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Abstract

In the last few years, wireless devices have evolved to unimaginable heights. Current
forecasts suggest that, in the near future, every device that may take advantage of a
wireless connection will have one. In addition, there is a gradual migration to smart
devices and high-speed connections, and, as a consequence, the overall mobile traffic
is expected to experience a tremendous growth in the next years. The multiuser
interference will hence become the main limiting factor and the most critical point
to address.

As instrumental to efficiently manage interference between different systems, this
thesis provides a thorough study on cooperative techniques. That is, users share
information and exploit it to improve the overall performance. Since multiuser
cooperation represents a very broad term, we will focus on algorithm design and
transceiver optimization for three cooperative scenarios that capture some of the
main features and practical issues: the interference channel (IC), the underlay cog-
nitive radio (UCR) model and the two-way relay channel (TWRC).

In the IC, K transmitter-receiver pairs exploit the channel state information (CSI)
to jointly design their transmit strategies. For this scenario, we provide two main
contributions following the lines of interference alignment (IA), whereby linear pre-
coding is applied to eliminate the inter-user interference. First, we consider an ideal
model for a multiple-input multiple-output (MIMO) IC that uses several channel ex-
tensions (e.g., different subcarriers). In this setting, we design an efficient algorithm
to compute IA precoders, which, as opposed to the state-of-the-art algorithms, it
guarantees the dimensionality of the signal subspace. In second place, we shift to a
more realistic model for the MIMO IC with channel extensions. Specifically, we con-
sider orthogonal frequency-division multiplexing (OFDM) transmissions, where the
application of existing IA algorithms require an additional level of cooperation: time
synchronization. To avoid such demand, we apply the precoders and decoders at the
sample level in the time domain, which allows the users to transmit asynchronously.
We propose two different algorithms that are evaluated by means of simulations and
real measurements, where their effectiveness is revealed.

Then, we move to the UCR model, where the so-called secondary users (SUs)
are allowed to coexist with the primary user (PU) as long as the latter achieves a
prescribed data rate requirement. To this end, interference constraints are imposed to
the SUs, hence significantly reducing the cooperation overhead with respect to the IC
scenario. We provide contributions to two different PU settings: single-antenna and
multiple-antenna point-to-point links. In the former case, we consider an interference
power constraint imposed to the secondary network. We first analyze whether a
single-antenna SU can benefit from following an improper signaling scheme, and
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contribute with several analytical results and a closed-form expression to determine
when there is a payoff in terms of achievable rate. Second, we consider several multi-
antenna SUs and study how to efficiently assign an interference power constraint
to each of them, so that their cooperation needs can be reduced with respect to a
global or aggregate interference constraint. We provide a novel solution based on
the statistics of random projections that requires local CSI.

In the multi-antenna PU scenario, not only the interference power is relevant, but
also its spatial distribution. Our first contribution for this setting is a closed-form ex-
pression for the maximum tolerable interference power given a PU rate requirement,
which is obtained by adopting a worst-case assumption on the spatial signature of
the interference covariance matrix. Motivated by this observation, we then propose a
spatial shaping mask to also constrain the spatial signature of the interference, so that
the tolerable interference power can increase without compromising the PU perfor-
mance. We design two different algorithms for the computation of the spatial shaping
matrices, and also addressed the optimization of different secondary networks under
the foregoing constraints. Our results show that spatial shaping provides remark-
able improvements to the secondary network in comparison to interference power
constraints.

We finally consider the TWRC with two single-antenna source nodes, whose link
is too weak to establish direct communication, and multiple multi-antenna relays
that follow the amplify-and-forward (AF) protocol. Differently from the two previ-
ous scenarios, the relays can access the user data, so that joint processing can be
performed. However, the CSI knowledge is still a critical point. To avoid the global
CSI requirement of the optimal relaying strategy, we contribute with a distributed
algorithm that permits achieving rate region points that are very close to the optimal
rate region boundary.



Resumen extendido

Los dispositivos inalámbricos han evolucionado enormemente en los últimos años.
Por ejemplo, los primeros teléfonos móviles sólo servían para hacer llamadas y en-
viar mensajes de texto. Sin embargo, los teléfonos inteligentes actuales permiten al
usuario acceder a internet de manera ilimitada. Además, se prevé que el número
de dispositivos con conexión inalámbrica va a crecer significativamente en los próxi-
mos años, no sólo por el aumento en el número de teléfonos móviles y tabletas, sino
también por el creciente interés en las llamadas conexiones máquina-a-máquina, o
dispositivos tales como relojes inteligentes, gafas inteligentes, etc. En consecuencia,
el tráfico de datos en redes inalámbricas va a crecer de manera exponencial en los
próximos años.

Una pregunta natural que podríamos plantearnos en este punto es si los sistemas
de comunicaciones actuales están preparados para afrontar tales demandas. Para
responder a esta pregunta, tenemos primero que darnos cuenta de que el principal
factor limitante en las redes inalámbricas es la interferencia entre los distintos usuar-
ios que comparten los recursos. Las técnicas actuales se basan en una gestión pasiva
de la interferencia, dividiendo los recursos de manera ortogonal (por ejemplo, acceso
múltiple por división en frecuencia, tiempo, códigos, etc. -FDMA, TDMA y CDMA,
respectivamente-), evitando así la interferencia inter-usuario. Aunque estás técnicas
han funcionado satisfactoriamente hasta ahora, desde un puno de vista de teoría
de la información están muy lejos de ser óptimas, y, por tanto, dan lugar a un de-
saprovechamiento de los recursos. En otras palabras, otras técnicas más sofisticadas
proporcionarían a los usuarios una mayor tasa de datos, o, de manera alternativa, un
mayor número de usuarios podría ser servido sin perder eficiencia espectral.

En este contexto, la cooperación entre usuarios surge como la clave para llevar a
cabo un tratamiento activo de la interferencia y poder así romper el cuello de botella
al que nos acercamos. Siguiendo estas líneas, los usuarios compartirían información
(por ejemplo, mensajes o el estado del canal) que podría ser usada para coordinar
las estrategias de transmisión (potencia, direcciones de transmisión, etc.) con el fin
de mejorar el rendimiento global de la red.

Esta tesis estudia diferentes aspectos de la cooperación en redes multiusuario,
centrándose en el desarrollo de algoritmos para el diseño de estrategias de trans-
misión y gestión eficiente de interferencias. Para ello, y teniendo en cuenta el amplio
espectro de escenarios y características que rodean la cooperación multiusuario, se
han estudiado tres escenarios ilustrativos que recogen gran parte de los matices y
problemas prácticos relacionados con la cooperación: el canal de interferencia, el
modelo de radio cognitiva subyacente y el canal de repetición bidireccional.
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Cada uno de los escenarios anteriores presenta diferentes necesidades y objetivos
en cuanto a cooperación y tratamiento de interferencia. A continuación se describe
brevemente cada uno de ellos, así como las contribuciones que se han realizado.

Canal de interferencia

El canal de interferencia es el modelo fundamental de redes limitadas por interfer-
encia, y está constituido por K pares transmisor-receptor que se interfieren mutua-
mente. Para minimizar el impacto de la interferencia, los distintos pares o usuarios
coordinan sus estrategias de transmisión, es decir, ajustan conjuntamente la poten-
cia de transmisión y/o las matrices de precodificación. Para ello, se requiere típi-
camente un conocimiento global del estado de los canales, o el empleo de técnicas
distribuidas, las cuales confían en un intercambio iterativo de información local. Una
técnica que está recibiendo un gran interés en este ámbito es el alineado de inter-
ferencias. En esencia, este método permite eliminar completamente la interferencia
inter-usuario a través de esquemas de precodificación y decodificación lineales.

Como instancia particular de este escenario, se ha considerado el caso en que los
usuarios están equipados con múltiples antenas y utilizan además un número finito
de extensiones de canal en el tiempo o en la frecuencia. En primer lugar, se ha adop-
tado un modelo ideal de este sistema, y se ha planteado el diseño de matrices de pre-
codificación y decodificación que alcancen el alineado de interferencias. El problema
de los algoritmos existentes para tal fin es que, aunque consiguen anular la interfer-
encia, no son capaces de garantizar el rango de la señal deseada. En otras palabras,
cancelan la interferencia a costa de cancelar también parte de la señal de interés.
Como primera contribución de la tesis, se ha diseñado un algoritmo que solventa
este problema, y que permite obtener, de manera eficiente, soluciones de alineado
de interferencias para este escenario. En segundo lugar, se ha adoptado un modelo
más realista, y para ello se ha considerado que los usuarios transmiten señales mul-
tiplexadas en subportadoras ortogonales (OFDM). Una observación interesante en
este punto es el hecho de que, para aplicar las técnicas desarrolladas sobre el modelo
ideal (que operarían directamente sobre las subportadoras), es necesario un grado
adicional de cooperación entre usuarios: el sincronismo temporal. Si los usuarios no
están sincronizados, surgen dos problemas. Por un lado, la detección de trama debe
realizarse bajo la influencia de la interferencia, lo que se traduce en una tasa elevada
de detección errónea si sus cabeceras no se diseñan adecuadamente. Por otro lado, la
pérdida de ortogonalidad de las subportadoras (debido a que los símbolos OFDM no
llegan alineados en el tiempo) impide que la interferencia pueda suprimirse comple-
tamente, lo que conlleva una reducción significativa en la tasa de datos alcanzable.
Para reducir, por tanto, el requisito de sincronización, se propone aplicar las matri-
ces de precodificación y decodificación en el dominio temporal. De este modo, se
eliminan los dos efectos antes mencionados, permitiendo a los usuarios acceder al
medio de manera completamente asíncrona. Siguiendo esta idea, se han propuesto
dos algoritmos para la obtención de las mencionadas matrices espacio-temporales.
El primero utiliza la solución de alineado de interferencias obtenida por los algorit-
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mos del modelo ideal en el dominio de la frecuencia, y se traslada posteriormente
al dominio temporal mediante una transformada inversa de Fourier. El algoritmo
resultante requiere poca complejidad pero presenta ciertas limitaciones en cuanto a
supresión de interferencia. Por tanto, se ha desarrollado un segundo algoritmo que
efectúa la optimización de los precodificadores y decodificadores directamente en el
dominio del tiempo. El resultado es un algoritmo que, aunque más costoso computa-
cionalmente, presenta una capacidad de cancelación de interferencias muy superior.
Estos métodos se han implementado también sobre un sistema real, donde se ha
comprobado su efectividad en presencia de las no idealidades que habitualmente se
omiten en los análisis teóricos.

Radio cognitiva subyacente

El estudio de este modelo viene motivado por la elevada sobrecarga que requiere la
cooperación en el canal de interferencia (debido al conocimiento global requerido de
los canales). Así, la radio cognitiva subyacente persigue una cooperación reducida
para encontrar un compromiso entre rendimiento y sobrecarga. En este modelo, la
red se divide en dos partes: secundaria y primaria. Los usuarios primarios tienen
máxima prioridad, lo cual se traduce en un requisito mínimo de rendimiento. Por el
contrario, los usuarios secundarios sólo pueden acceder al medio si son capaces de
controlar la interferencia que generan de tal modo que se asegurare el rendimiento
de los usuarios primarios. Para ello, se imponen restricciones de interferencia a la
red secundaria, como, por ejemplo, en la potencia total de interferencia causada a
los receptores primarios. De esta manera, se consigue independizar ambas redes
lo máximo posible, manteniendo una cooperación reducida, pero, al mismo tiempo,
provechosa. Esto da lugar a dos problemas diferentes, ambos estudiados en esta
tesis: el diseño de restricciones de interferencia adecuadas, y la optimización de la
red secundaria sujeta a dichas restricciones.

Esta tesis ha realizado contribuciones para una red primaria compuesta de un
único enlace punto-a-punto que debe alcanzar una tasa de datos mínima. En primer
lugar, se ha considerado que el usuario primario está equipado con una antena a cada
lado del enlace. Desde un punto de vista de teoría de la información, la relación en-
tre tasa de datos del usuario primario y la interferencia recibida es biunívoca, y, por
tanto, puedo imponerse una restricción de potencia de interferencia (a la que tam-
bién denominamos temperatura de interferencia) a la red secundaria sin pérdida de
optimalidad. Sin embargo, dicha afirmación asume que la interferencia sigue una
distribución Gaussiana circularmente simétrica. Esta distribución se asume habitual-
mente para las señales transmitidas ya que maximiza la entropía, y, por lo tanto,
es óptima cuando la interferencia no es limitante. Por el contrario, cuando la in-
terferencia sí presenta una limitación, se ha observado que la transmisión de señales
impropias (parte real e imaginaria correladas) mejora la tasa de datos alcanzable. Por
este motivo, y como primera contribución en este escenario, se ha realizado un estu-
dio de los beneficios que un usuario secundario puede obtener si transmite señales
impropias. El principal resultado es una expresión cerrada que permite determinar
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cuándo va a haber un incremento de la tasa de datos. Asimismo, se han obtenido
varios resultados analíticos que permiten cuantificar la mejora obtenida respecto al
esquema de señalización clásico (señales Gaussianas y circularmente simétricas). En
una segunda contribución para el caso de un usuario primario mono-antena, se ha
considerado una red secundaria compuesta por varios usuarios multi-antena. En
contraposición a una restricción de interferencia global (es decir, la potencia total de
interferencia causada por todos los transmisores secundarios), se propone un método
de asignación de restricciones individuales a cada usuario, que utiliza la estadística
de proyecciones aleatorias. Dichas restricciones individuales resultan especialmente
útiles si los usuarios secundarios no pueden cooperar, o si se desea reducir la coop-
eración que requiere en la red secundaria una restricción global.

En segundo lugar, se consideran varias antenas a ambos lados del enlace primario.
La diferencia fundamental respecto al caso anterior radica en que la dimensión es-
pacial entra en juego, siendo otro factor a tener en cuenta en el diseño de las re-
stricciones de interferencia. Así, mientras que en el caso anterior había una relación
unívoca entre tasa de datos e interferencia (aquí asumimos señales circularmente
simétricas), en el caso multi-antena un mismo valor de potencia de interferencia
puede dar a lugar a diferentes tasas de datos dependiendo de cómo esté distribuida
en el espacio. Como primera contribución para este caso hemos proporcionado una
fórmula cerrada para obtener la máxima potencia de interferencia tolerable en fun-
ción de la tasa de datos mínima a alcanzar, de tal modo que el rendimiento del
primario quede asegurado independientemente de la distribución espacial que tenga
la interferencia. Dicha expresión se ha obtenido considerando la matriz de covari-
anza de interferencia de peor caso, es decir, aquélla con la estructura espacial más
dañina para el usuario primario. Tal asunción es necesaria si sólo se restringe la po-
tencia de interferencia, pero puede resultar demasiado conservadora. Por ello, se ha
propuesto en segundo lugar una restricción alternativa que tenga en cuenta también
la estructura espacial de la interferencia. Así, se ha estudiado el empleo de restric-
ciones de moldeado espacial, las cuales limitan no sólo la potencia de interferencia,
sino también su distribución espacial. En consecuencia, si se evita que la red secun-
daria transmita en las direcciones que son especialmente dañinas para el receptor
primario, la potencia tolerable de interferencia puede aumentar sin comprometer el
rendimiento del usuario primario. De este modo, se han desarrollado dos algoritmos
para obtener tales matrices de moldeado espacial requiriendo sólo conocimiento lo-
cal. Asimismo, se han propuesto también algoritmos para la optimización de la red
secundaria sujeta a dichas restricciones (concretamente, para una usuario secundario
multi-antena y para un canal de interferencia), donde se ha observado, en compara-
ción con la temperatura de interferencia, que se puede aumentar su tasa de datos sin
comprometer el rendimiento del usuario primario.

Canal de repetición bidireccional

En último lugar, se ha estudiado el canal de repetición bidireccional. En este modelo,
dos usuarios (comúnmente denominados nodos fuente en este contexto) intercam-
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bian información con la ayuda de varios repetidores, asumiendo que el enlace directo
es inexistente. El intercambio de un mensaje completo requiere típicamente dos ra-
nuras temporales. En la primera, los dos nodos transmiten sus mensajes simultánea-
mente a los repetidores. En la siguiente ranura temporal, los repetidores combi-
nan linealmente la señal recibida (esta técnica se denomina amplificar-y-reenviar, y,
aunque existan otros métodos, éste es el adoptado en esta tesis por su baja compleji-
dad), y la reenvían de vuelta a los nodos fuente. A diferencia de los dos escenarios an-
teriores, los repetidores acceden a los datos de los usuarios de manera natural. Otra
diferencia importante es que la interferencia no juega un papel importante siempre
que se asuma cierto conocimiento local del canal en los nodos fuente. No obstante,
para maximizar la relación señal-a-ruido, se requiere que los repetidores adquieran
el estado global de los canales para poder así coordinar sus estrategias de manera
óptima.

En este escenario, esta tesis ha contribuido con el desarrollo de algoritmos dis-
tribuidos para coordinar las estrategias de los repetidores. A diferencia de la solu-
ción óptima, la cual, como se ha comentado, requiere un conocimiento global de los
canales, los algoritmos propuestos utilizan solamente información local. En concreto,
se han diseñado dos algoritmos muy similares pero que requieren diferentes grados
de cooperación. El objetivo de ambos es alcanzar una región de tasas de datos lo más
próxima posible a la frontera óptima. A través de simulaciones, se ha observado que
los algoritmos propuestos son casi óptimos, y por tanto, muy interesantes desde un
punto de vista práctico.
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Notation and Acronyms

Used Notation

a Scalar (lowercase)
a Column vector (lowercase boldface)
A Matrix (uppercase boldface)
A−1 Inverse of square matrix A
AT Transpose of matrix A
AH Conjugate transpose (Hermitian) of matrix A
A∗ Complex conjugate of matrix A
Tr(A) Trace of matrix A
Trk,n(A) Sum of the n-size blocks on the kth lower off-block-diagonal

of matrix A
null(A) Nullspace of matrix A
span(A) Column space of matrix A
rank(A) Rank of matrix A
(a)+ Maximum value among a and 0
<(a), =(a) Real and imaginary part of a
|a| Absolute value of a
arg(a) Phase of the complex scalar a
‖a‖ `2-norm of vector a
|A| Determinant of square matrix A
‖A‖F Frobenius norm of matrix A
‖A‖∗ Nuclear norm of matrix A
blkdiag(A1, . . . , AN) Block-diagonal matrix with matrices A1, . . . , AN along the

main diagonal
diag(a1, . . . , aN) Diagonal matrix with elements a1, . . . , aN along the main

diagonal
vec(A) Column vector comprised of a vertical concatenation of the

columns of matrix A
[A1, . . . , AN] Horizontal concatenation of matrices A1, . . . , AN
[A1; . . . ; AN] Vertical concatenation of matrices A1, . . . , AN
[A]0↓a Vertical downshift of matrix A, with zero insertion, of

length a
[A]0↑a Vertical upshift of matrix A, with zero insertion, of length a
νmax(A) Eigenvector of square matrix A with maximum eigenvalue
νmin(A) Eigenvector of square matrix A with minimum eigenvalue
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νmax,a(A) For a real and positive a value, set of a different eigenvec-
tors of square matrix A associated to the a greatest eigen-
values

νmin,a(A) For a real and positive a value, set of a different eigenvec-
tors of square matrix A associated to the a lowest eigenval-
ues

λmax(A) Maximum eigenvalue of square matrix A
λmin(A) Minimum eigenvalue of square matrix A
λmax(A, B) Maximum generalized eigenvalue of the matrix pencil

(A, B)
λ↓(A) Set of eigenvalues of square matrix A in decreasing order
λ↑(A) Set of eigenvalues of square matrix A in increasing order
A � B Matrix A− B is positive semidefinite
a[n] ∗ b[n] Linear convolution of sequences a[n] and b[n]
A⊗ B Kronecker product of matrices A and B
A� B Hadamard (element-wise) product of matrices A and B
A? Optimal solution of an optimization problem in the matrix

variable A
∇A f (A) Derivative of f (A) with respect to A
IN N × N identity matrix (subscript is omitted when the di-

mension is self-evident)
0N N × N zero matrix (subscript is omitted when the dimen-

sion is self-evident)
RM×N Space of M× N real matrices
NM×N Ring of M× N integer matrices
CM×N Space of M× N complex matrices
SN
+ Space of N × N positive semidefinite matrices
Ei(x) Exponential integral (Ei (x) = −

∫∞
−x

e−t

t dt)
.
= Defined as
∼ Distributed as
CN (µ, Σ) Multivariate circularly-symmetric complex Gaussian distri-

bution with mean µ and covariance matrix Σ
Beta(a, b) Beta distribution with shape parameters a and b
Dir(α) Dirichlet distribution with concentration parameter α
E[X] Mathematical expectation of random variable X
σx Standard deviation of random variable X
τx Complementary-variance of complex random variable X
κx Circularity coefficient of complex random variable X
Pr {X ≤ x} Probability of random variable X being equal to or lower

than x
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General symbol use and conventions

K Number of users in a given network
di Number of streams transmitted by user i
Mi Number of transmit antennas of user i
Ni Number of receive antennas of user i
Hi j General denotation of the channel matrix between trans-

mitter j and receiver i within a given network
Fi Direct channel matrix of the ith secondary user (used to

make a distinction with the primary network channels)
Gi Cross-channel matrix between the ith secondary transmit-

ter and the primary receiver
Di Cross-channel matrix between the primary transmitter and

the ith secondary receiver
Ui Decoding matrix of transmitter i (Ui ∈ CNi×di)
Vi Precoding matrix of transmitter i (Vi ∈ CMi×di)
Qi Either transmit or signal covariance matrix of the ith user
Ki Interference covariance matrix at the ith receiver
∏

K
i=1(Mi × Ni, di) K-user interference channel, where the ith user transmits

di streams and is equipped with Mi and Ni transmit and
receive antennas, respectively

[∏K
i=1(Mi × Ni, di), L] ∏

K
i=1(Mi × Ni, di) scenario with L channel extensions

x[n] Signal/Filter at time instant n
x[ω`] Signal/Filter at subcarrier `
Pi Optimization problem
L (·) Lagrangian
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Acronyms

AF Amplify-and-forward
ANC Analog network coding
AWGN Additive white Gaussian noise
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Chapter1
Introduction

The electromagnetic spectrum is a limited and precious resource. Since the radio
spectrum regulations started more than 100 years ago, frequency bands have been
assigned to specific services for exclusive use. However, the U.S. National Telecom-
munications and Information Administration chart [1] reveals that we are currently
exhausting the availability of the radio-frequency spectrum. Furthermore, the num-
ber of devices with a wireless connection is foreseen to increase enormously in the
next years. To provide some numbers, Ericsson has envisioned that there will be
more than 50 billion devices by 2020 [2], which corresponds to more than threefold
the number of wireless devices to date. On the one hand, this tremendous growth
is due to the surge of smartphones and tablets, which have revolutionized the way
we communicate and interact with one another. Hence, it becomes evident that the
current trend will continue for years to come. On the other hand, there is an increas-
ing interest in machine-to-machine (M2M) connections and wearable devices (smart
watches, smart glasses, health monitors, etc.), which constitute the so-called internet
of everything (IoE). The expectation is that any device benefiting from a wireless
connection will have one.

The growth in wireless devices will result in a significant increase of the mobile
traffic. Furthermore, not only is there a migration from non-smart to smart devices,
but also an increasing demand on high-speed connections, which contribute to the
overall traffic growth. Thus, it is expected that 4G connections will represent 26% of
the total mobile connections by 2019 [3], which is almost fivefold the percentage to
date. As a result, the global mobile data traffic is forecasted to grow exponentially
in the next years, going from 2.5 exabytes per month in 2014 to 24.3 exabytes in
2019 [3].

All these forecasts suggest that we are approaching an era that current commu-
nication techniques and radio regulations cannot confront. Nevertheless, the first
question to be answered is: is it actually possible to sustain such demands? To pro-
vide an answer, a second question of major importance is posed: are we reaching
the spectrum capacity? This intriguing and transcendental inquiry has a simple, yet
revealing, answer: the radio spectrum is far from being fully exploited.

Interference is the main limiting factor in wireless communications, since the
medium is broadcast in nature, and is one of the reasons to blame for the current
underutilization of the spectrum. Typically, interference is handled in a passive
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way, by putting limits on the transmit power and orthogonalizing the channel ac-
cess (e.g., time-/frequency-/code- division multiple access -TDMA, FDMA and CDMA,
respectively-). That is, each user in the network is assigned a portion of the available
resources, so that interference is avoided. These approaches are a consequence of
the traditional view of a communication network as a set of independent entities. It
is therefore necessary to take a new look at the interaction between users and regard
the network as a whole. This can be enabled by cooperation, whereby users in a
wireless network share information to coordinate their transmission strategies or to
jointly process the transmit/receive signals [4]. On the one hand, a high level of
cooperation would permit a more efficient utilization of the resources, but, on the
other hand, it implies a significant overhead that may compromise the benefits of
cooperation. A tradeoff must be reached in pursuit of an overall spectral efficiency
improvement and a proper exploitation of the available radio resources. Such tech-
niques will play a pivotal role to sustain the demands on wireless services, and to
break out the bottleneck that we are approaching in years to come.

1.1 Scope

This thesis falls within the framework of interference management and transceiver
optimization for cooperative networks. Cooperation encompasses different levels and
a broad spectrum of scenarios, for which a wide variety of aspects and techniques can
be studied. With the aim of providing a wide view of what cooperation entails, and
the potential benefits that it can provide, we will address three multiuser scenarios
with varying cooperation needs. Although they might seem distinct at first glance,
they present common points regarding cooperation.

Capitalizing on multi-antenna communications, we focus attention on the de-
sign of algorithms for the coordination of linear precoding schemes, aiming at low-
demanding approaches in terms of signaling and overhead. On the one hand, by
providing each user with all the information of every other user (which typically
comprises messages and channel states), the interference can be handled in the best
possible way. On the other hand, however, such accomplishment consumes resources
to be achieved, and intermediate approaches are desirable from a practical stand-
point.

The first scenario under consideration is the interference channel (IC), as a funda-
mental model for interference-limited networks. In this scenario, users interfere one
another, but may coordinate their transmit strategies to mitigate its impact, which
typically entails acquiring global knowledge of the channel states or resorting to dis-
tributed iterative approaches. We focus on settings where multiple channel uses in
time or frequency are employed, along with the spatial dimension, and follow the
lines of the recently-proposed interference alignment (IA) technique. Thereby, inter-
user interference can be completely removed by a joint design of linear precoding
and decoding schemes.

In second place, we study a partial coordination of transmit strategies, with the
intent of reducing the cooperation needs of the first scenario while achieving a satis-
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factory performance. This model is analyzed under the framework of underlay cogni-
tive radio (UCR), which divides the network in two sets of users: primary users (PUs)
and secondary users (SUs). Interference from the SUs to the PUs is handled by impos-
ing interference constraints to the former, such that the latter can meet a prescribed
data rate. This demands both networks to be as independent as possible, keeping co-
operation at a minimum, which gives rise to two different problems. Firstly, suitable
interference constraints must be designed. Secondly, the secondary network must be
optimized under the foregoing constraints. Both aspects are studied in this thesis.

The two-way relay channel (TWRC), building block of multihop communication
networks, is the third scenario addressed in this thesis. Two users (usually refer to as
source nodes in this context) that are far away from each other and hence no direct
link exists between them, exchange information through multiple intermediate relay
nodes. Differently from the two previous scenarios, the relays can naturally access
the user data. Another important distinction is the fact that the interference does not
play an important role in the TWRC, as long as local channel state information (CSI)
is assumed at the source nodes. Nevertheless, relays must acquire global CSI to
optimally coordinate their beamforming strategies and maximize the signal-to-noise
ratio (SNR) at the receivers. To alleviate this cooperation demands and minimize the
overhead, distributed algorithms are investigated.

Finally, we depict in Fig. 1.1 a graphical outline of the thesis and the particular
features of each cooperative scenario under study, so as to provide a quick glance at
its scope.

1.2 Outline and contributions

This thesis is structured in five parts: an introduction, three parts describing the
technical contributions and the conclusions. Each technical part addresses a different
scenario: the IC, the UCR model and the TWRC. We summarize the contents of each
part in the following.

• Part I presents the context within which the thesis takes place, and presents the
necessary background. It is comprised of Chapters 1 and 2.

Chapter 2 presents the idea of user cooperation in wireless networks. Among all
possible levels of cooperation, we concentrate on those requiring less user inter-
action and cross-knowledge, which are more attractive from a practical stand-
point. Following these lines, we first present the IC as the most basic model for
interference coordination. In this scenario, interference is mitigated by coor-
dinated strategies, which may include joint power optimization or transceiver
design, and will be the topic of Part II.

The cognitive radio (CR) paradigm is introduced afterwards, which, although
initially motivated by dynamic spectrum access (DSA), encompasses a wider
range of applications. We pay special attention to the underlay approach,
whereby interference metrics are set to constrain the impact of the SUs, which
will be our focus on Part III.



6 Introduction

Cooperation in 
wireless networks

IC UCR TWRC

Relay-assisted 
communication

Interference 
coordination

Cooperative 
MIMO

Part II

Part III

Part IV

· goal: zero leakage

· coop.: high

· required info.: global CSI

· techniques: interference 

alignment 

· goal: prescribed interference 

constraint

· coop.: low

· required info.: local CSI

· techniques: interference 

constraint design and 
secondary network 
optimization

· goal: enhance SNR

· coop.: moderate

· required info.: global CSI and 

user data

· techniques: zero self-

interference and relay 
cooperation

Figure 1.1: Overview of the three considered cooperative scenarios and their posi-
tioning within the thesis context.

We finally describe the TWRC as the most basic model for relay-based cooper-
ation with the focus on coverage improvement, which will be the topic of Part
IV. Although more sophisticated instances of the TWRC permit the use of re-
lays for interference cancelation, we will concentrate on the most simple, yet
illustrative, models.

• Part II focuses attention on linear transceiver design for the IC under structured
channels arising from symbol extensions. The main goal is to design efficient
algorithms following the lines of the recent idea of IA, whereby transmit sig-
nals are designed to overlap at the receivers where they constitute interfer-
ence. IA has been shown to be optimal in terms of degrees-of-freedom (DoF):
an information-theoretic metric that characterizes the asymptotic capacity. We
describe this concept in Chapter 3, where some existing algorithms are also
presented.

Chapter 4 concentrates on the optimization issues that emerge when several
time or frequency slots are used for IA along with the spatial dimension. The
use of symbol extensions may permit achieving a higher number of DoF than
pure spatial alignment, and are essential when insufficient spatial dimensions
are available, such as the single-antenna case. Differently from IA in the spatial
domain, the use of symbol extensions induces a structure in the channel matri-
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ces that make current algorithms fail in providing all available DoF. Therefore,
we design an algorithm that aims at minimizing the interference while pre-
serving the dimensionality of the signal subspace. Our results show that the
proposed method outperforms any state-of-the-art algorithm when the chan-
nels have structure. This chapter has produced the following publication:

– C. Lameiro, Ó. González, and I. Santamaría, “An interference alignment
algorithm for structured channels,” in Proceedings of the IEEE Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), Darm-
stadt, Germany, Jun. 2013, pp. 295-299.

Chapter 5 presents a more practical viewpoint of channel extensions, by consid-
ering a frequency-selective scenario under orthogonal frequency-division mul-
tiplexing (OFDM) transmissions. This scenario poses the practical problem of
frame detection in presence of interference and transmit asynchronism. That
is, if users do not synchronize in such a way that the received signals at each
receiver are perfectly aligned in time (i.e., no offsets between the beginning of
the frames from each transmitter), a practical receiver will fail in the detection
of the desired frame. In addition, even when the preamble is designed to be
robust to such situations, the interference cannot be perfectly suppressed when
applying traditional IA techniques based on theoretical models. In order to
avoid the signaling overhead associated to the synchronism, the IA precoders
and decoders must be applied in the time domain to suppress the interference
prior to any synchronization task. Following these lines, we propose two dif-
ferent transceiver designs with varying complexity levels. The effectiveness of
the proposed approaches is not only shown by numerical means, but also in
a practical setup with actual over-the-air transmissions,1 where all practical
impairments are taken into account. This chapter has produced the following
publications:

– C. Lameiro, Ó. González, J. A. García-Naya, I. Santamaría, and L. Castedo,
“Experimental evaluation of interference alignment for broadband WLAN
systems,” submitted to EURASIP Journal on Wireless Communications and
Networking, special issue on Experimental Evaluation in Wireless Communi-
cations, Oct. 2014.

– C. Lameiro, Ó.González, J. Vía, I. Santamaría, and R. W. Heath, “Pre- and
post-FFT interference leakage minimization for MIMO OFDM networks,”
in Proceedings of the International Symposium on Wireless Communication
Systems (ISWCS), Paris, France, Aug. 2012, pp. 556-560.

– Ó. González, C. Lameiro, J. Vía, I. Santamaría, and R. W. Heath, “Interfer-
ence leakage minimization for convolutive MIMO interference channels,”
in Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012, pp. 2829-2832.

1The experimental work has been carried out in collaboration with the Group of Electronic Tech-
nology and Communications (GTEC) at the University of A Coruña, led by Prof. Luis Castedo.
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• We shift to UCR in Part III, which is comprised of Chapters 6 and 7. The main fo-
cus of this part is to design effective constraints to be imposed to the secondary
network to control the interference at the PU, requiring low overhead and per-
mitting both networks to operate as independent as possible. Differently from
the traditional assumption of PU unawareness, we also consider some coopera-
tion between primary and secondary users, so that the interference constraints
can be dynamically designed based on the current channel state.

In Chapter 6, we focus on a single-antenna PU that has a minimum rate re-
quirement. In this context, the maximum tolerable interference, or interference
temperature (IT), is univocally determined from the rate constraint, so that the
total interference power from the secondary network can be constrained with-
out incurring any loss in optimality. Two viewpoints are taken in this setting.
As the only means of providing further improvements to the SUs in the single-
input single-output (SISO) case, we first explore alternative signaling schemes
different to the typically-adopted proper or circularly-symmetric complex Gaus-
sian. Specifically, we study whether the use of improper Gaussian signals by the
SUs may be beneficial or not. Improper signals have correlated real and imag-
inary parts, and their application to UCR is motivated by the recent results in
the IC, where they have been shown to enlarge the achievable rate. Our goal is
to provide insights into the benefits of improper signaling for UCR, and thus we
consider a single SU equipped with one antenna that may transmit improper
signals. The main result is an analytical condition that determines when im-
proper signaling is advantageous. In addition, bounds on the gain and further
statistical results are also derived. All these results suggest the potential bene-
fits of using improper signaling for UCR applications.

In second place, Chapter 6 deals also with the cooperation requirements of a
total interference power constraint. Specifically, the SUs must cooperate with
one another to guarantee that their aggregate interference power is below the
required level. This approach not only entails additional overhead within the
secondary network, but also demands the SUs to be located sufficiently close to
one another. Hence, we present a framework that allows the primary receiver
to wisely set interference constraints to each SU independently. This chapter
has produced the following publications:

– C. Lameiro, I. Santamaría, and P. J. Schreier, “Benefits of improper signal-
ing for underlay cognitive radio,” IEEE Wireless Communications Letters,
vol. 4, no. 1, 2015.

– C. Lameiro, I. Santamaría, and P. J. Schreier, “Analysis of maximally im-
proper signaling schemes for underlay cognitive radio networks,” to be
presented at IEEE International Conference on Communications (ICC), Lon-
don, UK, Jun. 2015.

Chapter 7 considers again a PU that has a rate constraint, but, now, it is
equipped with multiple antennas. The main difference with respect to the
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single-antenna case stems from the fact that the spatial distribution of the in-
terference must be taken into account. We first consider a total interference
power constraint, i.e., the secondary network is constrained with their aggre-
gate interference power, independently of its spatial structure. For this case, we
derive a closed-form expression for the maximum tolerable interference power
at the PU. Then, we analyze the use of spatial-aware constraints as an alterna-
tive metric. Basically, a spatial shaping or mask is proposed, which limits the
interference power at each spatial dimension independently. Thus, the transmit
power of the SUs can increase by avoiding the SUs to transmit along the direc-
tions that have more impact on the PU performance. First, we show that spatial
shaping generalizes the IT approach, i.e., the latter can be expressed as a spe-
cial case of the former. Then, different design criteria for the spatial masks are
proposed. The optimization of the SU transceivers under the proposed shap-
ing constraints is also addressed for some illustrative scenarios, namely, the IC
and the point-to-point multiple-input multiple-output (MIMO) channel. This
chapter has produced the following publications:

– C. Lameiro, W. Utschick, I. Santamaría, “Spatial interference shaping for
underlay MIMO cognitive networks,” submitted to IEEE Transactions on
Signal Processing, 2015.

– C. Lameiro, W. Utschick, I. Santamaría, “Interference-temperature limit
for cognitive radio networks with MIMO primary users,” in Proceedings of
the Asilomar Conference of Signals, Systems and Computers, Pacific Grove,
CA, USA, Nov. 2014, pp. 1-5.

– C. Lameiro, W. Utschick, and I. Santamaría, “Spatial shaping and precod-
ing design for underlay MIMO interference channels,” in Proceedings of the
International ITG Workshop on Smart Antennas (WSA), Erlangen, Germany,
Mar. 2014, pp. 1-8.

– C. Lameiro, I. Santamaría, and W. Utschick, “Interference shaping con-
straints for underlay MIMO interference channels,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, May 2014, pp. 7313-7317.

• Part IV is comprised of Chapter 8. We address the transceiver design for
the TWRC, focusing on the multiple multi-antenna relay setup following the
amplify-and-forward (AF) relay protocol. Although the optimal relaying ma-
trix is known, it lacks a distributed implementation, and thus it has a limited
practicability. Our goal is to develop distributed cooperative strategies to op-
erate as close as possible to the optimal solution. The proposed algorithm is
based on a combination of the optimal solution for the single-relay case and
distributed beamforming techniques. Our method requires local CSI at the re-
lays and provides a quasi-optimal rate region. This chapter has produced the
following publications:
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– C. Lameiro, J. Vía, and I. Santamaría, “Amplify-and-forward strategies in
the two-way relay channel with analog Tx-Rx beamforming,” IEEE Trans-
actions on Vehicular Technology, vol. 62, no. 2, pp. 642-654, Feb. 2013.

– C. Lameiro, J. Vía, and I. Santamaría, “A distributed algorithm for two-
way multiple-relay networks,” in Proceedings of the IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, Jun.
2012, pp. 105-108.

• Finally, Part V presents the conclusion of the thesis, along with some future
lines of research.



Chapter2
Cooperation in wireless networks

The conventional way to deal with interference in a multiuser network consists in lim-
iting the reusability of the radio resources. Thus, the access to the wireless medium
is typically orthogonalized in different domains (time, frequency, codes, etc.) and
the frequency reuse in cellular networks is kept at a low value to reduce the inter-cell
interference. Such passive approaches to deal with interference lead to an ineffi-
cient use of the available resources, which cannot confront the increasing demands
of wireless services. At the same time, fading effects reduce the coverage of cellular
networks and the reliability of the information, with a significant impact at the cell
edge.

In pursuit of an improved spectral efficiency, cooperative transmissions represent
a realistic approach to combat both undesired effects. On the one hand, interference
coordination and multiuser cooperation can deal with interference in an active way,
so that its impact can be mitigated or even exploited. On the other hand, relay-
assisted communication may help not only to reduce the interference, but also to
combat fading by increasing the coverage and enhancing the quality of the direct
links. Notwithstanding the foregoing, cooperation comes at a price: cooperative
users must share information, what incurs signaling overhead. The question is, then,
whether the increase in spectral efficiency outweighs the loss due to the cost of co-
operation.

This chapter reviews the concept of cooperation, focusing on interference coordi-
nation and relay-assisted communications. Specifically, we start in Section 2.1 with
a brief description of the levels of cooperation that can be adopted in a wireless net-
work. The interference channel (IC) is described in Section 2.2 as a basic model
for interference coordination. Then, an overview of underlay cognitive radio (UCR)
is provided in Section 2.3 as a realistic model for partial interference coordination.
We conclude the chapter with a description of the two-way relay channel (TWRC) in
Section 2.4.

2.1 Cooperative transmissions

Differently from the classical conception of a communication network as a collec-
tion of independent entities, cooperative approaches regard the network as a whole.



12 Cooperation in wireless networks

Thus, cooperation seeks an active treatment of the interactions between users, which
can be carried out at different levels and by different means. Basically, the more infor-
mation that users acquire and exploit from one another, the higher performance can
be achieved, but also the more complexity and information exchange is required [4].
In the following, we will briefly describe three possible levels of cooperation: coop-
erative multiple-input multiple-output (MIMO), interference coordination and relay-
assisted communication.

2.1.1 Cooperative MIMO

Cooperative MIMO is the most complete form of cooperation. The cooperating users
share their channel state information (CSI) and exchange their data via backhaul
links. Thereby, the transmit/receive signals are jointly processed, which turns the
system into a multiuser MIMO. Such systems may exploit interference by conveying
useful information through the otherwise interfering links.

This cooperation level is typically studied in the context of cellular networks,
where neighboring base stations are connected to one another or to a central proces-
sor that performs the joint data processing. The uplink and downlink of cooperative
cells can thus be modeled as a multiple-access channel (MAC) and a broadcast chan-
nel (BC), respectively. These scenarios are well characterized in the information
theory framework, and their capacity-achieving schemes are known. In the uplink,
capacity is achieved by successive interference cancelation (SIC) [5], whereby the
message from each user is successively decoded and subtracted from the received
signal. In the downlink, dirty paper coding (DPC) achieves capacity by successively
encoding the user data in such a way that the interference can be eliminated at the
receivers [6]. To overcome the high complexity associated with these techniques,
linear precoding approaches have extensively been studied (see, e.g., [7–10]) and
present a practical alternative to the optimal schemes.

It is important to note that cooperative MIMO as described above requires delay-
free backhaul links with an infinite capacity. When rate-limited links are considered,
the capacity of the resulting scenarios is, in general, not known. Another interesting
point to remark is the fact that the existence of a backhaul link may be realistic for
multi-cell cooperation, but impractical for a general user cooperation. For instance,
although base stations can jointly decode the user data in the uplink, it is pointless
that mobile users share their data for joint encoding due to the lack of an appropriate
infrastructure.

2.1.2 Interference coordination

Transmit coordination is another form of multiuser cooperation that reduces the in-
formation exchange demands associated to cooperative MIMO. Thus, cooperating
users share their CSI in order to jointly adapt their transmit power and precoding
schemes. Interference can no longer be exploited, but its effect can be mitigated by
an appropriate coordination.
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Figure 2.1: Example of partial interference coordination. The interaction between
the three networks is handled by means of interference constraints, hence reducing
the required cross-information.

We may distinguish between centralized and distributed techniques. The former
relies on a central node that has access to the CSI of the entire network by means of
feedback links. This node performs the joint optimization and feeds back the optimal
power and/or precoder to each node. On the other hand, each node uses its local CSI
to adapt its own operation parameters in the distributed approach. Typically, some
information must be exchanged between users. For example, the interference pricing
approach is based on measuring the impact of the generated interference, and these
measures are shared between the transmitters [11]. Distributed techniques are key
for the sake of scalability and to keep the overhead at a minimum.

A canonical scenario for interference coordination is the IC, which is described
in Section 2.2 and will be the topic of Part II. A novel approach that has received a
great deal of attention in this context is interference alignment (IA) [12], by means
of which interference is constrained into a reduced-dimensional subspace, so that
interference-free communication can be performed in the remaining part of the re-
ceiver space. We will revisit this concept in Part II.

Although the information exchange demands of interference coordination are
much less than those of MIMO cooperation, there is still a significant overhead that
scales with the number of cooperative users. These signaling needs can be alleviated
by further limiting the amount of information that is shared among users. Basi-
cally, the interaction between different sets of users or different networks can be
handled by setting interference constraints between them, as illustrated in Fig. 2.1.
The aim of such constraints is threefold. First, it permits the impact of the interfer-
ence to be controllable and limited, so that each set of users can optimize its own
transmit strategies (e.g., following the lines of interference coordination or coopera-
tive MIMO) knowing that the interference is bounded by the interference constraint.
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Second, the cross-information is limited to the interference constraints and the cross
channels, hence reducing the overall signaling overhead. Third, each network or
set of users can operate in a more independent way, since a change in the transmit
strategies does not have an impact in the other networks as long as the interference
constraints are still satisfied.

UCR is the typical scenario where this cooperation approach arises, which will be
described in Section 2.4. Basically, a hierarchy is established, whereby the primary
network is protected from the secondary network by selecting the interference con-
straints in accordance to its quality-of-service (QoS) requirement. The design of the
interference constraints, as well as the secondary network optimization subject to
these constraints, will be deeply studied in Part III.

2.1.3 Relay-assisted communication

Relay-assisted communication has been regarded as a promising approach to improve
the capacity and coverage of cellular networks, specially at the cell edge, where the
communication is impaired by low signal strength and high levels of interference.
Because of that, relay technology has been considered for next generation wireless
communication standards, such as 3GPP long-term evolution advanced (LTE-A) [13]
or IEEE 802.16j [14].

The first relay channel was studied by van der Meulen in [15], with an scenario
comprised of a source node, a destination, and an assisting relay. Although more
than 40 years have passed by since then, the capacity of this network has still not
been found.

Relays can be used in multiple ways to aid communication in a multiuser network.
On the one hand, they can be utilized as a realistic model for cooperative MIMO, or
as a surrogate for the backhaul links, since they are able to process and forward the
user data. On the other hand, and without excluding the foregoing, relays can be
used to assist direct communication when the strength of the direct channels is low.
In such a case, relays may not necessarily be used for interference mitigation but for
direct communication enhancement.

In any of the above-described cases, relays must coordinate their transmit strate-
gies and therefore the CSI sharing becomes a limiting problem. As a basic model for
relay-aided communications, we describe the TWRC in Section 2.3. In the simplest
model, one relay is deployed to enable communication between two nodes whose
direct link is too weak to establish a direct exchange of information. After some rea-
sonable assumptions, the so-called self-interference can be completely eliminated.
The study of practical approaches for the TWRC with multiple relays will be the topic
of Part IV.

2.2 Interference channel

The IC is a communication model that represents the information exchange between
pairs of nodes that share the same medium, as illustrated in Fig. 2.2 for the two-user
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Figure 2.2: Two-user IC.

case. It serves as a model for many real wired and wireless scenarios, where differ-
ent users interfere one another to some extent. The IC is of remarkable importance
in wireless communications, since the broadcast nature of the wireless medium pro-
motes the interference generation at the undesired destinations. Thus, it arises in
device-to-device (D2D) communication networks, cellular networks, and, in general
terms, in any wireless network where limited resources must be shared among differ-
ent users. That is, the IC can be regarded as the building block of interference-limited
networks.

Information-theoretic characterizations of IC-like models date back to Shannon
[16]. However, despite the fact that the IC has received a crescent interest during
the last 40 years, its capacity, except for some special cases, is yet to be found. The
capacity remains an open problem even for the simplest two-user case, and only
bounds and asymptotic characterizations have been obtained so far.

2.2.1 Interference regimes

As aforementioned, the capacity of the IC remains an unsolved problem. Neverthe-
less, many interesting results and characterizations have been given birth since its
origins. In general terms, we may consider different interference regimes, for which
different results apply.

• Weak interference: Treating interference as noise has been shown to be opti-
mal when the strength of the interference is much lower than that of the useful
signal [17]. Thus, users can operate unaware of each other without incurring
any rate loss.

• Strong and very strong interference: Surprisingly, a strong interference has
been shown to be more favorable than a weak interference from a capacity
standpoint. In this case, the interference can be decoded in a first place, and
then subtracted from the received signal to recover the useful message. The
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capacity region in the strong interference regime is known for the two-user
IC [18], but it is not easily extendable to a more general setting. On the con-
trary, when we move from a strong to a very strong interference, the capacity
has been shown to be equal to that in the absence of interference with single-
antenna nodes, first for the two-user case [19], and then extended to the K-user
IC [20].

• Moderate interference: Exact capacity expressions are not yet available when
the signal and interference have similar strengths. In this case, the capacity is
usually characterized with inner and outer bounds. Specially remarkable is the
Han-Kobayashi scheme [21], which remains the best known strategy obtained
so far. A simple instance of such scheme has recently been shown to achieve
the capacity of the two-user IC within one bit [22]. However, its extension to
the K-user setting does not lead to a nearly-optimal region.

The moderate interference regime will be our main concern in the remaining part
of the thesis as it represents a practical model for real-world scenarios. In the next
section we introduce an asymptotic characterization of the sum-capacity that will
lead us to the concept of degrees-of-freedom (DoF).

2.2.2 Degrees-of-freedom

In general terms, the sum-capacity of the Gaussian IC can be written as

C(η) = D log2(η) + o (log2(η)) , (2.1)

where η is the signal-to-noise ratio (SNR). The pre-log factor, D, is called the DoF,
and governs the scaling of the network capacity with the SNR. That is, it provides a
complete characterization of the sum-capacity at asymptotically high SNR. Through
(2.1), we can provide the following formal definition of the network DoF:

D = lim
η→∞ C(η)

log2(η)
. (2.2)

The connection of this information-theoretic metric with the underlaying physical
network stems from the fact that the DoF represent the number of accessible signal
dimensions. In other words, they render the number of data streams that can be
transmitted in the network without incurring interference. We would like to remark
the relationship with the capacity of the point-to-point MIMO channel, which resem-
bles the expression in (2.1). In that context, the capacity pre-log factor is defined
as the multiplexing gain and equals the minimum number of antennas among both
sides of the link. Essentially, the DoF and the multiplexing gain are two different
terms that render the same feature and can be used interchangeably. It is worth
pointing out that we can also regard the IC as a point-to-point MIMO channel with
limited processing capabilities. The natural question is, then, what DoF loss entails
the distributed processing in the IC.
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Figure 2.3: UCR model.

Characterizing the DoF for finite and infinite number of signaling dimensions has
received a great deal of attention in recent years. The first result for the K-user IC was
established by Cadambe and Jafar in [23] with a revealing finding. They showed that
the number of DoF, with single-antenna terminals and allowing an arbitrarily large
number of signaling dimensions (time or frequency), is equal to 1

2 per user. That is,
each user can obtain half the achievable DoF in the absence of interferers. Cadambe
and Jafar provide a nice depiction with the cutting-cake approach. They regard the
resources or signaling dimensions of the network as a cake that must be divided
among the K users. Thus, orthogonal access schemes, such as time or frequency divi-
sion multiplexing, provide each user with a fraction of 1

K of cake, whereas the whole
cake is accessible when there is a sole user in the network. This yields a number of
DoF per user that approaches zero as K grows, keeping the sum-DoF to 1. In con-
trast, they showed that each user can actually get half the cake independent of the
number of users sharing the cake, and that this can be achieved by a novel technique
called IA. Notwithstanding the theoretical relevance of this result, its practicability is
limited since an infinite number of dimensions is required. Therefore, DoF character-
izations for the IC with a finite number of dimensions are of the utmost importance,
but, still, it remains an open problem in general.

2.3 Underlay cognitive radio

The term cognitive radio (CR) originated from the area of dynamic spectrum access
(DSA). It denotes a software-defined radio device [24] that is capable of acquiring
side information from its environment and reconfiguring its transmission parameters
(power, frequency, spatial directions, etc.) to manage interference efficiently and
share the spectrum with other devices [25, 26]. The side information acquired by
such devices may include, among others, channel states, messages and codebooks,
and activity of other users.

CR is typically built on a hierarchical model, with a secondary and a primary net-
work that, typically, do not cooperate. The latter imposes constraints to the former in
order to achieve a prescribed performance metric, as we illustrate in Fig. 2.3. On the
other hand, the secondary network must do its best to optimize its own performance,
cope with the interference from the primary network, and, at the same time, ensure
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that the interference constraints are satisfied. That is, when the primary users (PUs)
are not fully loaded and hence do not consume all the resources, the secondary
users (SUs) have an opportunity to access the channel without compromising the
performance of the former. To this end, UCR relies on interference management tech-
niques to control the interference caused at the primary receivers, which requires the
cognitive users to acquire the CSI of the interfering links (i.e., the channel response
from the secondary transmitters to the primary receivers). This task can be accom-
plished by overhearing the PUs transmission in the reversed-communication stage,
i.e., when the primary receiver acts as the transmitter (e.g., uplink and downlink of a
cellular system), hence incurring no additional overhead to the primary network. As-
suming channel reciprocity, this CSI can be utilized by the SUs to know the potential
interference power at the primary receiver when the PU commutes to the initial oper-
ation mode. Alternatively, some level of cooperation between primary and secondary
users could be included, so that the channel is estimated by the primary receiver in a
previous stage, and then forwarded to the SUs through a feedback link.

In addition to the underlay approach, two other CR paradigms have been pro-
posed: interweave and overlay [27], which manage interference between the sec-
ondary and primary networks differently. We briefly describe both models in the
ensuing lines.

• The interweave paradigm was the original idea of CR, and it is supported by
empirical results on the usability of the radio-frequency spectrum [28]. In-
terference is avoided by providing the cognitive devices with the capability of
detecting whether a given frequency band is being occupied or not by another
user at a particular time and location. This allows the CRs to opportunistically
access the spectrum for their own transmissions with a minimal impact on the
primary or non-cognitive communications, causing interference only when a
misdetection occurs. Nevertheless, detecting the activity of the non-cognitive
users, which is called spectrum sensing, presents some practical challenges due
to the randomness of the radio environment, such as channel, noise and ag-
gregate interference uncertainties [29]. On the other hand, the deployment of
multi-antenna terminals provides new opportunities for opportunistic channel
access, since the interference can be zero-forced through beamforming. Thus,
unused spatial dimensions can be accessed by cognitive users in an IA-like fash-
ion [30,31]. This can also be regarded as a special case of the underlay model,
where interference is constrained to be zero.

• The overlay approach permits some interference at the PUs provided that its
impact can be offset, by using the PUs messages as side information. Hence,
this scenario resembles the cooperative MIMO or relay-assisted communication
models, but differs from them in the sense that there is limited or null cooper-
ation between PUs and SUs. The PU messages are exploited by the cognitive
devices to completely eliminate the impact of their transmissions, which can be
accomplished in different ways. For instance, the SUs can combine the mes-
sages, e.g., applying DPC, to cancel out the interference at the primary receiver
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due to the cognitive transmissions. Another interesting approach consists in us-
ing part of the CR transmit power to relay the PU message, and the remaining
power for its own transmission. Thus, an appropriate power splitting between
the cognitive and primary messages can offset the rate loss of the PU or even
improve its performance.

The major practical issue that overlay CR faces is that a non-causal knowledge
of the PU messages is required at the cognitive transmitters. Although this as-
sumption may seem impractical, there are actually different ways of obtaining
such information. For instance, a cognitive user could decode and learn the
PU message when the primary link is in outage, and overlay its own message
during the retransmission [32]. Alternatively, the PU could send its message to
the cognitive users prior to transmission, which obviously would require some
additional level of cooperation between primary and secondary users [33].

We can notice that the underlay paradigm involves less demanding signal pro-
cessing techniques and awareness capabilities than overlay and interweave CR, and
presents a more realistic approach for real-world scenarios. Basically, the problem
can be regarded as an interference coordination problem, where the same approaches
can be applied: power control, beamforming, IA, etc. Nevertheless, special care must
be taken, since, differently from the classical IC model where all users are peer to
each other, the hierarchical structure in UCR imposes cooperation between primary
and secondary users to be null or kept to a minimum.

In the next section, we present the interference temperature (IT) concept as the
most-widely adopted interference constraint, and outline the potentials of multi-
antenna transceivers to facilitate and enhance the UCR model.

2.3.1 Interference metrics

In the context of DSA, the IT metric has been proposed as a means of managing
and exploiting the availability of the radio-frequency spectrum [28]. Following this
approach, an acceptable IT threshold would be set to protect and ensure the com-
munication of the PUs. Thereby, whenever the interference-plus-noise power does
not exceed the threshold, secondary devices can simultaneously transmit without
disrupting the incumbent communications [34].

The deployment of multi-antenna terminals provides new opportunities for the
underlay model. For example, a MIMO SU can steer its transmit signal toward the
null space of a primary receiver with a lower number of antennas, thus creating no
interference. In general, a multi-antenna transmitter can design its transmit direc-
tions to maintain the generated interference below the IT limit while maximizing its
own performance. Furthermore, exploiting the spatial dimension permits the def-
inition of new interference metrics taking also account of the spatial signature of
the interference, rather than solely its power. This is the case of what is sometimes
referred to as interference perceived at the primary receiver, which consists in the in-
terference leakage after the projection on the receiver subspace. Thus, when the PU
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is not using all the available spatial dimensions, or when the number of antennas at
the receiver side is greater than that at the transmitter side, the interference level can
be only constrained at those spatial dimensions that are being accessed by the PU.
Building up on this approach, the IT constraints can be extended to a per-dimension
IT constraint, which translates into a mask on the interference spatial signature.

While so far we have outlined the protection of the PU to the interference from
the SUs, another important point to be addressed is the optimization of the secondary
network under interference constraints. This includes the power adaptation and the
precoder optimization of a set of SUs that must obey an IT (or any other interference
metric) constraint. This problem has received a great deal of attention in recent
years, and a wide range of scenarios and approaches have been considered, ranging
from IA and game theory to cooperative PU-SU schemes [35–43].

2.4 Two-way relay channel

When the relays are used for coverage extension, the TWRC serves as one of the
most basic models. In this system, two source nodes that cannot reach each other by
a direct link exchange information through the assistance of an intermediate relay
node. Typically, four time-slots are required to exchange one round of information
between the source nodes and thus avoid interference (see Fig. 2.4(a)). In the first
two time-slots, the system turns into a one-way relay channel (OWRC), where one of
the nodes transmits its message to the destination, requiring one time-slot for each
hop: source-relay and relay-destination. The other source node sends its message
in the subsequent two time-slots through the reversed OWRC. It has been shown,
however, that the number of time-slots can be reduced to two by applying the idea
of network coding [44,45].

The principle of network coding is to exploit the interference in a multi-node
communication network by combining, rather than orthogonalizing, the information
messages coming to a node from multiple sources [46]. This permits a more efficient
utilization of the resources, and, consequently, the overall spectral efficiency can
be improved. Network coding can naturally be applied in relay networks, where,
due to the broadcast nature of the wireless medium, the relays act as hubs of user
data. Following this approach, the communication over a TWRC can be divided in
two phases, namely, a MAC phase and a BC phase, requiring one time-slot each, as
shown in Fig. 2.4(b). In the former, both nodes transmit simultaneously to the relay.
In the latter, the relay performs some operation to the received signals and send them
back to the nodes.

Different protocols can be followed by the relay, incurring different complexity
levels and providing different end-to-end performance. A key point is that, indepen-
dently of the relaying strategy, the source nodes can easily eliminate the interference,
since it is comprised of the message that they transmitted in the MAC phase, and,
hence, it is known.

We may divide the relaying operation in two groups: those where the relay car-
ries out some decoding operation, and those where not. The former are sometimes
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Figure 2.4: Two-way relay channel.

called physical layer network coding (PNC) [44], where decode-and-forward (DF) or
estimate-and-forward (EF) are typical strategies. In the EF protocol, the relay esti-
mates the exclusive OR (XOR) of the source messages from the incoming signal, then
retransmits the resulting message. The source nodes are able to recover the intended
information using their own messages as side information. Alternatively, in the DF
protocol, multiuser detection is performed at the relay to recover the messages from
the source nodes [47,48].

A more simplified approach is analog network coding (ANC) [45, 49]. Following
these lines, amplify-and-forward (AF) operation is performed at the relay, which con-
sists in retransmitting a linearly-processed version of the received signal. This incurs
less computational and system complexity than the DF or EF protocols, and, hence, it
is more interesting from a practical standpoint. Because of that, this thesis considers
the AF protocol.
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Chapter3
Interference alignment: concept

and algorithms

This chapter presents the first cooperative scenario that is considered in this the-
sis: the interference channel (IC). Among all possible models (partial connectivity,
non-linear schemes, symbol extensions, etc.), we focus attention on linear precoding
and decoding schemes in the spatial domain, which is the basis of the contributions
presented in the subsequent chapters of Part II. The particularities of the specific IC
models addressed in Chapters 4 and 5 will be presented in the respective chapters.

Section 3.1 introduces the mathematical model that describes the IC. We provide
a brief review of the concept of interference alignment (IA) in Section 3.2. The
chapter concludes in Section 3.3 with a description of one of the most important IA
algorithms that will be the basis for the proposed methods in Chapters 4 and 5. A
conceptual diagram for this chapter is shown in Fig. 3.1.

3.1 System model

The IC models the communication between K transmitter-receiver pairs (we will
usually denote them as users) over the same time and frequency resources. Thus,
the signal transmitted by each user creates interference at the undesired destina-
tions. Consequently, the incoming signal at each receiver will be comprised of the
signal from its own transmitter and the aggregation of the interfering signals from
the K − 1 remaining users. Following the convention proposed in [50], we will use
the notation ∏

K
i=1(Mi × Ni, di) to refer to a K-user IC, where the ith user sends di

data streams, and is equipped with Mi and Ni antennas at the transmitter and re-
ceiver side, respectively. We depict this IC model in Fig. 3.2. When the network is
symmetric, i.e. the number of antennas and data streams is equal among users, the
notation simplifies to (M× N, d)K.

With the foregoing setting, and considering independent and identically dis-
tributed (i.i.d.) additive white Gaussian noise (AWGN), the signal received by the
ith receiver can be expressed as

yi = Hiixi + ∑
j 6=i

Hi jx j + ni . (3.1)
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Figure 3.1: Conceptual diagram of Chapter 3.

In this equation, ni ∈ CNi×1 is the noise term which is assumed to be distributed as
CN (0,σ2I), and Hi j ∈ CNi×M j is the multiple-input multiple-output (MIMO) chan-
nel between transmitter j and receiver i. The second term in the right-hand side of
(3.1) represents the multiuser interference (MUI) due to the other transmitters. The
signal transmitted by each user, xi, i = 1, . . . , K, is a function of the symbols that
this user wishes to send to its corresponding receiver. That is, it can be expressed as
xi = fi(si). Note the difference with respect to the broadcast channel (BC), where
the transmitter processes the symbols intended to each user jointly, whereas the dis-
tributed nature of the IC limits the processing capabilities of each transmitter to its
own symbols. Nonetheless, such limitation does not exclude a certain level of co-
ordination between the transmitted signals in such a way that the overall impact of
interference is reduced.

Considering a linear precoding scheme, the transmitted symbols are linearly com-
bined by a precoding matrix, yielding the transmitted signal

xi = Visi , i = 1, . . . , K , (3.2)
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Figure 3.2: K-user MIMO IC.

where Vi ∈ CMi×di is the precoding matrix applied at the ith transmitter. At the re-
ceiver side, a decoding process is applied to the received signal in order to extract the
useful information, i.e., ŝi = g(yi). Considering again a linear decoding scheme, the
ith receiver projects the incoming signal into a decoding matrix, and the estimated
symbols can then be expressed as

ŝi = UH
i yi , i = 1, . . . , K , (3.3)

where Ui ∈ CNi×di is the decoding matrix of the ith receiver. Hence, the end-to-end
achievable rate, when the interference is treated as noise, is given by

Ri = log2

∣∣∣∣I + [UH
i

(
σ2I + Ki

)
Ui

]−1
UH

i QiUi

∣∣∣∣ , i = 1, . . . , K , (3.4)

where we have defined the interference and signal covariance matrices, respectively,
as

Ki = ∑
j 6=i

Hi jV jVH
j HH

i j , (3.5)

Qi = HiiViVH
i HH

ii . (3.6)

Finally, as a typical figure of merit in general multiuser scenarios and, in particular, in
the IC, we will use the network sum-rate defined as the sum of the achievable rates
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for the K users. Specifically,

SR =
K

∑
i=1

Ri . (3.7)

3.2 Interference alignment

This section presents the concept of IA focusing on the model described in the previ-
ous section, i.e., spatial IA with linear precoding and decoding schemes. IA originated
in the degrees-of-freedom (DoF) study of the MIMO X channel in [51] and was es-
tablished in [23] as an essential tool to achieve the DoF of the K-user IC. The idea of
IA follows a rather simple, yet fascinating, principle: the overlapping of signal sub-
spaces. Thus, if the interference from each undesired transmitter is designed such
that they share some dimensions in the receiver space, we say that the interfering
signals are aligned. Roughly speaking, if the interference subspaces overlap a suffi-
ciently high number of dimensions, some dimensions at the receiver space will be left
unoccupied and can be used to establish an interference-free communication. Let us
describe this concept with an illustrative example: the (2× 2, 1)3 IC. This scenario
is specially interesting for several reasons. First, the precoding vectors yielding an
alignment of the interference subspaces can be found in closed-form. Analytical IA
solutions have been shown to exist for any IC of the form (N × N, 1)N+1 [52], and
the scenario at hand presents the most simple structure among those. Second, spatial
IA suffices to achieve the maximum DoF for this scenario without requiring any ex-
tension of the channel in time or frequency, i.e., each user transmits one data stream,
which equals half the number of streams that can be transmitted in the absence of
interferers.

Consider the first receiver. There are two interfering streams, and the receiver
space has two dimensions. Therefore, in order to leave one dimensions free of in-
terference for the desired signal, both interference signals must span the same one-
dimensional subspace, i.e.,

H12v2 = α1H13v3 , (3.8)

for some constant α1. Thus, as long as the desired signal is linearly independent of
the interference subspace, receiver 1 can recover an interference-free version of the
intended symbol by a projection on the orthogonal complement. Specifically,

H11v1 6∈ span {[H12v2 , H13v3]}
u1 ∈ null {[H12v2 , H13v3]}

}
→ uH

1 H12v2 = uH
1 H13v3 = 0

uH
1 H11v1 6= 0

}
. (3.9)

Analogously, the alignment conditions for receivers 2 and 3 read

H21v1 = α2H23v3 H31v1 = α3H32v2
H22v2 6∈ span {[H21v1 , H23v3]} H33v3 6∈ span {[H31v1 , H32v2]}

, (3.10)

for some constants α2 and α3. The foregoing IA conditions for the (2× 2, 1)3 lead to
a closed-form expression for the precoding vectors that is summarized in the ensuing
lines.
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1. The precoder of user 1, v1, is obtained as any of the eigenvectors of the matrix

E = H−1
31 H32H−1

12 H13H−1
23 H21 . (3.11)

2. The precoders of user 2 and 3, v2 and v3, respectively, are obtained as

v2 = H−1
32 H31v1 , (3.12)

v3 = H−1
23 H21v1 . (3.13)

There are two interesting features, which are, in fact, closely related, that are
worth to be noted. First, starting the above procedure with a different user yields
exactly the same solution. Second, since E is a 2× 2 matrix, there are, in general,
two different IA solutions for this scenario. Actually, the number of IA solutions varies
for other network configurations and has been a recent topic of research [53].

This example provides a nice depiction of the IA concept and a visual represen-
tation of the overlapping of interference subspaces. Also, the difficulty of the IA
problem can be readily observed: the precoders must be selected to overlap at the
undesired destinations, and, at the same time, to be distinguishable from interference
at the intended receivers. As a consequence, global channel state information (CSI)
is required, which has important practical implications. Before going into more de-
tails about the computation of IA solutions, we provide the general conditions for
IA:

UH
i Hi jV j = 0 , ∀ j 6= i , (3.14)

rank
(

UH
i HiiVi

)
= di , ∀i . (3.15)

Expression (3.14) is the zero-leakage condition, and implies that the interference
must be completely eliminated. The separability of the signal subspace is indicated
with condition (3.15), which imposes the desired data streams to be decodable after
the projection onto the interference-suppression filter. The IA problem consists in
finding such precoding and decoding matrices provided that they exist. Since the
majority of ICs do not admit closed-form alignment solutions, it is usually necessary
to resort to iterative algorithms. In the next section we will describe some of the most
relevant IA algorithms, as well as some considerations from a practical standpoint.

3.3 Algorithms for the interference channel

As aforementioned, the use of iterative algorithms is necessary in most cases to find
the precoders and decoders that are solution of the IA problem. Although this incurs
a higher computational complexity, it also provides an opportunity to compute the
solution matrices in a more convenient way from a practical viewpoint. To illustrate
this, let us go back to the (2× 2, 1)3 scenario described in the previous section. As
seen in (3.11)–(3.13), the closed-form solution requires each transmitter to acquire
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the CSI of the entire network. While obtaining the local channels implies a tolera-
ble complexity increase, those that are non-local require some feedback mechanism,
which incurs additional overhead. An alternative would consist in using a central
entity that would receive the local CSI of each node, compute the IA solution, and
send back the corresponding precoding matrices. On the contrary, iterative algo-
rithms can be designed to operate in a distributed fashion and hence alleviate these
CSI demands.

The first IA algorithm for the K-user MIMO IC was proposed in [54,55]. In spite of
being based on a quite basic approach, it remains as the most important and widely-
used IA algorithm, and has given way to a wide range of algorithms based on the
same principle. We start detailing this method in the ensuing section.

3.3.1 Minimum interference leakage algorithm

The minimum interference leakage algorithm proposed in [54, 55], that we will de-
note henceforth as AltMin-IA, is based on the alternating optimization method, a
widely-used approach for finding local optima of non-convex optimization problems.
Aiming at computing precoders and decoders satisfying the IA conditions (3.14) and
(3.15), the AltMin-IA algorithm iteratively minimizes the interference leakage func-
tion, defined as the remaining interference power after the projection onto the re-
ceiver subspace, i.e.,

Ileak =
K

∑
i=1

∑
j 6=i

∥∥∥UH
i Hi jV j

∥∥∥2

F
. (3.16)

This expression is a biconvex function [56], i.e., it is convex when either the pre-
coders or the decoders are kept fixed, but it is not jointly convex on the optimization
variables.

Minimizing (3.16) without any constraint on the precoders and decoders would
yield a trivial solution that eliminates the interference by setting the precoders and
decoders to zero, which obviously violates the second IA condition (3.15). Neverthe-
less, as long as the entries of the channel matrices are i.i.d. and drawn from a contin-
uous distribution, constraining the precoders and decoders to be full-rank guarantees
with probability one that the equivalent channels, UH

i HiiVi, i = 1, . . . , K, will also be
full-rank. This is because (3.16) is not a function of the direct channels, and they can
be therefore consider as random and independent from the precoders and decoders
obtained as the minimizers of Ileak. Such channels are called generic, and is a com-
mon assumption in MIMO communications, where a sufficient antenna separation
ensures channel independency. The resulting optimization problem consider by the
AltMin-IA algorithm is then given by

PAltMin : minimize
{Vi ,Ui}K

i=1

K

∑
i=1

∑
j 6=i

∥∥∥UH
i Hi jV j

∥∥∥2

F
, (3.17)

subject to rank (Vi) = di , i = 1, . . . , K ,
rank (Ui) = di , i = 1, . . . , K .
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Since the solution of the IA problem are transmit and receive subspaces, any basis
represents the same solution. In other words, the IA problem is invariant under right
multiplications of full-rank matrices. Therefore, the rank constraints in PAltMin can
be expressed, without loss of generality, as unitary constraints. That is,

rank (Vi) = di → VH
i Vi = I , (3.18)

rank (Ui) = di → UH
i Ui = I . (3.19)

With these considerations, and following the alternating optimization method,
the optimal solution of PAltMin, when the precoders are kept fixed, is given by

U?
i = νmin,di (Ki) , i = 1, . . . , K , (3.20)

where Ki is the interference covariance matrix at the ith receiver, given by (3.5), and
νmin,a(·) denotes the set of a different eigenvectors with lowest eigenvalue. Analo-
gously, the optimal precoders, with fixed decoders, are obtained as

V?
i = νmin,di

(←−
K i

)
, i = 1, . . . , K , (3.21)

where
←−
K i is given by

←−
K i = ∑

j 6=i
HH

ji U jUH
j H ji , i = 1, . . . , K . (3.22)

The foregoing matrix can be interpreted as the interference covariance matrix re-
sulting from the opposite communication, i.e., when the role of transmitters and
receivers is reversed. This allows the computation of the IA precoders and decoders
to be implemented in a distributed fashion, thus requiring each node only their local
interference covariance matrices. We summarize the whole procedure in Algorithm
3.1.

Finally, it is worth pointing out that the alternating optimization method ensures
that a local optimum of PAltMin is found, which may not be a zero-leakage point and,
consequently, an IA solution. However, it has been experimentally observed that the
AltMin-IA algorithm always achieves such a point at least for generic MIMO channels,
and is thus able to find spatial IA solutions for feasible scenarios. Nonetheless, a
mathematical proof has not yet been found.

3.3.2 Further approaches

The simplicity and reliability of the AltMin-IA algorithm has given birth to a flurry of
methods based on its alternating-optimization approach and distributed implemen-
tation, and which rely on alternative cost functions or slightly different approaches.
In general terms, such algorithms seek to increase the convergence speed of the
AltMin-IA and/or to provide solutions that achieve a better overall performance (see,
e.g., [57–63]). We may differentiate between algorithms that aim at finding perfect
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Algorithm 3.1 Distributed implementation of the AltMin-IA algorithm [54].
Initialize {Vi}K

i=1 such that VH
i Vi = I, i = 1, . . . , K.

repeat
1. Compute the interference covariance matrices at each receiver as

Ki = ∑
j 6=i

HH
i j V jVH

j Hi j , i = 1, . . . , K . (3.23)

2. Compute the optimal decoding matrices as

U?
i = νmin,di (Ki) , i = 1, . . . , K . (3.24)

3. Reverse the role of transmitters and receivers, and compute the interfer-
ence covariance matrices as

←−
K i = ∑

j 6=i
HH

ji U jUH
j H ji , i = 1, . . . , K . (3.25)

4. Compute the optimal precoding matrices as

V?
i = νmin,di

(←−
K i

)
, i = 1, . . . , K . (3.26)

5. Restore the communication direction.
until Convergence criterion is met.

IA solutions (i.e., those yielding zero interference leakage) and imperfect alignment
solutions. The former are based on the existence of multiple IA solutions for a given
scenario. Although these solutions achieve the same asymptotic sum-rate slope (i.e.,
the DoF), the performance at intermediate signal-to-noise ratio (SNR) may signifi-
cantly vary [53, 64]. A possible way to obtain the best IA solution for a given sce-
nario would consist in applying the AltMin-IA algorithm with different initializations.
However, this approach would demand a prohibitive complexity, as the number of IA
solutions grows exponentially with the number of users [53]. An interesting alterna-
tive based on homotopy continuation has been proposed in [63]. Alternatively, the
AltMin-IA algorithms is modified in [60] to guide the convergence to solutions pro-
viding higher sum-rate. This is accomplished by moving the precoders and decoders
along the gradient of the sum-rate function at each step of the AltMin-IA algorithm.

On another front, algorithms seeking imperfect alignment take account of the fact
that IA is optimal at asymptotic SNR, and hence the direct channels, Hii, i = 1, . . . , K,
do not play any role in the computation of the IA precoders and decoders (as it can
be observed in Algorithm 3.1). For practical SNR regimes, a better performance
can be achieved by finding a tradeoff between interference cancelation and signal
enhancement. This is the case of the maximum signal-to-interference-plus-noise ratio
algorithm proposed in [54] (MaxSINR). Basically, the interference leakage function is
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substituted for the signal-to-interference-plus-noise ratio (SINR) of each data stream,
which modifies the computation of the decoders and precoders, respectively, as (steps
2 and 4 of Algorithm 3.1)

ui,s = max
‖ui,s‖=1

uH
i,sHiivi,svH

i,sH
H
ii ui,s

uH
i,s

(
∑

K
j=1 ∑

d j
r=1 Hi jv j,rvH

j,rH
H
i j −Hiivi,svH

i,sH
H
ii

)
ui,s +σ2

, (3.27)

and

vi,s = max
‖vi,s‖=1

vH
i,sH

H
ii ui,suH

i,sHiivi,s

vH
i,s

(
∑

K
j=1 ∑

d j
r=1 HH

ji u j,ruH
j,rH ji −HH

ii ui,suH
i,sHii

)
vi,s +σ2

, (3.28)

where ui,s and vi,s are the sth column of Ui and Vi, respectively. Notice that the
columns of the precoders and decoders are individually computed. The reason for
this is that, as pointed out in [54], orthogonal vectors are not necessarily optimal in
terms of SINR (this claim, however, has been questioned in [65]).

Another cost function typically used in the design of precoders and decoders is
the sum mean square error (MSE) minimization [59]. This figure of merit is defined
as

K

∑
i=1

MSEi =
K

∑
i=1

E
[
‖ŝi − si‖2

]
, (3.29)

where ŝi is the estimated symbol given by (3.3). The resulting algorithm attains
perfect alignment solutions at high SNR, and provides significant improvements at
medium and low SNR. The sum-rate as defined in (3.7) is also a typical cost function.
As an example, a gradient descend algorithm is applied in [62] to reach a local opti-
mum of the weighted sum-rate. An interesting comparison of various IA algorithms
that follow these lines can be found in [66].

Although the great majority of IA algorithms are based on alternating optimiza-
tion, alternative methods have been also explored in the literature. One of such cases
belong to the class of one-side precoder designs. Such algorithms aim at alleviating
the overhead incurred by the distributed implementation of the alternating optimiza-
tion method, by restricting the optimization to the precoding matrices. To solve the
resulting problem, steepest descent methods have been usually applied [67–69].

Recently, algorithms based on the Gauss-Newton method have been investigated,
motivated by the low convergence speed of the alternating optimization approach.
Centralized algorithms have been proposed with a dramatic convergence rate im-
provement [70], making this a very promising approach.



34 Interference alignment: concept and algorithms



Chapter4
Interference alignment algorithms

for structured channels

As we showed in Chapter 3, full-rank interference alignment (IA) precoders and de-
coders ensure that the equivalent direct channels will also be full rank almost surely
in the case of generic multiple-input multiple-output (MIMO) channels. Minimizing
the interference leakage without paying attention to the direct links is then sufficient
to achieve perfect alignment with generic MIMO channels. In some scenarios, how-
ever, the MIMO channels cannot be considered as generic, which makes this property
no longer applicable. This is the situation that arises when symbol extensions over
time or frequency are used, which induce a block-diagonal structure in the channel
matrices. For these scenarios, the rank condition (3.15) must be explicitly taken into
account in the computation of the IA precoding matrices to ensure that there is no
degrees-of-freedom (DoF) loss.

In this chapter, we aim at the design of a new IA algorithm capable of finding
perfect alignment solutions in these scenarios. Our final goal is to obtain an algorithm
similar to the AltMin-IA in terms of convergence speed an reliability. To this end, we
extend the AltMin-IA algorithm to incorporate the rank constraint in the form of
a minimum eigenvalue condition, and a transmit power constraint, which results
in a generalized eigenvalue problem at each step of the alternating optimization
procedure.

We start with an introduction to IA with symbol extensions in Section 4.1. Then,
two remarkable algorithms are described in Section 4.2. We describe our proposed
method in Section 4.3, and illustrate its performance with several numerical exam-
ples in Section 4.4. A conceptual diagram for this chapter is shown in Fig. 4.1.

4.1 Interference alignment with symbol extensions

One limitation of spatial IA without symbol extension stems from the fact that only
an integer value of DoF is achievable. This is because the number of transmitted
streams per channel use must be an integer value, since each stream corresponds to
one transmit direction. When the number of available spatial dimensions is not suffi-
cient, symbol extensions are needed in pursuit of a higher number of achievable DoF.
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Figure 4.1: Conceptual diagram of Chapter 4.

This is the case, for example, of the single-input single-output (SISO) interference
channel (IC). If no symbol extensions are considered for such scenario, only 1 DoF
is achievable per channel use due to the lack of spatial dimensions. However, 1

2 DoF
per user and per channel use is achievable by using IA over an infinite number of
channel extensions. Similar asymptotic schemes are presented for the MIMO case
in [71]. Although the practical applicability of such schemes is limited (if any), a fi-
nite number of symbol extensions can still be used to provide the network with more
accessible dimensions that may increase the achievable DoF. Actually, the achievable
DoF with a finite number of channel extensions remains an open problem [50], [72].

Another interesting scenario where structured channels arise is the transmission
along constant channel extensions. In this case, the channel extensions do not pro-
vide additional rotations to the transmitted signals, key ingredient for IA. This effect
is specially noticeable in the SISO case, where the channels reduce to scaled identity
matrices that do not rotate the signal subspace. A fascinating observation is that the
phase shift induced by multiplication of complex numbers can be exploited by linear
IA schemes. Specifically, improper signaling (i.e., transmitting complex symbols with
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correlated real and imaginary parts) has been shown to increase the achievable DoF
in the SISO IC with constant channel extensions [73,74].

4.1.1 System model

The aforementioned schemes lead to a slight variation of the system model presented
in Chapter 3. More specifically, when the number of symbol extensions is set to L,
the transmitted symbols are encoded over L channel extensions, i.e., (3.2) can be
expressed as  xi[0]

...
xi[L− 1]


︸ ︷︷ ︸

xi

= Visi , i = 1, . . . , K , (4.1)

where xi[n] ∈ CMi×1 is the transmitted signal at the nth slot. Note that the precoding
matrix is now L times taller, i.e., Vi ∈ CLMi×di . Similarly, the received signals at the
L extensions of the channel are jointly decoded, and, therefore, (3.3) can be written
as

ŝi = UH
i

 yi[0]
...

yi[L− 1]


︸ ︷︷ ︸

yi

, i = 1, . . . , K , (4.2)

where yi[n] ∈ CNi×1 is the received signal in the nth slot. The decoding matrix is
again L times taller, i.e., Ui ∈ CLNi×di . The channel matrix from transmitter j to
receiver i has a block-diagonal structure and can thus be expressed as

Hi j =


Hi j[0] 0 · · · 0

0 Hi j[1] · · · 0
...

... . . . ...
0 0 · · · Hi j[L− 1]

 , (4.3)

where Hi j[n] ∈ CNi×M j is the channel matrix at the nth channel extension. Notice
that, when the channel remains constant along the symbol extensions, the blocks
along the main diagonal are identical.

If an improper signaling scheme is adopted, the system can be represented by the
double-size real model. Therefore, the transmitted signal (4.1) is represented by

< {xi[0]}
= {xi[0]}

...
< {xi[L− 1]}
= {xi[L− 1]}


︸ ︷︷ ︸

xi

= Visi , i = 1, . . . , K , (4.4)
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where <{·} and ={·} denote real and imaginary part, respectively, and now Vi ∈
R2LMi×di and si ∈ Rdi×1. Note that one real symbol being transmitted yields 1

2 DoF,
since it conveys half the information of a complex symbol. At the receiver side, (4.2)
turns into

ŝi = UH
i


< {yi[0]}
= {yi[0]}

...
< {yi[L− 1]}
= {yi[L− 1]}


︸ ︷︷ ︸

yi

, i = 1, . . . , K , (4.5)

with Ui ∈ R2LNi×di . Finally, the channel matrix from transmitter j to receiver i is
expressed as

Hi j = I⊗
(
<
{
Hi j

}
−=
{
Hi j

}
=
{
Hi j

}
<
{
Hi j

} ) , (4.6)

where ⊗ stands for the Kronecker product.
Finally, we modify the notation introduced in Chapter 3 to include the channel

extensions, and denote the ∏
K
i=1(Mi × Ni, di) scenario with L channel extensions as

[∏K
i=1(Mi×Ni, di), L]. Furthermore, we indicate as [· · ·, L]c that the channel remains

constant.

4.1.2 Optimization issues and state-of-the-art

Prior to the existence of powerful tools for checking feasibility of spatial IA (i.e.,
whether an IA solution exists for a given scenario given DoF demands) [72], the
AltMin-IA algorithm was widely used as a numerical means to accomplish this task
and to compute IA solutions for the K-user MIMO IC. One of its major issues comes
up when symbol extensions are considered. In such a case, the dimensionality of
the signal space, expressed by the IA condition in (3.15), cannot be ensured. As we
pointed out in Chapter 3, when no symbol extensions are considered, constraining
the precoders and decoders to be full-rank suffices to ensure that the direct channels
will also be full-rank with probability one. This is because such channels are generic,
i.e., each entry is independently drawn from a continuous distribution. When sym-
bol extensions are applied, the channel matrices adopt a block-diagonal structure,
destroying the genericity of the channel and, consequently, the rank of desired signal
is no longer guaranteed. To illustrate this issue, consider a K-user IC with two time
extensions. The interference can be easily set to zero if all users transmit through the
first time-slot and listen through the second one. However, the desired signal is also
canceled out, yielding zero DoF.

Incorporating rank constraints into optimization problems is a difficult task, since
they are highly non-convex and hence very difficult to handle efficiently. In addi-
tion, issues inherent to numerical computations arise when evaluating rank of ma-
trices. To overcome this problem, other IA algorithms have recently been proposed
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that consider different approaches as a bypass for the rank constraint. One exam-
ple is the algorithm proposed in [75], where the nuclear norm of the interference
subspace is minimized subject to a constraint in the minimum eigenvalue of the di-
rect channels, in an attempt to preserve the dimension of the desired signal space
while reducing the dimensionality of the interference subspace. However, probably
due to the convex relaxation and other heuristics in the method, it fails to provide
all available DoF for many feasible scenarios. Alternatively, the algorithm proposed
in [76] minimizes the total interference leakage while constraining the equivalent
direct channels to be the identity matrix. The whole procedure consists of an alter-
nating optimization procedure that has closed-form solution at each step. Although
its performance is satisfactory, the proposed solution depends on the inverse of the
interference covariance matrices, which become rank-deficient as the algorithm pro-
ceeds. Consequently, a regularization term must be introduced, which does not allow
to attain a zero-interference leakage solution. A detail description of both algorithms
is provided in the next section.

4.2 Review of existing methods

This section reviews the most remarkable methods, namely, [75] and [76], which
will be used in Section 4.4 as benchmark schemes for our proposed algorithm.

For convenience, let us define the interference covariance matrices for the direct
and reverse communication link, respectively, as

Ki = ∑
j 6=i

Hi jV jVH
j HH

i j , (4.7)

←−
K i = ∑

j 6=i
HH

ji U jUH
j H ji , (4.8)

for i = 1, . . . , K; and the signal covariance matrices as

Qi = HiiViVH
i HH

ii , (4.9)
←−
Q i = HH

ii UiUH
i Hii . (4.10)

4.2.1 Rank-constrained rank minimization algorithm

This algorithm, proposed in [75], and which we henceforth refer to as RCRM, re-
gards the IA problem, described by (3.14) and (3.15), as the minimization of the
rank of the interference subspace constrained by the full-rank condition of the useful
signal space. That is, if IA is feasible and there are no unused dimensions in the re-
ceiver space, the optimal solution of this RCRM problem must be a perfect alignment
solution.

Let the signal and interference matrix be defined as

Q̃i = UH
i HiiVi , (4.11)

K̃i = UH
i
[
Hi jV j

]
j 6=i , (4.12)
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Algorithm 4.1 Rank-constrained rank minimization algorithm (RCRM) [75].
Initialize {Vi}K

i=1 such that Tr
(
VH

i Vi
)
= 1 and rank (Vi) = di, i = 1, . . . , K.

repeat
1. Fix {Vi}K

i=1 and solve P̃RCRM in {Ui}K
i=1.

2. Fix {Ui}K
i=1 and solve P̃RCRM in {Vi}K

i=1.
until Convergence criterion is met.
Orthogonalize {Ui}K

i=1 and {Vi}K
i=1, and normalize them to unit power.

for i = 1, . . . , K, where [·] denotes horizontal concatenation. The RCRM algorithm
aims at solving the following optimization problem.

PRCRM : minimize
{Vi ,Ui}K

i=1

K

∑
i=1

rank
(
K̃i
)

, (4.13)

subject to rank
(
Q̃i
)
= di , i = 1, . . . , K .

As a tractable surrogate for the (non-convex) rank minimization, its convex en-
velope, given by the nuclear norm, is minimized instead. Also, the rank constraint is
approximated by a minimum eigenvalue constraint, yielding

P̃RCRM : minimize
{Vi ,Ui}K

i=1

K

∑
i=1

∥∥K̃i
∥∥
∗ , (4.14)

subject to λmin
(
Q̃i
)
≥
√
ε , i = 1, . . . , K ,

Q̃i � 0 , i = 1, . . . , K ,

where ε is the predefined eigenvalue threshold and A � B means that A − B is
positive semidefinite. The foregoing problem is convex when either the precoders or
the decoders are kept fixed. Therefore, an alternating optimization approach can be
carried out to attain a local optimum, as summarized in Algorithm 4.1. For further
details, we refer the reader to [75].

Drawbacks

As pointed out in [75], this algorithm fails to provide the maximum DoF in some
scenarios. Furthermore, the norm of the precoders and decoders is not constrained in
the optimization problem. It might happen that after the normalization step (last step
in Algorithm 4.1), which is necessary in practice to satisfy the maximum transmitted
power budget, the minimum eigenvalues of the direct channels would end up with a
too low value, thus yielding a DoF loss in practice.

4.2.2 Iterative IA algorithm

This algorithm, which we denote IIA, was proposed in [76] and considers the mini-
mization of the interference-leakage-plus-noise function subject to a linear constraint
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Algorithm 4.2 Iterative IA algorithm (IIA) [76].
Initialize {Vi}K

i=1 such that Tr
(
VH

i Vi
)
= 1 and rank (Vi) = di, i = 1, . . . , K.

repeat
1. Obtain {Ui}K

i=1 using (4.16) and normalize them to unit power.

2. Obtain {Vi}K
i=1 using (4.17) and normalize them to unit power.

until Convergence criterion is met.

on the equivalent direct channels. Specifically, the direct links are constrained to be
equal to the identity matrix so as to ensure the full-rank condition of the signal space.
The resulting optimization problem can be expressed as

PI IA : minimize
{Vi ,Ui}K

i=1

K

∑
i=1

∑
j 6=i

(∥∥∥UH
i Hi jV j

∥∥∥2

F
+σ2 ‖Ui‖2

F

)
, (4.15)

subject to UH
i HiiVi = I , i = 1, . . . , K .

When the decoders or precoders are fixed, the above problem has a closed-form
solution, which is, respectively, given by

Ui =
(

Ki +σ
2I
)−1

HiiVi

[
VH

i HH
ii

(
Ki +σ

2I
)−1

HiiVi

]−1

, (4.16)

Vi =
←−
K−1

i HH
ii Ui

(
UH

i Hii
←−
K−1

i HH
ii Ui

)−1
, (4.17)

for i = 1, . . . , K. Thus, alternating optimization can be performed to find local op-
tima, as summarized in Algorithm 4.2. For further details, we refer the reader to [76].

Drawbacks

The solutions at each step depend on the inverse of the interference-plus-noise co-
variance matrix. When IA solutions are wished to be computed, i.e., the noise term
is set to zero, the interference covariance matrix becomes rank deficient as the algo-
rithm proceeds, which may cause severe numerical issues. Moreover, as in the RCRM
algorithm, no norm constraints are considered and hence the dimensionality of the
signal subspace is again not guaranteed.

4.3 Maximum-rank interference alignment algorithm

This section presents the first contribution of this thesis. We are interested in devel-
oping a general algorithm to attain IA solutions in structured channels, similarly to
the AltMin-IA algorithm for channels without structure. From Section 4.2, it becomes
evident that the RCRM and IIA algorithms do not actually ensure the rank condition
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of the direct channels. The problem is that an eigenvalue constraint (notice that
the identity constraint of the IIA algorithm is essentially an eigenvalue constraint)
is not sufficient to ensure the dimensionality of the signal space. Although this may
seem contradictory, since a matrix is full-rank if its minimum eigenvalue is strictly
larger than zero, from a numerical standpoint a threshold specifying what can be
considered as full-rank must be established. This is in relation to the interference
leakage, which cannot be taken to a perfect zero in practice, due to numerical er-
rors. Therefore, the minimum eigenvalue of the equivalent direct channel, after any
normalization step, must be such that the slope of the sum-rate at a sufficiently high
signal-to-noise ratio (SNR) equals the wished DoF.

To this end, in this section we propose an algorithm that ensures the rank of the
desired signal by introducing two constraints into the AltMin-IA algorithm. First, the
minimum singular value of UH

i HiiVi for all direct links must be greater than or equal
to a given parameter,

√
ε. Second, the Frobenius norm of the precoders and decoders

must be smaller than or equal to the available power budget (fixed to one without
loss of generality). This avoids the need of any final normalization step that might
result in a violation of the minimum eigenvalue constraint. As opposed to RCRM and
IIA algorithms, the use of a minimum eigenvalue constraint along with the power
budget constraint preserves with probability one the rank of the signal space.

With these considerations, our optimization problem can be written as follows.

P1 :

minimize
{Vi ,Ui}K

i=1

K

∑
i=1

∑
j 6=i

∥∥∥UH
i Hi jV j

∥∥∥2

F
,

subject to UH
i HiiViVH

i HH
ii Ui � εI , i = 1, . . . , K ,

Tr
(

UH
i Ui

)
≤ 1 , i = 1, . . . , K ,

Tr
(

VH
i Vi

)
≤ 1 , i = 1, . . . , K .

Problem P1 can again be solved using an alternating optimization procedure.
First, consider that V j is kept fixed for all j. Then, P1 can be decomposed into K
independent problems, ∀i ∈ {1, . . . , K}, as

P2 :

minimize
Ui

Tr
(

UH
i KiUi

)
,

subject to UH
i QiUi � εI ,

Tr
(

UH
i Ui

)
≤ 1 .

The optimal solution of P2 is formalized in the following proposition.
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Proposition 4.1. The optimal solution of P2 is given by

U?
i =
√
εŨi

(
ŨH

i QiŨi

)− 1
2 , (4.18)

where Ũi contains the di smallest generalized eigenvectors of the matrix pencil
(Ki +µiI, Qi), with µi ≥ 0 being the Lagrange multiplier associated to the last con-
straint in P2.

Proof. Please refer to Appendix A.1.

Analogously, with U j fixed for all j, P1 can be decomposed into K independent
problems, ∀i ∈ {1, . . . , K}, as

P3 :

minimize
Vi

Tr
(

VH
i
←−
K iVi

)
,

subject to VH
i
←−
Q iVi � εI ,

Tr
(

VH
i Vi

)
≤ 1 .

The solution of P3 is analogous to that of P2, but we state it in the following propo-
sition for the sake of completeness.

Proposition 4.2. The optimal solution of P3 is given by

V?
i =
√
εṼi

(
ṼH

i
←−
Q iṼi

)− 1
2 , (4.19)

where Ṽi contains the di smallest generalized eigenvectors of the matrix pencil(←−
K i + λiI,

←−
Q i

)
, with λi ≥ 0 being the Lagrange multiplier associated to the last con-

straint in P2.

Proof. The proof is analogous to that of Proposition 4.1 and we omit it to avoid unnec-
essary repetitions.

The complete procedure is summarized in Algorithm 4.3, and we denote it as
maximum-rank interference alignment algorithm (MaxRank-IA).

Finally, the Lagrange multipliers µi and λi, i = 1, . . . , K; must be chosen such that
the norm constraints are satisfied. If these constraints are active, i.e., the optimal
solution of P2 and P3 satisfy the norm constraint with equality, the optimal value of
the Lagrange multipliers can be obtained using line search methods. To this end, let
us focus on µi (the result is analogous for λi) and consider the following change of
variable

µ̃i =
µi

1 +µi
→ µi =

µ̃i

1− µ̃i
. (4.20)
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Algorithm 4.3 Maximum-rank interference alignment algorithm (MaxRank-IA).
Initialize {Vi}K

i=1 such that Tr
(
VH

i Vi
)
= 1 and rank (Vi) = di, i = 1, . . . , K.

repeat
1. Obtain {Ui}K

i=1 using (4.18).

2. Obtain {Vi}K
i=1 using (4.19).

until Convergence criterion is met.

Notice that 0 ≤ µ̃i ≤ 1. This implies that the generalized eigenvectors of
(Ki +µiI, Qi) are equal to those of [(1− µ̃i)Ki + µ̃iI, Qi]. Since, the Frobenius norm
of Ui decreases monotonically when µ̃i increases, and µ̃i is bounded, a line search
method, such as bisection or golden section, can be applied to obtain the optimal
value of µi.

Some final remarks

Remark 4.3. Let us notice that both the objective function, representing the total in-
terference leakage, and the constraints, are in fact identical for problems P2 and P3.
Therefore, at each iteration of the proposed alternating optimization procedure the ob-
jective function cannot increase and, as it is bounded below by zero, the convergence to
a stationary point is guaranteed.

Remark 4.4. At each step of the algorithm the norm of the precoders and decoders is
always equal to or smaller than 1. Upon convergence, if a norm turns out to be smaller
than 1 we can always normalize it to satisfy Tr[(V?

i )
HV?

i ] = 1 or Tr[(U?
i )

HU?
i ] = 1.

This normalization would cause no harm, since the minimum eigenvalue of all direct
channels after normalizing would still be larger than

√
ε.

Remark 4.5. Notice finally that the noise power can also be incorporated into the opti-
mization problem. Specifically, the interference covariance matrices in P2 and P3 can be
modified as Ki +σ

2I and
←−
K i +σ

2I, respectively, for i = 1, . . . , K. However, if we desire
to compute a perfect alignment solution (for instance, to have evidence about whether a
given IA problem is feasible or not), the noise term must be omitted.

4.4 Numerical Results

In this section we provide some numerical examples that illustrate the performance of
the proposed method in three different scenarios, and compare it with other existing
algorithms, namely, AltMin-IA, RCRM and IIA algorithms. Assuming Rayleigh fading,
the entries of the channel matrices are independent and identically distributed (i.i.d.)
zero-mean circular complex Gaussian random variables with unit variance, and we
average the results over 500 independent channel realizations. We set ε = 10−3,
and define the SNR as SNR = 10 log10

1
σ2 . Finally, as we are interested in comput-

ing perfect alignment solutions, we do not include the noise variance in any of the
algorithms.
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(a) Sum-rate performance
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(b) CCDF of the sum-rate at 40 dB

Figure 4.2: Performance of the different algorithms in the [(1× 1, 3)4, 8] scenario.
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In Fig. 4.2 we evaluate the aforementioned algorithms for the first scenario:
[(1 × 1, 3)4, 8] with varying channels. Therefore, we wish to achieve a total of
4 · 3/8 = 1.5 DoF per channel use. We depict in Fig. 4.2(a) the average sum-rate
as a function of the SNR, whereas Fig. 4.2(b) shows the complementary cumulative
distribution function (CCDF) of the sum-rate at SNR = 40 dB. In terms of aver-
age sum-rate, we observe that the proposed algorithm outperforms the benchmark
schemes in the whole SNR range. Furthermore, as shown in Fig. 4.2(b), the proposed
method experiences a low variability in the achieved solutions, yielding a sum-rate
range of approximately 5.7 b/s/Hz between its highest and lowest value. On the
other hand, the range for the AltMin-IA, RCRM and IIA algorithms is 11.3, 10 and
11.5 b/s/Hz, respectively. That is, the proposed algorithm not only provides the
highest average sum-rate, but also the most stable solutions.

Then, we consider the second scenario: the 4-user SISO IC with constant channel
extensions. According to [74], for this system it is feasible that each user transmits
a complex data stream using L = 3 channel extensions and improper signaling,
thus achieving 4 · 1/3 ' 1.33 DoF per channel use. That is, we are considering
the [(1× 1, 1)4, 3]c scenario. Again, we plot the average sum-rate and the CCDF at
40 dB, in Fig. 4.3(a) and 4.3(b), respectively. The same conclusions can be stated for
this setting: the proposed method provides a significantly higher average sum-rate
and more stable solutions. Although the achieved solutions are not as stable as in
the previous scenario, the sum-rate statistics are more favorable than those obtained
with the other competing algorithms. For instance, the proposed method is able to
achieve at least 9.7 b/s/Hz in 80% of the channel realizations, while the percentage
for AltMin-IA, RCRM and IIA algorithms is 8%, 43% and 46%, respectively.

Although the foregoing results have illustrated the potentials of the proposed
algorithm in terms of sum-rate performance, we still do not have a measure of re-
liability in terms of perfect alignment solutions. In other words, we still do not
know in how many channel realizations we have achieved an IA solution that ex-
tracts all available DoF. To shed light onto this concern, we evaluate in the follow-
ing the sum-rate slope at a reasonable high SNR. Recall that this measure provides
a rough estimation of the achieved DoF. To this end, let us consider a third sce-
nario: [(2 × 1, 2)3(2 × 1, 3)3, 6] with varying channels, where we wish to achieve
(3 · 2 + 3 · 3)/6 = 2.5 DoF per channel use. Hence, if perfect alignment is achieved,
i.e., the interference is perfectly suppressed and the direct channels are full-rank, the
slope of the sum-rate at high SNR should be equal to 2.5. Fig. 4.4(a) shows the
CCDF of the sum-rate slope at 30 dB. Notice that, in practice, since the interference
cannot be completely nullified, an IA solution is expected to achieve a slightly less
sum-rate slope, but close to the theoretical value of 2.5. It can be observed that the
proposed method provides the highest slope among all considered algorithms. For
instance, the proposed algorithm provides a slope higher than 2.25 (i.e., 90% of the
theoretical value) in 93% of the channel realizations, whereas the percentage for
the IIA is 48%. Moreover, the minimum slope achieved by the proposed algorithm
is equal to 2, which is more than twice the minimum value achieved by the other
algorithms. These results indicate that the proposed method finds IA solutions in
many more channel realizations than the benchmark schemes. To further illustrate
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Table 4.1: Percentage of solutions yielding 85%, 90% and 95% of the maximum
sum-rate slope for different scenarios.

Scenario 1: [(1× 1, 3)4, 8]

Achieved slope
1.28 / 1.5 1.35 / 1.5 1.43 / 1.5

(85%) (90%) (95%)

MaxRank-IA 100% 100% 99%
AltMin-IA 59% 58% 56%

IIA 99% 97% 92%
RCRM 0% 0% 0%

Scenario 2: [(1× 1, 1)4, 3]c (improper signaling)

Achieved slope
1.13 / 1.33 1.2 / 1.33 1.27 / 1.33

(85%) (90%) (95%)

MaxRank-IA 88% 77% 61%
AltMin-IA 41% 36% 31%

IIA 77% 65% 56%
RCRM 6% 1% 0%

Scenario 3: [(2× 1, 2)3(2× 1, 3)3, 6]

Achieved slope
2.13 / 2.5 2.25 / 2.5 2.38 / 2.5

(85%) (90%) (95%)

MaxRank-IA 100% 96% 70%
AltMin-IA 39% 38% 36%

IIA 98% 89% 55%
RCRM 0% 0% 0%

this fact, we show in Fig. 4.4(b) the cumulative distribution function (CDF) of the
minimum eigenvalue of the direct channels (UH

i QiUi, for all i) among all users. As
expected, the proposed method ensures the eigenvalues to be equal to or greater
than 10−3, thus successfully preserving the rank of the signal subspace. The RCRM
and IIA methods, however, do not still guarantee the dimensionality of the signal
subspace.

Finally, we gather in Table 4.1 the results of the sum-rate slope for the three sce-
narios that have been considered in this section, where the reliability of the proposed
method becomes evident. These percentages have been obtained as the maximum
sum-rate slope in a high SNR range (from 0 to 80 dB). Consequently, the resulting
values, specially for the AltMin-IA and IIA algorithms, are substantially higher than
those obtained at 30 dB (see Fig. 4.4(a)). This observation is in agreement with
the general behavior of the AltMin-IA and IIA algorithms, which provide equivalent
direct channels with a low minimum eigenvalue in many channel realizations (see
Fig. 4.4(b)). Hence, the slope of the sum-rate tends to achieve its maximum value at
very high SNR.
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Figure 4.3: Performance of the different algorithms in the [(1× 1, 1)4, 3]c scenario
with improper signaling.
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Figure 4.4: Performance of the different algorithms in the [(2× 1, 2)3(2× 1, 3)3, 6]
scenario.
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Chapter5
Interference alignment algorithms

for asynchronous OFDM
transmissions

In this chapter we focus attention on the frequency-selective scenario, but from a
more practical point of view. The models presented in Chapter 4 assume that the
convolutive channels between all transmitter-receiver pairs can be decomposed into
a set of non-overlapping flat-fading channels, which in practice is typically accom-
plished by orthogonal frequency-division multiplexing (OFDM). Thus, interference
alignment (IA) techniques can be applied on a per-subcarrier basis and/or doing
symbol extensions over different subcarriers, using existing algorithms such as those
described in Chapters 3 and 4. What usually goes unnoticed is the fact that perfect
time synchronization is required for this technique to work in practice. Otherwise,
the asynchronous interferences impair the detection of the desired OFDM symbols,
and thus the performance is significantly degraded. However, including a synchro-
nization mechanism among transmitters incurs additional complexity and signaling
overhead.

In order to alleviate the cooperation demands for the frequency-selective scenario,
we consider the application of the IA precoders and decoders at sample level in the
time domain, which allows the interference to be mitigated before synchronization
takes place. The goal of this chapter is then to design algorithms for computing
such IA solutions for the K-user multiple-input multiple-output (MIMO) interference
channel (IC).

We start by introducing a realistic system model for channel extensions in the
frequency domain in Section 5.1. Section 5.2 analyzes the frequency-domain IA
scheme, whereas the proposed algorithms to compute time-domain IA solutions are
described in Section 5.3. Numerical examples are provided in Section 5.4, and an
experimental evaluation of the proposed techniques concludes the chapter in Section
5.5. A conceptual diagram for this chapter is shown in Fig. 5.1.
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Figure 5.1: Conceptual diagram of Chapter 5.

5.1 System description

This section presents the general system model, which will be specialized to the
specific precoding and decoding schemes in the corresponding sections. This model
can be regarded as an extension of the one presented in Chapter 4 to a more realistic
setting. To this end, let us consider a K-user MIMO IC where the users may transmit
asynchronously and/or the channels may have different time delays. To deal with the
multipath nature of the channel, users send their data using OFDM signals with NFFT
subcarriers. We use a cyclic prefix (CP) of length NCP assumed to be larger than the
channel delay spread (unless otherwise stated). Thus, each OFDM symbol has a total
of NB = NFFT + NCP time domain samples. For notation simplicity, in this chapter
we assume that the network is symmetric, i.e., all users have the same number of
transmit and receive antennas, M and N, respectively. Then, the convolutive time-
domain MIMO channel from transmitter j to receiver i is represented as Hi j[n] ∈
CN×M, n = 0, . . . , Lh − 1; where the MIMO channel order is taken as the maximum
among those of the different pairwise channels.

Since users may transmit their signals at different time instants, and the channel
delays may be distinct for the different links, there will be, in general, time misalign-
ments between the OFDM symbols received from each transmitter, which results in
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Figure 5.2: STOs at the ith receiver in a 3-user scenario.

symbol-timing offsets (STOs) with respect to the receiver window. We denote the
STO of the link i j (i.e., from transmitter j to receiver i) as µi j number of samples,1

which is illustrated in Fig. 5.2 for a 3-user scenario. Then, the signal received by the
ith receiver can be expressed as

zi[n] =Hii[n] ∗ x̃i[n−µii]︸ ︷︷ ︸
direct link

+

∑
j 6=i

Hi j[n] ∗ x̃ j[n−µi j]︸ ︷︷ ︸
MUI

+

ni[n]︸︷︷︸
noise

, (5.1)

where ni[n] ∼ CN (0,σ2I) is the additive spatially and temporally white Gaussian
noise at receiver i, and each element of x̃ j[n] ∈ CM×1 is the stream of precoded
OFDM symbols transmitted by each antenna of user j. Note that, if the synchronizer
for user i works properly, the corresponding STO is equal to zero (i.e., µii = 0).

In the next section we will analyze some of the issues that arise when the IA
scheme is applied in the frequency domain (i.e., by means of any of the algorithms
proposed in Chapters 3 and 4), and the succeeding section will present the proposed
time-domain approach. In the remaining of the chapter, we will restrict ourselves
to single-beam transmissions, and IA in the spatial domain, i.e., no symbols exten-
sions (not to confuse with channel extensions) in frequency are considered, since the
proposed time-domain filtering is limited to this setting.

1For simplicity and illustration, we consider an integer value for the STOs. The proposed schemes
will not be affected by this assumption.
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5.2 Post-FFT IA scheme

In an ideal situation, OFDM decomposes the frequency-selective channel into a set of
NFFT non-overlapping flat-fading channels. Therefore, existing IA algorithms can be
applied in the frequency domain on a carrier-by-carrier basis. We denote this scheme
as post- fast Fourier transform (FFT), since the IA decoder is applied after the FFT
block (see Fig. 5.3(a)). In this ideal situation, the communication through each
subcarrier can be expressed as

yi[ω`] = uH
i [ω`]

(
Hii[ω`]vi[ω`]si[ω`] + ∑

j 6=i
Hi j[ω`]v j[ω`]s j[ω`] + ni[ω`]

)
, (5.2)

where Hii[ω`], vi[ω`], ui[ω`] and ni[ω`] are the MIMO channel, the precoding and
decoding vectors, and the additive white Gaussian noise (AWGN), at the `th subcar-
rier. The IA conditions must then be satisfied at every subcarrier, i.e., the following
conditions must hold

uH
i [ω`]Hii[ω`]vi[ω`] 6= 0 , ∀i , ` = 0, . . . , NFFT − 1 , (5.3)

uH
i [ω`]Hi j[ω`]v j[ω`] = 0 , ∀ j 6= i , ` = 0, . . . , NFFT − 1 . (5.4)

This scheme, however, has some important issues that drift it away from its ideal
behavior. The most critical one is regarding its practical implementation. In a real
receiver, time and frequency synchronization is performed at sample level, right after
the demodulation stage, and it is therefore impaired by interference if the transmit-
ters are not perfectly synchronized [77, 78]. As a result, the synchronizer will fail
in detecting the desired frame in most cases, making communication not possible.
When the channel is flat-fading, this issue can be overcome by just applying the IA
decoders at the sample level, which can be done without any loss of generality. How-
ever, under OFDM transmissions, shifting the IA decoder from the symbol level to
the sample level implies a change in the domain where the decoders are applied,
from the frequency domain to the time domain (due to the FFT block). It is clear
that time-domain decoding presents differences with respect to its frequency-domain
counterpart, and further study is required in order to gain insights into its limitations,
as well as into its potential benefits. This setting will be analyzed in Section 5.3.

Let us now suppose that the receivers can synchronize in spite of the interference
(i.e., we assume µii = 0). Even in this case, expression (5.2) does not hold anymore,
since the frequency-selective channels cannot be decomposed into a set of parallel
flat-fading channels. Therefore, there will be some residual interference that cannot
be canceled by the post-FFT IA scheme. We analyze this residual interference in the
next section.

5.2.1 Residual interference

As we have pointed out, there may be cases where the interference cannot be per-
fectly canceled even assuming a perfect synchronization. The imperfect cancelation
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Figure 5.3: Schematic of an OFDM transmitter and receiver that apply (a) post-FFT
IA decoding, or (b) pre-FFT IA decoding.

occurs when some samples of the previous OFDM symbols of the undesired users in-
terfere the current one due to an insufficient CP length or time misalignments. This
is because the post-FFT IA scheme is designed to cancel the interference when the
system can be equivalently decomposed into a set of NFFT non-overlapping channels.
If this is not the case, there will be inter-symbol interference (ISI) and inter-carrier
interference (ICI) components in the interfering signals that cannot be eliminated.
To illustrate this observation, let us express the interference at the ith receiver due to
transmitter j as

PMUI
i j = PD

i j + PISI
i j + PICI

i j . (5.5)

In the above expression, the interference power is expressed as the summation of
what we call direct interference, ISI and ICI. Although this may seem confusing, its
purpose will become clear in the ensuing lines.

The term PD
i j contains the sum of interference powers that each subcarrier from

transmitter j causes to the same subcarrier of receiver i, i.e., it only considers the
interference from the `th subcarrier of transmitter j to the `th subcarrier of receiver
i, and summed over all ` = 0, . . . , NFFT − 1. On the other hand, PISI

i j represents the
interference power at the current OFDM symbol of receiver i that is caused by the
previous OFDM symbol of transmitter j. Similarly, the term PICI

i j is the interference
power that each subcarrier of the jth transmitter generates to all other subcarriers of
receiver i, i.e., it contains the interference that the `th subcarrier causes to the other
NFFT − 1 subcarriers. Note the similarity with the received signal from the desired
transmitter, i.e., when j = i. In this case, PISI

j j and PICI
j j correspond to the usual ISI

and ICI terms, respectively, while PD
j j is the desired signal power.

If the CP is sufficiently long and the received signal from all transmitters are
perfectly aligned in time, PISI

i j and PICI
i j are equal to zero, and so is PD

i j if IA precoders
and decoders are applied. Consider now that there is one sample from transmitter j
to receiver i that cannot be accommodated within the CP. First, we notice that the
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Figure 5.4: Illustration of the residual MUI when a sample from an interfering user
cannot be accommodated within the CP.

channel does not see a cyclic repetition of the OFDM symbols from the jth transmitter,
making the convolution with the corresponding channel no longer circular (i.e., the
transmission from transmitter j to receiver i cannot be decomposed into a set of NFFT
non-overlapping flat-fading MIMO channels). This results in a loss of orthogonality
in the subcarriers that produces an ICI term in the i j link that cannot be eliminated
with the post-FFT IA scheme. We illustrate the impact of this resulting ICI in Fig. 5.4.
As shown in the figure, and for the sake of the analysis, we can add and subtract the
last sample of the OFDM symbol without altering the transmitted signal. Therefore,
the convolution becomes circular and the interference can be completely eliminated,
except for the sample that has been subtracted, which convolves with the tail of the
channel (this is the contribution of this sample to the current OFDM symbol), and
generates interference to all subcarriers (hence, contributing not only to PICI

i j , but also

to PD
i j ). Second, the last sample of the previous OFDM symbol causes interference to

the current one as well, hence contributing to PISI
i j in a similar way. Furthermore,

from Fig. 5.4 it is easy to see that PISI
i j = PD

i j + PICI
i j when we average over the

transmitted symbols.

5.3 Pre-FFT IA scheme

In this section we propose a time-domain precoding and decoding scheme to elim-
inate (or, at least, sufficiently reduce) the interference before time and frequency
synchronization tasks, thus being able to work properly under asynchronous trans-
missions (see. Fig. 5.3(b)). Although we have mentioned that only time-domain
decoding is strictly necessary to reduce the impact of interference in the synchro-
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nization tasks, the use of the precoding vectors also in the time domain will become
clear later.

Using (5.1), and denoting the pre-FFT precoder of transmitter j as v j[n] ∈ CM×1,
and the pre-FFT decoder of receiver i as ui[n] ∈ CN×1, n = 0, . . . , L− 1, the output
signal at receiver i can be written as

yi[n] = uH
i [−n] ∗Hii[n] ∗ vi[n] ∗ x̃i[n−µii]︸ ︷︷ ︸

direct link

+

∑
j 6=i

uH
i [−n] ∗Hi j[n] ∗ v j[n] ∗ x̃ j[n−µi j]︸ ︷︷ ︸

MUI

+

uH
i [−n] ∗ ni[n]︸ ︷︷ ︸

noise

. (5.6)

Notice that x̃ j[n] is the stream of OFDM symbols transmitted by user j, whose kth
symbol can be expressed as

x̃k
j [n] =

{
xk

j [NFFT − NCP + n] 0 ≤ n ≤ NCP − 1
xk

j [n− NCP] NCP ≤ n ≤ NFFT − 1
. (5.7)

Following the matrix notation in [79], (5.7) can be written as

x̃k
j = PTFHsk

j , (5.8)

where PT = [[0 INCP ]
TINFFT ]

T ∈ NNB×NFFT is the CP adding matrix, F ∈ CNFFT×NFFT

is the discrete Fourier transform (DFT) matrix of size NFFT and sk
j ∈ CNFFT×1 is

the data symbol vector transmitted by user j in the kth OFDM symbol. The equiv-
alent single-input single-output (SISO) channel from transmitter j to receiver i is
h̃i j[n] = uH

i [−n] ∗ Hi j[n] ∗ v j[n], which has a length of Leq = 2L + Lh − 2, and
ñi[n] = uH

i [−n] ∗ ni[n] is now a colored Gaussian noise. Using (5.8), (5.6) can be
rewritten in matrix notation as

yk
i =

[
FPR∆iiH̃iiPTFH

]
diagonal

sk
i︸ ︷︷ ︸

desired signal

+

[
FPR∆iiH̃iiPTFH

]
off-diagonal

sk
i︸ ︷︷ ︸

ICI

+

FPR∆
prev
ii H̃iiPTFHsk−1

i︸ ︷︷ ︸
ISI

+

FPR ∑
j 6=i

(
∆i jH̃i jPTFHsk

j +∆
prev
i j H̃i jPTFHsk−1

j

)
︸ ︷︷ ︸

MUI

+

FPRñk
i︸ ︷︷ ︸

noise

, (5.9)



58 Interference alignment algorithms for asynchronous OFDM transmissions

where PR = [0 INFFT ] ∈ NNFFT×NB is the CP removing matrix and H̃i j ∈
CNB+Leq−1×NB is the equivalent SISO channel with convolutional (Toeplitz) structure
between transmitter j and receiver i, i.e.,

H̃i j =



h̃i j[0] 0 · · · 0 0
h̃i j[1] h̃i j[0] · · · 0 0
h̃i j[2] h̃i j[1] · · · 0 0

... h̃i j[2] · · · h̃i j[0] 0

h̃i j[Leq − 1]
... · · · h̃i j[1] h̃i j[0]

0 h̃i j[Leq − 1] · · · h̃i j[2] h̃i j[1]
...

... . . . ...
...

0 0 · · · h̃i j[Leq − 1] h̃i j[Leq − 2]
0 0 · · · 0 h̃i j[Leq − 1]


, (5.10)

which is a function of the corresponding precoders and decoders. The STOs are
modeled using the matrices

∆i j = [INB 0]0↓µi j =

(
0

INB−µi j 0

)
∈ NNB×(NB+Leq−1) (5.11)

and

∆
prev
i j = [INB 0]0↑(NB−µi j)

+[0 [ILeq−1 0]T]0↓µi j =

(
0

INB−µi j 0
0

)
∈ NNB×(NB+Leq−1) ,

(5.12)
where the operators [·]0↓a and [·]0↑a denote a vertical downshift and upshift of length
a, respectively, with zero insertion. The resulting block structure of the foregoing
matrices is provided on the right-hand side of (5.11) and (5.12), respectively. Finally,
ñi ∈ CNB×1 is the colored noise in vector form. Note that, if Leq ≤ NCP + 1, the CP
adding and removing operations make the convolution circular.

5.3.1 Residual interference

Using (5.9), it is easy to see that the multiuser interference (MUI) power at receiver i
can be expressed as the sum of the energies of the interference equivalent channels,
i.e.,

PMUI
i = E

∥∥∥∥∥FPR ∑
j 6=i

(
∆i jH̃i jPTFHsk

j +∆
prev
i j H̃i jPTFHsk−1

j

)∥∥∥∥∥
2

F

 = ∑
j 6=i

Leq−1

∑
n=0

∣∣h̃i j[n]
∣∣2 .

(5.13)
The foregoing expression can be explained as follows. When µi j > 0, the stream of
OFDM symbols from transmitter j is shifted µi j samples with respect to the receiver
window at the ith user (see Fig. 5.2). As a result, the last µi j samples of the (k− 1)th
symbol fall within the receiver window instead of those of the kth symbol. However,
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those samples cause the same average interference power (as they are independent
and identically distributed -i.i.d.-), which equals the interference power obtained
by setting µi j = 0. Consequently, the total MUI power is given by (5.13) and is
therefore independent of the STOs. For this reason, the assumption of integer STOs
in (5.6) can be made without any impact on the pre-FFT scheme. Note that this is
an important difference with respect to the post-FFT scheme, whose residual MUI is
highly dependent on the STOs (even assuming that synchronization can be perfectly
carried out), and also on the channel taps beyond the CP.

If the equivalent channel length exceeds the CP, i.e., Leq > NCP + 1, ISI as well
as ICI will appear in the current OFDM symbol. The ISI and ICI powers at receiver i
are respectively given by

PISI
i =

∥∥∥FPR∆
prev
ii H̃iiPTFH

∥∥∥2

F
, (5.14)

PICI
i =

∥∥∥∥[FPR∆iiH̃iiPTFH
]

off-diagonal

∥∥∥∥2

F
. (5.15)

Since the length of the equivalent channel is increased by the pre-FFT scheme,
shorter decoders and precoders are needed to reduce the ISI and ICI. Reducing the
length of the precoders and decoders, however, will impair the MUI cancelation.
Thus, the pre-FFT scheme implies a tradeoff between the ISI/ICI and the MUI.

In the ensuing sections we propose two different pre-FFT designs. The first one is
a very simple approach but with limited interference cancelation capabilities, which
makes use of the post-FFT IA precoders and decoders to obtain their pre-FFT coun-
terparts by means of an inverse fast Fourier transform (IFFT). The second one is a
more focused approach that performs the design directly in the time domain, which
permits a better interference cancelation at the expense of a higher computational
complexity.

5.3.2 Basic pre-FFT approach

When we think of how to effectively design IA decoders and precoders to be applied
in the time domain, the approach that probably comes up in a first place consists
in just using the post-FFT IA solution, i.e., that obtained in the frequency domain
on a carrier-by-carrier basis, and shift it to the time domain by means of an IFFT.
Furthermore, a truncation of the resulting pre-FFT precoders and decoders may be
convenient so as to reduce the potential increase in ISI and ICI. We call this the basic
pre-FFT approach, and is summarized next.

1. For each subcarrier, apply an IA algorithm (e.g., AltMin-IA), to obtain the sets
{vi[ω`]}NFFT−1

`=0 and {ui[ω`]}NFFT−1
`=0 (post-FFT precoders and decoders, respec-

tively), i = 1, . . . , K.

2. An NFFT-point IFFT is applied to obtain their impulse response, ṽi[n] and ũi[n],
n = 0 . . . , NFFT − 1.
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3. Finally, the pre-FFT filters are truncated to a given length, L, so as to reduce
the ISI and ICI, yielding vi[n] and ui[n], n = 0 . . . , L− 1.

5.3.3 Minimum-distortion pre-FFT approach

Although the basic pre-FFT approach proposed in the previous section is a simple
method to compute time-domain (pre-FFT) precoders and decoders, there is a lack
of control in the residual interference leakage after the pre-FFT filtering, as the design
is carried out in the frequency domain rather than in time domain. In other words,
even though the precoders and decoders are designed to cancel out interference in
the frequency domain, when they are shifted to the time domain they may intro-
duce ISI and ICI if the length of the equivalent channel exceeds the length of the CP.
Furthermore, the MUI cannot be perfectly suppressed even when the precoders and
decoders are arbitrarily long. This is due to the fact that the filters convolve linearly
with the channel impulse response instead of circularly, which does not yield a prod-
uct of their FFTs, hence resulting in an imperfect MUI cancelation. Alternatively, the
ISI and ICI can be reduced by truncating the length of the pre-FFT filters, at the cost
of an MUI increase. However, the relation between ISI/ICI and MUI cancelation is
not evident, which makes it difficult to select the optimal filter length. It is therefore
clear that the basic pre-FFT approach does not have any control on the resulting total
interference power (ISI+ICI+MUI) after the time-domain filtering, which motivates
a further study on the design of pre-FFT approaches.

Once we have determined that the pre-FFT precoders and decoders should be
designed such that the total interference power (which we will also refer to as distor-
tion) is minimized, it becomes evident that this can be accomplished by performing
the optimization directly in the time domain. First, an important consideration must
be taken into account, which naturally arises from the extension of IA from narrow-
band to wideband channels.

Achievable degrees-of-freedom with time-domain filtering

As we have previously pointed out, IA is achieved when the interference is completely
eliminated while preserving the dimensionality of the signal space. For the post-FFT
scheme, both conditions are satisfied by applying standard IA algorithms to each
subcarrier independently. In the pre-FFT scheme, however, these conditions are not
as easily satisfied as in its post-FFT counterpart. Actually, the zero-leakage condition
can be shown to be unsatisfiable, leading to theoretically zero degrees-of-freedom
(DoF). This is due to the aforementioned tradeoff between ISI/ICI and MUI. When
longer filters are used to further reduce the MUI, they will introduce ISI and ICI.
Hence, the total interference power or distortion cannot be taken to zero in general,
and the DoF are theoretically zero. Nevertheless, the interference leakage may still
be reduced to a negligible value for practical signal-to-noise ratio (SNR) regimes,
thus making the minimization of the total interference power meaningful. Notice
also that the ISI and ICI can be further reduced by means of a channel equalizer.
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The second condition, namely the dimensionality of the signal space, can still be
handled but special care must be taken. In the post-FFT scheme, the desired signal
power at each subcarrier must be non-zero, which is a direct extension of the flat-
fading case. This can be achieved without loss of generality by forcing the precoders
and decoders to have unit norm at each subcarrier. When we move the precoders and
decoders to the time domain, the same condition must be imposed to their frequency
response, since otherwise we would end up with solutions in which each user tries to
transmit over a different frequency band, thus reducing the dimension of the signal
space. Notice that the time-domain precoders and decoders cannot be constrained to
have unit norm at each subcarrier due to their finite length. Therefore, the dimen-
sionality of the signal space can only be ensured by imposing some spectral mask on
their frequency responses. Specifically, if the modulus of the frequency response of
the precoders and decoders is strictly larger than zero, then with probability one the
frequency response of the direct channels will not be zero at any subcarrier.

Problem formulation

With the aforementioned considerations, the proposed time-domain design of the
pre-FFT precoders and decoders can be casted as the following optimization problem.

P4 :

minimize
{ui[n],vi[n]}K

i=1

K

∑
i=1

(
PMUI

i + PISI
i + PICI

i

)
,

subject to ‖vi[ω`]‖2 ≥ α , ` = 0, . . . , NFFT − 1 , (5.16)

‖ui[ω`]‖2 ≥ α , ` = 0, . . . , NFFT − 1 , (5.17)

where 0 < α ≤ 1 is the spectral mask needed to ensure the dimensionality of the
signal space and avoid frequency-division multiple access (FDMA) solutions. Note
that α controls the minimum gain of the precoders and decoders. Although we have
pointed out that their gain must be strictly larger than zero, this is only meaningful
at asymptotically high SNR and when the interference is perfectly removed. Hence,
a larger α value may be desirable to achieve higher sum-rate performance.

Even if we keep the precoders or the decoders fixed (i.e., by resorting to an al-
ternating optimization procedure) problem P4 is non-convex. This is due to the
spectral mask constraints, which are quadratic in terms of the impulse response of
the precoders and decoders (notice that their frequency response is linear in the opti-
mization variables). In the following, we show that a local optimum can be attained
by alternating optimization and semidefinite relaxation techniques. To this end, con-
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sider the autocorrelation functions of vi[n] and ui[n]. In particular, let us define

Rvi [n] = vi[n] ∗ vH
i [−n] , (5.18)

Svi [ω`] =
L−1

∑
n=−L+1

Rvi [n]e
− 2π

NFFT
`n . (5.19)

Then, the spectral mask constraint in (5.16) can be expressed as

‖vi[ω`]‖2 ≥ α ⇔ Tr (Svi [ω`]) ≥ α . (5.20)

Similarly, we define

Rui [n] = ui[n] ∗ uH
i [−n] , (5.21)

Sui [ω`] =
L−1

∑
n=−L+1

Rui [n]e
− 2π

NFFT
`n . (5.22)

Then, the spectral mask constraint in (5.17) can be expressed as

‖ui[ω`]‖2 ≥ α ⇔ Tr (Sui [ω`]) ≥ α . (5.23)

That is, the non-convex spectral mask constraints can be written as linear constraints
in terms of the autocorrelation functions of the pre-FFT filters. Furthermore, the
objective function can also be written in terms of the autocorrelation after a simple
approximation. In particular, the autocorrelation of the equivalent SISO channel
between transmitter j and receiver i is given by

ri j[n] = Tr
(

Rv j [n] ∗HH
i j [−n] ∗ Rui [n] ∗Hi j[n]

)
. (5.24)

Then, (5.13) can be expressed equivalently as

PMUI
i = ∑

j 6=i
ri j[0] . (5.25)

On the other hand, the ISI and ICI powers cannot be written in terms of the autocor-
relation functions, but we can use the approximation proposed in [80] to express

PISI
i + PICI

i '
Leq−1

∑
|n|=NCP+1

|rii[n]|2 , (5.26)

i.e., the ISI+ICI power is approximated by the sum of the squared taps of the auto-
correlation beyond the CP. Since the ISI and ICI powers are zero only when these
taps are also zero, (5.26) seems to be a rather good approximation.

With all these ingredients, we can rewrite the initial problem in an (almost)
equivalent form, which becomes convex when either the precoders or decoders are
fixed, thus permitting the application of an alternating minimization procedure.



5.3 Pre-FFT IA scheme 63

Therefore, the autocorrelation function for the ith decoder (assuming fixed pre-
coders) can be obtained by solving the following convex optimization problem.

P5 :

minimize
Rui [n]

∑
j 6=i

ri j[0] +
Leq−1

∑
|n|=NCP+1

|rii[n]|2 ,

subject to Tr (Sui [ω`]) ≥ α , ` = 0, . . . , NFFT − 1 ,
Sui [ω`] � 0 , ` = 0, . . . , NFFT − 1 ,

Sui [ω`] =
L−1

∑
n=−L+1

Rui [n]e
− 2π

NFFT
`n, ` = 0, . . . , NFFT − 1 ,

Rui [n] = RH
ui
[−n] , n = 0, . . . , L− 1 ,

Tr (Rui [0]) = 1 .

Note that we have removed the rank-one constraint on the power spectral den-
sity, Sui [ω`], turning the above problem into a relaxed semidefinite program. The
rank of Sui [ω`] is the number of data streams that user i is allowed to transmit.
More data streams being transmitted increases the total interference leakage, and
thus the optimal solution of P5 is rank-one, i.e., a space-time single-input multiple-
output (SIMO) filter, which is in agreement with our initial assumptions (single-beam
transmissions).

Analogously, the autocorrelation function for the jth precoder (assuming fixed
decoders) can be obtained by solving the following convex optimization problem.

P6 :

minimize
Rv j [n]

∑
i 6= j

ri j[0] +
Leq−1

∑
|n|=NCP+1

∣∣r j j[n]
∣∣2 ,

subject to Tr
(

Sv j [ω`]
)
≥ α , ` = 0, . . . , NFFT − 1 ,

Sv j [ω`] � 0 , ` = 0, . . . , NFFT − 1 ,

Sv j [ω`] =
L−1

∑
n=−L+1

Rv j [n]e
− 2π

NFFT
`n, ` = 0, . . . , NFFT − 1 ,

Rv j [n] = RH
v j
[−n] , n = 0, . . . , L− 1 ,

Tr
(

Rv j [0]
)
= 1 .

The complete procedure, which we call minimum-distortion pre-FFT algorithm
(MinDist pre-FFT), is summarized in Algorithm 5.1.
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Algorithm 5.1 Minimum-distortion pre-FFT algorithm (MinDist pre-FFT).
Initialize {vi[n]}K

i=1 such that they have unit energy.
repeat

1. Obtain {Rui [n]}K
i=1 by solving P5.

2. Obtain {Rvi [n]}K
i=1 by solving P6.

until Convergence criterion is met.

Finally, we can use the results in [81] to express the spectral mask constraint
in an alternative form that incurs less computational complexity, specially when the
number of subcarriers is large. In [81], the positive real lemma [82] is used to rewrite
spectral mask constraints as linear matrix inequalities (LMIs) in the context of digital
filter design. Using these results, the spectral mask constraints in P6 are equivalent
to

Tr
(

Sv j [ω`]
)
≥ α , ∀` ⇒ r̃v j −αδ = L∗1 (X) , (5.27)

Sv j [ω`] � 0 , ∀` ⇒ R̃v j = L∗M (Y) , (5.28)

where r̃v j = [Tr(Rv j [0]), . . . , Tr(Rv j [L − 1])]T, R̃v j = [RT
v j
[0], . . . , RT

v j
[L − 1]]T, δ is

the first column of the L × L identity matrix, X ∈ SL
+ and Y ∈ SLM

+ . The linear
operator L∗n(A) is defined as [81]

L∗n(A) =
[
Tr0,n (A)T , . . . , TrL−1,n (A)T

]T
, (5.29)

where the operator Trk,n(A) denotes the sum of the n-size blocks on the kth lower
off-block-diagonal of A.

Using this new formulation, problem P6 (analogously for P5) is equivalent to

P7 :

minimize
Rv j [n],X,Y

∑
i 6= j

ri j[0] +
Leq−1

∑
|n|=NCP+1

∣∣r j j[n]
∣∣2 ,

subject to r̃v j −αδ = L∗1 (X) ,

R̃v j = L∗M (Y) ,

Tr
(

Rv j [0]
)
= 1 ,

X � 0 ,
Y � 0 .

Remark 5.1. The actual precoders and decoders can be recovered from their autocor-
relation functions by means, for instance, of a polynomial singular-value decomposi-
tion (SVD) [83] or on a per-subcarrier basis in the frequency domain. Note that there is
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Figure 5.5: Convergence of MinDist pre-FFT algorithm for ρ = 0.1.

some degree of freedom in the sense that the precoders and decoders applied at each sub-
carrier can be scaled by a unitary complex scalar without changing the autocorrelation
functions. It may be convenient to select those such that the resulting equivalent channel
of the direct links is minimum-phase. Since we assume that the receivers synchronize
with the strongest multipath component, a minimum-phase channel avoids precursor
ISI coming from postcursor OFDM symbols and keeps the channel delay at a minimum.
Notice, however, that the particular choice of the precoder and decoder impulse responses
is actually not relevant, since the equivalent channel can be made minimum-phase using
a time-domain equalizer [84, 85]. For the ensuing simulation analysis, we will hence
extract the minimum-phase impulse response of the equivalent channels directly from
their autocorrelation function, by means of a spectral factorization algorithm [86].

5.4 Numerical examples

This section presents some numerical examples that illustrate the performance of
the proposed algorithms. Specifically, we consider the (2 × 2, 1)3 scenario where
the users send their data using NFFT = 16 subcarriers and a CP length of NCP = 4
samples. Without loss of generality, we consider unit transmit power and define
the SNR as 10 log10(

1
σ2 ). All nine pairwise MIMO channels follow a Rayleigh fading

model with a power-delay profile (PDP) given by

PDP[n] = (1− ρ)ρn , n = 0, . . . , Lh − 1 , (5.30)
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Figure 5.6: Power allocation for a particular channel realization with L = 5. The
spectral mask is set to α = 0.5 (top) and α = 0.1 (bottom).

with 0 < ρ < 1 and Lh = 3. The root mean square (RMS) delay spread is the second
central moment of the PDP, and is given by [87, Chapter 4]

στ =

√√√√Lh−1

∑
n=0

PDP[n]n2 −
(

Lh−1

∑
n=0

PDP[n]n

)2

samples . (5.31)

The RMS delay spread is a measure of the frequency selectivity of the channel. In
the simulations, we set ρ = 0.1 for low frequency selectivity, and ρ = 0.5 for high
frequency selectivity, which yields στ ≈ 0.35 and στ ≈ 0.7, respectively. We average
the results for 100 independent channel realizations, and 100 different STOs for each
channel. To simulate the STOs between users, we consider the starting point of each
user frame to be uniformly distributed between 0 and NFFT + NCP. Finally, we set
α = 0.5.

As benchmarks for the proposed pre-FFT approaches, we consider two different
post-FFT schemes, both applying the IA precoding and decoding vectors on a per-
carrier basis. In the first one, that we denote perfect post-FFT, the STOs are set
to zero and hence the MUI can perfectly be removed, provided that the channel
length do not exceeds the CP. This scheme will act then as an upper bound on the
performance of the other schemes. In the second one, we assume that the receivers
can synchronize to the desired frames even in presence of STOs, and hence we denote
this scheme as genie-aided post-FFT.
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We first show the average interference leakage of MinDist pre-FFT algorithm in
Fig. 5.5, for ρ = 0.1 and different filter lengths. As expected, increasing the filter
length decreases the average distortion, but the computational complexity increases
as well. First, the number of iterations until convergence to a stationary point is
greater for higher filter orders. Second, the computational cost per iteration also
increases with L. Note, however, that the number of iterations to achieve a given av-
erage interference leakage is significantly decreased when the filter order increases,
which might reverse the complexity in benefit of high filter lengths when a satisfac-
tory interference leakage level is set.

Fig. 5.6 shows the power allocation over the different subcarriers for α = 0.5
(top) and α = 0.1 (bottom), and a filter length of L = 5. For the sake of illustration,
we have considered NFFT = 64 and NCP = 16 for this figure, so that the frequency
responses are smoother and the effect of changing the value ofα can be more clearly
observed. As stated in Section 5.3.3, when α is low, users try to transmit over differ-
ent frequency bands, hence decreasing the overall sum-rate. Concretely, the sum-rate
achieved for α = 0.5 is equal to 14.93 b/s/Hz when the SNR is 20 dB; while 11.30
b/s/Hz are achieved with the same SNR for α = 0.1.

Now we illustrate the sum-rate performance of the proposed pre-FFT approaches
and compare them with that of the benchmark schemes. Specifically, Fig. 5.7(a)
considers ρ = 0.1, whereas the results for ρ = 0.5 are depicted in Fig. 5.7(b). First,
we observe that the performance of the genie-aided post-FFT scheme is dramatically
lower than that of the perfect post-FFT scheme. That is, even assuming perfect syn-
chronization, the performance of the post-FFT scheme is significantly impaired by the
existence of STOs between users, as we already discussed in Section 5.2.1. On the
contrary, the proposed pre-FFT schemes are able to mitigate the interference before
the synchronization takes place, and invariantly to STOs. Furthermore, MinDist pre-
FFT scheme achieves better results than the genie-aided post-FFT even for L = 2.
As the filter length increases, its performance approaches that of the perfect post-
FFT, specially when the frequency selectivity of the channel is low. As a result, the
sum-rate gap can be made negligible for practical SNR ranges, and with the advan-
tage of being invariant to STOs between users, thus no additional synchronization
mechanisms are required.

The basic pre-FFT approach can be a good alternative to the MinDist pre-FFT
scheme for low frequency selectivity and medium SNR regimes, due to its signifi-
cantly lower complexity. However, as ρ and/or the SNR increases, its performance
degrades notably. This behavior is due to the fact that the time-domain filters are ob-
tained through their frequency-domain counterparts, whereas the MinDist pre-FFT
scheme performs the optimization directly in the time domain, and taking the filters
and channel lengths directly into account, as well as the additional ISI and ICI due
to the channel enlargement.
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Figure 5.7: Sum-rate performance of the proposed pre-FFT schemes for ρ = 0.1 (a)
and ρ = 0.5 (b).
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5.5 Experimental evaluation

We conclude this chapter presenting some experimental results on the performance
of the post- and pre-FFT schemes in a real interference channel setup. Specifically, we
have implemented an indoor wireless local area network (WLAN) that uses OFDM
with 64 subcarriers according to the physical-layer specifications of the IEEE 802.11a
standard [88]. Experiments have been carried out using a wireless network testbed
made up of six nodes equipped with MIMO radio interfaces, which allows the imple-
mentation of the (2× 2, 1)3 IC.

In the following, we detail the different transmissions schemes that have been
adopted and some of the obtained results. We refer the interested reader to [89] for
a comprehensive analysis on the performance and practical issues of the post- and
pre-FFT IA schemes.

5.5.1 Transmission schemes

In order to assess different aspects of the practical feasibility of IA, different schemes
have been adopted and compared to each other. A data frame is generated and pre-
coded for each transmission scheme. These frames are then concatenated to create a
super frame that is transmitted in each channel use. A training stage precedes each
super frame to estimate the channel and to compute the precoding vectors accord-
ingly. Notice that the length of the super frame must be sufficiently low to avoid that
the channel changes before the transmission of the super frame has been completed.

For this campaign we have considered a slightly different pre-FFT scheme, con-
sisting in applying in the time domain only the decoders, whereas the precoders are
applied in frequency on a carrier-by-carrier basis, as in the post-FFT scheme. This
allows us to evaluate post- and pre-FFT decoding offline, without incurring any ad-
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ditional overhead that may compromise the validity of our results. To the same end,
we synchronize the transmitters so that no STOs occur, and thus the post-FFT scheme
can be applied and evaluated. The pre-FFT decoders have been obtained according
to the basic approach described in Section 5.3.2.

We have adopted the following transmissions schemes:

1. IA transmission: all users transmit simultaneously, hence creating a 3-user IC.
The IA precoders are applied at the transmitter right before the FFT, and both
IA pre-FFT and post-FFT decoding are performed at the receiver. The pre-FFT
decoder length is set to L samples, and the basic approach is applied due to its
reduced computational complexity.

2. Perfect IA transmission: each user applies the same set of precoders and de-
coders of the previous scheme but transmitting in a sequential fashion (trans-
mitting from only one user at a time). This transmission scheme enables us
to measure the residual interference level created by each transmitter at each
receiver. In other words, we are able to evaluate the impact of the residual in-
terference by comparing the actual performance during the IA stage with that
in the absence of interference.

5.5.2 Results

We start by evaluating the impact of the pre-FFT decoder length on the performance
of IA. To this end, we evaluate the error vector magnitude (EVM) of the received
signal constellation for different decoder lengths, L ∈ [1, 64]. Fig. 5.8 shows the
median EVM degradation of the pre-FFT decoding approach with respect to its post-
FFT counterpart. Notice that the post-FFT scheme provides the best results since no
STOs are introduced in the system. Therefore, this scheme is equivalent to the one
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denoted as perfect post-FFT in Section 5.4, which must not be confused with the per-
fect IA transmission scheme adopted in this section, where the residual interference
is eliminated by means of sequential transmissions.

In order to demonstrate the ISI versus residual MUI tradeoff, the comparison
has been carried out for both IA and perfect IA transmissions. For perfect IA, the
degradation is only due to ISI and, as expected, it increases with the decoder length.
On the other hand, a shortened IA decoder cannot properly suppress the MUI, leading
to a high degradation of the constellation EVM. As the decoder length increases,
however, the amount of MUI is greatly reduced whereas the degradation due to ISI
grows at the rate seen in the perfect IA curve. This analysis illustrates the existing ISI-
MUI tradeoff from which it turns out that a good choice for the decoder length would
be 30 taps. This decoder length will be used in the remaining experiments since it
provides slightly less than 1 dB of EVM degradation (whereof around 0.3 dB are due
to ISI) with the advantage of a reduced receiver complexity and the possibility to
perform frame synchronization in totally unsynchronized scenarios.

The cumulative distribution function (CDF) of the received constellation EVM is
depicted in Fig. 5.9. It is shown that the performance loss caused by moving from
a post-FFT to a pre-FFT decoder is always below 1 dB for IA, and below 0.5 dB for
perfect IA. As a counterpart, pre-FFT decoding has the advantage that no inter-
user time synchronization is required. Additionally, these differences are negligible
compared to the roughly 4 dB difference between perfect IA and IA schemes.

Finally, we show bit error rate (BER) results for both approaches in Fig. 5.10.
This figure represents the average achievable sum-rate that guarantees a BER equal
to or lower than a given value. For each channel, the achievable sum-rate is obtained
assuming an optimal medium access control (MAC) layer which selects for each user
the maximum rate that satisfies the required BER. It is important to notice that the
results in Fig. 5.10 do not take additional overhead or higher-level issues into account
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and they only suggest how the optimal performance of such schemes would be. The
difference of 1 dB in terms of EVM translates into a higher gap in terms of sum-rate.
Nevertheless, pre-FFT decoding is much more robust to time misalignments than its
post-FFT counterpart and enables frame detection in case of a lack of synchronization
among users (which may be also caused by significant distance difference between
signal paths).

It is worth stressing that the basic approach has been utilized for the pre-FFT
decoding, due to its reduced computational complexity with respect to the MinDist
pre-FFT technique. The latter approach would then help reducing the performance
gap between post-FFT and pre-FFT IA, since, as shown in the numerical examples
in Section 5.4, it has better interference mitigation capabilities. Notice also that the
real performance difference between the post-FFT and the basic pre-FFT approaches
is substantially lower than that expected from the numerical analysis in Section 5.4
(recall that the post-FFT approach implemented in the measurement campaign cor-
responds to the perfect post-FFT benchmark scheme in that section, as the STOs have
been set to 0). This observation indicates that the post-FFT approach is more sensi-
tive to practical impairments than its pre-FFT counterpart. This may be due to the
fact that the pre-FFT scheme has an inherent residual interference level, which may
mask the effect of some system non-idealities.
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Chapter6
Underlay cognitive radio: SISO

primary user

One limitation of the interference coordination approach for the interference channel
(IC) is the required overhead. As we observed in Part II, interference alignment (IA)
techniques require global channel state information (CSI), or, alternatively, they rely
on a distributed implementation, which is typically based on an iterative exchange of
information between users. Although this issue worsens when the number of users
grows, it presents a practical limitation even for the simplest scenario.

This chapter is the starting point of the second cooperative scenario that is un-
der consideration in this thesis, and is motivated by the aforementioned problem
inherent to the full interference coordination approach. Thus, we study schemes
with limited or partial coordination following the underlay cognitive radio (UCR)
paradigm. Thereby, the network is divided into sets of users that have different pri-
orities, and whose cross interference is handled by means of interference constraints.
Specifically, we consider a scenario with a single-input single-output (SISO) primary
user (PU), i.e., a user with full priority that we express as a minimum rate require-
ment that has to be fulfilled. Therefore, the secondary users (SUs), i.e., those users
with lower priority, must manage the interference they provoke to ensure that its
power is below a tolerable threshold and thus guarantee the PU rate.

We present the general system model in Section 6.1, and then we study two
different problems for the above-described setting. First, we explore the potential
benefits of improper signaling for a single-antenna SU in Section 6.2. Second, we
study the assignments of local or per-SU interference constraints in Section 6.3, so as
to further alleviate the cooperation demands of the secondary network, when this is
comprised of multiple users. A conceptual diagram for this chapter is shown in Fig.
6.1.

6.1 General system model

Let us consider the interaction of a secondary network, whose topology is not relevant
at this point, and a single-antenna primary link. As illustrated in Fig. 6.2, the PU
has a rate requirement, and the impact of the secondary network is constrained by
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Figure 6.1: Conceptual diagram of Chapter 6.

means of an interference temperature (IT) or interference power limit (we will use
both terms interchangeably).

Assuming that the interference at the primary receiver is distributed as a proper
or circularly-symmetric complex Gaussian random variable, the achievable rate of
the PU as a function of the interference power, t, is given by

RPU(t) = log2

(
1 +

p |h|2

σ2 + t

)
, (6.1)

where h ∈ C is the channel coefficient, σ2 the noise variance and p ≤ P the trans-
mit power. Since there is a one-to-one mapping between interference power and
achievable rate, constraining the secondary network with an IT limit is equivalent
to explicitly consider the rate constraint, but demands a small amount of cross in-
formation between the secondary and primary networks. Without loss of generality,
we express the rate constraint as a fraction of the maximum achievable rate (in the
absence of interference), i.e., R̄ = αRPU(0), where 0 ≤ α ≤ 1 is the loading factor,
and R̄ is the rate constraint. Thus, when the rate of the PU is to be above R̄, the IT
limit is given by

RPU(t) ≥ R̄ → t ≤ σ2
(
γ (1)
γ (α)

− 1
)

, (6.2)
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secondary network

p ≤ P

IT constraint

Primary Tx Primary Rx

h
RPU  ≥ R

-

Figure 6.2: Considered scenario from the PU standpoint.

where
γ(a) = 2aRPU(0) − 1 (6.3)

is the required signal-to-noise ratio (SNR) needed to achieve a rate aRPU(0) in the
absence of interference.

As it can be observed, this model presents much lower CSI demands than the IC
studied in Part II. Firstly, the PU only needs its direct link to obtain the interference
power threshold. Secondly, the secondary network must only acquire the channel
state to the primary receiver and the IT threshold. Notice also that this model can
be extended to more complex scenarios (for instance, a primary IC), but we restrict
ourselves to this simple but illustrative setting to derive insightful results that might
be further extended to other configurations.

An interesting point is the fact that, since the IT limit is univocally given by the
rate constraint, it seems that it completely captures the impact of the secondary net-
work. However, the rate expression (6.1) assumes that the interference is distributed
as a proper Gaussian random variable. As we will show in the next section, exploring
different signaling schemes may improve the performance of the SUs, while ensuring
the PU rate constraint.

6.2 Improper signaling scheme

In interference-limited scenarios, the use of proper complex Gaussian signals has
typically been assumed due to the fact that these are capacity achieving in the point-
to-point, broadcast and multiple access channels [90]. However, some recent results
have proven that improper complex Gaussian signals increase the achievable rates
in various interference-limited networks [73,74,91–94], hence calling into question
the widely-used assumption of proper Gaussian signals when interference presents
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a limiting factor. Improper signals have real and imaginary parts that have unequal
power and/or are correlated.

In this section, we study whether improper signaling can be beneficial for the SUs
in the considered scenario and, if so, when and how much gain can we expect to
achieve. In order to obtain insights into this scheme, we consider a basic secondary
network, comprised of one single-antenna SU that may transmit improper Gaussian
signals (notice that the PU follows a proper signaling scheme, as presented in the
previous section, so that the primary transmitter does not cooperate with the SU).

Before going any further, we first provide some concepts of improper random
variables that will be used throughout this section. For a comprehensive analysis of
improper signals, we refer the reader to [95].

• The complementary-variance of a zero-mean complex random variable x is de-
fined as τx

.
= E

[
x2], where E[·] is the expectation operator. If τx = 0, then x is

called proper, otherwise improper.

• The circularity coefficient of a complex random variable x is defined as the
absolute value of the quotient of its complementary-variance and variance, i.e.,

κx
.
=
|τx|
σ2

x
. (6.4)

The circularity coefficient satisfies 0 ≤ κx ≤ 1 and measures the degree of
impropriety of x. If κx = 1 we call x maximally improper.

The considered scenario is depicted in Fig. 6.3. As shown in the figure, the SU
has a transmit power q ≤ Q, and may transmit improper signals as long as the PU
achieves its prescribed rate requirement. In this setting, the signal received by the
primary and secondary receivers can be expressed, respectively, as

yp = h
√

psp + g
√

qss + np , (6.5)
ys = f

√
qss + d

√
psp + ns , (6.6)

where d, g and f are the PU-SU, SU-PU and SU-SU channels (see Fig. 6.3); np ∼
CN (0,σ2

p) and ns ∼ CN (0,σ2
s ) are the noise at the primary and secondary receivers,

respectively, and sp and ss are the transmitted Gaussian symbols, with E{
∣∣sp
∣∣2} =

E{|ss|2} = 1. For the sake of simplicity, we assume henceforth σp = σs = σ . Our
results can be easily extended to different noise variances.

In general terms, the signal transmitted by the SU can be parameterized in terms
of its power, q, and the circularity coefficient, κ, which measures the degree of impro-
priety. Notice that the rate of the PU given by (6.1) is only valid if the SU transmits a
proper signal, and therefore κ = 0. Expression (6.1) can be modified to take account
of the circularity coefficient as [92, eq. (30)]

RPU (q,κ) = log2

(
1 +

p |h|2

σ2 + q |g|2

)
+

1
2

log2

1−κ2
yp

1−κ2
inp

, (6.7)
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Figure 6.3: Scenario under consideration. The SU (bottom link) may transmit im-
proper signals, but must guarantee the rate constraint of the PU (top link).

where κyp and κinp are the circularity coefficients of the received and interference-
plus-noise signals at the PU, respectively, which are given by

κyp =
κ

1 + p|h|2+σ2

q|g|2

, (6.8)

κinp =
κ

1 + σ2

q|g|2
. (6.9)

Obviously, taking κ = 0 in (6.7) yields (6.1). Furthermore, using [92, eq. (30)], the
achievable rate of the SU as a function of q and κ can be expressed as

RSU (q,κ) =
1
2

log2

{
q | f |2

σ̃2

[(
1−κ2

) q | f |2

σ̃2 + 2

]
+ 1

}
, (6.10)

where σ̃2 = σ2 + p |d|2 is the interference-plus-noise power at the secondary receiver.

From these expressions it becomes evident that, if q is kept fixed, increasing the
degree of impropriety of the transmitted SU signal will clearly decrease the achiev-
able rate of the SU but, at the same time, it will also increase the rate of the PU,
thus allowing the SU to increase its transmit power while keeping the rate of the
PU above its requirement. It is therefore clear that there exists a tradeoff between
the additional transmit power that must be used for the SU to maintain its proper
signaling rate, and the extra power that it is allowed to transmit. Improper signaling
will be beneficial only when the latter is greater than the former. In the next section,
we derive the achievable rate of the SU as a function of κ, which will shed light onto
this tradeoff.
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6.2.1 Achievable rates

In this section we derive the achievable rate of the SU for both cases, i.e., proper
and improper transmissions, when the PU data rate is constrained as RPU(q,κ) ≥
αRPU(0, 0), by expressing the allowable transmit power, q, as a function of κ. Notice
that, since setting κ = 0 yields a proper Gaussian signal, the results obtained for
the improper case can be specialized to the proper one. However, for the sake of
exposition, we provide separate expressions for both cases.

Proper signaling case

When κ = 0, the achievable rate of the SU can be expressed as

RSU (κ = 0) = log2

(
1 +

q (κ = 0) | f |2

σ̃2

)
, (6.11)

where q(κ = 0) is the allowable power for the proper case, which is obtained by
dividing the most right-hand side of (6.2) by |g|2, i.e.,

q(κ = 0) =
σ2

|g|2

(
γ (1)
γ (α)

− 1
)

. (6.12)

Note that we have dropped the dependence with q in (6.11), since the rate of the SU
is now a function of κ only.

Improper signaling case

Analyzing the achievable rate of the SU as a function ofκ will provide us with insights
into the properties of improper signaling for this scenario. To this end, we provide
the following lemma.

Lemma 6.1. When the rate of the PU is constrained as RPU ≥ αRPU(0, 0), the achiev-
able rate of the SU can be expressed in terms of its circularity coefficient as

RSU (κ) =
1
2

log2

[
2q (κ) | f |2

σ̃2

(
1−β | f |

2σ2

|g|2 σ̃2

)
+
| f |4σ4

|g|4 σ̃4

(
γ(2)
γ(2α)

− 1
)
+ 1

]
,

(6.13)
where q (κ) is the allowed transmit power, which is given by

q (κ) =
σ2

|g|2 (1−κ2)

[√
β2 + (1−κ2)

(
γ(2)
γ(2α)

− 1
)
−β

]
, (6.14)

and β = 1− γ(1)
γ(2α) is a parameter that satisfies β ≤ 1.

Proof. Please refer to Appendix B.1.
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Corollary 6.2. If the SU transmits a maximally improper signal (by setting κ = 1), and
q(1) ≤ Q, the achievable rate of the SU reduces to

RSU (κ = 1) =
1
2

log2

(
1 +

2q(κ = 1) | f |2

σ̃2

)
, (6.15)

where q(κ = 1) is given by

q(κ = 1) =
σ2

2 |g|2

(
γ(1)

γ(2α − 1)
− 1
)

. (6.16)

Proof. Please refer to Appendix B.2.

Lemma 6.1 provides an alternative expression for the SU rate that depends on κ
only through its impact on the allowed transmit power, q (κ). With this observation,
we obtain the following result.

Theorem 6.3. When the rate of the PU is constrained as RPU ≥ αRPU(0, 0) and q(0) <
Q, the achievable rate of the SU is improved by transmitting improper signals if and only
if

|g|2 σ̃2

| f |2σ2
> β , (6.17)

with β = 1− γ(1)
γ(2α) . Furthermore, when (6.17) holds, the optimal value of κ is given by

κ? =


1 if q (1) ≤ Q√

1− σ2

Q|g|2

[(
γ(2)
γ(2α) − 1

)
σ2

Q|g|2
− 2β

]
otherwise

. (6.18)

Proof. Please refer to Appendix B.3.

This theorem provides a necessary and sufficient condition for improper signaling
to be beneficial in the considered scenario, which, thanks to its simplicity, provides
interesting insights. We observe that, since β ≤ 1 and σ̃2 = σ2 + p |d|2 ≥ σ2, if the
gain of the interfering channel, g, is greater than that of the SU direct channel, f , then
the use of improper signaling will always enhance the SU data rate independently of
the rate constraint and SNR of the PU. Alternatively, when the SNR of the PU, γ(1),
is equal to or greater than γ(2α) (i.e., α ≤ 0.5 and hence the PU can achieve its
rate constraint by using only the real or imaginary part of the transmitted symbol),
improper signaling also improves the SU rate independently of the interfering and SU
direct channels. Moreover, it is shown that, if improper signaling is beneficial, then
maximally improper signals are optimal. Note, however, that the optimal transmitted
signals may not always be chosen as maximally improper due to the limited power
budget at the SU. In those cases, the circularity coefficient must be the minimum
value that allows the SU to transmit with its maximum power. Condition (6.17)
shows that improper signaling is beneficial if the increase in allowable power due
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Figure 6.4: Scenario under consideration for the maximally improper scheme.

to improper transmissions is greater than the additional power needed by the SU to
maintain the rate achieved by proper signaling.

It is worth noting that, if (6.17) holds with equality, proper and improper trans-
missions provide the SU with the same achievable rate, independently of the degree
of impropriety, κ. An interesting observation at this point is that, if we take the
equality in (6.17) and plug it into (6.13), we obtain the threshold rate as

rt = log2

1 +

γ(1)
γ(α)
− 1

1− γ(1)
γ(2α)

 . (6.19)

Since the SU rate decreases when the quotient in (6.17) increases, whenever the
achievable rate of the SU is below rt, improper signaling is the optimal strategy. Sur-
prisingly, this expression only depends on parameters of the PU link, namely, its SNR
and loading factor. That is, fixing the SNR and loading factor of the PU univocally
determines the rate threshold that defines the proper- and improper-optimal regions.

6.2.2 Maximally improper setting

The results derived in the previous section motivate to further analyze the maximally
improper scheme. For the ease of the analysis and the sake of illustration, we assume
from this point onwards that the power budget constraint is not active, i.e., q(1) < Q,
and that h = 1, as depicted in Fig. 6.4. We start deriving some bounds on the gain
achieved by maximally improper signaling and then we will provide statistical results
assuming a constant received SNR at the PU.

Bounds on the achievable gain

For convenience, let us denote

w =
| f |2σ2

|g|2 σ̃2
. (6.20)
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Notice that the achievable rate for both proper and improper transmissions is only
a function of w, α and the SNR at the PU, p/σ2. Note also that the parameters
directly related to the SU (channels to and from the SU, and interference and noise
power at the SU) impact the achievable rate through w. The SU rates for both proper
and maximally improper transmissions, (6.11) and (6.15), respectively, can then be
expressed as

RSU(0) = log2

[
1 + w

(
γ(1)
γ(α)

− 1
)]

, (6.21)

RSU(1) =
1
2

log2

[
1 + w

(
γ(1)

γ(2α − 1)
− 1
)]

. (6.22)

Now we show that the maximum rate improvement by using improper signals can
also be expressed in terms only of the PU parameters. To this end, we first take the
derivative of ∆ = RSU(1)− RSU(0) with respect to w and equate it to zero, yielding

∇w∆ = 0 ⇒ wmax =

[
γ(1)

γ(2α−1) − 1
]
− 2

[
γ(1)
γ(α)
− 1
]

[
γ(1)

γ(2α−1) − 1
] [

γ(1)
γ(α)
− 1
] . (6.23)

By plugging this value into (6.21) and (6.22) we obtain

∆max =
1
2

log2

[
γ(1)

γ(2α−1) − 1
]2[

γ(1)
γ(α)
− 1
] [

γ(1)
γ(2α−1) −

γ(1)
γ(α)

] − 1 . (6.24)

Therefore, the maximum rate gain that can be achieved is also uniquely determined
by the PU SNR and loading factor, independently of the parameters of the SU. Inter-
estingly, 0 ≤ wmax ≤ 1, whose extreme values are reached when the SNR of the PU
tends to 0 and to ∞, respectively, which also bounds the maximum gain as

wmax → 1 ⇒ ∆max → log2
α√

2α − 1
, (6.25)

wmax → 0 ⇒ ∆max → ∞ . (6.26)

Notice that the right hand side of (6.25) approaches ∞ when α approaches 1
2 . This

is due to the fact that we have assumed that the transmit power of the SU is only
constrained by the IT limit and not by its power budget. Since the PU can meet its
requirement with only the real or imaginary part of the desired signal when α ≤ 1

2 ,
it tolerates an infinite amount of a maximally improper interference.

Alternatively, we may look at the relative gain defined as

∆R =
RSU(1)− RSU(0)

RSU(0)
. (6.27)

In this case, it can easily be checked that the relative gain decreases monotonically
with w and is bounded as

− 1
2
≤ ∆R ≤

1
2

γ(1)
γ(2α−1) − 1
γ(1)
γ(α)
− 1

− 1 . (6.28)
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Figure 6.5: Z-IC with maximally improper scheme.

Rate statistics

In this section, we statistically characterize the achievable rate of the SU for both
proper and improper transmissions ((6.21) and (6.22), respectively). Recall that
we are assuming in this section that the received SNR at the primary receiver is
constant, i.e., γ(1) = p

σ2 is not a random variable. Our main result is formalized in
the following theorem.

Theorem 6.4. Let f , g and d be circularly-symmetric complex Gaussian random vari-
ables with zero mean and variances σ2

f , σ2
g and σ2

d , respectively. The cumulative distri-
bution function (CDF) of the achievable rate of the SU for proper and improper trans-
missions, given by (6.21) and (6.22), respectively, is given by

FR(r) = 1 +
σ2

f

σ2
g

[
σ2

pσ2
dη(r)

]
e
σ2

pσ2
d

[
σ2

f
σ2

gη(r)
+1

]
Ei

{
− σ

2

pσ2
d

[
σ2

f

σ2
gη(r)

+ 1

]}
, (6.29)

with η(r) = 2r−1
γ(1)
γ(α)
−1

for the proper case and η(r) = 22r−1
γ(1)

γ(2α−1)−1
for the improper case; and

Ei (x) is the exponential integral defined as

Ei (x) = −
∫ ∞
−x

e−t

t
dt . (6.30)

Proof. Please refer to Appendix B.4.

When the channel gain from the primary transmitter to the secondary receiver is
negligible, i.e., |d|2 ≈ 0 (see Fig. 6.5), the scenario turns into the so-called Z-IC [96].
In this setting we are able to obtain closed-form expressions not only for the CDF of
the achievable rates, but also for their expected value. This result is formalized in
the following corollary.
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Corollary 6.5. Let σ2
d = 0. In this case, the CDF of the achievable rate of the SU for

proper and improper transmissions is given by

FZC
R (r) =

η(r)
σ2

f

σ2
g
+ η(r)

, (6.31)

where η(r) = 2r−1
γ(1)
γ(α)
−1

for the proper case and η(r) = 22r−1
γ(1)

γ(2α−1)−1
for the improper case.

Furthermore, the expectation of the rate can be expressed as

E [RSU] = τ
µ

µ − 1
log2 µ , (6.32)

where µ =
σ2

f

σ2
g

(
γ(1)
γ(α)
− 1
)

and τ = 1 for the proper case, and µ =
σ2

f

σ2
g

(
γ(1)

γ(2α−1) − 1
)

and τ = 1
2 for the improper case.

Proof. Please refer to Appendix B.5.

6.2.3 Numerical analysis

Here we provide several numerical examples that illustrate the results obtained for
this scenario. Assuming Rayleigh fading, the channel coefficients are distributed as
h ∼ CN (0,σ2

h ), g ∼ CN (0,σ2
g ), f ∼ CN (0,σ2

f ) and d ∼ CN (0,σ2
d ). The average

SNR of the PU and SU is respectively defined as SNRPU = P
σ2σ

2
h and SNRSU = Q

σ2σ
2
f .

Similarly, the average interference-to-noise ratio (INR) at the primary and secondary
receivers is, respectively, given by INRPU = Q

σ2σ
2
g and INRSU = P

σ2σ
2
d . Since the

PU has no additional constraints, we set p = P, i.e., it transmits with its maximum
available power. Without loss of generality, we set σ2 = 1.

Optimal signaling scheme

We first consider the optimal improper signaling setting, by switching to improper
signaling only when it is advantageous (as described in Section 6.2.1). In this setting,
we perform Monte-Carlo simulations to obtain the SU achievable rates for proper and
improper signaling transmissions when σ2

h = σ2
g = σ2

f = σ2
d = 1, and averaging the

results over 105 independent channel realizations. Consequently, INRSU = SNRPU
and INRPU = SNRSU.

Fig. 6.6(a) shows the achievable rate of the SU as a function of its SNR for
α = 0.8 and different values of SNRPU. In this scenario, we observe a noticeable
improvement by using improper signaling, with relative gains in the considered SNR
regime of up to 9, 23 and 56 % for SNRPU = 10, 20 and 30 dB, respectively. Fig.
6.6(b) shows the achievable rate of the SU for α = 0.5. In this case, the improve-
ment is significantly higher than in the previous scenario, achieving a relative rate
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Figure 6.6: Achievable rate of the SU as a function of its SNR for α = 0.8 (a) and
α = 0.5 (b).
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Figure 6.7: Rate threshold rt as a function of SNRPU and different loading factors,
α.

improvement up to 292, 297 and 256 % for SNRPU = 10, 20 and 30 dB, respectively.
This is because the rate requirement for the PU is less stringent, hence providing the
SU with more possibilities for improving its rate. Furthermore, a loading factor of
α = 0.5 permits the PU to achieve its requirement only with the real or imaginary
part of the transmitted symbol, which, according to Theorem 6.3, makes improper
signaling beneficial in all channel realizations and allows the SU to transmit with its
maximum power.

Finally, we depict rt as a function of SNRPU in Fig. 6.7, for different values of
α. It can be seen that rt increases slightly with SNRPU and, more notably, when
α decreases. This means a wider range of rates for which improper signaling is
optimal. Furthermore, increasing the PU transmit power decreases the signal-to-
interference-plus-noise ratio (SINR) of the SU, resulting in a lower achievable rate
and, consequently, a higher probability of operating below rt.

Maximally improper signaling scheme

Let us now focus on the maximally improper signaling setting, as described in Section
6.2.2. For convenience, we define φ = σ2

f /σ
2
g = SNRSU/INRPU. Note that we

assume a constant received SNR at the primary receiver and thus h takes now a
constant value, which we have set to 1 for simplicity and without loss of generality.
Fig. 6.8 depicts the complementary cumulative distribution function (CCDF), i.e.,
1− FR(r), with FR(r) given in (6.29), for proper and improper transmissions when
SNRPU = 20 dB, σ2

d = 1 (consequently, INRSU = SNRPU), α = 0.75 and different
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g = SNRSU/INRPU and α = 0.75. Improper signaling is beneficial whenever

the achievable rate is below rt.

values of φ. We can see that the CCDFs for both cases intersect at a point that is
invariant to φ, which corresponds to the rate threshold (6.19). As seen in the figure,
whenever the rate is below rt, improper signaling is optimal.

To illustrate the impact of the PU parameters, we plot in Fig. 6.9(a) and Fig.
6.9(b) the relative gain on the expected achievable rate as a function of α (with
SNRPU = 20 dB) and SNRPU (with α = 0.75), respectively, for σ2

d = 1 and φ = 0.1.
The expected value has been obtained numerically by using E[a] =

∫∞
−∞(1− Fa(a))da,

and the relative gain as

∆E =
E [RSU(1)]− E [RSU(0)]

E [RSU(0)]
. (6.33)

The results for the Z channel, as well as for an optimal transmit strategy adaptation,
are also depicted for comparison. The latter is obtained by using improper signaling
only when the achievable rate is below rt, similarly as in Section 6.2.1. The optimal
strategy provides an upper bound on the gain, which helps us assess the impact of
transmitting solely improper signals. Our results indicate that, for the considered
settings, the optimal adaptation provides only slightly higher gains. This is due to
the fact that the probability of improper signaling not being favorable is usually low
(see Fig. 6.8), and hence improper signaling is the optimal strategy in most cases.
However, for large values of α, sticking to improper signaling may be harmful for
the SU in terms of average achievable rate, as observed in Fig. 6.9(a). We also
notice that the gain for the Z channel is significantly lower. This is due to the fact
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Figure 6.10: Illustration of possible control signaling for proper or improper trans-
missions (orange arrows), and for the optimal strategy adaptation (black arrows).

that, as we already observed in Section 6.2.2, the relative gain increases when w
decreases. Furthermore, the rate threshold rt depends only on parameters of the PU
and is thus the same for the Z channel and the IC. However, the achievable rate in
the Z channel is higher since the SU operates without interference, which implies
that the achievable rate is greater than rt with higher probability, or, in other words,
the probability of improper signaling being beneficial is lower for the Z channel.

Finally, it is worth pointing out that the optimal strategy adaptation requires addi-
tional signaling and PU-SU collaboration, which may compromise its potential bene-
fits with respect to transmitting improper signals only. We illustrate a possible control
signaling in Fig. 6.10, where we have assumed that each receiver has local CSI. For
the proper or improper signaling scheme (orange arrows in Fig. 6.10), the primary
receiver must inform the secondary transmitter of the allowable transmit power, q.
When the SU performs an optimal adaptation (black arrows in Fig. 6.10), the sec-
ondary receiver feeds back the quotient | f |2/σ̃2 to the primary receiver, so that the
latter can evaluate (6.17) and inform the secondary transmitter whether it must
transmit proper or improper signals, and the corresponding admissible power.

6.3 Interference temperature profile

In this section we move to a different secondary network scenario. Specifically, we
consider several multi-antenna SUs transmitting one single data stream each. In this
setting, which is depicted in Fig. 6.11(a), the SUs must ensure that their aggregate
interference power is below the IT limit that ensures the PU rate (see, e.g., [35,
37]). First, such approach would demand a high level of cooperation among the
secondary network nodes, which incurs additional overhead. Second, it requires the
SUs to be located within range of one another, so that distributed algorithms can be
applied, which may not be the case of a general cellular scenario where low-power
secondary transmitters might be deployed far away from each other. These issues can
be overcome by setting independent IT constraints to each SU, in such a way that the
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Figure 6.11: Scenario under consideration. A high level of cooperation is required at
the SUs when a total interference power constraint is to be satisfied (a). Cooperation
demands can be alleviated by setting local IT constraints to each SU (b).

aggregate interference power constraint is satisfied whenever these local constraints
are also fulfilled, as depicted in Fig. 6.11(b).

Let us denote the set of individual ITs, which we will also refer to as IT profile,
as {ti}K

i=1, where K is the number of SUs. Obviously, ∑
K
i=1 ti ≤ t must hold. This

profile is typically assumed to be known a priori when developing algorithms for the
secondary network. However, there is an infinite number of different IT profiles for
a given global interference constraint, and hence selecting suitable ones according to
some criteria becomes a problem of interest.

Let gi ∈ CMi×1, i = 1, . . . , K, be the channel vector from the ith secondary trans-
mitter to the primary receiver, where Mi is the number of transmit antennas of the
ith SU (see Fig. 6.11). The signal received by the primary receiver can be expressed
as

yp = h
√

psp +
K

∑
i=1

gH
i xi + np , (6.34)

where xi ∼ CN (0, Qi) is the signal transmitted by the ith SU, with Qi, Tr(Qi) ≤ Q,
being its transmit covariance matrix. Notice that we assume that the SUs follow
a proper signaling scheme. Although in this scenario they may also benefit from
transmitting improper signals, the results derived in Section 6.2 only apply to the
case of one single-antenna SU. The transmit covariance matrices of the SUs must
then obey

K

∑
i=1

gH
i Qigi ≤ t , (6.35)

where t is given in (6.2). Since we consider local IT constraints, we express (6.35) as

gH
i Qigi ≤ ti , i = 1, . . . , K , (6.36)

K

∑
i=1

ti ≤ t . (6.37)
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In the following, we consider how the primary receiver can efficiently compute
the IT profile, {ti}K

i=1, that optimizes some performance metric of the SUs. To keep
cooperation at a minimum, we will only assume that the primary receiver can acquire
local CSI, i.e., channels gi, i = 1, . . . , K, and that it knows the SU power budget, Q.
Thus, no information about the secondary network topology, secondary receiver char-
acteristics, nor SU direct channels is available. Once the profile has been obtained,
any of the algorithms that exist in the literature might be applied for optimizing the
SUs subject to the interference constraints.

6.3.1 Random projections framework

In this section we propose a novel framework to design the IT profile based on the
statistics of random projections. Let us first present the following lemma, which will
be the basis of the proposed framework.

Lemma 6.6. Let h ∈ CN×1 be a given complex vector and v ∈ CN×1 a complex random
vector uniformly distributed on the unit hypersphere. The projection Ψ = |vHh|2 is
distributed as ‖h‖2 × Beta(1, N − 1), whose probability density function is given by

fΨ (ψ) =
N − 1
‖h‖2

(
1− ψ

‖h‖2

)N−2

, 0 ≤ ψ ≤ ‖h‖2 . (6.38)

Proof. Please refer to Appendix B.6.

Since the primary receiver has local CSI, it perfectly knows the channels from
the secondary transmitters, gi, but does not have any other information about the
SUs (such as channels between SUs or optimal beamforming vectors of secondary
transmitters). Thus, the optimal beamforming vectors of the SUs are unkown and
independent of the channels to the PU, and can therefore be modeled as uniformly
distributed on the unit hypersphere. Hence, by Lemma 6.6, the interference that
each secondary transmitter may generate at the primary receiver is beta distributed
with a cumulative density function given by

Fi(zi) = 1−
(

1− zi

Q‖gi‖2

)Mi−1

, 0 ≤ zi ≤ Q‖gi‖2 . (6.39)

Fi(ti) can be regarded as the probability that the optimal beamformer of ith sec-
ondary transmitter (without IT constraints) causes an interference power equal to
or lower than ti. It turns out that, when the ith secondary transmitter is constrained
with an IT of ti, the probability that this user can still use its optimal beamformer is
given by Fi(ti). This observation suggests the suitability of optimizing a global utility
function in terms of the interference probabilities, {Fi(ti)}K

i=1, when no further
knowledge about the SUs is available. To this end, and in order to achieve fairness
among SUs, we propose the following convex optimization problem to be solved at
the primary receiver.
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Figure 6.12: Interference power histogram and PDF of a SU with different number
of antennas.

P8 :

maximize
{ti}K

i=1

min
i

[Fi(ti)] ,

subject to 0 ≤ ti ≤ Q‖gi‖2 , i = 1, . . . , K ,
K

∑
i=1

ti ≤ t .

In P8, the minimum probability is maximized with the aim of maximizing also the
minimum rate among the SUs. Clearly, Fi(t?i ) = Fj(t?j ), ∀i, j, will hold for the optimal
solution, which yields

t?i =


µ , i = 1

Q‖gi‖2

[
1−

(
1− µ

Q‖g1‖2

)M1−1
Mi−1

]
, i = 2, . . . , K , (6.40)

for the maximum µ such that all constraints are satisfied. We denote the IT profile
obtained by (6.40) as RP-MaxMin. It is easy to see that the optimal value of µ can be
obtained by means of a bisection method in the interval [0, Q‖g1‖2].

6.3.2 Numerical examples

For the sake of illustration, we first provide the histogram and the actual probability
density function (PDF) of the interference power for different number of antennas at
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Figure 6.13: Average minimum rate for the RP-MaxMin method and a uniform IT
assignment.

the secondary transmitter. To this end, we consider a secondary link, with M trans-
mit and receive antennas, that chooses its beamformer as the principal eigenvector
of its direct channel matrix. The results are plotted in Fig. 6.12, where it can be
observed that the probability of causing low interference increases with the number
of antennas.

Now we provide a simple example to illustrate the potential benefits of the
proposed IT profile framework. To this end, let us consider multiple-input single-
output (MISO) SUs that are located on a r× r square around the primary receiver,
following an homogeneous Poisson point process (PPP) of intensity λ, which is a com-
mon model for heterogeneous networks [97,98]. For simplicity, we assume that there
is no interference at the secondary receivers. The channel entries are independent
and identically distributed (i.i.d.) zero-mean complex Gaussian random variables:
h ∼ CN (0, 1), fi ∼ CN (0, I) and gi ∼ CN (0,σ2

gi
I), where fi is the direct channel of

the ith secondary link. Without loss of generality, we take σ2 = 1, and, again, define
the SNR of the PU and SUs as SNRPU = P

σ2 and SNRSU = Q
σ2 , respectively. We adopt

the standard path loss model, so that the channel variances are given by

σ2
gi
=

(
ri

d0

)−γ
, (6.41)

where d0 is the reference distance, ri is the distance between the ith secondary trans-
mitter and the primary receiver and γ is the path loss exponent. For all simulations,
we will take r = 1000 m, d0 = 30 m and γ = 3. For each channel realization (which
in turn changes the number of SUs and their location according to the PPP), the
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number of antennas at each secondary transmitter is set, with equal probability, as
Mi = 2, Mi = 3 or Mi = 4.

Once the IT profile has been determined, we consider the following simple scheme
for the secondary transmitters:

1. Each secondary transmitter selects its optimal beamformer, i.e., vi =
fi
‖fi‖

, and

the transmit covariance matrix is first set to Q̃i = QvivH
i .

2. If the IT assigned to a SU is violated, we scale the corresponding transmit power
accordingly. That is, Qi = min( ti

gH
i Q̃igi

, 1)Q̃i.

In Fig. 6.13, the average minimum rate (10000 independent realizations), Rmin
SU ,

is depicted as function of SNRSU for the RP-MaxMin method and a uniform IT assign-
ment, which takes ti = t/K. We have taken SNRPU = 20 dB, α = 0.5 and λ = 15/r2,
so that the expected number of SUs is 15. As it can be observed, the proposed
method provides a significant improvement on the minimum rate achieved by the
SUs, which saturates as the SNR increases. The reason for this is that increasing the
transmit power of the secondary transmitters increases also the interference at the
primary receiver. Consequently, the transmit power constraint of the SU achieving
the minimum rate is usually not active at high SNR.
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Chapter7
Underlay cognitive radio: MIMO

primary user

This chapter builds up on the model presented in Chapter 6 by considering multiple
antennas at both sides of the primary user (PU) link. Thereby, the spatial dimension
comes into play, which opens up the door to new possibilities and challenges. On
the one hand, the interference temperature (IT) limit cannot be as trivially obtained
as we saw in Chapter 6, since in this case the rate of the PU is not only affected by
the total interference power, but also by its spatial signature. On the other hand, this
observation suggests the use of interference constraints taking account of the spatial
distribution, such that not only the interference power is constrained, but also how it
is distributed in space. By means of this, the stringency of the interference constraint
may be alleviated. The use of improper signaling schemes is also expected to be
advantageous for this scenario, but the analysis of such schemes will be left for future
research.

Both of the aforementioned points are addressed in this chapter. After describing
the general system model in Section 7.1, we provide in Section 7.2 a closed-form
solution for the IT limit of the multi-antenna PU. In Section 7.3, a spatial interference
shaping constraint is presented as an alternative to IT, and two different designs are
proposed. Finally, we will address in Section 7.4 the problem of optimizing two
different secondary networks, namely, a multiple-input multiple-output (MIMO) link
and an interference channel (IC), subject to the proposed shaping constraints. A
conceptual diagram for this chapter is shown in Fig. 7.1.

7.1 General system model

The PU model that we consider now differs from the one presented in Chapter 6
in that the primary transmitter and receiver have multiple antennas. We depict this
scenario in Fig. 7.2. The number of transmit and receive antennas is set to M and N,
respectively, and the interference from the secondary network is now represented by
an interference covariance matrix, K ∈ SN

+. That is, if z ∈ CN×1 is the signal at the
primary receiver due to the secondary network, where each element corresponds to
the signal at each receiving antenna, then K = E[zzH]. The PU achievable rate can
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then be written as a function of K as

RPU(K) = log2

∣∣∣∣I + (σ2I + K
)−1

HQHH
∣∣∣∣ , (7.1)

where H ∈ CN×M is the MIMO channel and Q ∈ SM
+ is the PU transmit covariance

matrix, with Tr(Q) ≤ P.

7.2 Interference temperature

In the previous chapter we observed that, in the case of a single-antenna PU, there
is a one-to-one mapping between IT and achievable rate, and hence this value is
univocally determined from the PU rate constraint. However, this correspondence
does not hold anymore when multiple antennas are deployed at both sides of the
primary link. In such a case, the PU performance is not only limited by the total
interference power, but also by its spatial distribution. Hence, the IT limit must be
chosen in such a way that the rate is ensured independently of the spatial signature
of the interference.

Cumanan et al. proposed in [99] a simple expression for the IT threshold, by
bounding the maximum rate reduction due to the interference. This threshold is
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secondary network
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Q RPU  ≥ R
-H
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Figure 7.2: Considered scenario from the PU standpoint.

obtained in [99] as

t̊ = 2
1

min(M,N)(log2|σ2I+HQHH|−R̄) −σ2 . (7.2)

This expression, however, provides a too conservative IT threshold. As we will
show in this section, to effectively guarantee a satisfactory performance for the PU
and, at the same time, be as less stringent as possible to the secondary network,
a worst-case assumption on the interference covariance matrix must be adopted,
by identifying its most detrimental spatial signature. This will allow us to derive a
closed-form expression for the maximum IT that can be tolerated, which will result
in a multilevel waterfilling problem. To this end, let us mathematically express the
problem in its most general form as

P9 :

maximize
t

t ,

subject to RPU(K) ≥ R̄ , ∀ K ∈ Kt ,

where the set Kt is defined as

Kt = {K � 0 : Tr(K) ≤ t} . (7.3)

In the foregoing problem, the rate requirement must be satisfied for all interference
covariance matrices in Kt. Since RPU(K) is convex in K [100], this means that P9
has an infinite number of non-convex constraints, which makes the problem very
difficult to solve in its current form. In the following, we will show that looking
at the worst-case interference covariance matrix suffices to determine the maximum
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IT level, which will result in a convex optimization problem with a finite number
of constraints. Although this observation is rather intuitive, we provide a rigorous
mathematical derivation, which is formalized in the following lemma.

Lemma 7.1. P9 is equivalent (in terms of optimal solution) to the following convex
optimization problem.

P10 :

minimize
t,K

t ,

subject to RPU(K) ≤ R̄ , (7.4)
K ∈ Kt .

Proof. Please refer to Appendix B.7.

Problem P10 computes the IT by considering only the worst-case interference
covariance matrix, i.e., that with the spatial structure that is the most detrimental
for the primary receiver. Hence, if the rate constraint is guaranteed for the worst
case, it will also be ensured for any other interference covariance matrix satisfying
the IT constraint. Furthermore, we show in the following theorem that P10 admits a
multilevel waterfilling solution.

Theorem 7.2. The worst-case interference covariance matrix, which is solution of P10,
is given by

K? = ΓΛΓH , (7.5)

where Γ is a unitary matrix containing the singular vectors of HQHH, and Λ is a
positive diagonal matrix whose elements are given by a multilevel waterfilling as

λi =

[√
φi

(
1
4
φi +µ

)
−
(

1
2
φi +σ

2
)]+

, (7.6)

where φi is the ith singular value of HQHH and µ such that the rate constraint is
satisfied with equality.

Proof. Please refer to Appendix B.8.

In Theorem 7.2, the worst-case interference directions are derived, which corre-
spond to the PU transmit eigenmodes. Also, the worst-case interference power at
each direction is given in (7.6). The particular form of these interference levels can
be understood by analyzing the derivative of the rate with respect to each λi, which
is given by

∇λi RPU(K?) =
1

log 2
φi

(σ2 + λi) (σ2 + λi +φi)
. (7.7)
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Plugging (7.6) into this expression, and assuming λi > 0, we obtain

∇λi RPU(K?) =
1

µ log 2
, (7.8)

i.e., the derivative of the rate with respect to each non-zero λi is equal and inversely
proportional to µ. In other words, the optimal solution in (7.6) yields a point such
that the variation of the rate of each PU signal mode with respect to its interference
power is equal. Therefore, since (7.7) decreases with λi, any other interference
power distribution with the same sum would increase the achievable rate.

In order to obtain the optimal value of µ in (7.6), we first notice that λi increases
monotonically with µ and, consequently, the achievable rate, (7.1), decreases. Fur-
thermore, µ can be bounded as follows.

Proposition 7.3. Let us assume that φ1 ≥ φ2 ≥ . . . ≥ φN. The value of µ in (7.6),
such that the rate constraint (7.4) holds with equality, can be bounded as

max

σ2
(

1 +
σ2

φ1

)
,φN

2
R̄
N(

2
R̄
N − 1

)2

 ≤ µ ≤ φ1
2

R̄
N(

2
R̄
N − 1

)2 . (7.9)

Proof. Please refer to Appendix B.9.

These observations permit the application of one-dimensional search methods,
such as bisection or golden section, to obtain µ.

Special case: single-stream transmission

When the PU transmits one stream of data, the problem simplifies and becomes sim-
ilar to that of the single-input single-output (SISO) case. It is evident that, in the
worst-case, all the interference aligns with the desired signal space, yielding a rank-
one interference covariance matrix. Hence, the IT threshold is obtained analogously
to (6.2) and is given by

t ≤ ‖Hq‖2

2R̄ − 1
−σ2 , (7.10)

where Q = qqH.

7.2.1 Numerical examples

In this section we provide some numerical examples to illustrate our findings. We
consider that each entry of the channel matrices are independent and identically
distributed (i.i.d.) as CN (0, 1). The transmit powers are set to 1, thus the signal-
to-noise ratio (SNR) is defined as SNRPU = 1

σ2 , which we fix to 20 dB for all the
simulations of this section. All results are averaged over 1000 independent channel
realizations.
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Figure 7.3: Average IT for different systems as a function of α (a) and R̄ (b).
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In Fig. 7.3(a) we plot the maximum IT, obtained according to Theorem 7.2,
for different antenna configurations as a function of α. The IT threshold for the
single-antenna case is also depicted in Fig. 7.3(a). Note that, for each value of α,
the rate requirement is higher for those systems whose capacity is also higher. We
first observe that the curves behave similarly with α. Second, systems with a higher
number of antennas tolerate higher amounts of interference in order to ensure the
same percentage over their capacity. Also, the stringency of the IT constraint becomes
more notable whenα goes from low to medium and high values (i.e., the slope of the
curves is more prominent for low values of α). Alternatively, we plot in Fig. 7.3(b)
the IT limit as a function of R̄, when this is fixed independently of the capacity.
Clearly, increasing the number of antennas, with R̄ fixed, provides a huge increase of
the IT, as the additional antennas are solely used to relax the threshold. In Fig. 7.4,
the maximum IT obtained from Theorem 7.2 is shown for a 2× 2 and a 4× 4 MIMO
systems as a function of R̄, and compared with the bound given in (7.2). As shown
in the figure, not using the maximum IT may yield pessimistic or too conservative
results, specially when the PU is not highly loaded.

Finally, we depict in Fig. 7.5 the average IT per signal mode, λi, as a function of
α. Interestingly, all of them are non-zero in almost the whole α regime.

Secondary rate maximization

We finally illustrate the usefulness of our result with a practical example. Consider
a secondary network comprised of one multi-antenna secondary user (SU). For
simplicity, and without loss of generality, let us assume that there is no interfering
link from the primary transmitter to the secondary receiver. Consider also that the
number of transmit and receive antennas is equal for both PU and SU and is given
by N. The secondary transmit covariance matrix that maximizes the SU rate can be
found by solving the following convex optimization problem.

P11 :

maximize
QSU

RSU = log2

∣∣∣∣I + 1
σ2 FQSUFH

∣∣∣∣ ,

subject to Tr (QSU) ≤ 1 ,
QSU � 0 ,

Tr
(

GQSUGH
)
≤ t ,

(7.11)

where F ∈ CN×N and G ∈ CN×N are SU-SU and SU-PU channels, and QSU ∈ SN
+ is

the transmit covariance matrix of the SU. Notice that the last constraint in P11 is the
IT constraint to ensure that the PU meets its minimum rate requirement. Since this
problem is convex, it can be efficiently solved by standard numerical methods [101].
For this scenario, we plot in Fig. 7.6 the average achievable rate of the SU as a
function of α, for N = 2 and N = 4 antennas. We observe that there is a significant
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rate difference between using the optimal IT limit and the suboptimal threshold given
by (7.2), which becomes more prominent as the number of antennas increases.

7.3 Spatial interference shaping

Although the IT metric is a widely-used approach, it is clear that the worst-case as-
sumption on the interference covariance matrix is too pessimistic and may yield a
too stringent constraint to the secondary network. However, it is the best we can do
by looking solely at the total interference power. The natural question arising at this
point is: could we do better if we also constrain the spatial signature of the interfer-
ence? Intuitively, if we somehow avoid the secondary network to transmit through
the spatial directions that are more susceptible to interference, the IT threshold could
increase without compromising the performance of the PU. On the one hand, con-
straining the spatial signature of the SUs may negatively affect their performance,
since they have less spatial freedom to enhance their own transmissions. On the other
hand, a spatially-constrained interference has less impact on the PU, and therefore
the SUs are allowed to transmit with higher power.

Some efforts have already been made to overcome the limitation of the IT ap-
proach for the multi-antenna case. For instance, [35] and [38] consider different
variations of IT, such as interference along a given direction, interference perceived
at the primary receiver (i.e., after the projection onto the receiver space) [35], or per-
antenna constraints [38]. Nevertheless, these works do not set out the alternatives
as a means of controlling the impact of the secondary network in a more efficient
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way, and actually the relationship of these metrics to the PU performance is also not
provided. On the contrary, Cumanan et al. propose in [99] to take advantage of
the PU channel state information (CSI), by explicitly constraining a SU with the PU
rate requirement. Such an approach, however, entails higher levels of cooperation,
since all the information regarding the PU (channel state, SNR, transmit strategy,
etc.) must be available at the secondary network.

In this section, we study the use of spatial interference shaping constraints to
efficiently take account of the structure of interference while keeping cooperation
between the primary and secondary network at a low level. As we will show, these
shaping constraints can be designed dynamically based on the channel conditions
and performance requirements of the PU.

Shaping constraints have already been considered in the literature [102, 103].
In [102], they are used in a cellular network to upper-bound the worst-case inter-
ference covariance matrix when the interference channels are not known. Alterna-
tively, [103] deals with the problem of optimizing a MIMO transceiver subject to
transmit shaping constraints. Our aim in this section is to perform a deeper anal-
ysis on the possibilities that spatial shaping constraints can provide in cooperative
underlay scenarios.

Spatial shaping constraints can be considered at different points of the commu-
nication link, which may require different levels of cooperation and CSI knowledge.
In general terms, a spatial shaping constraint can be expressed by the linear matrix
inequality (LMI)

Ξ � S . (7.12)

In (7.12), S is the shaping matrix and Ξ is the covariance matrix to be constrained.
Consequently, we may have the following spatial shaping constraints:

• Global interference shaping: By setting Ξ = K in (7.12), the spatial structure
of the interference covariance matrix is constrained. Thereby, the SUs must
cooperate with each other so as to ensure that their aggregate interference is
below the shaping matrix.

• Local interference shaping: The interference is locally constrained at the end
of the link from each secondary transmitter by setting Ξ = Kk, where Kk is
the interference covariance matrix generated by the kth secondary transmitter
(notice the connection to the IT profile studied in Chapter 6). As this approach
sets individual shaping constraints to each secondary transmitter, no cooper-
ation among them is necessary, which may be specially useful to reduce the
complexity of the secondary network or if the SUs are deployed far away from
each other, making cooperation not possible.

• Transmit covariance shaping: Taking Ξ = Qk, where Qk is the transmit co-
variance matrix of the kth secondary user. This approach, as well as setting
individual constraints to each transmitter, does not require the SUs to acquire
additional CSI.
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Furthermore, it can be shown that spatial shaping is in fact a generalization of
the IT constraint, that is, the IT constraint is a special case of the spatial shaping. In
order to show this relationship, we first present the following lemma.

Lemma 7.4. Let S ∈ SN
+ and ξ ∈ CN×1. Then, if S is full-rank, ξξH � S holds if and

only if ξHS−1ξ ≤ 1. If S is rank-deficient, ξξH � S holds if and only if ξ̃H
Σ−1ξ̃ ≤ 1,

where Σ is a diagonal matrix containing the non-zero eigenvalues of S and ξ = Γξ̃,
with Γ being the eigenvectors of S associated to the non-zero eigenvalues.

Proof. Please refer to Appendix B.10.

Now let K = ∑
r
i=1 kikH

i , with r being the rank of K, be any arbitrary decomposi-
tion, which may represent the aggregation of all incoming interfering streams from
the SUs, and consider that the secondary network must operate under a global inter-
ference shaping, K � S. By introducing the auxiliary optimization variables {Si}r

i=1,
the shaping constraint can be equivalently written as

K � S ⇔
{

kikH
i � Si , i = 1, . . . , r

∑
r
i=1 Si � S . (7.13)

On the other hand, when the secondary network is constrained with an IT limit,
we can derive a similar equivalence by using Lemma 7.4 and the set of auxiliary
optimization variables {ti}r

i=1, yielding

Tr (K) ≤ t ⇔
{

kikH
i � tiI , i = 1, . . . , r

∑
r
i=1 tiI � tI . (7.14)

Notice that, when the first inequality on the right-hand side of (7.14) is fulfilled,
then Tr(kikH

i ) ≤ ti holds. This, along with the fact that the second inequality is
equivalent to ∑

r
i=1 ti ≤ t, ensures that the IT constraint is satisfied. By comparing

(7.13) and (7.14), it can be readily observed that the IT constraint is equivalent to a
set of isotropic shaping constraints on each interference dimension, hence presenting
a particular case of the spatial shaping (by constraining Si and S to be of the form
tiI and tI, respectively). It is therefore clear that spatial interference shaping pro-
vides more extra degrees of freedom that can be exploited to enhance the secondary
network performance. We address this problem in the next section.

7.3.1 Design of shaping matrices

At this point we may wonder how the spatial shaping matrix, S, can be designed and
who carries out this task. The introduction of spatial shaping constraints opens up the
door to a wide variety of approaches and design criteria, which may involve different
levels of CSI and cooperation between the primary and secondary networks. Specif-
ically, we consider that the primary receiver has local CSI, i.e., the channels from
each transmitter (primary and secondary) to the primary receiver are known, as well
as the power budgets of the secondary transmitters. By exploiting this knowledge,
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Figure 7.7: Considered scenario from the point-of-view of the PU.

we provide two different algorithms for designing the spatial shaping matrix to be
performed at the primary receiver. This matrix will be then fed back to the secondary
network through a feedback link. With the proposed approach, little cooperation
among both networks is required and the CSI knowledge is local. Notice that the co-
operation demands of this scheme are higher than those of the IT approach, as for the
latter no CSI from the secondary network is required. Nevertheless, it is worth noting
that these requirements are associated to the proposed shaping design methods, and
are not inherent to the spatial interference shaping approach.

Let us denote the channel from the kth SU to the primary receiver as Gk ∈ CN×Mk ,
where Mk is the number of antennas at the kth secondary transmitter (see Fig. 7.7).
The signal received by the primary receiver can be expressed as

y = Hx︸︷︷︸
desired signal

+
K

∑
k=1

Gkxk︸ ︷︷ ︸
interference from SUs

+ n , (7.15)

where x ∼ CN (0, Q) and xk ∼ CN (0, Qk) are the transmitted signals by the PU
and the kth SU, respectively. As a general optimization framework for the shaping
matrices, we propose the following family of algorithms.
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P12 :

maximize
{Sk}K

k=1

f
(
{Sk}K

k=1

)
,

subject to RPU (S) ≥ R̄ , (7.16)

S =
K

∑
k=1

GkSkGH
k ,

0 � Sk � QI , k = 1, . . . , K .

In the foregoing problem, global, local and transmit shaping matrices are simul-
taneously computed as S, {GkSkGH

k }K
k=1 and {Sk}K

k=1, respectively. Thus, it permits
the use of any of the three presented spatial interference shaping constraints by feed-
ing back the corresponding matrices to the secondary network. The shaping matrices
are obtained by taking a worst-case assumption on the actual transmit covariances,
i.e., Qk = Sk. Notice that the last constraint in P12 limits the maximum eigenvalue
of Sk by the power budget of the SUs, Q, since they are unable to transmit with a
signal power higher than Q to any spatial direction. Thus, if this is not considered in
P12, the interference may be overestimated (due to the aforementioned worst-case
assumption), which might result in a too stringent spatial constraint for some users or
for some specific directions. Under these considerations, P12 maximizes a function,
f (·), of the shaping matrices.

Even when f (·) is concave, P12 is not a convex optimization problem due to
(7.16), which makes the problem difficult to solve [101]. In [104], an optimization
framework for finding local optima of non-convex problems was proposed, based on
convex approximations of the non-convex constraints. The key idea is to replace the
non-convex constraints by a convex approximation at a given point, and solve the
resulting convex problem. Doing this iteratively the method is shown to converge to
a local optimum of the original problem. Let R̊PU(S, S`) be the convex approxima-
tion of RPU(S) at S = S`. Then, the following properties must be fulfilled for the
successive convex approximation method to be applicable to our problem [104]:

1. RPU(S) ≥ R̊PU(S, S`) , ∀S ∈ SN
+.

2. RPU(S`) = R̊PU(S`, S`).

3. ∇SRPU(S`) = ∇SR̊PU(S`, S`),

where ∇SRPU(S) is the derivative of RPU(S) with respect to S. To this end, we first
notice that RPU(S) is convex [100], but should be concave for P12 to be a convex
optimization problem. Since the best concave approximation of a convex function
is a linear function, we approximate RPU(S) by a first-order Taylor expansion. It is
easy to see that this linear approximation satisfies the above conditions and can thus
be used for a successive convex approximation method. Taking this into account, we
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obtain a sequence of convex approximations of P12, {P `
12}L

`=1, that can be solved
efficiently using standard numerical methods. The `th approximation is given by

P `
12 :

maximize
{Sk}K

k=1

f
(
{Sk}K

k=1

)
,

subject to − Tr
(
∇SRPU

(
S`−1

)H
S
)
≤ RPU

(
S`−1

)
− R̄−

Tr
(
∇SRPU

(
S`−1

)H
S`−1

)
, (7.17)

S =
K

∑
k=1

GkSkGH
k , (7.18)

0 � Sk � QI , k = 1, . . . , K , (7.19)

where S`−1 is set as the optimal solution of P `−1
12 , and ∇SRPU (S) is given by

∇SRPU (S) =− 1
log 2

(
σ2I + S

)−1
HQHH×[

I +
(
σ2I + S + HQHH

)−1
HQHH

] (
σ2I + S

)−1
. (7.20)

It is worth recalling at this point, that the last constraint in P `
12 only applies to the

design of the shaping matrices. The transmit power constraint of the kth SU, however,
is expressed as Tr(Qk) ≤ Q. The reason for considering such upper bound on the
shaping matrices, and not one of the form Tr(Sk) ≤ Q, is the fact that Sk = QI
implies that the kth secondary transmitter can use an arbitrary covariance matrix
satisfying Tr(Qk) ≤ Q, whereas the same property does not hold when Sk ≺ QI.

The proposed successive convex approximation algorithm is summarized in Algo-
rithm 7.1. In the following, we specialize the proposed framework to two particular
functions of the shaping matrices that measure the secondary network performance.

Maximum power algorithm

This algorithm maximizes the total admissible transmit power of the secondary net-
work by setting f ({Sk}K

k=1) = ∑
K
k=1 Tr(Sk). Since the objective function is linear, the

resulting problem at each iteration of Algorithm 7.1, P `
12, is a linear program (LP).

Therefore, the optimal solution of this problem is an extreme point of the feasible
set. The optimal extreme point is characterized by the following lemma.

Lemma 7.5. Let S?
k , k = 1, . . . , K, be the optimal solution of P `

12 when f ({Sk}K
k=1) =

∑
K
k=1 Tr(Sk), and let also S?

k = ΓkΣkΓ
H
k and GH

k ∇SRPU
(
S`−1)H

Gk = ΨkΛkΨ
H
k be
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Algorithm 7.1 Successive convex approximation algorithm for finding local optima
of P12.

Set f ?P0
12

= 0, ` = 0 and a tolerance, ε, where f ?P `
12

denotes the optimal value of

P `
12.

Choose an initial point S0
k = Sinit

k , k = 1, . . . , K.
repeat

1. ` = `+ 1.

2. Construct P `
12 by replacing (7.16) with its first order approximation at

{S`−1
k }K

k=1.

3. Solve P `
12 to obtain S? and f ?P `

12
and set S` = S?.

until f ?P `
12
− f ?P `−1

12
≤ ε.

the singular-value decomposition (SVD). Then Γk = Ψk. Furthermore, let π(i) ∈ {k, n :
1 ≤ k ≤ K, 1 ≤ n ≤ Mk}, i = 1, . . . , ∑

K
k=1 Mk, with π(i) 6= π( j) for i 6= j, be an

ordering such that Λπ(1) ≤ Λπ(2) ≤ . . . ≤ Λπ(∑K
k=1 Mk)

, where Λk,n is the nth diagonal
element of Λk. Then, the following holds

Σπ(i) < Q ⇒ Σπ(i+1) = 0 , i = 1, . . . ,
K

∑
k=1

Mk . (7.21)

Proof. Please refer to Appendix B.11.

In Lemma 7.5, GH
k ∇SRPU

(
S`−1)H

Gk is obtained by plugging (7.18) into (7.17),
and captures the first-order behavior of the PU rate with the kth transmit covariance
shaping matrix, Sk. Basically, once the optimal transmit directions have been iden-
tified (given by the eigenvectors of S?

k , k = 1, . . . , K), P `
12 turns into an LP, whose

solution is an extreme point of the feasible set. The optimal extreme point is char-
acterized by (7.21), which can be interpreted as follows. The secondary network is
first allowed to transmit to the least harmful direction (i.e., the one associated with
Λπ(1)) with a signal power such that the approximated rate constraint holds with
equality. If such signal power is greater than the SU power budget, it is then set
to Q, what lets the SUs transmit to the next direction (that associated with Λπ(2)).
This is repeated until the rate constraint holds with equality or all the eigenvalues
of {S?

k}K
k=1 have been set to Q. Notice that, in the latter case, the right-hand side

of (7.19) holds with equality for k = 1, . . . , K. This observation permits computing
the optimal solution of P `

12 in at most ∑
K
k=1 Mk iterations, as detailed in Algorithm

7.2. Notice that this algorithm is actually a simplex method with the largest improve-
ment pivot rule, which also corresponds to the Bland’s minimal index rule when the
variable ordering is chosen according to π(·) in Lemma 7.5 [105].
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Algorithm 7.2 Algorithm to find the optimal solution of P `
12 when f ({Sk}K

k=1) =

∑
K
k=1 Tr(Sk).
Set i = 0 and define K = {1, . . . , K}, Nk = {1, . . . , Mk}, k = 1, . . . , K, and
β = RPU

(
S`−1)− R̄− Tr

(
∇SRPU

(
S`−1)H

S`−1
)

.
repeat

1. i = i + 1.

2. Denote Λk0 ,n0 = mink∈K
{

minn∈Nk (Λk,n)
}

.

3. K = K− {k0} and Nk0 = Nk0 − {n0}.

4. Σk0 ,n0 = min
(

Q, β
Λk0,n0

)
.

5. β = β−Λk0 ,n0Σk0 ,n0 .
until i = ∑

K
k=1 Mk or Σk0 ,n0 < Q.

Maximum expected rate algorithm

The second algorithm that we propose aims at maximizing the expected sum-rate
of the secondary network. Since the exact expression for the expected rate is very
difficult to handle [106], we use an upper bound instead. To this end, let us denote
with Fk and σ̃2

k the channel between the kth secondary transmitter-receiver pair and
the interference plus noise power at the kth receiver, respectively. Assuming that the
entries of Fk are i.i.d. as CN (0, 1), the expected rate achieved by the kth secondary
user can be upper-bounded as

E

[
log2

∣∣∣∣∣I + 1
σ̃2

k
FkQkFH

k

∣∣∣∣∣
]
= E

[
log2

∣∣∣∣∣I + 1
σ̃2

k
FH

k FkQk

∣∣∣∣∣
]

≤ log2

∣∣∣∣∣E
[

I +
1
σ̃2

k
FH

k FkQk

]∣∣∣∣∣ = log2

∣∣∣∣∣I + Mk

σ̃2
k

Qk

∣∣∣∣∣ ,

(7.22)

where Mk is the number of transmit antennas at the kth SU, and the first and second
steps are due to the Sylvester’s determinant theorem and the Jensen’s inequality,
respectively.

Therefore, this algorithm takes f ({Sk}K
k=1) = ∑

K
k=1 log2 |I + Mk/σ̃

2
k Sk|. Thus,

at each step of Algorithm 7.1, P `
12 turns into a concave maximization problem with

linear constraints, hence easy to be solved numerically [101]. Furthermore, it admits
a multilevel waterfilling solution, as formalized in the following proposition.

Proposition 7.6. Let GH
k ∇SR

(
S`−1)H

Gk = ΨkΛkΨ
H
k be the SVD. The optimal solu-

tion of P `
12, when f ({Sk}K

k=1) = ∑
K
k=1 log2 |I +

Mk
σ̃2

k
Sk|, is given by

Sk = ΨkΣkΨ
H
k , k = 1, . . . , K , (7.23)
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where

Σk,n = min

( 1
µΛk,n

−
σ̃2

k
Mk

)+

, Q

 , (7.24)

with µ such that (7.17) holds with equality.

Proof. Please refer to Appendix B.12.

Primary transmitter cooperation

So far, we have considered that the PU has a fixed transmission strategy, Q,
independently of the shaping matrix. However, the shaping constraint upper-bounds
all possible interference covariance matrices, or, in other words, it represents the
worst-case interference covariance matrix at the primary receiver. Therefore, it can
be exploited at the PU to optimize its transmit covariance matrix so as to further
relax the shaping constraint and without jeopardizing its data rate. To this end,
taking the worst-case assumption, K = S, and expressing the achievable rate at the
PU given by (7.1) as a function of both S and Q, i.e., RPU(S, Q), problem P12 can
be modified as

P13 :

maximize
{Sk}K

k=1 ,Q
f
(
{Sk}K

k=1

)
,

subject to RPU (S, Q) ≥ R̄ , (7.25)

S =
K

∑
k=1

GkSkGH
k ,

0 � Sk � QI , k = 1, . . . , K ,
Tr (Q) ≤ P ,
Q � 0 ,

where P is the power budget of the PU. The joint optimization of the shaping and PU
covariance matrices makes P13 even more difficult to solve than the original prob-
lem, P12. However, we can exploit the iterative nature of the successive convex
approximation in Algorithm 7.1 to include a suboptimal optimization of Q with little
increase in complexity. To this end, we first notice that, with {Sk}K

k=1 being fixed,
Q must be selected such that the PU rate is maximized, which translates into the
well-known SVD and waterfilling power allocation [107]. Hence, we may perform
a joint alternating optimization and successive convex approximation by including
an additional transmit optimization step for the PU (SVD and waterfilling) between
steps 1 and 2 of Algorithm 7.1.
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Figure 7.8: Expected achievable rate of SS-MP and SS-MER algorithms for α = 0.6
(a) and α = 0.9 (b).
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Figure 7.9: Admissible interference power for IT and SS approaches.

7.3.2 Comparison of the proposed algorithms

First, we compare the potential performance of the two proposed algorithms, namely,
the maximum power algorithm, which we denote as SS-MP, and the maximum ex-
pected rate algorithm, which we refer to as SS-MER. To this end, we consider the
following scheme: a single SU, equipped with N antennas at both sides, that trans-
mits with a covariance matrix given by QSU = SMP or QSU = SMER, where SMP
and SMER are the shaping matrices obtained by SS-MP and SS-MER algorithms, re-
spectively. Notice that this will provide us with an upper bound on the achievable
rate of a secondary network comprised of a single SU, since the total transmit power
constraint, which limits the trace of QSU, is not being considered for this comparison.
Furthermore, we assume that the PU performs the optimal strategy in the absence
of interference, i.e., SVD of its direct channel followed by waterfilling power alloca-
tion [107].

In this setting, we evaluate the achievable rate as a function of its average signal-
to-interference-plus-noise ratio (SINR), i.e.,

RSU(γ) = log2

∣∣∣I +γFQSUFH
∣∣∣ , (7.26)

where γ is the average SINR, F ∈ CN×N is the channel matrix of its direct link,
whose coefficients are i.i.d. as complex Gaussian random variables with zero mean
and unit variance, and QSU is given by either SMP or SMER. For this comparison
we consider that γ only accounts for the signal quality at the secondary receiver, and
has thus no impact on the interference level at the primary receiver. Because of that,
we take Q = 1 and parameterize the channel quality of the SU-PU channel, G, with
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the interference-to-noise ratio (INR) at the PU, INRPU, so that each entry of G is
i.i.d. as CN (0, INRPU). Similarly, we take P = 1 and thus each entry of H is i.i.d.
as CN (0, SNRPU). The initial point for the spatial shaping algorithms is selected as
follows. We first set Sinit = I and reduce it as Sinit = 0.9Sinit until the approximated
rate at this point is above the requirement.

Figs. 7.8(a) and 7.8(b) plot the results for α = 0.6 and α = 0.9, respectively,
SNRPU = 20 dB and different values of INRPU. As expected, the average rate by us-
ing SS-MER algorithm is always equal to or greater than that obtained with SS-MP.
However, the improvement is noticeable only at very high SINR values and when
the loading factor, α, is high. In practical operation regimes, both algorithms are
expected to perform similarly, and hence SS-MP algorithm is preferable due to its
reduced computational complexity and the fact the PU needs to acquire less infor-
mation from the secondary network (recall that the SS-MER algorithm needs also
the average SINR of the secondary network). Therefore, we will denote the SS-MP
algorithm as SS in the remaining of this chapter.

Finally, we plot in Fig. 7.9 the tolerable interference power for IT and SS ap-
proaches. We observe that the admissible power increases significantly with the pro-
posed spatial shaping algorithm, and further gains are achieved by allowing primary
transmitter cooperation (denoted with SS-PTX Coop. in the figure). This result sug-
gests the potential improvements of using spatial shaping constraints as an alterna-
tive to IT. In the next section, we will consider specific secondary network models
and their optimization under these constraints, what will demonstrate the effective-
ness of the spatial shaping approach.

7.4 Secondary network viewpoint: transceiver design

In this section, we consider the optimization of the secondary network under the
proposed shaping constraints. More specifically, we will focus on the transmit co-
variance shaping, i.e., Qk � Sk, k = 1, . . . , K; and consider two different secondary
networks, namely, a K-user MIMO IC and a point-to-point MIMO link. For simplicity,
we omit the interference coming from the primary transmitter. Nevertheless, it can
be straightforwardly included in our results and will be considered in the numerical
examples in Section 7.4.3.

7.4.1 Point-to-point MIMO link

Let us consider the following optimization problem.1

1Notice that the results in [103] cannot be applied due to the transmit power constraint.
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P14 :

maximize
QSU

log2

∣∣∣∣I + 1
σ2 FQSUFH

∣∣∣∣ ,

subject to 0 � QSU � S ,
Tr (QSU) ≤ Q .

Clearly, this problem is convex, hence easily solvable by standard numerical meth-
ods. Furthermore, by looking deeper into the problem, we can derive insightful
closed-form expressions for some special cases, which we describe in the following
proposition.

Proposition 7.7. Problem P14 admits a closed-form optimal solution in the following
cases

• If Tr (S) ≤ Q:
Q?

SU = S . (7.27)

• If rank
(
Q?

SU
)
= 1:

Q?
SU = q? (q?)H , (7.28)

q? = S
1
2νmax

[
S

1
2 FHFS

1
2

]
. (7.29)

• If rank
(
Q?

SU
)
= rank (S):

Q?
SU = S− Γ̃Φ

(
Υ− 1

µ
I
)+

ΦH Γ̃
H , (7.30)

where Γ̃ is a unitary basis for the complementary subspace of the nullspace of S,
Γ̃

H
[
S +σ2 (FHF

)−1
]
Γ̃ = ΦΥΦH (SVD), and µ such that Tr

(
Q?

SU
)
= Q.

Proof. Please refer to Appendix B.13.

7.4.2 K-user MIMO interference channel

Now we consider a secondary IC, as the one studied in Part II. However, this setting
requires the previously studied algorithms to be extended, so as to incorporate the
shaping constraints. For the ease of reading, we revisit the IC model in the following
lines. As depicted in Fig. 7.10, the IC is comprised of K transmitter-receiver pairs
equipped with M and N transmit and receive antennas, respectively.2 The signal
received by the ith receiver can then be expressed as

yi = Hiixk + ∑
j 6=i

Hi jx j + ni , (7.31)

2Without loss of generality, we assume in this section that each pair has the same number of
transmit and receive antennas. Our results can be readily extended to any other configuration.
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Figure 7.10: Secondary IC.

where Hi j ∈ CN×M is the MIMO channel between transmitter j and receiver i, xi ∼
CN (0, Qi) is the ith transmitted signal and ni ∼ CN (0,σ2I) is the additive white
Gaussian noise (AWGN). The rate achieved by the ith user is then given by

RSUi = log2

∣∣∣∣∣∣I +
[

UH
i

(
σ2I + ∑

j 6=i
Hi jQ jHH

i j

)
Ui

]−1

UH
i HiiQiHH

ii Ui

∣∣∣∣∣∣ . (7.32)

The precoder of the ith transmitter is Vi ∈ CM×di , thus Qi = ViVH
i , where di are the

number of streams that user i wishes to transmit, and Tr(Qi) ≤ Q. Furthermore, we
denote with Ui the decoding matrix applied by receiver i, i.e., the output of receiver
i can be expressed as ŝi = UH

i yi. Notice that, for convenience, the notation and the
power constraint are slightly different from those of the model considered in Part II.

Among all interference alignment (IA) algorithms presented in Part II, we will
consider the MaxSINR [54] for its simplicity and performance, and extend it to in-
corporate the spatial shaping constraints. This algorithm was described in Chapter
3, but we provide a summary for completeness.



7.4 Secondary network viewpoint: transceiver design 119

1. While the precoders are kept fixed, choose the decoder of each user as the one
that maximizes the SINR:

ui,s = max
‖ui,s‖=1

uH
i,sHiivi,svH

i,sH
H
ii ui,s

uH
i,s

(
∑

K
j=1 ∑

d j
r=1 Hi jv j,rvH

j,rH
H
i j −Hiivi,svH

i,sH
H
ii

)
ui,s +σ2

,

(7.33)
where ui,s and vi,s are the sth column of Ui and Vi, respectively.

2. Keeping the decoders fixed and changing the roles of transmitters and receivers,
the precoders are obtained as those maximizing the SINR of the reversed com-
munication, i.e.,

vi,s =

√
Q
di

max
‖vi,s‖=1

vH
i,sH

H
ii ui,suH

i,sHiivi,s

Q
di

vH
i,s

 K

∑
j=1

d j

∑
r=1

HH
ji u j,ruH

j,rH ji −HH
ii ui,suH

i,sHii


︸ ︷︷ ︸

Bi,s

vi,s +σ2

.

(7.34)

3. Steps 1 and 2 are repeated until convergence.

Notice that the columns of each precoder are individually computed. The reason
for this is that, as we mentioned in Chapter 3, orthogonal vectors are not necessarily
optimal in terms of SINR. This may yield, however, an undesired reduction of the
rank of the transmitted signal that would result in a sum-rate loss. To overcome
this problem, an orthogonalization step is usually included at each iteration of the
MaxSINR algorithm (see, e.g., [60]).

When the SUs operate under spatial shaping constraints, the precoders must be
optimized such that ViVH

i � Si holds. Note, however, that this additional constraint
does not affect the design of the decoders, and these are hence optimized exactly as
in the original algorithm. Taking this into account, the design of vi,s can be casted as
the following optimization problem.

P15 :

maximize
vi,s

vH
i,sH

H
ii ui,suH

i,sHiivi,s

vH
i,sBi,svi,s +σ2

,

subject to vi,svH
i,s � Si − ∑

r 6=s
vi,rvH

i,r . (7.35)

Recall that the power constraint is already implicit in (7.35), and thus the scaling
term, Q

di
, is not included in P15 (see (7.34)). Also, notice that the columns of each pre-

coder are coupled through the shaping constraint (7.35). Nevertheless, if we force or-
thogonality between them, they can be subsequently computed. To this end, let us as-
sume that γU

i,1 ≥ γU
i,2 ≥ . . . ≥ γU

i,di
, where γU

i,s = Q/diλmax(HH
ii ui,suH

i,sHii, Q/diBi,s +
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σ2I), with λmax(A, B) being the maximum generalized eigenvalue of the matrix pen-
cil (A, B). Notice that γU

i,s is the achievable SINR of the sth stream in the absence of
shaping constraints. Thus, we can compute the columns of Vi following the ordering
s = 1, 2, . . . , di, and taking the subsequent columns, r = s + 1, . . . , di, as zero vectors.
Thereby, constraint (7.35) forces each column to be linearly independent and hence
no orthogonalization step is needed. With these considerations, the optimal solution
of P15 is formalized in the following proposition.

Proposition 7.8. The optimal solution of P15 is given by

v?
i,s =

(
Si −

s−1

∑
r=1

vi,rvH
i,r

) 1
2

×

νmax

(Si −
s−1

∑
r=1

vi,rvH
i,r

) 1
2 (

HH
ii ui,suH

i,sHii −γ?i,sBi,s

)(
Si −

s−1

∑
r=1

vi,rvH
i,r

) 1
2
 ,

(7.36)

where γ?i,s is the optimal SINR.

Proof. Please refer to Appendix B.14.

Since the optimal objective value of P15 increases monotonically with γi,s and it
is bounded above and below as γi,s ∈ [0,γU

i,s], γ
?
i,s can be easily obtained using a

bisection method (or any other line search method).

7.4.3 Numerical results

This section provides several numerical examples to illustrate the potential benefits
of spatial shaping over the IT approach in the considered scenarios. As in Section
7.3.2, we first set Sinit = QI and reduce it as Sinit = 0.9Sinit until the approximated
rate constraint is satisfied. For the sake of illustration, we parameterized our scenar-
ios with the average SNR at the PU and SUs (SNRPU and SNRSU, respectively), and
the average INR of the primary and secondary receivers (INRPU and INRSU, respec-
tively).3 To this end, we consider unit transmit power as well as unit noise power,
and the channel coefficients are independently drawn from a complex Gaussian dis-
tribution with zero mean and variances SNRSU, INRPU, SNRPU and INRSU for the
SU-SU, SU-PU, PU-PU and SU-SU channels, respectively. All results are obtained by
averaging 500 independent Monte-Carlo simulations.

Point-to-point MIMO link

For single-SU scenario described in Section 7.4.1, we compare the rate achieved by
four different approaches, namely, IT constraint, explicit rate constraint by exploiting

3Note that these are the average values when the SUs transmit at maximum power. Also, INRSU
considers only the interference from the PU and not the potential interference among the SUs, i.e., it
measures how significant the interference is due to the PU transmission.
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(a) α = 0.75
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(b) α = 0.5

Figure 7.11: Achievable rate of a 3× 3 SU coexisting with a 3× 3 PU for α = 0.75
(a) and α = 0.5 (b). Also, SNRPU = INRSU = 20 dB and INRPU = SNRSU.
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Figure 7.12: Achievable rate of a 3× 3 SU coexisting with a 3× 3 PU, for α = 0.75,
SNRPU = INRSU = 20 dB and INRPU = SNRSU − 10 dB.

PU CSI as in [99] (ERC), and spatial shaping with and without primary transmitter
cooperation (SS - PTX Coop. and SS, respectively). The number of transmit and
receive antennas is 3 for both PU and SU. Figs. 7.11(a) and 7.11(b) show the achiev-
able rate of the SU as a function of its SNR for α = 0.75 and α = 0.5, respectively,
SNRPU = INRSU = 20 dB and INRPU = SNRSU. It is observed that, for low SNR
values, IT and SS perform similarly, but the latter provides significant improvement
as the SNR increases. On the other hand, ERC performs better than SS, but at the
cost of full CSI knowledge,4 which is difficult to obtain in practice and would im-
ply additional overhead. When the primary transmitter cooperates by optimizing
its transmit covariance matrix, the performance of the SU is significantly increased.
Note also that the computational complexity of ERC is higher than the proposed SS
algorithms: while both algorithms resort to successive convex approximation, the
former solves a convex optimization problem at each step, which, in comparison to
the closed-form solution used for the considered SS algorithm, presents much higher
computational load.

In Fig. 7.12 we plot the achievable rate of the SU for α = 0.75 and when
INRPU = SNRSU − 10 dB, i.e., the secondary transmitter is farther from the pri-
mary receiver than in the previous setting. The performance difference between
all schemes decreases since the interference is less significant. Nevertheless, the ben-
efit of primary transmitter cooperation is still remarkable. It is worth pointing out

4The ERC approach requires the SU to know all the channels in the network as well as the transmit
covariance matrix, noise power and rate constraint of the PU. On the other hand, the proposed SS
approach requires only local information by allowing some cooperation with the primary receiver.
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Figure 7.13: Achievable rate of a (2× 2, 1)3 IC coexisting with a 2× 2 PU for α =
0.75 (a) and α = 0.5 (b). Also, SNRPU = INRSU = 20 dB and INRPU = SNRSU.
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Figure 7.14: Achievable rate of a (2× 2, 1)3 IC coexisting with a 2× 2 PU, for α =
0.75, SNRPU = INRSU = 20 dB and INRPU = SNRSU − 10 dB.

that this benefit is not only due to the fact that the PU tolerates more interference
when it optimizes its transmit covariance matrix, but also because the impact of the
interference at the SU is also reduced. The reason is that the PU tends to allocate
more power to the directions where the interference is less significant, resulting in a
more unequal power allocation that may even end up in a reduction of the rank of
the transmit covariance matrix. From the secondary receiver viewpoint, this implies
an interference that is weaker in some directions, resulting in a higher achievable
rate.

K-user MIMO interference channel

Now consider an IC comprised of 3 transmitter-receiver pairs (users) equipped with 2
antennas (for both transmission and reception), where each user wishes to transmit
one data stream (i.e., the (2× 2, 1)3 scenario), and a PU with also 2 antennas at both
sides of the link. Figs. 7.13(a) and 7.13(b) show the achievable sum-rate of the IC for
α = 0.75 and α = 0.5, respectively, SNRPU = INRSU = 20 dB and INRPU = SNRSU.
In this case, SS allows the IC to achieve higher rate in the whole SNR regime, and
the improvement is especially remarkable at medium and high SNR values. On the
other hand, we observe that the benefit of primary transmitter cooperation is not as
significant as in the single-user case. Again, this can be explained by looking at the
interference that the PU causes to the secondary network: while in the single-user
case the PU is the only source of interference, in the IC there will probably be inter-
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ference among SUs,5 hence reducing the rank of the interference from the PU will not
reduce the rank of the interference subspace. To illustrate this observation, Fig. 7.14
depicts the achievable rate of the IC when α = 0.75 and INRPU = SNRSU − 10 dB.
In this setting, the cooperation of the primary transmitter provides a negligible rate
improvement to the secondary network, which is in agreement with our observations.

5Notice that, although interference alignment is feasible in the considered scenario [23, 72], the
shaping constraints may make interference alignment infeasible or less favorable.
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Chapter8
Algorithms for the two-way relay

channel with multiple relays

The scenarios that we have studied so far are based on coordination of strategies
to mitigate the impact of the interference. On the contrary, when relay nodes are
deployed to assist communication between pair of users that otherwise cannot reach
each other, the problem turns out to be somewhat different. One of these dissimilar-
ities stems from the fact that the relays may have access to the user data, which is
merely due to the broadcast nature of the medium. Hence, they can perform cooper-
ative multiple-input multiple-output (MIMO) techniques to mitigate the interference
and/or to increase the power of the received signal at the users. Nevertheless, as op-
posed to the cooperative MIMO models where the user data, as well as the channel
state information (CSI), is shared via backhaul links, in a relay scenario no CSI is
available in a first place. As a consequence, the coordination of strategies plays still
an important role, and hence the issues related to CSI sharing are yet prevalent.

In the most basic two-way relay channel (TWRC), there is only one pair of source
nodes that exchange information using one or multiple relays. This scenario presents
the property that the interference can be easily eliminated assuming some prior CSI
knowledge. Hence, the beamforming matrices at the relays are then solely designed
to improve the signal power at the source nodes.

This chapter considers the above-described scenario when multiple relays have
been deployed. In this case, the optimal relaying matrices can be computed effi-
ciently, but at the cost of global CSI requirement. In order to reduce these CSI de-
mands, we explore distributed algorithms requiring little or no cooperation between
relays. Specifically, we will derive a two-step algorithm for computing the relaying
matrices to achieve any point of the rate region boundary. In the first step, each relay
obtains a normalized beamforming matrix using local CSI. A distributed beamformer
is applied in the second step to make the signals add up coherently at the source
nodes, for which cooperative and non-cooperative solutions are provided.

We start describing the system model in Section 8.1. An algorithm for comput-
ing the optimal solution is described in Section 8.2. In Section 8.3 we present the
proposed distributed approach. The chapter concludes with Section 8.4, where some
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numerical examples are provided. A conceptual diagram for this chapter is shown in
Fig. 8.1.

8.1 System model

Let us consider a TWRC where two single-antenna source nodes, S1 and S2, exchange
information through the assistance of L MIMO relay nodes, where the ith relay is
equipped with Ni antennas. Following the two-phase protocol, the transmission of
a data frame can be divided in two phases: a multiple-access channel (MAC) phase,
in which both source nodes transmit simultaneously their data to the L relays, and
a broadcast channel (BC) phase, where the relays retransmit a linearly processed
version of the received signal back to the source nodes, as depicted in Fig. 8.2. In
the former, the signal received by the ith relay is given by

yRi =
√

P1h1is1 +
√

P2h2is2 + nRi , (8.1)

where h1i ∈ CNi×1 and h2i ∈ CNi×1 are the single-input multiple-output (SIMO)
channels from the first and second source node to the ith relay, respectively, P1 and
P2 are the transmit powers of the source nodes, and nRi ∼ CN (0,σ2I) represents the
noise at the ith relay node. In the BC phase, each relay performs the amplify-and-
forward (AF) strategy to linearly process the received signal (8.1) by means of the
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Figure 8.2: Two-way relay channel with multiple relays.

relaying matrix Bi ∈ CNi×Ni . Thus, the total power transmitted by the ith relay can
be expressed as

p (Bi) = P1 ‖Bih1i‖2 + P2 ‖Bih2i‖2 +σ2Tr
(

BH
i Bi

)
. (8.2)

If channel reciprocity holds, which is a common assumption in two-way relay net-
works, the signal received at S1 is

y1 =
L

∑
i=1

hT
1iBiyRi + n1 =

L

∑
i=1

hT
1iBih1i

√
P1s1 +

L

∑
i=1

hT
1iBih2i

√
P2s2 + ñ1 , (8.3)

where n1 ∼ CN (0,σ2) is the receiver noise at S1, and ñ1 ∼ CN (0,σ2[1 +
∑

L
i=1 ‖BH

i h∗1i‖2]) is its equivalent noise, which is due to the relay noise amplification,
inherent to the AF approach. Notice that the end-to-end signal-to-noise ratio (SNR)
will then be limited by the SNR of the first transmission phase. Notice also that the
first term on the most right-hand side of (8.3) is the self-interference at S1, which is
caused by its own transmission. Providing that ∑

L
i=1 hT

1iBih1i is perfectly known at
S1, the self-interference can be perfectly removed from y1. Therefore, the achievable
bidirectional rate pairs, denoted by R12 (link from S2 to S1, through the relay node)
and R21 (link from S1 to S2, through the relay node), can be written as

R12 ≤
1
2

log2

1 +
P2
∣∣∑L

i=1 hT
1iBih2i

∣∣2
σ2
(

1 + ∑
L
i=1

∥∥BH
i h∗1i

∥∥2
)
 , (8.4)

R21 ≤
1
2

log2

1 +
P1
∣∣∑L

i=1 hT
2iBih1i

∣∣2
σ2
(

1 + ∑
L
i=1

∥∥BH
i h∗2i

∥∥2
)
 . (8.5)

Note that two different power constraints can be considered for this scenario,
namely, an individual power constraint (i.e., per relay) and a total power constraint,
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thus yielding two different achievable rate regions, which are respectively defined as

RI
(

P1, P2, PI
R

) .
=

⋃
{Bi :p(Bi)≤PI

R}
L
i=1

{R12, R21} , (8.6)

RS
(

P1, P2, PS
R

) .
=

⋃
{Bi}L

i=1 :∑L
i=1 p(Bi)≤PS

R

{R12, R21} . (8.7)

where PI
R and PS

R are the per-relay power budget and the sum-power budget, respec-
tively.1

8.2 Characterization of the achievable rate region

This section provides a brief review of the optimal rate region characterization for
the considered scenario, following the algorithm proposed in [108]. For the sake
of exposition, we will focus on the sum-power constraint. In order to compute the
boundary, a rate profile approach [109] is applied since it works with either convex
or concave regions, and will allow us to rewrite the problem in a more tractable
form. Thus, the rate achieved by each source node is expressed as a fraction of the
sum-rate, i.e., [R12, R21]

T = Rsum [α, 1−α]T, with 0 ≤ α ≤ 1. Hence, varying α
between 0 and 1 permits the computation of every point on the rate region boundary.
To this end, for a fixed value of α between 0 and 1, we can compute a boundary
point of the optimal rate region by solving the following optimization problem.

P16 :

maximize
{B1 ,...,BL},Rsum

Rsum ,

subject to:
1
2

log2

1 +
P2
∣∣∑L

i=1 hT
1iBih2i

∣∣2
σ2
(

1 + ∑
L
i=1

∥∥BH
i h∗1i

∥∥2
)
 ≥ αRsum ,

1
2

log2

1 +
P1
∣∣∑L

i=1 hT
2iBih1i

∣∣2
σ2
(

1 + ∑
L
i=1

∥∥BH
i h∗2i

∥∥2
)
 ≥ (1−α) Rsum ,

L

∑
i=1

[
P1 ‖Bih1i‖2 + P2 ‖Bih2i‖2 +σ2Tr

(
BH

i Bi

)]
≤ PS

R ,

Although the foregoing problem is non-convex, it can be recasted into an
equivalent convex form. To this end, let us first fix Rsum to a given value. Then, P16
turns into a feasibility problem, which can be rewritten as a power minimization

1For individual power constraints, we consider equal per-relay power, PI
R, without loss of generality.

The same results and algorithms apply for different power budgets.
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Algorithm 8.1 Algorithm for computing one point of the optimal rate region bound-
ary of the TWRC with multiple relays [108].

Select the weight 0 ≤ α0 ≤ 1 and the desired tolerance, δ.
Initialize Rmin

sum = 0 and Rmax
sum = RUB

sum, where RUB
sum is a rate upper bound that can

be selected according to [108].
repeat

1. Rsum = 1
2

(
Rmin

sum + Rmax
sum
)
.

2. Solve problem P17 for α = α0.
if p?R ≤ PR then

Rmin
sum = Rsum.

else
Rmax

sum = Rsum.
end if

until
(

Rmax
sum − Rmin

sum
)
≤ δ.

problem with SNR constraints as

P17 :

minimize
{B1 ,...,BL}

L

∑
i=1

[
P1 ‖Bih1i‖2 + P2 ‖Bih2i‖2 +σ2Tr

(
BH

i Bi

)]
,

subject to:

∣∣∣∣∣ L

∑
i=1

hT
1iBih2i

∣∣∣∣∣
2

≥ γ1

(
1 +

L

∑
i=1

∥∥∥BH
i h∗1i

∥∥∥2
)

,∣∣∣∣∣ L

∑
i=1

hT
2iBih1i

∣∣∣∣∣
2

≥ γ2

(
1 +

L

∑
i=1

∥∥∥BH
i h∗2i

∥∥∥2
)

,

where γ1 =
σ2(22αRsum−1)

P2
and γ2 =

σ2(22(1−α)Rsum−1)
P1

. The solution of the foregoing
problem provides a feasible point of the optimal rate region if and only if p?R ≤ PS

R,
where p?R is the optimal sum-power across relays. Since p?R increases with Rsum, the
boundary of the rate region can be obtained by a bisection method (or any other
line search method) over Rsum, solving problem P17 in each step, as indicated in
Algorithm 8.1.

Problem P17 is still non-convex. However, its particular structure allows
to find the global optimum by analyzing the Karush-Kuhn-Tucker (KKT) condi-
tions [108,110], and, consequently, solving the dual problem, which is given by
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P18 :

maximize
λ1 ,λ2

λ1 + λ2 ,

subject to : λ1 ≥ 0 ,
λ2 ≥ 0 ,

A + λ1F + λ2D− λ1

γ1
c∗cT − λ2

γ2
e∗eT � 0 ,

where

A = blkdiag
[(

P1h∗11hT
11 + P2h∗21hT

21

)
⊗ I, . . . ,

(
P1h∗1LhT

1L + P2h∗2LhT
2L

)
⊗ I
]
+σ2I ,

(8.8)

F = blkdiag
(

I⊗ h∗11hT
11, . . . , I⊗ h∗1LhT

1L

)
, (8.9)

D = blkdiag
(

I⊗ h∗21hT
21, . . . , I⊗ h∗2LhT

2L

)
, (8.10)

c = [vec(h21hT
11)

T , . . . , vec(h2LhT
1L)

T]T , (8.11)

e = [vec(h11hT
21)

T , . . . , vec(h1LhT
2L)

T]T . (8.12)

The optimal relaying matrices are then obtained such that(
A + λ?1F + λ?2D− λ

?
1
γ1

c∗cT − λ
?
2
γ2

e∗eT
) [

vec (B1)
T , . . . , vec (BL)

T
]T

= 0 , (8.13)

and with the appropriate scaling to satisfy the sum-power constraint. For further
details, we refer the reader to [108].

8.3 Distributed algorithm

When the TWRC is comprised of multiple relay nodes, computing the optimal beam-
forming matrices requires each relay to acquire the CSI of the entire network, i.e.,
every h1i and h2i, as we observed in Section 8.2. Although achieving the boundary
of the optimal rate region is interesting from a theoretical analysis, less demanding
approaches are desirable from a practical standpoint. To this end, we will design a
distributed approach to reduce the CSI requirements and, at the same time, operate
as close as possible to the optimal rate region boundary.

8.3.1 Upper bound on the achievable rate region

In this section, we derive un upper bound on the optimal achievable rate region,
which will be a key result for the design of our distributed algorithm. We first start
with the ensuing proposition.
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Proposition 8.1. The bidirectional transmission rates in (8.4) and (8.5) can be ex-
pressed as

R12 ≤
1
2

log2

1 +
P2

∣∣∣ξH
2 heq

2

∣∣∣2
σ2 ‖ξ2‖2

 , (8.14)

R21 ≤
1
2

log2

1 +
P1

∣∣∣ξH
1 heq

1

∣∣∣2
σ2 ‖ξ1‖2

 , (8.15)

where heq
1 and heq

2 are given by

heq
1 =

 hT
21B̃1h11√

η+
∥∥B̃H

1 h∗21

∥∥2
, · · · ,

hT
2LB̃Lh1L√

η+
∥∥B̃H

L h∗2L

∥∥2

 , (8.16)

heq
2 =

 hT
11B̃1h21√

η+
∥∥B̃H

1 h∗11

∥∥2
, · · · ,

hT
1KB̃Lh2L√

η+
∥∥B̃H

L h∗1L

∥∥2

 , (8.17)

where η = 1
L and p(B̃i) ≤ PI

R for individual power constraints, and η = 1 and p(B̃i) ≤
PS

R for sum-power constraint. Moreover, the equivalent beamformers, ξ1 and ξ2, satisfy

D−
1
2

2 ξ1 = D−
1
2

1 ξ2 = g , (8.18)

where D j = ηI + diag(‖B̃H
1 h∗j1‖2, . . . , ‖B̃H

L h∗jL‖2), j = 1, 2, and g = [gi, . . . , gL]
T,

which satisfies |gi| = 1 for individual power constraints and ‖g‖ = 1 for sum-power
constraint. The actual relaying matrix are then expressed as

Bi = g∗i B̃i, i = 1, . . . , L . (8.19)

Proof. Please refer to Appendix C.1.

Proposition 8.1 states that, using the parametrization in (8.19), the TWRC with
multiple relays can be viewed as an interference-free BC, with equivalent channels
(8.16) and (8.17), and equivalent transmit beamformers ξ1 and ξ2, which are linked
through the constraint (8.18). Relaxing this constraint leads to the following corol-
lary.

Corollary 8.2. The achievable rate regions defined in (8.6) and (8.7) can be respectively
upper-bounded by

RI-UB
(

P1, P2, PI
R

)
=

⋃
{B̃i :p(B̃i)≤PI

R}
L
i=1

{
RUB

12 , RUB
21

}
, (8.20)

RS-UB
(

P1, P2, PS
R

)
=

⋃
{B̃i :p(B̃i)≤PS

R}
L
i=1

{
RUB

12 , RUB
21

}
, (8.21)
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where

RUB
12 =

1
2

log2

(
1 +

P2

σ2

∥∥heq
2

∥∥2
)

, (8.22)

RUB
21 =

1
2

log2

(
1 +

P1

σ2

∥∥heq
1

∥∥2
)

. (8.23)

Proof. The proof is an immediate consequence of Proposition 8.1 and is hence omitted
for brevity.

Note that the union in (8.21) is taken under individual power constraints at each
relay, i.e., an upper bound on the optimal rate region with sum-power constraint can
be also obtained by the union of rate regions satisfying individual power constraints.
Notice also that, when PI

R = 1
L PS

R, both upper bounds (i.e., RI-UB and RS-UB), are
equal.

8.3.2 Two-step approach

In this section, we will show that the normalized relaying matrices, B̃i, that achieve
the rate region upper bounds can be obtained independently for each relay using
only their local CSI. Furthermore, we will present a key property of these ma-
trices, which states that the resulting equivalent single-input single-output (SISO)
channels from S1 to S2 and from S2 to S1 have the same complex phase, i.e.,
arg(hT

1iB̃
?
i h2i) = arg(hT

2iB̃
?
i h1i). These observations suggest that the actual relay-

ing matrices can be obtained by first computing those normalized matrices in a dis-
tributed fashion. Then, thanks to the aforementioned key property, an appropriate
scaling (i.e., (8.19)) suffices to satisfy the corresponding power constraint and make
the signals add up coherently at the source nodes.

Normalized relaying matrices

Following the lines of the optimal method described in Section 8.2, we can charac-
terize the boundary of the rate region upper bound with the rate profile method.
Therefore, each point of the upper bound, for some weight 0 ≤ α ≤ 1, can be found
by solving the following optimization problem

P19 :

maximize
B̃1 ,...,B̃L ,Rsum

Rsum ,

subject to:
P2

σ2

∥∥heq
2

∥∥2 ≥ 22αRsum − 1 ,

P1

σ2

∥∥heq
1

∥∥2 ≥ 22(1−α)Rsum − 1 ,

p
(
B̃i
)
≤ PR , i = 1, . . . , L ,
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where we use PR to denote either PI
R or PS

R, depending on the considered power
constraint. By means of the foregoing problem, the normalized beamforming
matrices cannot yet be solved independently for each relay, since they are cou-
pled through the first two constraints. To decouple the problem, we make use of
Lagrange multipliers, thus placing these two constraints into the objective function as

P20 :

maximize
B̃1 ,...,B̃L ,Rsum

Rsum + λ?1

(
P2

σ2

∥∥heq
2

∥∥2 − 22αRsum + 1
)
+

λ?2

(
P1

σ2

∥∥heq
1

∥∥2 − 22(1−α)Rsum + 1
)

,

subject to: p
(
B̃i
)
≤ PR , i = 1, . . . , L ,

where λ?1 and λ?2 are the optimal dual variables associated to the first and second
constraint, respectively. The above problem is a weighted sum-SNR maximization
problem (WSSNRmax), with weights given by λ?1 and λ?2. If strong duality holds,
the optimal solution of P20 is also the optimal solution of the original problem, P19.
Notice that, as opposed to the rate profile method, the WSSNRmax is able to find
all the boundary points if the region is convex [111], and, therefore, strong duality
holds if and only if the upper bound is a convex region. In the case of a non-convex
region, P20 yields an upper bound of the original problem, P19, which is obviously
an upper bound of the achievable rate region. In this case, P20 provides the convex
hull, whose boundary points can always be achieved by means of time sharing.

In P20, each relay has individual power constraint and, according to the definition
of the equivalent channels in (8.16) and (8.17), there is no coupling between the
normalized beamforming matrices, B̃i. Hence, P20 can be divided into L parallel
optimization problems, each of them given by

P21 :

maximize
B̃i

ω
P2

σ2

∣∣heq
2i

∣∣2 + (1−ω)
P1

σ2

∣∣heq
1i

∣∣2 ,

subject to p
(
B̃i
)
≤ PR ,

for each i = 1, . . . , L; where heq
ji is the ith entry of heq

j , j = 1, 2 andω = λ?1/(λ
?
1 + λ

?
2).

Varying ω between 0 and 1, all the points of the convex hull of the rate region can
be obtained. Note that, according to (8.16) and (8.17), P2

σ2 |h
eq
2i |2 and P1

σ2 |h
eq
1i |2 are

the SNRs at S1 and S2, respectively, when only the ith relay is transmitting . Thus,
each of the L above problems consists in optimizing each relay in the absence of
the others. Hence, the upper bounds (8.20) and (8.21) can be obtained by applying
Algorithm 8.1 independently for each of the L relays (i.e., considering a TWRC with
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only one relay) and for each point of the boundary, thus requiring only local CSI.
Notice that, when the power constraint is per relay, the noise power at each source
node is divided by L when computing the normalized matrices.

As we already pointed out and formally show in the following theorem, the opti-
mal solution of P21 satisfies a key property.

Theorem 8.3. Let B̃?
i be the solution of P21 for any 0 ≤ ω ≤ 1. Then,

arg
(

hT
1iB̃

?
i h2i

)
= arg

(
hT

2iB̃
?
i h1i

)
, (8.24)

where arg (a) denotes the phase of the complex scalar a.

Proof. Please refer to Appendix C.2.

The theorem states that, when the beamforming matrices are optimized indepen-
dently, the phase difference between both links through a given relay (from S1 to S2,
and from S2 to S1) is equal to zero. As a result, the signals transmitted by each relay
can add up coherently at both source nodes simultaneously. Note that the theorem is
valid only if channel reciprocity holds, i.e., if the channel remains unchanged during
both transmission phases.

Distributed beamforming

To summarize, the proposed algorithm divides the original problem into two differ-
ent subproblems. First, the normalized beamforming matrices, B̃i, are computed by
considering each of the L individual TWRCs independently, and applying Algorithm
8.1. To solve these problems, each relay needs only local CSI. Once the normalized
matrices have been obtained, they must be scaled to adjust the phase of the equiva-
lent SISO channels and to satisfy the corresponding power constraint, i.e., per relay
or total, as in (8.19). In the former case, the normalized matrices already satisfy the
individual power constraint, and hence only a phase scaling is required, i.e., |gi| = 1.
For instance, each relay can select the phase of the scaling factors such that the phase
of the equivalent SISO channels are equal to 0, by setting

gI
i = e arg(heq

1i ) , i = 1, . . . , L , (8.25)

thus the signals at the source nodes are combined coherently without any relay co-
operation.

For the sum-power constraint case, the phase of the scaling factors can be se-
lected in the same way. However, their squared absolute value must add up to one,
i.e., ‖g‖2 = 1, so as to satisfy the power constraint. Hence, g can be regarded as a
distributed beamformer, and different design criteria can be adopted. To be in agree-
ment with those of the normalized relaying matrices, the distributed beamformer
should follow a WSSNRmax criterion, that is

gS = arg max
‖g‖=1

ω
P2

σ2

∥∥∥∥(heq
2
)H D

1
2
1 g
∥∥∥∥2

∥∥∥∥D
1
2
1 g
∥∥∥∥2 + (1−ω)

P1

σ2

∥∥∥∥(heq
1
)H D

1
2
2 g
∥∥∥∥2

∥∥∥∥D
1
2
2 g
∥∥∥∥2

 . (8.26)
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Note that, in the extreme points, i.e., when ω = 0 or ω = 1, the above expression
turns into a generalized Rayleigh quotient, which has closed-form solution. However,
in the general case, when 0 < ω < 1, (8.26) is a sum of two generalized Rayleigh
quotients, and the problem cannot be solved in closed-form. The problem of dis-
tributed beamforming in two-way multiple-relay networks, what is also called col-
laborative beamforming, has been studied in [108, 112], where authors proposed a
convex optimization technique based upon rate profile and bisection method.2 How-
ever, a suboptimal but closed-form distributed beamformer can be computed as a
linear combination of the optimal solution in the extreme points, i.e.,

gS =
g̃
‖g̃‖ , (8.27)

g̃ =ω
P2

σ2 D−
1
2

1 heq
2 + (1−ω)

P1

σ2 D−
1
2

2 heq
1 . (8.28)

Moreover, as gS only controls the power transmitted by each relay (see Theorem
8.3), the above solution is expected to perform very close to the optimum.

As it can be noticed, the computation of gS by means of (8.27) does require
some cooperation between the relay nodes. A solution with lower performance but
requiring no cooperation can be obtained by just selecting

gS
i =

1√
L

e arg(heq
1i ) , i = 1, . . . , L , (8.29)

i.e., equal power allocation. Notice that, if (8.29) is applied and PI
R = 1

L PS
R holds,

we obtain the same rate region as with the proposed solution for per-relay power
constraint.

Solution mapping

There is an important consideration that must be taken into account when comput-
ing the normalized beamforming matrices. In order to obtain B̃i for a certain point of
the rate region, the WSSNRmax problem in P21 must be solved for i = 1, . . . , L and
for a given weight, ω0. For the sake of clarity, let us denote this set of beamform-
ing matrices as {B̃1(ω0), . . . , B̃L(ω0)}. To find this solution, Algorithm 8.1, based
on rate profile, can be applied. The rate profile method, however, uses a different
set of weights, α. Nevertheless, the mapping between α and ω is non-linear and
different for each relay, as we illustrate in Fig. 8.3. As depicted in the figure, the
rate profile can be geometrically interpreted as a straight line starting in the origin
with a slope ofα that crosses the rate region at one point, whereas the weighted-sum
approach can be viewed as a straight line tangent to the rate region at one point, and
with a slope given by ω. Suppose that we set αi = α0, for i = 1, . . . , L. Then we
achieve the set of solutions {B̃1(α0), . . . , B̃L(α0)} = {B̃1(ω1), . . . , B̃L(ωL)}. There-
fore, Algorithm 8.1 must be modified so as to calculate the value of αi, α?

i , such that

2Notice that the method proposed in [108] is the one that has been described in Section 8.2, which
can also be applied to single-antenna relays.
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𝛼2 

Figure 8.3: Example of the rate regions achieved in a TWRC with two relays, when
only the first relay (left) or the second relay (right) is transmitting. The relays must be
combined for the same point,ω0, which is achieved by different rate profile weights.

{B̃1(α
?
1), . . . , B̃L(α

?
L)} = {B̃1(ω0), . . . , B̃L(ω0)}. To this end, consider the optimal

value of P21 as a function of ω, and let us denote it by fi(ω). As it is the pointwise
maximum of affine functions, fi(ω) is a convex function. Hence, the solution of Al-
gorithm 8.1, for a fixed αi, can be geometrically viewed as a straight line tangent
to fi(ω) at some point ωαi , as shown in Fig. 8.4. Consequently, ωαi can be made
arbitrarily close to ω0 by iteratively updating αi in the direction ω0 −ωαi , applying
Algorithm 8.1 at each iteration.

The associated weight, ωαi , can be computed through the dual variables associ-
ated to the SNR constraints of P17, once the optimal Rsum has been attained. At this
point, and for a given α, let λ?1 and λ?2 be the optimal dual variables associated to
the SNR constraints of node S1 and S2, respectively, which are the solution of P18.
Then, P17 is equivalent to

P22 :

maximize
{B1 ,...,BL}

λ?1

[∣∣∣hT
1iBih2i

∣∣∣2 −γ1

(
1 +

L

∑
i=1

∥∥∥BH
i h∗1i

∥∥∥2
)]

+

λ?2

[∣∣∣hT
2iBih1i

∣∣∣2 −γ2

(
1 +

L

∑
i=1

∥∥∥BH
i h∗2i

∥∥∥2
)]

,

subject to : P1 ‖Bih1i‖2 + P2 ‖Bih2i‖2 +σ2Tr
(

BH
i Bi

)
≤ PR .
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Figure 8.4: Illustration of the relationship between fi(ω),ω and α.

If we define the new dual variables, λ̃?1 and λ̃?2, as

λ̃?1 = λ?1
σ2

P2

(
1 +

∥∥∥BH
i h∗1i

∥∥∥2
)

, (8.30)

λ̃?2 = λ?2
σ2

P1

(
1 +

∥∥∥BH
i h∗2i

∥∥∥2
)

,

the objective function of P22 turns into a weighted sum of the SNR of the nodes, with
weights λ̃?1 and λ̃?2. The associated weight is then given by

ωα =
λ̃?1

λ̃?1 + λ̃
?
2

. (8.31)

Finally, the proposed distributed algorithm, that we henceforth refer to as relay
combining algorithm (RCA), is summarized in Algorithm 8.2.

8.4 Numerical examples

In this section, we present some numerical examples to illustrate the performance
of the proposed algorithm, and compare it with the optimal achievable rate region
that is obtain by means of Algorithm 8.1, as well as with the dual-channel matching
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Algorithm 8.2 Relay combining algorithm (RCA) to obtain one point of the (subop-
timal) rate region.

Select the weight 0 ≤ω0 ≤ 1, the desired tolerance, δ, and the step size, ε.
for i = 1, . . . , L do

repeat
1. Apply Algorithm 8.1 for αi = ω0 and compute ωαi using (8.30) and

(8.31).

2. Update the rate profile as αi = αi +ε (ω0 −ωαi).
until |ω0 −ωαi | ≤ δ

end for
Compute the distributed beamformer, g, using (8.25) for the individual power
constraint, and (8.27) or (8.29) for the sum-power constraint.

strategy proposed in [108], which only requires local CSI. We will focus on the sum-
power constraint, and evaluate the RCA method for both distributed beamforming
strategies, namely, the cooperative (8.27) and the non-cooperative (8.29) (i.e., equal
power allocation). The elements of h ji (i = 1, . . . , L and j = 1, 2) are independent
and identically distributed (i.i.d.) zero-mean circular complex Gaussian random vari-
ables with unit variance. We consider PS

R = P1 = P2 = P, and define the signal-to-
noise ratio as SNR = 10 log10

P
σ2 . Without loss of generality, we take σ2 = 1. Figs.

8.5 and 8.6 show the performance of the proposed algorithm in scenarios with 2 and
4 relays, respectively, equipped with two antennas each (N = 2). In these scenarios,
the gap between the achievable rate region and the RCA method with relay cooper-
ation is negligible. When we remove the cooperation between the relay nodes and
distribute the power uniformly, the resulting rate region still performs very close to
the optimal, specially with fewer relays. From a practical viewpoint we may conclude
that the RCA method without relay cooperation presents a very interesting approach,
since it does not incur any additional overhead and achieves better performance that
state-of-the-art approaches with equal cooperation needs, as is the case of the dual-
channel matching strategy.
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Figure 8.5: Performance of RCA for L = 2 relay nodes equipped with N = 2 anten-
nas each, and for SNR = 20 dB.
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Figure 8.6: Performance of RCA for L = 4 relay nodes equipped with N = 2 anten-
nas each, and for SNR = 20 dB.
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Chapter9
Conclusions and further lines

This thesis has taken a wide perspective on cooperation in multiuser networks.
Through the analysis of three illustrative scenarios, we have thoroughly studied dif-
ferent aspects arising in this context. Although the considered scenarios are different
in nature, their essence is the same: they need cooperation to some extent or another
to exploit the available resources. However, we have seen that cooperation comes at
a price: cooperative users must share information, which incurs additional overhead
that may jeopardize the potential improvements. Therefore, we have pursued tech-
niques to gain the maximum benefit with limited cooperation.

9.1 Conclusions

In the following lines we provide a brief summary of the contributions and the con-
clusions for each of the considered scenarios.

• We have first addressed the interference channel (IC), where K transmitter-
receiver pairs coexist over the same medium. This model follows the inter-
ference coordination approach, by means of which users design their transmit
strategies jointly. We have focused on the interference alignment (IA) concept,
and concentrated our efforts on the structured channel instance, which arises
when multiple symbol or channel extensions are employed in conjunction with
the spatial dimension. In first place, we have addressed the design of linear
precoding and decoding schemes in pursuit of IA solutions. The challenge re-
garding this point is that minimizing the interference leakage without taking
into account the direct links imperils the dimensionality of the signal subspace.
By expressing the rank constraint as minimum eigenvalue and transmit power
constraints, we have been able to derive an algorithm that minimizes the in-
terference leakage while ensures full-rank direct channels. Our approach over-
comes the limitations of the existing methods and permits the computation of
IA solutions in any scenario, either in a centralized or a distributed fashion.

In second place, we have shifted to a more practical viewpoint, and consid-
ered some impairments that may arise when applying these techniques in a
real system. Thus, we have dealt with the design of the precoders and decoders
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for frequency-domain extensions, under the realistic assumption of orthogonal
frequency-division multiplexing (OFDM) transmissions. We have remarked that
processing the signals in the frequency domain (post- fast Fourier transform
-FFT-), independently whether the alignment is carried out in space, in fre-
quency or in both; necessitates yet an additional degree of cooperation, so
that the signals from each user arrive simultaneously at each receiver. There-
fore, we have proposed to apply the precoders and decoders in the time do-
main (pre-FFT), which, although limits the alignment to the spatial dimension,
permits operating asynchronously and provides robustness to time missalign-
ments. However, nothing comes for free: pre-FFT filters lengthen the channel
impulse response, which provokes inter-symbol interference (ISI) and inter-
carrier interference (ICI). Hence, we have derived two different algorithms
with increasing complexity and performance. The first one aims at minimiz-
ing the interference leakage by using the IA solution in the frequency domain,
whereas the second method carries out the design directly in time domain and
takes also the ISI and ICI into account. In addition, the proposed methods have
been also validated in a real setting with actual wireless transmissions, whose
performance has been shown to be close to the synchronous IA scheme.

• As a second cooperative scenario, we have considered the underlay cognitive
radio (UCR) model. We have covered two general settings: a single- and a
multiple-antenna primary user (PU) that has a rate constraint. For the for-
mer, we have explored the use of improper signaling by a secondary network
comprised of a single-antenna secondary user (SU), with the objective in mind
of determining whether it can be beneficial or not. We have proven that the
SU improves its rate only when the ratio of the squared modulus between the
SU-PU interference link and the SU direct link exceeds a given threshold, and
that maximally improper signals are optimal providing that the power budget is
sufficiently high. Hence, we have further analyzed the maximally improper sig-
naling scheme and several statistical results have been obtained. These findings
show that improper signaling can enhance the SU performance, especially for
low-rate transmissions, and without incurring additional cooperation demands.

Building on the single-antenna PU scenario, we have also addressed the prob-
lem of assigning per-SU interference constraints. Moving from an aggregate
interference constraint to a local one, the cooperation needs of the secondary
network can be alleviated. To this end, we have proposed a novel framework
based on the statistics of random projections, which enables the PU to wisely
assign the constraints using only local information.

We have then moved to the multi-antenna PU setting, where the spatial dimen-
sion comes out, widening the range of interference metrics that can be adopted.
First, we have focused on constraints on the total interference power. As op-
posed to the single-antenna case, the mapping between interference power and
achievable rate is not unique. Thus, we have derived a closed-form solution
for the maximum interference power that can be tolerated, independently of
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the spatial signature of the interference. This result allows to relate interfer-
ence power constraint to PU performance, which permits a better analysis of
the interaction between primary and secondary networks, as well as a cor-
rect assessment of alternative interference metrics. We have then proposed the
use of spatial shaping constraints, so that both interference power and spa-
tial signature are constrained. Thereby, we can avoid the secondary network
transmitting along the spatial directions that are more sensitive to interference,
resulting in a higher admissible interference power. An interesting observa-
tion is that these constraints generalize the interference power metric. Then,
by exploiting local channel state information (CSI) at the primary receiver, we
have proposed two algorithms for designing the shaping constraints. Further-
more, we have also addressed the transmit covariance design under shaping
constraints for a multiple-input multiple-output (MIMO) secondary link and
secondary IC, where we have shown the potential benefits of the proposed in-
terference metric.

• Finally, we have considered the two-way relay channel (TWRC), where two
source nodes establish a bidirectional communication via intermediate relays.
We have focused on the amplify-and-forward (AF) protocol, whereby the re-
lay nodes retransmit a linearly-processed version of the received signal. An
important difference with respect to the other studied scenarios, is that the
interference can be easily eliminated independently of the relay beamforming
matrices. Nevertheless, global CSI is still required to achieve the optimal rate
region. Aiming at practical approaches, we have derived a distributed algo-
rithm whose performance is almost the same as the optimal method, but with
much lower complexity.

In order to provide an overall depiction of what the thesis has encompassed, we
represent in Fig. 9.1 a diagram with the scenarios, model instances and techniques
that have been covered. The circle line-width in the lowest level of the diagram is
proportional to the amount of cooperation that the corresponding technique requires.
Also, we left in white color the points that have been described in detail but are not
comprised in the contributions of the thesis.

9.2 Further lines

Given the breadth of this thesis scope, there are many different paths that can be
followed. We have addressed just a few features of each of the considered scenarios.
At the same time, although illustrative and relevant, these scenarios do not embrace
the cooperative networks in their entirety. Overall, broadening the considered sce-
narios to more sophisticated instances is a natural extension of this work. In these
lines, the scenario that probably presents a wider scope is UCR, since it does not
deal with the topology of the networks, but with their interaction. Because of that, it
may include any possible setting within its scope, either for the secondary or for the
primary network.
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Figure 9.1: Thesis scope. The circle line-width in the algorithms and techniques
(lowest level) represents the required cooperation. Also, white circles indicate that
only a description of existing techniques has been provided.

Alternatively, relay-aided communication also presents a wide range of scenarios
to be considered. In this thesis, we have only described the TWRC, which, although
being a relevant model within this context, exhibits the particularity that no proper
interference management is required. This is no longer the case in a TWRC with
multiple users, or when relays are deployed to assist communication in other network
models. For the former case, there are works considering different specific models
or approaches to the problem [113–116]. An interesting use of relays for the latter
point is to facilitate IA [117–119]. Exploring similar scenarios, where the concepts
from Parts II and IV meet, is an interesting topic of research.

As specific lines of future work, we point out in the ensuing lines some aspects
that we regard as particularly intriguing.

• The unveiling of the properties of improper Gaussian signals for interference-
limited networks paves a new way of handling the interaction between users.
While existing works have mainly focused on the IC or similar models, we have
revealed the payoffs of this signaling scheme in a very simple UCR scenario.
This result motivates the analysis of improper signaling for more sophisticated
UCR settings. For example, do the benefits increase or decrease when the PU
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has multiple antennas? And if the SU has also multiple antennas? The latter
case connects with the spatial interference shaping design, since the inclusion
of the impropriety dimension brings a new degree of freedom.

Shifting attention to the IC, there are still many loose ends to be solved. For
this scenario, we have merely touched upon improper signaling in the design
of the algorithm for structured channels. As we showed, this scheme is instru-
mental for improving the degrees-of-freedom (DoF) when the channel remains
constant. However, to what extent it is useful remains an unresolved problem.
Following the lines of the pioneering work in the 3-user single-input single-
output (SISO) IC [73], and our previous work in the 4-user IC [74], shedding
light onto the additional DoF that this scheme can provide is a fascinating, yet
challenging, research topic.

• The UCR scenario has been motivated by the partial interference coordination
approach, so that the cooperation needs are significantly reduced. This model,
however, exhibits some limitations due to the hierarchy that is established in
the network. Considering a more general model presents an interesting exten-
sion of the work that has been developed in Part III. Thus, the priority between
the networks can vary, which implies setting constraints in both directions of
the interference, i.e., from one network to the other, and viceversa. Such a
model would permit a smooth transition between the full and the partial co-
ordination approaches, with the UCR scenario laying at one end, and the IC
at the other. As a first step, exploring independent and joint designs of the
interference constraints can be regarded as a plausible goal.
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ChapterA
Proofs of the results in Part II

A.1 Proof of Proposition 4.1

Let us first consider the Lagrangian of P2, given by

Li (Ui,µi, Λi) = Tr
(

UH
i KiUi

)
+ Tr

(
Λi

[
εI−UH

i QiUi

])
+µi

[
Tr
(

UH
i Ui

)
− 1
]

, (A.1)

where Λi � 0 and µi ≥ 0 are the Lagrange multipliers associated to the first and last
constraint in P2, respectively. Equating the complex gradient of (A.1) to zero yields

∇U∗i
Li (Ui,µi, Λi) = 0⇒ (Ki +µiI)Ui = QiUiΛi . (A.2)

Combining (A.2) and (A.1) we obtain the dual function as

g (µi, Λi) = ε Tr (Λi)−µi . (A.3)

Although P2 is not convex, if strong duality holds, i.e., Tr[(U?
i )

HKiU?
i ] = g

(
µ?i , Λ?

i
)
,

these optimal points must satisfy the Karush-Kuhn-Tucker (KKT) conditions, which
read

∇U∗i
Li (U?

i ,µ?i , Λ?
i ) = 0 , (A.4)

µ?i

{
Tr
[
(U?

i )
H U?

i

]
− 1
}
= 0 ,µ?i ≥ 0 , (A.5)

Tr
{
Λ?

i

[
εI− (U?

i )
H QiU?

i

]}
= 0 , Λ?

i � 0 , (A.6)

Tr[(U?
i )

HU?
i ] ≤ 1 , (A.7)

(U?
i )

HQiU?
i � εI . (A.8)

Since (A.2) is a generalized eigenvalue problem, the point satisfying the above con-
ditions is given by (4.18), with Λ?

i being the generalized eigenvalues and µ?i such
that the power constraint holds with equality. To determine whether this point corre-
sponds to the optimal solution of P2, we evaluate the objective function at this point,
obtaining

Tr[(U?
i )

HKiU?
i ] = ε Tr (Λ?

i )−µ?i . (A.9)

Since this equals the optimal value of the dual function (A.3), strong duality holds.
Consequently, (4.18) is the optimal solution of P2, which concludes the proof.
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ChapterB
Proofs of the results in Part III

B.1 Proof of Lemma 6.1

Equating (6.7) to αRPU(0, 0) we have(
q|g|2+p|h|2+σ2

q|g|2

)2

−κ2(
q|g|2+σ2

q|g|2

)2

−κ2

= 22αRPU(0,0) . (B.1)

After some manipulations, the foregoing expression yields the second-order equation

q2 =
σ2
[(

γ(2)
γ(2α) − 1

)
σ2 − 2 |g|2βq

]
|g|4 (1−κ2)

, (B.2)

whose solution is given by (6.14). On the other hand, using (6.10) we have

22RSU =
| f |4

σ̃4

(
1−κ2

)
q2 +

2 | f |2

σ̃2 q + 1 . (B.3)

Finally, (6.13) is obtained by substituting (B.2) in (B.3), which concludes the proof.

B.2 Proof of Corollary 6.2

When the secondary user (SU) transmits maximally improper signals, the primary
user (PU) rate can be obtained by setting κ = 1 in (6.7), which, after some manipu-
lations, yields

RPU(q, 1) =
1
2

log2

[
1 +

p |h|2

σ2

(
1 +

p |h|2 +σ2

σ2 + 2q(1) |g|2

)]
. (B.4)

Using the foregoing expression, the SU transmit power is constrained as

RPU(q, 1) ≥ R̄ → q(1) ≤ σ2

2 |g|2

(
γ(1)

γ(2α − 1)
− 1
)

, (B.5)
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where we have used γ(a)γ(b) = γ(a + b)− γ(a)− γ(b). On the other hand, using
(6.10) with κ = 1 we obtain (6.15), which, along with (B.5), concludes the proof.

B.3 Proof of Theorem 6.3

First, it is clear that q(κ) is an increasing function. This can be readily observed by
noticing that an improper interference increases the rate of the PU and, consequently,
tolerates a higher amount of interference. This property can also be noticed by an-
alyzing the derivative of q(κ) with respect to κ, which yields the same conclusion.
On the other hand, RSU(κ) depends on κ only through its impact on q(κ). Since the
term within the logarithm in (6.13) is linear in terms of q(κ), it will increase with
q(κ) (and, consequently, with κ) as long as it has a positive slope, i.e.,

2 | f |2

σ̃2

(
1−β | f |

2σ2

|g|2 σ̃2

)
> 0 . (B.6)

After some manipulations of this expression, we obtain condition (6.17). Now as-
sume that condition (6.17) holds (i.e., improper signaling is beneficial) and let Q be
the power budget. Since RSU(κ) increases with κ, the optimal value of κ can be set
to 1 if the resulting transmit power is below the power budget, thus obtaining the
first case in (6.18). Otherwise, maximum power transmission is allowed by selecting
κ accordingly, i.e, q(κ) = Q, which yields the second case. This concludes the proof.

B.4 Proof of Theorem 6.4

Let us first define the random variables F = | f |2, G = |g|2 and D = |d|2. Since
f , g and d are Gaussian-distributed with zero mean and variances σ2

f , σ2
g and σ2

d ,

respectively, F, G and D are exponential random variables with parameter 1
σ2

f
, 1
σ2

g

and 1
σ2

d
, respectively. Since Z = F

G is the ratio of two chi-squared random variables,

it has a (scaled) F-distribution [120], whose cumulative distribution function (CDF)
is given by

FZ(z) =
z

σ2
f

σ2
g
+ z

, z ≥ 0 . (B.7)

On the other hand, the CDF of the random variable X = σ2

p|d|2+σ2 is given by

FX(x) = Pr{X ≤ x} = Pr{D ≥ σ
2 (1− x)

px
} =

1− FD

(
σ2 (1− x)

px

)
= e
−σ

2(1−x)
σ2

d px , 0 ≤ x ≤ 1 . (B.8)
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Since Z and X are independent, their joint probability density function (PDF) satisfies
fZX(z, x) = fZ(z) fX(x) [121]. Therefore, the CDF of W = ZX can be obtained as

FW(w) =
∫ ∞

0

∫ w
z

0
fZX(z, x)dxdz

=

FZ(w)︷ ︸︸ ︷∫ w

0
fZ(z)dz+

∫ ∞
w

fZ(z)FX(
w
z
)dz

=
w

σ2
f /σ

2
g + w

+
∫ ∞

w

σ2
f /σ

2
g(

σ2
f /σ

2
g + z

)2 e
− σ2

pσ2
d

(
1−w/z

w/z

)
dz

=
w

σ2
f /σ

2
g + w

+
∫ ∞
σ2

f
σ2

g
+w

σ2
f /σ

2
g

y2 e
− σ2

pσ2
d

(
y−σ2

f /σ
2
g

w −1

)
dy (B.9)

= 1− σ2

Pσ2
d w

∫ ∞
σ2

f
σ2

g
+w

e
− σ2

pσ2
d w

y

y
dy (B.10)

= 1 +
σ2

f

σ2
g

(
σ2

pσ2
d w

)
e
σ2

Pσ2
d

(
σ2

f /σ
2
g

w +1

)
×

Ei

[
− σ

2

Pσ2
d

(
σ2

f /σ
2
g

w
+ 1

)]
, (B.11)

where (B.9) is obtained by the change of variable y =
σ2

f

σ2
g
+ z and (B.10) is due to

the identity
∫ ecx

x2 dx = − ecx

x + c
∫ ecx

x dx. Since the achievable rate can be expressed as

R = a log2(1 +Wb), with a = 1 and b = γ(1)
γ(α)
− 1 for the proper case, and a = 1

2 and

b = γ(1)
γ(2α−1) − 1 for the improper case, the CDF of the rate is readily derived from

(B.11) as

FR(r) = Pr{RSU ≤ r} = Pr{W ≤ 2
r
a − 1

b
} = FW

(
2

r
a − 1

b

)
, (B.12)

which equals (6.29) and concludes the proof.

B.5 Proof of Corollary 6.5

First, we have W = Z = | f |2
|g|2 . Its CDF was derived in Appendix B.4 and is given

by (B.7). Therefore, the CDF of the achievable rate is obtained as FW

(
2

r
a−1
b

)
, with
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a = 1 and b = γ(1)
γ(α)
− 1 for the proper case, and a = 1

2 and b = γ(1)
γ(2α−1) − 1 for the

improper case. This yields (6.31). The expectation is then obtained as

E [RSU] =
∫ ∞
−∞

(
1− FZC

R (r)
)

dr =
∫ ∞

0

µ

2
R
τ +µ

dr . (B.13)

By using
∫ 1

aecx+b dx = x
b −

1
bc log(aecx + b), the foregoing expression yields (6.32),

which concludes the proof.

B.6 Proof of Lemma 6.6

Since (6.38) follows from a trivial transformation of the distribution for ‖h‖2 =
1, let us take this assumption for simplicity. Let vR = [<(v)T=(v)T]T, hR =
[<(h)T=(h)T]T and hI = [=(v)T−<(v)T]T. Clearly hT

RhI = 0 and ‖hR‖2 = ‖hI‖2 =
1. The projection can be then written as Ψ = |vT

RhR|2 + |vT
RhI |2 = ΨR + ΨI. Denot-

ing with θR the angle between vR and hR, the probability density function (PDF) of
θR is given by [122]

h(θR) = κ (sinθR)
N−2 , θR ∈ [0, π ] , (B.14)

where κ is a constant. Since ΨR = cos2θR, its CDF can be obtained through (B.14)
as

Pr{ΨR ≤ ψR} = 1− 2Pr{θR ≤ cos−1
√
ψR}

= 1− 2
∫ cos−1√ψR

0
κ (sinθR)

N−2 dθR

=
∫ ψR

0
κ (ΨR)

− 1
2 (1− ΨR)

N−3
2 dΨR . (B.15)

Notice that the foregoing expression is an incomplete beta function. Hence, ΨR is
distributed as Beta( 1

2 , N−1
2 ). Clearly, ΨI follows also a beta distribution with the same

parameters. Now let
[
hR, hI , hR2 , hI2 , . . . , hIN

]
∈ R2N×2N be an orthonormal basis

for R2N. Then the projections ΨRi = |vT
RhRi |2 and ΨIi = |vT

RhIi |2, i = 2, . . . , N, are
also distributed as Beta( 1

2 , N−1
2 ). Furthermore, since ΨR +ΨI + ∑

N
i=2(ΨRi +ΨIi) = 1,

the joint probability density function of the projections follows a symmetric Dirichlet
distribution with concentration parameter α = 1

2 , denoted as Dir( 1
2). Finally, the

probability density function of Ψ = ΨR + ΨI follows directly from the aggregation
property and marginal distributions of Dir( 1

2), which concludes the proof.

B.7 Proof of Lemma 7.1

Let t?1 and t?2 be the optimal solution of P9 and P10, respectively. Clearly t?2 ≤ t?1,
which implies Kt?2 ⊆ Kt?1 . Let K1 ∈ Kt?1 be such that RPU(K1) = R̄; and K2 ∈ Kt?2
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such that RPU(K2) = R̄. Now take K̃2 =
t?1
t?2

K2. It is clear that K̃2 ∈ Kt?1 and

K̃2 � K2. As RPU(A) ≥ RPU(B) for A � B, we obtain RPU(K̃2) ≤ RPU(K2) = R̄.
Since RPU(K) ≥ R̄ for all K ∈ Kt?1 , K̃2 = K2 must hold, implying t?1 = t?2, which
concludes the proof.

B.8 Proof of Theorem 7.2

Let HQHH = ΨΦΨH and K = ΓΛΓH be the singular value decomposition (SVD).
Since the directions of K only affect the rate constraint, it is clear that Γ = Ψ
must hold for the optimal solution of P10, as a correlated interference between the
eigenmodes of the PU signal would be less harmful. Taking this into account, P10
can be reduced to

PA :

minimize
{λi}N

i=1

N

∑
i=1
λi ,

subject to
N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
≤ R̄ , (B.16)

λi ≥ 0 , i = 1, . . . , N . (B.17)

Since this problem is convex and satisfies the Slater’s condition [101], its optimal
solution can be found by solving the dual problem. To this end, let us consider the
Lagrangian of PA, given by

L
(
{λi}N

i=1, {νi}N
i=1, µ̃

)
=

N

∑
i=1
λi + µ̃

[
N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
− R̄

]
−

N

∑
i=1
νiλi ,

(B.18)
where µ̃ and νi (i = 1, . . . , N) are the Lagrange multipliers of (B.16) and (B.17),
respectively. Then, the Karush-Kuhn-Tucker (KKT) conditions for this problem read

N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
≤ R̄ , (B.19)

λi ≥ 0 , i = 1, . . . , N , (B.20)
µ̃ ≥ 0 , νi ≥ 0 , i = 1, . . . , N , (B.21)

µ̃

[
N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
− R̄

]
= 0 , (B.22)

νiλi = 0 , i = 1, . . . , N , (B.23)

∇λiL
(
{λi}N

i=1, {νi}N
i=1, µ̃

)
= 0 , i = 1, . . . , N . (B.24)
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As strong duality holds, the optimal λi, µ̃ and νi must satisfy the foregoing conditions.
By evaluating the last one we obtain

∇λiL
(
{λi}N

i=1, {νi}N
i=1, µ̃

)
= 1−µ φi

(σ2 + λi) (σ2 + λi +φi)
− νi = 0

⇒ λi =

√
φi

(
1
4
φi +

µ

1− νi

)
−
(

1
2
φi +σ

2
)

, (B.25)

where µ = µ̃
log 2 . Due to condition (B.23), we have that νi = 0 ⇔ λi > 0 and

νi > 0 ⇔ λi = 0, which, combined with (B.25), yields (7.6) and concludes the
proof.

B.9 Proof of Proposition 7.3

First, it can be easily checked that φ1 ≥ φ2 ≥ . . . ≥ φN implies λ1 ≥ λ2 ≥ . . . ≥ λN.
Now consider the following lower bound on the achievable rate

N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
≥ N log2

(
1 +

φN

σ2 + λN

)
. (B.26)

In the optimal point, the achievable rate is equal to R̄, hence the lower bound in the
right-hand side of (B.26) satisfies

N log2

(
1 +

φN

σ2 + λN

)
≤ R̄ ⇒ λN ≥

φN

2
R̄
N − 1

−σ2 . (B.27)

Combining the right-hand side of this expression with (7.6) yields√
φN

(
1
4
φN +µ

)
− 1

2
φ1 −σ2 ≥ φN

2
R̄
N − 1

−σ2 ⇒ µ ≥ φN
2

R̄
N(

2
R̄
N − 1

)2 . (B.28)

On the other hand, we also have λi ≥ 0. Thus, taking λ1 ≥ 0 we obtain

λ1 ≥ 0 ⇒

√
φ1

(
1
4
φ1 +µ

)
≥ 1

2
φ1 +σ

2 ⇒ µ ≥ σ2
(

1 +
σ2

φ1

)
. (B.29)

The lower bound on µ is then obtained combining (B.28) with (B.29).
Similarly, the achievable rate can be upper-bounded as

N

∑
i=1

log2

(
1 +

φi

σ2 + λi

)
≤ N log2

(
1 +

φ1

σ2 + λ1

)
. (B.30)

Again, since at the optimal point the achievable rate is equal to R̄, we have

N log2

(
1 +

φ1

σ2 + λ1

)
≥ R̄ ⇒ λ1 ≤

φ1

2
R̄
N − 1

−σ2 , (B.31)
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which, combined with (7.6), yields√
φ1

(
1
4
φ1 +µ

)
− 1

2
φ1 −σ2 ≤ φ1

2
R̄
N − 1

−σ2 ⇒ µ ≤ φ1
2

R̄
N(

2
R̄
N − 1

)2 , (B.32)

and concludes the proof.

B.10 Proof of Lemma 7.4

It is easy to see that ξξH � S is equivalent to λmax(S−
H
2 ξξHS−

1
2 ) ≤ 1 when S has

full rank. Since this matrix is rank-one, its maximum eigenvalue is given by ξHS−1ξ.
When S is not full-rank, ξ must lie in the range of S, and can be therefore written as
ξ = Γξ̃, and the same procedure can be applied, which concludes the proof.

B.11 Proof of Lemma 7.5

Let us first express the left-hand side of (7.17) as

− Tr
(
∇SRPU

(
S`−1

)H
S
)
= − Tr

blkdiag
({

GH
k ∇SRPU

(
S`−1

)
Gk

}K

k=1

)
︸ ︷︷ ︸

X

×

blkdiag
(
{Sk}K

k=1

)
︸ ︷︷ ︸

Y

 , (B.33)

where blkdiag({Ak}K
k=1) denotes a block-diagonal matrix with matrices A1, . . . , AK

along the main diagonal. Let us now denote as λ↓(A) and λ↑(A) the set of eigenval-
ues of A in decreasing and increasing order, respectively. Then we have [123, H.1.h.]

− Tr (XY) ≥ −∑ λ↓ (X)� λ↑ (Y) , (B.34)

where � denotes Hadamard (element-wise) product. Since ∑
K
k=1 Tr(Sk) =

∑
K
k=1 Tr(Σk) and 0 � Sk � QI ⇔ 0 � Σk � QI, the eigenvectors of Sk affect

only the constraint (7.17), which, along with (B.34), implies Γk = Ψk for the optimal
solution. Taking this into account, the left-hand side of (7.17) turns into

− Tr

(
∇SRPU

(
S`−1

)H K

∑
k=1

GkS?
k GH

k

)
=

K

∑
k=1

Mk

∑
n=1

Λk,nΣk,n . (B.35)

Hence, the cost function is maximized by increasing the eigenvalue Σk,n associated
with the lowest Λk,n until (7.17) holds with equality or its maximum value, Q (due
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to the last constraint in P `
12), is reached. In the latter case there is still room for

improvement, since (7.17) does not still hold with equality, thus allowing to increase
the next eigenvalue (associated with the next lowest Λk,n). Notice that such se-
quential procedure provides extreme points of the feasible set until the optimum is
attained, which yields (7.21) and concludes the proof.

B.12 Proof of Proposition 7.6

First, notice again that the objective function in this case does not depend on the
eigenvectors of Sk. Thus, Γk = Ψk follows directly from the proof of Lemma 7.5. To
obtain the multilevel waterfilling solution for the eigenvalues of Sk, we first construct
the Lagrangian of P `

12 as

L
(
µ, {Φk}K

k=1, {Ωk}K
k=1

)
=

K

∑
k=1

log2

∣∣∣∣I + Mk

σ̃2 Σk

∣∣∣∣+µ
[
β−

K

∑
k=1

Tr (ΛkΣk)

]
+

K

∑
k=1

Tr (ΦkΣk) +
K

∑
k=1

Tr [Ωk (QI− Σk)] , (B.36)

where β = RPU
(
S`−1)− R̄− Tr

(
∇SRPU

(
S`−1)H

S`−1
)

, and µ, Φk and Ωk are the
Lagrange multipliers associated to the corresponding constraints. Now, taking the
derivative of the Lagrangian with respect to each Σk, and equating it to zero, yields

∇ΣkL
(
µ, {Φk}K

k=1, {Ωk}K
k=1

)
= 0 ⇒ Σk = (µΛk −Φk +Ωk)

−1− σ̃
2

Mk
I . (B.37)

Notice that, since matrices Σk are diagonal, so are Φk and Ωk. Therefore, 0 <
Σk,n < Q ⇒ Φk,n = Ωk,n = 0, which yields the multilevel waterfilling solution
(7.24), concluding the proof.

B.13 Proof of Proposition 7.7

Consider the first case. Since Tr(S) ≤ Q, the power constraint is not active (it is then
implicit in QSU � S). Thus, the rate is maximized by transmitting the maximum
allowable power at each direction, which yields (7.27).

Consider now the second case. Since QSU = qqH, and making use of Lemma 7.4,
P14 is equivalent to

q̃ = arg max
q̃HΣ̃

−1q̃≤1

{
q̃H Γ̃

HFHFΓ̃q̃
}

, (B.38)

where q = Γ̃q̃, Γ̃ is a matrix containing the eigenvectors of S with non-zero eigenval-
ues, and Σ̃ is a diagonal matrix with the non-zero eigenvalues of S. Notice that the
power constraint, qHq ≤ Q, is implicit in q̃HΣ̃

−1q̃ ≤ 1 as long as the actual power
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budget of the SU is used for the design of the shaping matrix in P12. By letting

a = Σ̃
− 1

2 q̃, the foregoing problem turns into the following eigenvalue problem

a = arg max
‖a‖=1

{
aHS

1
2 FHFS

1
2 a
}

, (B.39)

which yields (7.28).
The solution to the third case can be found by using the slack variable

L = S − QSU. Also, if S is rank deficient, we may express QSU = Γ̃Q̃SU Γ̃
H and

L = Γ̃L̃Γ̃H. Taking this into account, P14 can be equivalently written as

PB :

maximize
L̃

log2

∣∣∣∣∣I− Γ̃
H
[

S +σ2
(

FHF
)−1

]−1

Γ̃L̃

∣∣∣∣∣ ,

subject to 0 � L̃ � Σ̃ ,

Tr
(
L̃
)
≥ Tr (S)−Q .

Since rank(Q?
SU) = rank(S), L̃ � Σ̃ is not active, which turns the foregoing

problem into a similar type of the classical multiple-input multiple-output (MIMO)
capacity. Hence, through the KKT conditions, we obtain the classical solution for
L̃ (i.e., singular-value decomposition -SVD- and waterfilling power allocation) but
with the reversed sign within the waterfilling. Taking this into account, and since
QSU = S− Γ̃L̃Γ̃H, we obtain (7.30), which concludes the proof.

B.14 Proof of Proposition 7.8

P15 can be equivalently written as

PC :

maximize
vi,s ,γ

γ ,

subject to
vH

i,sH
H
ii ui,suH

i,sHiivi,s

vH
i,sBi,svi,s +σ2

≥ γ ,

vi,svH
i,s � Si −

s−1

∑
r=1

vi,rvH
i,r .

For an achievable and fixed value of γ, PC can equivalently be expressed as
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PD :

maximize
vi,s

vH
i,s

(
HH

ii ui,suH
i,sHii −γBi,s

)
vi,s ,

subject to vi,svH
i,s � Si −

s−1

∑
r=1

vi,rvH
i,r .

This problem is equal to the second case of Proposition 7.7, and the same procedure
can be applied to obtain (7.36), which concludes the proof.



ChapterC
Proofs of the results in Part IV

C.1 Proof of Proposition 8.1

The achievable signal-to-noise ratio (SNR) at S1 is given by

γ1 =
P2
∣∣∑L

i=1 hT
1iBih2i

∣∣2
σ2
(

1 + ∑
L
i=1

∥∥BH
i h∗1i

∥∥2
) . (C.1)

If we parameterize the beamforming matrices as (8.19), (C.1) can be rewritten as

γ1 =
P2
∣∣∑M

i=1 g∗i hT
1iB̃ih2i

∣∣2
σ2 ∑

L
i=1 |gi|2

(
η+

∥∥B̃H
i h∗1i

∥∥2
) . (C.2)

Using (8.18), γ1 can be expressed as

γ1 =
P2

∣∣∣ξH
2 heq

2

∣∣∣2
σ2 ‖ξ2‖2 . (C.3)

The same arguments can be applied to the SNR achieved by S2, which concludes the
proof.

C.2 Proof of Theorem 8.3

Since Theorem 8.3 applies to a single-relay two-way relay channel (TWRC), we drop
the relay index in the proof to avoid overloaded notation. As shown in [49], the
optimal relaying matrix has rank two, and it can be therefore decomposed into the
sum of two rank-one matrices as B̃? = ∑

2
s=1 vsuH

s (e.g., through the singular-value
decomposition -SVD-). It is intuitively clear that us and vs, s = 1, 2, must lie in the
subspace spanned by the channel vectors. Hence, we can express these vectors as

us =
√
α1sh1 +

√
α2seψ1s h2 , (C.4)

vs =
√
β1sh∗1 +

√
β2seψ2s h∗2 . (C.5)
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Then, assuming without loss of generality that the channels have unit norm, it follows
that

hT
1 B̃?h2 =

2

∑
s=1

hT
1 vsuH

s h2 =
2

∑
s=1

[√
α1sβ1sρe(φ+ψ1s) +

√
α1sβ2sρe(ψ1s+ψ2s)+√

α2sβ1s +
√
α2sβ2sρe(ψ2s−φ)

]
, (C.6)

hT
2 B̃?h1 =

2

∑
s=1

hT
2 vsuH

s h1 =
2

∑
s=1

[√
α1sβ1sρe(φ−ψ2s) +

√
α2sβ1sρe−(ψ1s+ψ2s)+√

α1sβ2s +
√
α2sβ2sρe−(ψ1s+φ)

]
, (C.7)

where ρ =
∣∣hH

1 h2
∣∣2 and φ = arg

(
hH

1 h2
)
. The absolute value of the foregoing ex-

pressions is maximized when all the terms in the right-hand side of (C.6) and (C.7)
add up coherently, which can be achieved by setting

ψ11 = ψ12 = −φ , (C.8)
ψ21 = ψ22 = φ . (C.9)

Furthermore, the use of the above values yields arg
(
hT

1 B̃?h2
)
= arg

(
hT

2 B̃?h1
)
= 0,

which would prove the theorem. However, the norm of the relaying matrix depends
on ψ1s and ψ2s, and thus the optimality of (C.8) and (C.9) must be proven taking

this fact into account. To this end, let us consider the derivatives of |h
T
1 vsuH

s h2|
‖vs‖‖us‖ and

|hT
2 vsuH

s h1|
‖vs‖‖us‖ , with respect to ψ1s and ψ2s, and for s = 1, 2. Then we obtain

∇ψ1s

(
|hT

1 vsuH
s h2|

‖vs‖‖us‖

)
= 0

∇ψ1s

(
|hT

2 vsuH
s h1|

‖vs‖‖us‖

)
= 0

⇒ ψ1s = −φ , s = 1, 2 , (C.10)

∇ψ2s

(
|hT

1 vsuH
s h2|

‖vs‖‖us‖

)
= 0

∇ψ2s

(
|hT

2 vsuH
s h1|

‖vs‖‖us‖

)
= 0

⇒ ψ2s = φ , s = 1, 2 . (C.11)

That is, the projection of the relaying matrix onto the channels is simultaneously
improved by choosing ψ1s = −φ and ψ2s = φ for s = 1, 2. This proves that (C.8)
and (C.9) hold when the optimal matrix is applied, and, consequently, the theorem.
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