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Abstract

The main topic of this thesis is the theoretical and computational investigation of the

optoelectronic properties of large arrays of semiconductor quantum dots embedded in an

insulator matrix. For that purpose, an electronic transport model has been formulated

and implemented in a code for numerical simulations.

The relevance of this research is given by the possibility to simulate from basic design

parameters, such as the device geometry and basic material constants, the electrical

response of quantum dot based devices which are promising candidates to enhance and

further downscaling the actual electronics.

Quantum dot properties have not analogous in the standard bulk semiconductor theory.

Their electrical and optical properties are dominated by the quantum effects arising from

the quantum confinement. This fact creates discrete energy level spectra and makes the

electrical response of this kind of system different to the bulk case.

The developed electrical transport methodology is based on rate equations within the

Transfer Hamiltonian approach in the ballistic regime. A set of non-coherent rate equa-

tions can be written for a random distribution of interacting quantum dots embedded in

a dielectric media and the interaction among the quantum dots and between the quan-

tum dots and the electrodes are introduced by transition rates and capacitive couplings.

The effects of the local potential are computed within the self-consistent field regime.

The electrical transport model has been developed and expressed in a matrix form in

order to make it extendable to larger systems. Transport through several quantum dot

configurations has been studied in order to validate the model. Despite its simplicity,

well-known effects are satisfactorily reproduced and explained. The results qualitatively

agree with more complex theoretical approaches

While the description of the theoretical framework is kept as general as possible, a

realistic modelization of: the capacitive couplings, the transmission coefficients, the

electron/hole tunneling currents and the density of states of each quantum dot have been

taken into account. Creating a new simulation tool that can foster the development of

quantum dot based nanosystems aiding in their design.

To illustrate the kind of unique insight that these numerical simulations can provide,
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two specific prototypical devices, an arbitrary array and a transistor device based on

quantum dots, have been simulated.

To conclude, the previous developed transport model has been completed including

illumination effects being able to study an design optoelectronic devices.
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Chapter 1

Introduction

The invention of the solid state transistor and the semiconductor integrated circuits

started a rapid development towards faster and smaller electronic devices. Nowadays,

our way of life can not be imaginable without the use of electronics and therefore,

semiconductor materials. Further progress in the integrability of these devices to achieve

new capabilities and their miniaturization has arrived to the nanometric scale. Although

the precise control of atoms is still a challenge, the nanoscale reflects behaviors that

are intrinsically associated to atomic properties only well described by the quantum

mechanics. Thus, these devices are reaching the regime where the quantum mechanical

description of the system is of major importance and the classical models can not describe

it correctly. Additionally, many new possible applications are rapidly emerging from

these small quantum systems.

Up to now, all the developed semiconductor technology has grounded on Silicon (Si)

since it is an abundant material; its impurity concentration can be easily controlled; it

exhibits a semiconductor behavior at higher temperatures than germanium; its native

oxide is easily thermally grown and forms a better semiconductor/insulator interface

than any other material. Furthermore, the non-toxicity and the economic value of this

material have made the Si as the widest used material for electronic devices being the

nucleus of the CMOS (Complementary Metal-Oxide-Semiconductor) transistor technol-

ogy. Nevertheless, the complete development of the optoelectronic technology based on

Si is strongly limited by the band structure of the material and its indirect band gap,

limiting the efficiency of these devices.

The progress in the fabrication techniques has opened the possibility to create structures

of size ranging from few to tens of nanometers, which consist on hundreds to thousands

of atoms called quantum dots (QDs). In these structures, the electrons are confined in

all three spatial dimensions being the ultimate goal in the semiconductor technology.

In the last decades, there was a lot of interest in QDs since their electrical and optical

properties differ from their bulk counterparts. Due to the strong electron confinement,

1



2 Chapter 1. Introduction

Figure 1.1: (a) Scanning electron microscopy (SEM) picture of a lateral quantum dot
structure. Six metallic gates that create the confinement potentials are deposited on
top of a GaAs/AlGaAs heterostructure. The picture has been extracted from Ref. [1].
(b) Scheme of a vertical QD structure [2]. (c) Transmission electron microscopy (TEM)
image of large array of Si Qds in a SiO2 matrix with low magnification, extracted from
Ref. [3].

a single QD exhibits a discrete energy spectrum [4] and it is usually called an “artificial

atom”. This system constitutes an excellent candidate for the study of the electronic

quantum transport on mesoscopic length scales. Two main systems based on QDs can

be distinguished: lateral and vertical structures. Lateral QDs take advantage of the two

dimensional electron gas (2DEG) formed at the interface of two different semiconductor

materials (usually GaAs/AlGaAs [1]) whereas the confinement in the other directions

is achieved by external gates that deplete the electron gas in the other two directions

(Fig. 1.1(a)). Using this strategy, one and two QDs can be created.

Vertical QDs are formed by layered semiconducting heterostructures. The different

band gap of the materials produce the confinement potential in the transport direction

whereas the lateral confinement is provided by pillars that are etched out of the layered

heterostructure [2] (see the scheme in Fig. 1.1(b)).

The previous described fabrication methods are based on sophisticated combination of

growth techniques and lithographical/etching methods. However, there are also tech-

nologies available to obtain QDs via chemical methods. Their size and shape can be

controlled by the duration, temperature and ligand molecules used in the synthesis [5].

Other growing technique is based on heteroepitaxial systems with different lattice con-

stants. During the growth of a layer of one material on top of the other, the formation of

nanoscale islands takes place [6, 7] if the thickness of the layer (so called wetting layer)

is larger than a certain critical value. Ensembles of millions of more or less homogeneous

QDs in a small volume can be obtained in these manners being the preferred fabrication

methods to create large QDs arrays (Fig. 1.1(c)).
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1.1 The quantum confinement:

QDs properties

The MOS (metal-oxide-semiconductor) transistor is the archetype of a confined two-

dimensional system [8]. Nevertheless, the possibility to enhance this confinement by

embedding low-dimensional structures in an insulating matrix has opened new way for

further downscaling. Compared to the standard bulk technology, the corresponding de-

vices based on these structures have increased the structural and conceptual complexity.

The study of devices based on quantum confinement began in 1969 when Esaki et al.

suggested a multilayer structure consisting in different bilayers of ultra-thin semicon-

ductors creating the so called resonant tunnel diode [9, 10].

Quantum confinement describes the variation of the electronic and optical properties

respect to the bulk case when the sampled material is sufficiently small. The phenomena

results from the spatial confinement of the electrons and holes. In such small systems,

the electronic properties of the material differ from the bulk case since the wave functions

of the carriers have extra boundary conditions.

Three different nanostructures emerge as a function of the number of the confined dimen-

sions: 1D confinement structure is a quantum well, 2D confinement forms a quantum

wire and 3D confinement is called quantum dot (QD). Concerning QDs, the main prop-

erty is that the energy states are discrete and well separated. Thus, the density of states

(DOS) is now represented by a sequence of delta functions. Moreover, from the quan-

tum confinement the energy gap of the QD is strongly dependent on the QD size. For

spherical QDs, the relation is usually written as [11, 12]

EQdgap = Egap +
A

Rd
, (1.1)

where Egap is the bulk band gap and A is a constant that involves several material

parameters. The QD radius is R and d is usually fitted as d ∈ [1, 2]. This property

makes the QDs valuable objects that can be exploited in order to build light absorbers

or emitting devices (LEDs) for photovoltaic applications [13, 14, 15].

Concerning Si QDs, the first device that emits visible light was presented in 1990 [16].

The interest in Si nanostructures arises from the possibility to overcome the limitations

of bulk Si which are: (1) small band gap for optical purposes and (2) it is an indirect

band gap semiconductor. With the carrier confinement, the emission wavelength is tuned

by the QD size and the radiative paths (in absence of extra phonons) are favored [17]

increasing dramatically the photon emission efficiencies. Moreover, these systems show

lower operation currents due to the strong reduction in layer thickness and increased

quantum efficiency. Thus, the light emitting device can provide the same optical output

power with a lower injected current.
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1.2 Electronic transport in the nanoscale

The conventional description of the electronic motion is based on the drift-diffusion

equations which means that the electron takes a random walk or it travels along the

direction of the applied field for some length before getting scattered into some random

direction. The electrical resistance of the materials is directly related to the scattering

processes that suffer the carriers. However, the miniaturization of the electronic devices

from µm to nm sizes has led to the limit of the classical theory. When the size of the

device is shorter than the mean free path of the carriers, described as the length that

the carriers can travel without suffer an scattering process, the transport changes from

diffusive to ballistic regime.

According to Ohm’s law (diffusive transport), the resistance R of a material with cross-

sectional area A and length L is given by

R =
V

I
= ρ

L

A
(1.2)

being ρ the material resistivity. When the device length is decreased, the resistance

tends to zero. However, numerous experiments since the 1980’s have shown that this is

not the usual behavior at the nanoscale and the resistance of the material at this scale

becomes independent of the length. In the case of ballistic transport, the resistance

follows

R =
h

q2︸︷︷︸
25.9 kΩ

1

M
, (1.3)

where M is an integer described as the number of conducting channels. The factor h
q2

is associated to the channel-contact interfaces [18]. The minimum of conductance for

ballistic transport is G ≈ 38.6µS.

The total resistance of a device that includes both transport regimes (diffusive and

ballistic) can be written as

R =
h

q2

1

M

(
1 +

L

λ

)
, (1.4)

where λ and L are the mean free path and the device length, respectively. From this

expression, the two limits are clearly visible for L >> λ, diffusive transport, and L << λ,

for ballistic regime. We must note that in the case of L = 0, there still is a resistance

associated to the contacts.

From the semiclassical semiconductor theory, the simulation and modeling of semi-

conductor devices are based on a set of partial-differential equations. These so-called

semiconductor-device equations describe the static and dynamic behavior of carriers in

semiconductors under the influence of external fields that cause deviations from the ther-

mal equilibrium. The set of equations is known as drift-diffusion equations, it consists

on the Poisson equation, the continuity equations and the current density equations for
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electrons and holes, respectively. The drift-diffusion equations are macroscopic equations

which describe the flow of charged particles using appropriate models for their macro-

scopic physical behavior. They are based on semiclassical approximations (parabolic

bands, effective masses). However, when the devices become smaller, the quantum limit

is achieved and some quantum mechanicals effects that do not have equivalent in macro-

scopic physics appear and dominate the final response of the system.

Concerning QDs, they possess discrete energy levels and quantum properties more simi-

lar to natural atoms or molecules than to infinite semiconductors due to the strong con-

finement in all three directions. This fact affects dramatically the electronic transport

properties. Until now, the research has mostly concentrated on single QDs and many

novel transport phenomena have been discovered, such as the staircase-like current-

voltage I(V) characteristic [19], Coulomb blockade oscillation [20], negative differential

capacitance [21] and the Kondo effect [22] which can not be explained with the semi-

classical theory.

From experimental point of view, rapid progress in microfabrication technology has made

possible coupling QDs system with aligned levels [23, 24, 25]. Although one single QD

contacted to the leads has been obtained, creating a so called single electron transistor

(SET) [26, 27], the research mainstream is focused on the properties of structures with

many QDs to create non-volatile memories [28], light-emitting devices [29] or solar cells

devices [30]. An experimental route, the superlattice approach (SL) [31], was developed

to create Si QDs embedded in SiO2 matrices. Where thin silicon rich oxide (SRO) and

thin SiO2 layers are deposited alternatively making feasible that the SiO2 layers act as

a diffusion barriers. In a later temperature annealing process, the QDs are formed in

the SRO layer. Thus, the QD size can be controlled tuning the thickness of the Si layer.

However, the large band offsets between Si and SiO2 (≈ 3.1 and 4.5 eV for conduction

and valence band, respectively) focus the problem on the charge transport through the

oxide matrix.

From a theoretical perspective, researchers have recently paid much attention to electron

transport through several QDs, since multiple QDs provide more Feynman paths for

the electron transmission [32]. The complexity of structural and physical mechanisms

as well as the prominent role of dimensional and quantum effects characterizing the

operation of these novel QDs devices preclude the use of standard macroscopic bulk

semiconductor transport theory. If the transport description for an electronic device

requires the inclusion of quantum mechanical properties of the carriers, the choice is

between two models:

• Dynamical models based on equations of motion for the Non-Equilibrium Green’s

Functions formalism (NEGFF) or for quantum-phase-space distributions such as

Wigner functions.
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• Kinetic models that use time-independent representations of the quantum-mechanical

states solving kinetic- or rate equations.

Concerning dynamical models, NEGFF has been used to study the different transport

material properties, such as electron conductance [33, 34] or thermoelectric characteris-

tics [35]. Generally, NEGFF is used in combination with Tight Binding (TB) approach

or Density Functional Theory (DFT) in order to describe from first principles the elec-

trical transport. However, the computational effort demanded by NEGFF computa-

tions for systems with a large number of atoms exceeds the capabilities of the current

high-computing facilities being unfeasible to simulate realistic devices. Thus, several

approximations have to be done like decreasing the system size; considering only one or

two QDs; a simplified description of the energy level spectra of the QDs or assuming

constant transitions rates [36, 37, 38, 39, 40]. Although some extra implementations

have been included in NEGFF, like the potential due to the self-charge [41, 42], nobody

has done a fully quantum transport study in an extended arbitrary array of QDs using

this framework since this approach is usually unfeasible to implement for large systems

being large QD arrays a computational challenge.

The kinetic models are usually used due to their simplifications and the possibility to

explain the electron transport from an intuitive point of view [43]. However, for large

QD arrays, the number of possible states of the system increases dramatically being also

impossible to solve it.

On the other hand, the single computations of transport in an extended QD array have

been done by Carreras et al. [44], which use a semiempirical tunneling current model.

However, their model is based on semiclassical current expressions and can not reproduce

the intrinsic properties of the QDs.

Therefore, we can see that there exists a mismatch among the theoretical tools that

allow to simulate in detail devices based on QDs and the current experimental ones.

Although no substantial new physics can be inferred from QD matrices, they are the

cheapest systems obtained by the experimentalists and thus, the preferred structure for

the new devices based on QDs.

For this reason, the possibility to develop a transport methodology that includes: the

intrinsic properties of the QDs (discrete energy levels), the nature of the carrier transport

(tunneling processes) and the effects of the accumulated charge in the QDs (Coulomb

blockade or self-charge effects) for describing large QDs arrays can be a valuable tool if

it only depends on basic material constants and the device geometry.

1.3 From theory to applications

Currently, cell efficiencies of large scale production silicon solar cells are around 17%

and will be increased to the 20% in the future [45]. To increase further this efficiency,
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Figure 1.2: (a) Scheme of the Si-based tandem solar cell. (b) Bulk energy band
alignments between crystalline silicon and its carbide, nitride and oxide.

tandem cells are proposed based on Si QDs multilayer embedded in a dielectric matrix

allowing the band gap tuning by controlling the nanocrystal size and density. By these

means, it is possible to optimize the band gap of the cell. This property can be used to

solve the fundamental problem existing with silicon photovoltaic technology allowing to

increase the photo-response of the device in a wide range of the solar spectrum. Silicon

multi-junction solar cells have the potential to reach efficiencies above 30%−40% in the

near future [46, 47]. Moreover, Si QDs have low production costs.

In order to overcome the Shockley-Queisser limit [48, 49], i.e. the maximum theoretical

efficiency of optoelectronic devices, the spatial confinement in the QDs provides a size

dependent energy gap that in combination with bulk material overcome the efficiency

limit. Tandem solar cells [3, 50] are stacks of individual cells with different energy

thresholds each absorbing a different photon energy of the solar spectrum, usually con-

nected together in series. The NASCEnt European project (FP7-NMP-245977) aims to

develop new nanomaterials with new production technologies based on QDs materials

for the enhancement of tandem solar cells efficiencies. To achieve this objective, the
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understanding and correct description of the electrical transport as well as the optical

interactions in these new materials are needed in order to overcome the efficiency limits

of conventional solar cell concepts.

Fig. 1.2(a) shows the scheme of the proposed tandem solar cell of the NASCEnt project.

To fabricate the Si QD matrix, several experimental techniques can be used but the

multilayer approach, as proposed by Zacharias [31, 51], shows an accurate control of

the QD size by stoichiometric diffusion barriers. However, the main problem in the

QD matrix is the extraction of the photogenerated carriers [52] through the embedding

matrix. Thus, in order to obtain high efficiencies not only carriers have to be created,

besides, these carriers have to be extracted from the QDs before they recombine again

imposing sufficient carrier mobility and hence, a reasonable conductivity. Therefore, the

electrical transport properties of these matrices have to be also studied.

It is noted that the quantum confinement imposes localization of the carrier wave func-

tions but, the carrier transport takes place through the insulator matrix by tunneling

processes. Therefore, overlapping of the wave functions is necessary which requires close

spacing between the QDs and/or low barrier height. Concerning Si QDs, engineers have

embedded them in different insulating matrices: SiO2, Si3N4 and SiC matrices tuning

the transport properties. In Fig. 1.2(b), the different band alignment between the bulk

Si and the matrices are shown.

In conclusion, the optoelectronic device response can be decomposed in two different

parts: (i) a pure electrical carrier transport and (ii) the inclusion of the light interaction

via the carrier generation. However, these two parts are directly correlated since the car-

riers have to be efficiently extracted from the QDs before recombining. Thus, although

the QD band gap will govern the light absorption threshold, the final electrical response

will be dependent on the carrier tunneling processes which are strongly dependent on the

insulator material and also on the geometrical arrangement of the QDs. Here is where

this thesis provides a valuable tool not only to understand the electronic processes, but

also to design and simulate these optoelectronic devices.

1.4 Objectives of the PhD Thesis

A realistic theoretical estimate of the specific device performance is highly desirable in

order to be able to asses the potentials and capabilities of the various novel devices

concepts based on nanostructures. Within this context, theoretical simulations of such

devices must be performed not only to understand but also to predict experimental

behaviors. Moreover, from a physical point of view, one can learn a lot from these

simulations if they are independent of high-level experimental parameters (as tunneling

rates, defective interfaces...) and are based solely on low-level concrete ones (geometrical

data, barrier height...). Despite the tremendous progress in the computational power
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and the possibility to use supercomputer facilities, a complete theoretical description

in large nanostructures based on first principles/atomistic description is still far to be

achieved. This impractical computational time, forced us to write a compact model

with some assumptions and relaxing the expectation of accuracy when treating with

few-electron devices operating through quantum features.

The aim of this Thesis is to cover the gap between the theoretical electronic

transport studies and the built experimental optoelectronic devices based on

large QDs arrays. To achieve this purpose, two boundary conditions emerge: (i) the

here proposed model has to reproduce the well-known theoretical behaviors and (ii) it

also has to agree with the experimental data.

Here, a compact electronic transport model is developed in order to describe these

nanostructures. It is based on rate equations, which have been previously used to model

lasers or light-emitting diodes often offering a satisfactory description of the charge

transport. Moreover, they present a more transparent vision of the electron transport.

Thus, this model is easier to thinker with, in order to deal with more complicated

nanostructures based on QDs. The here presented model was used to explain the bal-

listic electronic transport through a random distribution of interacting QDs embedded

in a dielectric media taking in mind the simulation of realistic devices. The method

underlying the model depends only on fundamental material parameters and the system

geometry and it is based on the Transfer Hamiltonian approach. A set of non-coherent

rate equations can be written and the interaction among the QDs and between the QDs

and the electrodes is introduced by transition rates and capacitive couplings. The effects

of the local potential are computed within the self-consistent field regime.

First of all, the electronic transport model was used to explain and highlight the main

parameters that govern the response of the QDs under an external applied voltage. Once

the transport model was validated, the light carrier generation/recombination was also

included. This work was focused on Si QDs embedded in SiO2 matrix however, it can

be used to describe other materials changing the material parameters. The two unique

features of this work are: (i) the model is based on just a few basic material parameters

and on the device geometry and, (ii) it is simple enough to tackle problems involving a

large number of QDs, which is the case of real devices. Besides, the complete framework

has been implemented in a MATLAB c© code creating a new theoretical tool, the SimQD

simulator, that can foster the development of new QD-based nanodevices by aiding in

their design.

1.5 Outline

As in any “theoretical” methodology, first of all the basic equations that conforms the

model are presented and in a second stage, they are developed to include extra effects or
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the parameters that initially were considered as constant are further developed. Within

this form, a bottom-up strategy is followed (from simplest or basic cases to more complex

ones). This strategy also allowed us to study in detail each sequence of this building up

process.

Following this process, this PhD Thesis is organized as:

• In Chapter 2, the fundamental theory of the here developed electronic transport

methodology is presented. In a second section, the main results for simplest cases

allow us to highlight the parameters that will govern the electrical response of

the system. To conclude this chapter, a direct comparison between our transport

model and the well-known methodology based on NEGFF is also presented.

• In Chapter 3, the fundamental parameters that govern the electrical response

(transmission coefficients, density of states and capacitive couplings) are described

in a realistic form. Moreover, the computational strategies followed to the imple-

mentation of this transport methodology in a compact simulator tool to deal with

large and arbitrary array of QD are also presented.

• In Chapter 4, the simulator tool is used to study the electrical response of QDs

arrays. Furthermore, the single gate as well as a double gate transistor struc-

tures based on QDs are also presented and studied. To conclude, experimental

measurements are well reproduced.

• In Chapter 5, the light interaction with the QDs is included creating an optoelec-

tronic simulator. Again, the theory used to describe the optical transition rates is

presented as well as the code implementation. Prior to simulate a realistic device,

several examples are studied. To conclude this chapter, the simulation of a realistic

device is presented and compared to experimental measurements.

• Finally, in Chapter 6, the main conclusions of the Thesis as well as the future work

with possible ideas to extend this model are presented.
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Chapter 2

Model fundamentals

Confined structures have been available to the experimentalist for a very long time, the

MOS transistor is the archetype of a confined two-dimensional system [1]. Nevertheless,

the possibility to enhance this confinement by embedding low-dimensional structures in

an insulating matrix has renewed the interest. These structures (quantum dots, wires

or layers) can be used in single-electron device [2], new memory concepts [3] and photon

or electroluminescent devices [4].

Concerning quantum dots (QDs), they are particularly attractive because they possess

discrete energy levels and quantum properties similar to natural atoms or molecules.

From a fundamental point of view, research has been mostly concentrated on single

QDs. These simple systems have been studied using many-body approaches, including

Non-Equilibrium Green’s Function Formalism (NEGFF) [2, 5]. From a practical point

of view, many novel phenomena have been discovered, such as the staircaselike current-

voltage I(V) characteristic [6], Coulomb blockade oscillation [7], negative differential

capacitance [8], and the Kondo effect in QDs [9].

Researchers have recently paid much attention to electron transport through several

QDs since multiple QD provides more Feynman paths for the electron transmission [10].

Furthermore, due to the current fabrication processes, all these structures are created

in a multi layer structure. Thus, the final structure intrinsically is a superlattice of

insulator-semiconductor bilayers. In this configuration, transport occurs in series, from

one layer to the next one [11]. In the case of QDs, this makes the serial transport

between QDs the most relevant case of study.

In this chapter, we present the basis of the electron transport methodology that we are

going to use and expand in the rest of this thesis in order to simulate systems based on

QD arrays. Here, we are interested in the electrical response of the system under an

external applied bias voltage. First of all, the description of the electrical transport focus

our attention on the importance of the tunneling junctions. From the decomposition

17
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of these junctions, the two equations that govern the system which are similar to the

Kirchhoff’s laws are found. Expression for the tunneling currents is also presented within

the Transfer Hamiltonian approach and the non-equilibrium distribution functions for

each QD are obtained. Concerning the potential in each QD, it is evaluated in the

self-consistent field regime. The interactions among the QDs, and between the QDs

and the electrodes are introduced by transition rates and capacitive couplings. Electron

transport and charge densities inside the QDs depend on the tunnel transparency of the

barriers limiting each dot.

Once the basis of the electron transport are presented, three main QDs configurations

are studied in detail to elucidate the main parameters that govern the system response.

Finally, a direct comparison with a pure quantum approach as the NEGFF is presented.

This chapter gives analytical expressions to the current for several QDs arrangements,

and it is used to elucidate the main features of the electrical transport in these systems.

Once the basis are presented, in next chapters, some parameters will be described in

detail.

2.1 System decomposition

The system under study is composed by several QDs embedded in a dielectric matrix

placed between two leads (or electrodes). In the equilibrium state, all the system is

described by a common energy Fermi level and the Fermi Dirac equilibrium distribution

function. When an external voltage is applied, one lead acts as an electron reservoir

and injects electrons to the QD array. The electrons cross through different pathways

among the QDs (as we will see later) and arrive to the other lead creating a net current.

When the steady state is reached, the occupations in the QDs are not well described by

the equilibrium distribution functions and these new non-equilibrium QD distribution

functions are, a priori, unknown. Therefore, the accumulated charge in each QD in this

new steady state can differ from the accumulated charge in the equilibrium state.

We are going to study the electronic transport in such systems assuming ballistic regime,

this means that we are not going to include scattering processes that involve energy loss

of the carriers. Therefore, carriers start in one lead at a given energy, they cross through

the QDs and the oxide matrix and arrive to the other lead with the same energy. Then,

a basic question emerges: how does the electron cross the oxide?

In order to answer this question, in Fig. 2.1(a) we present a 1D energy band scheme of

the system. Here, it is clearly visible the kind of structure that the electrons have to

deal with: they have to cross the oxide matrix by tunneling processes from one QD to

the other QDs. Since the tunneling processes are strongly dependent on the tunneling

distance, we are going to neglect direct tunneling between the leads. Thus, an electron

starts in one electrode and assisted by tunneling processes between the different QDs, it
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Figure 2.1: (a) 1D Energy band scheme of the structure of the system. The QDs
are described as wells in the band structure of the oxide matrix. Since we are only
considering ballistic transport, the electron crosses through the potential barriers by
tunneling events. (b) Equivalent electrical scheme of a QD array embedded in an
insulator matrix. The QDs (circles) are connected between them and the leads (color
blocks) by tunneling junctions. The tunneling junctions can be described as a capacitor
in parallel with a current path.

crosses to the other lead. We are going to assume that each tunneling process is indepen-

dent from the other. From this basic assumption, the electrons do not have “memory”

of the previous tunneling processes. Therefore, the tunneling events are independent

and each electron can be treated independently neglecting the coherence between them.

According to this, the electron transport occurs as following: (i) some external pertur-

bation drives the leads out of the equilibrium state and one of them injects an electron;

(ii) the electron tunnels from the lead to a QD; (iii) the electron in this QD crosses

to other QD (or lead) according to some probability; (iv) the process is repeated until

the electron arrives to the other lead; (v) the transport process is repeated again for

other electrons. This transport scheme is known as sequential tunneling and it basically

assumes that the electron is treated as a particle that resides in a particular QD instead

of a coherent wave that is delocalized over different QDs [12].

The basic parameter that contains all the information necessary to describe the electrical
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response of the system under external voltage polarization is the non-equilibrium distri-

bution functions of each QD. These functions contain information about the occupancy

of the QD energy levels. The net current that crosses the structure and the accumulated

charge in the QD array can be inferred from them.

Following this strategy and taking into account that the electron transport is dominated

by the tunneling processes among the different parts of the system, the first step is the

description of the tunneling junctions in order to be able to write the dynamical equations

that finally govern the system response. The tunneling junctions are usually modeled as

a capacitance and a resistance placed in a parallel configuration. The resistance includes

the electron tunneling probability through the potential barrier whereas the capacitance

represents the electrostatic potential coupling between both elements of the junction.

The equivalent electrical scheme of the system for a random QD arrangement is shown

in Fig. 2.1(b), where we have included the tunneling junctions between the QDs.

From an electrical point of view, when an external bias voltage is applied to the electrodes

a net current appears. The current crosses through the different pathways created by

the QD arrangement being the total current decomposed in partial currents. We have to

note that these partial currents (i.e current between two QDs or current among a QD and

lead) will depend on the difference voltage of these two elements. These partial currents

will also depend on the transmission coefficients of the potential barriers (reflected as the

resistance of the tunneling junctions). Therefore, we can describe the electrical response

as a function of the different partial currents among the different elements that form the

system and their voltages.

In the steady state, the charge conservation for this system is analogous to the electronic

Kirchhoff’s current law (i.e. the total current that crosses the system is conserved).

Thus, using the decomposition of the tunneling junctions in partial currents from the

ith QD to the jth element (either QD or lead) we can write

0 =
∑
j

Iij i ∈ N, (2.1)

where N is the number of QDs and the summation takes into account all the linked

elements to this QD. On the other hand, it is necessary a second equation that describes

the voltage in each QD, quite similar as the Kirchhoff’s voltage law. These two coupling

equations will govern the electrical response of the system.

Now, we are going to describe in deep the two basic equations that govern the elec-

tron transport in our approach. As we will see, both equations are linked by the non-

equilibrium distribution function. First of all, we are going to present in detail the

analytical expressions for the tunneling currents through a junction in order to solve

Eq. 2.1 for each QD. Then, the non-equilibrium distribution functions can be obtained.
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In a second part, the Poisson equation is used to obtain the QD voltage. Moreover, the

influence of the QD accumulated charge in the final electrical response is also discussed.

2.1.1 Electron transport in the nanoscale: The Landauer-Büttiker ap-

proach

Sticking to the level of quantum mechanics, the electron transport is simply treated

in absence of phase breaking scattering processes, being referred as quantum-ballistic

transport or ballistic transport. The ballistic transport assumption strongly depends

on the device dimensions that should not exceed the coherence length of the charge

carriers or in other words, in the ballistic transport regime the device dimensions are

much smaller than the carriers mean free path [13, 14, 15]. However, ignoring this

prerequisite, the ballistic transport approach is still used to study the performance limit

of an ideal device [14].

We will sketch briefly the Landauer-Büttiker approach [16, 17, 18] and explain the results

for the current in a non-equilibrium situation assuming ballistic transport. Within this

formalism, a two terminal device is decomposed in three main regions: two leads (or

electrodes) and a central region. The current flowing through the device is related to

the probability of a charge carrier injected from one lead to be transmitted through

the central region to the other lead. The leads are treated as two electron reservoirs

which are in thermal equilibrium. Thus, they can be described by Fermi functions fL

and fR for left an right leads, respectively. We assume that the scattering matrix which

contains information about the transmission and reflection properties of the central

region is already known from previous quantum mechanical calculations. Applying the

Landauer-Büttiker formalism, the average current can be written as

I =
q

π~
∑
n

∫
dEM(E)Tn(E) [fL(E)− fR(E)] , (2.2)

where the Fermi functions are described by the corresponding electrochemical potential

µL and µR. Tn(E) are the eigenvalues of the transmission matrix reflecting the transmis-

sion probability of eigenchannel n and M(E) is the number of propagating modes in the

channel. This result illustrates that there is only net current from lead to lead when the

electrochemical potentials of the leads are different, µL 6= µR, therefore fL(E) 6= fR(E).

This difference is created by the external voltage, µL − µR = qV . For the system under

study (depicted in Fig. 2.1(b)), the central region is all the insulator matrix in which

the QDs are embedded. Thus, the transmission probabilities and the eigenchannels are

the solutions of the whole QD matrix.

From a direct comparison between this methodology and the system decomposition that

we have used, the main difference appears in the quantum calculation of the transmission

probabilities. From pure quantum calculations, when the transmission through a system
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like the one depicted in Fig. 2.1(a) is evaluated, the total transmission coefficient takes

into account the transmission through each individual barriers but it also includes the

reflections in the intermediate barriers. Since we have assumed that each tunneling event

is independent from the previous ones, we loose these “intermediate” reflections. As we

will show later, in a direct comparison between the here proposed transport model and

a pure quantum transport calculations based on NEGFF, our model can not reproduce

the coherent effects related to the calculation of the transmission coefficient of the whole

system.

2.1.2 Expression for the electric current:

the Transfer Hamiltonian approach

There are several ways to describe the tunnel effect in quantum mechanics. The first

approach is the exact solution of the total Hamiltonian of the system obtaining the

eigenstates and eigenfunctions and then, calculate the transmission coefficient via the

probability current conservation. However, this approach is limited by a practical reason:

only a few number of Hamiltonians can be solved exactly. Thus, several approximations

are needed.

The Transfer Hamiltonian approach was introduced by Bardeen [19] based on the time

dependent perturbation theory. Later, it was developed by Harrison [20] and formu-

lated in a most familiar second quantization form by Cohen et al. [21]. This approach

has been widely used in many tunneling transport studies [21, 22, 23, 24] through po-

tential barriers since the perturbative treatment of the tunneling events simplifies the

calculation of the transmission coefficient. Although there are many effects that can be

included in the tunneling currents such as: the coupling with phonons [25], displacement

and oscillations of the junction structure [26, 27], fluctuations of charges [28, 29] and

temperature effects [30, 31]. Here, we are going to consider a pure tunneling process

neglecting these extra sophistication and assuming only ballistic transport as said before.

Bardeen viewed the tunneling current as the net effect of many independent scattering

events that transfer electrons across the tunneling barrier. Since the eigenvalues and

eigenfunctions of a general Hamiltonian can not be usually obtained, the main idea is

to decompose the total system (see Fig. 2.2(a)) as the sum of three subsystems. From

a mathematical point of view, the total Hamiltonian H is written as: left HL, right HR

and the tunneling HT parts as follows

H = HL +HR +HT . (2.3)
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Figure 2.2: (a) Band energy scheme of the tunnel junction. The electron tunnels
from an eigenstate EL on the left side of the barrier to the eigenstate ER on the right
side. (b-c) The decomposition of the total Hamitonian H into two subsystems: HL and
HR. The wave function ψL and ψR are also presented showing the exponential decay
in the barrier region.

Following the decomposition proposed in Fig. 2.2(b-c), we can write

HLψL = ELψL

HRψR = ERψR,

where we have assumed that the eigenenergies (EL/R) and the eigenfunctions (ψL/R) of

these parts can be obtained exactly. Considering tunneling from a left eigenstate EL

into a right eigenstate ER using the time-dependent perturbation theory, the Schrödinger

equation i~ ∂
∂t |ψ〉 = H|ψ〉 has to be solved imposing that the particle is in a left eigenstate

at t = 0. If the tunneling is weak, we can anticipate that ψ(t) will be close to ψLe
−itEL/~,

when t is small enough. So, we can write

ψ(t) = ψLe
−itEL/~︸ ︷︷ ︸

at t = 0, the electron

is in an eigenstate of HL

+
∑
R

aR(t)ψR︸ ︷︷ ︸
due to the tunneling effect,

there is some probability that

the electron will be in each HR

eigenstates later (t > 0)

, (2.4)

where the sum is over all the right eigenstates. We use aR(0) = 0 as initial condition

and |aR(t)| << 1 which implies a small tunneling probability. The projection of the
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wave function into the right eigenstates can be written as

〈ψR|ψ(t)〉 = aR(t) + 〈ψR|ψL〉e−itEL/~. (2.5)

Assuming that EL and ER eigenstates are nearly orthogonal 〈ψR|ψL〉 ≈ 0, the transmis-

sion coefficient is defined as PL→R ≡ |〈ψR|ψ(t)〉|2 ≈ |aR(t)|2 where we have neglected

the second term due to the nearly orthogonality of the eigenstates. The transmission

coefficient reads as

|aR(t)|2 =
2π

~
t|〈ψL|HT |ψR〉|2δ(EL − ER). (2.6)

We must note that this final expression looks like the Fermi’s Golden rule for transitions

between two eigenstates assisted by a perturbation described by HT . The matrix element

reads as

M = 〈ψL|HT |ψR〉 =
~2

2m

∫ [
ψL~∇ψR − ψR~∇ψL

]
d~S. (2.7)

It can be demonstrated that the matrix element is symmetric, i. e. PL→R = PR→L.

Doing the sum over all the initial and final states, the final expression for the tunneling

probability assuming continuous states in both sides of the barrier is written as

PL→R =
2π

~
t|M |2δ(EL − ER)ρR(ER)ρL(EL)dELdER, (2.8)

where ρL/R are the density of states in the L/R sides, respectively.

Up to now, we have an expression for the tunneling probability. However, in order to

obtain a tunnel current, we have to define the tunneling frequency rate which will give

us the number of particles that tunnel in the t and t + dt time step. We must include

the occupancy of the initial and final states since we are treating with electrons. Thus,

we can write the tunneling frequency as

ΓL→R =

∫ +∞

−∞

∫ +∞

−∞

2π

~
|M |2ρL(EL)ρR(ER)δ(ER−EL)×fL(EL)×[1− fR(ER)] dELdER,

(2.9)

where fL/R are the distribution functions that describes the occupancy of the energy

levels in each side of the barrier. The last factor fL(EL) × [1− fR(ER)] takes into

account that the initial state is fill and the final state is empty. Then, the net current

that crosses a tunnel junction can be written as

I = q [ΓL→R − ΓR→L] =
4πq

~

∫ +∞

−∞
|M |2ρL(E)ρR(E) [fL(E)− fR(E)] dE, (2.10)

where the symmetry in both directions of the element matrix |M |2 has been considered

[17]. Moreover, we have included a factor 2 to take into account the spin degeneracy.

We have written explicitly the obtained expression for the tunnel current in order to

compare it to the previously presented Landauer-Büttiker expression (Eq. 2.2). From a

direct comparison with Eq. 2.2, the transmission matrix is M(E)Tn(E) = 4π2|M |2ρLρR.
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Hereafter, we are going to define the matrix element as the transmission coefficient

|M |2 = T (E) of a single energy channel that includes the “opacity” of the barrier

whereas the number of conductive modes are given by the multiplication of both density

of states.

It is interesting to show how, a tunnel resistance can be inferred from Eq. 2.10. As-

suming that fL/R are the Fermi functions, at low temperatures they restrict the energy

integration to the energy range E ∈ [µL, µR] . If the matrix element and the density of

states are constant in the energy range and taking into account that µL − µR = qV , we

can write

I =
V

Rt
where Rt =

~
4πq2ρLρR|M |2

. (2.11)

Rt is the tunnel resistance and it can be defined as a constant if the current voltage

curve I(V) follows a linear trend. However, these approximations are too restrictive and

the tunneling transmission coefficient is strongly dependent on the energy as we will

show in next chapters.

2.1.3 The Non-equilibrium Distribution Functions

Since the tunneling current through a single tunneling junction is well described by

Eq. 2.10, we go back to the system under study. We assume that the leads can be treated

as perfect electron reservoirs and they are described by the equilibrium Fermi Dirac

distribution function but taking into account the applied bias voltage that modifies the

electrochemical potentials as µL − µR = qV . Where µL and µR are the electrochemical

potentials of the leads and V is the applied bias voltage. Hereafter, we will use the

subscripts L and R to refer to the left and right leads, respectively. The QD time charge

evolution can be written as a rate equation as a function of the sum of the different

partial currents. Using Eq. 2.10 to describe the tunnel currents, we can write

q
dNi

dt
=

4πq

~

{∫
TLiρLρi(fL − ni)dE +

∫
TRiρRρi(fR − ni)dE

+

(N−1)∑
j 6=i

∫
Tjiρjρi(nj − ni)dE

 ∀i = 1 . . . N. (2.12)

Where we have written explicitly all the current terms: the leads current contributions

(first and second term) and the neighbor QDs contributions (the last term). ρi and

ρL/R are the density of states (DOS) of the ith QD and the leads, whereas Tij is the

transmission probability. Ni and ni are the electron number and the non-equilibrium

distribution function of the ith QD, respectively. Eq. (2.12) can be rewritten for the

steady state and ni can be obtained as a solution of this set of equations (one equation
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per QD)
−TL1ρL − TR1ρR −

∑(N−1)
j 6=1 T1jρj . . . T1NρN

...
. . .

...

T1Nρ1 . . . −TLNρL − TRNρR −
∑(N−1)

j 6=N TNjρj




n1

...

nN



=


−TL1ρLfL − TR1ρRfR

...

−TLNρLfL − TRNρRfR

 .(2.13)

From this system of non-coherent rate equations (NCRE), the function that describes

the occupancy of the QD energy levels under external polarization can be inferred. The

total number of electrons Ni inside the ith QD can be easily obtained as the sum of all

the occupied energy levels

Ni = 2

∫
ρi(E)ni(E)dE, (2.14)

where we have included the spin degeneracy factor. From these equations, we can

see that the occupancy of the energy levels of the QDs is strongly dependent on the

transmission coefficients of the different conduction channels.

2.1.4 Charge effects

Physicists often focus their attention on the low-bias conductance regime (the “linear

regime”) in which the current can be written as [32]

I =

[
2q2

h

∫
M(E)T (E)

(
−∂f0

∂E
dE

)]
V, (2.15)

where we have used fL − fR =
(
−∂f0
∂E

)
qV , being f0 the equilibrium Fermi Dirac distri-

bution and V the applied voltage. The response in this regime is determined solely by

the properties of the energy levels around the equilibrium electrochemical potential µ.

However, from the point of view of the design of new electrical devices, this regime is

not enough and the full current-voltage characteristics are necessary. Then, one has to

take into account the potential created in the device (not only the difference potential

among the leads) as a response of the applied external voltage. We must note that this

potential modifies the energy levels and therefore, it affects to the final response of the

system. Basically, we can obtain a exact solution of this problem solving simultaneously

the Schrödinger equation and the Poisson equation [33, 34, 35] since the the transmission

function includes potential dependence. When the device is connected to the contacts,

there is some charge transferred into or out of the device, which creates a potential U .

The Schrödinger-Poisson solvers iterate the Poisson equation, which gives the potential

U for a given electron density n relative to that required for local charge neutrality.

However, the electron density is related to the wave functions and the Hamiltonian of
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the system includes the potential U . It is interesting to note that this approach is quite

similar to the Density Functional Theory (DFT). However, the last one includes extra

terms in the potential in order to reflect the exchange-correlation effects [36].

Now, we are going to describe in detail the two main regimes observed in the nanoscale:

the Coulomb blockade (CB) and the self-consistent field (SCF) regimes. In the CB

regime, the electron-electron interaction is included explicitly and the charge is assumed

as an integer. Whereas, in the SCF regime the potential is simple given by the Poisson

equation (Hartree potential) and it neglects the exchange-correlation term using a mean-

field treatment.

2.1.4.1 Single electron charging effect: the Coulomb blockade regime

The Coulomb blockade (CB) or single-electron charging effect, which allows for the

precise control of small numbers of electrons, provides an alternative operating principle

for nanometre-scale devices. Single electron devices differ from conventional devices

in the sense that the electronic transport is governed by quantum mechanics. These

devices consist of an “island”, a region containing localized electrons, isolated by tunnel

junctions with barriers that allow the electron tunneling.

The evolution of a consistent theory for single-electron tunneling goes back to the early

1950s. It was first suggested by Gorter as an explanation for the observation of anoma-

lous increase of the resistance of thin granular metallic films with a reduction in tem-

perature [37, 38]. More than 30 years later, Fulton and Dolan [39] observed CB effects

in a microfabricated metallic sample and initiated a huge number of experimental and

theoretical studies. Nowadays, there are many text books and reviews [40, 41, 42, 43]

on single electron systems, both in metals and in semiconductor QDs, that explain the

orthodox CB theory as a function of the capacitive coupling of the tunneling junctions

and the accumulated charge in the QD. Besides, the theory has been extended to explain

the conductance oscillations of the single electron transistor (SET) [12, 44].

An entirely classical model for electron-electron interaction is based on the electrostatic

capacitive charging energy. The interaction arises from the fact that for every additional

charge dq, which is transported to a conductor, extra work has to be done against the

field generated by the already present charges residing on the conductor. Charging a

QD with capacitance C with an electron of charge −q requires and extra energy

Ec =
q2

2C
. (2.16)

This energy suppresses electron transfer unless extra energy is given to the electron by

either thermal excitations T = Ec
kB

or by an externally applied voltage VT = Ec
q = q

2C .

For this electron transport suppression, a new term was coined: CB tunneling. The

temperature effects were firstly reported by Gorter. Independently from Gorter, this
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effect was observed and explained by Neugebauer and Webb [45]. Yet another effect,

Coulomb exclusion became known in the late 1960s through the work of Giaever and

Zeller [46] and Lambe and Jaklevic [47]. If the applied voltage V is less than the

threshold voltage VT , the system is in the Coulomb blockade state and the current is

blocked. When the voltage V exceeds VT , an electron tunnels through the barrier into

the QD. However, due to the Coulomb repulsion, it can not be followed by another

electron unless the external applied voltage V is increased even further by 4V = q
2C .

Thus, the charge in the QD as well as the current follow a staircase-like function with

the applied voltage, commonly known as the Coulomb staircase.

The first quantitative theory for two barrier systems was given by Kulik and Shekhter in

1975 [48] using a master equation to calculate the system states probabilities and their

time evolution. An state is defined as a function of the number of accumulated electrons

inside each QD. This approach conforms the basis of the so called orthodox theory of

single-electron tunneling. This theory was generalized in the pioneering papers of Meir

et al. [2], Averin et al. [44] and Beenakker [12] with the inclusion of effects of both

charge and energy conservation in semiconductor structures

The formulation of the classical or the orthodox CB theory assumes:

• Electron is localized in the QDs. In a classical picture this assumption is clear, an

electron is either on a QD or not. The electron localization is implicitly assumed

in a classical treatment. However, a more precise quantum mechanical analysis

describes the number of electrons N localized in a QD in terms of an average

value, 〈N〉 which is not necessarily an integer. The condition that the charge has

to be an integer value can be summarized as |N − 〈N〉|2 << 1. Clearly, if the

tunnel barriers are not present or are insufficiently opaque, one can not speak of

charging or localizing electrons on a QD, because nothing will constrain an electron

to be confined within a certain volume.

• The orthodox theory focuses on the charging of metallic QDs assuming a continu-

ous density of states. However, the theory was extended to include semiconductor

QDs by Van der Wiel et al. [49].

• A qualitative argument is to consider the Heisenberg energy uncertainty of an

electron 4E4t > h
4π . The charging energy associated with a single electron is Ec

and the characteristic time for charge fluctuations is related to the time constant for

charging a capacitance C through a tunnel resistor RT , 4t ≈ RTC. Therefore, we

obtain a condition for the tunnel resistance RT >
h

2πe2
= 25813 Ω. This condition

implies that the tunnel transmission has to be lesser than one.

• The thermal kinetic energy of the electron must be less than the Coulomb repulsion

energy Ec > kBT . Doing some numbers, an estimation of the capacitive value can

be obtained. At room temperature kBT ≈ 0.025 eV, the capacity is in the order
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of C ≈ e2

2kBT
<< 1aF where 1 aF=10−18 F. Assuming spherical QD, the capacity

is C = 4πεrε0R and the QD size is estimated as R ≈ 5 nm for εr = 10.

Figure 2.3: (a) I(V) curves of a single metallic QD in the Coulomb blockade regime
for different temperature ranges. The current step-like behavior is recovered when the
external bias voltage increases in multiples values of VT . (b) Electron number in the
QD as a function of the applied bias voltage. The accumulated charge also increases in
discrete steps. In the inset, the energy band scheme, the Fermi levels of the leads (µL
and µR) as well as the QD states with N and N + 1 electrons are shown. The energy
separation among the N + 1 and N states is Ec.

The main transport features as a function of external polarization V for a single QD in

the Coulomb blockade regime can be explained as:

• V < VT The electron does not have enough energy to overcome the repulsion effect

inside the QD. Therefore, it is blocked in the lead being zero the total current that

crosses the system. Besides, the value of VT can be tuned as a function of the QD

radius.

• VT < |V | < 2VT One electron crosses from the left lead to the QD increasing the

energy of the QD and avoiding the possibility of a second one coming from the

left electrode. Then, the electron crosses to the right lead emptying the QD and

the process is repeated for another electron. Thus, this single electron transport

creates a net current. Furthermore, no more electrons can crosses simultaneously

through the structure until the energy of the incoming electrons are grater than

2VT being constant the current in this voltage range.

• 2VT < |V | < 3VT Two electrons have enough energy to cross simultaneously the

system. Therefore, the current value is the double as in the previous case. This
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description is repeated for larger voltages, allowing the simultaneous tunneling of

three, four,... and so on electrons.

The current and the accumulated charge in a metallic QD are shown in Fig. 2.3(a-b),

respectively. The current and charge increase by steps instead of a continuous form. In

the inset of Fig. 2.3(b) we show the energy band scheme of the system, the Fermi levels

of the leads (µL and µR) and the position of the last filled energy level of the QD as a

function of its occupancy. The energy separation between the state with N and N + 1

electrons is Ec and it is reflected in the current and the accumulated charge curves.

Up to now, we have focused on the CB in metallic QDs, however, it has also been

observed in semiconductor QDs. From a theoretical point of view, the explanation

is analogous to metallic ones, but due to the strong confinement regime, the internal

electronic structure of the QD is discrete, i.e. the energy levels in the QD form a discrete

spectra. Therefore, when the charge increases in discrete form the separation between

the energy states with N and N+1 electron is Ec+4E, where Ec is the energy repulsion

as in the metallic QD and 4E takes into account the energy separation between two

consecutive discrete energy levels of the QD. Thus, the step-like behavior in the current

and the accumulated charge is not periodic with VT as in the previous case.

2.1.4.2 Self-consistent field regime

In the self-consistent field regime (SCF), the electron-electron problem is approximated

directly by the solution of the Poisson equation. The Poisson equation reads as follows

~∇ · (εr ~∇V ) = −q4N
ε0Ω

, (2.17)

where εr is the relative permitivity, Ω is the QD volume and 4N is the increment of

the electrons in the QD respect to the original number. If we treat each QD as a single

point, ignoring any spatial variation of the potential inside it, the potential solution can

be expressed in terms of the different capacitive couplings of the tunneling junctions

[50, 51] and the boundary conditions described by the external voltage applied in the

leads. The general solution for the local potential energy Ui = −qVi in the ith QD is

Ui =
∑
j 6=i

Cij
Ctot,i

(−qVj) +
q2

Ctot,i
4Ni, (2.18)

where the subscript j runs over all elements of the system, Cij is the capacitive coupling

between the different components and Ctot,i =
∑

j,j 6=iCij is the total capacitive coupling

of the ithQD. The first term is usually called the Laplace solution and reflects the

potential created by the different elements (Vj) surrounding the QD. Therefore, in this

term, the influence of the voltage applied to the leads is included. When a voltage
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difference is applied between the two leads, the common electrochemical potential is

splitted and the potential in the intermediate QDs will lie within the applied potential

on the leads.

The second term reflects the possibility that the QD increases its charge. The charge

energy constant U0i = q2/Ctot,i is the potential increase as a consequence of the injection

of one electron into the QD and4Ni is the change in the number of electrons, calculated

respect to the number of electrons N0 initially in the ithQD. We have to note that U0i

plays the same role as the charging energy in the CB regime.

The effects of the local potential on each QD Ui, which will modify the QD charge

and the currents, should be taken into account in the QD DOS ρi(E) → ρi(E − Ui),
that is the local potential in each QD shifts the energy levels. Thus, the external

applied voltage affects to the QDs energy levels shifting their positions. Therefore, the

electron transport will take place through different conductive channels modifying the

QD distribution function. Thus, the local potential depends on the increasing charge

density but at the same time the charge depends on the DOS that it is modified by the

local potential. These considerations impose a self-consistent solution of Eq. (2.14) and

Eq. (2.18). Within this form, the effect of the charge and the external applied voltage

are included in the transport approach.

2.1.4.3 Comparison between the Coulomb blockade and the self-consistent

field regimes

We have explained two different ways to introduce the charge effects in the calculation

of the local potential of the QD. As it is expected, in nanoscale systems the effects of

the charge interaction plays an important role in the final response of the device. Here,

we are going to compare the two previous explained regimes. The range of validity of

each regime can be summarized as:

• Self-consistent field regime: if kBT and/or Tijρiρj/~ is comparable to U0.

• Coulomb blockade regime: if U0 is well in excess of both kBT and Tijρiρj/~. The

orthodox theory based on the multi-electron master equation has to be used.

Thus, for strong localized electrons in the QD (low transmission coefficients) and low

temperatures, the pure quantum nature of the system is recovered reflecting that the

charge increases by integer values and the electron-electron repulsion effect dominates

the response of the system. However, for larger temperature values or greater transmis-

sion coefficients, the effect of the electron-electron interaction decreases and the SCF

approximation can be used. Moreover, we have to take into account that the charging

energy (Ec or U0) decreases when the QD radius increases.
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Figure 2.4: Obtained I(V) curves for single semiconductor QD with a spin degener-
ated energy level for the two studied regimes: the self-consistent field (SCF) and the
Coulomb blockade (CB).

Fig. 2.4 shows the obtained I(V) curve for a single semiconductor QD with one energy

level (spin degenerated) in the two studied regimes: the CB and the SCF. For the CB,

two current steps are obtained whereas for the SCF only one step is recovered. We focus

on the V0 voltage point, the energy level enters in the conduction window and the current

increases. For the CB case, the current is blocked as we have explained previously until

the voltage reach the point V0 + VT then, the current increases again. However, for the

SCF case, the current increases monotonically from V0 to V0 +VT . We have to note that

the total current at the V0 + VT voltage point are common in both regimes reflecting

that the final energy level position is the same in both cases. Thus, what’s it wrong?

The differences can be explained by:

• The charge is not quantified in the SCF regime.

• In the SCF regime, two energy levels with the same energy (degenerate) are always

degenerate as long as they feel the same potential.

The second difference can be rewritten as the electron does not feel any potential due

to itself. Suppose that the up-spin level gets filled first, causing the down-spin level to

float up by Ec. But the up-spin level does not float up because it does not feel any

self-interaction, recovering the two steps in the I(V) curve (CB regime). Whereas in the

SCF, we are using a mean field treatment and both energy levels (spin up and down)

are shifted by the same potential neglecting the splitting of the two energy levels.

From the point of view of the mathematical treatment, the CB is described using the

master equation approach presented in detail in Ref. [52]. Different states are defined as
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a function of the number of electrons accumulated in each QD and a set of rate equations

is written for the state dynamics. When the number of QDs increases, the number of

different states increases dramatically being impossible to use this approach for large

systems. However, the SCF methodology can be easily implemented via rate equations

in order to obtain the non-equilibrium distribution function of each QD using Eq. 2.13

and Eq. 2.18 as we have presented before.

2.2 Examples with simple cases

Figure 2.5: Equivalent electrical scheme of the three basic systems under study: (a)
single QD, (b) two QDs in serial configuration and (c) two QDs in a parallel arrange-
ment. We also show the notation used to describe the tunneling junctions, the capacities
and the transmission probabilities.

Now, we are going to show in detail the applicability of the previous explained method-

ology: the rate equations in the SCF regime. In order to expose clearly all the physics

behind the electron transport process and the main parameters that govern the final

response of the system, we will focus on the simplest cases: one and two QDs described

by a single energy level. The systems formed by two QDs include extra “sophistication”

since we have to write two rate equations (one per QD) and they also include the current

among both QDs. From the solution of the Poission equation, the Laplace term will also

include the capacitive coupling between the QDs. Therefore, each QD will influence

its neighbor. Two possible arrangements appear for a system composed by two QDs:

a serial or parallel configurations. From hereon, we are going to define the serial case

as the case in which each QD is only connected to one lead and its neighbor QD. The

parallel configuration will be the case in which each QD is connected to both leads and

also connected to the other QD.

The electrical scheme of the three systems under study are shown in Fig. 2.5(a) for the

single, two QDs in (b) serial and (c) parallel configurations, respectively. We are going to

assume constant transmission coefficients and the QDs are described by a single energy

level (ε0) placed above the equilibrium Fermi level. The value of the charging energy

is U0 = 0.25eV to show clearly the effect of the accumulated charge in the electrical

response and we assume µL = qV and µR = 0 for the left and right leads, respectively.
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2.2.1 Single QD: energy level position and transmission coefficients

The study of the electron transport through a single QD conforms the basis of the here

presented model and it will give us the main features and the most important parameters

that govern the final response. Thus, prior to study more complex systems, we are going

to present in detail this system (see Fig. 2.5(a)). The rate equation that describes the

non-equilibrium distribution function for the single QD reads as

q
dn

dt
=

2πq

~
(T1ρLfL + T2ρRfR − n(T1ρL + T2ρR)), (2.19)

being in the steady state

n =
T1ρLfL + T2ρRfR
T1ρL + T2ρR

. (2.20)

The electron number stored in the QD can be easily obtained as N = 2
∫
ρ n dE where

ρ is the QD DOS. However, due to the discrete nature of the QD energy levels, the

integration in the energy range is restricted to the value of the single QD energy level ε.

Figure 2.6: (a) Band scheme for the cases: V = 0 upper, V > 0 left and V < 0
right figures, respectively. (b) I(V) curves as a function of the QD energy level. (c) I(V)
curves as a function of the charging energy and (d) varying the transmission coefficients
of the leads. In the insets, the accumulated electrons in the QD (N) for each case is also
shown. The used parameters were: kBT = 0.025eV , T1 = T2 = 0.005, U0 = 0.25eV ,
Cd = Cs, εrε0 = 1 and ε0 = 0.2eV . The varied parameters are shown in the legend of
their respective figures.
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Since the QD non-equilibrium distribution function is obtained, the current that crosses

the system can also be evaluated. If we focus on the left contact, we can write

I =
4πq

~

∫
T1ρLρ(fL − n)dE =

4πq

~

∫
T1T2ρLρρR
T1ρL + T2ρR

(fL − fR)dE, (2.21)

where we have substituted the value of n for the expression presented in Eq. 2.20. We

obtain the same expression for the current if we focus on the right contact. As in

the evaluation of the charge, we can consider that the integration is restricted to the

QD energy level. Thus, in order to obtain a net current the following condition has

to be fulfilled: fL(ε) 6= fR(ε). We have to recall that the Fermi functions depend on

the electrochemical potentials of the leads, therefore, the transport conditions can be

rewritten as

µL ≥ ε ≥ µR for I > 0

µL ≤ ε ≤ µR for I < 0. (2.22)

Where, basically, the transport condition imposes that the energy level of the QD has

to lie between the electrochemical potentials of the leads (see Fig. 2.6(a)). The sign of

the current is related to the current convention that we have used assuming positive

currents when the current enters the QD and negative when the current goes out from

the QD.

On the other hand, we can see (Eq. 2.20) that the accumulated charge in the QD increases

when the transport process occurs. Assuming the same transmission coefficient, the

non-equilibrium distribution function will be n ≈ 1/2. However, this value can be tuned

changing the transmission coefficient respect to the leads.

In Fig. 2.6(b-c-d) several I(V) curves are shown as a function of the main parameters

that govern the system. The transport conditions are summarized in Fig. 2.6(a) for both

voltage polarizations. From Fig. 2.6(b), the current and the accumulated charge (see

the inset) are presented for different QD energy levels. In order to explain this figure,

we are going to write the voltage evolution of the energy level. Using the solution of the

Poisson equation we can write

ε(V ) = ε0 +
Cs

Cs + Cd
qV + U04N, (2.23)

where V is the external applied bias voltage. Cs is the capacity coupling between the

QD and the left lead while Cd is the coupling with the right lead. As we can see, if we

assume µL = qV and µR = 0 and taking into account the transport condition obtained

previously, for positive voltages the electron transport will occur when µL ≥ ε ≥ 0. The

minimum bias voltage or the threshold voltage that fulfills this condition is

V ≥ 1

q

ε0 + U04N
1− Cs

Cs+Cd

. (2.24)
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For the cases under study (Cs = Cd), it can be approximated as V ≈ (2ε0 + 2U04N)/q.

Therefore, as we can see, the position of the QD energy level respect to the equilibrium

Fermi level is a crucial point that controls when the conduction channel is open. This

behavior is clearly shown in Fig. 2.6(b) when the energy level increases. For the same

reason, the QD starts to accumulate charge at higher applied voltages as we present in

the inset.

In Fig. 2.6(c), the I(V) curves as a function of the value of the charging energy U0 are

presented. Here, we use a constant value for ε0. However, as we have explained before,

the threshold voltage depends on the value of U0 (see Eq. 2.24). Then, for the smallest

U0, the transport condition is fulfilled for lowest external voltages. We can see how the

current tends to saturate since the QD has only one conductive channel.

Finally, in Fig. 2.6(d), the current and the accumulated charge dependence with the

transmission coefficients are also presented. The main results can be summarized as:

the current increases when the transmission coefficients increases and the symmetry of

the I(V) curve is broken when the QD is asymmetrically coupled to the leads. This

result reflects the balance between the incoming charge from the lead and the facility

that the QD can evacuate it to the other lead. Therefore, the QD occupation is governed

by the strong lead coupling and the lead distribution function.

2.2.2 Two QDs in serial configuration: the role of the capacitive cou-

plings

Now, we are going to study the serial case (the scheme of the system is shown in

Fig. 2.5(b)). The rate equation for each QD can be written as

q
dn1

dt
=

2πq

~
(T1ρLfL + T2ρ2n2 − n1(T1ρL + T2ρ2)) (2.25)

q
dn2

dt
=

2πq

~
(T3ρRfR + T2ρ1n1 − n2(T2ρ1 + T3ρR)). (2.26)

Finally, the expression for the current is

I =
4πq

~

∫
T1T2T3ρLρ1ρ2ρR

T1T2ρLρ1 + T1T3ρRρL + T2T3ρ2ρR
(fL − fR)dE. (2.27)

As in the previous case, there is only a net current if the condition fL 6= fR is fulfilled

(i. e. µL 6= µR). The energy level of each QD must lie between the electrochemical

potentials of the leads as we can see from Eq. 2.27. The current is governed by the

term ρLρ1ρ2ρR, this means that the electrons need available states in each part of the

system in order to transport from left lead to the right lead trough the two QDs. Thus,

a new transport condition is imposed: the electron transport only takes place when the

position of the energy levels of the QDs are the same, i.e. energy level alignment. We can

summarize the two transport conditions for a system of N QDs in a serial configuration
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as

µL > ε1 = · · · = εi = · · · = εN > µR, (2.28)

where εi is the energy of the ith QD. We must note that this condition is a direct

consequence of the ballistic treatment of the electron transport. Besides, from the

electrical point of view, the expression for the current can be interpreted as follows:

the three barriers in the QD stack act as a series connection of resistors Rtotal =
∑N

i Ri.

Where Ri has been defined previously as the tunnel resistance of a junction.

Figure 2.7: (a-b) I(V) curves and (c-d) conductance characteristics obtained for the
serial arrangement depicted on Fig. 2.5(b) for different capacitive coupling. (a-c) As a
function of the left lead QD capacity Cs, showing a rectifying effect when the system is
weakly coupled with the left lead. (b-d) As a function of the inter-dot capacity Cc. In
both cases, NDR is obtained since when the voltage increases the overlapping between
the energy levels decreases and the current also decreases. The simulation parameters
were: µL = qV , µR = 0, T1 = T2 = T3 = 0.005, kβT = 0.025eV , U0 = 0.25eV ,
ε = 0.2eV and εrε0 = 1. Cd is fixed at the initial Cs value.

For simplicity, we have considered the same transmission probability in all the tunneling

junctions T1 = T2 = T3. In addition to this, we assume that the boths QDs are identical.

Therefore, the energy level is the same in each QD with a value ε. As we have shown in

the electrical scheme (Fig. 2.5(b)), we do not consider direct transmission between the

leads. Using the general solution of the Poisson equation, the local potential in each QD
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is written as

U1 =
Cs
Ctot,1

(qV ) +
Cc
Ctot,1

U2 + U04N1 (2.29)

U2 =
Cc
Ctot,2

U1 + U04N2 (2.30)

where V is the applied bias voltage to left lead, whilst the right lead remains at zero (i.e.

µL = qV and µR = 0). Cs is the capacity coupling between the first QD with the left lead

while Cd is the coupling between the second QD with the right lead. Cc is the capacity

between QDs. So, we define the total capacitive coupling of each QD as Ctot,1 = Cs+Cc

and Ctot,2 = Cd + Cc for the first and the second QD, respectively. Figs. 2.7(a-b) show

the obtained I(V) curves varying the QD-lead and the QD-QD capacitive couplings with

different Cs/Cc ratios, ranging from zero to one. Besides, the corresponding conductance

defined as dV/dI is also depicted in Figs. 2.7(c-d) for the same cases as before. From the

conductance plots, we can see clearly when the transport channels are opened or closed.

The I(V) curves are strongly dependent on Cs and Cc trough the Laplace solution of the

system. The value of the capacity indicates how the system is coupled. When Cs tends

to zero, the two QDs are electrically decoupled with the leads; this case implies a weakly

coupled system. The other limit case is when the value of the capacity between QD (Cc)

goes to zero which means that there is no electrical influence between QDs. The Poisson

term follows the charge qNi in each QD, therefore, it is always positive inducing a shift

on the potential. In order to explain the I(V) curves, we can write the evolution of the

energy level of each QD as a function of the applied bias voltage. Taking into account

only the Laplace terms, they read as

ε1(V ) = ε+
Cs
Ctot,1

(qV ) +
Cc
Ctot,1

U2 (2.31)

ε2(V ) = ε+
Cc
Ctot,2

U1, (2.32)

for the first an the second QD, respectively. U1 and U2 are the Laplace solutions of the

potential in its respective QD. In order to analyze this set of recursive equations, we

have used the relation a+ar+ar2 . . . = a/(1−r) for a geometric series to write them as

a function of the applied bias voltage. Finally, the energy level evolution can be written

as

ε1 = ε+
Cs

Ctot,2 − C2
c /Ctot,1

(qV ) (2.33)

ε2 = ε+
CcCs

Ctot,1Ctot,2 − C2
c

(qV ). (2.34)

As we can see from the previous expressions, ε1 increases faster than ε2 when the voltage

increases. Thus, the transport condition ε1 = ε2 can not be fulfilled in all the voltage

region. Introducing a energy broadening in the QD energy level (we will explain in detail
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this energy broadening in the next chapter) relaxes this restrictive condition and electron

transport takes place as a result of the energy channel overlapping. When the voltage

increases, the separation between ε1 and ε2 increases. Therefore, the energy overlapping

decreases and the current trough the system also decreases. As a consequence, a negative

differential resistance (NDR) appears due to the different QD electrostatic coupling [53].

NDR was previously observed in several experimental current measurements for QD

stacks as it was reported in [54, 55, 56, 57]. Concerning the current peak, it is related to

the maximum overlapping between the QD energy levels and its width is directly related

to the energy broadening.

On the other hand, if the system is decoupled from the left lead (Cs = 0), the position

of the energy levels become independent on the applied bias voltage. Therefore, electron

transport only occurs in one polarization direction obtaining a rectifying effect in the

current. The current would be constant once the energy levels lie in the conductive

energy window. Nevertheless, in Fig. 2.7(a), we do not observe this behavior because

the first QD increases its charge. Therefore, the charge term dominates the Poisson

solution while the charge in the second QD is not the same as in the first QD creating

different potentials in each QD, changing the energy level position. This case is a

particular situation that Eq. 2.33 and Eq. 2.34 do not consider because they are first

approximations. Furthermore, we must note that in this configuration we obtain the

maximum current since the position of the two energy levels are practically identical

until the charge modifies the local potential and the overlapping decreases.

2.2.3 Two QDs in parallel configuration: double current paths

Since the single and the serial cases have been studied, now we are going to focus on the

third arrangement: the parallel configuration (see Fig. 2.5(c)). The rate equation can

be written as

q
dn1

dt
=

2πq

~
(T1ρLfL + T3ρRfR + T2ρ2n2 − n1(T1ρL + T3ρR + T2ρ2)) (2.35)

q
dn2

dt
=

2πq

~
(T1ρLfL + T3ρRfR + T2ρ1n1 − n2(T1ρL + T3ρR + T2ρ1)) (2.36)

for each QD, respectively. Since both QDs are connected to the leads, the current

expression has two terms (one per QD) and it reads as

Ii =
4πq

~

∫
T1T3(T1ρL + T3ρR + T2(ρ1 + ρ2))ρLρRρi

(T1ρL + T3ρR)2 + T3T2ρR(ρ1 + ρ2) + T1T2ρL(ρ1 + ρ2)
(fL − fR)dE, (2.37)

where the subscript i runs for all the QDs being the total current Itot =
∑N

i Ii. Moreover,

we can see from this equation that if the QDs are decoupled (T2 = 0), we will recover

the expression for the current as in the single QD arrangement (Eq. 2.21). Using the
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general solution of the Poisson equation, the local potential in each QD is written as

U1 =
Cs
Ctot

(qV ) +
Cc
Ctot

U2 + U04N1 (2.38)

U2 =
Cs
Ctot

(qV ) +
Cc
Ctot

U1 + U04N2. (2.39)

Figure 2.8: I(V) curves for two QDs in the parallel arrangement for different capac-
itive couplings: (a) as a function of the left lead QD capacity Cs and (b), as a function
of the inter-dot capacity Cc. In the inset the band scheme of the two QDs are also
shown. The simulation parameters were: µL = qV , µR = 0, T1 = T2 = T3 = 0.005,
kβT = 0.025eV , U0 = 0.25eV , ε = 0.2eV and εrε0 = 1. Cd is fixed at the initial Cs
value.

As in the previous cases, the I(V) curves can be obtained as a function of the different

capacitive couplings. We present the simulated I(V) curves as a function of the coupling

to the left lead Cs in Fig. 2.8(a) and the coupling among the QDs Cc in Fig. 2.8(b),

respectively. We have used the same parameters for all the capacitive couplings and

transmission coefficients as in the previous cases. The two QDs are described by a single

and identical energy level. As we have demonstrated previously, the I(V) curves are

dominated by the evolution of the energy level of each QD as a function of the applied

bias voltage. Thus, taking into account only the Laplace solution for each QD, we can

write the energy level evolution as

ε1 = ε+
Cs

Cs + Cd
(qV ) (2.40)

ε2 = ε+
Cs

Cs + Cd
(qV ), (2.41)

where we have assumed that both QDs are symmetrically coupled to the leads (Cs = Cd).

The summation of the geometric series a+ ar + ar2 . . . = a/(1− r) has also been used.

An unexpected result is obtained from Eqs. 2.40 - 2.41, the voltage evolution of the

energy level is independent from the capacitive coupling among the QDs.

In Fig. 2.8(a), a rectifying effect is obtained when the QDs are capacitive decoupled from

the left lead Cs = 0. Using Eq. 2.40 and Eq. 2.41 and the transport condition µL > εi >
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µR, we can see that this condition is only fulfilled for positive voltage polarization since

µL = qV , µR = 0 and ε > 0. Thus, the energy level only lies in the conductive window

for positive voltages obtaining the rectifying effect. The effect gradually disappears when

Cs increases and the current recovers the symmetric trend.

From Fig. 2.8(b), we observe that the I(V) curve is practically independent of the cou-

pling among the QDs. This coupling can be treated as a small perturbation (it does

not appear in Eq. 2.40 and Eq. 2.41) and it shifts to higher voltages the opening of

the conduction channel. As we can see from Eqs. 2.38 - 2.39, it has different sign than

the applied voltage thus, the local potential is slightly smaller than in the single case.

Therefore, the external voltage needed to put the energy level in the conduction window

increases.

2.3 Model validation: comparison with NEGFF

Since we have presented and studied the electron transport model based on the non-

coherent rate equations (NCRE), now, we have to validate it. We are going to compare

it to the Non-Equilibrium Green’s Function Formalism (NEGFF). The NEGFF has

been widely used to calculate current and charge densities in nanoscale conductors (e.g.

molecular and semiconductor) under an external bias. This method is mainly used for

ballistic conduction but may be extended to include inelastic scatterings. Thus, this is

the preferred methodology when we are dealing with systems that need a pure quantum

mechanical description.

For macroscopic systems, the transport properties are well described using the semi-

classical Drude model whereas for micro- and nano- sizes the quantum effects become

important and we need a quantum mechanical treatment. Our transport methodology,

the non-coherent rate equations, lies in the frontier between these two approaches since

it is based on continuity equations and also takes into account some quantum effects as

the tunneling rates.

Now, we are going to describe briefly the NEGFF in order to obtain a new vision of a pure

quantum mechanic treatment. In the second part, we will present a direct comparison

between the NEGFF and the here presented transport model. This comparison includes

different QDs arrangements being able to elucidate the major differences and common

aspects between both approaches.

2.3.1 NEGFF: the Non-Equilibrium Green’s Function Formalism

NEGFF is usually used to calculate current and charge densities in nanoscale under

external bias. Several overviews of this methodology can be found in Ref. [58] for
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molecular electronics and Ref. [59] for semiconductors devices, respectively. Since we

only want to provide and intuitive overview and a general vision of this theory, we are

going to explain the basics following Ref. [60]. However, complete tutorials of NEGFF

can be found elsewhere [61, 62].

We start from the Schrödinger equation

H|n〉 = E|n〉, (2.42)

which is divided in three different subspaces: contact (H1,2, |ψ1,2〉) and device (Hd, |ψd〉)
regions. We can write H1 τ1 0

τ †1 Hd τ †2
0 τ2 H2


 |ψ1〉
|ψd〉
|ψ2〉

 = E

 |ψ1〉
|ψd〉
|ψ2〉

 , (2.43)

where Hi and |ψi〉 are the Hamiltonian and the wave function in the ith subspace whereas

τ1,2 describes the device and contacts interactions. We must note that we have assumed

that each contact is independent to the other (no cross terms between them).

The Green’s function is defined as

(E −H)G(E) = I (2.44)

and it gives the system response to a constant perturbation |v〉 as

|ψ〉 = −G(E)|v〉. (2.45)

This scheme is used since it is easier to calculate the the Green’s function than to solve

the eigenvalue problem of the total Hamiltonian. From the previous definition and using

Eq. 2.43, the wave function in the second contact (|ψ2〉) reads as

H2|ψ2〉+ τ2|ψd〉 = E|ψ2〉

(E −H2)|ψ2〉 = τ2|ψd〉

|ψ2〉 = g2(E)τ2|ψd〉, (2.46)

where (E − H2)g2 = I is the solution in the isolated second contact. Hereafter, we

use the lowercase for the Green’s functions of the isolated subsystems while the capital

letter for the whole Green‘s function. It is important to note that we have two different

solutions: the retarded and advanced solutions reflecting the outgoing and the incoming

waves in the contacts (we will denote G for the retarded and G† for the advanced one).
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From the definition of the Green’s function we obtain E −H1 −τ1 0

−τ †1 E −Hd −τ †2
0 −τ2 E −H2


 G1 G1d G12

Gd1 Gd Gd2

G21 G2d G2

 =

 I 0 0

0 I 0

0 0 I

 . (2.47)

We can obtain Gd using G1d = g1τ1Gd and G2d = g2τ2Gd. It is simple to find

Gd = (E −Hd − Σ1 − Σ2)−1, (2.48)

where Σ1 = τ †1g1τ1 and Σ2 = τ †2g2τ2 are the so called self-energies which contain the

interaction of the contacts and the device.

Another important use of the Green’s function is the spectral function A defined as

A ≡ i(G−G†), (2.49)

which gives the density of states (DOS) and all solutions of the Schrödinger equation.

We are not going to show in detail its derivation but, it can also be written as [60]

A = 2π
∑
k

δ(E − εk)|k〉〈k| (2.50)

where |k〉 is all the eigenvectors of H with the corresponding eigenvalues εk.

It will be useful to have expressions for the device wave functions |ψd〉 and contact wave

functions (|ψ1,2〉). The device part is

|ψd〉 = Gdτ
†
1 |ψ1〉 (2.51)

and using Eq. 2.46, the wave function of the second contact can be expressed as a

function of the wave function in the first contact as

|ψ2〉 = g2τ2|ψd〉 = g2τ2Gdτ
†
1 |ψ1〉. (2.52)

In the non equilibrium case, we are interested in two quantities: the current and the

charge density matrix. The charge density matrix is defined as

n =
∑
k

f(k, µ)|ψk〉〈ψk|, (2.53)

where the sum runs over all states with the occupation number f(Ek, µ). The occupa-

tion number is determined by the reservoir filling of the incoming waves (i.e. injects

electrons). We assume that it is well described by the Fermi Dirac distribution func-

tion with the corresponding Fermi level. The occupation of the device from the contact
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labeled as one is written as

nd =

∫ ∞
−∞

dE
∑
k

f(E,µ1)δ(E − Ek)|ψd〉〈ψd|

=

∫ ∞
−∞

dEf(E,µ1)Gdτ
†
1

a1

2π
τ1G

†
d (2.54)

where we have expanded |ψd〉 as a function of the incoming waves of the contact one.

We have used a1/2π, the spectral function of this contact. Introducing the quantity

Γ1 = τ †1a1τ1 = i(Σ1−Σ†1) and performing the summation for the second contact we can

write:

n =
2

2π

∫ ∞
−∞

dE
∑
i

f(E,µi)GdΓiG
†
d, (2.55)

where we have included a factor 2 to count for the spin an the sum runs over all the

contacts.

Having different chemical potentials in the reservoirs filling the contacts gives rise to a

current. We derive an expression for the current from the probability continuity equa-

tion. In the steady-state, the probability to find an electron in all the device (
∑

i |ψi‖2

where the sum runs over all the subspaces) is conserved:

0 =
∂
∑

i |ψi|2

∂t
=
i

~

([
〈ψ1|τ1|ψd〉 − 〈ψd|τ †1 |ψ1〉

]
+
[
〈ψ2|τ2|ψd〉 − 〈ψd|τ †2 |ψ2〉

])
. (2.56)

This equation takes into account the incoming probability fluxes from the leads to the

central region and the outgoing ones being similar to the rate equations that we have

used previously. Generalizing to an arbitrary contact j, the electric current (at one

energy) can be inferred from the product of the probability current and the charge (−q).
Thus, for a single contact we can write

ij = − iq
~

(
〈ψj |τj |ψd〉 − 〈ψd|τ †j |ψj〉

)
, (2.57)

where ij is defined positive for current from contacts to device. To calculate the total

current, we expand the wave functions into the contacts and device wave functions. We

perform the summation over all the energy channels obtaining

I2→1 = 2
q

~

∫ ∞
−∞

dEf(E,µ1)
∑
n

δ(E − En)〈ψ1|τ1G
†
dΓ2Gdτ

†
1 |ψ1〉

=
2q

~

∫ ∞
−∞

dEf(E,µ1)
∑
m,n

δ(E − En)〈ψ1|τ1|m〉〈m|G†dΓ2Gdτ
†
1 |ψ1〉

=
2q

~

∫ ∞
−∞

dEf(E,µ1)
∑
m

〈m|G†dΓ2Gdτ
†
1

(∑
n

δ(E − En)|ψ1〉〈ψ1|

)
︸ ︷︷ ︸

=
a1
2π

τ1|m〉

=
q

π~

∫ ∞
−∞

dEf(E,µ1)Tr(G†dΓ2GdΓ1). (2.58)
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for the current that crosses from contact two to the central region. To get the total

current, the current through the other contact has to be subtracted obtaining the net

current as

I =
q

π~

∫ ∞
−∞

dE(f(E,µ1)− f(E,µ2))Tr(G†dΓ2GdΓ1) (2.59)

which coincides with the Landauer formula for the current Eq. 2.2. Thus, from a pure

quantum mechanical treatment of the system and decomposing the Hamiltonian in the

contacts (leads or electrodes) and the device (the central region) parts, the current and

the occupancy of the system can be calculated.

Once a pure quantum electron transport methodology has been explained, in the next

section we are going to compare it with the here developed approach.

2.3.2 Comparison

In order to validate the model, we are going to compare it to the Sun et al. work [63].

In this paper, they studied the electron transport using NEGFF for different systems

based on QDs in several configurations. The basic structure is basically the same that

we studied previously: two electrodes (L lead and R lead regions) and a central region (C

region). The central region will contain several QDs in different arrangements forming

the system under study. The QDs are assumed to be weakly coupled to the leads. In

the spirit of the NEGFF, the total Hamiltonian of the system can be written as

H = HL,R +HC +HT , (2.60)

where the different parts of the system are clearly visible: the Hamiltonians that describe

the leads, left (L) and right (R), and the Hamiltonian of the central region (C). The

HT term includes the interaction between the QDs and the leads. Using the second

quantization representation of the Hamiltonian, each part of the system reads as

HL,R =
∑

k,α∈(L,R),σ

εk,αc
†
k,α,σck,α,σ,

HC =

N∑
j=1,σ

εjd
†
j,σdj,σ +

∑
i,j,σ

(ti,jd
†
i,σdj,σ + H.c.),

HT =
∑

k,α∈(L,R),j,σ

(Vk,α,jc
†
k,α,dj,σ + H.c.), (2.61)

where c†k,α,σ, d
†
j,σ(ck,α,σ, dj,σ) are the electron creation (annihilation) operators of the

continuous states in the leads and the discrete state in the jth QD (j = 1, 2, . . . , N),

respectively. N is the number of QDs in the central region whereas α ∈ (L,R) denotes

the left and right lead indexes. εk,α and εj are the corresponding continuous energy

spectrum in the leads and the discrete energy level in the jth QD, respectively. ti,j is the
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interdot coupling coefficient between the ith and jth QD, and Vk,α,j denotes the coupling

strength between the jth QD and the two lead regions. The spin subscript σ in energy

levels and couplings coefficients is omitted since no magnetic field is involved.

In the HC part, we must note that only one energy level per QD has been assumed and

the electron-electron interaction are not considered. The coupling coefficients Vk,α,j , ti,j

are simplified as constants with no energy dependence under the wide-band approxima-

tion [64]. In order to make the comparison, we have used the same value parameters

for the QD energy levels and the transmission coefficients as Sun et al. The I(V) curves

and the number of accumulated electrons in the ith QD, Ni, are presented. Analytical

expressions for the current in the simplest cases and the evolution of the QD energy

level as a function of the applied bias voltage are also shown. The expressions for the

transmission coefficients derived from the NEGFF and the Hamiltonian described in

Eq. 2.61 for each configuration are presented in the Annex I.

The electrochemical potentials in the two leads are set at µL = 0 and µR = −qV . We

must note that we have changed the lead reference respect to the previous simulations.

Within this form, we also demonstrate that the obtained results are independent of the

energy reference. Electrons flow from the left lead to the right one for positive voltages.

We do not consider direct transmission between the leads. For clarity, the DOS of the

leads are considered to be constant over the whole energy range and we set a constant

charge energy for all QDs: U0 = 0.25 eV.

2.3.2.1 One single QD

We briefly review electron transport through one QD. Using the rate equations and only

taking into account the lead contributions, the current can be written as

I =
4πq

~

∫
TR1TL1ρLρ1ρR
TL1ρL + TR1ρR

(fL − fR)dE. (2.62)

Fig. 2.9(a) shows the numerical result for the current I(V). In the calculation we as-

sumed symmetric coupling with respect to the right and left leads TR1 = TL1 = 0.21,

respectively. The evolution of the energy level with the applied bias voltage is

ε1(V ) = 1− V/2 + U04N1, (2.63)

where the second and third terms are due to the electrostatic effect. As expected, the

current increases with the bias when the energy of the QD moves across the left lead,

which is µL = ε1(V ) → V ≈ 2. When V is high enough, the current saturates to a

constant value, as ε1(V ) lies between the two electrochemical potentials of the leads.

Fig. 2.9(b) shows the dependence of the electron number on the applied bias. Since the

1We use similar transmission values as Sun et al. in order to make possible the qualitative comparison
between the models
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Figure 2.9: (a) The I(V) curve for one single QD obtained using the NCRE. We also
show the NEGFF results for the same system. The NEGFF data have been taken from
Sun et al. [63] (b) The electron number in the QD as a function of the applied bias
voltage. The inset shows the connection geometry. The rectangles represent the two
leads and the circle represents the QD.

two tunneling lead couplings are equal, when the energy enters in the conductive region

the QD remains half charged.

2.3.2.2 Two QDs

We now study the case of two QDs. There are four different connection geometries

between the QDs and the leads. In our calculations, we assume symmetric coupling

with respect to the leads, TR1 = TL1 = 0.2, and the QD coupling T12 = 0.2. We use the

same energy level as Sun et al. [63] in order to make possible the qualitative comparison

between the two models.

2.3.2.3 Serial case

The first configuration of two QDs is the case that they are in series. The system is

shown in the inset of Fig. 2.10(a). Each QD only interacts with one lead and the other

QD. In this case, the expression for the current is

I =
4πq

~

∫
TL1T12T2RρLρ1ρ2ρR

TL1T12ρ1ρL + TL1T2RρRρL + T12T2Rρ2ρR
(fL − fR)dE (2.64)
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Figure 2.10: (a) The normalized I(V) curve for two QDs in a serial configuration
obtained using NCRE. We also show the NEGFF results for the same system, the
NEGFF data are taken from Sun et al. [63]. The inset also shows the connection
geometry. (b) The electron number in the QDs as a function of the applied bias V .

and the evolution of the energy level of each QD with the applied bias voltage is

ε1(V ) = 1− qV2/2 + U04N1 (2.65)

ε2(V ) = 3.5− qV/2− qV1/2 + U04N2, (2.66)

where we assumed that the QDs are only coupled to each other and to one lead. In

order to have current flowing through the system, the energy levels must lie between

the electrochemical potentials of the leads and overlapping of the QD energy levels is

necessary as we have explained previously. When the energy levels are equal, ε1 = ε2 →
V ≈ 7.5, this is a maximum overlapping between QD DOS, the system is in a resonance

state being the current maximum. When the voltage increases further, the QD DOS

overlapping decreases and NDR appears. In Fig. 2.10(b), we show the evolution of the

electrons in each QD Ni as a function of the applied voltage V . Initially, N1 increases

since the channel between the first and second QD is closed. At the resonant condition,

the channel between the QDs opens and some charge stored in the first QD flows to the

second QD. At higher voltages the channel closes again and N1 stores all the incoming

charge, while N2 loses its charge.

2.3.2.4 Parallel case

The second type of arrangement is the case of two QDs in parallel configuration. Both

QDs are coupled to all elements of the system, the leads and the neighbor QD. In this
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Figure 2.11: (a) The total and partial I(V) curves obtained using NCRE for a parallel
configuration. The NEGFF results are taken from Sun et al. [63]. (b) The electron
number in the QDs as a function of the applied bias V .

configuration the expressions for the current are

I1 =
4πq

~

∫
TL1TR1(TL1ρL + T1RρR + T12(ρ1 + ρ2))ρLρRρ1

D2
(fL − fR)dE (2.67)

I2 =
4πq

~

∫
TL1TR1(TL1ρL + T1RρR + T12(ρ1 + ρ2))ρLρRρ2

D2
(fL − fR)dE, (2.68)

where D2 = (T1RρL + T1LρR)2 + T1LT12ρR(ρ1 + ρ2) + TL1T12ρL(ρ1 + ρ2). The position

of the energy level of each QD is

ε1(V ) = 1− qV/3− qV2/3 + U04N1 (2.69)

ε2(V ) = 3.5− qV/3− qV1/3 + U04N2. (2.70)

We show the total and partial currents in Fig. 2.11(a). The I(V) curve shows two steps

when the energy levels of the QDs are placed between the electrochemical potentials of

the leads. This case is equivalent to a single QD with two energy levels (1eV and 3.5eV).

Fig. 2.11(b) shows the electron number Ni (i = 1, 2) with the applied bias voltage. The

charge increases until it reach the saturation value similar as in the single QD case.

2.3.2.5 Other two QDs configurations

More possible QDs arrangements arise changing the couplings among the different parts

of the system. In order to complete the transport study, we are going to simulate these
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Figure 2.12: (a) The I(V) curve, for the configuration plotted in the inset, obtained
using NCRE. We also show the NEGFF results for the same system, the NEGFF data
are taken from Sun et al. [63]. (b) The electron number in the QDs as a function of
the applied bias V .

system configurations based on two Qds.

We first examine the case in which one QD interacts with the two leads and it is also

connected to the second QD, while the second QD is only connected to the first QD.

The current is

I =
4πq

~

∫
TR1TL1ρLρ1ρR
TL1ρL + TR1ρR

(fL − fR)dE (2.71)

and the position of the energy levels are

ε1(V ) = 1− qV/3− qV2/3 + U04N1 (2.72)

ε2(V ) = 3.5− qV1 + U04N2. (2.73)

The obtained current expression Eq. 2.71 is the same as the one we have obtained for

the single QD case. The non-equilibrium distribution function in the second QD is the

same as in the first QD therefore the current between the QDs is zero. The results are

presented in Fig. 2.12.

The second arrangement of QDs is shown in the inset of Fig. 2.13. The expressions for

the partial currents are

I1 =
4πq

~

∫
T1Rρ1ρR(TR2ρRTL1ρL + T12ρ1TL1ρL)

D
(fL − fR)dE (2.74)

I2 =
4πq

~

∫
T2Rρ2ρRT12ρ1TL1ρL

D
(fL − fR)dE, (2.75)
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Figure 2.13: (a) The total and partial I(V) curves obtained using NCRE for the
configuration showed in the inset. The NEGFF results are taken from Sun et al. [63].
(b) The electron number in the QDs as a function of the applied bias V .

where D = T2RρRTL1ρL + TR1TR2ρ
2
R + TR2ρRT12ρ2 + T12ρ1TL1ρL + TR1ρRT12ρ1 being

the total current I = I1 + I2. The energy levels position is

ε1(V ) = 1− qV/3− qV2/3 + U04N1 (2.76)

ε2(V ) = 3.5− qV1/2 + U04N2. (2.77)

In this case, we show the total and partial currents. The current through the first QD is

similar to the single one QD configuration but the current through the second reminds

the slope of a resonant state. This fact can be easily understood in the following way:

if the channel between the two QDs is closed the current only flows through the first

QD. When the QD1-QD2 channel is opened the QD2 also conducts. In the same case

as before, when the voltage increases the overlapping decreases and the QD2 current

decreases. Here, the main difference appears in the voltage position of the current peak

associated to the second QD. This fact can be explained since we consider different

capacitive coupling than Sun et al. For the energy level position of the second QD, they

assume that it is fixed at ε2 = 3.5eV whereas we have included the capacitive coupling

to the neighbor QD.

2.3.2.6 Three QDs

The transport methodology developed previously can be easily extended into more com-

plicated systems. Here, we present the results for some configurations based on three

QDs. The I(V) curves and the accumulated charge are presented in Fig. 2.14(a-c-e) and

Fig. 2.14(b-d-f), respectively. As we have shown before, the position of the energy levels
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Figure 2.14: (a-c-e) I(V) curves and (b-d-f) accumulated electron number for three
different QDs arrangement. The insets show the connection geometry. The NEGFF
results are taken from Sun et al. [63].

plays an important role in the I(V) and N(V) curves. Using the solution of the Poisson

equation, we can write the position of the each energy level as a function of the applied

bias voltage in a general form as

ε1(V ) = 1−
∑
j

C1j

Ctotal1
Vj + U04N1 (2.78)

ε2(V ) = 2−
∑
j

C2j

Ctotal2
Vj + U04N2 (2.79)

ε3(V ) = 3.5−
∑
j

C3j

Ctotal3
Vj + U04N3, (2.80)

where the subscript j runs over all connected elements of the system. The QD-lead

coupling and the interdot coupling are set equal Tij = 0.2. In the insets of Fig. 2.14, we

show the scheme of the system under study.

2.3.2.7 Large QDs arrangements

To conclude, we present the results for larger systems which they are closer to the exper-

imental devices. The systems are formed by 100 QDs placed in a parallel configuration,

serial configuration and in an array geometry (10× 10). The total I(V) curves and the

geometries are presented in Fig. 2.15. The QD-lead coupling and the interdot coupling
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Figure 2.15: The I(V) curves for the largest systems: (a) 100 QDs in parallel con-
figuration, (b) 100 QDs in serial configuration and (c) 100 QDs in an array disposition
10× 10.

are set equal Tij = 0.2. The capacitance between the linked elements are also equal. In

order to represent an experimental system we considerer that the value of the energy

level of each QD follows a normal distribution with mean value 1eV and deviation 0.2eV.

This fact represents the usual distribution size that appears in the experiments [65]. The

relationship between the QD radius and the energy level position is a well known effect

and it is related to the quantum confinement of the electrons [66].

The I(V) curves show an interesting behavior. First, in the parallel case, Fig. 2.15(a),

the I(V) curve shows a staircaselike behavior and saturates to a constant value at high

bias. As we have seen before in the parallel configuration, each QD acts as an indepen-

dent channel therefore the total current is the sum of all partial currents. As expected,

the saturation current is 100 times the saturation current of a single QD.

For the serial configuration, Fig. 2.15(b), the current peak is recovered since the resonant

state is necessary to have electron transport. The maximum value of the peak is hard

to determine because it depends on the transmission coefficient, but it also depends of

the overlapping between the DOS of the QDs.

Concerning the array configuration, Fig. 2.15(c), the I(V) curve is determined by a

combination of the two previous cases. In order to have transport, the resonant state

condition must be fulfilled. Therefore, a current peak appears but the total current is

the sum of the partial currents of each row being grater than in the previous serial case.
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2.3.3 Conclusions of the comparison with NEGFF

The conclusions of the comparison between the transport model proposed in this thesis

an the NEGFF can be summarized as:

• The results presented in Figs. 2.9, 2.11, 2.10, 2.14(a) and 2.14(c) are in accordance

between the two approaches. For the serial configuration (Fig. 2.10) the differences

are due to the different values of the QD coupling, we also obtain a resonant peak

when the energy levels of the QDs are placed in a resonant state. The resonant state

is strongly dependent on the capacitive coupling of the QDs since the position of the

energy level with the applied bias voltage depends on these capacitive couplings.

In the parallel configuration Fig. 2.11, we obtain the same staircase shape but, in

our case, we also take into account the energy charge terms. Thus, the current

steps occur at higher voltages.

• The main difference appears in the case described in Fig. 2.12. For this config-

uration Sun et al. predicts an antiresonance effect [67]. We do not recover this

effect because our model considers each QD as a separate quantum system. For

this reason, our approach is known as a non-coherent model. The antiresonance

is a pure quantum mechanical effect, it is related to scattering that suffers the

electron by the new state (the second QD). For incident electron energies equal to

the energy level of this scattering state, the propagation of the incident electron

encounters the state and then, it is completely reflected back to the left. Thus,

the transmission coefficient becomes zero and the incoming electron is trapped in

the second QD.

• For the systems presented in Figs. 2.13 and 2.14(b) we obtain similar results. The

position of the current peak is different because Sun et al. assume that the bias is

uniformly applied throughout the whole system meanwhile we take into account

all the electrostatic coupling between the different parts of the system.

2.4 Conclusions

In this chapter, we have presented the basis of the electron transport formalism to

explain the electrical response of a QD array embedded in a dielectric matrix. This

approach assumes that the whole system can be separated in small subsystem in order

to describe the non-equilibrium properties. The electron transport between the two

leads takes place as a consecutive tunneling events among the QDs assuming ballistic

transport. This QD-QD and QD-lead couplings were described by tunnel junctions.

These junctions can be described as a tunneling resistance that includes the quantum

transmission coefficient and a capacitance in a parallel arrangement. Assuming that two



Chapter 2. Model fundamentals 55

consecutive tunneling events are independent, the whole QD system was decomposed in

different parts and the current conservation was applied to each QD.

Analytical expressions for the tunneling current among the different parts of the system

were obtained within the Transfer Hamiltonian approach. It is based on the time de-

pendent perturbation theory and the tunneling current can be expressed as the different

electron occupancy in each side of the barrier. Moreover, in the current expressions, the

transmission coefficient is also included.

From the system decomposition and the Transfer Hamiltonian approach, the non-equilibrium

distribution function for each QD in the steady state was obtained, being possible to

calculate the current that crosses the system and the accumulated charge in the QDs.

Furthermore, we included the local potential of the QDs in the model. There are two

main regimes in the nanoscale: the Coulomb Blockade (CB) and the Self-consistent field

regime (SCF). Each one treat the charge effects in different ways, however, for its sim-

plicity and the possibility to its application to larger systems, we chose the SCF regime.

Despite these advantages, a direct comparison between both regimes were done.

The general solution of the SCF regime for a QD involves a Laplace term that takes into

account the different capacity couplings of the elements and a charge term. Since the

local potential shifts the energy level of the QDs, the accumulated charge in the QDs

also changes and these considerations impose a simultaneous solution of the accumulated

charge in the QDs (that depends on the non-equilibrium distribution function) and the

solution of the Poission equation.

Once the basic model was explained, it was used to simulate three basic systems in order

to obtain the main features that dominate the electrical response. From these simple

systems, the transport conditions were highlighted being:

1. There is a net current flux only when the occupancy of the different elements given

by the non-equilibrium distribution function are different.

2. The energy levels of the QDs have to lie between the electrochemical potentials of

the leads.

3. The transport among two or more QDs takes places only when there is a resonant

state. Thus, overlapping of the energy levels of the QDs is needed.

Besides, the basic current and charge trends were also observed: current steps reflecting

the discrete nature of the energy levels in the QDs, resonant current peaks and NDR

when the resonant state is opened and closed due to the different capacitive couplings.

Furthermore, from the capacitive coupling studies that we done, the importance of the

local potential inside each QD and how the capacitive coupling dominates the final I(V)

curve were highlighted. Therefore, from these basic studies, the main parameters that
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govern the final electrical response are: the transmission coefficients, the energy levels

of the QDs and the capacitive couplings.

To conclude, we have compared the transport framework based on non-coherent rate

equations in the SCF regime to a pure quantum transport approach, the NEGFF. Several

configurations were studied obtaining very similar results in both cases. The success of

this comparison shows that the here presented approach is a powerful and intuitive

method for describing the electron transport. However, our transport approach can not

reproduce the antiresonance effect since it is based on the system decomposition. Due

to its simplicity, the model was extended to analyze arbitrary large arrays of QDs.

The here presented methodology are the fundamentals of the electronic transport for-

malism whereas, in the next chapters, the constant parameters used here are going to

be realistically described.

2.5 Annexes

2.5.1 The Hamiltonian in a second quantization: transmission coeffi-

cients

Here, we are going to use the method of the equation of motion in order to obtain the

NEGFF for the basic cases presented previously. It allows us to compute the transmis-

sion coefficient as well as the occupancy of the device region. From a physical point of

view, the description of the Grenn’s Functions are more intuitive if we speak in terms

of incoming or outgoing wave functions than if we describe the system as a function of

creator and annihilator operators. However, the operator description allows us to treat

the mathematical problem in a easily way. Starting from the decomposition of the total

Hamiltonian in the different parts that forms the system (we use the same notation

defined previously) and using the equation of motion method [17, 63], we can write

(E − εj)Grj,i,σ −
N∑
l=1

tj,lG
r
l,i,σ −

N∑
l=1

Σr
j,l,σG

r
l,i,σ = δji, (2.81)

where we have defined the retarded self-energy function

Σr
j,i,σ(E) =

∑
k,α

Vk,α,jV
∗
k,α,i/(E − εk,α). (2.82)

The imaginary part can be approximated as Σr ≈ −iΓ/2 where Γ = ΓL + ΓR that takes

into account the coupling among the central region and the leads. The usual definition

of the retarded Green’s function is used being

Grσ(E) = [E −HC − Σr
σ(E)]−1. (2.83)
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Finally, the transmission function is defined as

T (E) = Tr[ΣLGrΣRGa], (2.84)

where Ga(E) = [Gr(E)]† is the advanced Green’s function. Using these simple relations

and taking into account the matrix form of the self-energies and the Green’s functions,

the transmission coefficients can be obtained.

2.5.1.1 One single QD

The coupling matrix and the GF matrix are one dimensional (numbers). Denoting

ΓL11 = ΓL1(ΓR11 = ΓR1) for the left QD-lead and right QD-lead couplings, respectively.

Being Γ1 = ΓL1 + ΓR1 the total lead coupling. The transmission coefficient can be

written as

T (E) =
ΓL1ΓR1

(E − ε1)2 + Γ2
1/4

, (2.85)

where ε1 is the single energy level of the QD. If we recall the expression for the single

QD, both expressions are quite similar. A product of the couplings is present and in the

NEGF case, the broadening of the QD energy level (ε1) appears “naturally”.

2.5.1.2 Two QDs in series

In the case of two QDs in series, all the coupling matrices and GF matrices are two

dimensional. HC can be written as

HC =

(
ε1 t12

t12 ε2

)
, (2.86)

where ε1(2) are the energy levels of the QDs ant t12 is the coupling between them. From

this Hamiltonian, the single energy level of each QD and their coupling are described.

The coupling matrices to the leads are ΓL =

(
ΓL1 0

0 0

)
and ΓR =

(
0 0

0 ΓR2

)
where

ΓL1(R2) are the coupling constants. It is obvious that each lead is only coupled to one

QD. The transmission coefficient is

T (E) = ΓL1ΓR2t
2
12/D1, (2.87)

where D1 = [(E − ε1)(E − ε2) − ΓL1ΓR2/4 − t212]2 + [ΓL1(E − ε1) + ΓR2(E − ε2)]2/4.

Here, the energy level resonance condition in order to obtain the maximum current is

clearly reflected in the first term of the D1. For the resonant case, D1 is minimum and

the transmission has its maximum value obtaining the current peak. The NDR appears

from the different electrostatic potential dependence of the QDs energy levels.
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2.5.1.3 Two QDs antiresonance configuration

The coupling matrices of the first QD and the leads are ΓL =

(
ΓL1 0

0 0

)
and ΓR =(

ΓR1 0

0 0

)
. t12 is the coupling among the QDs. We must note that the second QD is

isolated to the leads and it is only coupled to the first QD. The transmission coefficient

reads as

T (E) = ΓL1ΓR1(E − ε2)2/D2, (2.88)

where D2 = [(E − ε1)(E − ε2)− t212]2 + [Γ1(E − ε2)]2/4. In this case, the antiresonance

effect is clearly visible when the energy is sweeping across the the energy of the level of

the second QD. For E = ε2, T (E) = 0.

The last system in which an analytical expression can be found is the configuration de-

scribed in Fig. 2.13. The coupling matrices are ΓL =

(
ΓL1 0

0 0

)
and ΓR =

(
ΓR1 ΓR12

ΓR12 ΓR2

)
and the transmission coefficient is

T (E) = {ΓL1ΓR1[(E − ε2)2 + Γ2
R12/4] + ΓL1ΓR2(t212 + Γ2

R12/4)

+2ΓL1ΓR12[t12(E − ε2)− ΓR12ΓR2/4]}/D3. (2.89)

Where D3 = [(E − ε1)(E − ε2)− Γ1ΓR2/4− t212 + Γ2
R12/4]2 + [Γ1(E − ε2)/2 + ΓR2(E −

ε1)/2 + t12ΓR12]2 Γ1 = ΓL1 + ΓR1.
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[16] Ya.M. Blanter and M. Büttiker. Shot noise in mesoscopic conductors. Physics

Reports, 336(1–2):1 – 166, 2000.

[17] Supriyo Datta. Electronic Transport in Mesoscopic Systems. Cambridge University

Press, 1995.

[18] S Datta. A simple kinetic equation for steady-state quantum transport. Journal of

Physics: Condensed Matter, 2(40):8023, 1990.

[19] J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett., 6:57–

59, Jan 1961.

[20] Walter A. Harrison. Tunneling from an independent-particle point of view. Phys.

Rev., 123:85–89, Jul 1961.

[21] M. H. Cohen, L. M. Falicov, and J. C. Phillips. Superconductive tunneling. Phys.

Rev. Lett., 8:316–318, Apr 1962.

[22] C. Julian Chen. Theory of scanning tunneling spectroscopy. Journal of Vacuum

Science Technology A, 6(2), 1988.

[23] R. Clerc, A. Spinelli, G. Ghibaudo, and G. Pananakakis. Theory of direct tunnel-

ing current in metal-oxide-semiconductor structures. Journal of Applied Physics,

91(3):1400–1409, Feb 2002.

[24] Masaru Tsukada, Katsuyoshi Kobayashi, Nobuyuki Isshiki, and Hiroyuki

Kageshima. First-principles theory of scanning tunneling microscopy. Surface Sci-

ence Reports, 13(8):267 – 304, 1991.

[25] M. Berthe, A. Urbieta, L. Perdigão, B. Grandidier, D. Deresmes, C. Delerue,
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Chapter 3

Model implementation

In the previous chapter we have presented the electron transport methodology based

on rate equations and the Transfer Hamiltonian Formalism in the self-consistent field

regime. This formalism was used to study the electrical response of several quantum

dot (QD) configurations and it was compared to Non-Equilibrium Green’s Function

Formalism (NEGFF) obtaining similar results. From these simulations, the main pa-

rameters that govern the final response of the system have been identified: the position

of the energy levels, the transmission coefficients and the different capacitive couplings.

Therefore, it is necessary a detailed and realistic description of these main parameters.

In order to be able to asses the potentials and capabilities of the various novel devices

based on QDs, a realistic theoretical estimation of the specific device performance is thus

highly desirable. Within this context, the simulations of such devices must be performed

not only to understand but also to predict experimental behaviors. Moreover, from a

physical point of view we can learn a lot from these simulations if they are independent

on high level experimental parameters (as tunneling rates, defective interfaces...) and

they are only based on low-level concrete ones (geometrical data, barrier height...).

In this chapter, first of all we present a formal derivation of the internal structure of the

QDs based on effective mass approximation in order to obtain realistic densities of states

(DOS). We also include the hole transport in the second part. In the third section, the

transmission coefficients have been studied. Realistic capacitive couplings are evaluated

in the fourth section. Finally, the code implementation is presented.

3.1 The Density of States

Quantum dots are nanostructures in which electrons and/or holes are confined into a

small region [1]. The confinement is usually achieved by having a nanometer sized piece

of low band gap semiconductor surrounded by a wider band gap material.

65
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The wave function of the confined electrons and holes in the QD is the basic feature

to determine its electrical and optical properties. These properties can be understood

from the perspective of what happens when a cluster of atoms grows, or by considering

what happens when the size of a bulk semiconductor is decreased. These perspectives

are represented by top-down and bottom-up approaches, respectively.

• Top-down presents a convenient way to obtain qualitative results of the energetic

structure of the QD. The main objective is showing how the electronic structure

varies form energy bands to discrete energy levels when the system goes from bulk

to QDs.

• Botom-up is focused on the study of the energetic structure of the QD as a function

of a combination of the atomic orbitals that describes the surrounding electron of

the nuclei that conforms the nanostructure.

In order to describe the electronic properties of the QD in an easy way, we use the

top-down approach that gives an intuitive approximation of the nanostructure. Several

models have been used to study and describe the internal electrical properties of the

QDs using the top-down approach as the finite/infinite spherical potential well [2] and

the k · p model [3, 4].

For its simplicity, we use the finite spherical potential well under the Effective Mass

Approximation (EMA). In a following chapter, we will show how complex frameworks

as the Density Functional Theory (DFT) can be included in order to describe accurately

the electrical properties of the QDs. Here, we only want to describe the fundamental

properties of the QDs (the discrete energy spectrum) and study how it affects to the

electrical response of devices based on these nanostructures.

First of all, we write the assumptions that we have used to describe the QDs:

• The bulk effective masses are used to describe the electrons and holes. Although

the Bloch theorem was derived only for large crystals and periodic potentials,

it is commonly applied also to QDs which have crystalline order but dimensions

corresponding to some tens of the lattice constant [5]. This is called the Effective

Mass Approximation (EMA) [6].

• For multi-dot systems, we consider each QD independent from the other. There-

fore, the electrical properties of each QD are independent of the surrounding QDs.

This assumption is valid for weak tunnel coupling between the QDs, being the

electrons localized on the individual QDs [7].

• For simplicity, we consider spherical QDs. However, different QD shapes (such as

pyramid [8], lens [9] and disk [10]) are often reported and their energy levels are

studied exploiting their symmetry.
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• The electrical properties (the energy level spectra) are obtained in the independent

particle framework. The discrete states arise as a solution of the Schrödinger

equation assuming an effective finite potential barrier outside the QD. Since the

system has spherical symmetry, we restrict the solution to the l = 0 case.

• The electron-electron interaction due to injected charge is included in the self-

consistent field (SCF) treatment and in the Poisson equation.

• The electronic properties of the QDs are independent of the applied electric field.

This requirement could appear dramatic for small systems in which, even the small-

est excitation would modify the system geometry. This effect is generally smaller

for larger (bulk) structures, in which the big number of atoms produces a much

more stable environment, able to withstand the perturbations. The inclusion of

the electric field only shifts the energy levels, as a solution of the Poisson equation.

3.1.1 Discrete energy spectrum

We are going to solve the single particle Schrödinger equation in order to obtain the

internal electronic structure of the QD. We assume a finite spherical potential well in

the EMA approximation and we only consider the l = 0 energy states.

The Hamiltonian that describes the QD can be written as

H = − ~2

2me
∇2
e −

~2

2mh
∇2
h + Ve + Vh + Eg, (3.1)

where Ve and Vh are the electron and hole finite confinement potentials. me and mh are

the electron and hole effective masses and Eg is the bulk band gap of the material. We

must note that we have neglected the Coulomb interaction between electron and holes.

The electron confinement potentials inside and outside for a given QD of radius R can

be written as

Ve(r) =

{
0 for r < R

Ve for R > r
. (3.2)

The hole confinement is also well described by the previous equation but using a different

potential Vh. These potentials arise from the band offset between the material that forms

the QD and the surrounding media. We have to include the discontinuity of the effective

masses: we use different masses inside (me/h) and outside the QD (m
e/h
ox ) for electrons

and holes, respectively.

We present here the derivation of the wave function and the energy levels for the electron

case. Concerning the hole case, the calculi are similar. The electron wave function for

QDs can be represented as the product of the periodic Bloch function uκ(r) and an

envelope function [11]. The envelope function φenv describes the motion of particles in

the confinement potential. This “envelope function approximation” is valid when the
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QD diameter is much larger than the lattice constant of the crystal. The electron wave

function can be written as

ψe = uκ · φenv. (3.3)

The envelope function is the solution of the single particle Schrödinger equation.

Using the symmetry of the system, the electron Hamiltonian can be written in spherical

coordinates as{
− ~2

2me

[
∂2

∂2r
+

2

r

∂

∂r

]
+
l(l + 1)~2

2mer2
+ Ve(r)

}
Rl(r) = ElRl(r), (3.4)

where the angular solution of the wave function is given by the spherical harmonics

Y m
l (θ, φ). The radial solution is written for l = 0 case

Rin0 (r) = A
sin(k0r)

r
for r < R (3.5)

Rout0 (r) = B
exp(−k′r)

r
for r > R (3.6)

inside and outside the QD, respectively. Where k0 =
√

2meE0
~ , k′ =

√
2meox(Ve−E0)

~ and

we have used the different effective masses. The wave function must meet the continuity

condition and the probability flow conservation in the boundary (r = R) [12]

Rin0 (R) = Rout0 (R) (3.7)

1

me

∂Rin0
∂r
|r=R =

1

me
ox

∂Rout0

∂r
|r=R. (3.8)

Substituting Eq. 3.5 and Eq. 3.6 into Eqs. 3.7-3.8, we get

cotx = −
√
me
ox

me

√(σ0

x

)2
− 1, (3.9)

where σ0 =
√

2m2
oxVe
~2 R2 and x =

√
2meox
~2 R2εi. The energy eigenvalues εi (the E0 used

previously) can be obtained solving Eq. 3.9. This equation does not have an analytical

solution and has to be solved using numerical techniques, such as the Newton-Raphson

method. The solutions of Eq. 3.9 form the discrete binding energy levels of the QD. For

the hole case, the discrete binding energy levels can be obtained in a similar form.

Finally, in order to obtain the correct description of the electron and hole states we have

to include the bulk band gap Eg, since we have solved the Schrödinger equation assuming

that the zero energy origin is located at the bottom of the well and the solutions have

to be energy shifted.
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3.1.2 From discrete energy states to the continuum DOS

Up to now, the QD energy spectra is formed by electron and hole discrete energy levels

and the density of states (DOS) can be written as

ρ(E) =
n∑
i

δ(E − εi) (3.10)

where n is the total number of binding states (holes and electrons). These binding states

are the solution of the isolated QD in the weak coupling regime in which we consider that

the electronic properties of the QDs can be explained independently to the surrounding

elements. However, the couplings between the QD and an external element (electrodes

or other QDs) make energy levels acquire a finite lifetime, since an electron inserted

at t = 0 in the state E = εi will gradually scape from this state. Therefore, the time

evolution of the wave function is

exp(−iεit/~)︸ ︷︷ ︸
isolated QD

→ exp(−iεit/~) exp(−|t|/2τ)︸ ︷︷ ︸
coupled QD

(3.11)

where τ is the life time. This corresponds to a Fourier transform of a Lorentzian function

centered in εi with width ~/τ [13, 14]. In general, the scape of electrons from a level does

not follow a simple exponential law and the corresponding lineshape is not a Lorentzian

function. However as we will see latter, for tunneling processes, this is the case.

Therefore, instead of a series of discrete energy levels, the QD DOS can be written as a

sum of Lorentzian functions centered in each binding state forming a quasi-continuous

DOS

ρ(E) =

n∑
i

γ
2π

(E − εi)2 + ( γ
2π )2

, (3.12)

where γ is the broadening of the level. Although we have written the total DOS of the

QD, for the electronic transport purpose we need to take into account if the energy level

belongs to an electron or hole state since the transport coefficients are not equal for both

types of carriers.

From a computational point of view, the approximation of a continuous DOS avoids

several numerical problems that arise from the discreteness nature of the energy levels.

3.2 Electron & Holes

Before describing the transmission coefficients, we are going to focus on the distinction

between electrons and holes.

In standard bulk semiconductor theory [15], two kinds of energy bands are defined:

the conduction and the valence bands separated by an energy range called energy gap
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(Eg). They are defined as a function of their position respect to the energy Fermi

level (Ef ): the valence band is below, whereas the conduction band is above Ef . The

intrinsic characteristic of semiconductor is that Ef falls within the energy gap at room

temperature. This means that the valence band is almost filled, whilst the conduction

band is almost empty. For this reason, an intrinsic semiconductor at room temperature

has bad conductivity since there are few mobile carriers. In order to explain the mobile

carriers, the electron-hole scheme is used. The holes are defined as the absence of

electrons in the valence band, whereas the electrons are only computed in the conduction

band (Fig. 3.1(a)). Thus, the conductivity has two contributions: electrons and holes

terms.

Figure 3.1: (a) Electron (f0) and hole (1 − f0) distribution functions, Fermi level
(Ef ), DOS (ρCB and ρV B) and electron (f0ρCB) and hole populations ((1 − f0)ρV B)
for an intrinsic bulk semiconductor. (b) Scheme of the tunneling junction and the tun-
neling transitions under external polarization. (c) Schematics of the different tunneling
processes in bulk materials. Electron from conduction band to conduction band (ECB),
electron from valence band to conduction band (EVB) and tunneling from valence band
to valence band (HVB) processes.

From the Transfer Hamiltonian formalism, we can write the tunnel current as I ∝∫
(fL− fR)dE, this means that if there are energy states at both sides of the barrier the

carriers will move from filled to emptied states. Therefore, we can neglect the distinction

between electrons and holes and treat all the carriers as electrons that move through

different energy levels. Nevertheless, we have to include the different parameters of

electrons and holes associated to the tunnel transport as the different effective masses

and the barrier heights. Thus, we can treat the hole conduction as electron conduction

restricted to the valence band (see Fig. 3.1(b)).
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In comparison to the bulk semiconductor theory in which we talk about conduction and

valence bands, in QD we have discrete energy states and we talk about electron and hole

energy states.

3.2.1 Transport tunneling processes

A variety of tunneling processes can be identified in a semiconductor-dielectric- semicon-

ductor structure. Several studies have been done in N/P-MOS structures in inversion

and accumulation regimes and three main processes were observed [16, 17, 18]: electron

tunneling from conduction band to conduction band (ECB), hole tunneling from valence

band to valence band (HVB), and hole tunneling from valence band to conduction band

(EVB). Since the transmission coefficients are symmetric, the EVB process also involves

the inverse case, tunneling from conduction band to valence band. Fig. 3.1(c) shows

an scheme of these tunneling processes. We must note that the N/P-MOSFET was ex-

perimentally used in order to obtain a dominant current component (electrons or holes)

doping the semiconductor contact, but, the same transport mechanisms are present in

undoped systems.

We include the three tunneling mechanisms in the rate equation via the Transfer Hamil-

tonian Formalism using the appropriate DOS and transmission coefficient for each pro-

cess.

3.3 Transmission coefficients

This section aims to present a brief description of the transmission coefficients. The

invention of scanning tunneling microscopy (STM) by Binning, Rohrer, Gerber and

Weibel [19] stimulated additional interest in the theory of tunneling. The Transfer

Hamiltonian formalism was used to explain the three dimensional tunneling in STM

measurements [20, 21, 22, 23]. With the advance of the atomic spatial resolution, many

authors [22, 24] concluded that in the general case of three-dimensional tunneling current

cannot be calculated using the simple formula described by the Transfer Hamiltonian

Formalism. This simple relation is only valid in the one-dimensional case.

The carriers in the QD are confined by a potential barrier created by band offsets of

the QD material and the surrounding matrix. Thus, in order to extract it, they have

to cross through the oxide. Assuming elastic processes, the carriers scape via tunneling.

Therefore, a realistic description of these tunneling processes are desirable. Moreover,

as we saw in the previous chapter, the final electrical response of the system is strongly

dependent on these coefficients.

Here, we present two methodologies in order to obtain the one-dimensional transmission

coefficients: the transfer matrix approach and the Wentzel Kramers Brillouin (WKB)
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approximation. We consider only one dimensional tunneling since we expect that the

tunnel process takes place along the direction that minimizes the tunneling distance.

3.3.1 The transfer matrix approach

There are a few cases in which we can obtain an exact solution of the Schrödinger equa-

tion that involves a spatial varying potential. Thus, numerical methods or approximate

solutions are needed in order to solve it and obtain the transmission coefficient.

The transfer matrix is a fruitful object that it has been used in the treatment of layered

systems or supperlatices [25, 26, 27]. It is based on a very simple strategy: the dis-

cretization of the spatial varying potential. Since we can obtain the exact solution for

a constant potential, it is decomposed in spatial regions in which its value is constant.

From this simple and elegant idea, and imposing the usual wave function boundary

conditions, the transmission coefficient can be easily evaluated.

Figure 3.2: (a) Scheme of arbitrary spatial varying potential φ(x) barrier and the in-
put (A and D) and output (B an C) amplitudes. (b) Scheme of the spatial discretization
of the previous presented potential barrier.

Let us start describing one dimensional incident planar wave that transmit through the

space in which there is a spatial varying potential barrier, Fig. 3.2(a). The transmission

coefficient is defined as |T |2 = t∗t where t = C/A, where the parameters C and A are

the wave amplitudes in each side of the barrier. In a general form, the solution of the
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Schrödinger equation can be expressed as

ψ(x) =


Aeik(x−a) +Be−ik(x−a) x < a

ψab(x) a < x < b

Ceik(x−b) +De−ik(x−b) x > b

. (3.13)

Where k =
√

2mE
~ , E is the energy of the incident particle. The positive and negative

exponential terms indicate the propagation of the waves to the right and to the left,

respectively.

To solve the problem in a closed form, we must work out the Schrödinger equation in the

x ∈ (a, b) region to compute ψab(x) and impose the appropriate boundary conditions:

the continuity of ψ(x) and also of its derivative. Thus, two linear relations among the

coefficients A,B and C,D appear which can be solve for any amplitude pair in terms of

the other two: the result can be expressed as a matrix equation, which translates the

linearity of the problem. The linear relation between the wave amplitudes on both sides

of the barrier can be written as (
A

B

)
= M

(
C

D

)
. (3.14)

The transmission coefficient can be easily obtained assuming that we have only incident

waves in the left side (A 6= 0 and D = 0), therefore the transmission is t = C
A = 1

M(1,1) .

Now, it is time to describe the M matrix.

The M matrix takes into account the boundary conditions of the wave function in

the space. This means, if we use the strategy presented before, discretization of the

potential in small regions with constant potential (see Fig. 3.2(b)), we have to solve the

Schrödinger equation in each region. The wave function is described by plane waves

ψN = A+
Ne

ikNx + A−Ne
−ikNx where kN =

√
2m(E−φN )

~ in the N th region. From the

boundary conditions between the N th region and the (N + 1)th region, we can write

S(N) =
1

2

(
1 +

kN+1

kN
1− kN+1

kN

1− kN+1

kN
1 +

kN+1

kN

)
. (3.15)

We need to include a phase factor that takes into account the new origin of the space

coordinate x+ xN → x and it reads as

P (N) =

(
e−ikN (xN+1−xN ) 0

0 eikN (xN+1−xN )

)
. (3.16)

From Eq. 3.15 and Eq. 3.16, we can build the matrix propagation across the space in an

easy way

M = S(xa)P (xa)S(x1)P (x1)...S(xb). (3.17)
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Thus, the transmission coefficient is |T |2 = 1
|M(1,1)|2 . From this presented methodology,

the transmission coefficient can be obtained numerically. Regrettably, we can not write

an analytical expression.

Now, we are going to present another approximation that allows us to evaluate the

transmission coefficient in a simple form, and it provides an analytical expression.

3.3.2 Wentzel Kramers Brillouin approximation

The Wentzel Kramers Brillouin (WKB) approximation is a method for finding approxi-

mate solutions to linear partial differential equations with spatially varying coefficients.

In quantum mechanics, it is used to expand semiclassically the wave function in which

the amplitude and the phase varies slowly compared to the de Broglie wavelength. This

method allows to obtain approximate solutions to the time-independent Schrödinger

equation in one dimension and it is widely used to calculate the tunneling probabilities.

The WKB is based on the solution of the wave function for a constant potential (φB),

it reads

ψ(x) = Ae±ikx where k =

√
2m(E − φB)

~2
. (3.18)

If the potential (φB → φB(x)) changes slowly with x, we assume that the solution of the

Schrödinger equation has the form

ψ(x) = A(x)eiφ(x), (3.19)

where φ(x) = xk(x) and A(x) is the amplitude. In a slowly varying potential, φ(x)

should vary slowly from the linear case, ±kx. The wave vector as a function of the

energy can be written as

k(x) =
√

2m(E−φB(x))
~2 for E > φB(x)

k(x) = −i
√

2m(φB(x)−E)
~2 for E < φB(x).

(3.20)

Using this ansatz (Eq. 3.19),the Schrödinger equation becomes

A′′ + 2iφ′A′ + iAφ′′ −Aφ′2 = −kA. (3.21)

The set of equations is

A′′ −Aφ′2 = −kA (3.22)

2φ′A′ +Aφ′′ = 0. (3.23)

From the second equation we obtain A = C
√
φ′ where C is a real constant. In order to

solve the first term, we assume that the amplitude varies slowly. Thus, the term A′′ is
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negligible. The final wave function solution is

ψ(x) ≈ C√
φ′
e±i

∫
k(x)dx. (3.24)

In order to calculate the transmission coefficient trough a potential barrier, and taking

into account that the wave function (Eq. 3.24) conserves the density probability |ψ(x)|2 =

|ψ0|2, we are going to separate the wave function in each part of the potential barrier.

Let us assume that the barrier extends from x1 to x2 and φB(x) > E inside the barrier.

The solution is written as

ψ(x) = ψ0exp

{∫ x1

0
ik(x)dx

}
︸ ︷︷ ︸

ψ1

exp

{
−
∫ x2

x1

|k(x)|dx
}
, (3.25)

where we have neglected the growing exponential solution for physical reasons. The ψ1

term can be viewed as the wave function in the left part outside the barrier. It is readily

shown that the probability decays exponentially inside the barrier. The probability in

the other side of the barrier is

|ψ2|2 = |ψ1|2exp
{
−2

∫ x2

x1

|k(x)dx

}
. (3.26)

The ratio of the probability densities to the right and to the left side of the barrier is

the tunnel probability |T |2 and it is written as

|T |2 =
|ψ2|2

|ψ1|2
= exp

{
−2

∫ x2

x1

|k(x′)|dx′
}
, (3.27)

where x1 and x2 are the classical turning points defined by the region where φB(x) > E.

We must note that the difference x2 − x1 defines the actual tunnel distance covered by

the carriers through the barrier. It is worth noting that two important assumptions have

been taken in Eq. 3.27: (i) the energy momentum dispersion relation is considered as

parabolic, (ii) the electron mass is isotropic (effective mass approximation in the oxide).

The derived formulas using the WKB approximation are valid when the de Broglie wave-

length (λ) of the electron is much smaller than the characteristic length over which the

potential varies appreciably [28]. For the Si/SiO2 electron barrier, λ can be estimated

as follows:

λ =
1

k
=

~√
2moxφB

≈ 1.5− 2Å. (3.28)

Where we have used the electron and hole tunneling parameters: φBe = 3.1 eV, φBh =

4.5 eV, me
ox = 0.3mo and mh

ox = 0.3mo for electrons and holes, respectively. This result

shows that the WKB approximation should be valid for oxide thickness as thin as 10-15

Å which is 6-10 times larger than the electron de Broglie wavelength [29].

Finally, we consider that the tunneling barrier is bended when there is a potential
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difference between its sides. This potential difference creates an electric field across the

barrier, assuming that the barrier has a linear dependence on the applied electric field,

φB(x) can be expressed as

φB(x) = φ0 − qEdielx, (3.29)

where φ0 is the unmodified barrier height, Ediel = V/d is the created electric field defined

as the drop voltage V and the width of the tunnel junction d. To obtain an analytical

expression of the tunnel probability, still it is necessary to distinguish between the regions

where direct tunneling or Fowler-Nordheim conduction take place. The main difference

between these two types of tunneling processes is the shape of the barrier that the

carriers have to overcome. In direct tunneling, the carriers see a trapezoidal barrier,

whereas in Fowler-Nordheim there is a triangular barrier. In the next section, we are

going to derive the expressions used for these two tunneling mechanisms.

Figure 3.3: Scheme of the band diagram for the: (a) direct tunnel and, (b) the
Fowler-Nordheim processes.

3.3.2.1 Direct tunneling

The direct tunneling (DT) takes place when E ≤ φ(d). If the barrier has a linear

dependence on the applied field, φB(x) = φ0 − qEdiel, the electric field through the

dielectric layer is Ediel = V
d where, d is its overall thickness. Thus, the transmission

probability

|T |2 = exp

(
−2

~

∫ d

0

√
2mox(φ0 − qEdielx− E)dx

)
(3.30)

leads to

|T |2 = exp

[
−4
√

2mox

3~qEdiel

(
(φ0 − E)3/2 − (φ(d)− E)3/2

)]
. (3.31)

Here, E is the energy of the incident carrier. Fig. 3.3(a) shows the band diagram scheme

for the DT process.
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3.3.2.2 Fowler-Nordheim tunneling

The Fowler-Nordheim (FN) tunneling takes place when E ≥ φ(d) and the turning point

x2 is given by the relation

φ(x2) = E = φ0 − qEdielx2. (3.32)

This means that the carrier has enough energy to overcome the barrier before tunneling

the overall barrier thickness. Thus, the carrier sees a triangular barrier. The transmis-

sion probability is expressed as

|T |2 = exp

(
−2

~

∫ x2

0

√
2mox(φ0 − qEdielx− E)dx

)
(3.33)

which leads to

|T |2 = exp

[
−4
√

2mox

3~qEdiel
(φ0 − E)3/2

]
, (3.34)

where E is the energy of the incident carrier. Fig. 3.3(b) shows the band diagram scheme

for the FN tunneling.

It should be noted that the observation of DT or FN processes strongly depends on the

thickness of the energy barrier, the applied electric field and the energy of the incident

carrier.

Figure 3.4: (a) Transmission coefficient as a function of the energy of the incident
carrier for different polarization voltages. An scheme of the band bending is also shown
in the inset. The value of the potential barrier is φ0 = 3.1 eV, mox = 0.3mo and barrier
width d = 3 nm. The vertical dashed lines represent the transition from DT to FN
tunneling processes. (b) Representation of the different tunneling process as a function
of the voltage and the incident carrier energy for the previous barrier. We must note
that the transport only occurs when the carrier is inside the transport window created
by µL and µR. We fix µL = 0 and µR = −qV .

In Fig. 3.4(a), we show the evolution of the transmission coefficient for different applied

voltages. The carrier must lie between µL and µR in order to obtain a net current. If we

fix µL = 0 and µR = −qV , the different regions in which each transport regime occurs

can be observed in Fig. 3.4(b).
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3.3.3 Transfer matrix vs. WKB approximation: a comparison

In this section, we are going to present the different obtained curves using the two

methodologies described before, the transfer matrix an the WKB approximation. A

comparison to an exact solution of the problem for a rectangular potential is also shown.

The systems under study are a potential barrier of 3.1 eV height and 1 nm and 3 nm

width. We have used mox = 0.3m0.

Figure 3.5: (a-b) Transmission coefficients for a rectangular and triangular potential
barrier of 1nm width, respectively. The exact solution and the WKB approximation
are shown for the rectangular barrier. The solution for the triangular case using the
transfer matrix with different space discretization and the WKB approximation are
also shown. In the inset, an scheme of the system is presented. (c-d) Transmissions
coefficient for a rectangular and triangular potential barrier of 3 nm width, respectively.

In Fig. 3.5(a), we compared the transmission coefficient as a function of the incident

energy for a rectangular potential barrier of 1 nm width. The WKB approximation

and the exact solution are also presented. For this case, the transfer matrix approach

coincides with the exact solution of the Schrödinger equation.

The comparison between WKB and the transfer matrix approach for the triangular case

is also presented in Fig. 3.5(b) for different space discretization. In order to obtain a

triangular barrier, a voltage V = 3.1 V has been applied. The limitations of the WKB

approximation are clearly presented in Fig. 3.5(b) since the assumptions of this approach
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are not fulfilled (λ << d). We can also note the differences in the classical turning point,

when the incident electron energy equals the height of the barrier E = φB = 3.1 eV.

In Fig. 3.5(c) and (d), the transmission is presented for the same cases as before but

using a wider barrier (3 nm). In this structure, the WKB solution is closer to the exact

and the transfer matrix solutions since the barrier is wider than in the previous case.

In order to develop a suitable methodology capable to deal with several QDs, we have to

sacrifice some accuracy in the calculation of the transmission coefficients. Although we

have observed differences between the WKB, the exact and the transfer matrix solutions,

the major ones appear for the rectangular barrier. However, we must note that the

transport trough a rectangular barrier represents that there is no voltage difference

between the two sides of the barrier being the net current equal to zero. Thus, the oxide

band will be bended when we calculate the net currents. Therefore, we can use the

WKB approximation without lack of much precision.

3.4 Capacitive couplings

As we have seen in the solution of the Poisson equation, the local potential in each QD

can be decomposed in two terms: the Laplace term plus the charge term. Concerning the

Laplace term, the solution is expressed as a function of the capacitive couplings between

the QD and the rest of the elements of the system. Moreover, we have demonstrated the

importance of these capacitive couplings in the final current trend since the Laplace term

is the dominant term in the local potential. Therefore, these capacitive couplings govern

the movement of the DOS changing the number of energy levels that can contribute to

the transport processes.

For this reason, we are going to present a realistic modelization of these couplings. Using

the image charge method, the capacitance among the QDs and the leads and between the

QDs can be obtained as the sphere-to-conducting-plane capacitance and sphere-sphere,

respectively.

3.4.1 Image charge method

In order to obtain the different capacitive couplings among the parts of the system, we

are going to describe briefly the image charge method.

The essence of this method consists in the replacement of the boundary conditions

effects by imaginary charges which replicate the boundary conditions of the problem.

The validity of the image charges method rests upon a corollary of the uniqueness

theorem, which states that the electric potential in a volume is uniquely determined if
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both the charge density throughout the region and the potential value on all boundaries

are specified.

We focus on the sphere-to-conducting-plane case. The two elements are subjected to

a potential difference V . The conducting plane is placed at z = 0 and grounded. The

sphere radius is R and its center is placed at a distance z = z0 from the infinite plane.

The minimum distance between the sphere and the grounded plane is d = z0 − R. We

start considering the isolated sphere with charge q0 that generates the potential V at

the surface. This charge can be expressed as

q0 = 4πε0εrRV, (3.35)

where εr is the relative dielectric constant of the material and ε0 is the vacuum permit-

tivity. This charge generates an image charge with −q0 located at z = −z0. The image

charge also creates an image charge in the sphere with position and magnitude given by

z1 = z0 −
R2

2z0
(3.36)

q1 =
R

2z0
q0. (3.37)

If the process is repeated and for the ith charge, we can write

zi = z0 −
R2

z0 + zi−1
(3.38)

qi =
R

z0 + zi−1
qi−1. (3.39)

The derivation of Eqs. 3.36 to 3.39 can be found in many textbooks [30]. It is convenient

to define the normalized charge ξi = qi/q0.

The potential for the sphere-plane is equivalent to the potential of these two groups of

charges

φ(r, z) =
1

4πε0εr

∞∑
i=0

qi√
r2 + (zi − z)2

− qi√
r2 + (zi + z)2

(3.40)

where, we have used polar coordinates. We must note that Eq. 3.40 is a solution for

point charges, which is not the actual system of a sphere-plane. Both solutions are equal

only for (z− z0)2 + r2 ≥ R2 (outside the sphere) and for z ≥ 0 (above the plane). Inside

the sphere φ = V at any point and beneath the plane φ = 0 at any point.

Once φ is given, the electric field can be obtained. From ~E(r, z) = −∇φ it reads as

Ez(r, z) = RV

∞∑
i=0

ξi(z − zi)
[(z − zi)2 + r2]3/2

− ξi(z + zi)

[(z + zi)2 + r2]3/2
, (3.41)
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where we have omitted the r-component of the field since the electric field on a conductor

surface is perpendicular to it. Evaluating the electric field at z = 0 we can write

Ez(r, z = 0) = RV
∞∑
i=0

−2ξizi

(r2 + z2
i )3/2

. (3.42)

Using the Gauss theorem, we can obtain the charge in the plane as
∫
~E · ~ds = Q/εrε0.

The capacitance is expressed as C = Q/V , thus, the capacitance can be written as

C =
−2πε0εr

V

∫ ∞
0

Ez(r, z = 0)rdr. (3.43)

Figure 3.6: (a) Lead-QD capacity for different QDs radii as a function of the distance.
(b) QD-QD capacity for different R2 radii, the radius of one QD is hold at R1 = 1 nm.
In both cases, we have used εr = 3.9.

3.4.2 QD-lead coupling

Using the image charge method the coupling between the QD and the lead is obtained

as the sphere-to-conducting-plane capacitance. From Eq. 3.43, it is derived an analytical

solution that it is written as [31]

CLeadi = 4πεrε0

√
r2 −R2

∞∑
n=1

1

sinh(n · arccosh( rR))
. (3.44)

Where, r is the distance among the center of the QD and the lead and R is the QD

radius. The value of the capacitance is shown in Fig. 3.6(a) as a function of the distance

and QD radius.
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3.4.3 QD-QD coupling

For the QD-QD capacitance, sphere-to-sphere coupling, we also need to use the image

charge method but there is not an analytical solution. Therefore, the evaluation must

be numerically, which converges to the desired value within an acceptable number of

iterations [32]. The value of the capacitance is shown in Fig. 3.6(b) as a function of the

distance among the QDs and the QDs radii.

3.5 Putting all together: final equations

Summarizing the theory exposed in the previous sections and including the realistic

parametrization that was done in this chapter (DOS, transmission coefficients and ca-

pacities) and the inclusion of the different transport mechanisms (ECB, EVB, HVB),

the rate equation for each QD in a general system can be written as

q
dNi

dt
=

4πq

~

∫ +∞

−∞
|TECB|2ρLρei (fL − ni)dE +

4πq

~

∫ +∞

−∞
|THV B|2ρLρhi (fL − ni)dE︸ ︷︷ ︸

Left lead contribution

+
4πq

~

∫ +∞

−∞
|TECB|2ρRρei (fR − ni)dE +

4πq

~

∫ +∞

−∞
|THV B|2ρRρhi (fR − ni)dE︸ ︷︷ ︸

Right lead contribution

(3.45)

Neighboring

QDs

contribution

 +4πq
~
∑N

j,j 6=i

{∫ +∞
−∞ |TECB|

2ρeiρ
e
j(nj − ni)dE +

∫ +∞
−∞ |THV B|

2ρhi ρ
h
j (nj − ni)dE

}
+4πq

~
∑N

j,j 6=i

{∫ +∞
−∞ |TEV B|

2ρeiρ
h
j (nj − ni)dE +

∫ +∞
−∞ |TEV B|

2ρejρ
h
i (nj − ni)dE

}
where i = 1 . . . N , being N the number of QDs. We have written explicitly all the

current contributions for an arbitrary ith QD. The first pair of terms is related to the

left lead contribution, the electron and the hole contributions. For simplicity, we assume

infinite metallic leads therefore we only write the continuum DOS of the leads (ρL),

meanwhile in the QD we write the DOS in separately terms: electron (ρei ) and hole (ρhi )

DOS. Similar contribution is obtained for the right lead. In these two contributions,

we use the Fermi Dirac distribution function to describe the leads with µL − µR = qV

electrochemical potentials. In each current term, we use the appropriate transmission

coefficient. The last two pairs of current terms represent the current from the neighbor

QDs. The subscript j runs over all the QDs except the QD that we are considering. In

these terms, we take into account the different processes: tunneling from the electron

to electron states and tunneling from hole to hole states. We also need to describe the

tunneling that mix electron and hole states (EVB process).

The set of Eqs. 3.45 (one per QD) can be solved for the steady state. Under our

assumption that there is no inelastic scattering, the system can be written in a matrix
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form and solved for each energy step to obtain the non-equilibrium distribution function

for each QD (ni).

On the other hand, from the solution of the Poisson equation, the capacitive coupling

term (Laplace solution) can be expressed in a matrix form for a general system. It reads

as 
UL1
...

ULN

 =


1/Ctot,1 0 0

0
... 0

0 . . . 1/Ctot,N

×



CLead1
...

CLeadN

 (−qV )

−


0 C1,2 . . . C1,N

C2,1 0 . . . C2,N

...
...

...
...

CN,1 CN,2 . . . 0




qV1

...

qVN


 . (3.46)

Cij is the capacitive coupling between the different components, QD-lead and QD-QD

capacities, and Ctot,i =
∑

j,j 6=iCij is the total capacitive coupling of the ith QD, where

the subscript j runs over all the components of the system except the ith QD. The

first term in the previous equation is the electrostatic influence of the lead in which the

bias voltage (V ) is applied, whereas the second term is the electrostatic coupling with

the neighboring QDs. The neighbors capacitive matrix is defined as N ×N symmetric

matrix with zero in the diagonal terms. Both terms are multiplied by the inverse of the

total QD capacity.

The general solution of the Poisson equation for each QD can be written as

Ui = ULi +
q2

Ctot,i
4Ni, (3.47)

where the first term is the capacitive coupling described before and the second term

reflects the charge increasing in the QD respect to the original charge.

Summarizing the here presented methodology:

1. For a given external bias voltage, Eqs. 3.45 are solved and the distribution func-

tions are obtained. The electron number in each QD is computed as Ni =

2
∫
ρi(E)ni(E)dE.

2. The local potential in each QD is obtained using Eq. 3.47.

3. The DOS are modified ρi(E) → ρi(E − Ui) and the transmission coefficients also

change.

4. Repeat step 1 and 2 until the potential converge.
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3.6 Code implementation: the SimQD simulator

Here, we are going to describe briefly the code implementation and some computational

strategies that we have used in order to create a computational tool capable to simulate

these devices, the SimQD simulator. The previous formalism has been implemented in

MATLAB c© code taking advantage of its matrix-oriented syntax. In Fig. 3.7 we show the

SimQD scheme flowchart and the general strategy behind the code is presented below.

Figure 3.7: Scheme flowchart of the SimQD that implements the methodology de-
scribed in this chapter.

The code is divided in 3 main parts:

1. Input parameters: Define the geometrical and the material parameters that form

the device. The number of QDs is also defined. Calculate all the voltage indepen-

dent parameters.

2. SCF process: Start the voltage loop. For each voltage point, the SCF process is

repeated until it converges to the desired error.

3. Output: Calculate the output values.
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3.6.1 Input parameters

First of all, we start describing the input parameters that define the system under

study. They can be decomposed in two types: material and geometric constants. The

code inputs are shown in Fig. 3.8.

Figure 3.8: List of the input parameters that describe the device.

After the system is described, the QD array can be generated both randomly or in a

fixed positions. The QD size is also generated using a normal distribution with a mean

radius and standard deviation. However, in both cases all the QDs must fulfill two

conditions: (1) no overlapping between QDs and (2) the QDs must lie entirely in the

oxide matrix. The distances between all the elements of the system are also calculated.

The capacitive couplings are calculated at this point. The electron and hole energy levels

are also obtained, since they only suffer a shift when an external voltage is applied. The

Newton-Raphson method is used to compute the electron/hole binding states.

As we pointed out previously, the set of rate equations can be described for each energy

step. Since we are describing ballistic transport, the electron/hole always has the same

energy. Therefore, an energy grid is created and the rate equations are solved for each

energy grid point.

3.6.2 Self-consistent field process

For each voltage step the SCF process is initiated. The Laplace term of the local

potential is evaluated using the capacitance matrix. The energy levels of each QD is

shifted by the local potential. The transmission coefficients are calculated for each QD
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in each point of the energy grid taking into account the voltage difference among the two

sides of the barrier. Thus, the rate equations can be written: one equation per QD and

evaluated at each energy point of the grid. In order to solve this set of equations, the

Moore-Penrose pseudoinverse method [33] is used since the matrix is not always directly

invertible. Thus, the non-equilibrium distribuion function is obtained and the stored

charge in each QD can be evaluated. The charge term in the local potential is added

and the process is repeated until the system converges to a desired error. In order to

accelerate this process, the Anderson mixing method is implemented.

3.6.2.1 Computational strategies: Anderson mixing

The self-consistent solution of coupled, nonlinear equations is a treasured topic in numer-

ical analysis for obtaining stable and computationally efficient convergence for iterative

solutions. It is interesting to know that this kind of computational strategy is widely

used in electronic-structure calculations since the Kohn-Sham equations [34] have to be

solved self-consistently. The charge density n(r) depends on the potential V (r) which

depends nonlinearly on n(r). The prescription for obtaining V (r) from n(r) is given

within density-functional theory via Poisson’s equation. The self-consistency condition

for this type of calculations can be written as F (n) = nout(n) − n = 0, where n is the

input density. Therefore, in essence, one is just solving a system of simultaneous non-

linear equations F (n) = 0. This kind of equations is also obtained by the Schrödinger

Poisson solvers [35]. From the previous developed rate equation model, we have to solve

simultaneously the charge in each QD and the Poission equation.

In an iterative procedure, convergence can be defined as continuously minimizing the

“distance” between the input and the output potential. The terms input and output

refer to the potential before and after the solution of the system of equations. When this

distance is zero, i.e. input and output potentials are equal, the system has converged

to the fixed-point solution. The simplest definition of distance between the input (Uin)

and output (Uout) potential is

D[Uout, Uin] = (< Uout − Uin|Uout − Uin >)1/2 =< F |F >1/2, (3.48)

where < Uout − Uin| is the vector of the differences for each QD.

Now, we are going to describe the used method to solve simultaneously the charge and

the Poission equation in each QD. It is based on the Anderson’s method [36, 37]. Two

“average” mixed potentials are defined for each iteration step as

|Ūin(out) >= (1− β)|U (m)
in(out) > +β|U (m−1)

in(out) >, (3.49)
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where m is the current iteration. The aim is to obtain the “best” β value for the current

iteration that minimizes the distance between these two average quantities. It reads as

β =
< F (m)|F (m) − F (m−1) >

D2[Fm, Fm]
. (3.50)

Finally, to obtain the new guess for the next iteration, we simply mix the average Ūin

and Ūout potentials

|U (m+1) >= (1− α)|Ūmout > +α|Ūmin >, (3.51)

where α is chosen empirically.

This method is implemented in the code as following:

1. Initialize the variables with the last value of the previous voltage point. For the

first voltage point, the variables start in zero.

2. Calculate the solution of the Poisson equation Uout for given Uin.

3. Calculate the value of β.

4. Calculate the average mixing for the input Ūin.

5. Calculate the average value for the output Ūout.

6. Do the simple mixing between the input and output average potentials.

7. Save values for the next iteration.

8. Repeat steps 2-7 until the desired convergence is achieved.

3.6.2.2 From equations to code: oriented matrix language

Previously we have presented the two main set of equations that govern the response

of the system: the rate equations and the solution to the Poisson equation. Since for

each QD we have to write a rate equation and a solution of the Poisson equation, we

can write them in a matrix form.

Concerning the rate equations, we have to solve them numerically, since no analytical

solution of the distribution function of each QD can be obtained. As the transport is

ballistic, we can write a set of rate equations for each energy point. Thus, an energy

grid discretization has been done and the distribution function is obtained at each grid

point. Therefore, the problem is decomposed in a set of N equations (where N is the

number of QDs) that has to be solved NE times (where NE is the number of the energy

grid points). Obtaining the distribution function of each QD at each energy point of the

grid. To compute the currents and the charge we sum over all the energy grid.



88 Chapter 3. Model implementation

Figure 3.9: (a) Band diagram scheme of a single QD and the energy grid. All the
energy dependent parameters are evaluated at these grid energy points. Moreover, the
“interesting” transport region is highlighted by the red square. As we saw previously,
the transport only occurs in the energy window created by µL and µR. Since we are
doing the transport calculus at room temperature, we also include an energy region
above and below the electrochemical potentials. (b) Computing strategy to obtain the
distribution function at each energy grid point. The set of rate equations are solved for
each energy being P and A the transport matrices.

In Fig. 3.9(a) we show a band energy scheme of a single QD connected to the leads. The

energy grid is also shown. Following the previous strategy, the transmission coefficients

and the DOS of the QD are evaluated at each energy point. Thus, the we need to

solve the rate equation for each energy point to obtain the distribution function (see

Fig. 3.9(b)).

Finally, from the Poisson solution we compute the variation of the charge respect to the

initial value. The easiest way to obtain the initial charge is to perform the summation of

the DOS up to the common electrochemical potential at zero bias. However, when the

local potential raises or lowers the DOS, a fraction of the DOS enters or leaves the fix

energy grid changing “artificially” the charge. In order to avoid this effect, we restrict

the calculations of the charge to the transport energy window and a small energy region

above and below it (red square in Fig. 3.9).

3.6.3 Code outputs

In the final stage, the code calculates the outputs for each voltage point. Occupancy of

each QD respect the initial charge as a function of the applied voltage, the individual

current voltage curve, as well as the total device I(V) curve and the local potential in

each dot for the applied voltage.
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The total current is decomposed into electron and hole terms for a system of N QDs

and reads as

ITotal(V ) =
4πq

~

N∑
i=1

{∫ +∞

−∞
|TECB|2ρLρei (fL − ni)dE +

∫ +∞

−∞
|THV B|2ρLρhi (fL − ni)dE

}
.

(3.52)

The electron number in the ith QD under external polarization can be obtained using

Ni(V ) = 2

∫ +∞

−∞
ρenidE + 2

∫ +∞

−∞
ρhnidE, (3.53)

where we have decomposed explicitly the DOS in the electron (ρe) and hole (ρh) parts.

Here, we must note that we are summing for all the electrons of the QD since ni gives

the occupation of the energy levels. Therefore, to compute the electron increment (4N)

we have to subtract the electrons in the QD in the equilibrium state (N0
i ), which reads

as

N0
i = 2

∫ +∞

−∞
ρhf(E)dE, (3.54)

where, f(E) is the equilibrium Fermi Dirac distribution function and we have neglected

the filled electron states.

3.6.4 Computational performance

Figure 3.10: Computational time vs. number of simulated QDs. The time is referred
for a single voltage point. Simulations were done in a dual core 2.60 GHz.

To conclude, we present here the computational efficiency of the code. In Fig. 3.10 we

show the computational time needed to obtain results for one voltage point as a function

of the number of QDs. The computational time grows with the number of QDs but it is

still reasonable and allows to simulate large QD arrays. The most computational time is
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spend in the recursive calculation of the transmission coefficients that is a N ×N ×NE

matrix, where N is the number of QD and NE is the number of energy grid points. This

matrix has to be obtained in each iteration of the SCF process.

Besides, in order to increase the computational efficiency of the code and accelerate the

SCF convergence, the simulation at each non-zero voltage is started using the potential

solution obtained at the previous voltage as initial guess

MATLAB c© allows to execute the code in parallel using computers with several cores.

Thus, the simulations can be run in a parallel cluster decreasing further the computa-

tional time.

3.7 Conclusions

In this chapter, we have extended the rate equation transport methodology. In order to

create a simulator tool, we have described as realistically as possible the main parameters

that govern the final response of the system.

Concerning the energy level spectra of the QDs, we have seen that play an important

role in the final response. Therefore, a realistic DOS that takes into account the discrete

energy spectrum of the QDs has been obtained using the EMA. As a first order approx-

imation, we have used a finite spherical potential well within the EMA. This framework

allow us to describe the internal structure of the QDs as a function of three basic pa-

rameters: the confinement potentials, the effective masses and the QD radius.

Besides, we have also included the hole carriers so; the DOS is decomposed in hole and

electron energy levels. Therefore, a new contribution to the current is included. Thus,

different tunneling processes are described for electron and holes.

Since the tunneling junctions dominates the final response of the system, an effort has

been done in order to describe accurately the tunneling transmission coefficients. Re-

grettably, the exact solution can not be obtained analytically. Therefore, two different

approaches has been studied: the transfer matrix and the WKB approximation. A

comparison between the two approaches was done and finally, the WKB was chosen for

computational reasons to describe the tunneling probabilities.

Two different tunneling regimes have been considered as a function of the deformation of

the oxide barrier and the incident energy electron: direct tunneling and Fowler-Nordheim

for trapezoidal and triangular barriers, respectively.

On the other hand, the capacitive couplings have been described using the image charge

method: a sphere-to-conducting-plane for the QD-lead and sphere-sphere for QD-QD

couplings, respectively.
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To conclude, we have presented the implementation of the transport model in a MATLAB c©

code. The computational issues, numerical strategies to achieve the convergence, as well

as the code implementation were also discussed. Probably, the code implementation is

one of the most important part of this thesis since it allowed us to simulate realistically

different kind of systems as we will see in the following chapters.
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Chapter 4

Study of the electronic transport

in Silicon QDs

In this chapter, we use the previous developed formalism and its code implementation,

the SimQD code, to simulate different systems based on silicon quantum dots (Si QDs)

embedded in a SiO2 matrix (Si/SiO2 QDs). First of all, we show the shape of the

obtained density of states (DOS) using the Effective Mass Approximation (EMA). As

this approximation has several limitations and can not reproduce exactly realistic DOSs,

we introduce the possibility to use the density functional theory (DFT) to describe the

electronic properties of the QDs; opening the possibility to use the DOS of the QDs as

an input parameter. In the second part, we obtain the I(V) and the accumulated charge

curves for a single QD in different configurations. The simulations of large systems

based on multilayer structures are also presented reflecting the capability of the here

presented transport model to deal with experimentally relevant structures. Once the

transport features for Si/SiO2 systems are explained, potential applications of these

systems are studied: the single electron transistor and the double gate transistor. In

the last section, a comparison with experimental results and with other macroscopic

transport models is done. Moreover, we present the possibility to use the transport

model to describe ballistic transport through material traps or defects.

4.1 From DOS to current: preliminary discussion

In Chapter 2, we have described a general theoretical framework to calculate the elec-

trical response of a system based on QDs. The total tunneling current incoming from

left lead to all the QDs can be written as

I =
4πq

~
∑
i

∫
TLi(E)ρL(E)ρi(E)(fL(E)− ni(E))dE, (4.1)

95
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where the subscript i corresponds to the ith QD. The total current that crosses the whole

device can be obtained summing all the individual currents through each QD, since we

do not consider direct current between the two electrodes.

Up to now, we have not introduced the nature of the leads. The final response of

the system is strongly dominated by the injection properties of the carrier reservoirs

(leads). As we are interested in the transport properties of the QDs and in order to

present clearly the different features of these systems, we treat the electrodes as infinite

metallic contacts well described using the Fermi Dirac distribution function. Moreover,

we assume a constant DOS in the leads.

Concerning the DOS of the QDs, we have used the approximation described in the

previous chapter, the EMA. Although this approximation gives a discrete spectrum

of energy states, it fails to reproduce all the internal structure of the QD, and the

most important issue is how to include the degeneracy of the energy levels. Up to

now, we only considered spin degeneracy but it is well known that there are other

degeneracies associated to the quantum numbers, i.e. for the l 6= 0 cases, each state is

2l + 1 degenerated.

Since the values of the used DOS (lead and QD) are only qualitative and not quantita-

tive, the obtained current values can not be directly compared to experimental results.

We restrict our calculations to a number of QDs embedded in an oxide block of given

dimensions. Therefore, to compare directly the simulations and the experimental results

the QD density has to be known. Thus, although Eq. 4.1 has units of current (A), it

can not be directly compared to experimental current values. Then, we try to reproduce

the measured experimental trends and features instead of the measured values.

4.2 Running the simulations

In this chapter, we are going to show several results from different QD arrangements

simulated using the implemented code, the SimQD. As we saw, the code only needs two

types of inputs: the device description (oxide size, disposition and QD number) and the

material parameters to describe the QDs, the oxide matrix and the tunneling processes.

4.2.1 Device description

First of all, we must define the system: the geometrical disposition of the QDs and the

size of the embedding oxide. Here, the most important dimension, which will dominate

the value of the current, is the length of the device, since the tunneling current decreases

exponentially with the tunneling distance. In order to avoid future confusion we assume:

x-direction (length), y-direction (width) and z-direction(height). The transport direction
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is in the x-direction and the leads are placed in the y-z plane (x = 0 and x = L where

L is the device length).

4.2.2 Material parameters

Up to now, we have proposed a transport model to simulate the electrical behavior of a

device based on QDs. Here, we are going to focus on the specific case of silicon QDs (Si

QDs) embedded in a SiO2 matrix (Si/SiO2 QDs). The inputs needed to describe this

system are the material constants given in Table. 4.1.

m∗ECB (m0) 0.40 [1, 2] φ1,ECB (eV) 3.1 [3, 4]
m∗EV B (m0) 0.30 [1] φ1,HV B (eV) -4.5 [3, 4]
m∗HV B (m0) 0.32 [1] Egap (eV) 1.12 [3, 4]
m∗Qd,CB (m0) 0.33 [5] εrSiO2 (ε0) 3.9 [4, 6]

m∗Qd,V B (m0) 0.28 [5] εrSi(ε0) 11.7 [4, 6]

Table 4.1: Parameters used in the simulation in order to describe Si QDs embedded
in SiO2 insulator matrix.

m∗ECB, m∗EV B and m∗HV B are the effective masses for the different tunneling processes

(see the previous Chapter). m∗Qd,CB and m∗Qd,V B are the geometric averages of the

anisotropic Si bulk effective masses for the electrons and holes [7]. φ1,ECB is the electron

confinement potential whereas φ1,HV B is the one for the holes. Egap is the bulk Si band

gap and we assume that the Fermi level is placed in the middle. We must note that the

position of the Fermi level is an important point, since it modifies the energetic distance

between the zero energy level and the first electron and hole energy levels.

Although the electron and hole energy levels position depends on the parameters pre-

sented in Table. 4.1, the HOMO (first hole energy level) and the LUMO (first electron

energy level) are placed approximately at the same energy distance respect to the Fermi

level. This means that when an external voltage is applied both energy levels will start

to conduct at the same time. Moreover, in these energy levels the charge will change

(filling the electron level and emptying the hole one). This effect can be changed moving

the position of the Fermi level, if the Fermi level is close to an electron state it will start

to conduct before the hole state. The similar case is obtained for the Fermi level close to

the hole state, the hole state will conduct before the electron one. Thus, the alignment

of the QD Fermi level and the leads is not a trivial question and will govern the current

and charge trends.

On the other hand, the difference position between the Fermi levels of the leads and the

oxide matrix defines the electron and hole energy barrier. Thus, the material parameters

have to be changed as a function of the simulated system.

Finally, εrSiO2 and εrSi are the dielectric constants of the bulk SiO2 and Si, respectively.
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In order to focus on the intrinsic properties of the electron transport through the QD

array, we have assumed a continuous DOS for the leads. Therefore, the leads act as an

infinite carrier reservoir.

4.2.3 Example with the Effective Mass Approximation DOS

Since the materials that form the QDs (Si) and the surrounding insulator matrix (SiO2)

are well described, we can use the EMA and the finite spherical confinement potential

to obtain the energy binding states that define the discrete energy spectra of the QDs.

From the previous chapter, we use the following equation to obtain the electron binding

energy levels

cotx = −
√

m∗ECB
m∗Qd,CB

√(σ0

x

)2
− 1, (4.2)

where σ0 =

√
2m∗ECBφ1,ECB

~2 R2 and x =

√
2m∗ECBE0

~2 R2. E0 is the electron energy binding

states. For the hole case, we use m∗HV B, φ1,HV B and m∗Qd,V B.

An example of the obtained DOS for a QD of radius R = 1 nm, where the discrete energy

levels have been broadened, is presented in Fig. 4.1. The confinement potentials, the bulk

Si band gap and the position of the equilibrium Fermi level are also shown. Moreover,

as a first approximation we have assumed a continuous DOS for energies above the

confinement potentials of the insulator matrix. This fact reflects the continuous energy

level spectra out of the confinement region.

Figure 4.1: Obtained DOS for a QD of R=1nm. The broadened binding electron
and hole states are shown. The position of the Fermi level EF (zero energy point),
the confinement potentials φ1,ECB and φ1,HV B and the Si bulk band gap Egap are also
shown. For energies above the confinement potentials, continuous DOSs are assumed.

On the other hand, from Eq. 4.2 the energy position of the electron and hole energy

levels are dependent on the QD radius. Obtaining the well know relation between the
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QD energy gap and the QD radius. Besides, the number of binding states increases with

the QD radius.

4.2.4 Example with Density Functional Theory inputs

Up to now, we have described the electrical properties of the QDs using the simply

model based on the finite spherical potential well within the EMA. As we have seen,

this approximation allows us to deal with discrete energy levels. This approximation

also reproduces the well know dependence of the Egap with the QD radius, as we will

see in the next chapter.

From the proposed transport model, the DOS of the QDs (the energy level spectra) only

appears in the calculation of the tunneling currents and the QDs charge. In fact, since

we have presented a general carrier transport method the QD DOSs can also be viewed

as another input parameters. Hence, we can use other approaches in order to describe

the QDs electronic properties.

Here, we discuss briefly the inclusion of Density Functional Theory (DFT) outputs as

inputs for our transport model. This work has been presented in Ref. [8] and all the

details of the DFT simulations conform the PhD Thesis of Dra. Núria Garćıa-Castelló.

As in any atomistic calculation, the main work can be decomposed in two fundamental

parts: the construction of the structure under simulation and the structure relaxation.

The relaxation process moves the initial atomic positions in order to find the minimum

energy configuration of the system. Two types of structures have been studied: the β-

cristobalite SiO2 and amorphous SiO2. All the structures have been obtained from the

supercell Si216O432. The QD is created removing all the O atoms inside a cutoff sphere

of given radius. The relaxations of all the systems and the calculation of the DOS have

been computed with the DFT code SIESTA [9, 10]. Due to the large computational

time needed to relax these structures, only a few cases have been studied. Different QDs

have been created in the crystalline and amorphous SiO2 matrices ranging from 1.27nm

to 1.60nm of QD diameter.

The projected density of states in the atoms that forms the QDs has been calculated and

it was compared to the embedding SiO2 matrix DOS. From this direct comparison, the

confinement potentials (band offsets between the conduction and valence bands of the

Si/SiO2 interface) can be obtained. The main results as functions of the QD diameter

can be summarized as:

• The band offsets increase with the QD size (more pronounced for valence band

than for conduction band) consistently with the planar value corresponding to the

bulk case.
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Figure 4.2: (a) Relaxed structure of the QD of 32 Si atoms in crystalline (left panel)
and amorphous (right panel) SiO2 matrix. Red spheres are O atoms, green spheres
are Si atoms and the yellow thick sticks represents the Si atoms that form the Qd.
(b) Simulated DOS using DFT for different Si QD sizes embedded in amorphous a-
or crystalline c- SiO2 matrix. The subscript is the number of Si atoms that form the
QD. For comparison, the amorphous silica (a-SiO2) is shown in all the plots. From
this comparison, the band offsets for each QD radius can be obtained. The figures have
been taken from Ref. [8]. The position of the Fermi level is the vertical dashed line and
it is located in the middle of the QD Egap.

• In crystalline systems, the valence band offsets are lower than in the amorphous

ones for similar QD diameters. In contrast, for the conduction band offsets, a clear

trend is not observed.

• In a general trend, Egap decreases when the QD size increases. Some fluctuations

in the expected trend were found due to the oxidation degree at the interface and

the strain induced by the embedding matrix. Due to the small size of the QDs,

they are basically formed by surface atoms and the embedding matrix has a strong

influence in the QD properties.
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To conclude the DFT study, the obtained DOS (see Fig. 4.2) have been used to simulate

the charge transport in a single QD. We are not going to reproduce here again the

obtained results because, as we have seen previously, the current basically represents

the DOS of the QD. The I(V) curves are presented in Ref. [8].

Thus, we have shown the possibility to combine two different simulation techniques to

obtain the electronic transport. We use the realistic and complete description that the

DFT provides of the electronic structure of the QD and then, the obtained DOS is used

as an input to the here presented transport methodology. Although there are other

codes that treat to solve the electronic transport from DFT calculations using NEGFF,

such as TRANSIESTA [11], and the transport module of GPAW [12], the atomistic

procedure is infeasible for large systems. Thus, our model is perfect to combine the

realistic description of the QDs within DFT codes and the large system capability of the

transport model in order to simulate devices based on QDs.

4.3 One single Si/SiO2 QD

Before simulating a complete device based on large arrays of QDs, we are going to

describe a single Si/SiO2 QD in different configurations. From this small system, we

will show the general trends obtained for the current voltage curves (I(V)) and the

accumulated charge.

In Fig. 4.3, we present the obtained I(V) curves and the accumulated charge for a system

composed of: two leads separated by 5nm and a single QD of R = 1.5 nm connected

to them at different positions. The position of the QD x is measured from the left

lead. An external bias voltage is applied to the right lead, whereas the left one is kept

as a reference, this means µL = 0 and µR = −qV . Concerning the variation of the

number of electrons (4N = N − N0), it reflects the variation of electrons (N) respect

to the initial number (N0). Therefore, if the variation is negative, it implies that the

system looses charge (hole accumulation). If the variation is positive, this implies that

the system increases its charge (electron accumulation). Concerning the values of the

charging energy U0, it is around tens of meV similar to the thermal energy (T = 300 K)

being in the self-consistent field regime.

Fig. 4.3(a) shows the total I(V) curve and the hole and electron currents for a QD

connected symmetrically to both leads, x = 2.5 nm. Concerning the partial currents

(electron and hole contributions), the electron current is the dominant term since the

electron barrier (3.1 eV) is smaller than the hole barrier (4.5 eV). Besides, the opening

of the discrete electron/hole conductive channels are clearly visible in the current steps

at different voltages due to the position of the discrete electron/hole energy levels. Since

the system is symmetrically coupled to the leads, the total current is symmetric in both

polarization directions. From the I(V) curves, we must note that negative differential
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Figure 4.3: A single Si/SiO2 QD of R = 1.5 nm placed in different positions between
the two leads. x is the distance from the left lead to the center of the QD. The separation
among the leads is 5 nm. (a-b) I(V) curve and accumulated charge for a centered QD.
The hole and electron currents are also shown. (c-e) I(V) curves for different QD
positions and (e-f) accumulated charge in the same cases.

resistances (NDR) are obtained. The nature of this effect is different from the other

cases that we have seen previously (the decreasing of the QD DOS overlap). In this

case, the NDR is obtained because the transmission coefficients are energy dependent

and the ratio between the right and left lead couplings changes as a function of the

applied bias voltage.

Regarding to the accumulated charge, Fig. 4.3(b), the QD remains practically uncharged.

The obtained trend reflects the position of the electron and hole energy states respect

to the equilibrium Fermi level and the effect of the self-charge. An electron state is

the first energy level that starts to be conductive but a hole conductive channel is
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opened immediately being the accumulated charge the difference of the electron/hole

filled states.

The I(V) curves and the accumulated charge are shown in Fig. 4.3(c-d) and Fig. 4.3(e-f)

for different non-symmetric configurations x < 2.5 and x > 2.5, respectively. As can

be seen, the symmetry in the total I(V) curve has been broken due to the different

capacitive coupling among the leads, as we studied in Chapter 2. The QD gains/losses

net charge. We are going to explain this effect in the next section. Besides, we must

note that the obtained trends for the x < 2.5 cases are complementary to the x > 2.5

cases.

4.3.1 Accumulated charge trends

From the band diagram scheme of the system under study, and taking into account

that the transmission coefficients are strongly dependent on the width and the height

of the barrier, the accumulated charge trends obtained in the previous section can be

explained.

As we have seen before, when an external polarization is applied different incoming/out-

going fluxes are created and the occupation of the states differ from the initial case.

Besides, the transport only takes place in the energy region between µL and µR. Thus,

only the energy states placed in this energy region can gain or lose charge.

From the rate equation, the QD steady state distribution function can be viewed as a

balance between the two leads that strongly depends on the transmission coefficients

and the occupation of the leads. Since the leads occupation are well described by the

electrochemical potentials µL(R), the QD energy level occupation is dominated by the

highest transmission coefficient. Therefore, the lead connected to the QD with the

highest transmission coefficient dominates the QD occupation.

In Fig. 4.4(a-b), the band diagram schemes for both polarization regimes (V > 0 and

V < 0) and x < 2.5nm are shown. The discrete electron (blue) and hole (green) states

are also represented. In equilibrium, the hole states are filled, whereas the electron

states are emptied. However, under external bias polarization net fluxes are created.

Therefore, for low voltages, the width of the barrier dominates the transmission since

the oxide bands are still not enough bended. Thus, the position of the QD (x) is crucial.

In the band scheme, the highest transmission coefficient is represented by wider arrows.

For the x < 2.5 nm case, the QD is strongly connected to the left lead and its occupation

is governed by µL: increasing the QD charge (electron accumulation) for V > 0 and

loosing charge (hole accumulation) for V < 0 case.

The x > 2.5 nm case can be explained using the same arguments but now, the occupation

of the QD is governed by µR ( Fig. 4.4(c-d)). The hole accumulation is obtained for the

V > 0 case, whereas the electron accumulation appears for V < 0.
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Figure 4.4: Band diagram scheme of the single Si QD in different positions (x)
and bias polarizations (V < 0 and V > 0). The thinnest arrows represent a lower
transmission probabilities whereas the widest ones are the most probable transmissions.
The conduction window, µL−µR, and the several electron (blue lines) and hole (green
lines) energy levels are also shown. (a) and (d) reflect an electron accumulation regime
whereas in (b) and (c) the QD losses part of its initial charge (hole accumulation).

From these analysis, the obtained accumulated charge curves presented previously

(Fig. 4.3(d-f)) can be explained. Nevertheless, for larger voltages the band bending of

the wider oxide increases giving an smaller effective tunneling distance and being that

the dominant process. Thus, the QD recovers its initial charge.

4.4 Multilayered structures

In order to present the capabilities of the here presented methodology and the possibility

to simulate realistic devices based on large arrays of QDs, we are going to present several

simulations of QDs distributed in a multilayer structure. We focused on this arrangement

because from the fabrication process it emerges as the most fundamental structure.

From the experimental point of view, in the last decade, the superlaticce approach

(SL) [13] was developed to create Si QDs embedded in SiO2 matrices. Thin silicon
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rich oxide and thin pure SiO2 layers are deposited alternatively by means of plasma-

enhanced chemical-vapor deposition (PECVD) making feasible that the SiO2 layers act

as a diffusion barrier. In a latter temperature annealing process, the Si atoms of the

silicon rich oxide layer aggregate and form the QDs. The different growth stages of the

Si QDs are well described in Ref. [14, 15, 16], being the final physical properties of the

layers strongly dependent on the annealing conditions [14, 15, 17]. Overall, a relative

broad Si QD size distribution is obtained and it is usually fitted with Gaussian or log-

normal distributions [17, 18]. Therefore, a tight control of the Si QD size can be easily

obtained by adjusting the inter-distance of the SiO2 diffusion barriers, allowing for a

self-organized array of size-controlled Si QDs embedded in a SiO2 matrix.

Here, we present the I(V) and the total accumulated charge for two simulated systems

in a multilayer structure. The structure is formed by 2 Si QD layers. The leads are

placed perpendicular to them, therefore, the electronic transport takes place laterally.

Both layers are spaced 5nm and the layer size is 20 nm length and 20 nm width. We

simulate 10 randomly distributed QDs per layer and a normal distribution with 1.75

nm mean value, and 0.3 nm standard deviation for the QDs radii. The Qds layers are

separated by 3 nm of SiO2.

In Fig. 4.5, the obtained results are shown for the two different systems. The I(V)

curves and the electron and hole currents are presented in Fig. 4.5(a-c); in the inset,

we also show the QD radius distribution for each system. Besides, in Fig. 4.5(b-d) the

accumulated charge and a top view of the structure (inset) are presented.

Before explaining in detail each case, we are going to focus on the common aspects of the

obtained results. Concerning the I(V) curves, the step-like current shape is still present

since it is a consequence of the opening of the conductive channels. In these cases, the

transport involves several tunneling processes between the QDs. Therefore, the energy

level alignment is necessary. However, the NDR is not clearly visible since there are

many electron/hole pathways and the sum of the different conduction channels masks

this effect.

From the I(V) curves, two different regimes are obtained. For low and medium voltage

ranges, the current reflects the discrete nature of the QDs energy spectra. However,

for the largest voltages, the continuous part of the QD DOS begins to be conductive

and the current increases in a continuous form loosing its step-like shape. Concerning

the electron/hole current components, the electron term dominates since its potential

barrier is lower than the hole one.

Regarding the accumulated charge plotted in Fig. 4.5(b-d), it is the total sum of the

accumulated charge in each QD (q
∑

i4Ni where i=1..20). The geometrical disposition

of the QDs strongly affects the final response of the system. However, the two main

trends discussed in the previous section are obtained: electron accumulation for positive

voltages (first system) and hole accumulation for positive voltages (second systems).
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Figure 4.5: (a-c) Obtained I(V) curves for two layers of Si/SiO2 QDs (the systems
details are described in the text). The total current as well as the electron and hole
partials currents are also shown. In the inset, the QD radius distributions are shown. (b-
d) Total accumulated charge (

∑
i4Ni, where i = 1..20) of the structures as a function

of the external bias voltage. In the inset, a top view of the systems are presented where
the left and right leads are L and R, respectively.

For these systems, since there are many electronic conduction channels and a complex

capacitive interaction between the QDs, it is hard to explain clearly the accumulated

charge trends. Reflecting that, the geometrical disposition of the QDs influences directly

in the final response of the system.

4.5 Electronic devices based on QD

Up to now, we restrict our simulations to systems in witch the QDs are connected to two

electrodes (source and drain). However, it is possible to include a third electrode (gate)

to create a gate controlled or gated QDs. These systems have attracted much interest

in both physics [19, 20, 21, 22] and quantum engineering [23, 24, 25] since the properties

of the confined electrons can be modified by the external gate voltage. The gated QD
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is a very important nanoelectronic device because it is a prototype of a single-electron

transistor (SET) [23, 26, 27, 28]. Possible applications of SETs are expected to yield

an extremely high speed of nanoelectronic devices at low power consumption. Another

exciting field of future applications of electrostatics QDs is quantum computation [29,

30, 31, 32]. The QDs can be used to represent quantum bits (qubits) [33, 34, 35] and to

perform a readout of qubits as well as logic operations on the qubits, the so-called logic

gates [36, 37, 38]. Other possible applications of these kind of systems are: as a single

electron pumps [28, 39], as a temperature standards [40, 41], resistance standards [42]

and supersensitive infrared radiation detectors [43, 44].

Concerning the SET, it is a highly charge-sensitive device capable to detect charge vari-

ations of one electron. This remarkable property allows SETs to be used as extremely

responsive electrometers, making them a useful tool in experiments where very high

charge sensitivity is required [45, 46]. A SET fabricated on the tip of a scanning probe

has been reported [47] creating a new type of scanning microscopy, combining submicron

spatial resolution with sub-single-electron sensitivity. This technique has been used to

observe single charged impurities in GaAs/AlGaAs heterostructures. Another attrac-

tive possibility is the ability to measure addition energies (and hence the energy level

distribution) in QDs and other nanoscale objects [48]. Respect to the applicability of

this device to digital electronics, the basic application is use it as a usual FET transistor

controlling with the gate voltage the high/low current states. Moreover, several concept

memories have been developed taking advantage of the transport properties of this sys-

tem [49].

While in the previous section we have described the transport processes in an extended

array of QDs, now, we are going to deal with a prototypical application of these kind of

systems: the SET.

4.5.1 Transistor structure: the single electron transistor

The transistor structure includes metallic source and drain electrodes bridged by a QD

(metallic, semiconductor or a molecule) plus a gate electrode. Although we consider

the QDs as particles created inside an embedding matrix, the first device was created

using two confining electrodes and a MOS type structure, in order to achieve the 3D

confinement of the carriers in a small space region [23].

The electron transport is carried by sequential tunneling through the QD coupled by

tunneling junctions to the source and drain. Besides, the QD is capacitive coupled to the

gate electrode which is used to shift the QD energy levels and control the charge transfer.

The electron transfer between the QD and the gate electrode is assumed negligible.

Two main approaches have been used to describe the device working principle: the

classical Coulomb blockade regime and the quantum Coulomb blockade [50], for metallic
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or semiconductor respectively. In the quantum Coulomb blockade, the discrete energy

spectra of the QD is also included [23, 51].

The transport mechanism in the transistor is as follows: when there is no energy level

of the QD between the Fermi levels of the source and drain leads, electron transport

through the device is blocked, leaving the number of electrons, N, in the QD unchanged.

In the quantum Coulomb blockade, in which the charge is an integer, when the energy

level plus the charging energy lies in the conductive region the electron transport takes

place, and the charge is increased (N+1). The resultant transport suppression is called

the Coulomb blockade. However, the Coulomb blockade may be lifted by applying

voltage to the gate electrode, which adjusts the QD electrostatic potential. However, as

we discussed in chapter 1, in the SCF regime the condition that the charge is an integer

is not considered being the transport condition less restrictive and the current is not

suppressed. Nevertheless, the charging energy is included in the solution of the Poisson

equation being the local potential in the QD the same when the charge is an integer

value.

The main differences between our model and the orthodox Coulomb blockade is seen in

metallic QDs in which the energy levels form a continuous spectra. In this situation,

each time that one electron crosses through the QD it has to overcome the charging

energy and the current increases once this condition is reached. This situation plus the

condition of the charge has to be an integer make that the current increases in discrete

steps, i. e., the current is blocked until the condition is satisfied.

4.5.2 Device simulation

In order to simulate a transistor device based on QDs, we need to include the third

electrode: the gate. We consider that the gate electrode only changes the local potential

(i.e, moves the DOS) of the QD and injects no current. This new term in the Laplace

solution is included as −Cgate,i/Ctot,i(−qVgate), where Vgate is the applied gate polar-

ization and Cgate,i is the capacity coupling between the gate electrode and the ith QD.

Moreover, Cgate,i is also included in the Ctot,i.

What follows is the discussion of the transistor structure in a device formed by a single

Si/SiO2 QD. The scheme of this structure is shown in Fig. 4.6(a), the band diagram is

shown in Fig. 4.6(b) under no external polarizations and in Fig. 4.6(c-d) under negative

and positive gate polarization, respectively. The local potential in the QD can be written

as

U =
Cs
Ctot

(−qVds) +
Cgate
Ctot

(−qVgate) +
q2

Ctot
4N, (4.3)

where Cs is the capacity coupling to the source (we consider that the drain is fixed to

the ground). As we have studied in the chapter 2, the transport takes place when an
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Figure 4.6: (a) Structure of the system under consideration. The scheme shows the
three electrodes (source, drain and gate) and the QD is placed in the middle. The QD
is connected with the source and drain by 1nm and 2nm tunnel junctions respectively.
The QD radius is 1nm. The gate electrode is placed at 7.5nm distance from the center
of the QD. This tunneling distance justifies the assumption that the current between
the QD and the gate is negligible. (b) Band diagram of the structure without applied
voltage, under negative gate polarization (c) and under a positive gate polarization (d).
The oxide barriers, the equilibrium Fermi level and the electron and hole energy levels
are also shown.

energy level of the QD lies in the conductive channel (µd − µs = qVds). Thus, from

Eq. 4.3 this condition can be achieved by combination of Vds and Vgate.

Figure 4.7: (a) Current map as a function of the applied Vds and Vgate. Current
suppression is obtained until the energy levels are placed between the electrochemical
potentials of the drain and source (µd and µs). Once a conducting energy level is open
the current increases dramatically. Important voltage points are also highlighted. (b)
Accumulated charge (q4N) in the QD map as a function of the applied voltages.

In Fig. 4.7(a), the current is shown as a function of Vds and Vgate. For small Vds ≈ 0,

the current is blocked until the first energy level is placed between the electrochemical

potentials as a result of the applied Vgate. For the Vgate ≈ 0 case, the explanation is
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similar but in this case only Vds contributes to the local potential. Therefore, the current

is blocked until the previous condition is achieved. This effect corresponds to the central

diamond. The shape of the current diamonds is related to the relationship between the

different capacity values and the position of the energy levels. Once an energy channel is

open, the current increases. Several diamond structures are obtained when the electron,

hole and both energy levels contributes to the current [23, 52].

Several important voltage points are remarked in the current map (A, B, C, D, E, F).

We can write the evolution of the first electron and hole energy level for these voltage

points neglecting the charge term of the Poisson solution as

(A) Ee −
Cgate
Ctot

VA = 0

(B) Ee −
Cs
Ctot

VB = −VB

(C) Ee −
Cs
Ctot

VC = 0

(D) Eh −
Cgate
Ctot

VD = 0

(E) Eh −
Cs
Ctot

VE = −VE

(F ) Eh −
Cs
Ctot

VF = 0

(4.4)

where Ee and Eh are the first electron and hole energy levels, respectively. The (VA)

and (VD) points correspond to the energy levels cross the equilibrium electrochemical

potentials of the leads whereas the other points reflect that the energy levels enter in

the conductive channel for positive (VC , VF ) and negative (VB, VE) bias voltages. From

these voltage points, the value of the first electron and hole energy levels as the different

capacitive couplings can be obtained. Therefore, this kind of structures can be used to

make an energy level spectroscopy of the QD [23].

We also show the QD accumulated charge (q4N), Fig. 4.7(b). The QD remains un-

charged in a large region since the energy value of the electron and hole energy levels are

similar. Therefore, the QD begins to charge when the electron transport is the dominant

processes. If the hole conduction is preferred, the QD losses its initial charge. Applying

Vgate the charge in the QD is also changed. The physical process is different, as Vgate

moves upward/downward the energy levels across the electrochemical potentials of the

leads and the QD losses/gains charge [23].
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4.5.3 QD array transistor

Now, we present the results for an array of QDs in a transistor structure. Since the

the single QD transistor and the electron transport through an array of QDs embedded

in the dielectric matrix have been previously presented, the following step is create a

transistor structure but using several QDs. From an experimental point of view, the

fabrication of this device (many QDs in a transistor structure) is easier than the single

QD structure.

Figure 4.8: Obtained current map as a function of Vds and Vgate. The single current
diamonds corresponding to each QD are overlapped but they are still recognizable. In
the inset, an scheme of the transistor device is presented. The system is formed by 3
Si QDs randomly generated inside the SiO2 insulator matrix.

Keeping our model as general as possible, we assume a SiO2 block of 15nm width, 4

nm length and 15 nm high where three Si QDs are embedded. The dielectric matrix is

placed between two electrodes, source and drain, and a gate electrode is located at 15

nm on the top. A top view of the system is shown in the inset of Fig. 4.8. The current

crosses the 4 nm of oxide where the QDs are placed and we neglect current from/to

the gate electrode. The simulated current as a function of Vds and Vgate is presented in

Fig. 4.8. As we can see from the scheme of the system, the QDs are placed in a parallel

configuration thus, the obtained current map is very similar to the single transistor

structure. The single current diamonds corresponding to each QD are overlapped but

they are still recognizable.

As we have demonstrated that the spatial arrangement of the QDs is a fundamental

parameter that governs the final response of the system, we simulated different QD

arrangements. In Fig. 4.9, we present another system composed by four Si/SiO2 QDs.

The size of the system is: 10 nm width, 9 nm length and 15 nm high. The gate electrode

is located at 15nm on the top of the oxide. An scheme of the system is shown in the

inset of Fig. 4.9. The current crosses the 9 nm of oxide where the QDs are placed and

we neglect current from/to the gate electrode. Current suppression is obtained until
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Figure 4.9: Obtained current map as a function of Vds and Vgate. Current suppression
is obtained until the energy levels lie between the electrochemical potentials of the drain
and source. Once a conducting energy level is open, the current increases dramatically.
In the inset, an scheme of the transistor device is presented. The system is formed by
4 Si QDs randomly generated inside the SiO2 insulator matrix.

the energy levels lie in the conduction window. However, for this spatial configuration,

the complete diamond structure is not recovered due to the many electronic transport

pathways and the DOS overlapping condition.

4.5.4 Double gate transistor

To conclude the transistor-like structures based on QDs, we are going to study the next

logical step: a transistor structure based on two QDs and two electrodes.

From a theoretical point of view, a complete review of the physics behind this kind of

system is presented by van der Wiel et al. [53]. They described the electrical response for

metallic and semiconductor double gate transistor in the linear transport regime using

the classical theory (Coulomb blockade and quantum Coulomb blockade).

Figure 4.10: (a) STM image of the device showing the two QDs D1(2), tunnel-coupled
to the source and drain (S/D) leads and capacitively coupled to the gates G1(2). (b)
Close-up of the two QDs. Both figures have been extracted from Ref. [54]. Reprinted
with permission from ACS.
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From the experimental perspective, Bent Weber et al. [54] showed the possibility to

create a double gate transistor based on QDs using lithographicall techniques [55]. Two

QDs of ≈ 4 nm diameter separated by ≈ 10 nm from the drain and source, as well as

two gate electrodes conform the whole experimental device. See Fig. 4.10(a) and (b) for

a close-up image of the QDs. They demonstrated that each QD is electrically coupled

to one gate and studied the best QD geometrical configuration. This structure is based

on Si(001) layer in which the two QDs are created by selective P doping. The possibility

to control the doping position and the limited diffusion of these atoms create the Si:P

QDs. In order to fabricate the four electrodes, a process based on selective etching of the

hydrogen resist monolayer that covers the whole structure and a subsequent exposure of

this surface to phospine (PH3) gas and posterior annealing treatment allows to create

quasi-metallic leads.

Figure 4.11: Scheme of the double gate transistor under simulation. The tunnel
junctions and the capacity couplings are also shown. Due to the QD configuration, we
assume that each QD is only coupled to one gate and one lead. Thus, the electronic
transport occurs as in the serial QDs cases studied before. The QDs radii are 2 nm and
Vds = 0.25 V.

To present here the possibilities of this methodology and how it can be used to simu-

late realistic devices, we studied a double gate transistor. A second gate electrode was

included modifying independently the potential of each QD. We used two Si/SiO2 QDs

described by the material parameters presented before (Table. 4.1) in order to focus on

the physics behind the structure and not on constant material parameters. The struc-

ture under study is presented in Fig. 4.11. Within this configuration, each QD is only

coupled to one gate and one lead. Therefore, each gate tune independently the potential

of each QD and the QDs are placed in serial configuration.

We must note here that, one of the seminal result of the Bent Weber work is the indi-

vidual control of the electrostatic potential of each QD. This fact is accomplished by the

QD spatial configuration that minimizes the influence of the cross gate capacitive cou-

pling (G1 against QD2 and G2 against QD1). This can be directly related to some QD

capacitive screening that it is not included in our simple capacitance model calculation.
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Therefore, we need to skip “manually” these couplings. The applied bias voltage among

the drain (D) and the source (S) leads is Vds = 0.25 V. Thus, the Laplace solution in

each QD can be written as

UL1 = −C12(qV2)

C1
− CG1(qVG1)

C1
(4.5)

UL2 = −CsqVds
C2

− C12(qV1)

C2
− CG2(qVG2)

C2
, (4.6)

where C1 and C2 take into account all the capacitive couplings of QD1 and QD2, respec-

tively. In these expressions, we can see the capacitive coupling among the QDs (C12)

and the couplings to the four electrodes. V1 and V2 are the potential of each QD.

Figure 4.12: Simulated current map for the previous presented structure as a function
of the applied gate voltages, VG1 and VG2, for Vds = 0.25 V. Moreover, in the insets an
intuitive explanation of the obtained current trend are also presented as a function of
the DOS of each QD. The conduction window is also shown (dotted line).

Once the system is described, in Fig. 4.12 we present the simulated current map as a

function of the two gate voltages, VG1 and VG2. The obtained current trend can be easily

explained thinking in terms of the energy level overlapping between the two QDs. Each

time that one energy level of the first QD (either electron or hole energy level) is aligned

with an energy level of the second QD (either electron or hole energy level) and both



Chapter 4. Study of the electronic transport in Silicon QDs 115

levels lie in the conduction window a charge transport process occurs. This necessary

condition can be achieved by a combination of VG1 and VG2 obtaining the hexagonal

current structure. The previous explanation is consistent with the theory reported in

Ref. [53].

4.6 Carrier transport mechanisms in Si/SiO2 structures

In this section, we are going to compare the previous developed formalism to experi-

mental measurements. First of all, a brief description of the most relevant transport

mechanisms is presented. Then, using the same ballistic transport mechanism and mod-

eling the defects as punctual QDs described by a single energy level, a methodology

capable to explain the transport between QDs and defects are presented. Moreover, for

thin oxides and large voltages the direct current between the leads is included. Finally,

the complete approach has been used to compare to experimental measurements.

4.6.1 Si/SiO2 transport mechanisms

Up to now, we have described and proposed an elastic transport model based on rate

equations in order to describe the electrical response of a system based on QDs embed-

ded in a dielectric matrix. However, there are several transport models that describe

the different transport mechanism observed from the experiments. There was during the

development of the MOS technology, specially the Si/SiO2 technology, when the MIM

(metal-insulator-metal) and MOS (metal-oxid-semiconductor) structures have been ex-

haustive studied and different transport mechanisms have been observed and described.

As we described previously, when two different materials are placed in contact due to

the band offsets differences between the materials, a potential barrier is created. For a

metal insulator junction, we can describe two main situations: the oxide is thick enough

to govern the transport mechanism of this system and the transport is related to the

bulk properties of the oxide (bulk limited current). For thinner oxides, the transport

are governed by properties of the metal-oxide interface (electrode limited). Thus, the

conductivity in such system is dominated by the interface properties of the junction.

Here, we are going to present and describe briefly the usual transport mechanism used

to model the experimental I(V) curves in MOS structures.

4.6.1.1 Poole-Frenkel emission

The Poole-Frenkel (PF) conduction consist in the successive emission of trapped elec-

trons into the dielectric conduction band, where they can freely move for a certain time
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before relaxing in other localized state [56, 57]. The emission process, governed by ther-

mal excitation, is enhanced by the presence of a uniform electric field since it lowers the

trap barrier height. The PF current density can be written as

JPF ≈
V

d
exp

−
(
φt −

√
q3V/(dπεr)

)
kBT

 , (4.7)

where V is the applied voltage, d the total oxide thickness, φt is the trap energy taken

from the bottom of the conduction band, kB is the Boltzmann constant, T is the tem-

perature and εr is the relative material permittivity in units of the absolute permittivity

(ε0).

This transport mechanism is usually used [58, 59, 60] to explain the electrical conduc-

tion in systems where trap states are induced by the Si/SiO2 interface defects, or even

the embedded QDs themselves assuming a thermal hopping through these shallow trap

states. This mechanism is a clear example of the bulk limited mechanism. The energy

levels of the traps are inherent to the oxide properties.

4.6.1.2 Schottky emission

This mechanism is usually observed for low energy barriers or when the barrier is too

thick to allow carrier tunneling processes. This mechanism consist in the thermionic

emission of carriers over the insulator potential barrier. The Richardson-Schottky equa-

tion, the expression for the thermionic emission, reads as [61]

Js ≈ T 2exp

(
− φ0

kBT

)
exp


√

q3V
4πε0ε∞d

kBT

 , (4.8)

where φ0 is the barrier height and ε∞ is the high frequency dielectric constant. This

mechanism is an example of electrode limited mechanism since the barrier is created in

the junction interface.

4.6.1.3 Tunneling processes

In general, in MIM or MOS structures, two different tunneling processes may be observed

depending of the shape of the injection barrier. Previously, we have described the

transmission coefficients among the different parts of the system as a function of the

shape of the barrier: trapezoidal, direct tunneling (DT), or triangular, Fowler-Nordheim

(FN). In this case, the tunneling process takes place directly between the two leads.

Assuming that: (i) the energy momentum dispersion is considered as parabolic; (ii) in

each of three regions of the space the electron mass has the same value m∗ and (iii) the
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validity of the Tsu-Esaki formula [62, 63], the expression for the DT tunneling reads as

[64]

JDT ≈ (V/d)2exp

(
−4
√

2m∗φ
3/2
0

3~qV/d

[
1−

(
1− qV

φ0

)])
. (4.9)

In the same way, the FN tunneling current can be written as [65]

JFN ≈ (V/d)2exp

(
−4
√

2m∗φ
3/2
0

3~qV/d

)
. (4.10)

It should be noted that both mechanisms are grounded on the same assumptions and

the only difference appears in the transmission probability through the insulator barrier.

Hereon, we are going to refer the tunneling between the two leads as direct tunneling

including the appropriate transmission coefficient as a function of the barrier shape.

4.6.1.4 Trap assisted tunneling

This mechanism can be described as a charge carrier tunneling between two electrodes

assisted by an intermediate traps [66, 67]. These intermediate traps can be inherent

to the dielectric material or can induced by the nanostructures embedded in the oxide.

The trap assisted tunneling (TAT) takes into account the multistep tunneling among the

traps being strongly dependent on the trap concentration. Several authors have studied

the elastic [77] and inelastic [69] TAT processes assuming different traps distributions

being the energy level and the trap concentration the main parameters that describe

the process [70]. If an uniformly distributed trap concentration is assumed with a mean

trap energy φt, the TAT current can be written as[71]

JTAT ≈ exp

(
−4
√

2m∗φ
3/2
t

3~qV/d

)
. (4.11)

4.6.2 Beyond the QD model

Now, we include the direct tunneling process between the leads and the trap assisted

processes. As shown in Fig. 4.13, all the possible elastic tunneling transport processes

are: (I and II) through the total oxide, (III) assisted by an intermediate trap and (IV)

assisted by a QD. Since we considered that the electrodes act as an infinite electron

source, the total current that crosses the structure will be the sum of the different

current contributions. The total current trough the structure (Itotal) can be expressed

as

Itotal = IFN + ITraps + IQD. (4.12)

We must note here that we are neglecting the interaction between the QDs and the

traps since we have considered both processes as independent transport channels. This
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Figure 4.13: Energy band diagram of the system under external electric field. The
different elastic tunneling transport processes are also shown: (I and II) tunneling
through the oxide from the left to right leads, (III) elastic trap assisted tunneling and
(IV) tunneling through the discrete energy levels of the embedded QD. The Fermi levels
of each lead (µL and µR) and the Fermi functions (fL and fR) are also shown. µL is
fixed as a energy reference.

assumption, that seems dramatic, can be justified thinking in terms of the tunnel current

values. The tunnel current depends on the DOS at both sides of the barrier. Therefore,

the current among a QD and a single trap is lower than the current among QDs. Thus,

the first can be neglected. For the same reason, the current between traps is not consid-

ered (i.e. the transport processes that involves two or more intermediate traps). Using

this approximation, the current through the traps can be easily obtained and in the QD

rate equations we avoid to include extra terms.

4.6.2.1 Tunneling through the total oxide

The expression for the current associated to the tunneling mechanism (Fig. 4.13(a-b))

can be written using the Transfer Hamiltonian formalism as

IFN =
4πq

~

∫ +∞

−∞
T (E)ρR(E)ρL(E)(fL(E)− fR(E))dE, (4.13)

where ρL(E) and ρR(E) are the density of states (DOS) of the left and right lead. The

occupation distribution functions of the leads are well described by the Fermi functions,

fL(E) and fR(E), with the corresponding electrochemical potential for the left and right
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leads, µL and µR respectively. We choose the Wentzel-Kramers-Brillouin approximation

to describe the tunneling probability T (E) (as we have done in previous simulations).

As a result of the external applied bias voltage, the oxide bands are bended and the

tunneling probability is written as

T =


exp

{
−4

√
2m∗diel
3~qF ((φ− E)3/2 − (φ0 − E)3/2)

}
for φ0 ≥ E

exp

{
−4

√
2m∗diel
3~qF (φ− E)3/2

}
for φ ≥ E ≥ φ0

(4.14)

where, the electric field is defined as F = µL−µR
qd , φ is the potential barrier height, φ0 is

the modified potential barrier height (φ(d)), d is the tunneling distance and m∗diel is the

electron oxide effective mass. µL−µR = qV reflects the different applied bias voltage in

each side of the barrier. From Eq. 4.14, the tunneling probability is decomposed in two

regimes as a function of the modified potential barrier height and the carrier incident

energy (E): trapezoidal (process I) and triangular barrier (process II).

We must note that in the previous expression the image force effects are neglected.

The image force correction is introduced to explain the positive charge created at the

interface acting like an image charge within the layer when an electron approaches to the

dielectric layer. There is some controversy about the inclusion of the image force in the

calculation of the tunnel current. Some authors argue that its inclusion overestimates

the tunneling current [72, 73] and other authors claim for its inclusion in order to avoid

the thickness-dependent tunneling mass [74, 75]. In any case, the inclusion of the image

force is known to lower and round the barrier [76] an it can be included changing the

barrier height. Thus, in principle, we can avoid the image force, specially if the barrier

height is used as a fitting parameter.

Two main current expressions appear as a function of the energy of the incident electrons

and the band bending of the oxide: a trapezoidal barrier for low fields (process I) and

triangular barrier for high fields (process II), analogous to the DT and FN processes

described previously. We refer to both processes as a IFN .

4.6.2.2 Defect inclusion

The defects are included in a similar way as we have described the carrier transport

in the QDs. The elastic trap-assisted tunneling (process III in Fig. 4.13) is described

as a two-step process. The electrons come from one lead to the trap and go out to

the second lead. Writing the occupation of a single mono-energetic trap as a net flux

between incoming and outgoing current, and assuming a steady state condition, the net

current that crosses the oxide through the trap from lead to lead can be written as

I(Et, V ) = 2
q

h

TL(Et)TR(Et)

TL(Et) + TR(Et)
(fL(Et)− fR(Et)) (4.15)
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where we used the Transfer Hamiltonian formalism to describe the partial fluxes. The

occupation functions of the leads are described by the Fermi function fL(Et) and fR(Et)

with the corresponding electrochemical potential for the left and right leads, respectively.

TL(Et) and TR(Et) are the tunneling probabilities for the left and right contacts. We

have used Eq. 4.14 to describe these tunneling probabilities. We must note here that all

these parameters are evaluated at the energy level of the trap Et since we consider that

the trap is mono-energetic.

On the other hand, the energy level of the trap is located at a constant energy position

from the bottom of the oxide conduction band. We assume that when an external

bias voltage V is applied, the voltage drops uniformly through the oxide, bending the

conduction band and modifying the energy level position of the trap. The position of

the trap energy level is described by

Et(x, V ) = E0 −
qV

d
x, (4.16)

where x is the distance respect to the left lead and d is the total oxide thickness. The

unbiased trap energy level E0 is usually measured from the bottom of the conduction

band but for our notation we redefine it and we measure it from the position of the

equilibrium Fermi level.

In Eq. 4.15 the current through a single trap has been presented but, we can use it to

simulate an energy and position trap distribution described by a distribution function

ft(E0, x) and the total trap current is written as

ITraps(V ) =

∫ d

0

∫ E0max

E0min

ft(E0, x)I(Et, V )dx dE0 (4.17)

where d is the oxide thickness and E0min and E0max are the minimum/maximum energy

distance between the traps and the bottom of the oxide conduction band. From Eq. 4.17

and the single trap current Eq. 4.15, we must note that the two main parameters that

govern the final current value, for an externally applied bias voltage, are the trap position

x and the energy level distribution (E0).

4.6.3 Transport simulations: experimental validation

In this section, we present the comparison between the here developed transport method-

ology and the experimental results. The previous model was used to reproduce the

experimental electrical measurements for three different Si/SiO2 structures, which are

basically a MOS structure: a P-type Si substrate and a highly N-type doped polycrys-

talline silicon (Polysilicon) acting as a gate electrode separated by the SiO2 layer (active

layer). The different active layers embedded between the electrodes are: (1) a SiO2 layer

of different thicknesses (SiO2), (2) Si QDs randomly distributed embedded in a SiO2
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matrix (Si QD/SiO2) and (3) a superlattice structure of 6 SRO/SiO2 bilayers (SL Si

QD/SiO2).

Usually, the experimental current measurements are presented as a function of the ap-

plied electric field since from this representation, several curve fittings can be done using

the previous described transport mechanisms (Poole-Frenkel, Schottky, tunneling or trap

assisted tunneling ). The applied electric field is defined as F = V/d where V is the

external bias voltage and d is the total active layer thickness.

4.6.3.1 SiO2 layer: pure defects conduction

Figure 4.14: Experimental and simulated tunnel current density for different SiO2

active layer thicknesses. The direct current among the leads is not considered. Exper-
imental data has been extracted from Ref. [77].

First of all, we studied the tunnel transport processes through a pure SiO2 film with dif-

ferent thicknesses in order to validate the here presented trap assisted model. Fig. 4.14

shows the simulated and the experimental tunnel current density through SiO2 for differ-

ent thicknesses. Experimental current density measurements were taken from Jimenez et

al. [77]. We have used the SiO2 parameters to explain the tunneling processes, whereas

the traps were distributed uniformly in space and a Gaussian distribution function in

energy has been assumed to describe the mono-energetic trap distributions, following

ft(E0, x) =

{
N0 · exp

{
−(E0−〈E0〉

σE0
)2
}

for E0 ∈ [E0min, E0max]

0 for E0 /∈ [E0min, E0max]
(4.18)

where N0 is the trap density, 〈E0〉 is the average of the distribution and the width

is controlled by σE0 . The best fitted parameters are presented in Table 4.2. Besides,

we compared our fits and the parameters obtained using the approach presented by
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d (nm) N0(cm−3) 〈E0〉(eV ) σE0(eV )

2.91nm
6.87 ×1013 1.25 0.48 This work

4 ×1014 1.0 0.65 Ref. [77]

3.22nm
1.24 ×1013 1.25 0.48 This work

1 ×1014 0.8 0.65 Ref. [77]

3.61nm
5.54 ×1012 1.40 0.39 This work

3 ×1013 1.1 0.65 Ref. [77]

Table 4.2: Parameters of the trap distribution used to fit the experimental data
and its comparison to other theoretical approach. We have used E0min = 0.3eV and
E0max = 3eV for all the fits.

Ref. [77]. They presented a complete theoretical model based on the Transfer Hamilto-

nian formalism to study the trap-assisted elastic tunneling and analyzed the role of the

image force. Detailed expressions for the tunneling probabilities were also presented. In

order to make a direct comparison between both approaches, we have used their fitted

active layer thicknesses: 2.91 nm, 3.22 nm and 3.61 nm.

As we can see, our elastic tunneling trap assisted model reproduces successfully exper-

imental results and the fitted parameters (see Table. 4.2) used to describe the position

and energy trap distribution function are similar to the ones used in Ref. [77]. We have

focused on the thickest active layers since, as they claimed for the thinner ones, the

experimental data were well reproduced taking into account only the tunneling from

one lead to the other without intermediate tunneling processes. In the thickest ones,

the tunnel current through the total oxide underestimates the experimental current and

the inclusion of elastic tunneling assisted by traps are needed to reproduce experimental

measurements.

Small discrepancies arise since they use an energy dependent oxide effective mass whereas

we use the previous constant value. However, both models describe the elastic trap-

assisted tunneling using similar trap densities and energy distribution function. From

this comparison, in the next simulations we consider a fixed value of 〈E0〉 = 1.3 eV and

σE0 = 0.45 eV for the energy trap distribution.

From the general transport condition, the traps contribute to the current when their

energy level lie in the conduction channel. From Eq. 4.16, this condition can be achieved

as a function of the trap energy level (E0) and its position respect to the left lead

(x). Traps with deep energy levels will start to conduct before than the shallow traps.

However, the transmission coefficients of these deep traps will be smaller than the shallow

ones being the current practically zero. The position of the trap controls the influence

of the external potential, Eq. 4.16. This compromise is clearly visible in a current map

as a function of the trap energy level (E0) and its distance respect to the left lead (x)

for different electric fields (Fig. 4.15). Here, we use the fitted parameters obtained for

the thickest SiO2 layer (d = 3.61 nm).
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Figure 4.15: Current map for a single trap as a function of the distance to the left
lead and the energy trap level for different electric fields: (a) F = 2.5 MV/cm, (b)
F = 5 MV/cm, (c) F = 7.5 MV/cm and (d) F = 10 MV/cm.

In Fig. 4.15, the dominant trap current is shown for different applied electric fields.

When the field increases, the band bending of the oxide increases and the dominant

traps progressively become those closer to the left lead with higher energy levels, since

they see lower potential barriers.

4.6.3.2 SiO2 layer: defect and direct tunneling

Now, we simulate another SiO2 structure, but thicker than the previous one. The

experimental data has been taken from Ramı́rez et al. [6] and corresponds to a SiO2

active layer of 50nm thickness. The experimental current density is given as a function

of the electric field.

The simulated current and the experimental data are shown in Fig. 4.16. For low and

moderate fields the elastic trap assisted tunneling mechanism dominates transport and

for high fields the oxide band bending allows direct tunneling from the left to the right

lead. Thus, two different transport processes are observed and this effect is observed in

the current. It is worth to mention that the used trap energy level for our simulations

(1.3 eV, see previous simulations) correlates well with the one fitted by the authors (1.2



124 Chapter 4. Study of the electronic transport in Silicon QDs

Figure 4.16: Experimental normalized current density and simulated current for
the SiO2 structure. Trap (ITraps) and direct tunnel (IFN ) currents are also shown.
Experimental data has been extracted from Ref. [6].

eV). Concerning the tunneling through the total oxide, we assume a continuous and

constant lead density of states.

Figure 4.17: Trapped charge studies for the 50nm SiO2 layer. (a) Trapped charge
distribution in the oxide layer for different electric fields and (b) trapped charge as a
function of the applied electric field.

Besides, we present the trapped charge distribution in space for different electric fields

in Fig. 4.17(a) and (b), respectively. The charge injection in the oxide is a balance

between the incoming and the outgoing carrier fluxes to/from the leads and it is strongly

dominated by the transmission coefficients that depend on the position of the trap and

the applied electric field.

Following the derivation that we have done in the second chapter, the number of electrons

in a mono-energetic trap can be written as

N =
TL(Et)fL(Et) + TR(Et)fR(Et)

TL(Et) + TR(Et)
. (4.19)
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As can be observed in Fig. 4.17(a), when the field increases, all the charge is concen-

trated in the interface between the left lead and the oxide layer being possible to create

internal electric field that reduces the contact potential barrier (image charge effects).

However, in Fig. 4.16 the simulated curves matched the experimental trends reflecting

that the image charge effects are not a dominant effect.

The trapped charge as a function of the applied electric field, Fig. 4.17(b), shows a maxi-

mum trapped charge when TL(Et) > TR(Et) and Et lies between µL and µR (fL(Et) ≈ 1

and fR(ER) ≈ 0).

4.6.3.3 Si QD/SiO2 structure

Figure 4.18: Experimental normalized current density and simulated current for the
Si QD/SiO2 structure. Current through the QDs (IQD) and the traps (ITraps) are
shown. Experimental data has been extracted from Ref. [6].

Regarding the Si QD/SiO2 structure, it is basically a SiO2 layer in which the silicon

excess aggregates forming Si QDs. These QDs are randomly created inside the oxide

matrix. We used the QD transport model in combination with the elastic trap assisted

tunneling.

According to microscopic measurements from Ref. [6], we simulated an arrangement of

QDs in random positions and normal radius distribution with 〈R〉 = 1.5 nm of mean

radius and σR = 0.2 nm of standard deviation. We used the same mono-energetic trap

distribution as in the previous case. The simulated current and the experimental data

Ref. [6] are shown in Fig. 4.18. This figure also shows the different current contributions

due to the transport: through the QDs and through the traps. We distinguish two main

regimes: the QD term displays the step-like behavior in the current as a consequence

of the discrete nature of the QD energy levels and it is the dominant transport mecha-

nism for low fields, whereas for intermediate and high fields the trap assisted tunneling

dominates. We must note that these results can not be achieved by considering direct
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tunneling between the leads, so we concluded that the electron transport process is

assisted by an intermediate QD or a trap.

In this case, the authors of Ref. [6] fitted a TAT expression with energy trap value

(1.8 eV) for moderate and high fields. The fitted value is different to the one used in

the SiO2 structure and they claim that the transport is assisted by Si QDs and SiO2

traps. However, a further explanation is needed for the obtained current behavior at

low fields. Our simulations reproduce this low field regime and give an explanation as

a pure transport through the discrete energy states of the QDs as we have described

previously. However, some discrepancies appear for higher voltages. We must note here

that we have used the previous trap energy distribution neglecting the possibility that

the QDs change the energy levels of the traps.

4.6.3.4 Superlatice Si QD/SiO2 structures

Figure 4.19: Experimental normalized current density and simulated current for the
SL Si QD/SiO2 structure. Different current contributions, through the QDs (IQD)
and traps (ITraps), are also shown. In the inset, the cross section of the structure is
presented. Experimental data has been extracted from Ref. [6].

Finally, the simulated current and the experimental results for the SL Si QD/SiO2 are

shown in Fig. 4.19. An scheme of the structure is also presented in the inset. In order to

properly describe the structure presented by Ramı́rez et al. [6], we considered 6 layers of

Si QDs with a normal distribution of radius, 〈R〉 = 1.5 nm of mean radius and σR = 0.2

nm of standard deviation. The QDs are distributed in a perpendicular plane respect to

the transport direction reflecting the layer structure and the layers are spaced 2.5 nm

between them. As in the previous case, we used the QD transport model and the trap

assisted tunneling.



Chapter 4. Study of the electronic transport in Silicon QDs 127

Concerning the experimental and simulated results: for low and moderate field regime,

we reproduced the experimental current trend as a QD pure transport. For the highest

fields, a pure trap mechanism is enough to explain the experiments. In Ref. [6], the

authors fitted a PF expression for moderate fields and a pure TAT for highest fields

with mean energy trap value (1 eV) neglecting the current peaks at low fields. This

value is close to the one obtained for the SiO2 structure and the authors conclude that

the tunneling in both structures is mediated by deep traps inherent to the SiO2 and

not by states created ad-hoc when including Si QDs. This fact is reflected here since we

considered a fixed value for the energy level trap distribution.

4.7 Conclusions

In this chapter, we have used the previously developed transport formalism and its code

implementation to simulate different QDs arrangements using realistic parameters. We

have focused on the Si/SiO2 QDs since these kind of systems have been widely studied

in previous chapters. Since an approximate DOS that describes the Si QD is obtained

and the oxide barriers are parametrized, the transport was done. We started studying

the simplest case, a single QD placed between two leads. As we pointed out in the first

chapter, the current reflects directly the internal discrete energy level structure of the

QD. The current increases in step-like behavior every time that an energy level (either

electron or hole) lies in the conduction windows. From the parameters used to describe

the oxide, the hole current is weaker than the electron one since the hole has to cross a

higher barrier. A NDR has also been obtained and it is explained as a function of the

energy and voltage dependence of the transmission coefficients that change the coupling

among the right and left leads.

From this simple system, the accumulated charge trends have also been studied. As we

saw in the first chapter, the accumulated charge reflects directly the ratio among the

incoming and outgoing fluxes from/to the QD. Now, these fluxes are strongly dominated

by the transmission coefficients. Thus, when an energy level lies in the conduction

window its charge changes. The new charge state is dominated by the lead which is

strongly coupled to the QD. Therefore, the electron energy levels can be filled whereas

the hole energy levels can be emptied. A systematic study of the transmission coefficients

was done changing the coupling distance between the QD and the leads obtained electron

or hole charge accumulation as a function of the QD position. Besides, the discrete

nature of the QD energy levels is also viewed in the charge increment.

To conclude the general transport simulations and show the capabilities of the code,

large systems based on QD multilayer structure have been simulated. These structures

have crucial importance since the bilayer QDs arrangement is usually obtained from

experimental fabrication methods. The total current and accumulated charge curves
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were obtained but due to the many charge transport channels, the specific QDs positions

and their interaction a generalized analysis can not be obtained. However, the hole

current is lesser than the electron component as we explained before.

Once the structures based on two electrodes have been presented, we studied the tran-

sistor device. It is based in a third electrode (gate) located on the top of the structure

which is capacitive coupled to the QDs but does not injects current. Thus, this gate

electrode can tune the position of the QD energy levels independently increasing the

QD charge and moving the energy levels trough the conduction window. Current and

charge maps were obtained as a function of the gate and drain source voltages. The

discrete energy spectra of the QDs are reflected in the current and charge curves creat-

ing diamond behaviors. This structure has been studied for a single QD case and for

many QDs. Moreover, the double gate electron transistor has also presented. It is based

on two QDs independently coupled to two different gate electrodes. Thus, each gate

electrode controls its respective QD. From the current map as a function of the two gate

potentials a hexagonal behaviors is obtained. Its explanation is related to the electron

and hole energy level alignment.

Finally, a comparison to experimental measurements and other transport mechanism

has been done. The basic transport mechanisms usually observed in the experiments

are described. Our QD transport model has completed including the current term

from direct transmission between the leads (for thinner oxides or high electric fields)

and a defect component. The defects current was included describing the trap as a

non-interacting mono-energetic level. These three transport mechanisms was used to

describe experimental results obtained from different Si/SiO2 structures. The transport

in these structures can be summarized as: for narrow pure SiO2 layers, the trap assisted

tunneling dominates at low and moderate fields whereas for high fields the direct tunnel

between the leads is the most important process. In the presence of QDs, the current

reflects the discrete nature of the energy levels for low electric fields and the trap assisted

tunneling appears for moderate and high fields.
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Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab initio order-

n materials simulation. Journal of Physics: Condensed Matter, 14(11):2745, 2002.

[10] Pablo Ordejón, Emilio Artacho, and José M. Soler. Self-consistent order-n density-
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Direct and trap-assisted elastic tunneling through ultrathin gate oxides. Journal of

Applied Physics, 91(8), 2002.

[69] F. Jiménez-Molinos, A. Palma, F. Gámiz, J. Banqueri, and J. A. López-Villanueva.
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Chapter 5

Interaction with Light

Semiconductor QDs have attracted a great deal of attention for their application in the

field of silicon optoelectronics [1, 2, 3], and as a light absorbing component in the third

generation solar cells [4, 5]. The most well-known property of QDs is that the optical

band gap depends strongly on their size, which means that their absorption and emission

properties can be tuned.

Considerable material fabrication work has been done on the growth and characterization

of Si QDs embedded in dielectric matrices such as oxides [6], nitrides [7] and carbides wide

band gap material matrices [8]. In indirect band gap semiconductors, optical transitions

are allowed only if phonons are absorbed or emitted to conserve the momentum. The

localization of electrons and holes inside a QD relaxes the k-conservation requirement

and creates a quasi-direct band gap.

Several optical effects have been reported under illuminating conditions as: carrier mul-

tiplication [9], the presence of multiexcitons [10] and auger recombination [11] processes.

Therefore, the analysis of the electron hole lifetime is complicated due to the large num-

ber of different generation/recombination processes that can occur in semiconductors.

Instead to consider all these effects, we simplify the problem to a simple and easily un-

derstandable system that takes into account the transport properties described before

and the optical transitions generated by external photon field (i.e. stimulated emis-

sion/recombination).

The term “optoelectronics” is often used to discuss the study and development of elec-

tronic devices that can control, or can be controlled by, the electromagnetic field. The

system response is a non-equilibrium state that results from two different driving pro-

cesses: an electron flux induced by an external potential bias, and a photon flux as-

sociated with an incident radiation field. Since both processes are strongly correlated,

one of these fluxes can appear as a response to the other. Thus, we can encounter
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phenomena where light appears in response to electrical driving (bias potential) or, con-

versely, electronic current appears in response to optical illumination. These multitude

of inter-related phenomena create a rich, and in many aspects still open, field of study.

Here, we describe the inclusion of the light terms in the electronic transport model

developed before. We focus on the optical transitions between the electron and the

hole states, stimulated generation and recombination, and the electrical response of the

system under external perturbations: light and bias voltage.

This chapter is organized as follows: first of all we rewrite the rate equations to include

the optical generation/recombination processes. Then, a toy example is also studied in

order to understand and recognize the physical parameters that govern the electrical

response of the system. In the second section, we recalculate the densities of states

(DOS) and the energy levels assuming l 6= 0 because as we will see in the next section, the

optical transitions involve states with different l quantum numbers. In the third part, a

formal derivation of the QD optical properties is presented: the intraband and interband

transitions. The optical properties are summarized in the absorption coefficient. Device

simulations based on Si/SiO2 QDs have been done in the fourth section. To conclude,

a comparison with an experimental device is presented.

5.1 Modifying the rate equations: the light terms

The model developed in the previous chapter was used to evaluate the electrical response

of the system under external bias voltage. Now, we introduce the light effects in this

approach.

Following with the rate equation model, the new processes that govern the occupancy

of the energy levels can be included as net fluxes. The movement of the electrons

under illumination in the QDs is governed by three basic mechanisms: (i) promotion

to an excited state assisted by a photon (photon absorption); (ii) relaxation transitions

from excited states to the ground state (stimulated photon emission) and (iii) tunneling

processes to the neighbor QDs or electrodes. We must note that the first mechanism

involves intraband processes, excitation of electrons to other state of the same type

(electron or hole energy states), and interband transitions that includes promotion from

hole state to electron state. We only consider optical transitions between binding states

neglecting the continuous DOS above/below the valence/conduction band offsets.

In the spirit of the rate equation type model [12, 13], we assume that the optical and

transport processes are independent. Therefore, the rate equations have been modified

in order to reflect the stimulated generation/recombination carrier processes. For each
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energy level, they read as

q
dnij
dt

=
2πq

~
|TLj |2ρLρij(fLj − nij)︸ ︷︷ ︸

Left lead contribution

+
2πq

~
|TRj |2ρRρij(fRj − nij)︸ ︷︷ ︸

Right lead contributions

+
∑
k,i′ 6=i

2πq

~
|T ii′jk |2ρijρi

′
k (ni

′
k − nij)︸ ︷︷ ︸

Neighboring QDs contribution

+
∑
k

qRkj
ρik
ρij
nik(1− nij)−

∑
k

qRjkn
i
j(1− nik)︸ ︷︷ ︸

Light terms

, (5.1)

where the superscript i and i′ refers to the ith and i′th QDs, respectively. j and k

refer to the jth and kth energy level of the corresponding QD. nij is the non-equilibrium

distribution function of the jth level in the ith QD. ρL and ρR are the DOS of the leads

evaluated at the energy of the energy level j, and ρij is the degeneracy of the jth energy

level of the ith QD. fLj and fRj are the distribution functions of the leads described by

the Fermi Dirac distribution function. |TLj | and |TRj | are the transmission coefficients

between the QD and the leads. If the jth energy level belongs to the electron binding

states, we will use the barrier for electrons otherwise we will use the barrier for holes.

In Eq. 5.1, we have reordered the different contributions as a function of their physical

“nature”: the left and right lead contributions reflect the charge injection from the leads,

whereas the neighboring QDs contribution is the tunneling between the QDs. The light

processes are included in the two last terms. The first light term represents the stimu-

lated carrier generation/excitation. We describe it as the optical transition probability

Rjk that an electron in an occupied initial state k interacts with a photon. Therefore,

it is promoted to an empty state j. The product of the occupancy of the energy lev-

els involved in the optical transitions takes into account the Pauli exclusion principle

[14, 15, 16]. The second light term represents the stimulated carrier relaxation/recom-

bination and can be described in the same way as the previous one.

From the light terms in Eq. 5.1, it is derived that the incoming flux of electrons due to

optical generation/excitation (positive contribution) in the final state has to be equal to

the outgoing flux (negative contribution) in the initial state.

Now, we are going to focus on the physical differences between the generation and

excitation processes. Up to now, we have treated the hole and the electrons indistinctly

but taking into account the corresponding material parameters to describe the tunneling

processes. In the previous section, we refereed to the hole current as electrons that

move in hole states. This treatment is possible since the difference of the occupation

functions in the tunneling current expression appears explicitly. When we include the

light interaction, we use a similar treatment. The excitation process is easily explained

as a “vertical” transitions in energy (involving states of the same type), either for holes

or electrons. The generation process is usually explained as a creation of an electron-hole

pair but, in our description, it can also be viewed as an excitation process of an electron
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from a hole state to an electron state. From a point of view of the electron distribution

function, the hole state empties (equivalent to generate a hole) and the electron state

fills (electron generation). Thus, the previous rate equations include these two processes

in an easy way.

Before describing in detail the transition probabilities Rjk, we focus our attention on

Eq. 5.1 and on the different scenarios that are derived from it. As in the previous

chapter, this set of non-lineal equations has to be solved simultaneously with the local

potential in the SCF regime.

5.1.1 Toy examples: the role of each coefficient

Figure 5.1: Scheme of the simplest system under study composed by a single QD
with two energy levels. The QD is connected by tunnel junctions to the leads. The
sense of the different currents terms are also shown for illumination conditions and no
external bias voltage applied.

Now, we are going to simulate a single illuminated QD with a single electron and hole

energy level in order to study the electrical response of this basic system as a function

of the ratio between the electrical and optical terms. This QD is connected by tunnel

junctions to the leads. We rewrite the rate equation for each energy level of the QD as

q
ne
dt

=
2πq

~
gLe(fLe − ne) +

2πq

~
gRe(fRe − ne) + qγnh(1− ne)− qγne(1− nh) (5.2)

q
nh
dt

=
2πq

~
gLh(fLh − nh) +

2πq

~
gRh(fRh − nh) + qγne(1− nh)− qγnh(1− ne), (5.3)

where the coefficients gLe, gRe, gLh and gRh correspond to the electron/hole tunneling

transmission to the left and right lead, respectively. The optical transition probability

is called γ. The scheme of the system is shown in Fig. 5.1. We have assumed the

same capacitive coupling between the QD and the left and right leads. Several scenarios
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appear as a function of the ratio between the optical and tunneling terms in the steady

state:

Figure 5.2: Scheme of a single QD under external illumination conditions and no
external polarization. The QD is composed by two discrete energy levels. The mag-
nitudes of the current components (the arrow size) and their direction are represented
for different values of the tunneling transmissions: (a) gLe = gRe = gLh = gRh, (b)
gLe > gRe = gLh = gRh, (c) gLe < gRe = gLh = gRh and (d) gLe = gRe > gLh = gRh.

• gLe = gRe = gLh = gRh > γ: In this case, the optical terms are smaller than

the electrical ones and we can neglect them. Thus, the electrical response of the

system does not change much respect to the dark case studied in the previous

chapter.

• gLe = gRe = gLh = gRh < γ: The optical terms dominate the rate equation. Let’s

focus on the V = 0 case. In dark conditions, the hole energy level is fill whereas

the electron one is empty. The light interaction creates a new flux between these

two levels, filling the electron level and emptying the hole one. However, there

are also fluxes from the leads to the hole state in order to keep filled the energy

level. Moreover, the promoted electrons go out to the empty states in the leads

generating a current flux. A simple analysis of the current (using basic Kirchhoff’s

law) can be done: Iopt−ILe−IRe = 0 for electrons and ILh+IRh−Iopt = 0 for holes,

respectively; where Iopt is the optical flux and ILe and IRe are the electron fluxes

whereas ILh and IRh are the hole fluxes to the left and right leads, respectively.

We have assumed that the incoming currents to the QD are positive. Since the

tunneling coefficients for electrons and holes are equal, we obtain that the electron

and hole currents compensate each other being zero the net current. In Fig. 5.2(a)

we show the scheme of the different current contributions.
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• gLe 6= gRe = gLh = gRh < γ: We are going to concentrate in the V = 0 case. We

assume gLe > gRe and the symmetry of the system respect to the leads is broken.

The light promotes carriers from hole to electron states whereas the leads inject

carriers. However, the electrons flow from the QD to the left lead faster than

the leads inject electrons to the hole level. This fact also modifies the optical rate.

Thus, the currents incoming and outgoing are not equal creating a net current flux.

This fact is shown in Fig. 5.2(b) where the different magnitudes of the currents

are represented by arrows. In this case, the net current goes from the right lead

to the left one. It is important to note that the system has lost charge respect the

equilibrium state since the electron transmission coefficients are greater than the

hole ones.

A similar result is obtained for the gLe < gRe case. In this scenario, the carriers

are injected into the QD hole level faster than the electrons are removed from the

electron level obtaining a net current in the opposite direction as the previous case,

see Fig. 5.2(c), and the QD increases the charge.

• gLh 6= gRh = gLe = gRe < γ We assume gLh > gRh. In a similar way as before,

the leads inject carriers faster than electron energy level is empty. Thus, the QD

gains charge and a net current is created.

For the gLh < gRh situation, the fluxes from the hole state can not compensate the

fluxes from the electron state an a net current appears. Therefore, the QD looses

charge.

• gLe = gRe 6= gLh = gRh < γ For this configuration the net current is also zero

as in the first case, Fig. 5.2(d). The main difference appears in the QD charge:

for the gLe = gRe > gLh = gRh case, the system loses charge since the extraction

mechanism is faster than the injection one whereas for the gLe = gRe < gLh = gRh

case, the injection mechanism is faster. Thus, the charge increases.

Summarizing the obtained results, we have observed that the system is strongly depen-

dent on the relation between the optical and the tunneling terms. In order to obtain

a net photogenerated current in the V = 0 case, the system must be connected asym-

metrically to the leads. Therefore, the geometry of the system under study appears as

an important point that modifies and controls the electrical response of the system. In

addition, the charge in the QD also depends on the tunneling couplings.

Concerning the V 6= 0 case, the occupation of the electron and hole energy levels are

governed by the applied bias voltage. For the V = 0 case, we expect that the electron

level is empty and the hole level is fill however, this scenario can be changed with the

external applied bias potential. This fact affects to the optical transitions and the simple

cases studied previously can not be used here since both process are strongly dependent

on each other. Nevertheless, we can argue that for lower optical terms than current

terms (small optical transitions rates or high applied voltage) the electrical response of
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the system is similar to the dark case. Thus, for low voltages the optical term dominates

but when the voltage increases, the electrical response of the system recovers the dark

trend.

5.2 Complete energy level spectrum

Up to now, we have described the internal electronic structure of the QD in the simplest

way: as a finite potential well in the Effective Mass Approximation (EMA) and only con-

sidering the l = 0 solutions. In the previous chapter, we have discussed the importance

for the transport process of the correct description of the QD internal properties.

For light processes, in which photons of sufficient energy can excite electrons from filled

states to empty ones, it seems very reasonable to think that the electronic properties

of the system will also play an important role. Therefore, keeping as simple as possible

the model to describe the electronic properties of the QD, we use the same approach

presented before but unrestricted for the l quantum number. The Hamiltonian of the

QD can be written as

H = − ~2

2me
∇2
e −

~2

2mh
∇2
h + Ve + Vh + Vh−e + Eg, (5.4)

where Ve and Vh are the finite confining potentials and Vh−e is the Coulomb interaction

between electron and holes. As we will discuss latter, we assume that the interaction

potential between the carriers is small in comparison with the kinetic part of the Hamil-

tonian. Therefore, the total Hamiltonian is separable in the electron and hole single

particle contributions. We present here the derivation of the wave functions and the

energy levels for the electron case. Concerning the hole wave function and the energy

levels, the calculi are straightforward.

5.2.1 Single particle properties

The electron wave function for the QDs can be represented as the product of the pe-

riodic Bloch function uκ(r) and an envelope function [17]. The envelope function φenv

describes the motion of particles in the confinement potential. This “envelope function

approximation” is valid when the QD diameter is much larger than the lattice constant

of the crystal. The electron wave function can be written as

ψe = uκ · φenv. (5.5)
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The envelope function is the solution of the single particle Schrödinger equation. The

radial part reads as{
− ~2

2me

[
∂2

∂2r
+

2

r

∂

∂r

]
+
l(l + 1)~2

2mer2
+ Ve(r)

}
Rl(r) = ElRl(r), (5.6)

here, me is the electron effective mass which is different inside and outside the QD. l is

the angular momentum quantum number. Ve(r) is the finite confining potential

Ve(r) =

{
0 for r < R

V0 for R > r
, (5.7)

where R is the QD radius and V0 is the value of the confining potential, i.e. the band

offset between the QD and the surrounding material. El is the electron energy eigenvalue

and Rl(r) is the radial wave function. The angular dependence of the wave function,

Y m
l (θ, φ), is given by the spherical harmonics.

The solution inside the QD is

Rl(r) = A jl(k0r), (5.8)

where jl(k0r) =
√

π
2k0r

Jl+1/2(k0r) is the spherical lth order Bessel function and k0 =√
2me
~2 El.

The solution in the oxide is

Rl(r) = Bh
(1)
l (k′r), (5.9)

where h1
l (k
′r) is the spherical Hankel function and k′ = i

√
2mOx
~2 (V0 − El). me and mOx

are the electron effective masses in the QD and in the oxide, respectively. A and B

are the normalization constants of the wave function. Therefore, the electron envelope

function is written as

φenv = Ajl(k0r)Y
m
l (θ, φ)Θ(R− r) +Bh

(1)
l (k′r)Y m

l (θ, φ)Θ(r −R). (5.10)

Here, we have used the Heaviside step-function Θ(r) to separate the different space

regions.

The continuity of the wave function and the probability flow conservation impose the

condition
1

mOx

jl(k0r)|R
∂jl(k0r)
∂r |R

=
1

me

h
(1)
l (k′r)|R
∂h

(1)
l (k′r)
∂r |R

. (5.11)

From this condition, the binding states for each l are obtained. Regrettably, an analyt-

ical expression for the binding states does not exist. Thus, Eq. 5.11 has to be solved

numerically. In Fig. 5.3(a), we show the numerical solutions of Eq. 5.11. The binding

states are the circle points. Moreover, in Fig. 5.3(b) the radial probability distribution

inside and outside of the QD for the l = 0 case is also shown.
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Figure 5.3: (a) Representation of Eq. 5.11 for the first angular quantum numbers.
The binding states for each quantum number l are the points that cross y = 0. (b)
Scheme of the radial distribution r2|Rl(r)|2 inside and outside the QD for the l = 0
case.

We remark that the degeneracy of each binding state is (2l+ 1), which implies that the

number of binding states increases dramatically when the QD radius increases. Here,

we have omitted the value of bulk energy gap of the material because it only adds a

constant shift in the energy levels. Since the wave functions and the energy levels inside

the QD are obtained, the DOS can be computed as in the previous chapters.

5.2.2 Pair states

The above description did not take into account the Coulomb attraction between the

electron and the hole. In the following, we refer to the Coulomb interacting electron-hole

pair as an exciton [18].

If the QD radius (R) is smaller than the bulk-exciton Bohr radius R < aB, which is

defined as aB = 0.529εrm0(1/me + 1/mh) [19] where εr is the dielectric permitivity of

the QD, electron and hole are closer together than they would be in the corresponding

bulk material. This leads to a dramatic increase of the pair energy with decreasing QD

size. As a function of the QD radius, the kinetic part of the energy, that includes the

confining potential, varies like

< He +Hh >∝
1

R2
, (5.12)

whereas the interaction part behaves like

< Ve−h >∝
1

R
. (5.13)
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To estimate the pair energy for small QD radius, R << aB, it is a reasonable first-order

approximation to consider the electrons and the holes essentially as non-interacting

particles and ignore the Coulomb energy in comparison to the kinetic energy. This

corresponds, in the frame of the EMA, to the strong confinement regime [20, 21, 22]:

electrons and holes are considered as independent particles. This yields that the exciton

energy Eex is the sum of the electron and hole single particle energy states (obtained

from Eq. 5.11)

Eex = Eg + Ee,lm + Eh,lm (5.14)

where we have written the different terms: Eg is the bulk band gap of the material; Ee,lm

and Eh,lm are the single particle energy states of the electrons and holes, respectively.

Therefore, the exciton is well described by the product of the single particle electron-

hole wave functions ψeh(re, rh) = ψe(re)ψh(rh) where we have omitted the spin terms

for clarity.

Concerning the Coulomb interaction, it is not possible to solve analytically the electron-

hole pair Schrödinger equation Eq. 5.4. However, in the strong confinement regime,

the Coulomb interaction can be treated as a perturbation [23] adding a new energy

contribution that reduces the optical effective gap [24] (i.e. the first excitonic level). An

estimation of this energy shift can be obtained using the approximation presented in

[25]

Ee−h ≈ −
2e2

4πε0εr

∫ R

0
rhR

2
l (rh)drh

∫ rh

0
r2
eR

2
l (re)dre. (5.15)

In the Appendix section, we have included a comparison between the complete DOS

obtained using EMA within the finite potential well and DFT calculations for Si/SiO2

QDs.

5.3 Derivation of the optical properties

In this section, we introduce the calculation basis to simulate the dynamics of the elec-

trons excited by external radiation. The system is subjected to electromagnetic field

(laser/light source), which induces stimulated transitions: absorption and emission. The

calculus starts from the previous obtained wave functions and binding energy levels, and

evaluate inter- and intra- band transitions within the validity of Fermi’s Golden rule.

Here, we describe the approximations that we have assumed:

• Atomic levels: no band dispersion. This requirement includes the discreteness of

the energy levels, as we have shown from the Schrödinger equation. Moreover,

optical transitions from binding states to the continuum of states above the oxide

conduction/valence band offsets are not considered.
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• Energy levels are fixed also after the excitation. The excitonic effects to the energy

are not considered.

• Dipole approximation, exp(ik · x) ≈ 1, valid for visible frequencies and lengths on

the order of Å.

• Validity of the Fermi’s Golden-rule.

• 2nd order processes are neglected : Raman, Rayleigh, Thomson, etc. These are

generally much less probable with respect to 1st order processes.

We will show in a general trend the derivation of the optical transition probabilities. A

detailed explanation can be easily found in many textbooks [15, 16, 17].

We start with the Hamiltonian that describes the electron-photon interaction. To de-

scribe the electromagnetic field, we introduce a vector potential A(r, t) and a scalar

potential φ(r, t). Because of gauge invariance, the choice of these potentials is not

unique. For simplicity, we choose the Coulomb gauge [26], in which

φ = 0 and ∇ ·A = 0. (5.16)

Using the minimal coupling [27], that implies ~p→ ~p− (e/c) ~A, the interaction Hamilto-

nian that describes the motion of a charge −e due to the presence of the photon field

can be written as

H ′ = − e

mc
~A · ~p+

e2A2

2mc2
. (5.17)

For the purpose of calculating linear optical properties, we can neglect the term e2A2/(2mc2),

which depends quadratically on the field. Thus, the interaction Hamiltonian can be writ-

ten as

H ′ ≈ − e

mc
~A · ~p. (5.18)

With regard to the spatial dependence of the vector potential we can write

~A = ~A0 · exp
[
i(~k~x± ωt)

]
(5.19)

where, for a loss-less medium, k = nw/c = 2πn/λ is a slowly varying function of ~x

since 2πn/λ is much smaller than typical wave vectors in solids. Here n, w, and λ are

the real part of the refraction index, the optical frequency and the wavelength of light,

respectively. The electric dipole approximation corresponds to expanding the exp(i~k ·~x)

factor in a Taylor series and neglecting the k-dependent terms.

In a general form, using the Fermi Golden Rule the transition probability from initial

state l to final state l′ per unit volume and time is written as

Rll′ =
2π

~
|Ml′l|2δ(El′ − El ± hν). (5.20)
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The + sign corresponds to photon emission and the − to photon absorption. Using the

dipole approximation ~A = A0ê where ê is the polarization vector of the light, the matrix

element reads as

Ml′l ≈< ψi,l(r)|ê · ~p|ψj,l′(r) > . (5.21)

The subscript i and j refer to electron and hole states. The matrix element is composed

by three different terms

Ml′l ≈< uκe|uκe >< φlenv,e|ê · ~p|φl
′
env,e >

+ < uκh|uκh >< φlenv,h|ê · ~p|φl′env,h > + < φlenv,e|φl′env,h >< uκe|ê · ~p|uκh >, (5.22)

where we have used the orthogonality property of the Bloch function (< uκi|uκj >=

δi,j). The three contributions corresponds to: (1) intraband transition between electron

states, (2) intraband transition between hole states and (3) interband transitions between

electron and hole states.

The total transition rate between the initial l and final l′ state under the influence of

the interaction Hamiltonian described in Eq. 5.18 can be written as

Rll′ =
16π2α
√
εrΩ

I(hν)|Ml′l|2δ(El′ − El ± hν), (5.23)

where α is the fine structure constant (≈ 1/137), εr the QD dielectric permitivity, Ω is

the QD volume, I(hν) is the flux of the incident light and ν is the photon frequency.

El′ and El are the energy levels of the final and initial states, respectively.

5.3.1 Intraband transitions

The intraband transitions reflect the excitation of an electron inside the same band. For

our case, since our DOS are not continuous, it implies that the electron moves only in

the electron or hole states.

Ml′l is the dipole matrix element averaged over all polarizations of the incident light

|Ml′l|2 =
1

3

{
|xl′l|2 + |yl′l|2 + |zl′l|2

}
, (5.24)

where the polarization in the z-direction is

zl′l =

∫ ∞
0

R∗l′(r)Rl(r)r
3dr

∫
Y ∗l′m′YlmcosθdΩ (5.25)

and we have used z = rcosθ. Rl(r) is the radial part of the wave function. It is

straightforward to calculate the matrix elements in the other two directions. Here, we

have used the relation < φf |~p|φi >= imωfi < φf |~x|φi > where ω = (El − E′l)/~. The

selection rules for such transitions are determined by the angular part of Eq. 5.25. It
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can be readily shown that the allowed transitions must fulfill the condition |l− l′| = ±1

and |m′ −m| = 0,±1.

5.3.2 Interband transitions

The interband transitions involve the electron and the hole states. They represent the

promotion of an electron from a hole state to an electron state. Whereas in the previous

case the transition corresponds to only one electron/hole, in this case, the transition

involves two particles (electron-hole pair generation).

In order to compute the optical response, the dipole matrix element is written as [17]

|Mll′ |2 = |
∫
dr3φle

∗(r)φl′h(r)|2, (5.26)

where φe and φh are the single particle functions. The transition matrix element is only

non-zero for electron and hole with identical quantum number and we derive the optical

selection rules for interband transitions: |le − lh| = 0 and |me −mh| = 0. Since we only

consider the single exciton creation, the electron-hole pair is created from the vacuum

state to an state in which the electron an the hole have the same quantum numbers.

5.3.3 Absorption coefficient

The absorption coefficient is one of the most important experimental parameters, which

is defined as the power removed from the incident beam, per unit volume, per unit

incident flux of electromagnetic energy,

α(hν) =
(hν)× number of transitions/unit volume/unit time

incident electromagnetic flux
. (5.27)

Since we have computed the transitions probabilities in the previous section, the ab-

sorption coefficient is easily obtained as

α(hν) =
∑
i

16π2α
√
εrΩ

hν|Mi|2δ(4Ei − hν), (5.28)

where the subscript i refers to all the possible processes and 4Ei is the energy level

difference of the initial and final state. If we wish to calculate the absorption spectra

at finite temperature, we also need to include the Fermi functions that represent the

occupation of the initial and final states.

Summarizing the optical properties, the obtained selection rules are

• Intraband transition: allowed transitions only for 4l = ±1 and 4m = 0,±1.

• Interband transition: allowed transitions only for 4l = 0 and 4m = 0.
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Figure 5.4: Energy level scheme of the states with zero or one electron-hole pair. We
describe the states as a function of the electron and the hole angular momentum. The
interband transitions are the continuous arrows whereas the intraband transitions are
the dashed ones.

In Fig. 5.4, we plot schematically the energy spectrum of the energetically lowest one-

electron-hole-pair states with angular momentum l = 0, l = 1. The solid lines indicate

the most important dipole-allowed interband transitions. The dashed lines show the

intraband transitions involving a change of the state of the electron or the hole.

Figure 5.5: (a) Scheme of the binding states in the QD. Several optical transitions
are shown, interband (blue lines) and intraband transitions (red lines), respectively.
The equilibrium Fermi level (Ef ) is also shown. (b) Representation of the absorption
spectra for the previous system. The optical element matrix are shown as a vertical
lines placed at the photon energy of the transitions (red lines for intraband and blue
ones for interband). The absorption coefficient is the sum of individual absorption
peaks related to each transition.

In Fig. 5.5(a) we show and scheme of the optical interband and intraband transitions. It

is important to note that the intraband transitions are not obtained when the absorption

spectra is measured since this measure is usually done without external polarization

bias voltage. Thus, the probability of optical transitions between states of the same

type is practically zero. In contrast, optical transitions that involve electron and hole

states are more favorable. Fig. 5.5(b) shows the difference in the absorption coefficient

for intraband and interband transitions. However, we are going to study the optical

response of different systems under external bias voltage polarization making possible

intraband transitions. Therefore, we include them as a “possible” transitions.
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5.4 Optical device simulations

Since the theory of the light interaction has been studied and the optical transition

rates are obtained, these new terms can be included in the rate equations to simulate

the electrical response of the system under external light illumination.

Figure 5.6: Scheme flowchart of the code that implements the methodology described
in this chapter. The code is based on the previous presented one (SCF core) but several
changes have been done in order to include the light.

The modifications in the rate equations in order to include the light processes have been

included in the code in order to simulate different arrangements of QDs. The scheme

flowchart of the code is presented in Fig. 5.6. It uses several parts of the previous

developed code, such as the capacitive calculations and the transmissions coefficients.

Basically, it is organized as follows:

1. Define the device’s geometry: distance between the different elements of the system

(QDs and leads, QDs-QDs), capacitive couplings.

2. For each QD of given radius, calculate: energy level spectra and optical transi-

tion elements. Solving the Schrödinger equation and obtaining the optical matrix

elements.

3. Initialize the self-consistent field (SCF) for a given bias voltage and/or incident

light conditions and solve the rate equations and the Poisson equation until a
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desired convergence has been achieved. In this case, we write a rate equation per

energy level. To solve them, since they form a set of non-lineal equations, the

Newton-Raphson method has been implemented.

4. Calculate the final outputs.

5.4.1 Si/SiO2 QDs: simulations

Here, we are going to simulate different kinds of systems based on Si QDs embedded

in a SiO2 matrix to demonstrate the feasibility of the previous developed model. First

of all, the internal properties of the Si QDs are presented: the Egap and the absorption

spectra. Finally, a systematic study of the electrical and optical response of the basic

system, an array of QDs placed between two electrodes, has been done.

5.4.1.1 Si QDs: optical properties

m∗ECB (m0) 0.40 φ1,ECB (eV) 3.1
m∗EV B (m0) 0.30 φ1,HV B (eV) -4.5
m∗HV B (m0) 0.32 Egap (eV) 1.12
m∗Qd,CB (m0) 0.33 εrSiO2 (ε0) 3.9

m∗Qd,V B (m0) 0.28 εrSi 11.7

Table 5.1: Parameters used in the simulation in order to describe Si QDs embedded
in SiO2 insulator matrix. In all the simulations we assume T=300K.

The study of the energy states of the QD has been done assuming the finite spherical

potential well model developed previously using the Si and SiO2 effective masses and the

confinement potentials assuming bulk values. In Table 5.1 we show the list of parameters

used to describe the material: the oxide (m∗ECB and m∗HV B) and QD (m∗Qd,CB and

m∗Qd,V B) effective masses as well as the confinement potentials for electrons (φ1,ECB)

and holes (φ1,HV B), respectively.

The wave functions and the binding states appear from the solution of the Schrödinger

equation Eq. 5.6 and Eq. 5.11, respectively. Using the effective masses and the bulk

Si permittivity described in Table 5.1, the bulk exciton Bohr radius is estimated as

aB = 40.86 Å[33]. Thus, for QD radius R < aB the strong confinement regime is valid.

Before continuing, we study the obtained Egap, the energy difference between the first

electron and hole binding states. In Fig. 5.7, we show the obtained dependence of the

Egap as a function of the QD radius, and it is compared to experimental data obtained

from photoluminescence measurements [28, 29, 30, 31, 32]. As it is seen, the EMA, using

the values of Table 5.1, can reproduce the measured experimental Egap.

An estimation of the energy shift due to the electron-hole Coulomb interaction for Si QD
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Figure 5.7: Dependence of the obtained Egap as a function of the radius of the Si
QD without taking into account the exciton shift. For comparison, experimental data
obtained from photoluminescence measurements are presented [28, 29, 30, 31, 32].

of R = 1 nm can be obtained using Eq. 5.15. The interaction energy is Ee−h ≈ −0.138

eV for the first allowed transitions, from vacuum state to the generation of electron and

hole in the first s-state (l = 0). This effect decreases the optical band gap but, as can be

seen from Fig. 5.7, the effective masses used to describe the QD agree with experimental

measurements for small radius, reflecting that this effect is included in the effective mass

value.

Figure 5.8: Simulated absorption spectra in the equilibrium state for different QD
radii. The summation of all the contributions to the spectra has been done according
to the Fermi Dirac distribution function, where for simplicity, the Fermi level has been
placed in the energy origin, µ = 0. The arrows represent the value of the Egap for each
QD radius.

The evolution of the simulated spectra as a function of the QD radius is presented in
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Fig. 5.8. When the QD becomes larger, the number of energy states in the QD increases

obtaining more possible optical transitions. Moreover, the value of Egap decreases [34]

thus, a redshift of the spectra is observed. For high photon energies, the absorption

spectrum decreases since we only consider the transitions between the discrete energy

states of the QD. Therefore, we neglect the continuum conduction and valence band

states, and all the possible transitions from/to these bands.

For simplicity, we assume an incident monochromatic light with irradiance I(hν) =

1Wm−2 for all the following simulations.

5.4.1.2 Single QD: the symmetry role

The first system under study is a single Si QD under illumination connected to two

electrodes with a constant external bias voltage applied. From Eq. 5.1, many scenarios

appear as a function of the value of the optical and transport terms. We study the

particular case for V = 0. If the transport terms are greater than the optical ones, the

non-equilibrium distribution function of the energy levels will follow the Fermi Dirac

distribution function since the optical terms are a small perturbation. When the optical

term increases, equal generation of electron and holes appears. Both carriers tend to

diffuse to the electrodes creating currents and, depending on the probability of these

transitions, the QD could be charged as we have explained before.

When an external bias voltage is applied the distribution functions of the two leads

differ and a net current appears. Overlapped to this, the optical processes appear

filling/emptying levels and adding new conductive channels to the transport enhancing

the total current.

The results of the single QD are shown in Fig. 5.9. We present two scenarios: (a)

the QD symmetrically connected to the leads and (b) in asymmetric configuration.

An interesting result appears for V = 0. In the symmetrically coupled system (a), the

current is zero since the incoming hole currents for each side equals the outgoing electron

currents. Therefore, the net current is zero because the electron and hole currents

compensate each other. This result derives intuitively from the rate equation, as we

showed previously. Therefore, in order to generate a net photocurrent the symmetry of

the QD respect to the leads must be broken, hence, different coupling to the leads are

needed as is shown in the asymmetric case (b).

When an external bias voltage is applied, the transmission coefficients between the QD

and the two leads change. Thus, the system becomes asymmetric and a net current

appears. The current peaks are related to the maximum transition probabilities for

an incident photon reflecting the absorption spectra. When the voltage increases, the

current tends to be independent of the incident photon energy hν. This effect is the result

of competition between two processes, the pure light current term and the external bias
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Figure 5.9: Photocurrent as a function of the energy of the incident light with
an external applied bias voltage. In the inset a scheme of the system is presented,
a QD of R = 1.06nm is placed between the two electrodes. (a) Symmetric system
d = d′ = 1.78nm. For V = 0 case the current is zero while for V 6= 0 the symmetry
of the system is broken and net current appears. (b) Asymmetric system d = 1.47 nm
and d′ = 2.09 nm. A net current is obtained even at V = 0. The current peaks refers
the position of the maximum optical transition probabilities.

voltage term. For small voltages, the optical terms dominate and the optical transition

peaks are observed, but when the voltage increases the tunneling currents become the

most important terms and the current appears as a photon energy independent.

Figure 5.10: (a) The total I(V) curve (in absolute value) for the symmetric system
in dark case and under different illumination conditions (incident photon energies). (b)
The total I(V) curve (in absolute value) for the asymmetric system in dark case and
under different illumination conditions (incident photon energies).
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In the same way, in Fig. 5.10 we show the obtained current voltage curve I(V) under

external illumination for the same previous system as a function of the energy of the

incident photon. In Fig. 5.10(a-b) we show the current for the symmetric and asymmetric

structure respectively. As it was demonstrated, the symmetry of the dark I(V) curves

depends on the symmetry of the coupling to the leads, and current plateaus appear when

conduction channels are opened. For the illuminated case, the main differences appear

for small voltages. The I(V) curve looses the step like behavior since the occupancy

of the energy levels are not sequential with the applied bias voltage due to optical

transitions. Moreover, the optical transitions tend to fill the electron states while hole

states become emptied increasing the electron/hole currents. As a consequence, more

conducting channels are opened and the total current is bigger than in the dark case.

5.4.1.3 Parallel case

Figure 5.11: The QDs radii are R1 = 1.0 nm and R2 = 0.8 nm respectively. The
distances between the first QD (QD1) and the leads are dL1 = 2.5 nm and for the
second one (QD2) dL2 = 2.5 nm. The distance between the QDs is d12 = 3 nm. All
the distances are measured from the center of the QDs. (a) The total I(V) curve (in
absolute value) for the parallel system in dark case and under different illumination
conditions (incident photon energies). (b) Photocurrent as a function of the photon
incident energy for different applied bias voltage.

Now, we study the system composed by two QD in a parallel configuration. We use two

QD of different radius in order to obtain different optical transitions.

The rate equations for each energy level of the QDs have three contributions: the leads,

the neighbor QD and the optical contributions. In Fig. 5.11(a), we show the I(V)

curve under different incident photon energies. These photon energies are related to

the maximum absorption peaks, for R = 0.8 nm and R = 1.0 nm QDs. In a previous

chapter, we have demonstrated that in parallel configuration the total dark current

trough the system is the sum of the individual QD terms. At low voltages, the optical
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terms dominate in the rate equation and the obtained I(V) curve differs from the dark

curve. As shown before (in the single QD case), this trend is a competition between the

optical transition probabilities and the transmission probabilities. For low voltages, the

barriers are not transparent enough. Therefore, electron/holes are photogenerated in the

QD changing the distribution function of the QD creating net fluxes incoming/outgoing

from the QD to the leads. The electrons tend to move from the QD to leads and the

holes follow the opposite direction, obtaining a net current when both currents do not

compensate each other. When the voltage increases, the barriers are bended and the

tunneling probability increases as well. Then, the optical term becomes smaller than

the electrical terms and the dark trend is recovered. When the energy of the incident

photon increases, the optical transitions involve the higher energy levels, which have the

maximum transmission probabilities increasing the current.

Moreover, in this case, the electrons can also move to the other QD. Thus, a current

between QDs appears and breaks the symmetry respect to the leads obtaining a net

current for the V = 0V case (Fig. 5.11(b)). As in the previous case, when the polarization

voltage increases the photocurrent peaks tend to disappear. Since the two QDs have

different radii, the optical transitions occur at different photon energy and the obtained

photocurrent reflects both absorption spectra.

5.4.1.4 Serial configuration

Figure 5.12: The QDs radii are R1 = 0.3 nm and R2 = 0.8 nm. The first QD is
placed at dL1 = 2.5 nm and dR1 = 5.1 nm and the second QD is placed at dL2 = 4.8
nm and dR2 = 2.8 nm from the left and right leads respectively. The distance between
both QDs is d12 = 2.3 nm. All the distances are measured from the center of the
QDs. (a) The total I(V) curve (in absolute value) for the serial system in dark case and
under different illumination conditions (incident photon energies). (b) Photocurrent as
a function of the photon incident energy for different applied bias voltage.

The third type of arrangement is two QD in a serial configuration. This kind of ar-

rangement has demonstrated the possibility of filtering the current trough the position
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of the energy levels. Since overlapping between the energy levels of the QDs is necessary,

only a few conduction channels are opened and the current is strongly dependent on the

electrostatic coupling of the QDs obtaining NDR in the I(V) curve. We proceed in a

similar way as in the previous case, the electrical response under an external bias voltage

and under illumination with different photon energy. In this configuration, each QD is

connected to one electrode (left or right) and the neighbor QD.

First of all, we present the obtained dark and illuminated I(V) curves in Fig. 5.12(a).

In the dark case, the NDR and current resonant peaks are obtained. When light is

applied, current increases, since the occupation of the higher energy levels increase,

making favorable the tunneling processes. For certain photon energies, the current

saturates in a voltage region as the transitions involve the higher/lowest energy states of

the electron/hole states. Overlapped to these optical transitions, we have the electronic

transport due to the applied voltage. In order to obtain electronic transport between the

QDs, the condition of the overlapping of the energy levels has to be fulfilled. Therefore

the NDR and the current peaks still remain in the I(V) curve.

In addition, we present the photocurrent generated as a function of the energy of the

incident photon in Fig. 5.12(b). The values of the photon energy have been chosen in

order to maximize the transitions probabilities in each QD obtaining different photo

generation rates in each QD. The cases under external bias voltages are also presented.

We obtained a similar trend as in the previous cases, the current reflects the absorption

spectra of the systems obtaining current peaks when the transitions probabilities are

maximal in the cases when the photon energy equals the difference between the energy

levels involved in the transition. Different to the previous cases, the current saturates

when the voltage is increased as a consequence of the no overlapping between the energy

levels of the QDs. For this reason, we studied this kind of system: a small QD (with few

energy levels) connected in series with a bigger one (with large number of energy levels).

Therefore, the small QD dominates the behavior of the photocurrent since it controls

the number of conduction channels. In this configuration, the photocurrent retains the

current peaks when the external voltage increases since the small QD acts as a current

filter.

5.4.2 Comparison with experiments: PbSe QDs

To complete this chapter, we present the comparison between the presented theoretical

model and a real system. The experimental results have been taken from Prins et al.

[35]. They fabricated a system based on two electrodes separated by 5 nm. A single

layer of PbSe QD of 2 nm in radius was deposited on top of the electrodes. An scheme

of the system is shown in Fig. 5.13. Therefore, they obtained a system of QDs placed

in parallel configuration. This kind of structure is the same as we have studied before.
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Figure 5.13: Scheme of the device fabricated by Prins et al. [35]. Two Au contacts
are separated by a trench of ≈ 5 nm in which the PbSe QDs are placed. In the inset, a
SEM image of the electrodes is showed. Both figures have been extracted from Ref. [35].
Reprinted with permission from ACS.

5.4.2.1 PbSe QDs: optical properties

In order to simulate this new system, we have changed the material parameters to

describe the PbSe QDs. First of all, we describe the Egap and the optical properties of

the material. The PbSe QD is treated as a finite spherical potential well under the EMA

neglecting the Coulomb interaction. PbSe QDs have been widely studied under several

models within EMA [21], K· p Hamiltonian [36], finite barrier version of the EMA [37]

and some variations as proposed in Ref. [37] and Ref. [36]. PbSe is narrow band gap

semiconductor (Egap = 0.26 eV) with large Bohr radius (aB = 46 nm [38]) and small

effective masses. The value of the effective masses and confinement potentials were taken

from Pellegrini et al. [39]. We used m∗Qd,CB = 0.07m0 and m∗Qd,V B = 0.06m0 for electron

and hole effective masses respectively. The confinement potentials are φ1,ECB = 1.61 eV

and φ1,HV B = 1.61 eV. The obtained Egap(R) is presented in Fig. 5.14. The dielectric

constant value is εr = 23ε0 [36].

As shown in Fig. 5.14, the proposed model (finite EMA) is close to the results obtained

experimentally and using other approaches, reflecting that the parameters used to de-

scribe the PbSe QD (effective masses and barriers) are correct. We can also estimate

the binding energy of the ground-state exciton for a PbSe QD of R = 2 nm. The energy

shift due to the electron-hole Coulomb interaction is Ee−h = −0.03 eV, where we have

used Eq. 5.15 that agrees with results presented previously in other works[37].

We present in Fig. 5.15 a comparison between measured and simulated absorptions

coefficients for PbSe QDs as a function of the QD radius. Experimental data has been
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Figure 5.14: Dependence of the obtained Egap as a function of the radius of the
PbSe QD without taking into account the exciton shift (solid line). For comparison,
experimental data (filled symbols) [37, 38, 40] and results from different theoretical
approaches (hollow symbols) are also presented [39, 41, 42].

Figure 5.15: Simulated absorption spectra (continuous line) and experimental one
(dashed line) for different PbSe QDs radii. Experimental data has been taken from
Ref. [43].

taken from Ref. [43]. The EMA model can reproduce well the value of Egap, the first

electron and hole energy level, as the position of the first optical transition. However,

the rest of the binding states are not well reproduced. This fact is visible since all the

optical transitions can not be reproduced.
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5.4.2.2 Simulation vs. Experiments

In order to compare our calculations with the experimental device, we created a system

composed by ten QDs placed in parallel configuration. The QDs radii were generated

randomly using a normal distribution with mean radius 〈R〉 = 2 nm and σ = 0.1 nm.

The QDs were placed in parallel configuration but the distance between them and the

leads was chosen as a free parameter breaking the symmetry of the system. The leads

separation was 5 nm and direct current among the leads was not considered.

Figure 5.16: Simulated I(V) curve in dark (continuous blue line) and light (dash blue
line) conditions respectively (normalized to the maximum current). In the inset we show
the experimental (square red points) and simulated (continuous blue line) normalized
photocurrent. Both figures are normalized to the maximum current. Measured I(V)
points have been extracted from Prins et al. [35].

Fig. 5.16 shows the current voltage curve in dark and light conditions. The inset also

shows the normalized net photocurrent as a function of the applied bias voltage for light

illumination conditions equivalent to the experiment (λ = 532 nm and irradiation of

I(hν) = 0.16Wcm−2). Concerning the current curve in dark conditions, the electron/

hole only crosses from one lead to the other trough the states in the QD. As a consequence

of the discrete nature of the QD energy levels, the current increases step-by-step as the

conductive channels open. The asymmetry reflected in the experimental measurements

is related to the different capacitive coupling between the QD and the leads since the

capacities are strongly dependent on the distance.

For the illuminated case, the behavior of the curve can be explained in an intuitive form

directly from the rate equation type model. Eq. 5.1 shows that the distribution function

in the QD is a combination of pure transport effects (tunnelling processes) and optical

contributions. The optical terms mix the electron and hole states involving electron and

hole pair creation. The response of the system under external perturbations (light and

voltage) depends on the rate between the pure transport effects and the light terms. One
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the one hand, the transport terms are described by tunneling junctions that are function

of the tunneling distances and the energy barriers. Moreover, the rates depend on the

occupancy of the energy levels. On the other hand, the optical terms are described by

the transition probability, but they also take into account the occupancy of the energy

levels. Thus, for low voltages we expect that the optical terms dominate creating a

net photocurrent. When the voltage increases, the tunneling probabilities increase the

transport terms making them larger than the optical terms and the photocurrent tends

to zero [44].

Figure 5.17: Simulated normalized photocurrent curve (continuous blue line) and
experimental curve taken from Prins et al. [35] (dash blue line) as a function of the wave
length of the incident light. Simulated normalized absorption coefficient (continuous
red line) of the QD system and experimental absorption (red dashed line). In the inset,
we show an scheme of the system under external polarization; the band diagram of the
QD, the optical transitions and the band bending of the barriers due to the external
bias voltage V = 750mV . Besides, the electrochemical potentials of the leads are also
presented

We also computed the photo-conductive response as a function of the wavelength of

the incident light as the current at a fixed bias voltage at V = 750 mV and constant

irradiation for varying wavelengths between 800 nm and 1600 nm , Fig. 5.17, and the

corresponding absorption spectra. Clearly, the photocurrent reflects the total absorption

spectra of the system composed by the summation of the individual spectra of each QD.

Due to the nature of the QD, the photon absorption only occurs for selected photon

energies, as we discussed in the absorption coefficient. The photocurrent peak at λ ≈
1400 nm is related to the first optical excitation, i.e. the first exciton creation (see the

inset). Since we have an electron-hole pair, these carriers tend to transit to the electrodes.

In order to obtain a net photogenerated current the tunnel transmission of electrons or

holes have to be grater than the recombination time. Moreover, the electrons tend to go

out from the QD to the leads but simultaneously electrons tend to go in from the leads

to the empty energy levels (hole movement). So, a net photo-generation current only
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appears if the electron and hole currents are different. Therefore, the tunneling junctions

become a crucial point that determine the photoresponse of the device. Thereby, in order

to enhance the device efficiency not only effective optical processes are needed, but also

a good charge extraction mechanism is also desirable [44, 45, 46].

Figure 5.18: Experimental net photocurrent as a function of irradiance (square red
points) and simulated (continuous blue line). Experimental points taken from Prins et
al. [35].

Finally, the dependence of the photoresponse with irradiation was also properly ex-

plained. Fig. 5.18 shows the photocurrent for different irradiances at λ = 532 nm and

bias voltage V = 750 mV. The photocurrent scales linearly with irradiance at low values.

In contrast, it tends to saturate for higher powers densities since the energy levels that

contribute to the current are filled, decreasing the efficiency of the optical processes [47].

5.5 Conclusions

In this chapter, we have included the optical transitions into the rate-equation-type

model to simulate the optoelectronic response of devices based on QD arrays. Using the

EMA, the optical properties of the QD have been studied as a needed input parameters

for the transport model.

First of all, the complete DOS of the QD has been calculated, since in the case of the

optical processes take place between states with different l quantum number. Thus,

following the Qd description as a finite spherical well within the EMA, we have obtained

the binding states unrestricted for the l quantum number.

The optical properties have been computed assuming the intraband and interband tran-

sitions considering excitonic effects in the strong confinement regime. To conclude, the

absorption spectra has been also simulated. The selection rules for the optical transi-

tions can be summarized as: 4l = ±1 and 4m = 0,±1 for intraband transitions and
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4l = 0 and 4m = 0 for interband transitions. We must note that for the interband

transitions, the selection rule imposes that the photogenerated electron-hole pair (the

exciton) has the same quantum numbers.

The processes that govern the response of the device have been studied and analyzed.

The electrical response is explained as a function of the ratio between the optical and the

pure electrical rates. Moreover, interesting features appear as the different QD couplings

to the leads impose geometrical restrictions.

The particular case of Si/SiO2 QDs was studied in three systems: a single QD and

two QDs in serial and parallel arrangements. The single case was used to validate that

the symmetry of the couplings respect to the leads plays an important role in the final

photoresponse. The photocurrent as a function of the energy of the incident light tends

to recover the shape of the absorption spectra. Moreover, the I(V) curves in dark and

light conditions were also presented and the obtained results were explained by the ratio

between the pure electrical and optical terms. The same study was done for the two

QDs systems. In the parallel arrangement, the coupling between the QDs breaks the

symmetry respect to the lead coupling being possible to obtain a net photocurrent at

zero bias voltage. Concerning the serial case, it was used as a energy filtering device:

the small QD controls the final response of the system since the overlapping between

the energy levels are needed.

To conclude, a device based on parallel arrangement of PbSe QDs has been simulated

and compared with experimental measurements. The electrical response of the system

has been evaluated in dark and light conditions, as a function of the wavelength of the

incident light and also as function of the irradiance of the light. The simulations agree

with the experimental results showing that: (i) we have recovered the I(V) asymmetry

associated to the different capacitive coupling to the leads; (ii) the I(V) trends in dark

and light conditions are well reproduced; (iii) the photocurrent follows the absorption

spectra of the Qds and (iv) the photoresponse of the systems tends to saturate for high

irradiances.

As a final comment, we must note that the photo-electrical response of the QDs is

strongly dominated by the electrical and optical properties of the QDs (DOS and ab-

sorption spectra). Again, we deal with the problem that EMA oversimplifies the energy

levels and therefore, the absorption spectra. Thus, the here presented simulations for

the Si/SiO2 basically show the capabilities of the model to design optoelectronic devices
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5.6 Appendix

5.6.1 DFT vs. EMA in Si/SiO2 QDs

Here, we are going to show the differences between the EMA used in this chapter and

the ab inito approach. In this chapter, we have shown that binding states dominates

the electrical response of the system and the optical properties of the QD. Therefore,

a correct description of the internal QD structure is desirable. However, atomistic cal-

culations are time consuming and some approximations are needed in order to simulate

devices that contain hundreds of QDs. This fact is the main motivation to use the sim-

plest EMA model to describe the optical and electrical properties of the QDs. At the

end, there is a compromise between the accuracy of the description of a single QD and

the number of QDs that form our device.

The DFT DOS results have been obtained from Ref. [48]. Several Si/SiO2 QDs have

been studied as a function of the radius and the amorphization level of the embedding

matrix. We restricted our comparison to the crystalline SiO2 phase since there are

more QDs radii to compare. The comparisons between the DFT results and the EMA

approximation are shown in Fig. 5.19 for d = 1.27, 1.39, 1.5, 1.6 nm QDs diameter.

Figure 5.19: Comparison between the DFT results and the EMA approximation
for the obtained DOS for different QDs diameters. DFT data has been taken from
Ref. [48].

The differences between the two approaches appear clearly in the DOS spectra. Whereas

the EMA approximation can describe exactly the value of the Egap (see Fig. 5.7) the

rest of the states are far of being well described. Furthermore, the EMA approach does

not reproduce all the energy states obtained by the DFT.
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Obviously, these discrepancies in the electronic structure of the QD are also shown in

the optical properties. Optical properties of the DFT system and their comparison to

the dipole transition elements obtained by the methodology used in this chapter are

shown in Fig. 5.20. The absorption spectra has been taken from Ref. [49] for different

Si QDs radii embedded in a amorphous SiO2 matrix.

Figure 5.20: DFT absorption spectra for different QDs radii. Data has been taken
from Ref. [49]. The matrix transitions elements calculated using the EMA approach
are also shown.
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Chapter 6

Conclusions

Theoretical approach

In this work, we have developed a theoretical methodology for the electronic transport

in the ballistic regime to reproduce the experimental trends of optoelectronic devices

based on quantum dots (QDs) embedded in a insulator matrix. Within this approach,

a compact device simulator (SimQD) has been created that can be used to aid in the

design of these novel devices.

The scope of this PhD Thesis is fill the gap between the experimental measurements

and the theoretical approaches. Although the theoretical fundamentals of the electronic

transport are well known and there exist several approaches, they can not be used

to simulate the large amounts of QDs that conform the usual devices. This fact is

much clear in the case of ab initio or atomistic models, which are limited by their

huge computational requirements. Thus, in order to overcome these constrains, several

approximations and the relaxation of the accuracy of the expected results have to be

done in favor of the possibility to simulate larger systems.

The basic building block that forms the devices based on QD is an insulator material in

which the QDs are embedded. This system is placed between two electrodes, or leads,

that inject current. The electronic transport takes place by tunneling processes through

the QDs. The here proposed transport methodology is based on the assumption that

the QDs are weakly coupled between them and to the leads; considering two consecutive

tunneling events as independent processes, being possible to separate the whole system

in different parts.

From this system decomposition and using the Transfer Hamiltonian approach to de-

scribe the tunneling currents, a set of non-coherent rate equations can be written to ob-

tain the non-equilibrium distribution function of each QD. Within the Transfer Hamil-

tonian framework, the current is strongly dependent on the transmission coefficient
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through the potential barrier and the density of states (DOS) in each side of the barrier.

On the other hand, the electrostatic influence between the different elements of the sys-

tem as well as the effects of the accumulated charge in the QDs are included in the

model via the solution of the Poisson equation. The local potential in the QDs has a

first term that strongly depends on the different capacitive couplings, the Laplace solu-

tion; and a second one that includes the charge variation in the QD. This second term

imposes a simultaneous solution of the rate equations and the local potential within the

self-consistent field regime. All of these assumptions conform the basis of the ballistic

transport model presented in the first part of Chapter 2.

On the electronic transport model generalities

From some basic examples, the necessary transport conditions to obtain net current

trough the device can be written as:

• The transport occurs in the conduction window created by the different electro-

chemical potentials of the leads.

• The energy levels of the intermediate QDs have to lie in the conduction window.

• Overlapping of the energy levels of the QDs is needed reflecting the ballistic nature

of the model.

From these examples, the current voltage I(V) curves are obtained reflecting negative dif-

ferential resistance (NDR) and current rectifying effect. Moreover, the main parameters

that govern the final response of the system are highlighted, being strongly dependent

on:

• The QD energy levels.

• The capacitive couplings.

• The transmission coefficients.

In the second part of Chapter 1, a direct comparison between the here presented trans-

port model and the Non Equilibrium Green’s Function Formalism (NEGFF) is shown.

Both approaches give similar results but some effects related to the coherent treatment

of the transport by NEGFF can not be well reproduced.
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Modeling large scale arrays

After presenting and validating the transport model, we focus on the realistic description

of the main parameters that govern the final electrical response (Chapter 3).

• Regarding the QD energy levels, we have assumed a finite spherical quantum well in

the effective mass approximation in order to reproduce the discrete energy spectra

of the QDs. The confinement potentials are the difference between the band edges

of the material that forms the QD and the surrounding insulator media. The QD

DOS is obtained as a sum of Lorentzian functions, and assumed as a constant for

energies above the confinement potentials.

• The Wentzel Kramers Brillouin (WKB) approximation was used to calculate the

transmission coefficients. Direct and Fowler-Nordheim tunneling are considered

for trapezoidal and triangular oxide barriers, respectively.

• Concerning the capacitive couplings, an analytical expression for plane-sphere con-

ductors has been used for the lead-QD capacitive coupling. For the QD-QD ca-

pacities, the numerical image charge method was used.

The inclusion of the holes in the transport model can be viewed as electrons restricted

to move in the valence energy levels. Moreover, its inclusion adds extra terms in the

rate equations in order to represent all the possible transitions.

To conclude this Chapter, the implementation of the transport model in the SimQD code

is presented. This simulation tool, which only depends on several material parameters

and the device geometry, was used to study the electronic transport in realistic devices.

Code implementation and realistic inputs

Due to the impossibility to obtain accurate QD DOS, the consideration of a constant

DOS in the leads and the lack of information about the QD density in the experimental

devices restrict our simulations to qualitative results instead of quantitative ones.

The possibility to use atomistic methodologies like Density Functional Theory (DFT) in

order to obtain realistic QD electronic properties, basically the QD DOS, as inputs for

the SimQD is presented for Si QD embedded in a SiO2 matrix. Here, the importance

of the exact position of the Fermi energy level in the equilibrium is discussed since its

location governs the current and charge trends.
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From theory to realistic devices

A complete study of the electronic transport, electrons and holes, for a single Si QD

embedded in SiO2 matrix was done as a function of its position respect to the leads.

The total current, I(V) curve, is decomposed on hole and electron currents being the

hole term smaller than the electron one because they view a lower potential barrier. The

obtained effects in the I(V) curves can be summarized as:

• The current increases in step-like form each time that a conductive channel is

opened. The tendency is clearly visible either for electrons or holes. However, for

higher voltages, the continuous part of the DOS enters in the conduction window

and the current increases in a continuous form.

• NDR is also obtained but, its nature is completely different from the previous

case. Here, it is obtained because the ratio between the left/right transmission

coefficients are voltage dependent.

The accumulated charge trends in the QD were also presented and show a strong de-

pendence to the ratio among the incoming/outgoing current fluxes.

For sake of completeness, multilayer structures of 20 QDs were also simulated. Since the

total I(V) curve is the sum of the current crossing through the different pathways, the

previous explained effects are masked. However, the electron term is still the dominant

current an the behavior of the I(V) curves show a strong dependence on the geometrical

arrangement of the QDs.

To conclude the capabilities of the SimQD code, some transistor structures were sim-

ulated. An small modification was included in the Laplace solution in order to reflect

the third electrode, the gate, which includes an extra term in the local potential. The

obtained current maps reproduce the diamond-shape behavior due to the discrete na-

ture of the QD DOS. Moreover, a double gate transistor was simulated reproducing the

experimental trends.

The usually used transport mechanisms for samples including QDs are presented in

the last part of Chapter 4. Experimentally, different current behaviors are obtained in

different ranges of the applied electric field. Poole-Frenkel, Schottky emission, Tunneling

and Trap assisted tunneling processes are usually fitted from the current density electric

field curves J(E).

Within the rate-equation type model, the transport through defects or impurities can

also be obtained as a function of the energy levels of the trap and its position respect

to the leads. This new transport mechanism in combination to the previous QD trans-

port and introducing tunneling between the leads allowed us to reproduce experimental

measurements for three different Si/SiO2 structures.
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• SiO2 layers of different thicknesses were used to validate the developed impurity

transport model. The trap concentration as well as the average value of the trap

energy level was obtained in agreement with other transport formalisms.

Basically, for SiO2 layers at low and moderate fields the predominant transport

mechanism is mediated by inherent oxide traps whereas, for high fields, the direct

tunneling through the oxide dominates.

• The silicon rich oxide (SRO) is a SiO2 layer that contains several non-ordered QDs.

For low fields, the QD contribution to the current is clearly visible and well repro-

duced by our model whereas for moderate and high fields the trap contribution

dominates.

• A supperlattice of Si/SiO2 QDs was also simulated. At low fields, NDR is well

reproduced by the QD transport model and the trap contribution only appears for

high fields.

On the inclusion of illumination effects

After doing the necessary test in the transport methodology, writing a compact transport

tool and use it to simulate and reproduce experimental measurements, we have include

the light interaction in the last Chapter of this Thesis (Chapter 5).

In the spirit of the previous rate equations, the carrier generation/recombination assisted

by photons can be included in the transport model by two extra terms reflecting these

processes. These terms are proportional to a optical transition rates and the distribution

functions.

Concerning the optical transitions rates, they are calculated assuming: strong confine-

ment regime, dipole approximation and the validity of the Fermi’s Golden-Rule neglect-

ing second order optical processes. Within these approaches, the intra- and inter-band

transitions are obtained. Besides, the optical absorption coefficient of the QDs can be

calculated.

From the simplicity of the rate equations and studying a toy examples, the electrical

response of the system under illumination was inferred. The response of the QD is

governed by the ratio among optical and electrical terms being necessary a geometrical

asymmetry in order to obtain a net photo-current. These assumptions were validated

simulating Si/SiO2 QDs in three basic configurations: a single QD, two QDs in parallel

and serial arrangements. The main trends are:

• The I(V) curves differ from the illuminated and dark cases at low-medium voltages

in this range, since the optical terms in the rate equations are greater or comparable
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to the electrical ones. For higher voltages, the dark trend is recovered since the

electrical terms dominate.

• Current curves as a function of the energy of the incident photon are also obtained.

The photo-current reflects directly the absorption spectra of the QD.

To conclude, an optoelectronic device based on PbSe QDs was simulated and compared

to experimental measurements. This device corresponds to a parallel arrangement of

QDs. The I(V) curves in dark and illumination conditions, the photo-current as a

function of the energy of the incident photon and, also, the photo-current as a function

of the irradiance (the power of the incident light) are well reproduced by the here present

approach.

Future work

Overall, we have studied in detail the electronic transport in devices based on large arrays

of QDs. On the other hand, this compact transport model was implemented in a code

allowing to simulate realistic devices. This approach was successfully compared to other

transport approaches and experimental results. Thus, this work covers the gap between

the fundamental electronic transport theory and its applicability to experimental devices.

Looking backwards the building process of the here presented electronic transport method-

ology, its implementation in the SimQD simulator tool and the obtained results we con-

sider that there are several points that could be extended and studied in future works.

The list could be infinite, but we try here to sort them from the easiest to the most

difficult ones:

1. Up to now, in order to show all the transport problems related to the intrinsic

properties of the QDs and their arrangement in the insulator matrix, we have

assumed constant DOS in the leads corresponding to metallic ones. However, the

injection of one preferred type of carrier assuming semiconductor leads can modify

the electrical response (and the accumulated charge in the QDs) of the device.

Under illumination conditions, the different concentration of carriers will influence

the generation/recombination fluxes changing the expected behavior.

2. A complete study of the best geometry of the QD array (number of QDs, QD

arrangement, number of QD layers in multilayer systems, distance among the

layers...) to optimize the electrical response of the device in order to adequate it

to specific uses.

3. Concerning the use of DFT results to describe realistic QDs, at the beginning of

this Thesis, the idea was to create a library of DFT DOS for different QD sizes
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and materials to use it as inputs for the SimQD code. However, as we saw latter

in the Thesis of Dr. Núria Garćıa-Castelló, the computational obtained QDs are

still too small (around 1.2−1.6nm of diameter). Moreover, the properties of these

small QDs are strongly dependent on the surface atoms, and on the morphology

of the surrounding matrix, limiting the studied cases.

On the other hand, these small QDs systems were doped with P and B atoms and

the study of the electronic properties and the new electronic transport features are

going to be published shortly by Dr. Núria Garćıa-Castelló taking advantage of

the here developed transport methodology.

Although we have restricted to Si QDs embedded in SiO2 matrix, the Si QDs have

been created inside other insulator matrices such as silicon nitride SixNx or silicon

carbide SiC. However, first attempts to study these systems by atomistic calcu-

lations revealed several structural problems, and the appearance of lot of defects

in the nitride and carbide matrices, respectively.

We have used only DOS results from DFT calculations, however, we could also use

the absorption spectra for the optoelectronic device. As we have seen, the DOS

and the absorption are strongly related.

Anyway, the possibility to use DFT and the SimQD in combination to study equi-

librium and transport properties has opened the possibility to simulate realistically

new systems.

4. Another possibility to explore is the electroluminescent devices. Instead of using

light in order to create current, these devices use current to emit light. Thus, a light

emission spectra could be obtained. These kind of devices will be very interesting

since the QDs have a sharp emission peaks and the possibility to use the QD array

in order to filter the current and increase the light emission of determined lines

can be used e.g. for laser sources.

5. To conclude, one of the basis of the here presented transport methodology is the

assumption of ballistic transport. Thus, we have neglected scattering processes

with phonons (the most important scattering process). Although it is well known

that there exist a phonon-bottleneck, there are not enough energetic phonons (or

the probability is too small) that can mediate in transitions between the energy

levels of the QDs. However, for small tunneling rates both scattering rates will be

comparable. Basically, we are underestimating the electronic transport since we are

imposing the most restrictive transport conditions, i.e. the energy level overlapping

condition would be relaxed if one assumes some possible energy mismatch due to

the phonon. This new sophistication in the transport methodology would force

us to rewrite from the beginning the rate-equations and the expressions for the

tunneling currents. However, we have to note that with the inclusion of the light,

we have mixed different conducive channels and the transport has become non-

ballistic.
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Appendix B

Resumen en Castellano

Objetivos de la Tesis Doctoral

En este trabajo, hemos desarrollado una metodoloǵıa teórica del transporte electrónico

en el régimen baĺıstico para reproducir las tendencias experimentales de dispositivos

optoelectrónicos basados en quantum dots (QDs) crecidos dentro de una matriz aislante.

Teniendo en cuenta los posibles usos de estos sistemas, la metodoloǵıa de transporte se

implementó en un código que se puede utilizar para ayudar en el diseño de estos nuevos

dispositivos.

Esta tesis doctoral trata de llenar el vaćıo existente entre las medidas experimentales y

los diferentes modelos teóricos. Aunque los fundamentos teóricos del transporte eléctrico

son bien conocidos y existen varias metodoloǵıas, estas no pueden ser utilizadas para

simular las grandes cantidades de QDs que conforman los dispositivos creados experi-

mentalmente. Este hecho está muy claro en el caso de modelos ab initio o atómicos, los

cuales están limitados por su enorme demanda de requisitos computacionales. Por lo

tanto, con el fin de superar estas limitaciones, muchas veces se ha de relajar la precisión

de la descripción a favor del tamaño del sistema.

Bases del modelo teórico desarrollado

Para desarrollar las bases del modelo de transporte baĺıstico de esta tesis, se han estu-

diado sistemas formados por QDs creados dentro de una matriz aislante. Los electrones

están confinados en los QDs debido a la diferencia de band gaps entre el material de la

matriz y el material que conforma los QDs. Por otro lado, para estudiar las propiedades

eléctricas de este tipo de sistema, se usan dos electrodos externos que inyectan corriente

al sistema.

Debido al confinamiento de los electrones se crean niveles discretos en los QDs. Estos
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nuevos estados aparecen dentro band gap del óxido y están localizados en el espacio,

por lo tanto no forman un continuo de estados o banda como en los materiales de bulk.

Si consideramos el régimen de transporte eléctrico baĺıstico, es decir, que las colisiones

que sufren los electrones no implican pérdida de enerǵıa, los portadores inyectados por

los electrodos conservan la misma enerǵıa en la entrada y la salida de la matriz aislante.

El proceso de transporte ocurre de la siguiente forma: (i) un electrón es inyectado desde

un electrodo y mediante un proceso túnel llega a un QD; (ii) desde este QD, el electrón

vuelve a circular hasta otro QD o hasta el otro electrodo; (iii) en caso que llegue a otro

QD, el proceso túnel se repite hasta que el electrón consigue llegar hasta el otro elec-

trodo; (iv) el proceso se inicia para el siguiente electrón. De esta forma, podemos hablar

de un transporte eléctrico secuencial a través de uniones túnel que comunican los QDs

entre ellos y entre estos y los electrodos que inyectan portadores.

Mientras el sistema se mantiene en equilibrio, la ocupación de los estados de los QDs

y de los electrodos viene descrita por la función de distribución de Fermi Dirac con

un mismo potencial electroqúımico para todo el sistema. El proceso de inyección de

portadores de los electrodos a la matriz de QDs, ocurre cuando se aplica una diferencia

de potencial externo entre los electrodos. De esta forma, se lleva el sistema a un nuevo

estado de no-equilibrio en el cual la función de distribución de los QDs es desconocida.

Si obtenemos esta nueva función de distribución de no-equilibrio, la ocupación de los

QDs se puede obtener, aśı como las diferentes corrientes que circulan por el sistema.

El modelo de transporte desarrollado en esta tesis considera que la matriz total de QDs

se puede describir como QDs aislados y conectados entre ellos mediante uniones túnel.

Estas uniones, se pueden visualizar como una capacidad y un camino de corriente entre

los diferentes elementos que forman el sistema. Mientras que la capacidad tiene en

cuenta la influencia de los potenciales aplicados en cada elemento del sistema, el camino

de corriente representa las corrientes túnel que circulan por el sistema. Estas corrientes

túnel se han descrito mediante el formalismo de Transfer Hamiltonian que considera la

ocupación y la densidad de estados en ambos lados de la barrera de potencial. También

incluye la probabilidad de transmisión a través de la barrera de potencial. Considerando

la suma de corrientes que entran y salen de cada QD en el estado estacionario, la función

de distribución de no-equilibrio de cada QD se puede obtener.

Por otro lado, falta incluir los efectos del potencial aplicado que desplaza los niveles

energéticos de los QDs. El potencial local en cada QD se obtuvo resolviendo la ecuación

de Poisson que tiene en cuenta los efectos de carga de los QDs. La solución general de

esta ecuación tiene en cuenta la variación de la carga en los QDs, aśı como la influencia

de todos los elementos vecinos mediante capacidades eléctricas. Una vez se obtiene el

potencial local en cada QD, los niveles energéticos de los QDs son desplazados. Esto

afecta a las corrientes túnel y se ha de obtener la nueva función de distribución y por lo

tanto, la nueva carga. El potencial se modifica y el proceso se repite, obligando a una
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resolución autoconsistente de la ecuación de carga de cada QD y la solución de Poisson.

Este régimen se denomina self-consistent field regime (SCF).

El modelo de transporte explicado previamente fue aplicado para estudiar la respuesta

eléctrica de diferentes sistemas formados por uno y dos QDs en diferentes configura-

ciones: serie y paralelo. Partiendo de la descripción más simple de los QDs (único

nivel energético por QD y probabilidades de transmisión constantes), nos permite estu-

diar a fondo y resaltar los parámetros que dominan la respuesta eléctrica del sistema.

Las condiciones necesarias para obtener transporte eléctrico en este tipo de sistemas se

pueden resumir en:

• El transporte eléctrico ocurre solo en el rango de enerǵıas (la ventana de con-

ducción) creada por los diferentes potenciales electroqúımicos de los contactos, que

bajo la influencia de un potencial externo se pueden escribir como µL − µR = qV .

• Solo hay transporte eléctrico a través de los niveles energéticos de un QD inter-

medio que están dentro de la ventana de conducción.

• Debido a que solo consideramos transporte baĺıstico, el transporte entre QDs im-

plica que haya niveles energéticos disponibles en el QD final a la misma enerǵıa que

en el QD inicial. De esta forma, el solapamiento entre las densidades de estados

de los QDs juega un importante papel abriendo y cerrando posibles caminos de

transporte.

Por otro lado, también se estudió la influencia de los diversos parámetros en la respuesta

eléctrica del sistema viendo que esta depende de: los niveles energéticos de los QDs, el

acoplamiento capacitivo entre los diversos elementos del sistema y los coeficientes de

transmisión.

El modelo de transporte propuesto en esta tesis se comparó con otro formalismo de ori-

gen puramente quántico como son las funciones de Green de no-equilibrio. Se estudiaron

varios sistemas y configuraciones obteniendo los similares resultados con ambos formal-

ismos. De esta comparación se observo que el modelo de transporte aqúı presentado no

incluye los efectos de coherencia.

De la teoŕıa a la implementación en código

Una vez que el modelo se validó y se remarcaron los parámetros más importantes que

dominan la respuesta del sistema, estos fueron descritos de forma realista.

• Para la descripción de los niveles energéticos de los QDs, se uso un potencial del

tipo pozo finito haciendo uso de la aproximación de la masa efectiva. De esta
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forma, aparecen estados discretos directamente de la resolución de la ecuación de

Schrödinger.

• Los coeficientes de transmisión se describieron mediante la aproximación WKB que

permite introducir la dependencia energética, la longitud y la altura de la barrera

túnel.

• Finalmente, expresiones anaĺıticas y la aproximación numérica de las cargas imágenes

se usaron para la descripción de las capacidades entre los QDs y los electrodos y

entre QDs, respectivamente.

Por otro lado, también se introdujeron estados discretos por debajo del nivel de Fermi

en el equilibrio correspondiente a estados de huecos. Estos estados, bajo un potencial

externo, se pueden vaciar permitiendo que también haya transporte de electrones por

ellos. Por lo tanto, es necesario introducir estos movimientos correspondientes a cor-

rientes de huecos. El formalismo de transporte desarrollado junto con una descripción

realista de los diversos parámetros (capacidades y transmisiones), aśı como de los niveles

energéticos de los QDs forman el núcleo del código desarrollado en MATLAB c© denom-

inado SimQD. De esta forma, tenemos una herramienta computacional que permite

simular la respuesta eléctrica de este tipo de sistemas basada solo en la geometŕıa del

dispositivo y en varios parámetros fundamentales del material.

Transporte en quantum dots de silicio

El código desarrollado se utilizo para simular QDs de silicio crecidos dentro de una matriz

de dióxido de silicio, Si/SiO2 QD. Se llevo a cabo un estudio de las corrientes (electrones

y huecos) y de la carga acumulada en función de la geometŕıa del sistema. Debido a

que la barrera de potencial para electrones es más pequeña que la barrera para huecos,

la corriente de electrones es el término dominante en la corriente total. La corriente

aumenta de forma escalonada debido a la naturaleza de niveles energéticos discretos

del QD. Además, al haber introducido la dependencia energética en el coeficiente de

transmisión hace que aparezca un efecto de Negative differential resistance (NDR). La

dependencia en la corriente y en la carga acumulada con la posición del QD respecto a

los electrodos también se muestra. De forma similar, se utiliza el código para simular

dispositivos basados en bicapas de QDs. El análisis de estos sistemas es mas complicado

ya que existen muchos caminos posibles para la corriente y la respuesta final del sistema

acaba dependiendo fuertemente de la geometŕıa de este.

Aplicando una pequeña modificación en la solución de la ecuación de Poisson, incluyendo

el efecto de un tercer electrodo, podemos simular la respuesta eléctrica de estructuras

tipo transistor. Debido a los niveles discretos de los QDs, cuando se muestra un mapa

de corriente en función de la diferencia de potencial aplicada y del potencial del tercer
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electrodo la corriente obtenida forma estructuras de diamante. De forma análoga, se

simuló un doble gate transistor reproduciendo la estructura en forma de hexágono para

la corriente obtenida.

Finalmente, usando la misma metodoloǵıa de transporte se describió el transporte a

través de trampas o defectos propios de la matriz que contiene los QDs. Estos defectos

se describieron como QDs puntuales con un solo nivel energético y el potencial en ellos

se obtuvo considerando una cáıda lineal del voltaje en la matriz. Mediante el formalismo

de Transfer Hamiltonian, la corriente túnel directa entre los electrodos (sin necesidad

de procesos túnel intermedios en los que intervengan QDs o trampas) se puede explicar

fácilmente. De esta forma, tenemos un modelo que tiene en cuenta tres mecanismos de

transporte independientes. El modelo de transporte mediante trampas fue validado con

resultados experimentales de medidas eléctricas de capas de SiO2 de diversos grosores

obteniendo la concentración y la posición energética media de la distribución de tram-

pas. Para voltajes aplicados (campos) bajos y moderados es el proceso de conducción

dominante mientras que para altos voltajes, el proceso de túnel directo entre electro-

dos domina. Combinando el modelo de transporte de trampas junto con el de QDs, se

simuló una matriz aleatoria de Si/SiO2 QDs. Para este caso, a bajos voltajes la ten-

dencia experimental se reproduce con el modelo de transporte a través de QDs mientras

que para voltajes medios y altos, el transporte por trampas es el mecanismo dominante.

Por último, se simuló una superlattice de Si/SiO2 QDs y se comparó con resultados

experimentales. El modelo de transporte por QDs reprodujo las NDR de los datos ex-

perimentales a bajos voltajes mientras que a altos voltajes, el transporte por trampas el

mecanismo dominante.

Interacción con la luz

Una vez que el modelo de transporte eléctrico fue testeado y usado para reproducir

resultados experimentales, se modifico para tener en cuenta los procesos de generación/

recombinación de portadores asistidos por fotones. Con la introducción de dos nuevos

términos en la ecuación de balance de cada QDs, estos nuevos procesos se pudieron

considerar. Haciendo uso de la regla de oro de Fermi, las transiciones ópticas dependen

de una probabilidad de transición entre estados y la ocupación del estado inicial y del

estado final.

Las probabilidades de transición entre niveles asistidos por fotones se obtuvieron asum-

iendo régimen de fuerte confinamiento, la aproximación dipolar eléctrica y despreciando

procesos ópticos de segundo orden. De esta forma, se describieron las transiciones intra-

e inter- banda. Los resultados obtenidos se pueden resumir en:
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• La respuesta eléctrica del QD viene dada por el ratio entre los términos eléctricos

y ópticos siendo necesaria una asimetŕıa en los coeficientes de transmisión a los

electrodos para generar corriente solo con iluminación.

• Respecto a las curvas de corriente en función del voltaje externo aplicado con y

sin iluminación, solo se obtienen diferencias a bajos voltajes, cuando los términos

de luz son los dominantes. A altos voltajes, la respuesta eléctrica es prácticamente

la misma que en el caso sin iluminación.

• La corriente fotogenerada en función de la enerǵıa del fotón incidente describe

básicamente el coeficiente de absorción del QD.

• El modelo de transporte en combinación con la implementación de la luz fue usado

para reproducir los resultados experimentales de un dispositivo basado en QDs en

una configuración en paralelo. Las corrientes fotogeneradas con y sin iluminación

externa, en función de la enerǵıa del fotón incidente aśı como en función de la

irradiancia de la luz incidente fueron reproducidas.



List of Figures

1.1 (a) Scanning electron microscopy (SEM) picture of a lateral quantum dot
structure. Six metallic gates that create the confinement potentials are
deposited on top of a GaAs/AlGaAs heterostructure. The picture has
been extracted from Ref. [1]. (b) Scheme of a vertical QD structure [2].
(c) Transmission electron microscopy (TEM) image of large array of Si
Qds in a SiO2 matrix with low magnification, extracted from Ref. [3]. . . 2

1.2 (a) Scheme of the Si-based tandem solar cell. (b) Bulk energy band
alignments between crystalline silicon and its carbide, nitride and oxide. . 7

2.1 (a) 1D Energy band scheme of the structure of the system. The QDs are
described as wells in the band structure of the oxide matrix. Since we
are only considering ballistic transport, the electron crosses through the
potential barriers by tunneling events. (b) Equivalent electrical scheme
of a QD array embedded in an insulator matrix. The QDs (circles) are
connected between them and the leads (color blocks) by tunneling junc-
tions. The tunneling junctions can be described as a capacitor in parallel
with a current path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 (a) Band energy scheme of the tunnel junction. The electron tunnels from
an eigenstate EL on the left side of the barrier to the eigenstate ER on
the right side. (b-c) The decomposition of the total Hamitonian H into
two subsystems: HL and HR. The wave function ψL and ψR are also
presented showing the exponential decay in the barrier region. . . . . . . . 23

2.3 (a) I(V) curves of a single metallic QD in the Coulomb blockade regime for
different temperature ranges. The current step-like behavior is recovered
when the external bias voltage increases in multiples values of VT . (b)
Electron number in the QD as a function of the applied bias voltage.
The accumulated charge also increases in discrete steps. In the inset, the
energy band scheme, the Fermi levels of the leads (µL and µR) as well
as the QD states with N and N + 1 electrons are shown. The energy
separation among the N + 1 and N states is Ec. . . . . . . . . . . . . . . 29

2.4 Obtained I(V) curves for single semiconductor QD with a spin degen-
erated energy level for the two studied regimes: the self-consistent field
(SCF) and the Coulomb blockade (CB). . . . . . . . . . . . . . . . . . . . 32

2.5 Equivalent electrical scheme of the three basic systems under study: (a)
single QD, (b) two QDs in serial configuration and (c) two QDs in a
parallel arrangement. We also show the notation used to describe the
tunneling junctions, the capacities and the transmission probabilities. . . 33

191



List of figures

2.6 (a) Band scheme for the cases: V = 0 upper, V > 0 left and V < 0
right figures, respectively. (b) I(V) curves as a function of the QD energy
level. (c) I(V) curves as a function of the charging energy and (d) varying
the transmission coefficients of the leads. In the insets, the accumulated
electrons in the QD (N) for each case is also shown. The used parameters
were: kBT = 0.025eV , T1 = T2 = 0.005, U0 = 0.25eV , Cd = Cs, εrε0 = 1
and ε0 = 0.2eV . The varied parameters are shown in the legend of their
respective figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 (a-b) I(V) curves and (c-d) conductance characteristics obtained for the
serial arrangement depicted on Fig. 2.5(b) for different capacitive cou-
pling. (a-c) As a function of the left lead QD capacity Cs, showing a
rectifying effect when the system is weakly coupled with the left lead.
(b-d) As a function of the inter-dot capacity Cc. In both cases, NDR
is obtained since when the voltage increases the overlapping between the
energy levels decreases and the current also decreases. The simulation pa-
rameters were: µL = qV , µR = 0, T1 = T2 = T3 = 0.005, kβT = 0.025eV ,
U0 = 0.25eV , ε = 0.2eV and εrε0 = 1. Cd is fixed at the initial Cs value. 37

2.8 I(V) curves for two QDs in the parallel arrangement for different capaci-
tive couplings: (a) as a function of the left lead QD capacity Cs and (b),
as a function of the inter-dot capacity Cc. In the inset the band scheme of
the two QDs are also shown. The simulation parameters were: µL = qV ,
µR = 0, T1 = T2 = T3 = 0.005, kβT = 0.025eV , U0 = 0.25eV , ε = 0.2eV
and εrε0 = 1. Cd is fixed at the initial Cs value. . . . . . . . . . . . . . . . 40

2.9 (a) The I(V) curve for one single QD obtained using the NCRE. We also
show the NEGFF results for the same system. The NEGFF data have
been taken from Sun et al. [63] (b) The electron number in the QD as
a function of the applied bias voltage. The inset shows the connection
geometry. The rectangles represent the two leads and the circle represents
the QD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 (a) The normalized I(V) curve for two QDs in a serial configuration ob-
tained using NCRE. We also show the NEGFF results for the same sys-
tem, the NEGFF data are taken from Sun et al. [63]. The inset also
shows the connection geometry. (b) The electron number in the QDs as
a function of the applied bias V . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 (a) The total and partial I(V) curves obtained using NCRE for a parallel
configuration. The NEGFF results are taken from Sun et al. [63]. (b)
The electron number in the QDs as a function of the applied bias V . . . . 49

2.12 (a) The I(V) curve, for the configuration plotted in the inset, obtained
using NCRE. We also show the NEGFF results for the same system, the
NEGFF data are taken from Sun et al. [63]. (b) The electron number in
the QDs as a function of the applied bias V . . . . . . . . . . . . . . . . . . 50

2.13 (a) The total and partial I(V) curves obtained using NCRE for the con-
figuration showed in the inset. The NEGFF results are taken from Sun et
al. [63]. (b) The electron number in the QDs as a function of the applied
bias V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.14 (a-c-e) I(V) curves and (b-d-f) accumulated electron number for three
different QDs arrangement. The insets show the connection geometry.
The NEGFF results are taken from Sun et al. [63]. . . . . . . . . . . . . . 52



List of figures 193

2.15 The I(V) curves for the largest systems: (a) 100 QDs in parallel configu-
ration, (b) 100 QDs in serial configuration and (c) 100 QDs in an array
disposition 10× 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 (a) Electron (f0) and hole (1−f0) distribution functions, Fermi level (Ef ),
DOS (ρCB and ρV B) and electron (f0ρCB) and hole populations ((1 −
f0)ρV B) for an intrinsic bulk semiconductor. (b) Scheme of the tunneling
junction and the tunneling transitions under external polarization. (c)
Schematics of the different tunneling processes in bulk materials. Electron
from conduction band to conduction band (ECB), electron from valence
band to conduction band (EVB) and tunneling from valence band to
valence band (HVB) processes. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 (a) Scheme of arbitrary spatial varying potential φ(x) barrier and the
input (A and D) and output (B an C) amplitudes. (b) Scheme of the
spatial discretization of the previous presented potential barrier. . . . . . 72

3.3 Scheme of the band diagram for the: (a) direct tunnel and, (b) the Fowler-
Nordheim processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 (a) Transmission coefficient as a function of the energy of the incident
carrier for different polarization voltages. An scheme of the band bending
is also shown in the inset. The value of the potential barrier is φ0 = 3.1
eV, mox = 0.3mo and barrier width d = 3 nm. The vertical dashed
lines represent the transition from DT to FN tunneling processes. (b)
Representation of the different tunneling process as a function of the
voltage and the incident carrier energy for the previous barrier. We must
note that the transport only occurs when the carrier is inside the transport
window created by µL and µR. We fix µL = 0 and µR = −qV . . . . . . . . 77

3.5 (a-b) Transmission coefficients for a rectangular and triangular potential
barrier of 1nm width, respectively. The exact solution and the WKB
approximation are shown for the rectangular barrier. The solution for
the triangular case using the transfer matrix with different space dis-
cretization and the WKB approximation are also shown. In the inset, an
scheme of the system is presented. (c-d) Transmissions coefficient for a
rectangular and triangular potential barrier of 3 nm width, respectively. . 78

3.6 (a) Lead-QD capacity for different QDs radii as a function of the distance.
(b) QD-QD capacity for different R2 radii, the radius of one QD is hold
at R1 = 1 nm. In both cases, we have used εr = 3.9. . . . . . . . . . . . . 81

3.7 Scheme flowchart of the SimQD that implements the methodology de-
scribed in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 List of the input parameters that describe the device. . . . . . . . . . . . 85

3.9 (a) Band diagram scheme of a single QD and the energy grid. All the
energy dependent parameters are evaluated at these grid energy points.
Moreover, the “interesting” transport region is highlighted by the red
square. As we saw previously, the transport only occurs in the energy
window created by µL and µR. Since we are doing the transport calculus
at room temperature, we also include an energy region above and below
the electrochemical potentials. (b) Computing strategy to obtain the
distribution function at each energy grid point. The set of rate equations
are solved for each energy being P and A the transport matrices. . . . . . 88

3.10 Computational time vs. number of simulated QDs. The time is referred
for a single voltage point. Simulations were done in a dual core 2.60 GHz. 89



List of figures

4.1 Obtained DOS for a QD of R=1nm. The broadened binding electron
and hole states are shown. The position of the Fermi level EF (zero
energy point), the confinement potentials φ1,ECB and φ1,HV B and the Si
bulk band gap Egap are also shown. For energies above the confinement
potentials, continuous DOSs are assumed. . . . . . . . . . . . . . . . . . . 98

4.2 (a) Relaxed structure of the QD of 32 Si atoms in crystalline (left panel)
and amorphous (right panel) SiO2 matrix. Red spheres are O atoms,
green spheres are Si atoms and the yellow thick sticks represents the Si
atoms that form the Qd. (b) Simulated DOS using DFT for different Si
QD sizes embedded in amorphous a- or crystalline c- SiO2 matrix. The
subscript is the number of Si atoms that form the QD. For comparison, the
amorphous silica (a-SiO2) is shown in all the plots. From this comparison,
the band offsets for each QD radius can be obtained. The figures have
been taken from Ref. [8]. The position of the Fermi level is the vertical
dashed line and it is located in the middle of the QD Egap. . . . . . . . . 100

4.3 A single Si/SiO2 QD of R = 1.5 nm placed in different positions between
the two leads. x is the distance from the left lead to the center of the
QD. The separation among the leads is 5 nm. (a-b) I(V) curve and
accumulated charge for a centered QD. The hole and electron currents
are also shown. (c-e) I(V) curves for different QD positions and (e-f)
accumulated charge in the same cases. . . . . . . . . . . . . . . . . . . . . 102

4.4 Band diagram scheme of the single Si QD in different positions (x) and
bias polarizations (V < 0 and V > 0). The thinnest arrows represent
a lower transmission probabilities whereas the widest ones are the most
probable transmissions. The conduction window, µL−µR, and the several
electron (blue lines) and hole (green lines) energy levels are also shown.
(a) and (d) reflect an electron accumulation regime whereas in (b) and
(c) the QD losses part of its initial charge (hole accumulation). . . . . . . 104

4.5 (a-c) Obtained I(V) curves for two layers of Si/SiO2 QDs (the systems
details are described in the text). The total current as well as the electron
and hole partials currents are also shown. In the inset, the QD radius
distributions are shown. (b-d) Total accumulated charge (

∑
i4Ni, where

i = 1..20) of the structures as a function of the external bias voltage. In
the inset, a top view of the systems are presented where the left and right
leads are L and R, respectively. . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 (a) Structure of the system under consideration. The scheme shows the
three electrodes (source, drain and gate) and the QD is placed in the
middle. The QD is connected with the source and drain by 1nm and 2nm
tunnel junctions respectively. The QD radius is 1nm. The gate electrode
is placed at 7.5nm distance from the center of the QD. This tunneling
distance justifies the assumption that the current between the QD and
the gate is negligible. (b) Band diagram of the structure without applied
voltage, under negative gate polarization (c) and under a positive gate
polarization (d). The oxide barriers, the equilibrium Fermi level and the
electron and hole energy levels are also shown. . . . . . . . . . . . . . . . 109



List of figures 195

4.7 (a) Current map as a function of the applied Vds and Vgate. Current
suppression is obtained until the energy levels are placed between the
electrochemical potentials of the drain and source (µd and µs). Once a
conducting energy level is open the current increases dramatically. Impor-
tant voltage points are also highlighted. (b) Accumulated charge (q4N)
in the QD map as a function of the applied voltages. . . . . . . . . . . . 109

4.8 Obtained current map as a function of Vds and Vgate. The single current
diamonds corresponding to each QD are overlapped but they are still
recognizable. In the inset, an scheme of the transistor device is presented.
The system is formed by 3 Si QDs randomly generated inside the SiO2

insulator matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9 Obtained current map as a function of Vds and Vgate. Current suppression
is obtained until the energy levels lie between the electrochemical poten-
tials of the drain and source. Once a conducting energy level is open,
the current increases dramatically. In the inset, an scheme of the tran-
sistor device is presented. The system is formed by 4 Si QDs randomly
generated inside the SiO2 insulator matrix. . . . . . . . . . . . . . . . . . 112

4.10 (a) STM image of the device showing the two QDs D1(2), tunnel-coupled
to the source and drain (S/D) leads and capacitively coupled to the gates
G1(2). (b) Close-up of the two QDs. Both figures have been extracted
from Ref. [54]. Reprinted with permission from ACS. . . . . . . . . . . . . 112

4.11 Scheme of the double gate transistor under simulation. The tunnel junc-
tions and the capacity couplings are also shown. Due to the QD configu-
ration, we assume that each QD is only coupled to one gate and one lead.
Thus, the electronic transport occurs as in the serial QDs cases studied
before. The QDs radii are 2 nm and Vds = 0.25 V. . . . . . . . . . . . . . 113

4.12 Simulated current map for the previous presented structure as a function
of the applied gate voltages, VG1 and VG2, for Vds = 0.25 V. Moreover, in
the insets an intuitive explanation of the obtained current trend are also
presented as a function of the DOS of each QD. The conduction window
is also shown (dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.13 Energy band diagram of the system under external electric field. The
different elastic tunneling transport processes are also shown: (I and II)
tunneling through the oxide from the left to right leads, (III) elastic trap
assisted tunneling and (IV) tunneling through the discrete energy levels
of the embedded QD. The Fermi levels of each lead (µL and µR) and
the Fermi functions (fL and fR) are also shown. µL is fixed as a energy
reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.14 Experimental and simulated tunnel current density for different SiO2 ac-
tive layer thicknesses. The direct current among the leads is not consid-
ered. Experimental data has been extracted from Ref. [77]. . . . . . . . . 121

4.15 Current map for a single trap as a function of the distance to the left lead
and the energy trap level for different electric fields: (a) F = 2.5 MV/cm,
(b) F = 5 MV/cm, (c) F = 7.5 MV/cm and (d) F = 10 MV/cm. . . . . . 123

4.16 Experimental normalized current density and simulated current for the
SiO2 structure. Trap (ITraps) and direct tunnel (IFN ) currents are also
shown. Experimental data has been extracted from Ref. [6]. . . . . . . . . 124



List of figures

4.17 Trapped charge studies for the 50nm SiO2 layer. (a) Trapped charge
distribution in the oxide layer for different electric fields and (b) trapped
charge as a function of the applied electric field. . . . . . . . . . . . . . . . 124

4.18 Experimental normalized current density and simulated current for the
Si QD/SiO2 structure. Current through the QDs (IQD) and the traps
(ITraps) are shown. Experimental data has been extracted from Ref. [6]. . 125

4.19 Experimental normalized current density and simulated current for the SL
Si QD/SiO2 structure. Different current contributions, through the QDs
(IQD) and traps (ITraps), are also shown. In the inset, the cross section
of the structure is presented. Experimental data has been extracted from
Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Scheme of the simplest system under study composed by a single QD with
two energy levels. The QD is connected by tunnel junctions to the leads.
The sense of the different currents terms are also shown for illumination
conditions and no external bias voltage applied. . . . . . . . . . . . . . . 140

5.2 Scheme of a single QD under external illumination conditions and no ex-
ternal polarization. The QD is composed by two discrete energy levels.
The magnitudes of the current components (the arrow size) and their
direction are represented for different values of the tunneling transmis-
sions: (a) gLe = gRe = gLh = gRh, (b) gLe > gRe = gLh = gRh, (c)
gLe < gRe = gLh = gRh and (d) gLe = gRe > gLh = gRh. . . . . . . . . . . 141

5.3 (a) Representation of Eq. 5.11 for the first angular quantum numbers.
The binding states for each quantum number l are the points that cross
y = 0. (b) Scheme of the radial distribution r2|Rl(r)|2 inside and outside
the QD for the l = 0 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Energy level scheme of the states with zero or one electron-hole pair.
We describe the states as a function of the electron and the hole angular
momentum. The interband transitions are the continuous arrows whereas
the intraband transitions are the dashed ones. . . . . . . . . . . . . . . . . 150

5.5 (a) Scheme of the binding states in the QD. Several optical transitions
are shown, interband (blue lines) and intraband transitions (red lines),
respectively. The equilibrium Fermi level (Ef ) is also shown. (b) Repre-
sentation of the absorption spectra for the previous system. The optical
element matrix are shown as a vertical lines placed at the photon energy of
the transitions (red lines for intraband and blue ones for interband). The
absorption coefficient is the sum of individual absorption peaks related to
each transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 Scheme flowchart of the code that implements the methodology described
in this chapter. The code is based on the previous presented one (SCF
core) but several changes have been done in order to include the light. . . 151

5.7 Dependence of the obtained Egap as a function of the radius of the Si QD
without taking into account the exciton shift. For comparison, experimen-
tal data obtained from photoluminescence measurements are presented
[28, 29, 30, 31, 32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.8 Simulated absorption spectra in the equilibrium state for different QD
radii. The summation of all the contributions to the spectra has been done
according to the Fermi Dirac distribution function, where for simplicity,
the Fermi level has been placed in the energy origin, µ = 0. The arrows
represent the value of the Egap for each QD radius. . . . . . . . . . . . . . 153



List of figures 197

5.9 Photocurrent as a function of the energy of the incident light with an
external applied bias voltage. In the inset a scheme of the system is
presented, a QD of R = 1.06nm is placed between the two electrodes. (a)
Symmetric system d = d′ = 1.78nm. For V = 0 case the current is zero
while for V 6= 0 the symmetry of the system is broken and net current
appears. (b) Asymmetric system d = 1.47 nm and d′ = 2.09 nm. A net
current is obtained even at V = 0. The current peaks refers the position
of the maximum optical transition probabilities. . . . . . . . . . . . . . . . 155

5.10 (a) The total I(V) curve (in absolute value) for the symmetric system
in dark case and under different illumination conditions (incident photon
energies). (b) The total I(V) curve (in absolute value) for the asymmetric
system in dark case and under different illumination conditions (incident
photon energies). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.11 The QDs radii are R1 = 1.0 nm and R2 = 0.8 nm respectively. The
distances between the first QD (QD1) and the leads are dL1 = 2.5 nm
and for the second one (QD2) dL2 = 2.5 nm. The distance between the
QDs is d12 = 3 nm. All the distances are measured from the center of the
QDs. (a) The total I(V) curve (in absolute value) for the parallel system
in dark case and under different illumination conditions (incident photon
energies). (b) Photocurrent as a function of the photon incident energy
for different applied bias voltage. . . . . . . . . . . . . . . . . . . . . . . . 156

5.12 The QDs radii are R1 = 0.3 nm and R2 = 0.8 nm. The first QD is
placed at dL1 = 2.5 nm and dR1 = 5.1 nm and the second QD is placed
at dL2 = 4.8 nm and dR2 = 2.8 nm from the left and right leads respec-
tively. The distance between both QDs is d12 = 2.3 nm. All the distances
are measured from the center of the QDs. (a) The total I(V) curve (in
absolute value) for the serial system in dark case and under different il-
lumination conditions (incident photon energies). (b) Photocurrent as a
function of the photon incident energy for different applied bias voltage. . 157

5.13 Scheme of the device fabricated by Prins et al. [35]. Two Au contacts
are separated by a trench of ≈ 5 nm in which the PbSe QDs are placed.
In the inset, a SEM image of the electrodes is showed. Both figures have
been extracted from Ref. [35]. Reprinted with permission from ACS. . . . 159

5.14 Dependence of the obtained Egap as a function of the radius of the PbSe
QD without taking into account the exciton shift (solid line). For compar-
ison, experimental data (filled symbols) [37, 38, 40] and results from differ-
ent theoretical approaches (hollow symbols) are also presented [39, 41, 42].160

5.15 Simulated absorption spectra (continuous line) and experimental one (dashed
line) for different PbSe QDs radii. Experimental data has been taken from
Ref. [43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.16 Simulated I(V) curve in dark (continuous blue line) and light (dash blue
line) conditions respectively (normalized to the maximum current). In
the inset we show the experimental (square red points) and simulated
(continuous blue line) normalized photocurrent. Both figures are normal-
ized to the maximum current. Measured I(V) points have been extracted
from Prins et al. [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



List of figures

5.17 Simulated normalized photocurrent curve (continuous blue line) and ex-
perimental curve taken from Prins et al. [35] (dash blue line) as a function
of the wave length of the incident light. Simulated normalized absorption
coefficient (continuous red line) of the QD system and experimental ab-
sorption (red dashed line). In the inset, we show an scheme of the system
under external polarization; the band diagram of the QD, the optical
transitions and the band bending of the barriers due to the external bias
voltage V = 750mV . Besides, the electrochemical potentials of the leads
are also presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.18 Experimental net photocurrent as a function of irradiance (square red
points) and simulated (continuous blue line). Experimental points taken
from Prins et al. [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.19 Comparison between the DFT results and the EMA approximation for
the obtained DOS for different QDs diameters. DFT data has been taken
from Ref. [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.20 DFT absorption spectra for different QDs radii. Data has been taken
from Ref. [49]. The matrix transitions elements calculated using the EMA
approach are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166


	Contents
	Symbols
	Acronyms
	1 Introduction
	1.1 The quantum confinement: QDs properties
	1.2 Electronic transport in the nanoscale
	1.3 From theory to applications
	1.4 Objectives of the PhD Thesis
	1.5 Outline
	Bibliography

	2 Model fundamentals
	2.1 System decomposition
	2.1.1 Electron transport in the nanoscale: The Landauer-Büttiker approach
	2.1.2 Expression for the electric current:  the Transfer Hamiltonian approach
	2.1.3 The Non-equilibrium Distribution Functions
	2.1.4 Charge effects
	2.1.4.1 Single electron charging effect: the Coulomb blockade regime
	2.1.4.2 Self-consistent field regime
	2.1.4.3 Comparison between the Coulomb blockade and the self-consistent field regimes


	2.2 Examples with simple cases
	2.2.1 Single QD: energy level position and transmission coefficients
	2.2.2 Two QDs in serial configuration: the role of the capacitive couplings
	2.2.3 Two QDs in parallel configuration: double current paths

	2.3 Model validation: comparison with NEGFF
	2.3.1 NEGFF: the Non-Equilibrium Green's Function Formalism
	2.3.2 Comparison
	2.3.2.1 One single QD
	2.3.2.2 Two QDs
	2.3.2.3 Serial case
	2.3.2.4 Parallel case
	2.3.2.5 Other two QDs configurations
	2.3.2.6 Three QDs
	2.3.2.7 Large QDs arrangements

	2.3.3 Conclusions of the comparison with NEGFF

	2.4 Conclusions
	2.5 Annexes
	2.5.1 The Hamiltonian in a second quantization: transmission coefficients
	2.5.1.1 One single QD
	2.5.1.2 Two QDs in series
	2.5.1.3 Two QDs antiresonance configuration


	Bibliography

	3 Model implementation
	3.1 The Density of States
	3.1.1 Discrete energy spectrum
	3.1.2 From discrete energy states to the continuum DOS

	3.2 Electron & Holes
	3.2.1 Transport tunneling processes

	3.3 Transmission coefficients
	3.3.1 The transfer matrix approach
	3.3.2 Wentzel Kramers Brillouin approximation
	3.3.2.1 Direct tunneling
	3.3.2.2 Fowler-Nordheim tunneling

	3.3.3 Transfer matrix vs. WKB approximation: a comparison

	3.4 Capacitive couplings
	3.4.1 Image charge method
	3.4.2 QD-lead coupling
	3.4.3 QD-QD coupling

	3.5 Putting all together: final equations
	3.6 Code implementation: the SimQD simulator
	3.6.1 Input parameters
	3.6.2 Self-consistent field process
	3.6.2.1 Computational strategies: Anderson mixing
	3.6.2.2 From equations to code: oriented matrix language

	3.6.3 Code outputs
	3.6.4 Computational performance

	3.7 Conclusions
	Bibliography

	4 Study of the electronic transport in Silicon QDs
	4.1 From DOS to current: preliminary discussion
	4.2 Running the simulations
	4.2.1 Device description
	4.2.2 Material parameters
	4.2.3 Example with the Effective Mass Approximation DOS
	4.2.4 Example with Density Functional Theory inputs

	4.3 One single Si/SiO2 QD
	4.3.1 Accumulated charge trends

	4.4 Multilayered structures
	4.5 Electronic devices based on QD
	4.5.1 Transistor structure: the single electron transistor
	4.5.2 Device simulation
	4.5.3 QD array transistor
	4.5.4 Double gate transistor

	4.6 Carrier transport mechanisms in Si/SiO2 structures
	4.6.1 Si/SiO2 transport mechanisms
	4.6.1.1 Poole-Frenkel emission
	4.6.1.2 Schottky emission
	4.6.1.3 Tunneling processes
	4.6.1.4 Trap assisted tunneling

	4.6.2 Beyond the QD model
	4.6.2.1 Tunneling through the total oxide
	4.6.2.2 Defect inclusion

	4.6.3 Transport simulations: experimental validation
	4.6.3.1 SiO2 layer: pure defects conduction
	4.6.3.2 SiO2 layer: defect and direct tunneling 
	4.6.3.3 Si QD/SiO2 structure
	4.6.3.4 Superlatice Si QD/SiO2 structures


	4.7 Conclusions
	Bibliography

	5 Interaction with Light
	5.1 Modifying the rate equations: the light terms
	5.1.1 Toy examples: the role of each coefficient

	5.2 Complete energy level spectrum
	5.2.1 Single particle properties
	5.2.2 Pair states

	5.3 Derivation of the optical properties
	5.3.1 Intraband transitions
	5.3.2 Interband transitions
	5.3.3 Absorption coefficient

	5.4 Optical device simulations
	5.4.1 Si/SiO2 QDs: simulations
	5.4.1.1 Si QDs: optical properties
	5.4.1.2 Single QD: the symmetry role
	5.4.1.3 Parallel case
	5.4.1.4 Serial configuration

	5.4.2 Comparison with experiments: PbSe QDs
	5.4.2.1 PbSe QDs: optical properties
	5.4.2.2 Simulation vs. Experiments


	5.5 Conclusions
	5.6 Appendix
	5.6.1 DFT vs. EMA in Si/SiO2 QDs

	Bibliography

	6 Conclusions
	A Scientific Curriculum
	A.1 List of Publications
	A.1.1 Journal Articles
	A.1.2 Oral Presentations
	A.1.3 Poster Presentations
	A.1.4 Stays in Foreign Centers
	A.1.5 Participation in Projects
	A.1.6 Specialization Courses


	B Resumen en Castellano
	List of Figures

