
Chapter 6

Conclusion and future work

We pointed out in the introduction, when discussing about the versatility of wavelets
as a tool in signal processing, that they can be adapted to many problems of di�erent
scienti�c disciplines and especially in our �eld, computer vision and image processing.
In this work, we have shown that wavelets have this well-known exibility permitting
us to explore the solution for several general problems as segmentation and classi�-
cation extending these solutions to several applications. Problems presented in this
work are related to texture analysis, a large area of study in itself. We have began
this dissertation on an introductory work aimed at the segmentation of a speci�c
kind of images, and later we changed the approach to explore the topics of texture
classi�cation and synthesis. Besides, in all the problems we have proposed an image
model as a starting point to study and justify how to process them.

The �rst part of this thesis has dealt with the classi�cation of marble images that
can be seen as structural textures. The elements de�ning these textures are grains
that must be segmented. This segmentation of marble samples in their grains is used
for specialists to classify them. This is a technique with good classi�cation results
but with a cumbersome stage of segmentation that makes infeasible perform it by
hand. In this work we have automated this task, delivering to the professional this
segmentation and morphological parameters of each grains useful in the classi�cation
stage.

If we analyze these marble images we realize that to delimit each grain is a diÆcult
task due to noise in the image, macles, weak boundaries etc. Professionals use the
information that arises from the observation of the samples through polarized light in
order to decide where grains are. We also take advantage from this fact, and use the
image formation model o�ered by the Johannsen's law, which relates the incident and
transmitted light intensities through uniaxial crystals (marble). From a sequence, we
can calculate two parameters (amplitude and phase) intrinsic of each grain that is
used to aid segmentation.

Several methods have been evaluated to achieve the segmentation. In this sense,

107



108 CONCLUSION AND FUTURE WORK

and due to the characteristics of grains that are closed regions, we conclude that
watershed transform is the best solution for this problem. This transformation applied
directly to the images gives an excessive over segmentation due basically to noise.
Therefore a previous �ltering stage is mandatory.

The �ltering step was done initially with similar tools used in the segmentation,
but once we started to study multiresolution schemes, this step was rede�ned and
designed in terms of the wavelet transform. In this work we have proposed a new
wavelet �ltering approach whose results can be easily interpreted in terms of relevant
elements of the image: noise, non-homogeneous illumination and contributions to crest
and valleys. In this way, we can isolate the important information to our problem
that are ridges, now free of disturbing elements, giving a good starting point for the
segmentation step. The information obtained in the segmentation is now expressed
as a graph to re�ne the results with the previous amplitude-phase information. This
duality of the representation, as image or as a graph, permits to work with the best
one according to each process.

The same idea of a partial reconstruction of a wavelet decomposition in order to
extract only the necessary elements and the representation of the partial result as a
graph can be easily extended to similar problems of image segmentation. As a future
development we include some preliminary results on the segmentation of people in
indoor scenes. In this case, segmentation is a starting point of a labeling process
where any part (clothing) of the subject must be automatically described in natural
language in pursuit of a global description of the subject.

Results show that our method achieves a correct segmentation for most grains
in a variety of marble types, without any initial knowledge on their characteristics.
Once the segmentation is done, the expert studies several parameters related to the
morphology of each grain and the relation among the bulk of grains. With all this
information and based on his knowledge and expertise he gives a source quarry for
the sample.

The second part of this work has addressed a problem of color texture classi�cation
through multiresolution decomposition techniques. This is an important subject due
to its implications in quality control, and image retrieval. Since our research is related
to one real application, we approach this part as a general texture classi�cation but
then tend to center our attention on achieving practical solutions. The kind of images
we face now are characterized by their high visual similarity, that is, a completely
di�erent problem with regard to most publications in this area.

We adopt a common strategy to study this problem with a decomposition stage
and a feature extraction but adapting each step to our requirements. In this sense,
our aim was to �nd an optimal combination of color representation, decomposition
scheme plus base and number of levels, and discriminant features.

A conclusion that reveals our work and also reported for other authors is that
the bases used in the decomposition do not play a signi�cant role achieving similar
percentages of success. However all the process can be tuned for a speci�c problem
or set of images to slightly increase the classi�cation rate.



109

Texture and color are two properties that coexist at the images and their interre-
lations can be more or less strong depending on the images. In this sense, we have
proposed three image models in which this interrelation has di�erent weight, and then
some spatial-chromatic features are more important than others. These models refer
to how texture is embedded into color and how texture in each channel relates to
texture of the other ones.

In most papers related to texture classi�cation, the feature extraction step yields a
lot of information that must be reduced. This reduction should be performed by classic
methods of dimensionality reduction without any knowledge about the data. In this
work, we propose models in such a way that images following one of these models need
a speci�c set of features to be characterized. This idea has been supported by actual
results showing that selecting the right features achieves the smallest classi�cation
error.

Future research will address the estimation of other features with a high level
of interrelation among channels and levels of the decomposition. Also, we will try
mutual information as other measure of dependence between the images of the de-
composition. Then, we will apply these results to a more elaborate paint recognition
problem. In this case, we want to complete classi�cation results with other inputs as
chromatic (spectral) information to arrive to the determination of the components of
these paints.

Finally, we essay to characterize texture through multidimensional probability
density functions extracted from pixel neighborhoods. This description is used to
classify and also to synthesize similar textures. We propose a way to classify textures
according with this probability model based on similarity measures over these density
functions. We compare the proposed `metric' with standard distance values. Our
synthesis starts with this model as a base and then has evolved to a multiresolution
scheme. Results of the last part are still preliminary and a deal of further work is still
necessary.



Appendix A

Detailed results

A.1 Tiles

The tile case was studied in-depth in order to plan the strategy in later classi�cation
studies. In this case a lot of decomposition schemes, bases and decomposition levels
were analysed arriving to some conclusion in order to reduce the number of possible
trials in other problems.

Tables represent the percentage of successful classi�cation, % symbol has been
elided for the sake of a better presentation of data. The proofs done in this section
refers to three models of tile: A (Du, Duero), B (Es, Esla), C (Tb, Tiber); letters are
the name used in the previous explanation (Sec. 4.4), names in parentheses are the
label used in tables �rst, and the commercial name of these tiles.

Nomenclature used to label rows and columns of the next tables comprise: num-
ber of components of the feature vector (#f), type of set used in the classi�cation (l:
learning, t: test), transformation (W: multiresolution analysis, WP: wavelet packets,
T: �a trous , number of levels in the decomposition as the number that follows the
transform or labeled as #l, functions used to obtain the features (L2: energy, EN:
entropy), bases in the decomposition (D: Daubechies, B: B-spline), features are rep-
resented a pre�x to the transform (F.a: without pre�x, F.a+F.b: CN, F.a+F.b+F.c:
CC). If a table is not divided in models it means that results are totals.

Table A.1: Classi�cation ratios from simple features for models A, B and C.

Du Es Tb
Features #f l t l t l t total
mean and variance 6 100.0 94.4 90.0 79.4 100.0 87.5 87.1
mean 3 93.8 76.3 83.8 63.8 82.5 79.4 73.2
variance 3 98.8 90.0 90.0 72.5 73.8 70.0 77.5
energy of RGB 3 95.0 73.1 86.3 71.9 77.5 75.0 73.3
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Table A.2: Classi�cation of the tree models using multiresolution analysis (Mallats

algorithm) with energy features without removing mean and variance.

Du Es Tb
Scheme #f l t l t l t total
W1L2D2 12 100.0 93.1 97.5 84.4 100.0 88.8 88.8
W1L2D4 12 100.0 94.4 97.5 83.8 97.5 88.1 88.8
W1L2D6 12 100.0 95.6 95.0 85.0 95.0 84.4 88.3
W1L2D8 12 100.0 95.0 97.5 82.5 95.0 86.3 87.9
W1L2D10 12 100.0 95.6 96.3 81.9 97.5 86.3 87.9
W1L2D12 12 100.0 95.6 95.0 80.6 91.3 86.3 87.5
W1L2D14 12 100.0 96.3 97.5 81.3 88.8 88.1 88.6
W1L2D16 12 100.0 95.0 96.3 81.9 85.0 90.0 89.0
W1L2D18 12 100.0 95.0 96.3 82.5 85.0 88.8 88.8
W1L2D20 12 100.0 95.0 93.8 83.1 86.3 86.3 88.1
W2L2D2 21 100.0 93.8 97.5 82.5 98.8 89.4 88.6
W2L2D4 21 100.0 95.6 97.5 82.5 96.3 85.6 87.9
W2L2D6 21 100.0 95.0 96.3 82.5 92.5 86.9 88.1
W2L2D8 21 100.0 95.6 97.5 83.1 96.3 86.3 88.3
W2L2D10 21 100.0 94.4 96.3 83.8 97.5 90.6 89.6
W2L2D12 21 100.0 96.3 95.0 83.1 93.8 92.5 90.6
W2L2D14 21 100.0 95.0 95.0 84.4 96.3 88.8 89.4
W2L2D16 21 100.0 94.4 98.8 84.4 93.8 90.0 89.6
W2L2D18 21 100.0 95.0 95.0 85.6 95.0 88.1 89.6
W2L2D20 21 100.0 95.3 97.5 85.0 97.5 86.3 88.9
W3L2D2 30 100.0 95.6 95.0 78.8 96.3 87.5 87.3
W3L2D4 30 100.0 93.8 96.3 80.0 100.0 90.6 88.1
W3L2D6 30 100.0 96.3 97.5 78.8 100.0 87.5 87.5
W3L2D8 30 100.0 93.8 96.3 80.6 97.5 87.5 87.3
W3L2D10 30 100.0 93.8 96.3 82.5 98.8 88.8 88.4
W3L2D12 30 100.0 95.6 97.5 81.3 96.3 91.3 89.4
W3L2D14 30 100.0 95.0 98.8 84.4 97.5 89.4 89.6
W3L2D16 30 100.0 95.6 97.5 81.9 97.5 89.4 89.0
W3L2D18 30 100.0 93.1 96.3 81.9 96.3 88.8 87.9
W3L2D20 30 100.0 93.1 97.5 83.1 96.3 88.8 88.3
W4L2D2 39 100.0 95.0 97.5 82.5 100.0 88.1 88.5
W4L2D4 39 100.0 95.0 96.3 80.6 100.0 89.4 88.3
W4L2D6 39 100.0 95.6 97.5 76.9 100.0 87.5 86.7
W4L2D8 39 100.0 95.0 97.5 78.8 100.0 90.0 87.9
W4L2D10 39 100.0 95.6 97.5 81.3 100.0 90.0 89.0
W4L2D12 39 100.0 92.5 93.8 83.1 100.0 93.1 89.6
W4L2D14 39 100.0 93.1 97.5 83.1 100.0 88.8 88.3
W4L2D16 39 100.0 93.8 97.5 79.4 100.0 85.6 86.3
W4L2D18 39 100.0 93.8 96.3 79.4 100.0 90.6 87.9
W4L2D20 39 100.0 92.5 97.5 82.5 100.0 88.1 87.7
W5L2D2 48 100.0 94.4 95.0 81.3 98.8 86.9 87.5
W5L2D4 48 100.0 96.3 97.5 81.3 100.0 88.1 88.6
W5L2D6 48 100.0 95.0 96.3 78.8 100.0 86.9 86.9
W5L2D8 48 100.0 95.6 97.5 76.9 100.0 82.5 85.0
W5L2D10 48 100.0 96.3 97.5 80.6 100.0 88.1 88.3
W5L2D12 48 100.0 93.1 96.3 81.3 100.0 90.0 88.1
W5L2D14 48 100.0 94.4 97.5 79.4 98.8 91.3 88.4
W5L2D16 48 100.0 93.1 97.5 80.6 100.0 88.8 87.5
W6L2D2 57 100.0 94.4 97.5 76.3 100.0 86.9 85.9
W6L2D4 57 100.0 96.3 96.3 80.6 100.0 86.9 87.9
W6L2D6 57 100.0 95.6 97.5 76.9 100.0 86.9 86.5
W6L2D8 57 100.0 92.5 97.5 78.1 100.0 80.0 83.5
W7L2D2 66 100.0 92.5 97.5 77.5 100.0 85.6 85.2
W7L2D4 66 100.0 95.6 96.3 80.0 100.0 87.5 87.7
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Table A.3: Classi�cation ratios for the three models: Du, Es, Tb. The �rst two

columns are number of features used for classi�cation purposes and the number of

decomposition levels. Next columns represent di�erent bases (e.g D2 is Daublechies,

and so on). The number inside the table are the classi�cation percentage (% is

suposed in all the results, it has been omitted for clearity)

#f #l D2 D4 D6 D8 D10 D12 D14 D16 D18 D20

Du
12 1 93.1 94.4 95.6 95.0 95.6 95.6 96.3 95.0 95.0 95.0
21 2 93.8 95.6 95.0 95.6 94.4 96.3 95.0 94.4 95.0 95.3
30 3 95.6 93.8 96.3 93.8 93.8 95.6 95.0 95.6 93.1 93.1
39 4 95.0 95.0 95.6 95.0 95.6 92.5 93.1 93.8 93.8 92.5
48 5 94.4 96.3 95.0 95.6 96.3 93.1 94.4 93.1
57 6 94.4 96.3 95.6 92.5
66 7 92.5 95.6

Es
12 1 84.4 83.8 85.0 82.5 81.9 80.6 81.3 81.9 82.5 83.1
21 2 82.5 82.5 82.5 83.1 83.8 83.1 84.4 84.4 85.6 85.0
30 3 78.8 80.0 78.8 80.6 82.5 81.3 84.4 81.9 81.9 83.1
39 4 82.5 80.6 76.9 78.8 81.3 83.1 83.1 79.4 79.4 82.5
48 5 81.3 81.3 78.8 76.9 80.6 81.3 79.4 80.6
57 6 76.3 80.6 76.9 78.1
66 7 77.5 80.0

Tb
12 1 88.8 88.1 84.4 86.3 86.3 86.3 88.1 90.0 88.8 86.3
21 2 89.4 85.6 86.9 86.3 90.6 92.5 88.8 90.0 88.1 86.3
30 3 87.5 90.6 87.5 87.5 88.8 91.3 89.4 89.4 88.8 88.8
39 4 88.1 89.4 87.5 90.0 90.0 93.1 88.8 85.6 90.6 88.1
48 5 86.9 88.1 86.9 82.5 88.1 90.0 91.3 88.8
57 6 86.9 86.9 86.9 80.0
66 7 85.6 87.5

total
12 1 88.8 88.8 88.3 87.9 87.9 87.5 88.6 89.0 88.8 88.1
21 2 88.6 87.9 88.1 88.3 89.6 90.6 89.4 89.6 89.6 88.9
30 3 87.3 88.1 87.5 87.3 88.4 89.4 89.6 89.0 87.9 88.3
39 4 88.5 88.3 86.7 87.9 89.0 89.6 88.3 86.3 87.9 87.7
48 5 87.5 88.6 86.9 85.0 88.3 88.1 88.4 87.5
57 6 85.9 87.9 86.5 83.5
66 7 85.2 87.7

Table A.4: Classi�cation ratios for the �a trous algorithm (energy features). In this

experiment we have varied the number of levels and base of decomposition.

Du Es Tb total
#f #l B0 B1 B2 B0 B1 B2 B0 B1 B2 B0 B1 B2
6 1 93.1 93.8 93.1 81.9 85.0 83.1 88.8 86.3 87.5 87.9 88.4 87.9
9 2 94.4 94.4 93.8 85.0 83.8 83.8 91.3 93.8 93.8 90.2 90.7 90.5
12 3 94.4 95.6 94.4 81.3 84.4 80.6 86.9 95.6 89.4 87.5 91.9 88.1
15 4 94.4 93.8 93.8 82.5 84.4 82.5 86.9 95.6 91.3 87.9 91.3 89.2
18 5 94.4 94.4 93.1 80.0 82.5 81.9 88.8 83.8 92.5 87.7 86.9 89.2
21 6 93.8 93.1 91.9 81.9 81.9 80.6 86.3 86.3 93.8 87.3 87.1 88.8
24 7 91.9 92.5 90.0 82.5 80.6 80.0 86.9 85.6 90.0 87.1 86.2 86.7
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Table A.5: Classi�cation ratios for wavelet and wavelet packet decomposition

schemes with and without illumination information.

W1 W2 W3 WP2 WP1,2
#f 12 21 30 48 60
with mean and variance
D2 88.8 88.6 87.3 83.1 88.6
D4 88.8 87.9 88.1 85.0 87.5
D6 88.3 88.1 87.5 85.9 86.2
without mean and variance
D2 84.6 84.8 83.2 80.8 76.9
D4 85.9 85.4 82.3 77.7 82.9
D6 85.8 85.4 83.8 80.9 83.4

Table A.6: Classi�cation ratios for the three models and for learning and test sets.

Features comes from the �a trous algorithm for di�erent strategies exploring color.

Du Es Tb total
Scheme #f l t l t l t test
CNT2L2B1 12 100,0 94,4 96,3 86,9 100,0 86,9 89,4
CNT3L2B1 21 98,8 91,3 92,5 87,5 97,5 83,1 87,3
CNT4L2B1 33 100,0 91,9 95,0 86,3 98,8 83,1 87,1
CCT2L2B1 18 100,0 95,0 91,3 82,5 100,0 91,9 89,8
CCT3L2B1 24 100,0 95,6 97,5 87,5 100,0 95,0 92,7
CCT4L2B1 30 100,0 93,8 96,3 85,6 98,8 81,3 86,9

T3L2B1RGBgris 6 100,0 97,5 92,5 77,5 85,0 80,0 85,0
T3L2B1sMV 12 100,0 91,9 87,5 82,5 91,3 74,4 82,9
CCT3L2B1 24 100,0 95,6 97,5 87,5 100,0 95,0 92,7
CCKLP+MT3L2B1 24 100,0 95,6 93,8 86,9 100,0 95,0 92,5
KLE+MT3L2B1 12 100,0 96,3 92,5 81,9 100,0 85,0 87,7
KLP+MT3L2B1 12 100,0 95,6 92,5 78,1 100,0 86,3 86,7

T2L2B1(R) 5 100,0 95,6 90,0 80,6 87,5 86,3 87,5
T2L2B1(G) 5 100,0 96,9 90,0 82,5 83,8 81,9 87,1
T2L2B1(B) 5 100,0 96,9 92,5 82,5 86,3 80,6 86,7
T3L2B1(R) 6 100,0 96,3 91,3 78,1 90,0 83,8 86,1
T3L2B1(G) 6 100,0 98,1 92,5 78,1 85,0 80,6 85,6
T3L2B1(B) 6 100,0 96,3 92,5 80,0 87,5 75,0 83,8
T4L2B1(R) 7 100,0 93,8 91,3 76,9 91,3 77,5 82,7
T4L2B1(G) 7 100,0 97,5 92,5 78,1 90,0 74,4 83,3
T4L2B1(B) 7 100,0 96,9 92,5 80,0 87,5 70,0 82,3
CNT2L2B1(R) 6 100,0 96,9 91,3 85,0 90,0 86,3 89,4
CNT2L2B1(G) 6 100,0 95,6 93,8 85,6 85,0 78,8 86,7
CNT2L2B1(B) 6 100,0 95,6 92,5 85,6 80,0 74,4 85,2
CNT3L2B1(R) 9 100,0 98,1 92,5 84,4 87,5 83,1 88,5
CNT3L2B1(G) 9 100,0 97,5 95,0 86,3 85,0 78,1 87,3
CNT3L2B1(B) 9 100,0 96,9 93,8 84,4 87,5 72,5 84,6
CNT4L2B1(R) 13 100,0 96,3 92,5 84,4 92,5 76,3 85,7
CNT4L2B1(G) 13 98,8 88,8 95,0 84,4 91,3 71,9 81,7
CNT4L2B1(B) 13 98,8 88,1 95,0 85,0 88,8 70,0 81,0
KLE+MT3L2B1(C1) 6 100,0 97,5 92,5 77,5 88,0 80,0 85,0
KLE+MT3L2B1(C2) 6 98,8 96,3 93,8 78,8 90,0 81,3 85,5
KLE+MT3L2B1(C3) 6 100,0 97,5 91,3 79,4 95,0 86,9 87,9
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A.2 Paints

Table A.7: Classi�cation ratios for paints at �500 magni�cation and for learning

and test sets. Features comes from the �a trous algorithm for di�erent strategies

exploring basically relation among levels and channels.

Features #f l t
T2L2B1, grey, without mean and variance 3 54.7 29.2
T3L2B1, grey, without mean and variance 4 65.6 32.3
T4L2B1, grey, without mean and variance 5 64.1 21.9
CNT2L2B1, grey, without mean and variance 4 54.7 29.2
CNT3L2B1, grey, without mean and variance 7 65.6 32.3
CNT4L2B1, grey, without mean and variance 11 64.1 21.9
CNT2L2B1 12 89.1 57.3
CNT3L2B1 21 96.9 64.6
CNT4L2B1 33 96.9 57.3
CCT2L2B1 18 100.0 72.9
CCT3L2B1 24 100.0 63.5
CCT4L2B1 30 100.0 68.8

A.3 Marble

Table A.8: Classi�cation ratios for marble images and for learning and test sets.

Features comes from the �a trous algorithm for di�erent strategies exploring basically

relation among levels and channels.

Features #f l t
mean and variance 2 29.20 15.25
T2L2B1, without mean and variance 3 48.60 26.40
T3L2B1, without mean and variance 4 57.10 34.70
T4L2B1, without mean and variance 5 66.65 36.10
T2L2B1 4 43.05 26.40
T3L2B1 7 59.70 33.35
T4L2B1 11 63.90 37.50
CNT2L2B1, without mean and variance 12 52.75 27.75
CNT3L2B1, without mean and variance 21 61.10 34.70
CNT4L2B1, without mean and variance 33 66.65 36.10
CNT2L2B1 18 52.80 25.00
CNT3L2B1 24 63.90 36.10
CNT4L2B1 30 83.30 45.80
CNT4L2B0 30 65.25 47.20
CNT4L2B2 30 79.15 37.50
CNT4L2B3 30 80.55 38.85
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A.4 Brodatz

Table A.9: Classi�cation ratios for Brodatz images and for learning and test sets.

Features comes from the �a trous algorithm for di�erent strategies exploring basically

relation among levels and channels. Two set of images have been used: 111 images

and 55 images.

111 images 55 images
Features #f l t l t
mean and variance 2 32.45 23.50 54,90 43,90
T3L2B1, without mean and variance 4 48.10 38.30 92,85 87,75
CNT3L2B1, without mean and variance 7 59.50 47.65 96,70 93,55
T3L2B1 4 74.70 61.30 92,95 83,40
CNT3L2B1 7 78.45 66.05 93,65 86,25

Figure A.1: 55 subimages from the Brodatz album [13] (images are regions of

160� 160 of a big one of 640 � 640).
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Figure A.2: 111 subimages from the Brodatz album [13] (images are regions of

160� 160 of a big one of 640 � 640).
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