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CHAPTER 1

Introduction

Layered materials are those in which a strong bonding exists in two directions of the space but
there is a weaker bonding (in many cases of van der Waals type) in the third direction.! Due to
this weaker bonding, these materials are easily exfoliable, even to the limit of truly 2D material
such as graphene, which is a single layer of carbon atoms that can be created from exfoliated
graphite.

2D materials have been studied for a long time, but due to the discovery of the aforemen-
tioned graphene in 2004,% which had promising properties that could make it useful for making
technological devices and to study exotic quantum phenomena, there has been a huge boost in
the investigation of this type of materials. This occured thanks to the great improvement in the
creation, modification and manipulation of the experimental methods that have been developed
in order to study graphene.

Although graphene is the 2D material most studied and known, there are also an immense
number of 2D materials that can be found in nature with different mechanical, electronic and
transport properties. In the past few years, a family of materials has brought the attention of
the scientific community, the so-called transition metal dichalcogenides (TMDCs). This family
has a wide variety of electronic properties, going from metallic behaviours (such as NbSes) to
semiconductors or insulators (such as MoSs). They even present, as for example NbSes, strongly
correlated phenomena such as superconductivity.3

Despite a first pioneering work by Frindt et al. where they exfoliated such materials into a few
and single layers,* not until recently, when Mak and coworkers® found that there was a transition
from an indirect gap to a direct gap when exfoliating a sample of MoSs to a single layer, these
materials became very interesting to the scientific community. The same happens for a variety
of semiconducting materials of the type M Xy (such as WSy, MoSea, WSes, etc.). Due to the
change of character in the gap, a huge variety of applications,? going from electronic devices® to
optoelectronic applications® and even to molecular sensing applications,® opened with this kind
of materials. Even novel field effect transistors were fabricated with hybrid structures combining
graphene with MoS,” or WS.®8 Furthermore, the strong spin-orbit coupling in these materials,
which lifts the degeneracy of energy bands due to the absence of inversion symmetry, opens the
possibility of controlling the coupling of the spin, the valley and the layer degrees of freedom
which could be usefull in order to build future devices based in spintronics and valleytronics.3
Moreover, due to the similarity of structure, chemical conformation and small lattice mismatch,
the stacking of different TMDCs is possible and the number of different heterostructures that
can be built with different electronic properties is almost infinite.?

On the other hand, other layered materials, such as MgBs or even TMDCs such as NbSes
present, as we said before, strongly correlated phenomena? such as superconductivity and even,
in the case of NbSes, a charge density wave.

In this thesis we are going to study several aspects of the electronic properties of some of
these materials.

e In Chapter 2 we briefly describe the methods used along the thesis to perform theoretical
calculations of the electronic properties of the studied materials.
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e In Chapter 3 we develop a tight-binding method for the family of superconducting TMDCs
of the type M X5 and we fit it to first-principles calculations. This model is the one with
the minimal basis set that is able to account for the transition of the gap from direct
to indirect when adding layers to the system. Afterwards, due to the strong spin-orbit
coupling that this kind of materials presents, we extend the tight-binding model including
this effect.

e In Chapter 4 we study a new possible family of substrates for graphene such as TMDCs.
We study the structure and electronic properties such as the band structure, the charge
redistribution and the dipole of these hybrid structures. Since the electronic properties of
TMDCs change with the number of layers, the effect of adding more layers to the system
is also studied.

e Finally, in Chapter 5 we investigate the two band gap superconductivity that arises in
some layered materials such as MgBy and NbSey. Using first principles calculations we
will give support to the assignment of the different gaps to the bands generating them.
This assignment is studied from an experimental point of view by the group of Dimitri
Roditchev, at Paris, with whom we have established a fruitful collaboration during the
period of this thesis.



CHAPTER 2
Theoretical and methodological
background

Along this thesis we are going to face calculations for quantum systems where we have to solve
the Schrodinger equation. Therefore, we are dealing with a quantum mechanical problem that
cannot be solved exactly because of the huge number of variables (3N, with NV being the number
of particles) and the complexity of the equations. As we have said, the basic equation we will
solve is the Schrodinger equation, that is given by:

HVU = BV, (2.1)

where, H is the Hamiltonian, ¥ the wavefunction and F the energy. In the particular case of
condensed matter calculations the Hamiltonian is given by:

- I~ “ KR Zge?
- ‘TmeZV?‘Z SRl 22
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where the first two terms represent the kinetic energy of the electrons and nuclei, the third
term is the interaction between the nuclei and the electrons, the fourth and fifth term are the
electron-electron and nuclei-nuclei interaction, respectively and the last term is any kind of
external potential, for example, resulting from electric or magnetic fields.

As we can see, this is a very complicated Hamiltonian and we must make some approxi-
mations. A widely used approximation in this field is the so-called Born-Oppenheimer approx-
imation, which is based in the idea that the electrons move much faster than the nuclei (due
to the small mass of the electron compared to the nuclei) and thus, we can decouple the total
wavefunction in an electron and in a nuclear part:

v (I‘, R) = ©ni (R) q)i (I‘, R) 9 (2'4)

where ¢,; is the wavefunction of the nuclei for the different nuclear states, n, and ®; is the
electronic wavefunction in the ith stationary state of the electronic Hamiltonian, Eq. (2.5),
where the atomic positions are parameters:

He:Te+VN6+‘7ee+‘/ext:> (25)

— H.®; (r,R) = E; [R] ®; (r,R). (2.6)

After solving equation (2.6) for fixed nuclei positions, we would then have to solve the
Schrédinger equation for the nuclei:
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[T + Vi + B, [R]] i (R) = Enioni (R). (2.7)

Although in this thesis we are not going to treat the dynamics of atoms, it is worh mentioning
that even solving the uncoupled quantum nuclear equation (Eq. (2.7)) is difficult and another
approach is usually taken: Since we can approximate the behaviour of the nuclei as if it was
classical, we can treat them as classical particles in a potential E; [R] generated by the electrons.
Therefore, the movement of the nuclei is described by Newton’s equations.

Now, if we focus on the main problem that we are going to encounter along this thesis, that is
solving the many body electronic Schrodinger equation, it should be noted that for small systems
we could be able to solve it, but in systems with a high number of electrons, as in this work, it is
too difficult and a different approach has to be taken. Many theories have been developed during
the years in order to solve in an approximate way electronic many body problems: Hartree-Fock
(HF), density functional theory (DFT), etc.

In this chapter, we are just going to briefly explain the method used during the development
of this thesis, DFT. Also, we will explain the tight-binding (TB) approach, which allows us to
solve the resulting one electron Hamiltonian.

2.1 Density Functional Theory

DFT is a theory to handle correlated many-body systems widely used in electronic structure
calculations for condensed matter.'® The basic idea of this theory is that any property of the
ground state of a system can be described as a functional of the ground state electron density.
Therefore, we would transform our 3N variable problem (wave function of N electrons) as is the
case of N interacting electrons, to a 3 variable problem with the electronic density (function of
position). In the next sections, we will present the theorems that prove this statement. However,
the exact expression for this functional is not known and some approximations must be made.
The theory itself does not provide any guidance for constructing the functionals. However, as
we will see, there are many approximations available for these functionals that work well. Also,
much work is still done in the scientific community in order to find new functionals and to
improve those already established.

2.1.1 Hohenberg-Kohn theorems

Hohenberg and Kohn presented two theorems that allow to transform the many-body problem in
terms of the many body wave function to one in terms of the electronic density. These theorems
can be applied to any system of interacting particles in an external potential:'!

Theorem 1 For any system of interacting particles in an external potential, the external po-
tential is determined uniquely, except for a constant, by the ground state particle density.

Corollary 1 Since the Hamiltonian is thus fully determined, except for a constant shift of
the energy, it follows that the many-body wavefunctions for all states (ground and excited) are
determined. Therefore, all properties of the system are completely determined given only the
ground state density.

Theorem 2 A universal functional for the energy in terms of the density can be defined, valid
for any external potential. For a particular value of the latter, the exact ground state energy of
the system is the global minimum value of this functional, and the density that minimizes the
functional is the exact ground state density.
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Corollary 2 The functional alone is sufficient to determine the exact ground state energy
and density.

Up to this point, we have an exact theory due to the previous theorems. However, this theory
is still abstract and it is just telling us that minimizing this functional as a function of the
density would show us which is the ground state. But the functional is not known. Besides,
the minimization problem is a complex mathematical problem. The contributions of Kohn and
Sham provided solutions to these issues.

2.1.1.1 Kohn-Sham approach

The approach that Kohn and Sham'? propose is to group all the many-body terms which make
the theory untreatable into an exchange-correlation potential (V). This change allows us to
treat the many-body interacting system as a one electron non-interacting system under the
action of this potential. The accuracy is limited only by the approximations in the exchange-
correlation functional:1® If we knew the exact expression for the potential, the theory would be
exact.

The Kohn-Sham ansatz is based on two assumptions:

1. The exact ground state density can be represented by the ground state density of an aux-
iliary system of non-interacting particles. This density can be expressed mathematically
as:

pr) = 1io)l*, (238)
i
with 1;(r) being one electron wave functions.

2. The auxiliary one electron Hamiltonian is chosen to have the usual one electron kinetic
energy operator and an effective local potential acting on the electron at each position
with a defined spin.

With these two assumptions, we arrive to the Kohn-Sham equations:

(Hfes — €004 (1) = 0 (2.9
His (1) = —5 V2 + VEs (1) (2.10)
Vizs (r) = Vegr () + Viartree (r) + Vi () (2.11)

Exchange-Correlation Approximations
As we said before, DF'T is an exact theory and no approximations are made until the actual
expression for the exchange-correlation potential is written. This potential is a functional of
the density and, if it were exact, the results of the calculations would also be exact, but this
expression is not knwon. There are many approximations for the exchange correlation term such
as the local density approximation (LDA), generalized-gradient approximation (GGA), hybrid
functionals, van der Waals functionals, etc. In this thesis we will restrict to the use of LDA and
GGA.
LDA is based on the idea that we can approximate a nonhomogeneous system, which
exchange-correlation potential at r not only depends on the value of the density, but also on
its value in the whole space, to a homogeneus system, which potential only depends on the
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value of the density at r, neglecting all the variations. This leads to an expression for the
exchange-correlation energy that is given by:1°

ELPA I ()] = / n(r)e[n (r)] dr, (2.12)

where € [n (r)] is the exchange correlation energy density of a uniform electron gas of density
n(r).

Although it seems a quite rude approximation, it typically gives very acceptable results and
therefore it is widely used. However, it has well known deficiencies like the underestimation of
the bonding distances between atoms and the overestimation of binding energies.

GGA is the next step of the approximation of the potential. Instead of neglecting all pos-
sible variations of the density, it uses a gradient to modify the behaviour when its variation is
important. In this case, the exchange-correlation energy is given by:1°

EfAWWTi/ﬂMWVMﬂWL (2.13)

GGA functionals provide better binding energies than LDA but they overestimate the bonding
distances.

As we said before, new exchange-correlation functionals are being developed. In particu-
lar, LDA and GGA are not able to describe weakly interacting systems, where van der Waals
interactions are important. This is due to the fact that LDA and GGA are based on (quasi)
local approximations to the exchange-correlation energy, whereas van der Waals interactions are
intrinsecally non-local. Although some new functionals have been proposed recently to describe
van der Waals interactions, they still perform questionable results in calculations of systems
with metals, like those considered in this work.

2.1.2 The SIESTA method

In addition to the exchange-correlation approximation, simulation codes usually have other
approximations in order to make the computations feasible. This thesis has been developed
using SIESTA, which makes these basic approximations:

e Pseudopotentials are used to replace the core electrons.

It is well known that core electrons do not contribute to the chemical bonding of the materials
since their wavefunctions are very localized around the nuclei. Moreover, along these thesis we
will study the electronic properties related to the valence electrons of the atoms. Therefore, we
could separate the core electrons from the valence electrons since the former mainly affect to
the screening of the nuclear charge seen by the outer electrons. Pseudopotentials allows us to
replace the core electrons by an effective potential that acts on the valence electrons. Moreover,
they are not only useful in order to decrease the number of electrons needed to describe an atom
but they also allow us to transform the wavefunction of the valence electrons that has nodes
into a smooth function without radial nodes. These two characteristics lead to an improvement

of the computational cost.'?

e Pseudo-atomic orbitals (numerical) are used as basis sets to describe the KS orbitals.

Another of the main features of SIESTA is the type of basis set that it uses to expand the
Kohn-Sham orbitals:

G (1) = e 1) (2.14)
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Figure 2.1: Radial part of the basis function for selenium.

where ¢;;, are coefficients that have to be determined and x, (r) are the basis functions. The
index p stands for the different functions in the basis set.

In SIESTA these basis functions are numerical atomic orbitals, which are strictly localized
(that is, they are zero beyond a certain radius from the nucleus). The atomic orbitals are a
product of a numerical radial function (with a finite range) and a spherical harmonic:

Xp (I‘) = Xjnlm (I’) = Rjnl (I') : lem ((9, ¢) ) (215)

where the index n is the principal quantum number, [ the orbital angular momentum and m
is the projection of the orbital angular momentum in the azimuthal axis. As we said before,
SIESTA uses pseudopotentials, therefore, these basis sets only describe the valence states. j is
an index that indicates that, for a given set of n and [, several radial functions with different
radial shape can be included in the basis set.

Although an exact description of the Kohn-Sham orbitals can only be achieved using an
infinitely large basis, this is not possible in practice, and therefore one has to attempt to achieve
sufficiently converged results by using the minimum possible number of orbitals. Here, we are
going to use the so-called single-¢ and double-¢ polarised basis sets (SZP and DZP, respectively).
SZP means that we will have one orbital for each occupied state of the free atom (SZ) plus a
polarization orbital (P). The latter is an orbital with a higher angular momentum Ip = [ + 1.
For example, for the Hydrogen atom we would have a 1s orbital plus a shell of 2p orbitals. In the
case of the DZP basis set we have two orbitals (with the same angular shape but different radial
function) for each occupied state of the free atom, plus a polarization shell that is defined as
in the case of SZP. Therefore, in the Hydrogen case, we would have two orbitals of s symmetry
with different radial dependence and a shell of 2p orbitals. The choice of the radial shape for the
two orbitals in the same shell can be done in several ways. In SIESTA, for multiple-{ bases, the
first-C is generated by solving the radial Schrédinger equation for the atom. In order to obtain
orbitals which are zero beyond a certain radius, the radial Schrédinger equation can be solved
in the presence of a hard wall potential or in the presence of a soft confinement potential. In

our case, we chose the latter scheme, with a potential of the form:!3

Te—T4

errTi

V)=V, (2.16)

re—1’
where V[ is a parameter, r; is the internal radius where the potential starts and r. the cutoff
radius where the potential becomes infinite.

There are several methods to generate the second-¢ implemented in SIESTA. We chose the
"split-valence" scheme.'® This method consists in building an orbital with the same tail as the
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first-¢ orbital, but changing it into a simple polynomal behaviour inside a "split radius", r;:

rt(ap —br?) if r < s
Senl (T) = ( ) . ZS (2.17)
Ri¢ i (r) if r>r},

where a; and b; are parameters determined by imposing the continuity of value and slope at ry.
Moreover, the definition of Eq. (2.17) is not the second-( orbital, the actual definition is:

Ro¢ i (r) = Rig i (v) — B3 5 (1) (2.18)

2.2 Tight-Binding method

The tight-binding method is an approximation that allows to solve the one electron Schrédinger
equation in an efficient way that allows for large calculations. Furthermore, it allows to add
many-body electron-electron effects, as well as of the dynamical effects of the electron-lattice
interaction. Since we can see a solid or a molecule just as atoms arranged together, it would
be a good guess that the solution to our Hamiltonian could be a linear combination of atomic
orbitals. Since most of the calculations in condensed matter are crystals which, by definition,
are periodic systems, we can use a basis set that satisfies the Bloch theorem:

Xu{X \ﬁze“‘l‘wr— b (2.19)

This Bloch basis is used to expand the solutions of the one electron Schrodinger equation:

Pirc(r Z Ci(k) X (k (2.20)

With this, the secular equation Hy = E1) can be written as:
H#V(k)clu(k) = Ez'l/(k)s,uuc’iu(k), (221)
where H,, (k) and S, (k) are:

H,uu = <Xuk ’H| Xuk> ) (222>
Sw/ = <X,u,k|X1/k> ) (223)

or, in its integral form:

Hu = 3 [drg (o) Hot - R) (2.24)
R

Sw = Y R / dr¢*(r)p(r — R), (2.25)
R

One approximation that we could make is to get rid of the electron-electron interaction and,
with this, we can write the independent electron Hamiltonian as:

He =T, + Vigy, (2.26)

where V., 7r is a effective potential that contains all the possible interactions that occur in the
solid.
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The simplest approximation that we could make is to suppose that Vs is just the sum of
the atomic potentials generated by all the atoms in the solid:

Verr = > _v(r—Ry). (2.27)
J

Introducing Eq. (2.27) to Eq. (2.24) we would find that we have four main kinds of matrix
elements:

1. One center, where the two orbitals and the potential are at the same atom (see Fig. 2.2a):
[ 6~ Ryutr - Ryole ~ Ry) (2.28)

2. Two center, where each orbital is sitting on a different atom and the potential on one of
them (see Fig. 2.2b):

[ o - Rajole - Ry)o(e - Ry) (2.29)

3. Two center, where the two orbitals are sitting on the same site but the potential is centered
in another (see Fig. 2.2¢):

[ e e = Ry)ot - Ror - Ry) (2.30)

4. Three center, where all three (the two orbitals and the potential) are centered on different
atoms (see Fig. 2.2d):

/drqS*(r — R;)v(r — Rj)o(r — Ry) (2.31)

Since calculating all the matrix elements of the Hamiltonian that involves even multi-center
integrals is computationally very costly, an approximation can be made. In 1954 J. C. Slater
and G. F. Koster'® proposed that all the matrix elements could be treated in an effective way
as two center integrals and then fit them to experimental or first-principles calculations data.

Along this thesis, in some chapters we will perform calculations where all the integrals in
Egs. 2.24 and 2.25 are calculated using a DFT potential using the SIESTA code. On the other
hand, in other chapters, the SK approach will be used, fitting the parameters of the model to
DFT calculations.
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Figure 2.2: Schematic view of the one-center (a), two centers (b) and (c) and three centers integrals
(d). Blue balls represent an s type orbital, red lobes represent a p orbital and the green circles represent
the potential, v(r).



CHAPTER 3
Minimal tight-binding model for
transition metal dichalcogenides

Since the discovery of graphene in 2004%16:17 there has been a lot of interest in exfoliable
materials due to the dramatic change of the electronic, optical and many other properties when
going from 3D to 2D, that is, from having many layers to just having one layer.

In 2010 Mak and coworkers,® found that a single-layer of MoSy was a direct-gap semiconduc-
tor. Also, other transition metal dichalcogenides (TMDCs) such as WSy had the same property.

Much work has been done concerning these materials in the past years'®

since they have an in-
teresting property that makes them very versatile: they change from an indirect gap to a direct
gap when going from a multi-layer structure to a single-layer sample (see Fig. 3.1). In addition,
the electronic properties appear to be highly sensitive to the external pressure and strain, which
affect the insulating gap and, under particular conditions, can also induce an insulator/metal

19-29 This tunability of the gap is very interesting for optoelectronic applications.?

transition.

Another important feature of the TMDCs is the possibility to control quantum degrees of
freedom such as the electron spin, the valley pseudospin and layer pseudospin.3? In fact, the
strong spin-orbit interaction in these compounds, and the coupling of the spin, the valley and
the layer degrees of freedom open the possibility to manipulate them for future applications in
spintronics and valleytronics devices.31738 The spin orbit coupling lifts the spin degeneracy of
the energy bands in single layer samples due to the absence of inversion symmetry.3? By time
reversal symmetry the spin splitting in inequivalent valleys must be opposite, leading to the so

31,33,36,37,40,41

called spin-valley coupling,3® which has been observed experimentally and also

studied theoretically.42~47

On the theoretical level, while much of the work of graphenic materials has been based
on simple tight-binding-like approaches, the electronic properties of single-layer and few-layer
dichalcogenides have been so far mainly investigated by means of DFT calculations,!9-29,42,48-56
despite early work in nonorthogonal tight-binding (TB) models for TMDCs.?” A few simplified
low-energy Hamiltonian models have been presented for these materials, whose validity is, how-
ever, restricted to the specific case of single-layer systems. An effective low-energy model was, for

1.35 and Kormanyos et al.?® to discuss the spin/orbital /valley

2 2, 2

0 1L-MoS; 1L-MoSe; 0| 2L-MoS; 2L-MoSe; il Bulk-MoS; Bulk-MoSe;
3 g’ NP VAL 1\NW
) )

w - KX\ e
w w i
w W 1te) h) ERI) 1

0 1L-WS; 1L-WSe; 0| 2L-WS; 2L-WSe; 0 Bulk-WS; Bulk-WSe,

instance, introduced by Xiao et a

-1] 1 -1

2 ) N\

M K M K - M K M K

M K M K

Figure 3.1: Calculated DFT band structures for different TMDCs with different number of layers. The
image shows the change of character from direct to indirect of the gap when adding layers. Spin-orbit
coupling is included in the calculations.
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coupling at the K and/or the I" point. Being limited to the vicinity of a specific high-symmetry
point, these models cannot be easily generalized to the multilayer case where the gap is indirect
with valence and conduction edges located far from the K point. An effective TB Hamiltonian
was, on the other hand, proposed by Rostami and coworkers,** valid, in principle, in the whole
Brillouin zone. This model considers the spin-orbit coupling, and it includes the effect of a quan-
tizing magnetic field in the spectrum. However, the band structure of the single layer lacks the
characteristic second minimum in the conduction band (see Fig. 3.1) that will become the effec-
tive conduction edge in multilayer systems. Therefore, also in this case, the generalization to the
multilayer compounds is doubtful. Although first-principles calculations are very accurate and

59,60 (for instance,

are currently able to handle systems with hundreds or even thousand of atoms
they have been thoroughly applied to large-scale graphene-related problems)®1764 they are still
computationally demanding. Moreover, the further inclusion of many-body effects by means of
quantum field theory methods, as well as of the dynamical effects of the electron-lattice interac-
tion is also computationally challenging. Tight-binding models, although less accurate, allow us
to tackle this kind of calculations. Therefore, a model that describes correctly the bands would

65-78 materials nanostruc-

88-99

be useful in order to calculate disordered and inhomogeneous systems

Y7987 or in twisted multilayer materials.

tured in large scales (nanoribbons, ripples

In this Chapter, we will try to build a TB model within the Slater-Koster approach!® for
the dichalcogenides valid in both the single-layer case and the multilayer one and that is able
to reproduce correctly DFT bands. To do this, we first analyse the orbital character of these
bands and, afterwards, we will build the model and try to fit the parameters in order to obtain
the correct bands. Moreover, since the spin-orbit interaction in these compounds is strong, we
will extend the TB model with the effect of the spin-orbit coupling.

We are going to focus on the most studied structure of TMDCs which is the 2H-M Xo (M =
transition metal, X = dichalcogenide) (space group: P63/mmc) (see Fig. 3.2). The monolayer is
composed of an inner layer of M atoms on a triangular lattice sandwiched between two layers of
X atoms lying on the triangular net of alternating hollow sites. Following standard notations,®”
we denote a as the distance between nearest neighbour in-plane M-M and X-X atoms, b as the
nearest neighbour M-X distance and w as the distance between the M and X planes. The bulk
structure is an ABAB stacking of two of these monolayers separated by van der Waals gaps,

one rotated with respect to each other by a screw axis along the z-direction.

3.1 DFT calculations and orbital character

In the construction of a reliable TB model for semiconducting dichalcogenides we will be guided
by first-principles DFT calculations that will provide the reference against which to calibrate the
TB model. We will focus here on 2H-MoS; (from now on we will refer to this structure simply
as MoSjy) as a representative case, although we have performed first-principle calculations for
comparison also on WSs. The differences in the electronic structure and in the orbital character
of these two compounds are, however, minimal and they do not involve any different physics.

The MoSg crystal forms an almost perfect trigonal prism structure with b and u very close
to their ideal values b ~ /7/12a and uw ~ a/2. In our DFT calculations, we use experimental
values for bulk MoS,,%” namely ¢ = 3.16 A, uw = 1586 A, and, in bulk systems, a distance
between Mo planes as ¢ = 6.14 A, with a lattice constant in the MoSs structure of ¢ = 2¢. The
in-plane and out-of-plane S-S distances in the layer are 3.16 A and 3.172 A, respectively. The
most important points in the Brillouin zone are the high-symmetry points which, in this case,
are: T'= (0,0,0), K= 47/3a(1,0,0), and M= 47/3a(0,+/3/2,0).

The electronic dispersion for the single-layer MoSy is nowadays well known. We will only
focus on the block of bands containing the four lowest conduction bands and the seven highest
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Figure 3.2: (a) Model of the atomic structure of TMDCs.The bulk compound has a 2H-M X5 structure
with two layers per unit cell, each layer being built up from a trigonal prism coordination unit. The
small green rectangle represents the unit cell of a monolayer of M X5, which is doubled (red extension)
in the bulk crystal. (b) Detail of the trigonal prisms for the two layers in the bulk compound, showing
the lattice constants and the definition of the structural angles used in the text.

valence bands, in an energy window of from -7 to 5 €V around the Fermi level. Our DFT
calculations are shown in Fig. 3.3, where we also show the orbital character of each band. We
—y2s 4d,, orbitals; d; for the Mo 4d,.,
4d,, orbitals; dy for the Mo 4ds,2_,2 orbital; p,, (or simply p) to denote the S 3p,, 3p, orbitals;
and p, (or simply z) for the S 3p, orbital. The four conduction bands and the seven valence
bands are mainly constituted by the five 4d orbitals of Mo and the six (three for each layer) 3p
orbitals of S, which sum up to the 93% of the total orbital weight of these bands.

A special role in the electronic properties of these materials is played by the electronic
states labeled as (A)-(D) and marked with black bullets in Fig. 3.3. A detailed analysis of the

orbital character of each energy level at the main high-symmetry points of the Brillouin zone,

use here the shorthand notation do to denote Mo 4d,2

as calculated by DFT, is provided in Table 3.1. We can notice that an accurate description
of the conduction and valence band edges (A)-(B) at the K point involves at least the Mo
orbitals ds,2_,2, dy2_y2, dzy, and the S orbitals p,, p,. Along this perspective, a 5-band TB
model, restricted to the subset of these orbitals, was presented in the work by Rostami and
coworkers,** whereas even the S 3p orbitals were furthermore omitted in the work by Xiao and

coworkers.3°

The failure of this latter orbital restriction for a more comprehensive description is however
pointed out when analyzing other relevant high-symmetry Brillouin points. In particular, con-
cerning the valence band, we can notice a second maximum at the I point, labeled as (C) in
Fig. 3.3, just 42 meV below the absolute band edge at the K point and with main dg-p, orbital
character. The relevance of this secondary band extreme is evident in the multilayer compounds

(N > 2), where such maximum at I" increases its energy to become the absolute band edge.48:50

The band structure with the orbital character for the bulk (N = oo) case, representative
of the multilayer case, is shown in Fig. 3.4. A similar feature occurs at the band edge of the
conduction band. Here a secondary minimum, labeled as (D) in Fig. 3.3, at Q = 47/3a(1/2,0,0),
midway along the I'-K cut, is present in the single-layer compounds. Such minimum, however,
moves down in energy in multilayer systems to become the effective conduction band edge.48-50

Even in this case, a relevant p, component is involved in the orbital character of this electronic
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Energy Main Secondary  Other S TB
DFT (eV) orbital orbital  orbitals 7MY ohel
T point
2.0860* 68% Py /y 29% do 3% E Epq,+(T)
1.9432* 58% Da/y 36% di 6% O Epa, +(I)
-1.0341 66% do 28% p. 6% E E.qy+(T)
-2.3300* 54% dy 42% pyy 4% O Epq, —(T)
-2.6801 100% p. - 0% O E.(T)
-3.4869* 65% da 32% Py 3% E Epq,—(T)
-6.5967 57% p. 23% do 20% E E.qy—(T)
K point
4.0127 60% d; 36% p. 4% O E.q, +(K)
2.5269 65% da 29% p. 6% E E.qy+(K)
1.9891 50% dy 31% payy 19% O Epa, +(K)
0.8162 82% do 12% Py 6% E Epdy +(K)
-0.9919 76% do 20% Py /y 4% E Epdy +(K)
-3.1975 67% p. 27% dy 6% O E.q, —(K)
-3.9056 85% Pa/y - 15% O E,(K)
-4.5021 65% p. 25% do 10% E E.q,—(K)
-5.0782 1% Py 12% ds 17% E Epd,—(K)
-5.5986 66% py/y 14% dy 20% E Epdy—(K)
-6.4158 60% Dy /y 37% dy 3% O Epq, —(K)

*Double-degenerate level

Table 3.1: Energy levels and orbital content of single-layer MoS, evaluated by DFT calculations. We
report here the first two main orbital characters belonging to the blocks Mo-4d and S-3p, while the
following column shows the remaining character not belonging to these orbital group. Also shown is
the association of each level with the corresponding eigenvalue of the TB model and the symmetry with
respect to the z — —z inversion (E=even, O=odd). The label E,3 + in the last column denotes the orbital
character of the TB eigenstate, with o, 8 = p, z,d2,d1,dg, where p = py,py, 2 = p., do = dy2_y2,dyy,
di = dyz,dy., dg = d3,2_,2. The index £ denotes the higher energy [(4+) = antibonding| and the lower
energy [(—) = bonding].
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Figure 3.3: Band structure and orbital character of single-layer MoS;. The top left panel shows the
full band structure while, in the other panels, the thickness of the bands represents the orbital weight,

where the d-character (da = dy2_y2, dyy, di = dyz, dyz, dg = d3,2_,2) refers to the Mo atom 4d orbitals,

while the p-character (pgy = pa, py) refers to 2p orbitals of sulfur.

state. The changes of the location of the band edges in the Brillouin zone are responsible for the
observed switch from a direct to an indirect gap in multilayer samples. As we will see, thus, the
inclusion of the p, orbitals in the full TB Hamiltonian is not only desirable for a more complete
description, but it is also unavoidable to understand the evolution of the band structure as a
function of the number of layers.

3.2 Tight-binding description of the single-layer

The aim of this Section is to define a TB model for the single-layer which will be straightforwardly
generalizable to the multilayer case by adding the appropriate interlayer hopping. We will show
that, to this purpose, all the 4d Mo orbitals and the 3p S orbitals must be taken into account.
Considering that the unit cell contains two S atoms, we define the Hilbert space by means of
the 11-fold vector:

éf);'r = (p;f,x,tapzy,t’p;z,tv d3,3z277'2’ dg,xhy?’ d;‘f,xy’d;'rﬂw dZT,yZ’p;rw,b’pj,y,b’p;z,b)’ (3.1)
where d; o, creates an electron in the orbital a of the Mo atom in the i-unit cell, p; o creates
an electron in the orbital o of the top (¢) layer S atom in the 4-unit cell, and p; o} creates an
electron in the orbital « of the bottom (b) layer S atom in the i-unit cell.

Once the Hilbert space has been introduced, the TB model is defined by the hopping integrals
between the different orbitals, described, in the framework of a Slater-Koster description, in
terms of o, m and ¢ ligands.'® In order to provide a TB model as a suitable basis for the
eventual inclusion of many-body effects by means of diagrammatic techniques, we assume that
the basis orbitals are orthonormal, so that the overlap matrix is the unit matrix. A preliminary
analysis based on the interatomic distance can be useful to identify the most relevant hopping
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Figure 3.4: Band structure and orbital character for bulk 2H-MoSs. Labels are as in Fig. 3.3.

processes. In particular, these are expected to be the ones between nearest neighbour Mo-S
(interatomic distances b = 2.41 A) and between the nearest neighbour in-plane Mo-Mo and
between the nearest neighbour in-plane and out-of-plane S-S atoms. Further distant atomic
bonds, in single-layer systems, start from hopping between second nearest neighbour Mo-S atoms,
with interatomic distance 3.98 A, and they will be here discarded.

All the hopping processes of the relevant pairs of neighbours are described in terms of the
Slater-Koster parameters, respectively Vyao, Vpdr (Mo-S bonds), Vide, Vidr, Vads (Mo-Mo bonds),
and Vppo, Vppr (S-S bonds). Additional relevant parameters are the crystal fields Ag, Ay, Ao,
Ap, A, describing respectively the atomic level the [ = 0 (ds,2_,2), the | = 1 (d,2, dy.), the
I = 2 (dy2_,2, dyy) Mo orbitals, the in-plane (ps, p,) S orbitals and of the out-of-plane p, S
orbitals. We end up with a total of 12 TB parameters to be determined, namely: Ag, A1, Ao,
Ap7 Aza Vdd0'7 Vddﬂ'v Vddé; V;)pay V})pﬂy ‘/pdo; ‘/pdﬂ"

In the orbital basis of Eq. (3.1), we can thus write the TB Hamiltonian in the form:

H = Y ¢ b, (3:2)
k

where ¢y is the Fourier transform of ¢; in momentum space. The Hamiltonian matrix can be
written (we drop for simplicity from now on the index k) as:

T
Hpp pt ‘Z;{d,pt Hpy pb

A~ A

H = Hapt  Haa  Happ |, (3.3)

* T
pt,pb Hd,pb Hpbﬂpb

where I;prpb = I:[/ptpt describes the in-plane hopping in the top and bottom S layer, namely,

) A Hy/w Hypy 0
Hpppbo = Hptpt = H;/y Hy/y 0

0 0 H,,

; (3.4)



3.2. Tight-binding description of the single-layer 17
I:Idd the in-plane hopping in the middle Mo layer, namely,
sz/zz sz/xQ sz/:cy 0 0
) H;/IQ Hy2/p2 Hy2)py 0 0
Hdvd = HZQ/zy H;Q/:J:y Hﬂ?y/l’y 0 0 ) (35)
0 0 0 sz/:rz sz/yz
0 0 0 H;ckz/yz Hyz/yz
ffpwb the vertical hopping between S orbitals in the top and bottom layer,
A Vigr 00
Hpipp = 0 Vipr O , (3.6)
0 0 Ve

and H d.pt> I;pob the hopping between Mo and S atoms in the top and bottom planes, respectively:

Hppy Hepy Hep
) Hy2pp Hy2py Hyzy,
Hip = | Hupe Haypy Huyo | (3.7)
Hy.po Hyzpy Hpefe
HyZ/w HyZ/y HyZ/I
Hpp  Hppyy —Hap
i Hyryy  Hyzpy  —Hypy
Hgp, = Hyyro o Hpypy  —Hyyy (3-8)
—Hy.pp —Hppy Hyp
“Hyz/x _HyZ/y Hy: /o

Here and in the following, for the sake of compactness, we use the shorthand notation 322 —r? =
2% and z? — y?> = z%. An explicit expression for the different Hamiltonian matrix elements in
terms of the Slater-Koster TB parameters can be provided following the seminal work by Doran
et al.'99 and it is reported for completeness in Appendix B.

Egs. (3.2)-(3.8) define our TB model in terms of an 11 x 11 Hamiltonian, H, which can be
now explicitly solved to get eigenvalues and eigenvectors in the whole Brillouin zone or along
the main axes of high symmetry. It is now an appealing task to associate each DFT energy
level with the Hamiltonian eigenvalues, whose eigenvectors will shed light on the properties of
the electronic states. Along this line, we are helped by symmetry arguments which allow, in
the monolayer compounds, to decouple the 11 x 11 Hamiltonian in Eq.
blocks, with different symmetry with respect to the mirror inversion z — —2z.199 This task is

(3.3), in two main
accomplished by introducing a symmetric and antisymmetric linear combination of the p orbital

of the S atoms on the top/bottom layers. More explicitly, we use the basis vector

Y T l T T ] T T 1 ] | |
¢k - (dk7322—7«27dk,m2_y2’dk:,a:y’pk,x,S’pk,y,S’pk,z,A7dk,xz’dk,yz’pk,x,A’pk,y,A’pk,Z,S)’ (39)

where plt:,a,S = (plt:,a,t +plt:,oc,b)/\/§’ plt:,a,A = (pL,a,t - plt;,oc,b)/\/i
In this basis we can write

(3.10)
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where Hp is a 6 x 6 block with even (E) symmetry with respect to the mirror inversion z — —z,
and Ho a 5 x5 block with odd (O) symmetry. We should remark, however, that such decoupling
holds true only in the single-layer case and only in the absence of a z-axis electric field, as can
be induced by substrates or under gating conditions. In the construction of a TB model that
could permit a direct generalization to the multilayer case, the interaction between the band
blocks with even and odd symmetry should be thus explicitly retained.

The association between DFT energy levels and TB eigenstates is now further simplified on
specific high-symmetry points of the Brillouin zone. Most important are the K and the I" points,
which define the direct and indirect gap in monolayer and multilayered compounds.

3.2.1 T point

We present here a detailed analysis of the eigenstates and their orbital character at the I' point.
For the sake of simplicity, we discuss separately the blocks with even and odd symmetry with
respect to the inversion z — —z. The identification of the DFT levels with the TB eigenstates is
facilitated by the possibility of decomposing the full Hamiltonian in smaller blocks, with typical
size 2 x 2 (dimers) or 1 x 1 (monomers). In particular, the 6 x 6 block with even symmetry can
be decomposed (see Appendix C for details) as:

H.4, (D) 0 0
Hg() = 0 M4, (D) 0 : (3.11)
0 0 I:IPd2 (I)

Here, each matrix, I:Ide, I:Izdo represents a 2 X 2 block where the indices describe the orbital
character of the dimer. In particular, H,q, involves only da = d,2_ 2, dzy Mo-orbitals and py, p,

S-orbitals, whereas H 4, involves only the dy = d3,2_,2 Mo-orbital and the p, S-orbital. As it is
evident in Eq. (3.11), the block H,q, appears twice and it is thus doubly degenerate. Similarly,

we have
A Hyy(M) 00
HO(F) = 0 del(F) 0 , (3.12)
0 0 ro

z

where the doubly degenerate block I:[pdl involves only di = dg.,d,. Mo-orbitals and p.,p,
S-orbitals, while I'Q is a 1 x 1 block (monomer) with pure character p..

It is also interesting to give a closer look at the inner structure of a generic Hamiltonian
sub-block. Considering, for instance, H »d, @s an example, we can write

& Lo ﬂrzd
H., ') = 0 1
zdo ( ) < \/ir‘zdo FE ’ (3 3)

where I'g is an energy level with pure Mo dy orbital character and I‘E an energy level with pure
S p. orbital character. Thus, the off-diagonal term \/ifzdo acts here as a “hybridization”, mixing
the pure orbital character of I'y and I'Y. The suffix “E” here reminds that the level I'Y" belongs
to the even symmetry block, and it is useful to distinguish this state from a similar one with
odd symmetry (and different energy). Keeping H 2d, @s an example, the eigenvalues of a generic
2 x 2 block can be obtained analytically:

INE Ty —IE\?
E.iy+(T) = OQZi\/<°22> +2r2, . (3.14)
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The explicit expressions of I'y, and I'pg in terms of the Slater-Koster TB parameters is
reported in Appendix B.

It is interesting to note that the diagonal terms I'y, (o = dp, d1, da, p, 2) are purely determined
by the crystal fields A, and by the TB parameters Vgdao, Vadr, Vids, Vppos Vppr, connecting Mo-
Mo and S-S atoms, whereas the hybridization off-diagonal terms I',g depend exclusively on the
Mo-S nearest neighbour hopping Vp4o, Vpdr-

A careful comparison between the orbital character of each eigenvector with the DFT results
permits now to identify in an unambiguous way each DFT energy level with its analytical TB
counterpart. Such association is reported in Table 3.1, where also the even/odd symmetry
inversion is considered.

The use of the present analysis to characterize the properties of the multilayer MoSs will be
discussed in Section 3.3.

3.2.2 K point

The K point of the Brillouin zone plays a crucial role influencing the properties of semiconducting
dichalcogenides as the direct semiconducting gap occurs at this point for the single-layer systems.
The detailed analysis of the electronic spectrum is also favored here by the possibility of reducing
the complex 11 x 11 Hamiltonian in smaller sub-blocks. This feature is, however, less evident
than at the I' point. The even and odd components of the Hamiltonian take the form:

Ko 0 0 —iV2Kpa,  V2Kpa, 0
0 Ky 0 i\/}Kde \/}Kp@ \(fogdz
N 0 0 K V2Kpq, V2K, —iV2K
Hgi(K) = WEK —ivKy 2K, Kgde . pda 5 =2 | (3.15)
\/iKPdo \/iKP@ —i\/iKde 0 Kl];: 0
0 V2K.q,  iV2K.q, 0 0 KP
K 0 V2Kpa,  —iv2Kpe, —iV2K.q
) 0 Ky —ivV2Kpa, —V2Kpa,  V2K.q,
Ho(K) = V2Kpa, V2K, K9 0 0 . (3.16)
iV2Kpa, —V2Kpa, 0 KD 0
iV2K.q,  V2K.q, 0 0 K?

As for the T' point, also here the upper labels (u = E, O) in Ky (u = E, O) express
the symmetry of the state corresponding to the energy level K4 with respect to the z — —z
inversion. The electronic properties of the Hamiltonian at the K point look more transparent
by introducing a different “chiral” base:

ot T T T T T T T T T T T
Up = (dygo 00y 19y di g Pr 152 Pl S Pz, > Y1 G, j1s Pz, a0 Pry R, A P 2,5)5(3:17)

where dj, 1o = (dg 422 — idjzy)/V2, di g2 = (dy g2 y2 +idizy) /V2, di 11 = (dpge —idyy:) V2,
di,r1 = (die+idyy:)/ V2, L5 = (Pke,s —Pky,s)/ V2, PERS = Dz, s +iDky,s)/ V2, Prp,a =
(Phaa — iPkya)/V2, PkrA = (Phaa + iDrya)/ V2.

In this basis, the Hamiltonian matrix can be also divided in smaller sub-blocks (see Ap-
pendix C) as:

Hg(K) = 0 H.q4,(K) 0 , (3.18)
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and
) Hyy(K) 0 0
Ho = 0 H.4(K) 0 . (3.19)
0 0 KD

As it is evident from the labels, each sub-block is also here a 2 x 2 dimer, apart from the
term Kg which is a 1 x 1 block (monomer) with pure p,, p, character. The association between
the DFT energy levels and the TB eigenstates is reported also for the K point in Table 3.1.

3.2.3 Q point

As discussed above, another special point determining the electronic properties of MoSs is the
Q point, halfway between the I" and K points in the Brillouin zone, where the conduction band,
in the single-layer system, has a secondary minimum in addition to the absolute one at the
K point. Unfortunately, not being a point of high-symmetry, the TB Hamiltonian cannot be
decomposed in this case in simpler smaller blocks. Each energy eigenvalue will contain, thus, a
finite component of all the Mo and S orbitals. In particular, focusing on the secondary minimum
in Q, DFT calculations give 46 % dz, 24 % py/y, 11 % p. and 9 % do. The orbital content of
this level will play a crucial role in determining the band structure of multilayer compounds.

3.2.4 Orbital constraints for a tight-binding model

After having investigated in detail the orbital contents of each eigenstate at the high-symmetry
points and having identified them with the corresponding DFT energy levels, we can now employ
such analysis to assess the basic conditions that a TB model must fulfill and to elucidate the
physical consequences.

A first interesting issue is about the minimum number of orbitals needed to be taken into
account in a TB model for a robust description of the electronic properties of these materials.
A proper answer to such issue is, of course, different if referred to single-layer or multilayer
compounds. For the moment we focus only on the single-layer case but we will emphasize the
way the relevant features that will be needed to take into account in multi-layer systems.

In the single-layer case, focusing only on the band edges determined by the states (A) and (B)
at the K point, we can identify them with the eigenstates Epq, 1+ (K), Epd, + (), respectively,
with a dominant Mo 4d character and a marginal S p,/, component, as we show below. It is thus
tempting to define a reduced 3-band TB model, keeping only the Mo 4ds.2_ 2, 4d,2_y 2, 4dyy,
orbitals with dominant character and disregarding the S p,, p, orbitals, with a small marginal
weight. A similar phenomenological model was proposed in the work by Xiao et al.3> However,
the full microscopic description here exposed permits to point out the inconsistency of such a
model. This can be shown by looking at Eq. (3.18). The band gap at K in the full TB model
including S p;, py orbitals is determined by the upper eigenstate of ﬁpdo,

Ko+ KE Ko — KE\?
Epd0,+(K) = ——F% + \/<P> + 4K§do? (3-20)

2 2

and the upper eigenstate of flpd2,

Ko+ KE Ky — KE\?
Epdg,—&—(K) = 42 b —|— \/(2 p ) —|— 8K§d2’ (321)
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K

Figure 3.5: Schematic band structure close to the K point for the valence and conduction bands: (a)
including S p,, p, orbitals; (b) omitting S p,, p, orbitals.

both with main Mo 4d character, while the eigenstate

Ky + KE Ko — KE\?
E.gy 4+ (K) = 2+\/<2) +4K2, | (3.22)

2 2

also with dominant Mo 4d character, but belonging to the block H 2dy» lies at higher energy (see
Table 3.1). The 3-band model retaining only the dy, da orbitals is equivalent to switch off the
hybridization terms Kpq,, Kpdy, K za,, ruled by Ve, Vidr, so that Eqy 4 (K) = Ko, Epg, +(K) =
E.4,+(K) = K. In this context, the level E.4, 4 (K) becomes degenerate with Epg, 4 (/). This
degeneracy is not accidental but it reflects the fact that the elementary excitations of the do
states, in this simplified model, are described by a Dirac spectrum, as sketched in Fig. 3.5. As a
consequence, no direct gap can be possibly established in this framework. It is worth mentioning
that a spin-orbit coupling can certainly split the Dirac cone to produce a direct gap at the K
point, but it would not explain in any case the direct gap observed in the DFT calculations
without spin-orbit coupling.

We should also mention that, in the same reduced 3-band model keeping only the dy and
dy Mo orbitals, the secondary maximum (C) of the valence band would have a pure dy orbital
character. As we are going to see in the discussion concerning the multilayer samples, this would
have important consequences on the construction of a proper TB model.

A final consideration concerns the orbital character of the valence band edge, Epq, +(K). This
state is associated with the third 2 x 2 block of Eq. (3.18) and it results from the hybridization
of the chiral state di ro = (djz2_,2 + idk,xy)/\/i of the Mo d orbitals with the chiral state
kRS = (Pkz,s + ’L'pk7y7s)/\/§ of the S p orbitals. The role of the chirality associated with the d
orbitals, in the presence of a finite spin-orbit coupling, has been discussed in detail in relation
with spin/valley selective probes.31737 What results from a careful TB description is that such
d-orbital chirality is indeed entangled with a corresponding chirality associated with the S p
orbitals. The possibility of such entanglement, dictated by group theory, was pointed out in the
work by Ochoa et al.38

A similar feature is found for the conduction band edge, Epq, +(K). So far, this state has
been assumed to be mainly characterized by the ds,2_,2 character, and hence without an orbital
moment. However, as we can see, this is true only for the Mo d part, whereas the S p component
does contain a finite chiral moment. On the other hand, the spin-orbit coupling associated with
the S atoms as well as with other chalcogenides (e. g., Se) is quite small, and taking into account
also the small orbital S weight, the possibility of a direct probe of such orbital moment is still
to be explored.
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3.3 Tight-binding description of the bulk system

In the previous Section we have examined in detail the content of the orbital character in the
main high-symmetry points of the Brillouin zone of the single-layer MoSs, to provide theoretical
constraints on the construction of a suitable TB model. Focusing on the low-energy excitations
close to the direct gap at the K point, we have seen that a proper model must take into account
at least the three Mo orbitals ds,2_,2, dy2_,2, dzy and the two S orbitals ps, py. On the other
hand, our wider aim is to introduce a TB model for the single-layer that would be the basic
ingredient for a TB model in multilayer systems, simply adding the interlayer coupling.

For the sake of simplicity, as in the previous Section, we focus here on the bulk MoSs structure
as a representative case that contains already all the ingredients of the physics of multilayer
compounds. The band structure for the bulk compound is shown in Fig. 3.4. As it is known,
the secondary maximum (C) of the valence band at the I' point is shifted to higher energies in
multilayer systems with respect to the single-layer case, becoming the valence band maximum.
At the same time, also the secondary minimum (D) of the conduction band, roughly at the Q
point, is lowered in energy, becoming the conduction band minimum. All these changes result
in a transition between a direct gap material in single-layer compounds to indirect gap systems
in the multilayer case. Although such an intriguing feature has been discussed extensively and
experimentally observed, the underlying mechanism has not been so far elucidated. We show
here that such transition can be naturally explained within the context of a TB model as a
result of an orbital selective (and hence momentum dependent) band splitting induced by the
interlayer hopping.

The orbital content of the bulk band structure along the same high-symmetry lines as in the
single-layer case is shown in Fig. 3.4. We focus first on the K point, where the single-layer system
has a direct gap. We note that the direct gap at K is hardly affected. The interlayer coupling
produces just a very tiny splitting of the valence band edge E,q, +(K), while the conduction
band edge Epq, 1 (K) at K becomes doubly degenerate.

Things are radically different at the I point. The analysis of the orbital weight ds,2_,2 in
Fig. 3.4 shows indeed that there is a sizable splitting of the E.q, 4 (I') level, of the order of 1 V.
A bit more difficult to discern, because of the multi-orbital component, but still visible, is the
splitting of the secondary minimum (D) of the conduction band in Q. This is clearly detected
by looking in Fig. 3.4 at the dy and dg characters, which belong only to the E block. One can
thus estimate from DFT a splitting of this level at the @ point of ~ 1.36 eV.

We are now going to see that all these features are consistent with a TB construction where
the interlayer hopping acts as an additional parameter with respect to the single-layer TB
model. From the TB point of view, it is clear that the main processes to be included are the
interlayer hoppings between the external S planes of each MoSs block. This shows once more
the importance of including the S p orbital in a reliable TB model. Moreover, for geometric
reasons, one could expect that the interlayer hopping between the p, orbitals, pointing directly
out-of-plane, would be dominant with respect to the interlayer hopping between p, and p,. This
qualitative argument is supported by the DFT results, which indeed report a large splitting of
the E.4, +(I') level at the I" point, with 27% of the p. component, but almost no splitting of the
degenerate Epq, +(I') at ~ 2 eV, with 68% component of p;, py.

We can quantify this situation within the TB description by including explicitly the interlayer
hopping between the p orbitals of the S atoms in the outer planes of each MoSs layer, with
interatomic distance d = 3.49 A (see Fig. 3.2). These processes will be parametrized in terms
of the interlayer Slater-Koster ligands Upps, Uppr. The Hilbert space is now determined by a
22-fold vector, defined as:

o = (d]1.9].), (3.23)
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where (52 , represents the basis (Eq. (3.9)) for the layer 1, and (/32 , the same quantity for the
layer 2. The corresponding Hamiltonian, in the absence of interlayer hopping, would read thus:

5 H 0
Hyue = ( 01 1, >, (3.24)

where H 1, Hy refer to the intralayer Hamiltonian for the layer 1 and 2, respectively.

Note that the Hamiltonian of layer 2 in the MoSy structure is different with respect to the
one of layer 1. From a direct inspection we can see that the elements Hs o (&, 7) of layer 2 are
related to the corresponding elements of layer 1 as:

Hy,05(6m) = PalpHia,5(€ =), (3.25)

where ¢ = kza/2, n = V/3kya/2, and P, = 1 if the orbital a has even symmetry for y — —y,
and P, = —1 if it has odd symmetry. We note that both effects can be re-absorbed in a
different definition of the orbital basis so that the eigenvalues of Hs are of course the same as
the eigenvalues of H.

Taking into account the inter-layer S-S hopping terms, we can write thus:

: H H
Hpu = <]§{1 i, >, (3.26)

where H | is here the interlayer hopping Hamiltonian, namely:

i = ( Igcos( IEOsmg‘>’ (3.27)

—fgo sin ¢ Io cos ¢

where ¢ = k,c/2 and

o O3x3  Osxs
I = N 2 3.28
e = (g M), (3.29)
2 02><2 62><3
In = N 2 3.29
o = (gr2 ), (329)
2 03><2 03><3
I = ~ n 3.30
FO (om il ) (3:30)
~ Im/x Iz/y Ix/z
I = Igc/y Iy/y Iy/z (3.31)
I:c/z Iy/z Iz/z

The analytical expression of the elements I,/g as functions of the Slater-Koster interlayer
parameters Uppg, Uppr is provided in Appendix B. Note that, in the presence of interlayer hopping
in the bulk MoSs, we cannot divide anymore, for generic momentum k, the 22 x 22 Hamiltonian
in smaller blocks with even and odd symmetry with respect to the change z — —z. The analysis
is however simplified at specific high-symmetry points of the Brillouin zone. In particular, for
k. =0 (¢ =0), we can easily see from Eq. (3.27) that the block 12 x 12 (6 x 6 + 6 x 6) with
even symmetry and the block 10 x 10 (5 x 5+ 5 x 5) with odd symmetry are still decoupled.

Exploiting this feature, we can now give a closer look at the high-symmetry points.
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3.3.1 T point

In Section 3.2 we have seen that at the I' point the Hamiltonian can be decomposed in 2 x 2
blocks. Particularly important here is the block H.q4, whose upper eigenvalue E. 4, 4 (I"), with
main orbital character ds,2_,2 and a small p, component, represents the secondary maximum
(C) of the valence band. A first important property to be stressed in bulk systems is that,
within this (Mo 4d)+(S 3p) TB model, the interlayer coupling at the I" point does not mix any
additional orbital character. This can be seen by noticing that the interlayer matrix I is diagonal
at the I" point. Focusing on the E.4,(I") levels, we can write thus a 4 x 4 reduced Hamiltonian
(see Appendix C):

Lo V2l 0 0
N V2T .4 re 0 I
H,, = #do z ” .32
zdo 0 0 FO \/ﬁrzdo ) (3 3 )
0 Fzz \@deo FE

where I',. represents the interlayer hopping mediated by Ups, Uppr between p, orbitals be-
longing to the outer S planes on different layers. Eq. (3.32) is important because it shows the
correctness of the qualitative idea that each energy level in the bulk system is just split by the
interlayer hopping. In particular, under the reasonable hypothesis that the interlayer hopping
is much smaller than intralayer processes, denoting E.q, +4(I"), E.q,+5(I") the two eigenvalues
with primary dyp components, we get:

AEde,Jr(F) = Ezdo,Jra(F) - Ezdo,er(F)

[o—TE

Iy —TE\?
2\/<2> + 2l

[ Io—TF ]
—1].
_Ezd0,+(F) - Ezdo,—(r)

A similar situation is found for the other 2 x 2 blocks H,g, (T), de1 (T"), and the 1 x 1 block
H,(T'). Most important, tracking the DFT levels by means of their orbital content, we can

-1

Q

FZZ

= T.. (3.33)

note that both levels E, 49 +(I') and E,49—(I') undergo a quite large splitting ~ 1.2 €V, and the
level E,(I") a splitting ~ 2.6 eV, whereas the levels Hyq,(I"), Hpq, (I') are almost unsplit. This
observation strongly suggest that, as expected, the interlayer hopping between p,, p, orbitals is

much less effective than the interlayer hopping between p,.

3.3.2 K point

A similar conclusion can be drawn from the investigation of the energy levels at the K point,
although the analysis is a bit more complicated.

The properties of the bulk system at the K point are dictated by the structure of the interlayer
matrix / which, in the basis defined in Eq. (3.23), at the K point reads:

) Ky Ky iKp.
Ies(K) = | iK,py —Kp Kp. |- (3.34)
iK,, K. 0

As discussed in detail in Appendix C, the electronic structure is made more transparent by
using an appropriate chiral basis, which is a direct generalization of the one for the single-layer.
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We can thus write the even and odd parts of the resulting Hamiltonian in the form:

R Hpzdos (K) A 0 0
Hg(K) = 0 Hyzdq, (K) R 0 ) (3.35)
0 0 Hyi, 5 (K)
) Hp.a(K) 0 0
HO(K) = 0 szd1 (K) R 0 ) (336)
0 0 Hp, 0(K)
where
Ko —2iKpg, 0 0
N 2K g KE 0 V2K
Hp2d02 (K) = Op 0 Op K2 2K2dpz bl (337)
2
0 —iv2K,, 2K.,, KEF
K V8K pay 0 0
5 —iV8K g KE 0 2K
H K — baz P pp .
de,E( ) 0 0 K2 7/\/§Kpd2 9 (3 38)
0 2Ky,  —iV8Kpa, — Kp
K1 —2iK. 0
Hp.a (K) = 2iK,q, K° 0o |, (3.39)
0 0 KD
Kl \/ngd1 0 0
N V8K K9 0 2K
H K) = pa p PP 3.40
pd170< ) 0 0 Kl \/éKpdl ( )
0 2Ky, V8Kpe, KD

We can notice that Eq. (3.38) has the same structure as Eq. (3.32), with two 2 x 2
degenerate sub-blocks hybridized by a nondiagonal element (K, in this case). This results
in a splitting of the single-layer levels Epg, +(K) — Epdy +a(K), Epdy +6(K), Epay—(K) —
Epdy,—a(K), Epgy —(K). The two levels Epg, +0(K), Epg,+5(K), by looking at their orbital
character, can be identified in DFT results in the small splitting of the (B) Epq, +(K) level,
confirming once more the smallness of the interlayer p,, JyPa/y hopping.

Less straightforward is the case of the 4 x 4 block ﬁpzdm (K) where the hybridization term
\/§sz mixes two different 2 x 2 sub-blocks, ﬁpdo and H »d,- 10 this case, a mixing of the orbital
character will result. We note, however, that the block flpdeQ(K ) appears twice in Eq. (3.35),
so that each energy level will result doubly degenerate, in particular the minimum (A) of the
conduction band at K. Note, however, that the negligible shift of such energy level in the DFT
calculations with respect to the single-layer case is an indication that also the interlayer hopping
element K., between p. on one layer and p,, p, on the other one, is negligible.

3.3.3 Q point

An analytical insight on the electronic structure at the Q point was not available in single-
layer systems and it would be thus even more complicated in the bulk case. A few important
considerations, concerning the minimum (D) can, however, be drawn from the DFT results.
In particular, we note that in the single-layer case this energy level had a non-vanishing p,
component. As we have seen above, the interlayer hopping between p, orbitals appears to be
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dominant with respect to the interlayer hopping between p,, and p,,, and with respect to the
mixed interlayer hopping p.-p,/,. We can thus expect a finite sizable splitting of the (D) level,
containing a finite p, component, with respect to the negligible energy shift of £, + (A), which
depends on the mixed interlayer process K.

3.4 Fitting of the tight-binding model to DFT calculations

In the previous Sections we elucidated, using a TB model, the orbital character of the band
structure of MoSs on the main high-symmetry points of the Brillouin zone. We have shown
how a reliable minimal model for the single-layer case needs to take into account at least the
Pz, Dy orbitals of the S atoms in addition to the 4d orbitals of Mo. A careful inspection of the
electronic structure shows also that the band edges at the K point defining the direct band gap
in the single-layer case are characterized not only by a chiral order of the d Mo orbitals, as
experimentally observed, but also by an entangled chiral order of the minor component of the
Pa/y S orbitals.

An important role is also played by the p, orbitals of the S atoms. In single-layer systems,
the p, orbital character is particularly relevant in the (C) state, characterizing a secondary
maximum in the valence band at the I' point, and in the (D) state, which instead provides a
secondary minimum in the conduction band at the Q point.

The p, component becomes crucial in multilayer compounds, where a comparison with DFT
results shows that the interlayer coupling is mainly driven by the p,-p. hopping whereas p, /-
Pa/ys P=~Pr/y are negligible. This results in an orbital-selective and momentum-dependent inter-
layer splitting of the energy levels, being larger for the (C) and (D) states and negligible for (A)
and (B). This splitting is thus the fundamental mechanism responsible for the transition from a
direct (A)-(B) gap in single-layer compounds to an indirect (C)-(D) gap in multilayer systems.
Controlling these processes is therefore of the highest importance for electronic applications.
Note that such direct/indirect gap switch is discussed in terms of the number of layers. On the
other hand, the microscopic identification of such mechanism, which is essentially driven by the
interlayer coupling, makes it possible to understand on physical grounds the high sensitivity to
pressure/strain effects, as well as to the temperature, via the lattice expansion.

Therefore, we have developed a tight-binding model with the minimal basis in order to be
able to describe TMDCs systems with variable number of layers. As in graphene and other
graphenic materials, it is interesting to have this kind of simple TB model since then you can
apply it in order to, for example, study and perform transport calculations in large systems.
Although in the case of graphene the model is much simpler, we have shown that this is a model
in which we can rely eventually to study the aforementioned properties.

Finally, in order to make the TB useful, we have performed a fitting procedure to determine
the TB parameters that best reproduce the DFT bands within the model defined here. The task
was divided in two steps: i) we first focus on the single-layer case to determine the relevant Slater-
Koster intra-layer parameters in this case; ii) afterwards, keeping the intralayer parameters fixed,
we determine the interlayer parameters. To this purpose we employ a simplex method'®! to
minimize a weighted mean square error between the TB and DFT band energies, that is:

N

2
fwMSE - Z sz(k) [EzTB(k) - GZDFT(k)] 9 (341)
i=1 k
where ePF7 (k) is the dispersion on the ith band of the 11-band block under consideration,
e/'B(k) is the corresponding TB description and w;(k) is a band/momentum resolved weight
factor which can be used to give more weight to particular k regions or over selected bands. In
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Figure 3.6: Comparison between the DFT band structure (black dots) and the best fit TB model (red
solid lines) for single-layer (top panel) and bulk MoSs (bottom panel).

spite of many efforts, we could not find a reliable fit for the whole electronic structure including
the seven valence bands and the four lowest conduction bands.! As our analysis and our main
objective concerns the description of the valence and conduction bands that define the band
gap of these systems, we focus on finding a set of parameters that describe properly these
bands. Since both the lowest conduction and highest valence band belong to the electronic
states with even z — —z symmetry, the fit was performed in the 6 x 6 orbital space defined by
this symmetry. In addition, due to the degeneracy at the I' point and to the band crossing along
the I'-M direction, the two conduction bands with even symmetry for z — —z were considered
in the fit. Additionally, we give a larger weight to the (A)-(D) band edges in order to obtain a
better description of the most important features of the band structure.

Our best fit for the single-layer case is shown in the top panel of Fig. 3.6 (where only the
TB bands with even symmetry z — —z are shown), compared with the DFT bands. The
corresponding TB parameters are listed in Table 3.2. Note that, due to the restriction of our
fitting procedure to only some bands belonging to the block with even symmetry, the atomic
crystal field Ay for the Mo orbitals d., dy. (not involved in the fitting procedure) results
undetermined. The fit reported in Fig. 3.6 agrees in a qualitative way with the DFT results,
showing, in particular, a direct gap at the K point ((A) and (B) band edges) and secondary band
edges for the valence and conduction bands lying at the I' (C) and the Q point (D), respectively.
Finally, we also generalize these results by including also the crystal field A1, obtained by fixing
the minimum of the conduction band at K of the electronic bands belonging to the odd block to
the same energy of the DFT calculations.

Turning now to the bulk system, the further step of determining the interlayer hopping
parameters Uppo, Uppr, is facilitated by the strong indication, from the DFT analysis, of a
dominant role of the interlayer hopping between the p, orbitals and a negligible role of the
interlayer hopping between the p,/, orbitals. Focusing on the I' point, these two different

LA good fitting agreement with DFT data was shown in the work by Zahid and coworkers,102 but using a
larger, non-orthogonal basis set, and involving up to 96 fitting parameters.
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MOS2 W82

Crystal Fields Ag -1.512 -1.550
Aq 0.419 0.851

Ag -3.025 -3.090

A, -1.276 -1.176

A, -8.236 -7.836

Intralayer Mo-S Vido -2.619 -2.619
Vopdr -1.396 -1.396

Intralayer Mo-Mo Vido -0.933 -0.983
Vidr -0.478 -0.478

Vids -0.442 -0.442

Intralayer S-S Vopo 0.696 0.696
Vopr 0.278 0.278

Interlayer S-S Uppo -0.774 -0.774
Uppr 0.123 0.123

Table 3.2: TB parameters for single-layer MoSs (A, V,,) as obtained by fitting the low energy conduc-
tion and valence bands. Also shown are the inter-layer hopping parameters U, relevant for bulk MoSs.
All hopping terms V,, U, and crystal fields A, are in units of eV. The parameters for WS, are also
shown for completeness.

hopping processes are parametrized in terms of the corresponding interlayer parameters I',, and
I'pp, as discussed in Appendix C. We can thus approximate I',, = 0, providing a constraint
between Uy, and U,,r, and leaving thus only one effective independent fitting parameter: I',..
We determine it, and hence Upp, and Uy, by fixing the effective splitting of the E.q4, 4 (') level
as in the DFT data. The values of Upp, and Upp, found in this way are also reported in Table
3.2, and the resulting band structure in the lower panel of Fig. 3.6, where only the TB bands
with even symmetry z — —z are shown. We stress that the intralayer hoppings are taken from
the fitting of the single-layer case. The agreement between the DFT and the TB bands is also
qualitatively good in this case. In particular, we would like to stress the momentum/orbital
selective interlayer splitting of the bands, which is mainly concentrated at the I' point for the
valence band and at the Q point for the conduction band. This yields to the crucial transition
between a direct gap in single-layer MoSs, located at the K point, to an indirect gap I'-Q in
multilayer systems.

On more quantitative grounds, we can see that, while the interlayer splitting of the conduc-
tion level E.q, +(I') is easily reproduced, the corresponding splitting of the conduction band at
the Q point is considerably underestimated in the TB model (0.20 eV) as compared to the DFT
data (1.36 e€V). This discrepancy is probably due to the underestimation, in the TB model, of
the p, character of the conduction band at the Q point. As a matter of fact, the set of TB
parameters reported in Table 3.2 gives at the Q point of the conduction band, for the single-
layer case, only a 3.8% of p, orbital character, in comparison with the 11% found by the DFT
calculations. It should be kept in mind, however, that the optimization of the TB fitting param-
eters in such a large phase space (12 free parameters) is a quite complex and not unambiguous
procedure, and other solutions are possible. In particular, a simple algebraic analysis suggests
that an alternative solution predicting 11% of p, character at the Q point would yield to a corre-
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sponding splitting of the order of 1.2 eV, in quantitative agreement with the DFT data. A more
refined numerical search in the optimization of the TB parameters, using global minimization
techniques, might result in better comparison with the DFT results and further work along this
line should be of great interest.

3.5 Spin-orbit interaction and the tight-binding Hamiltonian

In this Section we present the analytical structure of the TB Hamiltonians for single-layer and
bulk TMD MXs compounds including the spin-orbit (SO) interaction. Specific parameters for
realistic materials will be provided in the next Section, as well as a discussion of the physical
consequences of the spin-orbit coupling (SOC).

3.5.1 Single-layer case

In the context of the TB model introduced in the previous Sections, we include the spin-orbit
coupling term in the Hamiltonian by means of a pure atomic spin-orbit interaction acting on
both the metal and chalcogen atoms. Explicitly we consider here the SOC given by:

a0 =3 Aag Sa, (3.42)

where )\, the intra-atomic SOC constant, depends on the specific atom (a = M, X). L, is the
atomic orbital angular momentum operator and S, is the electronic spin operator.t93-105 Tt ig
convenient to use the representation

. Mo (LFS; +L;8H ...

=% = (“ e LAST ) (3.43)

a

where (omitting now for simplicity the atomic index a):

- 0 1 A 0 0 .. 1/1 0
S+:<O 0>’ S :(1 0>, S:2<0 _1>. (3.44)

In a similar way, the orbital angular momentum operator L acts on the states |l,m) as
LE|,m) = /Il +1) —m(m=£1) |l,m+1),
L*|l,m) = hm |l,m), (3.45)

where [ refers to the orbital momentum quantum number and m to its z component.
We choose the orbital basis set in the following manner:

) = |1, o>
pe) = .fnl 1) — [1,-1)]
py) = %n 1) +[1,-1)]
|d3z277"2> = |2 0)
dys) = }[\2 1) — [2,-1)]
|dyz> = EH 71>+’2a_1>]
dya_ ) = \}nz 2) + |2, -2)]
doy) = ——=12,2) — |2, ~2)] (3.46)

S
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As in the case without SOC, we further simplify the problem by introducing the aforementioned
symmetric (S) and antisymmetric (A) combination of the p orbitals of the top (¢) and bottom
(b) X layers:

Pas) = jiupa,mpa,m,
Pan) = jiupa,»—pa,m. (3.47)

The total Hamiltonian, including the SO interaction for the single-layer, can be now written as

Hy1(k) = Hi (k) @ 1 + HP, (3.48)
where the SOC term lﬁIlS]? is
. MTT MN
SO __
Hy = ( Ao ) (3.49)
and where
R roo A
nee = | MEE Ooxs ) (3.50)
Osx6 M35
and

o A Sroc
NoT = (om »zo). (3.51)

MET  Osxs

Here we have chosen the spin notation ¢ =, (¢ =1) when o =1 ( 0 =]).

The different blocks Mgg, ]\2/8‘6, Agg, Mg%, that constitute the above 22 x 22 matrix,
are explicitly reported in Appendix D. We notice here that, in the most general case, the SO
interaction couples the E and O sectors of the 22 x22 TB matrix. Such mixing arises in particular
from the spin-flip/spin-orbital processes associated with the transverse quantum fluctuation
described by the first two terms of Eq. (3.43). The effective relevance of these terms can now be
directly investigated in a simple way. The explicit analysis of this issue is discussed in Section
3.5.4. We anticipate here that the effects of the off-diagonal spin-flip terms result to be negligible
for all the cases of interest here. This is essentially due to the fact that such processes involve
virtual transitions towards high-order energy states.3® At a very high degree of accuracy, we
are thus justified in neglecting the spin-flip terms and retaining in Eq. (3.43) only the spin-
conserving terms oc /\aﬁgﬁg An immediate consequence of that is that the even and odd sectors
of the Hamiltonian remain uncoupled, allowing us to restrict our analysis, for the low-energy
states of the valence and conduction bands, only to the E sector.

3.5.2 Bulk case

Once introduced the TB model for a single-layer in the presence of SOC, as in the case without
it (Section 3.3), it is quite straightforward to construct a corresponding theory for the bulk and
bilayer systems by including the relevant inter-layer hopping terms in the Hamiltonian.

Considering that the unit cell is now doubled, we can thus write the Hamiltonian for bulk
MXs in the presence of SOC in the matrix form:

Hpu(k) = Hy(k) ® 1s + Hiou, (3.52)
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which is a 44 x 44 matrix due to the doubling of the unit cell with respect to the single-layer
case discussed in Sec. 3.5.1.

Here ﬁ%lulk(k), which is given by Eq. 3.26, represents the spinless Hamiltonian for the bulk
system. We refer to Section 3.3 for further details of this matrix.

On the other hand, ﬁ%glk in Eq. (3.52) accounts for the SOC in the bulk system, and it can
be written as:

Mt o0 MY o0
: o MT o Mt
SO _
HBulk - M“ 0 MH 0 ) (3-53)

0 Mt 0 M

where we can recognize both the spin-diagonal (M 79) and spin-flip (M 79) processes induced by
the atomic spin-orbit interaction.

Eqgs. (3.52) and (3.53) provide the general basic framework for a deeper analysis in more
specific cases. In particular, as already mentioned above, the spin-flip terms triggered by SOC
can be substantially neglected for all the cases of interest. The total Hamiltonian (Eq. (3.52)) can
thus be divided in two 22 x 22 blocks ﬁgglk(k) related by the symmetry ffgulk(k) = flétlk(fk).
Further simplifications are available at specific symmetry points of the Brillouin zone (BZ). More
specifically, we can notice that for k&, = 0 the E and O sectors remain uncoupled. Focusing, at
low-energies for the conduction and valence bands, only on the E sector, we can write:

Hpukek, k. =0) = Hinpk) + Higwe (3.54)
where
f{E,I IE 0 0
ﬁf%lulk,E(k) = I(% Hg,z ffz; -f(l)a ) (3.55)
0 0 I Hgo
and
ML 0 0 0
f{%glk,E ! METE ’ 0 (3.56)

0 0 ML o |
0 0 0 Mg,

where the explicit expression of each block Hamiltonian is also reported in Appendix D.

3.5.3 Bilayer

The Hamiltonian for the bilayer can also be derived in a very similar form as in the bulk case.
In particular, we can write:

Hor (k) = Hjp(k)+ H5P. (3.57)

Since we are considering intrinsic SOC (purely local), ]fIQSI? is not affected by the interlayer
coupling. Therefore, we have ﬁQSI? = flg%k, where flgak is defined in Eq. (3.56).

On the other hand, similarly to the bulk case, the spinless TB term ﬁ;i (k) for the bilayer
case can be written as:

~ s ' Hj o
Ay (k) = (A’rl s (3.58)
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MOSQ WSz
AM 0.075 0.215
Ax 0.052 0.057

Table 3.3: Spin-orbit coupling A, for single-layer MoS, and WS, taken from the work by Liu et al.39

and Komider et al.196 Units are given in €V.

where now
~ 1 Ir  Iro
H ky = = A . . 3.59

Note that Eq. (3.59) can be obtained as a limiting case of Eq. (3.27) by setting {( = 7/4,
corresponding to the effective uncoupling of bilayer blocks.

3.5.4 TB parameters and comparison with DFT calculations

After having developed a suitable TB model with SOC for single and multi-layer MX, com-
pounds, we compare here, as in the case without SOC (Section 3.4) the band structure obtained
by the TB model to the corresponding band structure obtained from DFT methods. We are
guided along this task by the set of Slater-Koster TB parameters already presented in Section
3.4. Here, we also compare the case of WSg since W is a heavier atom and, therefore, the effect
of the SOC will be more noticeable. The only left unknown parameters are thus the atomic
spin-orbit constants Aj; and Ax for the transition metal and for the chalcogen atom, respec-
tively. We take the corresponding values from the works by Liu et al.3? and Komider et al.'9®
(see Table 3.3), and we recall Table 3.2 for the full set of TB parameters for the case without
SOC for MoSy and WSs. Therefore, we can compare the resulting band structure for the full
TB model in the presence of SOC, with corresponding first-principles results including also SO
interaction.

The representative band structure for monolayer MoSs and WSs, as well as for the bulk
counterpart, are shown in Fig. 3.7, for both DFT (dashed red lines) and TB calculations (solid
blue lines). We observe that the TB model with the set of Slater-Koster parameters provided
in Tables 3.2 and 3.3 leads to a reasonable fitting of the DFT band structure. In particular we
see that, for single layer samples (Figs. 3.7a and 3.7b) the edges of the valence band at K and
I, as well as the edges of the conduction band at K and @ (marked by a dot in Fig. 3.7a), are
properly captured by the TB model. The TB valence bands are less dispersive than the DFT
bands in the intermediate regions between high symmetry points.

As in Section 3.4, the TB band structure for bulk samples, shown in Fig. 3.7c and 3.7d, have
been obtained by adding only two extra Slater-Koster parameters, Upp, and Upyr, which account
for inter-layer hopping between p orbitals of the adjacent chalcogen atoms of different layers.
The obtained band structure for the valence band reproduce reasonably well the DFT band
structure, as well as the experimental band structure measured by ARPES,'07
for the direct- to indirect-gap transition when going from single layer to bulk materials. As for

and accounts

the conduction band, the minimum at K is also captured by the TB model, but the position of
the minimum at ) does not agree with DFT results. The inclusion of hopping terms between
M orbitals of different layers, as well as next nearest neighbour hopping terms, could improve
such fitting.? However, we notice that no experimental measurements of the conduction band

2We notice that the TB parameters used in this work lead to a trigonal warping of the conduction band which
is rotated /3 with respect to the DFT bands. This fact does not affect the results discussed here.
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Figure 3.7: Band structure of single-layer and bulk MoSs and WS; including SO interaction. Red
dashed lines correspond to DFT calculations and solid blue lines to TB calculations using the sets of
parameters given in Tables 3.2 and 3.3. The dot in panel (a) indicates the position of the minimum of
the conduction band, referred in the text as Q.

dispersion are available so far in the literature that could serve to validate the DFT and the TB
results presented here.

In addition to the above remarks, a fundamental advantage of the TB model with respect to
first-principles calculations is that it allows to investigate, in an analytical way, the relevance of
the microscopic underlying processes. We have already mentioned above how transverse spin-flip
fluctuations play here a marginal role and they can be disregarded, making the overall modeling
of the SO interaction extremely direct and simple. We can now explicitly address and quantify
this issue by comparing in the TB model the band structure obtained by using the full SOC
as described by Eq. (Eq. (3.43)) and the one obtained considering only the last spin-diagonal
terms ﬁgﬁg . The results are shown in Fig. 3.8, where we compare, for single-layer MoSs, the
total band structure (red dashed lines) obtained by considering the full spin-orbit interaction
(3.43) with the one obtained using the spin-conserving part (third term in Eq. (3.43)). As
we can see in Fig. 3.8a, there is an almost perfect agreement of the band structures for MoSs
obtained including and neglecting the spin-flip terms, demonstrating the negligible role of these
processes. The effect is still weak but more noticeable for the case of WSy (Fig. 3.8b), due to
the larger intra-atomic SOC associated to the heavier W atoms, as compared to Mo.
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Figure 3.8: TB band structure of single-layer MoSs (a) and WS, (b) including SO interaction. Red
dashed lines corresponds to the TB bands including the whole SO coupling terms. Black solid lines
correspond to the TB band structure including only the spin-conserving terms of the SO coupling.

Of special interest is the minimum of the conduction band at the K point of the BZ: here,
as discussed in the works by Liu et al.*®, Kosmider et al.1°® and Kormanyos et al.,'% the
competition between second order spin-flip processes associated with the transition metal atom
M and first order (spin-conserving) processes of the chalcogen atom X, are responsible for the
crossing/non crossing of the conduction bands in a very narrow region close to this K point.

3.5.5 Discussion

The TB model introduced in Sec. 3.5, for single-layer and multi-layer compounds, and the
specific Slater-Koster parameter discussed in Sec. 3.5.4 provide a comprehensive tool for the
study of the electronic properties and the entanglement between different degrees of freedom
(spin, orbital, valley, layer, lattice) in these compounds in the presence of a relevant spin-orbit
coupling acting both on the chalcogen X and on the transition metal atoms M. As we summarize
in the present Section, such physics results to be relevant not only for the valence bands, whose
band edge in the single layer materials is mainly built by the M orbitals dyy, dy2_,2 and d.2,
but also for the conduction band and for the secondary extrema of both conduction and valence
bands, whose energy can be effectively tuned by the interlayer coupling and by the SO interaction
itself.

3.5.5.1 Spin-polarized pockets in the Fermi surfaces

The role of the spin-orbit coupling on the spin-orbital-valley entanglement at the band edge at K
of the single-layer and bilayer compounds has been widely discussed in literature, using mainly
low-energy effective Hamiltonians focused on the role of the transition metal M d-orbitals and of
their corresponding spin-orbit coupling.3%:44:109-113 GQych scenario can be now well reproduced
by the present TB model and generalized to the whole BZ.

The SOC, in particular, is expected to be most relevant for the band edges of the valence
band at the K point, whose orbital content is mainly associated with the d;y and d,2_,» orbitals
of the transition metal. A large band splitting induced by the SOC is thus predicted in this
case. Such feature is indeed well captured by the TB model. In Figs. 3.9a and 3.9b we show the
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Figure 3.9: Fermi surfaces of MoSs, obtained from the TB band structure. Panels (a) and (c) correspond
to single-layer and panels (b) and (d) to the bulk. Top panels represent hole-doped systems, with the
Fermi energy in the valence band (at Er = —1.134 €V), whereas bottom panels represent electron-doped
systems, with the Fermi energy in the conduction band (Er = 0.95 €V). Energies are measured with
respect to the zero of the TB Hamiltonian. The hexagonal 2D BZ is shown in (c¢) by the black solid
lines. In the plots for single-layer systems, (a) and (c), solid blue and dashed black lines correspond to
Fermi surfaces with main S, =1 and S, =] polarization, respectively. All the Fermi surfaces of the bulk
system (panels (b) and (d)) are degenerate in spin.

Fermi surfaces obtained with the present TB model, including atomic spin-orbit coupling, for a
finite hole-doping probing the valence band of both single-layer and bulk compounds. In order
to point out the different physics occurring close to the different band edges at K and I' points,
we show here Fermi surfaces corresponding to a sizable negative Fermi energy cutting both edges
at K and I'. In particular, the central Fermi pocket located around I is spin degenerate, for both
single-layer and bulk systems since its orbital character is mainly due to the ds,2_,2 orbitals of
M and to the p, orbitals of X, both of them with L, = 0 (see Section 3.1). On the other hand,
as discussed in Section 3.1, the pockets around K and K’ are mainly due to the dy2_,2 and dgy
orbitals of the metal M (with |m| = 2), plus a minor component of p, and p, orbitals of the
chalcogen X (with |m| = 1). This results in a finite SOC splitting of the valence band at the K
and K’ points, due mainly to first order spin-orbit coupling on the d orbitals of M. Furthermore,
because of the lack of inversion symmetry in single layer samples (or in multi-layer samples with
an odd number of layers), the spin degeneracy is lifted, presenting an opposite spin polarization
on different valleys.?® This feature is well reproduced by our model and shown in Fig. 3.9a,
where Fermi surfaces with main S, =71 character are denoted by solid blue lines, while Fermi
surfaces with main S, =| character are denoted by dashed black lines. On the other hand,
the Fermi surfaces of hole-doped bulk MoSs, for the same Ep, are shown in Fig. 3.9b. Since
the maximum of the valence band for the bulk compound, because of the interlayer coupling,
is located at the I" point (see the band structure of Fig. 3.7¢), the central pocket in Fig. 3.9b
is considerably larger than in Fig. 3.9a for single layer samples. The double Fermi surfaces
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around the K and K’ points in Fig. 3.9b are spin degenerate, as imposed by inversion symmetry.
A recent set of ARPES measurements for MoS; and MoSes'' have shown the importance of
the SOC in the band structure, obtaining experimental constant energy contours in very much
agreement with those presented in Fig. 3.9a and 3.9b.

d,38:54,58,106,108,115 5 oin_valley coupling is present also

Although smaller and less notice
for the conduction band edge of the single-layer systems at the K and K’ points. It is important
to remind here that the orbital character in these points of the BZ is mainly associated with the
d3,2_,2 orbital (with m = 0) of the transition metal M, but with a finite contribution from the
Pz and p, orbitals of the chalcogen (with m = 1) (see Section 3.1). The spin-orbit coupling of
the chalcogen atom X, mainly through the diagonal term L5 S%, results thus in a smaller but
finite splitting of the conduction band edge, as it can be also inferred by the Fermi surfaces for
electron-doped single-layer compounds, as shown in Fig. 3.9¢. It is worth to stress that, although
the resulting spin-induced splitting can be quite small, the entanglement between band splitting,
spin and valley degrees appears to be quite strong, so that the lower band is 1 polarized and
the upper band | polarized (or viceversa, depending on the valley). Note also that, although
the atomic spin-orbit coupling due to the sulfur in MoSs or WSs is not very large, it can be of
importance for Se compounds (with a larger atomic mass than sulfur), as MoSes or WSey. The
role of the SOC on the chalcogen atom will be analyzed in more detail in Section 3.5.5.2.

Finally, we can note that, as previously discussed in the work by Zhu and coworkers3? using
first principles calculations, the SOC induces a finite band splitting in single-layer systems also
at the Q point, with a corresponding spin-polarization. Also, this feature is nicely captured by
our TB model in the presence of atomic SOC on both chalcogen and transition metal atoms, as
shown in Fig. 3.9¢, where we plot the Fermi surfaces of an electron-doped system with a Fermi
level cutting only the lower conduction band at Q. As we can see, the TB model is able not only
to reproduce the band splitting, but also to point out a strong degree of entanglement in this
point of the BZ, with Fermi pockets with a strong spin polarization, and with an alternating
polarization of the entangled spin/valley/orbital degrees of freedom along the six inequivalent
116 On the microscopic ground, we can notice that the main orbital character of the
conduction bands at the Q point is due to a roughly equal distribution of the d,2_,2 and dg

valleys

orbitals of the transition metal M, and of the p, and p, orbitals of the chalcogen atom X.
Given the presence of a large contribution from both p and d orbitals, we expect these states
to stem from a strong hybridization between X and M atoms, and hence to be highly sensitive
to uniform and local strains and lattice distortions.'? In addition, it should be kept in mind
that the minimum of the conduction band at Q becomes the absolute band edge in bilayer and
multilayer compounds (as well as in strained single-layer systems). These considerations thus
suggest that the minima of the conduction band at the Q point as the most promising states for
tuning the spin/orbital /valley entanglement in these materials by means of strain engineering!!?

or (in multilayer systems) by means of electric fields.36

3.5.5.2 Effects of the SOC at the chalcogen atom on the band structure

Most of the existing theoretical works have focused on the effects of the spin-orbit interaction
associated with the transition metal atom. Less attention has been paid, in general, to the
SOC induced by the chalcogen atom. As we have seen in the previous Section, however, the
role of the SOC can be remarkably relevant also at the @ point of the BZ, resulting in a
strong spin/orbital /valley entanglement also in this point, with the advantage to be extremely
sensitive to the M-X hybridization and hence to the lattice effects. In addition, since the
orbital content in this point is a mixture of d and p orbitals of the metal and the chalcogen
atoms, the spin-orbit coupling is expected to be significantly driven not only by the d-orbital of
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Figure 3.10: TB band structure of MoSs including SOC. Solid black lines corresponds to the TB bands
using Ao and Ag as given in Table 3.3. Red dashed lines in (a) corresponds to As = 0.052 ¢V and
AMo = 0. Red dashed lines in (b) correspond to Ay, = 0.075 €V and Ag = 0.

the transition metal M, but also by the p orbitals of the chalcogen X atom. TB models can be
quite useful to investigate this issue since we can easily tune the atomic SOC, keeping all the
remaining Hamiltonian (Slater-Koster) parameters fixed, which permits to isolate the effects of
the modified SOC without involving other structural and electronic changes. Figure 3.10 shows
the effect of removing the SOC on either the Mo or the S atoms for the case of the single-layer
of MoSy. While the splitting of the valence band at the K point is fully caused by the SOC on
the transition metal, the contributions to the splitting of the conduction band at Q from Mo
and S are comparable.

We can validate these findings by performing DFT calculations on the four compounds M X5
with M = Mo, W and X = S, Se (all of them done using the experimental structure). In the
DFT calculation, we can also turn on and off the SOC in a particular species, by removing
the SO component of the pseudopotential.!'® Fig. 3.11 shows the DFT results for the four
compounds, including the SOC on all the atoms, and removing this coupling on either the
chalcogen or the transition metal. In particular, the DFT results for MoSs shown in Fig. 3.11a
agree reasonably well with those of Fig. 3.10, signaling that the SOC splitting of the bands in
the sulfur compounds is dominated by the contribution due to the transition metal atom.

The importance of the SOC of the chalcogen atom is expected to be even more remarkable
for heavier atoms, such as selenium, instead of sulfur. In Figs. 3.11c and 3.11d we show the DFT
band structure for MoSey and WSes, isolating the contribution of the SOC due to the metal
and to the chalcogen atoms. As expected, we observe that a relevant contribution to the SOC
splitting of the bands is due to the Se atom. This can be seen by a noticeable splitting of the
blue lines in Figs. 3.11c and 3.11d (for which the SOC due to the metal M has been switched
off) which is governed by the SO interaction of the Se atoms. Interestingly, this effect is not
relevant only at the Q point of the conduction band, but also at the K point of the valence band,
for which the orbital weight of the p, and p, orbitals of Se is only ~ 20% (see Section 3.1). We
conclude that, although for the MoSy and WSs the effect of the SOC of the chalcogenides does
not have much effect on the band structure, when S is changed by Se, the effects is much more
noticeable.



38 Chapter 3. Minimal TB model for TMDCs

Figure 3.11: DFT band structure of the four compounds MoSs, WSs, MoSe, and WSes. Black circles
show the results when the SOC on all the atoms are included. Red (blue) lines correspond to the removal
of the SOC on the chalcogen (transition metal) atoms.
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Figure 3.12: Band structure of bilayer MoSy and WS obtained from DFT calculations. The combined
effect of inter-layer hopping and spin-orbit interaction drives the minimum of the conduction band to
the Q point, and the maximum of the valence band to the T' point (see text)

3.5.5.3 Spin-Valley-Layer coupling in Bilayer MX,

Of special interest is the case of bilayer TMDCs, corresponding to a stack of two single layers
in-plane rotated by 180° with respect to each other, such that the transition metal atoms of one
layer are above the chalcogen atoms of the other layer. The two layers are bound by means of
weak van der Waals interactions. The inter-layer hopping of electrons between different layers
leads to a strong modification of the band structure, driving a transition from a direct gap
semiconductor in single-layer systems to an indirect gap semiconductor in bilayer and multi-
layer compounds (see Section 3.3). The inter-layer hopping links mainly the p orbitals of the
chalcogen atoms X of different layers. The result of this hopping is a splitting of the maximum
of the valence band at the I' point, which becomes the absolute valence band edge, as well as
a splitting of the minimum of the conduction band at the Q point which becomes the absolute
minimum of the conduction band. This situation is shown in Fig. 3.12, where we report the
band structure of bilayer MoSy and WS calculated by DFT methods. A qualitative similar
feature is observed also in other bilayer compounds, as MoSes or WSes.

Contrary to single-layer MXa, the bilayer presents point-center inversion symmetry.36-41,119
Therefore, as we have discussed for the bulk case, the corresponding band structure remains spin
degenerate even in the presence of SOC. However, since the SOC Hamiltonian does not couple
orbitals of different layers, each single band preserves a finite entanglement between spin, valley
and the layer index. Such spin-valley-layer coupling has been discussed in the work by Gong

119 where the authors focused on the relevance of this effect at the K point of the

and coworkers,
valence band. Here we notice that the same effect occurs also for the conduction band, and it
can be thus relevant for electron-doped samples. Indeed for slightly electron-doped bilayer MoSs
and WSy the Fermi surface presents six pockets centered at the inequivalent Q valleys of the
BZ, and no pockets at the K and K’ valleys. Interestingly, the SOC for the TMDC families with
stronger spin-orbit interaction, like WSy and WSes, can be larger than the inter-layer hopping,
enhancing the spin/layer/valley entanglement. Then, although inversion symmetry forces each
Fermi pocket to be spin degenerate, the layer polarization makes that each layer contributes with
opposite spin in alternating valleys. This property can be of interest for valleytronics devices: by
partially filling only one of the two subbands at the Q point of the conduction band, one would
have a situation in which the upper layer contributes to three of the six valleys with spin-T,
and with spin-] to the other three valleys, whereas the opposite contribution is inferred from

the bottom layer. This spin-valley coupling scenario resembles that of single-layer and bilayer



40 Chapter 3. Minimal TB model for TMDCs

MX, discussed in the literature,3%:36:41,119 hyt for electron-doped samples, which is the kind of
doping most commonly reported for those materials. Although we have focused in this Section
in the most simple multi-layer compound, which is the bilayer M X5, the physics discussed above
applies also to any multi-layer TMDCs with an even number of layers, because they contain the
same symmetry properties as that of bilayer M X5 discussed here.

3.6 Conclusions

In this Chapter we have provided an analytic and reliable description of the electronic properties
of single-layer and multi-layer semiconduting transition-metal dichalcogenides in terms of a suit-
able tight-binding model. We have shown that the band structure of the multilayer compounds
can be generated from the TB model for the single-layer system by adding the few relevant
interlayer hopping terms. The microscopic mechanism for the transition between a direct-gap
to an indirect-gap from single-layer to multi-layer compounds is thus explained in terms of a
momentum /orbital selective interlayer band splitting, where the orbital p, component of the
S atoms plays a central role. After developing the model, we found a set of tight-binding pa-
rameters that fits our previously calculated DFT band structure. Therefore, the present work
provides a suitable basis for the inclusion of many-body effects within the context of Quantum
Field Theory, for the analysis of local strain effects related to the modulation of the M-X, M-M
and X-X ligands as well as the possibility of performing transport calculations of large samples.
It is worth mentioning that this TB model is the minimal one that can reproduce the change of
character of the gap from direct to indirect when changing the number of layers and, although
more complicated, it should be as useful as the TB models developed for other 2D materials
such as graphene.

Also, we have studied the effect of SOC in the band structure of TMDCs. We have extended
the TB model including the SO interaction for both single-layer samples and multi-layer samples.
The band structure obtained from the TB model has been, as in the case without SOC, compared
to DFT calculations for MoS, and WS,. Based on the orbital character at each relevant point
of the Brilloin zone, we have discussed the origin and main features of the SOC at the different
band edges. In particular we have found that, for the cases of interest here, spin-flip processes are
negligible in the SOC Hamiltonian. This allows to highly simplify the model, making possible
to construct a reduced TB Hamiltonian which contains the orbital character and SOC which is
relevant for the description of the system around the gap. Special attention has been paid to
the role of the SOC associated to the chalcogen atom. In fact, whereas most of the previous
works have focused on the SOC associated to the metal atom (which is indeed the responsible
for the large splitting of the valence band at the K point), here we have shown that the SOC
associated to the chalcogen atom may be important at the ) point of the conduction band,
especially for MoSes and WSes. Furthermore, we have considered the effect of SOC in bilayer
TMDCs. Whereas for single-layer M X5 inversion asymmetry leads to spin-valley coupling, the
band edges of bilayer TMDCs are spin degenerate. However, since inter-layer hopping conserves
the spin, the spin physics can be exploited in bilayer MXy due to spin-valley-layer coupling.
Whereas this issue has been recently studied in detail for hole-doped samples,*1® here we have
argued that a similar effect can be expected for slightly electron-doped samples.



CHAPTER 4
Transition metal dichalcogenides as
substrates for graphene

As stated in Chapter 1, the discovery of graphene and its promising properties for electronics
(high mobility, stability, surface area, etc.), made a huge boost in the community towards the
creation and manipulation of 2D materials. Furthermore, building devices that contain such
materials emerged as an important topic in the scientific community.

One of the most interesting devices are the field effect transistors (FETs). Due to the high
mobility and extreme atomic thickness, graphene seemed as a perfect candidate in order to
replace "old"-Silicon-based technology. But, due to the fact that it is a semimetal (does not
have a band gap) and that it has a linear dispersion around the K-point, we cannot make
an efficient on/off switch. Therefore, a trend towards the opening of a band gap in graphene
emerged in the graphene community. One of the first approaches was to put graphene on top of
a substrate to see whether the electronic properties changed or not and, therefore, the study of
graphene interacting with a substrate became very important.

SiOs is one of the first and most commonly used substrates, but the inhomogeneties make
this material not very suitable for this purpose.!?? As we said, due to the huge improvement in
the characterization and the manipulation of graphene, these techniques could be used in other
materials. One of them was BN, an hexagonal lattice of B and N that was first isolated in 1997
by Suenaga et al.'?! The huge gap (5.97 eV'22) and small lattice mismatch between graphene
and BN (2%)'23 made it a suitable material to be combined with graphene. Although first
theoretical studies found that the gap of graphene deposited on BN was of about 53 meV,123 it
was found later that this gap was due to the commensurability of the system. When building
a Moiré lattice, the gap became much smaller. If the system is incommensurable the gap will

124 wwere they found that

disappear.2? This issue was addressed recently by Jung and coworkers
an actual gap appears in systems with graphene on top of a BN layer and they were able to
explain the experimental results obtained in this kind of systems.

As we said in Chapter 1, in 2010 Mak and coworkers® found that a single-layer of MoS, was
a direct-gap semiconductor. Also, other transition metal dichalcogenides (TMDCs) such as WSy
presented the same property. Since then, much work has been done concerning these materials
in the past years.'® Even new FET architectures such as the ones used in the works by Britnell
et al.” and Georgiou et al., show that actual transistors could be implemented with BN, MoS
and WSy. In fact, they showed that a better performance of the devices was achieved when
having four or five layers. Therefore, a theoretical study of graphene on these materials could
be interesting. Since there are many studies from the past few years about BN as a substrate
for graphene, we will focus in the TMDCs.

In this Chapter, we will study the structure and electronic properties of devices where
TMDCs are used as substrates for graphene. Since TMDCs present a change in the band
structure from an indirect gap to a direct gap when changing the number of layers (from n
layers to 1 layer) it is also interesting to see whether the properties of the system change with
the number of layers.

We will focus on the case of WSs, but the main conclusions should be general for other
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b)

Figure 4.1: (a) Top view of the 1G/nWS; structures. (b) Side view of the 1G/5WS,, to build the
different studied cases we just need to "cut" the sytem by the red (n = 1), blue (n = 2), green (n = 3)
and orange (n = 4) line.

dichalcogenides of the type M Xy (M=Mo, W, X=8, Se).

4.1 WS, /graphene structure

In this Section, we describe the WSq /graphene structures that we will study. We build a supercell
of 5 x 5 unit cells of graphene on top of a supercell of 4 x 4 unit cells of n-WSs layers (n being
the number of layers, see Fig. 4.1). Graphene is scaled to the experimental lattice parameter of
WS, (3.153 AHS) and both layers are aligned with respect to each other. Although other Moiré
patterns could have been chosen, with this structure we already have a small lattice missmatch
(2.5%) and the systems are computationally manageable. We change the number of WS, layers
to study how it affects the electronic structure properties of the interface using the usual stacking
for these materials (that is, ABABAB, see Fig. 4.1b). We also see how the relaxation of the
system affects the properties that we want to study. This is interesting since we could save a
lot of computational time if there were no appreciable changes between the relaxed and initial
structure. If there are no differences, as we will see in the following Sections, we can avoid the
relaxation process when we add more layers to the system.

First of all, we have to find the optimal distance between graphene and WSy. To do so we
plot the energy vs. interlayer distance which is shown in Fig. 4.2a. In this Figure we can see
that bringing the two surfaces together increases the energy due to the repulsive forces between
them. If we start separating them we find that the energy starts to decrease until it reaches
a shallow minimum (which will be the optimal distance) and finally further separating both
surfaces will increase a little bit the energy until it stabilizes. To do these calculations, we use
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Figure 4.2: LDA (a) and GGA (b) calculations of the energy vs. interlayer distance.

the system with a monolayer of graphene on top of one layer of WS, and we do a calculation
changing each time the distance from the last plane of sulphur atoms to the graphene layer.
From this graph we obtain a value of 3.30 A which is in good agreement to other TMDCs hybrid
structures such as graphene on MoSs'%6 and MoSey.127 This distance will be used for all the
systems that we build in the following Sections. It is important to note that we are using LDA
in a system in which the bonding between layers is supposed to be of van der Waals character.
Previous experience with this kind of layered systems indicates that LDA provides a reasonable
description of the distance between layers and even the bonding energy. However, this result
is not due to the right reason (the non-local correlation that yields the dispersion interaction,
which is missing in LDA functionals), but to the tendency of LDA to overestimate the binding
from the superposition of the charge densities of the two layers. This can be easily checked if
one performs the same calculation using GGA functionals. These do not show this tendency to
overestimate the tendency to overbind, but also lacks the dispersion interactions, and therefore
GGA results typically do not show any binding for van der Waals systems. This is actually
shown in our case, as we can see in Figure 4.2b, where we see that the interaction between
graphene and WS, obtained with GGA is purely repulsive (there is no minimum in the energy
versus distance curve). Although other schemes exist to add the dispersion energies on top of
the GGA results (like the so-called Grimme functional’?®), or specific DFT functionals that

include the van der Waals interaction2? (

which are usually based on further corrections to a
GGA calculation), all these typically do not change significantly the description of the electronic
structure (band structure) and chemical bonding provided by GGA, but only provide the missing
non-local correlation energies to provide a minimum of the energy versus distance curves, and
the corresponding binding between the layers. Here, as in many other works in this topic, we
take a more pragmatic approach, and use the LDA results (which provide a good description of
the binding curve), but taking care of checking that the resulting electronic structure, charge
redistribution, dipole moments, etc. are not an artifact of the LDA functional, but that they
are robust and hold when the calculations are done using GGA (for the same distance between
the graphene and WSy layers). We will show this in Section 4.2. Therefore, we can be confident
that our results are qualitatively correct.

Going back to the results obtained with LDA, we can calculate the adsorption energy, Fq4s,
with the total energy obtained in the calculation at the optimised distance, as:

Eois = Enwso—c — Enws, — B, (4.1)

where Enws,—c, Enws, and Eg are the total energies of the total system with n-WSa layers,
the isolated n-WSs layers and graphene monolayer, respectively.
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In the case of n = 1 we have that E,4s = 31 meV per carbon atom which is also similar to
previous works of other TMDCs as graphene on MoS2'26 and MoSey.127

All these calculations were made with the atoms with fixed positions, using the experimental
lattice constant of WSs, adapting graphene to that lattice constant and also, the interlayer
distance was fixed to its calculated optimal value. Therefore, it is important to study whether
the properties of such structures vary when relaxing the system because, if they are the same, we
can save a lot of computational effort just by fixing their positions to the aforementioned ones.
In the initial structure, the WSq layer will break the symmetry of the graphene layer and all the
carbon atoms will no longer be equivalent, inducing local electrostatic forces over each carbon
atom. Therefore, the relaxation process could result in a displacement of the atoms. The result
of such relaxation is that there is a small corrugation of the graphene layer of about 0.065 A.
Therefore, the distance between graphene and the top sulphur layer changes from 3.30 to 3.327
A. Tt is important to note that the adsorption energy does not change qualitatively due to this
relaxation. This is also in good agreements with previous works.126:127

Adding more WSy layers to the system (n = 2 to 5), with the distance between graphene
and WSy taken from the optimised value in the case n = 1, does not change significantly the
adsorption energies per carbon atom. Furthermore, doing the same relaxation procedure as in
the n = 1 case for the n = 2 case, we find again that the adsorption energies, corrugation and
interlayer distance also do not change notably. Moreover, as we will see in the following Section,
when comparing the electronic properties such as the band structure of the systems before and
after the relaxation, we find that no change is noticeable.

Therefore, after all these results, we can be confident that the calculations will not change
quantitatively with relaxation and we can avoid this procedure for the case of n > 2, which
otherwise would be very expensive computationally.

4.2 Electronic properties of the n-WS,/graphene hybrid struc-
tures

In this Section we are going to study the electronic properties such as the band structure and
how the charge redistributes in such system, creating a dipole moment in the interlayer of the
hybrid structure of one graphene layer on top of a WS, monolayer. Afterwards, we will see how
these properties are affected by the variation of the number of WSs layers.

4.2.1 Band structure

As in the case of the structural description, we will start studying the case of n = 1, that is, we
will have a layer of graphene on top a WSs monolayer (see Fig. 4.1).

In Fig. 4.3c, we show the band structure for the 1G/1WSs. We can see that the characteristic
Dirac cone of graphene and the lineal dispersion around that point are preserved (for clarity, the
band structure for the case of the isolated graphene is shown in Fig. 4.3a). This is in accordance
with the work on G/BN structures by Bokdam et al.120 and in the case of graphene on metal
substrates with low interaction between them, as in the case of the work by Khomyakov et al.'3°
where they find that the interaction with the substrate does not change essentially the electronic
properties of graphene. Also, it is worth noting that the band structure of the WSy layer does
not change appreciably from the isolated case, just as in the case of graphene (see Fig. 4.3b
for the band structure of a WSy monolayer). On the other hand, a zoom at the region around
the Dirac point of Fig. 4.3c¢ (which we do not plot), would show that a small gap of about 0.1
meV opens at the Dirac point. A similar gap has been reported previously in studies with other

materials used a substrate such as the works by Bokdam et al.'?9 and Ma and coworkers.126:127
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Figure 4.3: Band structures of the isolated graphene layer (a), of the WS, isolated layer (b) and the
1G/1WS; structure (c).
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Figure 4.4: Band structure for the 1G/1WS; structure before the relaxation process (a) and after the
relaxation process (b).

As in the previous Section, it is important to compare with the case where we relax the system,
which we show in Fig. 4.4, where we can see that there is no appreciable change between both
band structures. Furthermore, no appreciable change is observed when calculating with GGA
the same system at the optimised distance between layers obtained with LDA.

In Fig. 4.5 the band structure for the cases n = 1 to n = 5 are shown. In this Figure, we
can see that the linear dispersion of the graphene bands is still preserved and, if we zoomed in
(which, as before, we do not show), we would see that the small gap of 0.1 meV at the Dirac
point is also preserved. Interestingly, there is a change near the I'-point of the WSy band. We
can see this more clearly in Fig. 4.6, where we show the highest valence and lowest conduction
bands with increasing number of WSs layers. Although the lowest conduction band does not
change notably except for a small shift towards lower energies, we can see that the valence band
approaches the Fermi level with increasing number of layers. For instance, while the valence
band at the I'-point is 1.30 eV below the Fermi level for the case of isolated graphene, for the
system with one WSy layer we have that the separation is 1.0 eV, with a decrease occuring when
having two (0.5 eV) or more layers. In this Figure we can also see that for n = 4,5 the distance
to the Fermi level remains almost constant, approaching the bulk limit. Concerning the K-point,
we can see that the appreciable change occurs now in the conduction band, where there is a
shift towards lower energies.

4.2.2 Charge distribution

We now focus on how the charge distributes in space in these systems and how it varies with
increasing number of layers.
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Figure 4.6: Comparison of the band structure for the systems with varying number of layers from 1 to
5.

We calculate the induced charge density in real space, that is defined as:

N
pind(aj7y7 Z) = P(ﬂf,yv Z) - Zpl(xvyv Z)a (42)

where p is the charge density of the total system and ¢ runs over all the subsystems that conform
the total system when calculated separately. This quantity is an indication of how the charge
redistributes due the interaction between graphene and WSs.

As we can see in this Fig. 4.7, there is a formation of "patches" of charge in different
positions of the cells. The redistribution of charge occurs mainly in the graphene/top S layer
interface. Although we are not showing the results for the case of the relaxated structure, all
these properties are mantained.

Furthermore, in Fig. 4.8 we show how the number of layers modifies the charge density in
real space. As we see, all the charge redistribution occurs mainly between the graphene and
the top layer S interface, as in the case of n = 1, and little is distributed in the lower layers,
disappearing almost completely in the third layer of the WS,.

For a more detailed and quantitative analysis, we will also study quantities such as charge
densities and dipole moments only as a function of the direction perpendicular to our slab (z
in our case). To do so we will compute these quantities as planar averages over the xy-plane
parallel to the surface.

The z-dependent charge density will be defined as:

o) = | ol )dady, (43)

where A is the area of the supercell in the xy-plane. As before, we study the induced charge
densities, which is the modification in the charge density due to the formation of the bond
between the substrate and graphene and it is defined in Eq. (4.2).13!
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Figure 4.7: (a), (b) and (c) Top view of p;nq for the 1G/IWS, structure for three different isovalues:
0.00015, 0.0002 and 0.00025 e~ /A3. (d), (e) and (f) Side view. Blue and red color represent a reduction
(holes) and accumulation (electrons) of charge, respectively.
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Figure 4.8: (a), (b) and (c) Top view of p;nq for the 1G/1WS,, 1G/2WS, and 1G/4WS, structures.
(d), (e) and (f) Side view. All images were taken with an isovalue of 0.0002 e~ /A3. Blue and red color
represent a reduction (holes) and accumulation (electrons) of charge, respectively.
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Figure 4.9: Comparison of the p;nq(z) and p(z) for different functionals. Blue (red) line corresponds
to the LDA (GGA) calculation.
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Figure 4.10: Comparison of p;,q(z) for different numbers of layers. Blue line, green crosses, red circles,
blue squares and orange triangles correspond to the case of n = 1,2, 3,4 and 5-WS,, respectively.
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Figure 4.11: Comparison of u(z) for different numbers of layers. Blue line, green crosses, red circles,
blue squares and orange triangles correspond to the case of n = 1,2, 3,4 and 5-WS,, respectively.



50 Chapter 4. TMDCs as substrates for graphene

In a similar way, we will define the dipole moments associated with each of these charges.
We define the dipoles as z-dependent quantities:

z
u(e) = [ 2 oial)d, (1.4)
20
where z( is taken in the middle of the slab (where the perturbation due to the presence of the
interface has been screened and p;,q(z) tends to zero). The total dipoles of the surface are
obtained for z well inside the vacuum away from the surface. These quantities will be denoted
removing the dependence on z, as p.

First, as we said in Section 4.1, it is important to test whether the electronic properties
change qualitatively when changing from an LDA functional to a GGA functional. We show
this study in Fig. 4.9, where we show the charge density for the 1G/1WSs system and we can
see that there is no qualitatively change between both calculations and that the redistribution
of charge occurs in both cases in the interlayer.

In Fig. 4.10 we plot the charge density for the systems going from 1 to 5 layers. As we saw
before, most of the charge is accumulated between the graphene/ WSy interface. It is interesting
to note that there is almost no change when we increase the number of layers and that beyond
the second layer there is almost no charge redistribution.

In Fig. 4.11 we plot the dipole that is formed due to the charge distribution for the systems
with different number of layers. As we can see, the dipole is localized, as expected from what we
saw in the study of the charge density distribution, between the graphene/WS, interface. The
actual value of the dipole for the area of the supercell considered is of ~ 10~3 Debyes and does
not change with the number of layers.

4.3 Conclusions

In this Chapter we have studied the properties of a new family of substrates for graphene.
Despite the fact that we just focus in the case of WSo, the results should be qualitatively similar
for other TMDCs of the type M Xy (M = Mo, W; X = S, Se). We have seen that, although the
linear behaviour of the surroundings of the Dirac cone is preserved, a small gap is opened in the
band structure. On the other hand, adding more layers approaches the highest valence band in
the surroundings of the I' point to the Dirac cone. This change becomes more or less constant
for n > 3, when the bulk limit is reached.

We also study the charge distribution in the different systems, finding that the charge is
redistributed in the Graphene/WSs interface, where a small dipole is formed. Adding more
layers to the systems does not affect this characteristic and, actually, there is no significant
charge redistribution beyond the second layer.



CHAPTER 5
Two band gap superconductivity in
layered materials

Metals have an electrical resistivity that depends on temperature. This resistivity comes, in the
majority of the cases, from the interaction of electrons with phonons, defects, surface effects and
other electrons. Although intuitively we could think that lowering the temperature we could
reduce the resistivity to zero, this is not the case and, actually, there is always some residual
resistivity (see Fig. 5.1a).

Some materials, below some critical temperature (T;), lower their resistivity to values that
are essentially zero. This phenomenon is called superconductivity, and was discovered in 1911
by Heike Kammerlingh Onnes when he saw a reduction of the resistivity when he cooled an
Hg sample below 4.2 K (see Fig. 5.1b). Additionally to the low resistivity, there are other
properties such as the one discovered by Meissner and Ochsenfeld in 1933 that shows that,
inside a superconductor (SC) there is no magnetic field. This effect is called the Meissner effect,
and it holds for SC called of type 1. For SC of type 2, from a certain value of the magnetic
field, inside the SC some wvortices are formed where the magnetic flux can penetrate inside the
sample. As we will see later in the Chapter, both materials studied here are of type 2.

Many theories were initially developed in order to explain these new physical phenomena,
but all of them were phenomenological, such as the ones by London and Ginzburg-Landau. It
was not until 1957 that a breakthrough in the understanding of superconductivity was achieved
due to the microscopic theory developed by Bardeen, Cooper and Schrieffer!3? (BCS) where,
with the introduction of Cooper pairs, they were able to give a microscopic explanation of the
phenomenon.

BCS theory shows that, due to electron-phonon coupling, below T, an attractive electron-
electron interaction leads to the ground state of the system which is the one with paired electrons
that form the so called Cooper pairs.!33 In a simple way, we can see this interaction as if one
moving electron changes the position of some ions of the lattice, leaving an electric local density
charge that attracts another electron'34 (see Fig. 5.2a). In a quantum-mechanical point of view,

a)

'|:: T 003

Figure 5.1: (a) Schematics of the resistance vs. temperature for a normal metal (blue line) and
a superconductor (red line). (b) Original measurement by Kammerlingh Onnes when he discovered
superconductivity in cooled Hg.
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k+q

Figure 5.2: (a) Schematic drawing of the classical view of a Cooper pair formation. Electron (red) #1
attracts two ions (blue) of the crystal lattice creating a local density charge that attracts electron #2.
(b) Feynman diagram of an e”-e~ interaction mediated by a virtual phonon.

we could see this as if two electrons interact by an exchange of a virtual phonon (see Fig. 5.2b).

The BCS theory takes into account electrons in a single band, but in many superconductors
there can be two contributing bands, for example: in SCs with transition elements, there are
s — d bands at the Fermi level, so one of the natural improvements to the BCS model would be
to extend it to these cases. This issue was addressed by Suhl et al.13® They found that each
band had a different superconducting gap and that, if there was no interband coupling, each of
them would have a different 7.

For a long time, the BCS description for superconductivity was very successful in the expla-
nation of the properties of conventional superconductors.!3® When the experimental methods
improved, a close look at the details of the results showed that there were some deviations from
this theory. In 1977 Schopohl and Scharnberg!3” (SS) improved Suhl’s model adding a quasipar-
ticle scattering from one band to the other which gives two coupled equations for the two gaps
that arise in these materials.'36 The interband coupling can even induce superconductivity in an
non-superconducting band.'3® The equations that are given by the SS formalism are equivalent
to those of McMillan which applies to the case where a SC is in contact to a metal'3? (therefore,
in the literature, as in the following, the formalism is either called SS, McMillan or SSM). On
the other hand, though they are mathematically equivalent, both approaches have a different
physical origin: while in the one by SS the proximity effect is in the reciprocal space, the later
originates in real space.!3® An important result that we obtain from the SSM approach, as we
will see further in the development of the Chapter, is that the scattering rates are related to the
partial normal-state density of states which can be computed within standard DFT.136

Experimentally, though there was some possible evidence of multi band superconductivity,
it was not clear until 1980 when Binnig and coworkers'4? found this effect in Nb-doped SrTiOs.
The low transition temperature of this material and the quite difficult experimental methods
made, at that time, a rather challenging experiment to carry out and the topic was not further
pursued.

However, in 2001 superconductivity at 39 K in MgB2 was discovered.'#! Soon later two band
superconductivity was confirmed for this system and the topic became quite popular.

There are many experimental methods to study the value of the superconducting gaps,
such as specific heat measurements, low-temperature Raman-scattering, scanning tunneling mi-
croscopy (STM) and spectroscopy (STS) (in the superconductor-insulator-normal-metal (SIN)
configuration or in the superconductor-insulator-superconductor (SIS) configuration).

Theoretically, there are several ways to study the existence of two SC gaps by first-principles
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Figure 5.3: Crystal structure of MgBs.

calculations such as the calculation of the electron-phonon coupling for using it for the Eliashberg
theory and the density functional theory for the superconducting state.'42:143 Though they do
not need experimental parameters in order to obtain predictions, the calculations are quite
challenging.

In this Chapter, we will develop another approach to study the electronic properties of two
band gap SCs like MgBs and NbSes. During the development of this thesis, we stablished a
collaboration with the group leaded by Dimitri Roditchev! which had experimental SIS data
without a clear interpretation in both materials in the superconducting state. With the help of
DFT calculations of the normal state of these materials, we were able to study properties that
are correlated with the characteristics of the superconducting state. As we will see, studying the
theoretical electronic properties and STM images of these systems we are able to give support
to the assignment of the different superconducting gaps to the bands that generate them.

5.1 Multi band superconductivity in MgB,

As stated in the introduction of this Chapter, MgBs has been known for a long time!44145 hut

interest in this material was boosted by the discovery of superconductivity with a relatively high

141 146 where

critical temperature (T, = 39 K). MgBs exhibits the AlBs-type crystal structure,
graphene-like hexagonal layers of boron atoms alternate with hexagonal layers of magnesium
atoms sitting on top of the center of the boron hexagons (see Fig. 5.3). The simplicity of
the structure made possible very detailed theoretical studies. An and Pickett'4” proposed that
superconductivity originates in the boron (p,,p,) bands and Liu et al.148 suggested the possibility
of two-gap superconductivity for this compound.

The two-band superconductivity scenario for MgBs soon received support from different

experimental studies using STM tunneling spectroscopy4? 150-152

153

, point-contact spectroscopy,
specific heat measurements'®3 and Raman spectroscopy.®4 Iavarone et al.15® reported tunneling
studies on both c-axis oriented films and compact pellets and provided evidence for directional
tunneling with respect to the crystallographic orientation of the grains in the pellets. It is now
well established that there are two distinct superconductivity energy gaps, A; = 2.3 meV and
Ay = 7.1 meV.155,156

Although there have been several first principles theoretical studies'47-148:157-159 f the
electronic structure of MgBs, to the best of our knowledge there is no study of the tunneling
images and it was noted by Schmidt et al.159 that the calculated contributions of the two different

types of bands to the bulk density of states at the Fermi level are insufficient to account for

1Spectroscopie des Nouveaux Etats Quantiques group at the Institut des Nanosciences de Paris.
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Figure 5.4: (a) SIS tunneling spectrum by Roditchev et al. measured with an MgBs tip and a MgBs
‘¢’ axis oriented film. The experimental data (black line) is fitted (red line) using the SSM model (Eq.
5.3). The parameters used for the fit are I's = 2.6 meV; ', = 2.6 meV; A2 = 1.1 meV, A = 7.4;
Ts = 1; T, = 0; (b) SIS tunneling spectrum measured with an MgBs tip and a V3Si ’c¢’ axis oriented
surface. The parameters used for the fit are I's = 2.6 meV; I', = 2.6 meV; A2 = 1.1 meV, AY) = 7.5;
Ts = 0.9; Ty, = 0.1.

the tunneling experiments. In the following we show a first-principles density functional theory
(DFT) study of the electronic properties and tunneling images of the normal state of MgBs
and provide theoretical support for the assignement of the different superconducting gaps to the
corresponding band that generates them.

5.1.1 Experimental results

In this Section, we are going to show the experimental results obtained in Roditchev’s group. In
Figure 5.4, we show two experimental tunneling spectra in SIS geometry with a SC MgB, tip and
a MgBy or V3Si surface, measured using their home built STM /STS setup at low temperature
(most of the experiments were done at T'= 4.2 K).

As we said before, these experimental data can be fitted using the SSM model, in which
0

7
coupling in each band ¢ and by the quasiparticle coupling between bands ¢ and j, characterized

a multiband superconductor is described by intrinsic gaps, A?, resulting from electron-phonon
by a coupling parameter I';;, which represents the inverse lifetime of a quasiparticle in band
i due to its coupling to band j. Such a coupling could result from the presence of impurities
electron—electron interaction, as other effects. 37

The interband coupling leads to energy-dependent gaps, A;(F), which can be calculated by

the self-consistent equations:*3?

A+ T30 (E) /| AHE) — E?

A(E) =
) 1+Pij/1/A?(E) — E?

with i = 1,2. The density of states Ng(E) = Y, Ni(FE) is expressed as a sum over the partial
density of states N4(E) in each band i:

(5.1)

£
B2 — A(E)?

N§(E) = Ni(Ep)Re (5.2)
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where N;(EF) is the partial density of states at the Fermi level of the ¢ band in the normal state.
Taking into account selectivity effects, the tunneling DOS probed by STS for a two gap
superconductor can be written in the general way:

E|
Ng(E) = ;:2 T; Ny(Er)Re AT
E
= Y N{Re 2' | -, (5.3)
i=1,2 E? — Ay(E)
eff —

where T; accounts for the k-averaged tunneling probability towards a given band 7 and N;
T; Ni(EF) is the effective DOS in band ¢ as measured by STS taking into account the tunneling
selectivity.

The parameters that they deduced from the fits are very similar for the two types of junctions
MgBo-MgBs and MgBs-V3Si. In both cases, it is found that T is close to one, meaning that
the contribution of the small gap band strongly dominates in the tunneling process.

It is important to note that the interband quasiparticle coupling leads to characteristic
signatures in the excitation spectra which deviate from the standard BCS form.!36 This is at
odds with the case of interband pair coupling as considered by Suhl et al.13% which gives rise to
a standard BCS DOS for each band. Thus, from the tunneling conductance fit, we can deduce
the values of the intrinsic gaps in each band A}, as well as the interband coupling parameters
I';;. Note that the ratio of the partial DOS of the two bands is directly related to the interband
coupling between them: '

J
Ly _ WPp) (5.4)
Uy N(ER)

This property is very useful and will allow us to compare this ratio with the result of bulk

measurements such as specific heat and our DFT calculations.

As expected, from the fit, Roditchev and coworkers find a ratio close to 1, in striking agree-
ment with the value that can be inferred from specific heat and penetration depth measure-
ments. 160

Therefore, from the experiment done by Roditchev et al. we obtain two main conclusions:

1. The tunneling probability of the small gap is close to 1, which means that it will dominate
the tunneling process.

2. The ratio between the interband coupling parameters is close to 1.

In the following Sections, we will use calculations of the normal state of MgBs in order to
give support to the experimental results. For example, calculating the DOS at the Fermi level
of the bands in the normal state, could help us understand the ratio of the interband coupling
parameters and give theoretical support to the experimental results showed in this Section.

5.1.2 Electronic structure

The electronic structure of MgBs has been discussed a number of times in the literature as in
the works by An et al.,'*7 Li et al.,'®7 Kortus et al.,'®® Nuez et al.'®® and Satta et al.;'%! here
we just highlight the aspects which are important in understanding the signatures of multigap
superconductivity in tunneling spectroscopy. The calculated band structure is shown in Fig.
5.5a. There are three partially filled bands, two of them are based on the boron p, and p,
orbitals (bands shown with blue circles in Fig. 5.5a) and have a two-dimensional (2D) character
because of the lack of interaction with the magnesium orbitals (see the I" to A line in Fig. 5.5a).
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Figure 5.5: (a) Band structure for MgB, where the blue circles correspond to the boron p,, p, character
and the red circles to the boron p, character. I' = (0, 0, 0), M = (1/2, 0, 0), K = (1/3,1/3,0) and A =
(0, 0, 1/2) correspond to high symmetry points in units of the reciprocal hexagonal lattice vectors; (b)
Density of states near the Fermi level where the contributions of the boron s, the boron (p,,p,), boron
p. and magnesium orbitals are separately shown.

They are associated with the o bonds of the boron layers. In contrast, the other partially filled
band (shown with red circles in Fig. 5.5a), which is built from the boron p, orbitals, exhibits
dispersion along both the plane of the boron layers (because of their 7-type interactions along
the boron layers) and the interlayer direction (because of the good overlap between the out-of-
plane pointing boron p, and magnesium orbitals). Consequently, the Fermi surface (see Fig.
5.6) is made of two cylinders parallel to the c-direction centered around I', associated with the
boron p, and p, orbitals, and a complex three-dimensional network, mostly associated with the
boron p, orbitals. Note that despite the very different Fermi surfaces, the densities of states at
the Fermi level for the boron (p,,p,) and boron p, orbitals (see Fig. 5.5b) are practically the
same because the Fermi velocity of the cylinders is very low along the ¢* direction. The actual
ratio is ~ 0.99, which is in agreement with the experimental results of Section 5.1.1 which shows
that the ratio of the interband coupling (Eq. 5.4) is close to 1. If we project the contribution
of the different bands, that of the cylinders is of 44% and that of the 3D network is 56%. It
is worth noting that the wavefunctions are of e-type symmetry with respect to the threefold
symmetry axis parallel to the ¢ direction and going through one boron atom and, consequently,
the boron s orbitals can not mix in. Thus, the boron s content of the Fermi surface cylinders
will be quite small.

5.1.3 Tunneling Images

Once we have given support to the experimental result that the interband coupling parameters
is close to 1, we study now the other experimental result: the tunneling probability of the small
gap is close to one, that is, in the experimental SIS measurements, we probe the small gap since
it is coupling almost perfectly with the tip. To do so, we have done several simulations of STM
images, which we present in this Section. The calculations were done using the Tersoff-Hamann

162 where the current at a given tip position is proportional to the integral of

approximation,
the local density of states of the sample at that point (integrated in an energy window (40.1
eV) given by the tip-surface potential difference). The images correspond to constant current
images, showing the maps of heights that produce a constant tip-surface current. Instead of
specifying the value of the current (which is what would be done in the experiment), we choose

a particular value of the density of sates and plot the corresponding isosurface, which would
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Figure 5.6: Top (a) and side (b) views of the calculated Fermi surface for MgBs. The red and green
tubular structure come from the boron p, contribution while the cylinders in green and blue come from

the ps, py bands from the boron.
S R

T
A 4 &
Figure 5.7: STM images for the p;, p, (a) and for the p, (b) contribution. The maxima in (b) correspond
to the position of the B atoms and those in (a) to the B-B bonds.

correspond to different values of the current. In our images, we have separated the contribution
of the different bands at the Fermi surface: the (p;,p,) based bands (from now on we will refer
to them as (pg,p,) bands) that generate the blue and green cylinders and the p, based band
(from now on we will refer to them as (p,) bands) that generates the green and red tubular
network (see Fig. 5.6). We did this by calculating separately the STM image for each band
(taking into account in which region of k-space they are located). The results are shown in Fig.
5.7.

The (pg, py) states lay on the (zy)-plane and they do not extend much along the z-direction,
unlike the p, states. Besides, these states form o bonds between the B atoms at the surface,
whereas the p, bands form 7 states pointing out of the surface. Therefore, in the STM images
generated from the (ps,p,) bands (see Fig. 5.7a), the brightest positions are the center of the
bonds between surface B atoms. On the other hand, for the p, states, the brightest positions
are on top of the positions of the surface B atoms (see Fig. 5.7b).

We have studied the decay of the current (I) with the height (z) in different positions of
the (z,y)-plane. To do this we draw the I vs. z curve at different (x,y)-plane positions. At
sufficiently large distances, the current I should be roughly related to z exponentially:

I=Ae (5.5)

thus, we can obtain « easily by plotting In(I) vs. z and doing a linear fit of the data (see Fig.
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Bands Position Fit exp 1 Fit exp 2
At atom 1.312 2.33
(P2, py) bands At bond 1.317 2.693
At center of hexagon 1.307 1.93
At atom 1.321 -
p. band At bond 1.319 -
At center of hexagon 1.313 -

Table 5.1: Summary of the I vs z fits. "Fit exp 1" and "Fit exp 2" refer to the value of the slope («)
for the two possible decaying ratios that can occur (far and near to the surface). Values are given in
Bohr—!.

5.8).

The fitting parameters obtained for lines passing through a surface atom, a surface bond and
the middle of a surface hexagon are reported in Table 5.1. In all cases we show the contribution
of the (ps,py) and p. bands separately. In the case of the bands with (ps,p,) character, the
curves do not correspond to a single exponential as in Eq. 5.5. We actually have two exponential
regimes (two different slopes at the curve). This can be explained if we look into the formulas
that describe the decay of the wave functions of the crystal into vacuum (which we use to
generate the STM images). Far from the surface (where the potential is constant and equal to
the vacuum potential), the wave functions can be expressed as:

¢k(~’5a Y, Z) = Z Z Ck(G)ei(G—i_k).re—akJrGZ’ (56>

G Gy

where Ck(G) is the Fourier component of the wavefunction at a reference plane (taken as z = 0),
G = (G4, Gy) is the surface reciprocal lattice vectors and r = (z,y) is the in-plane position.
The decay of the corresponding Fourier component with z is thus given by

oy = VK + (k+ G)?, (5.7)

where k! is the standard decay length determined by the work function, ¢, (i.e. x = Q;L"‘b

where m is the electron mass).

From this formula, it is apparent that the wave functions have different components with
different decay into vacuum. The decay depends on the work function ¢ (which is the same
for all the states), the G vector of that component, and on the surface momentum k of the
electronic state. For a given wavefunction, at large distances from the surface, only the G = 0
component will survive, with a decay a = 1/2¢ + k2. In that case, the decay of the wave function
is determined by the work function and the wave vector of the states at the Fermi surface. For
distances close to the surface, several G will contribute leading to different decay rates. If we
are close to I' (where the cylinder generated by the (p;, p,) bands in the Fermi surface is placed
(see Figure 5.6)), we have that k ~ 0. For the states from the p, bands, the wave vectors are far
from the I' point. Consequently, reasoning on the basis of this k-selectivity would let us expect
that the decay into vacuum will be faster for them. This is what we find when looking at the
results in Table 5.1, where we see that the slopes for the p, bands is slightly larger than the
corresponding ones of the (p,,py) bands.

Although these results clearly show that the contribution of the (p,,p,) bands decays faster
than that of the p, bands relatively close to the surface, the intensity of the images coming from
the p, contribution is approximately three orders of magnitude than the (p,p,) contribution (see
Fig. 5.8). For larger distances, the decay rates do not significantly change with the position in
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Figure 5.8: [n(I) vs. z fits at a center of an hexagon. Blue and green circles represent the data for
the p. bands (k > 0) and (ps,py) bands (k ~ 0). The lines represent the different fits for this data. The

data for the (py,p,) bands have two fits for the two different regimes of decay.
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Figure 5.10: Comparison of the decay of the boron (p,,p,) and p, orbitals along the ¢ axis for different
positions of the surface ((a) at mid distance between two B atoms, (b) at a quarter distance between
two B atoms, (c) at a Mg position and (d) at mid distance between a Mg and B atom), which is taken
as the origin.

the (x,y) plane. The ratio of the STM image intensity associated with the p, and (p,p,) bands
as a function of the distance from the surface is shown in Figure 5.9. Except for unreasonably
short tip to surface distances the curves for different positions in the (z,y) plane evolve to very
similar values. It is clear from these results that for any reasonable distance from the surface
the tunneling images will be completely controlled by the p, band.

Which is the main factor leading to this result? As mentioned above, the k selectivity of
the tunneling current would let us predict that the contribution of the p, orbitals would decay
faster that of the (p,,py). However, the results of Fig. 5.9 and the experimental evidence from
Section 5.1.1 that showed that T = 1 and, therefore, the tunneling conductance should be
dominated by the small gap which is known to be generated from the p, band. Note that the
two types of bands have a not very different contribution to the density of states at the Fermi
level (see above). Consequently, the most likely explanation for the almost complete control of
the tunneling images along ¢ must lie in the shape of the different orbitals.

The different decays of the atomic p, (or p,) and the p, orbitals along ¢ for different in-
plane positions are shown in Fig. 5.10. To do this, we just calculate the wave function of
a free Boron atom along the ¢ axis at different positions of the (z,y)-plane. It is clear that
the p, orbitals decay considerably slower than the (p,, p,) orbitals and must dominate the
tunneling at reasonable tip to surface distances. As a matter of fact, there are also strong
symmetry reasons behind the results of Fig. 5.9. As mentioned before, the wavefunctions of
the Fermi surface cylinders have a pseudo e-type symmetry. Such e-type functions have a nil
value along the threefold symmetry axis parallel to the ¢ direction and going through one boron
atom. Consequently, these wavefunctions must have quite small values along this axis and the
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region around. This is in contrast with the large and slowly decaying values of the boron p,
orbitals in the same region. A similar symmetry argument applies for the axis perpendicular
to the layer and passing through the center of the boron hexagons, predicting also very small
values of the Fermi surface cylinders wavefunctions around this axis. Of course, the symmetry
restrictions become less stringent outside the regions around these axes but it is clear that there
are large areas where these wavefunction are forced to have small values for symmetry reasons.
In contrast, this kind of symmetry restrictions have no detectable influence on the wavefunctions
based on the boron p, orbitals. These features are already clear from the STM images in Fig.
5.7. Altogether, the faster decay of the (p,, py) orbitals and the confinement due to symmetry
reasons leads to quite small values of the wavefunction for reasonable tip to surface distances.

We thus conclude that, both the directional shape of the boron p, orbital and the symmetry
properties of the lattice lie behind the fact that only the small superconductivity gap, which is
associated with the 3D component of the Fermi surface and originates from the boron p, states,
may be directly probed in the SIS experiments along the ¢ direction.

Therefore, with this calculation and the one shown in Section 5.1.2 we have tested the
two experimental results obtained in Section 5.1.1: the ratio between the interband coupling
parameters is close to 1 and the small gap is dominating the tunneling process. Moreover, we
have shown that the small gap is generated by the p, character band.

5.2 Multi band superconductivity in NbSe,

Superconductivity in niobium diselenide (2H-NbSes), T, ~ 7 K was discovered about fifty years
163,164
ago.
cise nature of its superconducting (SC) state remains controversial. In particular, the relation
between the SC transition'®3:164 and the charge density wave order'®? is still debated.
The possibility of some anisotropy in the SC gap was already noted in the 1970’s by Morris

et al.166 Clear deviations from the standard BCS density of states (DOS) were then observed
l.167

In spite of numerous experimental and theoretical studies of the material, the pre-

by Hess et a using scanning tunneling spectroscopy (STS) on a c-axis oriented sample, but
were not given much attention at the time. This is surprising since the two-branch Fermi surface
(FS), with a set of Nb-derived cylinders around the central I" point of the hexagonal Brillouin
zone and another set of cylinders around the corner K points, had been well established.168-170
A few years after, the gap anisotropy was modeled by Rodrigo et al.'”' using a continuous gap
distribution.

More recently, a two-gap scenario was proposed by several groups based on photoemission
(ARPES),”2 heat conductivity,!3 specific heat! 74175 and penetration length measurements.'76
In all these works, the system is described by the early model of Suhl, Matthias and Walker,35
which assumes a pair coupling between the two bands, giving rise to a BCS-like density of
states.132 A particular feature of the Fermi surface of 2H-NbSe, is the existence of a selenium-
based pocket near the Brillouin zone center. This was first revealed by a combined de Haas-van
Alphen and density functional theory (DFT) study'”” and later confirmed by ARPES Fermi
surface mappings.17%178 Its role in the multigap scenario has not been determined yet.

The room temperature crystal structure of 2H-NbSep!7%180 (see Fig. 5.11) is built from
hexagonal NbSes layers containing Nb atoms in a trigonal prismatic coordination. The six Nb—
Se bonds within these layers are identical (2.598 A). As shown in Fig. 5.11, the repeat unit of
the solid contains two symmetry equivalent layers related by a screw axis along c¢. Successive
layers are separated by van der Waals coupling through which there are relatively short Se—Se
contacts, i.e. every Se atom makes three Se-Se contacts (3.537 A) shorter than the sum of the
van der Waals radii with the Se atoms of the adjacent layer. The Se-Se contacts along the

c-direction within the hexagonal layers are even shorter, 3.347 A. These two structural features
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Figure 5.11: Crystal structure of 2H-NbSe;. The Nb and Se atoms are represented with blue and
yellow spheres, respectively.

give a considerable three-dimensional character to this layered material.

At 30 K 2H-NbSes undergoes a distortion leading to a (3ax3axc) superstructure.t65 Its
origin has been attributed to a Fermi surface nesting driven charge density wave (CDW)18!
although this explanation has been challenged.169:170,178,182-184 Recontly, it has been shown
both experimentally and theoretically that a strong electron-phonon coupling occurs in this

1.185,186 Although several models of the distorted phase have been discussed,87:188

materia
only recently in the course of our work the detailed structure of this phase has been reported.'8?

Along the following Sections, the question of multigap superconductivity in 2H-NbSes (from
now on we will refer to 2H-NbSes simply as NbSey) will be adressed. First, we will study the
experimental results in the literature and show the ones obtained by Roditchev and coworkers
of tunneling measurements along different crystal orientations and show how the measurements
can be described using the two-band model of McMillan. Then, we explain why the ‘large gap’ is
dominantly observed along the c-axis. We will be able to explain these results using tunneling
selectivity arguments and DFT band structure calculations of the material together with the

CDW state coexisting at low temperature.

5.2.1 One or two gaps? Survey of available experimental results

5.2.1.1 Gap anisotropy vs two-gap superconductivity

Clear deviations from conventional BCS behavior were observed in the tunneling spectra®” and

in the field dependence of the ~ coefficient in the specific heat.173:175:191,192 The origin of these
deviations was addressed by means of many experimental techniques: specific heat,174175 heat
transport,!”® penetration length'7® and scanning tunneling spectroscopy.136:171 The results are
summarized in Table 5.2. They can be sorted into two groups, either concluding that NbSes is
a two-gap superconductor,36:173:174 including a possible gap distribution,'”! or that the gap
190 175,176 guggest that the experimental results could be

is anisotropic in k-space. Some works

interpreted in both ways.

It is important to note that, in order to fit the specific heat or penetration depth data,174 176

it was implicitly assumed that the DOS is a weighted sum of BCS DOS with two different gap
values. This assumption is equivalent to the pioneering model of Suhl, Matthias, Walker!3°

for a two-gap superconductor, where the two corresponding bands are coupled by an interband
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Work Exp. Model Gap value(s) (meV)
. . Ag =0.73, Ap, =1.26
174 ’
Huang et al. SH Two isotropic gaps (fit) Weights: 20%: 80%
Ying et al.17® SH Two isotropic gaps (fit) As =085, Ap =15

Weights: 36%; 64%
Anisotropic gap (fit)

Ying et al.l7® SH Ao=1.62
g et a A = Ag [0.4 + 0.6] cos(30)]] 0
. Gap distribution (fit) Gap values in the range
Rodrigo et al.'™  STS
& N(E)= 1Y aiNpcs(Ai, E) (0.4 — 1.4]
Ag =0.62-0.67, A;, =0.98-1.27
176 : . s y AL
Fletcher et al. PL Two isotropic gaps (fit) Weights: 0.43-0.5%: 0.57-0.57%
Six fold Apin =0.56-0.58
Fletcher et al.17®  PL eto gag+ecos(6¢)] ﬁm
A(@,T) = Apin(T) ==~ 11€=1.74-2.33
. Two gaps A
Boaknin et al.'™ H RL ~3
AL b a ¢ (Deduced from two length scales) As
Anisotropic gap (fit) Ap(0) =1.55;
h .190 H )
Sanchez et al 75 SH AL (1) = Ao(T)(1 - ez cos26) -0

Table 5.2: Survey of the experimental results for NbSes addressing the issue of gap anisotropy vs. two-
gap superconductivity. SH, PL and HC stand for specific heat, penetration length and heat conductivity,
respectively

pair coupling term. While penetration depth and specific heat measurements do not allow to
conclude which model describes best the SC properties in NbSes, we show in section 5.2.2 that
a different mechanism for the band coupling has to be considered to precisely reproduce the
shape of the tunneling spectra. The model developed in this work should also describe properly
specific heat and penetration depth measurements.

5.2.1.2 Photoemission results

172,193-197 The resolution of the

ARPES results measured for NbSey are often contradictory.
photoemission, at best of the order of twice the superconducting gap, and the low critical
temperature of this material makes the data difficult to analyze. Moreover, the transition to the
CDW state, whose origin and consequences on the spectral weight and superconducting state
are still debated, complicates the determination of the spectral modification at the Fermi energy
E'r near the SC critical temperature. Yet, some general features emerge from the analysis of the
more recent fine ARPES experiments (see Table 5.3 for a comparison of reported photoemission
results): a ‘large gap’ is shown to open in the Nb cylinders around K while a smaller gap is found
associated with the Nb I'-cylinders. There is no indication of the existence of a gap in the small
Se pocket around I". However, these results should be taken with care since the ARPES data for
the Se p, pocket are affected by the very strong k. dispersion (see the band diagram calculations
in section 5.2.3.1) and possibly also by surface defects. The selenium p, states appear strongly
blurred in photoemission images and a quantitative analysis of this band is questionable. Indeed,
the finding of non-gapped states at the Fermi energy in the Se pocket contradicts the existence
of a superconducting state and is most probably due to a lack of sufficient energy resolution. In
contrast, STS experiments, as well as specific heat measurements, clearly imply a fully gapped
DOS at E F-
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Gap (meV)
Work Se pocket Nb (T') Nb (K)
Kiss et al.193 - 0.65+0.05 -
Yokoya et al.17? 0 1+0.1 0.9 £0.1
Kiss et al.19° 0 0.9-1.1 0.3-1.1
Borisenko et al.196 - 0-0.5 0.8
Rahn et al.197 0 £0.2 0.1 +0.3 2.3-2.6 +0.2

Table 5.3: Comparison of gap values (in meV) deduced from photoemission experiments for NbSes in
the Se pocket around I' as well as in the Nb cylinders around I' and K.

5.2.2 Experimental results: Scanning tunneling spectroscopy experiment
5.2.2.1 Tunneling along the c-axis

Fig. 5.12 shows a typical tunneling conductance spectrum measured at low temperature with
a Ptlr tip. As reported previously by Hess et al.'7 and Rodrigo et al.,'™' a well-pronounced
gap is observed. However, as shown in the following, this does not mean that only a single gap
parameter is present. In this case the tunneling conductance shape deviates from a conventional
single-gap BCS superconductor.

As shown in a previous report by Noat and coworkers,'36 the tunneling conductance can be
fitted by the McMillan equations'®® (Eq. 5.1), in agreement with this two band scenario.198:199

To describe the scanning tunneling experiment, we take into account an additional tunneling
selectivity. Depending on the configuration in k-space and symmetries of the bands relevant to
the surface plane probed by STS, one particular band or the other can be probed. This effect was
clearly demonstrated in magnesium diboride. Indeed, it has been shown that for c-axis oriented

200,201 while

202

samples of MgBs, only the small gap is observed in the tunneling density of states,
two gaps are clearly seen for an a/b-axis oriented sample in grains with arbitrary orientations.
As we saw in Section 5.1, this is due to the particular symmetries of the bands in MgBs: the
‘large gap’ develops in the o band, with high electron phonon coupling and having a rather 2D

203,204 This explains

nature, while a small gap is induced in the 7 band having 3D character.
why the small gap is preferentially observed in a nominal c-axis oriented sample by scanning
tunneling spectroscopy.

Recalling the formulas from the McMillan model of Section 5.1.1 we get from the fits (see
Fig. 5.12a): A} = 1.4 + 0.1 meV and A% = 0.00 & 0.1 meV. In order to confirm the fine
structure of the gap, additional measurements were also done at T' = 300 mK. The tunneling
conductance and the corresponding fit with the two-gap model is plotted in Fig. 5.13a.? In Fig.
5.13b we show the partial DOS of NbSey deduced from these fits. Each curve is clearly different
from the usual BCS DOS. In particular, a distinctive kink is noticeable at the ‘small gap’ energy
(see arrows in Fig. 5.13b) in the partial DOS corresponding to the ‘large gap’ band.

With this analysis one finds that superconductivity preferentially develops in one band while
Cooper pairs arise in the other band by the proximity effect, since A% = 0. This is analogous
to the case of MgBy where superconductivity develops in the ¢ band and is induced in the 7
band.2%3 The values found in NbSey for the interband coupling parameters are: I's;, = 3 & 0.3
and % = 1/3 £ 0.03. Let us recall that, since the ratio of the partial DOS at the Fermi energy
is related to the coupling parameters (see Eq. (5.4)), the first could help us identify in which

2The parameters used for the fit are in good agreement but are slightly different from those deduced at
T = 2K. This might come from different surface conditions. One also notes that the fit deviates from the data
inside the gap for bias voltages close to the excitation gap. This could further be explained in terms of a three
band model, which would take into account the effect of the Se pocket, as explained in section 5.2.5.2.
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Figure 5.12: a) Tunneling conductance obtained by Roditchev et al. with a metallic (platinum-iridium)
tip in a c-axis oriented NbSes sample. The data (black dots) are fitted by a two gap model (McMillan
equations) assuming a full tunneling selectivity towards the ‘large gap’ band (T = 1, in red). It is
compared to the situation where the tunneling arises towards the band with a small gap (Ts = 1, in
green). b) Tunneling conductance obtained with a NbSey tip oriented along the a/b axis. The tip is
obtained by gluing a NbSes sample on the side to a platinum-iridium tip. The data are fitted by a two
gap model (McMillan equations) assuming a tunneling selectivity towards the small gap band (Ts = 1,
in green). It is compared (red curve) to the situation where the tunneling arises towards the band with
a large gap (Tt = 1). The parameters used for the fit in both cases are the following: Ty; = 2.2K;
AY =1.4meV; AY = 0 meV; I's, = 3 meV; gﬁ =1/3.
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band superconductivity develops preferentially (i. e. the band with a large SC gap).

The relative weights in the DOS found for the ‘small’ and ‘large gap’ bands are in qualitative
agreement with the values deduced from the temperature and magnetic field dependence of the
specific heat measurements.!™ Indeed, fitting these data with a simple two-band model (i.e. the
model of Suhl et al.13%), Huang et al.'™ found a ratio close to 1/4 with gap values Ag = 0.73
meV and Ay = 1.26 meV while Ying et al.1”® found a ratio 0.56 with gap values Ag = 0.85
meV and Ay, = 1.5meV.

The tunneling selectivity that appears in the STS experiment on NbSey is very sensitive to
the cleavage conditions. When the cleavage was done under UHV conditions, the ‘large gap’ DOS
dominates in the tunneling current, i.e. T, ~ 1. On the other hand, when the sample is cleaved
in air, the tunneling selectivity varies and a combination of the small and ‘large gap’ DOS is
necessary to fit the data properly (0 < T < 0.5). We propose that this effect is related to some
modifications in the Se pocket arising with surface contamination when the sample is cleaved in
air.

5.2.2.2 Tunneling along the a/b axis

In a second step, Roditchev et al. measured the tunneling conductance for a NbSes sample
with a different orientation (see schematics in Fig. 5.12b). A typical conductance spectrum is
shown in Fig. 5.12b, with a fit using the two-gap proximity effect model as described previously,
with the tunneling selectivity fully towards the ‘small gap’ band (green) and, for comparison,
towards the ‘large gap’ band (red). The other parameters are unchanged in the fits within the
uncertainty mentioned above. For this orientation, it is clear from the fit that the ‘small gap’ is
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Figure 5.13: (a) Tunneling conductance obtained by Roditchev et al. at 2.3 K with a metallic (platinum-
iridium) tip in a c-axis oriented NbSe; sample at T=300 mK. The data are fitted by a two-gap model
(McMillan equations) assuming a full tunneling selectivity towards the ‘large gap’ (T, = 1, in red). The
parameters used for the fit are the following: T; = 0.4K; AOL = 1.32 meV; Ag. =0meV; I'sy, = 2.5
meV; EL?i = 1/4. (b) Partial DOS for the small (in green) and ‘large gap’ (in red) obtained with the
parameters deduced from the fits (shown in Fig. 5.12). A? = 1.3 meV; A% = 0 meV; I'sy, = 2.5 meV;
Trs — 1/4.

Pse

dominantly probed, as opposed to the nominal c-axis experiment. This demonstrates that the
tunneling selectivity clearly depends upon the sample orientation as in the case of MgBa.

This important point is further checked by using a SIS junction with a NbSes tip and a c-axis
oriented sample. For a SIS junction, the tunneling current is given by

(V. 2) = Ipe~20%* /E Niip(E)Noampie (E + V) [f(E) — (E + V)] dE, (5.8)

where f(F) is the Fermi-Dirac function, Ny,(E) and Nggmpie(E) are, respectively, the DOS of
the tip and the sample. As shown in Fig. 5.14, the SIS tunneling conductance is well fitted
assuming that a full tunneling selectivity towards the ‘small gap’ band for the tip (i.e. Tg =1
and T7, =0) and towards the ‘large gap’ band for the sample (i.e. Ts =0 and 77, =1), therefore
confirming the previous results.

We should note that there are some small deviations of the fit from the experimental curve
inside the gap, which could result from a small contribution of a third band (see section 5.2.5.2).
In some of the SIS spectra, small dips are also visible outside the gap and could be related to

particular surface conditions.?

5.2.2.3 Temperature dependence of the tunneling conductance

The tunneling spectra for a SIS junction (see Fig. 5.15b, NbSey tip-NbSey sample) as well as
for SIN (superconductor-vacuum-normal) junction (see Fig.5.15a, NbSey tip-gold sample) were
measured by Roditchev et al. as a function of temperature. The conductance curves were fitted
at each temperature with the McMillan model for a two-gap superconductor as described in
section 5.2.2.1. The same parameters were used for both SIS and SIN junctions.

3A small dip outside the gap is also present in some of the SIS spectra. This feature could be attributed to a
small contribution of the ‘small gap’ band due to some surface conditions. As a matter of fact, it has been shown
by Noat et al.138 that such dips can arise in the SIS spectra of a two-band superconductor when tunneling takes
place toward the ‘small gap’ band. One needs that one of the two electrode is either a conventional superconductor
or the same two-gap superconductor with a tunneling towards the ‘small gap’ band.
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Figure 5.14: Left: Scheme of the tunneling junction used by Roditchev et al. The tip is oriented in
the a/b axis while the sample is c-axis oriented. Right: Tunneling conductance of the SIS junction at
T = 2.3 K. The spectrum is fitted with the McMillan model, assuming a tunneling selectivity towards
the ’small gap’ band for the tip (Ts = 1; T, = 0) and the ’large gap’ band for the sample (Ts = 0;
Tr, = 1). The tip and sample are described by the same other parameters as before.

From the fits we can deduce the temperature dependence of the intrinsic gaps A% (T') and
AY(T). Note that A%(T) is close to zero for all temperatures. In addition, the theoretical
dependence of the intrinsic gaps with temperature can be obtained from the self-consistent
equations:

Ai(E)
%BT] NN

- [l E A(E
+Az~j\/§§ﬂ_/ JdEtanh[ }Re _AE |
o 2kpT B2 — AX(E)

2

Tw;

AO = )\“/ dEtanh[
0

(5.9)

where \; = V;;N; are the intraband electron-phonon coupling constants of each band, while
Aij = Vij\/IN;Nj is the interband electron-phonon coupling constant of the Suhl-Matthias-Walker
model. 135

While in the most general case, the intrinsic gaps result from both intraband and interband
pair coupling, for NbSeo, interband pair coupling can be neglected, but not interband quasiparti-
cle scattering. Fitting Eq. 5.3 and Eq. 5.9 to the SIN and SIS spectra (Fig. 5.15), we find Ao =
0 and that only the large intrinsic gap is not zero: g2 ~ 0.5 and A1; = 0. The corresponding
phonon frequency extracted from the fit is fws ~ 6.55 meV. This shows unambiguously that
the small gap is induced by proximity effects as a result of quasiparticle interband coupling,
similarly to the case of MgB,.199

The temperature dependence of the intrinsic ‘large gap’, AY(T'), deduced from the fits of
the tunneling spectra at each temperature is shown in Fig. 5.16a (squares). This dependence
is compared to the theoretical expectation A%th(T), shown as a continuous curve in Fig. 5.16a,
obtained using Eq. (5.9) and the low temperature gap value, together with the critical temper-
ature of NbSey. A reasonably good agreement is found between the extracted A} (7T) and the
theoretical dependence AOL’th(T). From the calculation, we also deduce the theoretical temper-
ature dependence of the peak to peak gap Ag{) ’Lth(T) in the small/large partial DOS Ng 1 (F) as
well as that of the excitation gap A®®**(T) (Fig. 5.16b), which can also be compared to the
corresponding value deduced from the fit at each temperature. Such plots are often found in the
literature of multigap superconductors. Nevertheless, our analysis clearly shows that, despite
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Figure 5.15: (a) Temperature dependence of the tunneling conductance by Roditchev et al. obtained
for a SIN junction with a NbSey tip oriented along the a/b axis and a gold sample and corresponding
McMillan fit (thin lines). (b) Temperature dependence of the tunneling conductance obtained for a SIS
junction with a NbSes tip oriented along the a/b axis and a c-axis oriented sample, and corresponding
McMillan fit (thin lines). The data are fitted with the McMillan model for a two gap superconductor
with the same parameters for the tip and sample: A% =0 meV; I's, =3 meV; I'g = %iggig =Ts1/3.
The intrinsic ‘large gap’ A9 is the adjustable parameter. In the SIS case, the spectra are fitted with
the McMillan model, assuming a tunneling selectivity towards the ’small gap’ band for the tip (T = 1;
Tr, = 0) and towards the ‘large gap’ band for the sample (Ts = 0; T;, = 1). In the SIN case, we assume
a full tunneling towards the ‘small gap’ band (Ts = 1; T, = 0). At each temperature, the fit gives the
value of the intrinsic ‘large gap’ A9 (T'), with A(T") =0.

the fact that NbSes shows two different SC gaps, only one intrinsic gap is necessary to describe
well the tunneling conductance spectra and their evolution as a function of temperature.

5.2.2.4 Two band model vs distribution of gaps

As already mentioned, the tunneling conductance in NbSey was interpreted previously in terms
of a continuous gap distribution.!”* In this phenomenological model, the tunneling DOS is
described by a weighted sum of BCS DOS: N(E) = ., g(Ai)Npcs(E, A;), where g(4;) is a
distribution function describing the probability of having a gap value A;. Following the model
of Rodrigo et al.,'™ Roditchev et al. determined the two gap distributions g(4;) needed to
reproduce the DOS of the ‘large’ and ‘small gap’ bands shown in Figs. 5.16¢ and 5.16¢ which were
calculated by solving the self-consistent equations in the McMillan model. These distributions
are shown in Fig. 5.17.

At low temperature, the distribution function found for the ‘large gap’ DOS exhibits two
well-defined peaks around 0.77 meV and 1.16 meV. One notes that their positions are close to the
peak-to-peak "gaps" in the McMillan DOS shown in Fig. 5.16b. The distribution function found
for the ‘small gap’ is strikingly different from that of the ‘large gap’. In particular, it exhibits
a single peak at 0.76 meV. More importantly, one notices that in some energy ranges, the
distribution function has negative values. This demonstrates that it is not possible to properly
reproduce the DOS of the ‘small gap’ band with a gap distribution having only positive weights.
This is due to the very peculiar shape of the peaks of the ‘small gap’ DOS (Fig. 5.16¢), whose
amplitude decreases more rapidly than ~ 1/v/E — A close to the gap edge. The same conclusion
would of course have been obtained by directly fitting the conductance curve obtained in the
tunneling experiment with the tip oriented in the a/b-axis. Thus, while the DOS of the ‘large
gap’ band can be fitted by a gap distribution, this is not the case for the DOS of the ‘small
gap’ band.
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Figure 5.16: (a) Temperature dependence of the intrinsic ‘large gap’ A} (T') deduced from the fits
for the SIN (NbSey tip-gold sample) (green squares) and SIS junction (NbSey tip-NbSes sample) (blue
squares) compared to the theoretical value A%th(T) calculated by the resolution of the self-consistent
equations (5.9) (black line). (b) Theoretical temperature dependence of the excitation gap A®®th (in
black) and of the peak to peak small and large gaps (in red and green respectively) A% }fh which are
defined as the peak to peak value in the calculated partial DOS for the ‘small’ and ‘large gap’ Ng(F)
and N (E). (c) Temperature dependence of the partial DOS for the ‘small gap’ band Ng(FE) calculated
by the resolution of the self-consistent equation. (d) Temperature dependence of the partial DOS for the
‘large gap’ band Ny, (E).

At higher temperature, the ‘large gap’ distribution function evolves towards a distribution
with a single peak. In addition, for both the ‘small’ and ‘large gap’, the distribution becomes
more and more peaked as the temperature increases and gets very close to BCS, with the same
gap value for both bands near the critical temperature. This behavior is in fact very different
from that expected in the Suhl, Matthias and Walker model, which in the work by Rodrigo
and coworkers!”! is believed to explain the temperature evolution of the two gap distributions.
Indeed in this model, the ratio between the two gaps should first increase when the temperature
increases. This behavior is at variance with what is observed in Fig. 5.17, where the energy of
the maxima of both distribution functions decrease continuously with increasing temperature.
Moreover, the observation of the collapse of the two gaps towards a single BCS like signature
close to Te: (see curves in Fig. 5.17 close to T =7 K) is opposite to the model of Shul et al.13
which predicts two very different gaps very close to T.. On the other hand, such a behavior
is a remarkable feature of the quasiparticle mediated interband coupling (as in Schopohl and
Scharnberg’s model137).

5.2.2.5 General conclusions of the experiment

These series of experiments and analyses that Roditchev et al. performed leads us to three
major conclusions:
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Figure 5.17: Small (a) and large (b) gaps distributions obtained by fitting the DOS shown in Fig.
5.16c and Fig. 5.16d, calculated self-consistently as a function of temperature, with a weighted sum of
BCS DOS, following the empirical model of Rodrigo et al.171.

1. Tunneling data of NbSey can be explained in terms of a two-band proximity effect within
the McMillan model. Superconductivity arises in one band, where the electron-phonon
coupling constant is large, and is induced in a second band by quasiparticle interband
scattering.

2. The tunneling selectivity has to be taken into account in order to reproduce the different
tunneling spectra measured along various crystal orientations.

3. Tunneling towards the c-axis (a/b-axis) leads to the coupling with band of the large (small)
gap.

However, two points remain to be elucidated:
1. With respect to the band structure, which band corresponds to which gap?

2. As it is now well established,*”” the Se bands contribute an additional branch to the Fermi
surface (i.e. the Se based pancake), so its role must be elucidated with respect to the SC
properties.

To clarify these aspects, in the following we first discuss the electronic structure of NbSes
and its implication for the tunneling results on the basis of first-principles DFT calculations.
We then consider the possible role of the low temperature CDW transition occurring in this
material below 33 K on the superconductivity.

5.2.3 DFT calculations
5.2.3.1 Electronic structure of NbSey

The electronic structure of NbSey has been calculated a number of times in the literature; 182,183
177,178,185,205,206 here we just highlight some aspects which are relevant in order to understand
the signatures of multigap superconductivity in the tunneling spectroscopy of NbSes. The
calculated band structure is shown in Fig. 5.18. There are three partially filled bands, the two
upper ones having niobium 4d as the dominant character (except around I'), whereas the lower
is mostly based on selenium orbitals. From now on these bands will be referred to as band 3,
2, and 1, respectively. This is in contrast with the situation for a single NbSes layer where only
the two niobium 4d based bands are partially filled.
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Figure 5.18: Calculated band structure for NbSe, where the size of the green and the red circles is
proportional to the niobium d,2 and dgy/d,2_,2 character, respectively. I' = (0, 0, 0), M = (1/2, 0, 0),
K =(1/3,1/3,0), A = (0, 0, 1/2) in units of the reciprocal hexagonal lattice vectors.
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Figure 5.19: Contribution of band 1 (a and b), band 2 (c¢) and band 3 (d) to the Fermi surface for
NbSeg.

The calculated Fermi surface (see Fig. 5.19) contains three different contributions. First, a
pancake-like contribution centered at the I' point arising from the selenium based bands. Second,
a pair of warped cylinders centered at I' arising from the two partially filled niobium 4d bands.
Third, a pair of warped cylinders centered at K arising also from the two partially filled niobium
4d bands. The cylinders occur in pairs because there are two layers per repeat unit and thus
there are in-phase and out-of-phase combinations of the single-plane niobium bands. The two
cylinders around I', as well as those around K, merge at the border of the Brillouin zone because
there the phase factors are such that the interlayer interactions vanish. Although both pairs of
cylinders around I" and K originate from the same bands, their character strongly changes from
one region to the other: whereas the niobium character is mostly d,» around T it is dyy/dy2_ 2
around K (see Fig. 5.18).

For simplicity, from now on we will refer to the cylinders centered at the I' point (K point)
of the Brillouin zone as the ‘Nb I'-cylinders’ (‘Nb K-cylinders’) since they mostly arise from the
Nb bands.

5.2.3.2 Contribution of the different orbitals to the partially filled bands

In order to correlate the partially filled bands states to the STM images it is essential to have
a clear idea of what is the relative weight of the different orbital contributions, i.e. niobium
d,2, niobium dyy/d,2_,» and selenium, for the different parts of the Fermi surface (i.e. in
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Figure 5.20: Contributions of the selenium, niobium d> and niobium d, /d,2_,> orbitals to the density
of states associated with the (a) middle -2- and (b) upper -3- partially filled bands.

the two different pairs of cylinders and in the pancake around I'). The pancake is strongly
based on the selenium orbitals. Of particular interest are the middle and upper partially filled
bands. Their orbital contributions are shown in Fig. 5.20. An important observation is that
the selenium contribution to these formally niobium bands is comparable to the individual
niobium contributions. As shown in Fig. 5.21, almost half of this selenium contribution is p,,
i.e., the selenium orbitals perpendicular to the layers. This means that, although globally the
metal character prevails in these two bands, there is a very important hybridization with the
selenium orbitals, and particularly with the selenium p, orbitals. Consequently, these p, states
are expected to dominate the tunneling along the c-axis (see the calculation of the tunneling
current in section 5.2.3.6), and the Se atoms will be seen in the tunneling images, at least at
large distances from the surface.

5.2.3.3 Partial DOS associated with the different portions of the Fermi surface

We report in Table 5.4 the partitioning of the bulk total density of states at the Fermi level
into niobium and selenium contributions for each of the three partially filled bands. In addition,
for the two niobium based bands (i.e., bands 2 and 3) we also separate the contributions into
those associated with the cylinders around I' and the cylinders around K. Since both bands
contribute to the two types of cylinders, we define the contribution to the ‘Nb I'/ K-cylinders’ as
the sum of the contributions of bands 2 and 3 around I'/K. The most salient features of the
second and third columns of this table are:

i) The total contributions to the DOS at the Fermi level of the upper niobium-based band
(i.e., band 3) are considerably larger than those of the lower niobium-based band (i.e., band 2).

ii) For both niobium-based bands the contribution of the ‘Nb K-cylinders’ is always larger
than that of the ‘Nb I'-cylinders’.

iii) The contribution of the lower selenium band (i.e., band 1) is small.

iv) The ratio between the contribution of the ‘Nb K-cylinders’ vs. ‘Nb I'-cylinders’ to the
total DOS at the Fermi level is 2.7.

The origin of these values is developed in detail in Section 5.2.3.4. From the inspection of
the values of the second and third columns of this table (Nb and Se contributions), one could
naively expect that the local DOS probed by STS spectroscopy will be dominated by a large
contribution from the ‘Nb K-cylinders’, a lesser contribution from the ‘Nb I'-cylinders’, and
finally an even smaller contribution from the selenium based pancake. Surprisingly, this is not
what is found in the calculation, as shown in the following.



5.2. Multi band superconductivity in NbSes 73

DOS DOS DOS DOS

(Total) (Nb contribution) (Se contribution) (Sep, contribution)
Band 1 T 0.117 0.035 0.080 0.062
Band 2 T 0.359 0.239 0.121 0.066
Band 2 K 0.731 0.528 0.203 0.052
Band 3T 0.337 0.260 0.080 0.032
Band 3 K 1.175 0.848 0.331 0.117

Table 5.4: Bulk total and partial DOS for the different bands at the Fermi level around I' and K (in
electrons/eV /unit cell).
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Figure 5.21: Contributions of the selenium p. and selenium p, , orbitals to the density of states
associated with the lower (1), middle (2) and upper (3) partially filled bands.

5.2.3.4 Qualitative understanding of the density of states

The features of the density of states at the Fermi level can be understood on the basis of the
analysis of the wave functions. The two partially filled niobium-based bands, though more
heavily based on the metal atoms, contain substantial niobium-selenium antibonding character.
The dispersion of these bands results from a subtle equilibrium between direct in plane niobium-

)82 and niobium-

niobium interactions (ultimately responsible for the 30 K structural distortion
selenium antibonding interactions.

Increasing the niobium d,2 participation in the wave function is accompanied by an increase
of the participation of the selenium p, orbitals. Roughly speaking, increasing the weight of
d,2 in the wave function makes the Fermi surface more isotropic within the layer plane and
shifts the electron density from antibonding levels to the interlayer direction so that the mixing
of niobium d 2 orbitals will be less favorable for the subband associated with the interlayer
antibonding interactions. Increasing the niobium d,» participation (and thus the selenium p,
orbitals) increases the interlayer dispersion and reduces the density of states. Thus, keeping in
mind the results of Fig. 5.18, it is easy to understand that the density of states at the Fermi
level for both bands is larger for the cylinder around K and that the effect is larger for the
upper, interlayer antibonding band.

5.2.3.5 Effect of the CDW on the band structure

Since our analysis is based on the room temperature crystal structure whereas the tunneling
images are obtained at temperatures below the 30 K transition we must consider if the structural
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Experimental LC Optimised LC
Model 1 Model 2 Model 1 Model 2
x  0.334075 0.331592 0.335403 0.330972

Atom Position

Nb 12] y  0.337869 0.329487 0.339518 0.327408
g 19k x; 0.111108 0.111019 0.111198 0.111025
“l z;  0.113204 0.112344 0.116252 0.114852
9o 19k xg  0.443859 0.444995 0.443619 0.445294
2 zo  0.111032 0.114528 0.112950 0.117735
x3 0.778434 0.777340 0.778591 0.777009

Se3 12k

zz  0.114712 0.111915 0.117377 0.113985

Table 5.5: Results for the P63/mmc model relaxation for NbSey. Six additional Nb atoms occupy
positions 2b, 2c¢ and 2d. LC stands for lattice constant.

distortion may noticeably affect the results. Therefore, though it is a bit off-topic, it is interesting
to study the structure after this transition. To those not interested in the structural relaxation
we can say in advance that this transition does not affect to the images and general conclusions
of the work so you can happily skip this Section.

The experimental structure of the low temperature phase was not experimentally known
until recently, when Malliakas and coworkers'®® did an study of such structure, so we carried
out a structural optimization using a (3ax3axc) supercell with fixed cell parameters for the
experimental and optimised lattice cell constants (because of the well known problem of DFT
with van der Waals interaction, we have carried out all the optimizations keeping the experi-
mental value for the interlayer cell constant, ¢). We studied two different structures exhibiting
a niobium clustering pattern closely related to those proposed by Moncton, Axe and DiSalvo'87
(see Fig. 5.22a) and Brouwer and Jellinek!®® (see Fig. 5.22b) (from now on we will refer ot it
as ‘model 1’ and ‘model 2’ respectively). For this, we made a modification of the relaxation
SIESTA subroutine in order to take into account the symmetries of the system in its final struc-
ture using generalized coordinates. The calculated room temperature non-modulated structures
(P63/mmc) using the experimental lattice constants (a = b = 3.4425 A and ¢ = 12.547 A) or
the optimised lattice constants (a = b = 3.5425 A and ¢ = 12.547 A) are in position 4f with
zse = 0.11661 and 0.115431, respectively with the Nb in position 2b (see Appendix E).

Since the experimental structure was not known at the beginning of the study, we first
used a P63/mmc symmetry to describe the final structure as in the work by Moncton et al.'87
and Brouwer et al.'® On the other hand, from the work by Malliakas, it can be extracted
that the system has a slight distorsion towards the P63/m symmetry, so we also carried out
the optimization of the structure for this case. It is worth noting that it is important to not
break the symmetry since, due to the small energy differences between the structures at T>30
K and T<30 K, it could hide the effect of the transition. We started our calculations from
different initial structures, but on Table 5.5 and 5.6 we show only the two final structures for the
P63/mmc and P63/m, respectively. This is because all the starting points took us to one model
or the other. We can transform the generalized coordinates to cartesian coordinates using the
crystallographic data tables (see Appendix E). Since the atoms’ displacement is very small and,
in order to see which structure corresponds to which model, we show in Fig. 5.22 an schematic
drawing of the movement of the Nb atoms. The movement of the Se atoms is much smaller.

As it can be seen from Table 5.7, when the experimental lattice constant is kept fixed, model
1 is found to be slightly more stable. Whereas the opposite result is found when the optimised
lattice constant is used. The same result is obtained when the relaxation is carried out within
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Experimental LC Optimised LC

Model 1 Model 2 Model 1 Model 2

xXq 0.333934 0.331651 0.336012 0.330845
ve 0.337690 0.329573 0.333958 0.327187
xp  0.662308 0.670433 0.666065 0.672851
vy 0.666078 0.668364 0.664004 0.669205
x;  0.111073 0.111037 0.111463 0.111029
Seq 12i y1  0.222161 0.222098 0.222911 0.222004
z;  0.113111 0.112373 0.116482 0.114799

xo  0.443883 0.445021 0.444248 0.445313

Ses 12i yo  0.887789 0.889986 0.888511 0.890667
zo  0.111066 0.114485 0.115257 0.117800

x3 0.778414 0.777339 0.777625 0.776975

Ses 12i y3  0.556858 0.554695 0.555249 0.553975
zs  0.114624 0.111910 0.114757 0.113945

Atom Position

Nby 6h

Nby 6h

Table 5.6: Results for the P635/m model relaxation for NbSes. Six additional Nb atoms occupy positions
2a, 2c and 2d. LC stands for lattice constant.
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Figure 5.22: (a) and (b) Schematic view of the two possible modulations (model one and two, respec-
tively) discussed in the text. Arrows indicate the direction of the movement of the atoms.

the P63/m group (see Table 5.8). However, the energy difference is so small that the different
‘preference’ cannot be taken as indicative. Since the largest change is due to the Nb atoms,
we studied the change in the total Nb-Nb overlap populations for the two structures and we
found no difference. Moreover, as we will show later, from the electronic view point, both are
practically equivalent. Because of the tiny difference in energy, the final adoption of one or
another modulation most certainly depends of possible impurities, defects, etc. Let us note
that the passage from the high temperature to the low temperature structure is not an abrupt
process but a series of successive incommensurate modulations'8!
local appearance of these two modulations.

most likely because of the

In order to be confident with our results, it is also interesting to study the case of NbSs
that has the same structure of NbSey and it is also a superconductor, but it does not suffer the
structural transition at 30 K. Therefore, we did an analogous study of the structure relaxation
for this material. In Table 5.9, we show the generalized coordinates that resulted from the
relaxation. As in the case of NbSes, the structures are relaxed but, in contrast, the difference
of energy between the modulated and non-modulated structure is even smaller than before.
Therefore, we can conclude that, although in nature we will not see the modulation, there is
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Experimental LC Optimised LC
Model 1 Model 2 Model 1 Model 2
(Enfod-Enonod) (meV) -11.55 -9.43 -38.66 -39.2
(Errod-Enonrod) (K) -134.17 -109.54 -448.49 -456.17
(Enrod-Enonod) per Nb (meV) -0.64 -0.52 -2.15 -2.18
(Enrod-Enonrod) per Nb (K) -7.45 -6.08 -24.92 -25.34

Table 5.7: Energy and temperature differences for the P63/mmc modulated structures for NbSe2,.

Experimental LC Optimised LC
Model 1 Model 2 Model 1 Model 2
(Enfod-Enonod) (meV) -11.488 -9.21 -2.39 -40.16
(Errod-Enonrod) (K) -133.24 -106.77 -27.79 -465.79
(Enrod-Enonod) per Nb (meV) -0.64 -0.51 -0.13 -2.23
(Enrod-Enonrod) per Nb (K) -7.40 -5.93 -1.54 -25.88

Table 5.8: Energy and temperature differences for the P63/m modulated structures for NbSes.

always a tendency towards it.

Finally, a good and simple way to analyze if something changes in the electronic properties
after the structural transition is to study the projected densities of states. We are interested in
the niobium d2, niobium dy;/d,2_,2 and selenium orbitals, which are compared in Figure 5.23
for the the distorted (noted 3x3) and undistorted (noted 1x1) structures. There is a very small
decrease of the DOS at the Fermi level but definitely there is no gap opening. In what concerns
to the Se contribution, the difference is again very small so that the modulation should only
weakly affect the tunneling. The relative weight of the Nb d contributions exhibits only small
changes, therefore, the main conclusions of the previous analysis should still hold after the 30
K transition. This is in keeping with early resistivity and heat-capacity measurements?°7-208
suggesting that the decrease in the density of states at the Fermi level should be of the order of
only 1%. It is also in agreement with an independent theoretical study by Calandra et al.'® The
lack of a gap opening at the Fermi level is in agreement with a very recent atomic-scale scanning

209

tunneling microscopy study which, together with another recent work on the temperature

186

dependence of phonon dispersion, provide clear experimental evidence to exclude a Fermi

surface nesting mechanism for the 30 K transition.
The main effect of the CDW is a slight rehybridization of the niobium d orbitals. As shown

Atom Position Model 1 Model 2

334 331
ST
S 0 e o
o 2 Tem o
3, 19K X3 0.778450 0.777108

Z3 0.117230 0.114942

Table 5.9: Results for the P63/mmc model relaxation for NbSs. Six additional Nb atoms occupy
positions 2b, 2c¢ and 2d.
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Model 1 Model 2

(Entod-Enonod) (meV) -17.379 -16.117

(Entod-Enorrod) (K) -201.612 -186.972
(Enod-Enonrod) per Nb (meV) -0.9655 -0.895
(Enrod-Enonod) per Nb (K) -11.2 -10.39

Table 5.10: Energy and temperature differences for the relaxed structures for NbSs.
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Figure 5.23: Comparison of the niobium d.-, niobium d,,/d,>_,> and selenium contributions for the
normal (noted as 9x (1 x 1)) and CDW (noted (3x3)) states for NbSe, for model 1 (a) and model 2 (b).

in Fig. 5.23a for model 1, there is a small but definite decrease of both the niobium d,2 and
niobium d,,/d,2_,2 orbital contributions when the CDW occurs. Since the total DOS and the
selenium contributions hardly change, the difference is due to a small additional participation
of the other niobium orbitals needed to describe the small rehybridization brought about by the
CDW. The same conclusion is reached when model 2 is analysed (see Fig. 5.23b).

As before, it is also interesting to analyse what happens to the PDOS of NbS, after the
transition to the modulated structure. Therefore, we do an analog study of this quantity, which

is shown in Fig. 5.24. As we can see, in contrast to NbSes, there is no such rehybridation of the
Nb d orbitals.

5.2.3.6 Calculated tunneling STM images

Similarly as in the case of MgBsy (see Section 5.1.3), we now consider STM imaging within the

Tersoff-Hamman approximation,62

where the current at a given tip position is proportional to
the LDOS at that point, integrated over the standard energy window given by the tip-surface
potential difference (Er, EF + V). Our images correspond to constant current images, showing
the maps of heights that produce a constant tip-surface current. Instead of specifying the value
of the current (which is the situation encountered in an experiment), we choose a particular
value of the density of states and plot the corresponding constant DOS surface.

In Fig. 5.25 we show the calculated STM image for a specific DOS isovalue (5-107° elect-
-eV~1. unit cell™!). The image presents bright spots centered at the selenium atom positions.
When the different contributions of the pancake, the ‘Nb I'-cylinders’ and ‘Nb K-cylinders’ to
this image are separated, the three calculated images have practically the same shape, although
with different DOS contribution. Thus, tunneling in the three portions of the Fermi surface is
dominated by the electronic states originated from the selenium atoms, whereas the niobium
atoms are not visible in standard tunneling conditions.

As shown in Fig. 5.25, these calculations are in agreement with experimental results showing
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Figure 5.24: Comparison of the niobium d,2, niobium d,,/d,>_,> and selenium contributions for the
normal (noted as 9x(1 x 1)) and CDW (noted (3x3)) states for NbS,.
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Figure 5.25: Calculated STM image for NbSes (obtained for an iso-DOS value of 5-107° elect-
V1 unit cell™1).

the hexagonal atomic selenium lattice (note that for small tip-surface distances, the underlying
Nb atoms have been also experimentally seen in the tunneling images?'?). We thus conclude
that the Se contribution for each of the three different Fermi surface portions plays a crucial
role in the tunneling process.

At this point it is important to note that actual calculations for the (3ax3axc¢) CDW mod-
ulated structure below 30 K (see the discussion in Section 5.2.3.5) show that the CDW has
only a minor effect on the Se orbitals as well as in the relative weight of the Nb orbitals in the
Fermi level region so that the main conclusions of our analysis should still hold after the CDW
transition.

5.2.3.7 Tunneling selectivity

The key aspect when trying to use the calculated images in understanding the origin of the
proposed two-gap superconductivity in this material lies in evaluating the relative weight of the
tunneling current due to each of the three components of the Fermi surface. From the Tersoff
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Contribution Position a-exp 1 (Bohr™1) a-exp 2 (Bohr™1)

N At atom 1.3049 + 0.0011 :

ancake At hollow 1.3016 + 0.0004 ;

. At atom 1.3144 + 0.0016 ;

Cylinder at T At hollow 1.3093 + 0.0007 :
. At atom 1.3066 + 0.0006 1.66 + 0.04

Cylinder at K At hollow 1.3064 + 0.0006 ;

Table 5.11: Inverse decay length extracted from exponential fits of I vs z.

162 it is expected that the contribution of the states with small wave

and Hamman analysis,
vector parallel to the surface will decay slower in vacuum and thus give a dominant contribution
to the current for large tip-surface distance. Tersoff and Hamman also stressed that, even if it
is not the dominant term, the states near the Brillouin zone boundary also give a significant
contribution.

A precise analysis requires the calculation of the tunneling current as a function of the height
of the tip, which reflects how the different contributions in the DOS decrease in vacuum. We
have studied the decay of the current I(z) with the tip height z at different positions of the
(z,y)-plane for the three different components of the Fermi surface. A quick reminder from
Section 5.1.3: I(z) is expected to roughly vary exponentially I ~ Ae~“*. If the exponential
dependence holds, we can easily obtain « by fitting the calculated I(z).

As we also explained in Section 5.1.3, in some cases, the I(z) curves do not correspond to
a single exponential, but rather display two exponential regimes (with two different slopes). As
in the case of MgBy we can fit the I(z). The results of the fits to I(z) are shown in Table
5.11. For each component of the Fermi surface, a similar inverse decay length is found (~ 1.31
Bohr~!) corresponding to a typical decay length of 0.4 A. A second exponential is needed for
the component of the cylinders around K, indicating a faster decay of one contribution of the
local DOS relatively close to the surface.

5.2.3.8 Contribution of the different portions of the Fermi surface to the tunneling
current

The ratio of the local DOS in vacuum associated with the ‘Nb I'-cylinders’ and ‘Nb K-cylinders’
plotted as a function of the distance from the surface is shown in Fig. 5.26. For most values
of the tip-surface distance in the STM experiment (5-10 A), the local DOS due to the ‘Nb I'-
cylinders’ is around twice as large as that originating from the ‘Nb K-cylinders’. In view of the
calculated local DOS values for the bulk (see Table 5.4), this is a surprising result. However, it
can be explained by taking into account the larger weight of the Se p, orbitals around I' than
around K and the signs of the mixing coefficients of the orbitals for a given wave vector (see the
discussion in Section 5.2.4).

Let us now turn the attention to the possible role of the Se based pancake of the Fermi surface
in understanding the origin of the different superconductivity gaps as probed by the tunneling
experiments. Three-quarters of the local density of states at the Fermi level associated with this
Se based pancake originate from the Se p, orbitals so that some degree of interband coupling
with the ‘Nb I'-cylinders” and/or the ‘Nb K-cylinders’ might be expected. If the contributions
to tunneling of the ‘Nb I'-cylinders’ and the Se based pancake are taken together, it becomes the
dominant contribution to the tunneling process when compared with the contribution of the ‘Nb
K-cylinders’ (Fig. 5.26, red curve). Recall that this occurs despite the dominant contribution
of the ‘Nb K-cylinders’ over that of the ‘Nb I'-cylinders’ to the total DOS at the Fermi level for



80 Chapter 5. Two band gap superconductivity in layered materials

6 T T T T T T T T T T T T T T T T T T
| — (Cylinders at I')/(Cylinders at K)
— (Cylinders at I'+Pancake)/(Cylinders at K)
SF— (Cylinders at K + pancake)/(Cylinder at I')
4+
2
§ L
w3
o |
A
2k
1F
O N 1 N 1 N 1 N 1 N 1 N 1 1 1 1 N
0 1 2 3 4 5 60 7 8 9 10
z- Zlast atom (A)

Figure 5.26: Ratios of the calculated DOS for the various portions of the Fermi surface as a function
of the distance from the surface.

the bulk (see Table 5.4). However, if the contribution to tunneling of the Se based pancake is
added to the contribution of the ‘Nb K-cylinders’, it also becomes the dominant contribution
to the tunneling process when compared to the contribution of the ‘Nb I'-cylinders’ (Fig. 5.26,
green curve).

Consequently, our calculations show that, assuming that there is some coupling between the
cylinders and the pancake portions of the Fermi surface, the Se based pancake can either reinforce
or reverse the noted predominance of the ‘Nb I'-cylinders’ over the ‘Nb K-cylinders’ in the
tunneling. Thus, in order to make the link between the tunneling selectivity and the identification
of the two bands associated with the McMillan model it is crucial to focus on the role of the Se
based pancake. This issue is further elaborated in Section 5.2.5.

5.2.4 Discussion on the contribution of the I' and K cylinders to the tunnel-
ing current

For most values of the tip-to-surface distance, the contribution of the cylinders around I' to the
tunneling intensity is around twice larger than that of the cylinders around K (Fig. 5.26). This
may seem a bit surprising if we recall that the respective contributions to the density of states
at the Fermi level were found to be just the opposite. However, this is in line with the results
for the inverse decay length in Table 5.11.

One can think about two possible origins for this fact. First, the faster decaying of the
contribution of the cylinders around K is due to the k-selectivity of the tunneling current.62
It follows from eq. 5.7 that the contribution to the tunneling of Fermi surface states with wave
vectors near the Brillouin zone center (k = 0) should be larger. Consequently, the contribution
of the cylinders around I' should become larger because of this effect and maybe could overcome
the initial difference in density of states at the Fermi level. However, in the present case, we
evaluate the effect of this k-selectivity as leading at most to an increase of about 10% of the
calculated value. Consequently, this should not be the main factor behind the dominance of the
contribution of the cylinders around I'. Second, one should be aware that the decay of the Se
p- orbitals is slower than the decay of the Se (p,,p,) orbitals. As discussed in detail in Sections
5.2.3.1 and 5.2.3.4, the nature of the niobium orbitals for the Fermi surface states associated
with the cylinders around I' and those around K is different and this will induce a different
hybridization of the selenium orbitals in the respective wave functions. As shown in Table 5.4,
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the relative weight of the Se p, vs. Se (ps,py) orbitals is larger for the cylinders around T
This means that the hybridization between the Se orbitals is more strongly dominated by the
p, orbitals for the states associated with the cylinders around I' thus leading to a slower decay
of these states.

A complementary aspect one must consider is that the plots of the density of states lack
an important ingredient in order to understand a directional effect like the tunneling current
along a certain direction: the signs of the mixing coefficients of the orbitals for a given wave
vector. Of course these signs are directly related to the directionality of the electronic states and
consequently strongly influence the tunneling in a given direction. Briefly speaking, the different
nature of the niobium orbitals for the states around I' and around K lead to different Se orbitals
hybridizations with a stronger control of the p, orbitals for the cylinder states around I'. Actual
calculation of the wave functions for points of the Fermi surface associated with the cylinders
around I' and around K show that the former exhibit a slower decaying along c.

5.2.5 Discussion
5.2.5.1 Linking the small and large gaps bands to the Fermi surface sheets

The study of the band structure of NbSes by means of DF'T calculations gives us the respective
contributions of the different Fermi surface sheets to the DOS at the Fermi level (see Table 5.4).
Moreover, from the analysis of our experimental tunneling data, we have deduced the ratio of
the partial DOS corresponding to the ‘small’ and the ‘large gap’ bands: Ng(Er)/NL(Er) ~ 1/3.
This information should enable the identification in k-space of the Fermi sheets corresponding
to the small and large gap bands, or at least to propose a reasonable scenario.

The two ‘Nb I'-cylinders’ (as well as the two ‘Nb K-cylinders’) nearly touch and are of
the same electronic nature. If one adds together the theoretical DOS contribution of both
‘Nb I'-cylinders’ (corresponding to the portions around I' of bands 2 and 3), one obtains 0.7
elect-eV~l-unit cell™! (i.e. 26% of the total DOS at Ep) while the contribution of the ‘Nb
K-cylinders’ (bands 2 and 3 around K) gives 1.9 elect-eV~l.unit cell™! (i.e. 70% of the total
DOS). Thus, the ratio between these two partial DOS (that around I' divided by that around
K) is 0.37, a value which is very close to the one inferred from our tunneling data: 0.33 (see
Section 5.2.2.1). The immediate conclusion is that the small gap DOS is associated with the ‘Nb
I'-cylinders’ and the ‘large gap’ DOS with the ‘Nb K-cylinders’. However, as shown in Fig. 5.26
(blue line), the contribution of the ‘Nb I'-cylinders’ to tunneling should dominate over that of
the ‘Nb K-cylinders’. This is not what is observed in the measured tunneling spectra.36:167,171

To resolve this apparent paradox, there are two important aspects that must be taken into
account. First, the existence of the Se pocket around I'; and second, the charge density wave state
present at low temperature. Both have strong implications for the tunneling selectivity and the
interband coupling, as we discuss below. The existence of the Se-based pancake (Figs. 5.19 and

S172,178 oy magnetoresistance

5.27a) has been confirmed experimentally, for instance using ARPE
measurements.”? As mentioned before, it is strongly based on the Se p, orbitals. Thus, as
established by our calculations (see Fig. 5.26), the Se-based states should strongly contribute to
the tunneling current and a question arises regarding their possible coupling to the Nb bands.

The second aspect to consider is that the low temperature Fermi surface is more complex
than indicated in Fig. 5.27a due to the CDW state existing below the transition temperature
Tepw ~ 30K.16% In the CDW state the system exhibits a nearly commensurate (3ax3axc)
superstructure.165:181,188 This may play a significant role in both the interband coupling mech-
anism as well as in the tunneling selectivity. In fact, taking into account the CDW state leads
to a qualitative model in good agreement with the tunneling measurements.

Assuming a commensurate (3ax3axc) superstructure after the transition, the CDW leads
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b ) Third band

Small gap band Large gap band

Figure 5.27: (a) Schematic view of the Fermi surface of NbSe,. The wave vectors of the charge density
wave g; = f@ (where G; are the basis vectors of the reciprocal space of NbSey above the CDW phase
transition temperature) link the selenium pocket around I' (dark blue area) to the cylinders around K
(orange lines) at different points of the first Brillouin zone. (b) Schematic view of the possible interband
couplings between those bands associated with the three different Fermi surface components. Band 1
(2) corresponds to the Nb cylinders around " (K'), while band 3 corresponds to the Se pocket around T'.

to a reduced hexagonal Brillouin zone with 1/9th of the parent area. It is instructive to consider
the extended zone scheme and to look for equivalent k£ points in the non-reduced (parent)
Brillouin zone. In particular, as a result of the new perlodlclty, the center of the first Brillouin
zone, I', becomes equivalent to the parent K point since Ik = gi + g3, with g1 = G1 and
go = %C_jg (see Fig. 5.27a where G; are the basis vectors of the parent reciprocal lattice of NbSGQ).
Consequently, the tunneling probability to electronic states belonging to a pocket around K,
will involve new wave functions with an inverse decay length given by oy, = /0k? + k2 (instead

of the former oy, = \/(I? — 6K)? + k2 ) where 6k is a vector joining the K point to the nearest
F'S sheet (see Fig. 5.27a). Clearly, due to the CDW state, the tunneling coming from the ‘Nb
K-cylinders’ states gets considerably enhanced.

The CDW state might also play a role in the interband couphng Indeed, as seen in Fig.
5.27a, the two wave vectors of the charge density wave g1 = 7G1 and g5 = G2 precisely link
the small selenium pocket around I' to the portions of the cylinders around K havmg high DOS.
For this reason, we expect a strong coupling mediated by the charge density wave between those
two areas of the Fermi surface. As will be shown in the following section, when the coupling is
sufficiently strong (> 10 meV), the Se I'-pocket and the ‘Nb K-cylinders’ behave as one single
band, explaining thereby why the tunneling spectra along the c-axis reflect the ‘large gap’ band.

5.2.5.2 Three bands model calculation

The strong coupling effect may be further illustrated by a three-band model calculation. Let
us consider three bands (see Fig. 5.27b) with intrinsic gaps A? = 0 meV, Ag = (0 meV, and
AY = 1.4 meV. The parameters of bands 1 and 2 correspond to the values found for the ‘small
gap’ (band 1) and ‘large gap’ (band 2) bands of NbSey. Band 1 is thus weakly coupled to band
2 and very weakly coupled to band 3. We then studied the evolution of the partial DOS as
a function of the interband coupling parameter I'so between bands 2 and 3. The ratios of the
interband scattering parameters have been chosen such that they correspond to the calculated
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Figure 5.28: Partial DOS calculated by Roditchev et al. for a three bands model for different values
of the interband coupling parameter between band 2 and band 3: (a) I'sy = 1 meV; (b) I'so = 5 meV;
(c) I3z = 10 meV; (d) I'sz = 50 meV. The intrinsic gaps are A = 0 meV, A = 1.4 meV, and A} = 0
meV. The ratio of the partial DOS at the Fermi energy are related to the ratio of quasiparticle scattering
between the corresponding bands %;Egi; =2 =1/3; xz gig = %;’ = 1/16; %?Egig F13 = 1/6; The
quasiparticle scattering parameters are: I'yo = 3 meV; 'y = 1 meV.

DFT ratios of the partial DOS: J]:,hégi) 1/3; %z(gg 1/16; %f(gi) = 1/6; (we recall that
band 1 is associated with the ‘Nb I'-cylinders’, band 2 with the ‘Nb K-cylinders’and band 3
with the Se pocket around I').

The interband coupling between bands 2 and 3 leads to an induced gap in band 3. As seen
in Fig. 5.28, when I'ss increases, the DOS of band 3 gets close to that of band 2. For very

large I'sy > 50 meV, one recovers a situation very similar to an effective two-band model with

a new effective band constituted by bands 2 and 3. Thus, for a large coupling strength the
model shows that bands 2 and 3 are indistinguishable from one single band. In Fig. 5.29, we
plot the corresponding tunneling conductance assuming a complete tunneling selectivity towards
band 3 (i.e. with tunneling weights 77 = 0; T, = 0; T35 = 1). For a large coupling I'sy > 50
meV, the tunneling conductance is very close to the one predicted in the two-band model,
with a complete selectivity towards the band with the ‘large gap’, corresponding well to the
experimental observation.

In summary, we propose that the CDW state has strong implications for both the interband
coupling between the Se-based pancake and the K-cylinders as well as for the probability to
tunnel towards electronic states around the K point, due to the first Brillouin zone reconstruc-
tion. As a result, this gives rise to a strong contribution to the tunneling conductance of the
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Figure 5.29: Tunneling conductance dI/dV calculated by Roditchev et al. in the three band model
for different values of the interband coupling parameter between bands 2 and 3: I'ss = 1, 5, 10, 50 meV;
Dashed line: Tunneling conductance expected for the small and 'large gap’ in the two band model.

states around K, an essential ingredient for the observation of the ‘large gap’ in c-axis tunneling
spectra. The analysis above suggests that the band where the ‘large gap’ develops is constituted
of both the K-cylinders and the Se pancake, strongly coupled together through quasiparticle
scattering. Moreover, the quasiparticule coupling described in the McMillan model between the
I" and the K-cylinders, is likely to be associated to the reduced lattice reciprocal vectors g1 and
go of the CDW state.

5.2.5.3 Comparison with 2H-NbS,

It is also interesting to compare the tunneling conductance spectra measured on NbSes to that
reported by Guillamén et al. for 2H-NbSy.2! This material is close to NbSes, with a super-
conducting transition temperature of T,= 5.7 K but does not exhibit any charge density wave
instability.212 Roditchev et al. fit their data with their two-band model obtaining parameters
close to those of NbSey. The intrinsic gaps are: AOS = 0 4+ 0.05meV and A% = 1.15 + 0.05meV,
I'sy=1.5 meV and a ratio % = 1/3 £ 0.3. The selectivity weights corresponding to the
tunneling towards the two different effective bands are: Ts = 0.4 and Ty, = 0.6 (see Fig. 5.30).

We thus find that, as for NbSes, our approach enables to reproduce the experimental spectra
with a very good agreement. This implies that superconductivity develops in one band (or
more precisely in one Fermi surface sheet) whereas it is induced in the other band by means
of interband coupling mediated by quasiparticle scattering from one band to the other. The
ratio found for the coupling parameters I';; is very close to the value found for NbSe;. This
is in agreement with the similar density of states expected at the Fermi level for the K and
I’-cylinders in both materials. On the other hand, it is clear from the fits that the tunneling
selectivity differs from NbSes (Ts = 0; 77, = 1). This means that in 2H-NbSy there is a more
important contribution of the band with the ‘small gap’ DOS to the tunneling current than in
NbSeg.

In principle, this feature could be explained in two different ways. First, although there is no
CDW transition in 2H-NbSs,2'2 our calculations show that the Fermi surface is very similar to
that of NbSes. In particular the S-based pancake around I is also present. This result is quite
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Figure 5.30: Tunneling conductance dI/dV spectrum from Guillamén et al.211 and fit obtained with
Roditchev’s et al. two bands McMillan equations. The parameters for the fit are the following. The
intrinsic gaps are: A% = 0 + 0.05meV and AY = 1.15 + 0.05meV, I's;=1.5 meV and ?g—i =1/3
+ 0.3. The selectivity weights corresponding to the tunneling towards the two different effective bands
are Ts = 0.4 and Ty, = 0.6. Note that we have used a temperature for the fit (Ty; = 0.5K) which is
significantly higher than the experimental temperature (T, = 0.1K).

robust since calculations for reasonable changes in the cell constants lead only to small changes
in the FS shape. As for NbSes, a similar mechanism for the coupling to the ‘K-cylinders’ could

186 although a static CDW modulation does not occur

take place through dynamical coupling,
in this material. As a result the S based pocket could be strongly coupled to the ‘K-cylinders’.

The change in the tunneling selectivity coefficients of the two bands (Ts and T7), would
originate from the absence of a real band structure reconstruction due to the absence of the
CDW in this material. In addition, the scenario pointed out here to explain the observed
differences between the experimental tunneling spectra of NbSey and 2H-NbSs, is in agreement
with the observation that vortices in the first material where the CDW is present have a star

shape, while they are circular in the other material, where the CDW is absent.?!!

5.3 Conclusions

In this Chapter, we have studied the two band gap superconductivity of two materials: MgB»
and NbSes,.

Although the two materials present the same physical phenomena, they are quite different:
While in MgBs there are two bands crossing the Fermi level and is a quite known case of two
band gap superconductivity the case of NbSes there are three bands crossing the Fermi level
and is still nowadays discussed in the literature.

In the case of MgBy we first studied the experimental results obtained by Roditchev et al.,
finding that the ratio between interband coupling parameters is close to 1 and that the small gap
was probed when doing STS measurements in the c-axis orientation. Using DFT calculations of
the normal state we gave support to the experimental measurements.

Studying the DOS, we found that the ratio of both bands (which is directly related to the
ratio of the coupling parameters) is also close to one.

Also, using STM images we studied why we preferentially see the small gap when doing STS
experiments in the c-axis, finding that it is because both the directional shape of the boron p,
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orbital and the symmetry properties of the lattice.

For NbSes we first did a survey of the experimental results that we could find in the litera-
ture. After, we studied the experimental data obtained by Roditchev et al. in dI/dV tunneling
conductance spectra of NbSes by scanning tunneling spectroscopy for two different crystal ori-
entations. We found that the tunneling conductance is properly reproduced by the McMillan
two-band model. In this framework, superconductivity develops in one band (with gap value
A% = 1.4 meV) and is induced in the second band by proximity effect in reciprocal space (AOS =0
meV) through inter-band coupling provided by the scattering of quasiparticles. The data showed
evidence of a strong tunneling selectivity which also depends on the crystal orientation: a DOS
with a ‘large gap’ is mainly probed along the c-axis while a ‘small gap’ DOS is measured along
the a/b-axis.

To interpret these results, and to link the two gaps to respective bands, a realistic band
structure of NbSey was calculated using first-principles DFT. The Fermi surface contains three
components: a pancake-like Se based contribution around I', and two pairs of Nb-based cylinders
parallel to ¢ around I' and K, respectively. The calculated values of the partial DOS at the
Fermi energy associated with each of these three components show that the ‘large gap’ should
be associated with the cylinders around K, while the ‘small gap’ should correspond to the
I'-cylinders.

In addition, our simulations of the tunneling current in the Tersoff-Hamman approximation
show that the local DOS probed by STS is dominated by the p, character of the Se orbitals.
Considering that the ‘large gap’ DOS should originate from the K-cylinders, these results imply
that a strong quasiparticle coupling should exist between the Se-based pancake and the K-
cylinder Fermi surfaces. Such an interband coupling could be adequately provided by the CDW
wave vectors existing in the superconducting phase of NbSes. The latter mechanism also explains
the tunneling spectra measured on the related compound 2H-NbSs although in this case there
is not a real CDW transition. This work thus brings a new light on the possible interaction
between superconducting and CDW states in NbSes.



CHAPTER 6

Conclusions

Two-dimensional materials have been studied since long time ago. Recently, since the discovery
of graphene in 2004 by the Nobel prizes A. Geim and K. Novoselov, a renewed interest in
this kind of materials arose in the scientific community. Due to the excellent properties that
graphene presents in order to make devices and study exotic quantum effects, there has been
much development in the fabrication and manipulation of this material. This fact has led to
an improvement of the techniques for 2D materials as a side effect. Nevertheless, not only 2D
materials are interesting in the electronic properties/device building sense: also, the strongly
correlated properties such as two band gap superconductivity that arises in some of them are also
interesting. In this thesis we have studied the electronic properties of some of these materials:

e In Chapter 3 we studied the electronic properties of transition metal dichalcogenides
(TMDCs) that, due to the change of gap character from direct to indirect when the sample
has one layer or two or more layers, has become of great interest in the past years. Using
DFT calculations we were able to identify the minimum set of orbitals to construct an
analytic and trustworthy tight-binding (TB) model for these materials. Furthermore, we
showed how, by just adding some interlayer hopping terms, we were able to correctly de-
scribe the aforementioned band gap transition. After building this TB model we adjusted
the parameters to the previously obtained DFT band structure, finding that a qualita-
tively agreement was obtained. Moreover, we found that the mechanism that drives the
transition from a direct to an indirect gap is due to an interlayer band splitting, where
the S p, orbitals play an essential role. Since some of these materials could present strong
spin-orbit coupling (SOC) we generalized our TB model to include the SO interaction.
This time, taking the already optimised parameters, we used the SOC constant obtained
from the literature and found, as in the case without SOC, that there is a qualitative
agreement with our DFT calculations. Due to the analyticity of these TB models, they
are suitable for the inclusion of many-body effects and for the analysis of local strain ef-
fects. Furthermore, they can be used in order to perform theoretical transport calculations
in real-size samples.

e In Chapter 4 we studied the properties of a new family of substrates for graphene: the
transition metal dichalcogenides. After building the different structures and finding the
optimised value for the distance between graphene and WSy we saw that, although the
linear behaviour of the bands around the Dirac cone is preserved, a small gap is opened at
the Dirac point. We found that when adding more WS, layers to the system, the valence
(conduction) band approaches to the Dirac point at the vicinity of the I'-point (K-point).
The positions of these bands converge to the bulk limit when having three or more layers
of WSs. We also studied the charge redistribution for these structures, and we found that
it is mostly localized at the graphene/WSs interface. This redistribution creates a small
dipole at the interface. We also saw that adding more layers does not change neither the
distribution of charge nor the interface dipole.

e In Chapter 5 we studied the two band gap superconductivity that arises in MgBs and
NbSeg.
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o In the case of MgBs we have only two bands crossing the Fermi level. The experimen-

tal results obtained by Roditchev and coworkers at the Spectroscopie des Nouveoux
etats quantiques group at the Institut des Nanociences de Paris show the well known
result that that the small gap is probed when doing STS experiments in the c-axis.
Combining calculations of bulk properties and simulating the STM images at the
surface, we found that this is due to the directional shape of the boron p, orbital and
the symmetry properties of the lattice.

The case of NbSey is more complicated since we have three bands crossing the Fermi
level and, furthermore, this material undergoes a charge density wave at low temper-
atures (before the superconducting state has occurred). Roditchev’s group performed
dI/dV tunneling conductance measurements in two crystal orientations. They found
that the ‘large gap’ was probed in the c-direction while the ‘small gap’ was measured
in the a/b-direction. To understand all the results and link, as in the case of MgBs,
the superconducting gaps to each of the bands that cross the Fermi level, we perform
first-principles calculations. As we said before, NbSes has three bands crossing at
the Fermi level, which gives us three contributions to the Fermi surface which are:
a pancake-like Se based contribution around I', and two pairs of Nb-based cylinders
parallel to ¢ around I" and K, respectively. With this, we can show that the ‘large
gap’ should be associated with the cylinders around K, while the ‘small gap’ should
correspond to the I'-cylinders. Moreover, with the theoretical STM images, we show
that the tunneling current in the experiment is dominated by the p, character of the
Se orbitals. The participation of the remaining band (giving the Se based pancake
Fermi surface) is less clear, and we tried to solve it. This association implied that a
strong quasiparticle coupling should exist between both Fermi surfaces contributions.
We showed that, since the ‘large gap’originates from the K-cylinders, the Se-pancake
should couple with this. Furthermore, this mechanism also allowed us to understand
the tunneling spectra from 2H-NbSs, a similar compound to NbSes, which does not
undergoe a CDW transition.



APPENDIX A

Computational details

In this Appendix, we describe the details of the calculations for each Chapter. All DFT calcu-
lations carried out along the thesis were carried out using the SIESTA code.?%:60

A.1 DFT calculations for the TB model of TMDC

A.1.1 Without spin-orbit coupling

We use the local density approximation (LDA) to DFT and, in particular, the exchange-

213 a5 parametrized by Perdew and Zunger.2'4 The non-

215

correlation potential of Ceperly-Alder
linear core-valence exchange-correlation scheme“'° was used for all elements. We have used a
split-valence double-¢ basis set including polarization functions.'® The energy cutoff of the real
space integration mesh was chosen to converge the total energy (300 Ry). The Brillouin zone was
chosen to converge the total energy and was sampled using 30x30x1 and 30x30x30 k-points
in the Monkhorst-Pack scheme?'6 for the single-layer and bulk systems, respectively.

Lattice parameters for MoSy, MoSes, WSy and WSes were chosen according to their exper-
imental values, as reported in the works by Bromley et al.,7 Schutte et al.,'2® and Kumar et

al.2'7 and they are listed in Table A.1.

A.1.2 With spin-orbit coupling

The spin-orbit interaction is treated as in the work by Fernandez-Seivane et al.2'® We use the
local density approximation (LDA) to DFT and, in particular, the exchange-correlation potential
of Ceperly-Alder?'3 as parametrized by Perdew and Zunger.?'*4 The non-linear core-valence

215 was used for all elements. We have used a split-valence double-

exchange-correlation scheme
¢ basis set including polarization functions.'* The energy cutoff of the real space integration
mesh was 300 Ry. The Brillouin zone was sampled using 30x30x1 and 30x30x30 k-points in the

Monkhorst-Pack scheme?!6 for the slab (single-layer and bilayer) and bulk systems, respectively.

a u c

MoSs 1L 3.16  1.586 —
MoSs Bulk 3.16 1.586 6.14
MoSes 1L 3.288 1.664 —
MoSes Bulk 3.288 1.664 6.451
WSs 1L 3.153 1.571 -
WSy Bulk 3.1563 1.571 6.1615
WSey 1L 3.260 1.657 —
WSes Bulk  3.260 1.657 6.422

Table A.1: Lattice parameters used for DFT calculation for M X, systems, as taken from the works
by Bromley et al.>7, Schutte et al.,'2% and Kumar et al.217 a represents the M-M atomic distance, u
the internal vertical distance between the M plane and the X plane, and ¢’ the distance between the M
layers. In bulk systems the z-axis lattice parameter is given by ¢ = 2¢/. All values are in A units.
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A.2 Transition metal dichalcogenides as substrates for graphene

We use the local density approximation (LDA) to DFT and, in particular, the exchange-

213 45 parametrized by Perdew and Zunger.2'4 The non-

215

correlation potential of Ceperly-Alder
linear core-valence exchange-correlation scheme was used for all elements. We have used
a split-valence double-¢ basis set including polarization functions.'* The energy cutoff of the
real space integration mesh was chosen to converge the total energy (300 Ry). The Brillouin
zone was chosen to converge the total energy and was sampled using 20x20x1 k-points in the

Monkhorst-Pack scheme.216

A.3 Two band gap superconductivity in 2D materials

A.3.1 MgB2

We use the local density approximation (LDA) to DFT and, in particular, the functional
of Ceperly-Alder.2'3 Only the valence electrons are considered in the calculation, with the
core being replaced by norm-conserving scalar relativistic pseudopotentials®'? factorized in the

Kleinman-Bylander form.?2? The non-linear core-valence exchange-correlation scheme?1®

was
used for all elements. We have used a split-valence double-( basis set including polarization
functions.'* The energy cutoff of the real space integration mesh was 300 Ry. The experimental
crystal structure was used for the bulk calculations. A symmetrical nine unit cells thick slab
based on the experimental bulk structure plus an extra boron layer to compensate charge was
used for the calculation of the STM images. The reason is that as Li et al.'®7 have also shown
the Mg terminated samples should exhibit the same type of STM images as the B terminated
samples for any experimentally reasonable height (> 4 A) The only difference lies in the actual
value of the DOS, i.e., the images for the case of an Mg terminated sample are the same as those
for a B terminated surface when the probe is around 4 A further away. Only at small distances
(around 3 A) of a Mg terminated surface the Mg atoms are visible and dominate the image.
The Brillouin zone was sampled using 30x30x30 and 30x30x1 k-points in the Monkhorst-Pack
scheme?16 for the bulk and slab calculations, respectively.

A.3.2 NbSe,

We use the generalized gradient approximation (GGA) to DFT and, in particular, the functional
of Perdew, Burke and Ernzerhof.?2! Only the valence electrons are considered in the calculation,
with the core being replaced by norm-conserving scalar relativistic pseudopotentials®!? factorized
in the Kleinman-Bylander form.?29 The non-linear core-valence exchange-correlation scheme?1°
was used for all elements. We use a split-valence double-( basis set including polarization
functions, optimized for the bulk structure of NbSes'®. The energy cutoff of the real space
integration mesh was 300 Ry. The Brillouin zone was sampled using a grid of (30x30x30) -
points within the Monkhorst-Pack scheme?'6. The experimental crystal structure was used in
the bulk calculations for 2H-NbSes!7? and 2H-NbS,.222 A symmetrical slab of ten and a half
unit cells thick based on the experimental bulk structure was used for the calculation of the
STM images. In that case we also used an extra diffuse orbital in the basis set so as to take into

223

account the slab nature of the system and the Brillouin zone was sampled using a mesh of

(30x30x1) k-points.
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Tight-binding Hamiltonian elements

In this Appendix we provide an analyical expression, in terms of the Slater-Koster parameters,
for the several intra-layer and inter-layer matrix elements that appear in the Hamiltonian of the
tight-binding model. Following the work by Doran et al.,'° it is convenient to introduce few
quantities that account for the moment dispersion within the Brillouin zone, as functions of the
reduced momentum variables & = k,a/2, n = v/3kya/2.

We define thus:

C1(&,m) = 2cos(&)cos(n/3) + cos(2n/3) + i[2 cos(&) sin(n/3) — sin(2n/3)], (B.1)
C2(€,m) = cos(§) cos(n/3) — cos(2n/3) + i[cos(§) sin(n/3) + sin(2n/3)], (B.2)

C3(&,m) = cos(§)cos(n/3) + 2cos(2n/3) + i[cos(€) sin(n/3) — 2sin(2n/3)], (B.3)

di(&m) = sin(n/3) —icos(n/3), (B4)
h(§m) = cos(2€) + 2 cos(£) cos(n), (B.5)
l2(§;m) = cos(2€) — cos(§) cos(n), (B.6)
13(§;m) = 2cos(28) + cos(§) cos(n). (B.7)

B.1 Intra-layer hopping terms

Following the work by Doran et al.,'%° the intralayer hopping terms H, g appearing in Egs.
(3.4)-(3.8) can be written as:

Hype(§n) = Ap+ Ersl3(€,n) + 3E16 cos(§) cos(n), (B.8)
Hy/(§,n) = Ap+ Eiels(§,n) + 3E15 cos(§) cos(n), (B.9)
H,.(&n) = A.+2Eh(&n), (B.10)
Hpp2(€m) = Ao+ 2Eoli(En), (B.11)

Hy2yp2(§,m) = Ao+ Enls(§,m) + 3E12 cos(§) cos(n), (B.12)
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Hoyoy(€0) = Do+ Epals(€.) + 3E1 cos(€) cos(n), (B.13)
Hyopo(€1) = A+ Eisls(€,n) + 3B cos(€) cos(n), (B.14)
Hy.p2(&m) = Ar+ E1als(§,n) + 3E13 cos(§) cos(n), (B.15)
Hypy(6m) = —V/3(Exs — Eig) sin(€) sin(n), (B.16)
Hepa(€) = 2Eilb(€,n), (B.17)
Ho2/y(€m) = —2V3Ejgsin(€)sin(y), (B.18)
Hy2/py(€0) = V3(En — Ea)sin(€) sin(n), (B.19)
Hypyo(6) = V3(Er — Ery)sin(€)sin(n), (B.20)
Hzpp(6m) = —2V3Eisin(€)di(€,m), (B.21)
Hpepy(§m) = 2E1C2(E,n), (B.22)

Hyey(6n) = ExCi(€n), (B.23)

Hop&n) = —2VB(GE5 — Bo)sin(©h(En), (B.21)
Hy2yy(€,m) = —2E3C3(&,m) — 2iE5 cos(§)d1(€,m), (B.25)
Hpz/(&m) = —2E4C5(&m), (B.26)
Hoyjal€m) = —2B5Ch(6m) — 6iF3 cos(€)d (&), (B.27)
Hyyry(§sm) = Hyzpo(€m), (B.28)

Hyyo(6n) = 2V3Eysin(€)di(€,n), (B.29)
Hopel€n) = SECy(En) +6iBr cos( (e, (B.30)

Heopyl€m) = 2V3(5 B — Br) sin(€)di(€,1), (B.31)
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Hacz/z(fan) = _2\/§E8 Sin(f)dl(f,n), (B32)
Hyz/x(&”) = sz/y(faﬁ)y (B33)
Hy.p(§,n) = 2E:C3(&m) + 2iEq cos(§)di(&,n), (B.34)
Hyz/z(§777) - 2ESCZ(§777)7 (B35)
where
1 1
E, = 5 [—Vpdg <Sin2 ¢ — 3 cos? ¢> + V/3Vpar sin® 4 cos ¢, (B.36)
1
Ey, = [—Vpd(7 <sin2 ¢ — 3 cos? </5> — V/3Vpar cos® 4 sin ¢, (B.37)
1
Es = 1 \ég‘/pdo' 08> ¢ + Vg cos ¢ sin? ¢] ) (B.38)
1 3
Ey = 3 \g%dg 8in ¢ cos” ¢ — Vpgr sin ¢ cos” ¢] ; (B.39)
Ey = —ZV},dﬂ cos ¢, (B.40)
3 .
Ey = —ZVde sin @, (B.41)
1
Br = 1 [-V3Vhir 08?0 = Viur(1 = 20082 ¢) | sin g, (B42)
1
Ey = 5 [_\/g‘/;)do' Sinz (b - V;?dﬂ'(]- - 281112 ¢)i| COS ¢7 (B43)
1 3
Ey = —Vaio + — Vaas, (B.44)
4 4
V3
Ew = - Vado — Vaas] , (B.45)
3 1
En = ZVdda + 7 Vaas, (B.46)
E12 = Vadn, (B.47)
Ei3 = Vadn, (B.48)
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Eu = Vs, (B.49)
E15 = V}?paa (B50>
Eig = Vipr. (B.51)

Here the angle ¢ characterize the structure of the unit cell of the compound and it is de-
termined by purely geometric reasons (see Fig. 3.2). For the ideal trigonal prism structure,
neglecting the marginal deviations from it in real systems, we have ¢ = arccos[y/4/7], so that
cos ¢ = \/m and sin ¢ = \/3/77

With these expressions, taking into account also the further changes of basis, the Hamiltonian
at the I' point can be divided in sub-blocks as:

) H.,(T) 0 0
Hg(l) = 0 Hp,() 0 : (B.52)
0 0 Hyg,(D)

H,q, (1) 0 0

A~ A~

HO(F) = 0 de1(r) 0 > (B53)
0 0 T,
where
2 r \/Ql—‘zd
szo(r) = <\@I_(‘Jd FE 0 )? (B54>
zao z
5 Iy V20
A) = (gt V) (B.55)
2 P
~ I'y V2T 4
) = (g VR ). (B.50)
2 P

The parameters I', can be viewed as “molecular” energy levels, and the quantities I' g as
hybridization parameters. Their explicit expressions read:

I'y = HZQ/Z2 (F) = Ag + 69, (B57)

r = sz/:cz(r) = Hyz/yz(r)
= A+ 3[E13 + E14], (B.58)

Ty = Hyyoy(D) = Hyz (1)
= Ap+3[En + B2, (B.59)

Fg = Tp+ Vopr, (B.60)

O = T Vi, (B.61)
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Y = T, — Vo, (B.62)
9 = T, 4 Vo, (B.63)

Iy = Hz/x(r):Hy/y(F)

= Ap+3[E15 + Eiel, (B.64)
r, = Hz/z(r) = A, + 6E, (B65)
FZdO = H3z27r2/z(1_‘) = 3Ey, (B66)

Ppi, = HfoyQ/y(F):sz/x(F)
o3+ ) (B.67)

del = H:cz/a:(r) = Hyz/y(r)
= 2[3E7 + Eg). (B.68)

At the K point, in the proper basis described in the main text, we can write the even and
odd blocks of the Hamiltonian as:

A

) Hygo(K) 0 0
Hy(K) = 0 H.0,(K) 0 : (B.69)
0 0 Hypay (K)
) Hpa (K) 0 0
Ho = 0 M4 (K) 0 |, (B.70)
0 0 KD
where
- Ko —2iKp
) = (g, ™). (B.71)
0 p
: Ky 2K,
i) = (it "R ). (B.72)
za2 z
. _ K, V8K pd,
A (- L ) (B.73)
. K1 V8K
Hpq, (K) = (\/gfépd (0 ) (B.74)
1 p
- K1 2K,
Fal®) = (g, o™ ) (5.75)
zal z

The parameters K,, K, g read here:



96 Appendix B. Tight-binding Hamiltonian elements

Ko = H.pj/2(K)= A — 3E,, (B.76)
Ky = Hyppo(K) = Hy,pyo(K)
— A- g{Elg + Eul, (B.77)
Ky = Hyyjoy(K) = Hy2 /g2 (K)
= NAp— g[Eu + E1a), (B.78)
Ky = Kp+ Vi, (B.79)
K? = K, —Vypn, (B.80)
Kl = K.— Vo, (B.81)
K9 = K.+ Vppo, (B.82)

K, = Hx/x(K):Hy/y(K)

3
= A)— §[E15 + Eyg), (B.83)
K, = Hz/z(K) = A, — 3FE1g, (B.84)
Kpa, = H3227r2/y(K) = iH322*7‘2/$(K)
= —3F, (B.85)
K., = sz_yQ/Z(K) :iHmy/z(K)
= 3Ey, (B.86)

Kpa, = sz—y2/y(K):_Hmy/m(K)

—Z'sz_y2/x(K) = —iHIy/y(K)
= [E5 — 3E3] , (B.87)
Kpd1 = sz/x(K) = _Hyz/y(K)
= lez/y(K) = ZHyz/z(K)
_ (B - 38, (5.59)

sz1 = Hyz/z(K) :inz/z(K)
— _3E (B.89)
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B.2 Inter-layer hopping terms

Inter-layer hopping is ruled by the Slater-Koster parameters Uppy;, Uppr describing hopping

between S-3p orbitals belonging to different layers.
In terms of the reduced momentum variables £ = kya/2, n = \/gkya/ 2, we have thus:

where

Ey7
Erg
Eqg
Eo

1

2
1

2
EISCl (57 _77)7

\gg [E17 — Eig]sinédy (€, —n),

_\/§E20 sin €d1 (57 77)7
—E50C2 (&, —n),
E18C1 (57 —77)7

2 .2

= Uppo cos” B + Uppr sin® 3,
.2 2

Uppo sin” 8 4 Uppr cos™ 3,

Uppr
= [Upps — Uppr) cos Bsin .

= [E19C3(&, —n) + i3E17 cos £dy (&, —n)]

= [E17C3(&, —n) + i3E19 cos €1 (€, —n)]

Here § is the angle between the line connecting the two S atoms with respect to the S planes

(see Fig. 3.2). Denoting w the distance between the two S-planes, we have:

a
VaZ + 3w?’
V3w
Va2 + 3w?’

cosff =

sing =

(B.101)

(B.102)

Using typical values for bulk MoSs, a = 3.16 A, and w=2.975 A, we get cos 8 = 0.523 and

= Ix/m(r) = y/y(F)
3

= 3 [Erg + Eqq],

= 3E187

= Ix/x(K) = _Iy/y(K)

= —i]x/y(K) = —il,/,(K)
3

= 1 [Erg — Enq],

sin 8 = 0.852.
At the high-symmetry points I', K, we have thus:
Lpp
]'_‘ZZ
Kpp
K.

= Iy/z(K): z/y(K)

3
= —FEo.
520

(B.103)

(B.104)

(B.105)

(B.106)






APPENDIX C
Decomposition of the Hamiltonian in
sub-blocks at high-symmetry points

In this Appenddix we summarize the different unitary transformations that permit to decom-
posed at special high-symmetry points the higher rank Hamiltonian matrix in smaller sub-locks.
In all the cases we treat in a separate way the “even” and “odd” blocks, namely electronix states
with even and odd symmetry with respect to the z — —z inversion.

C.1 Single-layer

C.1.1 T point

In the Hilbert space defined by the vector basis gZ;L in Eq. (3.9), the even and odd blocks of the
Hamiltonian can be written respectively as:

Ty 0 0 0 0 V2l
0 Iy 0 0 V2l 0
. 0 0 [y V2T, 0 0
Hg(T) = Pz 1
0 V2l 0 0 ry 0
V2T 24, 0 0 0 0 re
and
Iy 0 V2L 0 0
0 Iy 0 V2L, O
o _ (¢}
o) = V2T pa, 0 I 0 0 (C.2)
0 V2Tpy 0 re o
0 0 0 0 19

The division in sub-blocks is already evident in Eqgs. (C.1)-(C.2). They can be further
ordered using the basis

$IT£ - @L,zd(ﬂ él,pdg,y’ (Ez,pdzﬂr’ (EL,Pdl’Z’ ézmdlyy’ éz,y ), (C3)
where

QEITc,zdo = (k z2—r2’p};zA7)7 (C.4)

Oty = (oo hys): (C5)

qgl,pdg,x = (kzy’pkxs) (C.6)

qu,pdhaz = (sz’pkxA) (C.7)

Ohptry = (hyeblyn) (C8)

e = (Phas): (C.9)
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In this basis we get Eqgs. (3.11)-(3.12), where

. r V2T,

ra® = (e VI ). (©.10)

Zag z

- r V2r
Au) = (gt V), 1)

2 p

- r V2o
Hy, (1) = (ﬂrlpd o ) (C.12)

1 p

C.1.2 K point

In the basis defined by the Hilbert vector <Z~>L, the Hamiltonian at the K point reads, for the even
and odd blocks, respectively:

Ky 0 0 —iV2Kpa,  V2Kpa, 0
0 K 0 i\/}Kde \/}Kpdz \/3{(2(12
- _ 0 0 K “V2Kpa, iV2Kpa, —iv2K.a,
Hu(K) = V2K g, —iV2K s, V2K, KP 0 0 (C.13)
V2Kpa,  V2Kpa, —iV2Kpa, 0 K} 0
0 \/iKZdQ i\/§sz2 0 0 KzE
K, 0 V2Kpa,  —iV2Kpy, —iV2K.4,
) 0 K1 —iV2Kpe, —V2Kpy,  V2K.g
Ho(K) = V2K, iV2Kpa, KD 0 0 . (C.14)
iV2Kpa, —V2Kpa, 0 KD 0
Z‘\/§I{zd1 \/iszl 0 0 K?

In order to decopled the Hamiltoniam, it is convenient to introduce the chiral basis defined
by the vector 1/;}; in Eq. (3.17). In this Hilbert space we have thus:

) Hygy(K) 0 0
0 0 4, (K)
) Hya (K) 0 0
Ho = 0 Hg4 (K) 0 |, (C.16)
0 0 KD

where

(C.17)

(C.18)

(C.20)

(C.21)

(
-
Hyp(K) = ( o V8K pa, ) (C.19)
(
(
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C.2 Bulk system

The general structure of the tight-binding Hamiltonian Hyi for the bulk system, using the basis
defined in Eq. (3.23), is provided in Egs. (3.26)-(3.31), where we also remind the symmetry
property (Eq. (3.25)) that related the matrix elements of Hy to Hj.

As mentioned in the main text, for k, = 0 the band structure can be still divided in two
independent blocks with even and odd symmetry with respect to the transformation z — —2z.190
Further simplicication are encountered at the high-symmetry points I and K.

C.2.1 T point

We first notice that at the I' point the relation in Eq. (3.25) does not play any role, i.e.
Hy(T') = Hy(T), where H;(T) is defined by Eqs. (3.10)-(3.12) in the main text.

The Hamiltonian is thus completely determined by the interlayer hopping matrix I that at
the I' point reads:

Iy 0 0O
i = 0 T,, 0 |. (C.22)
0 0 TI..

A convenient basis to decoupled the Hamiltonian in smaller subblocks is thus:

5t _ (&t 5T T T Al o
(I)k: - (q)kz,zdo’ Qk,pdz,gﬂ (I)k ,pda,x’ (I)k,pdl,:w q)k,pdl,y’ (I)k,z’ )’ (023)
where
Al _ i i i
¢k7Zd0 - ( k 32212, l’pk’,z,A 1’ dk 32212, 2’pk z,A 2) (C24)
51 _ T T T

(I)k,pdg,y - ( —yz1’pkySl’dkzacz—y2 2’pky5'2) (025)

51 _ i T
(I)k,pdg,ac - ( ka:y,l’pka:SPdk: xy,Q’pkaZ) <C26>

51 _ T T
ppdiz = (df, k vz, 2P} A g2 29 Pl A2)s (C.27)

51 _ T T
q)k,pdhy - ( kyz, 17pkyA1’dky22’pkyA2) (C'28)

51 _
P, = (pszPpszl?) (C.29)
The resulting total Hamiltonian can be written as:
- Hg (D) 0
Hyu(T) = ’ ~ , C.30
uik(T') ( 0 Ho puk(T) (6.30)
where
A H.ao puii(T) 0 0
Hepu(I) = 0 Hpgy pux(T) 0 : (C.31)
0 0 Hpg, puk (1)
. Hpgy pu() 0 0

Hopuk(I') = 0 Hpa, pue(T) 0 ; (C.32)

0 0 H. pui(T)
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and where
o V2l O 0
. NI re 0 r
H = 0 z =z )
zdg,bulk 0 0 PO \/irzdo ) (C 33)
0 Fzz \/irzdo FE
FZ \/il—‘pdg 0 0
. V2T 4 re 0
H = bz p Pp C.34
pda,bulk 0 0 F2 ﬂrde y ( )
0 Ty V2L, TD
Fl \/Erpdl 0 0
. V2T g ro 0 I
H = b1 p )
pdy,bulk 0 5 r, Val,e | (C.35)
0 Loy V2L, IP
N ror
H, puk = < T:z FZ§ ) : (C.36)

C.2.2 K point

The treatment of the bulk Hamiltonian at the K point, in order to get a matrix clearly divided
in blocks, is a bit less straighforward than at the I' point.
We first notice that the interlayer matrix, in the basis @};, reads:

) Ky iKy iKp.
I(K) = | iKyp -K,p Kp. |- (C.37)
iKp. Kp. 0

We then ridefine the orbitals df ., — df, vz = —d! e Phyas = Phyas = —Phyas
(a =A,S), in order to get, according with (3.25), Ha(T') = Hy(I).

Following what done for the single layer, we can also introduce here a chiral basis. After a
further rearrangement of the vector elements, we define thus the convenient Hilbert space as:

\I/Jlrc = (‘I’L pzdo2,L \I’L p2do2,R? @L,pdg,E’ \T’L,pzdl,R’ @L,pzdLL’ @L,pdl,o)’ (C.38)
where

@L,PZdOZL = (d 32272 17le£:LS17dLR27pI]::zA2’)’ (C.39)
‘i’lt,pzdolR = (d] k32212, 2’pchR32’d2L1’pchzA1’)’ (C.40)
@L@de = (d le’kaSDdLLl’pJILLSl’)’ (C41)
Ul oeanr = (dhpyph.s1oPhpas) (C.42)
\IIL,pzdl,R = (d kL2’plcz5’2’pLLA1) (C.43)
\IIITc,pdl,O = (dITcL1’pk:RAl’lecR2’pIt:LA2’)' (C.44)

In this basis, the Hamiltonian can be once more written as:
Hyu(K) = ( HEéK) Ho(z K) > : (C.45)

where Hg(K), Ho(K) are defined in Eqs. (3.35)-(3.40) of the main text.



APPENDIX D

SOC Hamiltonian

In this Appendix we provide the explicit expression of the matrices Mgg, MZ%, MgZ3, Mg%,
describing the local atomic spin-orbit interaction on both M and X atoms. We have:

0 0 0 0 0 0
0 0 —i\y 0 0 0
N 0 i\y O 0 0 0
/AN D.1
EE 0 0 0 0 —ixx/2 0 |’ (D-1)
0 0 0 ilx/2 0 0
0 0 0 0 0 0
My, = —MiL, (D.2)
0 —id\y O 0 0
iy 0 0 0 0
o = L A D
0 0 dx 0 0
0 0 0 0 0
Mo = —Mbo, (D.4)
V3 V3 0 0 0
A0 iy 0 0 0
. 1 —idy A 0 0 0
1Y/ AR D.5
EO 2 0 0 0 0 Ax ’ (D-5)
0 0 0 0 —ily
0 0 Ay iAx 0
. P\ T
M = (ah) (D.6)
V3ly V3l 00 0
Ay iy 0 0 0
. 1| —idy Ay 0 0 0
MY = D.
EO 2 0 0 0 0 =Xy (D7)
0 0 0 0 —i\y
0 0 Ax idx 0
and
. ~ T
nl = () (D)

In the above matrices we have used the short notation \js for the SOC of the metal (Mo or W)
and Ax for the SOC of the chalcogen (S or Se).






APPENDIX E

Wyckoft symbols

In this Appendix we show the Wyckoff symbols that we need to generate the coordinates of the
atoms for the modulated structure for the P63/m and P63/mmc groups of Section 5.2.3.5.

Position Coordinates
2a (0,0, %) (0,0,2)
2 () 310
2d ) (i
6 (2,9:1) (~y2=v.9)
(~e+y—21)  (cw-p) (=2 +v.%) (@ —y,,9)
(7,9, 2) (—y,z —y,2) (—x+vy,—x,z2) (2, —y,z+3)
12i (y,—z+y,2+3) (v—y,z,2+3) (—x,—y, —2) (y,—x +y,—2)
(r—y,x,—2) (z,y,—z+3) (~yz—y,—2+3) (—z+y,—z,—2+3)
Table E.1: Wyckoff symbols for the P63/m group.
Position Coordinates
2a (0,0,3) (0,0,3)
2b (0,0,1) (0,0,2)
2c (5.5:7) (5.3:1)
2d (5.5:7) (5:501)
4f (5:5:2) (552 +3) (5.5.—2) (5.5 —2+3)
(2.9 1) (yr—y.3)  (z+y—ag)  (cz-u.d)
12 (-etyd)  (roga) (v, 3) (& =y, =v. %)
(-o.—w+y.3)  (-y-2.3) (~etyy1) (wr-yq)
(z,2x, z) (—2z,x, 2) (z,—x,z) (—93, —2x,z + %)
12k (2z,2,2+ 3) (—2,2,2+ %) (2z,x,—2) (—x, —2x,—2)

(—x,1,—2) (=22, —z,—2+3) (2,22,—2+3%) (v,—2,—2+12)

Table E.2: Wyckoff symbols for the P63/mmc group.
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