it is the match of the learning algorithm to the problem that determines
the empirical success. Regarding theoretical issues, in 1984 Valiant (1984) introduced the model for
probably approximately correct learning (PAC-learning), and hundreds of papers related to machine
learning have been published since then. A good survey may be found in (Kulkarni, Lugosi and
Venkatesh, 1998). Several books have also been published since then, among others we should cite
(Devroye, Gyorfi and Lugosi, 1996), (Vapnik, 1998) and (Hastie, Tibshirani and Friedman, 2001) as

the most comprehensive texts about machine learning and pattern recognition.

1.1 Supervised classification systems

A supervised classification system is defined by:

1. The information that will be used during the training stage. Using the appropriate vocabulary,
we call this stage the classification features extraction stage. This stage is very important,
as many classification problems could be easily solved using the right set of classification
features, see (Kudo and Sklansky, 2000) for example. Original data can also be transformed
and new classification features can be computed from it. This is known as data massaging
(Murthy, 1997). As we are in a supervised classification context, we need the training set to
be labeled, that is, for each input vector £ we must know its label y in advance, in order to
have pairs of the form (z,y). Therefore, we suppose that the input data follows an unknown
joint distribution (X,Y).

2. An algorithm to construct such classification system. We call this the training stage. This al-
gorithm will use functions from a class of functions F that will determine its performance. The
more complex F is, the better it is expected to perform. For example, quadratic discriminant
functions usually perform better than linear discriminant functions. Nevertheless, following
Occam’s razor (Duda et al., 2000), F should be complex enough to capture the underlying

structure of the distribution (X,Y"), but no more.

3. A measure to evaluate classification accuracy. We call this the evaluation stage. As stated

above, we want robustness to be a characteristic of our classification system, not only accuracy.
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We would also like to have a method to estimate classification accuracy on new data. This is

also known as generalization error performance.

Therefore, the quality of a classification system is determined by the quality of the training data
and the quality (complexity) of the learning algorithm. A fourth subject could be also included:
the way the classification system learns new information. Obviously, the simplest way is to add the
new information to the original information and repeat the training and evaluation stages, although
this scheme may not be optimal for classification systems with a high training cost. In this thesis,
we study the three issues described above: namely, the data we have to classify, which learning
algorithms we will use and which parameters they have and, finally, how classification performance

can be measured.

1.2 Classification and compression

Classification and lossy compression are closely related to each other, as they pursue the same aim:
to represent any input vector by an index in a known set. They may be also used to improve
each other: a classifier may help an adaptive compression system in order to take advantage of
several compression algorithms, depending on which kind of data the classifier detects. For example,
document layout recognition systems may be used to segment documents, detecting text image
and background areas. Text areas could be compressed using a lossless compression algorithm,
while image areas could be compressed using the JPEG standard (Wallace, 1991; Pennebaker and
Mitchell, 1993), for example, and background areas could be not coded at all, thus saving bits. A
similar strategy is used in adaptive vector quantization (Gersho and Gray, 1992), where different
codebooks are switched depending on an external criterion, which may be given by a classifier, for
example. On the other hand, lossy compression may also be used as a rude classification system, as
the most populated class for each centroid may be used as the classifier output. Vector quantization
is directly related to the nearest neighbor classifier, and several vector quantizers have also been
used for classification, see (McLean, 1993) for example.

Indeed, data classification may be seen as a special case of lossy compression, as a space partition
containing one or more elements is represented by a single element, a label in the classification case
or a centroid in the compression case. Basically, both techniques share the same structure: an
optional transformation of the input space, a partition of the transformed space, and the selection
of a label or centroid for each region in such partition. The main difference between classification
and compression is that, in a classification system, it is impossible to reconstruct original data
from labels, mainly because labels are not intended to be used that way. The main idea is that
lossy compression and classification may share a common framework. Actually, several methods
combining classification and compression have been studied and developed, such as self-organizing

maps (Kohonen, 1995), tree structured vector quantization (Oelher and Gray, 1995), or learning
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vector quantization (Baras and Dey, 1999), for example. The same theoretical framework may be
used for both classification and compression, which is really useful due to the large amount of papers
related to vector quantization.

Nevertheless, methods combining classification and compression suffer from a major drawback
due to different goals. The main goal of a classification system is to minimize misclassification error,
whereas the main goal of a compression system is to minimize distortion (usually measured through
mean squared error). Even with combinations of both criteria, the better a hybrid system classifies,
the worse it compresses, and vice versa. Unless both compression and classification are needed,
better classification results are achieved when specific classification systems are used. We have also
studied the relationship between classification and compression in order to measure the degradation
of classification performance when the input data is compressed at a certain quality level. New

applications of data mining such as hyperspectral imaging require further research in this subject.

1.3 Decision trees

Among classification systems, decision trees are one of the most known methods, mainly because they
mimic the way humans take decisions. A set of questions which are asked depending on the answer
previously obtained determines the final category of the input. The basic idea behind decision trees
is recursive partitioning: if a data set cannot be correctly classified with enough accuracy, try to
find a question which splits such data set in several subsets, and then repeat this process recursively
for each subset.

The study of decision trees, even from an experimental point of view only, arises a great deal of
interesting issues, both theoretical and practical. As introduced above, decision trees are grown in
a top-down fashion: an initial training set is recursively split until no more splits are possible, using
several criteria for determining each action taken. The most important questions related to decision

trees are basically those concerning the following subjects:

1. A method to determine the next node to be split. It is called the node selection criterion.

2. A method to determine whether a node must be split or not. It is called the stopping condition

criterion.
3. A method to determine the way a node is split. It is called the node splitting criterion.

4. A method to determine which class is assigned to a node. It is called the labeling rule.

Decision trees have been extensively investigated and used since the appearance of the first works
of Quinlan (1983) and Breiman, Friedman, Olshen and Stone (1984). Each one of the four subjects
introduced above has generated its own research subject, specially the third one, which is the most

important one. In fact, the four subjects are fully connected to each other, but usually most effort
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is put on improving decision tree performance through the optimization of the splitting criterion. In
this thesis, we study several questions related to the subjects stated above.

Classical decision trees suffer from a major drawback, as stated in (Hastie et al., 2001, p. 313):
their predictive power is limited. This is partially caused because of the fact that decision trees
are unstable classifiers, since the outcome of the decision tree learning algorithm is very dependent
on the training set. The intrinsic characteristics of the training set determine the structure of the
decision tree, among them training set size (n), data dimensionality (d) and the number of different
classes (K) are specially critical. It is well known (Breiman et al., 1984) that decision trees are not
accurate classifiers when d or K are large. Traditionally, decision trees have been built using the
basic algorithm described in (Breiman et al., 1984) without any special consideration on tuning the
training stage parameters for a given data set. This usually causes decision trees to perform poorly
when compared with other classifiers which use more complex decision functions, such as neural
networks or support vector machines, for example.

In this thesis, we study how to to break the classification problem into a sequence of partial
classification problems, in order that the easiest part of the original problem is solved first using a
simple decision tree, and the rest is solved applying the same criterion recursively. We tune each
stage varying several parameters of the learning algorithm, such as maximum decision tree depth,
the splitting criterion and a threshold that determines whether the outcome of the labeling rule can
be used or not, yielding to a partial classification of the input training set. Experiments show that
it is possible to improve classification accuracy using ensembles of small decision trees instead of
using a single large decision tree. As the main contribution of this thesis, we propose a novel way
to ensemble decision trees, called progressive decision trees, which follows this strategy of cascading

several partial classifiers.

1.4 Thesis structure

This thesis is structured as follows:

Chapter 2 describes decision trees and the classical algorithms used for constructing them, in-
cluding criteria obtained experimentally which may be useful to build better decision trees. Basic
definitions and properties of decision trees as well as general thoughts are presented in this chapter.

The following chapters are the core of this thesis, and they are fully connected to each other.
In Chapter 3, we introduce progressive decision trees, a novel approach to the construction of
ensembles of decision trees, with the aim to overcome some of the problems related to decision trees.
We compare our ensemble to other types of ensembles that combine several classifiers into a single
one, trying to find similarities and differences. As our ensemble may be seen as a special case of
cascading (Gama and Brazdil, 2000), we describe three types of cascading ensembles which may be

used to build progressive decision trees.
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All the experiments and simulations that give support to our ensemble are compiled in Chapter
4, together with other experiments which can be considered as empirical support for growing better
decision trees. A paper summarizing the most important contributions of this thesis can be found
in (Minguillon and Pujol, submitted). The different types of progressive decision trees are empiri-
cally evaluated with a subset of the UCI? collection (Blake and Merz, 1998) of standard data sets,
which is the common reference for the machine learning community. Experimental results with real
data sets (document layout recognition (Minguillén, Pujol and Zeger, 1999), hyperspectral imaging
(Minguillon, Pujol, Serra and Ortuno, 2000; Minguillon, Pujol, Serra, Ortuno and Guitart, 2000),
brain tumor classification (Tate, Ladroue and Minguillon, 2002; Minguillon, Tate, Artas and Grif-
fiths, 2002; Minguillon, Tate, Griffiths, Majos, Pujol and Arus, 2002)) are also presented in this
chapter.

In Chapter 5, we compare our ensemble with other ensembles of decision trees under a theoretical
framework, following previous works of Schapire, Freund, Bartlett and Lee (1998), Golea, Bartlett,
Lee and Mason (1998) and Mason, Bartlett and Golea (to appear) among others. Our idea is to
see that progressive decision trees have some properties which make it possible to perform better
than single decision trees under certain conditions, and also to study the parameters involved in the
training stage that determine the kind of cascading ensemble.

The conclusions and contributions of this thesis are summarized in Chapter 6, and some guidelines
for further research in this subject which have arisen from the research carried out in this thesis are
also outlined.

Finally, two appendices are included in order to improve the understanding and readability of
this thesis: Appendix A summarizes the standard data sets used in the experiments performed in
this thesis, and Appendix B may be used as a notation table. An index of the most important terms

is also included.

This thesis has been written using IATEX, and figures have been created using Xfig and GNU-
PLOT.

2University of California, Irvine.
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Chapter 2

Decision trees

M¢éthode: Ne sert a rien

Gustave Flaubert, Le Dictionnaire des Idées Regues

In this chapter we define the basic concepts used in this thesis related to decision trees and more
precisely, to data mining using decision trees. A previous clarification: decision trees are also known
as classification trees, as the set of questions or decisions that has to be solved to reach a leaf is
used to give an answer to the question “which class is X ?”. Nevertheless, decision trees can also be
used for regression (Breiman et al., 1984) or vector quantization (Linde, Buzo and Gray, 1980), for
example. In the context of this thesis, both terms are indistinguishable one from the other, although
we prefer the more general version “decision trees”.

Throughout this and the next chapters, we will follow the notation defined by Breiman et al.
(1984) for basic tree definitions, and the notation defined by Devroye et al. (1996) for error measures
and estimations. A notation table summarizing all mathematical notation used can be found in

Appendix B.

2.1 Introduction

Since their development by Breiman et al. (1984), who studied classification and regression trees
(CART), decision trees have been extensively used in several areas related to pattern recogni-
tion and data mining: optical character recognition (Casey and Nagy, 1984), medical diagnosis
(Kononenko, 1993), document image analysis and remote sensing, for example, are maybe the best
known applications, but also financial analysis, astronomy and molecular biology applications of
decision trees among many other are emerging. Decision trees were previously described in several
papers describing the process of converting a decision table into a decision tree (Hartmann, Varsh-

ney, Mehrotra and Gerberich, 1982). An excellent although a bit out of date survey of decision trees

9
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may be found in (Safavian and Landgrebe, 1991), and a shorter but newer survey may be found
in (Quinlan, 1996b). Finally, a large compilation about new material, applications and algorithms
related to decision trees may be found in (Murthy, 1997). Another author that has introduced a lot
of new concepts and algorithms related to decision trees is Quinlan (1990), who developed both ID3
(Quinlan, 1983) and C4.5 (Quinlan, 1992) algorithms®.

But decision trees are not only used as classifiers in so many applications, new algorithms related
to training decision trees have been developed by Gelfand, Ravishankar and Delp (1991), Loh and
Vanichsetakul (1988), and recently an algorithm which uses a new criterion called degree of linear
separability has been introduced by Shah and Sastry (1999), showing the importance of decision trees
within the research of the machine learning community. New techniques such as boosting (Freund,
1995) and bagging (Breiman, 1996a) have also renewed the interest in classification systems using
decision trees. Decision trees have been also studied under a statistical approach using probability
models, as described in (Jordan, 1994).

When compared to other pattern recognition methods (Jain, Duin and Mao, 2000), decision
trees seem to be relegated to a second line, behind artificial intelligence related methods (neural
networks (Bishop, 1998), self-organizing maps (Kohonen, 1995), support vector machines (Cortes
and Vapnik, 1995; Vapnik, 1998), etc.) which are the most popular methods among the machine
learning community. The reason is that it is easy to think that decision trees are basic tools which
only use orthogonal or linear hyperplanes to compute boundaries, while the mentioned methods take
advantage of more complex boundary algorithms. Several authors have also proposed methods com-
bining both approaches (Sethi, 1995; Schmitz, Aldrich and Gouws, 1999; Bennett and Blue, 1998).
It is important to see that a classification procedure should not only produce accurate classifiers at
a reasonable cost, but also provide insight and understanding into the predictive structure of the
data. Distance based methods or non linear boundaries do not allow such analysis. Decision trees
satisfy these requirements and present many other properties which make them an interesting tool

for data inspection:

1. Feature selection: usually, the most important classification features are selected first for data
splitting, while other classification features are never selected. This information may be used

for feature selection, reducing feature complexity and, therefore, classification cost.

2. Data inspection: when orthogonal hyperplanes are used as splits, each internal node uses only
one classification feature for data splitting. This is directly related to feature selection as it
may be used to detect the most important features. Furthermore, each set of questions that
has to be answered from the start of the tree until a leaf is achieved yields information about

feature relationships and, therefore, information about internal data structure.

ISoftware packages and further references for both algorithms (and many other) may be found in
http://kiew.cs-dortmund.de:8001:/mlnet
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3. Categorical variables: unless other distance based methods, linearly categorical variables may
be easily included. In real scenarios such as medical diagnosis or credit card scoring, categorical
variables are usually the most common type of available data as classification features. Classical
approaches for dealing with categorical variables may also be used (see (Andersen, 1997)).

Binary variables may be easily include as well.

4. Missing values: another interesting property of decision trees is the possibility of handling
missing values, that is, data vectors that have one or more classification features unknown,

which is a common situation in real case scenarios.

5. In some problems, given a input vector, what is wanted is an estimate of the probability that
the case is in a given class, giving an estimation of the relative probability of the vector for

each class. This is easily computed at each leaf of a decision tree.

6. It is also easy to establish a parallelism between classification and regression, the same tree
scheme may be used for both problems changing only the final question or labeling function.
Actually, both problems are closely related, see Frank, Wang, Inglis, Holmes and Witten (1998)
for example, where regression trees are successfully used for classification. Decision trees may
be also used for compression (TSVQ and so, see (Gersho, 1982) for example) and, obviously,
combining both classification and compression in a single decision tree is also possible (Oelher
and Gray, 1995; Perlmutter, Perlmutter, Gray, Olshen and Oehler, 1996).

Maybe the most interesting feature of decision trees is their flexibility, as they are grown using
always a known set of rules and criteria. Decision trees allow the user to integrate all knowledge
about a problem into a simple and intuitive framework. As stated in McLachlan (1992, pp. 324),
classification and regression trees add a flexible non-parametric tool to the data analyst’s arsenal.
Its potential advantages over traditional approaches are in the analysis of complex nonlinear data

sets with many variables.

2.2 Tree definition

Decision trees have been profusely studied in the past years, so there are many useful tools (Breiman
et al., 1984; Chou, Lookabaugh and Gray, 1989; Devroye et al., 1996) to describe and to analyze
them. Nevertheless, the same flexibility of decision trees makes them hard to analyze under a
theoretical approach. In this section we give a basic definition of what a decision tree is, which will

be refined in the following sections.

Definition 2.1 A éree T is a directed, acyclic graph where each node has either no child (in that
case it is called a terminal node or a leaf) or exactly ¢ children (and then it is called an internal

node or decision node), and each child has exactly one parent except the top node of the tree, which
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is called the root. The set of all leaves of T is denoted by T, and the size of T and its number of
leaves are denoted by |T| and |T| respectively.

Usually, decision nodes are questions that can be answered using only true or false, so ¢ = 2. In
this case, we use the term binary decision tree. This kind of trees is useful for classification, as a
set of simple questions is used to determine the class of an input vector. The case ¢ > 2 is often
used when categorical variables taking several values are present in the training set, although this
situation can also be (suboptimally in a classification cost sense) represented with a binary decision
tree, with a reduced training cost. In this thesis we deal with binary decision trees only, so we will

drop the term binary except when necessary.

Fig. 2 shows an example of a decision tree, taken from Breiman et al. (1984), which was developed

as a method to identify high risk patients among those that suffered a heart attack.

MSBP > 91 ?

Figure 2: Example of decision tree.

In this example, node 1 is the root of the tree. Nodes 1, 2 and 4 are the internal nodes or
questions: node 1 asks “is the minimum systolic blood pressure over the initial 24 hour period
greater than 917”7, and left branch is taken if the answer is “yes” and right branch otherwise. Node
2 asks for the age of the patient and, finally, node 3 asks “is sinus tachycardia present?”. On the
other hand, nodes 3, 5, 6 and 7 are the leaves, which are labeled true (T) or false (F) depending
on whether the patient is classified as high risk or not. This tree was created using a data set with
19 classification features, but only the three questions showed here where considered important by
the decision tree in order to find a class for each patient. This fact allows the experts to identify
the most important variables and to find new relationships between them, which may be even more

important than the classification itself.
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2.3 Growing a decision tree

Decision trees are the result of a supervised learning method, that is, a labeled data set is needed for
training. Such data set is called the training set, and classification performance is directly related to
its properties. Hopefully, the training set is as large as possible, and it represents all possible classes.
As stated in (Breiman, 1996a), decision trees are unstable classifiers, that is, small perturbations in
the raining set may cause large differences in internal tree structure.Therefore, a large training set
is preferable, although this is usually not the common situation.

Let D,, be a labeled training data set of length n, that is, a sequence of n pairs (X;,Y;), X; € R?,
Y; € {0,1,...,K —1},i=1,...,n, where d is the dimension of the input space? and the number of
classification features, and K > 2 is the number of classes present in the training set. Y; is the label
or class assigned to vector X;, and (X;,Y;) are thus instances of a joint distribution (X,Y"), which
we are trying to learn.

Hopefully, D,, represents all the possible pairs (X,Y), although this is a bad assumption even
for really large training data sets. Nevertheless, because the real distribution of (X,Y) is not known
(in that case no decision tree would be needed), we must trust our training set to be representative
and try to extract the most important information from it in order to build a good classifier.

Decision trees are built using an algorithm based on space recursive partition, as follows:

Growing algorithm

use D,, as the initial data set

while a stopping condition is not satisfied
select a data set
split it in s disjoint subsets

end

The growing algorithm is controlled by a stopping condition, a way to select the node to be split
and a method for splitting nodes. This general algorithm, which can be seen as a greedy algorithm,
may lead to bad decision trees when training data is not representative or when its control parameters
are not well defined, causing what is known as overfitting. In Sect. 2.6 we will discuss an algorithm
due to Breiman et al. (1984) which is called pruning® that can be used to improve decision tree
performance reducing its specificity. The pruning algorithm takes a large tree as its input and
it computes the optimal subtree (for a given criterion) which minimizes misclassification error on
a second training set. The fundamental principle underlying the tree growing algorithm is that
of simplicity: decisions that lead to simpler, more compact trees with fewer nodes are preferred,
following the Occam’s razor rule (Duda et al., 2000), which states that the simplest model that

explains data is the one to be preferred. Notice also that this algorithm needs to be applied again

2Notice that the input space may be a cartesian product of simpler spaces, including also discrete spaces.
31t is also known as the BFOS algorithm.
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when new training data arrives. An incremental version is described in (Utgoff, 1989), although it

has not been widely used.

2.3.1 Partitions

Due to n < oo, the growing algorithm always stops generating a finite partition of the original data

set and, by extension, a finite partition of the input space.

Definition 2.2 A finite partition P of R? is a finite collection {A,...,Ap} of subsets of R? such
that U;-DZIAJ- =R? and AiNA; =0 ifi # j. Each set A; is called a cell of the partition P.

Every partition induced by a decision tree is a valid partition of the input space, but not vice
versa (finite holes, for example, cannot be created by hyperplanes). The study of partitions induced
by decision trees is an interesting subject because partition properties are directly related to tree
shape and other related properties.

The partition obtained may be also described using a tree structure: internal nodes are questions,
t:R? — {1,...,s}, and leaves are data sets which are labeled according to a fixed labeling rule.
Usually, questions are hyperplanes, that is, H x < h, so s = 2. Leaves are data sets which are labeled

trying to minimize misclassification error. The labeling rule is as follows: given a node ¢, label it as

K-1

I(t) = arg;min{r(t) = > C(j,k)p(k|t)} j=0,....,K—1 (2.1)
k=0

where K is the number of classes, C'(j, k) is the cost of misclassifying class j as class k, and p(k|t)
is the estimated probability of class k in ¢.

Such a labeling rule is hard, that is, a single label is chosen as I(t) and ties must be solved
using an appropiate criterion. A possible extension is the use of posterior class probabilities, or
probabilistic concepts, as defined in (Kearns and Schapire, 1994).

In a natural way, a partition Pr generated by a decision tree 7" induces a random variable Up,,,
which takes the leaf value t € Pr with probability Pr(t) = p(t). We can define several measures
on this partition which provide us information about tree shape and specificity, as entropy, for
example. Entropy, which is defined* as E[—logP(¥p, )] is an interesting measure because allows
us to compare partitions and, therefore, decision trees. As stated in (Yockey, 1992), a result due to
Kolmogorov is that two probability spaces are isomorphic if and only if they have the same entropy.
We will use entropy and other information theory related measures to compare decision trees and

to measure their shape and specificity.

4Here E denotes expectation.
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2.4 Growing algorithm parameters

Growing a decision tree consists, therefore, in determining a set of parameters that are used during
the training stage. These parameters are the stopping condition, the node selection criterion, and

the node splitting criterion.

2.4.1 Stopping condition

Stopping condition may be tree based or node based, depending on whether a condition on the whole
tree structure or a condition on every leaf of the tree is satisfied. In other words, stopping conditions
may be global or local respectively.

The simplest tree based stopping conditions are a maximum number of iterations or a maximum
tree depth, for example. Nevertheless, both conditions are unrelated to misclassification error and,
therefore, they yield bad decision trees, as stated by Breiman et al. (1984). A more interesting
stopping condition directly related to misclassification error is to measure tree performance for the
training set (denoted by L, (T"), which will be defined in Sect. 2.5), and then stop when this value
falls below a threshold e. This does not prevent overfitting, though.

Regarding node based stopping conditions, they are related to the node selection criteria. Instead
of computing a function over the whole tree, the growing algorithm is stopped when a node is selected
and it satisfies a given criterion such as node depth (yielding to limited training depth trees, see Sect.
4.3), for example. In this case, the stopping criterion and the selection criterion may be joined in a
single function that is computed for each node, and the node yielding the smallest (or the largest)
value is chosen for splitting, until this value is too small or too large for a given threshold. Early
stopping may avoid overfitting but it may cause a bad performance.

If pruning is going to be used after the training stage, usually the imposed condition is Ln (T) =0,
that is, a perfect tree T is grown (see Def. 2.5). This is only possible, though, when there are no
two pairs (X;,Y;) and (X;,Y;), ¢ # j such that X; = X; but ¥; # Y;. Those pairs not satisfying
such condition should be removed from the training set D,, in order to avoid cheating our growing

algorithm. Decision trees are very sensitive to training data quality.

2.4.2 Node selection

For each leaf t € T an index selection function is computed. The leaf minimizing or maximizing
such index is selected to be split. Usually, this criterion is directly related to the node splitting
criterion, as the leaf ¢ yielding the maximum decrease in tree impurity is selected (see next section).
This is also a tree based or global criterion. For example, the leaf ¢ maximizing the decrease in tree
misclassification error is also a global criterion, but according to Breiman et al. (1984), it may yield

bad performance results.
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Global criteria are computationally expensive, so it would be interesting to have local criteria
that could be used to select the next node to split. Possible criteria are selecting the node with
the largest misclassification error, selecting the most populated node, an so, but this may generate
suboptimal trees.

Both options are greedy, so it is naturally of interest to explore ways to improve such strategies.
This is partially achieved with lookahead techniques, which try to find the best sequence of nodes
to split. Surprisingly, using lookahead in decision tree growing algorithms does not improve tree
performance (Murthy, 1997), so it is better to put more efforts in other areas of the growing algorithm.

Once again, if pruning follows the training stage, all nodes will be selected sooner or later and
therefore split until all of them are perfect, so there is no need to compute anything for node selection.

One could select nodes to be split depending on its number, for example, without any cost.

2.4.3 Node splitting

Due to the nature of the growing algorithm, node splitting criterion is the most critical issue in
decision trees, although some authors (Breiman et al., 1984, p. 38) point out that the properties of the
final tree are insensitive to the choice of the splitting criterion within a wide range of splitting criteria.
Nevertheless, node splitting is truly a key issue in decision trees because of its importance: a bad split
at a certain level may lead to inefficient subtrees in the lower levels. Furthermore, a lot of effort has
been put in studying splitting criteria, see (Mingers, 1989b; Lopez de Mantaras, 1991; Buntine and
Niblett, 1992; Martin, 1997; Drucker, 1999; Shih, 1999; Drummond and Holte, 2000) for example.
Hinging hyperplanes, which extend the concept of split, have been studied in (Breiman, 1993). Once
again, though, pruning seems to be the right way to obtain good decision trees avoiding overfitting,

regardless the used splitting criterion.

2.4.3.1 Splitting through impurity criteria

Splits are usually selected using an impurity criterion, trying to find the split that maximizes a
decrease of impurity. Impurity measures how mixed a leaf data set is, that is, the proportion of
elements of different classes in a same data set. Another way to select splits is the twoing criterion

(Breiman et al., 1984, pp. 38), which is not related to a node impurity measure.

Definition 2.3 Let Ag be the set of all K-ary probability distributions

b= {pOa"'apKfl}

which satisfy the following conditions:

p; >0 Vji=0,... K-1
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and
K-1

p; = 1.
=0

A function ® : A — R is called an impurity function if satisfies the following conditions:

a) ®(po,...,pr—1) > 0.

b) ®(po,...,pk-1) =0&3Ip;=1p, =0 Vj#£k.

c) ® achieves its mazimum when pp =p1 = ... =pg_1 = %
d) ®(po, .- .,prx—1) is a symmetric function of po,P1,---,PK—1-

e) ®(po,.--,PKr—1) 15 a concave function of po,p1,- -, PK—1-

Examples of impurity functions are:

1. Probability of misclassification: ®(p) = 1 — max{p;}. When K = 2, it is usually defined as
®(p) = min{p, 1 — p}, also called the Bayes error L*.

2. Gini function (Breiman et al., 1984): ®(p) = 1 — Zfiglp?. When K = 2, ®(p) = 2p(1 —
p). In other contexts, such as molecular epidemiology, the Gini criterion is also known as
heterozygosity (Li, 1997). It is also known as the nearest neighbor error (Devroye et al., 1996,
p. 22).

3. Entropy: ®(p) = — Efigl pjlog(pj). Entropy is a measure of uncertainty in information theory
(Cover and Thomas, 1991) with countless applications in many branches of computer science,
mathematical statistics, biology and physics. As stated in Devroye et al. (1996, p. 27), the
nearly monotone relationship between the entropy impurity function and the misclassification
error will see lots of uses.

4. R-norm (Boekee and der Lubbe, 1980): ®(p) = £:[1 — (Z]K;Ol pf)'/R]. The R-norm is a
class of impurity functions depending on the parameter R > 0. When R — 1, R-norm is the
entropy impurity function, and when R — oo, is the probability of misclassification. When
K =2and R = %, R-norm is the Matushita error, which is related to the Bhattacharyya
measure of affinity (Devroye et al., 1996, p. 23).

Fig. 3 shows the shape of these impurity functions in the interval [0,1] when K = 2. They have
been normalized, so the maximum value achieved when pg = p; = 1/2is also 1/2. From innermost to
outermost, Bayes error, R-norm with R = 2, the Gini criterion, Entropy and R-norm with R = 1/2
are plotted. This ordering is directly related to impurity criterion performance and behavior, as we

will discuss later in Sect. 4.2.
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Figure 3: Impurity functions shape.

Node impurity is defined as i(t) = ®(p(0|t),...,p(K —1|t)), where p(j|t) is the proportion of the
elements belonging to class j in node ¢t. Each p(j|t) may be computed as
_ miN;(t)/N;
p(t)

where N;(t)/N; is the proportion of elements of class j in ¢, and 7; is the a priori (or prior)

p(jlt)

probability of class j. Priors may be explicitly given (as part of the knowledge that we have about
the classification procedure) or may be computed as the relative proportion of elements of class j in

the training set.

Definition 2.4 A leaf t € T is called pure (or perfect) if i(t) = 0.

By impurity function definition, this only happens when all elements in ¢ are the same class.

Analogously, tree impurity is a linear combination of all leaf impurities, as follows:
I(T) =" p(t)i(t)
teT

where p(t) is the probability of ¢ (recall that all tree leaves define a partition of the input space).
Analogously,
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Definition 2.5 A tree is perfect if I(T) = 0.

It is easy to see that if T is perfect, its misclassification error for the training set is also zero.
This definition of perfect trees may be also found in (Quinlan, 1990), as stated in (Safavian and
Landgrebe, 1991).

Splitting a node never increases tree impurity. Let s be a split on a leaf ¢t € T, that is, s splits
t creating a new tree T' with a pair of new leaves #;, t,., as shown in Fig. 4, and then measure its

impurity decrease as

Ar(s,t) = I(T)-I(T")
= S opit) = Y pt)i(t)
teT t'eT”

= p®)i(t) — (p(t)i(t) + p(t,)i(tr)).

It is easy to see from i(t) properties (which are caused by ® properties) that Ay(s,t) > 0, with
equality if, and only if, p(j|t;) = p(jlt-) = p(j|t), 7 =0,..., K — 1. A formal proof can be found in
(Breiman et al., 1984, p. 94). Then, the splitting rule is to select the split s in ¢ which maximizes
Ar(s,t).

2.4.3.2 Splitting through the twoing criterion

When the twoing criterion is used, at a node ¢ the splitting rule consists in choosing the split s that

maximizes )

K-—1
Ar(s,t) = POOPUD S iy — )| (2.2
=0

Figure 4: Splitting a node.

Gini criterion looks for the largest class in the selected node and strives to isolate it from all
other classes. Gini criterion attempts to separate classes by focusing on one class at a time. It will

always favor working on the largest or, if costs or weights are used, the most important class in a
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node. While this approach might seem short sighted, Gini performance is frequently so good that
one should always experiment with it to see how well it does. Gini criterion is usually the default
rule in CART-like software precisely because it is so often the best splitting rule. The philosophy
of the twoing criterion is far different than that of Gini. Rather than initially pulling out a single
class, the twoing criterion first segments the classes into two groups, attempting to find groups that
together add up to 50 percent of the data. The twoing criterion then searches for a split to separate
the two subgroups, and so on. The entropy criterion, although is closer to the Gini criterion, is very
similar to twoing in practice, and it strives for similar splits. In Sect. 4.2 we test several splitting
criteria in order to rank them experimentally.

Another interesting subject is the combination of several splitting criteria at different levels of
the decision tree. In (Brodley, 1995), an algorithm that applies a split criterion suited to the location
of the decision node in the tree is empirically evaluated. The basic idea is to use the Bayes error

criterion at leaves and other criteria at inner nodes.

2.4.3.3 Construction of splits

There are several ways to construct splits using only training data available at a given node ¢ which

has been selected to split:

1. Use only orthogonal hyperplanes, that is, only one variable is considered for splitting. Splits
are questions “x,, < h?”. This may lead, though, to poor performance when class structure
depends on combinations of variables. On the other hand, its simplicity and low computational
cost make this method be the most used. It also gives information about which variables are

important at a given level, allowing the user to do simple internal data structure inspection.

2. When variable combinations are allowed, decision trees yield results competitive with or even
better than linear discriminant analysis (Jobson, 1992; McLachlan, 1992). In this case splits
are questions “Z?;()l H;xz; < h?’, and they are also called multivariate decision nodes or
oblique decision nodes. Although general hyperplanes achieve the best results, using variable
combinations has a high computational cost and, furthermore, all hyperplanes computed using
training data statistics are usually too specific leading to poor results. Loh and Vanichsetakul
(1988) have developed an approach known as FACT, which has multivariate splits that are
distribution dependent at each node, assuming a Gaussian distribution. A distribution free
algorithm based on linear programming is due to Brown and Pittard (1996). A method based
on a linear discriminant classifier is due to Gama (1999). Other remarkable methods are due to
Liu and Setiono (1998), where a feature space transformation is used to compute the splitting
hyperplanes, and also due to Brodley and Utgoff (1992), where a multiclass linear discriminant
is used in combination with a feature removal algorithm. Finally, Bennett and Blue (1998)

have developed a method which uses support vector machines at each decision node.
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3. For a categorical variable z,, taking J different values, splits are questions “z,, € Az ?” where
Az is a set containing a non trivial subset of 7 = {1,...,J}. Therefore, 2/~! — 1 non trivial
subsets should be tested, which is computationally very expensive when J is large. For several
categorical variables considered at once, the number of possible combinations grows even faster
due to boolean combination structure. Breiman et al. (1984, p. 101) reduce the number of
subsets to J, which provides a considerable improvement in computational efficiency. Chou
(1991) describes an optimal partitioning method for classification and regression trees based

on divergence measures, trying also to reduce computational complexity.

4. Finally, user knowledge and expertise in the classification problem may be used introducing
forced splits at a certain level. For example, in expert systems such as those used in medical
diagnosis, a first question on a variable which is an analytical result may be followed by a forced
question trying to determine a concrete pathology. Although this method may be useful to
combine automatic and manual (non-automatic) learning, we do not consider it because it
does not allow a complete analysis to be carried. Nevertheless, decision trees may be used as a
helpful tool for internal data structure inspection, helping experts to discover new relationships

between classification features.

We do not consider splits that do not use labels Y; as information. This splits lead to trees with
the X-Property, as defined by Devroye et al. (1996). Other types of trees based on other types of
splits are also discarded, such as spheric trees, for example, which are used in tree structured vector
quantization (Gersho and Gray, 1992; Devroye et al., 1996). Nevertheless, a simple transformation
of the original data may be used to find new non-linear splits, specially when several z; € R form a
subspace of R?. A good example could be using polar coordinates instead of Cartesian coordinates

(or combined with).

2.4.4 Growing algorithm complexity

It is easy to see that the number of possible trees generated by the growing algorithm grows ex-
ponentially with the number of iterations and the number of available training vectors. After each
stage, the number of leaves of the tree grows in ¢ — 1 units, where ¢ is the number of disjoint subsets
in which a leaf is split. When ¢ = 2, we start with a trivial tree with only one leaf, after the first
iteration the tree has two leaves, and so on. The sequence of number of leaves available to split
of all possible trees is 1,2, 5, 14, ..., which may be recognized as the sequence of Catalan numbers®
(Sloane, 2000). From its definition, it is easy to see that this sequence grows exponentially with the
number of leaves ¢, that is, the number of stages.

Furthermore, it is also known that constructing an optimal decision tree is a NP-complete problem

(Hyafil and Rivest, 1976), optimal in the sense of minimizing the expected number of tests required

5Catalan numbers are defined by C(c) = (2¢)!/(c!(c + 1)!) = (**)/(c +1), ¢ > 1.
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to classify an unknown sample. The problem of finding the split that minimizes the number of
misclassified points, given two sets of mutually exclusive points, is also NP-complete (Heath, 1992).
Therefore, trying to find by exhaustive search the best leaf to split and the best split is an infeasible

problem, so heuristic approaches need to be considered.

2.4.5 Decision tree complexity

Once a decision tree has been built, two measures are used as complexity estimators of internal
decision tree structure, the average rate R(T) (or simply R) and the maximum depth d(T") (or

simply d).

2.5 Misclassification error estimation

Tree performance is usually measured using an error-counting estimator Ly, defined as follows:
1 n
Ln(T) = - Z Lir(xi)#v;} (2.3)
i=1

where 1 is an indicator function (it is one when the condition evaluated is true and zero otherwise),
and T'(X;) is the label assigned by T to the input vector X;.

Therefore, ﬁn(T) counts the number of mistakes that T" makes classifying D,,. Nevertheless, we
are more interested in estimating the true error probability, that is, L,(T) = P{T(X) # Y | D,,} of
a decision tree T for all possible pairs (X,Y"), not only for those in D,,. The main reason is that L,
may be very much smaller than L,,, depending on the decision tree grown for D,, and, therefore, may
be unreliable. Using L, to estimate decision tree performance is also known as the resubstitution
method (Breiman et al., 1984).

Unfortunately, growing a decision tree from a data set D, and then using L,, to measure tree
classification performance suffers from a major drawback. Usually, the obtained tree performs well
for the training data set D,,, but it does poorly for other data sets, yielding a higher misclassification
error. This undesirable phenomenon is called overfitting. The main problem is that misclassification
error is optimistically underestimated, usually because the same data is used for both training and
validation. For example, if the training set D,, is split until all leaves in T are perfect or pure,
Ln(T) = 0, which is clearly unreliable.

What we want is to study the error generalization capability of a given decision tree. In Sect. 5.1.1
we will take a more theoretical approach for this subject. In a more practical sense, there are several
methods (Jain et al., 2000) that can be used to obtain a better estimation of L, without having
extra training data (which may be useful for small training sets, see (Raudys and Jain, 1991; Jain
and Zongker, 1997; Raudys, 1997) for example):



2.5. MISCLASSIFICATION ERROR ESTIMATION 23

1. Hold-Out method: use n* < n vectors for training and n — n* vectors for L,, estimation. This
method is only recommended for large n, and usually is pessimistically biased. Furthermore,
different partitions may lead to different estimations. As a rule of thumb (Breiman et al., 1984),

2

use n* = 3 N.

2. Cross-Validation method: build (Z) decision trees using k vectors in each training set and n —k
vectors to estimate L,, and then average all obtained estimations. When £ = 1 this method it
is also known as the leave-one-out method. Estimation is unbiased, but it has a large variance

and a higher computational cost when n is large.

3. N-fold Cross- Validation method: split the n vectors in N subsets containing approximately the
same number of elements, and for each subset build a new training set using N — 1 subsets and
use the selected subset to estimate L,,, and then average all obtained estimations. Depending
on N, it may be prohibitive. Usually this method is repeated k times so a total of N x k
experiments are carried out (each repetition using a different partition of L,). According to

(Hastie et al., 2001), a value between 5 and 10 for N is usually a good choice.

4. Bootstrap method: generate many bootstrap sample sets of size n by sampling with replace-
ment, and then average all obtained estimations. Variance of a bootstrap estimator is lower
that that of the commonly used leave-one-out method, but only when sample size is extremely

small or when the classification error is large (Raudys, 1988).

Nevertheless, all of these methods (except the hold-out method) use training data for both
decision tree construction and misclassification error estimation, which may be not fair in a strict
error estimation sense. A study of its accuracy may be found in (Kohavi, 1995). It would be better
to use a second data set starting with the decision tree generated by D,, and then to improve such
tree in order to remove those paths that are too specific of the training set. This method is known
as pruning. Actually, pruning may use the hold-out method in order to have different training and
corpus sets and may also be combined with the N-fold cross-validation method when N is small
(N=2or N =3).

2.5.1 Confusion matrix

Although Eq. (2.3) allows us to compute the classification accuracy, it does not give information
about what kind of mistakes makes a given decision tree. Let D,, be the training set with K classes,
each class containing ny elements. Let n}jk be the number of elements of class j classified as class k
by T. Then, the confusion matriz of T is:

where n] is the number of elements of D,, classified as class k. Notice that Eq. (2.3) may be

computed from the confusion matrix, it is the sum of all elements not in the diagonal divided by n.
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Table 1: Confusion matrix for a decision tree.

The confusion matrix gives information about what classes are being misclassified, which may

be useful to group several classes in a single superclass that could be refined later.

2.6 Pruning

Pruning was originally developed as part of CART by Breiman et al. (1984), and it is also known as
the BFOS algorithm. In a later work, Chou et al. (1989) extended the original pruning algorithm in
order to cover a variety of applications in source coding and modeling in which trees are involved, such
as tree structured vector quantization, variable order Markov modeling and optimum bit allocation,
for example. Other pruning methods may be found in (Mingers, 1989a). All of these methods are
node-based, that is, decisions are taken depending on the values computed at each node. A new
pruning algorithm which is edge-based may be found in (Pereira and Singer, 1999).

The main idea in pruning is finding a subtree of 7' that minimizes the misclassification error for

a second data set called the corpus set or the test set, C,,, that is,

. 1 &
Lnm(T) = - Z Lir(xp#vyy (2.4)
i=1
where C, = {(X],Y)},i=1,...,m. [A/n,m is called the corpus set resubstitution estimate.

Measuring misclassification error using a second data set that has not been used during the

training stage yields an estimator that is clearly unbiased, in the sense that
E{Lypm|Dn} = Ln.

Using a result from (Devroye et al., 1996, p. 122) based on Hoeffding’s inequality, we can bound

L,, using a second data set of m elements as follows: for every € > 0,
P{|Lnm — Ln| > €| Dy} < 2e72m" (2.5)

For example, if we want our misclassification error estimation to be at most 0.01 far from the
real L,, with probability 0.95, we need at least
log((1—10.95)/2)
>
- —-2-0.012

= 18444.397
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vectors in the corpus set. Notice that the term ¢ makes m grow really fast, and that this bound
does not use how good our classifier is. A better bound may be obtained using Bernstein’s inequality
(Devroye et al., 1996, p. 124). Let
1 m
= ;(I{T(Xé)#@’} ~ Ln,m)?
1=
be the observed variance of our error estimation. Then, for every € > 0,
P{|L L Do} < 20—
{ILnm — La| > €[ Dn} < 2exp 202 +2¢e/3) (2.6)
where ¢ = 1 — ﬁn7m. Suppose ﬁn,m = 0.148333 and 02 = 0.12633, for example. Then, repeating
previous example, we need at least

log((1 —0.95)/2)
—0.012

m > (202 +2-0.851667 - 0.01/3) = 9529.38

vectors in the corpus set, which is sensibly lower than Hoeffding’s inequality. Bernstein’s inequality
is useful when e is larger than about max(o/v/m, ¢/ /m), and it is typically better than Hoeffding’s
inequality when o < c.

Egs. (2.5) and (2.6) may be used to obtain a confidence of the error estimation. We will use them

in Sect. 4.1.2 where a large hyperspectral image with thousands of training vectors is available.

2.6.1 Pruning algorithm

Basically, the BFOS algorithm finds a nested sequence of pruned subtrees which are optimal in a
R/D sense, where usually R is measured through the number of leaves and D is the misclassification
error. The key issue in the BFOS algorithm is the word nested, because the number of possible
subtrees of a given tree grows exponentially with the size of such tree. Fig. 5 shows a typical set
of rate/distortion pairs. Each plus sign + is a possible tree that has been built during the training
stage (of several experiments), while each training process generates a path starting from a zero rate
condition until a zero distortion condition is achieved. A possible training process is also depicted.

The BFOS algorithm finds all points (that is, all possible subtrees) that are in the lower contour
of the convex hull, that is, each point in the convex hull is the tree yielding the smallest distortion
for a given rate. We could also define the upper contour of the convex hull, but it would be useful

for our purposes.

Definition 2.6 A subtree S is called a pruned subtree of T', or S < T, if the root of S is the root of
T. Thus, S=T < S=T.

Fig. 6 shows all the possible pruned subtrees of a tree T', which form a nested sequence S3 <

S <57 X T. It is easy to see that the number of pruned subtrees also grows exponentially with
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Figure 5: R/D pairs generated by all possible subtrees and the convex hull generated by the pruning

has S(d) possible subtrees, where

the depth of the tree in a recursive fashion. A complete tree of maximum depth d (with 2d leaves)

- 1 ifd=0

S@) = _ ne

14+ S(d—-1)2 ifd>0.
For example, a decision tree with minimum depth 4 and maximum depth 5, which is really a

small tree, has between 677 and 458330 possible pruned subtrees. Actually, the exact number of
possible pruned subtrees S(T") may be recursively computed as follows:

S(T):{ !

if T is a single leaf
1+ S(T))S(T,) if T is a tree with two branches 7; and T..
Therefore, to compute all the possible subtrees of T" and then choose those that minimize mis-

classification error for the corpus set is computationally very expensive. BFOS algorithm is a clever

way to handle this problem in order that only a nested sequence of pruned subtrees is evaluated.
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Figure 6: Pruned subtrees of a tree.

The idea behind pruning (Breiman et al., 1984, p. 66) is to define a new measure on a tree called
its complezity, which is a representation of the size of the tree.

Pruning works as follows. Each node in the tree is the starting point for a subtree which will
end with several leaves. Before pruning, the leaves will contain examples belonging to only one class
(if a perfect tree has been built), but as pruning progresses, the remaining leaves will be not pure.
Such leaves are labeled according to the labeling rule, and the most frequent class is selected. If
the subtree is pruned back, then the expected error rate is that of the root of such subtree, which
becomes a single leaf. If the subtree is not pruned back, then the error rate is the average of the error
rates at the leaves weighted by the number of examples at each leaf. Each pruned subtree increases
the error rate in the training set, and dividing this increase by the number of leaves in such subtree
gives a measure of the reduction in error per leaf. This is known as the error-complezity measure.

The complexity cost measure is the cost of one extra leaf in the tree, denoted by «. Then the

total cost of a subtree T} is

> r(t)p(ts) + alTy]

t;€Ty

and of the node ¢, if such subtree is pruned is
r(t)p(t) + a

where r(t) is defined by Eq. (2.1). These are equal when

r®)p(t) — Xy, em, r(t)p(ti)
|T;| — 1 '

Then « gives a measure of the value of the cost-complexity term for the subtree 7;. The pruning
algorithm computes « for each subtree (except the first, when |T'| = 1) and selects the smallest «
for pruning. Repeating this process until there are no subtrees left yield a series of nested pruned
trees, which form the lower convex hull shown in Fig. 6.

Then, for each subtree T in the convex hull, f/mm(T) is measured and the tree yielding the lowest

one is selected as the final tree. At the beginning, for small trees L, (T is large and it decreases
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as the tree size grows, as L, does. But usually there is a point where I:n,m(T) stops decreasing and
starts to increase, while ﬁn(T) always decreases. Such point is considered the start of overfitting

point. Fig. 7 shows such behavior for a typical R/D plot.

0.6 T T T T T T
i i i i training ——
i 3 ; 3 : pruning ---x---
X corpus. ---% -

IT|

Figure 7: Overfitting occurs when I:n,m(T) stops decreasing and it begins to grow.

As stated in (Murthy, 1997, p. 21), pruning is more beneficial with increasing skewness in class
distribution and/or increasing sample size. Other pruning algorithms are described in (Mingers,
1989b). Another technique known as averaging is described in (Oliver and Hand, 1995).

2.7 Practical criteria

In order to build good decision trees, there are several aspects that have to be taken into account:

1. As important as obtaining a misclassification error as low as possible, is that this misclassi-

fication error is a reliable estimation. Therefore, a training set and a corpus set should be
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drawn from the original data set, the former will be used for training purposes and the later
for evaluation purposes. A rule of thumb (Breiman et al., 1984) is to split the original data
set in 2/3 of the cases for the training set and 1/3 of the cases for the corpus set. Eqgs. (2.5)
and (2.6) may be used to determine the confidence interval of the estimated misclassification
error, although they may be useless unless m (the number of vectors in the corpus set) is high.

N-fold cross-validation is a good choice for computing an estimation of misclassification error.

2. The splitting criterion is an important issue because tree performance directly lies on the
quality of the first splits. A bad split in the first levels may cause a poor generalization
error. In Sect. 4.2 we test several splitting criteria in order to rank them according to their
performance on several standard classification data sets. Both Gini and the R-norm criteria
seem to yield the best results. In our honest opinion, the R-norm criterion should be more
deeply analyzed as it could be used in an adaptive method which may take advantage of extra

information such as node position and intrinsic characteristics.

3. Sometimes a leaf too mixed is split using a variable which is not really representative, generat-
ing two new leaves that do not contribute to reduce tree impurity and causing also a bad split
that may contribute to poor performance for the corpus set. This happens when a random
data set is chosen for splitting. An extra classification feature may be used to detect and avoid
this problem. Suppose we add a random variable X ~ N(0,1) as a new classification feature.
Then, when the best possible split has been found, reject to split when X is part of such split.
The intuitive concept is clear: if a random split is better than any other split, the data set is
too mixed and it cannot be split. This may be combined with a constraint upon the minimum
number of elements in a leaf. When a tree is built following these criteria, those leaves that
were rejected for splitting may represent sets of mislabeled data, so they can be used to detect
outliers in the training set. Removing outliers may improve classification performance and the

understanding of the data set properties.

4. Pruning always finds the best subtree for a given test set, so it should be always carried out
in order to find the smallest subtree with the smallest misclassification error. More than any
other criterion, pruning is the critical issue when building decision trees (and with any other
classification method where a large system is built and then is pruned back, such as neural
networks, for example). The right size of a classification system is a key issue in its error

generalization performance, as we will study in Sect. 5.1.1.

2.8 Known problems

Even after pruning, resulting decision trees may be too large and, therefore, too much specific. The

deeper a split in the decision tree is, the more specific probably is. This may generate unrealistic
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leaves which represent particular characteristics from the training and corpus sets, but not a real
characteristic of the underlying distribution of (X,Y’), causing overfitting.

Furthermore, large decision trees are likely to use all the classification features present in the
training set, even if they are not directly related to the class which we are trying to find. For
example, suppose we are using decision trees to classify hyperspectral images obtained from an
HIRIS or AVIRIS sensor (Goetz and Herring, 1989), with 192 or 224 spectral bands respectively. If
a large tree is built, all 192 or 224 bands will be used sooner or later anywhere in the tree, which is
clearly a mistake. We would like to be sure that only the best classification features will be selected
for splitting.

Another problem related to decision trees is the number of classes present in the training set.
When the number of classes is high, decision trees become too specific to training set characteris-
tics, as stated in (Kim and Landgrebe, 1991), because of the poor representation of the intrinsic
characteristics of each class when the number of elements is small.

Our goal is, therefore, to build a better classification system based on decision trees that does not
suffer from overfitting (or, at least, a system that tries to minimize it), it has a reduced classification
cost, it uses a reduced set of classification features and, finally, it performs better when the number of
classes is high. Our approach is to break the classification process in a sequence of partial decisions,
using a measure of how mixed (or impure) a data set is. We call this ensemble progressive decision

trees, and it will be discussed in the next chapter.
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Progressive decision trees

Innovation: Toujours dangereuse

Gustave Flaubert, Le Dictionnaire des Idées Regues

As stated in the previous chapter, decision trees suffer from several drawbacks that limit their use
in some scenarios: the most important is that generated trees may be too large and, therefore, too
specific, becoming a classification system with a bad generalization error. Furthermore, classification
cost may be extremely high when large data sets are used during the training stage. Trees also
become unstable when the number of classes is high and the size of the training set is limited. We

are trying to build a classification system that would (ideally) allow us:
1. To improve generalization error reducing overfitting.
2. To reduce training and pruning algorithms costs.

3. To treat elements from several classes as elements of a single superclass which would be solved

by another classifier later.

In this chapter we present a novel ensemble of decision trees which allow us to partially fulfill
the requirements stated above. We call this ensemble progressive decision trees.

It is important to specify what we mean by progressive: classification is no longer a one-stage
process but a multi-stage one. Instead of having a single tree which classifies the whole input space,
we break the classification problem in a sequence of partial classification sub-problems which can
be independently solved and then combined into a more robust classifier. Each tree is a partial
classification system which acts in a lazy scenario: it only classifies those samples which are easily
classified by a few splits. We prefer the term partial rather than lazy because the latter was already
used in (Friedman, Kohavi and Yun, 1996) with a different meaning. The term progressive was also
used because our initial work was related to document layout recognition (Minguillén et al., 1999),

where an input image was classified at a coarse level, and then progressively refined.

31
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As stated in (Liu and Setiono, 1998), when orthogonal hyperplanes are used to build univariate
decision trees, three problems arise: replication, repetition and fragmentation. These problems were
defined in (Pagallo and Haussler, 1990). Replication occurs when similar subtrees are replicated in a
decision tree, yielding to an inefficient partition of the input space. Repetition occurs when classifi-
cation features are repeatedly tested more than once along a path in a decision tree. Fragmentation
occurs when data are gradually partitioned into small fragments (Brodley and Utgoff, 1992). Repli-
cation and repetition always imply fragmentation, but fragmentation may also occur if too many
features need to be tested. The fragmentation problem is also related to poor generalization error
performance (see Sect. 5.1.1), as the number of smaller leaves which are created during the growing
stage increases yielding to a poor margin distribution (see Sect. 3.8.2). In the following sections
we will describe how progressive decision trees deal with such problems. All the experiments and
theoretical formulations related to our ensemble are presented in the next two chapters, in order to

facilitate the reading of this chapter.

3.1 Progressive decision trees

In this section we define the basic framework for our classification system. As we use CART (Breiman
et al., 1984) as the basic tool for constructing progressive decision trees, we will use the notation
presented in the previous chapter. In Chapter 5 we will give a more formal framework for progressive
decision trees trying to find relationships between our classification system and other classification

systems that have been recently developed.

3.1.1 Labeling rule

We introduce an extra class, called the mized class, which will be used as a class representing a
mixture of elements of several classes. For the moment, we will denote this class as M. The new

labeling rule is then

o) = { I(t) ifr(t) <e 51)

M  otherwise.
where [(t) and r(t) are defined in Eq. (2.1) and € is the desired threshold for considering a label
too impure in a misclassification cost sense. The basic idea is that [(t) is rejected if r(t) fails to be
under a certain threshold e. The concept of rejection is also described in (Bottou and Vapnik, 1992)
where classifiers are studied under the best compromise between locality and capacity. It is fully
described in (Baram, 1998b)!, under a partial classification framework. The concept of rejection is
also related to the concept of specialist described in (Blum, 1997) and further studied in (Freund,
Schapire, Singer and Warmuth, 1997), where each specialist (that is, a base-level classifier) decides

whether to give an opinion or not depending on the context. A similar approach is also used in

LA brief paper containing corrections to this one may be found in (Baram, 1998a).
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(Gavin, Puzenat and Zighed, 1999), where misclassification error is redefined to take into account

only classified samples.

3.1.2 Growing and pruning basics

The growing algorithm is basically the same as the one described in Sect. 2.3 for classical decision
trees. Every time a leaf ¢ is split, a new subtree is created. This subtree is trained using only those
vectors in D, that were in ¢, that is, in the region of the input space which ¢ represents. This
training does not depend on other vectors that were in other regions, so it is easy to see that, for
each leaf ¢ that is going to be split, a new thread might be created, sharing the root of the tree T in
order to compute global tree measures such as misclassification error or average rate, for example.
This process is stopped when a certain stopping condition is reached (it will be discussed later in
Sect. 3.4).

On the other hand, when such tree is pruned back using the pruning algorithm described in Sect.
2.6, and several leaves are classified as mixed because they are too impure, what we do is to join
all these leaves in a single data set which represents the whole input space but a finite number of
holes (which may be finite or infinite, though). This new leaf is labeled as mixed, so the process is
repeated recursively, as a second pruning stage.

The whole process is started again joining all leaves labeled as mixed in a new training set, so
a new decision tree is built. A two-dimensional example is shown in Fig. 8, where a simple tree T}

with two regions labeled as mixed only classifies the right uppermost corner of the input space.

Figure 8: Mixed regions of a progressive decision tree.

Then, the two regions labeled as mixed generate a decomposition of the original input distribution
(X,Y), as follows,

(X,7) = (X,1)0 = (x, 1)V g (Xx,7)D



34 CHAPTER 3. PROGRESSIVE DECISION TREES

where (X, Y)(l) is the distribution of those samples falling in the regions classified by T, and
(X, Y)(T) is the distribution of those samples not classified by 77. Analogously, we can decompose
the original training set as follows,

©)
ny )

DniD;Oa):DS}I)@D n = ng =ni + ng,

that is, the training set is decomposed in two sets. Then, a new tree 75 may be trained using D%)
generating a new partition, as shown in Fig. 9. In general, at stage ¢ + 1, T;41 decomposes the
training set in two new sets, as follows,

7 nyT ?

Figure 9: Partition refinement.

Initially, the whole input space (the original training set D,, or Dgﬁ)) may be classified using a
trivial tree Ty with a single leaf labeled as mixed. A first tree makes a refinement of such input
space, classifying a percentage of the input space with a low misclassification error (because leaves
too impure are labeled as mixed and, therefore, not classified). Regions of the input space left
unclassified form the new training set DgT), so this process may be repeated until classification
requirements (in both classification percentage and accuracy) are satisfied, or until it is not possible
to do further refinements. We will discuss both cases later in Sect. 3.4.

Intuitively, this refinement process may be seen as a simple but elegant way to handle boundary
problems: the best splits (those in the top of the tree) separate the easy cases from the input
data set, and (hopefully) before the splits become too specific, all data sets labeled as mixed are
joined together and a new tree is created, trying to separate the new easy cases. We avoid the
use of too deep trees that may cause overfitting, but maintaining a good classification performance
(Holte, 1993; Auer, Holte and Maass, 1995) at a reduced cost (in both training and classification
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senses). As the size of the consecutive training sets n; decreases at each stage, both training and

classification cost also decrease.

When € is small, most leaves are labeled as mixed and then joined, pruning back the decision
tree and creating a small decision tree. If € is too small, a degenerated decision tree with a single leaf
labeled as mixed would be created, unless pure regions would be present in the training set. Such a
trivial tree does nothing, so it is useless and its use should be avoided. The final decision tree needs

at least three leaves, in order to be a non trivial tree or the first level of a classical decision tree.

On the other hand, when ¢ is large enough (but not too much), large trees may be obtained even
after pruning and joining leaves labeled as mixed. In this case, the decomposition described by Eq.
(3.2) may be seen as a naive classification of the samples in two sets: the easy samples and the hard
samples (in terms of classification cost and accuracy). The underlying idea is that easy samples are
classified with a high confidence while hard samples are left unclassified. Eq. (3.2) may be refined

. 1) . .. .
again as D%T) is the new training set for a new classifier.

3.1.3 Confusion matrix

The confusion matrix for progressive decision trees has an extra column with respect to the confusion
matrix defined in Sect. 2.5.1, as we need to count how many elements are not classified (that is,

classified as mixed):
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Table 2: Confusion matrix for a progressive decision tree.

We can define the percentage of input vectors classified by T" as

K-1_T T

P = k=0 M _ 1 - "M
n n

Although Tab. 2 is related to the training set, an equivalent confusion matrix may be computed for

the corpus set.
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3.2 Decision graphs

As two or more leaves are joined to create a new leaf which is recursively split, decision trees
become decision acyclic graphs (DAG) (Oliver, 1993). As stated in (Pagallo and Haussler, 1990),
conjunctions (regions defined by intersections) can be described efficiently by decision trees, while
disjunctions (regions defined by unions) require a large tree to be described. This is directly related
to the replication problem, as the same subtree describing a conjunction needs to be built for each
disjunction. We will use the same example in (Oliver, 1993) to illustrate this problem: suppose
we are dealing with four boolean attributes (A, B, C and D) and a goal function f which can be
described as
f=((AAB)V(CAD).

A possible perfect decision tree for such data set would use A as the classification feature for
the first split (actually it could have selected any because of problem inherent symmetry), while the
second splits (one for A and another for A) would use C' and B respectively, as shown in Fig. 10
(D could also have been used instead of C). Notice that the subtree describing the term (C' A D)

requires two identical subtrees, which is inefficient, causing the replication problem.

()
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Figure 10: A decision tree for (A A B)V (C A D).

Regarding progressive decision trees, suppose we stop the growing algorithm when there is a leaf
(or maybe two) labeled different than mixed. Then we join all mixed leaves (except in the trivial
case) and then we repeat the process until a perfect decision tree is found. Suppose also that we set
e = 0, so all leaves will be labeled as mixed unless they are pure.

Suppose A is also chosen the first classification feature. When the initial data set is split using

A, both leaves would be labeled as mixed. Suppose now the right leaf is split using B, generating
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two new leaves, but in this case the right leaf is not labeled as mixed, but to 1 (as it only contains
elements from class 1). Then, the other two leaves (representing A and A A B) are joined together
and the process is repeated again. In this case C' (but also D by symmetry) is chosen as the new
classification feature, creating a perfect leaf and another leaf which, finally, is split using D as the
classification feature, and the process stops here because all input data is correctly classified. The

final decision tree (a decision graph, actually) is shown in Fig. 11, and it is also the minimal tree

Figure 11: A progressive decision tree (DAG) for (A A B) V (C A D).

(or graph) which represents f.

Although this example is far from a real scenario, it shows the possibilities of progressive decision
trees. Notice that, in order to achieve the desired decision tree shown in Fig. 10, B must be chosen
as the classification feature to split the right leaf obtained in the first split where A was used. If not,
the replication problem would not be avoided. As we do early stopping, the node selection criterion
becomes critical. Notice also that, in this case, B is the split that produces the most perfect possible
subsets, though.

Progressive decision trees deal with the replication problem trying to join those regions that
should not be treated separately. Joining also fights against the fragmentation problem, as small

regions are joined together in single large region.

3.3 Joining mixed leaves

Suppose we grow a complete decision tree of maximum depth d and then we prune it back, name it
T. If d is small compared to the real decision tree average rate R, probably there will be a lot of
leaves in T labeled as mixed. We can join all these leaves together and then start a new training
process, following the process previously described.

This process has a drawback, though. When d is not too small, the partition induced by T' may
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possibly generate unconnected regions labeled as mixed that should not be joined together, as shown
in Fig. 12. This problem is also related to other problems regarding inefficient splits, as discussed
in Sect. 3.6.2.

®

T < az ] < as T < aq

To < by

Figure 12: Joining may involve unconnected regions labeled as mixed.

Although joining all mixed leaves together is a good approach to avoid both replication and
fragmentation problems, our experiments show that often the first splits in the second tree (which
is trained with all data in the regions labeled as mixed) reproduce approximately the same splits
that the first tree, trying to separate again the mixed regions. This may happen when either d or e
are not small. Therefore, the first splits of each progressive decision tree should be inspected trying

to detect coincident splits which are superfluous.
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3.3.1 Detecting connected regions

Once the decision tree has been built, it is easy to detect connected and unconnected regions labeled
as mixed. Suppose by now that splits are orthogonal. For each leaf labeled as mixed, generate a list
containing all representative splits, that is, only those splits that are boundaries of such region. For

example, in Fig. 12:

Leaf 8: x1 < ag, ®2 < by (split 1 < a; is superseded by z; < as)

Leaf 10: z1 < a3, 2 > by

Leaf 12: 1 > a1, 1 < a4, T2 < by

Leaf 15: 1 > as, 2 > by

Then, for each pair of leaves containing at least one common boundary (that is, the same split),
try to find any non empty intersection. For example, leaves 8 and 10 share the same split zs < by,
and the intersection of 21 < as and z; < ag is obviously non empty. On the contrary, leaves 12 and
15 share the same split z2 < bs but the intersection of 1 > a1, 1 < a4 and z; > as (provided
as > ay) is empty. This process is easily extendible to d dimensions in a recursive fashion, although
it may be computationally very expensive for large trees and large d.

For non orthogonal splits, the problem is how to find non empty intersections efficiently. Further-
more, two regions not sharing any split may be connected, which is impossible for the orthogonal
splits case. As we will see in Sect. 3.6, this may also be detected during the process of combining

decision trees.

3.4 Growing and pruning parameters

For the moment we have only the intuitive idea behind progressive decision trees. Nevertheless, the
framework defined in the previous sections arises several questions related to the parameters which

are inherent to the training process (both growing and pruning):
1. How deep a single tree has to be?
2. How to set €7
3. Is pruning necessary?
4. How many trees (denoted by t) are needed?

5. Which leaves must be joined?
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In the following sections we will try to give several answers to these questions using both empirical
and theoretical criteria. These answers would determine the growing and pruning processes for
progressive decision trees, the subject of study in this thesis. It is easy to see that these questions
are related one to each other, so their answers will be related too, showing that probably there is an

underlying more general framework that we have to establish.

3.4.1 Minimal progressive decision trees

Suppose now we set € = 0 (although this is not really important now) and that our stopping rule
is “stop the training process when at least there is one leaf not labeled as mixed”, that is, when a
leaf contains only elements from one class. Suppose, by simplicity, that the last split (which caused
a pure leaf to be found) does not create two pure leaves, but only one. Suppose also that we force

that at each step of the training stage, a new classification feature is used.

It is easy to see that because all regions will be labeled as mixed but one, these regions are all
connected, so we have a tree that separates one region labeled as mixed from another not labeled as
mixed. The path from the root of the tree to the leaf not labeled as mixed defines the boundaries of
such leaf, and therefore, a very simple tree with only one decision node and two leaves may be built,
using a special type of decision node, which is no longer a hyperplane but a hyperrectangle (notice
that it may be finite or infinite, though). Of course, we assume that only orthogonal hyperplanes are

used for node splitting, although the method could be also generalized to use general hyperplanes.

Hyperrectangles in R? are an interesting subject of study because they approximate the distribu-
tion of d independent multivalued random variables, as stated in (Auer, Long and Srinivasan, 1997).
Our method is greedy but only computes one side of the hyperrectangle at each iteration. Another
greedy method which computes the best possible hyperrectangle at each iteration is described in
(Devroye et al., 1996, p. 348). This method is proved to be consistent?, although the authors remark
that it serves only as a prototype and should not be considered under a practical approach. The con-
sistency of an unsupervised greedy growing algorithm that produces tree structured classifiers from
labeled training data is described in (Nobel, 1994). The patient rule induction method algorithm
(PRIM) (see (Hastie et al., 2001, p. 279)) also finds hyperrectangles in the feature space.

Therefore, progressive decision trees may be seen as an easy (and maybe naive) approximation
to the problem of complex boundaries construction using hyperrectangles, but under a suboptimal
approach, trying to find a compromise between its computational complexity and its performance.
In Sect. 5.2.4 we will describe under a more theoretical approach the use of progressive decision

trees as a single decision tree built using hyperrectangles.

2see (Devroye et al., 1996, p. 91) for a definition of consistent.
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3.4.2 General case

But using hyperrectangles to create holes which are perfect is not a good way to build decision trees,
as these holes are probably too specific to the training set, causing overfitting. The five questions
should be treated as a whole, trying to find relationships between them, using also previous knowledge

and intuition:

e The basic idea of partial classification is based on a fast, first opinion with a large margin of
confidence, and if this opinion does not satisfy a certain criterion, a second opinion is searched
and so on. Therefore, the first trees in such ensemble should be small, trying to solve the
easiest cases only with a high confidence. The last tree, which has to deal with the hardest

samples must be a normal decision tree, as largest as needed.

e Following the same approach, € should be very small for the first trees and grow accordingly
to each tree accuracy. If € is too small, it will be impossible to build small decision trees
(unless the classification problem is easy to solve), and if it is too large, the confidence in our
prediction will be low. Experiments in Sect. 4.5.2 show e cannot be very different from the
expected misclassification error to ensure a reasonable tradeoff between classification accuracy

and percentage of classified vectors.

e When trees are small, pruning is not an issue as it has a low computational cost. Furthermore,
very small trees are usually not pruned at all. On the other hand, for large trees pruning is

the most effective tool for building good decision trees, so it should be used.

e Usually only two or three trees are needed to obtain a good progressive decision tree. Nev-
ertheless, the number of trees depends also on the size of the data set, although increasing
the number of decision trees does not ensure increasing classification performance, but the
contrary. Gama and Brazdil (2000) also use only two or three levels for cascading as a good

tradeoff between classification performance and complexity.

e The simplest way to deal with the problem of joining leaves is to join them all, and then to
study the ensemble between the two decision trees. In fact, if the first splits of the second
decision tree reproduce some of the first splits in the first decision tree, this does not have a
negative impact on classification accuracy, but on classification cost, as similar questions are

asked twice or more times for several elements.

In the following chapter we will try to justify all the statements above empirically defining

appropiate experiments for selecting each parameter.
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3.5 Combining paradigms

The main idea of progressive decision trees is partial classification: a tree no longer classifies all input
data but only a percentage, hopefully yielding a lower misclassification error, and at a reduced cost.
Then, a set of small progressive decision trees are combined trying to improve classification perfor-
mance while reducing classification cost. In general, one or more base-level models are combined
using a meta-level model to improve classification system performance. As stated in (Todorovski
and Dzeroski, 2000), there are three combining paradigms for the meta-level model: voting, stacking
(Wolpert, 1992) and cascading (Gama and Brazdil, 2000). Both voting and stacking may be con-
sidered multiexpert systems, while cascading is better studied as a multistage system (Alpaydin and
Kaynak, 1998; Kaynak and Alpaydin, 2000). A comprehensive compilation of papers on multiple
classifier systems may be found in the series (Kittler and Roli, 2000; Kittler and Roli, 2001; Kittler
and Roli, 2002). An excellent recent book which covers several combining paradigms is (Hastie
et al., 2001).

Suppose decision trees are used as base-level classifiers. In a voting scheme, each decision tree
makes a prediction for each input vector, and the prediction receiving the most votes is chosen as the
final prediction. Voting may be weighted or not, depending on the meta-level model. In stacking, a
learning algorithm is used to induce a meta-level model (a tree of trees) for combining the predictions
of the decision trees. Cascading is an iterative process of combining classifiers: at each iteration,
the training set is extended with the predictions obtained in the previous iteration. Other authors
have also studied the relationship between decision trees and several combining paradigms (Drucker
and Cortes, 1996; Quinlan, 1996a; Kearns and Mansour, 1999; Quinlan, 1999; Drucker, 2000). Trees
have also been used as meta-level models in (Chan and Stolfo, 1995).

Combining classifiers tries to extract the best from each one: as stated in (Gama and Brazdil,
2000), the combined error rate depends on the error rate of individual classifiers and the correlation
among then. We will define classifier correlation later in Sect. 3.8, where it will be considered
as an empirical measure of classifier performance, altogether with a bias-variance (Dietterich and
Kong, 1995; Kohavi and Wolpert, 1996; Domingos, 2000) decomposition of the misclassification error
and a classical Mahalanobis distance measure.

In the following sections we will discuss our ensemble under these combining paradigms, studying
which is the most appropriate under the point of view defined by the questions defined in Sect. 3.4
and giving some empirical reasons for their better performance than classical decision trees. The

theoretical details of our ensemble of progressive decision trees will be discussed in Chapter 5.

3.5.1 Voting

Voting is the most common method used to combine classifiers. As pointed out by Ali and Pazzani

(1996), this strategy is motivated by the Bayesian learning theory which stipulates that in order to
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maximize the predictive accuracy, instead of using a single learning model, one should ideally use

all models in the hypothesis space.

Voting involves two different (but related) processes: first, a set of different classifiers must be
constructed using the available data set, and second, the output of these classifiers must be combined
into a single classification system. As several classifiers working in parallel are combined into a single
one, voting is considered to be a multiexpert approach to classifier combination. Therefore, a voting

classification system is completely defined by:

1. The way the base-level classifiers are generated from the training set. As the training set is
unique and the learning algorithms are deterministic, this means that different training sets

must be generated from the input training set.

2. The way the base-level classifiers are combined into a single classification system. It may be a
simple majority voting scheme or a more complex weighted voting scheme depending on each

base-level classifier performance, for example.

Different choices for the questions described above generate different voting methods. The most
well known voting methods are bagging and boosting, which will be briefly described in the following

sections.

3.5.1.1 Bagging

Bagging was introduced by Breiman (1996a), and it is based on the manipulation of the input
training set using subsampling with replacement, so each new training set has the same number
of examples but some of them may be missing respect from the original training set and others
may appear several times. Bagging receives its name from the procedure of “bootstrap aggregating”,
which consists in creating the replicates of the training set using subsampling with replacement.
This procedure is fully described in (Efron and Tibshirani, 1993).

For each training set, a classifier is generated, and all classifiers are combined in a single clas-
sification system, usually using a uniform voting scheme. Bagging is, in fact, the most simple way
to build a multiple classifier system, and, despite of its simplicity, it may achieve very good results
when is used with unstable base-level classifiers, such as decision trees, for example. For unstable we
mean that the learning algorithm used to build the classifier is very sensitive to small perturbations
in the training set.

According to this definition, our ensemble cannot be studied under the bagging framework,

because the training sets are not built using subsampling but depending of the output of the previous

classifier, and the voting scheme of our ensemble is clearly not uniform.
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3.5.1.2 Boosting

Freund and Schapire developed boosting as a new tool for creating ensembles of classifiers, see
(Freund, 1995; Quinlan, 1996a; Freund and Schapire, 1999) for boosting basics. Boosting refers
to a general method of producing a very accurate prediction classifier by combining less accurate
classifiers. The main idea is that each classifier which satisfies being a weak learner —that is, its
accuracy is only slightly better than chance— may be boosted when combined altogether with many
other weak learners.

Basically, boosting uses a set of weights for the training set, and then a classifier is built taking
into account this set. Initially, all weights are equal. The input vectors are classified and then all
vectors wrongly classified are boosted in order to have more weight, creating a new training set
(actually, creating a new set of weights). In the final voting scheme, each classifier is weighted
according to its performance. This process (generating a new set of weights, computing a new
combination scheme) is repeated until the boosting ensemble test error is sufficiently low enough
or it shows an asymptotic behavior. Surprisingly, boosting does not increase test error even for a
large number of classifiers, contradicting Occam’s razor. A good explanation of why boosting does
improve error generalization performance can be found in (Schapire et al., 1998).

Our method may be seen as a basic binary weighted boosting method. Initially, all vectors
in the training set D, are given the same weight. Then, all vectors that were classified (with a
misclassification error lower than the given threshold) are no longer considered, while the rest are
used in a second training process. A weight 0 is assigned to the former, and a weight 1 to the latter.
The main difference with boosting is the way partial decision trees are combined, though, as voting
is not weighted based upon classifier performance but order of appearance.

We propose two variations of our ensemble: sequential, which comes up from the definition of pro-
gressive classification trees, and parallel /sequential, which tries to solve the multiclass classification
problem and to improve classification accuracy, but increasing classification cost. These ensembles

will be described in the next section, Sect. 3.6, altogether with their advantages and drawbacks.

3.5.1.3 Voting progressive decision trees

Actually, we are not trying to combine classifiers using a voting scheme because our classifica-
tion system weights classifiers depending on its order of appearance, and not on its performance.
Furthermore, training sets are also created according to the output of the previous decision tree.
Nevertheless, progressive decision trees may be also studied under a voting approach if a valid voting
weights scheme is formulated. In Sect. 5.3.1 we present such a valid weight scheme, although it is
not really useful for practical purposes.

Both bagging and boosting reduce generalization error mainly due to the reduction in the variance
(see Sect. 3.8), and only when the learning algorithm is unstable (which is the case for decision trees).

As stated in (Bauer and Kohavi, 1999), although boosting is on average better than bagging, it is
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not uniformly better than bagging. Boosting tends to reduce bias while bagging tends to reduce
variance. A comparison of boosting, bagging and another method based on randomization can
be found in (Dietterich, 2000), and another method based also on randomization can be found in

(Ho, 1998). A recent paper on ensemble pruning may be found in (Prodromidis and Stolfo, 2001).

3.5.2 Stacking

Generalized stacking, described by Wolpert (1992), is based in the concatenation of several classifiers
in two levels. The basic idea is that several classifiers are trained using the original training set (it
does not matter how they are trained, but only the fact that several classifiers are available); they
form the set of base-level classifiers. Then, a meta-level classifier is used to determine how the
outputs of the base-level classifiers should be combined, trying to extract information about the
patterns present in the mistakes produced by the base-level classifiers.

Trees have been previously used in a stacking paradigm by Chan and Stolfo (1995), where several
classifiers were combined using decision trees following two strategies: arbiters and combiners. An
arbiter (together with an arbitration rule) decides a final classification outcome based upon the base
level predictions. In a combiner, the predictions of the learned base level classifiers on the training
set form the basis of the meta level learner training set. Trees become a good tool for stacking
because of their inherent hierarchical structure. A recent paper on arbiters and combiners may be
found in (Ortega, Koppel and Argamon, 2001).

Our ensemble may be described using a very simple (but forced) stacking framework as follows:
the first base-level classifier is trained with the whole training set. The second base-level classifier
is trained with all the vectors left unclassified by the first one, and so on, that is, each base-level
classifier is trained with the vectors left unclassified by the previous one. The meta-level classifier
does not need training at all (so it cannot be considered a true stacking ensemble): the output for an

input vector is the first output different than mixed in the ordered sequence of base-level classifiers.

3.5.3 Cascading

Cascading, which is fully described in (Gama and Brazdil, 2000), is also based in the concatenation
of several classifiers, but using a different approach. In this case, all useful information that can be
collected from the output of a given classifier is joined altogether with the input training set (that
is, adding new classification features) creating a new training set which can be used to train a new
classifier, and so on.

Cascading is completely different to any voting or stacking ensemble, which are multiexpert
systems. These use all collected information from the base-level classifiers in the meta-level classifier,
and then a final output is generated. On the other hand, there is not such a framework in cascading,
which is a multistage system: a classifier tries to classify the input vectors, computing additional

information which may be useful for the next classifier in the sequence. The final classifier uses all
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information that has been computed during the previous classification stages and then the final class

is generated. We will describe the details of this ensemble with more detail in Sect. 3.7.

It is easy to see that our ensemble is a particular case of cascading, as we share the same basic
idea: a classifier tries only to classify those vectors which seem easy to classify, and another classifier
will do the rest. The main differences are basically two: first, we do not delay the generation of the
class of an input vector until the last decision tree, but we allow any tree to classify an input vector
when it is confident enough. Second, no additional information is carried over from one stage to the

next.

3.6 Cascading progressive decision trees

In this section we describe two ways of generating each classifier taking part in a cascading ensemble.
In the sequential ensemble, one decision tree is built at each classification stage, while in the paral-
lel/sequential ensemble two or more trees are built. By the moment, we do not consider including
additional information. In Sect. 3.7 we will analyze progressive decision trees under the approach
described in (Gama and Brazdil, 2000).

3.6.1 Sequential ensemble

The simplest way to combine two progressive decision trees is shown in Fig. 13, where two trees

named T} and T are joined replacing each leaf of T} labeled as mixed by a copy of T5.

This is, of course, the most natural and intuitive way to see progressive decision trees. A first
tree tries to classify the input data set. All vectors left unclassified by the first tree are sent to the
second tree, and so on. The whole tree could be seen as a network or as a directed acyclic graph,
although it is easier to study it as a tree. In other words, a first tree generates a space partition and
then, all regions labeled as mixed are joined together and create a new input space. It is better to
say, though, that the input space is the same (actually R?) but the underlying probability of (X,Y")
has changed. Therefore, a new tree may be built for this new training set taking advantage of the

new properties of such training set.

Although partial decision trees may be small (as small as Ty and T were in the previous example,
for instance), the resulting tree can be really large. If the number of leaves labeled as mixed in T} is
myq, the resulting tree has |T1| — m; 4+ m1|T>| nodes with a total of |T1| —my + m1|T2| leaves. When
several trees are combined, this number may grow exponentially. Therefore, any tree inspection that

could reduce resulting tree size should be taken into account.
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Figure 13: Sequential ensemble of progressive decision trees. The resulting tree becomes a decision
graph.

3.6.2 Sequential ensemble problems

But resulting tree size is not the only problem we have to handle. Sequential ensembles may generate
sub-optimal trees when the first split of the second tree reproduces approximately one split of the
first tree. This is caused by a bad policy of joining mixed leaves, but it is easy to detect and to solve
when trees are combined. This problem does not affect classification performance, but it increases

classification cost.

Similar problems appear when the first tree is not correctly simplified, as shown in Fig. 14, where
a simple tree has been built as the first stage of a progressive classification system. If both internal
nodes 1 and 2 use the same classification feature 1, such a tree may be obviously further simplified

removing the first split. This may happen when a classification feature predominates more than the
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others and it has a bimodal distribution, inducing the two first best splits z; < h; and z; < hs.

This is a clear example of the repetition problem.

Figure 14: A tree that can be further simplified.

When the number of classes is high, it is usually impossible to create a small decision tree which
has at least a leaf labeled as class k for each k € {0,..., K — 1}. Of course, T must have at least
K leaves, which may cause T to be too deep for some classes, specially when classes are not equally

distributed in the training set.

3.6.3 Parallel/sequential ensemble

As stated previously, when the number of classes is high, it is difficult to create small progressive
decision trees that classify all classes. Instead of creating larger progressive decision trees which
could be too specific, it is better to take another approach more directly related to class clustering.

The classical approach is to build a decision tree for each pair of classes, trying to maximize
the differences between classes. This leads to (12( ) classifiers, which may be very expensive for large
K. Our approach is to create a small progressive decision tree for each class, that is, a tree that
only classifies elements of one class, trying to label as mixed all elements from the rest of classes.
Therefore, only K small progressive decision trees need to be built (for the first stage). Then, a
method to compute the assigned label combining the K outputs is needed. This is the basic procedure
for constructing a multiclass classifier using only basic two-class classifiers, as stated in Vapnik (1998,
p. 438). Several authors have recently proposed several methods for classifier combination (Woods,
Jr. and Bowyer, 1997; Kittler, Hatef, Duin and Matas, 1998; Ho, Hull and Srihari, 1994) which take
into account the problem of building classifiers when more than two classes are present. A paper
which unifies previous works related to this subject is (Allwein, Schapire and Singer, 2000).

Notice that we use the extra mixed class M in order to allow our classification system to do
partial classifications, simplifying also the combination scheme: after a vector has been classified by

the K classifiers and K labels are obtained, we label such vector as class j if all classifiers generated
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the mixed class M as output but the classifier j. If two or more classifiers generate a label other
than M, or when all classifiers generate the mixed class as output, then the vector is labeled as
mixed. Notice that this is a very restrictive labeling policy, and it could generate the mixed label
only if all decision tree regions overlap. It could be improved by using a weighted voting scheme
based on estimated class probabilities. The main advantage is that different d and e may be used
for each class.

Then, the set of progressive decision trees and the combiner may be seen as a single progressive

classification system, and therefore they may be used as a single progressive decision tree.

3.6.4 Parallel/sequential ensemble problems

When the number of classes is large, some classes usually represent only a small percentage of the
training set. In order to build a specific decision tree for such classes we need to descend deeply
to separate one class from the rest (unless a class is really a cluster and is easily separable, which
is unlikely). Furthermore, region decision for such a tree may be covered by other decision trees
associated to more populated classes, so the label of such tree will never be chosen as the output
label.

Classification cost is also an important issue when using this kind of ensemble. A decision tree
must be built for each class, and classification cost is also multiplied by the number of classes, as
the input vector must be classified by each tree.

Although this kind of ensemble has interesting properties, we do not use it in this thesis because it
increases classification cost and the number of parameters involved in. The combination of specialized
experts using complex schemes is an active research field nowadays (Kittler and Roli, 2000; Kittler
and Roli, 2001; Kittler and Roli, 2002).

3.7 Cascading generalization

As described in Sect. 3.1.2, each decision tree is trained using a training set which is formed by the
vectors not classified by the previous decision tree. This is the only information that we are carrying
over from one stage to the next. Nevertheless, when an input vector is classified as mixed it falls in
a leaf which describes a region of the input space: leaf probability, depth, misclassification error and
class probabilities are important information that might be used in the following decision tree. This
approach is used by Gama and Brazdil (2000), where class probabilities are carried over from one
classification system to the next as new information. This is known as cascading with additional
information.

Regarding progressive decision trees, in order to make a complete comparison we propose to

study three different types of cascading ensembles:
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Type A: No additional information is carried over from one decision tree to the next, and only
vectors classified as mixed form the new training set. This is the approach we have described
in this chapter, and it is shown in Fig. 15. Following from Eq. (3.2), the training set generated

at stage i + 1 (by a decision tree T;41) may be computed as:

D%m) — DSLZ;) @D(i+1)

it1 Nit1 *

DS:_) T; Ti(x)
(i+1)
o DniJr—1

Figure 15: Stage architecture for a type A progressive decision tree.

Type B: Additional information is carried over from one decision tree to the next, and all vectors

in the previous training set form the new training set:

DD = 4(DD, A (D))

w T

[

where f represents the transpose concatenation operator, and A**! represents the additional

information operator associated to tree T;, 1, as shown if Fig. 16. A"+l (z),z € Dgf) gives all

information related to the final decision taken about the label z is classified with. As stated in
(Ting and Witten, 1997), it is better to use class probabilities (which are continuous) rather
than class predictions (which are discrete). On the other hand, suppose D,, is a training set
containing n vectors of dimension d and D!, another set of n elements of dimension d'. Then,
#(Dy, D!) is a new training set containing n elements of dimension d + d'. As D!, does not

contain labels, these are carried over from D,,. Notice that in this case, njzx =n;=... =n.

Type C: Finally, if we combine the two types described above, as shown in Fig. 17, additional
information is carried over and only those vectors left unclassified by the previous classifier

form the new training set, as follows:

DD = ¢(D{) & DY, A (DY) & DY),

ny Nit1 ) i Nit1
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o (i+1)

Figure 16: Stage architecture for a type B progressive decision tree.
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A
(1)
ﬂ = = Dnm

Figure 17: Stage architecture for a type C progressive decision tree.

3.7.1 Additional information

Suppose an input vector z is being classified by a given decision tree T;. What information is
generated during this process? Is it useful for the next decision tree in a cascading ensemble? The

first question is easy to answer:

1. Until z reaches a leaf, it is classified according to each decision taken in a decision node. The
distance from x to the splitting hyperplane may be a good indicator of the confidence = has
been classified with. The path itself defines a sequence of partial classifications (each decision

node has been a leaf in a certain moment during the construction of the decision tree).

2. Once z has reached a leaf, and it is classified according to a labeling rule, several information
may be useful: the class assigned to z, the probability of z belonging to each class, leaf

probability, leaf depth, and the margin of the decision.

The second question does not have a simple answer. Adding more information does not ensure

improving classification performance, unless this information is really significant for the problem we
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are trying to solve. Furthermore, under a statistical framework, increasing dimensionality usually
requires an exponential increase of the available number of samples, which is not the case in a
cascading ensemble. This negative effect is known as curse of dimensionality, see (Duda et al., 2000,
pp. 169-170), for example. Increasing dimensionality has also a negative impact on both training
and classification costs, so this possibility should be used carefully.

Experiments that were previously done to the experiments described in Sect. 4.5 showed that
adding too much additional information caused a decrease in classification performance, or that such
information was never used for splitting. Other measures we could use as additional information are
leaf impurity and misclassification error, leaf depth, and the probability of falling in such leaf, but
they did not yield to a better performance in general. Therefore, we only use leaf class probabilities

{p(j|t)} and two measures related to the margin, ©; and ©,, defined as follows:

©1(p) = 2max{p(jlt)} — 1,

and
©2(p) = max{p(j|t)} — maxo{p(j[t)},

where max, return the second higher value in {p(j|t)}.

Notice that for K = 2 (actually, when the number of present classes in a leaf is two), both
measures agree. ©» measures how good a decision is with respect to the second option in a given
leaf, and it is always non-negative. ®; measures the same but with respect to the rest of the classes
present in a given leaf, and it may be negative. It is easy to see that ©; is the probability of z being
correctly classified minus the probability of z being misclassified, the definition of margin given in
(Schapire et al., 1998), as we will see in Sect. 3.8.2. We introduce the use of ©, because it gives
useful information about the rest of classes. Suppose K = 3, and p = {0.5,0.499,0.001}. In this
case, the choice is between the first two classes, ©1(p) = 0 and O5(p) = 0.001, showing that there is
almost a tie. If p = {0.5,0.25,0.25}, ©1(p) is zero again, but @y(p) = 0.25, showing that there is a
large margin in the decision.

The new attributes computed by the first tree express relations between the input variables,
which are impossible to find using only orthogonal decision trees. These new attributes may be seen

as complex relationships which may help to build more complex boundaries.

3.8 Empirical support for progressive decision trees

Our goal is to give empirical support for our ensemble: although experiments show that it is possible
to improve classification accuracy while reducing classification cost (see (Minguilléon et al., 1999),
for example), we want to study why this happens. Our intuition is that the use of small decision

trees captures the best splits reducing overfitting, while maintaining a good classification accuracy.



3.8. EMPIRICAL SUPPORT FOR PROGRESSIVE DECISION TREES 53

In fact, it is not easy to have a model or theory which allows us to establish relationships
between the different parameters involved, and decision trees need an important problem tuning
effort in order to obtain good results, as stated in (Murthy, 1997), where data specific preprocessing
plays an important role in improving classification performance. The usual way is to define a set of
measures over the classification system under a set of assumptions and study the influence of each

parameter separately over the proposed measure.

3.8.1 Empirical measures

We will use the same approach used by Gama and Brazdil (2000), where three measures are used
to determine whether a classifier ensemble may improve or not classification performance. These
measures are error correlation, Mahalanobis distance and bias-variance decomposition. We will
compare the three types of cascading ensembles described above using the later, which seems to be
the most effective tool for algorithm analysis. We will try also to find answers to the questions listed

in Sect. 3.4 using the information extracted from the bias-variance decomposition.

3.8.1.1 Error correlation

The basic idea of combining classifiers is that when a classifier makes a mistake, maybe many other
classifiers do not, so a simple voting system could perform better. Suppose we are combining only
two classifiers, g; and g». If both ¢g; and g» make the same mistakes, the fact of combining two
classifiers does not improve performance. Therefore, it would be interesting that an ensemble of
classifiers will have the diversity property, as defined in (Ali and Pazzani, 1996). The concept of
error correlation is a metric used to measure the degree of diversity in an ensemble.

Regarding progressive decision trees, error correlation could be defined using a similar approach:
we define error correlation between two progressive classification trees T; and T;11 as the probability
that T;41 makes the same mistake than 7T; would have made if the mixed class was not used.
Following similar notation than (Gama and Brazdil, 2000), we define the error correlation between

two consecutive decision trees T; and T;41 as:
Giiv1 = P{Tiy1(2z) = T;(2)|T; (x) = M A Ty(x) # f(2)} (3.3)

where T/(z) = M is the condition that describes the fact that T; decides not to classify z and,
therefore, it is classified as mixed by labeling rule defined in Eq. (3.1) and then it is wrongly
classified again by T;;; making the same mistake.

We decided to discard error correlation as an analytical tool because it does not give us informa-
tion about the real behavior of each ensemble, but only about how a decision tree is affected by the
decisions taken by the previous one. Nevertheless, error correlation is directly related to the first
two questions in Sect. 3.4, as the second part of Eq. (3.3) is directly related to €. Suppose K = 2,

and the confusion matrices for T; and T} are:
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confusion matrix for T; confusion matrix for Tj4

where ngio r denotes the number of elements of class 0 which are classified as 0 by T; but, because
of its insufficient confidence, are finally classified as mixed, and so. Notice that several relationships

may be established between some entities in both confusion matrices, for instance:

o ! o Ti Ti Ti Ti _ Ti
n=ng+ny =Ngo T T o T = M

that is, the second tree is trained using those vectors in the original training set not classified by
the first tree. Notice that, according to Eq. (3.2), n should be denoted as n;— and n' as n;. Error

correlation may be computed as follows:

¢i’i+1 = P{Tl+1(.’L‘) = ].|Tll(l‘) =MA TZ(Z‘) =1A f(l‘) = 0} +
P{Ty11 () = O|T!(x) = M ATi(z) = 0A f(z) = 1}
”51 M(”olfr1 + ”ofﬁv[) ”To M(nll(;rl + ”1??\/1)

= T; T;
n(no,o,M + ”0,1,M) n(”1,0,M + ”1,1,M)

If € is too small, T; will be a small tree, and most of the input vectors will be classified as mixed.
Then, error correlation only measures T; + 1 performance, not the real ensemble properties. Error
correlation is a useful measure when more than two classifiers are involved in a voting scheme, as we
expect, such scheme to weight errors in order to correct the mistakes made by one classifier by the
average of the rest. When only two classifiers are sequentially combined, error correlation becomes
almost meaningless, so we decided to discard it as an analytical tool.

Analogously, we could define a new measure involving those vectors not classified by T; that are

also not classified by T;11. We call it mized class correlation and it is defined as follows:
bii1 = P{Tiy1(z) = M|T](z) = M} (3.4)

Nevertheless, as only those vectors not classified by T; form the training set for T;1, this measure
only represents the percentage of input vectors not classified by T}, 1, and gives no information about
the ensemble in itself. This measure would have sense in the second kind of cascading ensemble
described in Sect. 3.7, where all input vectors are carried over from one classifier to the next with

additional information.

3.8.1.2 Mahalanobis distance

Mahalanobis distance (Jobson, 1992) is a powerful tool that tries to explain mathematically the

shape and distance between clusters in a multidimensional space. Classification becomes a clustering
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problem. Each class is supposed to be a single cluster (which may be not true, though), so we can
define a centroid for each class. Two measures are defined: the intra-class distance, and the inter-
class distance. The first distance measures how close to the centroid of a class the elements of such
class are, while the second distance measures the distance between class centroids.

Mahalanobis distance is computed as follows: let T be the mean vector for all elements of class
k in the training set D,,, ny the number of elements of class k (so Efio ng, =n,k; € {0,...,K—1}),
and Sj the covariance matrix for class k. Then, the intra-class distance from a vector x of class k

to its class centroid is computed as:
(x — Ek)TSk_I(CU — Tg),
and the inter-class distance between classes k1 and ks is computed as:
_ — \To—-1 [— _
(xkl - ka) Skl,kg (wkl - CUk2),

where S, , is the pooled covariance matrix of classes k; and kp, which is computed as:

Sk g = Skl (nk1 — 1) + SkQ(nk2 - 1)
1,k2 Ty + Ty — 2 :

Under a classification framework, it is interesting to have compact classes (that is, with small
intra-class distance) which are well separated one from each other (that is, with large inter-class
distance). The basic idea is again to use a first classifier to separate the easiest classes and then to
refine such classification using a sequence of specialized classifiers.

When additional information is added to an input vector, increasing its dimensionality, both the
class centroid and covariance matrix also increase (in the sense of that columns and rows are added).
This obviously changes the values obtained for both the intra-class and inter-class distances. Even if
we do not use additional features, as Mahalanobis distance is computed using input data statistics,
it is changed when we alter the underlying probability distribution because of the removal of those
vectors already classified at a given stage.

Nevertheless, it is difficult to interpret variations using the Mahalanobis distance, specially when
the number of classes is high. When the number of classes is 2, it is easy to show that the inter-class
distance grows, but for K classes, a total of (12( ) should be computed and then plotted. Furthermore,
the assumption that classes form clusters is completely unreliable, so we discarded the use of the

Mahalanobis distance as an analytical tool.

3.8.1.3 Bias-Variance decomposition

The bias-variance decomposition is probably the most effective tool for an empirical analysis of the
performance of a classifier, as it measures how good a learning algorithm is and how much affected
by small perturbations in the training set is. As stated in (Domingos, 2000), it is also related to

error generalization and margin measures defined in (Schapire et al., 1998).
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We will follow the bias-variance decomposition described by Domingos (2000)3, which unifies
previous works by Dietterich and Kong (1995), Kohavi and Wolpert (1996), Breiman (1996b) and
Friedman (1997).

The basic idea consists of decomposing the expected error into three components: intrinsic noise,
bias and variance. As stated in (Kohavi and Wolpert, 1996), the intrinsic noise is a lower bound
on the expected cost of any learning algorithm, and it is independent from the learning algorithm.
Usually, the intrinsic noise is assumed to be zero. As it is estimated using bootstrapping, it would
be zero as all samples in the training set are unique (that is, there are no two equal samples in the
training set with different labels). This assumption it is not really important as we want to study
the decomposition in itself, and not the quantities.

Bias is defined as the loss incurred by the main prediction relative to the optimal prediction,
and it is denoted by B. Variance is the average loss incurred by predictions relative to the main
prediction, and it is denoted by V. In other words, the bias measures the accuracy or quality of
the prediction (high bias implies a poor prediction), while the variance measures the precision or
specificity of the prediction (a high variance implies a weak prediction). There is a trade-off between
bias and variance: classifiers which tend to reduce bias have a large variance and vice versa. For
classification purposes, a low variance is usually more important than a low bias.

Regarding decision trees, it is well known that they are unstable classifiers, as small variations in
the training set may cause large variations in the final prediction. This fact shows that large decision
trees have a large variance but bias is kept low. Our experiments in Sect. 4.4 also show this fact. As
stated in (Gama and Brazdil, 2000), it is better to combine classifiers with different behavior from
a bias-variance decomposition analysis, using algorithms with low variance at the first stages and

algorithms with low bias at the final stages. These facts are consistent with our ensemble:

e Small decision trees created using an impurity criterion cannot describe all the complexity
of the problem being solved, but only a first approach. Their bias is high, but they are less

sensitive to training set changes, showing a low variance.

e Large decision trees can generate very complex boundaries, reducing bias, but variance grows

because the final splits are very sensitive to small changes in the training set.

Both facts may be studied under a margin distribution approach: small trees which partition the
input space in large regions yield a large margin, while large trees with too many leaves generate
partitions with too many small regions which have a poor margin distribution.

This gives us information about the first and the fourth questions defined in Sect. 3.4, as tree
sizes and number of trees are directly related. Our experiments show that only two or three trees
are needed to create a good progressive decision tree for most data sets. Increasing the number

of trees reduces comprehensibility and it makes the parameter tuning problem (specially € and d)

3There is available software at http://www.cs.washington.edu/homes/pedrod/bvd.c
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more difficult. As stated in (Gama and Brazdil, 2000), different algorithms must be combined (or
algorithms with different bias-variance behavior). If we use only decision trees, we need to create
decision trees with such bias-variance different behavior, which is not always possible depending on
data size and number of classes, as only two parameters (in our experiments) are allowed to change,

e and d. These fact reduces our options to only two or three decision trees.

Our goal is to use the bias-variance decomposition to measure how progressive decision trees
deal with the classification problem. We expect our ensemble to outperform classical decision trees
and we are interested in studying where this better performance is achieved, if reducing bias and/or
variance. We are also interested in comparing the three kinds of cascading ensembles (defined in
Sect. 3.7) under this framework, in order to study whether classification cost may be reduced or

not.

3.8.2 Margin distribution

A classifier ¢ may be studied as a function which maps an input vector z € R? to a label y €
{0,..., K — 1}. Suppose that K = 2 and that we use {—1,+1} to identify the two possible labels
instead. Now, the output generated by the classifier may be described as y = sgn(g(x)), where g(x)
is now a function which maps = to R. Then, the magnitude |g(z)| may be seen as a measure of
confidence in the prediction, and it is known as the margin of z, as defined in (Schapire et al., 1998).
In fact, the margin is defined as yg(z), so it is negative when the classifier makes a mistake and
positive when it is right.

Intuitively, the largest the average margin, the better the classification accuracy. Voting sys-
tems such as bagging and boosting benefit from a better margin distribution. For other ensemble
methods such as stacking or cascading there are no previous works measuring margin distribution,
though. The reason is that margin distribution is usually measured for ensembles that make linear
combinations of several functions such as the voting schemes, and all the analytical tools are defined
using the concept of the convex hull defined by such linear combination.

Margin is a powerful analysis tool as it relates each classifier performance to global generalization
error and it explains intuitively why combining slightly better classifiers performs better. The
problem is that margin is not related to decision trees, as these are built using criteria related to
splitting data sets, not maximizing the distance between the elements separated by a hyperplane.
Furthermore, margin is also related to voting schemes where classifier results are averaged, which is
not our case, as progressive decision trees fall into the cascading category of ensembles. Therefore,
we decided to discard margin as a measure for analyzing decision trees.

As we will see in Chapter 5, all approaches trying to incorporate margin analysis into decision
trees do not produce good error generalization bounds, although they allow us to study decision

trees under a theoretical framework.
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3.9 Summary

We finish this chapter with a compilation of all the knowledge we have acquired when defining
progressive decision trees, and their advantages and drawbacks with respect to classical decision
trees.

Progressive decision trees deal with the replication, repetition and fragmentation problems fol-
lowing the same approach: joining regions which had been split previously, giving to the classical
decision tree growing algorithm new chances to find better splits. Fragmentation is combated by
joining, so new large regions are created. This also minimizes both the repetition and replication
problems, as complete subtrees are joined together, so there is no need to represent the same sub-
tree twice. Decision trees become decision graphs which are richer structures for representing more
complex boundaries.

Now we can also give some partial answers to the questions defined in Sect. 3.4, using all the
knowledge we have acquired through this chapter, while other questions will be answered using
the results of the experiments described in the next one. The basic structure of our ensemble is
a special case of cascading, so we have generalized the cascading paradigm in order to explain the
three types of progressive decision trees defined in Sect. 3.7. Within this paradigm, the parameters

(or questions) involved with are:

1. How deep a single tree has to be? The bias-variance decomposition helps us to answer this
question: as stated in (Gama and Brazdil, 2000), in a cascading ensemble is interesting to
combine classification systems with different bias-variance decomposition behavior, so simple
decision trees should be used at the first stages and complex decision trees at the last ones.
This is coherent with the intuitive idea behind progressive decision trees: only the first splits

are necessary (that is, small decision trees), in order to avoid overfitting.

2. How to set €? It is harder to find a question for this answer than for the other ones. The
value of € should not be too large (at least when compared to ﬁn) or the first decision tree
would be almost a classical decision tree. On the other hand, if € is too small, the first decision
tree may be also too small, even a trivial decision tree (a single leaf labeled as mixed). In
the following chapter we will try to find a better answer for this question using an exhaustive

empirical evaluation of decision trees varying this parameter.

3. Is it pruning necessary? When d is small, pruning is not necessary (because nothing is pruned
back). Nevertheless, pruning small decision trees is not a problem in a training cost sense,
so we do pruning even for small decision trees. On the other hand, for large trees pruning is
the best method to obtain trees with a right size, avoiding overfitting without compromising

performance.

4. How many trees are needed? Usually, the bigger the training set is, the larger the number
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of small decision trees can be. But, as we always use the same learning algorithm (decision
trees), it is difficult to create different (in a bias-variance decomposition sense) consecutive
decision trees, so usually only two or three decision trees are needed. Furthermore, at each
stage the problem of building a decision tree becomes harder and harder. We will try to give a
better answer in the following chapter by varying the number of decision trees in the ensemble.
Nevertheless, as only different classifiers should be combined, and it is difficult to create very

different classifiers using small decision trees, the number of trees will be probably small.

5. Which leaves must be joined? In order to avoid inefficient ensembles, only connected leaves (in
a region sense) should be joined. This may be efficiently done for small trees. Nevertheless, if
we are only interested in studying generalization error performance, this is not a key issue so

it can be ignored.

In the following chapter we will define a set of experiments to determine some of the parameters
related to progressive decision trees. Finally, in Chapter 5 we will try to give some theoretical
support to all the intuition behind progressive decision trees using previous results for combinations

of classifiers.
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Chapter 4

Experimental results

Pratique: Supérieure a la théorie

Gustave Flaubert, Le Dictionnaire des Idées Regues

In this chapter, we present the results obtained for several kinds of decision trees and cascading
ensembles using a standard database of data sets commonly accepted as a standard by the machine
learning community. We also present in this chapter the results obtained with real data sets that
have been previously used in other projects: a document layout recognition system, remote sensing
of hyperspectral images, and a brain tumor classification system. A recent paper on web mining can
be found in (Mor and Minguillén, submitted).

This chapter is the main core of this thesis, as we provide empirical support for our ensemble
comparing the three kinds of progressive decision trees defined in Sect. 3.7, using a parameter-based
approach: each parameter is studied independently, trying to extract any useful information for
constructing progressive decision trees. As we use classical decision trees as base-level classifiers, we
also study the more relevant parameters in the training process of such classifiers. To do so, we use
the empirical measures defined in Sect. 3.8 as basic tools for comparing classifiers.

Our goal is to study cascading ensemble performance using the bias-variance decomposition
(Domingos, 2000) as the basic tool for determining when cascading improves generalization error
and why. A paper containing the most important contributions of this chapter may be found in

(Minguillon and Pujol, submitted).

4.1 Data sets used for experiments

4.1.1 Document layout recognition

The first time we used progressive decision trees it was in a project related to document layout recog-

nition systems (see (Minguillon et al., 1999)). Our goal was to build a simple but fast classification
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system that could be used as a first stage of a document processing and storage package. Never-
theless, the meaning of the word “progressive” in such system is slightly different, as a hierarchical
structure was built in order to reduce classification cost taking advantage of classification features
redundancy. The main idea is that image is segmented in large blocks, and then a first decision tree
tries to classify each block. If a block cannot be correctly classified (under an accuracy constraint)
in this first stage, such block of size N x N is subdivided in four sub-blocks of size N/2 x N/2 and
the process is repeated recursively for each sub-block. The maximum and minimum block size were
set to N = 64 and N = 8 respectively, the JPEG standard (Wallace, 1991) block size.

The data set used in this paper was donated by Hewlett-Packard, and it was composed by 24
images of 1275 x 1755 pixels (8.5 x 11.7 inches, scanned at 150dpi), which were labeled at 64 x 64,
32 x 32, 16 x 16 and 8 x 8 block size resolutions, doing block padding when necessary. Due to the
difficulty of the labeling process, we suspect there is a small percentage of mislabeled blocks in the
smaller block sizes, although this percentage is probably below 5%. A total of 16 images were used
in the training set and the other 8 images were used for testing purposes.

A progressive decision tree was built using four small trees, one tree for each block size resolution.
Tab. 3 compares the size of the four small decision trees with a large decision tree created using the

target block size (8 x 8).

Block size ‘ |7 ‘ T ‘ R d
Progressive classification scheme
64 x 64 11 6 | 2.76696 | 4
32 x 32 27 14 | 4.16826 | 6
16 x 16 21 11 | 3.71954 | 6
8 x 8 35 18 | 4.73452 | 8
Non-progressive classification scheme
8x8 | 1441 | 721 | 8.55861 | 38

Table 3: Tree sizes for the document layout recognition system.

Notice that d (actually limited by and also the maximum depth allowed during training) grows
for smaller block sizes. The reason why we need deeper decision trees at each stage is that, firstly, a
increasing number of blocks is present in the training set used at each stage, and secondly, at each
stage the classification problem becomes more complex as the easiest samples have been already
processed by the previous stage.

The last decision tree increases misclassification error although the total error remains below the
one-stage decision tree, as shown in Tab. 4. This is probably caused by two facts: first, most errors
during the labeling process were done at the 8 x 8 block size, and second, such block size is too small

to differentiate between the different classes (even for a human).
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Block | Processed / total Classified Classified
size blocks blocks (stage) | blocks (total) | L.,
Progressive classification scheme
64 x 64 3360 / 3360 41.4% 41.4% 0.089
32 x 32 7856 / 13440 33.0% 60.1% 0.047
16 x 16 21052 / 53760 66.9% 86.8% 0.042
8 x8 27892 / 215040 100.0% 100.0% 0.065
Non-progressive classification scheme
8x8 | 211200 / 211200 100.0% | 100.0% | 0.078

Table 4: Classifier performance for the document layout recognition system.

Nevertheless, the most remarkable fact is that only 60160 blocks need to be classified by the
progressive classification scheme, while the one-stage decision tree needs to classify 211200 blocks,
so the classification cost is reduced. Furthermore, the multi-stage classification system generates
larger homogeneous areas which are easier to interpret in a document layout recognition system:.

This first experiment shows that it is possible to exploit image redundancy at different block

sizes, improving performance and reducing classification cost using small progressive decision trees.

4.1.2 Hyperspectral imaging

For several reasons, hyperspectral imaging might be considered one of the most important appli-
cations of pattern recognition nowadays. Ecology, environmental studies, precision farming, and
even military applications take advantage of the information present in all the bands captured by
a hyperspectral sensor: each kind of material has a typical spectral signature that may be used to
identify it. The problem is that this signatures have a large dimensionality (from a few bands up to
hundreds of bands), and they are affected by the distortion caused by the atmosphere, so costly cor-
rections are needed. Large dimensionality is usually faced using a few parts of the complete spectral
signature or doing a dimensionality reduction through principal component analysis (Jobson, 1992)
or independent component analysis (Hyvirinen, Karhunen and Oja, 2001), for example.

We also used progressive decision trees for hyperspectral imaging classification, see (Minguillén,
Pujol, Serra and Ortufio, 2000; Minguillon, Pujol, Serra, Ortuno and Guitart, 2000). Although
the main goal of the original paper was to establish a relationship between lossy compression and
classification accuracy, a set of decision trees was also constructed in order to compare the influence
of lossy compression on both kinds of decision trees.

In this experiment, a large labeled data set is available from CREAF,' which was first described

in (Baulies and Pons, 1995). Usually, hyperspectral images lack of ground truth data, which is not

LCentre de Recerca Ecologica i Aplicacions Forestals, Universitat Autonoma de Barcelona.
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the case for this data set. Nevertheless, this data set has been labeled using other criteria than
exact the representation of terrain (such as sociological and terrain use, for example), so labels
do not exactly match reality and, therefore, it is impossible to find very accurate decision trees.
Our estimate is that around a five or ten percent of labels is misclassified. In our paper we used
progressive decision trees not only to build a classification system but also to detect those areas
most likely to be mislabeled.

The original hyperspectral image is 710 pixels wide by 4558 pixels long, although there are no
labels for the whole image, and some parts of the image are missing due to ortocorrection. For
example, if a complete (we have both data and labels) 400 x 2400 image is selected, 960000 labeled
pixels are available for training (864000) and testing purposes (96000). Using Eq. (2.5) and assuming

an error of € = 0.01,
P{|Lpm — Ln| > 0.01| D,,} < 2e 296000001 — g 17436 % 109,

which is, in a practical sense, zero. There is no need to use more labeled pixels for testing purposes,
as Eq. (2.5) ensures we have enough. Notice that, when compared to the data sets described in
Sect. 4.1.4, this data set is huge. Algorithms such as the nearest neighbor classifier cannot be used
due to excessive computational costs.

In (Minguillén, Pujol, Serra and Ortuio, 2000) we proceeded as follows: first we built a decision
tree for such data set (T1) , and then we re-labeled it using the new labeling rule defined in Eq. (3.1),
trying to obtain a good compromise between the percentage of classified pixels and classification
performance (7). Our goal was to identify the most likely pixels to be mislabeled in the training
set. Tab. 5 shows the properties of both trees (Pr is the percentage of input vectors processed by
tree T'). Notice that both trees are very large, almost ten questions need to be answered before a

class is assigned to an input vector.

tree | |7 R Pr 1—Lym
T, | 836 | 9.82891 1.0 0.837352
T, | 650 | 9.60482 | 0.722118 | 0.907975

Table 5: Decision trees built for the hyperspectral imaging experiment.

Then we proceeded to build a progressive decision tree using only two stages, as shown in Tab.
6. Our goal was to obtain a tree similar to 75, but much smaller, while maintaining classification
performance.

Both trees (T» and T3) were then compared using several compression algorithms and both
classification percentage and accuracy were measured. As expected, T3 performed much better than
T5, basically due to its small size. See (Minguillon, Pujol, Serra and Ortufio, 2000) for experiment

details and (Minguillén, Pujol, Serra, Ortunio and Guitart, 2000) for other similar experiments.
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tree | |T| R Pr 1—Lym
Tsa | 9 | 3.01563 | 0.523329 | 0.943835
Tsp | 8 | 2.13816 | 0.383473 | 0.800825
Ts | 44 | 4.83963 | 0.70612 | 0.906444

Table 6: Progressive decision trees built for the hyperspectral imaging experiment.

These experiments are part of a largest project which is still on development. Our goal is to
build a system capable of compressing hyperspectral images maintaining a reasonable classification
accuracy. More information can be found at http://ccd-hyper.uab.es, a site devoted to projects

involving hyperspectral imaging.

4.1.3 Brain tumor classification

Another remarkable project where we have used small decision trees combined with other classifiers
in a cascading ensemble is in the INTERPRET project, which is devoted to the classification of
brain tumors using in vivo magnetic resonance spectra. A brief description of the INTERPRET
project and preliminary results may be found in (Tate et al., 2002).

In (Minguillén, Tate, Aras and Griffiths, 2002) a multi-stage classification system which uses a
simple combination of voting and cascading is described. Each stage tries to reproduce the path
clinicians follow to determine the class of a tumor sample: samples are first classified as tumor or
normal. Tumor samples are then classified as benign or malignant. Each one of these two classes
is refined trying to identify tumor degree or grade. Finally, each grade is split trying to identify
tumor family. This scheme partially reproduces the World Health Organization tumor classification
structure, which helps clinicians to feel confident with the classification system.

Each stage is trained separately, using the best classification features which are selected using a
very simple algorithm based on variable importance determined by a combination of classical corre-
lation analysis and splitting discrimination power. As every classifier uses its own set of classification
features, different information may be extracted and then combined into a more robust classification
system.

At each stage, three different classifiers are built: a small decision tree, a LDA classifier and a
k-NN classifier. The LDA classifier is the first stage of a cascading ensemble with the decision tree,
which uses all the additional information computed by the LDA algorithm (pseudo-class probability).
Then the outcome of the decision tree and the k-NN classifier are combined using a very simple voting
scheme: if both labels agree, generate such label as the outcome of the stage, or a special mixed
label otherwise. Fig. 18 shows the architecture of each classification stage.

Fig. 19 shows a simplified version of the World Health Organization (WHO) tree structure which
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Figure 18: Cascading and voting architecture for each classification stage.

is commonly used by clinicians to diagnose brain tumor category and class. See (Minguillon, Tate,
Griffiths, Majos, Pujol and Arus, 2002) for details. We have reproduced this structure using different
training sets at each stage following the stage architecture shown in Fig. 18, as previously described.
Classification accuracy for each category class is also shown. Notice that classification performance
is overall good, although there are several tumor types which are very difficult to classify.

The use of the mixed class allows clinicians to discard those samples which may be more difficult
to classify, maybe because they have been acquired using a bad configuration of the acquisition
protocol parameters.

This project is also on development yet. Our goal is to build a decision support system for tumor
diagnosis that clinicians might use confidently. More information about this project can be found
at http://carbon.uab.es/INTERPRET.

4.1.4 UCI standard data sets

In this thesis we have used several data sets that form a standard database which is used by the
machine learning scientific community (Blake and Merz, 1998), known as the UCI Machine Learning
database. An extension of the this database is under development, and it is available at (Bay, 1999).
Table 7 shows the selected data sets, the number of instances, the number of classification features
and the number of classes, once they have been preprocessed. The baseline error (achievable with
the simplest classifier which always labels any input vector with the label of the most populated
class) is also shown. A brief description of each of these data sets may be found at the end of this
thesis, in Appendix A.

All of these data sets have been selected from a larger list which is available at (Blake and
Merz, 1998), because they do not present instances with missing values, and all attributes are
numerical or binary. The number of instances is in the form n/m, where n and m are the number of
samples used for the training set and corpus set respectively, trying to respect the proportions given

in the original data sets, if possible, or using the rule (2/3,1/3) as described in Sect. 2.7 otherwise.
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Figure 19: WHO tree and classification accuracy for each tumor family: Non tumors, Tumors,
Benign, Malignant, Low Grade, Medium Grade, High Grade, Primary and Secondary.

The exception is the data set named waveform because is computer generated and, therefore, any
combination of n/m samples is available (see Appendix A for more information about this data set).
The number of features is in the form d (d*) where d and dx are the original and real (that is, used)
number of classification features. The same scheme is also used for the number of classes. Discarded
classification features are references, identification numbers, and so. Discarded classes were those
not present in the training set or small subclasses which were grouped in a large class (the Irs data

set).

Although other databases are also available, such as the ELENA database (Avilés-Cruz, Guérin-
Dugué, Voz and Cappel, 1995), for example, we focused in the UCI database because it is the most
widely used database across the literature, and most of its data sets are not synthetic but they come
from real problems. In fact, small databases such as the ELENA database are becoming part of the
UCI database.



68

CHAPTER 4. EXPERIMENTAL RESULTS

data set number of | number of | number of | baseline
instances features classes error
covtype (CO) 11340 / 3780 54 7 0.85714
glass (GL) 142 / 72 10 (9) 7 (6) 0.64486
ionosphere (10) 200 / 151 34 2 0.35897
iris (IR) 102 / 48 4 3 0.66667
letter (LE) 16000 / 4000 16 26 0.95935
liver (LI) 230 / 115 6 2 0.42029
Irs (LR) 354 / 177 102 (93) 100 (10) | 0.48588
optdigits (OP) 3823 / 1797 64 10 0.89822
page (PA) 3648 / 1825 10 5 0.10232
pendigits (PE) 7494 / 3498 16 10 0.89592
pima (PI) 576 / 192 8 2 0.34896
sat (SA) 4435 / 2000 36 7 (6) 0.76177
segmentation (SE) | 210 / 2100 19 7 0.85714
sonar (SO) 104 / 104 60 2 0.46635
thyroid (TH) 144 /71 5 3 0.30233
vehicle (VE) 564 / 282 18 4 0.74232
vowel (VO) 528 / 462 12 (11) 11 0.90909
waveform (WA) n/m 21 3 0.66667
wdbc (WD) 380 / 189 30 2 0.37258
wine (WI) 120 / 58 13 3 0.60112

Table 7: Standard UCI data sets for experiments.

4.2 Splitting criteria

In this experiment we show the relative importance of the splitting criterion used for building decision
trees. We test several impurity based splitting criteria and the twoing criterion, which were described
in Sect. 2.4.3. Before we try these splitting criteria on the UCI standard data sets, we will try to

study their behavior in a simple synthetic data set which would allow us to understand them better.

4.2.1 Synthetic data sets

Fig. 20 shows the synthetic data set created for this experiment. There are two classes in a two
dimensional space, 10000 elements for each class. The elements of the first class are in a circle of
radius 1 around the origin, while the elements of the second class are in a square of side 2 centered
in (1,1). The total area is m +4 and the common area is 7 /4, so the expected misclassification error

should be around 0.11, approximately. Nevertheless, we are more interested in the splits computed
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by each splitting criterion than in the classification accuracy itself.

T T
Class0 +
2| Class1 x

15
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Figure 20: Synthetic data set used for splitting criteria evaluation.

We grow a decision tree with a maximum depth d = 4, because we are only interested in the
first splits. It is easy to see that the common area (actually the 1 x 1 corner square containing it)
can be separated using four splits, although only three are needed to separate the pure areas from
another area containing the common area. In this experiment we want to study the form of the
splits created by each of the splitting criteria. We number each node in the tree using a positional
order: root is node number 1, and the offspring of node i are nodes 2i and 2i + 1.

Tab. 8 shows the computed splits for each splitting criterion. If node ¢ has “— as split, it means
that it is not split (it is a pure node) and, therefore, nodes 2i and 2i + 1 would also have “—’ as
split, respectively.

Notice that Bayes, Gini, R-norm (R = 2) and Twoing criteria generate the same tree with the
same splits. Entropy generates a similar tree but the small change in the second split makes it a
more balanced tree. But the most remarkable fact is that the tree generated by R-norm (R = 1/2)
is the closest to the tree that a human would have generated: the split number 1 (which can be
considered z; < 1) removes (in the sense of correct classification) the rightmost half of the square,
the split number 2 (which can be considered z» < 0) removes the lower part of the circle, while the

split number 5 removes the upper left corner of the square. A further split would separate the left
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i Bayes Entropy Gini R-norm R-norm Twoing
(1/2) (2)

2| z <095 1 <0.99 1 <095 |2, <0.001] =z <0.95 r1 <0.95
3|21 <-0.001|2z; <-0.001]| 2z <-0.001 — 1 < —=0.001 | z; < —0.001
4 _ _ _ _ _ _

5| z2 < —0.006 — o < —0.006 xy <1 xy < —0.006 | z2 < —0.006
6 _ _ _ _ _ _

7 _ _ _ _ _ _

Table 8: Splits generated by each splitting criterion.

upper part of the circle from its right upper part, the common area. As stated in Sect. 2.4.3, the
impurity criteria more distant to the Bayes error criterion are precisely the Entropy and the R-norm
(R = 1/2) criteria.

10 (0) 11 (1)

4(0) 5(1) 6(0) 7(1) 10 (0) 11 (1)

Bayes, etc. Entropy R-norm (R =1/2)

Figure 21: Trees generated by different splitting criteria for the synthetic data set. Labels are shown
in parenthesis.

Computed trees are shown in Fig. 21, where the class assigned to a leaf is shown in parenthesis.
Notice that the first and the second trees share the same structure (except a further split), while
the third tree is slightly different. The main difference is that the latter tries to surround the mixed
area instead of splitting it optimally: this is interesting for our purposes as we want to isolate mixed
areas in order to perform a later classification. Furthermore, as we will see in the following section,

the R-norm splitting criterion using (R = 1/2) achieves the best results. A theoretical study of
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the splitting ability for the Gini, Entropy and R-norm (R = 1/2) splitting criteria may be found in

(Kearns and Mansour, 1999), although the R-norm splitting criteria is not mentioned there.

4.2.2 UCI standard data sets

For each data set, 10 independent experiments are carried out using a combination of pruning and
3-fold cross validation (so a total of 30 runs were made of each classifier on each data set). We
follow the (2/3,1/3) rule of thumb as stated in Sect. 2.7, regardless the original size of training and
corpus sets as defined in Tab. 7. A total of 3000 samples (1000 for each class) were generated for the
waveform data set. For each experiment we measure average rate R (also called dynamic complexity
in (Auer et al., 1995)), maximum depth d (another tree complexity measure) and misclassification
error L. In order to make honest comparisons, we also compute the standard deviation o; of the
average misclassification error. We also include the results of a k-nearest neighbor classifier (k-NN)
using the same 3-fold cross validation scheme.

Two remarkable facts can be extracted from this experiment. First, there is not a clear winner
in terms of classification accuracy. Small training set size is also an important factor that must
be taken into account. Accuracy variability is too high in order to choose a splitting criterion,
although R-norm using R = 1/2 yields the best classification accuracy in ten out of twenty data
sets. Furthermore, both R-norm (R = 1/2) and Entropy criteria (the two splitting criteria more
distant to the Bayes error) yield the best results in fourteen out of twenty data sets. More precisely,
if we compute a test of similarity between the best and the second best splitting criterion for each
data set, using a significance level of p = 0.05 the null hypothesis (splitting criteria perform similarly)
cannot be rejected but for the optdigits and pendigits data sets.

And second, there is a clear loser, namely the Bayes error or misclassification error criterion,
which never achieves the best accuracy for any data set. It is also remarkable that the Bayes error
is not only the splitting criterion which yields the worse classification accuracy, but it also produces
the biggest trees in average. On the other hand, the Twoing criterion only is chosen once (for the
pima data set) although the Gini criterion yields the same classification accuracy with slightly bigger
trees.

Nevertheless, if we rank each splitting criterion according to its performance from 1 (the best)
to 6 (the worst) and we compute the total rank, the best is entropy (47 points), followed by R-norm
(R =1/2) (53 points), Gini and Twoing tie in the third position (62 points), then R-norm (R = 2)
(78 points) and finally Bayes error (108 points).

These results are coherent with Breiman et al. (Breiman et al., 1984) conclusions, where it is
stated that the Bayes risk is not a good splitting criterion except for the first splits. Our conclusion
is that the splitting criteria may not be critical for the general case, but it may be critical for a given
data set in terms of relative accuracy. It seems also plausible to discard both the Bayes error and

the Twoing criteria (which is surprising for the later).
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data set

criterion cO GL 10 IR LE
R | 19.4523 | 4.96479 | 2.81581 | 1.92033 | 14.0046
Bayes error d 39.3 7.7 3.93333 | 2.56667 | 34.5333
L | 023778 | 0.29061 | 0.09031 | 0.056 | 0.16486
o; | 0.00695 | 0.04692 | 0.02159 | 0.02703 | 0.00724
R | 10.2542 | 4.54812 | 2.62422 1.892 10.1426

Entropy d | 21.7333 7.2 4.0 2.9 18.5
L | 0.21211 | 0.30704 | 0.08889 | 0.048 | 0.13514
o; | 0.00581 | 0.05325 | 0.02202 | 0.01904 | 0.00479
R | 10.7638 | 4.40469 | 3.14729 1.875 12.3958
Gini d 21.5 6.9 4.26667 | 2.86667 | 28.0333
L | 0.21415 | 0.28920 | 0.08775 | 0.048 | 0.14137
o; | 0.00474 | 0.05101 | 0.02397 | 0.01904 | 0.00652
R | 9.94822 | 4.84178 | 2.4396 1.899 10.0297
R-norm (1/2) | d 24.5 7.93333 4.0 3.13333 | 18.9667
L | 0.21467 | 0.31315 | 0.09544 | 0.04733 | 0.13394
o; | 0.00527 | 0.05316 | 0.02593 | 0.01965 | 0.00420
R | 10.168 | 4.5561 | 3.15356 1.859 11.8516
R-norm (2) | d | 18.7333 | 6.86667 | 4.16667 | 2.83333 | 24.4333
L | 021929 | 0.29108 | 0.08746 | 0.04933 | 0.14353
o; | 0.00585 | 0.04648 | 0.02353 | 0.01843 | 0.00561
R | 10.7966 | 4.2176 | 3.15812 1.901 10.6409
Twoing d | 21.1333 | 6.86667 | 4.26667 | 2.96667 | 20.2333
L | 021343 | 0.29014 | 0.08775 | 0.048 0.14140
o; | 0.00600 | 0.05825 | 0.02457 | 0.01904 | 0.00397

k 1 109 1 7 1
k-NN L | 0.16715 | 0.28732 | 0.14245 | 0.03533 | 0.04803
o; | 0.00537 | 0.04027 | 0.03601 | 0.01979 | 0.00249

Table 9: Influence of splitting criteria. The best classification accuracy for each data set is shown
in bold (when k-NN is the best it is also shown in italic).
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data set

criterion LI LR opP PA PE
R | 2.69029 | 4.26987 | 8.67055 10.886 10.0365
Bayes error d | 4.16667 6.1 16.4333 | 14.8667 | 22.7667
L | 0.33217 | 0.16478 | 0.11408 | 0.03026 | 0.05128
o; | 0.04124 | 0.03149 | 0.00924 | 0.00425 | 0.00395
R | 3.78333 | 2.90979 | 6.90676 | 5.55227 | 7.60365
Entropy d | 6.86667 | 5.53333 11.2 9.43333 | 13.2667
L | 0.31217 | 0.15669 | 0.09863 | 0.02982 | 0.03997
o; | 0.02087 | 0.02625 | 0.00681 | 0.00340 | 0.00355
R | 3.64478 | 3.32119 | 7.62978 | 6.04423 | 8.74615
Gini d | 6.23333 6.2 12.9 8.73333 | 15.5667
L | 0.30435 | 0.16309 | 0.10641 | 0.02976 | 0.04200
o; | 0.02589 | 0.02673 | 0.00750 | 0.00339 | 0.00322
R | 4.77232 | 3.43399 | 6.74966 | 4.58786 | 7.07989

R-norm (1/2) | d | 8.86667 | 6.53333 | 10.9667 10.7 13.7
L | 0.31195 | 0.15838 | 0.09358 | 0.03050 | 0.03733
o; | 0.03361 | 0.02688 | 0.00603 | 0.00327 | 0.00394
R 3.31 3.12411 | 7.92363 7.4493 9.01268
R-norm (2) d 5.53333 | 5.43333 13.4 9.76667 | 15.6667
L | 0.30348 | 0.15763 | 0.10452 | 0.03104 | 0.04447
o; | 0.03444 | 0.03009 | 0.00704 | 0.00339 | 0.00342
R | 3.65261 | 3.18305 | 7.26314 | 6.46513 | 8.10721

Twoing d 6.3 5.6 11.5333 9.2 13.6
L | 0.30435 | 0.15932 | 0.10392 | 0.03037 | 0.04350
o; | 0.02657 | 0.02998 | 0.00636 | 0.00339 | 0.00469

k 7 7 3 3 1

k-NN L | 0.32580 | 0.13559 | 0.01372 | 0.04420 0.00694
o 0.3181 0.02227 | 0.00234 | 0.00433 | 0.00114

Table 10: Influence of splitting criteria. (continued)
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data set
criterion PI SA SE SO TH
R | 3.94557 | 13.4144 | 5.79582 | 2.47585 3.2547
Bayes error d | 6.13333 | 26.4667 | 11.93333 | 3.16667 | 4.33333
L | 0.25013 | 0.14236 | 0.04593 | 0.26135 | 0.07230
o; | 0.02164 | 0.00850 | 0.00833 | 0.04900 | 0.02715
R | 3.26068 | 5.91273 | 5.01742 | 2.05421 | 2.45587
Entropy d 7.13333 | 13.2333 12.6 3 3.23333
L | 0.23971 | 0.13097 | 0.03965 | 0.25652 | 0.06291
o; | 0.02375 | 0.00736 | 0.00662 | 0.05200 | 0.02377
R | 3.00319 | 6.52182 | 5.55398 | 2.92441 | 2.21643
Gini d | 6.26667 | 13.3333 | 13.6667 | 2.93333 | 3.86667
L | 0.23802 | 0.13212 | 0.04242 | 0.25894 | 0.07371
o; | 0.02175 | 0.00951 | 0.00687 | 0.04715 | 0.02845
R | 3.59062 | 5.81943 | 4.87383 | 2.91812 2.3784
R-norm (1/2) | d | 9.53333 | 14.3333 | 12.5333 | 5.03333 | 3.63333
L | 024245 | 0.13051 | 0.03779 | 0.25266 | 0.06338
o; | 0.02050 | 0.00916 | 0.00674 | 0.04639 | 0.02460
R | 3.00319 | 7.84027 | 5.62714 | 2.17657 | 3.05892
R-norm (2) d | 6.13333 | 14.1667 | 13.2667 | 2.93333 4
L | 024154 | 0.13596 | 0.04238 | 0.25411 | 0.07136
o; | 0.01953 | 0.00851 | 0.00697 | 0.04904 | 0.02792
R | 299687 | 6.27682 5.269 2.21643 | 2.96502
Twoing d 6.2 12.6667 13.3 2.93333 3.9
L | 0.23802 | 0.13330 | 0.04251 | 0.25894 | 0.07230
o; | 0.02175 | 0.00848 | 0.00900 | 0.04715 | 0.02690
k 13 3 1 1 1
k-NN L | 0.26042 | 0. 09364 | 0.04251 | 0.18986 | 0.05916
o; | 0.02752 | 0.00575 | 0.00578 | 0.04272 | 0.02873

Table 11: Influence of splitting criteria. (continued)
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data set

criterion VE VO WA WD WI
R | 6.88653 | 8.83677 | 7.16342 | 2.31746 | 2.75424
Bayes error d 12.0333 | 15.8333 | 10.3333 3.2 3.46667
L 0.3 0.23566 0.228 0.06720 | 0.08079
oj | 0.02624 | 0.02598 | 0.01422 | 0.01823 | 0.04051
R | 5.81283 | 6.94818 | 5.79432 | 1.99471 | 2.36525

Entropy d 13.2333 11.4 12.1667 | 3.96667 3

L | 027400 | 0.21919 | 0.21727 | 0.05908 | 0.06328
o; | 0.03388 | 0.00242 | 0.01117 | 0.01623 | 0.03302
R 5.5347 7.81151 5.7013 2.39533 | 2.44605
Gini d 10.5 13.3667 | 9.73333 | 3.63333 | 3.16667
L | 0.28664 | 0.22333 0.2181 0.05979 | 0.08418
o; | 0.02167 | 0.02358 | 0.01085 | 0.01570 | 0.04231
R | 6.42553 | 6.91591 | 6.66717 | 2.23501 | 2.33051

R-norm (1/2) | d 15.3 10.7 15.9333 | 5.86667 2.9
L | 0.26667 | 0.22697 | 0.22443 | 0.05750 | 0.05311
oj | 0.02631 | 0.02473 | 0.01059 | 0.01921 | 0.02132
R | 5.58889 | 7.70338 | 6.14303 | 2.57628 | 2.42345
R-norm (2) d | 9.86667 | 13.1333 | 9.63333 | 3.86667 | 3.13333
L | 0.29397 | 0.22838 | 0.21563 | 0.06085 | 0.08475
oj | 0.02328 | 0.02592 | 0.00981 | 0.01532 | 0.03501
R | 5.92683 | 7.09374 5.6802 2.48757 | 2.24322
Twoing d 11.1333 | 11.9667 | 9.83333 3.8 3.03333
L | 0.28227 | 0.22758 | 0.21697 | 0.05908 | 0.08136
oj | 0.01685 | 0.02618 | 0.01127 | 0.01516 | 0.04514

k 3 1 19 9 1

k-NN L | 0.35390 | 0.02596 | 0.14337 | 0.06631 | 0.26215
o; | 0.02406 | 0.01060 | 0.01047 | 0.01666 | 0.04946

Table 12: Influence of splitting criteria. (continued)
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Regarding the k-NN classifier, experiments show the importance of data structure in R?. When
data is highly clustered, k-NN achieves the best results, even closer to the L* bound (as in the
waveform data set, for example). It has also good performance for small data sets with a high
dimensionality where input training vectors are separated one from each other. On the other hand,
for some data sets the k-NN classifier does not provide a good accuracy, or it needs a large k which is
computationally expensive, causing also overfitting. The k-NN classifier is unfeasible for very large
data sets, such as the hyperspectral image defined in Sect. 4.1.2, for example. Nevertheless, a k-NN
classifier may be used in a cascading framework as the last classifier, trying to extract any information
present in input data not captured by the previous classifiers, reducing also k-NN cost because only

a fraction of data is used; such an ensemble is described in (Kaynak and Alpaydin, 2000).

4.3 Limited training

In this experiment we test tree performance under a maximum depth constraint. Complete decision
trees of maximum depth d € {2,3,4,5,6} are grown and then pruned back. Only the best results
(in classification accuracy) are shown, and ties are broken in favor of the criterion yielding the
smallest tree. We are interested not only on the performance but also on the splitting criterion
achieving the best performance. As we are trying to know the splitting criterion which minimizes
L, we do not show results for d = 1, because what the Bayes error criterion exactly does is to
minimize classification error. We do not include the Twoing criterion, as it cannot be expressed or
approximated as an impurity based criteria. Tabs. 13 to 17 show the results for each maximum
training depth, respectively.

Notice that for some data sets, R = d, so no pruning is done. This is a clear sign that the
training tree has been stopped too early and pruning is ineffective. On the other hand, R < d
for a few cases, showing that grown trees were deep enough to contain good pruned subtrees. As
expected, L decreases as d increases, showing an exponential decay when the number of leaves (which
is directly related to d) is large enough to represent all classes present in the training and corpus
sets. Only in a few cases L shows a bizarre behavior, although it is not significant under a statistical
basis, and it is directly related to the experiments described in Sect. 4.4, because it can be explained
as a reduction of variance for a given depth.

Nevertheless, the most remarkable fact is that the best splitting criterion changes with the
maximum depth allowed. For very small trees, the Bayes error criterion and the R-norm (R = 2)
criterion yield the best results. As stated in (Brodley, 1995), it is interesting to use splitting criteria
which minimize misclassification error near the leaves, that is, it is interesting to be greedy when
we are close to take a final decision, whilst it is better to use splitting criteria which minimize tree
impurity near the root of the decision tree, in order to avoid overfitting. Our experiments show also

this behavior, as depicted in Fig. 22, where splitting criteria are sorted according to its distance to
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data set R d L o criterion
covtype 2 2 0.51694 | 0.00671 Entropy
glass 2 2 0.36526 | 0.04892 | Bayes error
ionosphere | 1.78419 2 0.10228 | 0.02511 | R-norm (2)
iris 1.66667 2 0.06067 | 0.02555 Entropy
letter 2 2 0.86337 | 0.00301 | Bayes error
liver 1.53333 2 0.33884 | 0.04345 | R-norm (2)
Irs 2 2 0.23729 | 0.02862 | Bayes error
opdigits 2 2 0.65227 | 0.01089 | R-norm (2)
page 2 2 0.04781 | 0.00387 | Bayes error
pendigits 2 2 0.61795 | 0.00763 | R-norm (2)
pima 1.40436 | 1.43333 | 0.25703 | 0.02705 | Bayes error
sat 2 2 0.35666 | 0.01741 | R-norm (1/2)
segmentation 2 2 0.44338 | 0.01562 | R-norm (2)
sonar 1.30483 | 1.43333 | 0.28019 | 0.04869 | R-norm (2)
thyroid 1.88732 2 0.09202 | 0.02666 | Bayes error
vehicle 2 2 0.43416 | 0.03585 | Bayes error
vowel 2 2 0.72768 | 0.02681 | Bayes error
waveform 2 2 0.29947 | 0.01085 | Bayes error
wdbc 1.67011 | 1.93333 | 0.07090 | 0.01462 | R-norm (2)
wine 1.97034 2 0.08023 | 0.02549 | R-norm (1/2)

Table 13: Training with a limited maximum depth, d < 2.
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data set R d L o criterion
covtype 2.9919 3 0.40305 | 0.00617 Entropy
glass 2.96596 3 0.33380 | 0.05910 | Bayes error
ionosphere 2.07308 2.4 0.09630 | 0.02010 Gini
iris 1.806 | 2.43333 | 0.04467 | 0.02172 | R-norm (2)
letter 3 3 0.76351 | 0.00362 Entropy
liver 1.85014 | 2.56667 | 0.32522 | 0.03395 | R-norm (2)
Irs 2.32429 3 0.17703 | 0.03295 | R-norm (2)
opdigits 3 3 0.43401 | 0.01768 Entropy
page 2.99888 3 0.04031 | 0.00419 | R-norm (2)
pendigits 3 3 0.39915 | 0.00952 Entropy
pima 1.34264 | 1.93333 | 0.25508 | 0.02653 Gini
sat 2.90635 3 0.21152 | 0.00810 | Bayes error
segmentation | 2.84496 3 0.17476 | 0.02360 | R-norm (1/2)
sonar 1.78985 2.1 0.26522 | 0.04809 Entropy
thyroid 2.23192 2.6 0.06761 | 0.02657 Entropy
vehicle 2.75886 3 0.34705 | 0.03047 | R-norm (1/2)
vowel 3 3 0.61475 | 0.03166 | Bayes error
waveform 2.88348 3 0.26653 | 0.01492 | R-norm (2)
wdbc 1.92275 | 2.96667 | 0.06473 | 0.01666 Entropy
wine 2.30932 2.8 0.05254 | 0.02289 | R-norm (1/2)

Table 14: Training with a limited maximum depth, d < 3.
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data set R d L o criterion
covtype 3.74514 4 0.35114 | 0.00588 R-norm (2)
glass 3.52958 | 3.96667 | 0.29953 | 0.05586 | Bayes error
ionosphere 2.15798 | 2.56667 | 0.09345 | 0.02195 Entropy
iris 1.822 2.6 0.04933 | 0.01982 Gini
letter 4 4 0.64884 | 0.00536 Entropy
liver 2.25058 | 3.16667 | 0.31797 | 0.03092 R-norm (2)
Irs 2.54699 | 3.96667 | 0.16234 | 0.02775 Entropy
opdigits 3.99031 4 0.27770 | 0.02233 R-norm (2)
page 3.02421 4 0.03533 | 0.00408 Entropy
pendigits 3.97952 4 0.22737 | 0.01387 R-norm (2)
pima 2.00254 2.9 0.24779 | 0.02193 Gini
sat 3.79877 4 0.18382 | 0.00854 | Bayes error
segmentation | 3.41846 4 0.09818 | 0.0112 R-norm (2)
sonar 2.0186 | 2.56667 | 0.25894 | 0.04788 Entropy
thyroid 2.44742 | 3.13333 | 0.06338 | 0.02513 Entropy
vehicle 3.55248 | 3.96667 | 0.30934 | 0.03266 Entropy
vowel 3.95874 4 0.50343 | 0.02572 | R-norm (2)
waveform 3.5607 | 3.93333 | 0.24287 | 0.01089 | R-norm (2)
wdbc 1.93774 3.4 0.06085 | 0.01463 Entropy
wine 2.32599 2.9 0.05311 | 0.02132 | R-norm (1/2)

Table 15: Training with a limited maximum depth, d < 4.

79



80

CHAPTER 4. EXPERIMENTAL RESULTS

data set R d L o criterion
covtype 4.87383 5 0.32899 | 0.00736 | Bayes error
glass 3.91596 | 4.83333 | 0.29390 | 0.05689 | Bayes error
ionosphere | 2.53704 | 3.16667 | 0.08889 | 0.02300 | R-norm (2)
iris 1.866 2.83333 | 0.04867 | 0.02109 | R-norm (1/2)
letter 4.8923 5 0.49782 | 0.00897 Entropy
liver 2.8271 | 3.86667 | 0.31159 | 0.02971 Gini
Irs 2.8807 | 4.66667 | 0.15650 | 0.02655 Entropy
opdigits 4.94136 ) 0.19149 | 0.01368 R-norm (2)
page 4.15554 | 4.96667 | 0.03207 | 0.00350 R-norm (2)
pendigits 491714 5 0.14479 | 0.00629 | R-norm (2)
pima 2.57292 | 3.96667 | 0.24258 | 0.02560 Gini
sat 4.55824 5 0.16123 | 0.00878 R-norm (2)
segmentation | 3.77903 5 0.07126 | 0.00933 | R-norm (2)
sonar 2.17681 | 3.16667 | 0.25749 | 0.04802 Entropy
thyroid 2.42981 | 3.16667 | 0.06338 | 0.02513 Entropy
vehicle 4.10396 | 4.96667 | 0.28865 | 0.02731 | R-norm (1/2)
vowel 4.82177 5 0.41657 | 0.03137 | R-norm (2)
waveform 4.24008 | 4.93333 | 0.22783 | 0.01277 | R-norm (2)
wdbc 1.95917 3.8 0.05979 | 0.01617 Entropy
wine 2.32599 2.9 0.05311 | 0.02132 | R-norm (1/2)

Table 16: Training with a limited maximum depth, d < 5.
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data set R d L o criterion
covtype 5.88324 6 0.30527 | 0.00446 | Bayes error
glass 4.00751 5.9 0.28686 | 0.05289 | Bayes error
ionosphere 2.53832 | 3.56667 | 0.08718 | 0.02360 Entropy
iris 1.918 | 3.23333 | 0.046 | 0.02010 | R-norm (1/2)
letter 5.89922 6 0.40699 | 0.00885 Entropy
liver 3.14551 4.5 0.30522 | 0.02956 Gini
Irs 2.99652 | 5.16667 | 0.15424 | 0.02442 Entropy
opdigits 5.81313 6 0.14693 | 0.01066 | R-norm (2)
page 4.75131 | 5.96667 | 0.03041 | 0.00357 Gini
pendigits 5.69666 6 0.09973 | 0.00917 Entropy
pima 2.67682 4.4 0.23958 | 0.02400 Gini
sat 5.15392 6 0.14943 | 0.00812 | R-norm (2)
segmentation | 3.95342 | 5.96667 | 0.05831 | 0.00790 | R-norm (1/2)
sonar 2.85531 44 0.25266 | 0.04609 | R-norm (1/2)
thyroid 2.4554 3.2 0.06244 | 0.02320 Entropy
vehicle 4.52264 5.9 0.28239 | 0.02723 | R-norm (1/2)
vowel 5.55773 6 0.35152 | 0.03185 Entropy
waveform 5.01017 | 5.93333 | 0.22167 | 0.01120 | R-norm (2)
wdbc 2.03589 | 4.13333 | 0.05838 | 0.01703 Entropy
wine 2.32599 2.9 0.05311 | 0.02132 | R-norm (1/2)

Table 17: Training with a limited maximum depth, d < 6.
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the Bayes error criterion (see Fig. 3).

20 d=1 20 d=2 20 4=3
15 15 15
10 10 10
0 0 0

B R=2 G ER=1/2 B R=2 G ER=1/2 B R=2 G ER=1/2
20 d=4 —— 20 d=5 —— 20 d=6 ——
15 15 15
10 10 10
0 0 0

B R=2 G ER=1/2 B R=2 G ER=1/2 B R=2 G ER=1/2

Figure 22: Number of times a splitting criterion is chosen as the best (B=Bayes error, R=R-norm,
G=Gini, E=Entropy).

As d is allowed to grow, more and more data sets achieve better performance with the Entropy
and R-norm (R = 1/2) splitting criteria than with the other ones. Notice that all splitting criteria
are special cases of the R-norm splitting criterion, but the Gini splitting criterion. This can be
approximated using R =~ 1.61858, though, so it can be considered another case. Actually, it is easy
to see that the Gini criterion is the square of the R-norm criterion using R = 1/2, but a constant
factor. It is fair to think that a family of splitting criteria such as the R-norm family could be used
to achieve the best performance if the optimal value for R was computed. Furthermore, such value
could be computed at each node depending on its intrinsic characteristics (including node position
in the tree, such as depth, for example), and then use an adaptive scheme for the splitting criterion.

This is the approach used in (Brodley, 1995), although in a more unsophisticated way.

4.4 Bias-variance decomposition

In this experiment we compute bias-variance decomposition for decision trees. Our goal is to study
bias and variance behavior (see Sect. 3.8.1.3) under several experiment setups in order to extract
information that can be useful for our purposes.

We randomly split each data set (all available instances shown in Tab. 7) in two sets: a training
set and a test set, following the (2/3,1/3) rule. Then, the training set is used to generate 25 bootstrap
replicates (subsampling with replacement from the training set, see (Efron and Tibshirani, 1993)),

and a classifier is built for each bootstrap replicate. Then, performance is measured for each classifier
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using the test set. This process is repeated five times, and then all results are averaged. We do not
use 100 replicates as described in (Domingos, 2000) because, as stated in (Breiman, 1996a), it is
usually (almost) useless to go beyond 25 replicates for subsampling purposes.

As we want to compare classical decision trees to progressive decision trees, first of all we measure
the bias-variance decomposition for a single tree grown without any depth limitation and using the
best splitting criterion found in the experiment described in Sect. 4.2 (we used the Gini criterion

for the pima data set).

set | criterion R d L o B 1%

CO | Entropy | 9.56141 | 19.736 | 0.24422 | 0.00394 | 0.17520 | 0.06902
GL Gini 4.44458 | 6.96 | 0.35617 | 0.02599 | 0.29014 | 0.06603
10 R=2 2.91573 | 3.904 | 0.10789 | 0.00544 | 0.07521 | 0.03268
IR R=1/2 | 1.81212 | 2.64 | 0.04235 | 0.00555 | 0.02353 | 0.01882
LE R=1/2 | 9.74719 | 17.472 | 0.16474 | 0.00264 | 0.07584 | 0.08890
LI R=2 4.69259 | 7.688 | 0.36265 | 0.01326 | 0.28522 | 0.07743
LR | Entropy | 2.84827 | 5.368 | 0.16886 | 0.00722 | 0.13672 | 0.03214
OP | R=1/2 | 6.56378 | 10.376 | 0.11645 | 0.00352 | 0.04066 | 0.07579

PA Gini 5.39101 | 7.456 | 0.03211 | 0.00216 | 0.02796 | 0.00415
PE R=1/2 | 6.83542 | 13.264 | 0.04873 | 0.00072 | 0.01752 | 0.03121
PI Gini 2.49658 | 4.576 | 0.23666 | 0.01014 | 0.20938 | 0.02728

SA R=1/2 | 562438 | 12.808 | 0.14339 | 0.00247 | 0.10326 | 0.04013
SE R=1/2 | 431219 | 10.6 | 0.04969 | 0.00632 | 0.03065 | 0.01904
SO R=1/2 | 2.44432 4 0.28150 | 0.02132 | 0.19130 | 0.09020
TH | Entropy | 2.35748 | 3.008 | 0.08811 | 0.00403 | 0.06667 | 0.02144
VE | R=1/2 | 5.63901 | 12.352 | 0.29770 | 0.00760 | 0.24610 | 0.05160
VO | Entropy | 6.67239 | 10.4 | 0.27682 | 0.00755 | 0.09454 | 0.18228
WA R=2 5.95249 | 8.944 | 0.23230 | 0.00423 | 0.16783 | 0.06447
WD | R=1/2 | 1.97176 | 4.192 | 0.06910 | 0.01750 | 0.04737 | 0.02173
WI | R=1/2 | 2.24136 | 2.888 | 0.06374 | 0.01035 | 0.02667 | 0.03707

Table 18: Bias-variance decomposition for a single tree using the best splitting criterion for each
data set.

Notice that we are using a different approach to measure generalization error performance, so
results shown in Tab. 18 differ from those shown in Sect. 4.2.2. N-fold cross validation always
yields lower misclassification error than bootstrapping (but for the iris and pima data sets), while
the latter usually yields a smaller misclassification error variance. On the other hand, bootstrapping
produces smaller trees in average.

A remarkable fact is that usually bias is larger than variance, but for a few training sets. A large

bias shows that decision trees built using orthogonal hyperplanes are not complex enough to capture
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internal data structure, so there is room for improvement using ensemble methods such as boosting,
for example. Variance is larger than bias in a few data sets which have a common characteristic: all
of them have a large number of classes (except the wine data set, which may be not representative),

and all classes are equally probable, so a large baseline error is present (see Tab. 7).

4.4.1 Splitting criterion dependence

In the previous experiment we used the best splitting criterion for each data set, which is unknown
unless we compare them by building a classifier for each one. As we want to automate our ensemble,
we will use entropy as the splitting criterion. Tab. 19 shows the bias-variance decomposition using

the entropy criterion, following the same experiment design than the one described above.

= = = =

set R d L o B 1%
CO | 9.56141 | 19.736 | 0.24422 | 0.00394 | 0.17520 | 0.06902
GL | 3.96833 | 5.952 | 0.35797 | 0.02940 | 0.28451 | 0.07346
10 | 247415 | 3.48 | 0.10783 | 0.00397 | 0.09744 | 0.01039
IR | 1.80073 | 2.584 | 0.04220 | 0.00675 | 0.02353 | 0.01867
LE | 9.91032 | 17.904 | 0.16702 | 0.00146 | 0.07703 | 0.08999
LI | 3.38671 | 5.744 | 0.33976 | 0.01345 | 0.27826 | 0.06150
LR | 2.84827 | 5.368 | 0.16886 | 0.00722 | 0.13672 | 0.03214
OP | 6.66539 | 10.344 | 0.12137 | 0.00265 | 0.04621 | 0.07516
PA | 478741 | 7.84 | 0.03263 | 0.00118 | 0.02675 | 0.00588
PE | 7.30555 | 12.408 | 0.05319 | 0.00079 | 0.01812 | 0.03507
PI | 2.44464 | 4.672 | 0.23950 | 0.00970 | 0.21953 | 0.01997
SA | 5.60507 | 11.36 | 0.14431 | 0.00229 | 0.10382 | 0.04049
SE | 4.37432 | 10.208 | 0.04988 | 0.00594 | 0.02935 | 0.02053
SO | 2.24472 | 3.256 | 0.26736 | 0.02700 | 0.19420 | 0.07316
TH | 2.35748 | 3.008 | 0.08811 | 0.00403 | 0.06667 | 0.02144
VE | 5.2307 | 10.04 | 0.29660 | 0.00874 | 0.25036 | 0.04624
VO | 6.67239 | 10.4 | 0.27682 | 0.00755 | 0.09454 | 0.18228
WA | 5.25705 | 10.136 | 0.23087 | 0.00404 | 0.16204 | 0.06883
WD | 210501 | 3.568 | 0.06947 | 0.01441 | 0.05052 | 0.01895
WI | 2.25573 | 2.984 | 0.06827 | 0.01014 | 0.02667 | 0.04160

Table 19: Bias-variance decomposition for a single decision tree using entropy as the splitting crite-
rion.

Notice that L is smaller for several data sets (we used a different method for misclassification
error estimation), showing the importance of reducing parameter dependence when building complex

classification systems. As stated in Sect. 4.2.2, no splitting criterion is superior for all data sets
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with statistical significance, so we will choose the entropy splitting criterion for our experiments.

4.4.2 Bias-variance and training maximum depth

As stated in 3.4, the first decision trees in the cascading ensemble should be small in order to
avoid overfitting, but we do not have yet a good definition for small. As stated in (Gama and

Brazdil, 2000), first classifiers should have a small variance and a (hopefully) moderate bias.

With this experiment we try to obtain any information that would be useful for determining the
size of the first decision tree in a cascading ensemble. We study the bias-variance decomposition as a
function of the maximum depth allowed during the training process, trying to find any relationship
between d, V and B. We grow a small decision tree with maximum depth d, we prune it back and
then we measure the bias-variance decomposition as usual. Varying d we can study the behavior of

decision trees in order to determine a good tradeoff for the bias-variance decomposition.

Another interesting fact that can be extracted from this experiment is that both bias and variance
show a typical behavior. When d is too small, built trees have not enough leaves to represent all
classes present in the training set, so bias is high. While 21 « K , bias decreases fast as d increases,
and when 27 > K, bias still decreases but showing an exponential decay. If we use pruning, it is
better to use K + 1 instead of K as some leaves are pruned back causing the tree to have not enough

leaves to represent all classes.

On the other hand, when d is zero, variance is obviously 0 (the output label is always the most
populated class). Then, as d increases, variance also increases but it shows a peak around K for
several data sets, which is surprising, because it does not seem to follow any criterion, although the
peak is usually for values lower than K, meaning than very different decision trees are built, because
they do not represent all classes in the training set. This is also a criterion for determining d, as

such high value for variance should be avoided.

Therefore, the bias-variance decomposition clearly shows three different parts: a first part with
high bias and low variance, a second part, where bias starts decreasing and variance shows a peak,
and a third part, where both bias and variance stabilize. This behavior has also been observed
for other classification systems when varying one of parameters which determine the learning rate
(Valentini and Dietterich, 2002).

This behavior gives us information about how the first decision tree in a cascading ensemble
should be constructed: we know that a low bias is good but a low variance is also important. We
need a first decision tree large enough to have a low bias but trying to keep variance low. For most
data sets, bias predominates over variance in generalization error, so classification accuracy shows
a behavior more similar to bias. Therefore, we should select the minimum depth where variance is

still small in comparison with bias, and bias has already an exponential decay behavior.
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Figure 23: Bias-variance decomposition varying maximum training depth.
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Figure 24: Bias-variance decomposition varying maximum training depth (continued).
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Figure 25: Bias-variance decomposition varying maximum training depth (continued).
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Figure 26: Bias-variance decomposition varying maximum training depth (continued).
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Figure 27:

Bias-variance decomposition varying maximum training depth (continued).
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Figure 28:

Bias-variance decomposition varying maximum training depth (continued).
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Figure 29:

Bias-variance decomposition varying maximum training depth (continued).
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Figure 30:

Bias-variance decomposition varying maximum training depth (continued).
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Figure 31: Bias-variance decomposition varying maximum training depth (continued).
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Figure 32: Bias-variance decomposition varying maximum training depth (continued).
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4.5 Cascading decision trees

This section uses all the knowledge collected from the precious sections in order to compare the
three kinds of cascading ensembles (defined in Sect. 3.7) between them and against a single decision

tree (those built in Sect. 4.4). The three kinds of cascading ensembles were:

e Additional information, no mixed class (type B): a first decision tree is used to compute
additional information that will be used by a second decision tree, and all vectors from the

training set are used in both decision trees.

e No additional information, mixed class (type A): a first decision tree is used to remove those
vectors in the training set which form the easiest part of the classification problem, and a

second decision tree tries to classify the remaining vectors.

¢ Additional information, mixed class (type C): a first decision tree is used to remove the easiest
cases but it also computes additional information which will be used by the second decision

tree to classify the remaining vectors.

4.5.1 Additional information, no mixed class

The first experiment uses only the additional information computed by the first decision tree, which
is used by the second decision tree, and no vectors are removed from the training set from one stage
to the next. This is the basic approach described in (Gama and Brazdil, 2000).

In our first experiment we only want to measure whether cascading decision trees may be a good
tool without any tuning: a first complete decision tree is built as usual, and then a second decision
tree is built using the new classification features added by the previous one. Both training and
classification costs increase, as two large decision trees must be built and then each sample must be
classified twice. The second decision tree uses the K + 2 computed variables as new classification
features. The basic idea is to see whether decision trees may be used in a cascading ensemble without

degrading classification performance in an automated learning procedure.

4.5.1.1 Complete decision trees, best splitting criterion

Tab. 20 shows the performance of two decision trees ensembled using cascading. The average rate
and maximum depth for the first decision tree (we will use T to denote such tree) are shown in
Tab. 18, as we use a complete decision tree for the first stage. A + sign and a — sign in Band V
denote whether it increases or decreases when compared to T results respectively. A positive AL
means that performance is degraded, while a negative value means that the cascading ensemble of
the two trees outperforms a single tree.

As expected, both R and d decrease as the second decision tree uses the additional information

provided by the first one. When the second decision tree uses one of the new variables for splitting,
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set R d L o B 4 AL
CO | 7.00981 | 16.6 | 0.24148 | 0.00396 | 0.17103 — | 0.07045 + | —1.12 %
GL | 3.51026 | 6.048 | 0.35549 | 0.02707 | 0.28451 — | 0.07098 + | —0.19 %
10 | 2.21476 | 2.88 | 0.10571 | 0.00585 | 0.07350 — | 0.03221 — | —2.02 %
IR | 1.7867 | 2.504 | 0.04078 | 0.00516 | 0.02353 = | 0.01725 — | —3.71 %
LE | 9.01949 | 18.032 | 0.16650 | 0.00252 | 0.07533 — | 0.09117 + | +1.07 %
LI | 254624 | 4.096 | 0.34324 | 0.01176 | 0.25739 — | 0.08585 + | —5.35 %
LR | 254635 | 5 [ 0.16981 | 0.00796 | 0.13446 — | 0.03535 + | +0.56 %
OP | 5.88032 | 9.952 | 0.11528 | 0.00359 | 0.03853 — | 0.07675 + | —1.00 %
PA | 3.70114 | 6.072 | 0.03203 | 0.00211 | 0.02774 — | 0.00429 + | —0.25 %
PE | 5.78445 | 11.8 | 0.04841 | 0.00069 | 0.01724 — | 0.03117 — | —0.66 %
PI | 1.75417 | 2.936 | 0.23525 | 0.00992 | 0.20781 — | 0.02744 + | —0.6 %
SA | 4.81591 | 11.12 | 0.14295 | 0.00288 | 0.10191 — | 0.04099 + | —0.31 %
SE | 4.01973 | 8.984 | 0.04883 | 0.00558 | 0.02987 — | 0.01896 — | —1.73 %
SO | 1.90365 | 2.968 | 0.27513 | 0.0224 | 0.18841 — | 0.08672 — | —2.26 %
TH | 2.01274 | 2.824 | 0.08378 | 0.00459 | 0.06389 — | 0.01989 — | —4.91 %
VE | 3.98577 | 8.168 | 0.29427 | 0.00753 | 0.23546 — | 0.05881 + | —1.15 %
VO | 5.64989 | 10.088 | 0.27561 | 0.00918 | 0.09636 + | 0.17925 — | —0.44 %
WA | 5.3315 | 8.184 | 0.22693 | 0.00471 | 0.16444 — | 0.06249 — | —2.31 %
WD | 1.60147 | 3.072 | 0.06846 | 0.01693 | 0.04526 — | 0.02320 + | —0.93 %
WI | 1.98991 | 2.496 | 0.06733 | 0.01060 | 0.03333 + | 0.03400 — | +5.63 %
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Table 20: Bias-variance decomposition for a type B cascading ensemble of two large decision trees.
Signs +, =, — and A are referred to Tab. 18.

is in fact using a complete branch of the first decision tree from its root to a leaf. This is similar
to the fact of using more complex decision functions in each internal node, increasing both tree
complexity and boundary representation richness, and thus reducing the number of splits needed to
represent such boundary.

Performance is slightly improved but for a few data sets (letter, Irs and wine), mainly because
of bias reduction, while variance shows an unpredictable behavior. Nevertheless, performance im-
provement does not justify the increase of cost because two large decision trees must be built, and
the increase of variance for several data sets shows that the first decision tree is too large. The main
reason for bias reduction is that orthogonal splits are not rich enough to represent the boundaries
defined by the elements of each class.

Using two complete decision trees is therefore a way of building more complex decision bound-
aries, but it is not the right approach as the problem of reducing misclassification error cannot be
solved trying only to reduce bias, as variance must be also taken into account. Furthermore, neither

training cost nor classification cost are reduced, so the small increase in classification performance
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is not worth enough.

4.5.1.2 Complete decision trees, entropy splitting criterion

In this experiment we compute again the increase in classification performance but using always the
entropy splitting criterion, in order to reduce parameter dependence. Tab. 21 shows the obtained
results and it must be compared to Tabs. 19 and 20 in order to measure the increase of classification

performance and parameter dependence, respectively.

set R d L oj B v AL
CO | 7.00981 | 16.6 | 0.24148 | 0.00396 | 0.17103 — | 0.07045 + | —1.12 %
GL | 3.43151 | 5.48 | 0.35358 | 0.03097 | 0.27606 — | 0.07752 + | —1.23 %
10 | 1.93934 | 2.6 | 0.10400 | 0.00477 | 0.08889 — | 0.01511 + | —3.55 %
IR | 1.76917 | 2.44 | 0.04220 | 0.00714 | 0.02353 = | 0.01867 = | 0.0 %
LE |9.38852 | 22.8 | 0.16596 | 0.00123 | 0.07605 — | 0.08991 — | —0.63 %
LI | 247109 | 4.056 | 0.33384 | 0.01579 | 0.25913 — | 0.07471 + | —1.74 %
LR | 254635 | 5 | 0.16981 | 0.00796 | 0.13446 — | 0.03535 + | +0.56 %
OP | 6.05888 | 10.336 | 0.11924 | 0.00332 | 0.04247 — | 0.07677 + | —1.75 %
PA | 3.37098 | 6.696 | 0.03247 | 0.00097 | 0.02588 — | 0.00659 + | —0.49 %
PE | 6.23174 | 11.712 | 0.05215 | 0.00061 | 0.01708 — | 0.03507 = | —1.96 %
PI | 1.77048 | 3.056 | 0.23778 | 0.01003 | 0.21719 — | 0.02059 + | —0.72 %
SA | 4.74283 | 10.248 | 0.14300 | 0.00207 | 0.10242 — | 0.04058 + | —0.91 %
SE | 4.12135 | 8.896 | 0.04858 | 0.00564 | 0.02623 — | 0.02235 + | —2.61 %
SO | 1.73432 | 2.384 | 0.26272 | 0.02816 | 0.17101 — | 0.09171 + | —1.74 %
TH | 2.01274 | 2.824 | 0.08378 | 0.00459 | 0.06389 — | 0.01989 — | —4.91 %
VE | 3.71641 | 6.872 | 0.29367 | 0.01001 | 0.24468 — | 0.04899 + | —0.99 %
VO | 5.64989 | 10.088 | 0.27561 | 0.00918 | 0.09636 + | 0.17925 — | —0.44 %
WA | 4.7224 | 9.224 | 0.22509 | 0.00472 | 0.15365 — | 0.07144 + | —2.50 %
WD | 1.63829 | 2.544 | 0.06905 | 0.01460 | 0.04947 — | 0.01958 + | —0.60 %
WI | 1.99643 | 2.6 | 0.07280 | 0.00810 | 0.02333 — | 0.04947 + | +6.64 %

Table 21: Bias-variance decomposition for a type B cascading ensemble of two large decision trees
using the entropy splitting criterion. Signs +, =, — and A are referred to Tab. 19.

Notice that in this case, the bias-variance decomposition follows the predicted behaviour: mis-
classification error reduction is mainly caused by bias reduction, while variance usually increases (in
17 out of 20 data sets).

As we want to make fair comparisons across all data sets, from now and when we will use the
entropy splitting criterion in order to minimize the dependence of classification performance on such

parameter for the rest of the experiments.
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4.5.1.3 Cascading three large decision trees

This experiment shows that using three large decision trees improves classification performance,
mainly due to bias reduction. Tab. 22 shows the results obtained for this experiment. Final tree
becomes more and more complex because uses variables from the previous two stages, which can be
considered as complex boundaries. Furthermore, classification accuracy also improves when com-
pared to a ensemble of two large decision trees and, therefore, there is possibly room for improving
classification performance if four or more decision trees were used, although classification cost in-

creases accordingly, and accuracy gain is not worth.

set R d L o} B |4 AL
CO | 4.61748 | 12.968 | 0.23999 | 0.00399 | 0.16825 —— | 0.07174 ++ | —1.73 % |
GL | 2.52004 | 4.416 | 0.35651 | 0.03069 | 0.27606 — = | 0.08045 ++ | —0.41 % *
IO | 1.13569 | 1.352 | 0.10202 | 0.00453 | 0.08889 — = | 0.01313 +— | —5.39 % |
IR | 1.64468 | 2.016 | 0.04424 | 0.00654 | 0.02353 == | 0.02071 ++ | +4.83 %
LE | 7.71255 | 24.6077 | 0.16541 | 0.00119 | 0.07446 —— | 0.09095 ++ | —0.96 % |
LI | 1.35183 | 1.856 | 0.33002 | 0.01554 | 0.24522 —— | 0.08480 ++ | —2.87 % |
LR | 2.16638 | 4.416 | 0.16994 | 0.00853 | 0.12881 —— | 0.04113 ++ | +0.64 % 1
OP | 467795 | 9.184 | 0.11776 | 0.00348 | 0.03970 —— | 0.07806 ++ | —2.97 % |
PA | 1.44619 | 4.624 | 0.03244 | 0.00072 | 0.02654 —+ | 0.00590 +— | —0.58 % |
PE | 449384 | 9.32 | 0.05152 | 0.00068 | 0.01653 —— | 0.03499 +— | —3.14 % |
PI | 1.20226 | 1.784 | 0.23644 | 0.00999 | 0.21016 —— | 0.02628 ++ | —1.28 % |
SA | 3.69416 | 8.528 | 0.14083 | 0.00201 | 0.09795 —— | 0.04288 ++ | —2.41 % |
SE | 3.38143 | 5.632 | 0.04808 | 0.00552 | 0.02467 —— | 0.02341 ++ | —3.61 % |
SO | 1.14815 | 1.32 | 0.25867 | 0.02831 | 0.16232 —— | 0.09635 ++ | —3.25 % |
TH | 1.3465 | 2.072 | 0.08222 | 0.00399 | 0.06111 —— | 0.02111 —+ | —6.68 % |
VE | 2.76416 | 4.864 | 0.28868 | 0.00999 | 0.23546 —— | 0.05322 ++ | —2.67 % |
VO | 451533 | 8.688 | 0.27523 | 0.00866 | 0.09697 ++ | 0.17826 —— | —0.57 % |
WA | 3.21346 | 6.912 | 0.21877 | 0.00415 | 0.14026 —— | 0.07851 ++ | —5.24 % |
WD | 1.10493 | 1.264 | 0.06825 | 0.01424 | 0.04947 — = | 0.01878 —— | —1.76 % |
WI | 1.65699 | 2.072 | 0.07267 | 0.00764 | 0.03334 ++ | 0.03933 —— | +6.44 % |

Table 22: Bias-variance decomposition for a type B cascading ensemble of three large decision trees
using the entropy splitting criterion. Double signs +, =, — and A are referred to Tabs. 19 and 21
respectively, and 1 and | are referred to Tab. 21 (they mean worse and better respectively).

Notice that both bias and variance show the same behavior when cascading the first decision
tree with the second one than when cascading the second decision tree with the third one. Accuracy
improvement is mainly due to bias reduction, while variance still increases, although it shows a more

bizarre behavior. This may indicate that the third decision tree is useful for building more complex
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boundaries, thus reducing bias, but it also increases unstability. Therefore, we discard testing more
than three decision trees in a cascading ensemble, in order to avoid the construction of too unstable
classifiers. This experiment also shows that orthogonal splits are not a good tool for representing

complex boundaries.

4.5.1.4 Limited depth decision trees

As stated previously, under a bias-variance decomposition approach, 77 should be a small tree, in
order to reduce variance. But if we use orthogonal splits (which do not represent complex boundaries
very well), T} should not be too small in order to produce reasonably accurate predictions. As T5 uses
the additional information provided by 77, this should be large enough to produce “good” additional
information. If not, we will be cheating our second tree and performance could be compromised.

As we use {p(j|t)} as additional information, we must ensure the first decision tree has enough
leaves to represent all classes. Therefore, we should discard using trees with maximum depth d <
log, (K) where K is the number of classes, so we might take d = [log, (k)] as the minimum depth for
the first decision tree. But if the first decision tree is pruned back, we cannot ensure to have enough
leaves to represent all classes using d = [log,(K)], so we should also repeat the same experiment
using d = [log,(K)] + 1. Tab. 23 shows the better classification accuracy found when varying d
from 0 to 12. Ties are broken in favor of the smallest decision tree (that is, the minimum d).

A | sign in Tab. 23 means that it is possible to tune the maximum depth of the first decision
tree in the type B cascading ensemble to improve classification accuracy with respect to the type
B cascading ensemble of two large decision trees, reducing also classification cost. This happens in
14 out of 20 data sets, with maximum depths in range [0,12], which are relatively small decision
trees with a limited computational training cost. In all cases but two (the iris and sat data sets)
classification accuracy is improved by reducing bias.

But, is d in Tab. 23 related to any criterion which can be computed or estimated from the data
set? Tab. 24 compares the optimal d to several measures that can be computed from the original
data set which is used to build the classification system: the minimum depth to ensure the decision
tree has enough leaves to represent all classes, the entropy of the estimated class distribution in the
training set, the maximum length of a Huffman code (Cover and Thomas, 1991) constructed for
coding the classes present in the training set, and the average length of a single decision tree and its
maximum depth (R and d in Tab. 19, respectively).

All of these measures have an information theory based meaning, as they compute the size of
the decision tree for a given algorithm. Nevertheless, such algorithms are not directly related to the
decision tree training algorithm, because the training process is not devoted to not separate classes
at each stage perfectly. Furthermore, with only 20 data sets it would be very dangerous to infer any
criterion, and for most data sets, the best d was not statistically significant in front of the second

or even the third best maximum depth. Therefore, from a practical point of view, if we want the
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set | dy R d L o B Vv AL
CO | 12| 7.3499 | 18.448 | 0.24334 | 0.00373 | 0.17413 — | 0.06921 + | —0.36 % *
GL | 5 | 3.60975 | 5.68 | 0.35279 | 0.02997 | 0.27042 — | 0.08237 + | —1.48 % |
10 6 | 1.97976 | 2.688 | 0.10373 | 0.00473 | 0.08889 — | 0.01484 + | —3.80 % |
IR 3 | 1.79392 | 2.552 | 0.04188 | 0.00737 | 0.02353 = | 0.01835 — | —0.76 % |
LE 3 | 9.98227 | 17.944 | 0.16623 | 0.00144 | 0.07419 — | 0.09234 + | —0.47 % 1
LI 8 | 2.44202 | 4.024 | 0.33294 | 0.01671 | 0.26783 — | 0.06511 + | —2.01 % |
LR | 5 | 2.64148 | 4.984 | 0.16936 | 0.00767 | 0.13447 — | 0.03489 + | +0.30 % |
OP | 3 | 6.67102 | 10.608 | 0.11870 | 0.00249 | 0.04034 — | 0.07836 + | —2.20 % |
PA | 7 | 351921 | 6.712 | 0.03228 | 0.00093 | 0.02566 — | 0.00662 + | —1.07 % |
PE | 9 | 6.49224 | 11.96 | 0.05222 | 0.00074 | 0.01822 + | 0.03400 — | —1.82 % 1
PI 6 | 1.9162 | 3.568 | 0.23744 | 0.00995 | 0.21719 — | 0.02025 + | —0.86 % |
SA | 9 | 492592 | 11.16 | 0.14284 | 0.00219 | 0.10401 + | 0.03883 — | —1.02 % |
SE | 11 | 4.124 8.936 | 0.04857 | 0.00562 | 0.02649 — | 0.02208 + | —2.63 % |
SO | 6 | 1.73432 | 2.384 | 0.26272 | 0.02816 | 0.17101 — | 0.09171 + | —1.74 % =
TH | 4 | 2.03279 | 2.84 | 0.08367 | 0.00449 | 0.06389 — | 0.01978 — | —5.04 % |
VE | 5 | 4.60828 | 9.448 | 0.29345 | 0.00987 | 0.24043 — | 0.05302 + | —1.06 % |
VO | 12 | 5.64556 | 10.056 | 0.27564 | 0.00912 | 0.09697 + | 0.17867 — | —0.43 % *
WA | 11 | 4.71566 | 9.208 | 0.22526 | 0.00464 | 0.15405 — | 0.07121 + | —2.43 % 1
WD | 5 | 1.6652 | 2.664 | 0.06901 | 0.01461 | 0.04947 — | 0.01954 + | —0.66 % |
WI | 0 | 2.20816 | 2.936 | 0.07227 | 0.00938 | 0.02333 — | 0.04894 + | +5.86 % |

Table 23: Bias-variance decomposition for a type B cascading ensemble of two decision trees using
the entropy splitting criterion and the best d; € [0,12] for the first decision tree. Signs +, =, — and
A are referred to Tab. 19, and signs 1 and | are referred to Tab. 21.

first decision tree in a sequential ensemble to be a first approximation of the final classification, we
must ensure that such decision tree has enough leaves, even if it is not the one yielding the best

classification accuracy.

4.5.2 No additional info, mixed class

In the previous experiments, we have seen that the first decision tree must be large enough to provide
a good approximation for class probabilities which are expected to be used by the second decision
tree as new classification features to build more complex boundaries. In this case, no additional
information is computed and carried over from one decision tree to the next one in the sequence,
but only those vectors left unclassified by the first decision tree are used to train the second one,

namely type A progressive decision trees.

As we have done in the previous experiments, we will start by studying the effect of € and then,
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set | d | Tlog,(K)] | Nlog,(K)] + 1| [H] | H | [R] | [d]
CO | 12 3 4 3 3 10 20
GL 5 3 4 3 5 6
10 6 1 2 1 1 3 4
IR 3 2 3 2 2 2 3
LE 3 5 6 5 5 10 18
LI 8 1 2 1 1 4 6
LR 5 4 5 3 8 3 6
oP 3 4 5 4 4 7 11
PA 7 3 4 1 4 5 8
PE 9 4 5 4 4 8 13
PI 6 1 2 1 1 3 5
SA 9 3 4 3 4 6 12
SE 11 3 4 3 3 5 11
SO 6 1 2 1 1 3 4
TH 2 3 2 2 3 4
VE 5 2 3 2 2 6 11
VO 12 4 5 4 4 7 11
WA | 11 2 3 2 2 6 11
WD 5 1 2 1 1 3 4
WI 2 3 2 2 3 3

Table 24: Comparison of d to several criteria related to data set characteristics.

once the best ¢ had been determined for each data set, we will study the combination of both

parameters, d and € using the results obtained previously.

4.5.2.1 Complete decision trees

As in the previous experiment, we will start combining two large decision trees, but we expect both
trees to be smaller than those created in Sect. 4.5.1.2, as the first decision tree will be pruned back
due to the use of the mixed class, and the second decision tree will have to classify less samples.
Therefore, we grow a decision tree as usual but then we add a second pruning stage using the
new labelling rule, defined by Eq. (3.1), recursively joining all leaves labelled as mixed. The only
parameter here is €, which determines the new labelling rule.

In this first experiment, we want to compare the two basic types of progressive decision trees
without any fine-tuning. The basic idea is to see the relative importance of each parameter in the
ensemble of type B or type A, d and e respectively. Then we will study the best combination of both

parameters at the same time, mainly to study how classification accuracy may be improved (or, at
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least, maintained), when using smaller progressive decision trees.

As a first guess for €, we will use a value closer to the misclassification error achieved by a single
decision tree. Therefore, as misclassification error is a convex combination of the leaves partial
misclassification errors, all those leaves making too many mistakes will be labelled as mixed and
joined together. This setup allows us to study the proportion of samples falling in leaves which
perform better than average (that is, the percentage of samples classified by the first decision tree),

thus separating samples in two categories: better than average and worse than average. Tab. 25

shows the results for this experiment.

set R d L o} B \% AL
(610 5.652 9.344 | 0.24323 | 0.00403 | 0.17326 — | 0.06997 + | —0.41 % 1
GL | 0.72235 | 0.85714 | 0.35887 | 0.02927 | 0.28451 = | 0.07436 + | +0.25 % 1
IO | 1.44582 | 2.12329 | 0.11508 | 0.00609 | 0.09573 — | 0.01935 + | +6.72 % 1
IR | 1.26153 | 2.05085 | 0.04800 | 0.00590 | 0.02353 = | 0.02447 + | +13.7 % 1
LE | 6.46263 | 9.096 | 0.16680 | 0.00135 | 0.07643 — | 0.09037 + | —0.13 % 1
LI 2.05682 | 3.06452 | 0.34254 | 0.01349 | 0.26783 — | 0.07471 + | +0.82 % *
LR | 1.03729 | 1.28448 | 0.16764 | 0.00816 | 0.13559 — | 0.03205 — | —0.72 % |
OP | 3.94312 | 5.424 | 0.12030 | 0.00299 | 0.04376 — | 0.07654 + | —0.88 % 1
PA | 3.78171 | 6.672 | 0.03337 | 0.00057 | 0.02555 — | 0.00782 + | +2.27 % T
PE | 1.94782 | 2.76613 | 0.05290 | 0.00087 | 0.01735 — | 0.03555 + | —0.55 % 1
PI | 2.29357 | 3.56637 | 0.24022 | 0.00835 | 0.21406 — | 0.02616 + | +0.30 % 1
SA | 5.2186 8.704 | 0.14272 | 0.00239 | 0.10121 — | 0.04151 + | —1.10 % |
SE | 2.44838 | 3.54808 | 0.05016 | 0.00543 | 0.02805 — | 0.02211 + | +0.56 % 1
SO | 1.54014 | 2.29412 | 0.26933 | 0.02603 | 0.18841 — | 0.08092 + | +0.74 % 1
TH | 0.86621 | 1.05263 | 0.09022 | 0.00503 | 0.06944 + | 0.02078 — | +2.39 % 1
VE | 2.86548 | 4.31683 | 0.29918 | 0.01028 | 0.25958 + | 0.03960 — | +0.87 % 1
VO | 1.57001 | 1.70476 | 0.27619 | 0.00777 | 0.09212 — | 0.18407 + | —0.23 % 1
WA 2.302 | 3.39831 | 0.22941 | 0.00359 | 0.16224 + | 0.06717 — | —0.63 % 1
WD | 1.13121 | 1.32836 | 0.07192 | 0.01487 | 0.05053 + | 0.02139 + | +3.53 % *
WI | 1.14018 | 1.32692 | 0.07320 | 0.00993 | 0.03000 + | 0.04320 + | +7.22 % *

Table 25: Bias-variance decomposition for a type A cascading ensemble of two decision trees using
the entropy splitting criterion and € & L for the first decision tree. Signs +, =, — and A are referred
to Tab. 19, and signs 1 and | are referred to Tab. 21.

Notice that with this configuration for e, classification accuracy is degraded for 12 out of 20 data
sets, and that type B progressive decision trees outperform this ensemble (type A) in 18 out of 20
data sets. As e is the only parameter we have to tune, it is obvious that using € = Lisa simple
but not a good criterion. In all cases but one (the waveform data set), an increase of classification

accuracy is due to a reduction of bias.
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Tab. 26 shows the percentage of classified samples (Pr,) and the classification accuracy of the
first decision tree (L;) in the cascading ensemble. The characteristics of the first decision tree (R

and d,) are also shown.

set € R, d, Pr, L,
CO | 0.25 | 9.55809 | 19.736 | 0.95701 | 0.23387 |
GL | 0.36 | 3.97253 | 5.952 | 0.98930 | 0.35649 |
10 | 0.11 | 2.42933 | 3.384 | 0.90503 | 0.09466 |
IR | 0.05 | 1.80073 | 2.584 | 0.86729 | 0.03411 |
LE | 0.17 | 9.90946 | 17.904 | 0.97781 | 0.15513 |
LI 0.35 | 3.38744 | 5.744 | 0.92237 | 0.34045 1
LR | 0.18 | 2.83643 | 5.328 | 0.92574 | 0.14458 |
OP | 0.12 | 6.66117 | 10.336 | 0.95914 | 0.10583 |
PA | 0.04 | 4.74536 | 7.624 | 0.91485 | 0.01813 |
PE | 0.05 | 7.30473 | 12.408 | 0.98908 | 0.05024 |
PI 0.24 | 2.33497 | 4.472 | 0.70791 | 0.23783 |
SA | 0.15 | 5.55941 | 11.28 | 0.88077 | 0.10983 |
SE | 0.05 | 4.36087 | 10.144 | 0.96127 | 0.04270 |
SO | 0.28 | 2.24472 | 3.256 | 0.95281 | 0.26495 |
TH | 0.09 | 2.35748 | 3.008 | 0.96711 | 0.08604 |
VE | 0.30 | 5.22411 | 10.016 | 0.91072 | 0.27725 |
VO | 0.28 | 6.67227 10.4 0.98158 | 0.27109 |
WA | 0.23 | 5.24605 | 10.104 | 0.93650 | 0.22051 |
WD | 0.07 | 2.10387 | 3.552 | 0.95583 | 0.06456 |
WI | 0.07 | 2.25071 | 2.976 | 0.91493 | 0.06030 |

Table 26: Percentage of classified vectors and classification accuracy for the first decision tree in
Tab. 25. Signs 1 and | are referred to Tab. 19.

Notice that Pr, is close to one for most data sets, showing that the first decision tree is big and
complex enough to classify all the input data at the given accuracy threshold. As Ly is a convex
combination of the partial misclassification error at each leaf, a large Pr, and a ﬁl close to € means
that almost all leaves are pure enough (with respect to €) and that only a few leaves remain too
impure. On the other hand, a few data sets (iris, pima and sat) show lower values for Pr,, due to
the fact that the classification problem may be easily broken in an easy problem for the majority
of the input samples, and a more difficult one for the rest. Notice also that 77 could be used as
a partial classification system with the reject option (Kittler et al., 1998), increasing classification
accuracy by reducing the number of classified samples.

Therefore, we repeat the same experiment using a lower value for €, we could use € ~ ﬁ/ 2, for

instance. The basic idea is to find a simple criterion related to ﬁ, if possible. We use the factor 1/2
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because it is directly related to the error generalization bounds, as we will describe in Sect. 5.1.1.

set R d L i B v AL
CO | 7.38558 | 13.304 | 0.24286 | 0.00412 | 0.16833 — | 0.07453 + | —0.56 % 1
GL | 1.84396 | 2.44186 | 0.36259 | 0.03222 | 0.27042 — | 0.09217 + | +1.29 % 1
10 | 1.39676 | 1.93878 | 0.11337 | 0.00623 | 0.09231 — | 0.02106 + | +5.14 % 1
IR | 1.13892 | 1.60825 | 0.04800 | 0.00436 | 0.02353 = | 0.02447 + | +13.7 % 1
LE | 6.78746 | 10.008 | 0.16724 | 0.00138 | 0.07608 — | 0.09116 + | +0.13% |
LI | 1.91157 | 2.91818 | 0.34484 | 0.01483 | 0.25565 — | 0.08919 + | +1.50 % 1
LR | 1.49141 | 1.89167 | 0.16800 | 0.00823 | 0.13220 — | 0.03580 + | —0.51 % |
OP | 4.30877 | 6.16 | 0.12026 | 0.00321 | 0.04344 — | 0.07682 + | —0.91 % 1
PA | 3.721 | 6.496 | 0.03313 | 0.00069 | 0.02555 — | 0.00758 + | +1.53 % 1
PE | 2.22903 | 3.27419 | 0.05294 | 0.00084 | 0.01774 — | 0.03520 + | —0.47 % 1
PI | 1.87514 | 3.032 | 0.23891 | 0.01063 | 0.21484 — | 0.02407 + | —0.47 % 1
SA | 52385 | 9.752 | 0.14254 | 0.00230 | 0.09832 — | 0.04422 + | —1.23 % |
SE | 2.65425 | 4.04545 | 0.05006 | 0.00521 | 0.02597 — | 0.02409 + | +0.36 % 1
SO | 1.20581 | 1.71765 | 0.27444 | 0.02940 | 0.18841 — | 0.08603 + | +2.65 % 1
TH | 0.85465 | 1.01667 | 0.09100 | 0.00558 | 0.06944 + | 0.02156 + | +3.28 % 1
VE | 3.76781 | 6.18333 | 0.29813 | 0.00952 | 0.26028 + | 0.03785 — | +0.52 % 1
VO | 1.8132 | 2.16216 | 0.27649 | 0.00807 | 0.09273 — | 0.18376 + | —0.12% 1
WA | 3.74589 | 6.29839 | 0.22713 | 0.00342 | 0.15644 — | 0.07069 + | —1.62 % 1
WD | 1.1465 | 1.57143 | 0.07259 | 0.01468 | 0.04947 — | 0.02312 + | +4.49 % 1
WI | 1.28001 | 1.6875 | 0.07013 | 0.01025 | 0.02333 — | 0.04680 + | +2.72 % |

Table 27: Bias-variance decomposition for a type A cascading ensemble of two decision trees using
the entropy splitting criterion and € &~ L/2 for the first decision tree. Signs +, =, — and A are
referred to Tab. 19, and signs 1 and | are referred to Tab. 21.

In this case, results (shown in Tab. 21) are even worse than in the previous experiment. Variance

is always worse (but in one case, the vehicle data set) than with a single decision tree, while bias is

usually reduced except for a few data sets.

Notice that in this case the percentage of classified sample is much lower for some data sets,

and both R and d are also smaller. Nevertheless, L shows a more unpredictable behavior, and it is
reduced for some data sets and dramatically increased for other. Tab. 28 shows the results for the
first decision tree in the ensemble. Notice that in this case, ﬁl is larger than e for most data sets (17
out of 20), showing that the setup € ~ ﬁ/ 2 is too restrictive, as it is impossible to use such criterion
as a simple way to separate leaves in two classes. This is directly related to the concepts of margin
and generalization error that we will study in Sect. 5.1.1, where we will show that obtaining a good
generalization error performance is directly related to assuming a certain error when classifying the

training set. Therefore, we will proceed as with type B progressive decision trees, trying to find the
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set € Ry dy Pr, [Aq
CO | 0.13 | 9.51216 | 19.712 | 0.79415 | 0.20387 |
GL | 0.18 | 3.95412 | 5.952 | 0.89645 | 0.34780 |
I0 | 0.06 | 2.19395 | 3.128 | 0.62366 | 0.13516 1
IR | 0.03 | 1.66464 | 2.368 | 0.69098 | 0.02328 |
LE | 0.09 | 9.90754 | 17.904 | 0.96501 | 0.15208 |
LT | 0.18 | 3.11645 | 5.376 | 0.54010 | 0.39416 1
LR | 0.09 | 2.78527 | 5.216 | 0.85293 | 0.13162 |
OP | 0.06 | 6.65007 | 10.336 | 0.92811 | 0.10136 |
PA | 0.02 | 4.69012 | 7.592 | 0.85998 | 0.01932 |
PE | 0.03 | 7.3028 | 12.408 | 0.97753 | 0.04943 |
PI | 0.12 | 1.89491 | 3.712 | 0.25378 | 0.43186 1
SA | 0.08 | 5.44146 | 11.128 | 0.72265 | 0.08546 |
SE | 0.06 | 4.34446 | 10.144 | 0.91918 | 0.03994 |
SO | 0.14 | 2.14872 | 3.16 | 0.71641 | 0.32787 1
TH | 0.05 | 2.35748 | 3.008 | 0.93411 | 0.08451 |
VE | 0.15 | 5.1506 | 9.928 | 0.74979 | 0.24260 |
VO | 0.14 | 6.67207 | 10.4 | 0.97268 | 0.26891 |
WA | 0.12 | 5.14215 | 9.896 | 0.74776 | 0.19200 |
WD | 0.04 | 2.07384 | 3.488 | 0.86337 | 0.07803 1
WI | 0.04 | 2.19708 | 2.936 | 0.82040 | 0.08277 1

Table 28: Percentage of classified vectors and classification accuracy for the first decision tree in
Tab. 27. Signs 1 and | are referred to Tab. 19.

best € for each data set by exhaustive search in the (0,1/2) range.

Varying € from 0 to 1/2 can be efficiently done starting with the complete decision tree built as
usual, once the pruning algorithm has been applied, and then using the new labelling rule, starting
with € = 1/2 and then reducing it and pruning back all mixed leaves at the same time, so there is
no need to repeat the training process for each value of e.

Notice that, for a few data sets, both R and d are zero, which means that a single decision tree
outperforms any ensemble of two type A progressive decision trees. In such case, the results are
the same than those shown by Tab. 19 as only one large decision tree is used. Type A progressive
decision trees outperform classical decision trees in 14 out of 20 data sets, but they obtain poorer
results than type B progressive decision trees. Only in two data sets (letter and sat), type A
progressive decision trees obtained a better classification accuracy.

Tab. 30 shows the characteristics of the first decision tree and the e used to build such decision
tree. For those data sets where was not possible to build a type A progressive decision tree, Pr, = 1

is shown meaning that a complete decision tree was built.
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set R d L o} B \% AL
CO | 7.6571 | 14.136 | 0.24204 | 0.00347 | 0.16524 — | 0.07680 + | —0.89 % %
GL 0 0 0.35797 | 0.02940 | 0.28451 = | 0.07346 = 0.0%
10 1.5445 | 1.99174 | 0.10762 | 0.00532 | 0.08718 — | 0.02044 + | —0.19 % *
IR 0 0 0.04220 | 0.00675 | 0.02353 = | 0.01867 = 0.0%
LE | 6.33666 | 8.832 | 0.16664 | 0.00145 | 0.07677 — | 0.08987 — | —0.23 % 1
LI | 2.21752 | 3.43902 | 0.33412 | 0.01339 | 0.26609 — | 0.06803 + | —1.66 % 1
LR | 1.23867 | 1.56667 | 0.16705 | 0.00884 | 0.13220 — | 0.03485 + | —1.07 % |
OP | 4.67565 | 6.992 | 0.11988 | 0.00360 | 0.04024 — | 0.07964 + | —1.23 % 1
PA 0 0 0.03263 | 0.00118 | 0.02675 = | 0.00588 = 0.0 %
PE | 1.80618 | 2.42742 | 0.05284 | 0.00092 | 0.01774 — | 0.03510 + | —0.66 % 1
PI | 2.15572 | 3.45161 | 0.23866 | 0.00830 | 0.21563 — | 0.02303 + | —0.35 % 1
SA | 5.25638 | 9.136 | 0.14230 | 0.00276 | 0.09842 — | 0.04388 + | —1.39 % |
SE | 2.61396 | 3.94393 | 0.04985 | 0.00556 | 0.02623 — | 0.02362 + | —0.06 % 1
SO | 1.34008 | 1.73148 | 0.26690 | 0.02831 | 0.17681 — | 0.09009 + | —0.17 % 1
TH 0 0 0.08811 | 0.00403 | 0.06667 = | 0.02144 = 0.0 %
VE | 3.90313 | 6.66129 | 0.29623 | 0.00884 | 0.23901 — | 0.05722 + | —0.12 % 1
VO | 1.67586 | 1.87037 | 0.27605 | 0.00780 | 0.09455 + | 0.18150 — | —0.28 % *
WA | 3.9257 | 6.60484 | 0.22673 | 0.00426 | 0.15644 — | 0.07029 + | —1.79 % *
WD 0 0 0.06947 | 0.01441 | 0.05052 = | 0.01895 = 0.0%
WI 0 0 0.06827 | 0.01014 | 0.02667 = | 0.04160 = 0.0%
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Table 29: Bias-variance decomposition for a type A cascading ensemble of two decision trees using
the entropy splitting criterion and the best € € (0,1/2) for the first decision tree. Signs +, =, — and
A are referred to Tab. 19, and signs 1 and | are referred to Tab. 21.

This experiment shows the difficulty of finding an appropriate value for € for a given data set. It
seems completely unrelated to L and it probably strongly depends on data set intrinsic characteris-
tics. This is mainly caused by the too simplistic new labelling rule, which uses the same ¢ across all
the leaves of the decision tree without taking into account a priori class probabilities or any other
criteria related to the intrinsic characteristics of the data set. Furthermore, Pr, is also very high for
some data sets, which partially explains why type A progressive decision trees do not perform as well
as expected: it is very difficult to build a good first decision tree using such a simple labelling rule.
The number of classes and the uneven class distribution should be taken into account, adapting the
labelling rule to ensure all classes are present in the final decision tree. This is directly related to
the definition of margin, which is only properly defined for K = 2, and not for K > 2.

Regarding the cost of building and using such classifiers, there is only a remarkable improvement
in those data sets with Pr, small enough. As an estimate of both training and exploitation costs,

we can compute the expected number of questions needed to classify a sample. For a classical
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set € Ry dy Pr, [Aq
CO | 0.10 | 9.48118 | 19.704 | 0.72800 | 0.19447 |
GL | 0.50 | 3.96833 | 5.952 | 1.00000 | 0.35797 —
IO | 0.01 | 1.81538 | 2.728 | 0.21149 | 0.38515 1
IR | 0.50 | 1.80073 | 2.584 | 1.00000 | 0.04220 —
LE | 0.23 | 9.90987 | 17.904 | 0.98092 | 0.15625 |
LI | 0.04 | 2.64859 | 4.704 | 0.27826 | 0.55620 1
LR | 0.14 | 2.81544 | 5.288 | 0.89785 | 0.13874 |
OP | 0.02 | 6.60534 | 10.336 | 0.82205 | 0.09927 |
PA | 0.50 | 4.78741 | 7.84 | 1.00000 | 0.03263 —
PE | 0.07 | 7.30509 | 12.408 | 0.99187 | 0.05051 |
PI | 0.17 | 2.05722 | 4.008 | 0.42269 | 0.35097 1
SA | 0.12 | 5.52563 | 11.224 | 0.83640 | 0.10164 |
SE | 0.03 | 4.34968 | 10.144 | 0.93188 | 0.04092 |
SO | 0.02 | 1.8758 | 2.784 | 0.40209 | 0.45965 1
TH | 0.50 | 2.35748 | 3.008 | 1.00000 | 0.08811 —
VE | 0.02 | 4.73396 9.6 0.38599 | 0.28234 |
VO | 0.20 | 6.67227 | 10.4 | 0.97845 | 0.27021 |
WA | 0.10 | 5.09988 | 9.84 | 0.70140 | 0.18871 |
WD | 0.50 | 2.10501 | 3.568 | 1.00000 | 0.06947 —
WI | 0.50 | 2.25573 | 2.984 | 1.00000 | 0.06827 —

Table 30: Percentage of classified vectors and classification accuracy for the first decision tree in
Tab. 29. Signs 1 and | are referred to Tab. 19.

decision tree, such number is just R;. For a type B progressive decision tree built using two decision
trees, it is Ry + Ro, and for a type A progressive decision tree using also two decision trees it is
R} + (1 — Pr,)R), although in this case R} is not the same as in the previous ensembles as the first
decision tree has been pruned back by using the new labelling rule and R} is also different. Tab. 31
shows the classification cost estimates for the three types of ensembles.

Notice that type A progressive decision trees do not increase classification cost too much, and
they are much less computationally expensive than type B progressive decision trees. Although not
shown in Tab. 31, type B progressive decision trees use K + 2 additional classification features,

which obviously also increases training cost and tree internal representation size.

4.5.2.2 Limited depth decision trees

In this experiment we study the effect of limiting the maximum depth of the first decision tree,

trying to force such decision tree to be smaller and, therefore, to classify a smaller percentage of



4.5. CASCADING DECISION TREES 109

set single | type B | type A
CO | 9.56141 | 16.57122 | 11.56391
GL | 3.96833 | 7.47859 —
I0 | 247415 | 4.68891 | 3.03323
IR | 1.80073 | 3.58743 —
LE | 9.91032 | 18.92981 | 10.03077
LI | 3.38671 | 5.93295 | 4.24906
LR | 2.84827 | 5.39462 | 2.94197
OP | 6.66539 | 12.54571 | 7.43737
PA | 4.78741 | 8.48855 —
PE | 7.30555 13.09 7.31977
PI | 2.44464 | 4.19881 | 3.30174
SA | 5.60507 | 10.42098 | 6.38557
SE | 4.37432 | 8.39405 | 4.52774
SO | 2.24472 | 4.14837 | 2.67705
TH | 2.35748 | 4.37022 —
VE | 5.2307 | 9.21647 | 7.13052
VO | 6.67239 | 12.32228 | 6.70838
WA | 5.25705 | 10.58855 | 6.27209
WD | 210501 | 3.70648 —
WI | 2.25573 | 4.24564 —

Table 31: Estimated classification cost for a classical decision tree, a type B progressive decision
tree (two decision trees) and a type A progressive decision tree (two decision trees).

input samples. Two parameters need to be fixed for this experiment: the maximum depth of the
first tree dy, and €, which determines the new labeling rule. Using the knowledge acquired from
the previous experiments, we could use the best d; as found in Tab. 23 and the best € € (0,1/2)
could be chosen, so we could compare it to Tab. 29, in order to see whether it is possible to improve
classification accuracy by building a smaller first decision tree. Nevertheless, as we want our first
decision tree to be a good approximation of a classical decision tree, we will force d; to be large
enough so the resulting decision tree has enough leaves to represent all classes in the training set.
Tab. 32 shows the results obtained for this experiment using the setup described above.

Notice that it is very difficult to establish an appropriate pair of d and e for each data set.
Furthermore, varying d has an effect on €, which must be sometimes larger and sometimes smaller.
Only in 7 out of 20 data sets limiting the maximum depth of the first decision tree in the type A
ensemble produces an increase in classification accuracy. Only in three cases (iris, thyroid and wdbc)
is not possible to build a type A progressive decision tree.

Tab. 33 shows the characteristics for the first decision tree in the type A progressive ensemble.
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set R d L o B vV AL
CO | 8.87792 | 17.352 | 0.24221 | 0.00419 | 0.16905 — | 0.07316 + | —0.82 % 1
GL | 1.57049 | 1.96471 | 0.36608 | 0.03181 | 0.29577 + | 0.07031 — | +2.27 % ©
IO | 1.59696 | 2.07258 | 0.10674 | 0.00505 | 0.08718 — | 0.01956 + | —1.01 % |
IR 0 0 0.04345 | 0.00697 | 0.02353 = | 0.01992 + | +2.96 % *
LE 10.045 | 18.048 | 0.16606 | 0.00147 | 0.07365 — | 0.09241 — | —0.57 % |
LI | 2.44208 | 3.8629 | 0.33350 | 0.01461 | 0.26609 — | 0.06741 + | —1.84 % ©
LR | 1.54715 2 0.16800 | 0.00929 | 0.13785 — | 0.03015 — | —0.51 % 1
OP | 6.64992 10.6 0.11873 | 0.00428 | 0.03938 — | 0.07935 + | —2.18 % |
PA | 3.02766 | 4.848 | 0.03257 | 0.00096 | 0.02599 — | 0.00658 + | —0.18 % |
PE | 5.51657 | 8.464 | 0.05325 | 0.00045 | 0.01790 — | 0.03535 + | +0.11 % 1
PI | 2.29326 | 3.808 | 0.23816 | 0.00980 | 0.21406 — | 0.02410 + | —0.56 % |
SA | 5.70043 | 9.848 | 0.14243 | 0.00260 | 0.09879 — | 0.04364 + | —1.30 % 1
SE | 2.65171 | 3.90654 | 0.04987 | 0.00544 | 0.02831 — | 0.02156 + | —0.02 % 1
SO | 1.33696 | 1.72477 | 0.26690 | 0.02831 | 0.17681 — | 0.09009 + | —0.17 % —
TH 0 0 0.08856 | 0.00327 | 0.06667 = | 0.02189 + | +0.51 % 1
VE | 4.89176 | 8.736 | 0.29617 | 0.00738 | 0.24326 — | 0.05291 + | —0.14 % |
VO | 1.68975 | 1.88889 | 0.27615 | 0.00775 | 0.09454 = | 0.18161 — | —0.24 % ©
WA | 3.95514 | 6.712 | 0.22649 | 0.00500 | 0.15664 — | 0.06984 + | —1.90 % |
WD 0 0 0.07048 | 0.01424 | 0.05158 + | 0.01890 — | +1.45 % *
WI | 1.68617 | 2.288 | 0.07200 | 0.00695 | 0.02667 = | 0.04533 + | +5.46 % 1

Table 32: Bias-variance decomposition for a type A cascading ensemble of two decision trees using
the entropy splitting criterion, a limited maximum depth and the best € € (0,1/2) for the first
decision tree. Signs 4+, =, — and A are referred to Tab. 19, and signs 1 and | to Tab. 29.

The maximum depth d for each data set is also shown.

In this case, the first decision tree is smaller than those computed in Tab. 30, due to the imposed
constrain on d. To sum up, type A progressive decision trees may be used as accurate partial
classification systems, reducing also classification cost when the maximum depth is limited. Both
Pr, and Ly are also reduced (but for a few data sets), as smaller decision trees can capture only a
few boundaries between classes. In fact, when € is too small, as for the letter data set, the resulting
first decision tree does only remove elements from a few classes. As mentioned before, this is also

related to the poor definition of margin when K > 2.

4.5.3 Additional info, mixed class

Finally, in this section we combine the two basic types of cascading ensembles, A and B, into a

new type C, trying to combine the better characteristics of each type: bias reduction by using new
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SW

set € Ry dq Pr, Iy

0.11 | 8.79391 12 0.62223 | 0.17325 |
0.28 | 3.73354 | 4.856 | 0.92890 | 0.35697 |
0.01 | 1.73368 | 2.544 | 0.17559 | 0.38508 1
0.50 | 1.76266 2.32 1.00000 | 0.04345 1
0.01 | 1.90843 4.96 0.03671 | 0.01643 |
0.04 | 2.56428 | 4.088 | 0.25447 | 0.54999 1
0.15 | 2.66264 | 4.488 | 0.86884 | 0.13173 |
0.05 | 1.82719 | 3.728 | 0.13394 | 0.08373 |
0.16 | 4.60144 6.44 0.97645 | 0.02627 |
0.01 | 6.90807 9 0.82517 | 0.04369 |
0.15 | 1.8287 3.112 | 0.32775 | 0.35448 1
0.15 | 5.45159 | 8.864 | 0.85322 | 0.10341 |
0.04 | 4.3513 9.856 | 0.94900 | 0.04118 |
0.02 | 1.87563 | 2.776 | 0.40186 | 0.45960 1
TH | 4 | 0.50 | 2.31424 | 2.904 | 1.00000 | 0.08856 1
VE 5 1 0.04 | 2.95956 | 4.416 | 0.21348 | 0.19752 |
VO | 12 | 0.20 | 6.66624 | 10.352 | 0.97816 | 0.27026 |
WA | 11 | 0.11 | 5.14802 | 9.264 | 0.72825 | 0.18937 |
WD | 5 | 0.44 | 2.04661 | 3.368 | 0.99945 | 0.07044 1
WI 2 1 0.02 | 1.35803 1.56 0.34240 | 0.24036 1
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Table 33: Percentage of classified vectors and classification accuracy for the first decision tree in
Tab. 32. Signs 1 and | are referred to Tab. 19.

classification additional features, and variance reduction by using smaller decision trees due to the
use of smaller training sets. This also might reduce both classification and exploitation costs as only
small decision trees are used as the first stage and then reduced training sets are used to build the
second stage (in a two stage sequential cascading ensemble).

For the first experiment of this section, we use the simplest criteria: we set d = [d] from Tab.
19 and € ~ L. The basic idea is to build a classical decision tree and then use the computed decision
tree results as the criteria for determining d and e. Tab. 34 shows the results obtained for this
experiment.

Once again, the gain in classification accuracy is caused by a reduction of the bias component,
while variance is always increased but for two data sets (iris and wavelet). Without any parameter
fine tuning (for each data set we used fixed values for both d and € estimated from a classical decision
tree), type C progressive decision trees perform slightly better than type A progressive decision trees,
as expected.

Tab. 35 shows the characteristics for the first decision tree in the type C progressive ensemble.
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set R d L o B 4 AL
CO | 6.64514 | 15.424 | 0.24309 | 0.00394 | 0.16738 — | 0.07571 + | —0.46 %
GL | 2.89453 | 4.16129 | 0.36631 | 0.02747 | 0.26197 — | 0.10434 + | +2.33 %
I0 | 1.74812 | 2.28 | 0.10585 | 0.00597 | 0.08718 — | 0.01867 + | —1.84 %
IR | 1.17505 | 1.70796 | 0.04737 | 0.00617 | 0.03137 + | 0.01600 — | +12.3 %
LE | 6.21132 | 15.256 | 0.16681 | 0.00167 | 0.07544 — | 0.09137 + | —0.13 %
LI | 274372 | 4.552 | 0.33586 | 0.01430 | 0.26087 — | 0.07499 + | —1.15 %
LR | 1.99909 | 3.52 | 0.17162 | 0.00690 | 0.13446 — | 0.03716 + | +1.63 %
OP | 442625 | 7.944 | 0.11956 | 0.00315 | 0.04034 — | 0.07922 + | —1.49 %
PA | 3.10464 | 6.504 | 0.03354 | 0.00131 | 0.02566 — | 0.00788 + | +2.79 %
PE | 2.94396 | 5.872 | 0.05257 | 0.00073 | 0.01730 — | 0.03527 + | —1.17 %
PI | 22542 | 4.272 | 0.23891 | 0.01018 | 0.21485 — | 0.02406 + | —0.25 %
SA | 4.66852 | 10.224 | 0.14368 | 0.00248 | 0.09898 — | 0.04470 + | —0.44 %
SE | 2.84235 | 4.96639 | 0.05008 | 0.00554 | 0.02520 — | 0.02488 + | +0.40 %
SO | 142814 | 19 | 0.26910 | 0.02879 | 0.18551 — | 0.08359 + | +0.65 %
TH | 1.31032 | 1.71429 | 0.09000 | 0.00457 | 0.06667 = | 0.02333 + | +2.15 %
VE | 3.59676 | 6.696 | 0.29470 | 0.00653 | 0.24114 — | 0.05356 + | —0.64 %
VO | 2.6545 | 3.74167 | 0.27598 | 0.00835 | 0.09333 — | 0.18265 + | —0.30 %
WA | 412144 | 8.056 | 0.22901 | 0.00449 | 0.16024 — | 0.06877 — | —0.81 %
WD | 1.3261 | 2.03306 | 0.07107 | 0.01433 | 0.04631 — | 0.02476 + | +2.30 %
WI | 1.37422 | 1.79 | 0.07040 | 0.00857 | 0.02000 — | 0.05040 + | +3.12 %

Table 34: Bias-variance decomposition for a type C cascading ensemble of two decision trees using
the entropy splitting criterion. Signs +, =, — and A are referred to Tab. 19.

The maximum depth d and the confidence threshold e used for each data set are also shown.

Notice that some data sets show a very bizarre behavior, as the pima data set, for instance.
The value Ry < 1 shows that degenerated decision trees (a single leaf labelled as mixed) are being
built, probably caused by a bad choice of . Only in five data sets a small first decision tree (in
comparison with Tab. 19) is built, showing that d and e must be fine tuned in order to build a good
first decision tree. Furthermore, building a small decision tree with Ly < e does not ensure that the
second decision tree, even using additional classification features, will perform better.

To sum up, type C progressive decision trees seem to be a compromise between classification cost
and classification accuracy, splitting the classification problem in a sequence of simpler problems.
Nevertheless, parameters (d and €) become critical as they completely determine the structure of the
final progressive decision tree, and it is difficult to determine a priori good values for such parameters.
Furthermore, the amount of additional information which is carried from one stage to the next is
also an important subject of study, as it should be reduced accordingly to the percentage of samples

classified by the first decision tree in order to minimize the curse of dimensionality problem.
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€ R1 d1 f)T1 [Aq
CO | 20 | 0.25 | 9.32212 | 18.704 | 0.25881 | 0.28407 1
GL | 6 | 0.36 | 3.6932 | 5.384 | 0.51144 | 0.34424 |
I0 4 | 0.11 | 1.48462 | 2.048 | 0.11022 | 0.40820 1
IR 3 | 0.05 | 1.58836 | 2.04 | 0.64502 | 0.01987 |
LE | 18| 0.17 | 9.90019 | 17.56 | 0.81441 | 0.16602 |
LI 6 | 0.35 | 1.9791 | 2.952 | 0.13969 | 0.59606 1
LR | 6 | 0.18 | 2.22569 | 4.328 | 0.21356 | 0.38343 1
OP | 11| 0.12 | 6.51256 | 10.248 | 0.54053 | 0.13457 1
PA | 8 | 0.04 | 4.40748 | 6.696 | 0.08375 | 0.14134 1
PE | 13 | 0.05 | 7.26876 | 12.168 | 0.73206 | 0.05819 1
PI 5 | 0.24 | 0.90831 | 1.544 | 0.02744 | 0.70596 1
SA | 12| 0.15 | 5.16731 | 10.568 | 0.18450 | 0.15175 1
SE | 11 | 0.05 | 4.3056 | 9.856 | 0.77392 | 0.03691 |
SO | 4 | 028 | 1.7467 | 2.424 | 0.32754 | 0.46167 1
TH | 4 | 0.09 | 2.20772 2.8 0.60633 | 0.10918 1
VE |11 | 0.30 | 4.63027 | 8.552 | 0.33163 | 0.30592 1
VO | 11 | 0.28 | 6.65075 | 10.184 | 0.88924 | 0.26718 |
WA | 11 | 0.23 | 4.61037 | 8.96 | 0.14553 | 0.32017 1
WD | 4 | 0.07 | 1.86826 | 3.032 | 0.36080 | 0.20037 1
WI | 3 | 0.07 | 1.97342 | 2.544 | 0.60627 | 0.14176 1

SW

set

Table 35: Percentage of classified vectors and classification accuracy for the first decision tree in
Tab. 34. Signs 1 and | are referred to Tab. 19.

4.6 Summary

We summarize in this section the results obtained throughout this chapter which give support to our
ensemble. The most important experiments describing the generalization of the cascading paradigm
may be found in (Minguillon and Pujol, submitted). The main conclusions that may be drawn from

all the empirical evaluation carried out in this chapter are:

1. No splitting criterion is better than the rest for all data sets, although both entropy and R-
norm (R = 1/2) perform slightly better. On the contrary, there is a clear loser, the Bayes error
criterion. Furthermore, both entropy and R-norm (R = 1/2) seem to produce decision trees
closer to those a human expert would create, which may be useful for internal data structure
inspection. The twoing criterion did not perform as well as expected, either, even when the

number of classes is large.

2. For data sets with a large baseline error, the k-NN classifier always outperforms a classifier
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based on decision trees. Furthermore, in all of these data sets, the contribution of variance to
the estimated error is larger than the contribution of bias, which is not the common behavior
for decision trees, where bias is usually much larger than variance. This shows the different
behavior from a bias-variance point of view of the k-NN classifier and decision trees, which
make them suitable for creating a cascading ensemble or even a simple voting scheme for

improving classification performance.

. The bias-variance decomposition is a powerful tool to compare different kinds of classifiers, and

it gives useful information about their respective behaviors. As classifier combination schemes
rely on combining different classifiers, this difference may be measured using the bias-variance

decomposition.

. Type B progressive decision trees are an effective tool for increasing classification accuracy,

mainly by fighting against bias, due to the fact that more complex boundaries are built when
the new additional classification features are used by the next decision tree in the ensemble.
Type A progressive decision trees allow us to build accurate partial classification systems,
by reducing the percentage of classified samples, and breaking the classification problem in
two (or more) parts: an easy problem which is solved, and a more difficult problem which
needs more accurate classifiers to be solved. Finally, type C progressive decision trees try to
combine partial classification with building more complex classifiers, so classification accuracy
is increased with respect to type A progressive decision trees but with a lower cost than type B
progressive decision trees. Nevertheless, the use of orthogonal hyperplanes is the main reason
for improving bias, by building more complex boundaries with the additional classification

features.

. Maybe the parameters fine-tuning process is the weakest part of our analysis. It is very difficult

to infer any good a priori values for d and €, and only ¢ seems to be easy to bound. Two or
three decision trees seem to be enough to build progressive decision trees. The larger the data
set, the larger ¢ can be, although the need to obtain different classifiers under a bias-variance
decomposition approach makes ¢ to be bounded, so it is unlikely to use more than five or six
decision trees, even for large data sets. This subject is still an elusive goal and more exhaustive
testing is needed in order to find a relationship between d and €, and some unknown intrinsic

characteristics of the training set.

. Experiments also show that the new labelling rule is too simplistic, as it does not take into

account any criteria related to the number of classes or class distribution. The definition of
margin, related to two-class classification problems, it is too poor to represent all the possible
situations at each leaf when the number of classes is larger than two. This is obviously a

further research subject, too.
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7. Regarding the cost issue, type B progressive decision trees become very expensive for data sets
with a large number of classes, as K + 2 new additional classification features are added at
each stage. Increasing the number of decision trees in the ensemble reduces misclassification
error but both training and exploitation costs increase dramatically. On the other hand, type
A progressive decision trees are also more computationally expensive than classical decision
trees, but only in a small amount. Only for really large data sets, type A progressive decision
trees may be used to build complex classification systems with a reduced cost. Type C pro-
gressive decision trees are a compromise between accuracy and classification cost, as they take

advantage of the characteristics of each basic type.
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Chapter 5

A theoretical framework

Mathématiques: Desséchent le coeur

Gustave Flaubert, Le Dictionnaire des Idées Regues

In the previous chapters we have discussed several methods to build and to ensemble progressive
classification trees using empirical criteria obtained from experimentation. All these methods lack
of a formal framework that could explain why progressive classification trees (may) perform better
than classical classification trees under some (unknown) conditions. Furthermore, such algorithms
need to define several parameters (number of trees, mixed label threshold, tree maximum depth,
and so) which make them difficult to use in an automated learning environment. Although decision
tree design is a very interactive task involving data mining expertise, it would be interesting to have
some criteria to know in advance when to use progressive decision trees instead of classical decision
trees, and a basic set of guidelines for determining the parameters involved in the training process.

In this chapter we try to understand these problems by studying the generalization error of
classical decision trees and studying how such work could be extended to include the progressive
decision tree approach. Our intuition is that progressive decision trees are good because only the
best splits are used (avoiding overfitting) and only small decision trees are built and then combined
under a cascading paradigm.

Surprisingly, the number of papers related to other types of ensembles such as boosting, bagging
or stacking is really high when compared to cascading. Although it cannot be considered complete,
there are no references directly related to the cascading paradigm in the most important compilation
of multiple classifier systems (Kittler and Roli, 2000; Kittler and Roli, 2001; Kittler and Roli, 2002),
and only a few papers describe hierarchical or multi-stage systems.

All of these types of ensembles seem to contradict Occam’s razor, as more and more complex
classification systems are created to explain data, increasing the final classification system complexity

without incurring in overfitting (Murphy and Pazzani, 1994; Webb, 1996). A probable reason is

117
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that simple decision trees are not complex enough to extract all information present in input data,
specially when only orthogonal splits are used as decision functions. Our experiments in Sect. 4.5

also show such behavior.

5.1 Problem formulation

In this section we define the basic behavior of a decision tree as a function g which maps an input
vector = to the space of possible labels Y. We are interested in studying the error generalization
performance for a given decision tree, and then to extend such study to include also progressive
decision trees.

Suppose we are in a two-class classification problem, so K =2, Y = {—1,1}. Nevertheless, we
use a mixed class to denote a set is not pure enough, so Y = {—1,0,1} for notation purposes when
dealing with progressive decision trees. This does not mean K = 3, as the zero value is only used to
denote that a decision tree does not generate an output for an input vector. Then, a decision tree

T may be seen as a function g which maps an input vector x to a label y, as follows:

T(z) = sgn(g(z)) (5.1)
where sgn(z) is —1 for £ < 0, 0 for z = 0 and +1 for z > 0, and g(z) is defined as

|7

g(x) = Zpiaihi(l“) (5.2)

where T is the set of leaves of T, p; is the probability of leaf i, o; is the label assigned to leaf i
and h;(z) is a function which is 1 if z falls in leaf ¢ and 0 otherwise. Actually, the set of functions
{h;} € H defines completely the decision tree behavior, as H is a set of {—1,1}-valued functions
defined in the input space X. Notice that Eq. (5.2) is also valid if we allow o; = 0 as a possible
label, so T'(z) will be also 0.

Following the notation from (Golea et al., 1998), define the convex hull co(#H) of H as the set of
[—1, 1]-valued functions of the form ), a;h; where a; > 0, Y. a; = 1 and h; € H. Taking a; = p;o;,
it is easy to see that g(z) defined in Eq. (5.2) is in co(#), so T'(xz) may be studied under this
framework. The only condition is that there is at least one leaf with o; # 0.

In the rest of this chapter we will study this framework and several works which extend it in

order to include progressive decision trees.

5.1.1 Generalization error

In Sect. 2.6 we described the BFOS pruning algorithm which was used to reduce tree size using a
second data set (the corpus set), with the aim of reducing overfitting. As stated in (Scheffer, 2000),

decision tree algorithms have to solve two distinct but related problems: to identify the size of the
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optimal decision tree (which leads to optimal generalization error) and to minimize the empirical
error rate L,. For the training set D, it is possible to build a tree T such L, = 0, and then use
pruning to find the best subtree which minimizes ﬁn7m, the resubstitution estimate for the corpus
set Cp,. Using Egs. (2.5) and (2.6) we can compute a confidence interval about our generalization
error estimate.

But suppose we do not have a second data set (because we do not have enough data available,
for example) and what we want is to estimate the generalization error for a given tree T and a
given training data set D,, using a more theoretical approach, using the whole training set for
building a classifier. Intuitively, our misclassification error estimation should take into account any
measurable concept about 7' and D,. Actually, such approach may include any algorithm which
minimizes a regularization function Y (L, c(T)), where ¢(T) is a complexity measure of T, and Ly,
is obviously a measure of T over D,,. This approach has been taken by several authors although
following different ways, see (Lugosi and Zeger, 1996) for example. As we are interested in the
study of generalization error for decision trees, we will follow the approach described in (Golea
et al., 1998; Mason et al., to appear), which is based on (Schapire et al., 1998). Another remarkable
approach is described in (Scheffer, 2000). These kind of bounds on generalization error that express
a tradeoff between the empirical error rate and the complexity of the classifier are often called
structural risk minimization (SRM) bounds (Devroye et al., 1996; Vapnik, 1998). A theoretical
framework for structural risk minimization can be found in (Shawe-Taylor, Bartlett, Williamson
and Anthony, 1996), and a more detailed study on generalization bounds for decision trees can be
found in (Mansour and McAllester, 2000).

Basically, all of these approaches use T as a bound for the true generalization error, that is,
L* <Y (Ly, ¢(T)),

and usually T is decomposed in two parts: the training error resubstitution estimate for a given
threshold # and a complexity term ¢ which also depends on . This threshold 0 < 8 < 1 is called the
margin, and it is defined to be the confidence of the predictions made by the classification system.
Therefore,

L* < cLf +¢(T,0) (5.3)

where ¢ is a constant! and L? is defined as
Ly, = Pp, {yg(x) < 8} = Pp, {yg(r) < 0} + Pp, {0 < yg(x) < 0}, (5.4)

that is, the proportion of samples in the training set that are wrongly classified plus the proportion
of samples in the training set which are correctly classified but with a margin lower than 6.
The main idea under this framework is that generalization error is a compromise between doing

a good job in the training set and paying a penalty related to the intrinsic characteristics of the

1We are abusing of notation, here ¢ represents both a constant and the complexity term.
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classifier. As we will see in the following sections, the penalty term ¢(T,8) grows inversely with 6,
so we want 6 as large as possible but keeping f/fl as small as possible. As shown in (Mason, Bartlett
and Baxter, 2000), it is possible to improve generalization error through the explicit optimization of
the margin 6.

As pointed out in (Shawe-Taylor, 1997), there is indeed a relationship between the margin and
the corresponding estimation of error probability, though it is not simply the margin that enters
into the equation. Therefore, we must be careful when studying L? defined as in Eq. (5.4), as we
will see in the following sections, where the lack of a specific framework for decision trees yields to
poor generalization error bounds.

The importance of generalization bounds is clear: in order to compare two algorithms for building
classification systems, there are usually two relevant arguments: cost and performance. Cost involves
both training and exploitation costs, but it is performance often the criterion used to choose among
several classification systems. Although experimentation is usually the best method for choosing a
classification system for a given data set, it would be useful to have a tool (the error generalization
bound) for predicting the performance and then discarding those classification systems with a priori
worse behavior, reducing training costs. Furthermore, a good generalization bound could even
replace the pruning stage, see (Helmbold and Schapire, 1997) for example, or to be combined into

it, as described in (Kearns and Mansour, 1998).

5.1.2 Vapnik-Chervonenkis dimension

Both the margin € and the penalty cost ¢(T', 0) are related to the statistical learning theory developed
by Vapnik and Chervonenkis (1971), which is fully described and enriched with practical examples
in (Vapnik, 1998).

We will follow the definitions in (Devroye et al., 1996). First, we will briefly define the concepts of
shatter coefficient and Vapnik-Chervonenkis (VC) dimension. Then, we will use the VC dimension
as the basic tool to analyze the complexity of decision trees (that is, the form of the penalty term

¢) and, therefore, the generalization error bound.

Definition 5.1 Let A be a collection of measurable sets. For (z1,...,2,) € {REY" let Na(z1,.- ., 2n)

be the number of different sets in
{z1,..,zn N A; Ae A}
The n-th shatter coefficient of A is
s(A,n) =max Na(z1,...,2n).

That is, the shatter coefficient is the mazimal number of different subsets of n points that can be

picked out by the class of sets A.
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Definition 5.2 Let A be a collection of sets with |A| > 2. The largest integer k > 1 for which
s(A, k) = 2% is denoted by V C 4, and it is called the Vapnik-Chervonenkis dimension (or VC dimen-
sion) of the class A. If s(A,n) = 2" for all n, then by definition, VC 4 = oo.

Now we can define the generalization error bound using Theorem 2 in (Schapire et al., 1998),
which is extended in (Golea et al., 1998) to include functions of several classes. We will use the

latter because is better for our purposes:

Theorem 5.1 Let D be a distribution on X x {—1,1}, Hi, ..., Hy, hypothesis classes with finite?
VCy, = d;, and § > 0. With probability at least 1 — § over a training set D,, of n examples chosen
according to D, every function g € co (Uf:ﬂ-[i) and every 6 > 0 satisfy both

Pp{yg(z) <0} < Pp, {yg(z) < 0}+

1/2
o (% <6i2(dlogn + log k) log(n#? /d) + log(1/5)> ) (5.5)

and

Pp{yg(z) <0} <2Pp, {yg(x) < 0}+
0 (% <l2(dlogn +log k) log(nf2 /d) + 10g(1/6)>> (5.6)

where d = )", a;d;; and the a; and j; are defined by g =73, a;h; and h; € H;,, for j; € {1,...,k}.

Both Egs. (5.5) and (5.6) follow Eq. (5.3). Notice that ¢ = 1 for Eq. (5.5) and ¢ = 2 for Eq.
(5.6), while the complexity term is better for the latter. For lower values of Pp, {yg(z) < 0}, Eq.
(5.6) is tighter. Nevertheless, it is accepted (Bottou, Cortes and Vapnik, 1994) that the traditional
VC bound widely overestimates the generalization error. In the following sections we will describe

several approaches to the generalization error for decision trees which try to overcome this problem.

5.2 Decision trees

Theorem 5.1 is general enough to include any function g satisfying the theorem conditions. When g
is a decision tree, a bound which does not use the VC dimension but tree complexity measures may
be derived from such theorem, as stated in (Golea et al., 1998). There are two theoretical results,
depending on whether the training set is perfectly classified or not.

Let p(P,U) = Zlﬂ(pi — 1/|T|)? be the quadratic distance between the probability vector P =
{p1,...,p/7} and the uniform probability vector U = {1/|T},...,1/|T|}. Define the effective number
of leaves of T as

Ne(T) = |T|(1 = p(P,U)).

2missing in the original paper (Golea et al., 1998).



122 CHAPTER 5. A THEORETICAL FRAMEWORK

The parameter N.(T') is a complexity measure of T. We will denote it by N. when no confusion
is possible. Notice that p(P,U) is close to zero when all leaves in tree define regions with similar
probability. Therefore, N, is almost |T|. On the other hand, if 7' has very small leaves or very large

leaves, p(P,U) is close to one (for large |T|) and N, is close to zero.

5.2.1 Consistent decision trees

Suppose we use the growing algorithm with the whole data set and a perfect decision tree is created.

Then, the following theorem applies:

Theorem 5.2 For a fized 0 > 0, there is a constant ¢ that satisfies the following. Let D be a
distribution on X x {—1,1}. Consider the class of decision trees of depth up to d, with decision
functions in U. With probability at least 1 — & over the training set D,, (of size n), every decision
tree T that is consistent® with D,, has

N.VCylog’n logﬁ) 1z (5.7)

n

P {T(r) £y} <c (

where N, is the effective number of leaves of T.

Therefore, tree performance depends on N., the VC dimension of the decision functions in I/,
and its maximum depth d. Suppose the training set D, is fixed and n is large enough. Suppose
also that both V' Cy and d are known and small (we will discuss this later in this section). Then Eq.
(5.7) is determined by N, which can be much smaller than 23, depending on internal tree structure.
This is the weakest part of Theorem 5.2, as it is difficult to accept that a single parameter (Ne)
determines the whole generalization error estimation model. Furthermore, the fact that 7" must be
consistent with D,,, which is not the usual case in a real scenario where pruning is used to avoid
overfitting, makes this bound completely useless. Nevertheless, the idea behind Theorem 5.2 is very
intuitive: unbalanced decision trees capture the unknown data set internal structure better than
balanced trees, and small decision trees (with small N, and d) are preferable.

For orthogonal decision trees, VCy, is just 1 (see (Devroye et al., 1996, pp. 220), for example).
U is used in the definition of H (the class of leaf functions for leaves up to depth d) as

’HE:{h:h:ul/\uQ/\.../\uTVSE,uiEU}

then, using some simple results about shatter coefficients (see (Devroye et al., 1996, pp. 219)), it
is easy to show that VCy, < 2dV CyyIn(2ed). Using general hyperplanes as decision functions may
reduce d (and N,), but VCy = d+1, where d is data dimensionality. Therefore, the use of orthogonal

hyperplanes is not a bad assumption under a theoretical point of view.

3Here consistency means Ln = 0, that is, Dy, is perfectly classified.
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Nevertheless, this bound is completely useless for a practical use. It is only valid for K = 2, and
T must be consistent with D,,, which is not the usual setting. The UCI data sets which fulfill the

condition K = 2 used in this thesis are not large enough to keep the term (log®n/n)'/? small.

5.2.2 General case

If T is not consistent with D,, (that is, L, > 0), then Theorem 5.2 is not valid. Define Q; =
Pp,{yo; = —1|h;(z) = 1} (that is, the probability of making a mistake in leaf 7) and p} = p;(1 —
Q:)/(1 —Pp {T(z) # y}). The effective number of leaves of T is now computed as N (T) =
IT|(1 — p(p',U)). Then, the following theorem is valid:

Theorem 5.3 For a fized § > 0, there is a constant ¢ that satisfies the following. Let D be a
distribution on X x {—1,1}. Consider the class of decision trees of depth up to d, with decision
functions in U. With probability at least 1 — & over the training set D,, (of size n), every decision

tree T' has
1/3

N! log® nlogd
"VCylog®n ogd> (5.8)

Po{T(0) £} < P, {T(0) £} + ¢ (LA

where N! is the effective number of leaves of T'.

Notice that both Eq. (5.7) and Eq. (5.8) coincide in the second term but in the 1/3 exponent,
which is worse than 1/2. N! is a generalization of N,, as N, is a special case of N! when T is
consistent with D,,. Each p] is a corrected version of the original p;, weighted accordingly to leaf
performance, and all p} are normalized by tree performance in order that they sum one. In order to
keep N! low, p; must be far from uniform, so it would be interesting that large leaves (with large
p;) perform better than average, while small leaves (with low p;) perform worse than average. This
is consistent with the basic idea of progressive decision trees of type A (see Fig. 15 defined in Sect.
3.7): large regions which are easily classified must be kept as a single region, while small or too
impure regions must be joined again trying to find new splits.

For progressive decision trees of type B (see Fig. 16 defined in Sect. 3.7), this reasoning is not
valid, as decision trees are not sequentially ensembled creating a single decision tree. In this case,
new classification features are added and a completely different decision tree is built. Experiments
show that trees become smaller when the additional classification features are selected for splitting,
thus reducing both N! and d, but the term VCy in Eq. (5.8) is larger. This is equivalent to using
more complex internal node decision functions, such as general hyperplanes or hyperrectangles.

Fig. 33 shows the behavior of both error generalization bound terms defined by Eq. (5.8),
ignoring the ¢ constant factor, for the pima data set, the largest data set with K = 2 in the UCI
collection. Notice that the first term decreases faster than the second one, showing that the smallest
decision tree yielding a reasonable classification accuracy must be used, instead of building a large

decision tree which classifies the training set better, but with a higher complexity (and computational
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cost). Experiments also show that for normal data sets, N, is not much smaller than |T|, specially
when the entropy splitting criterion is used, because at the first stages leaves are split creating new

leaves which are reasonably balanced. Other splitting criteria such as misclassification error, for
example, produce more unbalanced leaves, but as shown previously, they yield to poorer decision

trees, because d is usually too large.
1 T T T
Pp,{T(z) # vy}
e(NL,VCy,n,d) T
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Figure 33: Error generalization bound for the pima data set.

Therefore, the main conclusion that may be drawn from this experiment is that, unless n is
really large, the bound is completely useless for practical purposes, although it establishes that the
decision tree should be as small as possible and also that it should have a skewed probability leaf
distribution. Nevertheless, Theorem 5.3 does not help us to determine the parameters involved in

the type A cascading ensemble (the number of trees ¢ and the maximum depth d and the threshold

e for each tree).

5.2.3 Progressive decision trees
3.6.1 (decision trees of type A), a cascading

Using the sequential ensemble described in Sect.
ensemble of small decision trees may be seed as a single tree, where each mixed leaf of the first tree
has been replaced by a complete decision tree (the second tree in the cascading ensemble), and so

on. This procedure clearly produces an unbalanced tree, as several leaves of the first decision tree
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have a maximum depth limited by d;, and some of these leaves are replaced by a decision tree,
causing the resulting tree to have several leaves with a maximum depth of di + d». This process
is repeated several times (¢, to be more precise), so a final tree with leaves at different depths is
produced. Experiments show that the total number of leaves of the resulting tree is usually smaller
than the number of leaves of a classical decision tree which has been grown up to a maximum depth
d =dy + ...+ d;, as only small decision trees are combined, and only a few leaves are labeled as
mixed and therefore replaced by a decision tree. Furthermore, the log term in Eq. (5.8) makes this

parameter not so relevant for small values of d, which is the typical case.

Therefore, when comparing the classification performance of a classical decision tree with maxi-
mum depth d and a cascading ensemble of ¢ small decision trees summing up to the same maximum
depth, Eq. (5.8) may be used as an objective criterion to determine which one of the two approaches
is better. Experiments show that using an appropriate value for €, it is possible to obtain a progres-
sive decision tree with a classification performance similar to a classical decision tree, so N/ is the
only parameter that determines which approach may perform better. Usually, the combination of
small decision trees produces a single tree smaller than the classical approach, because leaves that

are pure enough (for a given €) are never split, thus reducing N!.

Another possibility is to study the resulting decision tree as an acyclic graph, as described in
Sect. 3.2, instead of as a decision tree. In this case N! is smaller, but the term V Cy is no longer
valid in itself as the complexity of the decision functions in an acyclic graph is higher than in the
tree case. The class H should take into account that it is possible to follow more than one path from
the root to a leaf, and that n is no longer a constant across the whole acyclic graph but it varies
depending on leaf index. Such study is far from the scope of this thesis, but it is an interesting

research subject.

5.2.4 Using hyperrectangles

As stated in Sect. 3.4.1, progressive decision trees may be seen as a suboptimal way to build
hyperrectangles, one side at each step. The resulting decision tree is much simpler, as decision
functions in internal nodes become more complex. Thus, both N. and d may be reduced, but VCy

also increases as well, so no improvement is achieved at all.

As stated in (Devroye et al., 1996), when decision trees are built using hyperrectangles whose
sides are jointly optimized, it is possible to show that they are consistent, although no experimental
results are available. The basic idea described in (Devroye et al., 1996) is that consistency is achieved
when elementary splits are used: a good splitting method is one that includes many (but not too
many) small sets. For example, d + 1 general hyperplanes or 2d orthogonal hyperplanes jointly
optimized form an elementary split. Type A progressive decision trees may be seen as a naive

approach to create a 2d hyperrectangle.
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5.3 Combined decision trees

In (Mason et al., to appear), an upper bound on the generalization error of any voted combination
of binary decision trees in terms of the margin and the average complexity of the decision trees is
described. As we will see in the following section, both type A and type B progressive decision trees
may be also described as voted combination of decision trees, so the framework defined in (Mason
et al., to appear) may be applied.

Given a decision tree T; with |T;| leaves, let o;; € {—1,+1} denote the label associated and
hij(x) be the {0, 1}-valued function producing 1 if and only if x reaches leaf j in T;. Then, for any
| T3]

sequence of a;; such that a;; > 0 and )

j—1 @i = 1 the output of the tree for an instance z can be

written as B
[T ]

Tl(w) = sgn Zaijaijhij(w)
j=1

The following theorem can be applied for any ensemble of decision trees which are combined as

a thresholded convex combination, as follows
t
T(x) =) assgn(f(x)).
i=1

Theorem 5.4 There exists a constant ¢, such that with probability at least 1 —6 over random choice
of the sample set D,, every convexr combination g of decision trees, 0 < 8y < 1 and 0 < 0; <1

satisfies
Pp{yg(z) <0} < 2Pp, {yg(z) < bo}+

cl llgj—gn (Z (677 min(01,02) +03> +ln(1/6)] ’ (59)

n N
=1
where

In(n/6y) - nbo T
Ci = — R;V Cylnn + In(maxdy) +E;Pij1mi<9i},

Cy = |TZ| (VC’U Inn + ln(mlaxal)> ,
G = In (tln(n/t‘)o)) ,

min; 67

and R; is the average depth of T;, P; = {P;;} is a probability distribution over leaves via P;; =

Pp, {hij(z) = 1}, and U denotes the class of node decision functions.

The most remarkable fact that can be extracted from Theorem 5.4 is that 6y must be large
but keeping the term Pp_ {yg(z) < 6y} as small as possible, and this depends on both classifier

performance and the attainable margin, which depends on the weights a; assigned to each decision
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tree. If we split Pp, {yg(z) < 6o} in Pp, {yg(z) <0} + Pp, {0 < yg(z) < By}, and we suppose the
first term is small, then we need the «; to be skewed, in order to find a large value for 6.

Both € and C5 depend on each T; internal tree structure. When trees are unbalanced and show
a skewed P; probability distribution, it is possible to choose ; in a manner that C; < Csy, keeping
the second term of C relatively small. For balanced trees, C; > Cs, and the latter represents the
average complexity of each decision tree, that is, it is proportional to the sum of the complexities of
the internal node decision functions. Regarding Cs, the log term makes it not so relevant, although
it may become large if min;{6;} is really small, which is possible when ¢ (the number of trees) is

large.

5.3.1 Progressive decision trees

Each partial progressive decision tree may be seen as a classification rule T}, and the final progressive
decision tree T is therefore a combination of all the partial progressive decision trees. The weight
assigned to each T; determines its importance in the final ensemble.

Unlike the voting methods, which rank each base-level classifier according to its performance
or uniformly, in this case we try to weight each decision tree according to its importance. In a
cascading ensemble, importance is related to the order of appearance of each tree: for type A
progressive decision trees, the first decision tree in the cascading ensemble is the most important
one, the second decision tree is the second most important one, and so. The idea is that the outcome
of the combined classification system is that from the first decision tree giving an outcome different
than zero. On the other hand, type B progressive decision trees do exactly the opposite: the first
decision tree gives an opinion that it may be used or not by the second decision tree, which also
gives an opinion, which may be used or not by the third decision tree, and so. The last tree in the
cascading ensemble generates the final output, so it is the most important one.

Suppose K = 2, but Y € {—1,0,+1} and the mixed class is represented by 0, so T;(z) = 0 if

tree T; classifies x as mixed. Then T'(z) may be written as

T(z) = Z ¢;Ti(x) (5.10)

where ¢; are set up accordingly to tree T; importance. As only T;(z) is different from zero if z is
classified by the i-th tree, one could set ¢; = % or study any other setting based of each decision tree
performance (as in (Golea et al., 1998), for example) in order to maximize the margin. The problem
is that this is not a true convex combination, as several decision trees (all T; with j > i) are forced
to produce 0 as their outcome for type A progressive decision trees.

In order to study progressive decision trees, the work of Schapire et. al (Schapire et al., 1998)
and the further work of Golea et al. (Golea et al., 1998) should be extended to include a special class

of functions H' which determines not only which leaf of the tree classifies the input vector (the h;(x)
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function), but also the fact that different training sets (and therefore, different trees with different

values of n, N, and d) are being involved.

5.3.1.1 Type A progressive decision trees

Therefore, in order to use Theorem 5.4 as is, and to reflect the fact that the first decision tree is
the most important and so (for type A progressive decision trees), the ¢; must satisfy the following

conditions:

% > 0 (5.11)
t

a =1
i=1
t
Z ¢ < g Vi<t
i=j+1
22:—:11. Fort =2, ¢ = 2/3 and ¢ = 1/3. For t = 3, 1 = 4/7, ¢ = 2/7

and g3 = 1/7. The main problem is that for large ¢, last trees have a relative importance too

For example, ¢; =

small, so T'(z) is also too small for those regions, which is not good under a margin analysis point

of view, specially if the last decision tree is the most important one. This can be generalized to

i

gi = (a — 1)%, a > 2. In this case, the larger a, the more skewed the {¢;} are.

Another possibility is to define g5 = 1 and ¢5;,, = %qéz + 0 and g; 5 = %%l -4, >0, and
then set ¢; = ¢4, Vi < t and ¢; = ¢},_,. For example, if ¢ = 2 this setup yields to ¢1 = % + 6 and
Q2 = % — . It is easy to see that with this setup, the g; satisfy all the conditions described above.
This procedure produces a more balanced {¢;} distribution, controlled by the parameter 4.

The main problem of the convex combination framework is that all decision trees contribute to
the final decision, which is not the reality in a cascading ensemble of progressive decision trees of
type A. Even if we force the decision to be taken using only the most important decision tree (name
it ¢;) through a correct weight distribution, the margin may be low because all trees with index
i > j produce a random Tj(z) € {—1,0,+1} which is also taken into account by Eq. (5.10) (trees
with lower index have generated a 0 as outcome).

Therefore, it seems reasonable to have a skewed weight distribution in order to minimize the
random effect of the decision trees which also contribute to the final decision, although they do not
determine it. But this causes the last trees to have very small weights, specially when the number
of trees is high, and that is not good from a margin analysis point of view. Golea et al. (Golea
et al., 1998) used the probability of being at each leaf as its weight, which is very intuitive. If we
want to use a similar criterion for progressive decision trees, then we should force the first tree to
classify at least ¢; (proportionally to one) of the training set, that is, the first tree must do a lot of
work, and do it very well. Depending on the training set, this is not possible unless 77 is a large

tree which almost classifies the whole training set, so it is like using ¢ = 1 and not any ensemble is
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used. If it is possible to build a small tree which classifies a large fraction of the training set with
a limited misclassification error, then it is possible to use the remaining training samples (when n
is large enough) to repeat this process, so t > 1. Unless n is really large, t cannot be very large, so
we have here a criterion for ¢: it depends somehow on n, ¢t must be small (t = 2 or ¢t = 3) for small
n. For large n, even if each T; classifies a large fraction of data, we have data enough for the next
stage, so t may be larger.

Regarding €, it determines the first term in Eq. (5.4) as at each stage, Pp, {yg(z) < 0} <, so
the first term in Theorem 5.4 is partially bounded. The experiments described in Sect. 4.5.2 show
that € is a critical parameter which depends a lot on the intrinsic characteristics of the training set,

and it is not suitable to be estimated but by a fine-tuning process.

5.3.1.2 Type B progressive decision trees

In this case, the third condition in Eq. (5.11) must be changed to reflect the opposite behavior, that
is, the last tree is the most important one:

j—1

Z ¢ <gqj Vj<t
i=1

The weight schemes described previously are also valid, but assigning them in reverse order, so
the first decision tree will have the smallest weight, and the last decision tree the largest one.

In this case the original idea of margin in (Schapire et al., 1998) is preserved, as all decision
trees contribute to the final decision, although only the last one will determine the outcome of the
combined classifier. Suppose that all the decision trees in the cascading ensemble generate the same
outcome. Then T'(z) will be —1 or +1, which is good under a margin analysis point of view.

As stated previously, it is interesting to have a large value for 6y but keeping Pp_{yg(z) < 60}
low, so the ¢; should be skewed, giving more importance to the final decision trees. Thus, trees
should become more and more accurate at each stage, which is exactly the intuitive idea behind

progressive decision trees.

5.4 Conclusions

In this chapter we have studied several theoretical frameworks for decision trees, trying to see how
progressive decision trees may also be explained under such frameworks. Our goal was to give a
plausible explanation to the question "why do progressive decision trees perform well, and when",
at least partially. We also want to give some answers to the questions defined in Sect. 3.4, or at
least some useful directions to determine the parameters involved in the cascading ensemble.

Type A progressive decision trees can be studied as a convex combination of decision trees and

also as a single decision tree, while type B progressive decision trees can be though as a final decision
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tree with more complex internal decision functions, but also as a convex combination reversing the
order of importance with respect to type A progressive decision trees.

If we study type A progressive decision trees as a single decision tree, Theorem 5.3 shows that it
is better to reduce effective tree size by building skewed and unbalanced trees. Experiments show
that joining leaves which are too impure and creating a new decision tree, and then replacing each
impure leaf by such decision tree, causes that the resulting decision tree is usually smaller and with
a more skewed distribution, so both empirical results and theory support our ensemble of small
decision trees.

On the other hand, if we study type A progressive decision trees as convex combinations of
decision trees, Theorem 5.4 states that decision trees should perform accordingly to its importance,
that is, its order of appearance. Therefore, we need a good first decision tree. Experiments described
in Sect. 4.5.2 also show this behavior, it is impossible to build a good type A progressive decision
tree unless the first decision tree in the ensemble is good enough. In fact, experiments show that
sometimes it is not even possible to build a type A progressive decision tree better than a classical
decision tree.

Regarding type B progressive decision trees, Theorem 5.3 states that performance may be im-
proved as both the effective number of leaves and maximum depth become smaller, although the
complexity term associated to the VC dimension of the internal decision functions increases, as new
classification features (which are in fact more complex boundaries) are added to the training set.
Studying them as a convex combination of decision trees, Theorem 5.4 establishes that decision trees
should be more and more accurate at each stage, which is the basic idea of progressive decision trees.

The basic idea of this chapter is that progressive decision trees are a special case of cascading
and that they can be studied as convex combinations of decision trees. Nevertheless, the lack of
a specific theoretical framework for cascading makes all these approaches and generalization error
bounds very poor. A new theory which focuses on cascading is therefore needed to explain the
sequential ensembles of small decision trees or any other classifier. Such theoretical framework is far

from the scope of this thesis, but it is an obvious research subject.



Chapter 6

Conclusions

Diplome: Signe de science. Ne prove rien

Gustave Flaubert, Le Dictionnaire des Idées Regues

In this chapter, the last of this thesis, we summarize all the results obtained from the study of
decision trees and the possible ways to combine them into more complex classification systems under
the cascading paradigm.

Different aspects related to decision trees have been covered: we have studied the parameters
which determine the process of constructing decision trees, the importance of such parameters in
classification accuracy, and the dependence of the learning algorithm on such parameters. We have
also studied the problem of overfitting from a complexity point of view: instead of building a large
(and expensive) decision tree, we have tried to split such process in a sequential ensemble of small
decision trees. If one word was used to summarize this thesis, it should be cascading: the resulting
classification system may be seen as a weighted cascading of decision trees, as shown in Fig. 34.
Depending on the training set used at each stage, and the final weights assigned to the outcomes
of the decision trees, we have one of the three types of cascading ensembles described in Sect. 3.7.
Actually, this scheme is so general that may be used for any voting scheme (boosting and bagging).

The basic idea studied in this thesis is also described in Fig. 34: if the prediction of a classifier
is accurate enough for a given input sample, use it. If not, pass such input sample and all the
information computed during the classification process to the next classifier, and so on. The weighted

scheme decides how much importance has each prediction in the final decision.

6.1 Thesis contributions

In this thesis, we have studied the combination of small decision trees for constructing ensembles

which yield to more complex classification systems, using the cascading paradigm as a basis. The
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H(A) Ty {a:} Y

f(A)2 T3

Figure 34: A progressive decision tree as a cascading ensemble of three decision trees.

main contributions of this thesis are:

1. We have extended the cascading paradigm using the concepts of partial classification and
rejection: the training set is not only modified by adding new classification features computed
during a classification stage, but also by removing those samples which have already been
correctly classified for a given accuracy threshold or margin. Depending on how the training
sets are built from one stage to the next, the three kinds of cascading ensembles (described in

Sect. 3.7) may be easily described.

2. We have studied the parameters that determine the process of constructing decision trees,
basically the splitting criterion, and the maximum depth the decision tree is allowed to achieve
during the training stage, which is related to the stopping criterion. We have investigated
the dependence of classification accuracy on these two parameters, using the bias-variance
decomposition as the basic methodology for explaining the behavior of the learning algorithm.
Our experiments show that it is possible to construct small decision trees with a reasonable
classification accuracy, reducing both training and exploitation costs. This practical knowledge
can also be used to construct classical decision trees: the entropy criterion and the family
determined by the R-norm splitting criterion provide the best performance in average. The
relationship between bias and variance may be used as a simple tool for determining early

stopping criteria.

3. We have outlined a basic set of guidelines for constructing progressive decision trees: how many
decision trees are needed, and which are the particular parameters of each decision tree in the
ensemble. The experiments using the standard UCI data sets have shown that it is enough
to use two or three decision trees to improve classification accuracy through cascading, and

that, depending on the kind of cascading ensemble used, it is better to give more importance
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through the weighted voting scheme to the first or the last decision tree. In general, cascading
small decision trees improves classification accuracy fighting against both bias (because more
complex boundaries can be constructed) and variance (because small decision trees are more
robust), although depending on the kind of cascading ensemble, the classification cost is also
increased. Nevertheless, it is possible to build progressive decision trees that perform similarly
or even better than classical decision trees while reducing the classification cost, specially when

the training set is large enough.

4. We have also studied our ensemble under a theoretical framework which not was specifically
designed for cascading. We have used the reduced amount of bibliography related to general-
ization error bounds for decision trees and ensembles of decision trees to study the parameters
of our ensemble. Results show that the basic intuitive ideas behind progressive decision trees
(first, small decision trees perform reasonably accurately, and second, to break up the classi-
fication process in a sequence of small partial classification problems) are consistent with the
current research in this subject. In theory, unbalanced decision trees have a better general-
ization error performance, and we have seen that progressive decision trees have usually such

characteristic.

5. Last, but not least, a complete software package for building decision trees and different en-
sembles of decision trees (voting, stacking and cascading) has been developed. We expect to
release this software to the public domain once a short documentation is written and a more

developed user-friendly interface is available.

The main results of this thesis can be found in (Minguillon and Pujol, submitted). Some ideas
have been also used in several experiments involving progressive decision trees in different projects:
document layout recognition (Minguillén et al., 1999), hyperspectral imaging (Minguillon, Pujol,
Serra and Ortufio, 2000; Minguillon, Pujol, Serra, Ortufio and Guitart, 2000), brain tumor classi-
fication (Tate et al., 2002; Minguillén, Tate, Arts and Griffiths, 2002; Minguillon, Tate, Griffiths,
Majos, Pujol and Arts, 2002), and web mining (Mor and Minguillén, submitted).

6.2 Further research

Our future research will mainly focus on the new applications of progressive decision trees and in
the search of better generalization error bounds for cascading ensembles of decision trees. Other

interesting issues that still need more research are:

1. One of the main problems of classification using unstable classifiers such as decision trees, for
example, is that the noise present in both the classification features and in the known labels
has a large impact on classification accuracy. Lossy compression techniques using tree struc-

tured vector quantizers may be used as a basic tool for noise removal and data preprocessing,
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improving classification results by building more robust classifiers. Nowadays we have an on-
going project related to hyperspectral imaging where trees are used for both classification and

compression, using a modified distortion function and an adaptive splitting criterion.

2. Also related with the subject mentioned above, our experiments show that the entropy split-
ting criterion yields the best classification performance in average. Nevertheless, the R-norm
splitting criterion may be tuned for a given classification problem, taking advantage of the
different leaf behavior when descending in a decision tree: instead of using a fixed value for
R, an adaptive approach could be exploited. We are currently working in a new version of
the Kearns and Mansour (1999) paper but using the R-norm as a family of splitting functions.
Then, the Brodley (1995) paper could be also reformulated using the appropriate value for R

at each stage.

3. In this thesis, we have used orthogonal splits for creating the splitting hyperplanes used during
the training stage. The use of general or multivariate splits usually improves classification
accuracy, but increasing also cost. It is difficult to find the optimal hyperplane, because it
involves optimizing a large number of variables (the classification features) at the same time.
We are currently working on a greedy method based on variable importance that provides a
simple way to compute multivariate hyperplanes. Some experiments which are not described
in this thesis, show that it is possible to find suboptimal multivariate hyperplanes which
outperform the orthogonal hyperplane which uses the most important variables in splitting

importance.

4. Both the labelling rule and the policy of joining mixed regions are fixed and very simple. Cur-
rently, all mixed leaves are joined together, but another possibility could be to join regions
depending on their class probabilities, trying to create large regions where there is a prepon-
derance of one class. Our labelling rule is a simple way to force a minimum margin at each
leaf, but more complex strategies involving other criteria such as leaf impurity, for example,

or having a different, threshold for each class, could be used.

5. Extracting information from data using a meta-theory is also a hot topic in the machine
learning community. Knowing in advance when and how to build an ensemble method of weak

learners instead of building a strong learner, is also an interesting research subject.

6. Finally, the generalization error bounds described in Chapter 5 are clearly related to the voting
ensemble using classifiers where the margin has a real meaning. There is a real need of similar

bounds for the cascading paradigm using small decision trees as base level classifiers.

In addition to the experiments mentioned above, we are currently starting to work on new fields
where the use of very large data sets make the classical learning algorithms unfeasible, such as web

mining, for example. In such project, millions of events produced by users accessing a web site
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during a long period of time are analyzed trying to obtain patterns which can be used to identify
user profile. Classification features are binary, as they indicate whether an user has produced a
specific event or not. We are studying the use of progressive decision trees for building fast and
simple classifiers to cluster users depending on the way they use the web site. The first experiments

in this direction can be found in (Mor and Minguillén, submitted).

6.3 A final disquisition about learning

Finally, a few words about learning but from a more philosophical point of view. The question
is: what is learning? A good definition for learning could be the process of putting knowledge in
a framework which can be easily queried and updated. This definition seems to be valid for both
human learning and machine learning. But, do machines really learn? Well, this is not a scientific
problem, but a philosophical one. We are not able to give an answer to such question, because we use
a restricted version for the definition of learning. For our purposes, Fig. 1 should be relabelled using
“extract classification features from a given data set” instead of “perception”, “compute a splitting
hyperplane” instead of “reasoning”, and “split the given data set in two subsets using the computed
hyperplane” instead of “action”. In this case, artificial intelligence becomes “computing decision
trees”.

In this thesis, we were not interested in the real meaning of the updating aspect of the learning
process, although it is maybe even more important than the other aspects related to the definition
of learning for real scenario classification systems. The basic idea of this thesis is that the easiest
concepts must be learned first using simple classifiers, delaying the classification of the hardest
concepts to further more complex classifiers. This sequence of classifiers may be seen as a progressive
classification system where a first opinion is obtained at a low cost, and if such opinion does not
satisfy a confidence criterion, a second opinion from a more complex expert is required, and so. This
process partially reproduces the one humans follow in real life for making decisions. Therefore, we
try to reproduce an intelligent behavior by partially mimicking humans behavior.

Regarding learning, the main difference between humans and algorithms is that humans put into
context (or understand) what they are learning at a level higher than the level used for knowledge
representation (neural connections or whatever). In machine learning, algorithms are completely
connected to the structure used for knowledge representation, as the structure may be the learning
algorithm itself (as in decision trees, for example). Unless the learning algorithm has the possibility
of incorporating new tools for building new classification features from input data, it is not possible
learn concepts such as the sum operation, for example. This is a consequence of the No Free Lunch
Theorem (Theorem 1.1), as the universal classifier should use all possible decision functions available

and all possible learning algorithms to be, in fact, universal.

Nevertheless, although we cannot say our classifiers learn in a complete sense of such word, they
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show an intelligent behavior, as they solve a problem for which they were constructed. Therefore,
it is very important to tune the learning algorithm for the given classification problem, as the more
knowledge we have about the problem, the better our classification system will probably be, and
the more complex our learning algorithm is, the better performance it will probably achieve. But
we must always bear in mind the following quotation from H. H. Williams, “furious activity is no

substitute for understanding”.



Appendix A

UCI data sets for simulations

In this thesis we have used several data sets from the UCI Machine Learning repository (Blake and
Merz, 1998), which form a more or less standard database in classification (although it would be

more general to say in machine learning). These data sets may be found at:
e http://www.ics.uci.edu/~mlearn/MLRepository.html
e http://ccd.uab.es/~julia/thesis/datasets (mirror).

Some of the later have been preprocessed in order to homogenize their internal structure and simplify
their use.

These data sets were selected among the whole list of available data sets because of two funda-
mental reasons: first, no missing values are present, and second, they only have binary and numerical
features, but no categorical ones. Data set characteristics are listed in Tab. 7, while a brief descrip-
tion of the origin and main goal of these data sets and their peculiarities follows (the complete

descriptions may be found in the links mentioned above):

1. couvtype: this large data set (over half a million vectors) is part of a forest cover-type study.
The overall objectives of this research were to compare and evaluate classification accuracy

when predicting forest cover types in undisturbed forests.

2. glass: a study of classification of types of glass motivated by criminological investigation done
in the USA Forensic Science Service, using physical properties and chemical compounds of

pieces of glass investigated.

3. ionosphere: this radar data set was created collecting data from a phased array of 16 high-
frequency antennas. The targets were free electrons in the ionosphere. This data set has been

preprocessed using autocorrelation functions.
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10.

11.

12.

13.

APPENDIX A. UCI DATA SETS FOR SIMULATIONS

. iris: it is probably the best known data set to be found in the pattern recognition literature,

based on the work of R.A. Fisher, as stated in Duda et al. (Duda and Hart, 1973). There are
three classes of iris plants, one of them is linearly separable from the other two, and the latter

are not linearly separable from each other.

. letter: the objective is to identify each of a large number of black and white rectangular pixel

displays as one of the 26 capital letters in the English alphabet. This large data set has been
extensively used by the machine learning community due to its intrinsic characteristics: a large

size and a high number of classes.

. liver: a study of the sensitivity to liver disorders that might arise from excessive alcohol

consumption, using measures obtained through blood analysis and other information related

to the patient.

. Irs: this data set is part of the IRAS (Infra-Red Astronomy Satellite) Low Resolution Spec-

trometer Database. This database was originally obtained for use in development and testing

a system called AutoClass for Bayesian classification.

. optdigits: the main goal of this data set is to construct a system capable of optical recognition

of handwritten digits. Each digit is a bitmap of 32 x 32 pixels which is decomposed into non-
overlapping blocks of 4 x 4, and then the number of pixels are counted in each block, so all 64

elements of each input vector are integer numbers ranging from 0 to 16.

. page: this data set is used to build a classifier for all the blocks that have been detected by

the segmentation process of a document layout recognition system. Some outliers (mislabeled
samples in the training set) were detected in this data set, although that may be caused by an

insufficient set of classification features or by class definition ambiguity.

pendigits: in this case, the main goal is also to recognize handwritten digits but using a pen-
based system, instead of using normalized bitmaps. Such a system measures pen coordinates

and pressure, although pressure values are not present in the data set.

pima: this data set contains information about patients of Pima Indian heritage, trying to
obtain a diagnostic which is whether a patient shows signs of diabetes or not. All patients

were females at least 21 years old.

sat: this data set is a sub-area of a Landsat MSS scene, containing spectral information which
is used to discriminate among several terrain classes. Surprisingly, there is a class called

“mixture” which is not present because the authors doubt about its validity.

segmentation: this data set has been created taking random instances from a database of

outdoor images, which were hand-segmented in order to create a classification for each pixel.
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Each instance is then processed computing several continuous attributes which are used for

classification purposes.

sonar: this is a data set used in a study of the classification of sonar signals using a neural
network, trying to discriminate between sonar signals bounced off a metal cylinder and those

bounced off a roughly cylindrical rock.

thyroid: in this study five laboratory tests are used to try to predict whether the thyroid of
a patient is euthyroidism, hypothyroidism or hyperthyroidism. The diagnosis was based on a

complete medical record including anamnesis, scan information and so on.

vehicle: this data set comes from the Turing Institute, Glasgow, Scotland, and its main goal
is to classify a given silhouette as one of four types of vehicle using a set of features extracted

from the silhouette, when viewed from one of many different angles.

vowel: this data set is part of a context sensitive learning work, and its main goal is to recognize
one of the eleven possible classes of vowel sound in English using then classification features
and contextual information on the gender of the speaker and his or her identity. We removed

speaker identity information in order to avoid a highly overtrained classifier.

waveform: constructed by Breiman et al. (Breiman et al., 1984, pp. 33-44), it is a three class
problem, linearly separable, although a small amount of noise is added in order to make it
more difficult. According to (Breiman et al., 1984), the Bayes risk of misclassification error is
0.14, although it is difficult to achieve such accuracy using only hyperplanes (TSVQ achieves

such accuracy, for example).

wdbe: based on a study named Wisconsin Diagnostic Breast Cancer, this data set is linearly
separable using all input classification features, which describe characteristics of the cell nuclei

present in a digitized image of a fine needle aspirate of a breast mass.

wine: this data set is the result of a chemical analysis of wines grown in the same region
in Ttaly but derived from three different cultivars. Classes are non-overlapping, so a 100%
of correct classification percentage could be achieved using a more complex version of linear

discriminant analysis.
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Appendix B

Notation

Symbol Definition First apparition
Liay indicator function of event A 22
i transpose concatenation operator 50
« pruning algorithm complexity cost measure 27
Ag K-ary probability distribution 16
Ar(s,t) tree T impurity decrease for split s at node ¢ 19
€ mixed class threshold 32
Al additional information operator associated to T; 50
0 margin 119
bij error correlation between two classifiers g; and g; 53
am mixed class correlation between two classifiers g; and g; 54
i) impurity function 17
Up,. random variable induced by Py 14
T a priori probability of class j 18
T regularization function 119
A collection of measurable sets 120
B average bias decomposition 56
c each internal node has exactly ¢ children 11
e(T, 0) penalty cost 120
C(j, k) misclassification cost matrix 14
Cm corpus set containing m vectors 24
d input space dimension, number of classification features 13
d, d(T) tree maximum depth 22
D, training set containing n vectors 2
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DD
E{Z}
Ep{A}
Ep, {4}
f

f(x)

9, (f1Dn)

vectors classified as mixed at stage i + 1
expectation of event A

expectation of event A under distribution D
expectation of event A measured in a training set D,,
class of functions

unknown true class function for an input vector x
learning algorithm which uses D,, and f € F

set of {—1,1}-valued functions

node ¢ impurity

tree T impurity

number of classes

optimal misclassification error, Bayes error

true misclassification error

training set resubstitution estimate

training set margin

corpus set resubstitution estimate

label for leaf ¢

label for leaf ¢ using the mixed class labeling rule
label for mixed class

Effective number of leaves of tree T

probability of event A

probability of event A under distribution D
probability of event A measured in a training set D,
probability of being at node ¢

probability of being at leaf ¢

probability of class j given a node ¢

probability of class j

percentage of input vectors classified by tree T’
partition induced by tree T’

R-norm splitting criterion parameter

tree average rate

node ¢ misclassification cost

number of pruned subtrees of T’

matrix covariance for class k

Pooled matrix covariance for classes k; and ks
classification or decision tree

set of leaves of T’

APPENDIX B. NOTATION

50
14
14
14

118
18
18
13
17
22
22

119
24
14
32
32

121
14

121

119
14

118
18
16
35
14
17
22
14
26
35
35
11
12



number of leaves of T'

number of trees in a cascading ensemble
VC dimension of A

average variance decomposition

input vector

class centroid for class k

pair of vector, label

joint distribution of pairs (vector, label)

143

12
39
121
56

95
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cascading, 42, 117
classification, 1

features, 3, 10, 66
classifier correlation, 42
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convex hull, 57
cross-validation estimate, 23

curse of dimensionality, 52, 112
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dynamic complexity, 71
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entropy, 14, 17

error complexity measure, 27
error correlation, 53

expert system, 21

FACT, 20
fragmentation problem, 32, 37, 58

generalization error, 4, 22, 29, 31, 117

hold-out estimate, 23
hyperrectangle, 40, 125
hyperspectral imaging, 63
hyperspectral imaging, 25, 30

ID3, 10
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inter-class distance, 55
intra-class distance, 55

intrinsic noise, 56
JPEG standard, 4, 62

labeling rule, 5, 14, 32
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machine learning, 1
Mahalanobis distance, 54
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meta-level classifier, 42
mixed class, 32
multiexpert systems, 42
multistage system, 42

multivariate decision trees, 20

n-fold estimate, 23

nearest neighbor classifier, 4, 71, 113
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node selection, 5, 15
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outliers, 29, 138
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PAC-learning, 3
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pattern recognition, 9
perception, 1, 135
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randomization, 45
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regularization, 119
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repetition problem, 32, 58
replication problem, 32, 36, 37, 58

shatter coefficient, 120

significance level, 71

specialist, 32

split, 5

stacking, 42, 117

stopping condition, 5, 15
structural risk minimization, 119
supervised learning, 2

support vector machine, 20
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set, 5, 13, 34, 66
stage, 3, 15

transpose concatenation operator, 50
tree internal node, 11
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univariate decision trees, 32
unstable classifier, 13, 43

unsupervised learning, 2

VC dimension, 120
voting, 42

weak learner, 44
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